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A B S T R A C T

This aim of this Thesis is to describe and analyze the problem of
stochastic filtering of continuous-time pure jump Markov processes
with noise-free observation.

A couple of continuous-time stochastic processes Xt and Yt, de-
fined on some probability space and with values in two measurable
spaces (I, I) and (O, O) respectively, is given. We assume that the
process Xt is a pure jump Markov process of known rate transition
measure λ(x, dy). Moreover, the observation process Yt is not directly
affected by noise. Finally, a deterministic function h : I → O relates
the two processes, in the sense that Yt = h(Xt), t > 0.

We will derive an explicit equation for the filtering process Πt(A) =
P
(
Xt ∈ A | FYt

)
, A ∈ I, t > 0, where FYt denotes the natural filtra-

tion of the process Yt. This task will be accomplished by writing the
processes Xt and Yt in terms of two marked point processes. Then
martingale calculus will be applied to the latter processes and will
provide the explicit form of the aforementioned equation.

Keywords: nonlinear filtering; marked point processes; pure jump
Markov processes.
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S O M M A R I O

L’obiettivo di questa Tesi è la descrizione e l’analisi del problema di
filtraggio di un processo di Markov di puro salto a tempo continuo,
con osservazioni prive di rumore.

Come noto, il filtraggio di processi stocastici riveste un’importan-
za fondamentale in molte aree scientifiche. In particolare, se si pensa
all’ambito ingegneristico, è sufficiente menzionare i rami dell’auto-
matica, dell’elettronica e dell’informatica. La sua rilevanza è dovuta
al fatto che molti problemi concreti si presentano come problemi di
filtraggio e controllo. In questi contesti, si vuole intraprendere delle
azioni di controllo su taluni processi stocastici non osservabili diret-
tamente; pertanto, attraverso osservazioni relative a un altro processo
stocastico, si intende stimare lo stato del processo non osservabile e
compiere le azioni di controllo sulla base di tali stime.

In questo lavoro, il dato con cui si ha a che fare è una coppia di
processi stocastici Xt e Yt a tempo continuo, definiti su uno stesso
spazio di probabilità (Ω, F, P) e a valori in due spazi misurabili
(I, I) e (O, O), rispettivamente. Il processo Xt sarà detto processo non
osservabile e il processo Yt sarà chiamato processo osservabile.

Lo scopo del problema di filtraggio è la descrizione e l’analisi delle
proprietà del processo di filtraggio

Πt(A) = P
(
Xt ∈ A | FYt

)
, A ∈ I, t > 0,

ove con FYt si è indicata la filtrazione naturale del processo Yt, ossia
la famiglia di σ-algebre

{
σ(Ys, 0 6 s 6 t)

}
t>0. Spesso tale processo

soddisfa delle opportune equazioni differenziali e può essere carat-
terizzato come soluzione unica di tali equazioni, dette equazioni di
filtraggio.

In letteratura, il modello di gran lunga più analizzato e quello in
cui Xt è un generico processo markoviano e Yt è un processo a valori
in O = Rm della forma

Yt =

∫t
0

f(Xs)ds+Wt, t > 0,

ove Wt è un moto browniano standard a valori in Rm definito sul
medesimo spazio di probabilità su cui sono definiti Xt e Yt; la fun-
zione f : I → Rm è una funzione assegnata. Nel modello si considera,
dunque, un processo osservabile che è un funzionale del processo
non osservabile e su cui agisce un rumore non-degenere. Il lettore
interessato a questo caso, può consultare i testi [1, 2, 18] per una sua
trattazione generale. Un’esposizione dettagliata della soluzione a tale
problema tramite i classici approcci con filtri di Kalman o Wonham,
si trova in [11, 15].
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Un modello che ha destato attenzione solo recentemente è quello
nel quale si suppone

Yt = h(Xt), t > 0,

ove h : I→ O è una funzione data. È evidente, in tal caso, che sul pro-
cesso osservabile non agisce direttamente un rumore. Vi agisce solo
indirettamente attraverso il processo non osservabile, che contiene in
sé tutte le fonti di casualità. Questa classe di problemi è stata analiz-
zata in relazione a diversi modelli di filtraggio, come in [6, 14, 16], op-
pure in casi particolari. Ad esempio, in [12] si pone I = Rn, O = Rm

e si fanno ipotesi specifiche sulla funzione h.
In questo contesto, il problema di filtraggio si inserisce nella più

ampia classe dei modelli Hidden Markov, molto usata nelle applicazio-
ni e a tutt’oggi molto studiata. Si rimanda il lettore al testo [10] per
una trattazione esaustiva di questi modelli, sia a tempo discreto che
a tempo continuo e sia con spazi di stato discreti o più generali.

Uno studio sistematico del problema di filtraggio nel caso di osser-
vazioni prive di rumore è ancora assente in letteratura. Le sole opere
che trattano questo specifico problema a tempo continuo sono [12] e
[5]. Quest’ultimo è il lavoro su cui questa Tesi è basato. Ivi gli autori
suppongono che gli spazi (I, I) e (O, O) siano di dimensione finita
e che h : I → O sia una funzione suriettiva. Il processo Xt è una ca-
tena di Markov omogenea nel tempo a valori in I di cui è nota la
matrice dei ratei di transizione Λ. Con queste assunzioni, il processo
di filtraggio prende una forma più semplice, essendo completamente
specificato da un numero finito di processi a valori reali, vale a dire

Πt(i) = P
(
Xt = i | F

Y
t

)
, i ∈ I, t > 0.

Inoltre per ricavare la forma dell’equazione di filtraggio è stato usato
un metodo basato su approssimazioni discrete.

In questo lavoro, invece, si adotterà un punto di vista differente,
basato sui processi di punto marcati e sulla teoria delle martingale.
Un processo di punto marcato è una collezione di coppie di variabili
aleatorie (Tn, ξn)n>1, definite su uno spazio di probabilità (Ω, F, P),
a valori in

(
[0,+∞] × E

)
, ove (E, E) è uno spazio misurabile. Que-

sti processi sono atti a descrivere, da un punto di vista applicativo,
sequenze di fenomeni fisici distribuiti nel tempo di cui si registrano
dei valori d’interesse. Essi sono usati in svariati ambiti, ad esempio la
teoria delle code.

Dei due approcci tipicamente usati nella descrizione di questi pro-
cessi, il primo basato sulla teoria della misura, il secondo sul concetto
di intensità stocastica, sarà quest’ultimo a essere adottato nel lavoro
presente. L’intensità stocastica, se esiste, riassume in sé una misura, a
un certo istante fissato, del potenziale che un processo di punto ha di
generare un evento nell’immediato futuro, nota una certa quantità di
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informazione che includa almeno la conoscenza dei valori passati del
processo stesso.

Di questa quantità si dà una definizione tramite la teoria delle mar-
tingale, come noto una teoria molto sviluppata, di cui, dunque, si
potranno sfruttare i risultati. Il calcolo stocastico che ne deriva, forni-
rà degli strumenti adeguati e flessibili per una trattazione dei modelli
basati su processi di punto sotto un’ottica dinamica. Questo modo di
procedere è analogo al caso di sistemi governati da moti browniani,
con cui si potranno ravvisare diverse similarità.

Il contributo principale di questa Tesi è di applicare le tecniche ap-
pena descritte al modello precedentemente presentato, il quale possie-
de senza dubbio una natura dinamica. Questo approccio ci consentirà
di fornire dimostrazioni più semplici rispetto a quelle riportate in [5].
In più, potremo introdurre un’ulteriore novità. Saranno, infatti, inde-
bolite le ipotesi introdotte in [5], supponendo che (I, I) sia uno spazio
metrico completo e separabile. Il processo Xt sarà, dunque, un pro-
cesso di Markov di puro salto omogeneo nel tempo e a valori in I, di
cui assumeremo note la misura dei ratei di transizione λ(x, dy) e la
distribuzione iniziale µ(dx).

Sintetizziamo, brevemente, i risultati originali contenuti in questo
lavoro. L’equazione di filtraggio ottenuta è data da

Ẑt(ω,A) = HY0(ω)[µ](A)+

+

∫t
0

{∫
I

λ
(
x,A∩ h−1

(
Ys(ω)

))
Ẑs−(ω,dx) −

∫
A

λ(x)Ẑs−(ω,dx)+

+ Ẑs−(ω,A)

∫
I

λ
(
x, h−1

(
Ys(ω)

)c)
Ẑs−(ω,dx)

}
ds+

+
∑

0<τn(ω)6t

{
HYτn(ω)[µn](A) − Ẑτn−(ω,A)

}
,

per ogni ω ∈ Ω e per ogni t > 0. Essa può anche essere scritta in una
forma leggermente diversa, mostrata nella formula (2.30) contenuta
nell’osservazione finale del Capitolo 2. La sua struttura, all’apparenza
complessa, è in realtà semplice e a breve sarà discussa.

Il processo Ẑt(ω,A), A ∈ I, altresì indicato con Ẑt(A), è una ver-
sione del processo di filtraggio P (Xt ∈ A | Ot). Ciò significa che, per
ogni t > 0 e ogni A ∈ I, Ẑt(ω,A) = P (Xt ∈ A | Ot) , P − q.c. . La
filtrazione Ot è associata al processo osservabile e, nel nostro caso,
si ha FYt ≡ Ot. Pertanto, il processo presentato ora è parimenti una
versione del processo di filtraggio scritto in precedenza.

Sia A ∈ I un insieme fissato. Possiamo scomporre il processo Ẑt(A)
in tre termini principali, visibili rispettivamente nella prima riga, nel-
le due righe centrali e nell’ultima riga della precedente equazione:

(i) Il valore iniziale, corrispondente a P (X0 ∈ A | Y0). L’operatore H
che compare nell’equazione agisce sulla misura di probabilità µ
trasformandola nella suddetta probabilità condizionale.
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(ii) La parte deterministica, composta di una parte lineare (seconda
riga) e di una parte quadratica (terza riga), un aspetto comune
a molti processi di filtraggio. È facile vedere che, tra i tempi di
salto (τn)n∈N del processo Yt, cioè per t ∈ [τn, τn+1), n ∈ N, il
processo evolve seguendo la dinamica deterministica prescritta
dai termini summenzionati.

(iii) La parte salto. Al tempo di salto τn, il solo termineHYτn [µn](A),
n ∈ N, determina il valore del processo. Esso corrisponde alla
probabilità condizionale che il processo Xt prenda valori nel-
l’insieme A successivamente all’n-esimo salto, rispetto alla σ-
algebra Oτn .

Per quanto concerne la misura dei ratei di transizione, la notazione
usata è λ(x,A) anziché

∫
A λ(x, dy),A ∈ I e λ(x) in luogo di

∫
I λ(x, dy),

onde evitare troppi simboli d’integrazione nella formula. Infine, os-
serviamo che tutti gli integrali che compaiono, sono calcolati rispetto
alla misura di probabilità condizionale Ẑs−(dx), la quale è definita
dallo stesso processo di filtraggio.

È evidente che il caso discusso in [5] è un particolare esempio di
quanto analizzato in questo lavoro. Di conseguenza, è naturale notare
la somiglianza tra [5, eq. 2.5] e la presente equazione. Ciò che differirà
sarà il percorso seguito per ottenere questa formula.

Inizieremo con lo scrivere i processi Xt e Yt come processi di pun-
to marcati. Per la precisione, il processo osservabile sarà scritto come
un processo di punto K-variato, ove con K ∈ N si denota la dimen-
sione dell’insieme O. Introdurremo, poi, il processo Zt(A) = 1A(Xt),
t > 0, ove A sarà un boreliano di I fissato. Scriveremo, dunque, la sua
rappresentazione di semimartingala. Questo sarà un compito agevole,
poiché è noto il generatore infinitesimale L del processo Xt, dunque
la formula di Dynkin fornirà il risultato richiesto. Dopo aver verifica-
to le opportune ipotesi, potremo applicare il teorema di filtraggio e
ottenere l’equazione di filtraggio in una prima formulazione:

Ẑt(A) = Ẑ0(A) +

∫t
0

f̂s ds+ m̂t, t > 0,

ove

• Ẑ0(A) = P (X0 ∈ A | Y0),

• f̂t = E [Lϕ(Xt) | Ot] , ϕ(x) = 1A(x),

• m̂t =
∑K
k=1

∫t
0 Ks(k,A) [dN

Y
s (k) − λ̂

Y
s (k)ds].

Il termine dNYs (k) − λ̂Ys (k)ds è la cosiddetta misura compensata as-
sociata al k-esimo processo di conteggio NYt (k), k = 1, . . . , K. Tut-
te queste quantità sono collegate al processo osservabile e saranno
analizzate in dettaglio nel Capitolo 1.
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La parte saliente di questa formulazione dell’equazione di filtrag-
gio è data dal processo di guadagno Kt(k,A). Per ogni k = 1, . . . , K, esso
può essere scritto come somma di tre termini, Ψ1,t(k,A), Ψ2,t(k,A)
e Ψ3,t(k,A). Ciascuno di questi ultimi è definito come derivata di
Radon-Nikodym di ben precise misure e ne potremo esplicitare la
forma. Infine, dopo una serie di calcoli. giungeremo all’equazione di
filtraggio nella sua formulazione definitiva prima mostrata.

La Tesi sarà strutturata come segue:

• Nel Capitolo 1 descriveremo i processi di punto marcati, dando-
ne anche qualche semplice esempio, e illustreremo le tecniche
di filtraggio con osservazioni costituite da processi di punto.

• Nel Capitolo 2 esporremo dettagliatamente il problema di fil-
traggio sintetizzato in precedenza e ne dimostreremo la formula
di filtraggio.

• Nella sezione conclusiva riassumeremo i principali risultati otte-
nuti e daremo uno sguardo alle potenziali estensioni di questo
lavoro e agli sviluppi futuri sull’argomento.

Una breve esposizione sui principali concetti riguardanti la teoria
dei processi stocastici (alcuni dei quali sono già stati incontrati), come
filtrazioni, tempi d’arresto, martingale e processi prevedibili, verrà
fornita nell’Appendice A.

Tutti i risultati richiamati nel prossimo Capitolo o in Appendice so-
no dati senza dimostrazione. Le uniche dimostrazioni contenute nel-
la presente Tesi sono quelle originali, riguardanti i risultati presentati
nel Capitolo 2.

Parole Chiave: filtraggio non lineare; processi di punto marcati;
processi di Markov di puro salto.
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I N T R O D U C T I O N

The aim of this work is to describe and analyze the problem of
stochastic filtering of continuous-time pure jump Markov processes
with noise-free observation.

Filtering of stochastic processes is of foremost importance in many
scientific areas, in particular in engineering fields such as automa-
tion, electronics and informatics. Its prominence is due to the nature
of many real-world problems, where controlled processes cannot be
observed directly and control actions are instead performed on the
basis of another observed process.

To make more explicit this setting, let us introduce the classical
formulation of the problem, that will be restated and further de-
tailed in Chapter 2. Let (Ω, F, P) be a probability space and let
(Xt)t>0 and (Yt)t>0 be a pair of stochastic processes with values in
two measurable spaces (I, I) and (O, O), respectively. Xt is called the
unobserved (or signal) process and Yt is called the observation process.
We can then define a filtering process as

Πt(A) = P
(
Xt ∈ A | FYt

)
, A ∈ I, t > 0, (1)

where FYt = σ(Ys, 0 6 s 6 t) are the σ-algebras of the natural filtra-
tion of the observation process.

In a general context, the filtering problem addresses the issue of
describing the process (1) and finding its key properties. It is often
the case that this process satisfies some differential equations and it
can be characterized as the unique solution of such equations. These
are called the filtering equations.

In the literature, the most common case is to take Xt as a Markov
process and Yt as an Rm-valued process (i. e. O = Rm) of the form

Yt =

∫t
0

f(Xs)ds+Wt, t > 0, (2)

where Wt is a standard Rm-valued Wiener process defined on the
same probability space as Xt and Yt and f : I → Rm is a given func-
tion. In words, the observation process is a functional of the unob-
served one and a non-degenerate noise is acting on it. The interested
reader is referenced to [1, 2, 18] for a general treatment of this situ-
ation and to [11, 15] for a detailed exposition of the solution to this
case with the classical approach of Kalman or Wonham filters.

A different model addressed recently by several authors is the fol-
lowing:

Yt = h(Xt), t > 0, (3)

where h : I → O is a given function. This is the case where Yt is a
noise-free observation, i. e. it is not directly affected by noise. Thus,
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introduction 2

all the sources of randomness are included in the unobserved pro-
cess. This kind of problems has been considered in connection with
different filtering models, as in [6, 14, 16], or in special cases, as in
[12] where I = R

n, O = R
m and the function h in (3) bears some

special assumptions.
In this setting, the filtering problem is an instance of a Hidden

Markov model. This is a broader class of stochastic filtering mod-
els, greatly used in the applications and that is still the subject of
intense investigation. A comprehensive exposition of these models,
both in discrete- and continuous-time and with discrete and general
state spaces, can be found in [10].

However, filtering in the noise-free case has not been yet systemat-
ically studied. To the best of my knowledge, the only works covering
this issue in continuous time are [12] and [5]. The latter forms the
basis for this work.1 It is assumed there that I and O are two finite
sets, h : I→ O is a surjective function and Xt is a time-homogeneous
Markov chain with values in I and known rate transition matrix Λ.
Then, with the observation process defined as in (3), the filtering pro-
cess is specified by a finite set of scalar processes, namely

Πt(i) = P
(
Xt = i | F

Y
t

)
, i ∈ I, t > 0. (4)

To some extent, this framework simplifies the model and the filtering
equation presented there is proven with a method based on discrete
approximation.

In this work we will use, instead, a different approach, based on
marked point processes and the martingale theory. To fix some key
ideas (that will be thoroughly exposed in Chapter 1), a marked point
process is basically a collection (Tn, ξn)n>1 of pairs of random vari-
ables, defined on a probability space (Ω, F, P) and with values in(
[0,+∞] × E

)
, where (E, E) is a measurable space. From the point

of view of applications, the nth couple of random variables can be
thought of as the nth occurrence of a given physical phenomenon, of
which we record the time of occurrence and some related attributes,
e. g. the spike time and spike amplitude of the activity of a nervous
fiber. Point-process models are widely used in various fields, one for
all queuing theory in operations research.

Two main approaches are used to describe these processes:

• a measure-theoretical one, where they are viewed as discrete
random measures;

• a dynamical one, via the concept of stochastic intensity.

It is the second one that will be adopted here. Roughly speaking, the
stochastic intensity summarizes at a given instant the potential that a

1 An example of filtering equations is also present in [3, Proposition 3.2], albeit in the
specific case of a Markov chain with four states and transition rates equal to 0 or 1.



introduction 3

point process has to generate an event in the immediate future, given
a certain amount of information available at that time including the
knowledge of the past of the process itself.

The martingale definition of stochastic intensity enables to use the
results known from the deeply developed martingale theory. The mar-
tingale calculus for point processes provides flexible instruments for
a treatment of point process models from a dynamical point of view.
The reader acquainted with these arguments in the case of systems
driven by brownian motion, will find the exposition very familiar.

The main contribution of this Thesis is to apply these techniques to
the noise-free model earlier presented, clearly possessing a dynamical
nature. This will permit us to give simpler proofs than those reported
in [5] and even to introduce another point of novelty in the analysis
of this subject. We will, in fact, weaken the assumptions made earlier
and suppose that (I, I) is a complete separable metric space. The pro-
cess Xt is, then, an I-valued time-homogeneous pure jump Markov
process of known rate transition measure λ(x, dy) and initial distribu-
tion µ(dx).

Let us now briefly summarize the original results that will be thor-
oughly discussed in Chapter 2. The filtering equation to be obtained
will present itself in the final form

Ẑt(ω,A) = HY0(ω)[µ](A)+

+

∫t
0

{∫
I

λ
(
x,A∩ h−1

(
Ys(ω)

))
Ẑs−(ω,dx) −

∫
A

λ(x)Ẑs−(ω,dx)+

+ Ẑs−(ω,A)

∫
I

λ
(
x, h−1

(
Ys(ω)

)c)
Ẑs−(ω,dx)

}
ds+

+
∑

0<τn(ω)6t

{
HYτn(ω)[µn](A) − Ẑτn−(ω,A)

}
, (5)

for all ω ∈ Ω and for all t > 0. It can also be stated in a slightly
different form, that will be shown by equation (2.30) in the final Re-
mark of Chapter 2. Though it may seem daunting at a first glance,
this equation has a simple structure, that we will shortly discuss. Let
us, first, explain the symbols that appear there.

The process Ẑt(ω,A), A ∈ I, equivalently indicated by Ẑt(A), is
a version of the filtering process P (Xt ∈ A | Ot). This means that for
all t > 0 and all A ∈ I, Ẑt(ω,A) = P (Xt ∈ A | Ot) , P − a.s. . The
filtration Ot is the so called observed history and is associated to the
observation process. We will see that in our case FYt ≡ Ot, so the pro-
cess in equation (5) is also a version of the filtering process presented
earlier in (1).

Let us now fix a set A ∈ I. The process Ẑt(A) is composed of three
main terms:

(i) The summand in the first line of equation (5) is equal to the condi-
tional probability P (X0 ∈ A | Y0). It is, then, the starting value



introduction 4

of the process. The operator H acts on the probability measure
µ transforming it into the conditional probability just written.

(ii) The summands in the second and third line of equation (5) are
relative to the deterministic part of the filtering process. It is
easy to see that, between the jump times (τn)n∈N of the process
Yt, i. e. for t ∈ [τn, τn+1), n ∈ N, the process evolves according
to the deterministic dynamic given by these terms. They are
composed of a linear part (the second line of the equation) and
of a quadratic part (the third line of the equation), a feature
shared by various filtering processes.

(iii) The summand in the last line of equation (5) represents the
jump component of the filtering process. At the nth jump time,
the term HYτn [µn](A), n ∈ N, alone determines the value of the
process. This one is the conditional probability that the process
Xt will take a value in the set A after the nth jump, with respect
to the observed history up to that time.

Another quantity that appears in equation (5) is the rate transition
measure λ(x, dy). To avoid too many integrals in it, we have adopted
the notations λ(x,A) for

∫
A λ(x, dy), A ∈ I, and λ(x) for

∫
I λ(x, dy).

Finally, we notice that all the integrals that appear are computed with
respect to the conditional probability measure Ẑs−(dx) defined by the
process itself.

The filtering equation (5) is very similar to [5, eq. 2.5], the latter
being a special case of the former. However, the path that we will
follow to derive it will be very different.

We will begin by writing the processes Xt and Yt as a marked point
process. To be precise, the observation process will be written as a K-
variate point process, where K ∈ N is the dimension of the set O.
Then, we will introduce the process Zt(A) = 1A(Xt), t > 0, where A
is a fixed borelian subset of I. We will write down its semimartingale
representation, an easy task to do since the infinitesimal generator L

of the process Xt is known, so an immediate application of Dynkin’s
formula will yield the result. After checking the relevant hypotheses,
we will be in a position to apply the filtering theorem and reach the
filtering equation, in a first “rough” form:

Ẑt(A) = Ẑ0(A) +

∫t
0

f̂s ds+ m̂t, t > 0, (6)

where

• Ẑ0(A) = P (X0 ∈ A | Y0),

• f̂t = E [Lϕ(Xt) | Ot] , ϕ(x) = 1A(x),

• m̂t =
∑K
k=1

∫t
0 Ks(k,A) [dN

Y
s (k) − λ̂

Y
s (k)ds].
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The term dNYs (k) − λ̂
Y
s (k)ds is the so called compensated measure

associated to the kth counting process NYt (k), k = 1, . . . , K. All these
objects are related to the observed process and will be analyzed in
detail in Chapter 1.

The core of that formula is represented by the innovations gain pro-
cesses Kt(k,A). For each k = 1, . . . , K, it can be written as the sum of
three terms, Ψ1,t(k,A), Ψ2,t(k,A) and Ψ3,t(k,A). Each of them is de-
fined as a Radon-Nikodym derivative of specified measures and the
martingale calculus for point processes will allow us to explicit their
form. After all the due computations, we will arrive to the filtering
formula (5).

Let us now conclude this brief presentation of the work by detailing
the structure of the thesis.

• In Chapter 1 we will describe the notion of marked point pro-
cess, with a few simple but meaningful examples, and the sto-
chastic filtering techniques with point process observations.

• In Chapter 2 we will present in full detail the filtering problem
that we briefly summarized before and we will derive the corre-
sponding filtering equation.

• A final section will be devoted to synthesizing the main results
obtained here and will give a hint of what the future extensions
and further developments on this subject could be.

A few concepts concerning stochastic processes (some of which we
have already encountered), such as filtrations, stopping times, mar-
tingales and predictability, will be reviewed in Appendix A.

All the results presented in the next Chapter or in Appendix A are
stated without proof. The only proofs contained in this Thesis are the
original ones, concerning the discussion made in Chapter 2.



1
M A R K E D P O I N T P R O C E S S E S

The class of marked point processes plays a central role in this
work. The filtering problem that we will address in Chapter 2 will be
completely described by suitably defined marked point processes.

We recall that, in order to provide a solution to it, we shall adopt
a dynamical point of view on such processes, i. e. operate through
the associated counting measures and intensity kernels. Martingale
theory will then provide us with key results, mainly the integral rep-
resentation of point-process martingales: this is the fundamental the-
orem to be used in the development of the filtering techniques and
will be discussed in the final section of this Chapter.

For these reasons, this Chapter will be loosely based on the ap-
proach presented by Brémaud in [4]. For the sake of completeness,
every proposition or theorem here exposed will feature a precise ref-
erence to that source.

Before starting, we recall some useful notations.

• The indicator function will often be denoted by 1(x ∈ A), in-
stead of the classical 1A(x).

• B(A) are the Borel subsets of A ⊂ R.

• The set [0,+∞) will be indicated by R+ and, correspondingly,
B+ = B

(
[0,+∞)

)
.

• h−1 denotes the pre-image of a set under the function h.

Throughout this Chapter we will assume defined a complete prob-
ability space (Ω, F, P) and a measurable space (E, E).

1.1 point processes and stochastic intensity

Let us first define the class of point processes. They can be thought
of as the nth occurrence of a given physical phenomenon. Their rele-
vance here is to help us introduce important objects related to them,
such as counting processes and stochastic intensities. These objects
will be later generalized to marked point processes, of which point
processes are particular and simpler examples (as we will see, their
so called mark space reduces to a single point).

Definition 1.1 (Point Process): Let (Tn)n∈N be a sequence of random
variables defined on (Ω, F, P) with values in [0,+∞], such that

T0 = 0, (1.1a)

Tn < +∞⇒ Tn < Tn+1, P− a.s., ∀n ∈ N. (1.1b)

6
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Then the sequence (Tn)n∈N is called a point process. It is said to be
P-nonexplosive if

T∞ = lim
n→+∞ Tn = +∞ P− a.s. (1.2)

Remark: Henceforward we will assume that all point processes are
P-nonexplosive.

A counting process can be associated to a point process, simply defin-
ing

Nt =
∑
n>1

1(Tn 6 t). (1.3)

This process is also called a point process, by abuse of notation, since
Tn and Nt carry the same information.
Moreover, the process Nt is said to be integrable if

E [Nt] <∞, ∀t > 0. (1.4)

Naturally linked to a point process is the concept of stochastic in-
tensity. The following examples will help us to introduce it, before
giving its general definition.

Example 1.1 (Homogeneous Poisson Process): Let Nt be a point pro-
cess adapted to a filtration Ft and let λ be a nonnegative constant.
If for all 0 6 s 6 t and all u ∈ R

E

[
eiu(Nt−Ns) | Fs

]
= exp

{
λ(t− s)(eiu − 1)

}
, (1.5)

then Nt is called a Ft-homogeneous Poisson process with intensity λ.
The condition (1.5) implies that for all 0 6 s 6 t the increments
Nt −Ns are P-independent of Fs given F0. Moreover, it leads to the
usual formula

P (Nt −Ns = k | Fs) = e
−λ(t−s)

(
λ(t− s)

)k
k!

∀k ∈ N. (1.6)

A simple calculation using formula (1.6) shows that E [Nt] = λt.
This allows us to interpret the intensity of the process Nt as the ex-
pected number of “events” that occur per unit time and identifying
it with λ. This reasoning can be further generalized in order to con-
sider a wider class of processes that are still related to the Poisson
distribution, as shown in the following example.

Example 1.2 (Conditional Poisson Process): LetNt be a point process
adapted to a filtration Ft and let λt be a nonnegative measurable
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process.
Suppose that the following conditions hold:

λt is F0-measurable, ∀t > 0, (1.7a)∫t
0

λs ds <∞ P− a.s., ∀t > 0, (1.7b)

E

[
eiu(Nt−Ns) | Fs

]
= exp

{
(eiu − 1)

∫t
s

λr dr

}
. (1.7c)

Then Nt is called a Ft-conditional Poisson process with the stochastic
intensity λt.1

Equations (1.5) and (1.7) provide the very definition of stochastic
intensity for the counting process Nt. However, the conditions previ-
ously stated give a very peculiar probabilistic structure to that pro-
cess, e. g. conditionally independent and Poisson-distributed incre-
ments (even stationary in the former example). If we want to define
the Ft-intensity of a point process Nt in the general case, we cannot
resort to those conditions.

Nonetheless, it is possible to provide a definition, by using the hy-
potheses contained in the Watanabe’s characterization theorem for
conditional Poisson processes.2

Definition 1.2 (Stochastic Intensity): Let Nt be a point process adap-
ted to a filtration Ft, and let λt be a nonnegative Ft-progressive pro-
cess such that for all t > 0∫t

0

λs ds <∞ P− a.s. (1.8)

If for all nonnegative Ft-predictable processes Ct the equality

E

[∫∞
0

Cs dNs

]
= E

[∫∞
0

Cs λs ds

]
(1.9)

is verified, then we say that Nt admits the Ft-stochastic intensity λt.

It is important to remark, at this point, that the stochastic intensity
may fail to exist. The object of which we can grant the existence is
the dual predictable projection of the point process Nt. Before stating its
existence theorem, we remember the so called usual conditions for a fil-
tered probability space (Ω, F, (Ft)t>0, P) as defined by Dellacherie
in [9]:

(1) F is P-complete,

1 Other terminologies for these processes are doubly stochastic Poisson processes or Cox
processes.

2 For the sake of precision, the theorem presented by Watanabe in 1964[17] concerns
Poisson processes. The generalized version for conditional Poisson processes can be
found in [4, p. 25]
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(2) Ft is right-continuous,

(3) F0 contains all the P-null sets of Ft.

Theorem 1.1 (Existence of the Dual Predictable Projection [4, T12,
p. 245]): Let Nt be a point process adapted to a filtration Ft and assume
that for the filtered probability space (Ω, F, (Ft)t>0, P) the usual condi-
tions are verified. Then, there exists a unique (up to P-indistinguishability)
right-continuous Ft-predictable nondecreasing process At, with A0 = 0,
such that for all nonnegative Ft-predictable processes Ct,

E

[∫∞
0

Cs dNs

]
= E

[∫∞
0

Cs dAs

]
. (1.10)

The process At is called the dual Ft-predictable projection of Nt.

Remark: If the process At is absolutely continuous with respect to
the Lebesgue measure, in the sense that there exists a Ft-progressive
nonnegative process λt such that

At =

∫t
0

λs ds, t > 0, (1.11)

then the stochastic intensity exists. In our situation, we will always be
able to show its existence in a direct way.

The stochastic intensity permits us to link the martingale theory to
point processes, via the following theorem.

Theorem 1.2 (Integration Theorem [4, T8, p. 27]): If the Ft-adapted
point process Nt admits the Ft-intensity λt, then Nt is P-nonexplosive
and

(1) Mt = Nt −
∫t
0 λs ds is a Ft-local martingale;

(2) if Xt is a Ft-predictable process such that

E

[∫t
0

|Xs| λs ds

]
<∞, ∀t > 0, (1.12)

then
∫t
0 Xs dMs is a Ft-martingale;

(3) if Xt is a Ft-predictable process such that∫t
0

|Xs| λs ds <∞, P− a.s., ∀t > 0, (1.13)

then
∫t
0 Xs dMs is a Ft-local martingale.

The following characterization of the stochastic intensity is of great
importance in the applications. It exploits the martingale relation pre-
sented in the preceding theorem.
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Theorem 1.3 (Martingale Characterization of Intensity [4, T9, p. 28]):
Let Nt be a nonexplosive point process adapted to a filtration Ft and let
(Tn)n>1 be the sequence of its jump times.
Suppose that for some nonnegative Ft-progressive process λt and for all
n > 1,

Nt∧Tn −

∫t∧Tn

0

λs ds is an Ft-martingale (1.14)

Then λt is the Ft-intensity of Nt.

We conclude this Section by pointing out that, in general, more than
one Ft-intensity can be exhibited for a point process Nt. However,
we can always find a predictable version of the intensity and if we
constrain the intensity to be predictable, then it is essentially unique.
This is the content of the following theorem.

Theorem 1.4 (Existence and Uniqueness of Predictable Versions of the
Intensity [4, T12 and T13, p. 31]): Let Nt be a point process adapted to a
filtration Ft, admitting an Ft-intensity λt, and let (Tn)n>1 be the sequence
of its jump times.
Then an Ft-predictable version of λt exists. Moreover, if λ̂t and λ̃t are two
Ft-predictable intensities of Nt, then

λ̂t(ω) = λ̃t(ω) P(dω)dNt(ω)-a.e. (1.15)

In particular, P− a.s.,

λ̂Tn = λ̃Tn on {Tn <∞}, ∀n > 1, (1.16a)

λ̂t(ω) = λ̃t(ω) λ̂t(ω)dt and λ̃t(ω)dt-a.e., (1.16b)

λ̂Tn > 0 on {Tn <∞}, ∀n > 1. (1.16c)

1.2 marked point processes and intensity kernels

We can now generalize the concept of point process in the following
way. Let Nt be a point process and let (Tn)n>1 be the sequence of its
jump times. We can associate to these jump times a sequence of E-
valued random variables (ξn)n>1, defined in the same probability
space as the point process.
To give a practical meaning to the situation described above, we can
think of Tn as the nth occurrence of a specific physical phenomenon
being described by the value ξn of some attributes. For instance, the
phenomenon could be the nth lightning occurring during a storm at
time Tn, whose magnitude is recorded and described in a suitable
way by ξn.

Definition 1.3 (Marked Point Process): Let there be defined on the
probability space (Ω, F, P) a point process Nt and a sequence of
E-valued random variables (ξn)n>1.
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1. The sequence (Tn, ξn)n>1 is called an E-marked point process.

2. The measurable space (E, E) on which the sequence (ξn)n>1
takes its values is the mark space.

Example 1.3 (Point Process): As anticipated in the beginning of sec-
tion 1.1, a point process can be thought as a marked point process
whose mark space E is reduced to a single point. Then the sequences
(Tn)n>1 and (Tn, ξn)n>1 can be obviously identified.

Example 1.4 (Multivariate Point Process): A peculiar kind of marked
point process is the so called K-variate point process. In this case the
mark space E consists of K ∈ N points z1, . . . , zK. We can simplify the
notation by defining, for each k = 1, . . . , K,

Nt(k) =
∑
n>1

1(ξn = zk)1(Tn 6 t), t > 0. (1.17)

Then, we obtain a collection of K point processes
(
Nt(1), . . . , Nt(K)

)
,

that have no common jumps. This property means that, for all t > 0

and P− a.s.,

∆Nt(i)∆Nt(j) = 0, ∀i 6= j, i, j ∈ {1, . . . , K}, (1.18)

where ∆Nt(i) = Nt(i) −Nt−(i). These processes will be central in
Chapter 2.

We can associate to any measurable set A ∈ E the counting process
Nt(A) defined by

Nt(ω,A) =
∑
n>1

1(ξn(ω) ∈ A)1(Tn(ω) 6 t). (1.19)

In particular,Nt(E) = Nt. Through this process we can define another
important object, the counting measure, given by

p(ω, (0, t]×A) = Nt(ω,A), t > 0, A ∈ E (1.20)

It is a transition measure from (Ω,F) into
(
(0,∞)× E,B(0,∞)⊗ E

)
,

i. e.

(1) p(ω, ·) is a measure on
(
(0,∞)× E,B(0,∞)⊗ E

)
, for all ω ∈ Ω;

(2) ω 7→ p(ω,B) is F-measurable, for all B ∈ B(0,∞)⊗ E)

Remark: For ease of notation, as we have implicitly done in the pre-
vious section, in the sequel we will frequently drop the ω in the no-
tation of all the random quantities.

The counting measure can be also written as

p(dt× dx) =
∑
n>1

δ(Tn,ξn)(dt× dx)1(Tn <∞), (1.21)
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where δ is the Dirac measure. It is, then, obvious that the sequence
(Tn, ξn)n>1 and the counting measure p(dt× dx) can be identified
and both called E-marked point process.
For this reason, the natural filtration of (Tn, ξn)n>1, defined by

F
p
t = σ(Nt(A); 0 6 s 6 t, A ∈ E). (1.22)

is indicated using the superscript p.
Before proceeding, we introduce an important class of processes.

Definition 1.4 (Indexed Predictable Process): Let p(dt× dx) be a E-
marked point process and let Ft be a filtration such that

Ft ⊃ F
p
t , ∀t > 0. (1.23)

Let P̃(Ft) be the σ-field defined on (0,∞)×Ω× E as

P̃(Ft) = P(Ft)⊗ E, (1.24)

where P(Ft) is the predictable σ-field on (0,∞)×Ω.
Any P̃(Ft)-measurable mapping H : (0,∞)×Ω× E → R is called a
Ft-predictable process indexed by E.

Remark: It is worth noting that the σ-field P̃(Ft) is generated by the
mappings H of the form:

Ht(ω, x) = Ct(ω)1A(x), (1.25)

where Ct is a Ft-predictable process and A ∈ E.

We can introduce the following notation, that gives a precise mean-
ing to the integration of predictable processes with respect to the
counting measure p(dt× dx):∫t

0

∫
E

Hs(x)p(ds× dx) =
∞∑
n=1

HTn(ξn)1(Tn 6 t), (1.26)

where the symbol
∫b
a is to be interpreted as

∫
(a,b] if b <∞, and

∫
(a,b)

if b =∞.
We present now another fundamental quantity for marked point

processes, that is the analogous of the stochastic intensity defined in
Section 1.1.

Definition 1.5 (Intensity Kernel): Let p(dt × dx) be a Ft-adapted
E-marked point process. Suppose that for each A ∈ E, Nt(A) ad-
mits the Ft-predictable intensity λt(A), where λt(ω,dx) is a transi-
tion measure from (Ω× [0,∞),F⊗B+) into (E, E).
We say that p(dt× dx) admits the Ft-intensity kernel λt(dx).
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Theorem 1.5 (Projection Theorem [4, T3, p. 235]): Let p(dt× dx) be
a E-marked point process with Ft-intensity kernel λt(dx). Then for each
nonnegative Ft-predictable E-indexed process H

E

[∫∞
0

∫
E

Hs(x)p(ds× dx)
]
= E

[∫∞
0

∫
E

Hs(x) λs(dx)ds

]
. (1.27)

Theorem 1.6 (Integration Theorem [4, C4, p. 235]): Let p(dt× dx) be
a E-marked point process with Ft-intensity kernel λt(dx). Let H be a Ft-
predictable E-indexed process.

(1) If, for all t > 0 we have∫t
0

∫
E

|Hs(x)| λs(dx)ds <∞ P− a.s. (1.28)

then
∫t
0

∫
EHs(x) p̃(ds× dx) is a Ft-local martingale.

(2) If, for all t > 0 we have

E

[∫t
0

∫
E

|Hs(x)| λs(dx)ds

]
<∞ (1.29)

then
∫t
0

∫
EHs(x) p̃(ds× dx) is a Ft-martingale,

where p̃(ds× dx) = p(ds× dx) − λs(dx)ds.

Remark: The measure p̃(dt × dx) = p(dt × dx) − λt(dx)dt is usu-
ally referred to as the compensated measure associated to the marked
point process p(dt× dx). The term λt(dx)dt is commonly called the
compensator.

To summarize, what we have done is a generalization of the results
of the preceding Section. With the last two theorems, we have linked
marked point processes to the martingale theory, via the concept of
intensity kernel, as in Section 1.1 we have done so by using stochastic
intensities.

We can further characterize the intensity kernel and achieve a better
understanding of this concept.

Definition 1.6 (Local Characteristics): Let p(dt× dx) be a E-marked
point process with Ft-intensity kernel λt(dx) of the form

λt(dx) = λtΦt(dx), (1.30)

where λt is a nonnegative Ft-predictable process and Φt(ω,dx) is
a probability transition kernel from (Ω× [0,∞),F ⊗B+) into (E, E).
The pair

(
λt, Φt(dx)

)
is called the Ft-local characteristics of p(dt× dx).

Since Φt(dx) is a probability, we have that Φt(E) = 1, for all t > 0.
We can then identify λt ≡ λt(E) with the Ft-intensity of the underly-
ing point process Nt = Nt(E).
An interpretation for the kernel Φt(dx) is given by this theorem.
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Theorem 1.7 ([4, T6, p. 236]): Let p(dt×dx) be a E-marked point process
with Ft-local characteristics

(
λt, Φt(dx)

)
. If the filtration Ft is of the form

Ft = F0 ∨F
p
t , (1.31)

then for all n > 1 and all A ∈ E,

ΦTn(A) = P (Zn ∈ A | FTn−) P− a.s. on {Tn <∞}, (1.32)

where (Tn)n>1 is the sequence of the jump times of the underlying point
process Nt = Nt(E).

As in the case of the stochastic intensity discussed in the previous
Section, we cannot always grant the existence of the local character-
istics of a marked point process. The following theorem ensures that
the generalized local characteristics of a marked point process always
exist.

Theorem 1.8 (Existence of the Generalized Local Characteristics [4,
T14, p. 246]): Let p(dt× dx) be a marked point process adapted to a fil-
tration Ft and assume that the usual conditions are verified for the filtered
probability space (Ω, F, (Ft)t>0, P). Suppose that the mark space (E, E)

is such that E is a Borel subset of a compact metric space and E = B(E).
Then, there exists

(1) a unique (up toP-indistinguishability) right-continuous Ft-predictable
nondecreasing process At, with A0 = 0,

(2) a probability transition measureΦt(ω,dx) from (Ω× [0,∞),F⊗B+)

into (E, E), such that, for all n > 1,

E

[∫∞
0

∫
E

Hs(x)p(ds× dx)
]
= E

[∫∞
0

∫
E

Hs(x)Φs(dx)dAs

]
,

for all nonnegative Ft-predictable E-indexed process H.

The pair
(
At, Φt(dx)

)
is called the generalized Ft-local characteristics

of p(dt× dx).

Nonetheless, but under strict conditions, we can find an explicit
form of the local characteristics of a marked point process. This is the
content of the following theorem.

Theorem 1.9 ([4, T7, p. 238]): Let p(dt× dx), equivalently (Tn, ξn)n>1,
be a E-marked point process. Let Ft be a filtration of the form Ft = F0∨F

p
t .

Suppose that, for each n > 1, there exists a regular conditional distribution
of (Sn+1, ξn+1) given FTn of the form

P (Sn+1 ∈ A, ξn+1 ∈ C | FTn) =

∫
A

g(n+1)(s, C)ds, (1.33)

where A ∈ B+, C ∈ E, Sn+1 = Tn+1 − Tn and g(n+1)(ω, s, C) is a finite
kernel from

(
Ω× [0,∞),FTn ⊗B+

)
into (E, E), that is to say:
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(1) (ω, s) 7→ g(n+1)(ω, s, C) is FTn ⊗B+-measurable, for all C ∈ E,

(2) for all (ω, s) ∈ Ω× [0,∞), C 7→ g(n+1)(ω, s, C) is a finite measure
on (E, E).

Then p(dt× dx) admits the Ft-local characteristics
(
λt, Φt(dx)

)
defined

by

λt(C) =
g(n+1)(t− Tn, C)

1−
∫t−Tn
0 g(n+1)(s, E)ds

, on (Tn, Tn+1], (1.34a)

λt = λt(E), (1.34b)

Φt(C) =
λt(C)

λt(E)
. (1.34c)

We conclude this section by giving the central result of this chapter.

Theorem 1.10 (Integral Representation of Marked Point Process Mar-
tingales [4, T8, p. 239]): Let Ft be a filtration of the form Ft = F0 ∨F

p
t

and for the filtered probability space (Ω, F, (Ft)t>0, P) let the usual con-
ditions hold. Let p(dt×dx) be a E-marked point process with Ft-local char-
acteristics

(
λt, Φt(dx)

)
. Then any Ft-martingale Mt admits the stochastic

integral representation

Mt =M0 +

∫t
0

∫
E

Hs(x) p̃(ds× dx) P− a.s., ∀t > 0, (1.35)

where H is an E-indexed Ft-predictable process such that∫t
0

∫
E

|Hs(x)| λs(dx)ds <∞ P− a.s., ∀t > 0. (1.36)

The E-indexed Ft-predictable process H in the above representation is es-
sentially unique with respect to the measure P(dω)λt(ω,dx) on

(
Ω ×

[0,∞)× E, P̃(Ft)
)
.

Moreover, if Mt is square-integrable, H satisfies a stronger condition than
(1.36), namely

E

[∫t
0

∫
E

|Hs(x)|
2 λs(dx)ds

]
<∞ ∀t > 0. (1.37)

1.3 filtering with marked point process observations

Stochastic filtering techniques address the issue of estimating the
state at time t of a given dynamical stochastic system, based on the
available information at the same time t. A similar problem can be
faced when the information is available up to time t− a, where a is
a strictly positive constant. It then assumes the name of prediction of
the system’s state. Instead, if the observations can be retrieved up to
time t+ a, then the problem is one of smoothing.

In the context of second-order stationary processes, two approaches
have mainly been used:
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• Frequency spectra analysis (Kolmogorov-Wiener).

• Time-domain analysis (Kalman).

Due to the dynamical nature of the problem addressed in this work
and the martingale point of view adopted so far, we will use tools that
are based on Kalman’s innovations theory.

There are two main objects of interest: a state process and an observed
process. The former is an unobserved stochastic process; we are inter-
ested in the estimation of its state or, more generally, of the state of
a process that depends solely on it. The latter is an observed process,
at our disposal to calculate this estimate.

Having in mind this setting, we will proceed along this path:

1. Find the innovating representation of the state process and then
project this representation on the natural filtration of the ob-
served process, i. e. the so called observed history.

2. Search for filtering formulas, expressed in terms of the innova-
tions gain and of the innovating part, using the representation
of the martingales with respect to the observed history.

3. Use the martingale calculus to identify the innovations gain.

1.3.1 The Innovating Structure of the Filter

Let Xt and Yt be two (E, E) valued processes and let Zt = h(Yt) be
a real-valued process, with h being a measurable function from (E, E)

to (R,B). We interpret Xt as the observation process, Yt as the state
process and Zt as the process that we aim to filter.

Let FXt and FYt be the natural filtrations of the processes Xt and Yt
respectively. With the notation

Ft = FXt ∨FYt ,

Ot = FYt ,

we indicate the global history and the observed history respectively.
In the sequel we suppose that the process Zt satisfies the equation

Zt = Z0 +

∫t
0

fs ds+mt, P− a.s., ∀t > 0, (1.38)

where

(1) ft is an Ft-progressive process such that∫t
0

|fs|ds <∞ P− a.s. ∀t > 0, (1.39)

(2) mt is a zero mean Ft-local martingale.
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Equation (1.38) is called the semi-martingale representation of Zt. In
most cases of practical interest, the existence of this representation
can be directly exhibited as shown in the following examples.

Example 1.5 (Signal Corrupted by a White Noise3): Let Yt be the
real-valued process

Yt = Y0 +

∫t
0

Sr dr+Wt, (1.40)

where

• St is a measurable process adapted to Ft such that∫t
0

|Sr|dr <∞ P− a.s. ∀t > 0,

• Wt is a Ft-Wiener process.

Let h : R → R be a twice continuously differentiable function and
let Zt = h(Yt). Then, application of Ito’s differentiation rule yields

Zt = Z0 +

∫t
0

(
∂h

∂y
(Yr)Sr +

1

2

∂2h

∂y2
(Yr)

)
ds+

∫t
0

∂h

∂y
(Yr)dWr, (1.41)

where the last term in the sum is an Ito’s integral. Formula (1.41) is a
representation for the process Yt of type (1.38) with

ft =
∂h

∂y
(Yr)Sr +

1

2

∂2h

∂y2
(Yr),

mt =

∫t
0

∂h

∂y
(Yr)dWr.

Example 1.6 (Markov Processes With a Generator): Let Yt be a E-
valued homogeneous Ft-Markov process with the Ft-transition semi-
group (Pt)t>0. We recall this means that, for all t > 0, Pt is a mapping
from b(E) into itself4, such that

Ptf = 1, ∀t > 0, whenever f(x) = 1 ∀x ∈ E; (1.42a)

P0 = I (identity); (1.42b)

PtPs = Pt+s, ∀t > 0, ∀s > 0. (1.42c)

If we assume that the semigroup (Pt)t>0 has an infinitesimal gen-
erator L of domain D(L), then for any f ∈ D(L), by application of
Dynkin’s formula, we obtain

f(Xt) = f(X0) +

∫t
0

L f(Xs)ds+mt, (1.43)

where mt is an Ft-martingale. The representation (1.43) is clearly of
the form (1.38) and will be used in Chapter 2.

3 For a background in stochastic processes driven by Wiener-processes, see [13].
4 b(E) is the set of bounded measurable functions from (E, E) into (R,B).
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As previously stated, the first step in the innovations method con-
sists in projecting the semi-martingale representation equation (1.38)
on the observed history Ot. This is the content of the following theo-
rem.

Theorem 1.11 (Projection of the State [4, T1, p. 87]): Let Zt be an inte-
grable real-valued process with the semi-martingale representation:

Zt = Z0 +

∫t
0

fs ds+mt,

where

(i) ft is an Ft-progressive process such that

E

[∫t
0

|fs|ds

]
<∞ ∀t > 0,

(ii) mt is a zero mean Ft-martingale.

Let Ot be a filtration such that Ot ⊂ Ft, ∀t > 0. Then

E [Zt | Ot] = E [Z0 | O0] +

∫t
0

f̂s ds+ m̂t, (1.44)

where

(1) m̂t is a zero mean Ot-martingale,

(2) f̂t is a Ot-progressive process defined by

E

[∫t
0

Cs fs ds

]
= E

[∫t
0

Cs f̂s ds

]
, (1.45)

for all nonnegative bounded Ot-progressive processes Ct.

Remark: The rather abstract definition of the process f̂t might seem
daunting at a first glance, and we may wonder how to explicitly cal-
culate it or even if it exists. The following remarks will help clarifying
these issues.

(a) The existence of f̂t is always granted by the Radon-Nikodym
derivative theorem. Let µ1 and µ2 be two measures defined on(
Ω× (0,∞), progOt

)
by

µ1(dω× dt) = P(dω)dt,

µ2(dω× dt) = P(dω) ft(ω)dt,

Then f̂t(ω) is the Radon-Nikodym derivative of the measure
µ2 with respect to the measure µ1. Moreover, two versions of f̂t
differ only on a set of µ1-measure zero.
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(b) Suppose that there exists, for all t > 0, a version of E [ft | Ot] = f̃t
such that the mapping (ω, t) 7→ f̃t(ω) is Ot-progressively mea-
surable. Then, by setting f̂t(ω) = f̃t(ω), we satisfy the require-
ments for the definition of the process f̂t. Indeed, applying the
Fubini theorem, we obtain

E

[∫t
0

Cs fs ds

]
=

∫t
0

E [Cs fs] ds =

∫t
0

E [E [Cs fs | Os] ] ds =∫t
0

E [CsE [fs | Os] ] ds =

∫t
0

E
[
Cs f̃s

]
ds = E

[∫t
0

Cs f̃s ds

]
.

In the applications, this version of E [ft | Ot] usually exists, but
cannot be granted in general, because a priori nothing is known
about the measurability in t of E [ft | Ot].

1.3.2 Filtering Equations

We now assume that the observation process is an E-marked point
process p(dt× dx), adapted to the filtration Ft. The observed history
has the form Ot = G0 ∨ F

p
t , where F

p
t is the natural filtration of

the marked point process and G0 ⊂ F0. Moreover, we suppose that
p(dt × dx) admits the Ft-local characteristics

(
λt, Φt(dx)

)
and the

Ot-local characteristics
(
λ̂t, Φ̂t(dx)

)
.

For technical reasons, the usual conditions stated in section 1.1 are
assumed to hold for the probability space (Ω, F, P) and for all the
filtrations here specified.

Let Zt be a real-valued state process satisfying the conditions stated
in theorem 1.11. We add the following

Assumption (H): The semi-martingale representation of Zt is such
that

(h1) mt = mdt +m
c
t , where mdt is a Ft-martingale of integrable vari-

ation over finite intervals and mct is a continuous Ft-martingale.

(h2) Zt −mct is a bounded process.

We are now in a position to state the central result of this section.
In fact, recalling the representation theorem 1.10, we can express in
a more precise form the Ot-martingale m̂t that figures in equation
(1.44). This can be done since the filtration Ot is, apart from the initial
σ-algebra G0, the natural filtration of the marked point process p(dt×
dx).
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Theorem 1.12 (Filtering Theorem [4, T9, p. 240]): Let the conditions
stated in this subsection and the assumption (H) hold. Then for all t > 0

and P− a.s.

Ẑt = E [Zt | Ot] = E [Z0 | O0] +

∫t
0

f̂s ds+

+

∫t
0

∫
E

Ks(x)
[
p(ds× dx) − λ̂sΦ̂s(dx)ds

]
. (1.46)

The process Kt(x) is a Ot-predictable process indexed by E, that is defined
P(dω)p(dt× dx)-essentially uniquely by

Kt(x) = Ψ
1
t(x) −Ψ

2
t(x) +Ψ

3
t(x). (1.47)

The processes Ψit(x), i = 1, 2, 3, are Ot-predictable processes indexed by
E and are P(dω)p(dt× dx)-essentially uniquely defined by the following
equalities holding for all t > 0 and for all bounded Ot-predictable processes
Ct(x) indexed by E:

E

[∫t
0

∫
E

Ψ1s(x)Cs(x)λ̂s(dx)ds

]
= E

[∫t
0

∫
E

ZsCs(x)λs(dx)ds

]
,

E

[∫t
0

∫
E

Ψ2s(x)Cs(x)λ̂s(dx)ds

]
= E

[∫t
0

∫
E

ZsCs(x)λ̂s(dx)ds

]
, (1.48)

E

[∫t
0

∫
E

Ψ3s(x)Cs(x)λ̂s(dx)ds

]
= E

[∫t
0

∫
E

∆ZsCs(x)p(ds×dx)
]

.

Remark: The existence of the processes Ψ1t(x), Ψ
2
t(x) and Ψ3t(x), and

in turn of the process Kt(x), is granted again by the Radon-Nikodym
derivative theorem. In fact:

(1) Ψ1t(x) is the Radon-Nikodym derivative of the measure µ11(dω×
dt× dx) with respect to the measure µ12(dω× dt× dx), where

µ11(dω× dt× dx) = P(dω)Zt(ω) λt(ω,dx)dt,

µ12(dω× dt× dx) = P(dω) λ̂t(ω,dx)dt.

Both measures are defined on
(
Ω× (0,∞)× E, P̃(Ot)

)
. The first

one is a signed measure, is σ-finite by the assumption of bound-
edness of the process Zt, and is absolutely continuous with re-
spect to the second one. Moreover, being a Radon-Nikodym
derivative, the process Ψ1t(x) is P(Ot)-measurable, i. e. it is a
Gt-predictable process.

(2) Ψ2t(x) is the Radon-Nikodym derivative of the measure µ21(dω×
dt× dx) with respect to the measure µ22(dω× dt× dx), where

µ21(dω× dt× dx) = P(dω)Zt(ω) λ̂t(ω,dx)dt,

µ22(dω× dt× dx) = P(dω) λ̂t(ω,dx)dt.

Similar considerations to the ones made for the process Ψ1t(x)
apply to this process.
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(3) Ψ3t(x) is the Radon-Nikodym derivative of the measure µ31(dω×
dt× dx) with respect to the measure µ32(dω× dt× dx), where

µ31(dω× dt× dx) = P(dω)dZt(ω)p(dt× dx),
µ32(dω× dt× dx) = P(dω) λ̂t(ω,dx)dt.

Both measures are defined on
(
Ω× (0,∞)× E, P̃(Ot)

)
. The first

one is a signed measure, is σ-finite since Zt and hence |∆Zt| is
bounded, and is absolutely continuous with respect to the sec-
ond one, because on the space of definition of these measures,
P(dω) λ̂t(ω,dx)dt = P(dω)p(dt× dx). The Gt-predictability
of the process Ψ3t(x) comes from the same arguments applied
to the processes Ψ1t(x) and Ψ2t(x).

We end this chapter with a consideration very useful in the applica-
tion of the filtering formula (1.46). The process Ψ2t(x) is P−a.s. equal
to the process Ẑt−. Indeed, we can develop the second relation in
(1.48) using the Fubini theorem, like this:

E

[ ∫t
0

∫
E

Cs(x)Zs λ̂s(dx)ds

]
=

∫t
0

∫
E

E
[
Cs(x)Zs λ̂s(dx)

]
ds =

=

∫t
0

∫
E

E
[
E
[
Cs(x)Zs λ̂s(dx) | Os

]]
ds =

=

∫t
0

∫
E

E
[
Cs(x) λ̂s(dx)E [Zs | Os]

]
ds =

=

∫t
0

∫
E

E
[
Cs(x) λ̂s(dx) Ẑs

]
ds = E

[∫t
0

∫
E

Cs(x) Ẑs λ̂s(dx)ds

]
=

= E

[ ∫t
0

∫
E

Cs(x) Ẑs− λ̂s(dx)ds

]
,

since Ẑs ds = Ẑs− ds. Hence one always has

Ψ2t(x) = Ẑt− (1.49)



2
F I LT E R I N G E Q U AT I O N I N T H E N O I S E - F R E E
M O D E L

In this Chapter we are going to address the object of study of
this Thesis: the stochastic filtering of a time-homogeneous pure jump
Markov process with noise-free observation. In the sequel we will
assume defined:

• A complete probability space (Ω, F, P),

• A complete separable metric space (I, I), where I = B(I),

• A measurable space (O, O), where O is a finite set of cardinality
K ∈ N and O = 2O is the power set of O,

• A surjective measurable function h : I→ O.

We immediately notice that the function h creates a partition on the
set I, given by the pre-images of the points of O. In fact, if we denote
by a1, . . . , aK the elements of the set O, then the I-measurable sets
Ak = h−1(ak), k = 1, . . . , K, are such that

(i) Ak 6= ∅, for all k = 1, . . . , K,

(ii) Ai ∩Aj = ∅, for all i 6= j, i, j = 1, . . . , K,

(iii)
⋃K
k=1Ak = I,

so they are a partition of the set I. This is an important property that
will be crucial in the sequel.

2.1 the noise-free model

In the noise-free model that we are going to analyze there are two
main objects to define: the unobserved process Xt and the observed pro-
cess Yt.

The unobserved process Xt is a I-valued pure-jump Markov pro-
cess defined, for all t > 0 and all ω ∈ Ω, by

Xt(ω) =
∑
n∈N

ξn(ω)1
(
Tn(ω) 6 t < Tn+1(ω)

)
1
(
Tn(ω) < +∞). (2.1)

The random quantities that appear in (2.1) are:

(i) The sequence of jump times
(
Tn(ω)

)
n∈N , where

• T0(ω) = 0, for all ω ∈ Ω,

22
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• Tn : Ω → (0,+∞], n = 1, 2, . . . , are measurable random
variables, such that, for all ω ∈ Ω and all n = 1, 2, . . . , the
condition (1.1b) holds.

We will denote by T∞(ω) = limn→∞ Tn(ω), ω ∈ Ω, the explo-
sion point of the process Xt. We suppose that T∞ = +∞ P−a.s.,
i. e. that the unobserved process is P− a.s.-nonexplosive.

(ii) The sequence of random values of the process Xt, a collection
of measurable random variables ξn : Ω → I, n ∈ N. The law of
the initial value is known and we will denote it by µ(dx), i. e.
ξ0 ∼ µ.

We will indicate the natural filtration of the process Xt by FXt . Other
known objects, that are related to the unobserved process, are:

(a) The rate transition function λ : I → [0,+∞). It is a I-measurable
function that determines the rate parameter of the exponential
distribution that characterizes the holding times of the process
Xt, i. e.

P
(
Tn+1 − Tn > t | F

X
Tn

)
= e−λ(ξn)t, t > 0, n ∈ N. (2.2)

(b) The probability transition kernel q(x, dy), a function such that:

• x 7→ q(x,A) is I-measurable, for all A ∈ I,

• A 7→ q(x,A) is a probability measure on (I, I), for all x ∈ I.

It characterizes the distribution of the random values of the pro-
cess Xt, in the sense that

P
(
ξn+1 ∈ A | FXTn

)
= q(ξn, A), ∀A ∈ I, n ∈ N. (2.3)

(c) The rate transition measure λ(x, dy) = λ(x)q(x, dy). We adopt the
notations λ(x,A) for

∫
A λ(x, dy), A ∈ I, and λ(x) for

∫
I λ(x, dy).

The observed process is simply defined by

Yt(ω) = h
(
Xt(ω)

)
, ∀t > 0, ∀ω ∈ Ω. (2.4)

As in the case of the unobserved process, we can define:

(i) The sequence of jump times
(
τn(ω)

)
n∈N of the process Yt. They

are related to the jump times of the process Xt, that is to say
τn(ω) = Tk(ω) for some k > n, k = k(ω), ω ∈ Ω.

(ii) The sequence of random values of the process Yt, denoted by(
ζn(ω)

)
n∈N . They are related to the random values of the pro-

cess Xt, that is to say ζn(ω) = h
(
ξk(ω)

)
for some k > n,

k = k(ω), ω ∈ Ω.
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We will denote the natural filtration of the process Yt by FYt .
In the rest of the work we will suppose that

Λ = sup
x∈I

λ(x) < +∞. (2.5)

This hypothesis is important, since it eliminates the need to explic-
itly assume that the process Xt is P− a.s.-nonexplosive. In fact, (2.5)
implies that T∞ = +∞ P− a.s. . Moreover, all the filtrations defined
here and in the sequel are supposed to have been properly modified
in order to satisfy the usual conditions stated in Section 1.1.

The model is now completely defined. As we saw, few quantities
are needed to specify it, namely the unobserved process Xt, the ob-
served process Yt, the functions λ(x) and h(x), the probability transi-
tion kernel q(x, dy) and the initial distribution µ(dx) of the process
Xt.

2.1.1 The Marked Point Process Formulation

To apply the martingale techniques earlier announced, we have to
formulate the noise-free model in terms of marked point processes.

To start, we notice that the pairs (Tn, ξn)n>1 naturally define a
marked point process of mark space I associated to Xt. Then, we can
link to Xt a counting process, defining for all t > 0, all A ∈ I and all
ω ∈ Ω

Nt(ω,A) =
∑
n>1

1(ξn(ω) ∈ A)1(Tn(ω) 6 t). (2.6)

As we explained in Section 1.2, a random measure is naturally related
to this counting process, namely

p(ω, (0, t]×A) = Nt(ω,A), t > 0, A ∈ I, ω ∈ Ω. (2.7)

We will, then, identify the marked point process (Tn, ξn)n>1 with the
measure p(dt× dy).

It is a known fact that the marked point process p(dt×dy), defined
in connection with the pure-jump Markov process Xt of known rate
transition measure λ(x, dy), admits the pair

(
λt, Φt(dy)

)
as its FXt -

local characteristics given by:

• λt = λ(Xt−), t > 0,

• Φt(dy) = q(Xt−, dy), t > 0.

This is shown by a simple application of Theorem 1.9. The hypothe-
ses are all satisfied, since the natural filtration is of the form FXt =

σ(X0)∨F
p
t and the regular conditional distribution of (Sn+1, ξn+1)

given FTn is a finite kernel from
(
Ω × [0,∞),FTn ⊗ B+

)
into (I, I).

To find its expression, it suffices to remember the conditional inde-
pendence of the holding times Sn and the random values ξn. Then,
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applying formulas (2.2) and (2.3), for all A ∈ I and all n ∈ N we
obtain

g(n+1)(t,A) = λ(XTn) e
−λ(XTn)t q(XTn , A), t ∈ (Tn, Tn+1]. (2.8)

Then the equations (1.34) yield the announced result.
We can, then, define the compensated measure associated to the

marked point process p(dt× dy) as

p̃(dt× dy) = p(dt× dy) − λt(dy)dt, (2.9)

where λt(dy) = λtΦt(dy).
Regarding the observed process Yt, its sequence (τn, ζn)n>1 of

jump times and random values defines, too, a marked point process,
of mark space O. Due to the finiteness of its mark space, it presents
itself in the simpler form of a K-variate point process. Thus, remem-
bering Example 1.4, we define NYt =

(
NYt (1), . . . , N

Y
t (K)

)
, where for

all k = 1, . . . , K

NYt (k) =
∑
n>1

1(ζn = ak)1(τn 6 t), t > 0. (2.10)

The marked point process formulation of the noise-free model is
now complete. With the processes p(dt× dy), of known local charac-
teristics

(
λt, Φt(dy)

)
, and NYt we can proceed in the analysis of the

filtering problem.

2.2 the filtering problem

Having in mind the previously defined setting, we are now going
to address the filtering problem. Before starting, let us define the fol-
lowing filtrations:

Fkt = σ(NYs (k), 0 6 s 6 t), k = 1, . . . , K, t > 0, (2.11a)

Gt =

K∨
k=1

Fkt , t > 0, (2.11b)

Ot = Gt ∨ σ(Y0), t > 0, (2.11c)

Ft = FXt ∨Ot, t > 0. (2.11d)

In the sequel, the relevant filtrations will be Ft and Ot, named respec-
tively the global history and the observed history using the terminology
adopted in Section 1.3.

We notice that, in our model, the filtration Ot is such that Ot ⊂ FXt ,
for all t > 0. By construction, the filtration Ot coincides with the
natural filtration FYt of the observed process Yt (simply recall how
the point process NYt is defined). Finally, being Xt and Yt linked by
the surjective function h, it is clear that FYt ⊂ FXt , for all t > 0. This,
in turn, implies that Ft ≡ FXt , for all t > 0. Albeit having the same



2.2 the filtering problem 26

meaning, we will prefer the easier notation Ft just introduced. It is
important, though, to keep in mind this equivalence.

Let us introduce the real-valued process

Zt(A) = 1(Xt ∈ A), t > 0, A ∈ I. (2.12)

The filtering problem consists in finding an explicit expression for the
filtering process

Ẑt(A) = E [Zt(A) | Ot] = P (Xt ∈ A | Ot) , ∀t > 0, ∀A ∈ I. (2.13)

Henceforward, we will assume fixed, once and for all, a set A ∈ I.
We have now to focus on verifying the hypotheses of the filtering
theorem 1.12 in order to apply it and achieve the desired result.

2.2.1 Application of the Filtering Theorem

Following the lines of Subsection 1.3.2, we will now check the hy-
potheses stated in Theorem 1.12. We immediately notice that, being
the mark space O a finite set, the counting measure π(dt×dz) associ-
ated to the observed process takes a simpler form. This allows us to
use an easier notation, namely

π(dt× dz) = π(dt× {ak}) = dN
Y
t (k), t > 0, k = 1, . . . , K. (2.14)

Further simplifications will derive from the finiteness of the set O,
that will be progressively exhibited.

Concerning the measurability of the process Yt, it is clearly Ft- and
Ot-adapted and the filtration Ot has the requested form, given in
(2.11c).

We have now to search for the Ft- and Ot-local characteristics of the
marked point process NYt . We will denote them by

(
λYt , Φ

Y
t (dz)

)
and(

λ̂Yt , Φ̂
Y
t (dz)

)
, respectively. They take a simpler form, because ΦYt (dz)

is a discrete probability measure on (O, O). If we concentrate our
attention on the single atom {ak} ∈ O, k ∈ {1, . . . , K}, it is not difficult
to see that λYt ·ΦYt ({ak}) is the Ft-stochastic intensity of the point
process NYt (k). Then we have to identify the Ft- and Ot-stochastic
intensities of the K-variate point process NYt =

(
NYt (1), . . . , N

Y
t (K)

)
,

for all k = 1, . . . , K. We will denote them by
(
λYt (1), . . . , λ

Y
t (K)

)
and(

λ̂Yt (1), . . . , λ̂
Y
t (K)

)
, respectively.

Let us, first, show this simple but useful Lemma.

Lemma 2.1: Let Xt be the pure-jump Ft-Markov process defined in (2.1)
and let NXt (A,B) be the point process

NXt (A,B) =
∑
0<s6t

1(Xs− ∈ A)1(Xs ∈ B), t > 0, A, B ∈ I. (2.15)
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Then it admits Ft- and Ot-stochastic intensities, respectively given by

λXt (A,B) = 1(Xt− ∈ A) λ(Xt−, B), t > 0, (2.16a)

λ̂Xt (A,B) =

∫
A

λ(x, B) Ẑt−(dx), t > 0, (2.16b)

where λ(x, dy) is the rate transition measure of the process Xt.

Proof. Let t > 0 and A,B ∈ I be fixed. Recalling that p(dt× dy) is the
I-marked point process associated to Xt, the point process NXt (A,B)
can be written as

NXt (A,B) =
∑
0<s6t

1(Xs− ∈ A)1(Xs ∈ B)

=

∫t
0

∫
I

1(Xs− ∈ A)1(y ∈ B)p(ds× dy)

=

∫t
0

∫
I

1(Xs− ∈ A)1(y ∈ B)
[
p̃(ds× dy) + λs(dy)ds

]
,

where λt(dy)dt is the compensator of p(dt× dy) and p̃(dt× dy) is
its compensated measure.

The process 1(Xt− ∈ A)1(y ∈ B) is a I-indexed Ft-predictable
process, with I-indexed part given by 1(y ∈ B) and Ft-predictable
part 1(Xt− ∈ A). Moreover, remembering that λt(dy) = λ(Xt−, dy),
we have

E

[∫t
0

∫
I

∣∣∣1(Xs− ∈ A)1(y ∈ B)∣∣∣ λs(dy)ds] =
=E

[∫t
0

1(Xs− ∈ A)
∫
I

1(y ∈ B) λ(Xs−, dy)ds
]
=

=E

[∫t
0

1(Xs− ∈ A)λ(Xs−, B)ds
]
6 E

[∫t
0

λ(Xs−)ds

]
6 Λt < +∞,

where Λ is finite by assumption (2.5).
This enables us to apply the Integration Theorem 1.6 and obtain

that ∫t
0

∫
I

1(Xs− ∈ A)1(y ∈ B) p̃(dt× dy)

is a Ft-martingale, which means that the process

NXt (A,B) −

∫t
0

1(Xs− ∈ A) λ(Xs−, B)ds,

is a Ft-martingale.
Finally, by virtue of Theorem 1.3, we identify the Ft-predictable

process
λXt (A,B) = 1(Xt− ∈ A) λ(Xt−, B)

as the Ft-stochastic intensity of the point process NXt (A,B).
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Concerning the Ot-stochastic intensity λ̂Xt (A,B), we can use di-
rectly Definition 1.2. In fact, we have just proved the equivalence
stated in equation (1.9), i. e.

E

[∫∞
0

Cs dN
X
s (A,B)

]
= E

[∫∞
0

Cs λ
X
s (A,B)ds

]
,

for all nonnegative Ft-predictable processes Ct. If, in particular, we
restrict our attention to the subset formed by Ot predictable processes
Ct, the last equality still holds, but the process λXt (A,B) is not Ot-
progressive as required by Definition 1.2. However, observing that
Xt− dt = Xt dt, a simple application of the Fubini-Tonelli Theorem
shows that

E

[ ∫∞
0

Cs λ
X
s (A,B)ds

]
=

∫∞
0

E
[
Cs λ

X
s (A,B)

]
ds =

=

∫∞
0

E
[
E
[
Cs λ

X
s (A,B) | Os

]]
ds =

∫∞
0

E
[
CsE

[
λXs (A,B) | Os

]]
ds =

=

∫∞
0

E [CsE [1(Xs− ∈ A) λ(Xs−, B) | Os] ]ds =

=

∫∞
0

E [CsE [1(Xs ∈ A) λ(Xs, B) | Os] ]ds.

We notice that we can express the conditional expectation appearing
in the last formula, as the integral of the bounded I-measurable func-
tion 1(x ∈ A) λ(x, B) on the set I, with respect to the conditional law
of the random variable Xs given Os. Indeed, the boundedness comes
from assumption (2.5) and the existence of the aforementioned condi-
tional law is granted thanks to the hypothesis that (I, I) is a complete
separable metric space. Considering that and Ẑt−(dx)dt = Ẑt(dx)dt,
we can write∫∞

0

E [CsE [1(Xs ∈ A) λ(Xs, B) | Os] ]ds =

=

∫∞
0

E

[
Cs

∫
I

1(x ∈ A) λ(x, B) Ẑs(dx)
]
ds =

=E

[∫∞
0

Cs

∫
A

λ(x, B) Ẑs(dx)ds

]
= E

[∫∞
0

Cs

∫
A

λ(x, B) Ẑs−(dx)ds

]
.

Defining

λ̂Xt (A,B) =

∫
A

λ(x, B) Ẑt−(dx), t > 0,

we observe that the process λ̂Xt (A,B) is Ot-adapted by definition and
the last formula shows that its trajectories are left-continuous, due to
the presence of the term Ẑt−(·). A known result from the theory of
stochastic processes1 ensures that it is a Ot-predictable process and,
therefore, Ot-progressive.

1 See Appendix A, Theorem A.1
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Finally, recalling that Ẑt−(dx) is a probability, we can verify con-
dition (1.8) in Definition 1.2. Indeed, for all t > 0 and P− a.s. , we
have ∫t

0

λ̂Xt (A,B) =

∫t
0

∫
A

λ(x, B) Ẑt−(dx) 6
∫t
0

λ(x)

∫
A

Ẑt−(dx) 6

6
∫t
0

λ(x)

∫
I

Ẑt−(dx) 6
∫t
0

λ(x) 6 Λt < +∞.

We can, then, affirm that (2.16b) is the Ot-stochastic intensity of the
point-process NXt (A,B).

Going back to the main topic, we can now explicitly write down
the Ft- and Ot-stochastic intensities of the K-variate point process
NYt . Henceforth, the superscript c will denote the complement set
with respect to I.

Proposition 2.1: The K-variate point process NYt defined in (2.10) admits(
λYt (1), . . . , λ

Y
t (K)

)
and

(
λ̂Yt (1), . . . , λ̂

Y
t (K)

)
as its Ft- and Ot-stochastic

intensities respectively, given by

λYt (k) = 1(Xt− ∈ Ack) λ(Xt−, Ak), t > 0, k = 1, . . . , K, (2.17a)

λ̂Yt (k) =

∫
Ack

λ(x,Ak) Ẑt−(dx), t > 0, k = 1, . . . , K, (2.17b)

where (Ak)16k6K is the partition induced on the set I by the function h
and, for all t > 0, Ẑt(dx) is a regular version of the conditional distribution
of the random variable Xt given Ot, as defined in (2.13).

Proof. A straightforward application of Lemma 2.1 yields the expres-
sions (2.17). In fact, for fixed t > 0 and k = 1, . . . , K, we can write

NYt (k) =
∑
0<s6t

1(Ys− 6= ak)1(Ys = ak) =

=
∑
0<s6t

1(Xs− ∈ Ack)1(Xs ∈ Ak) = NXt (Ack, Ak).

Then formulas (2.16) entail that the Ft- and Ot-stochastic intensities
of the point process NYt (k) are given by (2.17a) and (2.17b), respec-
tively.

The last step to make before applying the filtering theorem is to
write down the semimartingale decomposition of the process Zt with
respect to Ft and to check that it satisfies the appropriate assump-
tions.

It is a known fact that a pure-jump Markov process of rate transi-
tion measure λ(x, dy) admits the infinitesimal generator

Lϕ(x) =

∫
I

[
ϕ(y) −ϕ(x)

]
λ(x, dy), x ∈ I, (2.18)
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whose domain is D(L) = b(I), the set of bounded measurable func-
tions from (I, I) into (R,B). Then, observing that the function ϕ such
that Zt(A) = ϕ(Xt) is simply ϕ(x) = 1(x ∈ A) and recalling Example
1.6, Dynkin’s formula yields

Zt(A) = Z0(A) +

∫t
0

∫
I

[
1(y ∈ A) −Zs−(A)

]
λ(Xs−, dy)ds+mt =

= Z0(A) +

∫t
0

[
λ(Xs−, A) −Zs−(A)λ(Xs−)

]
ds+mt =

= Z0(A) +

∫t
0

fs ds+mt,

(2.19)

where, again, we used the property Xt− dt = Xt dt. The process mt
is a zero mean Ft-martingale and we have set

ft = λ(Xt−, A) −Zt−(A)λ(Xt−), t > 0. (2.20)

In this case we have an explicit expression for the Ft-martingale
mt. It suffices to observe that the term Zt(A) −Z0(A) can be written
as the telescopic sum

∑
0<Tn6t

[
ZTn(A) −ZTn−1(A)

]
=

∫t
0

∫
I

[
1(y ∈ A) −Zs−(A)

]
p(ds× dy).

(2.21)
Then, solving the first line of equation (2.19) by mt and substituting
(2.21), we obtain

mt =

∫t
0

∫
I

[
1(y ∈ A) −Zs−(A)

]
p̃(ds× dy). (2.22)

We are now ready to verify the assumptions on this semimartingale
decomposition.

Proposition 2.2: Let ft and mt be the processes appearing in equations
(2.20) and (2.22), respectively. Then,

(1) ft is a Ft-progressive process such that E
[∫t
0|fs|ds

]
< ∞, for all

t > 0,

(2) mt is a zero mean Ft-martingale satisfying assumption (H) stated in
Subsection 1.3.2.

Proof. (1) The Ft-progressiveness of the process ft is granted by the
very definition of semimartingale decomposition. Then it remains to
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show is that ft is an integrable process in [0, t], for all t > 0. Recalling
hypothesis (2.5), we easily obtain:

E

[∫t
0

∣∣fs∣∣ds] = E [∫t
0

∣∣∣∣[λ(Xs−, A) − 1(Xs− ∈ A)λ(Xs−)]ds∣∣∣∣] 6
6 E

[∫t
0

∣∣∣λ(Xs−, A)∣∣∣ds]+E [∫t
0

∣∣∣1(Xs−∈A)λ(Xs−)∣∣∣ds] 6
6 E

[∫t
0

λ(Xs−)ds

]
+E

[∫t
0

λ(Xs−)ds

]
= 2Λt < +∞,

for all t > 0.
(2) In assumption (H) the Ft-martingale mt is decomposed in the

sum of a Ft-martingale mdt of locally integrable variation and of a
continuous Ft-martingale mct .

In the present case mct = 0, so part (H2) of the assumption is triv-
ially verified, since Zt(ω,A) = 1(Xt(ω) ∈ A) 6 1, for all ω ∈ Ω.

Then, we have to truly check only part (H1) of the assumption, i. e.
that E

[∫t
0|dms|

]
<∞, for all t > 0. Plugging equation (2.22) into this

condition, we have:

E

[∫t
0

|dms|

]
= E

[∫t
0

∣∣∣∣∫
I

[
1(y ∈ A) − 1(Xs− ∈ A)

]
p̃(ds× dy)

∣∣∣∣] =
= E

[∫t
0

∣∣∣∣[p̃(ds×A) − 1(Xs− ∈ A)p̃(ds× I)]∣∣∣∣] 6
6 E

[∫t
0

∣∣∣p̃(ds×A)∣∣∣]+E [∫t
0

∣∣∣1(Xs− ∈ A)p̃(ds× I)∣∣∣] .

Expanding the expression of the compensated measure p̃(ds× dy),
we can estimate the first summand by:

E

[∫t
0

∣∣∣p̃(ds×A)∣∣∣] 6 E [∫t
0

∣∣∣p(ds×A) − λ(Xs−, A)ds∣∣∣] 6
6 E

[∫t
0

∣∣∣p(ds×A)∣∣∣]+E [∫t
0

∣∣∣λ(Xs−, A)ds∣∣∣] 6
6 E

[∫t
0

p(ds× I)
]
+E

[∫t
0

λ(Xs−)ds

]
6

6 E
[
p
(
(0, t]× I

)]
+Λt < +∞, ∀t > 0,

being the term E
[
p
(
(0, t]× I

)]
< +∞ thanks to hypothesis (2.5) that

guarantees theP−a.s.-nonexplosiveness of the marked point process
p(ds× dy). Similarly we obtain, for the second summand:

E

[∫t
0

∣∣∣1(Xs− ∈ A)p̃(ds× I)∣∣∣] 6 E [∫t
0

∣∣∣p̃(ds× I)∣∣∣] 6
6 E

[∫t
0

∣∣∣p(ds× I) − λ(Xs−)ds∣∣∣] 6
6 E

[∫t
0

∣∣∣p(ds× I)∣∣∣]+E [∫t
0

∣∣∣λ(Xs−)ds∣∣∣] 6
6 E

[
p
(
(0, t]× I

)]
+Λt < +∞, ∀t > 0.
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Thus E
[∫t
0|dms|

]
< +∞, for all t > 0.

We are now in a position to apply the Filtering Theorem 1.12. Be-
fore writing the first form of our filtering equation, we notice that
the integral on the mark space of the observed process that figures in
formula (1.46), becomes here a finite sum of K terms. This is due to
the finiteness of the space O. Recalling the discussion on the simpli-
fication occurring to its compensated measure, the innovations gain
process can also be easier denoted by K distinct processes, in a similar
fashion.

The filtering equation for the noise-free model is, then, given by:

Ẑt(A) = Ẑ0(A) +

∫t
0

f̂s ds+

+

K∑
k=1

∫t
0

Ks(k,A) [dN
Y
s (k) − λ̂

Y
s (k)ds], t > 0, P− a.s., (2.23)

where Ẑ0(A) is the starting value of the filtering process Ẑt(A), f̂t
is a Ot-progressive process defined as in Theorem 1.11 and Kt(k,A)
is the innovations gain process given by (1.47), as stated in Theorem
1.12.

We will shortly proceed in the explicit calculation of the above
terms, exploiting the martingale calculus for point processes.

2.2.2 The Explicit Form of the Filtering Equation

In this subsection we provide the final form of the filtering equa-
tion for the noise-free model presented in Section 2.1. For the pur-
poses concerning the next proofs, we remember, once and for all, the
properties Xt− dt = Xt dt and Ẑt−(dx)dt = Ẑt(dx)dt. Moreover, we
define 00 = 0.

To start, in the following two propositions we give the explicit form
of the Ot-progressive process f̂t and of the innovations gain process
Kt(k,A).

Proposition 2.3: For all t > 0 we have

f̂t =

∫
I

λ(x,A) Ẑt−(dx) −

∫
A

λ(x) Ẑt−(dx), P− a.s., (2.24)

where f̂t is the Ot-progressive process appearing in equation (2.23).

Proof. It suffices to observe that, as already stated, the fact that the
measurable space (I, I) is a complete separable metric space grants
the existence of a version of E [ft | Ot], for all t > 0, where ft is given
in (2.20). Then, remembering the remark following Theorem 1.11, if
we are able to prove the Ot-progressiveness of such a version, the
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choice f̂t = E [ft | Ot] satisfies its definition given in (1.45). Using di-
rectly that definition, a simple calculation shows that, for all nonneg-
ative bounded Ot-progressive processes Ct, for all t > 0 and P−a.s. ,
we have:

E

[ ∫t
0

Cs fs ds

]
= E

[∫t
0

Cs
{
λ(Xs−, A) −Zs−(A) λ(Xs−)

}
ds

]
=

= E

[ ∫t
0

Cs
{
λ(Xs, A) −Zs(A) λ(Xs)

}
ds

]
=

=

∫t
0

E
[
Cs
{
λ(Xs, A) − 1(Xs ∈ A) λ(Xs)

}]
ds =

=

∫t
0

E [CsE [λ(Xs, A) − 1(Xs ∈ A) λ(Xs) | Os] ]ds =

=

∫t
0

E

[
Cs

∫
I

{
λ(x,A) − 1(x ∈ A) λ(x)

}
Ẑs(dx)

]
ds =

= E

[ ∫t
0

Cs

∫
I

{
λ(x,A) − 1(x ∈ A) λ(x)

}
Ẑs(dx)ds

]
=

= E

[ ∫t
0

Cs

{∫
I

λ(x,A) Ẑs−(dx) −

∫
A

λ(x) Ẑs−(dx)

}
ds

]
.

Defining

f̂t =

∫
I

λ(x,A) Ẑt−(dx) −

∫
A

λ(x) Ẑt−(dx), t > 0,

we observe that the process f̂t is Ot-adapted by definition and the last
formula shows that its trajectories are left-continuous. By Theorem
A.1, it is a Ot-predictable process and, therefore, Ot-progressive. Then
it satisfies the definition provided in (1.45) and we can choose f̂t =

E [ft | Ot].

Proposition 2.4: For all t > 0 and all k = 1, . . . , K, the innovations gain
process appearing in equation (2.23) is given by

Kt(k,A) =

∫
Ack
λ(x,A∩Ak) Ẑt−(dx)

λ̂Yt (k)
− Ẑt−(A). (2.25)

Proof. Let k = 1, . . . , K and t > 0 be fixed. To achieve the result
it is necessary to identify the processes Ψ1,t(k,A), Ψ2,t(k,A) and
Ψ3,t(k,A) that form Kt(k,A) as in (1.47). We stress on the fact that the
finiteness of the mark space O simplifies the expression of Kt(k,A)
and, consequently, of Ψi,t(k,A), i = 1, 2, 3. Therefore, each of the
three equations (1.48) defining them splits into K distinct equations.

To start, we recall that the process Ψ2,t is always given by (1.49). In
this case, that formula specializes to

Ψ2,t(k,A) = Ẑt−(A).

Regarding the process Ψ1,t(k,A), we elaborate the right-hand side
of the first of equations (1.48) by repeatedly using the Fubini-Tonelli
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Theorem and the existence of the probability distribution Ẑt(dx). We
then have:

E

[ ∫t
0

Cs Zs(A) λ
Y
s (k)ds

]
= E

[∫t
0

Cs Zs−(A) λ
Y
s (k)ds

]
=

=

∫t
0

E
[
Cs Zs−(A) λ

Y
s (k)

]
ds =

=

∫t
0

E
[
CsE

[
Zs−(A) λ

Y
s (k) | Os

] ]
ds =

=

∫t
0

E [CsE [1(Xs− ∈ A)1(Xs− ∈ Ack) λ(Xs−, Ak) | Os] ]ds =

=

∫t
0

E [CsE [1(Xs ∈ A∩Ack) λ(Xs, Ak) | Os] ]ds =

=

∫t
0

E

[
Cs

∫
I

1(x ∈ A∩Ack) λ(x,Ak) Ẑs(dx)
]
ds =

=

∫t
0

E

[
Cs

∫
A∩Ack

λ(x,Ak) Ẑs−(dx)

]
ds =

= E

[ ∫t
0

Cs

{∫
A∩Ack

λ(x,Ak) Ẑs−(dx)

}
ds

]
.

Then the identification with the left-hand side of the aforementioned
equation provides us with

Ψ1,t(k,A) =

∫
A∩Ack

λ(x,Ak) Ẑt−(dx)

λ̂Yt (k)
.

With a similar reasoning, we manipulate the right-hand side of the
third of equations (1.48). We observe, first, that:

∆Zt(A) = Zt(A) −Zt−(A) = 1(Xt ∈ A) − 1(Xt− ∈ A), t > 0.

The expression E
[∫t
0Cs∆Zs(A)dN

Y
s (k)

]
can be, then, divided into

two terms, given by

E

[∫t
0

Cs 1(Xs ∈ A)dNYs (k)
]
, (2.26a)

E

[∫t
0

Cs 1(Xs− ∈ A)dNYs (k)
]

. (2.26b)
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We can rewrite (2.26a) as follows:

E

[∫t
0

Cs 1(Xs ∈ A)dNYs (k)
]
=

=E

 ∑
0<s6t

Cs 1(Xs ∈ A)1(Ys− 6= ak)1(Ys = ak)

 =

=E

 ∑
0<s6t

Cs 1(Xs ∈ A)1(Xs− ∈ Ack)1(Xs ∈ Ak)

 =

=E

 ∑
0<s6t

Cs 1(Xs− ∈ Ack)1(Xs ∈ A∩Ak)

 =

=E

[∫t
0

Cs dN
X
s (A

c
k, A∩Ak)

]
.

From Lemma 2.1, we know that, for A,B ∈ I, the point process
NXt (A,B) admits Ot-stochastic intensity λ̂Xt (A,B), given in (2.16b). Re-
calling that Ct is a bounded Ot-predictable process, the very defini-
tion of stochastic intensity yields

E

[∫t
0

Cs dN
X
s (A

c
k, A∩Ak)

]
= E

[∫t
0

Cs λ̂
X
s (A

c
k, A∩Ak)ds

]
,

that together with (2.16b) allows us to write

E

[∫t
0

Cs1(Xs ∈ A)dNYs (k)
]
= E

[∫t
0

Cs

∫
Ack

λ(x,A∩Ak)Ẑs−(dx)ds

]
.

Concerning the term in (2.26b), it suffices to observe that the pro-
cess Ct 1(Xt− ∈ A) is Ft-predictable (Ct, being Ot-predictable, is a
fortiori Ft-predictable), then the definition of Ft-stochastic intensity
gives

E

[∫t
0

Cs 1(Xs− ∈ A)dNYs (k)
]
= E

[∫t
0

Cs 1(Xs− ∈ A) λYs (k)ds
]

.

Thus, we discover that this is the same expression considered in the
computation of the term Ψ1,t(k,A).

Putting back together the formulas obtained for (2.26a) and (2.26b)
and identifying the result with the left-hand side of the third of equa-
tions (1.48), we obtain:

Ψ3,t(k,A) =

∫
Ack
λ(x,A∩Ak) Ẑt−(dx)

λ̂Yt (k)
−Ψ1,t(k,A).

Finally, recalling that

Kt(k,A) = Ψ1,t(k,A) −Ψ2,t(k,A) +Ψ3,t(k,A),

we reach the formula in (2.25).
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We can now write an “intermediate” version of our filtering equa-
tion, more explicit than the earlier form given in (2.23). In fact, com-
bining the results coming from Propositions 2.3 and 2.4, we obtain,
for all t > 0 and P− a.s. ,

Ẑt(A) = Ẑ0(A) +

∫t
0

{∫
I

λ(x,A) Ẑs−(dx) −

∫
A

λ(x) Ẑs−(dx)

}
ds+

+

K∑
k=1

∫t
0

{∫
Ack
λ(x,A∩Ak)Ẑs−(dx)

λ̂Ys (k)
− Ẑs−(A)

}[
dNYs (k)− λ̂

Y
s (k)ds

]
.

(2.27)

Before stating the final version of the filtering equation, we need to
introduce a new operator.

Definition 2.1 (Operator H): For all a ∈ O, the operator H is defined
as a mapping ν 7→ Ha[ν] from the space of measures ν on (I, I) onto
itself such that, for all A ∈ I

Ha[ν](A) =


0, if A∩ h−1(a) = ∅∫
A∩h−1(a) ν(dx)∫
h−1(a)

ν(dx)
, if A∩ h−1(a) 6= ∅ and D > 0

ρa, if A∩ h−1(a) 6= ∅ and D = 0

(2.28)

where D =
∫
h−1(a) ν(dx) and ρa is an arbitrarily chosen probability

measure on (I, I) with support in h−1(a).

Remark: If ν is a positive measure, then Ha[ν] is a probability mea-
sure on (I, I), with support in h−1(a). If in addition ν is a probability
measure on (I, I), then Ha[ν] is the corresponding conditional prob-
ability measure given the event {x ∈ h−1(a)}. We note that the exact
values of the probability measure ρa are irrelevant.

Theorem 2.1 (Filtering Equation): Let Ẑt(A) be the process defined by

Ẑt(ω,A) = HY0(ω)[µ](A)+

+

∫t
0

{∫
I

λ
(
x,A∩ h−1

(
Ys(ω)

))
Ẑs−(ω,dx) −

∫
A

λ(x)Ẑs−(ω,dx)+

+ Ẑs−(ω,A)

∫
I

λ
(
x, h−1

(
Ys(ω)

)c)
Ẑs−(ω,dx)

}
ds+

+
∑

0<τn(ω)6t

{
HYτn(ω)[µn](A) − Ẑτn−(ω,A)

}
, (2.29)

where, for all n = 1, 2, . . . , µn(dy) =
∫
I λ(x, dy) Ẑτn−(dx) is a measure

on (I, I).
Then Ẑt(A) is a modification of the filtering processP

(
Xt ∈ A | FYt

)
, i. e.

for all t > 0 and all A ∈ I we have Ẑt(A) = P
(
Xt ∈ A | FYt

)
, P− a.s. .
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Proof. As we observed at the beginning of this Section, the natural
filtration FYt of the process Yt coincides with the observed history
Ot by construction. Thus, the filtering processes P

(
Xt ∈ A | FYt

)
and

P (Xt ∈ A | Ot) are identical, and we already possess an expression
for a modification of the latter, namely (2.27).

The proof will, then, explicit the terms that appear in that equation
to achieve the form (2.29). It will be rather long, so we will divide it
into four main blocks. Each of them will cover the four main parts of
the equation, that is to say:

(1) The initial value HY0(ω)[µ](A);

(2) The linear term, i. e. the second line of equation (2.29);

(3) The quadratic term, i. e. the third line of equation (2.29);

(4) The jump term, i. e. the last line of equation (2.29).

In the sequel we will drop the ω in the notation of all the quantities
involved. We also fix A ∈ I and t > 0.

(1) We can retrieve the initial value of the process Ẑ0(A) simply by
elaborating its definition. In fact, remembering that X0 ∼ µ, we have

Ẑ0(A) = P (X0 ∈ A | O0) = P (X0 ∈ A | Y0) =

= P (X0 ∈ A | Y0 = h(Y0)) =
P
(
X0 ∈ A,X0 ∈ h−1(Y0)

)
P (X0 ∈ h−1(Y0))

=

=


0, if A∩ h−1(Y0) = ∅∫
A∩h−1(Y0)

µ(dx)∫
h−1(Y0)

µ(dx)
, if A∩ h−1(Y0) 6= ∅ and D > 0

ρY0 , if A∩ h−1(Y0) 6= ∅ and D = 0

where D =
∫
h−1(Y0)

µ(dx) and ρY0 an arbitrarily chosen probability
measure on (I, I) with support in h−1(Y0). Then, recalling the defini-
tion of the operator H in (2.28), we can write

Ẑ0(A) = HY0 [µ](A).

(2) The linear part of equation (2.27) is given by∫t
0

{∫
I

λ(x,A) Ẑs−(dx) −

∫
A

λ(x) Ẑs−(dx)

}
ds+

−

K∑
k=1

∫t
0

∫
Ack
λ(x,A∩Ak) Ẑs−(dx)

λ̂Ys (k)
λ̂Ys (k)ds.

For ease of notation, we consider just the innermost integrals and the
finite sum, i. e.∫
I

λ(x,A)Ẑs−(dx) −

∫
A

λ(x)Ẑs−(dx) −

K∑
k=1

∫
Ack

λ(x,A∩Ak)Ẑs−(dx),
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where we have simplified the fraction.
Considering the peculiar structure of our model, we notice that

the conditional distribution Ẑt(dx) has support in the set h−1(Yt),
for all t > 0. Indeed, if at time t we observe a specific value of Yt,
then Xt ∈ h−1(Yt), since Yt = h(Xt) and therefore the conditional
distribution Ẑt(dx) assigns measure zero to all the sets in I that are
disjoint from h−1(Yt). Moreover, h−1(Yt) = Ak, for some k = 1, . . . , K,
because of the partition induced on I by the function h. This fact
allows us to dramatically simplify the last equation.

Let us fix s > 0 and denote by k? ∈ {1, . . . , K} the index such that
h−1(Ys) = Ak? . Then, since we are considering the continuous part
of the filtering process, the conditional distribution Ẑs−(dx) has the
same support as Ẑs(dx), i. e. h−1(Ys). This is contained in all of the
sets Ak but one, precisely Ak? , because Ack? = h−1(Ys)

c. As a conse-
quence, we can write

K∑
k=1

∫
Ack

λ(x,A∩Ak)Ẑs−(dx) =
K∑
k=1
k6=k?

∫
Ack

λ(x,A∩Ak)Ẑs−(dx).

For the same reasons concerning the support of the conditional dis-
tribution Ẑs−(dx), we can extend all the integrals to the whole set I
and achieve

K∑
k=1
k6=k?

∫
Ack

λ(x,A∩Ak)Ẑs−(dx) =
K∑
k=1
k6=k?

∫
I

λ(x,A∩Ak)Ẑs−(dx) =

=

K∑
k=1
k6=k?

∫
I

∫
I

1(y ∈ A∩Ak) λ(x, dy)Ẑs−(dx) =

=

∫
I

∫
I

K∑
k=1
k6=k?

1(y ∈ A∩Ak) λ(x, dy)Ẑs−(dx).

The only terms that depend on the index k are the indicator functions.
Studying them separately and considering that the sets Ak are all
pairwise disjoint, we find that

K∑
k=1
k6=k?

1(y ∈ A∩Ak) = 1(y ∈ A) ·
K∑
k=1
k6=k?

1(y ∈ Ak) =

= 1(y ∈ A) · 1
(
y ∈

K⋃
k=1
k6=k?

Ak

)
= 1(y ∈ A) · 1(y ∈ Ack?) =

= 1(y ∈ A)
[
1− 1

(
y ∈ Ak?

)]
= 1(y ∈ A)

[
1− 1

(
y ∈ h−1(Ys)

)]
=

= 1
(
y ∈ A

)
− 1
(
y ∈ A∩ h−1(Ys)

)
.
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We can, then, write∫
I

∫
I

K∑
k=1
k6=k?

1(y ∈ A∩Ak) λ(x, dy)Ẑs−(dx) =

=

∫
I

∫
I

{
1
(
y ∈ A

)
− 1
(
y ∈ A∩ h−1(Ys)

)}
λ(x, dy)Ẑs−(dx) =

=

∫
I

λ
(
x,A

)
Ẑs−(dx) −

∫
I

λ
(
x,A∩ h−1(Ys)

)
Ẑs−(dx).

The first term in this equation cancels out the first in the expression of
the whole linear term. Then, putting together all the previous results,
we obtain∫t

0

{∫
I

λ
(
x,A∩ h−1(Ys)

)
Ẑs−(dx) −

∫
A

λ(x) Ẑs−(dx)

}
ds,

which is exactly the second line of (2.29).
(3) The quadratic term of equation (2.27) is

K∑
k=1

∫t
0

Ẑs−(A) λ̂
Y
s (k)ds =

∫t
0

Ẑs−(A)

K∑
k=1

∫
Ack

λ(x,Ak) Ẑs−(dx)ds.

Following the same considerations made in part (2) of the proof, we
reach the expression

K∑
k=1

∫
Ack

λ(x,Ak) Ẑs−(dx) =

∫
I

∫
I

K∑
k=1
k6=k?

1(y ∈ Ak) λ(x, dy)Ẑs−(dx).

Then, recalling that

K∑
k=1
k6=k?

1(y ∈ Ak) = 1− 1
(
y ∈ h−1(Ys)

)
= 1

(
y ∈ h−1(Ys)c

)
,

we achieve ∫t
0

Ẑs−(A)

∫
I

λ
(
x, h−1(Ys)

c
)
Ẑs−(dx)ds,

that is precisely the third line of (2.29).
(4) The jump part of equation (2.27) is given by

K∑
k=1

∫t
0

{∫
Ack
λ(x,A∩Ak) Ẑs−(dx)

λ̂Ys (k)
− Ẑs−(A)

}
dNYs (k) =

=

K∑
k=1

∑
0<s6t

{∫
Ack
λ(x,A∩Ak) Ẑs−(dx)

λ̂Ys (k)
− Ẑs−(A)

}
dNYs (k) =

=
∑
0<s6t

K∑
k=1

{∫
Ack
λ(x,A∩Ak) Ẑs−(dx)

λ̂Ys (k)
− Ẑs−(A)

}
dNYs (k).
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We observe that, for a fixed t > 0 and k ∈ {1, . . . , K}, dNYt (k) = 1

if and only if τn = t and ζn = ak for some n > 1. Therefore, we
can substitute the index s appearing in the outermost sum in the
last equation with τn. For a fixed n ∈ N such that 0 < τn 6 t, we
also notice that the only surviving term in the innermost sum is that
relative to the index k? such that ζn = ak? , since dNYτn(k) = 0 for all
k ∈ {1, . . . , K} with k 6= k?. Moreover, since Yτn = ak? , or equivalently
Ak? = h

−1(Yτn), the last equation reduces to

∑
0<τn6t

{∫
h−1(Yτn)

c λ
(
x,A∩ h−1(Yτn)

)
Ẑτn−(dx)∫

h−1(Yτn)
c λ
(
x, h−1(Yτn)

)
Ẑτn−(dx)

− Ẑτn−(A)

}
,

where we used the fact that

λ̂Yτn(k
?) =

∫
Ac
k?

λ
(
x,Ak?

)
Ẑτn−(dx) =

∫
h−1(Yτn)

c

λ
(
x, h−1(Yτn)

)
Ẑτn−(dx).

Considering that Zτn−(dx) has support in the set h−1(Yτn−) and
that h−1(Yτn)

c ⊃ h−1(Yτn−), we can extend both the integrals ap-
pearing in the last expression to achieve

∑
0<τn6t

{∫
I λ
(
x,A∩ h−1(Yτn)

)
Ẑτn−(dx)∫

I λ
(
x, h−1(Yτn)

)
Ẑτn−(dx)

− Ẑτn−(A)

}
.

Finally, we observe that the fraction in the last equation vanishes if
A ∩ h−1(Yτn) = ∅ and also if its denominator is equal to zero, since
we assumed 0

0 = 0. This should recall the definition of the operator
H, when choosing a = Yτn and ρa ≡ 0. Thus, we just need to identify
the measure on (I, I) on which the operator H is acting.

A final application of the Fubini-Tonelli Theorem on both the nu-
merator and the denominator of the fraction gives∫
Iλ
(
x,A∩ h−1(Yτn)

)
Ẑτn−(dx)∫

Iλ
(
x, h−1(Yτn)

)
Ẑτn−(dx)

=

∫
I

∫
A∩h−1(Yτn)

λ(x,dy)Ẑτn−(dx)∫
I

∫
h−1(Yτn)

λ(x,dy)Ẑτn−(dx)
=∫

A∩h−1(Yτn)

∫
I λ(x, dy) Ẑτn−(dx)∫

h−1(Yτn)

∫
I λ(x, dy) Ẑτn−(dx)

=

∫
A∩h−1(Yτn)

µn(dy)∫
h−1(Yτn)

µn(dy)
.

Then, comparing this expression with (2.28), we see that µn(dy) is
the sought measure and we can write∑

0<τn6t

HYτn [µn](A) − Ẑτn−(A),

that gives the last term in equation (2.29).

Remark: A simple manipulation of the filtering equation (2.29) al-
lows us to write it in a more suggestive and “expected” way, i. e. with
the use of the infinitesimal generator L associated to the process Xt.
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It suffices to notice that the first summand of the linear term can
also be expressed as∫t

0

∫
I

λ
(
x,A∩ h−1(Ys)

)
Ẑs−(dx)ds =

=

∫t
0

∫
I

∫
I

1
(
y ∈ A∩ h−1(Ys)

)
λ(x, dy) Ẑs−(dx)ds =

=

∫t
0

∫
I

∫
I

1(y ∈ A)1
(
y ∈ h−1(Ys)

)
λ(x, dy) Ẑs−(dx)ds =

=

∫t
0

∫
I

∫
I

1(y ∈ A)
[
1− 1

(
y ∈ h−1(Ys)c

)]
λ(x, dy) Ẑs−(dx)ds.

The innermost integral is then equal to∫
I

1(y ∈ A) λ(x, dy) −
∫
I

1(y ∈ A)1
(
y ∈ h−1(Ys)c

)
λ(x, dy).

Similarly the second summand of the linear term can be written as∫t
0

∫
A

λ(x) Ẑs−(dx)ds =

∫t
0

∫
I

1(x ∈ A) λ(x) Ẑs−(dx)ds =

=

∫t
0

∫
I

∫
I

1(x ∈ A) λ(x, dy) Ẑs−(dx)ds.

Then, putting back together the whole linear part of equation (2.29)
and rearranging the terms we obtain∫t

0

{∫
I

λ
(
x,A∩ h−1(Ys)

)
Ẑs−(dx) −

∫
A

λ(x) Ẑs−(dx)

}
ds =

=

∫t
0

∫
I

∫
I

{
1(y ∈ A) − 1(x ∈ A)

}
λ(x, dy) Ẑs−(dx)ds+

−

∫t
0

∫
I

∫
I

1(y ∈ A)1
(
y ∈ h−1(Ys)c

)
λ(x, dy) Ẑs−(dx)ds,

and we recognize the innermost integral in the second line as the
infinitesimal generator L of the process Xt acting on the bounded
measurable function ϕ(x) = 1(x ∈ A). We can, therefore, write∫t

0

{∫
I

Lϕ(x) Ẑs−(dx) −

∫
I

∫
h−1(Ys)c

ϕ(y) λ(x, dy) Ẑs−(dx)

}
ds.

Finally, if we denote the terms Ẑ·(A) and H·[·](A) in a slight dif-
ferent form, i. e. by Ẑ·(ϕ) and H·[·](ϕ) respectively, we can write the
filtering equation as

Ẑt(ω,ϕ) = HY0(ω)[µ](ϕ)+

+

∫t
0

{∫
I

Lϕ(x)Ẑs−(ω,dx)−

∫
I

∫
h−1
(
Ys(ω)

)cϕ(y)λ(x, dy)Ẑs−(ω,dx)+
+ Ẑs−(ω,ϕ)

∫
I

λ
(
x, h−1

(
Ys(ω)

)c)
Ẑs−(ω,dx)

}
ds+

+
∑

0<τn(ω)6t

{
HYτn(ω)[µn](ϕ) − Ẑτn−(ω,ϕ)

}
. (2.30)
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As far as this Thesis is concerned, writing ϕ instead of A has to
be considered a mere change of notation. In a more general setting,
instead, it can be proved, following the same lines that conduced us
to equation (2.29) and with the proper adjustments, that (2.30) is the
filtering equation for the filtering process

Ẑt(ϕ) = E
[
ϕ(Xt) | F

Y
t

]
, t > 0, (2.31)

where ϕ is a real-valued bounded measurable function defined on I.



C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

Stochastic problems of a filtering nature appear today in a variety
of situations. As recalled in the Introduction, they are used to analyze
dynamic systems in engineering applications and they arise naturally
in the description of financial and economical models. Frequently,
they are the first and essential step to find a solution to optimiza-
tion problems, as is the case of optimal stopping or optimal control
of a stochastic process of interest. Because of their ubiquitous nature,
they have been deeply analyzed, especially in the case of noisy obser-
vations, as stated in the beginning.

The purpose of this thesis was twofold: on one hand, we wanted
to foster the analysis of the model presented in Chapter 2, character-
ized by a noise-free observation. We think it deserves attention on his
own: it is not uncommon the case where either no noise is effectively
acting on the observed process or it can be considered negligible with
respect to the noise acting on the whole system. In these situations,
all the sources of randomness are included in the unobserved pro-
cess. On the other hand, we wanted to show a detailed application of
marked point processes and martingale calculus to this kind of mod-
els. The power of these tools is clear: in the Introduction we stated
that this model possesses a dynamical nature and that the martingale
theory is well suited for the analysis of such problems. Chapter 2,
where the filtering equation is derived exploiting these instruments,
represents a plain and hopefully convincing explanation of this state-
ment.

The work done in this Thesis can be, thus, summarized by three
main points:

1. Investigation on the noise-free model (3) via filtering techniques
based on the martingale theory, an approach not adopted so far
in this context.

2. A simpler proof of the filtering formula with respect to the
method adopted in [5].

3. Generalization of the noise-free model (3). We assumed the state
space of the unobserved process to be a complete separable
metric space, instead of the restrictive assumption of finiteness
made in [5].

This Thesis aims also to be the basis for future developments on
the subject. Regarding the applications of the model presented here,
we notice that its simple structure allows to describe a great number
of problems, for example:
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• Optimal stopping and optimal control problems, where the ob-
servation is an exact datum, not corrupted by noise;

• Optimal switching, where the commutations among different
system dynamics are governed by an unobserved pure jump
Markov process (who may, as an example, control the drift and
diffusion coefficients of an SDE driven by a Wiener process);

• Jump Markov linear systems, where a physical system can be
described by a stochastic linear dynamic model whose parame-
ters are governed by an underlying jump Markov process.

From a more purely mathematical point of view, instead, a deeper
investigation on the properties of the filtering process should be car-
ried out. In the previously cited work, the solution to the filtering
equation, i. e. the filtering process, is shown to possess two important
properties:

• It is a Markov process with respect to the natural filtration of
the observed process.

• It is a PDP in the sense of Davis.

The class of processes named piecewise-deterministic Markov processes
(PDPs) and introduced by M.H.A. Davis in [7], is an extensively stud-
ied one: the interested reader is referenced to [8] for a detailed expo-
sition. A PDP has a particular structure, i. e. it has jumps at random
times and otherwise it evolves deterministically. Apart from proving
that the filtering process belongs to this class of processes, the rele-
vance of this characterization is that a lot of known results from the
theory of PDPs immediately apply to this case and define further
properties.

It is, then, obvious to postulate that the filtering process described
in this work possesses the Markov property with respect to the ob-
served history and is a PDP. Moreover, one can wonder if it can be
characterized as the unique solution to the filtering equation.

As we tried to point out, a lot of work can be done on this subject.
On one hand, the apparent simplicity of the model described here
hides a plethora of applications yet to be studied in a vast range of
fields. New and more sophisticated models can also be built upon this
one and their analysis should take advantage from the techniques ex-
plained and adopted in this work. On the other hand, the mathemat-
ical description of this problem is not over. Further generalizations,
such as allowing the observed process to take values into a complete
separable metric space, are yet to be explored. Various properties sup-
posedly holding for the filtering process have yet to be proved. Other
characteristics are surely yet to be discovered.





A
S T O C H A S T I C P R O C E S S E S

This Appendix is devoted to illustrating the fundamentals of sto-
chastic processes theory. A selection of arguments on this vast subject
has been made in order to accommodate the purposes of this Thesis,
where the concepts and the terminology here recalled are constantly
used. The reader needing a more complete discussion on the mate-
rial covered hereinafter, can consult any of the classical textbooks on
stochastic processes theory. We cite, as a reference, [4, 13, 15].

a.1 stochastic processes , filtrations and measurabil-
ity

In this section we will review a few definitions and useful results
on stochastic processes. In the sequel we will assume defined a prob-
ability space (Ω, F, P) and a measurable space (E, E).

Definition A.1 (Continuous-time Stochastic Process): Let (Xt)t>0 be
a collection of random variables Xt : (Ω,F) → (E, E), t > 0. (Xt)t>0
is called a E-valued continuous-time stochastic process.

For a fixed ω ∈ Ω, the mapping t 7→ Xt(ω), t > 0, is called a trajec-
tory or a path of the process Xt. If (E, E) is also a topological space, we
say that the process Xt is continuous (right-continuous, left-continuous),
if and only if its trajectories are P−a.s. continuous (right-continuous,
left-continuous).

Definition A.2: Let Xt and Yt be two E-valued stochastic processes,
both defined on the same probability space. They are said to be

(1) modifications or versions of one another if and only if

P
(
{ω : Xt(ω) 6= Yt(ω)}

)
= 0, ∀t > 0, (A.1)

(2) P-indistinguishable if and only if

P
(
{ω : Xt(ω) 6= Yt(ω), ∀t > 0}

)
= 0, (A.2)

that is to say, if they have identical trajectories except on a set of
P-measure zero.

Naturally linked to a stochastic process is the concept of filtration,
that mathematically describes the idea of an increasing information
pattern: as time progresses, more and more informations are revealed
about the process itself or other “events”.
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Definition A.3 (Filtration): Let (Ft)t>0 be a family of sub-σ-fields
of F such that

Fs ⊂ Ft, ∀ 0 > s > t. (A.3)

(Ft)t>0 is called a filtration or history on (Ω, F).

Remark: For ease of notation, stochastic processes and filtrations are
often denoted simply by Xt and Ft, respectively. This should create
no confusion, since is clear from the context which is the object of
interest, being either the entire stochastic process or filtration, or the
single random variable or σ-algebra, for a fixed t > 0.

Definition A.4: Let Ft be a filtration on (Ω, F) and denote with Ft+
the σ-algebra

Ft+ =
⋂
h>0

Ft+h, t > 0. (A.4)

The filtration Ft is said to be right-continuous if and only if Ft+ = Ft
for all t > 0.

Among the various filtrations that is possible to associate to a sto-
chastic process Xt, a special place is occupied by the natural filtration
(also said the internal history), indicated by FXt and defined by

FXt = σ(Xs, 0 6 s 6 t), ∀t > 0. (A.5)

For every t > 0, FXt is the σ-algebra generated by the collection of ran-
dom variables (Xs)s∈[0,t] and it represents the stream of information
generated by the process Xt itself up to time t.

We conclude this section with a brief recapitulation of the main
definitions and results on measurability of stochastic processes.

We recall that a mapping between two measurable spaces (I, I) and
(O, O), defined by h : I→ O, is said to be O/I-measurable if

h−1(A) ∈ I, ∀A ∈ O, (A.6)

where h−1 denotes the pre-image of a set under h.

Definition A.5: Let Xt be a E-valued stochastic process. It is said to
be

(1) measurable if and only if the mapping

(t,ω) 7→ Xt(ω), (t,ω) ∈ R+ ×Ω (A.7)

is E/B+ ⊗F-measurable;

(2) Ft-adapted1 if and only if, for all fixed t > 0, the mapping

ω 7→ Xt(ω), ω ∈ Ω (A.8)

is E/Ft-measurable;

1 The correct notation would be “(P, Ft)”-adapted. However, for sake of simplicity, in
the sequel we will omit to specify the probability P, that will be always understood.
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(3) Ft-progressive if and only if, for all fixed t > 0, the mapping

(s,ω) 7→ Xs(ω), (s,ω) ∈ [0, t]×Ω (A.9)

is E/B
(
[0, t]

)
⊗Ft-measurable;

Remark: For the sake of clarity, we remember that B(A) denotes the
Borel subsets of A ⊂ R. The symbol R+ indicates the set [0,+∞) and,
correspondingly, B+ = B

(
[0,+∞)

)
.

For our purposes, the previous notions of measurability are not
sufficient. We need to introduce also predictable processes, whose defi-
nition requires a new σ-field, namely the predictable σ-field.

Definition A.6 (Predictable σ-Field, Predictable Process): Let Ft be
a filtration defined on the probability space (Ω, F, P). Let P(Ft) be
the σ-field over (0,+∞)×Ω generated by the rectangles of the form

(s, t]×A, 0 6 s 6 t, A ∈ Fs. (A.10)

Then, P(Ft) is called the Ft-predictable σ-field over (0,+∞)×Ω.
A E-valued process Xt is said to be Ft-predictable if and only if X0

is F0-measurable and the mapping

(t,ω) 7→ Xt(ω), (t,ω) ∈ (0,+∞)×Ω (A.11)

is E/P(Ft)-measurable.

Remark: It is possible to simplify the form of the rectangles that gen-
erate a predictable σ-field by taking

(s,+∞)×A, s > 0, A ∈ Fs, (A.12)

instead of the set of generators (A.10).

In the case where the measure space (E, E) satisfies some additional
hypotheses, we can state sufficient conditions for a stochastic process
to be progressive or predictable.

Theorem A.1: Let E be a metrizable topological space and let Xt be a E-
valued process adapted to a filtration Ft on (Ω, F).

(i) If Xt is right-continuous then Xt is Ft-progressive.

(ii) If Xt is left-continuous then Xt is Ft-predictable.

Moreover, a Ft-predictable process is Ft-progressive.
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a.2 markov processes

In this section we will expose some basic notions about a fun-
damental class of processes, that is the object of this work, namely
Markov processes. Here we will assume that the previously given mea-
sure space (E, E) is also a topological space. We will denote by b(E)
the set of bounded measurable functions f : E→ R.

A Markov process is a stochastic process Xt whose main feature is
that its increments, i. e. the quantities Xt+h−Xt, where h > 0, depend
upon the past of the process itself only through its present value Xt.
Formalizing our previous statement, we give the following definition.

Definition A.7 (Markov Process): Let Xt be an E-valued process de-
fined on the probability space (Ω, F, P) and Ft-adapted, for some
filtration Ft on (Ω, F). Let F∞t = σ(Xs, s > t). Then, Xt is called a Ft-
Markov process if and only if, for all t > 0, F∞t and Ft are independent
given Xt.

In particular, if Xt is a Markov process, then for all 0 6 s 6 t and
for all f ∈ b(E) the next formula holds:

E [f(Xt) | Fs] = E [f(Xt) | Xs] (A.13)

A Markov process may admit a transition function, an object that
describes the probabilistic structure of the transitions of the process
from a given state x at time s to a specified set A at a future time t.

Definition A.8 (Transition Function): Let Ps,t(x,A), x ∈ E, A ∈ E,
0 6 s 6 t, be a function from E× E into R+ such that:

(1) A 7→ Ps,t(x,A) is a probability on (E, E) for all x ∈ E,

(2) x 7→ Ps,t(x,A) is B+/E-measurable for all A ∈ E,

(3) the Chapman-Kolmogorov equation holds, i. e. for all 0 6 s 6 u 6 t,
all x ∈ E and all A ∈ E

Ps,t(x,A) =

∫
E

Ps,u(x, dy)Pu,t(y,A). (A.14)

Then, the function Ps,t(x,A) is called a Markov transition function on
(E, E).
If Ps,t(x,A) = Pt−s(x,A), then the Markov transition function is said
to be homogeneous.

Definition A.9: Let Xt be a E-valued Ft-Markov process and let
Ps,t(x,A) be a Markov transition function on (E, E). If

E [f(Xt) | Fs] =

∫
E

f(y)Ps,t(Xs, dy) (A.15)
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for all 0 6 s 6 t and all f ∈ b(E), then the Markov process Xt is said
to admit the Markov transition function Ps,t(x,A).
If Ps,t(x,A) is homogeneous, the Markov process Xt is said to be a
homogeneous Ft-Markov process admitting the Markov transition func-
tion Pt−s(x,A).

If we take the function f(x) = 1A(x), A ∈ E, in equation (A.15), it
specializes to

P (Xt ∈ A | Fs) = Ps,t(Xt, A). (A.16)

It is then clear that the function Ps,t(x,A) is nothing but the proba-
bility that the value of the process Xt at time t > 0 belongs to the
set A ∈ E, starting from the state Xs = x ∈ E at time s ∈ [0, t] and
conditionally to Fs.
The Chapman-Kolmogorov equation symbolizes the fact that we can
express the transition of the process Xt from the state x to the set A
as an infinite sum of infinitesimal disjoint transitions through inter-
mediate states at times u ∈ [s, t].

In the case of a homogeneous Markov process we can say some-
thing more about its transition function (if it admits one) Pt−s(x,A).
Let us define, for each t > 0, the following operator Pt, mapping b(E)
onto itself:

Pt f(x) =

∫
E

f(y)Pt(x, dy). (A.17)

Then, by the Chapman-Kolmogorov equation (A.14) we obtain

Pt Ps = Pt+s, s > 0. (A.18)

Thus, the family (Pt)t>0 forms a semigroup, called the transition semi-
group associated to the stochastic process Xt.
Finally, suppose that, for some function f ∈ b(E), the limit

L f(x) = lim
t↓0

Pt f(x) − f(x)

t
(A.19)

exists for all x ∈ E. Then, denoting by D(L) the family of functions
f ∈ b(E) such that the limit in equation (A.19) exists for all x ∈ E, the
operator L is defined for all f ∈ D(L) and it is called the infinitesimal
generator of the process Xt.

a.3 martingales

We now turn our attention to a fundamental kind of stochastic
processes that are martingales. Before giving a rigorous definition of
this concept, let us express in few words and in an informal way what
this concept symbolizes.

In a number of situations, one can be interested in predicting the
future value of a stochastic process Xt, given the knowledge of some
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past and present “events”. As is well known, and recalling the con-
cept of filtration previously introduced, a way to do this is to compute
the conditional expectation of the random variable Xt with respect to
the filtration Fs, 0 6 s 6 t. It can happen that the amount of infor-
mation included in the filtration Ft may help in reducing the level of
uncertainty about the future outcome of the stochastic process. This
is precisely not the case for a martingale, i. e. with what is known
through the history Ft the best estimate that one can do for the fu-
ture value of the stochastic process Xt is its present value.

Let us now formalize this statement and show two simple exam-
ples.

Definition A.10 (Martingale): Let Ft be a filtration on the probabil-
ity space (Ω, F, P). Let Xt be a E-valued stochastic process and c a
nonnegative real number. If

(i) Xt is adapted to Ft,

(ii) E [|Xt|] <∞, ∀t ∈ [0, c],

(iii) E [Xt | Fs] = Xs, P− a.s., ∀0 6 s 6 t 6 c,

then the process Xt is called a Ft-martingale over [0, c]. If it is a Ft-
martingale over [0, c] for all c > 0, then Xt is called a Ft-martingale.

Example A.1: Let Xt be a real-valued stochastic process and let Y
be a square-integrable real-valued random variable. Suppose that we
are interested in constructing the best quadratic estimate of Y given
the knowledge of the process Xt up to time t, i. e. given the natural
filtration FXt . As previously recalled, the answer to this question is to
compute E

[
Y | FXt

]
. Indeed, defining Yt = E

[
Y | FXt

]
, t > 0, it can be

shown that
E
[
(Y − Yt)

2
]
6 E

[
(Y −Z)2

]
(A.20)

for all square-integrable and FXt -measurable random variables Z.
The process Yt is a simple example of FXt -martingale. In fact, we

have for all 0 6 s 6 t

E
[
Yt | F

X
s

]
= E

[
E
[
Y | FXt

]
| FXs

]
= E [Y | Fs] = Ys, (A.21)

which is obvious, since the process Yt is constructed solely upon the
information about the process Xt.

Example A.2 (Processes with Independent Increments): Let Xt be a
real-valued process and suppose that, for all 0 6 s 6 t, its increments
Xt−Xs are independent of FXs . The process Xt is then said to be with
independent increments.

If we suppose, moreover, that E [|Xt|] < ∞ and E [Xt] = 0, for
all t > 0, then Xt is a FXt -martingale. It suffices to observe that, by
linearity of the conditional expectation operator,

E
[
Xt | F

X
s

]
= E

[
Xs | F

X
s

]
+E

[
Xt −Xs | F

X
s

]
= Xs + 0. (A.22)
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A stronger type of martingale is given in the following definition.

Definition A.11 (Square-Integrable Martingale): Let Xt be a Ft-mar-
tingale over [0, c], for some c > 0. If

E

[
|Xc|

2
]
<∞, (A.23)

then Xt is called a square-integrable Ft-martingale over [0, c].
If Xt is a Ft-martingale such that

sup
t>0

E

[
|Xt|

2
]
<∞, (A.24)

then Xt is called a square-integrable Ft-martingale.

The concept of martingale can be generalized to include a larger
class of processes, with the notion of local martingale. Its definition is
tightly linked to another probabilistic object, a stopping time.

Definition A.12 (Stopping Time): Let Ft be a filtration on (Ω,F). A
random variable τ : Ω→ [0,+∞] is called a Ft-stopping time if

{τ 6 t} ∈ Ft, ∀t ∈ [0,+∞). (A.25)

Definition A.13 (Local Martingale): Let Xt be a E-valued stochas-
tic process adapted to a filtration Ft on (Ω,F). Let (τn)n>1 be an
increasing sequence of Ft-stopping times such that

(i) limn↑∞ Sn = +∞, P− a.s.,

(ii) for each n > 1, Xt∧τn is a Ft-martingale.

Then Xt is called a Ft-local martingale.

We conclude this Appendix with a theorem that links martingales
and predictable processes with stochastic integration. In this context,
all the stochastic integrals are always to be understood, if not other-
wise specified, as Lebesgue-Stieltjes integrals.

Before stating the theorem, let us recall that a stochastic process
Xt is said to be of bounded variation if its trajectories are P− a.s. of
bounded variation over bounded intervals. It is said to be of integrable
variation if the additional condition E

[∫t
0|dXs|

]
< ∞ holds for all

t > 0.

Theorem A.2 (Integration with Respect to Bounded Variation Martin-
gales): Let Mt be a Ft-martingale of integrable bounded variation. Let Ct
be a Ft-predictable process such that

E

[∫1
0

|Cs| |dMs|

]
<∞. (A.26)

Then the process
∫t
0Cs dMs is a Ft-martingale over [0, 1].





B I B L I O G R A P H Y

[1] L. Aggoun and R. J. Elliott. Measure Theory and Filtering. Introduc-
tion and Applications. Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press, Cambridge,
2004.

[2] A. Bain and D. Crisan. Fundamentals of Stochastic Filtering.
Springer, New York, 2009.

[3] P Baxendale, P. Chigansky, and R. Lipster. Asymptotic stability
of the Wonham filter: Ergodic and nonergodic signals. SIAM J.
Control Optim., 43(2):643–669, 2004.

[4] P. Brémaud. Point Processes and Queues. Springer Series in Statis-
tics. Springer-Verlag, New York, 1981.

[5] F. Confortola and M. Fuhrman. Filtering of continuous-time
Markov chains with noise-free observation and applications.
Stochastics An International Journal of Probability and Stochastic Pro-
cesses, 85(2):216–251, 2013.

[6] D. Crisan, M. Kouritzin, and J. Xiong. Nonlinear filtering with
signal dependent observation noise. Electron. J. Probab., 14:1863–
1883, 2009.

[7] M.H.A. Davis. Piecewise-deterministic Markov processes: A gen-
eral class of non-diffusion stochastic models (with discussion). J.
Roy. Statist. Soc. Ser. B, 46:353–388, 1984.

[8] M.H.A. Davis. Markov Models and Optimization, volume 49 of
Monographs on Statistics and Applied Probability. Chapman and
Hall, London, 1993.

[9] C. Dellacherie. Capacités et Processus Stochastiques. Springer,
Berlin, 1972.

[10] R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov Models.
Estimation and Control, volume 29 of Application of Mathematics.
Springer-Verlag, New York, 1995.

[11] S. Haykin. Kalman filtering and neural networks. John Wiley &
Sons., New York, 2001.

[12] M. Joannides and F. LeGland. Nonlinear filtering with contin-
uous time perfect observations and noninformative quadratic
variation. In Proceeding of the 36th IEEE Conference on Decision
and Control, pages 1645–1650, 1997.

54



bibliography 55

[13] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calcu-
lus. Springer, New York, 2nd edition, 1991.

[14] H. Korezlioglu and W. Runggaldier. Filtering for nonlinear
systems driven by nonwhite noises: An approximation scheme.
Stoch. Stoch. Rep., 44:65–102, 1993.

[15] R. Lipster and A. N. Shiryaev. Statistics of Random Processes, vol-
ume I: General Theory. Springer, New York, 2nd edition, 2001.

[16] Y. Takeuchi and H. Akashi. Least-squares state estimation of
systems with state-dependent observation noise. Automatica, 21

(3):303–313, 1985.

[17] S. Watanabe. Additive functionals of Markov processes and Lévy
Systems. Jap. J. Math., 34:53–79, 1964.

[18] J. Xiong. An Introduction to Stochastic Filtering Theory. Oxford
University Press, New York, 2008.





R I N G R A Z I A M E N T I

La parte più ardua da scrivere in una Tesi è quella dei ringraziamen-
ti. Punto. Dato di fatto inconfutabile, almeno per me. Specialmente se,
per di più, riguardano un periodo lungo e importante della vita co-
me quello degli studi universitari. Il motivo? Una legge rigorosa e
ineluttabile: inizierai a scriverli da capo almeno dieci volte e (quasi)
certamente dimenticherai qualcuno. Il tesista, notoriamente in crisi a
questo punto del lavoro, si scervella in ogni modo pur di sfuggirle: io
ho scelto di iniziare a scrivere queste parole con qualche giorno di an-
ticipo rispetto all’ora X. No non sto parlando della discussione della
Tesi, ma della scadenza per il suo deposito. Momento meno emozio-
nante del primo ma in grado di provocare cardiopalmi di seria entità
egualmente.

Cionondimeno, a tale legge nessuno può sfuggire, qualunque pre-
cauzione si adotti. Se è vero che mi è già accaduto di abbozzare e
cancellare un periodo almeno dieci volte, ancora non so se effetti-
vamente dimenticherò qualcuno: succederà, credetemi. A scanso di
equivoci, chiedo in anticipo perdono. E ora bando alle ciance!

Ringrazio per primo il mio relatore, Prof. Marco Fuhrman, che mi
ha dato l’opportunità di svolgere questo lavoro: anzitutto, ha saputo
indirizzarmi verso questo ambito, il filtraggio di processi stocastici,
che inizialmente, lo confesso, snobbavo un po’. Non solo, è pure riu-
scito a farmici appassionare, non bastasse già il numero di cose a cui
vorrei dedicarmi prima o dopo nella vita. In più, nonostante i suoi
innumerevoli impegni, mi ha seguito prima nel procedere del lavoro
e poi nella scrittura della Tesi, dedicandomi, a volte, anche mattinate
intere. Un grazie, davvero, di cuore.

Arriva il momento dei dedicatari di questa Tesi, mamma e papà.
Aiuto, devo cercare di mettere insieme almeno una frase di senso
compiuto! Grazie, grazie, mille volte grazie: mi avete sempre sostenu-
to, a prescindere da ogni situazione, bella o brutta, da ogni periodo,
positivo o negativo. Non avete mai perso la fiducia in me, anche quan-
do non ne avrei, forse, meritata o quando, diverse volte, sono stato
io stesso a perderla nei miei confronti. Non sarei arrivato a questo
traguardo senza di voi, senza il vostro costante incoraggiamento. Per-
ché se mi guardo indietro e volgo il pensiero a sei anni fa, quando
timidamente vi chiesi, dopo tutto, se potevo sostenere il Test On Line
per avere l’occasione di studiare qui, al Politecnico di Milano, vedo
che minimamente pensavo di poter arrivare così lontano, con questa
Tesi, con i sogni per il mio futuro, lì dove voi desideravate che giun-
gessi, fin da quando ero bambino. C’era bonaccia e voi avete preso a
soffiare forte, la vela si è gonfiata: siete stati più forti d’u punenti e d’a

57



tramontana, che da sempre sferzano sui nostri corpi. Non basteranno
mai i grazie.

Bene, ricomponiamoci, ma restando in famiglia. Grazie alle mie so-
relle, Cinzia e Cristina e ai miei cognati, Aldo e Simon, perché anche
voi avete sempre creduto in me e ci siete stati. Non si può non ringra-
ziare i miei nipotini, Rossella, Enzo e Fabrizio, che, anche se lontani,
con la loro semplicità e gioia mi hanno sempre strappato un sorriso
e riscaldato il cuore.

È il turno degli amici (e qui sono dolori, prenderò una dose di fo-
sforo prima di iniziare!). Grazie a Sara, Sofia e Angelina, non solo
colleghe e compagne di (s)ventura in questa lunga traghettata (è il ca-
so di dire sulla Nave o è troppo banale e scontato?). Mi avete regalato
momenti indimenticabili, che porterò sempre con me: quante risate,
quanti pranzi, parole crociate fatte mentre avremmo dovuto seguire,
che so, le lezioni di Analisi II, un “che c**o!” a sproposito una mattina
di dicembre davanti a una lavagnata densa di conti. Soprattutto mi
avete sempre incoraggiato dicendomi “che sei bravo”, quando penso
che siate voi quelle più brave.

Un grazie anche per Andrea: hai condiviso i momenti di follia miei,
di Angelina e di Sofia nonostante volessi seguire di più le lezioni
(siamo sicuri? Non sono mica mancati i tuoi raggelanti contributi, il
“pollinomio” per citarne uno). La tua caparbietà, tenacia e intelligenza
mi hanno sempre colpito e mi hanno dato uno stimolo a proseguire.

Fuori dall’università: un mondo, passato, presente e futuro. Il pon-
te che unisce tutto ciò è senz’altro Valentina, a cui vanno milioni di
grazie. Sei stata e so che continuerai a essere una preziosissima pre-
senza nella mia vita: anche se la distanza è tanta, anche se gli impegni
impediscono di sentirci quanto vorremmo, sei un’amica fantastica, ca-
pace di comprendermi nel profondo, conoscendomi nel profondo (a
quanto siamo? 15 anni se non sbaglio?). Del resto, chi sono quei due
pazzi che, nelle notti d’estate, fanno incursioni in Panoramica, metten-
dosi a discutere un secondo dei fatti personali e l’altro di strampala-
te (ma neanche troppo) teorie sulla cosmogonia e facendo discussio-
ni pseudo-filosofico-matematico-chimico-fisiche con la costante paura
(tua) degli alieni (babau)? Grazie per questi momenti e per tutti quelli
dei quali sono costellati i miei ricordi. Grazie per tutto il sostegno che
mi hai sempre offerto, per la tua compartecipazione autentica e sin-
cera alle mie emozioni, per avermi ascoltato e consigliato, insomma:
per tutto.

Un grazie a Carlo, Chiara ed Eleonora. Per merito di quel cialtro-
ne che in fondo sarà menzionato (pensavi mi fossi dimenticato, eh?
Malfidato!), siete diventati per me amici insostituibili, coi quali ho
condiviso molta parte della mia nord-italica vita. Serate, cene, discus-
sioni dalle più auliche alle più becere, spedizioni all’Auchan, all’Ikea,
pomeriggi in piscina e chi più ne ha più ne metta, spesso in compa-
gnia di Marcello e Michele, a cui pure va un grazie. Attimi di relax

58



nella giungla padana, ma non solo. La cosa più importante è che siete
stati prodighi di preziosi consigli e capaci di quell’ascolto che sino a
oggi mi ha sostenuto.

Per avermi aiutato a capire meglio me stesso, il mio mondo e quello
intorno a me, ringrazio il Dott. Marco Roscio. Per avermi regalato,
per tramite della musica, giovedì, venerdì sera e svariati bellissimi
momenti in questi ultimi anni, tra prove, servizi, saggi e concerti,
ringrazio gli amici del Corpo Bandistico Legnanese e del Coro dei
Ragazzi. Per avermi fatto sentire in tante serate e in svariate altre
occasioni il calore come di una famiglia, anche se lontano dalla mia,
grazie a Rossella, Roberto ed Elena.

Per tutto ciò che rappresenta la parte più importante dei miei gior-
ni, grazie a te, Joshua. Mi è davvero difficile trovare le parole per
esprimere quanto vorrei dire, mi sembra d’aver preso il tuo posto! E
allora dirò alcuni dei miliardi di motivi per cui ringraziarti: grazie per
avermi supportato sempre e soprattutto sopportato, per avermi aiuta-
to a migliorare me stesso, per avermi condotto nel tuo mondo, fatto
partecipe, fisicamente e mentalmente, delle tue giornate, per avermi
fatto riscoprire quell’universo musicale che da sempre mi appartiene,
perché hai sempre creduto in me, perché mi hai sempre regalato un
sorriso anche nei momenti di maggior sconforto, perché altrimenti,
come dici tu, “la mia vita sarebbe triste e noiosa”. Grazie per avermi
dato, con la tua semplicità e schiettezza, quell’affetto unico e speciale
che mi ha permesso di arrivare fin qui.

59


	Dedication
	Contents
	Abstract
	Sommario
	Introduction
	1 Marked Point Processes
	1.1 Point Processes and Stochastic Intensity
	1.2 Marked Point Processes and Intensity Kernels
	1.3 Filtering with Marked Point Process Observations
	1.3.1 The Innovating Structure of the Filter
	1.3.2 Filtering Equations


	2 Filtering Equation in the Noise-free Model
	2.1 The Noise-free Model
	2.1.1 The Marked Point Process Formulation

	2.2 The Filtering Problem
	2.2.1 Application of the Filtering Theorem
	2.2.2 The Explicit Form of the Filtering Equation


	Conclusions and Future Developments
	A Stochastic Processes
	A.1 Stochastic Processes, Filtrations and Measurability
	A.2 Markov Processes
	A.3 Martingales

	Bibliography
	Ringraziamenti


