POLITECNICO DI MILANO

Facoltà di Ingegneria per l'Ambiente e il Territorio D.I.I.A.R Sezione Infrastrutture Viarie

Il rilievo geologico-tecnico della Valchiosa (Valtellina, SO)

Relatore: Ing. Paola GATTINONI Correlatore: Dott.ssa Erika De Finis

> Tesi di laurea di: Sara BELLONI Matricola 765646

A mio papà

a Stefano

е...

... alla mia famiglia

Sommario

Principale obiettivo del presente studio è stato quello di delineare le caratteristiche geologiche e geomorfologiche delle mega-conoidi. In generale, per le conoidi alluvionali, la relazione tra l'area della conoide e l'area del bacino di drenaggio è governata dal una legge di potenza, la quale afferma che i detriti provenienti dal bacino aumentano all'aumentare dell'area di drenaggio.

La peculiarità delle mega-conoidi consiste nel non rispettare tale legge, in quanto l'area del bacino idrografico è modesta rispetto all'estensione del cono stesso. La ragione di tale interesse nello studio delle mega-conoidi risiede proprio nella loro peculiarità e nel poter delineare un filo conduttore comune alla base della loro formazione.

Le valli a cui appartengono tali conoidi hanno delle pendenze molto elevate nella zona superiore del bacino per poi diminuire drasticamente verso valle e sono caratterizzate da un alveo inciso avente una sezione torrentizia esigua, con scarso deflusso superficiale. Possiedono inoltre, una storia glaciale che non può essere trascurata: i depositi glaciali infatti, ricoprono quasi interamente il bacino. Infine, le valli che si trovano a monte delle mega-conoidi, sono interessate da movimenti gravitativi profondi di versante, che causano spostamenti tettonici relativamente piccoli ma di grande importanza a livello strutturale.

In particolare, il presente studio ha interessato la Valchiosa, piccola valle laterale a monte di Sernio (SO, Valtellina) alla quale è associata una mega-conoide.

Lo studio di quest'area si è svolto a partire dal rilievo geomeccanico in sito, che ha permesso la successiva caratterizzazione geologico-tecnica dell'area di frana.

A tale scopo sono state eseguite anche prove di resistenza a compressione monoassiale, sia in sito, con l'utilizzo del martello di Schmidt, che in laboratorio, con i campioni di roccia presi in loco, attraverso il Point Load Test.

La caratterizzazione geomeccanica dell'area è avvenuta attraverso l'utilizzo della classificazione di Bieniawski, e il Geological Strenght Index (GSI). Attraverso il criterio di rottura di Hoek&Brown, sono stati poi determinati i parametri geomeccanici principali che definiscono il comportamento di un ammasso roccioso, ovvero coesione e angolo d'attrito.

In tal modo è stato possibile ricostruire il modello concettuale della frana, che rappresenta la schematizzazione geometrica e fisica del sottosuolo ed identifica i processi che hanno portato alla sua evoluzione. Infatti, attraverso l'identificazione delle cause predisponenti e scatenanti del movimento franoso si è giunti all'identificazione dei processi rilevanti che hanno prodotto la formazione della mega-conoide di Sernio e che possono ancora oggi determinare condizioni di rischio residuo.

Secondo tale ricostruzione, i movimenti gravitativi profondi di versante, uniti allo scioglimento del permafrost hanno causato, in passato, un evento di dimensioni catastrofiche che ha portato al collasso della montagna esistente sulla testata di coronamento del bacino della Valchiosa. Tale collasso, ha prodotto un'ingente quantità di detrito, che a causa dell'esigua sezione torrentizia è stato difficilmente smaltibile, ed ha portato quindi alla formazione della mega-conoide. Il volume di tale conoide è stato successivamente incrementato a causa del susseguirsi di frane a posteriori, evolute poi in colate di detrito. La possibile formazione di nuovi percorsi di colata detritica causata dall'arretramento del ciglio delle frane esistenti e dall'estensione delle aree in erosione, rappresenta il rischio residuo associato al Bacino della Valchiosa.

ii

IN	ITRODUZIONE	1
1.	LA GENESI DELLE CONOIDI	
	1.1. LA CLASSIFICAZIONE DELLE CONOIDI	
	1.2. LA RELAZIONE MORFOMETRICA TRA L'AREA DELLA CONOIDE E L'AREA DEL BACINO DI DRENAGGIO	4
	1.3. CASI SPECIFICI DI MEGA-CONOIDI	
	1.3.1. La conoide della Valle del Migiondo	
	1.3.2. La conoide del Malser Haide	
	1.4. CONCLUSIONI	
2.	INQUADRAMENTO DELL'AREA DI STUDIO	
	2.1. INQUADRAMENTO GEOGRAFICO	
	2.2. Assetto tettonico-strutturale	
	2.3. INQUADRAMENTO GEOLOGICO	
	2.3.1. Caratteristiche litologiche del substrato roccioso	24
	2.4. INQUADRAMENTO GEOMORFOLOGICO	
	2.5. IDROLOGIA ED IDROGEOLOGIA	
3.	IL RILIEVO GEOMECCANICO	
	3.1. Scelta dell'area di rilievo	
	3.2. OPERAZIONI DI RILIEVO	
	3.2.1. Descrizione geologica e petrografica dell'ammasso roccioso	
	3.2.2. Operazioni riguardanti le discontinuità	
	3.2.3. Prove in sito	
	3.2.4. Prove di laboratorio	
	3.3. LA SCHEDA RILIEVO	
	3.4. CONCLUSIONI	50
4.		
	4.1. LA CLASSIFICAZIONE DI BIENIAWSKI (1973)	
	4.2. LA CLASSIFICAZIONE DI HOEK ET AL. (GSI)	
	4.3. IL CRITERIO DI ROTTURA DI HOEK&BROWN	
	4.4. L'ELABORAZIONE DEI DATI	
	4.4.1. L'indice di Rock Mass Rating	59
	4.4.2. La determinazione dell'indice GSI	59
	4.4.3. L'applicazione del criterio di Hoek&Brown	
	4.5. CONCLUSIONI	65
5.	RICOSTRUZIONE DEL MODELLO CONCETTUALE DELLA FRANA	
	5.1. MODELLO GEOMETRICO	67
	5.2. MODELLO GEOLOGICO-STRUTTURALE	
	5.3. IL MODELLO GEOLOGICO-TECNICO	72
	5.4. RICOSTRUZIONE DELLA DINAMICA DELL'EVENTO	74
	5.4.1. Le cause predisponenti	
	5.4.2. Le cause scatenanti	
	5.5. IL RISCHIO RESIDUO	75
6.	CONCLUSIONI	
BI	BLIOGRAFIA	

APPENDICE 1: SCHEDE RILIEVO	81
APPENDICE 2: INDICE DELLA SCHEDA RILIEVO	161

Indice delle figure

Figura 1-1 – le differe	enti tipologie di conoidi alluvionali sulla base del confinamento e della morfologia. (Sorriso
Valvo e	et al., 1998)
Figura 1-2 – Conoidi a	alluvionali nell'area di studio (Crosta e Frattini, 2001). Porzione Ovest dell'area, che include
Valchia	avenna (numero 1 in alto; fiumi Liro e Mera), Valsassina (2, fiume Pioverna) e la bassa
Valtelli	na (3, fiume Adda). Le lettere rappresentano le conoidi principali
Figura 1-3 – Porzione	Est dell'area di studio (Crosta e Frattini, 2001), che include l'alta Valtellina (3, fiume Adda,
fig. pre	ec.), Valcamonica (4, fiume Oglio, fig. prec.), e l'alta Val Seriana (5, fiume Serio, fig. prec),
Le lett	ere rappresentano le conoidi principali e la lettera "g" indica quella del bacino della
Valchio	osa, come analizzato nel testo.
Figura 1-4 – La distri	buzione logaritmica dell'area della conoide rispetto all'area del bacino di drenaggio. Le
"conoi-	di anomale" vengono discusse nel testo. La linea tratteggiata e la linea in grassetto
rappre	sentano rispettivamente l'intero dataseti (ALL) e una selezione delloi stesso (SEL, ved
testo s	eguente)
Figura 1-5 – Distribu	zione delle 8 categorie di conoidi riconosciute, classificate come tipo I, tipo II e mega
Cluster	1-3: Tipo I; Cluster 4-5: Miste Tipo I e II; Cluster 6-8: Tipo II; Cluster 7: mega-conoidi9
Figura 1-6 – Carta ir	ndice e schizzo geomorfologico della Valle di Migiondo e delle aree contigue (Sondalo,
Valtelli	na), desunto da fotografie aeree e da osservazioni di terreno. Si notino la morfologia
irregol	are del cono di deiezione terrazzato, i numerosi indizi geomorfologici di deformazioni
gravita	tive profonde di versante, i rock glaciers ed il circo glaciale troncati dalla scarpata di frana
M. Fo-	– Alpe Brandalon, alla testata della V. di Migiondo11
Figura 1-7 – Carta ge	omorfologica della mega-conoide di Malser Haide (Jarman et al., 2011)
Figura 2-1 – Ubicazio	ne della Valtellina, Regione Lombardia, Nord Italia17
Figura 2-2 – Ubicazio	ne del Bacino della Valchiosa (riquadro rosso)18
Figura 2-3 – Vista del	Bacino della Valchiosa dalla nicchia: in lontananza si possono notare il Paese di Sernio ec
il relati	vo lago
Figura 2-4 – Mappa to	ettonica delle delle Alpi Centrali Italiane; si nota la Linea Insubrica (Periadriatic Fault Zone),
i magg	iori lineamenti tettonici e le più grandi frane, indicate da un puntino nero; nel riquadro
rosso é	è ubicata la zona di nostro interesse. ("Large sackung along major tectonic features in
Centra	I Italian Alps" [C. Ambrosi, G. B. Crosta, 2006])20
Figura 2-5 – Schema	tettonico e geologico: la zona in esame è compresa tra i 2 lineamenti tettonici (Linea de
Mortin	olo e Linea del Tonale. [Schema tettonico contenuto nel Foglio Gelogico 19 di Tirano della
Carta C	Geologica d'Italia, scala 1:100000]21
Figura 2-6 – Mappa	tettonica e geologica delle Media Valtellina; sono evidenziate: Linea Insubrica (o de
Tonale), Linea del Mortirolo ed i maggiori movimenti gravitazionali, contrassegnati da un numerc
e da ur	na stella. ("Large sackung along major tectonic features in Central Italian Alps" [C. Ambrosi,
G. B. C	rosta, 2006])
Figura 2-7 – Stralcio c	lel Foglio Geologico 19 di Tirano (Carta Geologica d'Italia, scala 1:100000); il riquadro rosso
eviden	zia la Valchiosa
Figura 2-8 – Conoide	di deiezione del Bacino della Valchiosa, visto dall'alto

Figura 2-9 – Carta g	eomorfologica dell'area Mt. Padrio – C. ma Verda – Mt. Varadega. Lo stereogramma in alto
a sin	istra mostra l'orientazione dei lineamenti strutturali; i maggiori lineamenti e strutture
tetto	niche sono evidenziate nella mappa in alto a sinistra. ("Large sackung along major tectonic
featu	res in Central Italian Alps" [C. Ambrosi, G. B. Crosta, 2006])
Figura 3-1 – Affiora	menti sui quali si è eseguito il rilievo
Figura 3-2 – Rappre	sentazione stereografica equipolare dell'affioramento "RGM10"
Figura 3-3 – Suddivi	sione dell'area di rilievo in tre zone omogenee: Zona 1 – Conoide, Zona 2 – Intermedia, Zona
3 – N	icchia
Figura 3-4– Distrib	uzione delle giaciture di tutti gli affioramenti e suddivisione delle medesime nei gruppi
litolo	gici principali
Figura 3-5– Distribu	zione delle giaciture di tutti gli affioramenti e suddivisione delle medesime secondo le 3 zone
omog	Jenee
Figura 3-6– La rugo	sità rappresenta l'altezza media delle asperità della superficie rispetto all'apertura media;
in fig	ura sono rappresentati i 10 profili tipo con coefficienti variabili da 0 a 20 con intervalli di
2	
Figura 3-7 – Alteraz	ione delle superfici nell'affioramento n°2340
Figura 3-8– Lo scler	ometro
Figura 3-9 – Correl	azione tra resistenza alla compressione monoassiale della roccia, numero di rimbalzo e
inclin	azione dello strumento rispetto alla verticale42
Figura 3-10 – Distril	ouzione areale dei campioni prelevati per l'esecuzione delle prove di laboratorio
Figura 3-11 – Lo str	umento per il Point Load Test
Figura 3-12– Carta o	di correzione dell Point Laad test per la determinazione dell'indice I _s normalizzato al dimetro
50mr	n
Figura 3-13 - Andar	nento della frequenza relativa dei valori minimi di Is(50) con rottura normale alla scistosità,
di tut	ti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Le colonne
blu ra	appresentano tutti gli affioramenti, quelle gialle la zona 1, quelle verdi la zona 2 mentre
quelle	e azzurre la zona 3
Figura 3-14 - Andar	nento della frequenza relativa dei valori minimi di Is(50) con rottura normale alla scistosità,
di tut	ti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Le colonne
arano	ioni rappresentano tutti gli affioramenti, quelle gialle la zona 1, quelle verdi la zona 2
ment	re quelle azzurre la zona 3
Figura 3-15 – Sched	a rilievo riferita all'affioramento RGM10
Figura 4-1 – Criterio) di Hoek & Brown linearizzato
Figura 4-2 – Andar	nento della frequenza relativa dei valori di GSI di tutti gli affioramenti e per ogni zona
omog	genea, per ciascuna classe considerata. Le colonne blu rappresentano tutti gli affioramenti,
quell	e gialle la zona 1, quelle verdi la zona 2 mentre quelle azzurre la zona 3
Figura 4-3 – Andam	ento della frequenza relativa dei valori di BRMR, calcolati a partire dai valori di GSI medio
di tut	ti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Affioramenti
globa	li = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu
Figura 4-4 – Distrib	uzione spaziale dei valori di GSI minimo e di Point Load minimo correlati con le differenti
litolo	gie presenti. In rosso i valori più bassi, corrispondono a una qualità della roccia
scade	ente62

Figura 4-5 – Andamento dei valori di frequenza della coesione c' [MPa] per le differenti zone omogenee secondo il Criterio di Hoek&Brown (2002). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu
Figura 4-6 – Andamento dei valori di frequenza dell'angolo d'attrito φ [°] per le differenti zone omogenee secondo il Criterio di Hoek&Brown (2002). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu
Figura 4-7 – Andamento dei valori di frequenza della coesione c' [MPa] per le differenti zone omogenee secondo le formule analitiche della classificazione di Bieniawski (1973). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu
Figura 4-8 – Andamento dei valori di frequenza dell'angolo d'attrito φ [°] per le differenti zone omogenee secondo le formule analitiche della classificazione di Bieniawski (1973). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu
Figura 5-1– Suddivisione delle tre zone strutturalmente omogenee (suddivise dalla Linea del Mortirolo e dalla Linea Insubrica), rappresentazione dell'area dell'intero bacino, della conoide e della linea di massima pendenza, totale e per ciascuna zona (immagine da Google Earth)
Figura 5-2 – Profilo di elevazione della Zona 1 (Google Earth)68
Figura 5-3 – Profilo di elevazione della zona 2 (Google Earth).
Figura 5-4 – Profilo di elevazione della zona 3 (Google Earth)
Figura 5-5– Sezione trasversale del profilo di pendenza dell'alveo inciso, con relativa caratterizzazione geologica e strutturale per zone omogenee

Indice delle tabelle

Tabella 1-1 – Valori del coefficiente c e dell'esponente k nella legge di potenza (A _f = cA _b ^k) tra l'area del bacino di drenaggio e l'area della conoide in zone umide e semi-umide (Allen and Hovius, 1998)
Tabella 3-1 – Classi di qualità della roccia in base al parametro RQD (%)
Tabella 3-2 - Valori medi di VRU (cm) assoluti e per ciascuna zona omogenea.
Tabella 3-3 – Correzione dell'indice di rimbalzo R, a seconda dell'inclinazione dello strumento rispetto alla verticale
Tabella 3-4 – Tabella riepilogativa dei valori medi calcolati per ciascun dato dell'area in esame
Tabella 4-1 – Classificazione Rock Mass Rating (da Bieniawski, 1979)52
Tabella 4-2 – Caratteristiche delle classi (da Bieniawski, 1979)53
Tabella 4-3 – Stima del GSI per ammassi rocciosi fratturati (Marinos & Hoek, 2000)
Tabella 4-4 – Stima della costante m _i per la roccia intatta (Marinos & Hoek, 2000)56
Tabella 4-5 – Determinazione del fattore di disturbo D
Tabella 4-6 – Valori medi e minimi assoluti e di ciascuna zona omogenea del GSI, del BRMR, della coesione, dell'angolo d'attrito, del modulo di Young e la corrispondente qualità della roccia secondo il criterio di Bieniawski
Tabella 5-1– Valori medi, assoluti e suddivisi per ciascuna zona, della coesione, angolo d'attrito, modulo di Young, peso specifico e resistenza a compressione monoassiale con rottura normale e parallela alla scistosità

Introduzione

L'area di studio del presente lavoro di tesi, è la mega-conoide di Sernio, a valle del Bacino della Valchiosa (SO, Valtellina); l'evoluzione di tale area è stata fortemente influenzata sia dalle variazioni glaciali sia da fenomeni gravitativi.

In questo lavoro si è voluta incentrare l'attenzione sull'origine della formazione di tale megaconoide, confrontando quest'ultima con altri due casi simili nelle Alpi centrali: la conoide del Migiondo (Valtellina) e il Malser Haide (Val Venosta)

Il nucleo centrale del lavoro di tesi è stato il rilevo geomeccanico in sito delle rocce affioranti e dei depositi superficiali che ricoprono l'intero bacino, attraverso il quale si è cercato di comprendere meglio le caratteristiche di questi fenomeni in aree in cui le morfologie sono collegabili alla storia geologica e strutturale.

Sono state eseguite prove in sito e di laboratorio per valutare la resistenza a compressione monoassiale degli ammassi rocciosi; l'area d'interesse è stata suddivisa in tre zone strutturalmente omogenee e successivamente si è proceduto alla caratterizzazione geomeccanica che ha permesso la definizione della qualità degli ammassi rocciosi affioranti lungo l'intero bacino in esame.

L'obiettivo finale di questo lavoro vuole essere l'analisi delle cause predisponenti e scatenanti che hanno portato alla formazione di una conoide di grande dimensioni rispetto al bacino di appartenenza e la ricostruzione, attraverso un modello concettuale, dell'evoluzione morfologica del suddetto bacino, considerando anche il corrispondente rischio residuo. Introduzione

Capitolo 1

La genesi delle mega-conoidi

Lo sviluppo delle conoidi alluvionali nell'area Alpina è spesso influenzato da processi sedimentari catastrofici associati a estreme inondazioni che causano seri rischi per le persone che vivono nei paesi ai piedi delle conoidi. La valutazione del pericolo in queste aree dipende dalla corretta identificazione dei processi sedimentari dominanti nelle conoidi.

In questo capitolo verranno presentati i diversi tipi di conoidi ed analizzate le loro differenti origini nell'area delle Alpi centrali; l'attenzione verrà concentrata sulle mega-conoidi, considerate "anomale" a causa dell'estrema ampiezza della loro area rispetto al bacino di drenaggio ad esse soprastante.

Verranno inoltre trattati due casi specifici di mega-conoidi situate nell'area Alpina, i quali permetteranno di comprendere meglio la successiva analisi dell'area oggetto di studio.

1.1. La classificazione delle conoidi

Secondo Jarman et al., 2001, le conoidi alluvionali¹ possono essere suddivise in due categorie: le conoidi *"allometriche"* e le conoidi *"anomale"*.

<u>Le conoidi *"allometriche"*</u> sono la maggior parte e rappresentano la produzione "normale" ovvero che non è discordante con il paesaggio circostante.

Queste conoidi sono il risultato di processi primari e secondari (Blair and Mcpherson, 1994). I processi primari sono responsabili del trasporto dei sedimenti dal bacino di drenaggio alla conoide (Hooke, 1967). Cadute di massi, valanghe in roccia, colate detritiche e inondazioni sono i più importanti processi primari the contribuiscono alla costruzione della conoide. I processi secondari sono quelli che mobilizzano e modificano i sedimenti precedentemente trasportati alle conoidi dai processi primari; sono inclusi nei processi secondari inondazioni, pedogenesi ed erosione a causa del vento. A causa del alto grado di urbanizzazione delle conoidi, una stabilizzazione antropogenica di sedimenti superficiali ha nascosto la topografia risultante dai processi secondari.

Le conoidi "allometriche" possono essere suddivise in due tipologie sulla base dei processi primari dominanti e della risultante morfologia della conoide. Secondo Blair and McPherson (1994), le conoidi controllate da colate detritiche sono classificate come "Tipo I", mentre quelle dominate da correnti fluide come "Tipo II".

Le forme principali caratterizzanti le conoidi di "Tipo I" sono lobi ed argini formati da detriti (Fig. 1.1a-c). Queste forme sono chiaramente riconoscibili solo per eventi relativamente recenti; infatti, per mantenere il terreno disponibile per le coltivazioni, i detriti superficiali depositati sulle conoidi vengono rimossi e appiattiti mediante ruspe pochi mesi dopo l'evento. La successione sedimentaria delle conoidi di "Tipo I" è dominata da sequenze verticali di letti di ghiaia che mostrano differenti caratteristiche dipendenti principalmente dal substrato roccioso e dalla litologia superficiale

¹ Il termine "conoidi alluvionali" include generalmente sia quelle dominate da depositi fluviali sia quelle controllate da colate detritiche (debris flow) (Blair&McPherson 1994; Sorriso-Valvo et al. 1998; Iverson 2003). Per Derbyshire&Owen (1990) l'epiteto "alluvionali" è inappropriato dato che la maggior parte dei depositi delle conoidi in ambienti alpini non sono dovuti dalle correnti, ma sono parzialmente o interamente composti da debris flow, ed hanno proposto la definizione "conoidi da sedimento" come termine neutrale identificativo.

(Moscariello et al., 2002). Generalmente, questi letti sono costituiti da clasti allungati poco ordinati, massi argillosi e limosi, ghiaia e ciottoli.

Le conoidi di "Tipo II" invece, hanno depositi che normalmente variano dai granelli alla sabbia verso l'esterno della conoide (Wells and Harvey, 1987; Blair and McPherson, 1994); la superficie della conoide è di solito piana e leggermente concava verso l'alto.

L'estensione delle conoidi alluvionali che si è sviluppata nelle valli alpine può avere influenzato significativamente l'estensione delle valli riceventi, e di conseguenza anche le conoidi alluvionali adiacenti (Sorriso-Valvo et al., 1998). Sulla base dei confini dell'estensione delle conoidi, queste ultime sono state suddivise a loro volta in tre classi: confinate distalmente, confinate lateralmente e non confinate. (Fig. 1.1)

Figura 1-1 – le differenti tipologie di conoidi alluvionali sulla base del confinamento e della morfologia. (Sorriso-Valvo et al., 1998)

La seconda categoria di conoidi, di cui viene approfondita la conoscenza nel paragrafo seguente, sono le cosiddette conoidi "anomale", ovvero caratterizzate da un rapporto anomalo tra l'estensione del bacino di drenaggio e l'area della conoide sottostante. Queste ultime vengono classificate come "outsize fans" e "megafans" (Jarman et al., 2011); le prime sono generate da piccoli bacini di drenaggio (< 3,7 km²), mentre le seconde occupano le depressioni con grandi volumi detritici superiori a 250 Mm³. Il volume di detriti in eccesso in queste conoidi anomale, superiore alla normale produzione data dai processi convenzionali, può essere causato da uno o più eventi di magnitudine elevata (Crosta e Frattini, 2004).

1.2. La relazione morfometrica tra l'area della conoide e l'area del bacino di drenaggio

Crosta e Frattini, 2002, hanno analizzato 209 conoidi alluvionali ubicate in cinque valli delle Alpi Centrali, in Nord Italia: Valtellina, Valchiavenna, Val Seriana, Valcamonica e Valsassina (Fig. 1.2*a* e *b*).

Figura 1-2– Conoidi alluvionali nell'area di studio (Crosta e Frattini, 2001). Porzione Ovest dell'area, che include Valchiavenna (numero 1 in alto; fiumi Liro e Mera), Valsassina (2, fiume Pioverna) e la bassa Valtellina (3, fiume Adda). Le lettere rappresentano le conoidi principali.

1. La genesi delle conoidi

Figura 1-3 – Porzione Est dell'area di studio (Crosta e Frattini, 2001), che include l'alta Valtellina (3, fiume Adda, fig. prec.), Valcamonica (4, fiume Oglio, fig. prec.), e l'alta Val Seriana (5, fiume Serio, fig. prec). Le lettere rappresentano le conoidi principali e la lettera "g" indica quella del bacino della Valchiosa, come analizzato nel testo.

Lo studio sulla morfologia delle conoidi alluvionali e dei relativi bacini di drenaggio fornisce molte informazioni riguardo all'evoluzione e alle dinamiche dei processi idrologici responsabili della formazione delle conoidi. La morfologia delle conoidi alluvionali è una conseguenza del succedersi di differenti processi, come precedentemente detto, e la morfologia del bacino di drenaggio, controlla tali processi (Kostaschuk *et al.*, 1986; Wells and Harvey, 1987; Blair and McPherson, 1994).

La relazione tra l'area della conoide e l'area del bacino di drenaggio, basata si studi geomorfologici di conoidi recenti (Bull, 1962; Hooke, 1968; Lecce, 1991; Silva *et al.*, 1992; Harvey *et al.*, 1999), è una legge di potenza (Fig 1.3):

$$A_f = cA_b^k$$

dove A_b (km²) rappresenta l'area del bacino di drenaggio, mentre A_f (km²) è l'area della conoide.

La ragione di questa correlazione risiede nel fatto che i detriti provenienti dal bacino aumentano all'aumentare dell'area di drenaggio.

In tabella 1.1 vi sono i differenti valori dell'esponente k e del coefficiente c, catalogati, da letteratura, in base alle regioni umide e semi-umide.

La variabilità di questi di *c* e *k* derva da diversi fattori, quali il cambiamento climatico, l'assetto tettonico, l'erodibilità dei diversi tipi di ammassi rocciosi (Hooke and Rohrer, 1977), la disponibilità dei depositi superficiali all'interno dell'area di drenaggio, ed infine il tasso e la distribuzione spaziale della subsidenza (Allen and Hovius, 1998).

Location	с	k	Reference
Dellwood, North Carolina, USA	0.23	0.53	Mills (1982)
Roan Mountain, North Carolina, USA	0.38	0.76	Mills (1983)
General River Valley, Costa Rica	0.92	1.01	Kesel (1985)
Banff, Alberta, Canada, fluvial fans	0.48	0.32	Kostaschuk et al. (1986)
Banff, Alberta, Canada, debris-flow fans	0.17	0.48	Kostaschuk et al. (1986)
Japan (115 fans)	2.23	0.40	Oguchi and Ohmori (1994)

Tabella 1-1 – Valori del coefficiente c e dell'esponente k nella legge di potenza ($A_f = cA_b^k$) tra l'area del bacino di drenaggio e l'area della conoide in zone umide e semi-umide (Allen and Hovius, 1998)

Dalla tabella 1.1 si può osservare come c e k differiscano a seconda della zona considerata; c è sempre < 1 ad eccetto dell'area del Giappone, k invece è compreso tra valori che variano tra 0,3 e 1.

I risultati ottenuti da questa analisi sono stati graficati e rappresentati nella figura sottostante (Fig. 1.3).

Figura 1-4 – La distribuzione logaritmica dell'area della conoide rispetto all'area del bacino di drenaggio. Le "conoidi anomale" vengono discusse nel testo. La linea tratteggiata e la linea in grassetto rappresentano rispettivamente l'intero dataseti (ALL) e una selezione delloi stesso (SEL, vedi testo seguente).

Considerando tutte le conoidi ubicate nelle cinque valli sopra citate e analizzate da Crosta & Frattini, 2004, coefficiente di correlazione r ottenuto è molto basso in quanto, come mostrato in figura 1.3, sia le conoidi confinate che quelle distali influenzano significativamente la regressione.

Per un piccolo gruppo di dati, catalogate come mega-conoidi ("anomalous fan" in fig. 1.3; vedi anche fig. 1.2 a e b), si osservano valori dell'area della conoide fortemente anomali ed estremamente elevati rispetto all'area del bacino di drenaggio. L'eccezionale accumulo di sedimenti da questi bacino di drenaggio può essere collegata a un singolo evento catastrofico.

Tale spiegazione può giustificare la genesi della conoide del Migiondo (di cui si parlerà nel paragrafo seguente), (punto h in fig. 1.2b) e della conoide della Valchiosa, che rappresenta l'area di studio del presente lavoro di tesi.

La conoide del Migiondo e della Valchiosa si sono sviluppate a causa di un enorme collasso che ha causato valanghe in roccia e debris flow (Hsü, 1975; Blair, 1999).

Le altre mega-conoidi posseggono un tasso di trasporto di sedimenti estremamente elevato; questo eccezionale tasso, è attribuibile alla presenza di rocce altamente fratturate e fagliate (conoide di Caldenno, di Roncaiola, di Vallaccia e Cerveno).

Escludendo dall'analisi le mega-conoidi e quelle confinate e distali, Crosta & Frattini hanno considerato un'altra regressione (SEL, fig. 1.3), il cui rendimento è più significativo del precedente e presenta un coefficiente di correlazione più elevato.

Le regressioni sui dati di ciascuna valle non differiscono significativamente, e dimostrano quindi, una sostanziale similarità delle differenti aree.

Di tutte le conoidi analizzate sono stati rappresentati su carta otto categorie di conoidi suddivise in Tipo I, Tipo II e anomale. (Fig. 1.4)

Figura 1-5 – Distribuzione delle 8 categorie di conoidi riconosciute, classificate come tipo I, tipo II e mega. Cluster 1-3: Tipo I; Cluster 4-5: Miste Tipo I e II; Cluster 6-8: Tipo II; Cluster 7: mega-conoidi.

In riferimento alla figura soprastante di analizzano le diverse categorie:

- Cluster 1: conoidi alluvionali di Tipo I, caratterizzate da bacini ripidi e ingenti quantità di depositi colluviali;
- Cluster 3: conoidi alluvionali di tipo I caratterizzate da piccoli bacini con angoli di pendenza elevati nella parte alta del bacino;
- Cluster 4 e 5: conoidi alluvionali di tipo misto I e II caratterizzate da pendenze più lievi ma con aree più ampie (Tipo I e II);
- Cluster 6 e 8: conoidi di Tipo II caratterizzate da una rete di drenaggio ben definita con ampi bacini imbriferi e relative quantità di depositi glaciali e colluviali;
- Cluster 7: mega-conoidi, caratterizzate quindi da aree molto ampie rispetto al bacino di drenaggio; i bacini di questo tipo hanno caratteristiche peculiari, quali una grossa quantità di depositi glaciali e colluviali, una prevalenza di rocce metamorfiche e una valle ricevente molto ampia.

Anche *D. Jarman et al.* ha analizzato i dati di 49 conoidi in Val Venosta riscontrando le medesime problematiche riguardo alle conoidi anomale: 15 conoidi catalogate come "megafans" e "outsize fans" hanno specifiche origini o configurazioni anomale, più ampie, identificabili da carte topografiche e immagini da satellite. Le possibili origini di tali conoidi sono spesso attribuibili ad un evento catastrofico.

1.3. Casi specifici di mega-conoidi

Nel paragrafo seguente vengono presentati due casi specifici di conoidi "anomale" di notevole ampiezza, largamente studiate e monitorate: la conoide della Valle del Migiondo e la conoide di Malser Haide.

1.3.1. La conoide della Valle del Migiondo

Nel bacino della Valle del Migiondo, nell'Alta Valtellina, immediatamente a valle di Sondalo, in riva destra dell'Adda, è presente un ampio cono di deiezione terrazzato, sospeso sul fondovalle con una scarpata alta un centinaio di metri ed estesa per oltre 1,5 km, lungo la quale affiorano depositi detritici grossolani stratificati.

Dallo studio a cura di *M. Guglielmin e G. Orombelli ,2001,* si apprende che, in connessione con gli eventi alluvionali nell'autunno 1987, lungo la scarpata si è prodotto un dissesto, noto come "frana della Boscaccia", ora bonificato. Sono però tutt'ora attive diverse piccole frane nella porzione più meridionale della scarpata.

Tale studio è mirato ad analizzare le cause alla base della formazione di una conoide avente un'area così ampia rispetto al relativo bacino di drenaggio.

Il cono di deiezione della Valle del Migiondo, su cui sorgono gli abitanti dell'omonimo paese e Sommacologna, si sviluppa ai piedi di un piccolo bacino idrografico, percorso da un torrente profondamente inciso che si immette nell'Adda. Tale bacino si sviluppa per un area di circa 7km², tra una quota minima di 800 metri ed una massima di 2922 metri, è delimitato dalla Val Grosina e dallo spartiacque Monte Storile – Monte Fo – Passo quintena – Alpe Brendalon (Fig. 1.5). Nel torrente, confluiscono due aste pirincipali, la settentrionale lunga circa 3 km e quella occidentale di circa 2 km; dalla confluenza il torrente percorre circa 2 km in un vallone inciso sempre più profondamente nel cono di deiezione, prima di sfociare nell'Adda.

1. La genesi delle conoidi

Figura 1-6 – Carta indice e schizzo geomorfologico della Valle di Migiondo e delle aree contigue (Sondalo, Valtellina), desunto da fotografie aeree e da osservazioni di terreno. Si notino la morfologia irregolare del cono di deiezione terrazzato, i numerosi indizi geomorfologici di deformazioni gravitative profonde di versante, i rock glaciers ed il circo glaciale troncati dalla scarpata di frana M. Fo – Alpe Brandalon, alla testata della V. di Migiondo.

Il cono del torrente della Valle di Migiondo appare singolare al confronto degli altri numerosi presenti nella valle, per le sue ampie dimensioni rispetto a quelle del bacino a monte, per l'alta scarpata che lo configura come una forma antica e soprattutto, per la natura dei depositi da cui è costituito, non attribuibili ad una dinamica puramente alluvionale.

Il rapporto tra la superficie del cono e quella del bacino a monte è pari a 0,2, un valore tra i più elevati in Valtellina, dove la superficie dei coni di deiezione è generalmente inferiore a 1/10 di quella del bacino alimentatore.

Lungo la scarpata, di oltre 50 metri d'altezza e completamente denudata a causa del franamento della Boscaccia, affiorano sedimenti di cui è possibile osservarne la natura, tra quota 860 m. e la sommità del cono, a quota 920 m. Si tratta di depositi detritici grossolani, in prevalenza a supporto di matrice (dinamicton); i clasti hanno dimensione dai ciottoli ai grossi blocchi, da angolari a subarrotondati, mentre la matrice è costituita da sabbia limosa. Questi sedimenti sono interpretabili come depositi di trasporto in massa per flusso detritico (debris flow). I depositi sopra esposti si appoggiano sopra un banco sabbioso – limoso di circa 2 metri di spessore. Al di sotto del livello sabbioso con ghiaia affiorano nuovamente, per qualche metro, depositi detritici grossolani con clasti subangolari (debris flow). Circa un centinaio di metri più a valle, è esposto un secondo affioramento dello spessore di 15 metri; è costituito da un dinamicton massivo, suddiviso

obliquamente in due parti, separate da un livello di circa 60 cm di spessore di sabbia poco limosa. Per la presenza di clasti in prevalenza spigolosi e di grandi dimensioni, le bande oblique e gli indizi di fratturazione dei clasti, questo deposito viene interpretato come un accumulo di valanga di detrito.

Da quanto sopra esposto, possiamo concludere che il cono di deiezione terrazzato del torrente della Valle del Migiondo non si è formato per normale dinamica torrentizia ma per accumulo ad opera di processi di trasporto in massa. L'origine del cono per accumulo di frana e di colate detritiche può spiegare alcune delle sue peculiarità, quali la pendenza elevata nel tratto apicale, la forma fortemente insinuata nella valle da cui prende origine, la morfologia irregolare e le dimensioni rilevanti rispetto a quelle del bacino di origine. Se quindi tale cono si è formato per fenomeni di frana (valanga di detrito e colata detritica) rimane da accertare l'evidenza degli stessi fenomeni nel bacino a monte, tenendo presente che devono essersi verificate nellOlocene inferiore e che le loro tracce più evidenti devono essere state successivamente occultate da altri processi e dalla vegetazione.

Sempre grazie allo studio di *M. Guglielmin e G. Orombelli (2001)* si viene a conoscenza dei fenomeni sviluppatesi nel bacino a monte.

La testata del bacino della Valle del Migiondo è interessata da fratture, trincee e scarpate, prodotte da deformazioni gravitative profonde di versante (DGPV, di cui parleremo nel capitolo seguente). Queste strutture sono in prevalenza orientate verso NE-SW, ma sono presenti anche lineamenti trasversali NW-SE. Nella contigua Val di Quintena, tributaria sinistra della Val Grosina, appena al di là del crinale del bacino del Migiondo, sono presenti alcuni rock glaciers e campi di detriti grossolani, in larga parte attualmente privi di un'area di alimentazione e deformati dalle fratture, trincee e scarpate sopra descritte. Queste formazioni detritiche sono sovrapposte o annidate entro depositi glaciali attribuibili alle fasi terminali dell'ultima glaciazione. Se ne deduce che durante il Tardiglaciale si siano prodotti crolli a spese di pareti rocciose in parti oggi non più esistenti. Tali crolli potrebbero essere stati prodotti o controllati da fasi iniziali di DGPV; lungo superfici di DGPV si sarebbero poi prodotti maggiori crolli e scivolamenti sul versante del bacino della valle di Migiondo, che avrebbero in parte precipitato le pareti rocciose dominanti i rock glaciers. Analoga sorte per quanto riguarda il circo glaciale Dosso dell'Oca – Cima Rossa – vetta di Alpe Bredalon troncato dell'intera sua crosta meridionale. È possibile che a questa fase sia da collegarsi l'accumulo di frana (valanga di roccia) alla base del cono del Migiondo; successivi crolli si sarebbero poi evoluti in colate detritiche. Con questa interpretazione DGPV prodottesi durante l'ultima deglaciazione potrebbero aver contribuito, tramite crolli, all'alimentazione detritica grossolana dei rock glacier e la loro successiva evoluzione è da ritenersi dovuta a crolli/scivolamenti, produttivi di valanghe in roccia e di grandi colate detritiche.

In conclusione, accumuli siffatti, sproporzionati rispetto alle dimensioni del bacino di alimentazione, con morfologia irregolare e pendenza rilevante, possono essere la spia di eventi di tipo franoso prodottisi nel recente passato nel bacino. È noto che i coni con pendenze elevate sono comunemente alimentati da colate detritiche o trasporto in massa; è tuttavia chiaro che alla testata del bacino del Migiondo permane una situazione compromessa da fratture, trincee e contropendenze prossime alla linea del crinale, alla sommità di un versante dall'aspetto non assestato con una morfologia deformata e troncata da crolli.

1.3.2. La conoide del Malser Haide

Dallo studio eseguito da D. Jarman, F. Arigliardi & G. B. Crosta datato 2011 è possibile apprendere le seguenti informazioni.

Il Malser Haide è considerato come la conoide alluvionale più grande in tutta la Catena Alpina, avente un volume stimato pari a 1650 Mm³ (Penck&Brückner, 1909; Taylor 1940; Eisbacher&Clague, 1984). La sua area eccede quindi i 16 km², si estende per una lunghezza di 11 km ed un'altezza massima di 900 metri. La conoide di Malser Haide occupa la maggior parte dell'alta Val Venosta e proviene piccola valle confinante di Plawenn, la quale ha un bacino di drenaggio di 8,3 km². Dal punto di entrata obliquo nell'alta Val Venosta, si apre a ventaglio formando una conoide piana distale (Sorriso-Valvo et al. 1998.) per arginare il piccolo Mare di Haider. Continua poi verso valle con una depressione ampia 1–2 km e una superficie più planare, fino alla confluenza con la Valle di Mustair a Glurns (910 m). La testata del cono retrocede più ripidamente di 3 km dentro la Valle di Plawenn(Fig. 1.6).

Figura 1-7 – Carta geomorfologica della mega-conoide di Malser Haide (Jarman et al., 2011)

L'eccezionale lunghezza del Malser Haide è attribuibile al contesto topografico. Il profilo di pendenza del suo cono parte dal 16% per poi diminuire al 10-12% nella parte intermedia e passare al 7% nel tratto terminale; questo range di valori è tipico delle mega-conoidi alpine.

Eisbacher & Clague, 1984, hanno osservato che la conoide del Malser Haide deriva da un piccolo bacino; è alquanto impobabile che la piccola valle di Plawenn possa mobilitare, attraverso episodici debris flow, ingenti quantità di detriti tali da formare una mega-conoide. L'area intorno alla testata della valle infatti, presenta grandi anomalie morfostrutturali e segni di possibili collassi.

La possibilità dell'origine del Malser Haide da un movimento catastrofico di massa era stata notata precedentemente (Crosta & Zanchi, 2000). Fischer (1966) ha riconosciuto le sue grosse dimensioni ma, come tutte le altre conoidi della Val Venosta, attribuì la sua origine a numerosi eventi fluviali, includendo la deglaciazione e tempeste "catastrofiche". Ma nonostante tali coincidenze, tale origine non è plausibile.

L'origine catastrofica della conoide del Malser Haide rimane la più accreditata, e a supporto di tale tesi, è stata ricostruita la montagna che era presente sulla testata della Valle di Plawenn prima del suo collasso. La sua ricostruzione è stata ottenuta grazie ad una procedura iterativa che riconosce i confini tra il pre e il post collasso, e riesce a ricostruire ragionevolmente un proto-rilievo. La montagna ricostruita attraverso questa procedura, ha un'altezza pari a 3100 metri. La parte che è collassata è ubicata sopra la testata della Valle di Plawenn, ed ha uno spessore massino di 700 metri. Il volume di tale massa è stato stimato essere di 1500 Mm³. Si assume che l'intera massa all'interno del bacino di Plawenn ha contribuito alla formazione della conoide del Malser Haide. Il volume della montagna ricostruita può essere considerato nel range tra 1000 e 1800 Mm³. La ricostruzione indentifica anche l'esistenza di una seconda montagna sul lato ovest della valle di Viviana.

Il carattere di tali catastrofici collassi è condizionato dalla geometria iniziale, dal meccanismo di collasso, dal grado di fratturazione degli ammassi rocciosi e dalla debolezza delle rocce (Crosta *et al.*, 2009).

In conclusione, lo studio condotto da Jarman *et al.*, ha posto per la prima volta il problema dell'origine catastrofica, e non alluvionale o dovuta a colate detritiche, delle mega-conoidi sviluppatesi in valli glaciali. Sono state identificate un gruppo di conoidi anomale in Val Venosta la cui area non è per nulla proporzionata rispetto al bacino di provenienza. Tali mega-conoidi sono quindi il prodotto di uno o più eventi catastrofici verificatesi in passato.

1.4. Conclusioni

Alla luce di quanto sopra esposto possiamo concludere che la morfologia delle conoidi è controllata da diversi fattori, e come dimostrato da molti autori (Bull, 1962; Hooke, 1968; Kostaschuck et al., 1986; Lecce, 1991; Harvey, 1992; Guglielmin e Orombelli, 2001; Jarman et al., 2011), l'area delle conoidi alluvionali è correlata all'area del loro bacino di drenaggio da una relazione di potenza.

La relazione allometrica delle conoidi alluvionali paraglaciali può essere spiegata meglio dal fatto che i bacini più piccoli hanno già completato il ciclo di sedimentazione paraglaciale dopo le glaciazioni del Pleistocene. Di conseguenza, una grande quantità di sedimenti è stata trasportata durante la loro evoluzione post glaciale (Church and Slaymaker, 1989; Harbor and Warbuton, 1993; Ballantyne, 2002); al contrario, i bacini più ampi sono ancora in attività paraglaciale (Church and

Slaymaker, 1989). Inoltre, per le conoidi fluviali, i bacini più grandi possono mobilitare una quantità d'acqua maggiore per trasportare ingenti quantità di sedimenti lungo la conoide, pittosto che depositarli (Bull, 1962; Hooke and Rohrer, 1977); per le conoidi generate da colate detritiche invece, i bacini più piccoli sono solitamente più ripidi e producono flussi con minore energia e con un'area superficiale più grande dei bacini più ampi ma con pendenze più lievi (Kostaschuck et al., 1986).

Ciò che possiamo dedurre da quanto affermato sia da *Crosta & Frattini, 2002* che da *M. Guglielmin e G. Orombelli (2001)* e successivamente confermato da Jarman et al., 2011 riguarda le caratteristiche peculiari delle valli che presentano conoidi anomale. Tali valli, sono sicuramente glaciali e caratterizzate da un settore superiore molto stretto e ripido e da un settore inferiore più piano e ampio.

Un fattore che sembra avere una forte influenza sui processi di deposizione delle conoidi è la presenza, il tipo e lo stato di attività delle frane nei bacini di drenaggio. Le frane dipendono direttamente dalla morfologia e dall'energia, ma sono influenzate da altro fattore che non può non essere preso in considerazione ovvero lo scioglimento dei ghiacciai.

Le frane, le valanghe in roccia, la caduta di massi e le colate detritiche costituiscono sicuramente un elemento di fondamentale importanza nella formazione e successivo incremento delle megaconoidi, ma la loro origine deriva sicuramente da un singolo evento catastrofico verificatosi in passato la cui ricostruzione fa presupporre l'esistenza di una montagna sulla testata della valle in questione. 1. La genesi delle conoidi

Capitolo 2

Inquadramento dell'area di studio

2.1. Inquadramento geografico

L'area oggetto del presente studio è ubicata nel Nord Italia, lungo l'arco alpino e più precisamente si trova in Valtellina (SO), una vallata che si sviluppa per un'area di 3212 km², lunga 120 km, con andamento ovest-est, lungo quale si immettono diverse valli laterali, talvolta mediante conoidi di notevoli dimensioni.

La Valtellina tocca a est il Trentino Alto-Adige con le provincie autonome di Bolzano e Trento, a sud le Provincie di Brescia e, in minima parte, di Bergamo, a Nord la Confederazione Elvetica (Cantone dei Grigioni), ed infine a Ovest la Provincia di Lecco (fig. 2.1).

In particolare, l'area oggetto di studio si identifica con il bacino del Torrente Valchiosa, tributario di sinistra del Fiume Adda, che solca le Alpi Retiche con una orientazione SSE-NNO e che rappresenta il confine tra i Comuni di Sernio e Tirano (Carta escursionistica in fig. 2.2 e foto reale in fig. 2.3).

Figura 2-1 – Ubicazione della Valtellina, Regione Lombardia, Nord Italia..

Figura 2-2 – Ubicazione del Bacino della Valchiosa (riquadro rosso).

Figura 2-3 – Vista del Bacino della Valchiosa dalla nicchia: in lontananza si possono notare il Paese di Sernio ed il relativo lago.

2.2. Assetto tettonico-strutturale

La Valtellina è impostata sulla Linea Insubrica (Fig. 2.4), un sistema di faglie che segnano la saldatura tra la Placca Indo-Europea e la Placca Adriatica. Separa quindi le Alpi Centro-orientali (Alpi Retiche occidentali) dalle Alpi Sud-orientali (Alpi e Prealpi Bergamasche e Alpi Orobie).

Figura 2-4 – Mappa tettonica delle delle Alpi Centrali Italiane; si nota la Linea Insubrica (Periadriatic Fault Zone), i maggiori lineamenti tettonici e le più grandi frane, indicate da un puntino nero; nel riquadro rosso è ubicata la zona di nostro interesse. ("Large sackung along major tectonic features in Central Italian Alps" [C. Ambrosi, G. B. Crosta, 2006])

Tale linea non è costituita da un'unica superficie di movimento, ma da un denso fascio di piani di movimento subparalleli, orientati grosso modo in direzione est-ovest, che delimitano una zona in cui le rocce hanno subito una frantumazione molto spinta. Linee secondarie, interessano, anche a distanza di chilometri, le rocce ai due lati della Linea Insubrica.

La zona di interesse, rappresentata dal Bacino del Torrente Valchiosa (riquadro rosso in figura 2.3), occupa il settore centro-orientale della Linea Insubrica, ed è racchiusa nel complesso delle Austridi o Austroalpino, che più precisamente del Sistema di Languard-Tonale (Austroalpino Superiore), (G. Bonsignore, A. Montrasio, U. Ragni, 1971).

L'edificio strutturale Austroalpino è schematicamente definito da un'ampia "anticlinale valtellinese", diretta all'incirca ONO-ESE e pressochè parallela alla Linea del Tonale. Sul versante sinistro della Valtellina – fianco meridionale della piega - prevalgono immersioni a S e a SSE, con valori di inclinazione molto accentuati; sul versante destro valtellinese prevalgono, invece giaciture verso N e NNO – fianco settentrionale della piega-. Questa struttura d'insieme è, in realtà mascherata quasi ovunque da disturbo locale e numerose complicazioni.

Il sistema di Languard-Tonale (Bonsignore, U. Ragni, 1971) è rappresentato dal Cristallino di Tirano (schema tettonico in figura 2.5) a sua volta suddiviso in Cristallino del Tonale (Formazione della Punta di Pietra Rossa) e Cristallino di Languard (Anfiboliti gabbriche del Motto della Scala, Gneiss del Monte Tonale, Micascisti della Cima Rovaia). Le formazioni appena nominate verranno discusse nel paragrafo seguente.

Figura 2-5 – Schema tettonico e geologico: la zona in esame è compresa tra i 2 lineamenti tettonici (Linea del Mortirolo e Linea del Tonale. [Schema tettonico contenuto nel Foglio Gelogico 19 di Tirano della Carta Geologica d'Italia, scala 1:100000]

I due principali elementi di tale sistema (Cristallino di Languard e Cristallino del Tonale) sono separati da un lineamento secondario, la Linea del Mortirolo (figura 2.6).

Tale linea, che decorre in direzione grosso modo est-ovest, è ubicata leggermente più a Nord della Linea del Tonale, e delimita assieme a quest'ultima, il bacino del Torrente Valchiosa, che rappresenta l'area di rilievo.

Figura 2-6 – Mappa tettonica e geologica delle Media Valtellina; sono evidenziate: Linea Insubrica (o del Tonale), Linea del Mortirolo ed i maggiori movimenti gravitazionali, contrassegnati da un numero e da una stella. ("Large sackung along major tectonic features in Central Italian Alps" [C. Ambrosi, G. B. Crosta, 2006])

2.3. Inquadramento geologico

La bibliografia geologica² riguardante l'area compresa nel Foglio "Tirano" (facente parte della Carta Geologica d'Italia, scala 1:100000) è relativamente ricca, anche se si tratta quasi sempre di studi di carattere locale.

Nello stralcio del Foglio Geologico di "Tirano" che si visualizza nella figura 2.7 sottostante è stato evidenziato un riquadro rosso raffigurante la zona di interesse, ovvero il Bacino del Torrente Valchiosa.

²[G. Liborio, A. Montrasio, A. Mottana, 1971]

Figura 2-7 – Stralcio del Foglio Geologico 19 di Tirano (Carta Geologica d'Italia, scala 1:100000); il riquadro rosso evidenzia la Valchiosa.

2.3.1. Caratteristiche litologiche del substrato roccioso

Il substrato roccioso è rappresentato, come già detto nel paragrafo 2.2 sullo schema tettonico, dal sistema di Languard-Tonale. La Linea del Mortirolo suddivide tale sistema in Cristallino di Languard e Cristallino del Tonale; quest'ultimo rappresenta l'area di nostro interesse.

I contatti tra le formazioni del bacino del Torrente Valchiosa non sono di tipo tettonico; il limite inferiore degli Gneiss del Monte Tonale si manifesta infatti per graduali transizioni petrografiche con i Micascisti della Cima Rovaia e le Anfiboliti del Motto della Scala costituiscono lenti sviluppate all'incirca parallelamente al decorso della linea del Tonale.

Nei seguenti paragrafi si illustrano le formazioni presenti nell'area in esame.

2.3.1.1. Formazioni metamorfiche appartenenti al Cristallino di Languard

Formazione della Punta di Pietra Rossa: micascisti muscovitico-cloritici, gneiss minuti bioticoanfibolitici, con intercalazioni di quarziti e di scisti anfibolitici. (Archeozoico). (G. Bonisignore, U. Ragni)

La formazione interessa il settore settentrionale del foglio e raggruppa in se una vasta gamma di rocce che rispecchiano le condizioni di diverso ambiente metamorfico. Nell'ambito della formazione sono stati distinti: il *Membro degli gneiss occhiadini del Dosso Coronin*, il *Membro degli* gneiss listati del m. Varadega ed il *Membro delle filladi di Grosotto*.

Formazione della Valle Grosina:

- Membro degli Gneiss del M. Storile: gneiss minuti a biotite, talora anfibolitici, associati alle migmatiti di Vernuga.
- Membro delle migmatiti Vernuga: gneiss occhiadini e listati prevalentemente muscovitici talora milonitici; gneiss granitoidi generalmente biolitici; gneiss aplitici. (Archeozoico). (G. Bonisignore, U. Ragni)

La Formazione di Valle Grosina occupa principalmente il settore occidentale del foglio ed è costituita da una vasta gamma di diversi litotipi, ma conserva tra le altre formazioni una sua individualità, poiché rappresenta nell'insieme un elemento tettonico ben distinto (Cristallino di Grosina del Sistema di Scarl-Umbrail).

I rapporti della Formazione di Valle Grosina con le altre formazioni adiacenti sono di natura tettonica; essa sovrascorre gli Gneiss del Monte Tonale (Appartenenti al Cristallino del Tonale del quali parleremo nel paragrafo seguente), secondo una superficie la cui traccia decorre su entrambi i versanti della Valle Grosina.

2.3.1.2. Formazioni metamorfiche appartenenti al Cristallino del Tonale

Formazione degli Gneiss del Monte Tonale: gneiss a due miche o prevalentemente biotici, generalmente sillimantivi e granitiferi, talora iniettati "letto a letto": gneiss scuri a larghe lamine di muscovite lungo le linee di dislocazione. Metamorfiti di contatto: hornfels a biotite, sillimatite e granato (punteggiato rosso). Intercalazioni di calcari cristallini, di calcefiri, di anfiboliti e di anfiboliti gneissiche. (Archeozoico). (G. Bonisignore, U. Ragni).

La formazione degli Gneiss del Monte Tonale (T. Da Prada, 2004) interessa quasi tutto il bacino del Torrente Valchiosa ed è costituita prevalentemente da gneiss e micascisti a due miche.

Lungo la Linea del Tonale e lungo le principali dislocazioni, si osservano gneiss milonitici scuri o rossastri con caratteristiche lamine di muscovite sulle superfici di scistosità.

Ovunque diffuse nella formazione risultano le intercalazioni lenticolari di anfiboliti e anfiboliti gneissiche, spesso associate a calcari, calcari dolomitici cristallini e calcefiri, mentre più rare sono le lenti di quarziti micacee.

Nel settore meridionale il limite inferiore della formazione si manifesta per graduali transizioni petrografiche con i Micascisti della Cima Rovaia; nel settore settenttrionale (Valle Grosina) gli Gneiss del Monte Tonale sovrastano tettonicamente la Formazione della Punta di Pietra Rossa.

Formazione dei Micascisti della Cima Rovaia: micascisti muscovitici o a due miche, nodulari, talora gneissici, spesso granitiferi. Metamorfiti di contatto: hornfels ad andalusite, granato e tormalina (punteggiato rosso). Intercalazioni di quarziti scure e di anfiboliti biotiche in lenti. (G. Bonisignore, U. Ragni).

I Micascisti della Cima Rovaia (T. Da Prada, 2004) costituiscono il bedrock al di sotto del conoide di deiezione del Torrente Valchiosa ed affiorano solo in isolati lembi nelle porzioni di versante in prossimità dell'apice dello stesso.

Il tipo petrografico medio più diffuso è rappresentato da un micascisto nodulare, talora gneissico, muscovitico o a due miche (roccia a grana medio-fine, colore grigio in massa, da mediamente a molto scistosa).

Molto frequenti sono infine le intercalazioni in lenti concordanti di anfiboliti biotiche e granatifere e di quarziti micacee grigio scure, dovute a locali concentrazioni di calcare.

2.3.1.3. Formazioni erusive appartenenti al Cristallino del Tonale

Anfiboliti del Motto della Scala: anfiboliti gabbriche , generalmente pirosseniche in masse e lenti. (Ciclo magmatico). (G. Bonisignore, U. Ragni).

Nel settore centro settentrionale del foglio, poco a sud di Tirano e, più a Est in prossimità di Alpe Valchiosa, vengono a giorno masse di rocce anfibolitiche, con colorazione grigio-verdastra fino a verde-scura. Esse costituiscono corpi a giacitura lenticolare che si sviluppano per lo più in direzione E-O, all'incirca parallelamente al decorso della Linea del Tonale. Il contatto con gli Gneiss del Monte Tonale si manifesta bruscamente.

Il componente essenziale della roccia è rappresentato dall'anfibolo, cui segue per diffusione il plagioclasio; la tessitura, è più massiccia al nucleo degli ammassi, mentre diviene più scistosa verso le zone periferiche.

2.3.1.4. Depositi sciolti di copertura

Si tratta di depositi sciolti quaternari che ricoprono il substrato roccioso (I. Dieni, A. Montrasio, 1971).

Il loro spessore è generalmente piuttosto ridotto (da qualche metro a qualche decina di metri) ma può raggiungere valori considerevoli nei fondivalle delle incisioni principali ed in particolare in corrispondenza degli sbocchi delle valli laterali dove i corsi minori hanno costruito conoidi di deiezione talora imponenti.
2. Inquadramento dell'area di studio

Detriti di falda, materiali di frana e coni di detrito: sono prodotti delle disgregazione meccanica delle rocce e si concentrano alla base dei versanti più ripidi. Questi depositi sono spesso legati a fattori litologici e tettonici. Le rocce più soggette a fenomeni franosi sono le rocce eruttive, gneissiche e calcareo-dolomitiche. I depositi detritici sono diffusi ovunque ma le coperture più estese sono localizzate attorno al M Masuccio.

<u>Depositi alluvionali</u>: ricoprono i fondivalle sia delle incisioni vallive principali che di quelle secondarie e formano le conoidi allo sbocco delle valli stesse; vanno riferiti all'azione di trasporto e deposito dei corsi d'acqua, responsabili dell'intensa attività erosiva post-glaciale. Si riconoscono due tipi di depositi: le alluvioni antiche e le alluvioni recenti e attuali; la distinzione tre le due è basata quasi esclusivamente su criteri morfologici. Le prime sono limitate al tratto compreso tra Sondalo e Tirano, dove esse costituiscono un sistema discontinuo di terrazzi sui due lati della valle; sono da considerare alluvioni antiche anche quelle conoidi alluvionali che risultano limitate da una scarpata sulle alluvioni recenti ed attuali.

La composizione litologica delle alluvioni di fondovalle consiste nell'alternanza di lenti di ghiaie più o meno grossolane e di sabbie, con qualche intercalazione di limi e argille.

Allo sbocco degli affluenti nelle valli principali si estendono conoidi sedimentari fra i quali vanno segnalati gli apparati di Ponte in Valtellina, di Sernio (a valle del Bacino Valchiosa) e di Sondalo, caratterizzati da dimensioni imponenti, cui fa riscontro un decorso torrentizio di limitato sviluppo lineare ed areale (nel caso di nostro interesse rappresentato dal Torrente Valchiosa).

Le tracce lasciate dai ghiacciai nella zona di interesse sono rilevanti in particolare per l'abbondanza dei <u>depositi glaciali</u>. Tali depositi ricoprono aree molto estese; sul fianco sinistro della Valtellina si osservano estese placche di till (Est di Mazzo di Valtellina, Sud-Est di Tirano). Tali placche, che in origine dovevano presentare maggiore continuità, si estendono fino a oltre 2000 metri di altitudine.

2.4. Inquadramento geomorfologico

La morfologia generale del bacino del Torrente Valchiosa³ è legata alla formazione di un ampio conoide di deiezione quasi sicuramente post glaciale (Fig 2.9 e 2.9 riquadro rosso).

Figura 2-8 – Conoide di deiezione del Bacino della Valchiosa, visto dall'alto.

Grazie allo studio condotto dalla geologa *T. Da Prada, 2004* si viene a conoscenza di informazioni più dettagliate sulla conoide del suddetto bacino. Il cono presenta una lunghezza di circa 3,5 km, dall'apice (ad una quota di 1050 m. s.l.m.) sino al piede (quota 489 m. s.l.m.) ed una pendenza media del 7% circa.

³ Come studiato sia da A. Montrasio nelle Note Illustrative alla Carte Geologica d'Italia nel foglio di "Tirano", 1971 che in seguito nello progetto "Interventi di difesa idrogeologica nel Bacino del Torrente Valchiosa, 2004" a cura della Dott. Geol. T. Da Prada.

Nell'area di conoide, il grado di incisione del corso d'acqua appare vario, ma mediamente inferiore rispetto alla porzione superiore del bacino, mentre nella parte medio terminale, in corrispondenza della confluenza con il Fiume Adda, si registrano profonde erosioni verificatesi in passato.

Nel tratto intermedio, la Valchiosa appare ampia e colmata da depositi che passano senza soluzione di continuità al cono vero e proprio.

Infine, la testata della valle è per la sua quasi totalità caratterizzata da un'estesa nicchia di frana. Scarpate e contropendenze modellano entrambi i versanti dell'alto bacino del Torrente Valchiosa nonché la sua testata, legate a fenomeni di deformazione gravitativa di versante.

<u>I processi di deformazione gravitativa profonda</u> sono tra i processi geologici che risultano attualmente in atto e consistono in movimenti del versante profondi e arealmente estesi, ma di limitata entità (pochi mm anche in più anni), che si verificano su diversi piani. Essi danno luogo ad evidenze morfologiche (ad esempio: presenza di doppie creste, scarpate e contropendenze) e in alcuni casi possono evolvere in frane vere e proprie.

Le deformazioni interessano sia l'ammasso roccioso che i depositi glaciali a diverse profondità: le geometrie dei corpi deformati suggeriscono che le DGPV siano state attive non soltanto durante l'ultima fare di ritiro glaciale o posteriormente ad essa, ma anche in epoca precedente. Il profilo sismico a riflessione nella zona di Teglio – Valgella suggerisce che le suddette deformazioni sembrano continuare tutt'ora, testimoniati dalla riattivazione postglaciale di fratture e trincee da rilascio (*Bini et alii, 2001; Forcella, 1983, 1984*).

Alle DGPV è probabilmente da ascrivere l'intensità dei processi gravitativi superficiali, che determinano scollamenti e colamenti della copertura quaternaria sul substrato. L'intensità e la pervasività delle manifestazioni legate alle DGPV costituiscono il tratto più caratteristico dell'evoluzione attuale dei versanti di quest'area. Le cause dell'intensità di tali fenomeni sono sia di natura litologica che, soprattutto, tettonico-strutturale, in quanto le strutture del lineamento Insubrico e della Linea del Mortirolo, attraversano la Valtellina proprio nell'area di nostro interesse.

In figura 2.9 è rappresentata la grossa DGPV che interessa l'intera sponda orientale della Valchiosa fino al Monte Varadega coprendo un'area maggiore di 30km². Essa è quindi ubicata nella zona sud-est della Valtellina, tra Tirano e Grosio, lungo la linea Insubrica.

Figura 2-9 – Carta geomorfologica dell'area Mt. Padrio – C. ma Verda – Mt. Varadega. Lo stereogramma in alto a sinistra mostra l'orientazione dei lineamenti strutturali; i maggiori lineamenti e strutture tettoniche sono evidenziate nella mappa in alto a sinistra. ("Large sackung along major tectonic features in Central Italian Alps" [C. Ambrosi, G. B. Crosta, 2006])

La zona è strutturalmente complessa, in quanto la linea Insubrica si accosta quasi parallelamente alla Linea del Mortirolo. Mt Varadega e Cima Verda sono ubicati lungo la cerniera della *"Mortirolo Antiform"*. Le analisi statistiche di più di 2200 lineamenti (C. Ambrosi, G. B. Crosta, 2006) misurati con fotografie aeree mostrano che le strutture dominanti nella parte sud dell'area di studio hanno un trend verso nord-est, parallelo alla Linea Insubrica. Le caratteristiche dominanti del trend nord-est nella parte nord dell'area sono invece parallele alla Linea del Mortirolo. Le strutture più evidenti si trovano lungo la dorsale nord-est tra Cima Verda e Mt. Varadega.

2.5. Idrologia ed idrogeologia

Il Torrente Valchiosa, che solca in parte l'omonimo bacino con direzione SSE-NNW, rappresenta un affluente di sinistra del Fiume Adda.

Grazie al progetto *"Interventi di Difesa Idrogeologica nel Bacino del Torrente Valchiosa, 2004"* redatto dalla geologa *T. Da Prada* si viene a conoscenza di informazioni più dettagliate riguardo al Torrente Valchiosa.

Il suddetto torrente presenta un bacino di alimentazione di circa 5 km² con una lunghezza dell'asta principale di poco inferiore a 5 km ed un perimetro di 11 km. La quota massima del bacino è pari ai 2143 m s.l.m. del Monte della Colma, alle pendici settentrionali del quale prende origine il corso d'acqua che confluisce in Adda a circa 460 m. s.l.m.

La sua pendenza media è del 33% anche se le pendenze sono molto variabili nei diversi tratti del corso d'acqua.

Dal punto di vista idrologico il Torrente Valchiosa è caratterizzato da portate estremamente variabili, sia temporalmente che arealmente.

Lungo il percorso del corso d'acqua si hanno situazioni differenti a seconda dei tratti considerati: sino all'apice del conoide si osserva infatti un deflusso pressochè costante sebbene variabile mentre dall'apice alla chiesa di Sernio l'alveo appare praticamente asciutto per la maggior parte dell'anno e si hanno solo tracce di una debole e periodica circolazione idrica, che ricompare poco a monte dell'intersezione con la strada statale dello Stelvio e si mantiene fino alla confluenza in Adda.

Le esigue portate che caratterizzano il Torrente Valchiosa derivano in parte dai prelievi di acqua a scopo irriguo, in parte dall'infiltrazione negli accumuli di depositi sciolti permeabili che occupano l'alveo della Valchiosa ed in primis dalle esigue dimensioni dell'omonimo bacino.

Capitolo 3

Il rilievo geomeccanico

Per caratterizzare un ammasso roccioso a comportamento rigido dal punto di vista meccanico è necessario eseguire una serie di operazioni che, nel loro insieme, costituiscono il rilievo geomeccanico.

Di seguito vengono esposte le operazioni effettuare per il rilievo geomeccanico, a partire dalla scelta dell'area su cui effettuare le misure, fino a giungere alla sintesi ed elaborazione dei risultati ottenuti.

I dati ricavati vengono utilizzati per la determinazione della classe dell'ammasso roccioso studiato, al fine di individuarne qualitativamente le caratteristiche meccaniche attraverso le classificazioni Rock Mass Rating (RMR, Bieniawski, 1973) (1973), Geological Strenght Index (GSI, Hoek&Marinos, 2000) e il criterio di rottura di Hoek&Brown (2002).

3.1. Scelta dell'area di rilievo

Nel caso in esame, l'area considerata è rappresentata dal bacino del Torrente Valchiosa.

Il rilievo si è svolto considerando le rocce affioranti lungo tutto il bacino con particolare attenzione alla zona di nicchia.

Sono state percorse tutte le strade ed i sentieri transitabili del suddetto bacino, non senza riscontrare difficoltà nel rilievo in quanto, spesso gli affioramenti erano di piccole dimensioni, coperti da deposito glaciale oppure non semplici da raggiungere. Per caratterizzare omogeneamente l'area si è scelto quindi di considerare anche piccoli affioramenti purchè significativi.

In figura 3.1 è rappresentata l'area di rilievo con i relativi affioramenti analizzati.

3. Il rilievo geomeccanico

Figura 3-1 – Affioramenti sui quali si è eseguito il rilievo.

È possibile notare come gli affioramenti tendano a diminuire sul lato destro della zona di nicchia; ciò è dovuto principalmente all'inaccessibilità di tale zona.

Gli affioramenti contrassegnati con la dicitura RGM rappresentano quelli in cui è stato possibile eseguire un rilievo completo come spiegheremo nel paragrafo seguente; per gli altri invece, contrassegnati solo da un numero, sono state acquisite le informazioni principali, ovvero giaciture, faglie, il Volume Roccioso Unitario (VRU) medio e solo in alcuni casi spaziatura ed intercetta.

3.2. Operazioni di rilievo

Come detto pocanzi, sono stati effettuati rilievi geomeccanici per 13 affioramenti (codificati con la sigla RGM. Per tutti gli altri affioramenti sono state rilevate l'orientazione delle discontinuità e delle faglie, la litologia, il VRU medio e ove possibile l'alterazione.

Inoltre, ogni affioramento è stato fotografato, per permettere di effettuare a posteriori la classificazione GSI. (par. 4.2).

Qui di seguito verranno discusse le operazioni effettuate per l'esecuzione del rilievo geomeccanico completo.

3.2.1. Descrizione geologica e petrografica dell'ammasso roccioso.

Sono state descritte per tutti gli affioramenti la struttura (pieghe, faglie), lo stato di alterazione dell'ammasso roccioso e tutto quanto può servire per un inquadramento più generale (nome formazionale, litologia, particolari strutture sedimentarie, ecc.).

Le informazioni dettagliate per ciascun affioramento sono riportate nelle schede in Appendice 1.

3.2.2. Operazioni riguardanti le discontinuità

Giacitura:

In funzione della complessità strutturale dell'ammasso roccioso è necessario effettuare un certo numero di misure di immersione e inclinazione delle famiglie di discontinuità presenti. Il numero di misure da effettuare dovrà essere in funzione del grado di fratturazione dell'ammasso e dell'estensione areale dell'affioramento.

Sono state acquisite sempre 10 misure di giaciture per ogni famiglia di discontinuità di ciascun affioramento, tranne in corrispondenza di limitate superfici affioranti, ove non è stato possibile prendere 10 giaciture.

Inoltre, per una completa caratterizzazione delle struttura sono stati acquisite le giaciture delle faglie.

L'orientazione dei piani di discontinuità delle famiglie è stata rappresentata attraverso opportune proiezioni stereografiche equipolari (fig. 3.2), facendo sempre la media delle giaciture acquisite per famiglia; anche le faglie sono state inserite negli stereogrammi, rappresentate in azzurro quando la giacitura ha la stessa direzione della scistosità, mentre negli altri casi sempre in rosso.

Si è osservato che spesso le faglie si sviluppano lungo la scistosità.

Figura 3-2 – Rappresentazione stereografica equipolare dell'affioramento "RGM10"

Sono stati rappresentati, tramite stereogrammi, i poli di tutte le discontinuità rilevate, al fine di verificare l'esistenza di distribuzioni preferenziali delle giaciture per litologie differenti e per aree omogenee.

Sono state considerate le tre zone definite in figura 3.3.

La definizione delle zone omogenee è stata effettuata considerando i due lineamenti principali passanti per l'area di rilievo, ovvero la Linea Insubrica (passante a monte della zona 3), e poco più a nord la Linea del Mortirolo (passante circa a metà della zona 1).

Si presuppone che le caratteristiche del substrato roccioso siano strutturalmente omogenee nell'intorno dei due lineamenti (zona 1 e zona 3), e ugualmente omogenee nella parte più lontana dagli stessi (zona intermedia)

Figura 3-3 – Suddivisione dell'area di rilievo in tre zone omogenee: Zona 1 – Conoide, Zona 2 – Intermedia, Zona 3 – Nicchia.

È stato escluso l'RGM1 in quanto troppo lontano dalla zona di rilievo.

Qui di seguito si visualizzano gli stereogrammi ottenuti per i gruppi litologici (Fig. 3.4) e per le zone omogenee (Fig. 3.5).

3. Il rilievo geomeccanico

Figura 3-4– Distribuzione delle giaciture di tutti gli affioramenti e suddivisione delle medesime nei gruppi litologici principali.

Figura 3-5– Distribuzione delle giaciture di tutti gli affioramenti e suddivisione delle medesime secondo le 3 zone omogenee.

Come si può notare dagli stereogrammi le giaciture sono equamente distribuite sia per i tre gruppi litologici che per le tre zone strutturali delineate; non si evidenziano quindi giaciture preferenziali nell'area di rilievo.

Spaziatura:

La spaziatura è la distanza media tra due discontinuità appartenenti alla stessa famiglia, misurata perpendicolarmente alle discontinuità stesse.

Per misurare questo dato è stato predisposto un allineamento di almeno 100cm e successivamente sono state contate le discontinuità della stessa famiglia. Il valore della spaziatura è dato dal rapporto S=L/n (L = lunghezza dell'allineamento e n= numero di discontinuità contate).

Sono stati acquisiti dati riguardanti la spaziatura solo per 9 affioramenti, (codificati da sigla *"RGM"*) e considerando il valore minimo per ogni famiglia di ciascun affioramento, calcolato il valore medio totale, pari circa a 12 cm.

Intercetta:

L'intercetta viene valutata senza considerare l'appartenenza delle discontinuità alle varie famiglie; lungo una traccia prefissata, sempre 100cm come per la spaziatura, si misura le distanze fra tutte le discontinuità che intersecano lo stendimento (appartenenti a qualsiasi famiglia). Le misure sono state effettuate lungo due stendimenti tra loro perpendicolari (uno orizzontale ed uno verticale). Si terrà in considerazione il valore minore fra la media delle distanze dei due stedimenti.

Partendo dal valore minore dell'intercetta si è in seguito ricavata la frequenza (f) del numero di discontinuità per metro e calcolato così l'RQD (Rock Quality Designation); esso è un indice, proposto da Deere (1964), che consente di valutare il recupero percentuale di carotaggio considerando gli spezzoni di carota aventi lunghezza superiore o uguale a 10 cm. In assenza di sondaggio è possibile determinare il valore di RQD anche tramite la relazione empirica:

$$RQD = 100(0,1f + 1)e^{-0,1f}$$

Nella zona in esame, sono state effettuate misurazioni dell'intercetta per 8 affioramenti (codificati da sigla *"RGM"*) ed il valore medio riscontrato è di 9 discontinuità per metro. Riguardo all'RQD invece, sono stati considerati anche gli affioramenti con sigla RGM mancanti, prendendo per questi ultimi il valore di RQD maggiormente presente ed il punteggio medio trovato è pari a 70% che corrisponde ad una qualità della roccia discreta (Tab. 3.1).

R.Q.D. (%)	Qualità della roccia
0 - 25	molto scadente
26 - 50	scadente
51 -75	discreta
76 - 90	buona
91 - 100	eccellente

Tabella 3-1 – Classi di qualità della roccia in base al parametro RQD (%).

Persistenza:

La persistenza è l'estensione areale percentuale di una discontinuità. Se non è possibile verificare l'estensione areale, perché l'affioramento è esposto solo lungo un lato, è sufficiente misurare la persistenza lineare, ovvero la continuità espressa in percentuale della traccia della discontinuità rispetto all'estensione dell'affioramento.

Per la stima della persistenza lineare, PL, media di una famiglia di discontinuità si considerano 3 classi:

- PL < 50%
- 50%< PL <90%
- PL >90%

Per la stima della persistenza areale, PA, (cosa possibile in presenza di almeno due superfici di affioramento contigue ed orientate in maniera differente) si distinguono ancora 3 classi:

- PA < 20%
- 20% < PA <80%
- PA >80%

Se la PA è <20% la resistenza dell'ammasso roccioso dipende esclusivamente dal comportamento meccanico del materiale roccia. Sarà invece la resistenza mobilitabile lungo le superfici dei giunti a caratterizzare il comportamento meccanico di un ammasso roccioso con PA>80%. Rientrano nella classe intermedia tutte le situazioni comprese tra il 25 e 80% di PA. Lo stesso discorso è valido anche per quanto riguarda la PL, anche se in questo caso l'indicazione è meno attendibile.

Per quanto riguarda la zona di studio, anche la persistenza è stata misurata per 13 affioramenti (codificati da sigla *"RGM"*) ed è stato possibile notare che, per le prime due famiglie di discontinuità (lungo la scistosità e lungo K1), sia la persistenza lineare che areale appartengono alla terza classe, mentre per le altre famiglie la classe di appartenenza dominante è quella intermedia; solo per alcune famiglie (ove vi sono K4 e K5) la classe è quella più bassa.

Si può quindi concludere che il comportamento meccanico dell'ammasso roccioso è caratterizzato dalla resistenza mobilitabile lungo le superfici dei giunti.

Volume Roccioso Unitario (VRU):

L'ammasso roccioso, suddiviso dalle discontinuità, risulta composto da elementi discreti di materiale roccia, indicati come VRU (min, max e medio); viene indicato in cm o metri attraverso la relazione: L1 x L2 x H, dove L1 rappresenta la lunghezza, L2 la larghezza mentre H l'altezza del blocco considerato. Il VRU che è stato considerato è quello medio.

I valori medi dell'intero bacino e di ciascuna zona omogenea sono evidenziati in tabella 3.2.

3. Il rilievo geomeccanico

VRU	L (cm)	H (cm)	S (cm)
Zona 1	13	11	9
Zona 2	29	24	16
Zona 3	30	25	22
MEDIA	24	20	15

Tabella 3-2 - Valori medi di VRU (cm) assoluti e per ciascuna zona omogenea.

È possibile notare come la zona 1, essendo quella che comprende la conoide, risulta essere quella con VRU medio minore rispetto alle altre 2 zone topograficamente più elevate.

Rugosità:

Una discontinuità è caratterizzata da irregolarità a grande scala (ondulazioni) e a piccola scala (rugosità). A grande scala si fanno osservazioni qualitative (superfici planari, regolari, ondulate, seghettate), a piccola scala è conveniente utilizzare il pettine di Barton, come nel caso in esame, usato sempre per gli affioramenti codificati da sigla *"RGM"*.

I profili (Fig. 3.6), ottenuti attraverso l'adattamento delle irregolarità degli aghi mobili cui è costituito il pettine di Barton, vanno confrontati con i profili di rugosità proposti da Barton ad ognuno dei quali corrisponde un coefficiente chiamato JRC (Joint Roughness Coefficient -indice della scabrezza delle superfici dei giunti-) (10 profili tipo con coefficienti variabili da 0-20 ad intervalli di 2).

Gli indici JRC maggiormente riscontrati sono stati quelli appartenenti alla classe 3 ed alla classe 5, che corrispondono a dei giunti per lo più lisci.

3. Il rilievo geomeccanico

Figura 3-6– La rugosità rappresenta l'altezza media delle asperità della superficie rispetto all'apertura media; in figura sono rappresentati i 10 profili tipo con coefficienti variabili da 0 a 20 con intervalli di 2.

Apertura e riempimento delle discontinuità:

L'apertura rappresenta la distanza tra le pareti delle discontinuità e viene solitamente misurata con un calibro.

Le discontinuità possono essere chiuse (contatto roccia-roccia) o aperte (con o senza materiale di riempimento).

La presenza di materiale di riempimento nelle discontinuità deve essere registrata considerandone lo spessore, la composizione mineralogica, la granulometria e le condizioni di umidità.

Il range di aperture maggiormente presente nell'area in esame varia tra 1cm e 2,5cm, mentre il riempimento è assente.

Alterazione delle superfici dei giunti:

Diretta conseguenza dei processi fisici e chimici agenti sulla roccia sana è l'alterazione della stessa. Il livello di alterazione è definito dal grado di alterazione (superfici integre, ossidate, leggermente alterate, alterate).

Nell'area di studio la maggior parte degli ammassi rocciosi sono alterati come si può osservare dalla figura 3.7 sottostante.

Figura 3-7 – Alterazione delle superfici nell'affioramento n°23.

Condizioni di umidità:

Nel caso in esame gli ammassi rocciosi sono sempre caratterizzati da condizioni idrauliche asciutte. Si sottolinea come l'intero bacino presenti una scarsissima presenza di sorgenti, ruscelli e di acqua in generale.

3.2.3. Prove in sito

Martello di Schmidt o sclerometro:

Il martello di Schmidt o sclerometro viene utilizzato per stimare la resistenza a compressione della porzione più superficiale della roccia (σ_c apparente) su cui viene effettuata la misura. Lo strumento (fig. 3.8) è costituito da una massa battente proiettata da una molla contro un asta metallica di percussione appoggiata direttamente sulla roccia.

Figura 3-8– Lo sclerometro

Dal rimbalzo elastico della massa, funzione della quantità di energia elastica restituita dal materiale su cui viene effettuata la prova, è possibile risalire alla resistenza a compressione del materiale stesso tramite il diagramma riportato in figura 3.9 o tramite la relazione di Miller (1966):

$$\sigma_{\rm c app} = 10^{0.00088\gamma * R + 1.01}$$

dove γ è il peso di volume kN/m³ e R è il rimbalzo.

Figura 3-9 – Correlazione tra resistenza alla compressione monoassiale della roccia, numero di rimbalzo e inclinazione dello strumento rispetto alla verticale.

Operativamente, per ogni punto di stazione, in corrispondenza di ogni famiglia di discontinuità sono state effettuate 10 battute con il martello che consentono di ottenere 10 valori di rimbalzo (R). I 10 valori sono stati quindi mediati e successivamente corretti in funzione dell'inclinazione dello sclerometro al momento della misura. La correzione di R, può essere applicata graficamente (fig. 3.9) oppure tramite la tabella sottostante (Tab. 3.3):

3. Il rilievo geomeccanico

Rimbalzo	Verso i	basso	Verso	o l'alto	Orizzontale
	-90°	-45°	+90°	+45°	0°
10	0	-0,8	-	-	-3,2
20	0	-0,9	-8,8	-6,9	-3,4
30	0	-0,8	-7,8	-6,2	-3,1
40	0	-0,7	-6,6	-5,3	-2,7
50	0	-0,6	-5,3	-4,3	-2,2
60	0	-0,4	-4,0	-3,3	-1,7

Tabella 3-3 – Correzione dell'indice di rimbalzo R, a seconda dell'inclinazione dello strumento rispetto alla verticale.

Se la prova viene eseguita su di una superficie rocciosa non alterata, la resistenza a compressione apparente (σ_c app) è circa uguale alla resistenza a compressione con rottura normale alla scistosità ($\sigma_{c\perp}$) calcolata tramite il Point Load Test (di cui parleremo nel paragrafo seguente). Pertanto il rapporto σ_c / σ_c app è molto prossimo all'unità. Quando invece la superficie della roccia sottoposta alla prova dello sclerometro è alterata, il rapporto tra le due σ c tende ad aumentare fino ad essere maggiore di 10 in caso di alterazione profonda.

Per quanto riguarda la zona in esame, sono stati acquisiti valori di rimbalzo solamente per gli affioramenti codificati da sigla "*RGM*"; è stato quindi calcolato il valore delle σ_{capp} .

Il valore di rimbalzo R, è stato corretto utilizzando la tabella 3.3, e per trovare la $\sigma_{c app}$, è stato considerato quello riferito alla famiglia di discontinuità S; il valore di resistenza a compressione σ_c invece, a cui si fa riferimento, è quello derivato dal PL Test con rottura perpendicolare a S.

La media dei valori dei rapporti trovati è di circa 4 volte superiore all'unità; ciò sta a significare, che gli ammassi rocciosi analizzati sono particolarmente alterati superficialmente, come rilevato anche dall'osservazione degli affioramenti.

3.2.4. Prove di laboratorio

Point Load Test:

Sui campioni prelevati dagli affioramenti sono state eseguite prove di Point Load per risalire alla resistenza a compressione monoassiale della roccia.

In figura 3.10 si visualizza la distribuzione areale dei campioni prelevati in sito.

3. Il rilievo geomeccanico

Figura 3-10 – Distribuzione areale dei campioni prelevati per l'esecuzione delle prove di laboratorio.

3. Il rilievo

Il PL Test consiste nel comprimere un campione di roccia, posizionato tra due punte coniche comandate da un sistema idraulico a pressione (Fig. 3.11), fino a provocarne la rottura. Il carico a rottura P viene misurato attraverso due manometri, i quali comprendono doppie scale contrassegnate in kN e lbf; una volta inserito il campione tra le due punte coniche, viene rilevato il diametro del campione D, attraverso la lettura su una scala incisa (in cm).

Figura 3-11 – Lo strumento per il Point Load Test

Il rapporto tra il carico di rottura (P) e il quadrato della distanza (D) tra i due punti di applicazione della forza è definito, sia per campioni con forme irregolari sia per spezzoni di carote, come indice di Point Load, I_s (kN/cm²):

$$I_s = \left(\frac{P}{D^2}\right)$$

I risultati della prova sopra descritta sono tuttavia influenzati dalla forza e dalle dimensioni del campione; in particolare, per rendere confrontabili i risultati ottenuti su campioni aventi diverse dimensioni, si utilizza la Size Correction Chart, che consente di ricavare un nuovo valore di I_s, riferito ad un diametro standard di 50 mm: I_s(50) (Fig. 3.12).

3. Il rilievo

Figura 3-12– Carta di correzione dell Point Laad test per la determinazione dell'indice I_s normalizzato al dimetro 50mm.

Oltre alla procedura grafica, si può procedere anche analiticamente alla normalizzazione dell'indice I_s attraverso le seguenti formule:

$$I_s(50) = F \ x \ I_s$$

$$F = \sqrt{\left(\frac{D_e}{50}\right)} \quad per \ 4,5 < D_e < 5,5$$
$$F = \left(\frac{D_e}{50}\right)^{0,45} per \ D_e < 4,5 \ o \ D_e > 5,5$$

L'indice di Point Load può essere inoltre empiricamente corretto per risalire al valore della resistenza a compressione monoassiale σ_c , applicando la seguente relazione:

$$\sigma_c = I_s(50) \cdot 24$$

La procedura che è stata utilizzata per arrivare al valore di Is(50) è quella analitica. I valori di Is(50) sono stati suddivisi in base alla direzione di rottura del campione (perpendicolare o parallela alla scistosità). Per ogni affioramento sono stati acquisiti 3 campioni attraverso i quali si è arrivati alla determinazione del valore minimo di Is(50) per ogni affioramento, considerando la direzione di rottura del campione (perpendicolare o parallela alla scistosità).

I valori minimi trovati sono stati suddivisi in classi e per ciascuna si è calcolata la frequenza relativa come si può osservare dagli istogrammi in figura 3.13 e 3.14; sono stati considerati prima tutti gli affioramenti rilevati, e poi anche la loro suddivisione nelle zone omogenee precedentemente determinate.

Figura 3-13 - Andamento della frequenza relativa dei valori minimi di Is(50) con rottura normale alla scistosità, di tutti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Le colonne blu rappresentano tutti gli affioramenti, quelle gialle la zona 1, quelle verdi la zona 2 mentre quelle azzurre la zona 3.

Figura 3-14 - Andamento della frequenza relativa dei valori minimi di Is(50) con rottura normale alla scistosità, di tutti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Le colonne arancioni rappresentano tutti gli affioramenti, quelle gialle la zona 1, quelle verdi la zona 2 mentre quelle azzurre la zona 3.

3. Il rilievo

Dall'osservazione delle figura 3.13 è possibile dedurre che, per i valori di Is(50) con rottura perpendicolare alla scistosità e la classe che possiede la maggiore frequenza relativa è quella avente valori compresi tra 2,1 e 4.

Per quanto riguarda le zone omogenee, i valori di frequenza più elevati appartengono, sia per la zona 1 che per la zona 2 sempre alla classe di valori 2,1-4, mentre per la zona 3si evidenzia una distribuzione equa tra le classi di frequenza.

Nella figura 3.14 invece, sono stati considerati i valori minimi di Is(50) con rottura parallela alla scistosità e le classi che possiedono la maggiore frequenza relativa sono quelle aventi valori compresi tra 2,1-4 e 4,1-6; leggermente inferiori a queste ultime vi sono le classi con range pari a inferiore a 1 e compreso tra 1,1 e 2.

Per quanto riguarda le zone omogenee, i valori di frequenza più elevati appartengono, per la zona 1 alla classe di valori 2,1-4, per la zona 2 alla classe 4,1-6, mentre per la zona 3 alla classe <1, segno che la zona topograficamente più elevata presenta valori di rottura più bassi, e quindi la roccia è più debole; complessivamente si registrano valori più bassi rispetto alla rottura perpendicolare, segno che la roccia è più debole lungo i piani di scistosità.

Considerando come media complessiva un valore pari a 6 MN/m²per la rottura perpendicolare e pari a 4 MN/m²per quella parallela alla scistosità si ottengono valori di resistenza a compressione monoassiale σ_c pari rispettivamente a di 144 MPa e 96 MPa, valori che complessivamente identificano una più he discreta qualità della roccia.

3.3. La scheda rilievo

Dopo aver calcolato tutti i dati per ognuno degli affioramenti si è proceduto a compilare una scheda rilievo per ciascun affioramento contenente tutte le informazioni di cui disponiamo, le coordinate Gauss-Boaga del punto rilevato, il relativo stereogramma raffigurante i piani di discontinuità, la foto più rappresentativa, etc.

Nella scheda rilievo è presente anche la classificazione geomeccanica dell'ammasso roccioso, della quale parleremo il capitolo seguente.

Qui di seguito in figura 3.15 ne si riporta una a titolo esemplificativo; le schede rilievo di ciascun affioramento si trovano in Appendice 1, con il relativo indice esplicativo di tutti i parametri presenti in Appendice 2.

3	Ш	ri	lie	vo
з.	ш	11	ne	٧U

Rilievo N°	RGM10	Coordinata X	1593719,878	Coordinata Y	5118919		
		PARAMETRI GI	FOMECCANICI RII	FVATI			
Litologia	PARAGNEISS	Complexi			VIII madia		
RQD (%)	63	raccolti	per Point Load	X (cm)		10x8x4	
Orientazione versante [°]	360/74	Orient. F1	186/40	Orient. F2	114/34	Orient. F3	66/44
SISTEMI	•	s	К1	К2	КЗ	К4	K5
	orientazione [°]	170/34	360/34	310/60			
	spaziatura (cm)			-			
Caratteristiche dei	persistenza P(%)	>90	50-90	>90			
giunti	persistenza A(%)	>80	20-80	>80			
	apertura (mm)			1-2.5			
Rimpimento	assente	granulare	coesivo	ricrist			
Acous	assente	granularc	umida	hagnate			
Alterazione superfici	integro	ascidate		alterate			
	integre	ossidate	iegg.aiteiate	allerate			
JAC	8-10						
	oc; // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Domanatri coorimontoli	-	145,44	22,154	6,6			
Falameur spenmentan	c'[Mpa]	φ'[°]	E (Gpa)	γ (KN/m3)			
	0,29	34	15,84893192	24,28			
	D	mi	m	5	a		
	0,2	33	1,025	0,0000299	0,572		
Parametri analitici	 σ(Mna)	 ດ _{ໃ2max} (Mpa)		 			
	14.122	16.649	2.903	31,400			
	,		,				
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci 	GSI (diretto) =	13				
P1)Resistenza PL	12						
P2)RQD	13						
P3)Spaziatura	8						
P4)Giunti	10						
P5)Acqua	15						
RMR _b =	58						
NOTE							
Molto fagliato, con		Real Ser	A CARLON	e prod	P-270	ANK C	120
faglie aventi la stessa		AL MARK	Store Car	- Alter	S. A.S.		100
giuacitura di S.		Martin	P M	E VO	and the		arta l
N					222		2 State
	the second		at the		China and and and and and and and and and a	影 自己	
			ANT LE	and and	121	APR 1	
1 X			N. S.K.	And -			1.5
++		A LAND	1 PAR		-	1426	4. 11
w + K1 (aff)	T AF	San and and and and and and and and and a	E S.	AET	Carl Carl	1400	
	y / J		Par -			CI-	
					122 M	Ser Ba	
1 taget			MEAN AND	North Contraction	A COLE		
X		the second		- Charles	A MAR	3873	A STATE
	the second	Ser Py		All at	572	6.5	7. 1.5

Figura 3-15 – Scheda rilievo riferita all'affioramento RGM10.

3.4. Conclusioni

Per quanto riguarda le giaciture, si può concludere che, dall'analisi degli stereogrammi effettuati, sia per l'intera area di rilievo, che secondo la suddivisione in gruppi litologici e in zone strutturalmente omogenee, le giaciture sono equamente distribuite.

In tabella 3.4 sono riportati i valori medi dei parametri geomeccanici dell'intera area in esame.

Caratteristich	e	Valori medi	
Spaziatura [cm]		12	
RQD [%]		70	
Persistenza	Lineare		
[%]		> 90	
Persistenza	Areale		
[%]		> 80	
	Zona 1		
VRU Medio	Zona 2		
	Zona 3		
JRC [-]		5/9	
		> parte	
Alterazione		alterati	
Apertura [cm]		1-2,5	
Condizioni di	Umidità	asciutte	
σ _c ⊥[Mpa]		144	
σ _c // [Mpa]		96	
$\sigma_{c} \perp / \sigma_{capp}$ [-]		4	

Tabella 3-4 – Tabella riepilogativa dei valori medi calcolati per ciascun dato dell'area in esame.

La spaziatura, l'indice RQD, la persistenza la rugosità e l'apertura sono state determinate per gli affioramenti aventi sigla *"RGM"* e forniscono valori medi rispettivamente di 12 cm, 70% (corrispondente ad una qualità della roccia discreta), > 90% e >80% (terza classe) per la persistenza, sia lineare che areale, delle prime due famiglie di discontinuità (S e K1); un JRC medio che varia tra 5 e 9, caratterizzante un profilo di scabrezza di classe 3 e 5 (Fig. 3.6) ed infine un'apertura media compresa nell'intervallo tra 1 e 2,5 cm.

La maggior parte degli ammassi rocciosi analizzati presentano un alterazione considerevole delle superfici dei giunti e sono sempre caratterizzati da condizioni idrauliche asciutte.

Attraverso le prove in sito, con lo sclerometro, e in laboratorio, attraverso il Point Load Test sono state determinate le caratteristiche di resistenza degli ammassi rocciosi.

Le prove sclerometriche evidenziano un rapporto tra la resistenza a compressione monoassiale con rottura normale alla scistosità ($\sigma_{c\perp}$), e la resistenza a compressione apparente (σ_{capp}) molto elevato, e ben 4 volte superiore al'unità, indice dell'elevata alterazione delle rocce affioranti.

Con riferimento alla condizione più cautelativa, il valore medio di $\sigma_{c\perp}$, calcolato considerando i valori minimi di Is(50) con rottura normale alla discontinuità, è pari a 144 MPa, corrispondente quindi ad una buona resistenza della roccia, mentre quello di $\sigma_{c//}$ è leggermente minore e pari a 96 MPa, segno che la roccia è più debole lungo i piani di scistosità.

Capitolo 4

Caratterizzazione geomeccanica

Le classificazioni geomeccaniche delle rocce permettono di suddividere gli ammassi rocciosi in classi di qualità, consentendo di definire zone con caratteristiche uniformi ed omogenee ai fini geo-applicativi.

Le classificazioni sono qualitative quando danno un'indicazione sommaria della roccia, basata sul suo aspetto e sulle caratteristiche litologiche rilevabili sul terreno, o quantitative quando sono basate su prove di campo o di laboratorio.

In questo capitolo si vuole fornire un quadro delle classificazioni e dei metodi utilizzati per caratterizzare l'area di tesi da un punto di vista geomeccanico.

4.1. La classificazione di Bieniawski (1973)

La classificazione geomeccanica degli ammassi rocciosi, Rock Mass Rating (RMR), fu proposta nel 1973 da Bieniawski ed è stata elaborata per i problemi relativi allo scavo delle gallerie, ma ha trovato estensione di impiego anche negli scavi per fondazioni e sulla stabilità dei pendii. L'autore prende in considerazione 6 fattori (P_i) che considera maggiormente influenti sulla stabilità del pendio. A ciascun fattore è attribuito un punteggio (Rating) in relazione alla maggiore o minore importanza, come indicato nelle tabelle seguenti.

Nella tabella 4.1 seguente è presentato un quadro di sintesi dei parametri e dei relativi punteggi che concorrono alla classificazione degli ammassi rocciosi secondo Bieniawski.

4. Caratterizzazione geomeccanica

Resistenza a compress. uniassiale	[MPa]	>250	100-250	50-100	25-50	5-25	1-5	<1
Resistenza al "Point load test"	[MPa]	>10	4-10	2-4	1-2			
P1		15	12	7	4	2	1	0

RQD P2	(%)	90-100 20	75-90 17	50-75 13	25-50 8	<25 3
Spaziatura delle discontinuità	[cm]	>200	60-200	20-60	6-20	<6
P_3		20	15	10	8	5

Stato delle discontinuità	P_4
Chiuse e non continue.	
Superf. molto rugose. Pareti asciutte.	30
Apertura < 0,1mm, non continue.	
Superfici rugose. Pareti umide.	25
Apertura < 0,1mm, continue e	
senza riempimento.	20
Superfici rugose. Pareti bagnate.	
Apertura di 1-5mm, continue.	
Riempimento di argilla con potenza	10
< 5mm. Superfici lisce.	
Apertura > 5mm, continue.	
Riempimento di argilla molle	0
di potenza > 5mm.	

Acqua nella	massa	
Venute in 10m di galleria	Condizioni generali	P5
Q ₁₀ [1/min]	della roccia	
nessuna	perfettamente asciutta	15
< 10	umida	10
10-25	bagnata	7
25-125	stillicidi	4
125	venuta d'acqua	0

Orientamento	P ₆			
delle fratture	Gallerie	Fondazioni	Pendii	
molto favorevole	0	0	0	
favorevole	-2	-2	-5	
discreta	-5	-7	-25	
sfavorevole	-10	-15	-50	
molto sfavorevole	-12	-25	-60	

La somma dei primi 5 indici fornisce il Basic Rock Mass Rating (BRMR) che è un indice globale delle condizioni geomeccaniche della roccia.

$$BRMR = \sum_{i=1}^{5} P_i$$

Applicando al BRMR il parametro correttivo P6 si ottiene l'indice RMR:

$$RMR = \sum_{i=1}^{5} P_i - P_6$$

In base all'RMR l'ammasso roccioso sarà ascrivibile ad una delle 5 classi di qualità individuate dall'autore (Tab. 4.2) A ciascuna classe sono associati i valori di alcune importanti caratteristiche meccaniche: coesione, angolo d'attrito, tempo di autoportanza (tempo di stabilità senza sostegni) e lunghezza o luce libera dello scavo (lunghezza che rimane stabile per il tempo necessario a realizzare tutte le operazioni di sgombero e messa in opera dei sostegni).

RMR		0-20	21-40	41-60	61-80	81-100
Classe		V	IV	III	II	Ι
Qualità dell'ammasso		molto scadente	scadente	discreta	buona	ottima
Coesione	c [MPa]	<0,1	0,1-0,2	0,2-0,3	0,3-0,4	>0,4
Angolo d'attrito	φ (°)	<15	15-25	25-35	35-45	>45
Tempo di autoportanza		10 min	5 ore	1 sett	6 mesi	10 anni
Lunghezza libera di scavo	[m]	0,5	1,5	2	4	5

Tabella 4-2 – Caratteristiche delle classi (da Bieniawski, 1979)

4.2. La classificazione di Hoek et al. (GSI)

Il Geological Strenght Index (GSI), introdotto da Hoek nel 1994, rappresenta in forma più adeguata le caratteristiche dell'ammasso roccioso, non tenendo conto di quei parametri legati alle condizioni al contorno quali: fattori di correzione relativi all'orientamento delle discontinuità rispetto all'asse della galleria o dovuti alla presenza d'acqua (Bieniawski).

Il metodo propone quindi una tabella sintetica (Tab. 4.3) che fornisce il valore di GSI a partire dalla struttura della roccia e dalle condizioni delle superfici di discontinuità. L'indice può teoricamente variare tra il valore 10 (per rocce particolarmente scadenti) e 100 (per roccia intatta); un punteggio di GSI al di sotto di 25 identifica un ammasso roccioso di qualità molto scadente.

4. Caratterizzazione geomeccanica

Tabella 4-3 – Stima del GSI per ammassi rocciosi fratturati (Marinos & Hoek, 2000)

Relativamente alla struttura della roccia, le voci presenti nella tabella sintetica hanno il seguente significato:

- 1. INTACT OR MASSIVE: massa rocciosa intatta con poche discontinuità, largamente spaziate tra loro.
- 2. BLOCKY: massa rocciosa indisturbata in blocchi ben interconnessi, formati da tre sistemi di discontinuità ortogonali tra loro;
- 3. VERY BLOCKY: massa rocciosa fratturata, parzialmente disturbata, disgiunta in blocchi angolosi formati da quattro o più sistemi di discontinuità;
- 4. BLOCKY/DISTURBED/SEAMY: massa rocciosa ripiegata e fagliata, disgiunta in blocchi angolosi formati da numerosi sistemi di discontinuità;

- 5. DISINTEGRATED: massa rocciosa frantumata, composta da blocchi angolosi o arrotondati, scarsamente interconnessi;
- 6. LAMINATED/SHEARED: massa rocciosa priva di blocchi con piani di scistosità poco spaziati.

Relativamente alle condizioni delle discontinuità, le voci presenti nella tabella sintetica hanno il seguente significato:

- 1. VERY GOOD: superfici di discontinuità molto rugose e non alterate;
- 2. GOOD: superfici di discontinuità rugose, leggermente alterate;
- 3. FAIR: superfici lisce, moderatamente alterate;
- 4. POOR: superfici laminate, molto alterate con riempimento compatto con frammenti angolosi di roccia;
- 5. VERY POOR: superfici laminate, molto alterate con riempimento in argilla molle.

4.3. Il criterio di rottura di Hoek&Brown

Oltre alla determinazione dell'indice GSI, la classificazione consente la stima della resistenza a compressione di ammasso (σ_{cm}) tramite il **Criterio di Hoek&Brown** e mediante la sua linearizzazione si ottengono anche la coesione c' e l'angolo d'attrito ϕ' .

Vediamo qui di seguito in cosa consiste tale criterio.

Il criterio di Hoek&Brown è il criterio di rottura empirico più diffuso e utilizzato; è caratterizzato da un dominio di resistenza non lineare, i cui parametri sono dedotti sperimentalmente da esperienze incrociate in laboratorio ed in sito.

Rispetto alla formulazione originaria del 1980, questo criterio è stato modificato dagli Autori nel corso degli anni e perfezionato, anche per la sua applicazione a rocce tenere e alle formazioni complesse. Nel seguito viene illustrata la versione più recente (2002):

$$\sigma'_{1} = \sigma'_{3} + \sigma'_{ci} \left[m_{b} \cdot \left(\frac{\sigma'_{3}}{\sigma'_{ci}} \right) + s \right]^{a}$$

dove $\sigma_1 e \sigma_3$ sono gli sforzi principali efficaci massimi e minimi applicati a rottura;

 σ_{ci} è la resistenza a compressione monoassiale del materiale roccia intatto;

m_b, s, a sono coefficienti che dipendono dalle caratteristiche dell'ammasso roccioso.

Tali coefficienti possono essere calcolati tramite le seguenti formule:

$$m_b = m_i e^{\frac{GSI - 100}{28 - 14 \cdot D}}$$
$$s = e^{\frac{GSI - 100}{9 - 3 \cdot D}}$$

$$a = 0.5 + \frac{1}{6} \cdot \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$

dove:

mi è un coefficiente tipico della roccia intatta, ricavabile dalla tabella 4.4;

GSI (Geological Stenght Index) è, come precedentemente spiegato, un indice di qualità dell'ammasso roccioso variabile tra 5 e 100, funzione delle condizioni geomeccaniche e del grado di alterazione;

D è il fattore di disturbo, che tiene conto dell'impatto delle tecnologie di scavo sugli ammassi considerati e/o delle deformazioni subite dall'ammasso a seguito o prima della scavo (Tab. 4.5); esso varia tra 0 (ammassi non disturbati) e 1 (ammassi molto distrubati).

Rock	Class	Group				
type			Coarse	Medium	Fine	Very fine
SEDIMENTARY	Clastic		Conglomerates * Breccias *	Sandstones 17 ± 4	Siltstones 7 ± 2 Greywackes (18 ± 3)	Claystones 4 ± 2 Shales (6 ± 2) Maris (7 ± 2)
	Non- Clastic	Carbonates	Crystalline Limestone (12 ± 3)	Sparitic Limestones (10 ± 2)	Micritic Limestones (9 ± 2)	Dolomites (9 ± 3)
		Evaporites		Gypsum 8 ± 2	Anhydrite 12 ± 2	
		Organic				Chaik 7 ± 2
METAMORPHIC	Non Foliated		Marble 9 ± 3	Hornfels (19 \pm 4) Metasandstone (19 \pm 3)	Quartzites 20 ± 3	
	Slightly foliated		Migmatite (29 ± 3)	Amphibolites 26 ± 6	Gneiss 28 ± 5	
	Foliated**			Schists 12 ± 3	Phyllites (7 ± 3)	Slates 7 ± 4
IGNEOUS	Light		Granite 32 ± 3 Gran (2	Diorite 25 ± 5 modiorite 29 ± 3)		
	Plutonic	Dark	Gabbro 27 ± 3 Norite 20 ± 5	Dolerite (16±5)		
	Hypabyssal		Porphyries (20 ± 5)		Diabase (15 ± 5)	Peridotite (25 ± 5)
	Volcanic Pyrocl	Lava		Rhyolite (25 ± 5) Andesite 25 ± 5	Dacite (25 ± 3) Basalt (25 ± 5)	
		Pyroclastic	Agglomerate (19 ± 3)	Breecia (19 ± 5)	Tuff (13 ± 5)	

* Conglomerates and breecias may present a wide range of m, values depending on the nature of the cementing material and the degree of cementation, so they may range from values similar to sandstone, to values used for fine grained sediments (even under 10).

** These values are for intact rock specimens tested normal to bedding or foliation. The value of mi will be significantly different if failure occurs along a weakness plane.

Tabella 4-4 – Stima della costante mi per la roccia intatta (Marinos & Hoek, 2000)

4. Caratterizzazione geomeccanica

Appearance of rock mass	Description of rock mass	Suggested value of D		
	Excellent quality controlled blasting or excavation by Tunnel Boring Machine results in minimal disturbance to the confined rock mass surrounding a tunnel.	D = 0		
	Mechanical or hand excavation in poor quality rock masses (no blasting) results in minimal disturbance to the surrounding rock mass. Where squeezing problems result in significant floor heave, disturbance can be severe unless a temporary invert, as shown in the photograph, is placed.	D = 0 D = 0.5 No invert		
	Very poor quality blasting in a hard rock tunnel results in severe local damage, extending 2 or 3 m, in the surrounding rock mass.	D = 0.8		

Tabella 4-5 – Determinazione del fattore di disturbo D.

In figura 4.1 è rappresentato un esempio di dominio alla Hoek&Brown, dove si riconosce l'intercetta con l'asse degli sforzi massimi (resistenza a compressione monoassiale). Gli stessi Autori hanno riconosciuto che tale valore non è applicabile a fini progettuali, in quanto eccessivamente cautelativo.

Per le applicazioni ingegneristiche, si propone quindi un valore diverso dalla resistenza, chiamata resistenza a compressione di ammasso ed indicata come σ_{cm} . Questa grandezza rappresenta sul piano s₁-s₃, il punto di intersezione tra l'asse degli sforzi massimi e la retta che interpola la curva di H&B nell'intervallo di sforzi di confinamento:

 $\sigma_t < \sigma_3 < \sigma_c/4$

e analiticamente vale:

Figura 4-1 – Criterio di Hoek & Brown linearizzato

Uno dei principali problemi legati al criterio di rottura di H&B è la sua implementazione nelle applicazioni numeriche, resa difficoltosa dalla curvatura del dominio.

Per questo motivo gli Autori forniscono un criterio di rottura lineare alla Mohr-Coulomb "equivalente" a quello curvilineo.

Dal punto di vista operativo, i parametri del criterio linearizzato si ottengono in due fasi:

1. Calcolo di σ'_{3max} , resistenza a compressione massima:

$$\sigma'_{3max} = 0.72 \cdot \left(\frac{\sigma'_{cm}}{\gamma \cdot H}\right)^{-0.91} \cdot \sigma'_{cm}$$

2. Calcolo di c' e ϕ' :

$$c' = \frac{\sigma_{ci}[(1-2a)s + (1-a)m_b\sigma'_{3n}] \cdot (s+m_b\sigma'_{3n})^{a-1}}{(1-a) \cdot (2+a) \cdot \sqrt{1 + (6am_b(s+m_b\sigma'_{3n})^{a-1})/((1+a)(2+a))}}$$
$$\varphi' = \sin^{-1}\left[\frac{6am_b(s+m_b\sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b(s+m_b\sigma'_{3n})^{a-1}}\right]$$

 $\operatorname{con} \ \sigma'_{3n} = \sigma'_{3max} / \sigma'_{ci}.$

4.4. L'elaborazione dei dati

4.4.1. L'indice di Rock Mass Rating

Nell' analisi è stato considerato l'indice RMR di base (BRMR), il quale considera esclusivamente il tipo di ammasso senza tenere conto del parametro P6 relativo all'orientamento delle fratture. Il valore con il quale determineremo le classi di qualità dell'ammasso roccioso sarà quindi il BRMR e non l'RMR.

Nell'area di studio sono stati effettuati 13 rilievi geomeccanici. Gli affioramenti esaminati sono stati in seguito classificati secondo Bieniawski.

Tali rilievi sono quelli codificati da sigla "RGM".

I risultati ottenuti classificano la qualità degli ammassi rocciosi come prevalentemente discreta, con BRMR che varia tra il range di valori di 41-60 (Tab 4.2).

A partire dai valori di BRMR, sono state usate le relazioni seguenti per ottenere i valori di coesione ed angolo d'attrito.

$$c'[MPa] = 0,005 \cdot BRMR$$
$$\varphi'[\circ] = 5 + (\frac{BRMR}{2})$$

È stato inoltre calcolato il modulo elastico E (GPa) con la seguente relazione:

$$E[GPa] = 10^{(\frac{BRMR-10}{40})}$$

I valori medi ottenuti ripettano il range di valori della classe di qualità discreta (Tab 4.2) e sono pari a 0,3 MPa per la coesione, 34° per l'angolo d'attrito e 20 GPa per il modulo elastico.

4.4.2. La determinazione dell'indice GSI

Per poter effettuare la classificazione GSI sono state eseguite una serie di foto per ogni ammasso roccioso.

Sono stati acquisiti per ogni affioramento un valore di GSI massimo ed uno minimo; è stata poi eseguita la media, con la finalità di ricavare da questa alcuni tra i principali parametri geomeccanici degli ammassi rocciosi.

I risultati ottenuti sono stati suddivisi in classi di valori e per ciascuna è stata calcolata la frequenza relativa attraverso l'istogramma in figura 4.2; sono stati considerati prima tutti gli affioramenti rilevati, e poi anche la loro suddivisione nelle zone omogenee precedentemente determinate (cap 3).

4. Caratterizzazione geomeccanica

Figura 4-2 – Andamento della frequenza relativa dei valori di GSI di tutti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Le colonne blu rappresentano tutti gli affioramenti, quelle gialle la zona 1, quelle verdi la zona 2 mentre quelle azzurre la zona 3.

Dall'osservazione della figura soprastante si può dedurre che la classe che possiede la maggiore frequenza relativa è quella dei valori compresi tra 21 e 30; leggermente inferiore a quest'ultima, ma non di molto è la classe immediatamente successiva, 31-40.

Per quanto riguarda le zone omogenee, in cui si è fatto riferimento al paragrafo 3.3.2 del capitolo precedente, per la zona 1 (conoide) si riscontrano i valori di frequenza più elevati nella classe 21-30 mentre sia per la zona 2 (intermedia) che per la zona 3 (nicchia) la classe con valori maggiori è quella compresa tra 41-50; questo sta a significare che la qualità della roccia nella zona di nicchia ed in quella intermedia è migliore rispetto alla zona topograficamente meno elevata ma i valori riscontrati testimoniano comunque una bassa qualità delle rocce affioranti. Inoltre, riguardo sia alla zona 1 che alla zona 3 è possibile osservare come manchino affioramenti appartenenti alle classi maggiori, mentre la zona intermedia è distribuita più omogeneamente in tutte le classi di appartenenza.

Considerando le tre zone omogenee, possiamo affermare che la zona1, corrispondente all'area topograficamente meno elevata della zona d'esame, è quella con roccia più scadente, dal momento che il valore medio del GSI è pari a 27.

La zona 2 intermedia e la zona 3, di nicchia hanno valori di GSI medio simili e leggermente maggiori, rispettivamente pari a 39 e 38.

L'indice GSI può essere correlato con la Classificazione di Bieniawski mediante il BRMR' (ottenibile dal BRMR considerando l'indice relativo alle venute d'acqua P5 pari a 15):

$$GSI = BRMR'-5$$

Nel caso in esame tutti gli affioramenti presentano condizioni asciutte, quindi il BRMR' e il BRMR coincidono.

È stata applicata la relazione inversa, per ottenere il valore di BRMR per tutti gli ammassi rocciosi ed è stata poi calcolata la frequenza relativa con la medesima procedura applicata per i valori di GSI, rappresentando così i risultati ottenuti nell'istogramma in figura 4.3.

Figura 4-3 – Andamento della frequenza relativa dei valori di BRMR, calcolati a partire dai valori di GSI medio di tutti gli affioramenti e per ogni zona omogenea, per ciascuna classe considerata. Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu.

Come si può notare dall'istogramma, la classe che presenta i valori di BRMR maggiormente presenti è quella compresa tra 51 e 60, subito seguita dalla classe 31-40, che testimoniano una qualità bassa delle rocce affioranti, come rispecchiano i valori di GSI ottenuti. La zona 1 infatti, risulta essere quella con roccia di qualità scadente, essendo praticamente assente un affioramento appartenente a classi con valori maggiori di 60; le altre 2 zone invece, hanno dei valori leggermente superiori con dei picchi nella classe 41-50 per la zona 3 e 51-60 per la zona intermedia. Tali classi vengono accorpate nella classificazione di Bieniawski e corrispondono alla classe di qualità III, catalogata come roccia discreta.

Per comprendere meglio la distribuzione spaziale dei valori di GSI si è scelto di rappresentarli usando come base la cartografica tecnica (figura 4.4).

Sono stati considerati i valori di GSI più cautelativi, ovvero i minimi.

Per avere una visione d'insieme sono stati inoltre rappresentati sulla medesima cartografia anche i valori minimi di point load e le litologie affioranti e subaffioranti in modo da verificare le possibili correlazioni.

Dalla figura sottostante è possibile notare come la sponda destra del bacino Valchiosa, tra i 700 ed i 900 metri s.l.m., possieda i valori più bassi sia di GSI che di point load. Le caratteristiche geomeccaniche scadenti di tali rocce potrebbero essere connesse alla presenza della faglia del Mortirolo.

Anche la zona di nicchia ed il versante sinistro in zona intermedia posseggono valori bassi di GSI in corrispondenza rispettivamente degli gneiss e delle anfiboliti. I valori del point load in queste due aree invece, sono leggermente maggiori rispetto alla fascia sopra descritta.

Complessivamente tutta l'area è comunque caratterizzata da basse qualità dell'ammasso roccioso; qualità geomeccaniche scadenti sono invece circoscrivibili a zone ristrette.
4. Caratterizzazione geomeccanica

Figura 4-4 – Distribuzione spaziale dei valori di GSI minimo e di Point Load minimo correlati con le differenti litologie presenti. In rosso i valori più bassi, corrispondono a una qualità della roccia scadente.

4.4.3. L'applicazione del criterio di Hoek&Brown

I risultati sono stati graficati anche in questo caso mediante istogrammi di frequenza suddividendo i valori di coesione e angolo d'attrito in classi (Fig. 4.5 e 4.6), e consentono di avere una visione più immediata e globale dei valori ottenuti.

Figura 4-5 – Andamento dei valori di frequenza della coesione c' [MPa] per le differenti zone omogenee secondo il Criterio di Hoek&Brown (2002). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu.

Figura 4-6 – Andamento dei valori di frequenza dell'angolo d'attrito φ [°] per le differenti zone omogenee secondo il Criterio di Hoek&Brown (2002). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu.

Per quanto riguarda la coesione, i valori che si riscontrano maggiormente sono compresi tra 2,1 MPa e 4 MPa sia per quanto riguarda tutti gli ammassi rocciosi che per la zona 1 e 2; per la zona di nicchia invece sono più frequenti valori inferiori a 2 MPa.

Quanto all'angolo d'attrito i valori maggiormente riscontrati appartengono alla classe 26-35.

Sono stati inoltre calcolati coesione c', angolo d'attrito φ e modulo di Young E applicando le formule della classificazione di Bieniawski (par. 4.3.1), avendo trovato per tutti gli ammassi rocciosi il valore di BRMR e graficato sempre mediante istogrammi di frequenza i risultati ottenuti. (Fig. 4.7 e 4.8)

Figura 4-7 – Andamento dei valori di frequenza della coesione c' [MPa] per le differenti zone omogenee secondo le formule analitiche della classificazione di Bieniawski (1973). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu.

Figura 4-8 – Andamento dei valori di frequenza dell'angolo d'attrito φ [°] per le differenti zone omogenee secondo le formule analitiche della classificazione di Bieniawski (1973). Affioramenti globali = arancio, zona 1 = Giallo, zona 2 = verde, zona 3 = blu.

Per quanto riguarda l'angolo d'attrito φ , i valori trovati sono i medesimi del criterio di Hoek&Brown, mentre la coesione c' differisce notevolmente passando da un valore di compreso tra 2,1 e 4 MPa a uno compreso tra 0,2 e 0,3 Mpa. Questo è dovuto al fatto che Bieniawski fornisce solo un'indicazione di quello che può essere il valore della coesione, senza quindi raggiungere la precisione del criterio di Hoek&Brown.

4.5. Conclusioni

Si presenta una tabella riepilogativa del valori medi e minimi ottenuti riguardo a GSI, BRMR, coesione ed angolo d'attrito secondo Bieniawski e Hoek&Brown (Tab. 4.6 e 4.7).

	GSI	BRMR	Qualità roccia	c' [MPa]	φ[°]	E [MPa]
MEDIA ASS	34,84	43,14	discreta	0,22	26,57	11,00
media zona1	26,90	33,87	scadente	0,18	22,58	5 <i>,</i> 93
media zona2	39,23	49,23	discreta	0,25	29,62	15,84
media zona3	38,44	43,44	discreta	0,22	26,72	9,27
MINIMO ASS	7,50	12,50	molto scadente	0,06	11,25	1,15
min zona1	7,50	12,50	molto scadente	0,06	11,25	1,15
min zona2	7,50	12,50	molto scadente	0,06	11,25	1,15
min zona3	12,50	17,50	molto scadente	0,09	13,75	1,54

Tabella 4-6 – Valori medi e minimi assoluti e di ciascuna zona omogenea del GSI, del BRMR, della coesione, dell'angolo d'attrito, del modulo di Young e la corrispondente qualità della roccia secondo il criterio di Bieniawski.

Hoek & Brown	c' [MPa]	φ' [°]
MEDIA ASS	3,72	29,01
Media zona 1	3,29	27,55
Media zona 2	4,14	30,06
Media zona 3	1,49	16,01
MINIMO ASS	0,74	7,33
Min zona 1	0,79	9,39
Min zona 2	0,74	7,33
Min zona 3	1,26	13,76

Tabella 4.7 – Valori medi e minimi assoluti e di ciascuna zona omogenea della coesione e dell'angolo d'attrito secondo il criterio di Hoek&Brown.

Osservando le 2 tabelle soprastanti, si può concludere che, il valore medio dell'angolo d'attrito φ calcolato con il criterio di Hoek&Brown corrisponde circa a quello trovato attraverso le formule analitiche di Bieniawski ed è pari a 29°; per quanto riguarda la coesione, quest'ultimo criterio fornisce solo un'indicazione di quello che potrebbe essere il valore, infatti, i due valori medi trovati differiscono notevolmente, rispettivamente 0,22 MPa per Bieniawski contro 3,72 MPa secondo Hoek&Brown.

Il valore medio del modulo di Young invece è pari a 11 GPa.

Per quanto riguarda GSI e BRMR si può affermare che la qualità degli ammassi rocciosi affioranti nell'area di esame è discreta, ma tendente allo scadente per quanto riguarda la zona topograficamente meno elevata, ovvero la conoide di deiezione che presenta un BRMR medio pari a 34 ed un GSI pari a 27.

Il valore medio complessivo di BRMR, rispecchia circa il valore delle zone omogenee 2 e 3 con un valore pari a 43, mentre il GSI medio complessivo è pari a circa 35.

I picchi di minimo invece, sono alquanto bassi per tutti i dati rilevati ed appartengono ovviamente alla zona 1, e confermano pienamente la bassa qualità delle rocce affioranti.

I valori di GSI e BRMR sono stati inseriti nella scheda rilievo della quale si è parlato nel paragrafo 3.3 del precedente capitolo.

Capitolo 5

Ricostruzione del modello concettuale della frana

Un modello concettuale rappresenta la schematizzazione geometrica e fisica del fenomeno in esame, con identificazione dei processi rilevanti e dei parametri rappresentativi. Nel caso specifico di una frana, questo significa ricostruire il modello fisico del sottosuolo, dal punto di vista strutturale, geologico, geomorfologico e idrogeologico.

Inoltre, è necessario attribuire ai geomateriali coinvolti dal movimento delle proprietà fisiche e meccaniche, nonché identificare le cause predisponenti e scatenanti.

Nei paragrafi seguenti verranno correlati i diversi aspetti analizzati nei capitoli precedenti al fine di giungere alla ricostruzione del modello concettuale della frana che ha dato origine alla megaconoide di Sernio.

5.1. Modello geometrico

Il bacino della Valchiosa è stata suddiviso nelle tre zone strutturalmente omogenee di cui si è parlato nel paragrafo 3.3 del relativo capitolo ed attraverso la figura 5.1 è stata determinata la topografia dell'area.

Figura 5-1– Suddivisione delle tre zone strutturalmente omogenee (suddivise dalla Linea del Mortirolo e dalla Linea Insubrica), rappresentazione dell'area dell'intero bacino, della conoide e della linea di massima pendenza, totale e per ciascuna zona (immagine da Google Earth).

Per ciascuna zona è stato determinato il corrispondente profilo di elevazione:

1. Zona 1: come è possibile vedere in figura 5.2 la pendenza media della zona 1 è circa pari al 17%, da quota 650 m s. l. m. fino all'Alpe Monte cristallo la pendenza media è di circa 15%, per poi abbassarsi fino ai 5-10% in media nel tratto fino a 500 m s. l. m., e subire un brusco aumento al 30% nel tratto terminale, in corrispondenza della confluenza in Adda.

Figura 5-2 – Profilo di elevazione della Zona 1 (Google Earth).

2. Zona 2: dal profilo di elevazione in figura 5.3 è possibile notare come la suddetta area è suddivisa in 2 tratti, il primo a valle della frana del Corno Rosso (ubicata a quote comprese tra 1300 - 1550 m s. l. m.), avente pendenza media pari ai 25%, dove ha inizio la conoide; il secondo, a monte di essa, caratterizzato da pendenze nettamente superiori pari circa al 55%; questo aspetto spiega il notevole accumulo di detriti da crollo a quota 900 – 950 m s. l. m.

Figura 5-3 – Profilo di elevazione della zona 2 (Google Earth).

3. Zona 3: dal profilo di elevazione in figura 5.4 si nota come la pendenza sia in linea con la zona 2 fino al Monte della Colma a quota 2143 m s. l. m. e pari circa al 60%. Gli alvei sono quindi molto inclinati ed abbastanza rettilinei. Si evidenzia inoltre, grazie allo studio geologico della Dott da Prada, una modesta asimmetria dei versanti, dettata soprattutto dalla differenza litologica e dalla presenza di aree in dissesto; il versante destro del Torrente Valchiosa, oltre a presentare una maggiore percentuale di affioramenti rocciosi è caratterizzato da frane più estese, tra le quali spicca la già citata frana di Corno Rosso. Sul lato sinistro invece, sono presenti un maggior numero di piccoli sciviolamenti che evolvono in colate e interessano buona parte delle incisioni vallive. Infine, l'inclinazione media di entrambi i versanti è compresa tra i 75% e gli 85%.

Figura 5-4 – Profilo di elevazione della zona 3 (Google Earth).

Il profilo delle pendenze dal Torrente Valchiosa rispecchia quello del pendio sopracitato, in quanto l'alveo è profondamente inciso. Si ha quindi una pendenza del 60% circa dall'origine del torrente presso Monte della Colma a quota 2143 m s. l. m. fino a circa 1050 m s. l. m., punto di inizio della conoide, dove diminuisce ed è pari al 25%. L'ultimo tratto del torrente ha una lieve pendenza pari al 5 – 10% fino a quota 500 m s. l. m., per poi aumentare al 30% nel tratto terminale, dove confluisce in Adda.

Grazie allo studio della Dott. Da Prada è possibile apprendere che, nel tratto topograficamente più elevato, date le elevate pendenze non si hanno fenomeni di accumulo di detriti, che iniziano a depositarsi quindi, a partire dal cambio netto di pendenza, a quota 1050 m s. l. m., dove si osservano, fino a quota 700 metri, processi di deposito di colate detritiche, attualmente colonizzate da vegetazione spontanea, e modesti fenomeni di erosione delle stesse; in questo tratto la morfodinamica fluviale si è esplicata soprattutto in passato e con processi deposizionali prevalenti rispetto a quelli erosivi.

Nell'ultimo tratto, da quote inferiori ai 700 m s. l. m. fino a circa 500 m s. l. m. non si osservano segni evidenti di morfodinamica fluviale, mentre nel tratto terminale, in corrispondenza dell'amento di pendenza, sono presenti erosioni profonde lungo le sponde del corso d'acqua, ancora in parte attivi.

5.2. Modello geologico-strutturale

La Linea Insubrica, e poco più a Nord la Linea del Mortirolo, permettono di suddividere il bacino di interesse nelle tre zone strutturalmente omogenee, così definite (Fig. 5.1):

1. Zona 1, compresa tra la confluenza in Adda 489 m s. l. m. e quota 900 m s. l. m., superiore rispetto al passaggio della Linea del Mortirolo (quota 750 m s. l. m. ca), rappresenta l'area comprendente la maggior parte della conoide, che ha inizio, a metà della zona intermedia a quota 1050 m s. l. m.

2. Zona 2, area intermedia, più lontana dai due lineamenti, Mortirolo e Linea Insubrica, ha inizio circa a quota 900 m s. l. m. per terminare a monte della frana del Corno Rosso (quota 1500 m s. l. m.).

3. Zona 3, comprendente la parte alta del bacino di interesse, rappresenta l'area di nicchia; ha inizio circa a quota 1500 m s. l. m. per terminare in corrispondenza del Monte della Colma (2143 m s. l. m), dove passa la Linea Insubrica.

Facendo sempre riferimento alle tre zone sopracitate, è possibile applicare, una distinzione litologica dei 3 diversi domini:

1. Zona 1: dalla confluenza in Adda a quota 489 m s. l. m. fino a circa 650 metri l'area è caratterizzata da depositi superficiali, rappresentata dai depositi di conoide del Torrente Valchiosa; dai 650 metri fino al termine della zona 1 i depositi superficiali diventano di tipologia fluvio-torrentiza. Lo profondità di tali depositi, che mascherano completamente il substrato roccioso, è ipotizzata arrivare fino a quota 420 m s. l. m., all'altezza dell'abitato di Tirano. Si segnala inoltre, al piede del versante sinistro, in corrispondenza con alcune vallecole laterali del Torrente Valchiosa, conoidi di tipo misto (detritico – torrentizi), falde di detrito e un affioramento del substrato roccioso a quote inferiori rispetto al versante destro, il quale invece, è caratterizzato da coltri di copertura maggiormente estese, in particolare accumuli detritici e depositi eluvio colluviali all'altezza dell'Alpe Monte Cristallo (750 m s. l. m.);

2. Zona 2: fino ai 900 – 950 metri i versanti sono caratterizzati da diffusi fenomeni di crollo (frana Corno Rosso leggermente più a monte, vedi aspetti geomorfologici) che alimentano i depositi di conoide che si estendono con continuità al piede deli stessi; tali accumuli, mascherano in parte il substrato roccioso, ampiamente presente in questa zona (Fig. 4.4, Cap 4); la parte alta a monte dell'apice della conoide è caratterizzata dalla presenza di depositi di versante.

3. Zona 3: caratterizzata dalla presenza di depositi glaciali, aventi uno spessore stimato di circa 5 metri e composti principalmente da ghiaie e sabbie con limo.

Il substrato roccioso, di cui non è nota la profondità, è presente nell'intero bacino di interesse, si estende al di sotto dei depositi superficiali, ed emerge in superficie solo nei punti rilevati.

5.3. Il modello geologico-tecnico

Il substrato roccioso è stato considerato come corpo unico, non differenziato secondo le tre diverse litologie (par 3.3 Cap 3).

Ad ogni zona strutturalmente omogenea è stato attribuito il valore medio dei corrispondenti parametri geomeccanici, e il valore medio del peso specifico (Tab 5.4).

Parametri fisico-meccanici	c' [MPa]	φ [°]	E [GPa]	γ (KN/m³)	σ _{ci} min⊥ [MN/m²]	σ _{ci} min // [MN/m²]
Media Assoluta	3,72	26,57	11,00	26,11	143,82	98,77
Media zona 1	3,29	22,58	5,93	25,69	148,21	108,96
Media zona 2	4,14	29,62	15,84	26,47	143,82	118,05
Media zona 3	1,49	26,72	9,27	26,24	124,22	55,38

Tabella 5-1– Valori medi, assoluti e suddivisi per ciascuna zona, della coesione, angolo d'attrito, modulo di Young, peso specifico e resistenza a compressione monoassiale con rottura normale e parallela alla scistosità.

Come si può visualizzare nella tabella soprastante, i valori medi che contraddistinguono l'intero bacino della Valchiosa risultano essere pari a 3,7 MPa per la coesione c', 26,6° per l'angolo d'attrito j', 11 MPa per il Modulo di Young E, 26,1 KN/m³ per il peso specifico g. Infine per la resistenza a compressione monoassiale con rottura normale e parallela alla scistosità, $\sigma_{ci\perp} e \sigma_{ci//}$ sono stati considerati i valori più cautelativi, ovvero i minimi, ed è stato poi determinato il valore medio pari rispettivamente a 144 MN/m² e 99 MN/m².

Il coefficiente di Poisson v, definito come rapporto tra la deformazione trasversale e quella longitudinale viene considerato essere pari circa a 0,5 per l'intero bacino, valore massimo attribuibile, che denota l'incomprimibilità del materiale.

Nonostante la zona 1 presenti i valori minori di BRMR e GSI (vedi par. 4.5, cap 4) e quindi la qualità più bassa degli ammassi rocciosi, la zona 3 è caratterizzata dal possedere il valore minore di $\sigma_{ci\perp}$ e $\sigma_{ci//}$ e di coesione, segno che rappresenta una propensione maggiore al franamento, considerate anche le elevate pendenze (60%) di tale zona.

Nella figura 5.5 è rappresentata la sezione trasversale del profilo di pendenza dell'alveo inciso, con i relativi parametri geomeccanici la composizione litologica geologiche per ogni zona omogenea.

Figura 5-5 – Sezione trasversale del profilo di pendenza dell'alveo inciso, con relativa caratterizzazione geologica e strutturale per zone omogenee.

Dalla figura soprastante di evince che la zona 1 è costituita da un notevole spessore di depositi di detrito da conoide che si estendono probabilmente fino a quota 400 m s. l. m ca. Al di sotto dei 400 m s. l. m. non è possibile conoscere con certezza la configurazione del sottosuolo; si può ipotizzare la presenza di una grossa concavità, rappresentante l'ex fondovalle (prima della formazione della mega-conoide) saturato da depositi indistinti, al di sotto dei quali si estende probabilmente il substrato roccioso. All'altezza della linea del Mortirolo i depositi da conoide diminuiscono progressivamente fino al suo apice, dove vengono sostituiti da uno strato di depositi di versante. Tali depositi, nascondono quasi interamente il substrato roccioso, (che emerge solamente nei punti rilevati in sito, Cap. 3), di cui non è possibile conoscere con certezza la profondità.

La zona di nicchia invece, è caratterizzata da una coltre di depositi glaciali, avente uno spessore di circa 5 metri, che copre anche in questo caso la maggior parte del substrato roccioso.

Il substrato roccioso ha scistosità che immerge verso sud ed una bassa inclinazione.

La Linea del Mortirolo e la Linea Insubrica sono orientate in direzione E-O, ma considerando il loro andamento in profondità, dalla figura è possibile osservare come abbiano immersione rispettivamente, a Sud per la prima, ed a Nord per la seconda.

La suddivisione delle zone in profondità segue l'andamento dei due lineamenti.

5.4. Ricostruzione della dinamica dell'evento

Le cause che hanno portato e tuttora portano all'attivazione di frane da crollo e colate di detrito si suddividono in predisponenti e scatentanti.

5.4.1. Le cause predisponenti

Dalle analisi geomeccaniche di cui si è parlato nel capitolo precedente è emerso che tutta l'area di interesse è caratterizzata da una bassa qualità degli ammassi rocciosi causata da:

- Stato di fratturazione, dovuto alle numerose faglie distribuite omogeneamente sull'intero bacino e perlopiù con orientazione parallela alla scistosità;
- Bassa resistenza a compressione monoassiale con rottura parallela alla scistosità (Par 3.2.4, Cap. 3);
- Stato di alterazione elevato (Par. 3.2.3, Cap. 3);
- Depositi superficiali nella parte medio bassa del bacino e depositi glaciali, presenti soprattutto nella parte alta (fine zona 2 e zona 3).

5.4.2. Le cause scatenanti

La causa principale di innesco è da attribuirsi senza dubbio ai movimenti gravitativi profondi di versante e alla storia glaciale del Bacino del Torrente Valchiosa.

L'innesco di movimenti gravitativi profondi di versante, dei quali si è parlato nel par 2.2 del relativo capitolo, coinvolgono l'intero versante, hanno spostamenti ridotti rispetto alla sua estensione, limiti e superfici di scorrimento poco definite ma grosse evidenze morfostrutturali, quali creste sdoppiate, scarpate e controscarpate e portano alla conseguente attivazione di frane "figlie" nel settore medio basso del bacino (zona di Frana Corno Rosso, vedi Fig. 5.1).

In particolare, la tipologia di DGPV che si verifica nell'area di interesse è la cosiddetta "sackung" (Zischinsky, 1966; Sagging, Hutchinson, 1988; Rock Flow, Varnes, 1978) caratterizzata da evidenze morfostrutturali nel settore superiore del versante, e rigonfiamento al piede, fenomeni di creep dell'ammasso roccioso lungo i piani di scistosità e localizzazioni delle deformazioni lungo una zona di taglio.

Tali movimenti, uniti alla deglaciazione e scioglimento del permafrost nella parte medio alta del suddetto bacino hanno prodotto un collasso della parte superiore del versante con successiva trasformazione della frana in colata detritica, dove le pendenze iniziano a diminuire. Una volta innescata, la colata può scorrere anche con pendenze inferiori a 16%, nella cosiddetta zona di transito, da quota 950 m s. l. m. per l'area di interesse, fino all'inizio della conoide, che rappresenta la zona di accumulo o deposito.

La formazione di una conoide avente un'estensione areale eccessiva rispetto alle dimensioni del bacino di appartenenza fa però pensare all'esistenza di una montagna nella zona di coronamento del bacino, la quale, in passato, in seguito ad un evento di dimensioni catastrofiche ha subito un collasso. Tale evento ha determinato la produzione dell'ingente quantità di detriti che ora formano la mega-conoide; il susseguirsi di frane e colate detritiche ha incrementato ulteriormente tale produzione, accrescendone quindi il suo volume.

5.5. Il rischio residuo

In relazione a quanto detto sopra, tali movimenti tettonici (DGPV, frane, colate) producono un rischio residuo che riguarda la possibile evoluzione attuale del bacino di interesse.

Il rischio residuo (Rr) è definito come differenza tra il rischio totale (R, ovvero, il valore atteso delle perdite umane, dei feriti dei danni alla proprietà e delle perturbazioni alle attività economiche dovute ad un particolare fenomeno naturale), ed la variazione del livello di rischio (Δ R) a seguito delle opere di intervento adottate in relazione al pericolo in esame.

Tale rischio residuo è caratterizzato quindi dal possibile arretramento del ciglio delle frane esistenti, alla conseguente espansione delle medesime e all'approfondimento ed estensione delle aree in erosione, con la formazione di nuovi percorsi di colata detritica. Si verificherebbe quindi trasporto di massa con la deposizione di materiale detritico a valle, dove sono favoriti i fenomeni deposizionali rispetto a quelli di trasporto. Ciò determinerebbe l'aumento di volume della mega-conoide di Sernio.

Conclusioni

Gli elementi determinanti per lo sviluppo delle mega-conoidi sono da attribuire all'origine dei depositi e alla geologia delle rocce affioranti presenti nelle aree di alimentazione, sia ad alta che a bassa quota rispetto al cono, alla storia glaciale ed alla morfologia del bacino di alimentazione, ed infine ai movimenti gravitativi profondi di versante.

I risultati dei parametri geomeccanici dedotti dal rilievo in sito non hanno evidenziato delle giaciture preferenziali ma è stato possibile notare, come la maggior parte delle faglie sia orientata per lo più parallelamente alla scistosità, determinando così una debolezza lungo tale piano, caratteristica poi confermata grazie alle prove di Point Load effettuate sui campioni raccolti.

Inoltre l'area di rilevo è attraversata da due lineamenti tettonici di rilevante importanza, la Linea Insubrica e la Linea del Mortirolo, orientate in direzione Est-Ovest rispetto al bacino di interesse; tali lineamenti hanno permesso la suddivisione dell'area di rilievo in tre zone strutturalmente omogenee (l'area di conoide, la zona intermedia e la testata del bacino).

Infine, le rocce affioranti, ove non sono coperte da deposito glaciale presentano un coefficiente di alterazione alquanto elevato.

Sono state applicate due diverse tipologie di caratterizzazione geomeccanica, il Rock Mass Rating secondo Bieniawski, e la classificazione GSI, attraverso la quale si è potuto applicare il Criterio di rottura di Hoek & Brown. Gli indici ottenuti da entrambe le classificazioni, e la coesione e l'angolo d'attrito caratterizzanti l'area di interesse, attestano una qualità discreta delle rocce affioranti.

È stato quindi ricostruito un modello concettuale, basato sugli aspetti strutturali, geologici, geomorfologici e idrologici, del bacino in esame; sono state prese in esame le pendenze medie dei versanti ed il profilo di pendenza lungo l'incisione dell'alveo entrambi per ciascuna zona omonegea, gli spessori dei depositi superficiali (da conoide, di versante e glaciali), calcolati i parametri fisico-meccanici del substrato roccioso (coesione, angolo d'attrito, modulo di Young, resistenza a compressione monoassiale e peso specifico) e considerate le eventuali frane verificatesi in passato.

La particolarità della conoide del Bacino Valchiosa consiste nell'avere un'estensione elevata rispetto al bacino da cui ha avuto origine, ed è quindi identificata come mega-conoide o conoide "anomala".

La sua origine quindi, non può essere determinata solamente da frane, valanghe in roccia, crolli e colate di detrito, ma analogamente ai due casi specifici trattati nel Capitolo 1 (conoide del Migiondo e Malser Haide) si presuppone che vi sia stato un evento catastrofico in passato, e quindi l'esistenza di una montagna sulla testata della valle, che, data la bassa qualità substrato roccioso, il suo elevato grado di alterazione, i movimenti gravitativi e lo scioglimento del permafrost, ha subito un collasso tale da mobilitare un'ingente quantità di detriti che ha prodotto la conoide di grandi dimensioni. Le frane e le colate di detrito che si sono succedute hanno contribuito e tutt'ora contribuiscono all'incremento di depositi superficiali e quindi al volume totale della mega conoide.

6. Conclusioni

Bibliografia

- C. AMBROSI, G. B. CROSTA, 2005: Large sackung along major tectonic featrures in the Central Italian Alps
- L. ARZUFFI, 2003: Tesi di dottorato: Studio dei conoidi di debris-flow nel quadro dell'evoluzione quaternaria della Val Roseg (Engadina, Svizzera)
- G. BELTRAMI, A. BIANCHI, G. BONSIGNORE, E. CALLEGARI, P. CASATI, R. CRESPI, I. DIENI, M. GNACCOLINI, G. LIBORIO, A. MONTRASIO, A. MOTTANA, U. RAGNI, G. SCHIAVINATO, B. ZANETTIN, 1971: Note Illustrative della Carta Geologica d'Italia alla scala 1:100000, foglio 19 Tirano
- G. CROSTA & P. FRATTINI, 2003: Controls on modern alluvial fan processes in the Central Alps, Northern Italy
- T. DA PRADA, 2004: Interventi di difesa idrogeologica nel bacino del Torrente Valchiosa, progetto definitivo
- M. GUGLIELMIN & G. OROMBELLI, 2001: Il cono di deiezione terrazzato allo sbocco della valle di Migiondo presso Sondalo (Valtellina)
- D. JARMAN, F. ARIGLIARDI & G. CROSTA, 2011: Megafans and outsize fans from catastrophic slope failures in Alpine glacial troughs: The Malser Haide and the Val Venosta cluster, Italy
- L. SCESI, M. PAPINI, P. GATTINONI, 2010: Geologia applicata, il rilevamento geologico tecnico, Vol 1

SOCIETA' GEOLOGICA ITALIANA, 1990: Alpi e Prealpi Lombarde

L. SORGIA, 2008: Tesi di dottorato: Descrizione, funzionamento e analisi prestazionale delle macchine di scavo meccanizzato, pp. 13-41

Bibliografia

Appendice 1: Schede rilievo

Rilievo N°	RGM1	Coordinata X	1592032,339	Coordinata Y	5115887,464		
		PARAMETRI	GEOMECCANICI RI	LEVATI			
Litologia	paragneiss	Campioni	por Doint Lood	v	VRU medio	25.42	Ev1E
RQD (%)	72	raccolti	per Point Load	^	(cm)	2382	5X15
Orientazione versante [°]	190/78	Orient. F1		Orient. F2		Orient. F3	
SISTEM		S	К1	К2	К3	К4	К5
	orientazione [°]	188/82	274/83	286/34	68/40		
Correttoriatishe dei	spaziatura (cm)	20	20	20	100		
giunti	persistenza P(%)	>90	>90	50-90	<50		
0.0	persistenza A(%)	>80	>80	20-80	<20		
	apertura (mm)			1-2.5			
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.			
Acqua	assente	<u>asciutto</u>	umido	bagnato			
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	2-4						
	or // (Mpa) Pl	or (Mna) Pl	or (MPa)	Alterazione			
		22 8	45 436	0.5			
Parametri sperimentali	c'[Mna]	22,0 س'[°]	E (Gna)	v (KN/m3)			
	0.26	φ[] 31	11.2	24.28			
	0,20	51	11,2	24,20			
Parametri analitici	D	mi	m _b	S	а		
	0,8	33	1,407	0,0003254	0,507		
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
	3,517	14,691	2,351	21,891			
CLASSIFICAZIONE	GEOMECCANICA	DELL'AMMASSO	ROCCIOSO		1 K	N +	
Bieniaws	ki	GSI (diretto) =	47		/ /	\overline{A}	$\overline{\mathbf{A}}$
P1) Resistenza PL	4			/			\ _
P2) RQD	13			/			t_
P3) Spaziatura	10			w-	K2	× 1/3	F -
P4) Giunti	10				+	S (aff) +	+
P5) Acqua	15			7			
RMR _b =	52			2			1 -
NOTE							
GSI da formula					The	s	
(calcolare quello da	II.6			Atre Mar		Provide	
foto)		der se			A Sec		RAN IN
		1 ASSAULT	Alter and	1 Mar	1 Parties	1 24 14	
		- TONY	Steal and		JAN .	Card Card	
		200			N. C. S. S.		
	1		201 6 31	er Calma			
	10		ALL TH		34 11		
		With the		New Parts			
	No.		10 10 10 10				
		LA VAL	A A A A A A A	(bits			
	C.	2 States of		S. Walk	A AM	· 7.82	
		AN AL	A Street	AND TO A	an reflering	NAME AND	Mine.
			A REAL PROPERTY	and the second s			18 18 M

Rilievo N°	RGM2	Coordinata X	1592617,188	Coordinata Y	5117380,9		
		PARAMETRI	GEOMECCANICI F	RILEVATI	1		
Litologia RQD (%)	marmo 63	Campioni raccolti	per Point Load	x	VRU medio (cm)	40X20)X15
Orientazione versante [°]	334/70	Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	K1	К2	КЗ	К4	К5
orientazione [°]		329/65	265/73	253/50	90/46		
	spaziatura (cm)	-	100	20	-	-	
Caratteristiche dei	persistenza P(%)	>90	50-90	50-90	50-90		
Branci	persistenza A(%)	>80	20-80	20-80	20-80		
	apertura (mm)			2.5-5			
Rimpimento <u>assente</u>		granulare	coesivo	ricrist.			
Acqua	assente	<u>asciutto</u>	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC	4-6						
Parametri sperimentali	σc _i // (Mpa) PL	σc _i ⊥(Mpa)PL	oc _{app} (MPa)	Alterazione			
	-	-	48,926	-			
	c'[Mpa]	φ'["]	E (Gpa)	γ (KN/m3)			
-	30	10	26				
	D	mi	m _b	S	а		
Parametri analitici	0,5	9	0,757	0,0009747	0,507		
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	ELL'AMMASSO	ROCCIOSO					
Bieniawsk	i	GSI (diretto) =	48				
P1)Resistenza PL	5						
P2) RQD	13						
P3) Spaziatura	10						
P4) Giunti	10						
P5) Acqua	15						
RMR _b =	53						
NOTE							
Campione non rotto> non abbiamo resistenza a carico puntuale, ma resistenza a compressione monoassiale. GSI da formula							
W- W- to to t							

reportance r

Rilievo N°	RGM3	Coordinata X	1592747,629	Coordinata Y	5117555,1			
PARAMETRI GEOMECCANICI RILEVATI								
Litologia	marmo	Campioni	per Point Load	х	VRU medio	50X1	5X20	
RQD (%)	79	raccolti	•		(cm)			
Orientazione versante [°]	80/98	Orient. F1		Orient. F2		Orient. F3		
SISTEMI		S	K1	К2	К3	К4	К5	
	orientazione [°]	282/30	97/76	214/79				
Caratteristiche dei	spaziatura (cm)	20	8,3333333333	14,2857143	-	-		
giunti	persistenza P(%)	>90	>90	50-90				
	persistenza A(%)	>80	>80	20-80				
	apertura (mm)			-				
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.				
Acqua	assente	<u>asciutto</u>	umido	bagnato				
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate				
JRC	4-6							
	oc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione				
	127,68	-	36,812	5,4				
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)				
	0,26	31,00	11,22	26				
	D	mi	m _b	S	а			
Parametri analitici	0.2	9	1.099	0.0018189	0.507			
	σ (Mpa)	്. (Mna)	,000	φ'	0,007			
	17.774	18.090	4.304	31,591				
				,				
Bieniawsk		GSI (diretto) =	A7					
P1) Resistenza Pl	12	d31 (diletto) =	77					
P2)ROD	17							
P3) Spaziatura	8							
P4) Giunti	0							
P5) Acqua	15							
RMR _b =	52							
NOTE								
GSI da formula		Constant Constant		1980-4974 (* 1910) 1910-193				
1			Ser Ser	LASS -	A AMP		Ser -	
N			SUMP A AND	and the second				
				States In	NO SER			
	+	Raiden		Mr. B.	Star V	and the second	the	
	Ţ	a that the	A CONT		5 Pri	5 7 5	5 1	
	F		A CARGE ST	A LEF	Report C			
w- + s + k1	+ -E				C. Car			
T K	F		City Contain		S 200		A A A	
			A CAR	4			-	
$\setminus \setminus$	X	THE		- AL	A A SUL	ALL I	- Sol -	
					1	6 R		
S			No. 2 m	Se a ki	12.00		S. Call	

rependice 1

Rilievo N°	RGM6	Coordinata X	1593952,582	Coordinata Y	5117969,7		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia ROD (%)	ANFIBOLITE 80	Campioni raccolti	per Point Load	x	VRU medio (cm)	6X4	X25
Orientazione versante [°]	-	Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	К1	К2	КЗ	К4	К5
	orientazione [°]	128/35	293/73	215/36	333/80		
	spaziatura (cm)	5	7,142857143	10	10	-	
Caratteristiche dei	persistenza P(%)	>90	-	>90	50-90		
giunti	persistenza A(%)	>80	-	>80	20-80		
	apertura (mm)			2.5-5			
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg, alterate	alterate			
JRC	10-12						
	10-17						
	σc _i // (Mpa) PL	$\sigma c_i \perp (Mpa) PL$	σc_{app} (MPa)	Alterazione			
Parametri sperimentali	-	27,12					
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,26	30,50	10,59	26,97			
Parametri analitici	D	mi	m _b	S	а		
	0,2	31	3,165	0,0010645	0,510		
	σ _{cm} (Mpa)	റ'₃ _{max} (Mpa)	с'	φ'			
	6,267	17,028	3,455	28,485			
		FIL'AMMASSO	ROCCIOSO				
Bieniawsk	i	GSI (diretto) =	43				
P1) Resistenza PL	12		.0				
P2) RQD	17						
P3) Spaziatura	5						
P4) Giunti	10						
P5) Acqua	15						
RMR _b =	59						
NOTE							
		500					
		<u>``</u>			110		A STATE
	N		The Auto	H J	(14)	NO Y	
	K						
- K			Sent 2	Street.		Re-St	
- / \	1+		T ANA		A Cont		
+				Lat is		10-01	
w-j		E					
	s +		- AL			SAN A	
K2				- Here	C. C. S.		
	+ /		T	The state		at su	
No.		-	AND THE			1 10	
	S		LI THAT	Entropy - Change	8.5		

Rilievo N°	RGM7	Coordinata X	1593670,189	Coordinata Y	5118096,94		
	P/	ARAMETRI GEOI	MECCANICI RILEV	ATI			
Litologia BOD (%)	ROCCIA CARBONATICA	Campioni raccolti	per Point Load	x	VRU medio (cm)	10X:	10X10
Orientazione versante [°]	200/42	Orient, F1		Orient E2		Orient, F3	
SIST	EMI	s	К1	к2	кз	ка	K5
	orientazione [°]	205/41	222/76	200/75	10/62	K 4	ĸs
Caratteristiche dei giunti	spaziatura (cm)	7 1/28571/2	9 0909091	16 6666667	25	_	
	persistenza P(%)	7,142037143 \\00	5,050505051	50-90	<50	-	
	persistenza A(%)	>80	>90	20-80	<20		
	apertura (mm)	200	200	20-00	120		
Rimnimento		granularo	consivo	ricrist			
Acque	assente	granulare	coesivo	hamata			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	8-10						
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali	-	50,4	35,191	1,4			
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,27	31,5	11,89	25,83			
	D	mi		c c	2		
	0.5	21	2 606	0 0009747	a 0 507		
Parametri analitici	(),5	JI (Maa)	2,000	0,0003747	0,307		
	o _{cm} (IMPA)	σ _{3max} (IVIPa)	C	φ			
	10,007	17,175	5,947	51,701			
CLASSIFICAZIO	NE GEOMECCANICA DELL	'AMMASSO ROC	CIOSO				
Bienia	wski	GSI (diretto) =	48				
P1)Resistenza PL	7						
P2) RQD	13			N			
P3) Spaziatura	8		×	1			
P4) Giunti	10					<	
P5) Acqua	15		Ă	/	+	1	
RMR _b =	53		-A	K	3	}	
NOTE				K1 K2 +		E	
GSI da formula				+	+		
				s			

Rilievo N°	RGM8	Coordinata X	1593625,08	Coordinata Y	5118260,32		
		PARAMETRI G	EOMECCANICI RIL	EVATI		. <u> </u>	
Litologia BOD (%)	ANFIBOLITE	Campioni raccolti	per Point Load	х	VRU medio (cm)	10>	(7X3
Orientazione versante [°]	264/70	Orient. F1		Orient, F2		Orient. F3	
SISTEMI	L	s	К1	к2	K3	кд	КS
	orientazione [°]	180/54	244/74				
	spaziatura (cm)	-	-	_	_	-	-
Caratteristiche dei	persistenza P(%)	>90	50-90				
giunti	, persistenza A(%)	>80	20-80				
	apertura (mm)		-	-		<u> </u>	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	hagnato			
Alterazione superfici	integre	ossidate	legg alterate	alterate			
	Incegre	Ussidate	IEgg. anterate	anciace			
JAC	-	j					
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	-	34,8	-	-			
r urumeen opermenter.	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,25	30	10	26,97			
	D	mi	m _b	S	а		
	0,8	31	0,751	0,0000772	0,513		
Parametri analitici	ი _ლ (Mpa)	പ്രംബം (Mpa)	c'	φ'			
	3,778	16,270	2,305	19,633			
Bieniawsk	ri	GSI (diretto) =	38				
P1) Resistenza PL	4						
P2) ROD	13						
P3) Spaziatura	8						
P4) Giunti	10						
P5) Acqua	15						
RMR _b =	50						
NOTE							
NOTE							
		200	10-10-10-10-10-10-10-10-10-10-10-10-10-1				1
			A COS-	Y	1.1. 2×	C. Les	1 Cost
N				S AL		NA A	1 - 1 - C
. T				10/67		A second	A BER
	1		State 18	Pro Charge		A set.	
+	F	NUM DO				110 000	Part Part
1	+ \	A MAR	THE DOMES		MAX NO	a the le	A Car
1	Ţ_	Del A	1.1	No.		See.	Sec. 10
w+ k1+	T	PAR	A CONTRACTOR	N G	A alton	A ST	a series
1 3		SEA Beally	198 101		12112		A H
	. /		and the second				
		CLARK F					14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S					A A	A AL	A Charles

Rilievo N°	RGM9	Coordinata X	1594217,748	Coordinata Y	5118671,7		
		PARAMETRI GI	EOMECCANICI RILI	EVATI			
Litologia	ANFIBOLITE	Campioni	ner Point Load	Y	VRU medio	481	084
RQD (%)	63	raccolti	per Form Load	^	(cm)	471	1074
Orientazione versante [°]	200/78	Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	198/40	200/78	60/78	130/82		
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)	>90	>90	50-90	50-90		
	persistenza A(%)	>80	>80	20-80	20-80		
	apertura (mm)			1-2.5		· · · · · ·	
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.			
Acqua	assente	<u>asciutto</u>	umido	bagnato			
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	2-4						
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	-	86,88	33,134	2,6			
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
0,27		31,50	11,89	26,97			
	D	mi	m	S	а		
Parametri analitici	0.5	31	0.774	0.0000325	0.537		
	σ _m (Mpa)	ຕ່ _{ລຫລະ} (Mpa)	c'	φ'	- ,		
	8,547	17,510	2,863	25,494			
		FU 'AMMASSO	ROCCIOSO			N	
Bieniawsk	di d	GSI (diretto) =	23			+	\mathbf{X}
P1)Resistenza PL	7	,	-	- /	+	/	
P2) RQD	13			T A		+	ţ.
P3)Spaziatura	8			w-		+ 2	-E
P4) Giunti	10					Kt (att)	
P5) Acqua	15				+		\nearrow
RMR _b =	53				\checkmark		
NOTE						t	
Affioramento diviso in s	ettori dove	Set Distance			A.	Ś	
dimensione blocchi can	nbia		TO NO	- South	KT DA		
notevolmente: zone interessate da		17 hts					1 mar
faglie nanno VRU medio di 2cmX1cmX5mm.		N.S. AL	12 - 17	4		村市	
		Ar AL	L'EST		TEP-16	1	
		-1-1	-1-2-13	2 2 2 8	A HELT		
		-		ALL IN		2.24	
		The second		- MA	A LE DE	-	
				A Provent	GR E.	K	INC
		A Har		10-	他们	NIL I	
		THE A			i the with	Delle	-
		R. C.	Binth	C. Latt	1 Kalent	1	
		R. Barris			AD AND		2
		CALIFORNIA BUT	AL CONTRACTOR				

Appendice 1	ppendice	21
-------------	----------	----

Rilievo N°	RGM10	Coordinata X	1593719,878	Coordinata Y	5118919				
PARAMETRI GEOMECCANICI RILEVATI									
Litologia RQD (%)	PARAGNEISS 63	Campioni raccolti	per Point Load	x	VRU medio (cm)	10>	(8x4		
Orientazione versante [°]	360/74	Orient. F1	186/40	Orient. F2	114/34	Orient. F3	66/44		
SISTEMI	· · · · · ·	s	К1	К2	КЗ	К4	К5		
	orientazione [°]	170/34	360/34	310/60					
	spaziatura (cm)								
Caratteristiche dei	persistenza P(%)	>90	50-90	>90					
giunti	persistenza A(%)	>80	20-80	>80					
	apertura (mm)			1-2.5	;				
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.					
Acqua	assente	<u>asciutto</u>	umido	bagnato					
Alterazione superfici	integre	ossidate	legg. alterate	alterate					
JRC	8-10								
	0 10								
	oc _i // (Mpa) PL	σc _i ⊥(Mpa)PL	တင _{app} (MPa)	Alterazione					
Parametri sperimentali	-	145,44	22,154	6,6					
	c'[Mpa]	φ'[°]	E (Gpa)	γ (KN/m3)					
	0,29	34	15,85	24,28					
	D	mi	m _b	S	а				
	0,2	33	1,025	0,0000299	0,572				
Parametri analitici	σ _{cm} (Mpa)	് _{3max} (Mpa)	с'	φ'					
	14,122	16,649	2,903	31,400					
	SEOMECCANICA D	FUL'AMMASSO	ROCCIOSO						
Bieniawsk	ki	GSI (diretto) =	13						
P1)Resistenza PL	12	(
P2) RQD	13								
P3) Spaziatura	8								
P4) Giunti	10								
P5) Acqua	15								
RMR _b =	58								
NOTE									
Molto fagliato, con						NY STATE	No. State		
faglie aventi la stessa	- E	Server 1	Conda (195	JAC - AU			Co		
giuacitura di S.		S Sales	ST N		and the	3 Miles	S.S.		
T N		a targe for	ALC: N				A.C.		
1 The second sec	The last	a charter			21 Sec	- 6 E	ELE		
	X	The	Alter Lis	a start			APR 1		
\downarrow \times		a al spe	St Ch	A C	and have	Per a	46		
++		1 see	1200	5 2		Arta at	1. 151		
W K1 (aff)	* I	Sex 1	Ed.	AES		200	a las		
+	V / J		PALA				1		
	AI	6 1	A	CAR	CAR				
Frances			NO CONTRACTOR		at all the	X	ASS 4		
X		2 int	14/201		Pro a	PLANK	STAL ST		
s	The second se	Polar.				2			

Appendice	1
-----------	---

Rilievo N°	RGM11	Coordinata X	1594126,867	Coordinata Y	5119003,6		
	4	PARAMETRI GI	EOMECCANICI RILI	EVATI		1 .	
Litologia BOD (%)	PARAGNEISS	Campioni raccolti	per Point Load	x	VRU medio (cm)	4x	2x3
Orientazione versante [°]	42/72	Orient, F1	124/24	Orient E2		Orient, F3	
SISTEMI	12,72	c c	¥1	K2	K 3	кл	KE
	orientazione [°]	111/31	37/73	81/10	κ5		K3
	spaziatura (cm)	-	-	-			
Caratteristiche dei	persistenza P(%)		_	_			
giunti	persistenza A(%)			_			
	anertura (mm)		_	1-2 5		Į	
Rimpimento		grapulare	coesivo	ricrist			
Δομα	assente	granulare	cuesido	hagnata			
	assente		umido	Dagnato			
	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	10-12						
	σc _i // (Mpa) PL	$\sigma c_i \perp (Mpa) PL$	oc _{app} (MPa)	Alterazione			
De verse etvi en evive evteli		58,08	32,677	1,8			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,27	31,5	11,89	24,28			
	D	mi	m	s	2		
	0.5	33	1 326	0.0001234	a 0 5 1 9		
Parametri analitici	0,5	(Mna)	1,320	0,0001234	0,319		
		0 3max (IVIDA)	2 038	Ψ 27.909			
	6,230	15,805	3,038	27,898			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	(i	GSI (diretto) =	33				
P1) Resistenza PL	7						
P2) RQD	13						
P3)Spaziatura	8						
P4) Giunti	10						
P5) Acqua	15						
RMR _b =	53						
NOTE							
Litologia da carta geolo	gica;		Se la rest			No.	
affioramento molto fagl	iato.	The a			AL AND		
	1	and the same		4 1. P			
N	K		- the A	and the second	~ / 3	A CANE	
	1×	A COL	*				S Plan
		A Start		1. Nr 5.			
					When we want		AVEN
T T T T	(aff)					Ser C	ASPECTACE.
w- + ***			all a set	X	MA TAK	E.C.S.	
	Sm/S	Edge St.			ATMENT	Mar A	
	F		C	The state	2 8 1410		
			the state	4/2 1	2132.9		
			the start	8.61	ALA	AND NOT	-
S			Con Alla	A All	A Carl		

Appendice	1
	_

Rilievo N°	RGM12	Coordinata X	1594445,892	Coordinata Y	5117449,6		
		PARAMETRI GI	EOMECCANICI RILI	EVATI			
Litologia	marmo	Campioni raccolti	per Point Load	х	VRU medio (cm)	10	x6x6
Orientazione versante [°]	108/78	Orient F1		Orient E2	(,	Orient F3	
SISTEMI	100/70	c c	K1		V 2	KA	KE
	orientazione [º]	5	109/79	154/00	210/20	224/54	20/00
	spaziatura (cm)		100/70	134/00	210/20	554/54	50/00
Caratteristiche dei	persistenza P(%)		50-90	>90	50-90		
giunti	persistenza A(%)		20-80	>80	20-80		
	anertura (mm)		20-80	- 200	20-00		
Rimnimento		grapularo	coosiyo	ricrist			
Acqua	assence	granulare	coesivo	he mete			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	6-8						
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione			
Demonstration and all	339,6	-	33,658	10,1			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,36	40,5	33,50	26			
	D	mi	m _b	S	а		
	0	9	0,473	0,0001045	0,552		
Parametri analitici	σ _{cm} (Mpa)	റ' _{3max} (Mpa)	c'	φ'			
	23,773	18,570	3,445	30,257			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	i	GSI (diretto) =	18				
P1) Resistenza PL	15						
P2) RQD	13						
P3) Spaziatura	8						
P4) Giunti	20						
P5) Acqua	15						
RMR _b =	71						
NOTE							
σc _{app} è riferito a K2, non a	a Sedi				18 8 192	and the	
conseguenza l'alterazio	ne è il		AT THE OF		C RI	8 36 1	
rapporto tra σ// e σc _{app} ri	ferito a K2.	AN IS		THE PART	ALL A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
N			NUM	Carlos Th			Americal
+ Ki +					No. Con		
						No.	See. 1
				A Los		100	
				Story!	- ANT - LA	1 Alex	
W- + + + + + + + + + + + + + + + + + + +	(aff) K5 -E	Sill a			A REAL		10
		STA 1	A LARS	1122	-		N
	+ / _	for the	TY AL	C. Zha	1997 1994		EST #
K3	1	1/20	- Charles	N.C. M.	1.10		
	T		Card M	Carlo and	AR AR	and the	Tot of
S		No bar	E STRI	JAN TO	Maria Dr.	A ME	

Rilievo N°	RGM13	Coordinata X	1594491,454	Coordinata Y	5117655,49				
	PARAMETRI GEOMECCANICI RILEVATI								
Litologia	ROCCIA CARBONATICA	Campioni	per Point Load	x	VRU medio	18x1	12x3		
RQD (%)	70,69340413	raccolti	•		(cm)				
Orientazione versante [°]	268/80	Orient. F1		Orient. F2		Orient. F3			
SISTE		S	K1	K2	К3	К4	К5		
	orientazione [°]	176/33	261/77	180/82	310/87	354/38			
Caratteristiche dei	spaziatura (cm)								
giunti	persistenza P(%)	>90	>90	50-90	>90	<50			
	persistenza A(%)	>80	>80	20-80	>80	<20			
	apertura (mm)			2.5-5					
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.					
Acqua	assente	<u>asciutto</u>	umido	bagnato					
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate					
JRC	8-10								
	oc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione					
	-	53,04	87,031	0,6					
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)					
	0,27	31,5	11,89	25,83					
	D	mi	m⊾	s	а				
	0,2	9	0,341	0,0000543	0,552				
Parametri analitici	σ _{cm} (Mpa)	ຕ່ _{ລຫລະ} (Mpa)	c'	φ'	ʻ				
	3,096	15,365	1,632	16,666					
	E GEOMECCANICA DEI	L'AMMASSO BO							
Bieniaw	/ski	GSI (diretto) =	18						
P1) Resistenza PL	12	(
P2) RQD	13								
P3) Spaziatura	8								
P4) Giunti	10								
P5) Acqua	15								
RMR _b =	58								
NOT	E								
	-		-	CARLON IN	He Call	Milles .			
N		1 pm	-	16	3				

Rilievo N°	RGM14	Coordinata X	1593747,604	Coordinata Y	5117605,6		
		PARAMETRI GI	EOMECCANICI RILI	EVATI			
Litologia	anfibolite	Campioni	nor Doint Lood	v	VRU medio	25.4	10,10
RQD (%)	78	raccolti	per Point Load	^	(cm)	2384	+0X10
Orientazione versante [°]	224/80	Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	КЗ	К4	К5
	orientazione [°]	293/24	227/84	144/68			
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)		>90	50-90			
-	persistenza A(%)		>80	20-80			
	apertura (mm)			-			
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.			
Acqua	assente	<u>asciutto</u>	umido	bagnato			
Alterazione superfici	integre	ossidate	<u>legg. alterate</u>	alterate			
JRC	12-14						
	or. // (Mna) Pl	or. ∣(Mna) Pl	or (MPa)	Alterazione			
	-	163.2	29.380	5.6			
Parametri sperimentali	c'[Mna]	 ش' [°]	E (Gna)	v (KN/m3)			
	0.41	46	63.10	26.97			
	0)11		03,10	20,57			
	D	mi	m _b	S	а		
Parametri analitici	0,2	31	3,165	0,0010645	0,510		
	σ _{cm} (Mpa)	റ' _{3max} (Mpa)	c'	φ'			
	37,714	20,013	6,336	42,055			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	i .	GSI (diretto) =	43				
P1) Resistenza PL	12						
P2) RQD	17						
P3) Spaziatura	8						
P4) Giunti	30						
P5) Acqua	15						
RMR _b =	82						
NOTE							
			Left Bill		A-A		
	1	1		por a		And the	Property in
N N	·			12	Sec.	1	
		T. ME	-	AT AN		A CAR	Mar and
		1 680 . C				AN	
		322	THE A	6. 87	Sec.	Carro B 2	
					A		TRAC
		-= -	in Other	12 Sal	P		
-1	e l				CANK A		11.00
					T ROSE	Et a	
				4. 16	SPACE.		
				- 12-	DY	T yes	2-40
S	-1	The second	A A K	11/2		Mar Park	and the second

Appendice	1

Rilievo N°	RGM15	Coordinata X	1593763,411	Coordinata Y	5117627,1			
	PARAMETRI GEOMECCANICI RILEVATI							
Litologia	ANFIBOLITE	Campioni	Doint Load	v	VRU medio	254	45-0	
RQD (%)	92	raccolti	per Point Loau	×	(cm)	204	15x3	
Orientazione versante [°]	88/70	Orient. F1		Orient. F2		Orient. F3		
SISTEMI		S	K1	К2	КЗ	К4	К5	
	orientazione [°]	237/11	68/81	168/80				
Corottoristiche dei	spaziatura (cm)	50	12,5	50				
giunti	persistenza P(%)	>90	>90	<50				
0	persistenza A(%)	>80	>80	<20				
	apertura (mm)			<1				
Rimpimento	<u>assente</u>	granulare	coesivo	ricrist.				
Acqua	assente	<u>asciutto</u>	umido	bagnato				
Alterazione superfici	integre	ossidate	legg. alterate	alterate				
JRC	4-6							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{anp} (MPa)	Alterazione				
	51,6	-	83,439	3,1				
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)				
	0,38	42,5	42,17	26,97				
	D	mi	m _b	S	а	i i		
	0,5	31	2,545	0,0009119	0,507			
Parametri analitici	σ _{cm} (Mpa)	റ്₁ _{3max} (Mpa)	c'	φ'				
	10,778	17,880	4,059	31,424				
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO					
Bieniawsk	(i	GSI (diretto) =	48					
P1) Resistenza PL	7							
P2) RQD	20							
P3) Spaziatura	8							
P4) Giunti	25							
P5) Acqua	15							
RMR _b =	75							
NOTE								
			Article C					
		E						
S			ALX 4				1 A	

Rilievo N°	A2	Coordinata X	1593084,181	Coordinata Y	5117276,147		
		PARAMETRI (GEOMECCANICI RI	LEVATI			
Litologia		Campioni			VRU medio		
RQD (%)		raccolti	per Point Load		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI	·	S	К1	K2	К3	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					ļ	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	or. // (Mna) Pl	or. (Mna) Pl	or (MDa)	Alteraziono			
		Oc _i ±(Nipa) r L	Oc _{app} (IVIF d)	Alterazione			
Parametri sperimentali	c'[Mpa]	o' [°]	E (Gpa)	γ (KN/m3)			
	0,19	23,75	4,87	1 (7 - 7			
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	റ് _{3max} (Mpa)	с'	φ'			
	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO	ĺ			
Bieniawsl	<i statement="" statement<="" td="" the="" with=""><td>GSI (diretto) =</td><td>33</td><td></td><td></td><td></td><td></td></i>	GSI (diretto) =	33				
P1) Resistenza PL							
P2)ROD		a chair ann ann ann	San San Anton Markey All	The second	All Salars	ange -	AND ROOM
P3) Spaziatura			1. AND	Margaret Here	BACK.		See at
P4) Giunti		A STATE OF	STAL VI	A AND	1-		
P5) Acqua					ten in a		the test and
RMR _b =	38	C 82	Contraction of the second	Aster		A Contraction of the second	
NOTE		S. Coll					12 18
NOTE			Mar As	1 Can		ah. A.	-3
							and the
	1				12 8		
							R. K.
		Phase -			-70		1 · · ·
		Contraction of the second	and how and	King and			
		it or			State.	山企为	1 2
		the marks	Prop. S.			1.12	
		1991		1 States	e la la la		S File
		The second	A CONTRACT	a	. Carlos	-THALP-T	13.96 L

-						_	
Rilievo N°	A15	Coordinata X	1594628,827	Coordinata Y	5116263,978		
		PARAMETRI (GEOMECCANICI RI	LEVATI			
Litologia		Campioni	per Point Load		VRU medio		
RQD (%)	1	raccoiti			(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI	1	S	К1	К2	К3	K4	K5
	orientazione [°]						
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)						
	persistenza A(%)						
	apertura (mm)			1			
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	oc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali							
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,21	26,25	6,49				
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	ත් _{3max} (Mpa)	c'	φ'			
	GEOMECCANICA D	FIL'AMMASSO	ROCCIOSO				
Bieniaws	<i< td=""><td>GSI (diretto) =</td><td>38</td><td></td><td></td><td></td><td></td></i<>	GSI (diretto) =	38				
P1) Resistenza PL							
P2) RQD		2 Section 1	W. W. S.	N	CARE SOLLE	- ANNA	
P3) Spaziatura			5/27/24			7 57	
P4) Giunti						1 Ant	
P5) Acqua			E BANAI	1 Star	Contraction of the second	Carlos Carl	
RMR _b =	43		SC M				
NOTE		82.30	Rest	K			LA A
						A A A	
		April Squares			NER PER	HILL HELL	

						-			
Rilievo N°	A16	Coordinata X	1594700,994	Coordinata Y	5116609,66				
PARAMETRI GEOMECCANICI RILEVATI									
Litologia		Campioni			VRU medio				
RQD (%)		raccolti	per Point Load		(cm)				
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3			
SISTEMI		s	K1	К2	К3	К4	К5		
	orientazione [°]								
	spaziatura (cm)								
Caratteristiche dei	persistenza P(%)								
giunti	persistenza A(%)								
	apertura (mm)								
Rimpimento	assente	granulare	coesivo	ricrist.					
Acqua	assente	asciutto	umido	bagnato					
Alterazione superfici	integre	ossidate	legg. alterate	alterate					
JRC									
	gr. // (Mpa) Pl	or. (Mna) Pl	or (MPa)	Altoraziono					
		oci⊥(ivipa) PL		Alterazione					
Parametri sperimentali	c'[Mna]	رم' [°]	E (Gna)	v (KN/m3)					
	0.29	33.75	15.40	7 (((()))))					
	-,		13,10			1			
	D	mi	m _b	S	а				
Parametri analitici									
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'					
CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOS									
Bieniawski		GSI (diretto) =	53						
P1) Resistenza PL			He los		XXA				
P2) RQD			The set to		it it	11-1-1	Tore		
P3)Spaziatura					VARSE	ALC W			
P4)Giunti					P LOO				
P5) Acqua			1.1.1		Marti Crept				
RMR _b =	58		2 4	CT AL	1 Ach	120	Stork		
NOTE									
			11.3		and the second	Stell 1			
						1230			
			1 A 4	-		N KE	100		
				一种社会	29 1				
			the lat	PA YEL			try 15		
				1.00		100			
			S. A.		No.	X			
				12 1 1 1			LAT		
				1	N. Cart		THE REAL		
			AN PR	11-2	Acres				
				1	A MAR	A BAK			
			The set of	A CARLES	the set 10	ZAF			
				No. AV	4 APRILA	i source	1410		

rippendice 1

Rilievo N°	A20	Coordinata X	1593737,142	Coordinata Y	5119308,888					
			- , -		, - 20					
PARAMETRI GEOMECCANICI RILEVATI										
RQD (%)	gneiss	Campioni raccolti	per Point Load		VRU medio (cm)	10x3x7				
Orientazione versante [°]		Orient. F1	168/38	Orient. F2		Orient. F3				
SISTEMI		S	К1	К2	КЗ	К4	К5			
	orientazione [°]	168/38								
	spaziatura (cm)									
Caratteristiche dei	persistenza P(%)									
giunti	persistenza A(%)									
	apertura (mm)									
Rimpimento	assente	granulare	coesivo	ricrist.						
Acqua	assente	asciutto	umido	bagnato						
Alterazione superfici	integre	ossidate	legg. alterate	alterate						
JRC										
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc _{app} (MPa)	Alterazione						
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)						
	0,09	13,75	1,54	26,49						
					_					
	D	mi	m _b	5	a					
Parametri analitici	() () () ()	() () ()		(d'						
	o _{cm} (ivipa)	o _{3max} (ivipa)	С	Ψ						
CLASSIFICAZIONE GEOMECCANICA D					N					
		GSI (diretto) =	12,5	/		\swarrow				
				- /			·			
P3) Spaziatura				- /	+		<u>}</u> –			
P4) Giunti					1		<u> </u>			
P5) Acqua				- "1	1					
RMR _b =										
	-			$=$ \setminus	1	(eS)	/ =			
			_ ``			<u> </u>				
ragiia con stessa glacitura della S						T				
					1997 - 1997					
	and the same	- Alta	A FR	Ser 18 AL						
	AT PRAY	S. Markel	Contra M			The state				
		Der m	118 112							
		Del II	12 Part			5				
			ANDER .		- And					
	and the		N. Z		14.1.62					
	Care All	A to the test	For the second	CAL .	2.4					
	and the second			the state	and the	ALL A				
	and the second	ALSE BAL	and the second	A PARTY	The se					
Kath	the states	1 the second		4 55	ALL Y					
	The stars of	break and	279 100	3. 2018	CAR SO	ALC: NO				
Appendice	1									
-----------	---									
	_									

Rilievo N°	A21	Coordinata X	1594374,269	Coordinata Y	5119249,423			
PARAMETRI GEOMECCANICI RILEVATI								
Litologia	gneiss?	Campioni	ner Point Load		VRU medio	15	v/v8	
RQD (%)		raccolti	per Fonit Load		(cm)	15	<u>44</u> X0	
Orientazione versante [°]		Orient. F1	178/48	Orient. F2		Orient. F3		
SISTEMI		S	К1	К2	К3	К4	К5	
	orientazione [°]							
Corottoristisho dai	spaziatura (cm)							
giunti	persistenza P(%)							
0	persistenza A(%)							
	apertura (mm)							
Rimpimento	assente	granulare	coesivo	ricrist.				
Acqua	assente	asciutto	umido	bagnato				
Alterazione superfici	integre	ossidate	legg. alterate	alterate				
JRC								
	σc _i // (IVIpa) PL	σc _i ⊥(ivipa) PL	oc _{app} (IVIPa)	Alterazione				
Parametri sperimentali	c'[Mpa]	(°]	E (Gpa)					
		ψ[]		γ (KN/1115)				
	0,11	10,23	2,05	26,49				
	D	mi	m _b	S	а			
Parametri analitici								
	σ_{cm} (Mpa)	σ' _{3max} (Mpa)	с'	φ'				
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO					
Bieniawsk	ci	GSI (diretto) =	17,5					
P1)Resistenza PL								
P2) RQD								
P3) Spaziatura								
P4)Giunti								
P5) Acqua								
RMR _b =	23							
NOTE	•							
F1//allaS		Ast in	K LANGER	A SAME		NE SE		
		s bit af	Contraction (19) (see			and for	11 Sel	
1 N	1				Sec. 1		AN AR	
		Est 1	ADIED		B. I.S.	A de	4	
	$\overline{}$	San and		and the	Sel 19	1 Ala		
+	F		A State		S Berg	ATTEN AND	AN	
1	F		1 22 10 3	A S	NE AL	A BA	A	
w- +	LE	A PA	in all the	T and a			and the state	
		A Republic	17/11/200		Chief 2	A Th		
F U/S	F	1 Aller	44226			No.		
1	L.	a part	1 Call					
Ś		- state	P A in.					

Appendice	1

gneiss rientazione [°] paziatura (cm) ersistenza P(%) ersistenza A(%)	PARAMETRI G Campioni raccolti Orient. F1 S	per Point Load 169/45 K1	EVATI Orient. F2 K2	VRU medio (cm)	50x2 Orient. F3	0x30
gneiss rientazione [°] paziatura (cm) ersistenza P(%) ersistenza A(%)	Campioni raccolti Orient. F1 S	per Point Load 169/45 K1	Orient. F2 K2	VRU medio (cm)	50x2 Orient. F3	0x30
rientazione [°] paziatura (cm) ersistenza P(%) ersistenza A(%)	Orient. F1 S	169/45 K1	Orient. F2 K2	K2	Orient. F3	
rientazione [°] paziatura (cm) ersistenza P(%) ersistenza A(%)	S	K1	K2	K3	i i	
rientazione [°] paziatura (cm) ersistenza P(%) ersistenza A(%)				K3	К4	К5
paziatura (cm) ersistenza P(%) ersistenza A(%)						
ersistenza P(%) ersistenza A(%)						
ersistenza A(%)						
pertura (mm)					·	
assente	granulare	coesivo	ricrist.			
assente	asciutto	umido	bagnato			
integre	ossidate	legg. alterate	alterate			
0						
ъс _і // (Мра) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
		- 4				
c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
0,19	23,75	4,87	26,49			
D	mi	mb	S	а		
σ _{cm} (Mpa)	ഗ്₃ _{max} (Mpa)	c'	φ'			
OMECCANICA D	ELL'AMMASSO F	ROCCIOSO				
	GSI (diretto) =	32,5				
38						
F1 // alla S; Forte alterazione lungo la S.						
	pertura (mm) assente assente integre c _i // (Mpa) PL c'[Mpa] 0,19 D σ _{cm} (Mpa) D D D Cm (Mpa) C S.	pertura (mm) assente granulare assente asciutto integre ossidate c;// (Mpa) PL $\sigma_{c_i} \perp (Mpa) PL$ c'[Mpa] ϕ' [°] 0,19 23,75 D mi σ_{cm} (Mpa) σ'_{3max} (Mpa) OMECCANICA DELL'AMMASSO GSI (diretto) = GSI (diretto) =	s.	pertura (mm) assente granulare coesivo ricrist. assente asciutto umido bagnato integre ossidate legg. alterate alterate c: [Mpa] φ' ['] E (Gpa) γ (KN/m3) 0,19 23,75 4,87 26,49 D mi mb S σcm (Mpa) c' φ' - J c' φ' - O.19 23,75 4,87 26,49 D mi mb S σcm (Mpa) c' φ' - J GSI (diretto) = 32,5 - J - - - - J - - - - J - - - - J - - - - J GSI (diretto) = 32,5 - - S. - - -	pertura (mm) assente granulare coesivo ricrist. assente asciutto umido bagnato integre ossidate legg.alterate alterate $x_i // (Mpa) PL$ $x_{c, \perp} (Mpa) PL$ $x_{app} (MPa)$ Alterazione c'[Mpa] q^i [*] E (Gpa) $\gamma (KN/m3)$ 0,19 23,75 4,87 26,49 D mi m _b S a $a_{cm} (Mpa)$ $d^i_{3max} (Mpa)$ $c^i q^i$ D mi m _b S a $a_{cm} (Mpa)$ $d^i_{3max} (Mpa)$ $c^i q^i$ D GSI (diretto) = 32,5 S. S.	pertura (mm) assente granulare coesivo ricrist. assente asciutto umido bagnato integre ossidate legg.alterate alterate cr(Mpa) PL ox, ⊥(Mpa) PL ox, ⊥(Mpa) PL ox, ⊥(Mpa) PL 0,19 23,75 4,87 26,49 D mi mb S a omi mb c' φ' omid omid omid mb c omid omid omid omid mb omid omid omid omid omid omid omid omid omid

Appendice	1
, appendice	-

Rilievo N°	A24	Coordinata X	1594693,915	Coordinata Y	5119447,32		
		DAPAMETRI G		ειλατί		į į	
Litologia	oneiss?	Compioni			VBL medio		
RQD (%)	51101331	raccolti	per Point Load		(cm)	5x	.5x5
Orientazione versante [°]	<u> </u>	Orient, F1	170/40	Orient, F2		Orient, F3	
SISTEMI	i	с	кı	к2	кз	ка	K5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)			L	<u></u>	اا	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
		J 11 1		1			
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali			= (0)				
	c'[Mpa]	φ'[°]	E (Gpa)	γ (KN/m3)			
	0,09	13,75	1,54	26,49			
	D	mi	m _b	S	а		
Parametri analitici				<u> </u>			
Pdiditieur ananuu	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	c'	φ'			
CLASSIFICAZIONE (GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniaws	ki	GSI (diretto) =	12,5				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti	<u> </u>						
P5) Acqua							
RMR _b =	18						
NOTE	1						
F1//allaS						Ros 22	and a
		30.00	A PIL		A CONTRACT		
		-			A ST		21 10
N	~		ALLAN A	State of the	No. Contraction	aint shis	
		and the second	1 All	17 Start		AL SA	CAR SHE
1	×.			The second	- Angeler		Contraction of the
+	F	The Hard			C Par	1920	
	t			Fait L	a day	- ALL	
W- +	F	and the	the states			HA S	
$\sum_{i=1}^{n}$	1		the states	and the second	inter a still	15	LES
F(//S)		Stor 1	the Farth	Le a de	is all	Martin	4 5 5
		And the second second	The state		A CONTRACTOR	12.	and all
s	\checkmark	and the second second	and a start of the	1 Arras	Jan 10%		- Alton
		States 1		A State State State	A State of the state	and the second	

Appendice 1	ppendice	21
-------------	----------	----

Rilievo N°	A27	Coordinata X	1593992,305	Coordinata Y	5119181,062			
PARAMETRI GEOMECCANICI RILEVATI								
Litologia	anfiboliti	Campioni	per Point Load		VRU medio			
RQD (%)		Orient E1		Orient 52	(6)	Oriont 52		
		Onent. F1		Urient. FZ	¥2	Unent. FS		
5151 EIVII		5	K1	KZ	КЗ	K4	К5	
	orientazione [°]							
Caratteristiche dei	spaziatura (cm)							
giunti	persistenza $P(\%)$							
	a no rtura (mm)							
Dimension contro	apertura (mm)							
Rimpimento	assente	granulare	coesivo	ricrist.				
Acqua	assente	asciutto	umido	bagnato				
Alterazione superfici	integre	ossidate	legg. alterate	alterate				
JRC								
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{ann} (MPa)	Alterazione				
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)				
	0,06	11,25	1,15	26,97				
		1	,	,				
	D	mi	m _b	s	а			
			0					
Parametri analitici	σ (Mpa)	പ്പം(Mna)	<u>د'</u>	φ'				
		o smax (mpu)						
CLASSIFICAZIONE G	SEOMECCANICA D	ELL'AMMASSO	ROCCIOSO					
Bieniawsk	ci	GSI (diretto) =	7,5					
P1)Resistenza PL								
P2) RQD								
P3)Spaziatura								
P4) Giunti								
P5) Acqua								
RMR _b =	13							
NOTE				A all	10000	THE REAL	2 h and	
Alterazioni nere.					2 Mal	K Z	9-10-12-9	
			3 FR	ANG A				
		N-SA		and the		The second		
			Cart My				+ + + + 2 +	
		NW C			Carl Str	2. Start		
			14-3-5-63	No. of the other states of the	ada sa di			
			The second					
		E DO	A Straight	A States	THERE			
			2 Bridged	CHE IN	Ale si	AK (D)	Caller -	
		U/ The	- Aller M				-	
				CK M	ALL ALL		hand	
			13	King		Q-10	X-S-X	
		A A A		1 Berling		ALL AL		

Rilievo N°	A28	Coordinata X	1593994,241	Coordinata Y	5119171,382					
PARAMETRI GEOMECCANICI RILEVATI										
Litologia	calcefiro	Campioni	per Point Load	x	VRU medio	6x1	0x6			
RQD (%)		raccolti		~	(cm)		0,00			
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3				
SISTEMI		S	К1	К2	К3	К4	К5			
	orientazione [°]									
Company and a start of a start	spaziatura (cm)									
caratteristiche dei	persistenza P(%)									
grunti	persistenza A(%)									
	apertura (mm)									
Rimpimento	assente	granulare	coesivo	ricrist.						
Acqua	assente	asciutto	umido	bagnato						
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>						
JRC										
	oc _i // (Mpa) PL	σc _i ⊥(Mpa)PL	oc _{app} (MPa)	Alterazione						
		25,44	opp (
Parametri sperimentali	c'[Mpa]	را س' [°]	F (Gpa)	v (KN/m3)						
	0.09	13,75	1 54	24.39						
	0,00	13,73	1,54	24,33						
	D	mi	m _b	S	а					
Parametri analitici	0,5	10	0,155	0,0000086	0,572					
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'						
	0,839	12,967	0,789	9,387						
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO							
Bieniawsk	ci	GSI (diretto) =	12,5							
P1)Resistenza PL										
P2) RQD										
P3)Spaziatura										
P4)Giunti										
P5) Acqua										
RMR _b =	18									
NOTE										
					2 6 M 49					
					P					

Rilievo N°	A30	Coordinata X	1593963,373	Coordinata Y	5119174,609		
		PARAMETRI	GEOMECCANICI F			<u> </u>	
Litologia	marmo	Campioni	Detroit and		VRU medio	Ex(
RQD (%)		raccolti	per Point Load		(cm)	6X0	бх6
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	К1	К2	КЗ	К4	К5
	orientazione [°]	204/60					
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giuliu	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC	111000-2	00010011	10,00,0100,010	urcerate			
J.C.	<u> </u>)	n	n			
	ന്c _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တc _{app} (MPa)	Alterazione		ļ	
Parametri sperimentali		ĮĮ					
Falametri oper	c'[Mpa]	φ'[°]	E (Gpa)	γ (KN/m3)			
	0,16	21,25	3,65	26			
	D	mi	m _b	s	а		
	-			-	-		
Parametri analitici	c (Mna)	イ (Mna)		<u></u> رم'			
		O 3max (1999)		т			
	JEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Віепіаwsк	:i 1	GSI (diretto) =	27,5				
P1)Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua	<u> </u>						
RMR _b =	33						
NOTE							
			7 BYA	Valle	- Sal	MARS-	2.47
		the little of	and the second	CIT			Si an
N			anter		and a	A Maria	2 33
1 miles	the second secon	Seles				JAA.	Star Title
	X	and the second	a the		A	A Car	and the second
1	+				A ST		1
\wedge	F		Alfr Per		and the second		
1	t	1 and	AT	2	a fille	and the	ESI
W-1 +	Ľ	E	Rev 12	and it	A CONTRACTOR	A Let	
1 5	[9-55	12 - Real	The state	N. S. S.		addit -
, Y	1	2				The state	AT.
$\mathbf{\lambda}$		2.01	A De			THE P	-2 -2
				The second		Jose Mr.	
s	T	En la serie	1. 10 A.	1 and the		2	

Rilievo N°	A31	Coordinata X	1593874,75	Coordinata Y	5119126,425					
PARAMETRI GEOMECCANICI RILEVATI										
Litologia	anfibolite molto alterata	Campioni	per Point Load		VRU medio	4x3	sx3			
RQD (%)		Taccolti			(eni)					
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3				
SISTEMI		S	K1	К2	К3	K4	К5			
	orientazione [°]									
Caratteristiche dei	spaziatura (cm)									
giunti	persistenza P(%)									
	anertura (mm)									
Pimpimonto		gra pula ra		rioriot						
	assente	granulare	coesivo	hognoto						
Acqua	assente	asciutto		bagnato						
	integre	ossidate	iegg. aiterate	<u>aiterate</u>						
JRC		n								
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တc _{app} (MPa)	Alterazione						
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)						
	0,06	11,25	1,15	26,97						
	D	mi	m _b	S	а					
Parametri analitici										
	σ _{cm} (Mpa)	ഠ' _{3max} (Mpa)	с'	φ'						
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO							
Bieniawsk	(i	GSI (diretto) =	8							
P1) Resistenza PL										
P2) RQD										
P3) Spaziatura										
P4) Giunti										
P5) Acqua										
RMR _b =	13									
NOTE										

Rilievo N°	A32	Coordinata X	1593807,637	Coordinata Y	5119136,75				
PARAMETRI GEOMECCANICI RILEVATI									
Litologia	marmo con pirite	Campioni			VRU medio				
RQD (%)		raccolti	per Point Load	Х	(cm)	40x	9x18		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3			
SISTEM	1	s	K1	К2	К3	К4	К5		
	orientazione [°]								
	spaziatura (cm)								
Caratteristiche dei	persistenza P(%)								
giunti	persistenza A(%)								
	apertura (mm)	· · · · · · · · ·							
Rimpimento	assente	granulare	coesivo	ricrist.					
Acqua	assente	asciutto	umido	bagnato					
Alterazione superfici	integre	ossidate	legg. alterate	alterate					
JRC									
	ac. // (Mna) Pl	or. (Mna) Pl	(MPa)	Alterazione					
		208.08	Oc _{app} (Wir a)	Alterazione					
Parametri sperimentali	c'[Mpa]	 ش'[°]	E (Gpa)	γ (KN/m3)					
	0,16	21,25	3,65	26					
	2								
	D	mi	т _ь	S	a 0.526				
Parametri analitici	0,2	9	0,507	0,0001785	0,526				
	σ _{cm} (Mpa)	σ _{3max} (IVIpa)	C'	φ					
	17,328	16,049	5,475	20,440					
CLASSIFICAZIONE	GEOMECCANICA DE	LL'AMMASSO R	DCCIOSO						
Bieniaw	ski I	GSI (diretto) =	28						
P1)Resistenza PL									
P2) RQD									
P3) Spaziatura									
P4) Giunti									
P5) Acqua									
RMR _b =	33								
NOTE									
			MAR A		V IN R		N		
	TEN	The state		THE FILL					
			PEX K AR	心心	1144	X			
	1 7 7 1		A 3/2 1/2	AT CUT		Z			
	ET AND	24 4 4 3		A. A.	The state				
	2 1 34		N I Wash	Read on a	AUF.				
	STAN AL	THE -	A LEAD I	A P G	RU	AL TAL	Vá		
		ALLA	AND IN	1	they a	and the	1		
					N HE	a state			
	+ 1 16 1	1 Hours	一百日	the property					
	States	AND BARAS	ATT AL		A LAND	A. S.	24		

Rilievo N°	A34	Coordinata X	1595177,859	Coordinata Y	5119201,372		
	L	PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	marmo	Campioni raccolti	per Point Load		VRU medio (cm)	11x	24x8
Orientazione versante [°]		Orient. F1	190/35	Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]						
Carattaristisha dai	spaziatura (cm)						
giunti	persistenza P(%)						
-	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,19	23,75	4,87	26			
	D	mi	m _b	S	а		
Parametri analitici							
Parametri analitici	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	33				
P1)Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	38						
NOTE							
"Alterazioni" nere lungo	o la faglia						
W + + + + + + + + + + + + + + + + + + +							

Rilievo N°	A35	Coordinata X	1595013,519	Coordinata Y	5118857,545		
		PARAMETRI	EOMECCANICI RI	LEVATI			
Litologia	quarzite	Campioni	nor Point Load	v	VRU medio		
RQD (%)		raccolti	per Fornt Load	^	(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	170/47					
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)						
	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc://(Mpa)PL	σc⊨ ⊥(Mpa) PL	σc _{am} (MPa)	Alterazione			
		264.24		747674210176			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,16	21,25	3.65	25.31			
			,				
	D	mi	m₅	5	а		
Parametri analitici =	0	24	1,802	0,0003173	0,526		
	σ_{cm} (Mpa)	σ _{3max} (Mpa)	C'	φ			
	42,779	19,105	5,512	41,244		Ņ	
CLASSIFICAZIONE G	SEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				<u> </u>
Bieniawsk	ci	GSI (diretto) =	28		/		× -
P1) Resistenza PL				/	+	-	- }
P2) RQD							7 -
P3) Spaziatura						+	-E -
P4) Giunti				T			
PS) Acqua	22			\		s	
KIVIK _b =	33					/	
NOTE						s	_
	1 tomat		The second	the mar		Machie N	
		- Andrew		S OFT		NA MA	
	E. A.S.		N. T. T. S. C. M. C. M.	The store	5 And		
	146.	KIER	A Carlos		1 Marsh		1-1-14
			the in	Carl Ry		al o conte	Children of
		NE		Nº A	and the		Ser -
		NY AN		A Sta	140		
		AST	to fand a	CHARLES .			1 mile
						NO LOW	
		Jaks'	S.A.C.	1		TE AND	
	a second	P PAR		1 janife	424		A CONTRACT
	5	A				1	AND A
		St last	STATE				

Rilievo N°	A36	Coordinata X	1595116,462	Coordinata Y	5118881,1		
	l	PARAMETRI GI	EOMECCANICI RILI	EVATI			
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	10x	18x6
Orientazione versante [°]		Orient. F1	166/52	Orient. F2	310/88	Orient. F3	180/54
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
Branci	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC	_						
			, . I				
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	172,32	1 (0)	5 (0)	((4))			
	c'[Mpa]	φ [·] [[*]]	E (Gpa)	γ (KN/m3)			
	0,19	23,75	4,87	26,97			
	D	mi	m _b	S	а		
Parametri analitici	0,2	31	2,128	0,0003237	0,519		
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
	31,322	19,682	5,450	39,114			
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO		N		
Bieniawsk	ci	GSI (diretto) =	33			\rightarrow	
P1) Resistenza PL					+ +		<u>}</u>
P2) RQD							t
P3) Spaziatura				w	Æ	2	E _
P4) Giunti							/ _
P5) Acqua					7	3F	
RMR _b =	38						+
NOTE							
Affioramento di 4 metri	Star 1				S		
di altezza.		and in				and the second	
		North R					
			REAL S		P la an		
			A CAN	Start.	A A	Partie	
			VAL J	A Contraction		A HE R	State -
	100			and	39		
			CAR STAN				A. F.
		A PAR				14	and the
				A STATE	and a		A. C.
		(Ser		BA- AC	Sec.	hand a	Je .
					-	the state	and the
		The set			1 2 1		and and
	11 100	A Stall	a line	A CAR	Er a		

rependice 1

Rilievo N°	A37	Coordinata X	1595293,535	Coordinata Y	5118861,674		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	paragneiss	Campioni raccolti	per Point Load	x	VRU medio (cm)	16	x7x6
Orientazione versante [°]		Orient. F1	114/44	Orient. F2		Orient. F3	
SISTEMI	L	S	К1	К2	К3	К4	К5
Caratteristiche dei giunti	orientazione [°] spaziatura (cm) persistenza P(%)						
	persistenza A(%)						
Dimmins outo	apertura (mm)			<u> </u>			
Rimpimento	assente	granulare	coesivo	ricrist.			
	assente	asciutto	umido	bagnato			
	integre	ossidate	legg. alterate	alterate			
JRC							
Parametri sperimentali	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL 51,12	∞_{app} (MPa)	Alterazione			
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,14	18,75	2,74	24,28			
	D	mi	m _b	S	a		
Parametri analitici	0,3 σ _{cm} (Mpa)	ත් _{3max} (Mpa)	0,824 c'	φ'	0,557		
	5,200	15,218	2,285	23,254			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO	Ĩ			
Bieniawsk	ci	GSI (diretto) =	23				
P1) Resistenza PL				ere l'had			1000
P2) RQD			40x		NIT OF		21
P3) Spaziatura		J. Ber					
P4) Giunti			S REP PROV			AS	
P5) Acqua		A def		1 Company	A		
RMR _b =	28	SAL Y		and a		12 A	
NOTE			Vier Pres	127	E C	Mary	X X I
Litologia da carta geolo	gica			34			
			25				

Rilievo N°	A43	Coordinata X	1595151,62	Coordinata Y	5118094,809		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load		VRU medio (cm)	20x	29x10
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI	SISTEMI		К1	К2	К3	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)			>5cm			
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	თ: // (Mna) Pl	σc⊨ (Mna) Pl	orum (MPa)	Alterazione			
Parametri sperimentali			Ocapp (IVII C)	Taterazione			
	c'[Mpa]	o' [°]	E (Gpa)	γ (KN/m3)			
	0,11	16,25	2,05	26,97			
	D						
	U	mi	m _b	5	d		
Parametri analitici	σ (Mpa)	ط (Mpa)	c'				
	O _{cm} (ivipa)	O 3max (IVIDa)	L	Ψ			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci I	GSI (diretto) =	18				
P1)Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4)Giunti							
PND -	22						
кіvік _b =	23						
NOTE							
Roccia non in posto.							
				STATE AND		15 Jan 19	Non-Television in the

Rilievo N°	A44	Coordinata X	1595117,27	Coordinata Y	5118064,7		
		PARAMETRI GI	EOMECCANICI RILI	EVATI		(
Litologia ROD (%)	anfibolite	Campioni raccolti	per Point Load		VRU medio (cm)	17x2	28x11
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	K1	К2	КЗ	К4	К5
	orientazione [°]	192/44					
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunu	persistenza A(%)						
	apertura (mm)			•	-		
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	σc⊨// (Mpa) Pl	σc⊨ (Mpa) Pl	oc (MPa)	Alterazione			
		45.12	ooapp (a)	, accruzione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,14	18,75	2,74	26,97			
	D	mi	m	ç	2		
- Parametri analitici = -	0.8	31	0 308	0 000079	a 0.537		
	<u>σ</u> (Mpa)	d. (Mna)	c'	0,0000075	0,557		
	2.704	15.787	1.644	15,242			
						N	_
Bieniawsk		GSI (diretto) =	23		1	~	
P1) Resistenza Pl		Gol (directo) =	25	- /			× -
P2) RQD						+	- J
P3) Spaziatura				w		+	-E
P4) Giunti							
P5) Acqua					3		
RMR _b =	28			1			
NOTE					~		× =
Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.							

Rilievo N°	A48	Coordinata X	1595001,886	Coordinata Y	5117972,6		
		PARAMETRI GI	EOMECCANICI RIL	EVATI			
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	4x2	L2x4
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	К1	К2	КЗ	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)			-	-		
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	or. // (Mna) Pl	στ. ∣(Mna) Pl	or (MPa)	Alterazione			
			ocapp (Wird)	Theerazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,06	11,25	1,15	26,97			
	D	mai		c	2		
	D		III _b	3	a		
Parametri analitici	σ (Mna)	ත්. (Mna)	c'	ω '			
		O 3max (III) C 7		1			
	FOMECCANICA D	FLL'AMMASSO	ROCCIOSO				
CLASSIFICAZIONE G Bieniawsk	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b =	EOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR b= NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMRb = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	18	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	18	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR _b = NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				
CLASSIFICAZIONE G Bieniawsk P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMR b= NOTE Roccia tutta alterata ma in particolare sulle discontinuità; faglie con la stessa giacitura della S.	EEOMECCANICA D	ELL'AMMASSO GSI (diretto) =	ROCCIOSO 8				

Rilievo N°	A54	Coordinata X	1595385,314	Coordinata Y	5118340,465		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load		VRU medio (cm)	8x	2x2
Orientazione versante [°]		Orient. F1	200/62	Orient, F2		Orient. F3	
SISTEMI		s	к1	к2	кз	КД	K5
	orientazione [°]	200/62					
	spaziatura (cm)	200,02					
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					ļļ	
Rimpimento	assente	granulare	coesivo	ricrist			
Acqua	assente	asciutto	umido	hagnato			
Alterazione superfici	integre	ossidate		alterate			
	integre	USSIGATE	legg. alterate	anterate			
JAC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,16	21,25	3.65	26.97			
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ			
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	28				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	33						
NOTE				A A A A A A A A A A A A A A A A A A A	A State		
F1 con stessa giacitura	6		Mill 2005				
di S; roccia in posto.						N. S. M.	A A A
			VIII IN		A CONTRACT		A D R
N	 				ALL ALL		SA VIX
	\sim				CARL POLS		
+			Call Inc. Com			S. S. Cont	
K	Y V	Distant and	STATISTY STATES	DA IN			A MA
	t.	A Start			No the		C Le Com
+			C. William	A A A	1 A Par	ALC: NO	Public W
F(es)			THE DAY	Sec. 18 Mar		1100	CONTRACTOR OF
X						H. S.	The state
				Mich 40	AND COM	1 Aire	
s			R. P. S	E REAL	A COLOR	A State	14. 20

Rilievo N°	A56	Coordinata X	1595232,379	Coordinata Y	5117840,857		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	paragneiss	Campioni raccolti	per Point Load		VRU medio (cm)	12x(6x15
Orientazione versante [°]		Orient. F1	154/57	Orient. F2	157/77	Orient. F3	
SISTEMI		s	К1	К2	КЗ	к4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate		alterate			
	integre	Ussidate	legg. alterate	allerate			
JKC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali							
r arametri sperimentan	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,21	26,25	6,49	24,28			
	D	mi	m _b	s	а		
Parametri analitici =			0		-		
	σ (Mpa)	റ്റം (Mna)	<u>د'</u>	<u></u> σ'			
		S Smax (11)p u /					
						N	
	i	ELL AIVIIVIASSU	28		+	~	< -
Dieliidwsk		G 51 (difetto) –	30		+		× -
				- /			A
P3) Spaziatura						. /	
P4) Giunti						+ F2	
P5) Acqua				Ł		F	/ 1
RMR _b =	43			2			1 -
						1	
NOTE						s	_
Litologia da carta geologica		12 PM	C.R.A.				RA
georogica		- And	- Marth	N HERE		and-	AM
			ALC: NO	With A	A A A A		a plant
		J Bahkia	A.T. S.A	A BOX			
			Cine 1				
		A CAR	Subas and		Section 1	Kill Ca	
		,不同意	The second		2.2.2		
		and the second		1 Barris			
				C Carlos	CARLES .		
		1 1 2 3 5 9					
	4	1 Aller	Contraction -		And the second	2.8	Rett M
				A. S. S.			
	10	R	AND AND		ALC: N		

Rilievo N°	A57	Coordinata X	1595341,621	Coordinata Y	5117926,371		
		PARAMETRI G	GEOMECCANICI RI	LEVATI			
Litologia BOD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	30x1	l2x10
Orientazione versante [°]		Orient, F1	152/88	Orient E2		Orient, F3	
SISTEMI		c c	132/00 K1		K3	KA	KE
	oriontaziono [º]	3 152/22	KI	KZ	KS	1(4	KJ
	spaziatura (cm)	132/00					
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					ļ	
Rimpimento	assente	granulare	coesivo	ricrist			
Acqua	assente	asciutto	umido	hagnato			
Alterazione superfici	integro	ascidate		Dagilato			
	Integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri enerimentali		130,32					
Parametri sperimentan	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,29	33,75	15,40	26,97			
	D	mi	m _b	S	а		
Parametri analitici	0,2	31	4,707	0,0035008	0,505		
	σ _{cm} (Mpa)	് _{3max} (Mpa)	с'	φ'			
	37,638	20,010	6,821	43,554			
					سلسل	N.	
Bieniawsk		GSI (diretto) =	53		y +	~	
P1) Resistenza PL				;	1		1 A
P2) RQD				1		/	F
P3) Spaziatura				W		-	LE
P4) Giunti						F (eS)	
P5) Acqua				1			F
RMR _b =	58				<u>_</u>		L.
NOTE							
F1 con stessa giacitura di S; il livello più vicino al suolo è il più fratturato.						to the second se	
							A A A

Rilievo N°	A61	Coordinata X	1594930,994	Coordinata Y	5118058,255		
	 P/	ARAMETRI GEOI	MECCANICI RILEV	ATI			
Litologia RQD (%)	ROCCIA CARBONATICA	Campioni raccolti	per Point Load	x	VRU medio (cm)	23:	x4x6
Orientazione versante [°]	<u> </u>	Orient. F1	22/29	Orient, F2		Orient. F3	
SIST	EMI	S	К1	К2	кз	К4	К5
	orientazione [°]	358/22					
	spaziatura (cm)	,					
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)		ар	erture centin	netriche	،	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC			- 00		<u>.</u>		
-				1			
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali		236,4	= (0, -)				
	c'[Mpa]	φ'["]	E (Gpa)	γ (KN/m3)			
	0,19	23,75	4,87	25,83			
	D	mi	m _b	S	а		
Barametri analitici	0,2	9	0,618	0,0003237	0,519		
Parametri analitici	σ _{cm} (Mpa)	്ദ _{™ax} (Mpa)	c'	φ'			
	22,761	18,387	4,056	31,272			
CLASSIFICAZIO	NF GFOMECCANICA DELL'	AMMASSO ROC	CIOSO				
Bienia	wski	GSI (diretto) =	33				
P1)Resistenza PL			-				
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	38						
NOTE							
Il deposito sovrastante	1000						
è caratterizzato da			Service 1	Self and		AN SAL	Con Su
clasti spigolosi.				and the state	and the second	化二十二	
, N		9 4ª N	the Contract	ARCHINE .	Jak Barris		
1			- Argenter	and the second	Well the series	Allan	
5			AL MAN DEL	No. Contraction	all all all	A CAR	AT AN
			CONST OF	NO NO	Contraction of the	S. A.	
. 1/		A CARL	NO TA	A AN	the water		
- w-/ +	↓ ↓ _− E −	2. JAK 14	IN CONTRACT			A AL	C/X
. { + +		A CASE AND		AN ST	A MERCO	Park	
1	¥ -	Lake Kar	WER G	1 A LAN		0	The second
\mathbf{X}		and the second	1/10		A AR		
					Mar Star		S ST
s			MAK IA	NE S			

PARAMETRI GEOMECCANICI RILEVATI VRU medio (cm) 12x5x5 G02 (x) anfibolite/guaratic R02 (x) per foint Load VRU medio (cm) 12x5x5 Orientazione versante [1] Orient. F1 74/86 Orient. F2 Orient. F3 SISTEM S K1 K2 K3 K4 K5 Granteristiche dei grunt orient.aione [1] 2/82 290/35 350/23 Image: Comparison of the tabular tab	Rilievo N°	A63	Coordinata X	1595485,359	Coordinata Y	5117951,266		
Litologia anfibolite/quarite ROD (%) Campioni raccuti orient.F1 Per Point toad (m) VRU medio (m) Litologia (m) VRU medio (m) Distribute (m) Distribute (m) Distribute (m) Pick (m) Rise Rise <thrise< th=""> Ris Rise<!--</td--><td></td><td></td><td>PARAMETRI GEC</td><td>MECCANICI RILE</td><td>/ATI</td><td></td><td></td><td></td></thrise<>			PARAMETRI GEC	MECCANICI RILE	/ATI			
RQD (%) raccolti Per Point Load (cm) 1225;5 Orientzione versante [1] Orient, F3 74/86 Orient, F2 Orient, F3 K4 K5 Garatteristiche dei giunti iperisteriae P(%)	Litologia	anfibolite/quarzite	Campioni			VRU medio		
Orient. F1 74/86 Orient. F2 Orient. F3 SISTEM S K1 K2 K3 K4 K5 Granteristiche dei giuni einentazione [*] 2/82 290/36 350/23 Image: Comparison of the comparison of t	RQD (%)		raccolti	per Point Load		(cm)	12:	(5x5
SISTEMI S K1 K2 K3 K4 K5 Caratteristiche del giunti prientazione ["] 2/82 290/36 350/23 Image: Construction of the second of the secon	Orientazione versante [°]		Orient. F1	74/86	Orient. F2		Orient. F3	
Caratteristiche dei giunti priestenza P(k) persistenza A(k) 2/82 290/36 350/23 Image: Construct and the persistenza A(k) Acqua assente granulare Coesito ficrist. Image: Coesito <td< td=""><td>SISTEI</td><td>MI</td><td>S</td><td>К1</td><td>К2</td><td>К3</td><td>К4</td><td>К5</td></td<>	SISTEI	MI	S	К1	К2	К3	К4	К5
Garatteristiche de giuni spadatura (cm) persistenza A(%) Image: Construction of the state persistenza A(%)		orientazione [°]	2/82	290/36	350/23			
Garatteristich deiginti persistenza P(%) Image: Construct of the second of the secon		spaziatura (cm)						
μοτλ μοτ μ μ μ μ apertura (mm)	Caratteristiche dei	persistenza P(%)						
apertura (mm) section ricrist. Implemento assente granulare coesivo ricrist. Implemento assente	grunti	persistenza A(%)						
Rimpimentoassentegranularecoesivoricrist.AcquaassenteasciuttoumidobagnatoAlterazione superficiintegreossidatelegg.alteratealterateJRCImageossidatelegg.alteratealterateJRCImageossidatelegg.alteratealterateJRCImageossidatelegg.alteratealterateJRCImageossidatelegg.alteratealterateJRCImageossidatelegg.alteratealterateImageImageossidatelegg.alteratealterateImageImageossidatelegg.alteratealterateImageImageImageossidatelegg.alteratealterateImageIma		apertura (mm)						
Acqua assente ascluto umido bagnato Alterazione superfiei integre ossidate legg.alterate alterate alterate JRC Image: superfiei alterate alterate alterate alterate JRC Image: superfiei GG. // (Mpa) PL GG. /	Rimpimento	assente	granulare	coesivo	ricrist.			
Alterazione superfici integre ossidate legg.alterate alterate JRC C <thc< th=""> C <thc< th=""></thc<></thc<>	Acqua	assente	asciutto	umido	bagnato			
JRC m m Alterazione Parametri sperimentali	Alterazione superfici	integre	ossidate	legg. alterate	alterate			
Image: sperimental is perimental is perimental is perimental is perimental is perimental is c1(Mpa) PL Image: c1(Mpa	JRC							
Description Description Inclusion Inclusion Parametri sperimentali c"(Mpa) o"(1") E (Gpa) y ((KN/m3) 0,21 26,25 6,49 26,97 0 Parametri analitici D mi mo S a 0,21 26,25 6,49 26,97 0 0 Parametri analitici D mi mo S a 0 quantitation o"amax (Mpa) c"amax (Mpa) c"a"amax (Mpa) 0 0 0 0 CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO Bieniawski GSI (diretto) = 38 0 <td></td> <td>or://(Mna)Pl</td> <td>σc: (Mna) Pl</td> <td>Of MPa)</td> <td>Alterazione</td> <td></td> <td></td> <td></td>		or://(Mna)Pl	σc: (Mna) Pl	Of MPa)	Alterazione			
Parametri sperimentali c(Mpa) φ'('') E (Gpa) γ ((N/m3) 0.21 26,25 6,49 26,97 Parametri analitici D mi mb S a a qm (Mpa) d'amax (Mpa) c' φ'				ocapp (Wird)	Atteruzione			
0,21 26,25 6,49 26,97 D mi m _b S a D mi m _b S a Qmmodel Gmmodel Gmmodel Gmmodel Gmmodel CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO GSI (diretto) = 38 Model	Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
D mi m _b S a Parametri analitici C 0' 0' 0' 0' CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO 0' 0' 0' 0' 0' Significazione geometri analitici GSI (diretto) = 38 0' <td< td=""><td></td><td>0,21</td><td>26,25</td><td>6,49</td><td>26,97</td><td></td><td></td><td></td></td<>		0,21	26,25	6,49	26,97			
D m mb S a a a a a a a a a a a a a a a a a a a a a a a		D			C C			
Parametri analitici α _{cm} (Mpa) σ'amax (Mpa) c' φ' CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO Image: Construction of the state of		D	mi	m _b	5	d		
Ogm (Wpd) Ogm (Wpd) CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO Bieniawski GSI (diretto) = 38 P1) Resistenza PL P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMRb= 43 Piccolo affioramento, altezza inferiore al metro.	Parametri analitici	π (Mna)	(Mpa)		(0 [']			
CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO Bieniawski GSI (diretto) = 38 P1) Resistenza PL	-	O _{cm} (Mpa)		L	Ŷ			
Bieniawski GSI (diretto) = 38 P1) Resistenza PL				(()))		N		
P1)Resistenza PL P2)RQD P3)Spaziatura P4)Giunti P5)Acqua RMRb = 43 NOTE Piccolo affioramento, altezza inferiore al metro.	Bieniay	vski	GSI (diretto) =	38				_
P2) RQD P3) Spaziatura P4) Giunti P5) Acqua RMRb= 43 NOTE Piccolo affioramento, altezza inferiore al metro.	P1) Resistenza PL					K2		× –
P3)Spaziatura P4)Giunti P5)Acqua RMRb= 43 NOTE Piccolo affioramento, altezza inferiore al metro.	P2) ROD							\} -
P4) Giunti P5) Acqua RMRb = 43 NOTE Piccolo affioramento, altezza inferiore al metro.	P3) Spaziatura					R1		+ -
P5) Acqua RMRb = 43 NOTE Piccolo affioramento, altezza inferiore al metro.	P4) Giunti				w-	-	+	E
RMRb = 43 NOTE + Piccolo affioramento, altezza inferiore al metro. + Image: Second	P5) Acqua				<u>_</u> +	+		[_
NOTE Piccolo affioramento, altezza inferiore al metro.	RMR _b =	43						/ _
Piccolo affioramento, altezza inferiore al metro.		NOTE				\times		
	Piccolo affioramento, al	tezza inferiore al me	tro.			+ s	The	-
		Start Management of the Prant	ALL THE REAL PROPERTY	Sand and States	N.W. S. C. S. S. S.			
					CONSTANT.			
		A NOT PROPERTY		the Alexand	MAGE		1 Charles	
	(W)	ALCONTRACTOR AND A DESCRIPTION OF A DESC	1122220			SE VENUE	A Carta	NR. M
			With the la	V WALLS	Sterry Way is	ALL BE	AND CA	
	100		W WARDEN W	ALL AND A STATE		My TRE	Part Lan	
				West and	K. K. AS	N. MARINE ST.	SCAR.	
		NP-14X - ANE TA						ALCONT -
					Ca Citra	March B	L L	
			1 ACC	CALL AND		AN	C. Marin	and the second
		D C T T T T T T T T T T T T T T T T T T	La perti		Contraction of		XXX	- And
		CHARTER C. S.	A A A A A A A A A A A A A A A A A A A		1.5		and the	

Rilievo N°	A65	Coordinata X	1595699,528	Coordinata Y	5117967,974		
	9	PARAMETRI G	GEOMECCANICI RI	LEVATI		1 - I	
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load		VRU medio (cm)	55x9	0x23
Orientazione versante [°]	326/44	Orient. F1		Orient. F2		Orient. F3	
SISTEMI	· · · · · · · · · · · · · · · · · · ·	s	К1	К2	КЗ	К4	К5
	orientazione [°]	216/80	326/44	116/32			
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
Sidirti	persistenza A(%)						
	apertura (cm)			>5			
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	,,,,,,,,		10 c= \				
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali		1 [0]		(1011)			
		φ[]	E (Gpa)	γ (KN/M3)			
	0,41	46,25	64,94	26,97			
				6	_		
Parametri analitici	D	mı	m _b	5	а		
	σ _{cm} (Mpa)	് _{3max} (Mpa)	C'	φ			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	78				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	83						
	NOTE						
Aperture maggiori lungo	ola S				3ers	18 M 1	A REAL
			A CONTRACT	10 / 10			ang 1
	N		1 A STATE			The survey	6
K1 (Alf) W				- AND		Der win	
				Carry Co			
			- Alla			4,10	
			1 1 1		ART TELL		and the second
			- A / A			-14-120	ALE ALE
	1.1 × 110 ×	经不低		KEL DOL			
	_ / —	A. S. M	A 390				
<u> </u>		7 —		WAR AN			KARNY.
		^		A A A			
	s			1938	States?	A SULT	A CARLE

Rilievo N°	A73	Coordinata X	1596111,853	Coordinata Y	5117713,657		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia	anfibolite	Campioni	nor Doint Load		VRU medio		
RQD (%)		raccolti	per Point Load		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	K4	K5
	orientazione [°]						
Covettovistisko doi	spaziatura (cm)						
giunti	persistenza P(%)						
3	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	oc. // (Mna) Pl	σr. ∣(Mna) Pl	or (MPa)	Alterazione			
				Alterazione			
Parametri sperimentali	c'[Mpa]	o' [°]	E (Gpa)	γ (KN/m3)			
	0.11	16.25	2.05	26.97			
	- ,	- / -	2,00				
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	18				
P1) Resistenza PL							
P2) RQD		The second second					
P3) Spaziatura					- Stall	and a	LARY Y
P4) Giunti		2.7	a In what		and the	S ST 16	PRIVA.
P5) Acqua		Note:		A. A.		State 1	
RMR _b =	23	×>		11	Contest and		
NOTE					and and a		
Trincea avente larghezz	a di 2.30 metri						
e profondità di 1.6 metri.					No to the	Real P	
				Nº OBL			
		A.P.			A CONT	C. M. C. M.	
		AND IN				Server!	12/25/1
		Cara Maria				MR HERE	to particular
		1 pl		1011	See Server	NO AN TROAD	1.4.1

Rilievo N°	A75	Coordinata X	1596112,243	Coordinata Y	5117699,523		
		PARAMETRI	GEOMECCANICI R	ILEVATI		l	
Litologia	quarzite	Campioni	nor Doint Load		VRU medio		
RQD (%)		raccolti	per Point Load		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	К1	К2	К3	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
Branci	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) Pl	σci⊥(Mpa)PI	σc _{ann} (MPa)	Alterazione			
		oor <u>=(pu)</u> - <u>=</u>	ocapp (init a y	7			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,39	43,75	48,70	25,31			
	D	mi		c	2		
- Parametri analitici -	0	mi	m _b	3	d		
	g (Mpa)	ط (Mpa)	c'				
	O _{cm} (ivipa)	O 3max (IVIDa)	ـــــــــــــــــــــــــــــــــــــ	Ψ			
	;	ELL'AIVIIVIASSU	72				
Dieliidwsk		disi (diretto) =	75		Same and the		
			and a start	1000		13 Ja	Card Ind
		3. A	State P	8-1	and the	and the	Cart of
P4) Giunti		E.	the strange			R.	
			KI LAN	werthen fi		Care A	
RMR _b =	78		K AL	toral 1	No. Com		Long I
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12		1200	A CLEAN	E	
NOTE			The state	A LANDAR C	A SALE	Set.	S YE
				A PARA		AN AS	U.S.
		32			Contrast		
		34	A PARANA		No. of the	1 2 1	
					A CONTRACTOR		AL CO
		See.	Chester !!!	NOT T	A Street St		18 Jack
			THE REAL				
		1	Sec. 3 all	19175	A STATE		122
				the state			AN INCOME
			TP Sally	North Mart			1 3243
					Carl Carl	100	
		24		the second		1 - E	a the
			MAL DING		A REAL	ALC: NO	A CA

Rilievo N°	A79	Coordinata X	1596184,91	Coordinata Y	5117722,914		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia	marmo	Campioni			VRU medio		
RQD (%)		raccolti	per Point Load		(cm)	20x	10x8
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI	1	s	К1	К2	КЗ	К4	К5
	orientazione [°]	164/30					
	spaziatura (cm)	- ,					
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					• •	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg, alterate	alterate			
IRC		00010010	1000 01101010	unterate			
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali							
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,21	26,25	6,49	26			
Parametri analitici	D	mi	m _b	S	а		
	σ _{cm} (Mpa)	റ്₃ _{max} (Mpa)	c'	φ'			
	FOMECCANICA D	FLL'AMMASSO	ROCCIOSO		N		
Bieniawsk	(i	GSI (diretto) =	38				
P1)Resistenza PL				1			$\langle -$
P2) RQD				1	+		<u>}</u>
P3) Spaziatura				w-	+		-E
P4) Giunti				-			
P5) Acqua				F			
RMR _b =	43			1		s	
NOTE							
S giacitura del contatto					S		
tra quarzite (a tetto) e		A LE AND					135
marmo						No.	Sales and the second
		A dest				AND	
	C. TOK		STARK.	Carlos a			
		A A A	Mar Land	Ch Content	A 1 500		WERE R.
				Ris Market		14.20	
	-1-			ARA I			Sec. Se
	and the second	- Martin			Ser Dal		
			Sine T				A Start
				Sel .		A STO	ALL L
				1. A.	A CONTRACT	Ser N	Low M
			and apple		E.M. Tradio an	A CONTRACTOR	CALL A
		-		The Assess	a stranger and	with the same	A COLUMN TO A COLUMN

Rilievo N°	A80	Coordinata X	1596178,145	Coordinata Y	5117512,952		
		PARAMETRI GE	OMECCANICI RILE	VATI			
Litologia ROD (%)	micascisti fagliati	Campioni raccolti	per Point Load		VRU medio (cm)		
Orientazione versante [°]		Orient. F1		Orient, F2		Orient. F3	
SISTEN	/I	S	к1	к2	кз	ка	К5
	orientazione [°]	122/14					
	spaziatura (cm)	122/11					
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	m // (Mpa) Bl	m (Mpa) Bl	m (MDa)	Altoraziono			
		oc _i ⊥(wpa)r∟	Oc _{app} (IVIF d)	Alterazione			
Parametri sperimentali	c'[Mpa]	o' [°]	E (Gpa)	γ (KN/m3)			
	0,26	31,25	11,55	1 ()			
	_						
	D	mi	m _b	S	а		
Parametri analitici	(0.4	-l (N4==)		(d'			
-	o _{cm} (ivipa)	σ _{3max} (IVIpa)	С	Ψ			
				ļļ		N	
CLASSIFICAZIONE		CSL (dirette) -			1 miles	in the second se	
Dieniaw		dSI (diretto) =	40				- //
P2)ROD							
P3)Spaziatura							
P4)Giunti				w-	+	+	-E
P5) Acqua				1			1 + 1
RMR _b =	53			λ		,	/s [
NOTE							
1917 1917		2 Stander -				s	
				ZING			
						and the second	17 - C
		和一般				- Lare de	
		Alt a					
		a la sur sur	A Char	100	1 M		Kan ka
	Very I				C. C.Y		A Partie
	A Pasters		Constanting			10-	Ems?
1			A CARLER OF				
	·	and the state	the second	3. A. 3. 44			the state
	Kang & Water	and the second					and the second second
	the street and				CCOL.		and the second

Rilievo N°	A85	Coordinata X	1592186,434	Coordinata Y	5118874,233		
		PARAMETRI	GEOMECCANICI RIL	EVATI			
Litologia ROD (%)	paragneiss	Campioni raccolti	per Point Load	х	VRU medio (cm)	14x	:6x5
Orientazione versante [°]		Orient. F1	259/53	Orient, F2		Orient. F3	
SISTEMI		s	к1	к2	КЗ	К4	К5
	orientazione [°]	153/63	322/80	336/60			
	spaziatura (cm)		,	,			
Caratteristiche dei	persistenza P(%)						
giuna	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	or // (Mea) D	or. (Maa) D		Altorazione			
	OCi // (IVIDA) PL	OC _i ⊥(IVIDA) PL	OCapp (IVIPA)	Alterazione			
Parametri sperimentali	c'[Mpa]	۵۲,08 ۵' [°]	E (Gpa)	v (KN/m3)			
	0.14	φτj 18.75	2 74	24.28			
	0,2.	10,70	2,74	24,20			
Parametri analitici	D	mi	m _b	S	а		
	0,2	33	1,524	0,0000984	0,537		
	σ _{cm} (Mpa)	ರ'₃ _{max} (Mpa)	c'	φ'			
	7,375	15,704	2,840	28,315			
CLASSIFICAZIONE	GEOMECCANICA I	DELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	23				
P1) Resistenza PL							
P2) RQD							
P3)Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	28						
	NOTE						
Litologia da carta geolo	gica; roccia in po	osto;			1200		States
mm al cm senza grandi	blocchi.	iensioni dai				12	
				N F	14-17	XI are	Mar.
+ +			1 Hears T	15:17	1.11		
					P. S. S.		W. A.S.
						in the second	· 10
							and a second
w			55.	4/20			
		100	34 A 19				
	°	/			1 Aug	and the	1 dece
	+ +	1 -	ANT A SUP	Titles - St		5-11	State -
					ALL COM		-
	s			an and the	11/1	1.	1200

Appendice 1

Rilievo N°	A86	Coordinata X	1592182,351	Coordinata Y	5118890,705		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia		Campioni	per Point Load		VRU medio		
RQD (%)		raccolti	per 1 en 1 2000		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	186/30					
Corottoristisho doi	spaziatura (cm)						
giunti	persistenza P(%)						
0	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc _{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	റ് _{3max} (Mpa)	c'	φ'			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =			N		
P1) Resistenza PL				- /	×	~	
P2) RQD							$\sum_{i=1}^{n}$
P3) Spaziatura				- /			F _
P4) Giunti				-	+		F
P5) Acqua				W-	+		E
RMR _b =				1	<	/	
NOTE				-			/ —
Vallecola con piccolo af	fioramento				-		`
					y the second sec		
					S		

Rilievo N°	A100	Coordinata X	1592812,441	Coordinata Y	5118625,196		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia RQD (%)	paragneiss	Campioni raccolti	per Point Load	х	VRU medio (cm)	8>	7x5
Orientazione versante [°]		Orient. F1	340/48	Orient. F2	270/60	Orient. F3	
SISTEMI	•	S	K1	К2	К3	К4	К5
	orientazione [°]	119/43	254/60				
Company and a starting to a start	spaziatura (cm)						
giunti	persistenza P(%)						
5	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc://(Mpa)PL	σc⊨⊥(Mpa) PL	σc _{ann} (MPa)	Alterazione			
		307,2	о сарр (с <i>у</i>				
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,16	21,25	3,65	24,28			
	D	mi	m.	s	а		
Parametri analitici	0	33	2.477	0.0003173	0.526		
	σ _{cm} (Mpa)	റ് _{ദണാ} (Mpa)	, c'	φ'	- /		
	58,762	18,929	6,202	45,372			
		ROCCIOSO		han the	N		
Bieniawsk	i	GSI (diretto) =	28			7	~
P1)Resistenza PL			-		/ //		1 Y
P2) RQD				1	F	(//K1)	
P3) Spaziatura				w	+	+ /	+ +
P4) Giunti					2		-
P5) Acqua				¥		+/3	-
RMR _b =	33					\times	
NOTE						1	
Litologia da carta geologica; F1 lungo la K1 e serie di faglie lungo la stessa direzione; F2 compare solo 10 metri più a ovest.						-s	

Rilievo N°	A101	Coordinata X	1592630,966	Coordinata Y	5118435,754		
		PARAMETRI O	EOMECCANICI RI	LEVATI			
Litologia	paragneiss	Campioni	nor Doint Load		VRU medio		
RQD (%)		raccolti	per Point Load		(cm)		
Orientazione versante [°]		Orient. F1	196/70	Orient. F2		Orient. F3	
SISTEMI		S	К1	К2	К3	К4	К5
	orientazione [°]	144/52	130/50	296/60	314/82		
Corottoristisho dai	spaziatura (cm)						
giunti	persistenza P(%)						
0.0	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	or // (Maa) D	or (Maa) D		Altorazione			
	OCi // (IVIDA) PL	oc _i ⊥(ivipa) PL	OC _{app} (IVIPA)	Alterazione			
Parametri sperimentali	c'[Mpa]	 ۵' [°]	F (Gpa)	v (KN/m3)			
	c [mpa]	Ψι]		2/ 28			
				24,20			
Parametri analitici	D	mi	m _b	S	а		
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
1							
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =					
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =							
NOTE							
Giacitura S incerta; F1 lu	ungo la S.			Te Hat			
						ar Man	The state
	N			FR 1-SE		Jan Barris	
					4 de 10		16
	4	λ _			and a ferral		No And
/	. / /	$ \lambda -$	100			SU.X	N. A.
+		// \ _	140		the rate of	K)	A. A.C.
w-	К2 КВ	-е —	Stor.	NY YA		1 March	IN IN R
{ 7	Tros +			1 to all	DO HA	Dar 1	- And and
$ \downarrow \downarrow /$	SKI	7 _		12. 76		Ar 1	T.
	/	+ /					A WAR
	~	/				X	135
	s		A CONTRACTOR	AN AN	100	the second	~9 8

Rilievo N°	A105	Coordinata X	1592659,596	Coordinata Y	5118439,377		
	PARAMETRI GEOMECCANICI RILEVATI						
Litologia RQD (%)	QUARZITE	Campioni raccolti	per Point Load	х	VRU medio (cm)	10x3	37x11
Orientazione versante [°]	50/87	Orient. F1	223/44	Orient. F2	296/84	Orient. F3	
SISTEMI		s	K1	К2	КЗ	К4	К5
	orientazione [°]	52/26	50/87	174/60	120/72	296/84	
Caratteristiche dei	spaziatura (cm)	- , -		,	-7		
	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate		alterate			
IRC	integre	03310410		uncrute			
J.KC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	34,32						
r arametri sperimentan	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,29	33,75	15,40	25,31			
Parametri analitici	D	mi	m _b	S	а		
	0,8	24	1,420	0,0007489	0,505		
	σ _{cm} (Mpa)	ປ່₂ _{max} (Mpa)	c'	φ'			
	5,392	15,856	2,831	24,372			
Pioniowski		CSI (diretto) -	52				
P1) Resistenza PI		051 (unetto) =	55				
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	58						
NOTE							
Serie di faglie con giaci è anche giacitura di K4	tura // a F1; F2			K SZZ			
	1				The second second		
		E a					

Rilievo N°	A115	Coordinata X	1592590,438	Coordinata Y	5118149,852		
PARAMETRI GEOMECCANICI RILEVATI							
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	17x2	21x11
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	K1	к2	КЗ	К4	К5
	orientazione [°]	86/48	344/80	44/88	282/64	96/48	
Caratteristiche dei giunti	spaziatura (cm)			,			
	persistenza P(%)						
	persistenza A(%)						
	apertura (mm)			,,		,,	
Rimpimento	assente	granulare	coesivo	ricrist.		Î	
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate		alterate			
	integre	USSIGATE	legg. alterate	anterate			
JKC							
	σc _i // (Mpa) PL	$\sigma c_i \perp (Mpa) PL$	σ_{app} (MPa)	Alterazione			
Parametri sperimentali		55,68					
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,29	33,75	15,40	26,97			
Parametri analitici	D	mi	m _b	s	а		
	0,5	31	3,229	0,0017761	0,505		
	σ(Mna)	ດ່ _{ວາມ} (Mna)	<u>د'</u>	φ'	-,		
	13 250	18 215	4 530	33 905			
	10,200	10,210	.,				
	EOMECCANICA D		ROCCIOSO				
Bieniawsk		GSI (diretto) =	53				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Glunti							
PS) Acqua							
KIVIK _b =	58						
NOTE							
W to the							

Rilievo N°	A123	Coordinata X	1592948,208	Coordinata Y	5117961,846		
PARAMETRI GEOMECCANICI RILEVATI							
Litologia BOD (%)	anfiboliti	Campioni raccolti	per Point Load		VRU medio (cm)		
Orientazione versante [°]	2/11/82	Orient E1		Oriont E2		Orient E3	
	241/82	c c	K1	Unent. F2			KE.
5151 E WI	· · · ro1	3	KI	KZ	K3	K4	К5
	chariatura (cm)	140/32	241/82	/9/59	324/70		
Caratteristiche dei	nersistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)			<u> </u>		Į Į	
Pimpimento		grapularo	coociuo	rigrict			
Assus	assente	granulare	coesivo	ncrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc _{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,29	33,75	15,40	26,97			
	D	mı	m _b	5	а		
Parametri analitici							
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ.			
CLASSIFICAZIONE GEOMECCANICA D		ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	53				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	58						
NOTE							
Nicchia in roccia.						1 8 . 7	
				Jos Anna		A AND	
	1		BA . A		N. As	100	
	N			1	N 15	T I	
					and the second		
		A -		Mar	C- USE	1	
				AN AN	No.		
	+					A Start	
	K1 (Aff) K2	-E -	· · · · · ·				
1 /				San New York			
	s	/	A REPAR	W. W	A Co	-	
X	/	+	CAR BUS	Carles A		P.U	
	S			Star and		A ARTS	

Rilievo N°	A125	Coordinata X	1592951,068	Coordinata Y	5117932,14		
	1	PARAMETRI GE	OMECCANICI RILI	EVATI			
Litologia RQD (%)	anfiboliti	Campioni raccolti	per Point Load		VRU medio (cm)	50x!	50x55
Orientazione versante [°]		Orient. F1	290/78	Orient. F2		Orient. F3	
SISTEM	I	S	K1	К2	К3	К4	К5
	orientazione [°]	180/21	16/76	252/78	290/78		
Countrariatisha dai	spaziatura (cm)						
giunti	persistenza P(%)						
5	persistenza A(%)						
	apertura (mm)					,	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc_{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	പ്രി	F (Gna)	v (KN/m3)			
	0,29	φι 33,75	15.40	26,97			
	-, -		, -			1	
Parametri analitici	D	mi	m _b	S	a		
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE	GEOMECCANICA DE	LL'AMMASSO RC					
Bieniawski		GSI (diretto) =	53				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	58						
NOTE							
La S curva leggermente; F K3; giaciture prese pochi rispetto a dove è stata so	1 anche giacitura metri più a nord cattata la foto.						

Rilievo N°	A129	Coordinata X	1594787,909	Coordinata Y	5116838,608		
PARAMETRI GEOMECCANICI RILEVATI							
Litologia RQD (%)	gneiss	Campioni raccolti	per Point Load		VRU medio (cm)	25x	40x8
Orientazione versante [°]		Orient. F1	154/86	Orient. F2	38/79	Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	164/82	273/73	103/43			
	spaziatura (cm)		-				
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					• • •	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
			(140.)				
	σc _i // (IVIpa) PL	oc _i ⊥(Nipa) PL	oc _{app} (IMPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	(°]	E (Gpa)				
		ψ[]		γ (KN/m3)			
	0,31	30,25	20,54	26,49			
Parametri analitici	D	mi	m _b	S	а		
	$\sigma_{\! m cm}$ (Mpa)	റ'₃ _{max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	58				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	63						
NOTE							
F1 faglia mineralizzata;	Serie di		5. S. S.		11 S S S S S S S S S S S S S S S S S S	N. 4420	
microfaglie mineralizza	te lungo F2.						
	, ,					W B F	
	N			1025			
+ +					Contraction of the		
		¥	and the	1 dezek	ACOR		
				× + + +	and the second	AN AC	
+	Bo			SOB	D. A.		NE
W	K1 + 1 / 12	+ -E				ALL AND	A COM
				The A	ALL THE AL		NEN 18
T			Contractor	7			STR IN INCOME
+		×			(Startes	S SW	
	A			A BARK	1 Contractor	No the	Acel
	Ś		AS AND ALL	A STAND	A State of the	CAN S	

Rilievo N°	A130	Coordinata X	1594799,484	Coordinata Y	5116848,673		
PARAMETRI GEOMECCANICI RILEVATI							
Litologia RQD (%)	gneiss	Campioni raccolti	per Point Load		VRU medio (cm)	70x3	3x17
Orientazione versante [°]		Orient. F1	154/62	Orient. F2	240/68	Orient. F3	22/62
SISTEMI		s	K1	К2	К3	К4	К5
	orientazione [°]	278/67	122/89	196/61	4/81	148/87	
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giuna	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	oc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali							
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,31	36,25	20,54	26,49			
Parametri analitici	D	mi	m _b	S	а		
	σ _{cm} (Mpa)	റ' _{3max} (Mpa)	с'	φ'			
	SEOMECCANICA D	FUL'AMMASSO	ROCCIOSO				
Bieniawski		GSI (diretto) =	58				
P1) Resistenza PL							
P2)ROD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	63						
NOTE							
K3 e K4 creano la struttu	ira a cuneo.						
W- W- W- Kator Ka							

Appendice 1

PARAMETRI GEOMECCANICI RILEVATI Litologia Campioni raccolti per Point Load VRU medio (cm) RQD (%) Orient. F1 180/80 Orient. F2 300/80 Orient Orientazione versante [°] Orient. F1 180/80 Orient. F2 300/80 Orient SISTEMI S K1 K2 K3 K Spaziatura (cm) 267/88 170/74 322/43 Spaziatura (cm) persistenza P(%) Image: Status and	50x80x40 t. F3 1 К5
Litologia Campioni raccolti per Point Load VRU medio (cm) RQD (%) Orient. F1 180/80 Orient. F2 300/80 Orient Orientazione versante [°] Orient. F1 180/80 Orient. F2 300/80 Orient SISTEMI S K1 K2 K3 K Spaziatura (cm) 267/88 170/74 322/43 Incomposition persistenza P(%) Incomposition Incomposition Incomposition Incomposition	50x80x40 t. F3 1 K5
Orientazione versante [°] Orient. F1 180/80 Orient. F2 300/80 Orient SISTEMI S K1 K2 K3 K orientazione [°] 267/88 170/74 322/43 C spaziatura (cm) persistenza P(%) - - -	t. F3 1 K5
SISTEMI S K1 K2 K3 K Caratteristiche dei orientazione [°] 267/88 170/74 322/43 persistenza P(%) persistenza P(%) 0 0	4 К5
Caratteristiche dei orientazione [°] 267/88 170/74 322/43 persistenza P(%) persistenza P(%) Image: constraint of the second	I
Caratteristiche dei persistenza P(%)	
Caratteristiche dei persistenza P(%)	
persistenza A(%)	
apertura (mm)	
Rimpimento assente granulare coesivo ricrist.	
Acqua assente asciutto umido bagnato	
Alterazione superfici integre ossidate leggalterate alterate	
$\frac{\sigma c_i}{\mu r_i}$ (Mpa) PL $\sigma c_i \perp$ (Mpa) PL σc_{app} (MPa) Alterazione	
Parametri sperimentali c'[Mpa] φ'[°] E (Gpa) γ (KN/m3)	
0,31 36,25 20,54	
D mi m _b S a	
Parametri analitici	
σ _{cm} (Mpa) σ' _{3max} (Mpa) c' Φ	
CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO	
Bieniawski GSI (diretto) = 58	
P1)Resistenza PL	
P2) RQD	
P3)Spaziatura	
P4)Giunti	
P5)Acqua	
RMR _b = 63	
NOTE	
La discontinuità da cui si è staccato il blocco di più	
grandi dimensioni ha generato una frattura di 20 cm,	
alta 6 metri e profonda 1m.	
	Par 1
	and the second second
	24
	and the second second
W PART + E	A CONTRACTOR
Appendice T	

Rilievo N°	A132	Coordinata X	1594813,907	Coordinata Y	5116864,248		
	•	PARAMETRI	GEOMECCANICI R	ILEVATI		· · ·	
Litologia RQD (%)		Campioni raccolti	per Point Load		VRU medio (cm)	140x4	0x140
Orientazione versante [°]		Orient. F1	260/82	Orient. F2	170/81	Orient. F3	212/45
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]		282/80	171/86	237/20	23346	
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
grandi	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
			(145.)				
	oc _i // (Mpa) PL	σc _i ⊥(IVIpa) PL	oc _{app} (IVIPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	(°]	E (Gpa)				
		Ψ[] 26.25		γ (KN/m3)			
	0,31	30,23	20,54				
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE	GEOMECCANICA D	ELL'AMMASSO F	ROCCIOSO				
Bieniawsl	ki	GSI (diretto) =	58				
P1)Resistenza PL							
P2) RQD							
P3)Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	63						
NOTE	Į.						
Evidenze di movimento	recente nella						Second State Lan
faglia.		小山山 、 隆			The states		1
1	1	WW ASS	A MELLAN			XX	A A
N	T			1			
+	~					No.	
	×.		1 BLANN				1 . A.
	+						
+	+						
W-	E						
	7						4
1 1 1			A Provention				
XXI			P. A. P.				
The second secon				Self-1			and the
S			一下的				Self Martin

Rilievo N°	A133	Coordinata X	1594799,4	Coordinata Y	5116878,7		
	4	PARAMETRI GI	EOMECCANICI RIL	EVATI			
Litologia	anfibolite	Campioni	por Point Load		VRU medio		
RQD (%)		raccolti	perronneoda		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]						
Carattaristisha dai	spaziatura (cm)						
giunti	persistenza P(%)						
5	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	or: // (Mna) Pl	σc. ∣(Mna) Pl	or (MPa)	Alterazione			
	48.48	ool <u>⊥(</u> pu) · ⊥		, accruzione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
				26,97			
	_						
	D	mi	m _b	S	а		
Parametri analitici	(
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ			
CLASSIFICAZIONE O	SEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =					
P1)Resistenza PL		and the second	and the	1 Mar		- 17	
P2) RQD		an Ass	- AL	- is a	-	12.0	
P3) Spaziatura		11	A.C.	- All		- P	
P4) Giunti				Sh. V.	1-2		123
P5) Acqua		No.		Ser al		Stark.	BAL.
RMR _b =			Nº NO		1 A		
NOTE	4		ALL P			Don I	No.
Blocchi crollati		EST		1.6200	22	The	A A
		1 to	Part Sel		and a		1
			TY AND	S.S. Art		the second	A PAR
					Aler	and a sur	19.19
			100	SPA			A CONTRACTOR
		1	A Set	2	VER 1	1001 100	4 avr
			Contraction of the second		Tel Rinks	TANKA.	and the second

Rilievo N°	A134	Coordinata X	1592691,476	Coordinata Y	5116926,4		
		PARAMETRI GI	EOMECCANICI RIL	EVATI	·······		
Litologia RQD (%)	anfibolite	Campioni raccolti	per Point Load		VRU medio (cm)	57x6	57x30
Orientazione versante [°]		Orient. F1	64/84	Orient. F2		Orient. F3	
SISTEMI		s	K1	К2	КЗ	К4	К5
	orientazione [°]	116/13	302/84	282/80			
	spaziatura (cm)	-, -		- /			
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	m // (Maa) DL	m ↓(Maa) DI		Alterations			
	OCi // (IVIPA) PL	oc _i ⊥(iviµa) PL	OC _{app} (IVIPa)	Alterazione			
Parametri sperimentali	c'[Mna]	٥٢,5٢ ۵۲,5٢	E (Gna)	√ (KN/m3)			
	0.16	φτj 21.25	3.65	26.97			
	0,20	==)=0	3,03	20,37			
	D	mi	m _b	S	а		
Parametri analitici	0,5	28	0,887	0,0000634	0,526		
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	c'	φ'			
	9,159	17,620	3,099	26,341			
CLASSIFICAZIONE G	SEOMECCANICA D	ELL'AMMASSO	ROCCIOSO		1 million		
Bieniawsk	ci	GSI (diretto) =	28	/			× -
P1)Resistenza PL				_ /			// -
P2) RQD					\vee	/	\ <u>[</u> -
P3) Spaziatura					+Kitt	TR.	-e -
P4) Giunti					1		+
P5) Acqua	22					\backslash	/s / -
KIVIK _b =	33						
	NOTE				V	J	_
VRU medio parte faglia	ta : 5x11x5 (cm).				s s		

Rilievo N°	A141	Coordinata X	1593183,367	Coordinata Y	5117219,691		
	P	ARAMETRI GEO	MECCANICI RILEV	ATI			
Litologia RQD (%)	ROCCIA CARBONATICA	Campioni raccolti	per Point Load		VRU medio (cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SIST	EMI	s	К1	К2	КЗ	К4	К5
	orientazione [°]		260/34	214/80	266/72	90/36	
	spaziatura (cm)		, -	,	,		
Caratteristiche dei	persistenza P(%)						
giunu	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	m // (Maa) DI	m (Maa) D		Alterations			
		oc _i ⊥(mpa) PL	Oc _{app} (IVIPd)	Alterazione			
Parametri sperimentali	c'[Mpa]	رم' [°]	F (Gpa)	v (KN/m3)			
				23,03			
	D	mi	m _b	S	а		
Parametri analitici	Gran (Mpa)	ດ່ _{ວການ} (Mna)	<u></u>	φ'			
	NE GEOMECCANICA DELL	'AMMASSO BOO					
Bienia	wski	GSI (diretto) =					
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua		Strate 1	and the second		2218		
RMR _b =		See		1.000			
NO.	TE		Nr. Miles	7 1 1 B			
K4 meno persistente e g	giacutura	The constant					
approssimata.					Pal		
			Are-Jak		TAT	1921 102	
	N	20			Vert the		
	+				1 1 1	V	No.
$-\chi/1$			MARCE CO	- AN	Y	4 1. 16	
				self.	H. S.	计合品	
	+ +	Arra Cont		your al	SAP/	319	X
K1 K3		Mar Lain	1 T	A LANDAR	R AND AND	3.14	
			ALL I	In the self		1 1 1 1 1	PAT ALL
		at the second	and the second	NN. SAL	Contraction of	AL AL	T (3)
	-	THAT I'VE	A Constant	ANS I			
	S	The Press	Carlo Carlo	1 Actor		S	ATA Y
				14 1 1 3 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE PARTY AND	ALL INCOME	

Rilievo N°	A142	Coordinata X	1593187,836	Coordinata Y	5117171,771		
		PARAMETRI GE	OMECCANICI RILE	VATI		2	
Litologia	marmo	Campioni	ner Point Load		VRU medio		
RQD (%)		raccolti	peri onit Load		(cm)		
Orientazione versante [°]		Orient. F1	74/83	Orient. F2	280/50	Orient. F3	
SISTER	NI	S	К1	К2	К3	К4	К5
	orientazione [°]		200/63	74/83	112/15		
Carattaristisha dai	spaziatura (cm)						
giunti	persistenza P(%)						
8	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	oc. // (Mna) Pl	σc. ∣(Mna) Pl	or (MPa)	Alterazione			
		00, ±(Mpd) 1 E	OCapp (IVII U)	Anterazione			
Parametri sperimentali	c'[Mpa]	ω' [°]	E (Gpa)	γ (KN/m3)			
	- (11	- ())	26			
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	് _{3max} (Mpa)	c'	φ'			
	1						
CLASSIFICAZION	E GEOMECCANICA DEI	LL'AMMASSO RO	CCIOSO		Ņ		
Bieniaw	/ski	GSI (diretto) =				the second secon	
P1) Resistenza PL						1	<
P2) RQD					\wedge	+	¥
P3)Spaziatura						1	L
P4)Giunti				- w-	F2 + + F(e)	K2)	-E
P5) Acqua				1.	1 la	+	
RMR _b =				$ \downarrow $	KT		
NOT	E			- \			/ —
F1 è anche giacitura di I	<2.	-				Y	
-				_	S	L	
				-			

Rilievo N°	A153	Coordinata X	1592571,458	Coordinata Y	5117241,138		
		PARAMETRI G	EOMECCANICI RI	LEVATI			
Litologia	marmo	Campioni	ner Point Load	x	VRU medio		
RQD (%)		raccolti	peri onicioad	~	(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	К1	К2	К3	К4	К5
	orientazione [°]	252/50	340/68	24/73			
Corottoristisho dai	spaziatura (cm)						
giunti	persistenza P(%)						
3	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC	2-4						
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione			
Doromotri cnorimontali	37,44						
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,11	16,25	2,05	26			
	D	mi	m _b	S	а		
Demonstration and listical	0,8	9	0,066	0,0000037	0,552		
Parametri analitici	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
	0,884	13,808	0,742	7,332			
CLASSIFICAZIONE G	SEOMECCANICA D	ELL'AMMASSO	ROCCIOSO		N		
Bieniawsk	ci	GSI (diretto) =	18		T		
P1) Resistenza PL				/		\searrow	
P2) RQD							Y
P3) Spaziatura							
P4) Giunti					KT R	* +	t_
P5) Acqua				W-	\$ +		
RMR _b =	23						\checkmark _
NOTE	l					+	
Lungo K2 c'è una faglia.					+ \		/ _
					~	T	
					5		

Rilievo N°	A158	Coordinata X	1592679,91	Coordinata Y	5117524,7		
		PARAMETRI GE	OMECCANICI RIL	EVATI			
Litologia	marmo	Campioni	ner Point Load	x	VRU medio		
RQD (%)		raccolti	per l'onit Loud	^	(cm)		
Orientazione versante [°]	312/80	Orient. F1	90/84	Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	347/2	90/84	312/80			
Covettevistiske dei	spaziatura (cm)						
giunti	persistenza P(%)						
8	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{ann} (MPa)	Alterazione			
Parametri sperimentali	21,84						
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
				26			
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	σ' _{зmax} (Мра)	c'	φ'			
	EOMECCANICA D	ELL'AMMASSO I	ROCCIOSO				
Bieniawsk	i	GSI (diretto) =			5 N		
P1) Resistenza PL		, ,		//			× -
P2) RQD							
P3) Spaziatura							
P4) Giunti					ha		t -
P5) Acqua				W- F (e K1)	M	5F (e K1)	-E -
RMR _b =				L L			
NOTE				- \			k 2
F1 è anche giacitura di k	(1.			- X		/	
					5		

Rilievo N°	A162	Coordinata X	1592658,276	Coordinata Y	5117571,594		
		PARAMETRI G	GEOMECCANICI RI	LEVATI			
Litologia RQD (%)	ANFIBOLITE	Campioni raccolti	per Point Load	х	VRU medio (cm)		
Orientazione versante [°]		Orient, F1		Orient F2		Orient, F3	
SISTEMI		s	К1	K2	кз	кл	K 5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist			
Δςαμα	assente	asciutto	umido	hagnato			
Alterazione superfici	integro	ascidate		oltorato			
	integre	ossidate	legg. alterate	allerate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{арр} (MPa)	Alterazione			
Parametri sperimentali	120,48						
ratametri spennentan	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)	-		
	0,34	38,75	27,38	26,97			
	D	mi	m _b	S	а		
Parametri analitici	0,2	31	7,000	0,0115129	0,502		
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
	43,430	20,269	7,696	46,073			
			RUCCIUSU				
Bieniawsk	a 	GSI (diretto) =	63				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
RMR =	68						
NOTE							
Roccia in posto.					× × 11		18 J.B
	30 Anno	A Cas	- AS	1 all	- 1 m		- 10
1			121	19. M. M.		- Internal	1 May
1				A NAK	Pro la series	and the fit	- Caller
	and the set		SF-5-B	们的原始		()) (The	
		11	A. MAR	E A AR		1 Ander	and the second second
	S A LAN		Contraction of the second seco	T	IN C	a Joka	to all
	Mr Se	Tor A Sta	- Participation	1165	A CERTIT	4	
	12110		The state	and the second	an and		COMPLEX N
	CAN 1		A LIBRO	1 Ph	J. H. H	A. 5. 10	
	and the first	AMA A P		all.		29 7	The second
	and the state	A BASSAN PARA	No. 1 Standard	and the second		ise Titte	Seat Maria

Rilievo N°	A163	Coordinata X	1592696,527	Coordinata Y	5117654,001		
	4	PARAMETRI G	EOMECCANICI RI	LEVATI		4 3	
Litologia	Gneiss	Campioni	per Point Load	x	VRU medio		
RQD (%)		Orient 51			(ciii)	0.1	
		Orient. F1		Orient. F2		Orient. F3	
SISTEIVII	1	S	К1	К2	К3	К4	К5
	orientazione [°]						
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)						
Caratteristiche dei giunti Rimpimento Acqua Alterazione superfici JRC Parametri sperimentali	persistenza A(%)						
	apertura (mm)			1			
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
		254,4					
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,26	31,25	11.55	26.49			
			•	· · ·			
	D	mi	m _b	S	a		
Parametri analitici	0	33	5,061	0,0029283	0,507		
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	с'	φ'			
	75,577	20,960	8,563	49,252			
CLASSIFICAZIONE O	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	48				
P1) Resistenza PL							
P2) RQD		のたちの一部で			Ser Constant	11-74-11	
P3) Spaziatura				NACE OF	Print Long		A PAC
P4) Giunti		- 10 M		· WA		2074	Cicco -
P5) Acqua						A Star	A Cart
RMR _b =	53					10	Stall.
NOTE	l	1 and the	A.Z			A CAL	
Litologia da carta geolo	gica; roccia				N		REAL
affiorante.							
			And the little is	a series	and the	74	MAX
		h zika	I falst			T	TRA
		1 ALAN		C VC		16.15	We
			AD 26 K			1.00	
		190	20 Standard	Ct to	The second	1000	
		2 Sentin				the second	Ser Sale

5116638,808 Rilievo N° A170 Coordinata X 1593339,51 Coordinata Y PARAMETRI GEOMECCANICI RILEVATI Litologia VRU medio Campioni per Point Load raccolti (cm) RQD (%) Orientazione versante [°] Orient. F1 Orient. F2 Orient. F3 SISTEMI s К1 К2 К3 К4 К5 orientazione [°] 336/40 spaziatura (cm) Caratteristiche dei persistenza P(%) giunti persistenza A(%) apertura (mm) Rimpimento ricrist. assente coesivo granulare Acqua assente asciutto umido bagnato Alterazione superfici ossidate alterate integre legg. alterate JRC $\sigma c_i // (Mpa) PL \sigma c_i \perp (Mpa) PL$ တင_{app} (MPa) Alterazione Parametri sperimentali E (Gpa) c'[Mpa] φ' [°] γ (KN/m3) D mi m_b S а Parametri analitici φ' $\sigma_{\! cm}$ (Mpa) σ'_{3max} (Mpa) с' CLASSIFICAZIONE GEOMECCANICA DELL'AMMASSO ROCCIOSO Bieniawski GSI (diretto) = P1) Resistenza PL P2) RQD P3)Spaziatura

w

s

P4) Giunti

P5) Acqua

RMR_b =

NOTE Nicchia in roccia: piccola cuesta.

Appendice 1

Rilievo N°	A176	Coordinata X	1595219,085	Coordinata Y	5117310,638		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia RQD (%)	quarzite	Campioni raccolti	per Point Load		VRU medio (cm)	120x	74x80
Orientazione versante [°]	122/64	Orient. F1	36/86	Orient. F2	220/36	Orient. F3	
SISTEMI	l	S	K1	К2	К3	K4	K5
	orientazione [°]	200/36	122/64	130/84	260/16		
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc _{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
				25,31			
	D	mi	mь	s	а		
			5				
Parametri analitici	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	(i	GSI (diretto) =					
P1) Resistenza PL							
P2) RQD					N		
P3) Spaziatura						X	
P4) Giunti				×+/		\backslash	
P5) Acqua					/		
RMR _b =					+//		
NOTE			w-	+++++		-Е	
NOTE F2 è anche giacutura di S; Oltre alla quarzite è presente anche roccia di faglia con alternanza bande a differenze composizione mineralogio colorazioni azzurre e rosse.		rzite è rnanza di ralogica e		1 63	192 (e S)		
colorazioni azzurre e ros	sse.			+	s	\sum	

rependice 1

Rilievo N°	A185	Coordinata X	1594657,607	Coordinata Y	5116395,997		
		PARAMETRI G	EOMECCANICI RI	LEVATI		L	
Litologia RQD (%)	anfiboliti	Campioni raccolti	per Point Load	х	VRU medio (cm)	35x1	17x10
Orientazione versante [°]	260/68	Orient. F1	240/20	Orient. F2		Orient. F3	
SISTEMI	· · ·	s	K1	К2	КЗ	К4	К5
	orientazione [°]	220/64	326/80	260/68	116/68	110/82	
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	143,76						
	c'[Mpa]	φ [•] [°]	E (Gpa)	γ (KN/m3)			
1	0,21	26,25	6,49	26,97			
	D	mi	m _b	S	а		
Parametri analitici							
Falametri analitici	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	38				
P1) Resistenza PL						S. SHALL	
P2) RQD		188	1 1 1		1 The self	ALC: 1	
P3) Spaziatura			and a state	EL M		- 在面上	1 × 14
P4) Giunti						AXV	
P5) Acqua			TIME L			1000	
RMR _b =	43				NXX	TEN IST	a star
NOTE	[]	2 M.					
Faglia anche lungo la so	cistosità.		AL		1431	I HAN	
5 5				4.41	A CAR	NAM .	A REAL
			X 12	-	Trate A	TRANC	The second
N		NELEY.	AT S	the state	H8		V. W.
		1 Cast		AN IN	TR L.		
				dist :			ALC .
+ +	1 ·			STATES	IT & WI	6 1.0	Me C
	+ +	1/2x	ALA	THE DX	West In C	11 11:	- New V
W- K2 (Aff)	Ka K3	FE	人口一夜之		TAN IN	Nº CAN	
	$\langle \rangle$	201				131 12	14 20
$ \land \land \land \land$					12/2 13	A 142	
	+	a left		- Pre-Ala	A APPE	STER	A Starting
	T			C.K.S.S.	NY ST	A PARTINE	4-1-1×
5					1 a Nation	1	

Appendice 2	1
-------------	---

Rilievo N°	A186	Coordinata X	1594613,981	Coordinata Y	5116299,101		
		PARAMETRI	GEOMECCANICI R			·	
Litologia		Campioni	nor Point Load	!	VRU medio		
RQD (%)		raccolti	per rome cours	<u> </u>	(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	К1	К2	К3	К4	К5
	orientazione [°]	172/72	286/44	140/58	130/86		
Caratteristiche dei	spaziatura (cm)	ļ!	ļ	ļ!	ļ	ļ/	ļ
giunti	persistenza P(%)	ļ]	ļ	ļ!	 	ļ]	Ļ
	persistenza A(%)	ļ!	ļ	ļ!	L	<u> </u>	<u> </u>
	apertura (mm)	<u> </u>	1				
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	ос _{арр} (MPa)	Alterazione	I		
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)	1		
	0,24	28,75	8,66		1		
						1	
		mı	m _b		a		
Parametri analitici	(14-0)	· (84ma)	 		 '		
	σ _{cm} (Mpa)	് _{3max} (№ра)	C'	Ψ	l		
		<u> </u>		<u>ال</u>	N	4	
	JEOMECCANICA D	ELL'AMIMASSU	ROCCIOSO		+/		< _
D1) Resistenza PL		GSI (un ctto,	7.7	<u>├</u>	1+	/	$\land \neg$
				- /	+/	/ /	/
P3) Spaziatura				w	K1 +	///	L.
P4) Giunti	1 1			- "h		K3 +	
P5) Acqua				<u> </u>		K2	/
RMR _b =	48			7	XX		1 -
NOTE	<u> </u>				X		
Microfaglie lungo Sie fa	miglia di faglie				S	5	
lungo K3; presenza di m	icrofaglie		J. C. L.	1 mai		sile in	All the second
millimetriche ed orienta	azione del		1 Maria -		Res al	1000	a strate
clasti ondulata.			A LANDA	ALL DAY	AND COM		
1	I			11 - 2 - M		Potto a	State of the second
		200	Annu V	1	Mar Seller	A THE S	Chings.
		Stor A		A PLAN	1-	1 the second	· · · · · · · · ·
		Leine Li		to the second	Based	Visit	1. Alter
		E THE ST	The second	Contraction of			1 Mar
						A AN	March 1
				ALC: NO PARTY		100 197	States and
		a succession	A the second	Ser C	A A	A.L.	A. The
		C. Marco	ACCORT OF		AN AREA	15-55	
		NU PAR	16-15-		CHARTER STAT	ALL ST	

Rilievo N°	A187	Coordinata X	1594597,558	Coordinata Y	5116281,157	J	
		PARAMETRI G	EOMECCANICI RIL	EVATI		. <u> </u>	
Litologia		Campioni	per Point Load		VRU medio		
RQD (%)		raccolti	por . o		(cm)	 • •	
Orientazione versante [°]	240/84	Orient. F1	184/75	Orient. F2		Orient. F3	
SISTEMI		s	K1	К2	К3	К4	К5
	orientazione [°]	184/75	240/84				
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza P(%)						
	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	σc; // (Mpa) PL	σc⊨⊥(Mpa)PL	ocana (MPa)	Alterazione			
		····	очарр (с)				
Parametri sperimentali	c'[Mpa]	o' [°]	E (Gpa)	γ (KN/m3)			
			(-1/	1 ()			
				·			
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	EOMECCANICA DE	LL'AMMASSO R	OCCIOSO				
Bieniawsk		GSI (diretto) =					
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
RMR. =							
		15 St 14.		22.11 M			
NOTE							
F1 è anche giacitura di S; alterazione lungo S	forte	12.18	Anna Mart				
	r	32.00					St 10
N		-	A A		1 AGAS		
+		MIST					
	$\overline{\langle}$		ALC: NO ALC: NO				24.00
	+ \					Japa V	3 Marchar
	F			A.S. 115	a special		
W- + (Aff)	-E	Con Alle					
P (e S)	F	ST TON	The Crite		1 - Aler		
	Ĺ					Trans A	
		1 Conte	22016月1		4140		
	X		and with		1 Artican	with the state	
S		Mar 1	States.		BRUA		

A188	Coordinata X	1594594,548	Coordinata Y	5116270,079		
	PARAMETRI O	GEOMECCANICI RI	LEVATI			
	Campioni	per Point Load		VRU medio		
	Taccotti			((((()))))		
	Orient. F1	140/80	Orient. F2	230/22	Orient. F3	
	S	К1	К2	К3	К4	К5
orientazione [°]						
spaziatura (cm)						
persistenza P(%)						
persistenza A(%)						
apertura (mm)					1	
assente	granulare	coesivo	ricrist.			
assente	asciutto	umido	bagnato			
integre	ossidate	legg. alterate	<u>alterate</u>			
ರ್c _i // (Mpa) PL	σc _i ⊥(Mpa) PL	σc_{app} (MPa)	Alterazione			
c'[Mpa]	o'[°]	E (Gpa)	γ (KN/m3)			
0.16	21.25	3 65	- / (RR7/113)			
,	,	-,	ļ		1	
D	mi	m _b	S	а		
σ _{cm} (Mpa)	് _{3max} (Mpa)	c'	φ'			
GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
ki	GSI (diretto) =	28				
33					2005. (S. 2	
Į.		CAN R.	A Stor		The second	A ST
le	and the second	A tex				141/1
zione			Seales MA		See +	
	B. W. L					
E						
	orientazione [°] spaziatura (cm) persistenza P(%) persistenza A(%) a pertura (mm) assente assente integre c'[Mpa] 0,16 D C'[Mpa] 0,16 D GEOMECCANICA D ki	raccotti Orient. F1 S orientazione [°] spaziatura (cm) persistenza P(%) persistenza A(%) a pertura (mm) assente assente assente assente assente assente oci // (Mpa) PL cc'[Mpa] of' [°] 0,16 21,25 D mi ocm (Mpa) of'amax (Mpa) GSI (diretto) = Image: Comparison of the system of t	raccolti Orient. F1 140/80 S K1 orientazione [°] - spaziatura (cm) - persistenza P(%) - persistenza A(%) - apertura (mm) - assente granulare coesivo assente asciutto umido integre ossidate legg. alterate cr(Mpa) PL ox; ⊥(Mpa) PL ox; app (MPa) c'[Mpa] q° [°] E (Gpa) 0,16 0,16 21,25 3,65 - D mi mb - ocm (Mpa) o' 3max (Mpa) c' - GEOMECCANICA DELL'AMMASSO ROCCIOSO ki GSI (diretto) = 28 a33 - - - -	raccoti Orient. F1 140/80 Orient. F2 S K1 K2 prientazione [']	raccolti (cm) Orient. F1 140/80 Orient. F2 230/22 S K1 K2 K3 grientazione [']	recc0ti (cm) Orient. F1 140/80 Orient. F2 230/22 Orient. F3 s K1 K2 K3 K4 orientazione [']

Rilievo N°	A201	Coordinata X	1594203,01	Coordinata Y	5116271,29		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia	quarzite	Campioni raccolti	per Point Load		VRU medio (cm)		
Orientazione versante [°]		Orient F1	122/68	Orient E2	. ,	Orient F3	
SISTEMI		c c	122/00	V2	V2		VE
0.012.00		3	<u></u>	KZ	K3	K4	
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)			ļļ		<u> </u>	
Rimpimento	ascente	grapulare	coesivo	ricrist			
Δεσιμα	assente	granulare	cuestio	hagnata			
	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	<u>alterate</u>			
JRC							
	σc _i // (Mpa) PL	$\sigma c_i \perp$ (Mpa) PL	ос _{арр} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0.24	28.75	8.66	25.31			
	- /	-, -	0,00	10,01			
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	ര' _{3max} (Mpa)	с'	φ'			
CLASSIFICAZIONE C	GEOMECCANICA D	FU 'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	43				
P1)Resistenza PL			.0				
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acgua						ALC: NO	
RMR _b =	48						
	.0	A. Sta				1-2.1	
NOTE			State 1	12.44	English and	And the second	See a
serie di microfaglie con misurabile.	giacitura non		il an	1 iter			- ALCO
+ + +	E						

Appendice 1

Rilievo N°	A202	Coordinata X	1594225,169	Coordinata Y	5116267,728		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia		Campioni raccolti	per Point Load		VRU medio (cm)	6x1	LOx5
NQD (%)	226/52	Orient E1		Orient 52	()	Orient E2	
	220/33	Chent. F1		Urient. F2	K 2		WF
5151 EIVII		5	K1	KZ	K3	К4	К5
	orientazione [°]	140/30	226/53	325/62			
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza $\Lambda(\%)$						
	a no rtura (mm)						
Dimainsente	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,24	28,75	8.66	1 () = /			
			-,				
	D	mi	m _b	S	а		
Parametri analitici							
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
CLASSIFICAZIONE O	EOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	43				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	48						
NOTE	1						
lungo K1 si è svilupnata	la trincea	1 - E CARA	Provesting and	119 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		ALC ALC	March 1
	in thirden.	No loss	SIDA	NA REAL	States -	A lise	T CALLER IN
	î î			学家于	and and an	No.3	No. of the local division of the local divis
N				Diane Melle		家族	A REAL PROPERTY.
				AT NO.			A. P. Constant
	A						
	+	STATES L					
+ + K2					A CONTRACT	and the second	
- w- +	-E		A State		不是是大	* **	
Rst (Aff)	/ /	C. S.	12.5			A MA	
	AS 1	Constant of the		1 the state	AT A STAN		P. PANC
			ALL ST	A. B. Strain	AT TO	R	1 All
			Contenter 1	the part		A Cart	ASPA A
S			A ACT	- 14 0	A Start	Carles I	N

rependice 1

Rilievo N°	A203	Coordinata X	1594253,143	Coordinata Y	5116260,715		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia ROD (%)		Campioni raccolti	per Point Load		VRU medio (cm)	15)	«4x8
Orientazione versante [°]	232/28	Orient. F1		Orient. F2		Orient. F3	
SISTEMI		s	К1	к2	кз	ка	К5
	orientazione [°]	304/40	232/28	150/78	118/30		
	spaziatura (cm)		,		,		
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
				Alt			
	oc _i // (IVIPa) PL	oc _i ⊥(ivipa) PL	OC _{app} (IVIPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	(0 ['] [°]	E (Gpa)	w (KN (m2)			
	0.24	φ[] 28.75	2 (Opa)	γ (KN/115)			
	0,24	20,75	8,00				
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	ơ'₃ _{max} (Mpa)	c'	φ'			
					Ņ		
CLASSIFICAZIONE G		ELL AIVIIVIASSU	42			A	
Dieliidwsk		d31 (diletto) –	45	- /	+		× —
				- 1			人一
P3) Spaziatura				- /	/s +	+	F —
P4) Giunti				w-	+		-E
P5) Acqua				-1	X	+ /K3	F —
RMR _b =	48				K1 (Aff)		
	NOTE				X	$ \rightarrow $	`

reportance r

Rilievo N°	A204	Coordinata X	1594413,292	Coordinata Y	5116243,081		
		PARAMETRI	GEOMECCANICI RI	LEVATI		. <u> </u>	
Litologia ROD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	30x7	75x30
Orientazione versante [°]		Orient. F1		Orient, F2		Orient. F3	
SISTEMI		S	К1	К2	КЗ	К4	К5
	orientazione [°]	324/60	142/80	32/43			
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
Branci	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{ann} (MPa)	Alterazione			
Parametri sperimentali	44,64		23,101	4,9			
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
				26,97			
						1	
Parametri analitici	D	mı	m _b	5	а		
		-l (N4==)		(a)			
	σ _{cm} (ivipa)	σ _{3max} (ivipa)	C.	ψ			
CLASSIFICAZIONE GEOMECCANICA E		CEL (dirette) -	RUCCIUSU				
Dieniawsk		dsi (diretto) =					
P3) Spaziatura							
P4) Giunti							
P5) Acqua		1000	S. S. S. S. S.	all the		Th N	and the
RMR _b =				-	All and a		
NOTE			Sid Are	1. 1. 20	S. The		
NOIE Affioramento interamente ricoperto da		T					
muschio; forte alterazio	ne lungo la S.			and the	Sa All		
	1	1000		AN LA			
N	<u> </u>	The second	N (2) 7			2 mars	
+		A AMARIA	12 6 19 1				ALC: NO
The second secon	1		1 A				
	K2						T. The
s .	$\wedge t$	n state	1 1 1 1 1 1 1			SEN C	THE T
**-] + K1	L L	E Rom	A A A A A		1 1953	La M	Tan sola
+	\backslash	States .	A CA				
	+		ALT S		1 1 1 1	Real States	VICTOR

rependice 1

Rilievo N°	A206	Coordinata X	1594617,374	Coordinata Y	5116308,506		
	9	PARAMETRI G	EOMECCANICI RI	LEVATI		1 1	
Litologia ROD (%)	anfibolite	Campioni raccolti	per Point Load	х	VRU medio (cm)	10x3	3x4.5
Orientazione versante [°]	220/56	Orient. F1		Orient, F2		Orient. F3	
SISTEMI	,	s	К1	к2	кз	ка	К5
	orientazione [°]	198/53	220/56	320/42	40/50		
	spaziatura (cm)	190,95	220,30	520/12	10/ 50		
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg alterate	alterate			
	integre	USSIGATE	legg. alterate	allelate			
JAC							
	ഗ്c₁ // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	11,28						
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
				26,97			
	D	mi	m _b	S	а		
Parametri analitici			5				
	σ _{cm} (Mpa)	ರ′₂ _{max} (Mpa)	c'	φ'			
	cint i i	Sinda (1 /					
CLASSIFICAZIONE GEOMECCANICA D							
Bieniawsk		GSI (diretto) =					
P1) Resistenza Pl							
P2) ROD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							St ACI
RMR _b =				E C		1 - al	
					1. B 101. B		10 Jak
NOTE		教育 2					的第三人
Fagila marcata lungo S, gradini di faglia.	si vedono i	10 5 .0	HE TAN	M Solid	一个个 1	Wind	TE
8	î		The last			针体深	110
N			CAR A		and in		Person all
			Real P				
+	and the second	A CAR		1. 周報[];			
	Ka					1 Barris	
- w- +	-E	Sec. 1	1000			3004	A BAR
					C Per	Wat the	et al R
+ 5		68861	1 Sector			a tria	A STA
- X	X		(DECAL)	and the	- and ship		
		5 4017	(State)		A le lan	New States	States -
S				and the	No.	C. Martin	R CA
			A SHORE SHOW AND A SHOW	RANGE F. T. RA		AND AND A DOWN	

Rilievo N°	A212	Coordinata X	1594468,136	Coordinata Y	5115979,7		
	8	PARAMETRI GI	EOMECCANICI RILI	EVATI		3 3	
Litologia RQD (%)	ortogneiss	Campioni raccolti	per Point Load	х	VRU medio (cm)	5x	9x7
Orientazione versante [°]		Orient. F1	220/62	Orient. F2		Orient. F3	
SISTEMI		s	К1	К2	КЗ	К4	К5
	orientazione [°]	60/24	310/72	220/62	74/84		
	spaziatura (cm)	,	/		, -		
Caratteristiche dei	persistenza P(%)						
giuna	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC	_						
			<i></i>				
	oc _i // (Mpa) PL	σc _i ⊥(Mpa)PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali		41,52	F (C = -)	(1011 0)			
	c [Mpa]	φ [·] [¹]	E (Gpa)	γ (KN/m3)			
	0,11	16,25	2,05	25,83			
	D	mi	m _b	S	а		
Parametri analitici	0,8	33	0,243	0,0000037	0,552		
	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	c'	φ'			
2,006		13,968	1,262	13,764			
CLASSIFICAZIONE GEOMECCANICA D		ELL'AMMASSO	ROCCIOSO				
Bieniawski		GSI (diretto) =	18				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	23	See 21		And St.	ALSON AND	1 30/2	
NOTE			A Company		Let 4	N PM	a suid h
NOIE		Store and		A STATE OF			
anche giacitura di K2; faglie anche		Cherry Contraction		Mr. A			Star a E
lungo S; affioramento molto piccolo.		and the			BA-L		10
N + +		6		And I			
		X 6	The second	200	Ser Barton		
			-38 P.	all a			A.
				V-G-N			
\downarrow \setminus X	1 F	2 Constants		Tel a			143.94
- w-	-E	1014					
+ F(e K2)			1 Parts		Ch IS		
	+ / /					5 He	
\sim	17			The second	1.2	all and	./
	L	1 - 2 - 2		A A			A s

Rilievo N°	A216	Coordinata X	1594729,537	Coordinata Y	5115541,621		
		PARAMETRI GEC	MECCANICI RILE	/ATI			
Litologia BOD (%)	filladi quarzifere	Campioni raccolti	per Point Load	х	VRU medio (cm)	20x3	30x23
Orientazione versante [°]		Orient F1		Orient E2	. ,	Orient F3	
	<u> </u>	c c	¥1		V 2	VA	VE
0.012.0	orientazione [°]	318/50	26/71	κ2	7.2	N4	K5
	snaziatura (cm)	518/50	20/71				
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento		grapularo	coosiyo	ricrist			
	assente	granulare	coesivo	harrata			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	oc₁noS(Mpa) PL	oc _{app} (MPa)	Alterazione			
D tui su suine entelli		31,2					
Parametri sperimentali	c'[Mpa]	φ'[°]	E (Gpa)	γ (KN/m3)			
				25,31			
	D	mi	m _b	S	а		
Parametri analitici							
	σ _m (Mpa)	ರ'₂m₂v (Mpa)	c'	φ'			
		~ 3Illdx (r - 7					
CLASSIFICAZION	e geomeccanica d	ELL'AMMASSO RO	CCIOSO				
Bieniaw	ski	GSI (diretto) =					
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua		Sandara and Sandara	-	No. Contraction	and the second s		Land Street
RMR _b =				2	KB -	S CONTRACTOR	NEW
NOTE			6 AN		No.		USELUSE AND
Poco più a nord presenza di munerose pieghe.			S.M		No in	d la	
- <u>N</u>							
+ +	+ +						
S			Contraction of	- A.			A

Rilievo N°	A217	Coordinata X	1594754,275	Coordinata Y	5115565,317		
	LEVATI						
Litologia		Campioni	nor Doint Load		VRU medio		
RQD (%)		raccolti	per Point Load		(cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	К1	К2	К3	К4	К5
	orientazione [°]						
	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
Sidirti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
				Alterra-			
	σc _i // (Mpa) PL	σc _i ⊥(IVIpa) PL	oc _{app} (IVIPa)	Alterazione			
Parametri sperimentali	c'[Mna]	(0' [°]	F (Gna)	v (KN/m3)			
	0.21	φ[] 26.25	6 49	γ (KN/113)			
	0,21	20,25	0,49				
Parametri analitici	D	mi	m _b	S	а		
	0,8	31	0,751	0,0000772	0,513		
	σ _{cm} (Mpa)	ơ'₃ _{max} (Mpa)	с'	φ'			
CLASSIFICAZIONE G	GEOMECCANICA D	ELL'AMMASSO	ROCCIOSO				
Bieniawsk	ci	GSI (diretto) =	38				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	43						
NOTE	I.						
Roccia di faglia, molto piegata.							
							State of Street, or other
	1	07 10	and the second			- We House	
	ALT		58-12 ·				
	25.0	A MARTIN	and the second			10	
	and the second		- CAR		and the	and the second	
				1		and the second second	1. X 2
	100	Rafano	R I	and the	- A		
	100	A. Cat	1 and the		and the	1 17	-WET
		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The set	1	and the set	A States	Transie and
	1	Crist M	All and a		The second second		Ellipson -
		and a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seal - Contain			

Rilievo N°	A221	Coordinata X	1594834,379	Coordinata Y	5116279,997		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia RQD (%)		Campioni raccolti	per Point Load		VRU medio (cm)		
Orientazione versante [°]		Orient. F1		Orient. F2		Orient. F3	
SISTEMI		S	K1	К2	К3	К4	K5
	orientazione [°]	334/58					
Communications dat	spaziatura (cm)						
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	တင _{app} (MPa)	Alterazione			
Parametri sperimentali	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	D	mi	m.	s	а		
			Пр		ŭ		
Parametri analitici	g (Mpa)	ຕ່. (Mna)	c'	ω'			
		O 3max (Wipu)		r			
				1			
	EOMECCANICA D	CSI (diretto) -	RUCCIUSU				
Diefildwsr D1) Posistonza DI		GSI (diretto) =					
P2) ROD				N			
P3) Spaziatura				/			
P4) Giunti					X	\	
P5) Acqua				/			
RMR _b =				5		F	
NOTE				+	-	E	
Piccolo affioramento.			= 1			/ _	
			Ľ,		+	/	
			^				
					TTT		
				S			

Appendice 1

Rilievo N°	A223	Coordinata X	1594808,823	Coordinata Y	5116112,277		
	ء ۽ ۽	PARAMETRI GE	OMECCANICI RILI	EVATI		i	
Litologia RQD (%)	ortogneiss	Campioni raccolti	per Point Load	x	VRU medio (cm)	4x	8x3
Orientazione versante [°]		Orient. F1	344/58	Orient. F2		Orient. F3	
SISTEMI	1	s	K1	К2	К3	К4	К5
	orientazione [°]	338/50	82/68	66/72			
	spaziatura (cm)	000,00	02,00				
Caratteristiche dei	persistenza P(%)						
giunti	persistenza A(%)						
	apertura (mm)					ļļ	
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg alterate	alterate			
JRC	eBre			ancoluce			
		n					
	σc _i // (Mpa) PL	σc _i noS(Mpa) PL	σc_{app} (MPa)	Alterazione			
Parametri sperimentali		59,76					
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,19	23,75	4,87	25,83			
Parametri analitici	D	mi	m _b	S	а		
	0,5	33	1,326	0,0001234	0,519		
	σ _{cm} (Mpa)	σ' _{3max} (Mpa)	c'	φ'			
CLASSIFICAZIONE	GEOMECCANICA I	DELL'AMMASSO R	occioso				
Bieniaws	ci	GSI (diretto) =	33				
P1) Resistenza PL							
P2) RQD							
P3) Spaziatura							
P4) Giunti							
P5) Acqua							
RMR _b =	38						
NOTE							
Litologia da carta geologica, piccolo affioramento.		10.					
W + + + + + + + + + + + + + + + + + + +	E						

rependice 1

Rilievo N°	A225	Coordinata X	1594671,128	Coordinata Y	5115952,782		
		PARAMETRI G	GEOMECCANICI RI	LEVATI			
Litologia RQD (%)	ortogneiss	Campioni raccolti	per Point Load	x	VRU medio (cm)	14x:	10x11
Orientazione versante [°]		Orient. F1	360/84	Orient. F2	288/40	Orient. F3	316/87
SISTEMI		S	K1	К2	К3	К4	К5
	orientazione [°]	196/6	360/84	316/87	276/68	74/42	36/50
Country statistics dat	spaziatura (cm)						
Caratteristiche dei giunti	persistenza P(%)						
8.0	persistenza A(%)						
	apertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist.			
Acqua	assente	asciutto	umido	bagnato			
Alterazione superfici	integre	ossidate	legg. alterate	alterate			
JRC							
			<i>/</i> ×				
	σc _i // (Mpa) PL	σc _i ⊥(Mpa) PL	oc _{app} (MPa)	Alterazione			
Parametri sperimentali	21,84			((0) (- 2)			
		φ[]		γ (KN/M3)			
	0,14	18,75	2,74	25,83			
	D	mi	m _b	S	а		
Parametri analitici	0,5	33	0,824	0,0000325	0,537		
i diametri diamaci	σ _{cm} (Mpa)	ರ′ _{3max} (Mpa)	с'	φ'			
	2,222	14,096	1,709	18,249			
CLASSIFICAZIONE G		N					
Bieniawsk	ci	GSI (diretto) =	23		X		. –
P1) Resistenza PL				T t		\setminus /	\mathbf{z}
P2) RQD						145	F
P3) Spaziatura				1	F2		F
P4) Giunti				w	+ 13	+ +	E
P5) Acqua					+		
RMR _b =	28				XI		\mathbf{X}
	NOTE			— ×	1.L	1	
Litologia da carta geoog	gica; F1 è anche g	giacitura di K1	e F3 di K2.		1st+	T	
	A	ST.					

Rilievo N°	A226	Coordinata X	1594585,684	Coordinata Y	5115990,45		
		PARAMETRI	GEOMECCANICI R	ILEVATI			
Litologia		Campioni raccolti	per Point Load		VRU medio (cm)	20x	13x9
RQD (%)	24/76	Orient E1	170/12	Orient F2	112/62	Origent F2	
	54/70	Onent. F1	170/12	Orient. F2	115/62	Unent. FS	
5151 EIVII		5	K1	K2	K3	K4	К5
	orientazione [°]	34/76	170/12	113/62	242/60		
Caratteristiche dei	spaziatura (cm)						
giunti	persistenza A(%)						
	a pertura (mm)						
Rimpimento	assente	granulare	coesivo	ricrist			
Acqua	assente	asciutto	umido	hagnato			
Alterazione superfici	intogro	ascidato		altorato			
	integre	ossidate	legg. alterate	alterate			
JRC							
	σc _i // (Mpa) PL	$\sigma c_i \perp (Mpa) PL$	တင _{app} (MPa)	Alterazione			
Parametri sperimentali							
	c'[Mpa]	φ' [°]	E (Gpa)	γ (KN/m3)			
	0,16	21,25	3,65				
	D	mi	m _b	S	а		
Parametri analitici	σ _{cm} (Mpa)	σ'₃ _{max} (Mpa)	c'	φ'			
		Sindix (1 7					
			ROCCIOSO	· · · · · ·	N		
Bieniawsk	di d	GSI (diretto) =	28		1		
P1) Resistenza PL				- /			¥ —
P2) RQD				/	+	+	—
P3) Spaziatura				w	\$ (A	ff)	Т-е
P4) Giunti				t	13	F2 (e K2)	/
P5) Acqua				1			//
RMR _b =	33			7	\setminus \land		
NOTE					X	F (e K1)	
F1 è anche giacitura di					s		
K1 e F2 di K2; spessore			the second	A State	The Carelin of	and the party of the second	
glaciale esiguo, non		a ser	-		The second second		
più di 30cm.	and a second		A Real	Part of the	P	and series	
	Se Se	A DE LA	Contraction of the		The stan		
		- A			A COM		AND A PROPERTY
	CAR PORT	A		1 House	SAL B	the set	The Part
		11 fait	the state			K AL	
	Carlo a		1 .		Ser la se	1 Maria	
	AN			The second			
	1.2			Alexandre States	The second	it grilles	
	4400	1. 1. A.	Lander	Carrie and	North The	a start and a start	
	" La sta	and the	4	Strathing when			a station
	100 20		- AND DUS		Charles M	and the or star	

Appendice 2: Indice della scheda rilievo

Parametri geomeccanici rilevati:

- Indice RQD (Rock Quality Designation Index): percetuale di recupero modificata di un sondaggio; •
- VRU medio: Volume Roccioso Unitario medio •
- Orientazione: F1/F2/F3: Immersione ed inclinazione medie delle Faglie; •
- Sistemi: S/K1/K2/K3/K4/K5: Immersione ed inclinazione medie delle relative famiglie di • discontinuità;
- JRC: Coefficiente di rugosità del giunto.

Parametri sperimentali:

- σc_i (Mpa) PL: Resistenza a compressione monoassiale, ricavata dalla formula σc_i = Is(50)*24, • dove, Is(50) rappresenta il rapporto tra il carico a rottura P [KN] e la distanza D tra i due punti di applicazione, normalizzato poi al valore D = 50mm.
- σc_{app} (Mpa):Resistenza a compressione del materiale stesso, ricavata dalla formula

 $\sigma c_{app} = 10^{0.00088\gamma * R + 1.01}$, dove, g [KN/m³] è il peso specifico del materiale mentre R rappresenta il rimbalzo elastico;

- Alterazione: $\sigma c_i / \sigma c_{app}$; •
- c'[MPa] = 0.005*RMR_b, rappresenta la coesione dell'ammasso roccioso;
- ϕ' [°] = 5+(RMR_b/2), rappresenta l'angolo d'attrito dell'ammasso roccioso; •
- E (GPa) = $10^{\frac{RMR_b-10}{40}}$, rappresenta il modulo elastico dell'ammasso roccioso.

Parametri analitici:

- D: fattore di disturbo; •
- mi: coefficiente tipico della roccia intatta;
- $m_{\rm b} = m_i e^{\frac{1}{28-14 \cdot D}}$, coefficiente dipendente dalle caratteristiche dell'ammasso roccioso; •
- s = $e^{\frac{GSI-100}{9-3\cdot D}}$, coefficiente dipendente dalle caratteristiche dell'ammasso roccioso; •
- a = $0.5 + \frac{1}{6} \cdot (e^{\frac{-GSI}{15}} e^{\frac{-20}{3}})$, coefficiente dipendente dalle caratteristiche dell'ammasso roccioso; •
- σ'_{cm} (MPa): Resistenza a compressione di ammasso, ricavata dalla formula

$$\sigma'_{cm} = \sigma_{ci} \cdot \frac{(m_b + 4s - a \cdot (m_b - 8s)) \cdot (\frac{m_b}{4} + s)^{a-1}}{2 \cdot (1+a) \cdot (2+a)}$$

 σ'_{3max} (MPa)Resistenza a compressione massima, ricavata dalla formula

$$\sigma'_{3max} = 0.72 \cdot \left(\frac{\sigma'_{cm}}{\gamma \cdot H}\right)^{-0.91} \cdot \sigma'_{cm}$$

•
$$c' = \frac{\sigma_{ci}[(1-2a)s+(1-a)m_b\sigma'_{3n}]\cdot(s+m_b\sigma'_{3n})^{a-1}}{(1-a)\cdot(2+a)\cdot\sqrt{1+(6am_b(s+m_b\sigma'_{3n})^{a-1})/((1+a)(2+a))}}$$

 $\varphi' = \sin^{-1} \left[\frac{\frac{6am_b(s+m_b\sigma'_{3n})^{a-1}}{2(1+a)(2+a)+6am_b(s+m_b\sigma'_{3n})^{a-1}} \right] \ \cos \sigma'_{3n} = \sigma'_{3max} / \sigma'_{ci}$

Classificazione Geomeccanica:

- RMR_b (Base Rock Mass Rating): rappresenta il punteggio di qualità dell'ammasso roccioso;
- GSI (Geological Strenght Index):rappresenta il punteggio di qualità dell'ammasso roccioso in funzione del grado di fatturazione e delle condizioni di alterazione.