

POLITECNICO DI MILANO

DIPARTIMENTODI ELETTRONICA, INFORMAZIONE E

BIOINGEGNERIA MASTER DI RICERCA IN INGEGNERIA

DELL’INFORMAZIONE

Integrating low power devices with ELIoT

using standard protocols

Advisor: Prof. Gianpaolo Cugola

Tutor: Prof. Alessandro Sivieri

 Master Thesis of: HONG RUN

 Matr.n: 796200

 Master Thesis of: GAO XIAORUI

 Matr.n: 797220

June 2014

THESIS ACRONYMS

I

ACRONYMS

ELIoT ……………………..Erlang language for the Internet of Things

WSN…………………………………………..wireless sensor network

IoT …………………………………………………..Internet of Things

CoAP ………………………………Constrained Application Protocol

URI………………………………………..Uniform Resource Identifier

RFID……………………………………Radio-frequency identification

M2M…………………………………………….. machine-to-machine

MEMS ………………………………micro-electro-mechanical system

UWB………………………………………………….Ultra Wide Band

SMAC…………………………………….Sensor media access control

SPIN………………...Sensor Protocols for Information via Negotiation

PSFQ …………………………………….Pump-Slowly, Fetch-Quickly

CODA…………………………Congestion Detection and Avoidance

QoS…………………………………………………..Quality of Service

LLN…………………………………..Low power and Lossy Networks

RPL………………………………………….Routing Protocol for LLN

DODAG………………...Destination Oriented Directed Acyclic Graph

DIO………………………………………..DODAG information object

6LowPan…………………...IPv6 over Low-power and Lossy Network

DAG……………………………………………Directed Acyclic Graph

RoLL…………………..Routing over Lossy and Low-power Networks

LBR……………………………………………LLN border router LBR

THESIS ABSTRACT

II

ABSTRACT

Nowadays, the rise of Internet of Things (IoT) has raised new demands

for the traditional Internet. It is is driven by an expansion of the Internet

through the inclusion of physical objects combined with an ability to pro-

vide smarter services to the business processes as more information be-

comes available. Within the network all the objects are required to be un-

iquely addressed. But due to the limitation of IPv4, even if the supply of

IPv4 addresses were not to be exhausted soon, the size of IPv4 itself is

not large enough to support the Internet of Things, so transition to IPv6 is

inevitable and around the corner.

 However, conventional IP protocol stack is not suitable for wireless

sensor network, where the resources and energy are constrained.

6LoWPAN offers a feasible solution for communication between IPv6

network and WSN. Constrained Application Protocol (CoAP) is a

lightweight application layer protocol that is specifically designed for re-

source-constrained internet devices and constrained networks. It is in-

tended to reduce the power consumption of the sensors and extend battery

life.

 As a sequel to the study described above, the overall purpose of this

thesis is dedicated to the implementation of the CoAP protocol not only

THESIS ABSTRACT

III

on x86 platform but also on embedded devices, and make it possible to

interconnect to each other.

 The implementation consists of a client, a server and a gateway. The

client part adopts a framework called ELIoT (Erlang language for the In-

ternet of Things), sends CoAP request to access to the information or

functionality that is available. The server part is developed on an open

source operating system called CONTIKI, which offers standard protocol

like IPv4, IPv6, 6LoWPAN, RPL. It is responsible for gathering the en-

vironment data according to the CoAP request. The gateway is placed

between the server and client, it will automatically convert the target

protocol type and forward the data through wireless or wired interface. It

plays the role of interconnecting the different platforms and is easy to

deploy and manage as the entire process.

THESIS CONTENTS

IV

CONTENTS

ACRONYMS .. I

ABSTRACT ... II

CONTENTS ... IV

LIST OF FIGURES .. VII

1 Introduction .. 1

1.1 Internet and the Internet Of Things .. 1

1.2 Aim of the thesis ... 2

1.3 Structure of the Thesis .. 2

2 Background ... 4

2.1 Internet of things ... 4

2.2: WSN(wireless sensor network) ... 7

2.3:Tinyos and Contiki ... 13

2.3.1 Contiki ... 15

2.4 Erlang .. 19

2.5 Erlang for the Internet of Things .. 24

2.5.1 Introduction of ELIOT ... 24

2.5.2 The framework of ELIOT .. 25

2.6: COAP ... 28

2.6.1 Introduction of COAP ... 28

2.6.2 COAP Message .. 30

THESIS CONTENTS

V

2.6.3 Method Definitions .. 36

2.6.4 CoAP URIs .. 39

2.7 Tmote-sky ... 44

3 Design ... 48

3.1 The scenario .. 48

3.1.1 System aim ... 49

3.2 Analysis ... 49

3.2.1 Client .. 50

3.2.2 Server ... 51

3.2.3 Gateway ... 53

3.3 Implementation ... 54

3.3.1 CoAP over Erlang .. 54

4 Evaluation .. 78

4.1 Test environment ... 78

4.2 Round trip time ... 79

4.3 System performance ... 83

4.3.1 Memory consumption .. 83

4.3.2 Power consumption ... 84

5 Related work .. 88

5.1 IoT architectures ... 88

5.2 WebIOPi on Raspberry Pi ... 89

5.3 Securing CoAP ... 90

THESIS CONTENTS

VI

6 Conclusions .. 92

6.1 What we have done ... 92

6.2 Future work ... 94

6.3 Final remarks .. 94

Appendix ... 96

Bibliographic references ... 135

THESIS LIST OF FIGURES

VII

LIST OF FIGURES

2.1 Abstract layering of CoAP..31

2.2 Reliable message transmision……………………………………… . 32

2.3 Unreliable message transmission…………………………………….33

2.4 Two GET requests with piggy-backed responses…………………..34

2.5 A GET request with a separate response……………………………35

2.6 A NON request and response…………………………………………36

2.7 Front and back of the Tmote Sky module ………………………......47

3.1 protocol stac……………………………………………………………..48

3.2 The scenario of the thesis……………………………………………...50

3.3 C/S communicationmodel …………………………………………….51

3.4 Request Packet………………………………………………………….52

3.5 ResponsePacket……………………………………………………… ..52

3.6 Application Model ……………………………………………………..53

3.7 Protocol stack for the application moel …………………………… 54

3.8 flow diagram for the client part………………………………………61

3.9 Spawn sub-process in proxy…………………………………………..63

3.10 An example of the scenarios…………………………………………65

3.11 RPL routing protocol………………………………………………….69

4.1 round trip time of measuring………………………………………….80

4.2 round trip time of measuring………………………………………….80

4.3 round trip time of measuring light……………………………………81

4.4 round trip time of measuring light……………………………………82

4.5 Memory consumption comparison……………………………………84

4.6 IP packet…………………………………………………………………85

THESIS INTRODUCTION

1

1 Introduction

1.1 Internet and the Internet Of Things

What is Internet?

Internet is short for internetwork, it began in USA in 1969. It is a pub-

lic worldwide computer communication network system. Nowadays it

has become the most popular thing around the world. According to the

statistics by 2007 more than 97% of all telecommunicated information

was carried over the Internet.

What is the Internet of things? And what is the difference and relations

between Internet and Internet of things?

At first, Radio-frequency identification (RFID), Infrared sensor, GPS

and all other information sensing devices were seen as a prerequisite for

the Internet of Things. Today however, the term Internet of Things

(commonly abbreviated as IoT) is used to denote advanced connectivity

of devices, systems and services that goes beyond machine-to-machine

communications (M2M) and covers a variety of protocols, domains and

applications.

As above says, in the future, not only computer systems and our

THESIS INTRODUCTION

2

cell-phones can connect to the Internet and get information, but also de-

vices like low-power sensors and controllers, machines, will be connected

by the Internet, and the Internet will be expanded, so that this network

will generate and exchange information not only between human beings

but also between things.

1.2 Aim of the thesis

In this thesis we will use a new framework called ELIoT (Erlang lan-

guage for the Internet of Things), which allows us to use high-level pro-

gramming language to develop applications not only on x86 system but

also on embedded devices, and integrate CoAP, intended to be used in

simple electronic devices, to allow intercommunication between the two

devices.

An open source operating system called CONTIKI, which provides

fully standard IPv4 and IPv6 along with some standard protocol like

6lowpan, RPL, is the OS used by the simple electronic devices mentioned

above to run CoAP services. And use this operating system to develop an

application and make those low-power device to communicate with other

device using CoAP protocol. This is another part of the thesis.

1.3 Structure of the Thesis

This thesis is structured as follows:

THESIS INTRODUCTION

3

Chapter 2 will introduce some background of this thesis, in particular,

what is Internet of Things, the background of the Contiki system, Eralng

and CoAP protocol and so on.

Chapter 3 will describe the scenario to apply CoAP and the way that

we design the applications, include the client, server and proxy, and how

to implement them with Erlang and Contiki.

Chapter 4 is going to have a test on our scenario, we are going to de-

scribe what the test environment is going to be, and then implement the

test with the round trip time, system performance and the tmote sky RF

system.

In chapter 5, we are going to tell you some existing related works with

Internet of Things and CoAP framework. And also different choices that

have been with different language and platform.

The last chapter, chapter 6, we conclude everything what we have done,

and then gives some suggestion to the future work.

THESIS BACKGROUND

4

2 Background

2.1 Internet of things

The Internet of Things (IoT) is a scenario in which objects, animals or

people are provided with unique identifiers and the ability to automati-

cally transfer data over a network without requiring human-to-human or

human-to-computer interaction. The term Internet of Things was pro-

posed by Kevin Ashton in 1999 though the concept has been discussed

since at least 1991. The concept of the Internet of Things first became

popular through the Auto-ID Center at MIT and related market analysis

publications.

The Internet of Things (IoT) refers to uniquely identifiable objects and

their virtual representations in an Internet-like structure. A thing, in the

Internet of Things, can be a person with a heart monitor implant, a farm

animal with a biochip transponder, an automobile that has

built-in sensors to alert the driver when tire pressure is low -- or any other

natural or man-made object that can be assigned an IP address and pro-

vided with the ability to transfer data over a network. So far, the Internet

of Things has been most closely associated with machine-to-machine

(M2M) communication in manufacturing and power, oil and gas utilities.

Products built with M2M communication capabilities are often referred to

THESIS BACKGROUND

5

as being smart.

The first Internet appliance, for example, was a Coke machine at Car-

negie Melon University in the early 1980s. The programmers could con-

nect to the machine over the Internet, check the status of the machine and

determine whether or not there would be a cold drink awaiting them,

should they decide to make the trip down to the machine. Ra-

dio-frequency identification (RFID) was seen as a prerequisite for the In-

ternet of Things in the early days. If all objects and people in daily life

were equipped with identifiers, they could be managed and inventoried by

computers. Besides using RFID, the tagging of things may be achieved

through such technologies as near field communication, barcodes, QR

codes and digital watermarking. Today however, the term Internet of

Things (commonly abbreviated as IoT) is used to denote advanced con-

nectivity of devices, systems and services that goes beyond the tradition-

al machine-to-machine (M2M) and covers a variety of protocols, domains

and applications
1
.

According to Gartner, there will be nearly 26 billion devices on the In-

ternet of Things by 2020. According to ABI Research, more than 30 bil-

lion devices will be wirelessly connected to the Internet of Things (Inter-

net of Everything) by 2020. Cisco created a dynamic "connections coun-

ter" to track the estimated number of connected things from July 2013

until July 2020 (methodology included). This concept, where devices

THESIS BACKGROUND

6

connect to the internet/web via low-power radio, is the most active re-

search area in IoT. The low-power radios do not need to use Wi-Fi or

Bluetooth. Lower-power and lower-cost alternatives are being explored

under the category of Chirp Networks.

IPv6’s huge increase in address space is an important factor in the de-

velopment of the Internet of Things. According to Steve Leibson, who

identifies himself as “occasional docent at the Computer History Mu-

seum,” the address space expansion means that we could “assign an IPV6

address to every atom on the surface of the earth, and still have enough

addresses left to do another 100+ earths.” In other words, humans could

easily assign an IP address to every "thing" on the planet. An increase in

the number of smart nodes, as well as the amount of upstream data the

nodes generate, is expected to raise new concerns about data privacy, data

sovereignty and security.

 “Today computers -- and, therefore, the Internet -- are almost wholly

dependent on human beings for information. Nearly all of the roughly

50 petabytes (a petabyte is 1,024terabytes) of data available on the Inter-

net were first captured and created by human beings by typing, pressing a

record button, taking a digital picture or scanning a bar code.

The problem is, people have limited time, attention and accuracy -- all

of which means they are not very good at capturing data about things in

the real world. If we had computers that knew everything there was to

THESIS BACKGROUND

7

know about things -- using data they gathered without any help from us --

we would be able to track and count everything and greatly reduce waste,

loss and cost. We would know when things needed replacing, repairing or

recalling and whether they were fresh or past their best.”

2.2: WSN(wireless sensor network)

The advances in the integration of micro-electro-mechanical system

(MEMS), microprocessor, and wireless communication technology have

enabled the deployment of large-scale sensor networks. A wireless sensor

network consists of two kinds of entities: the sink that queries and col-

lects information; and the sensor that senses environmental phenomena

and reports data to the sink. In general, a few sinks and a huge set of

small uncontrolled sensors are randomly deployed in a multi-hop and

ad-hoc fashion to cooperatively pass their data through the network to a

main location. The more modern networks are bi-directional, also enabl-

ing control of sensor activity.

 The WSN formed by hundreds or thousands of motes that communi-

cate with each other and pass data along from one to another. Each such

sensor network node has several basic components: a CPU, a radio tran-

sceiver with an internal antenna or connection to an external antenna, and

a sensor array and usually a battery or an embedded form of energy har-

vesting. Research done in this area focus mostly on energy aware compu-

THESIS BACKGROUND

8

ting and distributed computing. These research works have spanned over

all layers of the network protocol stack. At the physical and the data link

layer, energy-efficient and robust schemes, such as SMAC and UWB

(Ultra Wide Band) have been proposed. Above these layers, new routing

and transport protocols, such as Directed diffusion, SPIN , PSFQ , and

CODA , have been proposed to fulfill the requirements of sensor net-

works, which include data-centric processing, in-network processing, and

attribute-based naming
1
.

In the past decade, many wireless sensor networks have been deployed.

Based on basic functionalities, we categorize the applications into three

basic applications: data collecting, event monitoring, and object tracking

application. Most of wireless sensor networks will fall into one of these

basic classes or hybrid class which combines more than two basic appli-

cations.

Environmental Applications:

The autonomous coordination capabilities of WSNs are utilized in the

realization of a wide variety of environmental applications.

Some of the environmental applications of sensor networks are Area

monitoring, Air pollution monitoring, Forest fire detection, Water quality

monitoring and so on.

THESIS BACKGROUND

9

Home Applications:

 As technology advances, smart sensor nodes and actuators can be

buried in appliances such as vacuum cleaners, microwave ovens, refrige-

rators, and DVD players. These sensor nodes inside domestic devices can

interact with each other and with the external network via the Internet or

satellite. They allow end-users to more easily manage home devices both

locally and remotely. Accordingly, WSNs enable the interconnection of

various devices at residential places with convenient control of various

applications at home.

Industrial Applications:

Wireless sensor networks have been developed for machinery condi-

tion-based maintenance (CBM) as they offer significant cost savings and

enable new functionality. In wired systems, the installation of enough

sensors is often limited by the cost of wiring. Previously inaccessible lo-

cations, rotating machinery, hazardous or restricted areas, and mobile as-

sets can now be reached with wireless sensors.

There are some unique characteristics that set WSNs apart from other

communication networks:

Compared to traditional communication networks, individual node

Identifiers (IDs) are not important. Instead, WSNs are data-centric mean-

ing that the communication should be targeted to nodes in a given loca-

THESIS BACKGROUND

10

tion or with defined data content.

In a typical WSN, node platforms are ability to withstand harsh envi-

ronmental conditions. Communication links between nodes are not stable

due to node errors, unreliable and simple modulations, mobility of nodes,

and environmental interferences.

Compared to other wireless networks, the number of nodes comprising

WSNs may be huge. It should be easy to scalability to large scale of net-

works and also sometimes It should be deployed remotely.

A typical WSN node is small in physical size and with limited energy

sources. This implies that computation, communication, and memory re-

sources in nodes are very limited. Typically, severely energy constrained
2
.

In large-scale WSNs, the deployment of nodes is random and their

maintenance and replacement is impractical. So it should have some sort

of Self-organizing and self-healing Still, the requirements and applica-

tions of the deployed WSN may alter, which implicate that runtime re-

configuration and reprogramming are needed.

To reduce their design complexity, most networks are organized as a

stack of layers or levels, each one built upon the one below it. The num-

ber of layers, the name of each layer, the contents of each layer, and the

function of each layer differ from network to network. The purpose of

each layer is to offer certain services to the higher layers, shielding those

layers from the details of how the offered services are actually imple-

THESIS BACKGROUND

11

mented. The traditional layered approach brings three main problems to

us: cannot share different information among different layers，which leads

to each layer not having complete information; does not have the ability

to adapt to the environmental change; duo to interference between differ-

ent users, access confliction, and the change of environment in the wire-

less sensor networks, traditional layered approach for wired networks is

not applicable to wireless networks. So we use cross-layer to make the

optimal modulation to improve the transmission performance, such as

data rate, energy efficiency, QoS (Quality of Service).

Hardware:

WSNs are composed of individual sensor nodes which are capable of

interacting with their environment through various sensors, processing

information locally and communicating information wirelessly with their

neighbors

One major challenge is to produce low cost and tiny sensor nodes.

Commercial platforms typically consist of three components and can be

either an individual board or embedded into a single system:

Wireless modules or motes are the key components of the sensor net-

work as they possess the communication capabilities and the programma-

ble memory where the application code resides. A mode usually consists

of a microcontroller, transceiver, power source, memory unit and may

THESIS BACKGROUND

12

contains few sensors.

A sensor board is mounted on the mote and is embedded with multiple

types of sensors. Available sensor boards include the MTS300/400 and

MDA100/300 that are used in the Mica family of motes. Alternatively, the

sensors can be integrated into the wireless module such as in the Telos or

the SunSPOT platform.

 A programming board, also known as the gateway board, provides

multiple interfaces including Ethernet, WiFi, USB, or serial ports for

connecting different motes to an enterprise or industrial network or local-

ly to a PC/laptop. These boards are used either to program the motes or

gather data from them

Software:

Energy is the scarcest resource of WSN nodes, and it determines the

lifetime of WSNs. WSNs are meant to be deployed in large numbers in

various environments, including remote and hostile regions, where ad hoc

communications are a key component. For this reason, algorithms and

protocols need to address the three main issues: lifetime maximization,

robustness and fault tolerance and self-configuration.

Lifetime maximization: Energy/Power Consumption of the sensing de-

vice should be minimized and sensor nodes should be energy efficient

since their limited energy resource determines their lifetime. To conserve

THESIS BACKGROUND

13

power the node should shut off the radio power supply when not in use.

Some of the important topic in WSN (Wireless Sensor Networks)

software research are operating system.

Operating systems for wireless sensor network nodes are typically less

complex than general-purpose operating systems. Several software plat-

forms have also been developed specifically for WSNs. Among these, the

most accepted platform is TinyOS and Contiki.

TinyOS is a free and open source software component-based operating

system and platform targeting wireless sensor networks (WSNs). Incor-

porates a component-based architecture (wide available library).It is

written in nesC and based on an event-driven execution model that

enables fine-grained power instead of multithreading.

Contiki is an OS which uses a simpler programming style in C while

providing advances such as 6LoWPAN and Protothreads.

2.3:Tinyos and Contiki

Operating systems that are designed for wireless sensor networks are very

different from operating systems for desktop/laptop computers like Win-

dows or Linux or operating systems for powerful embedded systems like

smart phones.

 The biggest difference is the hardware on which the operating sys-

tems are running. The wireless sensor nodes usually have a microcontrol-

THESIS BACKGROUND

14

ler as a CPU that is not very powerful because the main focus of those

motes lies in minimal power consumption since they are often designed

to run on battery power for very long periods of time. And even though

the microcontroller and all other components of motes are designed as

low power devices, running them all at full power at all times would still

consume way too much energy. So for that matter the main focus of those

operating systems is energy conservation optimal usage of limited re-

sources.

 Operating systems for motes are very simple compared to other oper-

ating systems. But they still are often required to handle many different

operations at the same time. A mote could for example be required to col-

lect data from a sensor, process the data in some way and send the data to

a gateway at the same time. Since the microcontrollers are only able to

execute one program at the time, the operating systems have to have a

scheduling system that shares the CPU resources between the different

tasks, so that all of them can finish in the desired time frame. Since the

requirements for the operating system vary between applications it is in

most cases not possible to exchange the client program on a mote without

changing the operating system. In fact in most cases the operating system

behaves more like a library: It gets integrated into the application and

both the application and the operating system are compiled into one sin-

gle binary that is then deployed onto the sensor node.

THESIS BACKGROUND

15

TinyOS provides a programming framework to build applica-

tion-specific OS instances. Programming framework made of scheduler,

components and interfaces.

But there are some issues with TinyOS
3
:

Components linked to whole image of system, once linked can’t be

updated without re-linking whole thing

No threads, event-driven paradigm, buffers can overflow while waiting

for long-running task to complete more complex tasks make this more

common (aggregations, encryption, signal processing), need threads (or

breaking down into small execution modules) if want to do this

All memory pre-allocated

2.3.1 Contiki

Contki is an open source, highly portable, multi-tasking operating system

for memory-efficient networked embedded systems and wireless sensor

networks. It has been used in a variety of projects, Examples of where

Contiki is used include street lighting systems, sound monitoring sm

art cities, radiation monitoring systems, and alarm systems.

 It was created by Adam Dunkels in 2002 and has been further

developed by a world-wide team of developers from Atmel, Cisco,

Enea, ETH Zurich, Redwire, RWTH Aachen University, Oxford Univ

ersity, SAP, Sensinode, SICS, ST Microelectronics, Zolertia, and ma

THESIS BACKGROUND

16

ny others1.The name Contiki comes from Thor Heyerdahl's famous K

on-Tikiraft.Kon-Tiki was the name of the raft used by Norwegian exploe

r and writer Thor Heyerdahl in his 1947 expedition across the Pacific Oce

an from South America to the Polynesian islands. It was named after the I

nca sun god, Viracocha, for whom "Kon-Tiki" was said to be an old nam

e. Kon-Tiki is also the name of the popular book that Heyerdahl wrote ab

out his adventures.

The name was given by the developers of the Contiki OS to the web br

owser they created. Later it became the name of the whole Operating Syst

em. While designing the cover page, we decided to connect the history o

f the name with a symbol for Safety.

Despite providing multitasking and a built-in TCP/IP stack, Contiki

only needs about 10 kilobytes of RAM and 30 kilobytes of ROM. A full

system, complete with a graphical user interface, needs about 30 kilo-

bytes of RAM.

Contiki is designed to run on classes of hardware devices that are se-

verely constrained in terms of memory, power, processing power, and

communication bandwidth. A typical Contiki system has memory on the

order of kilobytes, a power budget on the order of miniwatts, processing

speed measured in megahertz, and communication bandwidth on the or-

der of hundreds of kilobits/second. This class of systems includes both

various types of embedded systems as well as a number of

THESIS BACKGROUND

17

old 8-bit computers.

Many key mechanisms and ideas from Contiki have been widely adopt

ed in the industry. The uIP (micro IP) embedded IP stack, originally releas

ed in 2001, is today used by hundreds of companies in systems such as fr

eighter ships, satellites and oil drilling equipment.

Three of them are very important: the uIP TCP/IP stack, which pro-

vides IPv4 networking,theuIPv6stack, whichprovides IPv6 networking,

and the Rime stack, which is a set of custom lightweight networking pro-

tocols designed specifically for low-power wireless networks. The IPv6

stack was contributed by Cisco and was, at the time of release, the smal-

lest IPv6 stack to receive the IPv6 Ready certification. The IPv6 stack al-

so contains the RPL routing protocol for low-power lossy IPv6 networks

and the 6LoWPAN header compression and adaptation layer for IEEE

802.15.4 links.

The Rime stack implements sensor network protocols ranging from

reliable data collection and best-effort network flooding to multi-hop bulk

data transfer and data dissemination. IP packets are tunneled over multi-h

op routing via the Rime stack.

Many Contiki systems are severely power-constrained. To provid

e a long sensor network lifetime, it is crucial to control and reduce the po

wer consumption of each sensor node. Contiki provides a software-base

d power profiling mechanism that keeps track of the energy expenditure o

THESIS BACKGROUND

18

f each sensor node. Being software-based, the mechanism allows power p

rofiling at the network scale without any additional hardware. Contiki’s p

ower profiling mechanism is used both as a research tool for experimenta

l evaluation of sensor network protocols, and as a way to estimate the lifet

ime of a network of sensors.

To run efficiently on memory-constrained systems, the Contiki pro-

gramming model is based on protothreads. A protothread is a memo-

ry-efficient programming abstraction that shares features of

both multi-threading and event-driven programming to attain a low

memory overhead of each protothread. The kernel invokes the prototh-

read of a process in response to an internal or external event. Examples of

internal events are timers that fire or messages being posted from other

processes. Examples of external events are sensors that trigger or incom-

ing packets from a radio neighbor.

 In addition to protothreads, Contiki also supports per-process option

al multithreading and interprocess communication using message passing.

as well as an optional GUI subsystem with either direct graphic support

for locally connected terminals or networked virtual display with VNC or

over Telnet.

As presented operating systems for wireless sensor nodes have to fulfill

a few requirements. After the look at both TinyOS and Contiki we now

compare both operating systems by means of these requirements:

THESIS BACKGROUND

19

• Limited resources: The hardware platforms other very limited re-

sources so the operating system should use them efficiently.

• Concurrency: The operating system should be able to handle different

tasks at the same time.

• Flexibility: Since the requirements for different applications vary

wildly, the operating system should be able to be flexible to handle those.

• Low Power: Energy conservation should be one of the main goals for

the operating system..

Both operating systems can generally fulfill all of the discussed re-

quirements. In details there are differences, so while TinyOS is better

suited when resources are really scarce and every little bit of saved mem-

ory or computing power can help, Contiki might be the better choice

when flexibility is most important, for example when the node software

has to be updated often for a large amount of nodes
4
.

2.4 Erlang

Erlang was designed by Ericsson to support distributed, fault-toleran

t, soft-real-time, non-stop applications. It is a general-purpose concurr

ent, garbage-collected programming language and runtime system. It s

upports hot swapping, so that code can be changed without stopping

system.

The main characteristics for Erlang are included:

THESIS BACKGROUND

20

High-Level Constructs:

Erlang is a declarative language. Declarative languages has the prin-

ciple of trying to describe what should be computed, rather than saying

how this value is calculated. A function definition—particularly one that

uses pattern matching to select among different cases, and to extract

components from complex data structures—will read like a set of equa-

tions.

In Erlang, you can pattern-match not only on high-level data but also

on bit sequences, allowing a startlingly high-level description of protocol

manipulation functions.

Concurrent Processes and Message Passing
5
:

Erlang's main strength is support for concurrency. It has a small but

powerful set of primitives to create processes and communicate among

them. Erlang's concurrency implementation is the Actor model. They are

neither operating system processes nor operating system threads, but

lightweight processes. While threads require external library support in

most languages, Erlang provides language-level features for creating and

managing processes with the aim of simplifying concurrent programming.

Though all concurrency is explicit in Erlang, processes communicate us-

ing message passing instead of shared variables, which removes the need

THESIS BACKGROUND

21

for explicit locks. Processes communicate with each other via message

passing, where the message can be any Erlang data value. Message pass-

ing is asynchronous, so once a message is sent, the process can continue

processing. Messages are retrieved from the process mailbox selectively,

so it is not necessary to process messages in the order they are received.

This makes the concurrency more robust, particularly when processes are

distributed across different computers and the order in which messages

are received will depend on ambient network conditions.

Scalable, Safe, and Efficient Concurrency
5
:

Erlang concurrency is fast and scalable. The estimated minimal over-

head for each process is 300 words. Thus, many processes can be created

without degrading performance. Its processes are lightweight in that the

Erlang virtual machine does not create an OS thread for every created

process. They are created, scheduled, and handled in the VM, indepen-

dent of the underlying operating system. As a result, process creation time

is of the order of microseconds and independent of the number of con-

currently existing processes. Compare this with Java, where for every

process an underlying OS thread is created: you will get some very com-

petitive comparisons, with Erlang greatly outperforming both languages.

Soft Real-Time Properties:

THESIS BACKGROUND

22

Even though Erlang is a high-level language, you can use it for tasks

with soft real-time constraints. Storage management in Erlang is auto-

mated, with garbage collection implemented on a per-process basis. This

gives system response times on the order of milliseconds even in the

presence of garbage-collected memory. Because of this, Erlang can han-

dle high loads with no degradation in throughput, even during sustained

peaks.

Language-level Dynamic Software Updating:

Erlang supports language-level Dynamic Software Updating. To im-

plement this, code is loaded and managed as "module" units; the module

is a compilation unit. The system can keep two versions of a module in

memory at the same time, and processes can concurrently run code from

each. The versions are referred to as the "new" and the "old" version. A

process will not move into the new version until it makes an external call

to its module.

Robustness:

Thanks to a set of simple but powerful error-handling mechanisms and

exception monitoring constructs, very general library modules have been

built, with robustness designed into their core. By programming for the

correct case and letting these libraries handle the errors, not only are pro-

THESIS BACKGROUND

23

grams shorter and easier to understand, but they will usually contain few-

er bugs.

Open Language:

Erlang is an open language allowing you to integrate legacy code or

new code where programming languages other than Erlang. As a result,

there are mechanisms for interworking with C, Java, Ruby, and other

programming languages, including Python, Perl, and Lisp. High-level li-

braries allow Erlang nodes to communicate with nodes executing Java or

C, making them appear and behave like distributed Erlang nodes. Other

external languages can be tied in more tightly using drivers that are linked

into the Erlang runtime system itself, as a device driver would be, and

sockets can also be used for communication between Erlang nodes and

systems written in other languages using popular protocols such as HTTP,

SNMP, and IIOP.

Erlang and Multicore:

Separate processes with no shared memory communicating via mes-

sage passing，naturally transfers to multicore processors in a way that is

largely transparent to the programmer, so that you can run your Erlang

programs on more powerful hardware without having to redesign them.

With its approach that avoids shared data, Erlang is the perfect fit for

THESIS BACKGROUND

24

multi-core processors, in effect solving many of the synchronization

problems and bottlenecks that arise with many conventional program-

ming languages.

 Its declarative nature makes Erlang programs short and compact, and

its built-in features make it ideal for fault-tolerant, soft real-time systems.

Erlang also comes with very strong integration capabilities, so Erlang

systems can be seamlessly incorporated into larger systems. This means

that gradually bringing Erlang into a system and displacing less-capable

conventional languages is not at all unusual. The language itself, the vir-

tual machine, and its libraries have been keeping pace with the rapidly

changing requirements of the software industry.

Our target system is a high-level, concurrent, robust, soft real-time

system that will scale in line with demand, make full use of multi-core

processors, and integrate with components written in other languages, so

we choose Erlang.

2.5 Erlang for the Internet of Things

2.5.1 Introduction of ELIOT

ELIOT is a programming framework for the Internet of Things, by

adapting the Erlang programming language to the requirements and needs

of the embedded communication-oriented world, allowing localized and

THESIS BACKGROUND

25

remote interactions, using high-level languages apt to manipulate data

and protocols, offering powerful tools to debug, test and verify applica-

tions before their deployment, providing a Virtual Machine and language

constructs apt to the development of distributed mobile. simulating tens or

hundreds of devices and at least some of the characteristics of the envi-

ronment, providing an abstraction over the hardware on which the appli-

cations will be executed, introducing new language constructs apt to the

so-called “Internet of Things” world. At the same time, such a framework

would cover a great part of the device spectrum, at worst with acceptable

compromises for the less powerful devices.

The framework will also provide developers with tools for verifying

their code: a simulator that allows executing the application on a simu-

lated environment without changing a single line of code, static analysis

tools already provided with the Erlang libraries and compatible with

ELIoT, and a model checker that verifies properties of the application be-

ing developed. Other virtual machine capabilities are leveraged to allow

hot swap of code and live interactions with the running system.

2.5.2 The framework of ELIOT

This section shows the differences in syntax and semantics with respect to

Erlang; it introduces the ELIoT Virtual Machine, a modification of the

original VM.

THESIS BACKGROUND

26

The ELIOT language
6
:

Here we describe ELIoT’s dedicated language constructs, which con-

cern three key aspects of inter-process communication when developing

IoT applications:

• handling different communication guarantees

• supporting extended addressing schemes

• providing access to low-level information from the networking stack.

Erlang inter-process communication is based on the ! operator, ELIoT

complements Erlang’s ! operator with a new operator: ~, which models

unreliable, best effort, sending of messages. Besides adding the ~ operator,

ELIoT addresses possible faults of the underlying communication proto-

col by slightly changing the behavior of the ! operator, the network can-

not guarantee some properties anymore, and (as a consequence) neither

the network protocol; this means that we needed to give the developer a

way to know if the communication fails: in Erlang the send primitive re-

turns immediately, regardless of the destiny of the message; in ELIoT, in-

stead, in presence of communication faults that cannot be resolved, the

framework places a special nack message into the sender’s incoming

message queue. Programmers can realize application-specific failure han-

dling mechanisms based on such notifications.

In IoT applications a process needs to send a message to all other

THESIS BACKGROUND

27

reachable processes. This form of broadcast communication is often be

used, either as a primitive at the application level or as a low-level me-

chanism to implement higher-level communication protocols. ELIoT

supports these scenarios by offering a richer addressing scheme than Er-

lang. In particular, ELIoT messages addressed to {n, all} reach processes

with name n running on all reachable VMs.

The ELIOT virtual machine
6
:

VM consumes large quantities of memory to load some of these mod-

ules and launch several services during startup. To address this issue,

ELIOT have developed a custom version of the VM, wiping off all the li-

braries that are not needed to run, These libraries can be re-added if ne-

cessary, but the network communication modifications may require them

to be modified: only those provided by ELIoT have already been adapted

to the new VM;

Several aspects of the VM mechanisms also have been changed, in par-

ticular regarding the network stack.

The structure of an ELIoT deployment is :the VM runs on the

GNU/Linux operating system .with a network driver developed distinctly

and adaptable to different network types .On top of the VM run the OTP

libraries4, the hardware interfaces to interact with sensors and actuators,

and the ELIoT ,which contains a small number of functions that substitute

THESIS BACKGROUND

28

the equivalent ones from Erlang standard library and allow the simulator

to run the applications unmodified On top of these libraries runs the

ELIoT application itself .

2.6: COAP

2.6.1 Introduction of COAP

Constrained Application Protocol (CoAP) is a specialized web transfer

protocol intended to be used in very simple electronics devices that al-

lows them to communicate interactively over the Internet. It is particular-

ly targeted for small low power sensors, switches and similar components

that need to be controlled or supervised remotely, through standard Inter-

net networks. CoAP is an application layer protocol that is intended for

use in resource-constrained internet devices and constrained networks.

The nodes often have 8-bit microcontrollers with small amounts of ROM

and RAM, while constrained networks such as 6LoWPAN often have

high packet error rates and a typical throughput of 10s of kbit/s. CoAP is

designed for machine-to-machine (M2M) applications such as smart

energy and building automation. Which tend to be deeply embedded and

have much less memory and power supply than traditional internet de-

vices have. Therefore, efficiency is very important. It is designed to easily

interface with HTTP for integration with the Web while meeting specia-

THESIS BACKGROUND

29

lized requirements such as multicast support. CoAP can run on most de-

vices that support UDP or a UDP analogue

 One of the main goals of CoAP is to design a generic web protocol

for the special requirements of this constrained environment, especially

considering energy, building automation and other machine-to-machine

(M2M) applications. Although CoAP could be used for refashioning sim-

ple HTTP interfaces into a more compact protocol, it more importantly

also offers features for M2M. CoAP provides a request/response interac-

tion model between application endpoints, supports built-in discovery of

services and resources, and includes key concepts of the Web such as

URIs and Internet media types.

CoAP has the following main features:

Constrained web protocol fulfills M2M requirements. UDP binding

with optional reliability supports unicast and multicast requests. Asyn-

chronous message exchanges.

Low header overhead and parsing complexity

URI and Content-type support.

Simple caching based on max-age.

The mapping of CoAP with HTTP is stateless, allowing proxies to be

built providing access to CoAP resources via HTTP in a uniform way.

access to CoAP resources via HTTP in a uniform way or for HTTP sim-

THESIS BACKGROUND

30

ple interfaces to be realized alternatively over CoAP.

Simple subscription for resources, and resulting push notifications.

2.6.2 COAP Message

The interaction model of CoAP is similar to the client/server model of

HTTP. However, machine-to-machine interactions typically result in a

CoAP implementation acting in both client and server roles. A CoAP re-

quest is equivalent to that of HTTP, and is sent by a client to request an

action (using a method code) on a resource (identified by a URI) on a

server. The server then sends a response with a response code; this re-

sponse may include a resource representation.

 Unlike HTTP, CoAP deals with these interchanges asynchronously

over a datagram-oriented transport such as UDP. This is done logically

using a layer of messages that supports optional reliability (with expo-

nential back-off). CoAP defines four types of messages: Confirmable,

Non-confirmable, Acknowledgement, Reset; method codes and response

codes included in some of these messages make them carry requests or

responses. The basic exchanges of the four types of messages are some-

what orthogonal to the request/response interactions; requests can be car-

ried in Confirmable and Nonconfirmable messages, and responses can be

carried in these as well as piggy-backed in Acknowledgement messages.

 One could think of CoAP logically as using a two-layer approach, a

THESIS BACKGROUND

31

CoAP messaging layer used to deal with UDP and the asynchronous na-

ture of the interactions, and the request/response interactions using Me-

thod and Response codes (see the follow figure). CoAP is however a sin-

gle protocol, with messaging and request/response just features of the

CoAP header.

Figure 2.1: Abstract layering of CoAP

 Messaging Model
7:

 CoAP makes use of two message types, requests and responses, using

a simple binary base header format. The base header may be followed by

options in an optimized Type-Length-Value format. CoAP is by default

bound to UDP and optionally to DTLS, providing a high level of commu-

nications security.

 Any bytes after the headers in the packet are considered the message

body if any. The length of the message body is implied by the datagram

length. When bound to UDP the entire message MUST fit within a single

THESIS BACKGROUND

32

datagram. When used with 6LoWPAN as defined in RFC 4944, messages

SHOULD fit into a single IEEE 802.15.4 frame to minimize fragmenta-

tion.

 Reliability is provided by marking a message as Confirmable (CON).

A Confirmable message is retransmitted using a default timeout and ex-

ponential back-off between retransmissions, until the recipient sends an

Acknowledgement message (ACK) with the same Message ID (in this

example, 0x7d34) from the corresponding endpoint; see the fellow figure .

When a recipient is not at all able to process a Confirmable message. It

replies with a Reset message (RST) instead of an Acknowledgement

(ACK)

 Client Server

Figure 2.2 :Reliable message transmission

CON [0x7d34]

ACK [0x7d34]

THESIS BACKGROUND

33

A message that does not require reliable transmission, for example each

single measurement out of a stream of sensor data, can be sent as a

Non-confirmable message (NON). These are not acknowledged, but still

have a Message ID for duplicate detection (in this example,0x01a0); see

Figure 3. When a recipient is not able to process a Non-confirmable mes-

sage, it may reply with a Reset message (RST).

 Client Server

 |

Figure 2.3:Unreliable message transmission

 Request/Response Model:

 CoAP request and response semantics are carried in CoAP messages,

which include either a Method code or Response code, respectively. Op-

tional (or default) request and response information, such as the URI and

payload media type are carried as CoAP options. A Token is used to

match responses to requests independently from the underlying messages

(Note that the Token is a concept separate from the Message ID.)

 A request is carried in a Confirmable (CON) or Non-confirmable

(NON) message, and if immediately available, the response to a request

carried in a Confirmable message is carried in the resulting Acknowled-

NON [0x01a0]

THESIS BACKGROUND

34

gement (ACK) message. This is called a piggy-backed response. (There is

no need for separately acknowledging a piggy-backed response, as the

client will retransmit the request if the Acknowledgement message carry-

ing the piggy-backed response is lost.) Two examples for a basic GET

request with piggy-backed response are shown in the follow figures , one

successful, one resulting in a 4.04 (Not Found) response.

Client Server Client Server

 If the server is not able to respond immediately to a request carried in a

Confirmable message, it simply responds with an Empty Acknowledge-

Figure 2.4: Two GET requests with piggy-backed responses

CON [0xbc90]

GET /temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

 "22.5 C"

CON [0xbc90]

GET /temperature

(Token 0x71)

ACK [0xbc90]

2.05 Content

(Token 0x71)

 "22.5 C"

THESIS BACKGROUND

35

ment message so that the client can stop retransmitting the request. When

the response is ready, the server sends it in a new Confirmable message

(which then in turn needs to be acknowledged by the client). This is

called a separate response, as illustrated in the following figure.

 Client Server

Figure 2.5 :A GET request with a separate response

 ACK [0x23bb]

[0x23bb]

ACK [0x7a10]

 CON [0x7a10]

GET temperature

(Token 0x73)

CON [0x23bb]

2.05 Content

(Token 0x73)

"22.5 C"

Time passes

THESIS BACKGROUND

36

 If a request is sent in a Non-confirmable message, then the response is

sent using a new Non-confirmable message, although the server may in-

stead send a Confirmable message. This type of exchange is illustrated in

the following figure.

 Client Server

Figure 2.6:A NON request and response

2.6.3 Method Definitions

In this section each method is defined along with its behavior. A request

NON [0x7a11]

GET /temperature

(Token 0x74)

NON [0x23bc]

2.05 Content

(Token 0x74)

"22.5 C"

THESIS BACKGROUND

37

with an unrecognized or unsupported Method Code MUST generates a

4.05 (Method Not Allowed) piggy-backed response.

GET:

The GET method retrieves a representation for the information that

currently corresponds to the resource identified by the request URI. If the

request includes an Accept Option, that indicates the preferred con-

tent-format of a response. If the request includes an ETag Option, the

GET method requests that ETag be validated and that the representation

be transferred only if validation failed. Upon success a 2.05 (Content) or

2.03 (Valid) response code SHOULD be present in the response.

 The GET method is safe and idempotent.

POST:

 The POST method requests that the representation enclosed in the re-

quest be processed. The actual function performed by the POST method

is determined by the origin server and dependent on the target resource. It

usually results in a new resource being created or the target resource be-

ing updated.

 If a resource has been created on the server, the response returned by

the server SHOULD have a 2.01 (Created) response code and SHOULD

include the URI of the new resource in a sequence of one or more Loca-

THESIS BACKGROUND

38

tion-Path and/or Location-Query Options (Section 5.10.7). If the POST

succeeds but does not result in a new resource being created on the server,

the response SHOULD have a 2.04 (Changed) response code. If the

POST succeeds and results in the target resource being deleted, the re-

sponse SHOULD have a 2.02 (Deleted) response code.

 POST is neither safe nor idempotent.

 PUT:

 The PUT method requests that the resource identified by the request

URI be updated or created with the enclosed representation. The re-

presentation format is specified by the media type and content coding

given in the Content-Format Option, if provided. (Changed) response

code SHOULD be returned.

 If no resource exists then the server MAY create a new resource with

that URI, resulting in a 2.01 (Created) response code. If the resource

could not be created or modified, then an appropriate error response code

SHOULD be sent.

 Further restrictions to a PUT can be made by including the If-Matchor

If-None-Match options in the request.

 PUT is not safe, but is idempotent.

 DELETE:

THESIS BACKGROUND

39

 The DELETE method requests that the resource identified by the re-

quest URI be deleted. A 2.02 (Deleted) response code SHOULD be used

on success or in case the resource did not exist before the request.

 DELETE is not safe, but is idempotent.

2.6.4 CoAP URIs

CoAP uses the "coap" URI schemes for identifying CoAP resources and

providing a means of locating the resource. Resources are organized hie-

rarchically and governed by a potential CoAP origin server listening for

CoAP requests ("coap") on a given UDP port. The CoAP server is identi-

fied via the generic syntax’s authority component, which includes a host

component and optional UDP port number. The remainder of the URI is

considered to be identifying a resource which can be operated on by the

methods defined by the CoAP protocol. The "coap" URI schemes can

thus be compared to the "http” URI schemes.

 CoAP URI Scheme:

 coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

If the host component is provided as an IP-literal or IPv4address, then

the CoAP server can be reached at that IP address. If host is a registered

name, then that name is considered an indirect identifier and the endpoint

might use a name resolution service, such as DNS, to find the address of

THESIS BACKGROUND

40

that host. The host MUST NOT be empty; if a URI is received with a

missing authority or an empty host, then it MUST be considered invalid.

The port subcomponent indicates the UDP port at which the CoAP server

is located. If it is empty or not given, then the default port 5683 is as-

sumed.

 The path identifies a resource within the scope of the host and port. It

consists of a sequence of path segments separated by a slash character

(U+002F SOLIDUS "/"). The query serves to further parameterize the

resource. It consists of a sequence of arguments separated by an amper-

sand character (U+0026 AMPERSAND "&"). An argument is often in the

form of a"key=value" pair.

 The "coap" URI scheme supports the path prefix "/.well-known/" de-

fined by [RFC5785] for "well-known locations" in the name-space of a

host. This enables discovery of policy or other information about a host

("site-wide metadata"), such as hosted resources .

 Decomposing URIs into Options:

 The steps to parse a request’s options from a string |url| are as follows.

These steps either result in zero or more of the Uri-Host, Uri-Port,

Uri-Path and Uri-Query Options being included in the request, or they

fail.

1. If the |url| string is not an absolute URI ([RFC3986]), then fail this

THESIS BACKGROUND

41

algorithm.

2. Resolve the |url| string using the process of reference resolution de-

fined by [RFC3986]. At this stage the URL is in ASCII encoding

[RFC0020], even though the decoded components will be interpreted in

UTF-8 [RFC3629] after step 5, 8 and 9.

It doesn’t matter what it is resolved relative to, since we already know

it is an absolute URL at this point.

3. If |url| does not have a <scheme> component whose value, when

converted to ASCII lowercase, is "coap" or "coaps", then fail this algo-

rithm.

4. If |url| has a <fragment> component, then fail this algorithm.

5. If the <host> component of |url| does not represent the request’s des-

tination IP address as an IP-literal or IPv4address, include a Uri-Host Op-

tion and let that option’s value be the value of the <host> component of

|url|, converted to ASCII lowercase, and then converting all per-

cent-encodings ("%" followed by two hexadecimal digits) to the corres-

ponding characters.

In the usual case where the request’s destination IP address is derived

from the host part, this ensures that a Uri- Host Option is only used for a

<host> component of the form regname

6. If |url| has a <port> component, then let |port| be that component’s

value interpreted as a decimal integer; otherwise, let |port| be the default

THESIS BACKGROUND

42

port for the scheme.

7. If |port| does not equal the request’s destination UDP port, include a

Uri-Port Option and let that option’s value be |port|.

8. If the value of the <path> component of |url| is empty or consists of

a single slash character (U+002F SOLIDUS "/"), then move to the next

step.

Otherwise, for each segment in the <path> component, include a

Uri-Path Option and let that option’s value be the segment (not includ-

ing the delimiting slash characters) after converting each per-

cent-encoding ("%" followed by two hexadecimal digits) to the corres-

ponding byte.

9. If |url| has a <query> component, then, for each argument in the

<query> component, include a Uri-Query Option and let that option’s

value be the argument (not including the question mark and the delimiting

ampersand characters) after converting each percent-encoding to the cor-

responding byte.

 Note that these rules completely resolve any percent-encoding.

 Composing URIs from Options:

 The steps to construct a URI from a request’s options are as follows.

These steps either result in a URI, or they fail. In these steps, per-

cent-encoding a character means replacing each of its (UTF-8 encoded)

THESIS BACKGROUND

43

bytes by a "%" character followed by two hexadecimal digits representing

the byte, where the digits A-F are in upper case (as defined in [RFC3986]

to reduce variability, the hexadecimal notation for percent-encoding in

CoAP URIs MUST use uppercase letters). The definitions of "unre-

served" and "sub-delims" are adopted from [RFC3986].

1. If the request is secured using DTLS, let |url| be the string "coaps://".

Otherwise, let |url| be the string "coap://".

2. If the request includes a Uri-Host Option, let |host| be that option’s

value, where any non-ASCII characters are replaced by their correspond-

ing percent-encoding. If |host| is not a valid reg-name or IP-literal or

IPv4address, fail the algorithm. If the request does not include a Uri-Host

Option, let |host| be the IP-literal (making use of the conventions of

[RFC5952]) or IPv4address representing the request’s destination IP ad-

dress.

3. Append |host| to |url|.

4. If the request includes a Uri-Port Option, let |port| be that option’s

value. Otherwise, let |port| be the request’s destination UDP port.

5. If |port| is not the default port for the scheme, then append a single

U+003A COLON character (:) followed by the decimal representation of

|port| to |url|.

6. Let |resource name| be the empty string. For each Uri-Path Option in

the request, append a single character U+002F SOLIDUS(/) followed by

THESIS BACKGROUND

44

the option’s value to |resource name|, after converting any character that

is not either in the "unreserved"set, "sub-delims" set, a U+003A COLON

(:) or U+0040 COMMERCIALAT (@) character, to its percent-encoded

form.

7. If |resource name| is the empty string, set it to a single character

U+002F SOLIDUS (/).

8. For each Uri-Query Option in the request, append a single character

U+003F QUESTION MARK (?) (first option) or U+0026 AMPERSAND

(&) (subsequent options) followed by the option’s value to |resource

name|, after converting any character that is not either in the "unreserved"

set, "sub-delims" set (except U+0026 AMPERSAND (&)), a U+003A

COLON (:), U+0040 COMMERCIAL AT(@), U+002F SOLIDUS (/) or

U+003F QUESTION MARK (?) character, to its percent-encoded form.

2.7 Tmote-sky

The Tmote Sky module is a low power “mote” with integrated sensors,

radio, antenna, microcontroller, and programming capabilities.

Power:

Tmote Sky is powered by two AA batteries. The module was designed

to fit the two AA battery form factor. AA cells may be used in the operat-

ing range of 2.1 to 3.6V DC, however the voltage must be at least 2.7V

THESIS BACKGROUND

45

when programming the microcontroller flash or external flash.

 If the Tmote Sky module is plugged into the USB port for

prog-ramming or communication, it will receive power from the host

co-mputer. The mote operating voltage when attached to USB is 3V.If

Tmote will always be attached to a USB port, no battery pack is necessary.

In our case, we use this power supply mode.

 Microprocessor
8
:

 The low power operation of the Tmote Sky module is due to the ultra

low power Texas Instruments MSP430 F1611 microcontroller featuring

10kB of RAM, 48kB of flash, and 128B of information storage. This

16-bit RISC processor features extremely low active and sleep current

consumption that permits Tmote to run for years on a single pair of AA

batteries. The MSP430 has an internal digitally controlled oscillator

(DCO) that may operate up to 8MHz. The DCO may be turned on from

sleep mode in 6μs, however 292ns is typical at room temperature. When

the DCO is off, the MSP430 operates off an eternal 32768Hz watch crys-

tal. Although the DCO frequency changes with voltage and temperature,

it may be calibrated by using the 32kHz oscillator.

 In addition to the DCO, the MSP430 has 8 external ADC ports and 8

internal ADC ports. The ADC internal ports may be used toread the in-

ternal thermistor or monitor the battery voltage.

THESIS BACKGROUND

46

 A variety of peripherals are available including SPI, UART, digital

I/O ports, Watchdog timer, and Timers with capture and compare func-

tionality. The F1611 also includes a 2-port 12-bit DAC module, Supply

Voltage Supervisor, and 3-port DMA controller.

Programming:

 The Tmote Sky module is programmed through the onboard USB

connector. A modified version of the MSP430 Bootstrap Loader,

msp430-bsl, programs the microcontroller’s flash.

 Tmote Sky has a unique hardware circuit that prevents spurious resets.

This hardware circuit makes it necessary for a special sequence to be sent

to the module in order to program it.

THESIS BACKGROUND

47

Figure 2.7:Front and back of the Tmote Sky module

THESIS DESIGN

48

3 Design

3.1 The scenario

This chapter we will introduce the scenario used in this project, through

this document we will illustrate and validate the implementation of CoAP

protocol.

With the usual TCP/IP stack, the CoAP protocol should be put on top

of the transport Layer that is, the Application layer, like the following

figure shows,

Application Layer / CoAP

Transport Layer / UDP

Network Layer / IPv4, IPv6

Link Layer / 802.3, 802.11, 802.15.4

THESIS DESIGN

49

Figure 3.1: protocol stack

3.1.1 System aim

In particular, the design is aimed to provide an Erlang API for CoAP pro-

tocol, a gateway for network layer conversion, and a Contiki CoAP ap-

plication to process the request. According to the aim of the thesis, we

designed and program the application, make all the modules work effi-

ciently and reliably and then test them, producing the results described in

the next chapters.

3.2 Analysis

The scenario which we considered is very simple, in particular, the basic

design involves three parts: client part, gateway part, and server part, like

what shows in the figure follows,

THESIS DESIGN

50

 Figure 3.2 : The scenario of the thesis

3.2.1 Client

Client’s behavior likes a HTTP browser, it needs some information from

remote server and then the URI(Uniform Resource Identifier) of the re-

source, just like when you need to visit Politecnico di Milano English

version web page, you need to know not only the address of the serv-

er(www.polimi.it), but also the URI of the English version

URI(/en/English-version/).

After you get all of this information, now you can send a packet as fol-

lows:

THESIS DESIGN

51

Then the client waits for a response from the server.

3.2.2 Server

In this scenario server is one of the sensor nodes. It opens a UDP port and

listens for a request. Once get the request packet from a client, it reads the

packet, according to the options in the CoAP packet. For example, once

sensor node get a CoAP packet with URI(Uniform Resource Identifier)

option “light”, the sensor node begins to turn on the light sensor，get the

instant value, and encapsulate it into the response packet, and then send it

out. The packet is as follows；

Now let us see a communication example between client and server:

Figure 3.3 : C/S communication model

IP HEADER || UDP HEADER || COAP HERDER || COAP_OPTION_URI = LIGHT

IP HEADER || UDP HEADER || COAP HERDER || COAP_PAYLOAD = 100

 client

server

① request

② response

THESIS DESIGN

52

CoAP request and response semantics are carried in CoAP messages,

which include either a Method code or Response code. Optional request

and response information, such as the URI , URI_QUERY, or payload. A

Token is used to match responses to requests independently from the un-

derlying messages.(Note that the Token is a concept different from the

Message ID.)

CON [0xbc90]

GET /temperature

(Token 0x71)

Figure 3.4 : Request Packet

ACK [0xbc90]

2.05 Content

(Token 0x71)

"22.5 C"

Figure 3.5 : Response Packet

THESIS DESIGN

53

3.2.3 Gateway

Things are not as easy as above said. Because now we want clients to

work in the normal Internet environment, it means to use standard TCP/IP

stack(IP version 4 or IP version 6) and standard IEEE 802.3 or IEEE

802.11 at the link layer, but our sensor nodes use IEEE 802.15.4 at link

layer and IPv6 at network layer. So what the gateway should do , is like a

converter, that means convert both the link layer and network layer into

different protocol environment. For example from IEEE 802.11 and

IPv4 stack to the IEEE802.15.4 and IPvt6 stack.

Figure 3.6:Application Model

THESIS DESIGN

54

CoAP

UDP

IPv4 / IPv6

802.3 / 802.11

3.3 Implementation

In the last subchapter we described the aim of the system and what we

need in the system, now let us begin to implement them with Erlang and

Contiki.

3.3.1 CoAP over Erlang

Erlang is a general-purpose concurrent, garbage-collected programming

language and runtime system. The sequential subset of Erlang is a func-

tional language, with eager evaluation, single assignment, and dynamic

typing. It was designed by Ericsson to support distributed, fault-tolerant,

soft-real-time, non-stop applications. It support shot swapping, so that

code can be changed without stopping a system.

CoAP

UDP

IPv6

802.15.4

Figure 3.7: Protocol stack for the application model

Standard Internet environment(Client) WSN network environment(server)

THESIS DESIGN

55

While threads require external library support in most languages, Er-

lang provides language-level features for creating and managing

processes with the aim of simplifying concurrent programming. Though

all concurrency is explicit in Erlang, processes communicate using mes-

sage passing instead of shared variables, which removes the need for ex-

plicit locks (a locking scheme is still used internally by the VM).

This subchapter introduce how to implement an Erlang API to analysis

and encapsulate CoAP packet.

Example of NIF interface in Erlang language

Erlang is a high-level language, although it support binary structure,

but sometimes we already have libraries that are written in other lan-

guages like C or C++. So we do not need to rewrite a Erlang library to

encapsulate and analysis packets. In order to use C library we need a

technique called NIF(Native Implemented Function).

A NIF (Native Implemented Function) is a function that is imple-

mented in C instead of Erlang. NIF appears as any other functions to the

callers. They belong to a module and are called like any other Erlang

functions. The NIFs of a module are compiled and linked into a dynamic

loadable shared library (SO in Unix, DLL in Windows). The NIF library

must be loaded at runtime by the Erlang code of the module.

Since a NIF library is dynamically linked into the emulator process,

THESIS DESIGN

56

this is the fastest way of calling C-code from Erlang (alongside port driv-

ers). Calling NIFs requires no context switches.

Even all the functions of a module written by C, and implemented by

NIFs, we still need a Erlang module to load the code. Let us see a easy

NIF example:

1. niftest.c

2. #include "erl_nif.h"

3. static ERL_NIF_TERM hello(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])

4. {

5. return enif_make_string(env, "Hello world!", ERL_NIF_LATIN1);

6. }

7. static ErlNifFunc nif_funcs[] =

8. {

9. {"hello", 0, hello}

10. };

11. ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

The first argument of the ERL_NIF_INIT function should be the mod-

ule name of the Erlang module, the second argument of this function is

the structure array name from line 7 to line 10. The argument left are

pointers to the callback functions which can be used to initialize the NIF

library, we do not use them.

On Linux platform we can compile this file by this way:

12. gcc -fPIC -shared -o niftest.so niftest.c

Niftest.c will be compiled to a dynamic library niftest.so, so that when

Erlang is needed, the Erlang VM can load it.

THESIS DESIGN

57

Let us see the Erlang module:

13. niftest.erl

14. -module(niftest).

15. -export([init/0, hello/0]).

16. init() ->

17. erlang:load_nif("./niftest", 0).

18. hello() ->

19. "NIF library not loaded".

Now let us begin to use this module,

20. 1> c(niftest).

21. {ok,niftest}

22. 2> niftest:hello().

23. "NIF library not loaded"

24. 3> niftest:init().

25. ok

26. 4> niftest:hello().

27. "Hello world!"

 To encapsulate and analysis packet we use a library called Cantcoap.

Cantcoap library offers a minimal set of functions to serialize and

de-serialize CoAP packets, and it focuses on simplicity and a straightfor-

ward interface.

We use this library to help us building a Erlang NIF interface, so we

can directly process the CoAP packet without rewriting Erlang low layer

functions.

Here we will only show you the Erlang module part, you can find the C

implementation in the attachment files.

THESIS DESIGN

58

28. -module(pdu).

29. -export([init/0,make_pdu/5,get_content/1,add_option/4,add_payload/3,get_header/

1,get_token/1,get_URI/1,get_option/2]).

30. -on_load(init/0).

31. -define(APPNAME,wsngateway).

32. init()->

33. case code:priv_dir(?APPNAME) of

34. {error, _} ->

35. error_logger:format("~wpriv dir not found~n", [?APPNAME]),

36. exit(error);

37. PrivDir ->

38. erlang:load_nif(filename:join([PrivDir, "pdu_drv"]), 0)

39. end.

40. %% @spec make_pdu(Type::integer(), Method::integer(), Token::list(),

MID::integer(), URI::list()) ->

41. %% {ok, PDU::binary()} | {error, Reason::string()}

42. make_pdu(_Type,_Method,_Token,_ID,_URI)->

43. erlang:nif_error(nif_not_loaded).

44. %% @spec get_content(Buffer::binary()) ->

45. %% {ok, newpdu::bianry()} | {error, Reason::string()}

46. get_content(_Buffer)->

47. erlang:nif_error(nif_not_loaded).

48. %% @spec add_option(PDU::binary(), Optnum::integer(), Optlen::integer(), Opt-

val::list()) ->

49. %% {ok ,newpdu::binary()} | {error, Reason::string()}

50. add_option(_PDU,_Optnum,_Optlen,_Opnval)->

51. erlang:nif_error(nif_not_loaded).

52. %% @spec add_pauload(PDU::binary(), Payloadvalue::list(), Payloadlen::integer())

->

53. %% {ok, newpdu::binary()} | {error, Reason::string()}

54. add_payload(_PDU,_Payloadvalue,_Payloadlen)->

55. erlang:nif_error(nif_not_loaded).

56. %% @spec get_header(PDU::binary()) ->

57. %% {ok, Version::integer(), Type::integer(), Tokenlength::integer(),

Code::integer(), message::integer()} |

58. %% {error, Reason::string()}

59. get_header(_PDU)->

60. erlang:nif_error(nif_not_loaded).

61. %% @spec get_token(PDU::binary()) ->

62. %% {ok, Token::binary()} | {error, Reason::string()}

63. get_token(_PDU)->

64. erlang:nif_error(nif_not_loaded).

65. %% @spec get_URI(PDU::binary()) ->

THESIS DESIGN

59

66. %% {ok, URI::atom()} | {error, Reason::string()}

67. get_URI(_PUD)->

68. erlang:nif_error(nif_not_loaded).

69. %% @spec get_option(PDU::binary(), Optnum::integer()) ->

70. %% {ok, optionvalue::string()} | {error, Reason::string()}

71. get_option(_PDU,_Optnum)->

72. erlang:nif_error(nif_not_loaded)

In this module, we give some APIs to allow you to make the CoAP

PDU very convenient.

Function init will be automatically loaded when you first use the

functions in this module.

Function make_pdu, it needs five parameters, and returns a tuple {ok,

newpdu} or {error, reason}. So if everything goes well, you can get your

PDU with only some mandatory things for a CoAP PDU.

For function get_content, you should give the binary PDU you have,

and it will return back the payload of the PDU, {ok, pdu} or {error, rea-

son}.

Function add_option and add_payload are offering a way to add op-

tions and payload to a exist CoAP PDU. It returns {ok, pdu} or {error,

reason}.

Function get_header can help you to analysis the CoAP packet, gives

it an exist CoAP packet, it returns a six member tuple {ok, version, type,

THESIS DESIGN

60

token length, code, message ID} or {error, reason}.

Functions get_token, get_URI and get_option like what’s their name

says they return the token, URI and one of the option you need.

Use pdu module to have a client

What the client should do, just like a HTTP browse, we give the re-

quest, and wait for the response from the remote server.

THESIS DESIGN

61

Let us have a look at one of the function, get method.

73. get(Host,URI,Para)->

74. Token=make_token(),

75. ID=make_message_id(),

Figure 3.8: flow diagram for the client part

Begin

Receive re-

sponse

Prepare the request

packet

Open the Socket and

send packet

Process data Timeout

End

THESIS DESIGN

62

76. {ok,PDU}=pdu:make_pdu(0,?COAP_GET,Token,ID,URI),

77. {ok,Newpdu}=getpara(PDU,Para),

78. {ok,Destaddr}=inet_parse:address(Host),

79. Case gen_udp:open(?TMP_PORT,[binary,inet,{active,false}])of

80. {ok,Socket}->

81. gen_udp:send(Socket,Destaddr,?PORT,Newpdu),

82. Res=casegen_udp:recv(Socket,0,6000)of

83. {ok,{Destaddr,?PORT,Packet}}->

84. {ok,Ver,Type,Tkl,Code,MID}=pdu:get_header(Packet),

85. io:format("~p~n",[{ok,Ver,Type,Tkl,Code,MID}]),

86. {ok,Content}=pdu:get_content(Packet),

87. io:format("value is: ~p~n",[Content]);

88. {error,Reason}->

89. {error,Reason}

90. end,

91. gen_udp:close(Socket),

92. Res;

93. {error,Reason}->

94. {error,Reason}

95. end.

Other method are very similar, just change the method code.

Proxy

As what we have discussed before, a proxy should be compatible to

either normal Internet IP layer and link layer, or the WSN network layer

and link layer.

For the normal Internet part, because we use linux based device to act

as a proxy, we do not need to consider how to implement this part, just

use what linux offers us. For the WSN network part, we need to imple-

ment the network layer part, because we use IPv6 instead of IPv4, we can

use the APIs which Contiki offers us, but what we need to do is that how

THESIS DESIGN

63

to have correspondence between IPv6 world and IPv4 world. We now use

what Erlang is good at.

Figure 3.9: Spawn sub-process in proxy

96. proxy_recv(S,FromIPvN)->

97. receive

98. {udp,S,FromIP,FromPort,Bin}->

99. %% spawn a process to send the message and wait the response

100. spawn(fun()->wait_response(FromIP,FromPort,S,Bin,FromIPvN)end),

101. proxy_recv(S,FromIPvN);

102. {error,Reason}->

103. io:format("{get error message, ~p}~n",[Reason]),

Client 1

Client 2

Client N

Main process

Sub Process

Sub Process

Sub Process

Proxy

THESIS DESIGN

64

104. proxy_recv(S,FromIPvN);

105. stop->

106. gen_udp:close(S),

107. io:format("UDP port closed~n")

108. End.

109. wait_response(FromIP,FromPort,Socket,Bin,FromIPvN)->

110. casepdu:get_option(Bin,?COAP_OPTION_URI_HOST)of

111. {ok, URI_HOST} ->

112. io:format("Get URI_HOST: ~p~n",[URI_HOST]);

113. {error, URI_HOST} ->

114. io:format("get_option error ~p~n", [{error, URI_HOST}])

115. end,

116. {ok,RemoteIP}=inet_parse:address(URI_HOST),

117. case pdu:get_option(Bin, ?COAP_OPTION_URI_PORT) of

118. {ok, URI_PORT} ->

119. io:format("Get URI_PORT: ~p~n",[URI_PORT]);

120. {error, URI_PORT} ->

121. io:format("get_option error ~p~n", [{error, URI_PORT}])

122. end,

123. RemotePort=list_to_integer(URI_PORT),

124. Receive

125. {udp,Socket_to,RemoteIP,RemotePort,B}->

126. gen_udp:send(Socket,FromIP,FromPort,B)

127. after5000->

128. Case pdu:make_pdu (?COAP_ACKNOWLEDGEMENT,?COAP_GATEWAY_TIMEOUT, bi-

nary_to_list(Token), _MessageID,atom_to_list(URI))of

129. {ok,TimeoutResponse}->

130. gen_udp:send(Socket,FromIP,FromPort,TimeoutResponse),

131. io:format("Not received response in 5 seconds.~n");

132. {error,Make_pdu}->

133. io:format("Make pdu failed with reason: ~p~n",[Make_pdu])

134. end

135. end.

Erlang can spawn a process very easily and without shared memory.

Each process has its own variable, own socket, own memory. So our idea

is that for each client’s request, we open a process, and transfer the re-

quest to the real destination, and receive the response from the server and

send it back. For each request, we have URI_HOST and URI_PORT op-

THESIS DESIGN

65

tion which tell the proxy, where is the real server and its port. After get

this information, the server just change the network layer.

Figure 3.10: An example of the scenarios

and send it out, and wait for the server’s response. If no response after a

certain time, the Proxy send a gateway timeout message to the client, and

end this process.

Between Erlang proxy and Contiki node:

Because of our proxy is using normal Linux based device, there is no

hardware support IEEE 802.15.4, so what we need to do is let a Contiki

THESIS DESIGN

66

node connect to the Linux based device(for example PC or Raspberry Pi)

with USB port.

At first, we wanted to use the raw serial protocol to transmit message

between them. But once we were going to use IPv6 to communicate be-

tween sensors, the raw serial protocol was never working. After some re-

search, we decided that, since CoAP uses IPv6 on Contiki devices, we

had to use SLIP protocol(Serial Line Internet Protocol) instead of raw

serial protocol.

 SLIP modifies a standard TCP/IP datagram by appending a special

"END" byte to it, which distinguishes datagram boundaries in the byte

stream, if the END byte occurs in the data to be sent, the two byte se-

quence ESC, ESC_END is sent instead, if the ESC byte occurs in the data,

the two byte sequence ESC, ESC_ESC is sent. variants of the protocol

may begin, as well as end, packets with END.

Hex value Abbreviation Description

0xC0 END Frame End

0xDB ESC Frame Escape

0xDC ESC_END Transposed Frame End

0xDD ESC_ESC Transposed Frame Escape

THESIS DESIGN

67

RPL Border Router

 In our case, there may be a mount of contiki servers. When the packets

come from the serial port, we need a router to transmit them to the speci-

fied destination. Routing protocol plays an important role in the network,

which is responsible for constructing the network topology, routing, data

forwarding and some other functions. Traditional wired network routing

protocols require to send large amounts of data packets to maintain the

network topology, and also need a lot of storage space to save the routing

entries, therefore not suitable for wireless sensor networks, in which

transmission rate, capacity and processing is very limited. RPL is IPv6

routing protocol designed for low power and lossy networks, which is

created by IETF ROLL working group as a proposed standard.

 RPL forms a directed acyclic graph, that is, a tree-like topology. Each

node except the root has its related parent acting like a gateway. The

nodes in the network maintain a route table that stores all the routes down

blow. If the destination does not exist in the routing table, the node will

forward it to the related parent node until reaching the destination.

 In RPL protocol, a Destination Oriented Directed Acyclic Graph

(DODAG) is several nodes connected by directed edges, among which

there is no cycles. Compared with the conventional tree topology,

DODAG can provide additional paths. Nodes use DODAG information

object (DIO) messages to create and maintain DODAG. The DODAG

THESIS DESIGN

68

building process is explained in the following steps. Step 1: The network

administrator configures (at application level) one or more nodes as a

DODAG root. The DODAG roots starts sending the link local multicast

DIO messages. A node may also solicit for DIO from the root in the mean

time using DODAG Information Solicitations (DIS), in which case the

DODAG root will send the DIO immediately. Step 2: The nodes nearby

will receive the DIO from the root and will process it as it is from a lower

rank node and will select root as their parent. Step 3. These nodes will

now send link local multicast DIOs and the other nodes receiving the DIO

may select them as parent. If a node receives DIOs from two or more

parents, it will decide based on the objective function. This process will

continue until all the nodes join the DODAG.

 RPL uses "up" and "down" direction’s terminology regarding the

movement of traffic. It can be divided into two main parts, either up the

tree or down the tree. To send data up the tree, RPL needs the information

in the DODAG. When sending a packet from a node to the root, it simply

sends the packet to its preferred parent, and parents keep sending to their

parents until the packet reaches the root. So each node only need to keep

track of its parent. To send data down the tree, RPL uses DAO messages

to maintain the routing table in support of downward traffic, all nodes

need to keep track of all nodes below them. Parent routes are built with

DIO messages. Child routes are built with DAO messages. Upward

THESIS DESIGN

69

routing has great scaling properties since the number of upward routes is

constant with network size. Downward routing does not scale as well be-

cause the number of routes each node needs to have room for increases

linearly with network size.

Figure 3.11:RPL routing protocol

Contiki RPL is an open-source implementation of IETF ROLL working

group’s RPL. A typical RPL network in contiki is shown above. An LLN

border router (LBR) is located on the top of the topology. A border router

is used in order to connect 6LoWPAN devices to the IP network and is

responsible for handling traffic to and from the IPv6 and 802.15.4 inter-

THESIS DESIGN

70

faces. The border router creates a RPL DAG, the other nodes will be udp

servers or clients. At first, it joins the network acting like a RPL router,

and sends a UDP datagram to IPv6 address. Since we use the SLIP pro-

tocol, the border router must connect to computer over a SLIP tunnel. In

this case, it can be formed by tunslip6, a tool that is provided in contiki.

After assigning an IPv6 address, a connection will be made between the

router and SLIP.

UDP server

In order to get the request from the Erlang client, the server must create

a UDP connection and then bind it to a local port that it would listen on.

Also the local port must be the same as the remote port specified in Er-

lang client. The main process thread for the UDP server application need

not contain any large differences from regular Contiki applications. The

code of this process is shown below:

1. udpconn = udp_new(remote_ip_address, port, appstate);

2. udp_bind(udpconn, port);

The udp_new function sets up a new connection. This function creates

a new UDP connection with the specified remote endpoint, the format of

the function is:

1. udp_new(remote_ip_address, port, appstate);

By specifying a remote_ip and port, the application only accepts con-

nections from this certain IP address and port combination. However, our

THESIS DESIGN

71

goal is to recieve the messages from any IP and any port, just one connec-

tion is not enough. So by setting the remote ip_address to NULL and the

port to 0, this is easily achieved. Here we don’t want to change the appli-

cation state, so it is set to NULL. In order for the udpconn variable, which

holds the UDP connection information, to be available it must first be de-

clared. The declaration of this variable happens at the very beginning of

the source code, immediately after any include and define statements,

thereby making it a global variable:

1. static struct uip_udp_conn *udpconn;

These simple lines of code allow a Contiki application to set up a UDP

server on a particular port. In our application, the UDP server is accepting

connections from any IP address and port pair; the application is listening

on port 5678.

Also each server must be different from another by assigning a unique

IPv6 address, we must provide which server to communicate in Erlang

client. The function is:

1. uip_ip6addr(&ipaddr, addr0, addr1, addr2, addr3, addr4, addr5, addr6, addr7);

2. uip_ds6_addr_add (uip_ipaddr_t *ipaddr, unsigned long vlifetime, uint8_t type);

The first function is to construct an IPv6 address from eight 16-bit

words. The second function is to assign an address. The type is chosen

among 0,1,2,3, which means any type, auto-config, DHCP and manually.

In our case, set lifetime to 0 (permanently), adn set type to manually.

When a message packet arrives, just having a UDP server listen on a

THESIS DESIGN

72

port is not useful unless we do something with it. In order to handle these

message receive events we must create our own function and pass to it

any events that occur. Within the main application process, we could

create an infinite while loop, which passes the event and its associated

data to a function.

1. while(1) {

2. PROCESS_YIELD();

3. if(ev == tcpip_event) {

4. tcpip_handler();

5. send_packet();

6. }

The main process is yielded anytime an event occurs and it first

checks if the event which caused the function to be called was of type

tcpip_event. Then we have functions proceed to handle the data, and send

it back.

 Upon receiving an IPv6 packet from the client, the first thing to do is to

get rid of the layer 2 information. To achieve this, we use the uip_appdata,

a pointer to the application data in the packet buffer. This pointer points to

the application data when the application is called. If the application

wishes to send data, the application may use this space to write the data

into before calling uip_send(). In tcpip_handler(), now we can unpack the

CoAP packet.

 In Contiki, there is a C CoAP implementation called Erbium. It is a

low-power REST Engine for Contiki that was developed together with

THESIS DESIGN

73

SICS. The REST Engine includes a comprehensive embedded CoAP im-

plementation, which became the official one for the Contiki OS. In our

case, we use the newest version er-coap-13, it is located in apps folder.

And it must be included in makefile in order to use it.

1. WITH_COAP = 1

2. CFLAGS += -DWITH_COAP

3. APPS += er-coap-13

4. APPS += erbium

 The struct of the CoAP is defined as follow:

1. typedef struct {

2. uint8_t *buffer;

3. uint8_t version;

4. coap_message_type_t type;

5. uint8_t code;

6. uint16_t mid;

7. uint8_t options[COAP_OPTION_PROXY_URI / OPTION_MAP_SIZE + 1];

8. coap_content_type_t content_type;

9. uint32_t max_age;

10. size_t proxy_uri_len;

11. const char *proxy_uri;

12. uint8_t etag_len;

13. uint8_t etag[COAP_ETAG_LEN];

14. size_t uri_host_len;

15. const char *uri_host;

16. size_t location_path_len;

17. const char *location_path;

18. uint16_t uri_port;

19. size_t location_query_len;

20. const char *location_query;

21. size_t uri_path_len;

22. const char *uri_path;

THESIS DESIGN

74

23. uint16_t observe;

24. uint8_t token_len;

25. uint8_t token[COAP_TOKEN_LEN];

26. uint8_t accept_num;

27. uint16_t accept[COAP_MAX_ACCEPT_NUM];

28. uint8_t if_match_len;

29. uint8_t if_match[COAP_ETAG_LEN];

30. uint32_t block2_num;

31. uint8_t block2_more;

32. uint16_t block2_size;

33. uint32_t block2_offset;

34. uint32_t block1_num;

35. uint8_t block1_more;

36. uint16_t block1_size;

37. uint32_t block1_offset;

38. uint32_t size;

39. size_t uri_query_len;

40. const char *uri_query;

41. uint8_t if_none_match;

42. uint16_t payload_len;

43. uint8_t *payload;

44. } coap_packet_t;

The version, type, token, code and mid are the same as that in the

CoAP packet, it’s very convenient. There is a function allow us to transfer

the informations into this struct:

1. coap_parse_message(void *packet, uint8_t *data, uint16_t data_len);

By passing the associated data of the event along with the data length,

we achieve a fully organized CoAP data, and process according to the

code, URI path and query respectively. Because of the limitation of the

CoAP protocol, the maximum length of the URI path is about 13 bytes,

THESIS DESIGN

75

we define a 4 bytes URI path also for convenient. The Tmote Sky is able

to sense the temperature, light, humidity, battery and some other functions.

The value obtained from sensor is not the regular one, it need to be con-

verted by applying the given formula. Here is the code of getting the

temperature:

1. int get_temperature(void)

2. {

3. return ((sht11_sensor.value(SHT11_SENSOR_TEMP) / 10) - 396) / 10;

4. }

 It is necessary to create a CoAP packet for responding, the value of the

sensor will be stored in the payload part. The declaration of this response

happens at the beginning of the code, making it a global variable. Also

the response code should be changed accordingly, now it is ready to send.

The response code definition is shown below:

1. typedef enum {

2. NO_ERROR = 0,

3. CREATED_2_01 = 65, /* CREATED */

4. DELETED_2_02 = 66, /* DELETED */

5. VALID_2_03 = 67, /* NOT_MODIFIED */

6. CHANGED_2_04 = 68, /* CHANGED */

7. CONTENT_2_05 = 69, /* OK */

8. BAD_REQUEST_4_00 = 128, /* BAD_REQUEST */

9. UNAUTHORIZED_4_01 = 129, /* UNAUTHORIZED */

10. BAD_OPTION_4_02 = 130, /* BAD_OPTION */

11. FORBIDDEN_4_03 = 131, /* FORBIDDEN */

12. NOT_FOUND_4_04 = 132, /* NOT_FOUND */

13. METHOD_NOT_ALLOWED_4_05 = 133, /* METHOD_NOT_ALLOWED */

14. NOT_ACCEPTABLE_4_06 = 134, /* NOT_ACCEPTABLE */

THESIS DESIGN

76

15. PRECONDITION_FAILED_4_12 = 140, /* BAD_REQUEST */

16. REQUEST_ENTITY_TOO_LARGE_4_13 = 141, /* REQUEST_ENTITY_TOO_LARGE */

17. UNSUPPORTED_MEDIA_TYPE_4_15 = 143, /* UNSUPPORTED_MEDIA_TYPE */

18. INTERNAL_SERVER_ERROR_5_00 = 160, /* INTERNAL_SERVER_ERROR */

19. NOT_IMPLEMENTED_5_01 = 161, /* NOT_IMPLEMENTED */

20. BAD_GATEWAY_5_02 = 162, /* BAD_GATEWAY */

21. SERVICE_UNAVAILABLE_5_03 = 163, /* SERVICE_UNAVAILABLE */

22. GATEWAY_TIMEOUT_5_04 = 164, /* GATEWAY_TIMEOUT */

23. PROXYING_NOT_SUPPORTED_5_05 = 165, /* PROXYING_NOT_SUPPORTED */

24. /* Erbium errors */

25. MEMORY_ALLOCATION_ERROR = 192,

26. PACKET_SERIALIZATION_ERROR,

27. /* Erbium hooks */

28. MANUAL_RESPONSE,

29. PING_RESPONSE

30. } coap_status_t;

Sending messages over UDP is also simple while using 6lowpan with

Contiki. The send_packet() function takes a CoAP packet as a parameter,

which is the response. But in order to send the packet, we need to serial-

ize it first and put it into a message buffer. This function is also imple-

mented in the library:

1. coap_serialize_message(void *packet, uint8_t *buffer);

A uip_udp_packet_sendto() function is used in order to send the mes-

sage buffer to a certain address and port combination:

1. uip_udp_packet_sendto(struct uip_udp_conn *c, const void *data, int len,

2. const uip_ipaddr_t *toaddr, uint16_t toport);

The c variable is what was used in order to create and hold informa-

tion about the UDP connection. The toaddr and toport are the source ad-

THESIS DESIGN

77

dress and port of the packet we receive from last time. They are in the

UDP header of the buffer. These are the variables are all required in order

to dispatch the message buffer back to the sender.

THESIS EVALUATION

78

4 Evaluation

This chapter will describe the evaluation of the whole process, implement

ed mainly in a home scenario.

4.1 Test environment

 Client: PC

 CPU: Intel(R) Core(TM) i3-2330M 2.2GHz

 RAM: 4 GB

 System: Ubuntu Linux 13.10 X86_64

 Proxy: Raspberry Pi

 SOC: BroadcomBCM2835

 CPU: ARM1176JZF-S 700MHz

 RAM: 512 MB

 System: Debian GNU/linux

 Server: Tmote sky

 CPU: MSP430 8MHz

 RAM: 10KB

 System: Contiki OS

THESIS EVALUATION

79

4.2 Round trip time

Round trip time is the length of time it takes for a signal to be sent plus

the length of time it takes for an acknowledgment of that signal to be re-

ceived. Here the RTT is consisted of,

 Time between client and proxy(time C-P),

 Proxy process time,

 Time between proxy and server(Time P-S),

 Server process time.

Now we have test 20 times, how much the round trip time will be

when measuring temperature,

 time C-S time P-S time C-P

 0.532635 0.513119 0.019516

 0.593028 0.470485 0.122543

 0.721123 0.664892 0.056231

 0.597888 0.481923 0.115965

 0.504986 0.431622 0.073364

 0.589403 0.47157 0.117833

 0.708621 0.653421 0.0552

 0.417519 0.380856 0.036663

 0.376693 0.35531 0.021383

 0.468068 0.340414 0.127654

 0.629148 0.471335 0.157813

 0.563249 0.438224 0.125025

 0.553016 0.517456 0.03556

 0.4666917 0.365328 0.1013637

 0.488352 0.380098 0.108254

THESIS EVALUATION

80

 0.398147 0.368432 0.029715

 0.590897 0.39926 0.191637

 0.356958 0.338605 0.018353

 0.482122 0.407069 0.075053

average 0.528344458 0.444706263 0.083638195

max 0.721123 0.664892 0.191637

min 0.356958 0.338605 0.018353

Table 4.1: : round trip time of measuring

As we can see from the table and figure, on average, the round trip

time from client to server is 0.528 second, the time between proxy to

server takes the most part, about 0.445 second, nearly 84.28%, the time

between client and proxy only takes less than 20%.

Figure 4.2: round trip time of measuring

temperature

THESIS EVALUATION

81

Next we use light sensor to measure the round trip time,

 time C-S time P-S time C-P

 0.176034 0.143643 0.032391

 0.156586 0.126988 0.029598

 0.191075 0.172685 0.01839

 0.328711 0.298529 0.030182

 0.202629 0.171201 0.031428

 0.469357 0.438593 0.030764

 0.327093 0.295251 0.031842

 0.224221 0.192289 0.031932

 0.270377 0.237854 0.032523

 0.323381 0.292648 0.030733

 0.25253 0.216034 0.036496

 0.266794 0.232764 0.03403

 0.276943 0.246169 0.030774

 0.204786 0.174497 0.030289

 0.443354 0.391339 0.052015

 0.262673 0.229278 0.033395

 0.160034 0.130313 0.029721

 0.156803 0.125116 0.031687

 0.365741 0.280189 0.085552

 0.253461 0.23597 0.017491

average 0.26562915 0.2315675 0.03406165

max 0.469357 0.438593 0.085552

min 0.156586 0.125116 0.017491

Table4.3: round trip time of measuring light

THESIS EVALUATION

82

From the data above, we can see during measuring light, the average

round trip time from client to server is about 0.266 seconds, and the time

between proxy and server is almost 0.232 seconds. The round trip time

between proxy and server takes more than 87.22%, time between client

and proxy takes less than 15%.

We can see that use different sensors on the same server, the round trip

time have bit gap, use light sensor, the average round trip time is only

about 50% compare to measuring temperature. So let us see how much

time will be used while measuring temperature. We design an test, mea-

suring the time to get temperature:

3. start = clock_time();

4. value = get_temperature();

5. end = clock_time();

Figure 4.4: round trip time of measuring light

THESIS EVALUATION

83

6. // we have #define CLOCK_CONF_SECOND 128UL in platform-conf.h, so the time measured

in seconds would be clock_ticks/128

7. duration = (end - start)/128;

8. printf(“%u\n”, duration);

We have tested for about 20 times, the result shows that to get the

temperature we need about 0.231 seconds, so this shows that the result

above is correct, the gap between measuring temperature and measuring

light is because of the temperature sensor need time to wait the value.

4.3 System performance

Previously, we introduced the round trip time from the client to the server.

This part we are going to test how much system resource the Erlang

CoAP application will take from the device. Memory consumption, pow-

er consumption as well as spawn time of each Erlang process will be

tested.

4.3.1 Memory consumption

We measure memory usage with pmap: a Linux utility that reports the en-

tire memory allocated for a given application, including code, libraries,

stack, and heap. This gives a precise indication of the amount of memory

a device needs to run the application: devices with less memory would

just be unable to run the same application implementation.

For better testing the memory consumption of the Erlang application,

THESIS EVALUATION

84

we separately access to the Erlang shell without load any applications and

then load the application, it turns out that the Erlang shell is consume the

most part of the memory, but the application itself take less(only takes a

few hundreds KB on Raspberry Pi and few MB on PC).

Figure 4.5: Memory consumption comparison

This point out that if we want to improve the memory consumption of

the Erlang application, we need to reduce the memory consumption of the

Erlang shell.

4.3.2 Power consumption

Such low power consumption sensor nodes should use low-power RF and

at the same time, we need to support some Internet stack like IPv4 or

THESIS EVALUATION

85

IPv6, so they use An Adaptation Layer to fit IPv6 over Low-Power wire-

less Area Networks, it is called 6LoWPAN. With 6LoWPAN technology,

the packets can be efficiently compressed. For example, in the real net-

work, a common MTU size for IPv6 packet is 1280 bytes, and after com-

pression, in the 802.15.4 network, the MTU is 127 bytes.

With normal IPv6 UDP communication, we have at least 40 bytes IPv6

header, and 8 bytes UDP header In 6LoWPAN, we have two kind of

compress way, stateless compression and flow-independent compression.

For the local link communication, hop limits to 1, flow-independent

compression can compress IPv6 header to 2 bytes, UDP header to 4 bytes,

then the total header is 6 bytes, but the stateless header compression ap-

Figure 4.6: IP packet

THESIS EVALUATION

86

proach just could compress the header to seven bytes under the best cir-

cumstances, and the two bytes checksum could be compressed if there is

Complete Verification mechanism in application layer.

If use global address, that means a data packet is transmitted from one

LoWPAN to another one, or to other network, Under the best situation,

the flow-independent compression approach can compress the header 7

bytes. But the stateless header compression approach, for the address

parts, just 64 bits source address could be compressed, there are still 24

address bytes uncompressed.

From the above comparison, we can see flow-independent header

compression is significant.

For example, by using the network sniffer wireshark we capture the

packets sent from tap0, which is the port of SLIP tunnel. It is a standard

IPv6 UDP packet.

THESIS EVALUATION

87

From the graph, we can see the total packet size is 82 bytes, the head-

ers of IPv6 and UDP are 40 bytes and 8 bytes respectively. There are a lot

of zeros in the header and the most useful data part is only 34 bytes, that

means we waste a lot of energy on the header. As we use local link com-

munication, after the flow-independent approach, we achieve a compres-

sion of 41 bytes out of 48 bytes, and the total packet size is 41 bytes. As

we can see, we almost compress at least 41 bytes of the packet header,

which means more than 50% energy is saved.

Additionally, CoAP protocol was also design for constrained nodes and

constrained (e.g., low-power, lossy) networks, so this also help to save

energy.

THESIS RELATED WORK

88

5 Related work

This chapter will illustrate existing works that related to CoAP protocol.

Include the Internet of Things architectures, a IoT framework for Rasp-

berry Pi which called WebIOPi and finally, we introduce some security

mechanisms.

5.1 IoT architectures

It is very important to have an architecture for any kind of applications.

For Internet of Things, of course we will need an architecture in the fu-

ture.

For example, IoT6 project
9
 is a 3 years FP7 European research project on

the future Internet of Things. It aims at exploiting the potential of IPv6

and related standards (6LoWPAN, CORE, COAP, etc.) to overcome cur-

rent shortcomings and fragmentation of the Internet of Things. Its main

challenges and objectives are to research, design and develop a highly

scalable IPv6-based Service-Oriented Architecture to achieve interopera-

bility, mobility, cloud computing integration and intelligence distribution

among heterogeneous smart things components, applications and servic-

es.

 IoT-A project
10

has addressed for three years the Internet-of-Things

THESIS RELATED WORK

89

Architecture, and created the proposed architectural reference model to-

gether with the definition of an initial set of key building blocks. Together

they are envisioned as foundations for fostering the emerging Internet of

Things. Using an experimental paradigm, IoT-A combined top-down rea-

soning about architectural principles and design guidelines with simula-

tion and prototyping in exploring the technical consequences of architec-

tural design choices.

5.2 WebIOPi11 on Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer, and with a lot

of I/O port which can be used to communicate with the outside world, in

our thesis, we used it to act as a proxy to connect IPv4 world and IPv6

world. But this is not all of what it can do. It has GPIO ports, UART, I2C

and SPI bus, we can fully use them to connect to some sensors and let

Raspberry Pi act as a CoAP server.

 WebIOPi offers us a Internet of Things framework which developed by

Python. It can control, debug, and use Pi's GPIO, sensors and converters

from a web browser or any app. With this Swiss-knife like library, it in-

cludes REST APIs, a lot of ADC/DAC and sensors driver. It not only

support CoAP protocol but also support HTTP protocol.

 Because of Raspberry Pi is a Linux based computer, it will be very

easy to develop applications no matter using C, Python, Java, Erlang and

THESIS RELATED WORK

90

so on, especially for programmers who is familiar with Linux system. In

particular, Linux has integrated a lot of low level drivers, programmers do

not need to waste of time to develop these things, they just need to focus

on how to implement the high-level applications.

5.3 Securing CoAP

Like what we have in HTTP protocol, the security is needed by the Inter-

net of Things. But we still do not know how to use the existing security

protocols to makes our low-power, lossy network protocol safe. In the In-

ternet, the de facto standard to achieve security is Transport Layer Secu-

rity (TLS). But this kind of security protocol is not suit for our Internet of

Things network, because our constrained network environment, because

it requires a lot of hardware performance. The CoAP specification sug-

gests to use of Datagram Transport Layer Security(DTLS) protocol
7.

DTLS is a protocol for securing network traffic which has been speci-

fied by the IETF in RFC 6347
12

. This is not like the TLS module that de-

pend on reliable message transfer(like TCP), but can be used with unreli-

able datagram transfer, e.g., UDP.

Except secure the data on the transport layer, we can also secure them

on the link layer, it means that in the 6LoWPAN network environment,

we need to secure the 802.15.4 link layer. 802.15.4 link-layer security is

the current state-of-the-art security solution for the IP-connected IoT
13

. It

THESIS RELATED WORK

91

offers data encryption and integrity verification, achieved by a single

pre-shared key used for symmetric cryptography applied to all outgoing

packets while message integrity is realized by including a Message Au-

thentication Code (MAC) in the packets.

THESIS CONCLUSIONS

92

6 Conclusions

This thesis has introduced CoAP protocol, which can be used in the

low-power, lossy network(e.g., wireless sensor network), and implement

it with ELIoT framework. The protocol is designed for ma-

chine-to-machine (M2M) applications such as smart energy and building

automation, and Erlang is a high level programming language which

scalable, safe, and efficient. Erlang separate processes with no shared

memory but communicating via message passing，naturally transfers to

multicore processors in a way that is largely transparent to the program-

mer, so that you can run your Erlang programs on more powerful hard-

ware without having to redesign them.

6.1 What we have done

The work started from using cantcoap C++ library to build a CoAP APIs

for Erlang language. These APIs provide us a simple but powerful way to

implement CoAP protocol with Erlang language. Using these Erlang APIs

we can encapsulate and resolve CoAP packet very easy. Also because of

the virtual machine mechanism, just like Java, we could transplant Erlang

programs to different platforms without change code. This is much con-

venient for programmer to develop and debug programs on different

THESIS CONCLUSIONS

93

platforms.

Then, we were going to use the APIs which we had mentioned above to

build a CoAP client, CoAP proxy and CoAP server with Erlang language.

CoAP client and server can be used directly in the environment of tradi-

tion network (e.g., IPv4), and if in the future, the Internet evolve into

IPv6, it will be very easy to modify the code to adapt the demand. How-

ever, nowadays, when we use the traditional IPv4 network mostly on our

PCs or smart phones and the wireless sensor network has already used

IPv6 network, we need a proxy to convent the network protocol between

IPv4 and IPv6. As a result, we then develop a CoAP proxy which also

using Erlang so that help devices from different network environment to

communicate with each other.

After this, we develop a CoAP server based on Contiki Operating sys-

tem with tmote sky platform. This platform has temperature sensor, light

sensor and humidity sensor, so it is very suitable for environment moni-

toring. When we get a CoAP request, according to the request informa-

tion, we can send back a corresponding response.

All of these, we now have a entire CoAP environment, include client,

server, proxy. So we also would test them to see if they work fine and the

system performance too.

THESIS CONCLUSIONS

94

6.2 Future work

As we all know that Erlang is design for distributed programming, but we

do not fully take the advantage of this. During our research, from client to

proxy and finally to the server, we always use UDP to transmit packet. Of

course, using UDP to transmit messages will be more friendly compatible

to the other applications which are not programmed by Erlang. However,

if all of the CoAP nodes are programmed by Erlang, we suggest that

maybe we can use Erlang message operator “!” to transmitted message

directly, just keep Erlang epmd(Erlang Port Mapper Daemon) running

and TCP, UDP 4396 port open and let Erlang VM to handle the message

passing messy affairs.

What’s more. If we want to implement all of the Internet of Things

nodes running Erlang program, and finally reach ELIoT. The most im-

portant obstacle is that Erlang is now only support Linux based and Win-

dows based devices, but not support low-power devices operating system

such like Contiki, TinyOS, even for the most popular mobile device sys-

tems, like Android, IOS are not supported formally. So in the future, we

need to adapt Erlang to these devices.

6.3 Final remarks

Nowadays, IoT(Internet Of Things) technology is still in its primary stage,

THESIS CONCLUSIONS

95

many technologies are still evolving, in order to achieve large-scale in-

dustrial applications deployment，it still have a long way to go. But just

because of this, ELIoT technology has a broad development space and

considerable prospects. This thesis has achieved initial CoAP applications

with ELIoT technology, although there are many imperfect drawbacks, It

provides a basic reference to the IoT applications and as the direction of

future research, other researchers can enrich and improve the functionali-

ty and performance on the other the platforms, allowing more platforms

to play a bigger role of ELIoT.

THESIS APPENDIX

96

Appendix

#COAP-CLIENT

2. -module(coap_client).

3. -export([get/2,get/3,get/4,put/3,delete/3]).

4. -include("coap.hel").

5.

6. get(Host, URI, Para) ->

7. Token = make_token(),

8. ID = make_message_id(),

9. {ok, PDU} = pdu:make_pdu(0, ?COAP_GET, Token, ID, URI),

10. {ok, Newpdu} = getpara(PDU, Para),

11. {ok, Destaddr} = inet_parse:address(Host),

12. case gen_udp:open(?TMP_PORT, [binary, inet, {active, false}]) of

13. {ok, Socket} ->

14. gen_udp:send(Socket, Destaddr, ?PORT, Newpdu),

15. Res = case gen_udp:recv(Socket, 0, 6000) of

16. {ok, {Destaddr, ?PORT, Packet}} ->

17. {ok, Ver, Type, Tkl, Code, MID} = pdu:get_header(Packet),

18. io:format("~p~n", [{ok, Ver, Type, Tkl, Code, MID}]),

19. {ok, Content} = pdu:get_content(Packet),

20. io:format("value is: ~p~n", [Content]);

21. {error, Reason} ->

22. {error, Reason}

23. end,

24. gen_udp:close(Socket),

25. Res;

26. {error, Reason} ->

27. {error, Reason}

28. end.

29.

30. put(Host, URI, Para) ->

THESIS APPENDIX

97

31. Token = make_token(),

32. ID = make_message_id(),

33. {ok, PDU} = pdu:make_pdu(0, ?COAP_PUT, Token, ID, URI),

34. {ok, Newpdu} = getpara(PDU, Para),

35. {ok, Destaddr} = inet_parse:address(Host),

36. case gen_udp:open(?TMP_PORT, [binary, inet, {active, false}]) of

37. {ok, Socket} ->

38. gen_udp:send(Socket, Destaddr, ?PORT, Newpdu),

39. Res = case gen_udp:recv(Socket, 0, 6000) of

40. {ok, {Destaddr, ?PORT, Packet}} ->

41. {ok, Ver, Type, Tkl, Code, MID} = pdu:get_header(Packet),

42. io:format("~p~n", [{ok, Ver, Type, Tkl, Code, MID}]),

43. {ok, Content} = pdu:get_content(Packet),

44. io:format("value is: ~p~n", [Content]);

45. {error, Reason} ->

46. {error, Reason}

47. end,

48. gen_udp:close(Socket),

49. Res;

50. {error, Reason} ->

51. {error, Reason}

52. end.

53.

54. delete(Host, URI, Para) ->

55. Token = make_token(),

56. ID = make_message_id(),

57. {ok, PDU} = pdu:make_pdu(0, ?COAP_DELETE, Token, ID, URI),

58. {ok, Newpdu} = getpara(PDU, Para),

59. {ok, Destaddr} = inet_parse:address(Host),

60. case gen_udp:open(?TMP_PORT, [binary, inet, {active, false}]) of

61. {ok, Socket} ->

62. gen_udp:send(Socket, Destaddr, ?PORT, Newpdu),

63. Res = case gen_udp:recv(Socket, 0, 6000) of

64. {ok, {Destaddr, ?PORT, Packet}} ->

THESIS APPENDIX

98

65. {ok, Ver, Type, Tkl, Code, MID} = pdu:get_header(Packet),

66. io:format("~p~n", [{ok, Ver, Type, Tkl, Code, MID}]),

67. {ok, Content} = pdu:get_content(Packet),

68. io:format("value is: ~p~n", [Content]);

69. {error, Reason} ->

70. {error, Reason}

71. end,

72. gen_udp:close(Socket),

73. Res;

74. {error, Reason} ->

75. {error, Reason}

76. end.

77.

78. get(Host, URI) ->

79. Token = make_token(),

80. ID = make_message_id(),

81. {ok, PDU} = pdu:make_pdu(0, ?COAP_GET, Token, ID, URI),

 %type,method,token,id,URI; method:COAP_CODE_GET

82. {ok, Address} = inet_parse:address(Host),

83. case gen_udp:open(?TMP_PORT, [binary, inet, {active, false}]) of

84. {ok, Socket} ->

85. gen_udp:send(Socket, Address, ?PORT, PDU),

86. Res = case gen_udp:recv(Socket, 0, 3000) of %time-

out 3000 ms

87. {ok, {Address, ?PORT, Packet}} ->

88. pdu:get_content(Packet);

89. {error, Reason} ->

90. {error, Reason}

91. end,

92. gen_udp:close(Socket),

93. Res;

94. {error, Reason} ->

95. {error, Reason}

96. end.

THESIS APPENDIX

99

97.

98. get(Host, URI, URI_HOST, URI_PORT) ->

99. Token = make_token(),

100. ID = make_message_id(),

101. {ok, PDU} = pdu:make_pdu(0, ?COAP_GET, Token, ID, URI),

102. {ok, PDU1} = pdu:add_option(PDU, ?COAP_OPTION_URI_HOST, length(URI_HOST),

URI_HOST),

103. {ok, PDU2} = pdu:add_option(PDU1, ?COAP_OPTION_URI_PORT, length(URI_PORT),

URI_PORT),

104. {ok, Address} = inet_parse:address(Host),

105. case gen_udp:open(?TMP_PORT, [binary, inet, {active, false}]) of

106. {ok, Socket} ->

107. gen_udp:send(Socket, Address, ?PORT, PDU2),

108. Res = case gen_udp:recv(Socket, 0, 7000) of

109. {ok, {Address, ?PORT, Packet}} ->

110. pdu:get_header(Packet);

111. {error, Reason} ->

112. {error, Reason}

113. end,

114. gen_udp:close(Socket),

115. Res;

116. {error, Reason} ->

117. {error, Reason}

118. end.

119.

120.

121. make_token() ->

122. make_token(?TOKEN_LENGTH, []).

123.

124. make_token(Remaining, Acc) when Remaining == 0 ->

125. Acc;

126. make_token(Remaining, Acc) ->

127. make_token(Remaining - 1, [random:uniform(256 - 1)|Acc]).

128.

THESIS APPENDIX

100

129. make_message_id() ->

130. random:uniform(?MAX_ID) - 1.

131.

132. recv_subscribe() ->

133. receive

134. {From, HostAddress, NewPDU} ->

135. io:format("i am in fun recv_subscribe~n"),

136. case gen_udp:open(0, [binary, inet, {active, true}]) of %use

random UDP port number

137. {ok,Socket} ->

138. gen_udp:send(Socket, HostAddress, ?PORT, NewPDU),

139. io:format("i have sent the packet~n"),

140. recv_subscribe_loop(Socket, HostAddress, From);

141. {error, Reason} ->

142. io:format("{error, ~p}~n", [Reason])

143. end

144. end.

145.

146. recv_subscribe_loop(Socket, Host, From) ->

147. io:format("i am waitting for packet~n"),

148. receive

149. {udp, Socket, Host, ?PORT, Bin} ->

150. {ok, Content} = pdu:get_content(Bin),

151. {ok, Ver, Type, TKL, Code, MID} = pdu:get_header(Bin),

152. io:format("{ok, ~p}~n", [Content]),

153. io:format("Recever packet with version: ~p~nType:

~p~nTKL:~p~nCode:~p~nMessageID:~p~n", [Ver,Type,TKL,Code,MID]),

154. From ! {self(), {ok, Content}},

155. recv_subscribe_loop(Socket, Host, From);

156. {error, Reason} ->

157. From ! {self(), {error, Reason}},

158. io:format("{recv_subscribe_loop get error, ~p}~n", [Reason]),

159. recv_subscribe_loop(Socket, Host, From);

160. {stop, subscribe} ->

THESIS APPENDIX

101

161. stop,

162. gen_udp:close(Socket),

163. io:format("sub loop is stoped.~n")

164. after 5000 ->

165. From ! {self(), {error, no_message}},

166. recv_subscribe_loop(Socket, Host, From)

167. end.

168.

169. loop() ->

170. receive

171. {Pid, {ok, Content}} ->

172. io:format("{ok, ~p}~n", [Content]),

173. loop();

174. {Pid, {error, Content}} ->

175. io:format("{error, ~p}~n", [Content]),

176. loop();

177. Other ->

178. io:format("{error, recvother}~n"),

179. loop()

180. end.

181.

182. getpara(PDU, []) ->

183. {ok, PDU};

184. getpara(PDU, Allpara) ->

185. [H|L] = Allpara,

186. {ok, Newpdu} = case H of

187. {urihost, Val} ->

188. pdu:add_option(PDU, ?COAP_OPTION_URI_HOST, length(Val), Val);

189. {uriport, Val} ->

190. pdu:add_option(PDU, ?COAP_OPTION_URI_PORT, length(Val), Val);

191. {uriquery, Val} ->

192. pdu:add_option(PDU, ?COAP_OPTION_URI_QUERY, length(Val), Val);

193. {value, Val} ->

194. pdu:add_payload(PDU, Val, length(Val))

THESIS APPENDIX

102

195. end,

196. getpara(Newpdu, L).

PDU

197. -module(pdu).

198. -export([init/0, make_pdu/5, get_content/1, add_option/4, add_payload/3,

get_header/1]).

199. -on_load(init/0).

200.

201. -define(APPNAME, erl_coap).

202.

203. init() ->

204. case code:priv_dir(?APPNAME) of

205. {error, _} ->

206. error_logger:format("~w priv dir not found~n", [?APPNAME]),

207. exit(error);

208. PrivDir ->

209. erlang:load_nif(filename:join([PrivDir, "pdu_drv"]), 0)

210. end.

211.

212. make_pdu(_Type, _Method, _Token, _ID, _URI) ->

213. erlang:nif_error(nif_not_loaded).

214.

215. get_content(_Buffer) ->

216. erlang:nif_error(nif_not_loaded).

217.

218. add_option(_PDU, _Optnum, _Optlen, _Opnval) ->

219. erlang:nif_error(nif_not_loaded).

220.

221. add_payload(_PDU, _Payloadvalue, _Payloadlen) ->

222. erlang:nif_error(nif_not_loaded).

223.

THESIS APPENDIX

103

224. get_header(_PDU) ->

#COAP-PROXY

225. erlang:nif_error(nif_not_loaded).

226. -module(coapproxy).

227. -export([main/0, main/1]).

228. -include("coap.hel").

229.

230. %% this is a proxy demon

231. main() ->

232. Pid0 = spawn(fun openport/0),

233. register(proxy, Pid0),

234. Pid1 = spawn(fun openport6/0),

235. register(proxy6, Pid1).

236.

237. %% this is a proxy demon can be assign a special udp prot

238. main(P) ->

239. Pid2 = spawn(fun() -> openport(P) end),

240. register(proxy, Pid2),

241. Pid3 = spawn(fun() -> openport6(P) end),

242. register(proxy6, Pid3).

243.

244. openport() ->

245. case gen_udp:open(?PORT, [binary, inet, {active, true}]) of

246. {ok, Socket} ->

247. io:format("IPv4 Port:~p opened, wait for messages.~n",[?PORT]),

248. % 4 means IPv4

249. proxy_recv(Socket, 4);

250. {error, Reason} ->

251. io:format("{error, ~p}~n", [Reason])

252. end.

253. openport(Port) ->

254. case gen_udp:open(Port, [binary, inet, {active, true}]) of

THESIS APPENDIX

104

255. {ok, Socket} ->

256. io:format("IPv4 Port:~p opened, wait for messages.~n",[Port]),

257. proxy_recv(Socket, 4);

258. {error, Reason} ->

259. io:format("{error, ~p}~n", [Reason])

260. end.

261.

262. openport6() ->

263. case gen_udp:open(?PORT + 1, [binary, inet6, {active, true}]) of

264. {ok, Socket} ->

265. io:format("IPv6 Port:~p opened, wait for messages.~n",[?PORT + 1]),

266. % 6 means IPv6

267. proxy_recv(Socket, 6);

268. {error, Reason} ->

269. io:format("{error, ~p}~n", [Reason])

270. end.

271. openport6(Port) ->

272. case gen_udp:open(Port + 1, [binary, inet6, {active, true}]) of

273. {ok, Socket} ->

274. io:format("IPv6 Port:~p opened, wait for messages.~n",[Port+1]),

275. proxy_recv(Socket, 6);

276. {error, Reason} ->

277. io:format("{error, ~p}~n", [Reason])

278. end.

279. proxy_recv(S, FromIPvN) ->

280. receive

281. {udp, S, FromIP, FromPort, Bin} ->

282. spawn(fun() -> wait_response(FromIP, FromPort, S, Bin, FromIPvN) end),

283. proxy_recv(S, FromIPvN);

284. {error, Reason} ->

285. io:format("{get error message, ~p}~n", [Reason]),

286. proxy_recv(S, FromIPvN);

287. stop ->

288. gen_udp:close(S),

THESIS APPENDIX

105

289. io:format("UDP port closed~n")

290. end.

291.

292. wait_response(FromIP, FromPort, Socket, Bin, FromIPvN) ->

293. {_, A1, A2} = now(),

294. case pdu:get_URI(Bin) of

295. {ok, URI} ->

296. io:format("Get request message from:~p:~p with URI: ~p~n",[FromIP,

FromPort, URI]);

297. {error, URI} ->

298. io:format("get_URI error:~p~n",[{error, URI}]),

299. exit(no_URI)

300. end,

301. case pdu:get_option(Bin, ?COAP_OPTION_URI_HOST) of

302. {ok, URI_HOST} ->

303. io:format("Get URI_HOST: ~p~n",[URI_HOST]);

304. {error, URI_HOST} ->

305. io:format("get_option error ~p~n", [{error, URI_HOST}])

306. end,

307. {ok, RemoteIP} = inet_parse:address(URI_HOST),

308. case pdu:get_option(Bin, ?COAP_OPTION_URI_PORT) of

309. {ok, URI_PORT} ->

310. io:format("Get URI_PORT: ~p~n",[URI_PORT]);

311. {error, URI_PORT} ->

312. io:format("get_option error ~p~n", [{error, URI_PORT}])

313. end,

314. case FromIPvN of

315. 4 ->

316. RemotePort = list_to_integer(URI_PORT);

317. 6 ->

318. Temp = [0|URI_PORT],

319. [X1,X2,X3] = Temp,

320. RemotePort = X2 *256 + X3

321. end,

THESIS APPENDIX

106

322. case pdu:get_header(Bin) of

323. {ok, _Version, _Type, _Tkl, _Code, _MessageID} ->

324. io:format("Get Version: ~p, Type: ~p, Tkl: ~p, Code: ~p, MessageID:

~p~n",[_Version, _Type, _Tkl, _Code, _MessageID]);

325. {error, H_reason} ->

326. io:format("get_header error ~p~n", [{error, H_reason}]),

327. {_Type, _Code, _MessageID} = {0, 0, 0},

 %Unsafe case

328. exit(no_Header)

329. end,

330. case pdu:get_token(Bin) of

331. {ok, Token} ->

332. io:format("Get Token: ~p~n",[Token]);

333. {error, Token} ->

334. io:format("get_token error ~p~n", [{error, Token}]),

335. exit(no_Token)

336. end,

337. {ok, Socket_to} = case FromIPvN of

338. 4 ->

339. gen_udp:open(0, [binary, inet6, {active, true}]);

340. 6 ->

341. gen_udp:open(0, [binary, inet, {active, true}])

342. end,

343. gen_udp:send(Socket_to, RemoteIP, RemotePort, Bin),

344. %% send the packet and wait for the response

345. {_, A3, A4} = now(),

346. io:format("From client at: ~p seconds, ~p microseconds\n", [A1, A2]),

347. io:format("Leave proxy at: ~p seconds, ~p microseconds\n", [A3, A4]),

348. io:format("Process in proxy use: ~p

seconds\n",[((A3*1000000+A4)-(A1*1000000+A2))/1000000]),

349. receive

350. {udp, Socket_to, RemoteIP, RemotePort, B} ->

351. {_, A5, A6} = now(),

352. io:format("Round trip time from proxy to sensor: ~p seconds\n",

THESIS APPENDIX

107

[((A5*1000000+A6)-(A3*1000000+A4))/1000000]),

353. gen_udp:send(Socket, FromIP, FromPort, B),

354. {_, A7, A8} = now(),

355. io:format("Process time to forward packet: ~p seconds\n",

[((A7*1000000+A8)-(A5*1000000+A6))/1000000])

356. %% after 5 seconds the gateway send back timeout information

357. after 5000 ->

358. case pdu:make_pdu(?COAP_ACKNOWLEDGEMENT, ?COAP_GATEWAY_TIMEOUT,

binary_to_list(Token), _MessageID, atom_to_list(URI)) of

359. {ok, TimeoutResponse} ->

360. gen_udp:send(Socket, FromIP, FromPort, TimeoutResponse),

361. io:format("Not received response in 5 seconds.~n");

362. {error, Make_pdu} ->

363. io:format("Make pdu failed with reason: ~p~n",[Make_pdu])

364. end

365. end.

#PDU

366. -module(pdu).

367. -export([init/0, make_pdu/5, get_content/1, add_option/4, add_payload/3,

get_header/1, get_token/1, get_URI/1, get_option/2]).

368. -on_load(init/0).

369.

370. -define(APPNAME, wsngateway).

371.

372. init() ->

373. case code:priv_dir(?APPNAME) of

374. {error, _} ->

375. error_logger:format("~w priv dir not found~n", [?APPNAME]),

376. exit(error);

377. PrivDir ->

378. erlang:load_nif(filename:join([PrivDir, "pdu_drv"]), 0)

379. end.

THESIS APPENDIX

108

380.

381. MID::integer(), URI::list()) ->

382. make_pdu(_Type, _Method, _Token, _ID, _URI) ->

383. erlang:nif_error(nif_not_loaded).

384.

385. get_content(_Buffer) ->

386. erlang:nif_error(nif_not_loaded).

387.

388. add_option(_PDU, _Optnum, _Optlen, _Opnval) ->

389. erlang:nif_error(nif_not_loaded).

390.

391. add_payload(_PDU, _Payloadvalue, _Payloadlen) ->

392. erlang:nif_error(nif_not_loaded).

393.

394. Code::integer(), message::integer()} |

395. get_header(_PDU) ->

396. erlang:nif_error(nif_not_loaded).

397.

398. get_token(_PDU) ->

399. erlang:nif_error(nif_not_loaded).

400.

401. get_URI(_PUD) ->

402. erlang:nif_error(nif_not_loaded).

403.

404. get_option(_PDU, _Optnum) ->

405. erlang:nif_error(nif_not_loaded).

#SERIAL

406. -module(serial).

407. -export([slipinit/0]).

408.

409. %% This function initialize the SLIP port

410. slipinit() ->

THESIS APPENDIX

109

411. {ok, LocalIP} = inet_parse:address("2001::a"),

412. gen_udp:open(0, [binary, inet6, {active, true}, {ifaddr, LocalIP}]).

413.

414. %% this is not used in the project.

415. serialloop(Socket) ->

416. {ok, Local} = inet_parse:address("127.0.0.1"),

417. receive

418. {udp, Socket, Local, 12345, Packet} ->

419. {ok, _, _, _, _, Mid} = pdu:get_header(Packet),

420. % IntMid = binary_to_integer(BinMid),

421. io:format("Mid is: ~p~n",[Mid]),

422. case get_keys(Mid) of

423. undefined ->

424. io:format("undefined MessageID\n"),

425. undefined;

426. [PID] ->

427. erase(PID),

428. PID ! {back, self(), Packet}

429. end,

430. serialloop(Socket);

431. {delete, PID} ->

432. erase(PID),

433. serialloop(Socket);

434. {FromPid, Mid, URI_HOST, URI_PORT, Coap} ->

435. put(FromPid, Mid),

436. Host_bin = list_to_binary(URI_HOST),

437. Port_int = list_to_integer(URI_PORT),

438. Packet = <<Host_bin/binary, 255:8, Port_int:16, 255:8, Coap/binary>>,

439. gen_udp:send(Socket, Local, 12345, Packet),

440. serialloop(Socket)

441. end.

UDP-SERVER

THESIS APPENDIX

110

442. #include "contiki.h"

443. #include "contiki-net.h"

444. #include "sys/ctimer.h"

445. #include "net/uip.h"

446. #include "net/hc.h"

447. #include "net/uip-ds6.h"

448. #include "net/uip-udp-packet.h"

449. #include "net/netstack.h"

450. #include "dev/leds.h"

451. #include "sys/clock.h"

452. #include "dev/sht11-sensor.h"

453. #include "dev/light-sensor.h"

454. #include "er-coap-13.h"

455. #include "buffer.h"

456. #include "erbium.h"

457.

458. #include <stdio.h>

459. #include <string.h>

460.

461. //#include <netinet/in.h>

462.

463. #define UDP_SERVER_PORT 5678

464. #define UIP_UDPIP_BUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])

465.

466. #define DEBUG DEBUG_PRINT

467. #include "net/uip-debug.h"

468.

469. #define MAX(a, b) ((a) >= (b)? (a) : (b))

470.

471.

472. static struct uip_udp_conn *conn;

473. char val[20];

474. coap_packet_t* response;

475. unsigned short s,r;

THESIS APPENDIX

111

476. int p;

477.

478. PROCESS(udp_server_process, "UDP Server process");

479. AUTOSTART_PROCESSES(&udp_server_process);

480.

481. void

482. init_message(coap_packet_t *packet, uint8_t type, uint8_t code, uint16_t mid)

483. // , uint8_t code, uint16_t mid, uint8_t version)

484. {

485. coap_packet_t * coap_pkt = (coap_packet_t *) packet;

486. memset(coap_pkt, 0, sizeof(coap_packet_t));

487.

488. coap_pkt->version=1;

489. coap_pkt->type = type;

490. coap_pkt->code = code;

491. coap_pkt->mid = mid;

492. }

493.

494. static void

495. tcpip_handler(void)

496. {

497. int value=0;

498. //printf("%.*x %d\n",uip_datalen(),uip_appdata,UIP_UDPIP_BUF->len);

499. if (init_buffer(300)) {

500. if(uip_newdata()) {

501. coap_packet_t* request =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t));

502. // coap_packet_t* response;

503. if (request) {

504. coap_parse_message(request, uip_appdata, uip_datalen());

505. response =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t));

506. init_message(response,COAP_TYPE_ACK,0,request->mid);

507.

THESIS APPENDIX

112

 if(!memcmp("liph",request->uri_path,MAX(request->uri_path_len,4)))

508. {

509. if (request->code==1)//get

510. {

511. s=clock_time();

512. value=get_light_photosynthetic();

513. r=clock_time();

514. printf("%u,%u,%u\n",s,r,(r-s));

515. sprintf(val,"%d",value);

516. //printf("%.*s\n",strlen(val),val);

517. coap_set_status_code(response,CONTENT_2_05);

518. coap_set_payload(response,&val,strlen(val));

519. // printf("%d",value);

520. }

521. else

522. coap_set_status_code(response,METHOD_NOT_ALLOWED_4_05);

 //Not Allowed

523. }

524. else

if(!memcmp("lito",request->uri_path,MAX(request->uri_path_len,4)))

525. {

526. if (request->code==1)//get

527. {

528. s=clock_time();

529. value=get_light_total_solar();

530. r=clock_time();

531. printf("%u,%u,%u\n",s,r,(r-s));

532. sprintf(val,"%d",value);

533. //printf("%.*s\n",strlen(val),val);

534. coap_set_status_code(response,CONTENT_2_05);

535. coap_set_payload(response,&val,strlen(val));

536. // printf("%d",value);

537. }

538. else

THESIS APPENDIX

113

539. coap_set_status_code(response,METHOD_NOT_ALLOWED_4_05);

540. }

541. else

if(!memcmp("temp",request->uri_path,MAX(request->uri_path_len,4)))

542. {

543. if (request->code==1)//get

544. {

545. s=clock_time();

546. value=get_temperature();

547. r=clock_time();

548. printf("%u,%u,%u\n",s,r,(r-s));

549. sprintf(val,"%d",value);

550. //printf("%.*s\n",strlen(val),val);

551. coap_set_status_code(response,CONTENT_2_05);

552. coap_set_payload(response,&val,strlen(val));

553. // printf("%d",value);

554. }

555. else

556. coap_set_status_code(response,METHOD_NOT_ALLOWED_4_05);

557. }

558. else

if(!memcmp("humi",request->uri_path,MAX(request->uri_path_len,4)))

559. {

560. if (request->code==1)//get

561. {

562. value=get_humidity();

563. sprintf(val,"%d",value);

564. //printf("%.*s\n",strlen(val),val);

565. coap_set_status_code(response,CONTENT_2_05);

566. coap_set_payload(response,&val,strlen(val));

567. // printf("%d",value);

568. }

THESIS APPENDIX

114

569. else

570. coap_set_status_code(response,METHOD_NOT_ALLOWED_4_05);

571. }

572. else

if(!memcmp("batt",request->uri_path,MAX(request->uri_path_len,4)))

573. {

574. if (request->code==1)//get

575. {

576. value=get_battery();

577. sprintf(val,"%d",value);

578. //printf("%.*s\n",strlen(val),val);

579. coap_set_status_code(response,CONTENT_2_05);

580. coap_set_payload(response,&val,strlen(val));

581. // printf("%d",value);

582. }

583. else

584. coap_set_status_code(response,METHOD_NOT_ALLOWED_4_05);

585. }

586. else

if(!memcmp("leds",request->uri_path,MAX(request->uri_path_len,4)))

587. {

588. uint8_t ld;

589. if (request->code==1)//get

590. {

591. ld=leds_get();

592. //printf("%x\n",ld);

593. coap_set_status_code(response,CONTENT_2_05);

594. coap_set_payload(response,&ld,1);

595. }

596. else if (request->code==3)//put

597. {

598. memcpy(&ld,request->uri_query,1);

599. if(48<=ld && ld<=55)

THESIS APPENDIX

115

600. {

601. leds_init();

602. leds_on(ld-48);

603. }

604. else

605. coap_set_status_code(response,BAD_REQUEST_4_00);

606. }

607. else if (request->code==4)//delete

608. {

609. memcpy(&ld,request->uri_query,2);

610. if (48<=ld && ld<=55)

611. leds_off(ld);

612. else

613. coap_set_status_code(response,BAD_REQUEST_4_00);

614. }

615. }

616. else

617. {

618. //strcpy(val,"\0");

619. coap_set_status_code(response,NOT_FOUND_4_04);

620.

621. }

622.

623.

 coap_set_header_token(response,request->token,request->token_len);

624. coap_set_header_uri_path(response,request->uri_path);

625.

626. }

627. }

628. delete_buffer();

629. }

630. }

THESIS APPENDIX

116

631.

632. int

633. get_temperature(void)

634. {

635. return ((sht11_sensor.value(SHT11_SENSOR_TEMP) / 10) - 396) / 10;

636. }

637.

638. int

639. get_light_photosynthetic(void)

640. {

641. return 10 * light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC) / 7;

642. }

643.

644. int

645. get_light_total_solar(void)

646. {

647. return 10 * light_sensor.value(LIGHT_SENSOR_TOTAL_SOLAR) / 7;

648. }

649.

650. int

651. get_humidity(void)

652. {

653. int h=sht11_sensor.value(SHT11_SENSOR_HUMIDITY);

654. return -4+405*h/10000-28*h*h/10000000;

655. }

656.

657. int

658. get_humidity_true(void)

659. {

660. int t=get_temp();

661. int h=sht11_sensor.value(SHT11_SENSOR_HUMIDITY);

662. return (t-25)*(1/100+8*h/10000)+get_humi();

663. }

664.

THESIS APPENDIX

117

665. int

666. get_battery(void)

667. {

668. return sht11_sensor.value(SHT11_SENSOR_BATTERY_INDICATOR);

669. }

670.

671. void

672. send_packet(void* packet)

673. {

674. //int i;

675. char buf[300];

676. int size=0;

677. // printf("mid: %u\n",UIP_HTONS(response->mid));

678. // printf("type: %u\n",response->type);

679. // printf("code: %u\n",response->code);

680. // printf("payload: %s\n",*response->payload);

681. // printf("token:");

682. // for (i=0;i<response->token_len;i++)

683. // printf("%d,",response->token[i]);

684. // printf("\n");

685.

686. size=coap_serialize_message(packet,buf);

687. printf("Sending packet... MessageID: %u Packet

size: %d\n",UIP_HTONS(response->mid),size);

688. uip_udp_packet_sendto(conn, buf, size,&UIP_UDPIP_BUF->srcipaddr,

UIP_UDPIP_BUF->srcport);

689. }

690.

691. static void

692. print_local_addresses(void)

693. {

694. int i;

695. uint8_t state;

696.

THESIS APPENDIX

118

697. PRINTF("IPv6 addresses: ");

698. for(i = 0; i < UIP_DS6_ADDR_NB; i++) {

699. state = uip_ds6_if.addr_list[i].state;

700. if(uip_ds6_if.addr_list[i].isused &&(state == ADDR_TENTATIVE || state ==

ADDR_PREFERRED)) {

701. PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);

702. PRINTF("\n");

703. }

704. }

705. }

706.

707. static void

708. set_global_address(void)

709. {

710. uip_ipaddr_t ipaddr;

711.

712. uip_ip6addr(&ipaddr, 0x2001, 0, 0, 0, 0, 0, 0, 0);

713. uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);

714. uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF);

715. uip_ip6addr(&ipaddr, 0x2001, 0, 0, 0, 0, 0, 0,1);

716. uip_ds6_addr_add(&ipaddr, 0, ADDR_MANUAL);

717.

718. }

719.

720. PROCESS_THREAD(udp_server_process, ev, data)

721. {

722. int i;

723.

724. PROCESS_BEGIN();

725.

726. PROCESS_PAUSE();

727.

728. set_global_address();

729.

THESIS APPENDIX

119

730. PRINTF("UDP server process started\n");

731.

732. print_local_addresses();

733.

734. SENSORS_ACTIVATE(light_sensor);

735. SENSORS_ACTIVATE(sht11_sensor);

736. conn = udp_new(NULL, NULL, NULL);

737. if(conn == NULL) {

738. PRINTF("No connection!\n");

739. PROCESS_EXIT();

740. }

741. udp_bind(conn, UIP_HTONS(UDP_SERVER_PORT));

742.

743. while(1) {

744. PROCESS_YIELD();

745. if(ev == tcpip_event) {

746. tcpip_handler();

747. for(i=1;i<sizeof(uip_buf);i++)

748. printf("%x", uip_buf[i]);

749. printf("\n");

750. send_packet(response);

751. }

752.

753. }

754.

755. PROCESS_END();

756. }

#UDP-CLIENT

757. #include "contiki.h"

758. #include "contiki-net.h"

759. #include "sys/clock.h"

THESIS APPENDIX

120

760. #include "net/uip.h"

761. #include "net/uip-ds6.h"

762. #include "net/uip-udp-packet.h"

763. #include "net/netstack.h"

764. #include "dev/leds.h"

765. #include "dev/button-sensor.h"

766. #include "dev/sht11-sensor.h"

767. #include "dev/light-sensor.h"

768. #include "er-coap-13.h"

769. #include "buffer.h"

770. #include "erbium.h"

771.

772.

773. #include <stdio.h>

774. #include <string.h>

775.

776. #define UDP_SERVER_PORT 5678

777. #define TAP_PORT 5684

778. #define UIP_UDPIP_BUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])

779.

780. #define DEBUG DEBUG_PRINT

781. #include "net/uip-debug.h"

782.

783. #define MAX(a, b) ((a) >= (b)? (a) : (b))

784.

785.

786. static struct uip_udp_conn *conn;

787. static uip_ipaddr_t tap_ipaddr;

788. char val[20];

789. unsigned short s,r;

790. int p;

791.

792.

793. PROCESS(udp_client_process, "UDP Server process");

THESIS APPENDIX

121

794. AUTOSTART_PROCESSES(&udp_client_process);

795.

796. uint8_t

797. int8_rand(void)

798. {

799. return 1+(int)(255.0*rand()/(32767+1.0));

800. }

801.

802. void

803. init_message(coap_packet_t *packet, uint8_t type, uint8_t code, uint16_t mid)

804. {

805. coap_packet_t * coap_pkt = (coap_packet_t *) packet;

806. memset(coap_pkt, 0, sizeof(coap_packet_t));

807.

808. coap_pkt->version=1;

809. coap_pkt->type = type;

810. coap_pkt->code = code;

811. coap_pkt->mid = mid;

812. }

813.

814. static void

815. tcpip_handler(void)

816. {

817. int value=0;

818. if (init_buffer(300)) {

819. if(uip_newdata()) {

820. coap_packet_t* request =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t));

821. if (request) {

822. coap_parse_message(request, uip_appdata, uip_datalen());

823. printf("Value

is: %.*s\n",request->payload_len,request->payload);

824. }

825. }

THESIS APPENDIX

122

826. delete_buffer();

827. }

828. }

829.

830.

831. void

832. send_packet(void)

833. {

834. int i=0;

835. uint8_t token[8];

836. char buf[300];

837. int size=0;

838. if (init_buffer(300)) {

839. coap_packet_t* request =

(coap_packet_t*)allocate_buffer(sizeof(coap_packet_t));

840. init_message(request,COAP_TYPE_CON,1,random_rand());

841. //printf("%u %u\n",int8_rand(),random_rand());

842. for(i;i<8;i++)

843. token[i]=int8_rand();

844. coap_set_header_token(request,token,8);

845. coap_set_header_uri_path(request,"time");

846. coap_set_header_uri_host(request,"127.0.0.1");

847. request->uri_port=5678;

848. SET_OPTION(request, COAP_OPTION_URI_PORT);

849. size=coap_serialize_message(request,buf);

850. printf("Sending Request... Message ID: %u\n",UIP_HTONS(request->mid));

851. uip_udp_packet_sendto(conn, buf, size,&tap_ipaddr, UIP_HTONS(TAP_PORT));

852. delete_buffer();

853. }

854. }

855.

856. static void

857. print_local_addresses(void)

858. {

THESIS APPENDIX

123

859. int i;

860. uint8_t state;

861.

862. PRINTF("IPv6 addresses: ");

863. for(i = 0; i < UIP_DS6_ADDR_NB; i++) {

864. state = uip_ds6_if.addr_list[i].state;

865. if(uip_ds6_if.addr_list[i].isused &&(state == ADDR_TENTATIVE || state ==

ADDR_PREFERRED)) {

866. PRINT6ADDR(&uip_ds6_if.addr_list[i].ipaddr);

867. PRINTF("\n");

868. }

869. }

870. }

871.

872. static void

873. set_global_address(void)

874. {

875. uip_ipaddr_t ipaddr;

876.

877. uip_ip6addr(&ipaddr, 0x2001, 0, 0, 0, 0, 0, 1, 0);

878. uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);

879. uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF);

880. uip_ip6addr(&ipaddr, 0x2001, 0, 0, 0, 0, 0, 1,1);

881. uip_ds6_addr_add(&ipaddr, 0, ADDR_MANUAL);

882.

883. uip_ip6addr(&tap_ipaddr, 0x2001, 0, 0, 0, 0, 0, 0, 0xa);

884. }

885.

886. PROCESS_THREAD(udp_client_process, ev, data)

887. {

888.

889. PROCESS_BEGIN();

890.

THESIS APPENDIX

124

891. set_global_address();

892.

893. PRINTF("UDP client process started\n");

894.

895. print_local_addresses();

896.

897. SENSORS_ACTIVATE(button_sensor);

898. SENSORS_ACTIVATE(light_sensor);

899. SENSORS_ACTIVATE(sht11_sensor);

900. conn = udp_new(NULL, NULL, NULL);

901. if(conn == NULL) {

902. PRINTF("No connection!\n");

903. PROCESS_EXIT();

904. }

905. udp_bind(conn, UIP_HTONS(UDP_SERVER_PORT));

906.

907. while(1) {

908. PROCESS_WAIT_EVENT();

909. if(ev == tcpip_event) {

910. tcpip_handler();

911. r=clock_time();

912. printf("æ”¶%d\n",r);

913. p=(r-s)*1000000/128;

914. printf("time %u\n",p);

915. }

916. if(ev == sensors_event && data == &button_sensor){

917. send_packet();

918. s=clock_time();

919. printf("å�‘%d\n",s);

920. }

921.

922. }

923.

THESIS APPENDIX

125

924. PROCESS_END();

925. }

#BORDER_ROUTER

926. #include "contiki.h"

927. #include "contiki-lib.h"

928. #include "contiki-net.h"

929. #include "net/uip.h"

930. #include "net/uip-ds6.h"

931. #include "net/rpl/rpl.h"

932.

933. #include "net/netstack.h"

934. #include "dev/button-sensor.h"

935. #include "dev/slip.h"

936. #include "dev/leds.h"

937.

938. #include <stdio.h>

939. #include <stdlib.h>

940. #include <string.h>

941. #include <ctype.h>

942.

943. #define DEBUG 0

944. #include "net/uip-debug.h"

945.

946. uint16_t dag_id[] = {0x1111, 0x1100, 0, 0, 0, 0, 0, 0x0011};

947.

948. static uip_ipaddr_t prefix;

949. static uint8_t prefix_set;

950.

951. PROCESS(border_router_process, "Border router process");

952.

953. #if WEBSERVER==0

THESIS APPENDIX

126

954. AUTOSTART_PROCESSES(&border_router_process);

955. #elif WEBSERVER>1

956.

957. #include "webserver-nogui.h"

958. AUTOSTART_PROCESSES(&border_router_process,&webserver_nogui_process);

959. #else

960.

961. #include "httpd-simple.h"

962.

963. #define WEBSERVER_CONF_LOADTIME 0

964. #define WEBSERVER_CONF_FILESTATS 0

965. #define WEBSERVER_CONF_NEIGHBOR_STATUS 0

966.

967. #define WEBSERVER_CONF_ROUTE_LINKS 0

968. #if WEBSERVER_CONF_ROUTE_LINKS

969. #define BUF_USES_STACK 1

970. #endif

971.

972. PROCESS(webserver_nogui_process, "Web server");

973. PROCESS_THREAD(webserver_nogui_process, ev, data)

974. {

975. PROCESS_BEGIN();

976.

977. httpd_init();

978.

979. while(1) {

980. PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

981. httpd_appcall(data);

982. }

983.

984. PROCESS_END();

985. }

986. AUTOSTART_PROCESSES(&border_router_process,&webserver_nogui_process);

987.

THESIS APPENDIX

127

988. static const char *TOP = "<html><head><title>ContikiRPL</title></head><body>\n";

989. static const char *BOTTOM = "</body></html>\n";

990. #if BUF_USES_STACK

991. static char *bufptr, *bufend;

992. #define ADD(...) do { \

993. bufptr += snprintf(bufptr, bufend - bufptr, __VA_ARGS__); \

994. } while(0)

995. #else

996. static char buf[256];

997. static int blen;

998. #define ADD(...) do { \

999. blen += snprintf(&buf[blen], sizeof(buf) - blen, __VA_ARGS__); \

1000. } while(0)

1001. #endif

1002.

1003. /*---*/

1004. static void

1005. ipaddr_add(const uip_ipaddr_t *addr)

1006. {

1007. uint16_t a;

1008. int i, f;

1009. for(i = 0, f = 0; i < sizeof(uip_ipaddr_t); i += 2) {

1010. a = (addr->u8[i] << 8) + addr->u8[i + 1];

1011. if(a == 0 && f >= 0) {

1012. if(f++ == 0) ADD("::");

1013. } else {

1014. if(f > 0) {

1015. f = -1;

1016. } else if(i > 0) {

1017. ADD(":");

1018. }

1019. ADD("%x", a);

1020. }

1021. }

THESIS APPENDIX

128

1022. }

1023. /*---*/

1024. static

1025. PT_THREAD(generate_routes(struct httpd_state *s))

1026. {

1027. static int i;

1028. static uip_ds6_route_t *r;

1029. static uip_ds6_nbr_t *nbr;

1030.

1031. #if BUF_USES_STACK

1032. char buf[256];

1033. #endif

1034. #if WEBSERVER_CONF_LOADTIME

1035. static clock_time_t numticks;

1036. numticks = clock_time();

1037. #endif

1038.

1039. PSOCK_BEGIN(&s->sout);

1040.

1041. SEND_STRING(&s->sout, TOP);

1042. #if BUF_USES_STACK

1043. bufptr = buf;bufend=bufptr+sizeof(buf);

1044. #else

1045. blen = 0;

1046. #endif

1047. ADD("Neighbors<pre>");

1048.

1049. for(nbr = nbr_table_head(ds6_neighbors);

1050. nbr != NULL;

1051. nbr = nbr_table_next(ds6_neighbors, nbr)) {

1052.

1053. #if WEBSERVER_CONF_NEIGHBOR_STATUS

1054. #if BUF_USES_STACK

1055. {char* j=bufptr+25;

THESIS APPENDIX

129

1056. ipaddr_add(&nbr->ipaddr);

1057. while (bufptr < j) ADD(" ");

1058. switch (nbr->state) {

1059. case NBR_INCOMPLETE: ADD(" INCOMPLETE");break;

1060. case NBR_REACHABLE: ADD(" REACHABLE");break;

1061. case NBR_STALE: ADD(" STALE");break;

1062. case NBR_DELAY: ADD(" DELAY");break;

1063. case NBR_PROBE: ADD(" NBR_PROBE");break;

1064. }

1065. }

1066. #else

1067. {uint8_t j=blen+25;

1068. ipaddr_add(&nbr->ipaddr);

1069. while (blen < j) ADD(" ");

1070. switch (nbr->state) {

1071. case NBR_INCOMPLETE: ADD(" INCOMPLETE");break;

1072. case NBR_REACHABLE: ADD(" REACHABLE");break;

1073. case NBR_STALE: ADD(" STALE");break;

1074. case NBR_DELAY: ADD(" DELAY");break;

1075. case NBR_PROBE: ADD(" NBR_PROBE");break;

1076. }

1077. }

1078. #endif

1079. #else

1080. ipaddr_add(&nbr->ipaddr);

1081. #endif

1082.

1083. ADD("\n");

1084. #if BUF_USES_STACK

1085. if(bufptr > bufend - 45) {

1086. SEND_STRING(&s->sout, buf);

1087. bufptr = buf; bufend = bufptr + sizeof(buf);

1088. }

1089. #else

THESIS APPENDIX

130

1090. if(blen > sizeof(buf) - 45) {

1091. SEND_STRING(&s->sout, buf);

1092. blen = 0;

1093. }

1094. #endif

1095. }

1096. ADD("</pre>Routes<pre>");

1097. SEND_STRING(&s->sout, buf);

1098. #if BUF_USES_STACK

1099. bufptr = buf; bufend = bufptr + sizeof(buf);

1100. #else

1101. blen = 0;

1102. #endif

1103.

1104. for(r = uip_ds6_route_head(); r != NULL; r = uip_ds6_route_next(r)) {

1105.

1106. #if BUF_USES_STACK

1107. #if WEBSERVER_CONF_ROUTE_LINKS

1108. ADD("<a href=http://[");

1109. ipaddr_add(&r->ipaddr);

1110. ADD("]/status.shtml>");

1111. ipaddr_add(&r->ipaddr);

1112. ADD("");

1113. #else

1114. ipaddr_add(&r->ipaddr);

1115. #endif

1116. #else

1117. #if WEBSERVER_CONF_ROUTE_LINKS

1118. ADD("<a href=http://[");

1119. ipaddr_add(&r->ipaddr);

1120. ADD("]/status.shtml>");

1121. SEND_STRING(&s->sout, buf);

1122. blen = 0;

1123. ipaddr_add(&r->ipaddr);

THESIS APPENDIX

131

1124. ADD("");

1125. #else

1126. ipaddr_add(&r->ipaddr);

1127. #endif

1128. #endif

1129. ADD("/%u (via ", r->length);

1130. ipaddr_add(uip_ds6_route_nexthop(r));

1131. if(1 || (r->state.lifetime < 600)) {

1132. ADD(") %lus\n", r->state.lifetime);

1133. } else {

1134. ADD(")\n");

1135. }

1136. SEND_STRING(&s->sout, buf);

1137. #if BUF_USES_STACK

1138. bufptr = buf; bufend = bufptr + sizeof(buf);

1139. #else

1140. blen = 0;

1141. #endif

1142. }

1143. ADD("</pre>");

1144.

1145. #if WEBSERVER_CONF_FILESTATS

1146. static uint16_t numtimes;

1147. ADD("
<i>This page sent %u times</i>",++numtimes);

1148. #endif

1149.

1150. #if WEBSERVER_CONF_LOADTIME

1151. numticks = clock_time() - numticks + 1;

1152. ADD(" <i>(%u.%02u

sec)</i>",numticks/CLOCK_SECOND,(100*(numticks%CLOCK_SECOND))/CLOCK_SECOND));

1153. #endif

1154.

1155. SEND_STRING(&s->sout, buf);

1156. SEND_STRING(&s->sout, BOTTOM);

THESIS APPENDIX

132

1157.

1158. PSOCK_END(&s->sout);

1159. }

1160. /*---*/

1161. httpd_simple_script_t

1162. httpd_simple_get_script(const char *name)

1163. {

1164.

1165. return generate_routes;

1166. }

1167.

1168. #endif /* WEBSERVER */

1169.

1170. /*---*/

1171. static void

1172. print_local_addresses(void)

1173. {

1174. int i;

1175. uint8_t state;

1176.

1177. PRINTA("Server IPv6 addresses:\n");

1178. for(i = 0; i < UIP_DS6_ADDR_NB; i++) {

1179. state = uip_ds6_if.addr_list[i].state;

1180. if(uip_ds6_if.addr_list[i].isused &&

1181. (state == ADDR_TENTATIVE || state == ADDR_PREFERRED)) {

1182. PRINTA(" ");

1183. uip_debug_ipaddr_print(&uip_ds6_if.addr_list[i].ipaddr);

1184. PRINTA("\n");

1185. }

1186. }

1187. }

1188. /*---*/

1189. void

1190. request_prefix(void)

THESIS APPENDIX

133

1191. {

1192. uip_buf[0] = '?';

1193. uip_buf[1] = 'P';

1194. uip_len = 2;

1195. slip_send();

1196. uip_len = 0;

1197. }

1198. /*---*/

1199. void

1200. set_prefix_64(uip_ipaddr_t *prefix_64)

1201. {

1202. uip_ipaddr_t ipaddr;

1203. memcpy(&prefix, prefix_64, 16);

1204. memcpy(&ipaddr, prefix_64, 16);

1205. prefix_set = 1;

1206. uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr);

1207. uip_ds6_addr_add(&ipaddr, 0, ADDR_AUTOCONF);

1208. }

1209. /*---*/

1210. PROCESS_THREAD(border_router_process, ev, data)

1211. {

1212. static struct etimer et;

1213. rpl_dag_t *dag;

1214.

1215. PROCESS_BEGIN();

1216.

1217. prefix_set = 0;

1218. NETSTACK_MAC.off(0);

1219. PROCESS_PAUSE();

1220. SENSORS_ACTIVATE(button_sensor);

1221.

1222. PRINTF("RPL-Border router started\n");

1223.

1224. while(!prefix_set) {

THESIS APPENDIX

134

1225. etimer_set(&et, CLOCK_SECOND);

1226. request_prefix();

1227. PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

1228. }

1229.

1230. dag = rpl_set_root(RPL_DEFAULT_INSTANCE,(uip_ip6addr_t *)dag_id);

1231. if(dag != NULL) {

1232. rpl_set_prefix(dag, &prefix, 64);

1233. PRINTF("created a new RPL dag\n");

1234. }

1235.

1236. NETSTACK_MAC.off(1);

1237.

1238. #if DEBUG || 1

1239. print_local_addresses();

1240. #endif

1241.

1242. while(1) {

1243. PROCESS_YIELD();

1244. if (ev == sensors_event && data == &button_sensor) {

1245. PRINTF("Initiating global repair\n");

1246. rpl_repair_root(RPL_DEFAULT_INSTANCE);

1247. }

1248.

1249. }

1250.

1251. PROCESS_END();

1252. }

1253. /*---*/

THESIS BIBLIGRAPHIC REFERENCES

135

Bibliographic references

[1] http://en.wikipedia.org/wiki/Main_Page

[2] Mahmood Ali, Sai Kumar Ravula. Real-time support and energy efficiency in

wireless sensor networks. Technical report, IDE0805, January 2008

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for Sensor

Networks

[4] Tobias Reusing，Christoph Söllner,Comparison of Operating Systems TinyOS

and Contiki: 2012-08

[5] Francesco Cesarini and Simon Thompson. Erlang Programming. June 2009:

First Edition.

[6] Alessandro Sivieri, A Programming Framework for the Internet of Things

[7] Z. Shelby, K. Hartke, C. Bormann. draft-ietf-core-coap-18. June 28, 2013

[8] tmote-sky-datasheet

[9] IoT6 project at: http://www.iot6.eu/

[10] IoT-A project at: http://www.iot-a.eu

 [11] WebIOPi Internet of Things framework at: https://code.google.com/p/webiopi/

[12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347 (Proposed Standard), Jan. 2012.

[13] S. Raza, S. Duquennoy, J. H¨oglund, U. Roedig, and T. Voigt. Secure Commu-

nication for the Internet of Things - A Comparison of Link-Layer Security and IPsec

for 6LoWPAN. Security and Communication Networks, Jan. 2012.

