
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Fisica

Dipartimento di Fisica

X-ray Raman Spectroscopy

on Iridate Perovskites

Relatore Tesi di Laurea di

Prof. Giacomo Ghiringhelli Matteo Rossi

matr. 787488

Correlatori

Dott. Marco Moretti

Dott. Michael Krisch

Anno Accademico 2013/2014





“The process of scientific discovery is,
in effect, a continual flight from wonder.”
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Abstract

In this thesis a X-ray Raman scattering study of the electronic structure
of the first two compounds of the Ruddlesden-Popper series Srn+1IrnO3n+1

(n = 1, 2) of iridates is presented. The measurements were performed at
beam line ID20 at the European Synchrotron Radiation Facility, Grenoble.

5d transition metal oxides, iridates in particular, have recently been in-
tensively explored as they display new fascinating phenomena, arising from
the strong spin-orbit coupling to which they are subjected. Indeed, a simple
Hubbard model, applied with great success to 3d transition metal oxides,
would predict a metallic state for these 5d compounds, in view of the larger
bandwidth and smaller electron correlation in the 5d orbitals; instead, some
iridates, among which the samples studied, are insulators. The opening of
a gap is due to the strong spin-orbit coupling which enhances the effect
of correlation, narrows the effective bandwidth and isolates the so-called
Jeff = 1/2 ground state. This peculiar ground state is strictly achieved only
if the energies at play, most especially the cubic and tetragonal components
of the crystal field splitting and the spin-orbit coupling, follow a precise
hierarchy.

The aim of this work is to determine the cubic crystal field splitting of
the Ir 5d states in Sr2IrO4 and Sr3Ir2O7 by X-ray Raman scattering, a bulk
sensitive and self-absorption free probe. Indeed, spin-orbit coupling strength
and tetragonal crystal field splitting have already been experimentally de-
termined by other authors. By focusing our attention on the O K edge and
exploiting the orientation dependence of the spectra, we were able to assign
features in the 528-535 eV energy loss range to specific transitions involving
the Ir 5d orbitals. This has allowed us to extract values for the cubic crystal
field splitting: 3.8± 0.82 eV in Sr2IrO4 and 3.55± 0.13 eV in Sr3Ir2O7. Fur-
thermore, we found values for the tetragonal crystal field splitting acting on
the eg states: 1.6± 0.82 eV in Sr2IrO4 and 1.9± 0.13 in Sr3Ir2O7.
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Abstract

This work is the first direct experimental determination of the cubic crys-
tal field splitting in the two iridates. A complete electronic structure of the
two compounds is finally achieved and the implicit theoretical assumptions,
which are essential for the establishment of the Jeff = 1/2 ground state, are
confirmed. Furthermore, this is one of the first X-ray Raman scattering stud-
ies at the O K edge of transition metal oxides in general: we demonstrate
that this spectroscopic technique can be used to obtain a detailed picture of
the electronic transitions in these materials and, more generally, our work
paves the way for similar detailed studies of correlated electron systems such
as the high temperature cuprate superconductors or nichelates. In partic-
ular, X-ray Raman spectroscopy is suitable for measurements in extreme
environments, such as high pressure, and therefore it is a valid substitute of
other techniques (e. g. soft X-ray absorption spectroscopy) which cannot be
accomplished in such conditions.
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Sommario

Tra i materiali che hanno suscitato maggiore interesse scientifico negli
ultimi decenni, gli ossidi di metalli di transizione 3d occupano un ruolo di
primo piano, in quanto caratterizzati da proprietà fisiche peculiari, come la
superconduttività ad alta temperatura critica nei cuprati e la magnetoresi-
stenza colossale nelle manganiti. Questi composti appartengono alla classe
dei sistemi fortemente correlati, in cui gli elettroni della banda di valenza
(derivante dagli stati 3d del metallo di transizione) sono descritti consideran-
do una forte interazione elettrone-elettrone. Negli ultimi anni, l’attenzione
dei ricercatori si è estesa ai metalli di transizione 4d e 5d, i quali, in maniera
del tutto controintuitiva, sono anch’essi soggetti ad effetti di correlazione
elettronica: infatti, data la maggior estensione spaziale degli orbitali 4d e
5d rispetto agli orbitali 3d, ci si aspetterebbe un ruolo molto ridotto della
correlazione elettronica e quindi l’adozione, da parte di questi materiali, di
proprietà prossime a quelle di un metallo. Al contrario, alcuni ossidi di me-
talli di transizione 5d sono isolanti, in particolare i due composti analizzati
in questa tesi: Sr2IrO4 e Sr3Ir2O7. Per comprendere questo comportamento
inaspettato, occorre considerare l’interazione spin-orbita: infatti, se la cor-
relazione elettronica diminuisce andando verso metalli di transizione più pe-
santi, l’interazione spin-orbita segue l’andamento opposto. Quando queste
due interazioni diventano energeticamente comparabili, si originano nuovi
fenomeni fisici, come nel caso degli iridati.

Un ulteriore stimolo nello studio degli iridati deriva dalla somiglianza
tra alcune proprietà di Sr2IrO4 e di La2CuO4, il quale, se dopato, diven-
ta superconduttore ad alta temperatura critica: i due composti hanno la
medesima struttura cristallina (si veda la Figura 4.1), la cui caratteristica
fondamentale è la presenza di un piano bidimensionale dove ioni di Ir (Cu)
si alternano a ioni di O. La struttura elettronica è fortemente influenzata
dalla presenza di questi piani, generalmente descritti considerando una la-
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cuna negli stati t2g (eg) per ione di Ir (Cu). Inoltre, i due composti hanno
una struttura magnetica analoga, con un ordine antiferromagnetico a lungo
raggio, e gli accoppiamenti di scambio tra gli ioni di Ir sono dello stesso ordi-
ne di grandezza di quelli nei cuprati. Non sorprende, quindi, che le relazioni
di dispersione nei due composti siano simili, come si osserva nella Figura
1.2. Esistono dei lavori teorici che predicono una fase superconduttiva per
Sr2IrO4, la quale, tuttavia, non è ancora stata rivelata sperimentalmente.

Questa tesi concerne principalmente lo studio della struttura elettronica
di Sr2IrO4 e Sr3Ir2O7: infatti, essa è contraddistinta da uno stato fondamen-
tale peculiare, il cosiddetto Jeff = 1/2, la cui origine può essere interpretata
attraverso un modello che consideri uno ione di Ir4+ soggetto al campo cri-
stallino ed all’interazione spin-orbita. Tra queste, si suppone che la maggiore
perturbazione agente sui livelli 5d sia la componente cubica del campo cri-
stallino: essa ne rimuove la degenerazione originando sei stati t2g ad energia
inferiore e quattro stati eg ad energia maggiore. L’interazione spin-orbita
agisce come ulteriore perturbazione sugli stati t2g rimuovendone la degene-
razione e creando un quartetto Jeff = 3/2 a minor energia e un doppietto
Jeff = 1/2 a maggior energia. Nello stato fondamentale, i 5 elettroni negli
orbitali 5d si dispongono riempiendo la banda Jeff = 3/2 e posizionando
l’elettrone rimanente nella banda Jeff = 1/2, che è quindi mezza piena. Per-
tanto, il campo cristallino e l’interazione spin-orbita riducono la larghezza
efficace della banda 5d, riducendola a quella della sola banda Jeff = 1/2,
aumentando l’effetto della correlazione elettronica. Infatti, la presenza di
una repulsione coulombiana, anche debole, divide la banda Jeff = 1/2 gene-
rando una gap, come accade nel modello di Hubbard (si veda, per maggior
chiarimento, la Figura 1.1): la natura isolante di questi composti è quindi
spiegata a patto di considerare la forte interazione spin-orbita. Si parla, per-
ciò, di isolanti di Mott in cui tale comportamento è indotto dallo spin-orbita.
Tuttavia, le considerazioni precedenti sono valide nelle seguenti ipotesi: i)
la separazione dei livelli generata dalla componente cubica del campo cri-
stallino deve essere molto maggiore dell’interazione spin-orbita, cos̀ı da poter
trascurare gli stati eg nel calcolo della funzione d’onda dello stato fondamen-
tale; ii) la componente tetragonale del campo cristallino (sempre presente
per via della non perfetta simmetria cubica del campo cristallino in materia-
li “reali”) deve essere molto inferiore all’interazione spin-orbita, altrimenti
nascerebbe un’ulteriore separazione dei livelli energetici. La seconda ipotesi
è stata verificata sperimentalmente, trovando valori pari a ∼ 0.01 eV per il
campo cristallino tetragonale e ∼ 0.4 eV per l’interazione spin-orbita; alcu-
ne misure sono state eseguite per verificare anche la prima ipotesi, ma con
risultati di natura puramente qualitativa.

L’obiettivo di questa tesi è studiare la struttura elettronica di Sr2IrO4 e
Sr3Ir2O7 e, più specificatamente, determinare in maniera affidabile e quanti-
tativa la componente cubica del campo cristallino. Quest’ultimo può essere
misurato con varie tecniche sperimentali: ad esempio, la spettroscopia di as-
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sorbimento di raggi X (XAS) alla soglia K dell’O (regime dei raggi X molli)
sfrutta l’ibridazione tra gli stati 2p dell’O e gli stati 5d dell’Ir per ottenere
informazioni sui livelli elettronici non occupati. La Figura 5.3 mostra alcu-
ne misure XAS, in cui però il dicroismo è molto limitato ed un’analisi che
permetta di determinare valori affidabili e precisi della separazione t2g − eg

non è attuabile. Ciò è principalmente dovuto a due problemi intrinseci a
questa tecnica: la sensibilità ristretta alla superficie del campione, dovuta
alla limitazione della penetrazione dei raggi X molli ai primi piani cristallini,
e l’auto-assorbimento, cioè l’assorbimento di un fotone, emesso in seguito al
decadimento radiativo di un elettrone, prima che esso fuoriesca dal cam-
pione. La modifica dello spettro è resa non banale da questo processo, che
dipende sia dall’energia sia dalla geometria sperimentale utilizzata. Per ol-
trepassare lo scoglio della sensibilità superficiale, la spettroscopia XAS può
essere eseguita alle soglie L2,3 dell’Ir: i raggi X duri hanno una maggiore lun-
ghezza di penetrazione e garantiscono perciò un’indagine sulle proprietà del
volume del materiale. Tuttavia, rimane il problema dell’auto-assorbimento.
Inoltre, la lacuna di core ha un tempo di vita molto breve, che produce un
aumento della larghezza di riga dei vari picchi, fino a rendere indistinguibile
il contributo degli stati t2g ed eg. Si può cercare di aggirare questo ostacolo
misurando gli spettri di assorbimento selezionando una particolare linea di
emissione: questa tecnica permette di ottenere informazioni molto simili alla
XAS con il vantaggio che, essendo il sistema decaduto ad uno stato finale
meno eccitato, il tempo di vita dello stato finale è maggiore, quindi l’allar-
gamento di riga delle transizioni di assorbimento risulta ridotto. Tuttavia
la Figura 1.7 mostra che questo espediente non è sufficiente per risolvere
il contributo degli stati t2g ed eg nello spettro. Altre tecniche utilizzabili
sono lo scattering risonante magnetico di raggi X (RXMS) e lo scattering
risonante anelastico di raggi X (RIXS) alla soglia L3 dell’Ir: infatti, da una
mappa RIXS (si veda la Figura 1.8) si nota che la maggiore intensità del
segnale è situata ad energie trasferite di qualche eV: ciò è interpretato come
una palese separazione tra la banda eg vuota e la banda t2g quasi piena. Tut-
tavia, la stima del campo cristallino cubico mediante queste tecniche (pure
influenzate dall’auto-assorbimento) è molto indiretta.

In questa tesi è stata utilizzata la spettroscopia Raman a raggi X (XRS):
essa consiste nello scattering anelastico di un fotone per mezzo di un elet-
trone di core del campione, che viene promosso in uno stato libero sopra il
livello di Fermi. Gli esperimenti sono stati condotti nella beam-line ID20 del
sincrotrone europeo (European Synchrotron Radiation Facility): essa è una
linea di nuova costruzione, operativa dall’estate 2013, e attiva nello studio
delle proprietà elettroniche e magnetiche di materiali complessi in condizio-
ni estreme, specialmente elevata pressione. La spettroscopia XRS permette
di superare sia i problemi generati dalla sensibilità superficiale, in quanto
vengono utilizzati i raggi X duri, sia l’auto-assorbimento, perché le energie
dei fotoni entranti ed uscenti sono distanti da qualsiasi soglia del campione.
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Il principale svantaggio di questa tecnica è la sezione d’urto molto piccola,
che obbliga a lunghi tempi di esposizione e conseguentemente a misure du-
rature; inoltre, la larghezza di riga delle transizioni osservate è determinata
dalla risoluzione dello strumento utilizzato e non dal tempo di vita della
lacuna di core generata. Gli spettri XRS sono riportati nella Figura 5.3.
La loro analisi è stata condotta sfruttando l’analogia formale tra le sezio-
ni d’urto XRS (nel regime di dipolo) e XAS, che presentano la medesima
dipendenza dal momento trasferito nella prima e dalla polarizzazione nella
seconda. Ciò permette di assegnare ogni picco nella regione energetica vici-
no alla soglia K dell’O ad una particolare transizione di un elettrone dallo
stato 1s ai 2p dell’O ibridati con gli orbitali 5d dell’Ir e, conseguentemente,
la struttura elettronica vicino all’energia di Fermi di Sr2IrO4 e Sr3Ir2O7 è
completamente descritta. In particolare, siamo in grado di trovare il valore
del campo cubico cristallino, che risulta essere pari a 3.8± 0.82 eV nel pri-
mo composto e 3.55 ± 0.13 eV nel secondo. Inoltre, è possibile calcolare la
separazione tra i livelli eg generata dal campo cristallino tetragonale: essa
risulta pari a 1.6±0.82 eV in Sr2IrO4 e 1.9±0.13 eV in Sr3Ir2O7. Essendo il
campo cubico cristallino molto maggiore rispetto all’interazione spin-orbita
in entrambi i composti, tutte le ipotesi necessarie alla realizzazione dello
stato fondamentale Jeff = 1/2 risultano essere validate ed è possibile con-
fermare indubbiamente che i due iridati esibiscono questo particolare stato
fondamentale.

Questa tesi costituisce uno dei primi lavori sperimentali che utilizzano la
spettroscopia XRS alla soglia K dell’O su ossidi di metalli di transizione: è
stato dimostrato che la spettroscopia XRS permette di ottenere una raffigu-
razione completa della struttura elettronica vicino al livello di Fermi e può
degnamente sostituire la spettroscopia XAS. L’obiettivo di questo lavoro è
principalmente metodologico: è auspicabile che l’uso di questa tecnica sia
ampliato ad altri ossidi di metalli di transizione (più precisamente ai più
conosciuti e analizzati cuprati superconduttori ad alta temperatura critica)
e soprattutto al loro studio in condizioni estreme, con particolare interesse
alle alte pressioni, irrealizzabili con spettroscopia di assorbimento di raggi
X molli.
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CHAPTER

1

Introduction

Transition metal oxides (TMOs) with layered perovskite-like structure
possess attractive properties, such as high temperature superconductivity in
cuprates [1] and colossal magnetoresistance in manganites [2]. Most of these 3d
TMOs can be classified as strongly correlated materials, for which a descrip-
tion in terms of non-interacting electrons fails. Electron-electron interaction
is expected to become less important when moving towards heavier transi-
tion metals, because of the larger spatial extension of the 4d and 5d orbitals
compared to the 3d ones. The absence of strong electron correlation in sys-
tems with partial filling of the valence band should lead to a metallic state for
which an independent electron description is appropriate. Instead, some iri-
dates are unexpectedly insulators. Examples are Sr2IrO4

[3] and Sr3Ir2O7
[4].

This anomalous behavior has been explained by taking into account the ef-
fect of strong spin-orbit coupling of the 5d states [5,6]: indeed, while electron-
electron correlation decreases when moving from light to heavy elements,
spin-orbit coupling follows the opposite trend. At the cross-over of these
two energy scales, new exotic phenomena arise and iridates offer a novel
arena of intriguing properties [7–13]. In spin-orbit induced Mott insulators, as
some of these iridates are named, spin-orbit coupling induces a splitting of
the energy levels and a reduction of the effective bandwidth, thus enhancing
the effect of electronic correlation: indeed, even a small on-site Coulomb re-
pulsion can act to open a gap in view of the modified electronic structure [7,9]

(see Figure 1.1).

Further impetus for the study of Sr2IrO4 comes from some affinities
to the benchmark parent compound of high temperature superconductors,
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Chapter 1 Introduction

Figure 1.1: (a) t2g band crossed by the Fermi level µ. (b) t2g band
splitting by spin-orbit coupling ζSO forming the Jeff = 3/2 and the Jeff =
1/2 bands. (c) A small Coulomb repulsion U further splits the Jeff = 1/2
band into a lower Hubbard band (LHB) and an upper Hubbard band
(UHB) opening an electronic gap. [Figure taken from Ref. 7.]

Figure 1.2: Dispersion relations of La2CuO4 at T = 10 K (left) and
Sr2IrO4 at T = 15 K (right). [Figure taken from Ref. 14,15.]

La2CuO4: indeed, the crystal and magnetic structures of the two compounds
are very similar [14–17] (see, for example, the single magnon dispersion of the
two TMOs shown in Figure 1.2), as their physics is described by a single hole
per Ir/Cu ion in a two-dimensional plane hosting long-range antiferromag-
netic order. The connection to the cuprates is further strengthened by theo-
retical works predicting a possible superconducting phase in Sr2IrO4

[11,13,15].
However, such a phase has not yet been discovered experimentally.

In the present thesis, I will mostly focus on the study of the elec-
tronic structure of Sr2IrO4 and Sr3Ir2O7: the special ground state exhibited,
namely the Jeff = 1/2 ground state [7,9], arises from a precise hierarchy of
energies at play, in particular the crystal field splitting and the spin-orbit
coupling. Within a single-ion model, the predominant perturbation to the
outermost electronic states (i. e. Ir 5d orbitals) is the cubic crystal field which
splits the otherwise degenerate 5d levels into a lower energy t2g band and
a higher energy eg band. Since the cubic crystal field is usually considered
much larger than the spin-orbit coupling, the five electrons occupying the
5d orbitals of the 4+ ionized Ir fill the t2g levels in a low-spin configuration,
while the eg states are empty (Figure 1.1(a)). The second important pertur-
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Figure 1.3: Calculations of X-ray scattering matrix elements for resonant
magnetic reflection at the L2,3 edges show an enhancement only at the L3

edge, while no enhancement is expected at the L2 edge. [Figure taken from
Ref. 9.]

bation of the 5d states is the spin-orbit coupling: this acts on the t2g levels
splitting them in a fully occupied Jeff = 3/2 quartet at lower energy and
a half occupied Jeff = 1/2 doublet at higher energy (Figure 1.1(b)). There
is, however, another energy which must be carefully taken into account to
properly describe the electronic structure of layered iridates: since the IrO6

octahedra are elongated along the (001) axis of the crystal, a tetragonal con-
tribution to the crystal field splitting alters the ideal Jeff = 1/2 state. How-
ever, the latter still remains a good description of the ground state as long as
the spin-orbit coupling is dominant compared to the tetragonal crystal field
splitting. Estimates in Sr2IrO4

[18] and other iridate compounds [19] demon-
strate that the requirement of a small tetragonal crystal field compared to
the spin-orbit coupling is satisfied. To identify the iridates exhibiting the
Jeff = 1/2 ground state, a simple criterion has been proposed: the resonant
enhancement of the magnetic reflections is expected to occur only for the L3

edge while it is zero for the L2 edge, as shown by X-ray scattering matrix
elements calculations [9] (see Figure 1.3).

One should keep in mind, however, that the scenario of the Jeff = 1/2
ground state holds true only if the eg states can be neglected in the de-
scription of the ground state, i. e. when the cubic component of the crystal
field is much larger than the spin-orbit coupling, otherwise t2g and eg states
would both contribute to the ground state wave function.

The aim of my work is to quantitatively determine the electronic struc-
ture near the Fermi level of the two samples with a reliable, bulk sensitive
experimental technique and to verify that the conditions for the realization
of the Jeff = 1/2 ground state are indeed fulfilled. Several methods can be
used to estimate the cubic crystal field splitting in layered iridates, but most
of them are surface sensitive probes and/or could be affected by experimental
artifacts, like self-absorption. For example, X-ray absorption spectroscopy
(XAS) at the oxygen K edge (soft X-ray regime) allows to probe the empty
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Chapter 1 Introduction

Figure 1.4: O K edge XAS spectra of Sr2IrO4 measured in two different
experimental geometries. θ is the angle between the incident photons and
the surface normal. [Figure taken from Ref. 20.]

Figure 1.5: O K edge XAS spectra of Sr3Ir2O7 taken with two perpen-
dicular polarizations at T = 50 K (black) and T = 400 K (red lines). The
experimental geometry is shown in the inset. [Figure taken from Ref. 21.]

Figure 1.6: Ir L3 edge XAS spectra of Sr2IrO4. Both total fluorescence
yield XAS (dashed) and PFY-XAS (solid line) are reported. [Figure taken
from Ref. 22.]
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Figure 1.7: PFY-XAS spectra of Sr2IrO4 (blue line) and Sr3Ir2O7 (or-
ange dashed line) at the Ir L3 (a) and L2 (b) absorption edges. The selected
emission lines are the Ir Lα1 and Lγ1, respectively.

Ir 5d band mixed with O 2p orbitals (see, for example, Figure 1.4 and Fig-
ure 1.5): soft XAS provides a value for the cubic crystal field in the range
2.5 eV to 4 eV [20,21]. However, this technique suffers from self-absorption
effects and it is rather surface sensitive. Self-absorption is caused by the ab-
sorption of the emitted photon (whose energy is still close to an absorption
edge of the material) before it leaves the sample: this process is energy and
experimental geometry dependent and modifies the spectrum in a nontrivial
way. Surface sensitivity, instead, is due to the small penetration depth of
soft X-rays into the sample. Since bulk and surface behavior of a material
can be completely different (e. g. weak metallicity was found in the near-
surface electronic structure of the isolating Sr3Ir2O7

[23]), surface sensitivity
must be avoided. XAS at the Ir L2,3 edges (Ir L3 edge XAS is reported in
Figure 1.6) is the next logical step: hard X-rays guarantee a larger penetra-
tion depth into the sample, but self-absorption is still a problem. Moreover,
this technique suffers from the broadening of the features due to the small
2p core-hole lifetime (Γ2p3/2 ∼ 5 eV [24]), which washes out the details of
the absorption spectrum. To circumvent this issue, XAS can be measured in
partial fluorescence yield (PFY) mode: not all the photons are monitored,
but only those which match a particular emission line. Therefore, the system
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Chapter 1 Introduction

Figure 1.8: RIXS intensity map of Sr2IrO4 across the Ir L3 edge: the
main absorption line, due to the eg states is ∼ 3 eV away from the feature
due to the t2g states, located at zero energy loss. [Figure taken from Ref.
26.]

is left in a less excited state, which has a larger lifetime. The benefits of the
PFY mode are undeniable, as can be seen in Figure 1.6. Figure 1.7 shows
PFY-XAS at the Ir L3 (a) and L2 (b) edges for Sr2IrO4 and Sr3Ir2O7. In
these measurements, done at beam line ID20 of the European Synchrotron
Radiation Facility (ESRF), Lα1 and Lγ1 fluorescence lines were selected,
corresponding to the transition of the core-hole from the Ir 2p to the 3d
and 4d shell, respectively. Despite the advantage of this technique, it turns
out that quantitative information on the cubic crystal field are still difficult
to extract, because the discrimination of the features due to the t2g and
the eg states is impossible. Ir L3 edge resonant X-ray magnetic scattering
(RXMS) [9,12,18,25] and resonant inelastic X-ray scattering (RIXS) [15,26–28] in
the hard X-ray regime can be used as well: the fact that the intensity of both
magnetic reflections in RXMS and intra-t2g excitations in RIXS is maximum
∼ 3 eV below the main absorption line (see Figure 1.8) is a signature of the
t2g–eg splitting [29]: indeed, the main absorption line is due to the promo-
tion of a 2p3/2 electron in the empty eg states and the contribution of the
almost full t2g is marginal, while intra-t2g excitations are enhanced when
the 2p3/2 electron is directly promoted in the t2g states. Again, however,
both these techniques suffer from self-absorption, since the energy is tuned
in the proximity of the L2,3 absorption edge. Moreover, this method for the
estimation of the cubic crystal field is very indirect and can be retained only
at a qualitative level.

In order to overcome surface-sensitivity and self-absorption issues, we
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adopt here non-resonant inelastic X-ray Raman scattering (XRS). This is
a photon-in photon-out bulk sensitive probe, which is not affected by self-
absorption as the energy of the incident and scattered photons are in the
hard X-ray regime and far from any absorption edge of the material. The
main disadvantages of this technique are the long exposure time, due to
the extremely low count-rate, and the spectral broadening of the features
due to the experimental energy-resolution. By exploiting the formal analogy
of XAS and XRS (in the dipole limit) cross-sections, we develop a simple
model for the calculation of the XRS cross-section and use it to guide the
data analysis. The strong orientation dependence of the XRS signal allows us
to unambiguously assign transitions to the empty Ir 5d states, and to extract
reliable values of the crystal field parameters, such as the cubic crystal field
splitting.
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CHAPTER

2

X-ray Raman scattering

In the present chapter, I introduce the X-ray Raman scattering (XRS)
technique. The Raman process consists of inelastic scattering of light from
a sample. It was theoretically discovered and experimentally observed in
the 20s [30,31]. The first experiments were performed using visible light, but
soon researchers tried to replicate it using X-rays. The first unambiguous
XRS spectra was reported in 1967 by Suzuki [32] for light elements such
as beryllium and carbon. However, the low X-ray Raman scattering cross-
section made this technique very challenging: it was only with the advent of
third generation synchrotron sources that XRS became truly exploitable [33].
Nowadays, XRS is mostly used to study bulk properties of solids, liquids and
systems under extreme conditions.

2.1 Introduction

Raman scattering is a photon-in photon-out process in which the photon
is inelastically scattered from the sample. With this technique, different
possible excitations can be studied, as shown in Figure 2.1: from phonons
and magnons at low energies (∼ 1−100 meV), to valence electron excitations
(∼ 1 eV), to plasmons (∼ 10 eV) and finally core electron excitations (∼
100− 1000 eV). In the latter case, the technique is known as X-ray Raman
spectroscopy.

Core electron excitations are usually studied by means of X-ray absorp-
tion spectroscopy, in which the incident photon, whose energy is tuned close
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Figure 2.1: Different possible excitations depending on the energy loss:
an order of magnitude is given for each feature. The energy region of our
interest is highlighted in red. [Figure adapted from Ref. 34]

to an absorption edge of the material, is absorbed by an electron of the sam-
ple, which is promoted above the Fermi level. XRS offers some advantages
over XAS:

• The XRS cross-section includes multipole contributions, higher than
the dipolar one, depending on the magnitude of the momentum trans-
fer q [35]. This allows to have complementary information with respect
to XAS, which instead is limited to the dipolar regime. When the mag-
nitude of q is small, the XRS and XAS cross-sections become the same,
if we assume that the roles of the incident energy and the polariza-
tion vector in XAS are played by the energy loss and the momentum
transfer in XRS.

• XRS is a hard X-ray technique and therefore bulk sensitivity is guaran-
teed: at these energies typical penetration depths range from several
µm (e. g. in iridates) to mm (e. g. in low Z materials, such as C).
This is very important because surface effects are avoided; further-
more hard X-rays allow studies in complex sample environments, such
as high pressure and high temperature. Vacuum is not required, indeed
samples in the gas phase or in gaseous environment can be probed as
well.

The main drawback of XRS is that it suffers from a very low count-rate
and therefore requires long exposures. Moreover, the spectral broadening
is often influenced by the experimental energy-resolution, which is usually
comparable to the intrinsic core-hole lifetime.
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ℏω2, ℏk2 

2θ

Ω
sample

ℏω1, ℏk1 

E, ℏq 

Figure 2.2: Scheme of the inelastic scattering of light by a sample: an
incoming photon is scattered by the sample and loses a certain amount of
its energy. The energy and momentum lost by the photon are transferred
to an electron which, in the case of XRS, is a core electron.

2.2 The scattering process

The XRS process is schematically illustrated in Figure 2.2: a photon
of initial energy h̄ω1 and momentum h̄k1 is inelastically scattered by an
electron to a final energy h̄ω2 and momentum h̄k2 into a solid angle Ω. The
energy E lost by the photon is transferred to an electron, which acquires
also a momentum h̄q: these quantities are connected to the energy and
momentum of the photon by conservation laws:

h̄ω1 = h̄ω2 + E (2.1)

h̄k1 = h̄k2 + h̄q (2.2)

The momentum h̄q is equal in magnitude but opposite in direction to the
momentum change of the photon. The magnitude q is easily calculated:

q =
√
k2

1 + k2
2 − 2k2

1k
2
2 cos(2θ) (2.3)

where k1 and k2 are the magnitudes of k1 and k2, respectively, and 2θ is
the scattering angle (i. e. the angle between the wave vectors).

After the scattering, the sample is left in an excited state: since, in the
case of XRS, the energy loss is very high (i. e. in the order of 100 − 1000
eV), a core electron is promoted to an empty state above the Fermi level.
With an incident energy in the order of ∼ 10 keV, the magnitude of the
transferred momentum is 1− 10 Å−1.

2.3 Theory of XRS

Following the works by Mizuno and Ohmura [36], Tohji and Udagawa [37]

and more recently by Schülke [38], in this section the theory describing the
XRS process is reported.
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The starting point is the Hamiltonian H describing the interaction be-
tween the electromagnetic field, described by the vector potential A, and
the electrons of the system, treated as non-relativistic particles:

H =
1

2m

∑
j

(
pj +

e

c
A(rj)

)2
+ V =

=
∑
j

p2
j

2m
+ V +

∑
j

(
e

mc
A(rj) ·pj +

e2

2mc2
A(rj) ·A(rj)

)
= (2.4a)

= H0 + H1 + H2 (2.4b)

where rj and pj are the position and momentum of the j-th electron, re-
spectively; the summation is over all the electrons of the system. The first
two terms of the Hamiltonian in Equation (2.4a) are the usual kinetic and
potential operators (they describe the system in the absence of the electro-
magnetic field and are named H0 in Equation (2.4b)), while the other two
terms represent the interaction radiation-matter and act as a perturbation
to H0. The terms linear (H1) and quadratic (H2) in A describe the pro-
cesses involving one photon (e. g. absorption, emission) and two photons (e.
g. scattering), respectively. Therefore, H2 is the only term in which we are
interested as it contributes to the XRS cross-section in first order perturba-
tion expansion; H1, instead, contributes to the RIXS cross-section in second
order expansion.

The transition rate for a system excited from its ground state |g,k1〉 to
a final state |f,k2〉 is given by Fermi’s golden rule:

u =
2π

h̄

∣∣〈f,k2|H2|g,k1〉
∣∣2δ((Ef + h̄ω2)− (Eg + h̄ω1)

)
(2.5)

Here, |g,k1〉 and |f,k2〉 are the ground and excited states of the whole
system: the initial and final electron states are |g〉 and |f〉, while the incoming
and outgoing photons are in the states |k1〉 and |k2〉, respectively.

The vector potential can be expressed in terms of the photon creation
and annihilation operators, c†(k, η) and c(k, η):

A(r) =
∑
k,η

√
2πh̄c2

V ωk
[ε(k, η)c(k, η)eik · r + ε∗(k, η)c†(k, η)e−ik · r] (2.6)

where η is one of the two orthogonal polarization states of the photon having
wave vector k, angular frequency ωk and polarization vector ε; V is the
volume of the system. By substituting this expression in Equation (2.5), we
obtain:

u(f,q) =

(
8π3h̄e4

m2V 2ω1ω2

)
(ε1 · ε2)2〈g|

∑
j

e−iq · rj |f〉 ·

· 〈f |
∑
j

eiq · rj |g〉δ(Ef − Eg + h̄ω2 − h̄ω1) (2.7)
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where the sum runs over all the electrons of the system.
Usually, in a XRS experiment, monochromatic X-rays with a definite

direction and polarization are impinging onto the sample and only the pho-
tons scattered into certain solid angle dΩ and within certain energy range
dh̄ω2 are detected. Thus, we are interested in the probability of transition
of the incoming photon in these ranges of energy and solid angle. This is
obtained multiplying Equation (2.7) by the number of states which can be
reached by the scattered photons in the solid angle dΩ and the energy dh̄ω2

(V ω2
2dΩdh̄ω2/(2πc)

3h̄) and dividing by the photon flux (c/V ):

d2σ

dΩdh̄ω2
=

V 2ω2
2

8π3h̄c4

∑
f

u(f,q) (2.8)

The above expression is known in literature as the double differential
scattering cross-section and it is often reported as:

d2σ

dΩdh̄ω2
=

(
dσ

dΩ

)
Th

S(q, ω) (2.9)

This is the ratio between the current of photons scattered into the solid angle
(Ω,Ω + dΩ) and into the energy range (h̄ω2, h̄ω2 + dh̄ω2) and the current
density of the incident photons times dΩ times dh̄ω2. The first factor in
Equation (2.9) is the Thomson scattering cross-section:(

dσ

dΩ

)
Th

=

(
e2

mc2

)2
ω2

ω1

(
ε1 · ε∗2

)2
(2.10)

while the second factor in Equation (2.9) is the dynamic structure factor:

S(q, ω) =
∑
f

∣∣〈f |∑
j

e−iq · rj |g〉
∣∣2δ(Ef − Eg + h̄ω2 − h̄ω1) (2.11)

The Thomson scattering cross-section depends only on the scattering
geometry and on the energies of the incoming and outgoing photons, while
the dynamic structure factor contains all the information regarding the elec-
tronic properties of the sample. It is, thus, the most important term in the
cross-section and the only one we will deal with further on.

2.3.1 The dipole approximation

Now that the double differential scattering cross-section has been de-
rived, we express it in the dipole approximation. For small momentum
transfer (i. e. for transitions from 1s orbitals: q � 2Z/3a0, where a0 is
the Bohr radius and Z is the effective atomic number), the exponential in
Equation (2.11) can be expanded in series of q · r:

e−iq · r = 1− iq · r +
1

2
(iq · r)2 + . . . (2.12)

13



Chapter 2 X-ray Raman scattering

where the second term is the dipole contribution to the scattering cross-
section, the third the quadrupole contribution and so on. The first term
cancels out due to the orthogonality of the eigenfunctions describing the
initial and final states of the electron involved in the scattering process,
while the second term dominates all the others for small |q|.

In the dipole approximation, the dynamic structure factor S(q, ω) there-
fore reduces to:

S(q, ω) =
∑
f

∣∣〈f |q · r|g〉∣∣2δ(Ef − Eg + h̄ω2 − h̄ω1) (2.13)

This expression is formally identical to Fermi’s golden rule describing the
absorption process [38]:

T (q, ω) =
∑
f

∣∣〈f |ε · r|g〉∣∣2δ(Ef − Eg + h̄ω) (2.14)

provided that the polarization vector and the energy of the photon in XAS
are substituted by the momentum transfer and the energy loss in XRS.
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CHAPTER

3

Experimental setup

The experiments reported in this thesis were performed at beam line
ID20 of the European Synchrotron Radiation Facility (ESRF) located in
Grenoble. ID20 is one of the flagship beam lines, constructed during Phase
I of the ESRF Upgrade, and operational since summer 2013. The beam line
is equipped with two spectrometers for resonant and non-resonant studies
of electronic and magnetic properties of solids, liquids and gases.

In this Chapter synchrotron radiation is described; then the beam line
and its X-ray Raman spectrometer are introduced.

3.1 Synchrotron radiation

Synchrotron radiation occurs when charged particles moving at rela-
tivistic speed undergo a change in the trajectory of their motion, due to the
interaction with a magnetic field [39]. At ESRF [40] the electrons, produced
by an electron gun, are linearly accelerated to an energy of about 200 MeV
before being injected in the so-called Booster synchrotron, a 300 meter-long
circular accelerator in which they reach their final energy of about 6 GeV;
the electrons are then sent into the storage ring, a 844 meter-long tube
kept in very ultra high vacuum (∼ 10−9 mbar), where they circle close to
the speed of light and pass through different types of magnets, producing
radiation.

There are two magnetic structures used to emit X-rays at ESRF: bend-
ing magnets and undulators. The former is a dipole magnet which generates
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a homogeneous magnetic field, while the latter is a periodic array of dipole
magnets. Electrons are guided in their circular path along the storage ring
by bending magnets whose magnetic field, perpendicular to the plane of the
ring, induces a Lorentz force making the path of the electrons circularly
curved. In-between two bending magnets and other electron beam optics,
one or more undulators are placed: the periodic magnetic field induces a si-
nusoidal motion of the electron beam in the horizontal plane with the same
periodicity as the array of dipole magnets. The cone of the emitted radia-
tion by an undulator is narrower than that produced by a bending magnet.
Moreover, as the X-rays emitted along the undulator length interfere, only
X-rays of specific wavelength constructively interfere, thus leading to the
characteristic undulator spectrum with high photon fluxes at certain ener-
gies, denoted the undulator harmonics. These characteristic energies can be
tuned by changing the gap between the two rows of magnets.

Undulator radiation has very peculiar properties that make it unique:

• Narrow spectral range, tuned by adjusting the gap between the two
rows of magnets of the undulator and their periodicity.

• High photon flux: this gives the possibility to use techniques which
otherwise suffer from low count rates.

• High brilliance: the small source size and divergence allow to obtain
a spot size on the sample in the order of few µm (or even in the
nm range). This is of great interest, for example, in the study of tiny
amount of samples, high pressure applications and spatially resolved
investigations.

• Polarization: can be set linear horizontal, to a high degree of purity.

3.2 Beam line ID20 at the ESRF

Beam line ID20 operates in the hard X-ray regime with incident photon
energies ranging from 5 keV to 20 keV. It is devoted to the study of electronic
and magnetic properties of solids, liquids and gases by means of resonant
and non-resonant inelastic X-ray scattering. Figure 3.1 reports the scheme
of the beam line.

The X-rays, produced by four undulators with a periodicity of 26 mm,
diverge both in the horizontal and the vertical direction and they have a
large energy bandwidth. The beam line has several optical elements in order
to collect as much X-rays as possible, monochromatize them to the desired
energy and focus them at the sample position.

The first optical component after the undulators is a collimating mirror
(CM1): it has a cylindrical shape to vertically collimate the beam through
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Figure 3.1: Beam line ID20 layout.
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Figure 3.2: The Kohzu monochromator: the liquid nitrogen cooling sys-
tem is represented in orange, the two Si crystals are reported in gray
and the black arrow represents the photon beam scattered by the Si(111)
surfaces.

the monochromator; the outgoing beam is still diverging in the horizontal
direction.

After the collimating mirror, the beam enters a Kohzu monochromator
hosting two silicon crystals (see Figure 3.2). The photons are reflected by
the (111) surfaces of the two crystals according to Bragg’s law [41]:

nλ = 2d sin(θB) (3.1)

where λ is the wavelength of the incoming photons, d is the distance between
lattice planes, θB is the angle of incidence of the X-rays (i. e. the angle
between the direction of the photons and the surface) and n is the order
of diffraction. By setting the angle θB, it is possible to monochromatize the
energy to the desired value: in our measurements, in which a scan of the
incident energy Ei is made, the Bragg angle is adjusted to the desired value
according to the following formula:

θB = arcsin

(
λ

2d

)
= arcsin

(
hc

2dEi

)
(3.2)

where h is Planck’s constant, c is the velocity of light in vacuum, aSi =
5.43 Å is the lattice parameter of Si at 77 K [42], d = aSi/

√
h2 + k2 + l2 =

aSi/
√

3 (where h = k = l = 1 are the Miller indices) is the lattice plane dis-
tance. According to Bragg’s law, perfect crystals should have an infinitely
sharp response (i. e. only one wavelength is reflected by the crystal); how-
ever, dynamical theory of diffraction explains the intrinsic width of a re-
flection. This is due to the refraction of the beam by the stack of crystal
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3.2 Beam line ID20 at the ESRF

planes and to the interference generated by the phase shift felt by the radi-
ation while it is reflected or refracted by the crystal planes [43]. This width
is called Darwin width ∆θDw, or rocking curve width, and can be expressed
as:

∆θDw =

(
∆E

E

)
tan(θ) (3.3)

where ∆E/E is the energy resolution of the monochromator. In the case
of the Si(111) reflection the energy resolution is ' 1.35 · 10−4, which corre-
sponds to ∆E ' 1.3 eV at an energy of ∼ 10 keV.

Since the monochromator is exposed to a significant fraction of the beam
power, it must be cooled by liquid nitrogen in order to prevent the heating
of the crystals and the alteration of some parameters (such as the lattice
constant aSi), resulting in a deterioration of the beam properties (e. g. energy
width, beam brightness and intensity). In Figure 3.2 the cooling system
set-up is shown: the heat load induced by the incident X-rays is conducted
through the Si crystals and transferred to the holder (represented in orange),
which is liquid nitrogen cooled.

Usually, during an experiment, a better resolution is required: in the
beam path, a post-monochromator can be introduced. This exploits higher
order silicon reflections to achieve a resolution of the order of 0.1 eV at the
energy of ∼ 10 keV, at the expense of reducing the photon flux. At beam line
ID20, the post-monochromator for X-ray Raman measurements is a Si(311)
channel-cut crystal, providing a resolution of ∆E/E = 2.7 · 10−5.

Then, a toroidal mirror (FM2) focuses the X-ray beam onto a point
called secondary source (SS2). At this point, the spot size is 40 µm in the
vertical direction and 250 µm in the horizontal one. To achieve a smaller
focus on the sample, a Kirkpatrick-Baez mirror (KB) system is installed at
about 0.75 m from the sample position: it is made of two elliptical mirrors
with tight specifications in both slope error and surface roughness providing
a focus of 10 µm × 20 µm (vertical × horizontal). The incident photon flux
on the sample is in the order of 1013 photons/s.

3.2.1 The X-ray Raman spectrometer

The spectrometer for non-resonant inelastic X-ray scattering installed at
beam line ID20 is a multiple-crystal-analyzer spectrometer (see Figure 3.3).
The analyzers are kept inside six vacuum chambers (see Figure 3.4) in order
to avoid scattering of the photons by air and to reduce the background noise.
The chambers can separately rotate to cover a large 2θ range allowing the
simultaneous measurement of different values of the momentum transfer q.

Since the XRS cross-section is very small, the scattered photons need to
be collected in a large solid angle. This can be achieved increasing the size
of the analyzers, but if the crystals are flat, the X-rays will be reflected with
different Bragg angles and therefore the spectral bandwidth is increased.
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1: Incident X-ray beam
2: KB mirror
3: Horizontal rotation stage
    of the analyzer chambers
4: Sample goniometer

5: Analyzer chamber
6: Vertical rotation stage
    of the analyzer chambers
7: Maxipix detector

Figure 3.3: The X-ray Raman spectrometer.
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chamber

Figure 3.4: Detail of one of the six analyzer chambers of the X-ray
Raman spectrometer.
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Sample Detector

Spherical crystal 
analyzer

Rowland
circle

RRow

θB θB

Figure 3.5: Rowland circle geometry: the photons coming from the sam-
ple are diffracted by a spherically bent crystal analyzer and focused onto
the detector. Sample and detector must be placed on the Rowland circle,
whose radius of curvature is half of that of the crystal.

In order to preserve a good energy resolution, but still cover a large solid
angle, the crystals can be bent and the so-called Rowland circle geometry
can be adopted (see Figure 3.5): sample and detector are positioned on a
circle whose radius of curvature RRow is equal to half the bending radius
of the analyzers. In this way, X-rays scattered from the sample are focused
onto the detector on the opposite side of the circle (across the line of normal
incidence to the crystal surface).

The analyzers used are indeed spherically bent crystals: they are wafers
of 500 µm thick Si single crystals, anodically bonded to a concave glass
substrate with a curvature radius of 1 m [44]. However, due to the bending,
these crystals exhibit an elastic deformation which deteriorates their prop-
erties in both energy resolution and focusing. To enhance the resolution,
the analyzers are used in backscattering geometry and high reflection orders
are utilized. The most commonly used configuration employs the Si(660)
reflection order with a Bragg angle θB = 88.5◦ at 9690 eV. Bent analyz-
ers are used in those applications in which an overall resolution of ∼ 0.7
eV is sufficient and a high reflected intensity is welcome. Energy scans are
performed keeping the scattered energy fixed, while the incident energy is
varied: this provides a constant efficiency of the spectrometer throughout
the scan, because the analyzer reflectivity does not change.

The X-rays are detected by a Si hybrid pixel detector of the Maxipix
family [45] (256 × 256 pixels of 55 × 55 µm2 size). There is one Maxipix
detector per analyzer chamber, therefore twelve X-ray spots are accumulated
on it (see Figure 3.6) and the recorded XRS spectra can be processed either
separately or by summing up data from different analyzers/chambers (see
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Chapter 3 Experimental setup
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Figure 3.6: Example of an image recorded by the detector. A single
chamber of the X-ray Raman spectrometer is considered. The different
colors reproduce the intensity of the beam collected by the different pixels
of the Maxipix detector.

as well further below).

The sample is mounted on a motorized goniometer which can be trans-
lated along the three orthogonal directions x, y and z, and rotated around
these axes. This is useful to center the sample in the beam and, if the sample
is a single crystal, to align it in the desired way.

3.3 Data extraction

An XRS spectrum is recorded by scanning the incident photon energy Ei
at fixed steps of 0.3 eV and by collecting the photons scattered at a constant
energy Eo = 9690 eV. Inelastic features are therefore found at energy losses
of Ei−Eo 6= 0. At Ei = Eo elastic scattering occurs, which is typically orders
of magnitude stronger than the inelastic signal and can be used to calibrate
the absolute energy loss and to assess the resolution of the instrument.

Energy-analyzed photons are collected on a 2D pixelated detector to
physically distinguish the contributions from the different analyzers. An im-
age as the one shown in Figure 3.6 is acquired and saved for each energy
value of the spectrum. The use of pixelated detectors also allows us to select
regions of interest (ROIs) around the useful signal area in order to minimize
the background noise. The spectrum is obtained by integrating the signal
over the ROIs for each point of the scan. Residual unwanted background
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3.3 Data extraction

within the ROIs can be estimated, and eventually subtracted, by integrat-
ing the noise over twin ROIs of the same dimension and sufficiently close to
the signal ROIs (see Figure 3.6).

Spectra are then normalized to a monitor value, which accounts for pos-
sible variations in the incident beam intensity, and to the counting time.
Spectra associated to different ROIs can be either summed up or not de-
pending on whether they carry the same information. In our case, we decided
to sum up the contributions of the twelve analyzers of a chamber, since the
corresponding momentum transfer was only slightly different. Before that,
however, the different spectra are cross-correlated in order to find the best
overlap between them and shifted accordingly. The chambers were posi-
tioned at different (average) scattering angles, in order to simultaneously
probe different q values.

The error bars are calculated as the square root of the signal intensity,
whose fluctuations are assumed to follow the Poisson distribution.
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CHAPTER

4

Sr2IrO4 and Sr3Ir2O7

The single-crystal samples studied in this work belong to the Ruddlesden-
Popper series An+1BnX3n+1

[46] in which the alkaline earth metal A is Sr,
the transition metal B is Ir and the anion X is O; n is the number of IrO2

layers in the perovskite-like stack. Our samples are the first two compounds
of this series: Sr2IrO4 (n = 1) and Sr3Ir2O7 (n = 2).

In this Chapter the crystal, electronic and magnetic structures of the
two samples are illustrated.

4.1 Crystal structure

Sr2IrO4 and Sr3Ir2O7 are transition metal oxides with layered-perovskite
structure. The single crystals were grown by R. S. Perry, E. C. Hunter, D.
Prabhakaran and A. T. Boothroyd at the London Center for Nanotechnology
(University College London) and the Clarendon Laboratory (University of
Oxford) using the flux technique, as reported in Ref. 48.

Sr2IrO4 has the crystal structure of K2NiF4
[16] (see Figure 4.1(a)), which

is very similar to that of the parent compound of high temperature supercon-
ductors, (La,Ba)2CuO4

[17]. The most important feature of the crystal is the
two-dimensional IrO2 single-layer in which the Ir ions are alternated with O
ions. This plane has the same configuration as the CuO2 layer in cuprates,
which constitutes the place where the doped holes in the superconducting
compounds move. Another analogy with the cuprates is the presence of co-
ordination polyhedra: the Ir ions are surrounded by six O ions located at the
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Ir
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Sr2IrO4 Sr3Ir2O7(a) (b)

a
b
c

Figure 4.1: Unit cells of the two iridates (a) Sr2IrO4 and (b) Sr3Ir2O7.
The Ir and O ions are located at the center and at the vertices of each
octahedra (shaded), respectively, while the Sr ions separate the perovskite-
like stacks. [Figure adapted from Ref. 12,47.]

vertices of corner-sharing octahedra. The IrO6 cages are rotated around the
crystallographic c = (001) axis by 11◦ and they are slightly elongated along
the same axis: the distance between Ir and apical O is 4% longer than that
between Ir and basal O [49]. This implies a reduction of the symmetry from
cubic to tetragonal; the compound belongs to the space group I41/acd. In
between the IrO2 planes there are SrO layers.

The crystal structure of Sr3Ir2O7 is shown in Figure 4.1(b): it is consti-
tuted by IrO2 bi-layer stacks alternated with SrO planes. The Ir ions are
surrounded by six O ions forming corner-sharing octahedra, both within a
IrO2 plane and between the planes [50]. The octahedra are elongated along
the c axis by ' 1.6%: the crystal has tetragonal symmetry and belongs to
the space group I4/mmm. Some authors [4,51] reported more complicated
structures in which the octahedra are also rotated around the c axis by 11◦:
within an IrO2 plane the rotations alternate in sign, giving rise to a stag-
gered structure, while the other plane of a bi-layer behaves in the opposite
way.
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4.2 Electronic structure

4.2 Electronic structure

5d TMOs have very peculiar properties, as they are characterized by a
strong electron correlation. These systems can not be described by a one-
electron theory, in which electrons are independently considered to move
in an average potential generated by all the other electrons. The electronic
and magnetic properties of these systems, in particular of 3d TMOs [52], have
been described with some success by the Hubbard model [53]. It was mostly
developed for 3d TMOs and can be thought as an improvement of the tight-
binding model: the Hubbard Hamiltonian HHu contains not only the kinetic
term (as in the tight-binding Hamiltonian), but also a potential term arising
from the Coulomb repulsion between two electrons occupying the same site.
If we consider a periodic crystal with only one electron per site the Hubbard
Hamiltonian is:

HHu = −t
∑
〈j,i〉σ

(c†jσciσ + c†iσcjσ) + U
∑
j

nj,+nj,− (4.1)

where c†jσ and cjσ are the creation and annihilation operators for an electron
with spin σ at lattice site j, respectively; t and U are the energy scales of the
kinetic and potential terms, respectively; nj,+ and nj,− are the number of
electrons with spin up or down at lattice site j: according to Pauli’s exclusion
principle, they can be either 0 or 1. The first term in Equation (4.1) is the
kinetic term: an electron with spin σ at lattice site i is annihilated and an
electron with same spin is created at site j or vice-versa. t is the hopping
integral between the two orbitals involved: since it depends on the overlap
between orbitals, as a first approximation only hopping between neighboring
atoms is considered (the symbol 〈j, i〉 means that the two sites are adjacent).
According to the tight-binding model, both the hopping integral t and the
bandwidth W are proportional to the overlap between orbitals, so sometimes
t is replaced by W . The second term in Equation (4.1) is the potential term:
the sum runs over all the lattice sites and the terms of the summation are
equal to zero if the atom j has no electron or only one electron on it, otherwise
(two electrons with different spin occupying one site) they are equal to U ,
which is the Coulomb repulsion felt by the two electrons.

If U < W the energy cost due to the repulsion of the electrons is lower
than the gain in kinetic energy and the system is metallic; when U > W
the strong electron repulsion forbids any hopping of the electrons and the
system is insulating. Therefore, in the Hubbard model the relative magni-
tude of U and W determines whether a system is a metal or an insulator.
5d orbitals are more spatially extended than 3d orbitals, implying a larger
bandwidth and reduced electron-electron interactions, presumably leading
to a metallic state. Instead, some 5d TMOs are insulators: two examples
are the samples under study, Sr2IrO4

[3] and Sr3Ir2O7
[4]. The spin-orbit cou-

pling (SOC), which is much larger in 5d TMOs (∼ 0.4 eV [5,7]) than in 3d
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Figure 4.2: (a) t2g band split by SOC ζ into a Jeff = 3/2 band and a
Jeff = 1/2 band, further split by the Coulomb repulsion U into a LHB
and an UHB; the bands occupied by electrons are represented in gray. (b)
Schematic energy diagram for the 5d states split by the cubic crystal field
10Dq into t2g and eg states; the former are further split by SOC ζ into
the Jeff = 3/2 quartet and the Jeff = 1/2 doublet. [Figure adapted from
Ref. 7.]

TMOs (∼ 0.02 eV [6]), was introduced to fully explain the anomalous insu-
lating state of these systems: the SOC splits the degeneracy of the t2g states,
hence reducing the bandwidth and enhancing the effect of correlation. At
this point, even a small Coulomb repulsion can act to open a gap between
the lower Hubbard band (LHB) and the upper Hubbard band (UHB) (see
Figure 4.2(a)).

The Ir atoms in Sr2IrO4 and Sr3Ir2O7 are known to be 4+ ionized and
arranged in a network of IrO6 octahedra: thus the symmetry of the electro-
static field felt by the outermost electrons occupying the Ir 5d orbitals is not
spherical, as it would be for the isolated atom, but cubic. This removes the
degeneracy of the 5d energy levels, splitting them in six t2g states at lower
energy and four eg states at higher energy. The energy difference between
these levels is called cubic crystal field splitting and denoted by 10Dq. The
SOC further splits the t2g states in the Jeff = 3/2 quartet at lower energy
and the Jeff = 1/2 doublet at higher energy, while it does not split the
eg states (see Figure 4.2(b)). The scenario is analogous to the splitting of
the p states (orbital angular momentum L = 1, expressed in units of h̄) by
SOC, but opposite in sign: one can think that the Jeff states are due to the
addition of an effective orbital angular momentum Leff = −L to the spin
angular momentum S. The 5 electrons of the Ir 5d orbitals full occupy the
Jeff = 3/2 band and one hole is left in the Jeff = 1/2 band. This is the
so-called Jeff = 1/2 ground state. The above discussion is valid only if the
eg states can be neglected in the computation of the ground state, that is
if the cubic crystal field is much stronger than the SOC. The experimental
validation of this hypothesis is given in Chapter 5.

In real materials, the symmetry of the crystal field is never perfectly
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4.2 Electronic structure

cubic, but it is usually lower. In the case of Sr2IrO4 and Sr3Ir2O7, the elon-
gation of the IrO6 octahedra induces a small (∼ 0.01 eV [18]) tetragonal
contribution to the crystal field.

To fully understand how the t2g levels are split in the presence of both
SOC and tetragonal crystal field, we use a single ion model (i. e. only one Ir
ion is considered) in which these two terms are included. The Hamiltonian
is [27,28,54,55]:

H = ζL ·S− ∆

3
L2

z (4.2)

where ζ is the SOC constant and ∆ is the tetragonal crystal field (∆ >
0 for an octahedron elongated along the c axis). Since the eg states do
not contribute to the ground state, we limit the basis set to the t2g states
expressed as linear combinations of |l,ml〉 states [56]:

|xy〉 = − i√
2

(
|2, 2〉 − |2,−2〉

)
(4.3a)

|yz〉 =
i√
2

(
|2, 1〉+ |2,−1〉

)
(4.3b)

|zx〉 = − 1√
2

(
|2, 1〉 − |2,−1〉

)
(4.3c)

The matrix elements are evaluated and the Hamiltonian diagonalized as
follows. Let us separate the contribution of the SOC and the tetragonal crys-
tal field. We suppose, for simplicity, that the magnetic moment is oriented
along the z = c direction. This is the case for Sr3Ir2O7

[25], while in Sr2IrO4

the magnetic moment lies in the basal plane [18].

• The product L ·S can be expressed in terms of ladder operators, for
both the orbital and the spin angular momenta, J± = Jx ± iJy, pro-
ducing [57]:

L ·S = LxSx + LySy + LzSz = (L+S− + L−S+)/2 + LzSz (4.4)

These operators are defined such that1:

J±|j,mj〉 =
√
j(j + 1)−mj(mj ± 1)|j,mj ± 1〉 (4.5a)

Jz|j,mj〉 = mj |j,mj〉 (4.5b)

where the expressions above are valid for a generic angular momentum
J . As an example, the matrix element 〈xy,+|L ·S|xy,+〉 is calculated

1All operators are expressed in units of h̄.
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Chapter 4 Sr2IrO4 and Sr3Ir2O7

as follows:〈
xy,+

∣∣(L+S− + L−S+)/2 + LzSz
∣∣xy,+〉 =

〈
xy,+

∣∣LzSz∣∣xy,+〉 =

=
1

2

〈
xy
∣∣Lz∣∣xy〉 =

1

2

1

2

(〈
2, 2
∣∣− 〈2,−2

∣∣)Lz(∣∣2, 2〉− ∣∣2,−2
〉)

=

=
1

2

1

2

(
2
〈
2, 2
∣∣2, 2〉− 2

〈
2,−2

∣∣2,−2
〉)

= 0 (4.6)

where the term containing S+ is zero because S+|+〉 = 0 and the term
containing S− is also zero because S−|+〉 = |−〉 but then the integral
〈+|−〉 = 0.

The full matrix for the SOC term is:

H SOC =
ζ

2



0 0 0 1 0 −i
0 0 −1 0 −i 0
0 −1 0 0 i 0
1 0 0 0 0 −i
0 i −i 0 0 0
i 0 0 i 0 0

 (4.7)

• The matrix elements for the tetragonal crystal field operator are easily
calculated exploiting Equation (4.5b) if the orbitals are expressed as
in Equation 4.3. For example, the matrix element 〈xy,+|∆3 L

2
z|xy,+〉

is calculated as follows:〈
xy,+

∣∣∆
3
L2
z

∣∣xy,+〉 =
∆

3

〈
xy
∣∣Lz ·Lz∣∣xy〉 =

=
∆

6

(〈
2, 2
∣∣− 〈2,−2

∣∣)Lz(2∣∣2, 2〉+ 2
∣∣2,−2〉

)
=

=
∆

6

(〈
2, 2
∣∣− 〈2,−2

∣∣)(4∣∣2, 2〉− 4
∣∣2,−2〉

)
=

=
4∆

6

(〈
2, 2
∣∣2, 2〉+

〈
2,−2

∣∣2,−2
〉)

=
4∆

3
(4.8)

The full matrix for the tetragonal crystal field term is:

H ∆ =
∆

3



4 0 0 0 0 0
0 4 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.9)

Thus, a positive ∆ splits the t2g raising the |xy,±〉 orbital by a quantity
equal to ∆ with respect to the |yz,±〉 and |zx,±〉 orbitals.

30



4.2 Electronic structure

The Hamiltonian matrix H is given by the difference of the two previous
matrices. Since we are interested in the ground state of the system in the
hole representation, the matrix must be changed in sign and becomes:

H =



4∆

3
0 0 −ζ

2
0

iζ

2

0
4∆

3

ζ

2
0

iζ

2
0

0
ζ

2

∆

3
0 − iζ

2
0

−ζ
2

0 0
∆

3
0

iζ

2

0 − iζ
2

iζ

2
0

∆

3
0

− iζ
2

0 0 − iζ
2

0
∆

3


(4.10)

By diagonalizing the matrix, we can find the solution to the Schrödinger
equation, i. e. the eigenvalues and the eigenvectors. These are the generic
Kramers doublets |0,±〉, |1,±〉 and |2,±〉. The eigenvalues are:

E|0,+〉 = E|0,−〉 = −ζ
4

(1− 5δ +
√

9 + 6δ + 9δ2) (4.11a)

E|1,+〉 = E|1,−〉 =
ζ

2
(1 + δ) (4.11b)

E|2,+〉 = E|2,−〉 =
ζ

4
(−1 + 5δ +

√
9 + 6δ + 9δ2) (4.11c)

where δ = 2∆/(3ζ). They are reported as a function of ∆ in Figure 4.3 for
a given value of the SOC ζ = 0.45 eV.

The eigenstate describing the ground state of the system is:

|0,−〉 =
C0|xy,+〉 − |yz,−〉 − i|zx,−〉√

2 + C2
0

(4.12)

where 2C0 = 1 + 3δ −
√

9 + 6δ + 9δ2. This is valid for a magnetic moment
µ oriented along the c axis, while if µ ‖ (110) the ground state becomes [28]:

|0,−〉 =
C0(|xy,−〉 − i|xy,+〉)/

√
2 + |yz,−〉+ i|zx,+〉√

2 + C2
0

(4.13)

The occupancies of the |xy,+〉, |yz,−〉 and |zx,−〉 contributing to the
ground state are shown in Figure 4.4 as a function of ∆.

As it can be seen from Figure 4.3, in the limit ∆ = 0 the system shows a
single state at lower energy and two degenerate eigenstates at higher energy
(in the hole representation): these are the so-called Jeff = 1/2 doublet and
the Jeff = 3/2 quartet, respectively. The ground state is achieved placing
the single hole in the former band: this is the well-known Jeff = 1/2 ground
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Figure 4.3: Tetragonal crystal field dependence of eigenvalues of Equa-
tion 4.11 in the hole representation. The ground state energy has been set
to 0 and subtracted to the excited states energies. The SOC constant is
set to ζ = 0.45 eV.
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Figure 4.4: Tetragonal crystal field dependence of the ground state
orbital occupancies in the hole representation, as derived from Equa-
tion 4.12. On the top of the Figure, an illustration of the probability
density function of the ground state as combination of |xy〉, |yz〉, |zx〉 or-
bitals is shown as a function of ∆. [Figure adapted from Ref. 28.]
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4.3 Magnetic structure

state [7,9]. Figure 4.4 shows that, for ∆ = 0, the ground state is composed
by an even occupation of the |xy〉, |yz〉 and |zx〉 orbitals; the shape of the
ground state eigenfunction is illustrated on the top of the Figure. It must
be stressed that the pure Jeff = 1/2 ground state can be realized only in the
limit ∆ = 0 which, in real materials, becomes ∆ � ζ, i. e. the tetragonal
crystal field must be much smaller than the SOC. In Sr2IrO4 and Sr3Ir2O7

this condition is fulfilled, since ∆ ' 0.01 eV [18] and ζ ' 0.4 eV [7]. For sizable
values of ∆, instead, all the eigenstates are non-degenerate (Figure 4.3) and
the generic Kramers doublets are formed.

4.3 Magnetic structure

Sr2IrO4 shows a weak ferromagnetism at 240 K with a saturation mag-
netic moment of ∼ 0.1 µB/Ir [3,9]. The origin of this behavior is a canted
antiferromagnetic structure, as reported in Figure 4.5(a): the Ir magnetic
moments lie in the basal plane and are oriented along the a axis of the crys-
tal in an antiferromagnetic way and canted by an angle of 12.2◦ [18]: we can
assume that the magnetic moments rigidly follow the rotation of the IrO6

octahedra.
Sr3Ir2O7 exhibits a first magnetic transition at 285 K and a second tran-

sition at 260 K, resulting in a further increase in the magnetization; but
the most striking phenomenon is the downturn in the magnetization which
begins at ∼ 50 K and is present only if the sample is field-cooled [4,48]. This
is due to the rotation of the magnetic moments in the direction opposite to
the applied field. Sr3Ir2O7 has an antiferromagnetic structure in which the
magnetic moments are oriented along the crystal c axis [25], as can be seen
in Figure 4.5(b). The saturation magnetic moment is ∼ 0.037 µB/Ir [48].

The different orientation of the magnetic moments in the two compounds
is due to strong anisotropic exchange couplings between the IrO2 layers
which are present in Sr3Ir2O7, but completely absent in Sr2IrO4

[12]. The
spin-flop transition as a function of the number of IrO2 planes per unit cell
reflects the SOC entangled nature of the Jeff = 1/2 ground state, whose
wave function is spatially of three-dimensional shape (see top of Figure 4.4),
in strong contrast to the cuprates with two-dimensional wave functions.
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a
b
c

Figure 4.5: Magnetic structure of (a) Sr2IrO4 and (b) Sr3Ir2O7. Sr2IrO4

exhibits a canted antiferromagnetic structure in which the magnetic mo-
ments lie in the basal plane and are rotated by ∼ 12◦; Sr3Ir2O7 has an
antiferromagnetic structure with moments oriented along the c axis. [Fig-
ure adapted from Ref. 18,25.]
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CHAPTER

5

Results and discussion

In this Chapter the XRS spectra of Sr2IrO4 and Sr3Ir2O7 are reported
and analyzed. Exploiting the similarities between XRS and XAS cross-
sections and with the help of a single-ion model, the cubic crystal field
of the two samples is extracted.

5.1 Experimental details

During the measurements, both the Si(111) monochromator and the
Si(311) post-monochromator were used to achieve an energy resolution ∆Ei '
0.3 eV with an incoming energy Ei = 9690 eV. The spot size on the sam-
ple was 10 × 20 µm2. The scattered X-rays were monochromatized using
Si(660) crystal analyzers in a backscattering geometry with a fixed Bragg
angle of 88.5◦. The resulting energy resolution was ∆Eo ' 0.7 eV. Only one
chamber of the XRS spectrometer was used and the signals from the twelve
analyzers were averaged according to the procedure explained in Section 3.3.
Since we wanted to obtain a spectrum comparable to a XAS measurement
at the O K edge (∼ 530 eV [39]), the incident energy was varied (while the
outgoing energy was fixed at Eo = 9690 eV) in order to cover the energy
loss range from 500 eV to 575 eV. The energy scan consisted of 225 points
and the counting time was 30 s for each point. Several scans were acquired
to improve the counting statistics.

The two scattering geometries adopted during the experiment are shown
in Figure 5.1(a, b). The sample was oriented in order to have the transferred
momentum q either along the c axis or along the a axis. The scattering angle

35



Chapter 5 Results and discussion

θ=30°
a
b

c

ki

ko q

θ

a
b

c

ki

ko

q

θ=60°θ

(a) (b)q || (001) q || (100)

a
b

q||c

q||a
b

c

θ=10°a
b

c ki

ε
(c) (d)ε || (001) ε || (100)

a
b

ε||c

ε||a
b

c

XRS XRS

XASXAS

θ=90°

a

b

c
ki

ε

Figure 5.1: (a, b) Sketches of the two XRS scattering geometries: the
sample was oriented in order to have (a) q ‖ c = (001) and (b) q ‖
a = (100); in both geometries the scattering angle was 2θ = 60◦. (c, d)
Sketches of the corresponding XAS experimental geometries: the sample
was oriented in order to have (c) ε almost parallel to c and (d) ε ‖ a.

2θ was in both cases 60◦: according to Equation 2.3, q ' 6 Å−1. This value
was chosen to maximize the dipolar contribution to the scattering cross-
section [58]. Sr3Ir2O7 was measured also in a third configuration: this was
similar to the geometry reported in Figure 5.1(a), but the angle of incidence
on the sample was set to θ = 60◦ and the scattering angle was 2θ = 120◦:
this allows to keep q oriented along the c axis and to increase its magnitude
by a factor

√
3 so that higher-order terms should become important in the

cross-section.

Soft XAS was measured at beam line ID08 at the ESRF. The XAS
experimental geometries are shown in Figure 5.1(c, d). The experiments
were performed in two geometries in order to have either the polarization
vector ε almost parallel to the c axis or lying in the ab plane. These two
geometries perfectly match the scattering geometries chosen in the XRS
measurements. XAS was measured in total fluorescence yield (TFY) mode:
the incoming photon generates a deep empty state which can be filled by the
radiative decay of an electron; every photon emitted is detected, irrespective
of its energy.
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Figure 5.2: XRS spectrum of Sr3Ir2O7 at |q| = 6 Å−1 with an energy loss
range Ei − Eo from -10 eV to 600 eV. The elastic peak, Compton profile
and different absorption edges are indicated; the O K edge is highlighted
in red.

Hard XAS was performed at beam line ID20 at the ESRF with the RIXS
spectrometer. Two measurements at the Ir L3 and L2 edges, corresponding
to the transition of an electron from the 2p3/2 and the 2p1/2 states, respec-
tively, to the continuous empty band, were done in the partial fluorescence
yield (PFY) mode, in which only the photons that match a particular emis-
sion line are monitored. The fluorescence lines were the Ir Lα1 and the Ir
Lγ1, respectively, corresponding to the transition of an electron from the 3d
to the 2p3/2 states and from the 4d to the 2p1/2 levels [39].

In all measurements the samples were kept at room temperature (300 K).

5.2 The XRS spectra

The XRS spectrum of Sr3Ir2O7 is shown in Figure 5.2. As we can see,
different features are present: the elastic peak at Ei = Eo, the Compton
profile, centered at energy losses of ∼ 100 eV, and the various absorption
edges of O, Sr and Ir. We are mostly interested in the O K edge (highlighted
in red in the Figure) because the transition of the O 1s electron into the
O 2p states (mixed with the Ir 5d band) allows the determination of the
electronic structure of the sample near the Fermi energy.

The XRS spectra focused at the O K edge are shown in Figure 5.3:
black (red) dots represent the q ‖ c (q ‖ a) scattering geometry, in which
the scattering angle was fixed to 2θ = 60◦. Since the magnitude of q is small,
the Compton profile is peaked around small energy losses (see Figure 5.2):
in the range of our interest, its contribution is negligible and we can remove
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Figure 5.3: XRS spectra of (a) Sr2IrO4 and (b) Sr3Ir2O7 for transferred
momenta q ‖ c (black) and q ‖ a (red dots) and scattering angle 2θ =
60◦. Gray triangles in (b) represent the XRS spectrum of Sr3Ir2O7 with
scattering angle 2θ = 120◦. The insets show the XAS spectra at the O K
edge of the two compounds for incoming polarization ε ‖ c (black) and
ε ‖ a (red line).
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5.2 The XRS spectra

the background by a simple linear fit of the pre-peak region at energies lower
than 528 eV and then subtracting the fit to the spectrum. The spectra were
then normalized to unit area.

According to XAS literature [19,20,59], the peaks in the energy loss range
below ∼ 535 eV are associated to the promotion of an electron from the O 1s
to the O 2p states, which are hybridized with the unoccupied valence states
of the transition metal ion (i. e. Ir 5d band); higher energy peaks are instead
associated to hybridizations with Sr 4d and Ir 6s, 6p states. Indeed, as we
have seen in Section 2.3.1, XRS spectra should be comparable to the XAS
ones: the cross-section is exactly the same provided that the energy loss and
the transferred momentum in XRS play the same roles as the energy of the
incoming photon and the polarization vector in XAS. XAS spectra of the
very same samples are also shown in the insets of Figure 5.3: continuous
black (red) lines represent the ε ‖ c (ε ‖ a) geometry. As we can see, the
overall shape of the XAS spectra resembles that of XRS spectra, but in
the latter there is a very strong dependence on q, while the dichroism of the
XAS spectra is very small and centered in the pre-peak region. This is due to
surface sensitivity and self-absorption issues affecting soft X-ray absorption.
The former is due to the use of soft X-rays: since their penetration depth in
the sample is small, one can probe the surface of the material and not its
bulk: if the surface of the sample is not perfectly crystalline or it is not clean,
then the surface properties measured differ from the bulk ones. Furthermore,
bulk and surface behavior of a material can be completely different: for
example, weak metallicity was found in the near-surface electronic structure
of isolating Sr3Ir2O7

[23]. Self-absorption effects are more subtle: the incoming
photons, which have an energy very close to a resonance of the system, are
absorbed by core electrons which are excited into empty states from where
they radiatively decay into the initial state (elastic process) or other final
states (inelastic process); the photons emitted, before leaving the sample,
can be absorbed again by other electrons and consequently they are not
detected. This process distorts the spectrum: the more intense absorption
channels will be more affected by self-absorption with respect to the weaker
channels. As a consequence, the total fluorescence yield will no longer be
proportional to the XAS cross-section. These issues can be overcome by the
use of XRS: this is a hard X-ray probe, allowing bulk sensitive measurements,
and it does not suffer from self-absorption, since the energies of the incoming
and outgoing photons are very far from any resonance of the sample.

In principle, the strong q dependence of the XRS spectra can be due
to higher-order terms in the scattering cross-section, which are absent in
the XAS cross-section. To take this into account, Sr3Ir2O7 was measured
in a geometry that allowed to increase the magnitude of the transferred
momentum by a factor

√
3, keeping it parallel to the c axis. The spectrum is

reported in Figure 5.3(b) (gray triangles): as we can see, the two spectra for
q ‖ c look very similar, implying that quadrupole and higher-order terms
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Chapter 5 Results and discussion

in the cross-section are negligible. Therefore, the discrepancy between XRS
and XAS measurements is due to surface and/or self-absorption artifacts in
the XAS spectra. On the other hand, the signal to noise ratio is much larger
in XAS and the low XRS counting rate causes the acquisition of a spectrum
to last several hours.

5.3 Cross-section calculation

In order to understand the spectra and to assign the features in the near-
edge region (528-535 eV), we calculate the number of expected peaks and
their weight by exploiting the equivalence between XRS and XAS cross-
sections: this allows us to view the XRS process as the promotion of an
electron from the O 1s orbital to the O 2pi orbitals (i = x, y, z). Since the
O is 2− ionized in both compounds, this transition is possible only if the
O 2p orbitals are hybridized with the Ir 5d states so that an electron from
the O can move to the Ir leaving a hole in the 2p states, which can be
filled by the electron involved in the absorption process. In terms of wave
function, this can be written as: c1|5d5〉+ c2|5d6L〉, where |c1|2 and |c2|2 are
the probabilities of having 5 and 6 electrons in the Ir 5d shell, respectively,
|5d6L〉 means that the sixth electron in the 5d shell comes from the ligand
ion. If c2 = 0, no electrons move from the ligand to the transition metal:
the O 2p orbitals are full and the absorption process is not possible; instead,
if c2 6= 0, the O 2p is partially empty and an O 1s electron can absorb a
photon and be promoted to the O 2p orbitals. The very same process can
be viewed as the movement of a hole from the Ir 5d to the O 2p states from
where it is promoted to the O 1s orbital by the scattering process. We will
treat this mechanism in the latter way.

The cross-section of the process described above can be calculated in two
steps: first, we will deduce the polarization dependence of the transition O
2pi → 1s, then we will calculate the hybridization strength between O 2p
and Ir 5d orbitals.

5.3.1 Polarization dependence of the O 2p to 1s transitions

The starting point is the XAS cross-section (Equation (2.14)), which is
analogous to the XRS one in the dipole approximation (Equation (2.13)).
We have seen from the spectra in Figure 5.3 that we can safely assume the
validity of this approximation.

The term containing the polarization dependence in the cross-section is:
|〈ψf |ε · r|ψi〉|2 where ε is the polarization of the incident photon, r is the
position of the electron and ψi and ψf are the initial and final states of the
electron: in our case, they are the O 2pi and O 1s orbitals, respectively. The
wave function describing the orbitals can be written in spherical coordinates
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5.3 Cross-section calculation

as the product between a radial function Rn(r) and a spherical harmonic
Y m
l (θ, ϕ) [57]:

ψnlm(r) = Rn(r)Y m
l (θ, ϕ) (5.1)

where n, l and m are the principal, azimuthal and magnetic quantum num-
bers. By writing r in spherical coordinates as: r = r(sin θ cosϕûx+sin θ sinϕûy+
cos θûz), where ûx, ûy and ûz are the unit vectors of the x, y, z directions,
we can write the term in the cross-section as the product of a radial and an
angular term:

〈ψf (r)|ε · r|ψi(r)〉 = 〈Rnf (r)Y
mf
lf

(θ, ϕ)|ε · r|Rni(r)Y
mi
li

(θ, ϕ)〉 =

〈Rnf (r)|r|Rni(r)〉〈Y
mf
lf

(θ, ϕ)|εx sin θ cosϕ+ εy sin θ sinϕ+ εz cos θ|Y mi
li

(θ, ϕ)〉
(5.2)

The radial term, depending only on the principal quantum number, is ex-
actly the same for each 2pi orbital, so we will neglect it and consider only the
angular part of Equation (5.2). The initial and final states can be written
in terms of spherical harmonics as [56]:

|1s〉 = |0, 0〉 (5.3a)

|2px〉 =
1√
2

(
|1,−1〉 − |1, 1〉

)
(5.3b)

|2py〉 =
i√
2

(
|1,−1〉+ |1, 1〉

)
(5.3c)

|2pz〉 = |1, 0〉 (5.3d)

Now we can deduce the polarization dependence of the angular part of
Equation (5.2). Let us calculate it for the 2px → 1s transition:

〈1s|εx sin θ cosϕ+ εy sin θ sinϕ+ εz cos θ|2px〉 =

εx〈1s| sin θ cosϕ|2px〉+ εy〈1s| sin θ sinϕ|2px〉+ εz〈1s| cos θ|2px〉 =

εx√
2

(
〈0, 0| sin θ cosϕ|1,−1〉 − 〈0, 0| sin θ cosϕ|1, 1〉

)
=

1√
3
εx (5.4)

Thus, this transition is allowed only if the polarization has a component
along the x direction. Similarly, for the 2py and 2pz orbitals we obtain:

〈1s|εx sin θ cosϕ+ εy sin θ sinϕ+ εz cos θ|2py〉 =
1√
3
εy (5.5)

〈1s|εx sin θ cosϕ+ εy sin θ sinϕ+ εz cos θ|2pz〉 =
1√
3
εz (5.6)

The results obtained from Equation (5.4, 5.5, 5.6) are easily interpreted
if we write the operator as a linear combination of spherical harmonics:

εx sin θ cosϕ ∝ εx
(
|1,−1〉 − |1, 1〉

)
∝ εx|2px〉 (5.7a)

εy sin θ sinϕ ∝ εy
(
|1,−1〉+ |1, 1〉

)
∝ εy|2py〉 (5.7b)

εz cos θ ∝ εz|1, 0〉 ∝ εz|2pz〉 (5.7c)
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Figure 5.4: Intuitive explanation of the results obtained from Equa-
tion (5.4). The integrand in (a) is even with respect to the x, y, z directions
and the integral is different from zero, while the integrands in (b) and (c)
are odd and the integrals are equal to zero.

and we consider the parity of the integrand, as shown in Figure 5.4: the
integrand in (a) is even with respect to the x, y, z directions, so the integral
is different from zero, while the integrands in (b) and (c) are odd and the
integrals are zero. As a consequence, the 2pi → 1s transition is allowed
only if the incoming photon has a component of its polarization along the i
direction.

The last step is to find the components of the polarization vector in the
sample reference system: let θ and ϕ be the angles between ε (q in XRS)
and the z ≡ c and x ≡ a axis, respectively, as illustrated in Figure 5.5. The
three components can be written as:

εx = sin θ cosϕ (5.8a)

εy = sin θ sinϕ (5.8b)

εz = cos θ (5.8c)

The final results of the polarization dependence of the 2pi → 1s transi-
tions are listed in Table 5.1, where T denotes the operator of Equation (5.4,
5.5, 5.6). To obtain results consistent with the scattering geometry of the
XRS measurements we must set θ = 0◦ for the q ‖ c geometry and θ =
90◦, ϕ = 0◦ for the q ‖ a geometry. Thus the polarization dependences be-
come: 0, 0, 1 and 1, 0, 0, respectively. This means that if q ‖ c (q ‖ a) only
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Figure 5.5: Polarization (transferred momentum) vector in the sample
reference system: ε (q) is defined by the polar and azimuth angles θ and
ϕ.

Transition∣∣〈1s|T |2px〉∣∣2 sin2 θ cos2 ϕ∣∣〈1s|T |2py〉∣∣2 sin2 θ sin2 ϕ∣∣〈1s|T |2pz〉∣∣2 cos2 θ

Table 5.1: Angular dependencies of the 2pi → 1s transitions.

the transition 2pz → 1s (2px → 1s) is permitted, while the transition of the
hole from the other two 2p orbitals is not dipole allowed.

5.3.2 O 2p - Ir 5d hybridization strength

The hybridization between Ir and O orbitals allows a hole to move from
the Ir half-filled 5d band to the O empty 2p band. The hybridization strength
is calculated according to the orbital overlap model, as explained by Slater
and Koster [60]: the hopping integral tpdµ between p and d orbitals can be
written as:

tpdµ = Vpdµr
−α (5.9)

where Vpdµ is a constant depending on the bond type (µ = σ for a σ-bond
and µ = π for a π-bond), r is the distance between the two atoms and
α = 7/2 [61]. The constants Vpdπ and Vpdσ are related by Vpdσ = −

√
3Vpdπ

according to Muffin-Tin orbital theory [61,62].

Since the hopping integral is inversely proportional to the distance be-
tween the atoms involved and the octahedra are distorted along the c axis,
we should separate the contribution of apical (A) and in-plane (P) oxygens.
Let us consider the apical O first: px and py hybridize with zx and yz, re-
spectively, while pz mixes with 3z2 − r2; in the case of in-plane O, instead,
2px and 2py hybridize with xy, 3z2−r2 and x2−y2, while 2pz is mixed with
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Figure 5.6: Sketch of the O 2p orbitals participating in the hybridization
with the Ir 5d orbitals.

yz and zx. The bond between the t2g and the 2p orbitals is a π bond, while
a σ bond links eg with 2p orbitals. This is summarized in Figure 5.6.

5.3.3 Results of the cross-section calculation

By merging the results obtained from the polarization dependence of the
O 2pi → 1s transitions and the hybridization strength calculation of the O
2p - Ir 5d orbital mixing, we obtain the final cross-sections, which are listed
in Table 5.2 for the two scattering geometries used in the measurements
and for the different possible hybridizations. In view of the small tetragonal
crystal field of the two compounds, we assume that the t2g states are split
by SOC only. Thus, the xy, yz, zx orbitals are equally occupied (nxy =
nyz = nzx = 1/3, Equation (4.12)) and the eg states are filled by four holes
(n3z2−r2 = nx2−y2 = 2). Note that the hopping integral is squared, because
the probability of mixing between orbitals goes as t2, and that the number
of O in the IrO6 is taken into account.

As can be seen from Table 5.2, when q ‖ a, four transitions are allowed,
due to the hopping of a hole from the Ir zx to the 2px of apical O and the
hopping from xy, 3z2 − r2 and x2 − y2 to the 2px of in-plane O; the hole
is then promoted from the 2px to the 1s orbital by absorbing a photon.
Instead, when q ‖ c, the hole can move from the yz or zx to the 2pz orbital
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q ‖ a q ‖ c
xy/yz/zxA 2V 2

pdπnzxr
−2α
A

xy/yz/zxP 2V 2
pdπnxyr

−2α
P 4V 2

pdπnzxr
−2α
P

3z2 − r2
A 2V 2

pdσn3z2−r2r
−2α
A

3z2 − r2
P V 2

pdσn3z2−r2r
−2α
P

x2 − y2
A

x2 − y2
P

√
3V 2

pdσnx2−y2r
−2α
P

Table 5.2: Results of the cross-section calculation.

of in-plane O and from 3z2− r2 to the 2pz of apical O; the hole can then be
scattered from the 2pz to the 1s orbital.

5.4 Constrained fit of the spectra

The fit of the spectra was made using a Pearson type VII distribution
for each feature in the energy range of interest:

p(P, x) =
A(

1 +
(

2
1
µ − 1

)(
2
x− x0

w

)2
)µ (5.10)

where A is the amplitude of the curve; x0 is the peak center; w is the full
width at half maximum (FWHM); µ is a parameter which modifies the shape
of the curve: if µ = 1 the curve is Lorentzian while if µ → ∞ the curve is
Gaussian; P is the vector whose elements are the fit parameters A, µ, w and
x0.

According to the results obtained from the cross-section calculation, four
peaks are expected for q ‖ a and only two peaks when q ‖ c. Therefore,
we conformed the number of fitting curves to these results: in the q ‖ a
(q ‖ c) geometry, four (two) curves are used to represent the experimental
data and one (two) curve to account for the higher energy features. The
relative spectral weights of the curves are proportional to the calculated
ones (Table 5.2). The constrained fits are shown in Figure 5.7(a, b) for
Sr2IrO4 and in Figure 5.7(c, d) for Sr3Ir2O7: the open circles represent the
experimental data, the fit is reported as thick solid lines, while the single
features are plotted as thin solid lines.

It must be stressed that the only free parameters in the fit are the energy
positions and FWHM of the features, while the spectral weights are fixed to
the calculated values (apart from a common scaling factor to better adjust
all the amplitudes to the experimental data). Table 5.3 reports the energy
positions and the FWHM of the peaks, as resulting from the fit. As we
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Figure 5.7: Constrained fit of the XRS spectra of (a, b) Sr2IrO4 and (c,
d) Sr3Ir2O7 in the two scattering geometries: (a, c) q ‖ c and (b, d) q ‖ a.
Experimental data are reported as open circles, the thick solid lines are
the fitting curves, the single features and the extra peaks resulting from
the fit are plotted as thin solid and dashed lines, respectively.
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5.5 Extraction of the cubic crystal field

Energy loss (eV) FWHM (ev) Energy loss (eV) FWHM (eV)
Sr2IrO4 Sr2IrO4 Sr3Ir2O7 Sr3Ir2O7

xy/yz/zxA 528.9± 0.11 0.71± 0.35 528.9± 0.10 0.78± 0.30
xy/yz/zxP 529.8± 0.05 1.0± 0.17 529.6± 0.03 0.87± 0.10

3z2 − r2
A 531.4± 0.05 2.4± 0.18 531.2± 0.05 2.4± 0.15

3z2 − r2
P 532.4± 0.75 3.0± 0.67 531.8± 0.12 2.5± 0.26

x2 − y2
A

x2 − y2
P 534.0± 0.35 2.6± 0.46 533.7± 0.05 1.9± 0.06

Table 5.3: Energy position and FWHM of the absorption features result-
ing from the fit of the XRS spectra of Sr2IrO4 and Sr3Ir2O7

1.

can see from Figure 5.7, the agreement between the experimental data and
the simulations is remarkable in both scattering geometries and for both
samples: this allows us to assign each feature to the corresponding transition
of a hole from a particular Ir 5d state to a specific O 2p orbital. The labels
of each peak of Figure 5.7 denote the particular transitions: for example, the
intense features at 531.4 (531.2) and 534.0 (533.7) eV for Sr2IrO4 (Sr3Ir2O7)
correspond to the transition of a hole from the Ir 3z2 − r2 state to the 2pz
orbital of an apical O and from the Ir x2 − y2 state to the 2px orbital of an
in-plane O, respectively.

The peak assignment is consistent with the work of Moon et al. [20] on
Sr2IrO4, Schmidt et al. [63] on Sr2RuO4 and Park et al. [21] on Sr3Ir2O7.

5.5 Extraction of the cubic crystal field

From the results obtained in the previous section, we can extract the
cubic crystal field of the two compounds. This is calculated as the energy
difference between the centers of mass of the t2g and the eg states, taking
into account those peaks due to transitions to apical or in-plane O only.
Since the tetragonal crystal field in the two compounds is very small (|∆| ∼
0.01 eV [18]), the t2g states are supposed to be split only by SOC. Taking
this into account and considering that for ∆ ∼ 0 the splitting between
the t2g is ∼ 3ζ/2 (Equation (4.11)), we obtain a value of the cubic crystal
field of 10Dq = 3.8 ± 0.82 eV in Sr2IrO4 and 3.55 ± 0.13 eV in Sr3Ir2O7,

1The confidence intervals of the fitting parameter are calculated as the square root of
the diagonal elements of the covariance matrix, given by the following expression:

cov(P) =
1

N − k

N∑
i=1

(yi − p(P, xi))
2 (Jp

TJp)
−1 (5.11)

where N and k are the number of data points (xi, yi) to the fit and the number of fitting
parameters (i. e. the size of P), respectively; Jp is the Jacobian matrix [64].
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Figure 5.8: From left to right: Ir 5d levels are degenerate if no crystal
field or SOC is considered; the cubic component of the crystal field splits
this band into the t2g and the eg levels; SOC further splits the t2g states
into a Jeff = 3/2 and a Jeff = 1/2 band; the tetragonal component of the
crystal field mixes these bands forming the Kramers doublets |0,±〉, |1,±〉
and |2,±〉. The values we measured are highlighted in red.

10Dq (eV) ζ (eV) [7] ∆(t2g) (eV) [18] ∆(eg) (eV)

Sr2IrO4 3.8± 0.82 eV ∼ 0.4 ∼ 0.01 1.6± 0.82
Sr3Ir2O7 3.55± 0.13 eV ∼ 0.4 ∼ 0.01 1.9± 0.13

Table 5.4: Values of the cubic crystal field splitting, SOC and tetragonal
crystal field splitting for Sr2IrO4 and Sr3Ir2O7.

considering ζ = 0.4 eV [7]. A schematic energy diagram showing the t2g and
eg levels split by the crystal field and SOC is reported in Figure 5.8. The
result is consistent with estimates of 10Dq extracted from XAS [20,21] and
RXMS/RIXS [55] measurements.

The cubic crystal field is very large when compared to the other energies
at play: spin-orbit coupling and tetragonal crystal field (see Table 5.4 for
a summary of the Ir 5d band splitting by crystal field and SOC), therefore
validating the hypothesis that 10Dq is the dominant energy scale and that
the eg states do not participate to the ground state of the system, which
is fully determined by a linear combination of the t2g states, as stated by
Equation (4.12, 4.13).

Furthermore, from the constrained fit, we are able to deduce the energy
separation between the eg states: since these levels are not split by SOC, the
only energy acting on them is the tetragonal crystal field (see Figure 5.8).
We obtain 1.6±0.82 eV in Sr2IrO4 and 1.9±0.13 eV in Sr3Ir2O7. Note that
the x2 − y2 orbital is higher in energy than the 3z2 − r2: thus we expect
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5.5 Extraction of the cubic crystal field

a minor role of the electronic repulsion in the latter orbital, leading to an
elongation of the IrO6 octahedra along the c axis. This is consistent with
X-ray diffraction structural studies of the two compounds [3,50]. The fact
that the tetragonal crystal field acting on the eg states is very large is in
agreement with the requirement of a small ∆: indeed, the description of the
tetragonal crystal field acting on the 5d states requires two parameters, Ds
and Dt. The splitting of the t2g and the eg states is then given by 3Ds−5Dt
(= ∆) and 4Ds + 5Dt, respectively [65]. A small ∆ implies 3Ds ' 5Dt and
thus a finite splitting of the eg states is compatible with the realization of
the Jeff = 1/2 ground state in the two iridates.
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CHAPTER

6

Conclusions

The present thesis dealt with the study of Sr2IrO4 and Sr3Ir2O7, two
perovskite-like 5d transition metal oxides whose peculiar electronic structure
has recently attracted much attention. The singular ground state exhibited,
the so-called Jeff = 1/2 ground state, is due to a particular hierarchy of en-
ergies at play: cubic crystal field 10Dq, due to the octahedral charge density
felt by the outermost Ir 5d electrons, spin-orbit coupling ζ, which is large in
5d compounds, and the tetragonal component ∆ of the crystal field, due to
a slight elongation of the IrO6 cage. In the specific iridates studied in this
work, 10Dq is thought to be the largest energy and causes the splitting of
the Ir 5d levels into the t2g and the eg bands. Then, SOC splits the degener-
ate t2g levels in a lower Jeff = 3/2 quartet and an upper Jeff = 1/2 doublet.
The ground state of the system is achieved placing the five electrons of the
4+ ionized Ir in a low-spin configuration, i. e. the Jeff = 3/2 band is full
while the Jeff = 1/2 band is half-filled. This ground state is strictly reached
only if a precise energetic requirement is fulfilled: ∆� ζ � 10Dq.

This work aimed to determine the cubic component 10Dq of the crystal
field in Sr2IrO4 and Sr3Ir2O7: indeed, experimental determinations of SOC
(ζ ∼ 0.4 eV) and tetragonal crystal field (∆ ∼ 0.1 eV) have already been
done. We utilized the spectroscopic technique of X-ray Raman scattering,
which is a bulk sensitive and self-absorption free probe of the electronic
structure of compounds with light elements. Soft XAS at the O K edge,
hard XAS, RIXS and RXMS at the Ir L2,3 edges can be used as well, but
they are all affected by surface sensitivity and self-absorption issues and a
clear picture of the electronic structure of these materials cannot be easily
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extracted.
By exploiting the orientation dependence of the XRS cross-section and

with the help of a single-ion model, we were able to assign each feature in the
528-535 eV energy loss range to a particular transition involving the Ir 5d
states. This allowed us to obtain the values of the cubic crystal field splitting
10Dq = 3.8 ± 0.82 eV for Sr2IrO4 and 3.55 ± 0.13 eV for Sr3Ir2O7. These
values are very large when compared to SOC and the tetragonal crystal
field. This implies that the eg states are much higher in energy than the t2g

states and thus they do not contribute to the ground state wave function of
the two iridates. The hierarchy of energies at play is therefore completely
established experimentally and the implicit assumption of ∆ � ζ � 10Dq
is validated.

From the measurements, we were also able to extract the energies of the
electronic transitions: in particular, we found the value of the tetragonal
crystal field splitting of the eg states: 1.6±0.82 eV in Sr2IrO4 and 1.9±0.13
in Sr3Ir2O7. Moreover, we found that the 3z2− r2 orbital is lower in energy
than the x2−y2, implying an elongation of the IrO6 octahedra, as confirmed
by structural studies of the two compounds.

To the best of our knowledge, ours are one of the first XRS measurements
at the O K edge of transition metal oxides. Beside extracting quantitative
informations on the electronic structure of iridates, we also demonstrate that
XRS is a powerful and promising technique for the study of the electronic
properties of these materials. We hope that this pioneering work will spark
interest to study other transition metal oxides, with a special considera-
tion to the much more examined high temperature cuprate superconduc-
tors, especially in extreme environments, such as high pressure, where other
techniques (soft XAS in particular) cannot be performed.
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