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Abstract

The need of alternative or complementary localization methods in a mobile environ-
ment has motivated the study of image-based approaches. Relevant works on the
area often miss the inherent limitations of mobile devices resulting in a clear need
of more adequate techniques. In this order of ideas the main purpose of this work is
to investigate the use of binary features in the context of large-scale mobile visual
landmark recognition.
In content-based image retrieval a popular approach for images description is the
Bag-of-Features model which using a codebook learned from a set of local features
produces global image descriptors by quantizing local ones. For codebook con-
struction the BoF model typically relies on some variant of the k-means clustering
algorithm which is well defined only for real-valued data. In the basis of a thorough
discussion about the different issues regarding clustering binary data streams, in
this work are proposed and evaluated two approaches to build codebooks starting
from binary features.
The results of the evaluation of the proposed approaches reveal firstly that codebooks
built from binary descriptors using Hierarchical K-Majority are less representative
than their real-valued counterpart. Secondly they evidence that the most influential
factor governing retrieval performance is the utilized detector and descriptor. Some
identified strategies to overcome these issues are: to increase codebook’s representa-
tivity by means of a denser images description, to keep high the ratio of the number
of descriptors to the number of code vectors, and to use pairs of feature detectors
and descriptors invariant only to the transformation effects present in the target
images.
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Sommario

L’esigenza di metodi di localizzazione alternativi o complementari in un ambiente
mobile ha motivato lo studio degli approcci basati sulle immagini. Studi rilevanti
nell’area spesso ignorano le limitazioni intrinseche dei dispositivi mobili, tali cir-
costanze evidenziano la necessitá di tecniche piú adeguate. In questo ordine di idee
lo scopo principale di questo lavoro é quello di investigare l’uso di caratteristiche
binarie nel contesto del riconoscimento visivo di punti di interesse su larga scala in
ambiente mobile.
Nel recupero di immagini basato sul contenuto un approccio popolare per la de-
scrizione di immagini é il modello della borsa di parole il quale utilizza un libro
codice appreso da un insieme di caratteristiche locali per produrre descrittori glob-
ali di immagini quantizzando quelli locali. Per la costruzione del libro codice il
modello BoF si basa tipicamente su qualche variante dell’algoritmo di clustering k-
means il quale é ben definito solo per dati a valori reali. In base ad una discussione
approfondita sui diversi problemi riguardanti il clustering di dati binari, in questo
lavoro vengono proposti e valutati due approcci per costruire libri codice a partire
da caratteristiche binarie.
I risultati della valutazione degli approcci proposti rivelano in primo luogo che
i libri codice costruiti da descrittori binari utilizzando “Hierarchical K-Majority”
sono meno rappresentativi della loro controparte a valori reali. In secondo luogo
i risultati evidenziano che il fattore piú influente sulla capacitá di recupero é la
combinazione di rivelatore e descrittore utilizzata. Alcune strategie individuate per
superare questi problemi sono: aumentare la rappresentativitá del libro codice me-
diante una descrizione densa delle immagini, mantenere elevato il rapporto tra il
numero di descrittori al numero di vettori di codice, e utilizzare coppie di rivelatori
e descrittori di caratteristiche che siano invarianti solo agli effetti di trasformazione
presenti nelle immagini sotto descrizione.
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Introduction
In recent years with the proliferation of mobile devices with increasing process-
ing power and built-in context sensors1 has increased the number of location and
context-based services demanding for real-time self-localization. Traditional ap-
proaches to determine location use Global Positioning System (GPS) receivers or
cellular towers proximity in outdoor environments and WiFi-based alternatives for
indoors. Nevertheless most interesting location-based services (LBS) applications
such as points of interest search, active mobile advertising, and social applications
are delivered in densely populated environments like downtown areas with urban
canyons or indoors scenarios where GPS readings are unreliable or unavailable [30].
The lack of enough support using satellite navigation claims for alternative or com-
plementary positioning mechanisms capable of delivering location information al-
most in real-time and scaling up to city level.
The problem gains importance because its emerging commercial aperture with prod-
ucts such as Google Goggles, a mobile application for image recognition providing
visual product search and landmark identification, and Google Glasses, a wearable
computer with an optical head-mounted display, as well as the interest from the
robotics community in providing robots the ability of understanding its surrounding
in an unknown environment, task known as simultaneous localization and mapping
(SLAM).
Recent work in content-based image retrieval (CBIR) and object-based image re-
trieval [31, 17, 20, 21], where the original image retrieval problem is re-formulated
as a text retrieval one, has paved the way towards the location recognition problem
[28, 30, 5, 2] on which an image or a continuous sequence of images is used as a visual
fingerprint of the environment and matched to an existing georeferenced database
in order to estimate user’s location. The outcome might include scene location and
viewing direction estimates. While very innovative and promising, location recogni-
tion using visual clues still relies on vague prior knowledge on location coming from
sources such as wireless networks (WiFi) or cell towers (Cell-IDs).
Even though the use of contextual information benefits the recognition process [6]
here I concentrate on the content analysis part of the problem. From now on we
deal with an image matching task which can be approached either in a 2D-to-2D
or 2D-to-3D manner; in this work and despite the growing trend towards using 3D
information [2, 27, 9] I focus on finding 2D-to-2D correspondences.

1Inertial Measurement Units (IMU), Global Positioning System (GPS) receivers, and digital cam-
eras.
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A key challenge for visual localization is the rapid and accurate search of similar
images to a query image by efficiently describing and retrieving objects exhibiting
a number of variations. It’s complexity lies on the large variation of scene visual
appearance due to changes in lighting conditions, scale and viewpoint, dynamism
of depicted scene objects, as well as occlusions and overlaps resulting from mapping
3D world objects onto a 2D space. Other particularities worth mentioning that
introduce substantial changes to the scene visual appearance are visual clutter (e.g.
cars, pedestrians, seasonal stuff, and ads), buildings casting shadows each other,
reflections and glare in windows, and severe perspective distortion with extreme
angles.
The inherent limitations of mobile devices introduce further challenges to the loca-
tion recognition problem:

• Fundamental differences between the query image and database im-
ages: because of the properties of mobile device cameras, query images are
typically affected by motion blur and provide a limited field of view, making
difficult the task of matching them against database images.

• Limited bandwidth (network performance) claiming for low complexity
approaches with efficient communication.

• Low retrieval times: due to rapidly changing field of view caused by user’s
motion and constantly changing user’s attention.

• Low processing power and battery capacity: current mobile devices still
lack sufficient on-board processing power to perform computationally intensive
operations such as content analysis.

• Limited storage capacity: coupled with low processing power, limited stor-
age inhibits the use of very high dimensional feature descriptors.

• Real-time requirements: user’s real time requirements restrain the types
of content and context analysis techniques that real systems can employ.

The use of the Scale Invariant Feature Transform (SIFT) for images description as
part of the CBIR pipeline has proven to be very effective and discriminative for
sparse feature-based matching but not necessarily optimal for image classification
[18]. This supports the use of another type of descriptors more adequate to the
mobile context where computing efficiency and descriptor size are main concerns.
In this work I address the problem of large-scale landmark recognition, a varia-
tion of the location recognition problem. Here I intend to investigate the use of
binary features to alleviate the communication delay bottleneck described in [30]
while addressing the properties of low processing power and limited bandwidth of
mobile devices. The objectives of this study are twofold, first to determine how rep-
resentative can be vocabularies built from binary features in the task of landmark
recognition and second to identify which factors govern retrieval performance in a
system using such vocabularies.

12
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To this purpose I have implemented: 1) a state-of-art pipeline using upright SIFT
descriptors paired with a DoG detector, a vocabulary tree as BoF approach and
random sample consensus (RANSAC) for estimating a 2D projective model, 2) a
fully parametrized tailored pipeline for the case of binary features, and 3) a novel
proposal based on the ideas of [20]. In order to compare them I’ve implemented
a performance evaluation framework based on precision and recall, two popular
measures widely accepted by the information retrieval community.
During the first part of this work I introduce the theoretical foundations necessary
to understand the rest of this work. In the first chapter I clearly define the land-
mark and location recognition problems and review some methods and techniques
associated to them. In order to locate the current work with respect to the state-
of-the-art, in the second chapter I assess some previous work on the area looking at
the different aspects of the problem at hand. In chapter number three I review some
algorithms to describe images using binary features, highlighting their invariance
capabilities to common changes in scene objects.
In the second part I present my contributions starting in chapter four with a thor-
ough review of the challenges of using the new class of local features to address the
landmark recognition problem in the frame of the BoF model, followed by a detailed
explanation of the two proposed pipelines to the case of binary features. Finally in
the last chapter I present the performance evaluation framework used to assess the
proposed pipelines, emphasizing the evaluation methodology and the considerations
taken to render fair the comparison process, followed by the discussion of the results
of the performed experiments prior description of the datasets used.
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1 Associated methods and
techniques

Large-scale landmark recognition is essentially a CBIR task with many challenges
caused by the large variation of scene visual appearance, the nature of the images in
the database and in the mobile scenario the inherent limitations of mobile devices.
It is closely related to many computer vision problems and tasks ranging from image
description to object recognition. In this chapter I introduce the CBIR foundations,
present the standard retrieval scheme and formally define the landmark and location
problems.

1.1 Feature-based image description

Image description lies at the core of any CBIR pipeline, it consist on extracting
relevant information (features) from a digital image and encode it in a vector rep-
resentation. In general a feature can be anything which has a high discriminant
power, for example highly textured patches with strong contrast such as edges or
corners.
The images characterization process becomes more challenging because landmark
images possess unique characteristics which should be considered. For example
landmarks such as buildings have many repetitive structures such as doors and win-
dows which complicate finding discriminative features. Likewise landmark images
captured using different camera models might vary in illumination, viewpoint, scale,
and rotation. Other effects they might include are blurring, occlusion, background
clutter and shadowing.
Broadly speaking visual features for image characterization can be classified as global
or local. Global features represent the entire image and thus all pixels in the im-
age are considered. Local features identify certain interest points or regions in the
image and only utilize image properties characterizing those regions or local neigh-
borhoods around those interest points for images description, the rest of the pixels
are ignored. Because of their relatively higher robustness towards many changes in
visual appearance like the ones above mentioned, local features are preferred over
global features in the context of landmark and location recognition.
The local features extraction pipeline consists typically of two stages: detection of
salient points or regions (keypoints) and extraction of descriptors to characterize
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the appearance of the detected local regions. Depending on the strategy for salient
points or regions identification, local features can be classified as based on keypoints,
segmentation, or either random or uniform sampling. Among these the keypoint-
based approach has gained popularity over the other ones due to their capability of
finding more discriminative while repeatable structures.

In order to faithful capture the essence of the underlying input images and encode
their interesting structure using the local features keypoint-based approach, two
important criteria must fulfilled: 1) the feature extraction process should be repeat-
able and precise, so that the same features are extracted on two images showing the
same object, and 2) the extracted features should be distinctive, so that different
image structures can be told apart from each other. Additionally to address partial
occlusion it is required a sufficient number of features covering the object to be
described. In the next two sections I briefly review some popular feature detection
and description techniques.

1.1.1 Feature detection

The first stage of the local feature extraction pipeline consist in finding a set of dis-
tinctive keypoints that can be reliably localized under varying imaging conditions
and in the presence of noise. Common considered changes in visual appearance
include changes in illumination, in plane rotation, noise, scale, and perspective dis-
tortion.

Translation Invariant Features

The most basic type of detectors are those capable of finding corner keypoints in-
variant to isometric transformations. Examples of such detectors are the Hessian
detector and the Harris detector which compute some saliency measure based on the
second moment matrix in order to find keypoints exhibiting changes in orthogonal
directions. Both of this detectors are remarkably robust to image plane rotations,
illumination changes, and noise, however the returned locations by them are only
repeatable up to a relatively small scale changes because they rely on Gaussian
derivatives compute at a certain fixed base scale.

Scale Invariant Features

For scale invariant feature detection it is necessary to detect structures that can be
reliably extracted under scale changes. To do so keypoint detection is performed in a
scale-space which is constructed by smoothing the high resolution image with deriva-
tives of Gaussian kernels of increasing size. Automatic scale selection is performed
by selecting local maximum in the scale-space.

16



1.1 Feature-based image description

The most basic detector of this type is the Laplacian-of-Gaussian (LoG) detector,
a multi-scale blob detector with automatic scale selection which detects local max-
ima/minima in the scale-normalized Laplacian space. Closely related there is the
Difference-of-Gaussians (DoG) detector which approximates the scale-space Lapla-
cian by a difference of Gaussians. Other popular detectors are the Harris-Laplace
corner detector, a scale-invariant version of the Harris detector which typically re-
turns fewer keypoints than the LoG or DoG detectors, and the Hessian-Laplace blob
detector, a scale-invariant version of the Hessian detector which typically returns
more interest regions than Harris-Laplace at a slightly lower repeatability.

Finally there is the Speeded Up Robust Features (SURF) detector which uses the
Hessian matrix like the Hessian-Laplace detector, but uses box filters to approxi-
mate the second-order Gaussian derivatives, obtaining a significantly speed up in
computation and produces similar results as DoG but several times faster.

Affine invariant detectors

For many practical problems it becomes important to find features that can be
reliably extracted under large viewpoint changes. This is the case of landmark
images which typically exhibit high perspective distortion due to the narrow angles
at which they are shot.

An affine invariant detector is a generalization of the scale-invariant ones to handle
non-uniform scaling and skew changes. These detectors extract patches from images
that are covariant with affine transformations. The shape of these regions is not fixed
but automatically adapts, based on the underlying image intensities, so that they
are the projection of the same 3D surface patch. Popular detectors of this type are:

• Harris-Affine detector.

• Hessian-Affine detector.

• Maximally Stable Extremal Regions (MSER) detector.

• Edge-based region (EBR) detector.

Typically affine detectors extract elliptical-shaped patches, others such as EBR and
MSER extract parallelogram- and arbitrary-shaped patches correspondingly, these
regions are approximated by an ellipse taking care of preserving the first and second
moments of the originally detected region.

To achieve rotation invariance the content of the detected regions is normalized,
typically by finding the region’s dominant orientation and then rotating the region
content according to this angle in order to bring the region into a canonical orien-
tation.

17



Chapter 1 Associated methods and techniques

1.1.2 Feature description

Also known as descriptors extraction, it is the second stage of the local feature
extraction pipeline. It consist in the encoding into a high-dimensional vector of
certain properties of the image in the local neighborhoods centered at the detected
keypoints.
The most popular choice is the SIFT descriptor which is typically paired with a
variant of the DoG detector. It measures gradient distribution in the detected
regions as a histogram. It is computed as a set of orientation histograms on 4×4 pixel
neighborhoods in the gradient image. The contribution of each pixel to the location
and orientation bins is weighted by the gradient magnitude. The quantization of
gradient locations and orientations makes the descriptor robust to small geometric
distortions and small errors in the region detection. Each orientation histogram
contains 8 bins. This leads to a feature vector with dimension 4× 4× 8 = 128. To
enhance invariance to changes in illumination, the resulting vector is normalized.
Another popular choice is the SURF descriptor which combined with SURF detector
was designed as an efficient alter- native to SIFT. It pursues a similar spatial binning
strategy than SIFT, dividing the feature region into a 4× 4 grid. However, instead
of building up a gradient orientation histogram for each bin, SURF only computes
a set of summary statistics resulting in a 64-dimensional descriptor, or a slightly
extended set resulting in a 128-dimensional descriptor version.

1.1.3 Descriptors matching

A simple approach for pairwise image matching consist in linearly comparing their
descriptors and counting how many of them match each other. Descriptors can
be compared by thresholding the distance between them which can be computed
using some distance measure such as Euclidean, Manhattan or Cosine distance. An
alternative criteria to evaluate the quality of a matching candidate was proposed
in the original SIFT matching scheme were it was introduced the notion of ratio
threshold, a measure where a pair of features is considered a match if the distance
ratio between the closest and second closest matches is below some threshold Γ:

d (f, f1st)
d (f, f2nd)

< Γ

where f is the descriptor to be matched and f1st and f2nd are the nearest and
the second nearest descriptors from the model database, with d (. . .) denoting the
Euclidean distance between two descriptors. An empirically determined threshold
value of Γ = 0.8 is typically used.
According to [3] the SIFT ratio threshold is effective for general recognition because
correct discriminative keypoints often have the closest neighbor significantly closer
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1.2 Image retrieval

than the closest incorrect match, however in the context of landmark recognition
it doesn’t work because landmark images have many repetitive structures, thus the
original formulation ends up rejecting many genuine matches. An alternative for-
mulation considers two key-points as matched when the cosine of the angle between
the descriptors f and g is above some threshold Γc:

cos (f, g) = fTg

‖f‖2 · ‖g‖2
> Γc

An empirically determined value of Γc = 0.97 based on the study of the ROC curve
associated with the threshold is typically used. In the case of binary features the
SIFT ratio threshold doesn’t apply and instead it is used a distance threshold:

d (f, f1st) < τ

1.2 Image retrieval

A popular approach to the image retrieval problem is the bag-of-features (BoF)
model proposed in [31]. The process starts by extracting local features from a
collection of database images, then they are quantized into visual words, and finally
are applied text search methods to retrieve similar images to a given query image.
An optional re-ranking step based on geometric constraints is performed on the top
retrieved results.
This scheme is generic both to the landmark and location recognition pipelines de-
scribed in sec. 1.4 and sec. 1.5. Here it is addressed the generality while the details of
its specific use either on the landmark or location recognition problem are addressed
in their corresponding sections.
Feature extraction
It all starts with the extraction of local features from the images database which for
the case of landmark and location recognition are preferred over the global ones due
its robustness towards occlusion and background clutter, and invariance to some
characteristics present on the images such as scale, rotation, lighting variation and
perspective distortion. Many techniques can be found in literature (see sec. 1.1 for
further details) but the use of SIFT is still considered the state-of-art thought there
are more appealing options for some applications. To our problem the main criteria
for choosing a certain feature descriptor are low computational complexity, low
storage requirements, and invariance against visual appearance changes disregarding
rotation since all images are assumed to be upright.
Vocabulary building
Also called quantization step, is the most expensive in the retrieval scheme as it
involves the clustering of all the feature descriptors corresponding to the images
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database. The resulting cluster centers are the words of the vocabulary and alto-
gether are called the bag-of-words (BoW) or more correctly bag-of-features (BoF).
Refer to sec. 1.3 for further details about BoW model in computer vision.
Database building
Following the BoF model each database image is transformed into BoF vector rep-
resentation by quantizing its feature descriptors to visual words. The results are
indexed to speed up the classification step. To address that not all of the words are
equally relevant it is used a weighting scheme, typically term frequency-inverse doc-
ument frequency. See sec. 1.3 for further details about indexing and word weighting.
BoF retrieval
Given a query image it is transformed into it’s BoF vector representation by quantiz-
ing into visual words the extracted visual features, and applying the corresponding
words weights. In order to retrieve the most visually similar database images with re-
spect to the query image, it’s BoF vector representation is linearly compared against
all the database BoF vectors and a similarity score is assigned to each of them. The
database images are then sorted in descending order according to this score.
Geometric verification
Since BoF model ignores visual features layout, an optional geometric verification
step is applied database images is applying geometric verification over the top ranked
images, such that not only the most visually similar but also the most geometrically
similar images are placed on the top.
The process uses RANSAC algorithm to compute a geometric transformation in the
projective space between the keypoints of the query image and those of each candi-
date image in the short list of top ranked images, resulting in the classification of the
candidate keypoints as inliers or outliers complying with the estimated homography.
The short list of top candidates is then re-order based on the number of inliers.

Algorithm 1.1 Automatic estimation of an homography between two images using
RANSAC
(i) Computation of interest points.

(ii) Computation of putative correspondences based on a proximity and sim-
ilarity criterion.

(iii) Estimation of an homography using RANSAC where the number of sam-
ples is determined adaptively.

(iv) Iterative re-estimation of the homography by minimizing a cost function
and aiming at maximizing the number of inliers.

The basic algorithm for robust model estimation explained in [10] and here shown in
Algorithm 1.1 is the same independent on the estimated geometric transformation.
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1.3 Bag-of-Features model

The applied transformation might be an affine one as proposed in [20], which is a
non-singular linear transformation followed by a translation

HA =

 a11 a12 tx
a21 a22 ty
0 0 1

 =
[
A t
0T 1

]

or an homography which is a general non-singular linear transformation of homoge-
neous coordinates

HP =

 a11 a12 tx
a21 a22 ty
v1 v2 ν

 =
[
A t
vT υ

]

capable of describing changes in perspective, something that occurs in practice for
outdoor urban environment photos and cannot be captured by an affine transforma-
tion. Accounting for the degrees of freedom, which talks in the name of the query
time, estimating an homography is more expensive than estimating an affinity hav-
ing the former one 9 in comparison to 6 of the affinity.

1.3 Bag-of-Features model

It was originally introduced in [31] where the aim was detecting objects in a video
sequence. To that end it reformulates the CBIR problem as a text retrieval one
where the documents are the images in the database and the analog to a word in
text documents is a visual word, a set of neighboring pixels sharing a texturing
pattern.
The first step is to learn a visual vocabulary or codebook in an unsupervised manner
from a training set of the same domain as the images of the database. It is typically
addressed using k-means clustering, or some variant of it due to some inherent
challenges because of the quantity and dimensionality of the data1, namely:

1. The trade-off between distinctiveness (requiring small quantization cells) and
repeatability (requiring large quantization cells).

2. The data sparsity condition due to the curse of dimensionality which compli-
cates the k-nearest neighbors classification task [22] rendering clustering very
inefficient.

Each obtained cluster center becomes a visual word (codevector) which altogether
form the visual vocabulary (codebook). Provided a sufficiently representative training
set it might be obtained an universal visual vocabulary.

1See chapter 2 to read about some approaches proposed in literature to handle this issues.
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The second step is to use a vector quantizer to map or quantize each feature vector
of an image to the nearest codevector in the codebook and store the frequency of
occurrence of each visual word in a visual words frequency histogram, the so-called
BoF vector. Each of this frequencies is called the term frequency.
In text retrieval it is usual to apply a term weighting scheme in order to increase
or decrease the importance of some terms. In [31] three different weighting schemes
are considered:

• none: use the raw histogram, i.e. only the term frequency counts.
• binary: binarize the histogram, i.e. register only whether the image has the

visual word or not.
• term frequency-inverse document frequency (tf-idf): weight the counts

in such a way to decrease the influence of more common words and increase
the influence of the more distinctive ones. It is the product of two terms, the
term frequency nid

nd
and the inverse document frequency logN

ni
hence

wi = nid
nd
log

N

ni

where i = {1, . . . , k} is the index over the words of the vocabulary, wi is the
weight of word i, nid is the number of occurrences of word i in document d, nd is
the total number of words in the document d, ni is the number of occurrences
of word i in the whole database and N is the number of documents in the
whole database.

Once the visual vocabulary has been defined, the database BoF vectors are ready and
the word’s weights have been computed, we are ready to proceed with BoF retrieval.
The task is then: given a query image retrieve the most visually similar ones from an
images database. This is achieved by assigning a similarity score to each database
image and the sorting them in descending order according to its score. Under the
BoF model the similarity between a query and database image is computed by taking
the distance between their normalized BoF vector representation q and d

q = (q1, . . . , qk)T = (w1n1, . . . , wknk)T

d = (d1, . . . , dk)T = (w1m1, . . . , wkmk)T

d?

(
q

‖q‖p
,
d

‖d‖p

)

where ni and mi are the term frequency counts of q and d correspondingly, and wi
the word weights which in case of tf-idf weighting are only the inverse document
frequency part and in case of none it is 1 for all. In case of binary weighting, qi and
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1.4 Landmark recognition

di are either 0 or 1 as stated before. To achieve a score between 0 and 1 the BoF
vectors are p-normalized typically using L1 or L2-norm.
As for scoring three possible schemes are considered in literature:

• L1: use the sum of absolute differences dL1 (h, g) = ∑
i
|hi − gi|

• L2: use the sum of squared differences dL2 (h, g) = ∑
i

(hi − gi)2

• Cosine: use the dot product dcos (h, g) = 2−∑
i

(hi · gi) which is equivalent to
the L2 distance for L2-normalized histograms.

To speed-up the scoring process against, the database BoF vectors are stored in an
inverted index, a map structure supported by multiple inverted files, one per visual
word. Its entries reference the images containing the visual word and times that
word appears on the image.
Since the BoF vectors are typically sparse, specially when using large vocabularies
(hundreds of thousands of words or above) e.g. 1M visual words vocabulary with
an average of 5000 features per image, using an inverted index makes the retrieval
very fast.
Despite the already mentioned challenges in vocabulary building the use of visual
vocabularies as a method for images description carries many other issues:

1. Visual queries contain many more words than text queries: text
queries typically consist of a few words chosen by the user whereas words
in a visual queries are not under control of the user who simply submits an
image.

2. Visual words are noisier than words in text documents: due to the
coarseness of quantization it is common to obtain words which represent the
same visual structure but under some undetected slight changes in appearance.

3. Visual words in an image query encode vastly more spatial struc-
ture than a text query: text queries do not constraint the position in the
documents where the words appear while visual words define not only a visual
structure but also an spatial configuration of the words in the image.

1.4 Landmark recognition

Visual landmark recognition, or simply landmark recognition is a binary
classification problem, where the fundamental task is to determine whether a query
image is relevant to a landmark. Fig. 1.1 shows the image retrieval scheme of sec. 1.2
applied to this problem. The process consists of two phases: training and classi-
fication, the first one corresponds to the vocabulary and database building steps
whose output is the visual vocabulary and the indexed database including the words
weights, the second one corresponds to the BoF retrieval step.
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Chapter 1 Associated methods and techniques

Figure 1.1: Pipeline of a basic landmark recognition system

Some remarkable particularities of a landmark recognition pipeline that distinguish
it from a classical image retrieval system are:

• It might use contextual information. Incorporating vague prior knowl-
edge such as rough GPS reading or direction information obtained from the
digital compass into the retrieval process could significantly narrow down the
search space.

• It leverages the nature of the images. using landmark images it can be
assumed them to be upright, removing the requirement of rotation invariance,
however buildings tend to have few discriminative visual features and many
repetitive structures, and although this allows to use models based on projec-
tive geometry their 3D geometries are not easily captured by simple affine or
projective transformations.

• It involves an image classification task. The BoF model is nothing more
than a technique to generate a global image description out of local visual
features, in order to tell whether an images depicts a particular landmark or
not it is necessary to use some sort of classifier. Typically it is employed a k-NN
classifier together with some efficient retrieval scheme, e.g. an inverted index
supported by a set of inverted files. It finds the k nearest database images
to the query image and assigns it to the class label that occurs maximum
number of times in that neighborhood. This however could be computationally
expensive because involves a linear comparison of the query BoF vector to all
the database images BoF vectors. Alternatively it can be used a multi-class
Support Vector Machine which uses a collection of binary classifiers[3].

1.5 Location recognition

Visual location recognition, or simply location recognition poses the task of
estimating depicted scene location by matching a single or a sequence of images,
used as a query, against a large database of georeferenced images. On the other
hand mobile location recognition aims at estimating not only depicted scene
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1.5 Location recognition

location but also user’s location and possibly viewing direction (that is the user’s
pose) given a single or sequence of images captured with a mobile device. Figure
Fig. 1.2 shows the image retrieval scheme from sec. 1.2 applied to the mobile location
recognition problem. As can be seen it involves a few more modules than the pipeline
for a landmark recognition system, as they are: feature compression, constrained
BoF retrieval (previously performed inside the online classification module), spatial
re-ranking and pose estimation.

Figure 1.2: Pipeline of a basic mobile location recognition system.

Whereas in a landmarks recognition system the output is the estimated label of
the depicted landmark, in a location recognition system the output is the estimated
user’s location and possibly orientation as well as scene’s location. Additionally to
render useful such estimates, it is required to provide an uncertainty measure over
them. The pose estimation task requires additional data to use analytic or geometric
methods to determine pose, however in the image retrieval scenario usually the
camera intrinsics and object geometry are unknown. Alternatively pose estimation
is possible via image registration.
Popular benchmark datasets for location recognition consist in street-level panoramic
data collected using surveying vehicles, such imagery constitutes a precisely cali-
brated and uniform city cover. However when using street view panoramic images
as reference data we face a problem of wide baselines and close buildings matching
becomes a difficult task.
A noteworthy difference in location recognition with respect to landmarks recogni-
tion is that relevance is defined by a given radius around the query location. This is
because the interest is on evaluating the capability of the system to retrieve visually
similar images located near the true position of the query image.
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2 Related Work
This chapter surveys previous work in landmark and location recognition. In liter-
ature can be found many improvements over the standard retrieval scheme, some
issues on which these works concentrate on are: increasing the number of visual
words, improving retrieval performance, decreasing storage space and computational
requirements, and lowering query time. While most of them build on top of the well
known SIFT feature extraction pipeline, here I present as well some approaches
addressing the case of binary-valued descriptors.

2.1 Vocabulary building

A key finding of [31] where BoF was firstly presented, is that using more visual
words improves retrieval performance. In the next sub-sections are reviewed two
popular and fundamentally different approaches to increase the number words.

2.1.1 Hierarchical K-Means

In [17] the authors present a new technique for object-recognition using a hierarchical
structure built on top of iterative clustering and a tf-idf scoring scheme. This enables
the use of large and more discriminatory vocabularies, thus increasing distinctiveness
and reducing the query time.
The vocabulary is a k-ary tree structure built in an unsupervised manner by hierar-
chical k-means (HKM) clustering. An initial k-means run is done over the training
data, defining k cluster centers represented by its mean which at fine quantization
describe a texturing pattern that sufficiently represents the descriptors associated
to it. The process is recursively applied to each of the resulting clusters, recursively
defining quantization cells by splitting each quantization cell into k new parts. This
procedure is performed up to a maximum number of L levels. In practice other
termination conditions may raise, e.g. having less data than clusters, and thus there
is no guarantee of achieving the full theoretical number of leaf nodes kL. Fig. 2.1
illustrates an example of a vocabulary built in this manner. Under this scheme the
words are the nodes of the tree and the quantization of a feature vector consist in
propagating it down the tree choosing each time the closest cluster center.
As in the classic BoF approach here it is also used an inverted index together with
some weighting scheme to address efficient retrieval. In the case of a vocabulary tree,
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Figure 2.1: Illustration of a vocabulary tree with parameters k = 10 and L = 2,
notice how k defines the branch factor of the tree, i.e. the number of children of
each node.

the leaf nodes have explicit inverted files and the inner nodes have virtual inverted
files result of concatenating the inverted files of the leaf nodes as shown in Fig. 2.2.
While for weighting, it is used a hierarchical scheme boosted by the use of inverted
files where only leaf nodes are considered since they are much more powerful than
the inner nodes according to the authors.

Figure 2.2: Inverted index in a vocabulary tree

To determine the relevance of a database image to a query image it is measured how
similar the paths down the vocabulary tree are for the descriptors from the database
image and the query image. This information is encoded inside the inverted files.
To efficiently compute the similarity score between a database and a query image it
is taken the distance between their BoF vectors. The authors introduce an efficient
way to compute the similarity score in the case the distance measure is the Lp−norm:
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2.1 Vocabulary building

s (q, d) =
∥∥∥∥∥ q

‖q‖
− d

‖d‖

∥∥∥∥∥
For each non-zero query dimension qi = 0, the inverted file can be used to traverse
the corresponding non-zero database entries di 6= 0 and accumulate to the sum.
Since the inverted files store only database images term frequency counts, all of
them are non-zero hence many needless comparisons are skipped.

∥∥∥q̂ − d̂∥∥∥p
p

= ∑
i

∣∣∣q̂i − d̂i∣∣∣p = 2 + ∑
i|q̂i 6=0,d̂i 6=0

(∣∣∣q̂i − d̂i∣∣∣p − |q̂i|p − ∣∣∣d̂i∣∣∣p)

For the case of L2-norm:

∥∥∥q̂ − d̂∥∥∥2

2
= 2− 2 ∑

i|q̂i 6=0,d̂i 6=0
q̂id̂i

Regarding vocabulary size, the authors confirm that larger ones (large number of leaf
nodes) benefit retrieval quality. The idea behind this is that when vocabulary grows
large the variability and noise in the feature vectors frequently move them between
different quantization cells. The trade-off between distinctiveness and repeatability
mentioned in previous chapter applies here as well but the risk of overdoing the size
of the vocabulary is lessened by the use of the hierarchical scoring.

2.1.2 Approximate K-Means

Aiming at minimizing the overall distortion within the clusters defining the visual
vocabulary and tackling down quantization effects in [20] it is proposed approximate
k-means (AKM) clustering to reduce the computational complexity of learning a flat
vocabulary.
To approximate nearest neighbor search for fast descriptor matching it is proposed
the use of a forest of 8 randomized k-d trees built over the cluster centers at the
beginning of each iteration1. In the randomized version, the splitting dimension
and the splitting value are randomly, the first one among the set of dimensions
with highest variance and the second one a point close to the median. Combining
this trees creates an overlapping partition of the feature space and helps mitigating
quantization effects by trying to find the correct quantization cell for features falling
close to a partition boundary.
The robustness of the approach against quantization errors renders it particularly
beneficial in high-dimensional spaces where due to the curse of dimensionality it is
more likely that points lie close to a boundary. At quantization time a feature is

1It is done in this way because centroids change at each iteration and if they didn’t its because
convergence was achieved
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assigned to the approximately closest cluster performing a backtracking process over
all trees aided by a single priority queue. It is worth mentioning that this method
has the same time and memory complexity than the hierarchical k-means approach.
Though recognition performance using a vocabulary tree with standard parameters
(1M million leaf nodes, 6 levels of depth, and branch factor 10) has proven to be
inferior to other approaches such as Approximate K-Means or Greedy N-best Paths,
it has the lowest query time.

2.2 Improving retrieval performance

It was already shown in [20] that precision can be improved by running a geometric
verification step over the short list of top retrieval results. However improving recall
requires more sophisticated techniques, here I review some strategies to do so.

2.2.1 Greedy N-Best Paths Search

In [28] it is approached the quantization problem in vocabulary trees. Considering
the case where the database consist of a fixed set of images, the authors propose
a procedure to optimally build it using only most informative features in order to
maximize performance of queries on the database. They develop as well an efficient
greedy strategy for traversing several branches at the same time, albeit at the cost
of increased query time.
The typical nearest neighbor search procedure in metric trees compares the query
against the k nodes of the tree at each of the L levels for a total of kL comparisons.
In a different way Greedy N-best Paths (GNP) algorithm follows multiple branches
at each level rather than just the branch whose parent is closest to the query. This
generalization is described in Algorithm 2.1.

Algorithm 2.1 Greedy N-Best Paths
Input: query feature q, level l = 1, number of paths followed N
Output: the cell where q is quantized
Compute distance from q to all k children of root node
while(l < L){

l = l + 1
candidates ← children of closest N nodes at level l − 1
compute distance from q to all kN nodes in candidates

}
return candidate with the smallest distance to q

As can be seen in Fig. 2.3, the algorithm performs k comparisons at the root level and
kN comparisons at each of the remaining L− 1 levels for a total of k + kN(L− 1)
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comparisons. The case where N = 1 corresponds to the the traditional search
procedure. Varying the new parameter N gives the flexibility to specify the amount
of computation per search.

Figure 2.3: Illustration of GNP in a vocabulary tree with branch factor k = 3 and
depth L = 3

According to the authors, GNP improves quality of search results since more nodes
are being considered when traversing a tree, this confirms some of the findings in
[17] saying that increasing the branching factor for a fixed vocabulary size brings
some improvement.

On the premise that typically database images contain considerable overlap since
they might depict the same locations but from slightly different viewpoints, the
authors propose using only the most informative ones features to build a vocabulary
tree. However the improvement gained with the optimal vocabulary construction
constraints the database to be fixed and cancels the potential on-the-fly insertion of
new objects into the database.

The intuition behind selecting the most informative features is finding those which
occur in all images of some specific location, but rarely or never occur anywhere
outside of that single location. To this end they propose using the formal concept
of information gain. I’ll not get into any details on the computation of this gain, it
is enough saying that it measures how informative a visual word is about a specific
location.

Once the gain of each location with respect to the visual words describing it is
computed, the most informative features from each image are selected, and finally
a tree containing only these informative features is constructed. The authors report
that a vocabulary tree built in this manner degrades slower with the increasing size
of the database.

2.2.2 RootSIFT, DQE and SPAUG

In [1] it is considered the problem of large scale landmark recognition. In order to
improve recall in the retrieval pipeline the authors propose three technique to address
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the problems of feature detection drop-out, presence of noise in the descriptors,
inappropriate metrics for descriptor comparison, and loss due to quantization2.
RootSIFT
Noticing that Euclidean distance often yields inferior performance in the task of
histogram comparison, the authors propose using a Hellinger kernel instead of the
standard Euclidean kernel to measure similarity between descriptors.
The Euclidean distance dE(x, y)2 for a pair of L2 normalized histograms x and y is

dE(x, y)2 = ‖x− y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2xTy = 2− 2SE(x, y)

where SE(x, y) = xTy is the Euclidean kernel. On the other hand the Hellinger
kernel for two L1 normalized histograms, x and y, is defined as

H (x, y) =
n∑
i=1

√
xiyi

Computing SIFT descriptors similarity using a Hellinger kernel can be easily in two
steps: 1) map descriptors from the original SIFT space to the RootSIFT space by
taking the element wise square root of the L1 normalized SIFT descriptors and 2)
computing the Euclidean distance. Such scheme is equivalent to using the Hellinger
kernel to compare the original SIFT vectors: dE

(√
x,
√
y
)2

= 2− 2H (x, y), this is
because SE

(√
x,
√
y
)

=
√
x
T√

y = H (x, y) and SE (
√
x,
√
x) = ∑n

i xi = 1, i.e. the
resulting RootSIFT vectors are L2 normalized.
RootSIFT can be thought as an explicit feature map from the original SIFT space to
the RootSIFT space, such that performing the scalar product there is equivalent to
computing similarity with the Hellinger kernel in the original space. This mapping
might be seen as a variance stabilizing transformation since its effect is that of
reducing the large bin values relative to the smaller bin values. A great advantage
of this technique is that it can be effortlessly involved in any retrieval pipeline by
simply replacing SIFT with RootSIFT.
Discriminative Query Expansion (DQE)
Query expansion methods combine BoF vectors results to overcome problems such as
feature detection drop-out, occlusion, noisy description and quantization errors. The
standard Average Query Expansion (AQE) combines the top spatially verified BoF
retrieval results by averaging them together with the query BoF vector, then uses
the resulting expanded query BoF vector to re-query the database. Discriminative
Query Expansion (DQE) works similarly except that instead of idf-weighting the
expanded query BoF vector, it is used a vector of weights learned by training a
linear Support Vector Machine (SVM) over the BoF retrieval results where the BoF

2Quantization problems: 1) loss of information about the original descriptors, 2) misassignment
of descriptors to visual words.
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vectors used to enrich the query conform the positive training data while BoF vectors
corresponding to images with low scores provide the negative training data. Having
a linear vector of weights enables ranking images using the inverted index in the
same manner than in classical BoF retrieval.
Some advantages of DQE in comparison with other query expansion methods are:

• It is at least as computationally efficient as AQE with a negligible overhead of
training a linear SVM.

• It benefits from adding distracting images since it might learn a better weight
vector in case the new images are picked as negative examples.

• It distinguish between positive and negative words, since the vector of weights
can assume either positive or negative values.

Spatial database-side feature augmentation (SPAUG)
Somewhat complementary to query expansion, database-side feature augmentation
(AUG) tries to overcome the same problems as query expansion but on the database
side. It can be thought of as query expanding each image of the database and
replacing the original BoF vector of the image by its average query expanded version.
However, here the augmentation process considers not only spatially verified visual
words but all visual words from neighboring images in a matching graph3. Doing
so might include many visual words corresponding to areas outside of the image, to
tackle down this issue, spatial-database feature augmentation (SPAUG) augments
the query using only visual words estimated to be visible in the augmented image.
To determine the visibility of visual words, it is employed an homography between
the two images under consideration, such transformation is already available from
the spatial verification stage of the matching graph construction. SPAUG achieves
a considerable improvement in retrieval performance albeit at the cost of additional
storage requirement.

2.3 Low computational resources

As we move the problem to the mobile scenario, increases the need of adequate
techniques which are able to cope with the unique characteristics of mobiles. The
solutions range from using descriptors with a small footprint to alternative quanti-
zation techniques. In this section are reviewed some of this techniques.

2.3.1 Multiple Hypothesis Vocabulary Tree

In the frame of the mobile location recognition problem a popular option to achieve
very low retrieval times is performing the feature quantization on the handheld de-

3In a matching graph nodes represent images while edges signify that images have an object in
common
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vice and transferring compressed BoF vectors to the server. To do so it is necessary
to cope with the limited processing capabilities of handhelds, and hence the quanti-
zation of high dimensional feature vectors should be done at very low complexity. In
this order of ideas, in [29] the authors propose the Multiple Hypothesis Vocabulary
Tree (MHVT) which increases the probability of assigning matching feature descrip-
tors to the same visual word by iteratively separating the space with hyperplanes
and introducing an overlapping buffer around the separating hyperplanes at each
level of tree. This scheme for data organization, illustrated in Fig. 2.4, allows for a
soft quantization and an adaptive clustering approach.
The MHVT defines a binary tree where each node defines a separating hyperplane,
being it binary the query times are reduced. The tree is iteratively constructed
by determining at each node an hyperplane that separates in two the data points
assigned to the node, resulting in two mutually exclusive child nodes. To find such
a plane it is taken the median value of the projection of all data points (assigned to
the node) onto a vector ũ in the direction of maximum variance. The normalized
vector ũ/ ‖ũ‖ is the normal vector of the separating hyperplane at the median value.

Figure 2.4: Illustration of a separating hyperplane and an overlapping buffer

To increase the probability of assigning matching descriptors to the same visual it
is used an overlapping buffer with width τ · ‖ũ‖ around the separating hyperplane.
In this way descriptors lying close to the splitting boundaries, which have a high
probability of matching to a descriptor in the neighboring node, are assigned to both
child nodes. The achieved result is that the differentiation is delegated to the child
nodes where the probability of lying far from the separating hyperplane is larger.
The overlapping buffer is used only to quantize the database feature vectors since
using it on the query feature vectors would clearly increase the query time.
The iterative vocabulary construction procedure continues until: 1) there are less
descriptors than a maximum naive count or 2) until a certain percentage p of features
fall in the buffer, case in which the cluster is assumed to be self-contained cluster,
i.e. the variance is similar to any direction and hence there is no gain in further
splitting.
The quantization of a feature vector consist in propagating it down tree by at each
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level performing the dot product with ũ to evaluate on which side of the hyperplane
it is located.
Instead of a hierarchical weighing as done with vocabulary trees, here is used a
weighting scheme based on the plausibility of the query descriptor quantization.
The weight of a visual word αi is the probability of assigning matching descriptors
to it. This probability corresponds to the probability of quantizing matching features
to the same node (1− Pf ) in all quantization steps m

αi = ∏
m

(1− Pf,m)

where Pf is the probability that a matching feature is incorrectly quantized to the
neighboring child node. An efficient scoring scheme where only non-zero terms
are considered, supported by inverted files, and including word weighting, goes as
follows:

∑
i
αi |qi − di|P =∑

i
αi |qi|P −

∑
i|di 6=0

αi |qi|P +∑
i
c |di|P −

∑
i|qi 6=0

c |di|P + ∑
i|qi 6=0∧di 6=0

αi |qi − di|P

The multiple hypothetical paths approach concentrates the scoring energy on the
leaf nodes, avoiding extensive time consuming random memory accesses. Its qual-
ity in terms of retrieval performance is somewhat comparable with AKM albeit a
considerable decrease in computational complexity.

2.3.2 Adaptive partial vocabularies

In [30] the authors develop a mobile location recognition system receiving taking
as input a video sequence. They notice that not all of the vocabulary words are
necessary to quantize a sequence of images but rather just a part of it. Only the
words present in a single query frame are necessary to quantize it, more formally if
F = {f1, f2, . . . , fN} is the set of features of one query frame, V = {v1, v2, . . . , vL} is
the full set of visual words, and Q (F |V ) determines the subset of visual words repre-
senting a particular video frame or partial vocabulary then it holds that Q (F |VF ) =
Q (F |V ) where the partial vocabulary VF is the subset of visual words representing
the frame itself, i.e. the result of the quantization would not change.
In practice having a partial vocabulary that contains only the words of a certain
video sequence is not possible and hence the current partial vocabulary VF is ex-
tended by other subsets S of the full vocabulary V which have a sufficiently high
probability of including the unknown final vocabulary, that is

Q (F |VF ∪ S) = Q (F |V )
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The partial vocabularies used to extend VF are composed by the visual words of
the panoramas from the periodically retrieved top K location estimates which work
as prior knowledge on the location. The probability that the partial vocabularies
associated to the frames recorded at these locations are part of VF is very high.
Such words together with their associated inverted files are periodically transmitted
to the client to allow for a local pose estimation on the handheld within a limited
area.
Further improvements include using a priority queue of locations governed by the
probability of representing the actual location and a temporal filtering approach
such as Bayesian filters to determine such probabilities.
Since there is a high probability that the correct location is among the top K results,
but possibly poorly ranked, this approach can be thought as a resorting among this
short list. This might result in an increase in precision when compared to using the
full vocabulary.
Though this approach is not followed in the current work it stands as a state-of-art
technique when comes to implement a mobile visual location recognition system.

2.3.3 Binary BoF using Hierarchical K-Medians

In [7] the authors deal with the problem of close loop detection, a common problem
in SLAM that consists in detecting when the robot has returned to a past location
after discovered new terrain for a while. The authors present an algorithm to detect
loops and establish point correspondences between images in real time using the
BoF model followed by geometrical check.
In particular they concentrate on the problem of feature extraction which is the most
expensive one in any SLAM algorithm. To achieve the goal of low computation time
they propose the use of binary features as input to the BoF model. This approach
is an adaptation of the vocabulary tree technique where they discretize a binary
descriptor space instead of a real-valued one as in the case of SIFT descriptors. To
address the task of clustering binary data they perform k-medians with k-means++
seeding, truncating to zero the non-binary medians, and using hamming distance
to measure similarity between feature vectors. For the rest of the BoF model it is
the same than usual, database stored in an inverted index, hierarchical weighting
applied only to leaf nodes and based on entropy relative to the root node, and L1
distance to compute BoF vectors similarity.
A remarkable contribution is the use of a direct index (see Fig. 2.5) to speed up
geometrical verification. It consist in a map structure that for each image stores the
nodes at a certain level that are ancestors of the words present in the image, as well
as the list of the local features associated to each node. The direct index acts as an
approximation to nearest neighbors search, it is updated whenever a new image is
added to the database.
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Figure 2.5: Example of a vocabulary tree and a direct index

2.3.4 Binary BoF using K-Majority

In [8] it is proposed a model for using binary features as input to the BoF model.
They concentrate in solving the clustering problem since classical k-means is not
applicable to binary data streams as explained in sec. 4.1. They propose k-majority,
here presented in Algorithm 2.2, a variation of the k-means algorithm where:

1. Instead of computing the Euclidean distance they compute the Hamming dis-
tance, a more reasonable choice for comparing binary strings.

2. A voting scheme, based on Hamming distance, to compute a centroid from a
set of binary vectors assigned to the cluster it represents.

Algorithm 2.2 K-majority algorithm
Input: a collection D of binary vectors
Output: cluster assignments
Randomly generate k binary centroids C
while centroids not changed do

for d ∈ D do
cd ← argmin

c∈C
HammingDistance (c, d)

end for
for c ∈ C do

for d ∈ D|cd = c do
v accumulates d votes

end for
c′ ←Majority (v)

end for
end while

The voting scheme, illustrated in Fig. 2.6, operates as follows: 1) given a set of
binary vectors assigned to some cluster C, they are bitwise accumulated into an
accumulator v such that each of its elements represents the count of bits on that
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position set to 1, 2) to compute the cluster centroid the majority rule is applied for
each element vi in v

ci =

 1 if

0 otherwise

vi >
⌈
|C|
2

⌉

Figure 2.6: Voting scheme to compute centroids from clusters of binary data

An important characteristic of this approach is that both the Hamming distance and
the majority voting step work directly on the byte packed vector string rendering
k-majority implementation more efficient than others working over real-valued data.

2.4 3D models

Either building a 3D Structure-from-Motion (SfM) model for 2D-to-3D matching
or using an images dataset generated from projecting panoramic images to a 3D
city model, using 3D information is an effective way to tackle the problems result
of mapping 3D world objects onto a 2D space. In this section I review some of the
recently proposed state-of-art methods for visual localization using 3D information.

2.4.1 Image matching using aligned panoramic images

Database construction is a challenging yet crucial task before any image-based lo-
calization pipeline takes place. A popular approach consist in crawling photos from
online collections such as Flickr, nevertheless this images tend to be poorly labeled,
disorganized and sparse in the real world. A different approach uses high quality
panoramic images aligned to a 3D city model consisting of extruded buildings from
footprint and elevation data.
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Facade-aligned images

In [2] the recognition problem is reduced to a homothetic one where feature in-
variance is simplified by fully removing 3D rotation and only scale and offset are
considered. In this sense, it is proposed a fast stratified geometric verification algo-
rithm considering only scale and offset variability. Further leveraging homotheticity
achieved through geometric rectification, the authors contribute an scheme for pose
estimation from 2D-2D features correspondences.
The key behind their approach is using an orthophoto representation of the database.
To obtain it they projected image data consisting of panoramic images systemati-
cally captured by a vehicle driving through the streets onto the 3D city model result
of extruding 2D buildings floor plans by means of height data followed by rendering
synthetic orthoviews from them. Then local features are extracted from database
of images, in this case DoG keypoints and upright SIFT which result in more dis-
criminative descriptors. Doing so all effects of 3D rotation and perspective from the
image data are removed.
Following the pipeline of a basic landmark recognition system, visual vocabulary
and database are built using vocabulary trees approach. In the online stage before
the query image enters into the pipeline all 3D rotation effects must to be removed.
To do so it is employed an homography that maps vanishing points, extracted from
automatic detected line segments (filtered using camera calibration matrix obtained
with the assumed available information from the images: focal length and rough
estimate of the orientation), to canonical directions. Once ready it is performed
BoF retrieval and a short list of most visually similar images is obtained.
The proposed geometric verification scheme is a 3 DOF approach enhanced for
the homothetic case and inspired by the kernel density estimation technique. It
subsequently estimates three position related parameters: distance, horizontal offset
and vertical offset with respect to building’s surface. The basic idea is that true
correspondences should exhibit consistent differences. To determine the distance
between the image plane and the building facade we look at scale ratio differences
ρi := σquery,i/σfacade,i where σquery,i and σfacade,i are the scale of a pair of features
from the query and database images correspondingly. Then it is required that the
differences of logarithmic scale ratios |log ρi − log ρj| ≤ log t agree up to a threshold
σ = log t which depends on the expected scale estimation uncertainty, e.g. log t =
0.15. The the scale ratio ρ∗ with the most support is determined by finding the
argument that maximizes the kernel density function

ρ∗ = arg max
ρ

∑
i
e−

(ρ−ρi)2

2σ2

All the pairs of features corresponding to scale ratios in the interval ρ∗±2σ are con-
sidered inliers. Using this estimate and the database image true scale, the features
coordinates of both query and database images are expressed in meters.
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The horizontal and vertical offset are determined analogously, the coordinates dif-
ferences ξi := xquery,i − xfacade,i and vi := yquery,i − yfacade,i are required to exhibit
consistent behavior, hence |ξi − ξj| ≤ d and |vi − vj| ≤ d where d is a resolution
independent translation tolerance expressed in a known unit, e.g. d = 0.3m. The
horizontal and vertical offset estimates are obtained using the same scheme as with
the scale ratio, maximizing a kernel density function. Using these estimates the set
of scale inliers is filtered in two inlier sets (one for each coordinate) which are then
intersected into the final inlier set of the geometric verification, its cardinality is
used to re-rank the candidates in the short list of candidates.
Fully determining camera pose with respect to the facade results straightforward
considering: 1) that the query image is rectified (and hence the image plane is
parallel to the facade plane) and 2) the scale ratio, horizontal and vertical offset
estimates (obtained from the 3 dof geometric verification).

• Position: assuming the camera is calibrated with focal length 1 pixel and
principal point at zero, the perpendicular distance of the camera from the
facade is

posz = resfacade · σfacade/σquery
where resfacade is the resolution of the orthophoto in pixel/meter. Analogously
the camera’s parallel distance to the facade can directly be computed from the
feature position

posx = resfacade · (xfacade − σfacade/σquery · xquery)
posy = resfacade · (yfacade − σfacade/σquery · yquery)

• Orientation: the local camera orientation with respect to the wall is the
inverse vanishing point rotation.

Finally facade’s pose in the world are used to convert the relative coordinates with
respect to the faced to absolute world coordinates.

Combining viewpoint- and facade-aligned images

In [5] the authors propose an image retrieval pipeline fusing two popular represen-
tations of street-level image data, facade-aligned and viewpoint-aligned, containing
complementary information. Doing so they improve recall rates while obtaining a
retrieval performance competitive with previous results but at city scale. They also
improve feature detection by enhancing low contrast parts of database images using
histogram equalization. In addition they develop an effective method to incorpo-
rate priors on user’s position (e.g. using cell towers information or GPS coordinates
associated with a query image) either on GPS-aware or GPS-agnostic schemes.
With the aid of specialized equipment it were captured many panoramic images
conforming a uniform city cover. Then by means of approximate 3D building models
of the city it were generated masks to select visible buildings. Using this masks the
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panoramas were converted to a set of perspective images, either perspective central
(PCI) or perspective frontal (PFI).

The recognition pipeline consist in two parallel pipelines, see Fig. 2.7, one for PCIs
and another for PFIs.

• The PCI pipeline is just as the pipeline of a basic landmark recognition system
using SIFT descriptors with the additional filtering step to exclude geograph-
ically distant landmarks using GPS coordinates associated with the query
image (when GPS is available).

• The PFI pipeline works analogously, its difference lies in the fact that it works
on top of facade-aligned images. Before the PFI pipeline is run, the query im-
age must be rectified by detecting line segments and then estimating vanishing
points.

A remarkable difference between the PCI and PFI pipelines is in the geometric
verification stage: PCI uses RANSAC to estimate a 2D affine model, while PFI uses
a 3 degree-of-freedom (DOF) scale and offset check.

The result of both pipelines is merged by taking their short lists of inlier counts after
geometric verification, {Npci,1, . . . , Npci,n} for PCIs and {Npfi,1, . . . , Npfi,n} for PFIs,
weighting the PFI inlier counts by a parameter α then sorting the concatenated
lists {Npci,1, . . . , Npci,n, αNpfi,1, . . . , αNpfi,n} and retaining the top n candidates out
of the 2n candidates.

Figure 2.7: Recognition pipeline using PCIs and PFIs
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An interesting contribution is an scheme for incorporating prior vague location
knowledge in the pipeline. Given noisy GPS coordinates for a query image, only the
database images within a radius R 300 meters (empirically determined value) of Q
are scored. To address geographic proximity search it is used a single approximate
nearest neighbor tree trained for the whole city.

2.4.2 Matching images to 3D SfM models

In [14] the authors implement a visual localization system based on results of pre-
vious works. The system addresses two different problems: 1) an image matching
problem of the query image to the database images which is addressed using the BoF
model, and 2) an image registration problem of the query image. After assigning
the visual similarity score to all the database images with respect to a query image,
the reconstructed 3D scene models associated to the candidates in the short list of
top candidates are retrieved. These 3D scene models are used to register the query
images and compute scene’s location.
For the offline construction of the 3D scenes models the authors use a joint geo-
visual clustering for scene detection and a SfM algorithm implemented in Bundler4.
For the online retrieval of the short list of candidates they use the BoF model with a
vocabulary built using Hierarchical K-Means, plus a geometry verification step run
over the short list. For 3D scene models retrieval they implement a simple voting
scheme based on the majority of coincident descriptors between query image and
database images.
In contrast with previous approaches this one provides additionally:

• User location: it is the outcome of the location recognition problem, but here
is computed in a particular way using the reconstructed scene geometry, more
concretely, the estimated pose (3-point method using focal length) and the
decomposition of the estimated projection matrix P = K [R|t] associated to
the camera from which the query image was shot.

• Scene location: estimated as the mean of the points that can be observed from
the query image viewpoint.

• Viewing direction: estimated using the rotation matrix R result of the decom-
position of P .

4Bundler: Structure from Motion (SfM) for Unordered Image Collections -
http://www.cs.cornell.edu/∼snavely/bundler/
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3 Binary Features

Binary features [4, 13, 26, 32] are a relatively recent class of local feature descriptors
aiming at reducing processing and storage requirements by directly computing the
descriptors from pixel-level comparisons. They are both fast to compute and to
match, but more importantly they provide a compact representation and have small
memory requirements. They have also proven to compete at the same level of state-
of-art techniques such as SURF and SIFT, even outperforming them on cases where
rotation and scale invariance are not strict requirements [4].
Some worth mentioning common properties of this class of descriptors are: 1) they
are bit-strings typically result of pairwise intensity comparisons, 2) as similarity mea-
sure it is typically used Hamming distance because it is meaningful when comparing
binary strings, further it may be efficiently implemented using SSE1 instructions
and specific bitwise hardware instructions, and 3) they generally employ some some
sort of sampling pattern.
In mobile location recognition latency due to transmission during feature uploading
is a major bottleneck as noted in [30], in this sense binary visual features pose as an
improvement due to it’s compactness. In the next sections some of the state-of-art
techniques for keypoints description using binary strings are addressed encompassing
as well real-time detectors which lie at the core of this features speed.

3.1 Feature detectors

FAST (Features from Accelerated Segment Test)

Was initially proposed in [24] and subsequently improved in [25] by the same authors,
it applies a pixel-level criterion acting on the intensity values and subsequently
employs a machine learning algorithm to improve speed. This detector belongs to
a class of detectors that work by examining small image patches and determining if
it “looks” like a corner. It has become a popular method in cases where real-time
constraints exist.
The original detector proposed in [24] introduces the segment test criterion, for a
candidate pixel p considers a surrounding circle of 16 pixels (a Bresenham circle of

1Streaming Single Input Multiple data (SIMD) extensions
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radius 3) and applies a classification rule to decide if p is a corner or not. The rule
goes as follows, if there exist a set of n contiguous pixels in the circle which are all
brighter than the candidate pixel plus a threshold, i.e. Ip + t, or all darker than the
candidate pixel minus a threshold, i.e. Ip − t, then p is a corner. Fig. 3.1 illustrates
the idea.

Figure 3.1: FAST corner detection active principle. 12 point segment test
corner detection in an image patch. The highlighted squares are the pixels used
in the corner detection. The pixel at p is the center of a candidate corner. The
arc is indicated by the dashed line passing through 12 contiguous pixels which are
brighter than p by more than the threshold.

The authors empirically determined the number n of contiguous pixels to be 12
because it enables a high-speed test for non-corners rejection where only four pixels
are examined, first 1 and 9 then 5 and 13. Since at least 12 contiguous pixels of
the 16 need to be all brighter than Ip + t or darker than Ip − t then if less than
three of the four examined pixels don’t approve the test criterion p is not a corner,
otherwise p might be a corner and the full segment test criterion is performed for
the remaining pixels.
The segment test detector is further improved in [25] addressing some identified
weaknesses. It is said to run in two stages. First it starts by running the original
detector based on the full segment test criterion on a set of training images which
is suggested to be from the target application domain. For each candidate corner p
is obtained a boolean variable Kp indicating if it was classified as a corner or not.
In the second stage it uses algorithm ID3 (Iterative Dichotomoiser 3) for learning a
decision tree from a dataset based on an information measure. It starts by selecting
a pixel xε {1 . . . 16} relative to a candidate pixel p, denoted by p→ x, and classifying
it in one of three states d, s, or b according to the following rule:

Sp→x =


d

s

b

Ip→x ≤ Ip − t (darker)
Ip − t < Ip→x < Ip + t (similar)

Ip + t ≤ Ip→x (brighter)
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Applying this classification rule for a given x and for all pεP , where P is the set
of all pixels in the set of training images, yields three subsets of P namely Pd, Ps,
Pb. The selection of x is done such that the information gain about whether p is a
corner, IG (K), is maximized

IG (K) = H (P )−H (Pd)−H (Ps)−H (Pb)

this means an exhaustive search through all possible values of x is performed. The
entropy with respect to an attribute, in this case K, for a set, in this case P , is
computed as:

H (P ) = −c log2

(
c
c+c̄

)
− c̄ log2

(
c̄
c+c̄

)
where c = |{p | Kp} is true| (number of corners)

and c̄ = |{p | Kp} is false| (number of non corners)

Once x was selected for P the process is iteratively repeated for each of the resulting
subsets Pd, Ps, Pb until the entropy of a subset is zero, that is when the elements
in a subset are either all corners or non-corners. This results in a decision tree
that classifies correctly all pixels from the training set of images and can be used to
classify pixels from other images. At the implementation level the authors proposed
to convert the resulting decision tree into a long string of nested if-else statements
in C-code which is further optimized by means profile-guided optimization.
In order to eliminate detected features on unseen images which are too close one
another it is carried out a process of non-maximal suppression. Since the segment
test doesn’t compute any corner response measure, a scoring function, V , must be
computed for each detected corner to eliminate features which have an adjacent
corner with higher V . The employed function is a modified version of the sum of
the absolute difference between the pixels in the contiguous arc and the center pixel:

V = max
( ∑

xεSbright

|Ip→x − Ip| − t ,
∑

xεSdark

|Ip→x − Ip| − t
)

where Sbright = {x | Ip→x ≥ Ip + t}
Sdark = {x | Ip→x ≤ Ip + t}

According to the authors experiments using n = 9 provides the highest repeatability
and lowest timing hence providing optimal performance. The final detector achieves
a big speed-up over other detectors without any sacrifice in terms of quality making
it suitable for real-time applications. Likewise it is highly repeatable and reliable,
i.e. its able to obtain features corresponding to the same real-world 3D locations

45



Chapter 3 Binary Features

out of images with different viewpoints of the same scene. In the other hand it is
not robust to high levels of noise since no noise reduction step is considered, it tends
to perform poorly on images with only large-scale features, and it critically depends
on the selected threshold t.
Proven to be a very efficient basis for feature extraction a number of improvements to
it have been proposed, one of the most remarkable is AGAST[15] (Adaptive Generic
Accelerated Segment Test) a high speed improved version of FAST which constructs
an optimal decision tree in a extended configuration2 space and achieves a generic
scene independent detector by combining specialized trees, hence overcoming the
scene dependence of FAST.

3.2 Feature descriptors

BRIEF (Binary Robust Independent Elementary
Features)

Originally introduced in [4] is one of the earliest works using binary strings for feature
points description. It computes directly a binary string whose individual bits are
obtained by comparing the intensities of nd test locations in a certain sampling
pattern applied to an image patch around the keypoint under description. The
binary test τ on patch p of size S × S is defined by:

τ (p;x, y) :=

 1
0

p (x) < p (y)
otherwise

Where p (x) and p (y) are the pixel intensities in a smoothed version of p at locations
x and x correspondingly. The descriptor is an nd-dimensional bit-string3:

fnd (p) := ∑
1≤i≤nd

2i−1τ (p;x, y)

Since the tests take into account only single pixels information they are very sensitive
to noise,
to reduce it the patches are pre-smoothed with a Gaussian kernel with variance
σ2 = 2 and a discrete kernel window of 9 × 9 pixels. According to the authors

2Configuration in this context should be understood as the possible combinations of N state pixels
on the circle surrounding a keypoint p as considered by FAST and ns possible pixel states, i.e.
ns

N

3As a matter of notation BRIEF-k, being k = nd/8, stands for the number of bytes required to
store the descriptor.
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experiments such combination of parameters achieves a constant recognition rate in
the task of descriptor’s matching. The obtained effect is a reduction of the noise
and an increase in the descriptor’s stability and repeatability.

As for the spatial arrangement of the test locations, BRIEF uses a non-local, non-
symmetrical and non-regular sampling pattern in which the test locations are ran-
domly selected from an isotropic Gaussian distribution with zero mean and vari-
ance σ2 = 1

25S
2 which according to the authors achieves the best recognition rates.

Fig. 3.2 shows an example of such pattern.

Figure 3.2: BRIEF sampling pattern

Some limitations of the approach pointed by the authors are:

• Invariance to scale and rotation. It was not designed to be neither rotation
or scale invariant but it tolerates small amounts of rotation, up to 10 to 15
degrees as quantified by the authors, at the cost of speed and recognition rate.
It is actually suggested to avoid orientation correction when it is not actually
required, argument that is further confirmed on [11] where a comparative study
of combinations of traditional and novel binary feature detector/descriptor
pairs is performed using a set of comprehensive and fair performance measures.

• Uninformative in case of large monochrome areas. The performed
intensity difference tests rely on areas with enough texture changes, something
typically meet on outdoor images.

• The number of test locations. There is no rule of thumb on what is
an ideal number of test locations but using very few ones might lead to a
not very reliable descriptor, BRIEF-16 is a reasonable lower bound to the
approach. The number of test locations is related in the case of matching to
the baseline of images under matching. According the authors using nd=128,
256, or 512 achieves good keypoint description and yields a good compromise
between speed and storage efficiency.
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A success key of BRIEF is the fact that the carried tests can be thought of as
evaluating the sign of the derivatives within a patch along the lines specified by the
test locations, which reminisces the histogram of local gradient directions employed
by SIFT.

ORB (Oriented FAST and Rotated BRIEF)

Aiming at providing an orientation estimator to the BRIEF descriptor in [26] the
authors propose ORB (Oriented FAST and Rotated BRIEF). It is the result of
combining: 1) Oriented FAST (oFAST), a scale and rotation invariant version of
the FAST keypoint detector together with 2) Rotated BRIEF (rBRIEF), a steered
version of BRIEF where the test locations are fixed to 256 and improved by select-
ing them via machine learning in order to maximize its variance and minimize its
correlation, hence more discriminative and informative.

oFAST

The proposed detector is a variant of the original FAST keypoint detector, further
explained in section sec. 3.1, using a circular radius of 9 pixels and augmented with a
pyramid scheme to address scale invariance and a Harris corner filter as cornerness
measure to reject edges then rank the resulting keypoints and choose the top N
which are more likely to be a corner according to the adopted measure.
Keypoint orientation estimation is estimated using the intensity centroid, a measure
of corner orientation grabbed from the work of Rosin in [23] which assumes that
corner’s intensity C is offset from its center O and defines it as

C =
(
m10
m00

, m01
m00

)
where mpq is the moment of a patch in a circular region of radius r equal to the
patch size and is defined as

mpq = ∑
x,y
xpyqI (x, y)

The keypoint’s orientation is then the angle formed between the horizontal and the
vector from the feature location to the intensity centroid ~OC, more formally

θ = atan2 (m01,m10)

Accounting for stability of the measure, the authors mention that it might become
unstable as |C| approaches 0, i.e. when the assumption about the corner’s intensity
is not meet, something that is unlikely to occur with keypoints detected using FAST
but should be taken into account when paired with other detectors.
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steered BRIEF

To allow BRIEF to be invariant to in-plane rotation the estimated patch orientation
θ is used to produce an steered version of BRIEF. It is determined by transforming
the set S of n test locations by means of the rotation matrix Rθ associated to the
estimated patch orientation.

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
S =

(
x1 . . . xn
y1 . . . yn

)
Sθ = RθS

The resulting steered BRIEF operator forms the base to the final proposed descrip-
tor.

gnd (p, θ) := fnd (p) | (xi, yi) ∈ Sθ

rBRIEF

To achieve a descriptive and informative descriptor it is employed a learning method
for choosing a good subset of binary tests. The method searches through all possible
test locations to find those which have both high variance and low correlation. Before
the algorithm starts, a training set of k keypoints is set up and all possible pairs of
non-overlapping 5×5 sub-windows (tests) from patch of size 31×31 are enumerated.
The algorithm runs as follows:

1. All the enumerated tests are run against the patches associated to the training
set of keypoints. The result is a k− length binary string for each possible test
pair.

2. For each of the obtained k − length binary strings the mean is computed and
the associated test pairs are ordered according to the shortest distance of this
mean to 0.54 forming a vector T . This vector T are the test pairs ordered from
the most to the less discriminative.

3. A greedy search on T looking for the less correlated tests is performed. It
starts by adding to the result vector R the first element of T then picking
the next test from T and considering its addition to R by evaluating if its
absolute correlation with respect to R is within a threshold. This picking
process is repeated until there are 256 tests on R or until there are no more
tests to choose, case in which the threshold is increased and the greedy search
restarts.

The produced test locations are more evenly distributed and less correlated as noted
by the authors after analyzing the distribution of eigenvalues in the PCA decompo-
sition over 100K keypoints described using BRIEF, steered BRIEF, and rBRIEF.
A key advantage of ORB is that it is an order of magnitude faster than SURF, and
over two orders faster than SIFT, as well as more resistant to image noise.

4The authors established 0.5 as the mean value with the highest variance
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Figure 3.3: ORB sampling pattern

BRISK (Binary Robust Invariant Scalable Keypoint)

Inspired by the efficiency of BRIEF and FAST in [13] the authors proposed a novel
modular method for high-quality, fast keypoint detection, description and matching.
The resulting keypoints are scale invariant (provided by the detector) and rotation
invariant (provided by the descriptor) to a significant extent.

Feature detection

To detect features it uses an scale invariant version of the FAST corner detectorsec. 3.1
augmented by means of a scale-space pyramid, performing non-maximal suppres-
sion and sub-pixel interpolation across all scales using a corner response function
(measure of saliency) to indicate the cornerness of a pixel.
The considered scale-space pyramid consists of n octaves ci and n intra-octaves
di where i = 0, 1, . . . , n− 1 and typically n = 4. The octaves ci are the result of
progressively downsampling the original image c0 by a factor of 2, whereas the intra-
octaves di, located between layers ci and ci + 1, are obtained by downsampling also
by a factor of 2 the initial intra-octave d0 which in turn is the result of downsampling
the original image c0 by a factor of 1.5. In short if t denotes scale then t (ci) = 2i
and t (di) = 2i · 1.5.
The keypoint detection algorithm runs as follows:

1. Apply separately the FAST 9-165 detector to each octave and intra-octave
using a threshold T to identify potential regions of interest.

2. Apply non-maximal suppression in scale-space to the obtained putative key-
points:

5FAST 9-16 means FAST detector using a surrounding circle around keypoint p of 16 pixels radius
and minimum 9 contiguous pixels required to declare p as a corner.
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a) The associated FAST score s6 of a putative keypoint at scale ci is enforced
to fulfill a maximum condition with respect to the FAST score of its 8
neighbors7 at the same layer.

b) Same maximum condition is enforced over the corresponding s on the
layers above and below (intra layers), and over the s at c0 with respect
to the scores at its neighboring layers (inter layers)8.

c) A special case is considered for the detection of maxima at octave c0. To
obtain FAST scores at virtual intra-octave d−1 is applied FAST 5-8 on
octave c0 but the resulting scores are not enforced to be lower than the
score of the keypoint under analysis at octave c0.

3. Apply sub-pixel refinement to each detected maximum by fitting a 2D quadratic
function in the least-squares sense to each of the three scores-patches (keypoint
layer, the one above, and the one below) and finding the global maximum. This
results in three sub-pixel refined saliency maxima.

4. Use the refined scores to fit a 1D parabola along the scale axis which yields at
its maximum the final score and scale estimates.

Fig. 3.4 illustrates the procedure of interest point detection in the scale-space.

5. Re-interpolate the image coordinates of the patches in the layers next to the
determined scale.

Keypoint description

Like BRIEF the BRISK descriptor is a binary string result of pixel intensities com-
parisons with two differences, it uses a fixed sampling pattern focused on maximizing
descriptiveness and provides rotation invariance by estimating keypoint’s character-
istic direction.

The sampling pattern, illustrated in Fig. 3.5, defines N sampling location pi | i ={
1 . . . N

}
equally spaced on circles of varying radius and blurring level, concen-

tric with the keypoint. The applied Gaussian smoothing at each circle is for avoiding
aliasing effects when sampling the image intensity of a point pi in the pattern, the
applied quantity of noise σi is proportional to the distance between the points on
the respective circle.

6According to the authors the score s is defined as the maximum threshold still considering an
image point a corner without providing further details. The original authors of FAST proposed
a scoring function to measure corner response which fits the purpose of the BRISK detector,
see section sec. 3.1 for more details.

7Neighbors of the center in a patch of size 3× 3
8In practice interpolation is applied at the boundaries of the patch since the neighboring layers,
and so its FAST scores, are represented with a different discretization
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Chapter 3 Binary Features

Figure 3.4: Scale-space interest point detection. A keypoint (i.e. saliency
maximum) is identified at octave ci by analyzing the 8 neighboring saliency scores
in ci as well as in the corresponding scores-patches in the immediately-neighboring
layers above and below. In all three layers of interest, the local saliency maximum
is sub-pixel refined before a 1D parabola is fitted along the scale-axis to determine
the true scale of the keypoint. The location of the keypoint is then also re-
interpolated between the patch maxima closest to the determined scale.

Figure 3.5: BRISK sampling pattern
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3.2 Feature descriptors

The set of sampling-point pairs A = {(pi, pj) εR2 × R2 | i < N ∧ j < i ∧ i, jεN} is
divided into short-distance pairings S and long-distance pairings L:

S = {(pi, pj) εA | ‖pj − pi‖ < δmax}

L = {(pi, pj) εA | ‖pj − pi‖ > δmin}

using as threshold distances δmax = 9.75t and δmin = 13.67t where t is the keypoint’s
scale. The set of long-distance pairings is used to estimate keypoint orientation α
by averaging local gradients g (pi, pj) which in turn is computed using smoothed
intensity values I (pi, σi) and I (pj, σj):

α = arctan2 (gy, gx)

g =
(
gx
gy

)
= 1

L
· ∑

(pi,pj)
g (pi, pj)

g (pi, pj) = (pj − pi) · I(pj ,σj)−I(pi,σi)‖pj−pi‖2

The estimated keypoint orientation is employed for rotating the sampling pattern
around the keypoint k. Finally the resulting pattern is applied to the keypoint
and the bit-string dk is computed by performing all the short-distance intensity
comparisons of point pairs

(
pαi , p

α
j

)
εS such that each bit b corresponds to:

b =

 1,
0,

I
(
pαj , σj

)
> I (pαi , σi)

otherwise
∀
(
pαi , p

α
j

)
εS

BRISK methodology has some remarkable advantages:
• It is more tolerant to image distortion and transformations, in particular to

in-plane rotation and scale change, main weaknesses of the combination of
BRIEF and FAST.

• Easily scalable for faster execution by using less sampling-points in the pattern
at the expense of matching quality.

• Competitive to state-of-art methods while reducing the computational cost.
• Equivalent repeatability as the SURF detector under not too large image trans-

formations.
However it also suffers from a number of disadvantages:

• BRISK detector as based on FAST is more sensitive to blur than blob-like
detectors.
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Chapter 3 Binary Features

D-BRIEF (Discriminative BRIEF)

Aiming at bridging the performance gap of decreased robustness of the binary de-
scriptors in [32] the authors propose D-BRIEF a non rotation neither scale invariant
compact descriptor based on a discriminative approach.
The descriptor is an N-dimensional string of concatenated bits bi computed by ap-
plying a set of projections wi to a real-valued vector x made of intensities of an
image patch and then thresholding by τi the results:

∀iε1, . . . , N bi = sign
(
wTi x+ τi

)
The task at hand is then how to optimize over {wi, τi} in order to obtain an efficient
and discriminative descriptor. The overall optimization goal is that of minimizing
the expected Hamming distance between descriptors that describe similar keypoints
while maximizing it for those that describe different keypoints. To this end starting
from two sets of corresponding and not corresponding training image patches, P and
N , it is learned a set of discriminative orthogonal linear projections that map image
patches to a more discriminative subspace and builds a bit-string by thresholding
the result.
Since projecting image patches is computationally expensive and hurts the perfor-
mance gained by the binary descriptors the projections wi are trained to be a linear
combination of a few elements from a predefined set or dictionary D which is de-
signed to contain elements for which the responses wi = Dsi can be computed fast.
The associated optimization function is:

min
{(si,τi)}

∑
iε1,...,N

 ∑
(x,x′)εN

sign
(
(Dsi)T x+ τi

)
sign

(
(Dsi)T x′ + τi

)

−
∑

(x,x′)εP
sign

(
(Dsi)T x+ τi

)
sign

(
(Dsi)T x′ + τi

)
+ λ |si|1



subject to (Dsi)T (Dsj)T = dij

In big words this function attempts to make the correlation of the binary codes
as negative as possible for N and as positive as possible for P , thus achieving
more discriminative projections, while encouraging sparsity of the si vectors, with
λ determining its sparsity level, and orthogonality of the projections by enforcing

dij =

1 i = j

0 otherwise
1.
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3.2 Feature descriptors

Since the objective function is non-differentiable due to the sign function it is sim-
plified to an equivalent one that gets rid of the calls to the sign function and is
independent of the thresholds τi:

min
{si}

∑
i

∑
(x,x′)εP

((Dsi)T (x−x′))2

∑
(x,x′)εN

((Dsi)T (x−x′))2 + λ |si|1

subject to (Dsi)T (Dsj) = dij

This new objective function is solved using Stochastic Gradient Descent, with soft-
thresholding as the proximal operator of the L1 norm. Once an optimal value for
the projections wi is found the original objective function is optimized only for the
threshold values τi following a simple one-dimensional search. Being an heuristic
the new objective function might get trapped into local minimum thus a proper
initialization is necessary.
Proven by experimentation the authors vote for a stepwise initialization scheme of
the optimization process rather than using random values:

1. An initial set of discriminant projections {w0
i } is obtained by minimizing the

first term of the simplified objective function using Linear Discriminant Em-
bedding, which includes already the orthogonality condition.

{w0
i } = argmin

{wi}

∑
i

∑
(x,x′)εP

(wTi (x−x′))2

∑
(x,x′)εN

(wTi (x−x′))2

2. Use a technique for efficiently solving the convex optimization problem with
sparsity-induced penalties result of addressing the sparsity constraint and ap-
proximating each projection w0

i with a sparse linear combination of elements
from the dictionary D:

{s0
i } = argmin

si
‖w0

i −Dsi‖
2
2 + λ |si|1

In practice the authors use LASSO (Least Absolute Selection and Shrinkage
Operator) and control sparsity using the more convenient user defined |s|max0 ,
the maximal number of non-zero coefficients in the representation.

By experimentation the authors determined that applying a global optimization on
the initial set of projections

{
wSi
}
does not lead to any significant improvement and

hence it is used as the final estimated projections before optimizing the threshold
values.
The dictionary D is designed so that the dot product DT

i x can be computed ef-
ficiently. The authors tried three different types of dictionaries: box filters and
Gaussian filters, both implemented as the result of a convolution, and rectangular
filters implemented using integral images.

55



Chapter 3 Binary Features

The best performances as reported by the authors are obtained when using the first
32 projections, beyond this performances start deteriorating. The resulting descrip-
tor is then made of 32 bits. In addition using the dictionary of rectangular filters
with 64 elements shows superior performance over other combinations of dictionary
types and number of elements while still enabling real-time applications.
Bearing in mind this considerations the algorithm for computing D-BRIEF descrip-
tor turns out to be:

1. Pre-define the dictionary to use.
2. Compute the initial set of projections {w0

i } using LASSO.
3. Optimize for the threshold values τi.
4. Compute the descriptor by applying the projections to the vector representa-

tion of the image patch and thresholding the results.
This technique produces a very compact descriptor with enough discriminative
power at the expense of data dependence, which is not a big problem as shown
by the authors in a real-time application where projections and threshold where
learned from a different dataset with significantly differing quality achieving still
good recognition results. Its compactness places it in an advantageous position
on resource restricted architectures since it enables to perform many operations in
once single clock cycle. Compared with its direct competitors D-Brief outperforms
BRIEF and BRISK in the task of matching providing an improvement from 11%
to 32%, while requiring less memory, hence more accurate. It is as well reported to
be 2-3 times faster to compute than BRISK and slightly more than BRIEF with a
proper dictionary, hence more efficient.
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While the BoF model as explained in sec. 1.3 is well defined for real-valued data
streams, it requires a bit more effort to plug binary descriptors into it. The main
concern lies in providing a clustering method able to deal with the nature of the
binary descriptors and yet produce a vocabulary with sufficient descriptive power
and a structure that minimizes loss due to quantization. Popular approaches consist
in variations of the k-means algorithm using a distance measure other than Euclidean
and a centers computation technique other than the arithmetic mean, some of this
have been integrated into commercial applications such as Matlab1. In this chapter
I discuss challenges related to the use of binary features as input to the BoF model
and present my approaches to it, highlighting their advantages, describing their
implementation details, and discussing related issues.

4.1 Binary BoF

The classical approach for vocabulary building following the BoF model consists
in using Lloyd’s algorithm as an heuristic for k-means clustering where Euclidean
distance is used as measure of dissimilarity between observations, arithmetic mean
for clusters centers computation, and overall intra-cluster variance as measure of
clusters quality. This approach is well defined for real-valued data where Euclidean
distance is meaningful and guarantees convergence at least heuristically2.
In the case of binary features as those reviewed on the previous chapter, the direct
application of Lloyd’s k-means clustering algorithm is not possible due to the nature
of the data and hence some considerations need to be taken. In concrete two things
need to be revisited: distance measure and clusters centers computation method.
On the one hand using a dissimilarity function such as Euclidean distance as distance
measure is a very natural and reasonable choice given that the task of clustering
consist in grouping together observations sharing similar properties. Nevertheless
when comes to evaluate it for vectors of binary features, it is not the metric of
choice[8]. The reason is simple, using Euclidean distance to classify binary data
often results in ties and arbitrary assignment to clusters because observations are
always a bit part of very cluster, hence doing so becomes in unstable results which

1K-means clustering, MATLAB kmeans, MathWorks
2Cross Validated Q&A site - What to use, k-means or hierarchical clustering for presence absence
data?
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even in the long run provide no guarantee of convergence. The arithmetic mean is
optimal only for the Euclidean distance, for Manhattan distance the median is said
to be better, and for other metrics it is hard to say3.
On the other hand using arithmetic mean as clusters centers computation method
for binary data is not neither a reasonable choice. Produced clusters centers in this
way are: 1) not binary anymore, 2) hardly representative of the data assigned to the
clusters they represent, and 3) likely not to be sparse anymore. Among these only
the second and third one concern us since in the BoF framework having interpretable
clusters centers is a negligible property because what matters about them is to be
enough representative as for describing a certain texturing pattern. Under Euclidean
distance such centers are more similar to each other than the actual observations to
each other and even less the observations to the center of the cluster their assigned
to4. In summary, clusters obtained using arithmetic mean are not discriminative
since all observations belong a bit to all clusters.
Although negligible, a popular alternative to produce clusters centers which preserve
the binary nature of the data is the k-medoids clustering algorithm, commonly real-
ized through the Partition Around Medoids (PAM) algorithm, which like k-means,
attempts to minimize the distance between clusters centers and the observations
assigned to the cluster it represents. Its main difference with respect to k-means,
lies in the fact that instead of computing centroids (clusters centers using the arith-
metic mean) it computes medoids (actual dataset instances) by using a matrix of
distances between observations to heuristically choose as centers those observations
which result in the lowest cost configuration. This algorithm is more robust to noise
and outliers compared to k-means because minimizes a sum of pairwise dissimilar-
ities, however holding a full matrix of distance implies an unaffordable increase in
memory requirements, worsening the problem.
Other clustering algorithms similar to PAM are FANNY (Fuzzy Analysis) or CLARA
(CLustering LARge Applications) which also compute medoids as clusters centers,
but suffer from the same problem of needing to hold a huge distances matrix.
Regarding distance measures a popular one widely used for binary strings compari-
son is the Hamming distance, a dissimilarity measure grabbed from information the-
ory which given two strings of equal length tells the number of positions at which
the corresponding symbols are different. Such operation can be done extremely
fast performing a XOR operation between the pair of bit strings followed by a bit
count operation. This two instructions are implemented in the SSE4 (Streaming
SIMD Extensions 4) instructions set often supported in modern CPUs. In particu-
lar the bit count is directly implemented as the POPCNT instruction from SSE4.2,
only supported by the latest Intel Core i7 CPUs, which where unavailable can be
replaced by an implementation based on SSE2/SSE4.1 instructions. While other

3IBM SPSS Statistics Technote 25479 - Clustering binary data with K-Means (should be avoided)
4Cross Validated Q&A Site - What to use, k-means or hierarchical clustering for presence absence
data?
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similarity/dissimilarity measures more suitable for dichotomous (binary) variables
such as Sokal-Michener, Sokal-Sneath, Rogers-Tinimoto, Russell-Raova, Jaccard,
Czekanowski or Sokal-Sneath can be used, they don’t offer guarantee of conver-
gence even heuristically.

4.2 Previous approaches

Typically proposed solutions to solve the problem described in the previous section
involve some variation of the Lloyd’s k-means clustering algorithm. This is the case
of k-medians, often confused with k-medoids, where instead of using the arithmetic
mean to compute clusters centers it is taken the dimension-wise median value. This
modification results in an optimal scheme where it is minimized the error over all
clusters with respect to the L1 − norm or Manhattan distance.

The k-medians algorithm is more reliable for discrete or binary datasets because the
clusters centers are computed in each single dimension by operating over individual
attributes of dataset instances. Centers computed in this way might conserve the
binary nature of the dataset and are very unlikely to be dataset instances as the
attributes come from different observations. However they might contain non-binary
values since it is possible that there are clusters with an even number of observa-
tions. A straight-forward workaround to deal with ties is applying a threshold of
0.5 to medians resulting in a non-binary value, doing so would however result in an
arbitrary selection of individual attributes of the cluster center.

Another alternative for clustering binary data is that proposed by [12] where binary
data is transformed into some real-valued suitable format such that classical k-means
is applicable. Though it helps to overcome the problem about the applicability of
k-means, such transformation might decrease the descriptive power of the original
features achieving low recognition results.

Hierarchical clustering methods such as AGNES (Agglomerative Nesting), DIANA
(Divisive Analysis), and MONA (Monothetic Analysis), construct a hierarchy of
clusters, with the number of clusters ranging from one to the number of observations.
They constitute another reasonable alternative with the advantage that they also
keep binary the clusters centers, unfortunately they suffer from the same problem
of PAM about using a full distance matrix of the observations as clustering criteria.

An interesting proposal which I didn’t explore is that of [19] where the author
presents three variants of the k-means algorithm to cluster binary data streams
using sufficient statistics and sparse distance computation.

Among the explored alternatives, k-majority is the most reasonable one because it
constitutes a natural extension of k-means to the binary case. The majority voting
step that replaces the arithmetic mean helps in keeping binary the clusters centers,
and enables the use of Hamming distance which is not only meaningful for the binary
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case but also very efficient, providing a speedup of over 100 times with respect to
floating point distance as reported by [8].

Regarding ties in the majority voting step, they are broken randomly for every
dimension independently, and the authors claim that they didn’t really happen more
than a few times when working with hundreds of thousands of descriptors. This
means that results achieved using k-majority are not just a matter of coincidence
but due to the adopted strategy.

Finally since Hamming distance is meaningful in the binary case, it corresponds
to using squared Euclidean distance when working with binary data. So if clusters
centers are kept binary, what is true for k-means, is true also for k-majority. Proving
one and for all the convergence of k-majority, at least heuristically.

In the following sections I will discuss the adaptations of two popular algorithms
used for vocabulary construction, Hierarchical K-Means and Approximate K-Means.

4.3 Hierarchical K-Majority

It is an adaptation of the Hierarchical K-Means technique described in sec. 2.1.1
that enables using BoF model for binary data streams. Since the original technique
doesn’t care about minimizing the overall distortion within the final clusters but
only within the clusters at each branch level of the tree, it is in theory possible at
each level to use any suitable clustering algorithm.

The introduced modifications comprehend using Hamming distance for descriptors
comparison instead of Euclidean distance and a majority voting step for clusters
centers computation instead of the arithmetic mean, as described in sec. 2.3.4. The
rest of the technique goes as usual, inverted index for holding database BoF vectors
together with some weighting scheme. In Fig. 4.1 can be seen an example of a
vocabulary built using hierarchical k-majority.

Figure 4.1: Illustration of a vocabulary tree based on k-majority with
branch factor 3 and depth 2. Tree nodes are binary strings.

A remarkable advantage of this adaptation, is it’s speed over classical Hierarchical
K-Means which is already on its own a rapid solution for descriptors quantization;
it suffer however from the same problem of loss due to quantization and other
disadvantages that will be discussed in the next chapter. This solution is comparable
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to that described in [7], with the exception that instead of using a majority voting
step for clusters centers computation it is computed the dimension-wise median
and resulting non-binary values are truncated to zero. It is therefore not a very
innovative contribution.

4.4 Approximate K-Majority

Inspired by the work of [20] where it is explored the possibility of using a flat vo-
cabulary in order to minimize the overall distortion within final clusters lessening
the chance of descriptors misassignment at quantization time, I propose Approxi-
mate K-Majority an adaptation of the K-Majority algorithm which uses an HCT
(Hierarchical Clustering Trees) index to reduce the complexity of searching nearest
neighbors at quantization time.

The adaptation is a simple extension of the K-Majority algorithm where it is utilized
an HCT index instead of a linear index to find the right quantization cell on each
case. The HCT index acts as quantizer and is built over the cluster centers at the
beginning of each iteration, the last built HCT index is saved for future quantization.

Typical approaches for indexing binary descriptors are using a linear index or some
hashing technique such as LSH (Local-sensitive hashing) or MinHash (min-wise
independent permutations locality sensitive hashing). Here I opted for the HCT
technique proposed in [16], due to its higher performance over LSH at higher search
precision.

Algorithm 4.1 Building one hierarchical clustering tree
Input: features dataset D
Output: hierarchical clustering tree
Parameters: branching factor K, maximum leaf size SL
if size of D < SL then

create leaf node with the points in D
else

P ← select K points at random from D
C ← cluster the points in D around nearest centers P
for each cluster Ci e C do

create non-leaf node with center Pi
recursively apply the algorithm to the points in Ci

end for
end if

The HCT technique consists in a suitable data structure used to narrow down the
search space and a nearest neighbors search algorithm. The data structure is a set
of multiple k-ary trees, named hierarchical clustering trees, result of a hierarchical
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decomposing the search space by recursively applying over the input dataset a clus-
tering algorithm similar to k-medoids. Unlike k-medoids, HCT does not consider
any cluster update step5 and the recursion runs until the number of points on each
cluster is below a certain threshold (the maximum leaf size). The complete process
of building a single tree is summarized in Algorithm 4.1.
With a single hierarchical clustering tree it is possible to find the nearest neighbors
to a given descriptor by propagating down the input data and linearly scanning
descriptors on the correct domain. When the nearest neighbor to a query descriptor
lies just across a boundary from the explored domain, the search needs to backtrack
in order to reach the correct domain. Exploring multiple tree instances in parallel
and combining the results helps to overcome this problem because as the trees are
different enough, the closest neighbor likely lies in different domains in different
trees, increasing the likelihood of quickly reaching the correct search domain.

Algorithm 4.2 Searching parallel hierarchical clustering trees
Input: hierarchical clustering trees Ti, query point Q
Output: K nearest approximate neighbors of query point
Parameters: max number of points to examine Lmax
L← 0 {L = number of points searched}
PQ← empty priority queue
R← empty priority queue
for each tree Ti do

call TraverseTree(Ti, PQ,R)
end for
while PQ not empty and L < Lmax do

N ←top of PQ
call TraverseTree(N,PQ,R)

end while
return K top points from R
procedure TraverseTree(N,PQ,R)
if node N is a leaf node then

search all the points in N and add them to R
L← L+ |N |

else
C ← child nodes of N
Cq ← closest node of C to query Q
Cp ← C \ Cq
add all nodes in Cp to PQ
call TraverseTree(Cq, PQ,R)

end if

The process of nearest neighbors search using multiple hierarchical clustering trees
5It is as if the cluster centers would be randomly selected.
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is presented in Algorithm 4.2. It starts by individually traversing all the trees in
order to find the nearest neighbor on each case while adding unexplored nodes to a
priority queue. Once done, the search is continued by resuming from the next node
in the priority queue that is closest to the query descriptor. The search ends when
a certain number of points, given as a parameter to the search algorithm, has been
examined.
Two remarkable properties of the HCT technique are that it scales well with the
size of the dataset (millions or even tens of millions of descriptors), and that it is
able to operate at different search precisions by tuning a set of parameters.
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In this chapter I concentrate on evaluating the retrieval performance of the clustering
approaches described in the previous chapter over a large scale database of landmark
images exhibiting many changes in visual appearance. In particular I look at their
capabilities of retrieving relevant images inside the shortlist of top candidates which
is further refined using as criterion the features spatial distribution.
Given the cost in large scale databases of accessing n random places at disk corre-
sponding to the short list of top n ranked images, the retrieval stage of the pipeline
must roughly retrieve first the most visually similar images. This moves the focus
on evaluating the BoF retrieval, since the overall performance depends largely on it.
By undertaking the evaluation of this algorithms I intend to respond questions such
as, how does varying pipeline modules affects system behavior? how does vocabulary
size influences retrieval performance? and what is the effect of tuning the different
algorithms parameters over retrieval performance?
To address such questions, in the following sections I will explain the environment
setup for the execution of the experiments -datasets and pipelines-, then I will intro-
duce the measures used to evaluate the performance and the evaluation procedure.
Finally I will briefly explain what do the performed experiments consist, and I will
analyze the obtained results based on the theoretical framework exposed in previous
chapters.

5.1 Experimental setup

5.1.1 Datasets used

Benchmark datasets used for landmark and location recognition typically originate
from one of two sources: images crawled from a photo-sharing sites such as Flickr or
an acquisition process of panoramic images using a mobile mapping vehicle equipped
with a number of sensors among which a panoramic camera and high-definition
cameras. In order to evaluate retrieval performance and individually assess the
effects of the pipelines, the evaluation is done over three datasets classified on the first
category: Oxford5K, Paris6K and Rome10K. The first one is used to run the main
experiments, the second and third ones are used to test generalization capabilities
of a visual vocabulary built from binary descriptors.
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Oxford5K. Introduced in [20], the Oxford buildings dataset1 is one of the most
popular benchmark datasets for landmark recognition. It consists of 5.062 images
collected from Flickr depicting 11 different landmarks from Oxford city, each rep-
resented by 5 possible text queries resulting in 55 query images and 5.007 training
images. A sample of query images is shown in Fig. 5.1.

All souls Balliol Cornmarket Magdalen Radcliffe
Camera

Figure 5.1: Sample query images from the Oxford5K dataset

1Oxford5K dataset is publicly available from http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/
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All the dataset images were originated from the same acquisition process (camera
setup, lighting conditions, shooting time) resulting though in a quite unrealistic
testing scenario. Together with the images and the ground truth data containing
images quality labels (good, ok, junk, bad) and landmark information, the authors
published in binary format a set of SIFT descriptors extracted from detected MSER
regions, as well as a visual vocabulary used for their own tests.

In computing the average precision over this dataset, the good and ok images are
used as relevant documents, bad images as non-relevant documents, and junk images
as null examples which are treated as if they were not present in the database and
hence the score is unaffected whether they are retrieved or not.

The images in this corpus exhibit substantial differences in viewpoint, scale, lighting,
perspective distortion, and occlusion. Additionally some images might represent
more than one landmark at the same time, rendering the visual vocabulary building
and retrieval processes much more complex since visual structures present in an
image might also be present in another image corresponding to a different landmark.
In the other hand some images do not depict any landmark and hence act just
as distractors. Such characteristics make this dataset ideal to evaluate retrieval
capabilities of a landmark recognition system, but rather not to use it as reference
for a location recognition system.

Paris6K. Presented by first time in [21], the Paris buildings dataset2 was introduced
to examine the generalization of their system when the images used for building
the visual vocabulary differ from those used to create the database. It consists of
6.412 high-resolution (1024×768) images depicting 12 different landmarks from the
city of Paris. All of them were obtained from Flickr in the same manner than in
Oxford5K. Example images from this dataset are shown in Fig. 5.2. Together with
the dataset the authors provided ground truth data formatted in the same manner
than Oxford5K.

2Paris6K dataset is publicly available from http://www.robots.ox.ac.uk/∼vgg/data/parisbuildings/
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La Defense Eiffel Tower Moulin Rouge Sacre-Caeur Arc de
Triomphe

Figure 5.2: Sample query images from the Paris6K dataset

Rome10K. It makes part of an unpublished work in the topic of binary descriptors
compression. It consist of 10 videos depicting 10 different landmarks from the city
of Rome and 10.000 low-resolution (500×300) images among which 84 are relevant
to the videos since they contain the landmarks depicted on them, the rest act simply
as distractors. The relevant images were crawled from Google Images whereas the
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distracting ones were randomly sampled from the MIRFLICKR image collection.
This means that they were taken under heterogeneous imaging conditions and hence
constitutes a challenging dataset. Example images from this dataset are shown in
Fig. 5.3.

Arco di
Costantino Colosseo Pantheon Castel

Sant’Angelo
Fontana di

Trevi

Figure 5.3: Sample photograms of the query videos from the Rome10K
dataset. To use this dataset as input to my implementation I extracted pho-
tograms at each second from the query videos and used them as query images.

To the sake of the comparison process and to keep a controlled environment I ex-
tracted my own descriptors using in all cases the same set of keypoints to render
meaningful the comparison process. In Tab. 5.1 are shown the counts of extracted
features for the Oxford5K dataset.

5.1.2 Tested pipelines

To evaluate the clustering methods presented in the last chapter, I plug them into
the standard landmark recognition pipeline and compare them against a reference
and a baseline pipeline. In the context of landmark recognition using the BoF
model, a pipeline is understood as the combination of a features detector, a features
descriptor, and some approach for visual vocabulary construction.
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Detector Descriptor No. of features Size in Bytes
HARRIS BRIEF 3’848.354 128 MB
HARRIS BRISK 4’019.848 257 MB
DoG BRIEF 16’348.741 510 MB
DoG SIFT 17’814.954 8.6 GB

HESSIAN-AFFINE SIFT 12’532.047 6.0 GB
AGAST BRIEF 84’580.664 2.6 GB
AGAST BRISK 89’462.894 5.4 GB
BRISK BRIEF 7’354.484 235 MB
BRISK BRISK 7’515.451 469 MB

Table 5.1: Number of descriptors extracted from Oxford5K datasets. It
were used different pairings of detectors and descriptors.

The reference pipeline represents the state-of-art in landmark recognition using only
BoF retrieval and places the highest mark in retrieval performance. It is a reproduc-
tion of the BoF part of the system used in [20] as a reference to test their proposal.
It uses a Hessian-affine feature detector paired with SIFT for feature description.
For images retrieval it uses the BoF model fed by a 1M visual words vocabulary
built from all the extracted descriptors using Hierarchical K-Means, together with a
linear classifier supported by an inverted index. An interesting proposal for features
spatial layout verification is to use Locally Optimized RANSAC for estimating three
different perspective transformation models: 3 dof, 4 dof, and 5 dof, in each case it
is used a general (6 dof) affine transformation for the iterative step. Such procedure
is performed only for the top 1.000 images from the shortlist of candidates.

The baseline pipeline is a reduced version of the reference pipeline. For keypoint
detection it uses DoG instead of an affine detector. Such change is motivated by
the fact that using a Hessian-Affine detector, although very effective to deal with
perspective distortion effects, is unaffordable for mobile landmark recognition. For
image retrieval it follows the same strategy than the reference pipeline, and for
features spatial layout verification it uses RANSAC for estimating an homography
between each query and database images in the shortlist of retrieved candidates.

The tailored pipeline for using binary features in a BoF model uses for images de-
scription a combination of the detectors and descriptors presented in chapter 3.
For vocabulary construction it uses either Hierarchical K-Majority or Approximate
K-Majority, while for geometric verification uses RANSAC for estimating an homog-
raphy.
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5.2 Performance evaluation framework

5.2.1 Performance measures

As said in sec. 1.4, landmark recognition is basically a binary classification problem
where images in a database are classified with respect to a given query image de-
pending on whether it represents the same landmark or not. To measure the quality
of such classifier I employ two popular and widely accepted measures, precision, de-
fined as the ratio of retrieved and relevant images to the total number of retrieved,
and recall, the ratio of the number of retrieved and relevant images to the total
number of relevant images in the corpus. In the case of landmark recognition, the
relevant images with respect to a given query image are those representing the same
landmark.

To characterize the classifier’s performance with respect to a single query, I look at
the precision-recall curve, result of varying the threshold of the number of retrieved
images, and the average precision, a useful measure for information retrieval systems
that return a ranked sequence of documents, defined as the precision value averaged
across all values of recall between 0 and 1, i.e. the area under the precision-recall
curve:

AvgP =
´ 1

0 p (r) dr

In practice this integral is approximated by a finite sum over all precision values at
every possible threshold value, multiplied by the change in recall:

N∑
k=1

P (k) ∆r (k)

As done in [20], in order to reduce the impact of wiggles in the curve, instead of the
precision value at a certain recall level, here I take the average between the current
and the previous precision values:

N∑
k=1

(
P (k) + P (k − 1)

2

)
∆r (k)

To evaluate the overall system performance and not only with respect to a single
query, I use the mean Average Precision (mAP) score, a global measure result of
computing the arithmetic mean of the average precision values of a set of queries.
To complement the mAP score, I use a single precision-recall curve of the averaged
retrieval results of all queries.
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5.2.2 Evaluation methodology

The plan consists in executing a series of experiments carefully prepared to respond
the questions posed at the beginning of the chapter. Each of them is run indepen-
dently, thus their incomes and outcomes are not correlated. A single experiment
consist in the comparison of one or more pipeline instances, each of which is de-
termined by a set of algorithms parameters which vary on each case, see Tab. 5.5,
Tab. 5.6 and Tab. 5.8 for a full description of the parameters of the employed al-
gorithms. Running a single pipeline consist in three steps: 1) build the visual
vocabulary, 2) create the database (Tab. 5.2 shows the relative size of the utilized
databases), 3) perform BoF retrieval, and 4) optionally perform spatial verification.

To render fairer the comparison process between the different pipelines instances,
identical cluster initialization is used, i.e. no random seeding. To make it more
realistic, the datasets are divided between training and query images, the former
group is used to build the vocabulary and to create the database, and the second one
is used to test the pipeline. The training set is further divided between distracting
and non-distracting images, the first is excluded from the database since in the frame
of the landmark recognition problem it’s senseless to include images not depicting
any landmark.

Dataset No. of images Description

Oxford5K
790 All images except the queries and the distractors
5.007 All images except the queries
5.062 All images

Paris6K
3.399 All images except the queries and the distractors
6.337 All images except the queries
6.392 All images

Rome10K
84 All images except the queries and the distractors

10.000 All images except the queries
10.084 All images

Table 5.2: Number images per database for each dataset

5.3 Results and discussion

I performed a total of four experiments, the first one aimed at evaluating BoF re-
trieval while the latest three evaluated other aspects of the tailored pipeline. Firstly,
I tried the tailored pipeline using both Hierarchical K-Majority and Approximate
K-Majority with several combinations of parameters, and compared them in order
to: 1) find the best scheme to address binary BoF, and 2) discover which param-
eters are more sensitive. Secondly, I run the optional geometric verification step
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over the ranked candidates produced by the best scheme found in the first exper-
iment. Thirdly, I tried different combinations of feature detectors and descriptors
to investigate how does their invariance capabilities to different changes in visual
appearance influence retrieval performance. To conclude the experiments, I checked
the generalizing capabilities of a visual vocabulary trained with binary descriptors.
In all cases for storing the database images BoF vectors I used an inverted index
with tf-idf word weighting, L1-norm for normalization and L1-distance for compar-
ison. All the experiments, unless stated, were run over the Oxford5K dataset and
always using my own implementation of the described algorithms.

5.3.1 Reproducing the state-of-art

Prior to experiments execution I proved my implementation of the reference pipeline
and compared it with the analog results achieved in [20]. There the authors trained
the visual vocabulary using all dataset descriptors, then created a database and
tested it using the descriptors corresponding to the query regions, i.e. landmarks
on the query images. Doing so they achieved a mAP score of 0.43 and improved it
up to 0.469 after geometric verification. In this section I address only BoF retrieval
while the evaluation of geometric verification effects is done on a later section.
For feature detection and extraction I used a pre-built binary3 implementing a mod-
ified version of the Hessian-Affine detector proposed by Krystian Mikolajczyk, then
I formatted the extracted descriptors and fed them to my implementation. Since it
was not clear which combination of training set and database did the authors use,
I tried several combinations.
Tab. 5.3 shows the retrieval results using the full query images rather than the
clipped regions. At glance it can be seen that the unrealistic scenario where all
the descriptors of the dataset are used to train the vocabulary, presents in all cases
the highest retrieval performance. This is because the descriptors of the query im-
ages bias the vocabulary construction towards one including words which better
describe, not only, the database images but also the query images. Likewise perfor-
mance increases when the query images are included in the database.
It can be seen as well that including distractor images in the database hurts retrieval
performance in a range of 10% to 20%, this is a reasonable outcome since such
distractors are difficult ones and may easily be confused with those used in the
query set.
Regarding the size of the training set (see Tab. 5.4) we notice that a higher value
results in all cases in an increased retrieval performance, moreover using more de-
scriptors than visual words increases the quality of the vocabulary. In other words
the ratio of the number of descriptors to the number of words benefits retrieval
performance.

3A Linux binary of the Hessian-affine detector with SIFT descriptor is publicly available at
http://cmp.felk.cvut.cz/∼perdom1/code/index.html
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Training set Database mAP mAP*
All images except the

queries and the distractors
All images except the

queries and the distractors 0.4121 -

All images except the queries All images except the
queries and the distractors 0.4335 0.4174

All images All images except the
queries and the distractors 0.4406 -

All images except the
queries and the distractors All images except the queries 0.2203 -

All images except the queries All images except the queries 0.3384 0.3127
All images All images except the queries 0.3480

All images except the
queries and the distractors All images 0.5795 -

All images except the queries All images 0.5894 0.5514
All images All images 0.6135 -

Table 5.3: Retrieval performance of the reference pipeline combining dif-
ferent training sets, databases, and queries. All scenarios use Hierarchical
K-Means with parameters: depth=6, branch factor=10, max training cycles=10,
seeding=RANDOM, fed with SIFT descriptors extracted from Hessian-Affine re-
gions. The first mAP scores column corresponds to evaluate the system using the
full query images, while the second column corresponds to evaluate the system
using only the query regions.

To achieve a faithful reproduction of the test environment I performed the same
exercise than before, but using query regions. Since the mAP scores are consis-
tent among the different vocabularies I chose to use the one corresponding to the
training set excluding the queries. As shown in Tab. 5.3 using query regions to test
the pipeline decreases retrieval performance, this is probably because descriptors
corresponding to surroundings help recognition rather than distract as mentioned
in [2].
Considering the results over the reference pipeline for the following experiments the
vocabulary is built using as training set the descriptors corresponding to all images
except the queries and as database all the images excluding the queries and the
distractors.

5.3.2 Find best performer set of vocabulary parameters

In this experiment, I explore the effect over the retrieval performance in the tailored
pipeline when varying the parameters of the clustering algorithms proposed in the
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Training set No. of
descriptors

No. of descriptors /
No. of words

All images except the
queries and the distractors 2’055.919 2,056

All images except the queries 12’384.049 12,384
All images 12’532.047 12,532

Table 5.4: Size of the training sets in terms of number descriptors and ra-
tio between the number of descriptors and the number of visual words.
Features were extracted using SIFT from affine regions detected over images from
the Oxford5K. The ratios were computed assuming a vocabulary with 1M words.

previous chapter. During the execution of this experiment, despite the set of param-
eters producing the best retrieval performance, I expect to find the crucial and not
crucial parameters, i.e. the ones towards which the result is more sensitive. Such
procedure is of course heuristic because of the infeasibility of testing all possible
combinations of parameters.

Hierarchical K-Majority

The behavior of the Hierarchical K-Majority clustering algorithm is influenced by
four parameters: depth, branching, training cycles and clusters seeding (see Tab. 5.5
for a full description). I start the assessment with the standard set of Hierarchical
K-Means parameters, depth 6, branch factor 10, maximum 10 training cycles and
random clusters seeding.

Parameter Description

Depth Zero-based index indicating the depth of the tree
starting at the root.

Branch factor Number of children of each node.
Maximum number of
iterations

Maximum limit in the number of iterations in a single
run.

Seeding algorithm Algorithm used for cluster centers initialization, one
among random, k-means++, or Gonzalez algorithm.

Table 5.5: Hierarchical K-Majority parameters

Figure 5.4a shows how the algorithm’s performance depends on the size of the
vocabulary. Although there is no optimum number of words due to the trade-off
between distinctiveness and repeatability mentioned in sec. 1.3, it is observed that
generally performance increases with the number of words, and particularly with
the depth but not much with the branch factor. The drop in performance after 10M
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words can be explained by the empirically learned rule that the ratio between the
number of training descriptors and the number of words should be kept high.

The shape of the vocabulary has also a positive impact on the retrieval performance
but in a much lesser extent, as shown in Figure 5.4b. Although both vocabularies
have the same number of words, the flatter one reports a slightly higher performance.
Such behavior is consistent up to a 3% of recall corresponding to the top 4 candidates
and a precision level of at least 40 %. A reasonable explanation behind this result
is that bigger leaf nodes increase repeatability while the hierarchical structure acts
as a sort of nearest neighbor index. This result partially motivates using a flat
vocabulary instead of a hierarchical one.

(a) (b)

Figure 5.4: Effect of varying size and shape of a vocabulary built using
Hierarchical K-Majority. (a) Result of increasing the number of words varying
the branch factor from 8 to 16 and the depth from 5 to 7. (b) Averaged precision-
recall curves of two schemes producing 16M visual words. The solid red line
corresponds to a vocabulary with depth 8 and branch factor 8, it achieves a mAP
score of 0.1609, while the dash-dotted blue line corresponds to a vocabulary with
depth 6 and branch factor 16 which achieves mAP score of 0.1634.

The next examined parameter is the maximum number of training cycles. From
Fig. 5.5 it can be observed that a maximum of 30 iterations performs better than
a smaller or larger value. K-Majority is known to solve ties randomly and it might
end up in unstable results. Running few iterations might not be enough to achieve
clusters of good quality, while running more than 30 iterations might over do the
vocabulary and hence hurt performance.
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Figure 5.5: Effects of the unsupervised Hierarchical K-Majority vocabu-
lary training on retrieval performance. Result of increasing the maximum
number of training cycles.

The last parameter I examine is the seeding algorithm. Fig. 5.6 shows how does
the algorithm behaves when changing the seeding algorithm. Among all Gonza-
lez presents the worst overall performance while K-Means++ slightly outperforms
Random up to a recall level of 3 % after which their performance becomes pretty
similar.

Figure 5.6: Effect of using different seeding algorithms to bootstrap the
vocabulary training process. Averaged precision-recall curves result of chang-
ing the seeding algorithm used to build a 1M visual words vocabulary. The corre-
sponding mAP scores are 0.1652 for K-Means++, 0.1624 for Random, and 0.1591
for Gonzalez algorithm.

BothGonzalez andK-Means++ are greedy algorithms based on the idea of spreading
out the initial clusters, although they operate similarly, they have a fundamental
difference in the way of choosing new centers. In the Gonzalez algorithm the first
cluster center is chosen randomly then iteratively it adds in the farthest point from
the ones chosen so far, until k centers have been chosen. K-Means++ operates in
the same manner but it randomly choses as new center a data point among the
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remaining ones, using a weighted probability distribution where a point x is chosen
with probability proportional to D (x) 2.
Introducing some randomization in the centers selection process helps to increase
retrieval performance, possibly because it helps breaking the curse of dimension-
ality4. This would explain why both Random and K-Means++ achieve a similar
performance though the second one theoretically provides centers of better quality.
It’s worth noticing that K-Means++ has a bigger cost than Random in terms of
memory and execution time, specially in cases of a big volume of data.
Fig. 5.7 shows the averaged precision-recall curves of the reference and baseline
pipelines in comparison with those of the tailored pipeline using as clustering ap-
proach the two best Hierarchical K-Majority schemes found during parameter as-
sessment. The gap in performance between the reference and baseline corresponds
to a difference in mAP of around 10%, it obeys to the change in the feature detector
and supports the idea of having a baseline which doesn’t use affine keypoints to
make more fair the comparison process against the tailored pipeline.

Figure 5.7: Comparison between the best Hierarchical K-Majority
schemes and the reference and baseline pipelines. The red dotted line
corresponds to the scheme combining the parameters which individually best per-
form., i.e. a 10M visual words vocabulary built with depth 7 and branch factor 10
trained with a maximum of 30 cycles and K-Means++ seeding. The black dash-
dotted line corresponds to the best performer scheme found during the test of
maximum number of training cycles, i.e a 1M visual words vocabulary with depth
6 and branch factor 10 trained with a maximum of 30 cycles and Random seeding.
The corresponding mAP scores are 0.1678 for the combined scheme, 0.1721 for
the best max iterations scheme, 0.4335 for the reference pipeline, and 0.3546 for
the baseline pipeline.

Looking at the schemes using binary features it is evident that both exhibit a much
lower retrieval performance than any of the schemes using SIFT descriptors. Some

4The interested reader might search for “Using Randomization to Break the Curse of Dimension-
ality” by John Rust
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relevant reasons to explain this result are:

• Noisy descriptors: in Hierarchical K-Majority like in Hierarchical K-Means
the variability and noise in the descriptor vectors is not a big issue since it
helps moving them between different quantization cells and partially address
the loss due to quantization.

• Loss due to quantization: it’s one of the main reasons why the bag-of-
words model often fails, nevertheless it affects equally all the tested pipelines
and hence doesn’t pose a challenge for the purpose of this assessment.

• Low discriminative power: although BRIEF is more efficient to compute
than SIFT, it encodes less information and hence it has a lower discriminative
power.

• Influence of the feature detector: in [4] the authors conclude that us-
ing BRIEF in conjunction with SURF negates part of its considerable speed
advantage while pairing it with some fast detector like CenSurE improves de-
scriptor’s matching performance. In [18] the authors go beyond and claim that
the single most important factor governing image’s matching performance us-
ing local features is the number of patches sampled from the training images
and interest operators such as those used by SURF or SIFT detectors cannot
provide enough patches. This might indicate that the reason why the scheme
combining DoG with BRIEF has so low retrieval performance, and pairing it
with a more adequate detector might lead to some improvement.

Between both schemes using binary features the combined one shows the lowest
performance, indicating that the best individually performing parameters don’t fit
very well altogether. The parameters of both schemes are the same except for
the tree depth and the seeding algorithm, it was already mentioned that a higher
depth increases retrieval performance, but how about the seeding algorithm? Using
Random seeding the required number of training cycles to achieve a stable result is
higher while using K-Means++ it is required a smaller number of training cycles to
achieve a result of good quality, this indicates that the seeding algorithm should be
carefully chosen with respect to the maximum number of training cycles.

The above experiments show that the best parameters to choose depend on the size
and characteristics of the dataset, however for the future experiments I consider that
the best scheme uses the following parameters: depth 7, branch factor 10, maximum
30 training cycles and random seeding.

Approximate K-Majority

The behavior of this algorithm it’s influenced by the following parameters: the
number of clusters, the maximum number of training cycles, the seeding algorithm,
and the Hierarchical Clustering Trees parameters (see Tab. 5.6 for a full description).
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Parameter Description
Number of words Final number of clusters or quantization cells.
Maximum number of
iterations Upper limit in the number of iterations.

Seeding algorithm Algorithm used for cluster centers initialization, one
among random, k-means++, or Gonzalez algorithm.

HCT - Number of trees Number of trees built.
HCT - Branch factor Number of children of each node of a tree.
HCT - Maximum leaf
size

Maximum number of points to examine before
stopping search algorithm.

HCT - Number of checks Maximum number of leaf nodes to visit.
Table 5.6: Approximate K-Majority parameters

Starting from the findings in [16], I addressed the first test which consisted in finding
a fair set of the HCT algorithm’s parameters. Particularly I concentrated in the
number of trees, the branch factor, and the maximum leaf size.
According to the authors the optimum number of trees depends on the desired search
precision5, for less than 70% two parallel trees is enough and for precisions above
85% a higher number of trees between 4 and 8 gives better results. They notice
however that in practice the optimum number of trees depends also on the available
memory and constraints on the tree build time. For the problem at hand the main
concern is having a low quantization time thus using two trees in parallel is enough.
The authors also claim that higher branch factors perform better for search pre-
cisions above 80% with little gain for values above 16, conversely for lower search
precisions very large branching factors perform worse and it is associated a higher
tree build time.
As for the maximum leaf size the authors argue that a value of 150 performs better
than a smaller values, which result in deeper trees with small leafs, or a larger ones,
which result in flatter and more superficial ones with large leaves. The authors
explain such result by the fact that for small leaf sizes the overhead of traversing
the tree to examine more leaves is greater than the cost of comparing the query
feature to all the features in a larger leaf, while for very large leaf sizes the cost of
linearly examining all the features in the leaves ends up being greater than the cost
of traversing the tree.
In the basis of these findings I came out with a set of combinations of HCT al-
gorithm’s parameters, they are shown in Tab. 5.7. As the tests with the different
combinations were being executed I noticed that the construction of the vocabularies
was requiring too much time.
Investigating the root cause of the high time required for vocabularies construc-

5Percentage of exact neighbors found in the total neighbors returned
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tion, I found that the time required to quantize a single BRIEF descriptor using a
vocabulary built with Approximate K-Majority6 was around 0.1 ms in comparison
with 0.01 ms required by a vocabulary built with Hierarchical K-Majority7. This
means that using Approximate K-means to quantize a typical query image which
has an average of 3.000 BRIEF descriptors would require 0.3 seconds. With a few
descriptors this might be a negligible number, but for a higher number of descriptors
it turns into a main issue specially because in landmark and location recognition
having low retrieval times is a main concern.

Number of
trees

Branch
factor

Maximum
leaf size

Avg index
building time

Vocabulary
build time

mAP

2 8 100 6 sec 22 hours 0.1565
2 8 150 6 sec 20 hours 0.1580
2 16 100 9 sec 1 day 23

hours
0.1561

2 16 150 9 sec 1 day 14
hours

0.1580

2 32 100 14 sec ~3 days 0.1632
2 32 150 13 sec ~3 days 0.1599

Table 5.7: Effect over retrieval performance when varying Approximate K-Majority
ANN method parameters

Although building the HCT indices took few time, building the full vocabularies
required too much time because repeatedly searching for nearest neighbors within a
big quantity of descriptors its an expensive task.

Finally, indexing a large amount of data using an HCT index requires that used trees
are neither too deep, since there is the risk that it becomes very expensive traversing
them, nor too flat, or it could end up in a unaffordable linear search. To build such
trees it is necessary to find a fair combination of branch factor and maximum leaf size
because they control the flatness and depth of the trees. Nevertheless in practice
such combination is infeasible, possibly changing the termination criterion of the
trees’ construction process to one that allows to control their shape could improve
the results.

Since there is no set of parameters which provides low quantization times even
sacrificing search precision, I concluded that Hierarchical Clustering Trees algorithm
is not suitable to address nearest neighbor search in the context of the K-Majority
algorithm and thus I didn’t considered it anymore for future tests.

6The vocabulary was trained with 1M clusters, maximum 10 iterations, random clusters seeding,
2 parallel Hierarchical Clustering Trees with branch factor 8 and a maximum leaf size of 150.

7The vocabulary was trained with depth 6, branch factor 10, maximum 10 training cycles and
random clusters seeding.
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5.3.3 Geometric consistency check with binary features

In this experiment I compare the improvement achieved by running the optional
geometric consistency check over the tailored and reference pipelines, using Hier-
archical K-Majority best scheme as clustering approach for the former one. The
objective is analyzing how the different parameters influence the algorithm behavior
(see Tab. 5.8 for a full description of the parameters) and find a reasonable set of
values that helps to increase retrieval precision.

Parameter Description

Top keypoints

Number of higher response keypoints to keep. The
filtered in key-points are used to generate the
putative matches used as input for the Homography
estimation process.

SIFT ratio threshold

Ratio of the distances of the first and second nearest
neighbors descriptors of the candidate image to the
descriptors of the query image. Applying this ratio
helps to increase descriptor’s matching robustness by
discarding false matches.

Distance threshold Analog to the SIFT ratio threshold but for the case of
binary features.

Minimum matches Minimum number of matches required to estimate an
Homography.

RANSAC re-projection
threshold

Inlier threshold value used by the RANSAC
procedure. The parameter value is the maximum
allowed distance between the observed and computed
point projections to consider it an inlier

Table 5.8: Geometric consistency check parameters

The first parameter I explore is the number of top keypoints, Fig. 5.8 shows how does
the geometric verification algorithm behaves when varying the number of filtered in
keypoints. Using only the keypoints with higher response, i.e. a small number
of top keypoints, might filter out some true positives which are very descriptive
while including false positives such as keypoints result of shadow casting. In the
reference pipeline using more keypoints increases performance but hurts retrieval
time since more features need to be considered during Homography estimation. On
the other hand in the tailored pipeline beyond some limit using more keypoints
doesn’t benefit retrieval performance, this happens because in that case the set of
putative matches are low quality and hence constraining RANSAC to work on top
of the higher response keypoints doesn’t help to provide a better quality model.
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Figure 5.8: Effect over retrieval performance of varying the top number
of keypoints.

The next parameter I investigate is the SIFT ratio threshold, this parameter acts
only upon real-valued descriptors which can be compared using Euclidean-distance,
i.e. only upon the reference pipeline. In Fig. 5.9a can be seen that a smaller
threshold results in sufficiently different descriptors and hence a set of putative
matches of better quality and generally a higher retrieval performance.

(a) (b)

Figure 5.9: Effect over retrieval performance of varying ratio and distance
threshold. (a) Retrieval performance of the reference pipeline keeping different
numbers of top keypoints. (b) Retrieval performance of the tailored pipeline using
the best Hierarchical K-Majority scheme and varying the distance threshold from
500 to 900.

Analog to the ratio threshold there is the distance threshold which acts only upon
binary features, it’s effect upon the tailored pipeline using the best Hierarchical K-
Majority scheme is shown in Fig. 5.9b. A distance threshold of 20 tends to produce
a better retrieval performance, a smaller or higher value worsens the retrieval per-
formance. This result is not surprising since BRIEF descriptor’s length is 256, using
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a higher value wouldn’t discard as many wrong matches while a smaller one results
more discriminative.

The third parameter I observe is the minimum number of matches, Fig. 5.10 shows
the retrieval performance for both pipelines for a wide range of values. In both cases
it is not a crucial parameter for geometric verification and a higher value tends to
worsen the retrieval performance. This result can be explained because the quality
of the estimated Homography found by RANSAC depends on the quality rather
than the quantity of the input putative matches.

Figure 5.10: Effect over retrieval performance of varying the minimum
number of matches.

The last evaluated parameter is the RANSAC re-projection threshold, in Fig. 5.11
can be seen that in none of the pipelines the geometric verification algorithm is
sensitive towards it. In the case of the reference pipeline it can be explained because
the affine variance is captured by the Hessian-Affine detector and hence there is no
need to rely on the re-projection threshold to find a better quality model. In the
case of the tailored pipeline neither the detector nor the descriptor capture the affine
variance of the images and hence we see a small improvement when using 10 pixels
over using only 3 pixels. It is worth recalling that in both cases the quality of the
homography estimation depends more on the quality of the putative matches.
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Figure 5.11: Effect over retrieval performance of varying RANSAC
threshold.

Considering the above tests, the best combination of parameters for the reference
pipeline results from keeping the top 2000 keypoints, applying a SIFT ratio threshold
of 0.7, requiring to have at least 8 putative matches and using a RANSAC re-
projection threshold of 10 pixels. For the tailored pipeline the best combination
results from keeping the top 700 keypoints, applying a distance threshold of 20 pixels,
requiring to have at least 4 putative matches and using a RANSAC re-projection
threshold of 10 pixels. Fig. 5.12 shows the averaged precision-recall curves before
and after applying geometric verification for the reference and tailored pipelines
using on either case the best set of parameters.

Figure 5.12: Improvement achieved by running geometric verification.
The pair of red lines correspond to the tailored pipeline using the best Hierarchical
K-Majority scheme and the blue lines correspond to the reference pipeline. The
dashed lines show the results before geometric verification. The corresponding
mAP scores improvements after geometric verification are from 0.4335 to 0.4519
for the reference pipeline and from 0.1721 to 0.1815 for the tailored pipeline.
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5.3.4 Compare different detector/descriptor pairings

As noticed in [11] pairing different detectors and descriptors serves to better address
certain changes in visual appearance. Here the objective is to individually eval-
uate the dataset transformation effects, in particular scale and rotation. Tab. 5.9
lists the candidate detectors and descriptors together with it’s invariance capabilites.

Detector Rotation Scale
FAST No No
AGAST No No
BRISK No Yes
ORB Yes Yes

Descriptor Rotation
BRIEF No

D-BRIEF No
ORB Yes
BRISK Yes

Table 5.9: Summary of the invariance capabilities of binary feature detectors and
descriptors

The scale information is provided by the detector and the orientation computation is
isolated to the description phase. Among the candidate detectors I discarded ORB
because it provides orientation information as well as FAST because AGAST and
BRISK are improved versions of it. Regarding feature detectors I chose BRIEF and
BRISK as examples of non-rotation and rotation invariant feature descriptors. The
final combinations used in this experiment are shown in Tab. 5.10.

Detector Descriptor Evaluated effects mAP
BRIEF AGAST Planar geometry 0.1972
BRIEF BRISK Pure scale 0.2016
BRISK AGAST Pure rotation 0.1590
BRISK BRISK Rotation + Scale 0.1589

Table 5.10: Retrieval performance for different combinations of detectors and de-
scriptors used to evaluate the transformation effects

As seen in Tab. 5.1 the number of features produced by the combination AGAST +
BRIEF is around 5 times more than the ones produced by DoG + BRIEF. Clustering
such a big quantity of data wasn’t technically possible and hence I opted for training
the vocabulary using HARRIS keypoints which share the same invariance properties
than AGAST, and testing it over a database of BRIEF descriptors extracted from
AGAST keypoints. In the case of BRISK this problem isn’t verified because it
produces less keypoints since the scale pyramid in conjunction with non-maximal
suppression, filters out non-scale invariant keypoints.
Fig. 5.13 shows the results after running the tailored pipeline using as input the de-
scriptors extracted by each of the detector/descriptor combinations listed in Tab. 5.10.
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The precision-recall curves corresponding to the combinations considering rotation
invariance have among all the lowest performance. As concluded in [11], this hap-
pens because a binary descriptor suffers in performance when it takes into account
a transform not present in the data, such as rotation in the case of upright images.
The best performance is achieved by the scheme considering only pure scale trans-
formations, this is an expected result since such transformation is present all over
the dataset. Surprisingly the scheme considering only planar geometry transforma-
tions achieves a retrieval performance competitive with that considering only pure
scale transformations.

Figure 5.13: Averaged precision-recall curves for several schemes consid-
ering different transformation effects. In all cases the vocabularies were
trained using Hierarchical K-Majority best scheme.

5.3.5 Generalization capabilities

A remarkable characteristic of visual vocabularies produced using either Hierarchical
K-Means or Approximate K-Means, is their capability to be trained over a set of
images independent than the one used for database construction and still be able to
achieve a good retrieval performance.
To prove if this holds as well for visual vocabularies trained over binary descriptors
using Hierarchical K-Majority, I trained a visual vocabulary over the Oxford5K
dataset and tested it over the Paris6K and Rome10K datasets, results are shown in
Fig. 5.14a and 5.14b. On the Paris6K dataset the retrieval performance for both
vocabularies is unchanged whilst in the Rome10K dataset the vocabulary trained
over the independent dataset outperforms the one trained over the target dataset,
thus vocabularies produced with Hierarchical K-Majority are agnostic to the dataset
used for training. Although in previous experiments it has been demonstrated that
retrieval performance depends largely on the quantity of keypoints here it is observed
that it also depends on their quality. The images of the Oxford5K dataset have a
higher pixel resolution than those from Rome10K and hence the keypoints detected
on them are of better quality.
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(a) (b)

Figure 5.14: Averaged precision-recall curves for the tailored pipeline
using vocabularies trained over different datasets. (a) Results over the
Paris6K dataset. The vocabulary trained over an independent dataset scored
a mAP of 0.2150 while the vocabulary trained over the target dataset scored
0.2174. (b) Results over the Rome10K dataset. The vocabulary trained over an
independent dataset scored a mAP of 0.6813 while the vocabulary trained over
the target dataset scored 0.670604. All vocabularies were trained using Hierarchi-
cal K-Majority best scheme, taking as input BRIEF descriptors extracted from
HARRIS keypoints.

As final experiment I setup a test to see how would my approach behave in an
hypothetical system undertaking complex visual analysis tasks with constrains of
bandwidth and processing power. The experiment consisted simply in training a
small visual vocabulary over binary descriptors and compare it’s retrieval perfor-
mance in terms of mAP score to that achieved in a similar unpublished work (the
same were the Rome10K dataset was introduced). On the system used as reference
in this experiment, the authors achieved a mAP score of almost 50% using 1.000
Bytes to encode each query BoF vector produced by inter-frame encoding the BoF
vectors of the query video frames and combining them by means of median rank
aggregation.

Fig. 5.15 shows the results of the experiment, it confirms previous findings indicating
that a flatter vocabulary helps to increase retrieval performance; a noteworthy result
is that up to a recall level of 10% the precision is at least 45%. Finally, considering
that I am using no aggregation scheme but simply taking the arithmetic mean of the
individual average precision results of the query videos frames, thus neglecting the
relation between them, the direct comparison between the achieved mAP scores does
not seem very fair. Using some aggregation scheme such as median rank aggregation
might improve the retrieval performance on the Rome10K dataset, however such
topics are out of the scope of this work.
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Figure 5.15: Averaged precision-recall curves for two 16K words vocab-
ularies trained from BRISK descriptors extracted from BRISK key-
points. The blue dash-dotted line corresponds to a rather deep vocabulary, and
the red solid line corresponds to a flatter one. The achieved mAP scores are 0.3055
and 0.3296 correspondingly.
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Conclusions

The need for an alternative or complementary positioning mechanism for scenarios
where GPS readings are unreliable or unavailable, motivated the use of images as a
visual fingerprint for places recognition. The challenges introduced to the problem
of location recognition in a mobile environment claim more adequate techniques.
To deal with such challenges this work set out to investigate the use of binary local
images features to address the problem of large-scale landmark recognition in the
frame of the BoF model.

Restatement of aims

The main objectives of the present study were to determine how representative could
be vocabularies built starting from binary features in the landmark recognition task
and to identify which factors govern retrieval performance in a system using such
vocabularies. To accomplish these goals it were analyzed many issues about clus-
tering binary data and it were proposed two approaches to build visual vocabularies
starting from binary descriptors. Grounded on this ideas it was implemented a
proof-of-concept system to validate them in the following aspects: BoF retrieval,
ability to produce models of the features spatial distribution, and generalization
capabilities.

Empirical findings

The first major finding of this investigation was that vocabularies built from binary
descriptors using Hierarchical K-Majority are less representative than their real-
valued counterpart built from SIFT descriptors. A denser description of the images
helps to some extent to achieve more representative vocabularies, overcoming binary
features’ low descriptive power in comparison with SIFT. Another strategy found to
increase representativity is –taking the right considerations– to use different feature
detectors for training and query images, e.g. Hessian-Affine detector combined with
BRIEF descriptor for training images description and FAST detector paired with
BRIEF descriptor for query images description. Lastly keeping high the ratio of the
number of descriptors to the number of words increases the quality of the vocabulary
and thus benefits retrieval performance.
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The second major finding was that in pure content-based landmark recognition
pipelines as the ones used in this work, i.e. without context information, the most
influential factor governing retrieval performance is the utilized detector and descrip-
tor for dataset images description. Concretely a rough analysis of the transformation
effects present in the dataset serves to chose a fair detector/descriptor combination
which helps boosting retrieval performance. Likewise, using a detector capable of
increasing the quantity of keypoints8 and thus the number of descriptors allows to:
1) address the fast detectors lack of invariance to perspective distortion effects, 2)
estimate better models of the features spatial distribution, and 3) increase the rep-
resentativity of the vocabulary and the retrieval performance. In the case of binary
features the use of fast detectors, the descriptors’ compactness, and the possibility
to efficiently compare them, enables using more keypoints.

Theoretical implications

The foundations behind clustering binary data streams need to be revisited in order
to better understand the dynamics behind generating higher quality clusters in less
time and how they can fit into the BoF model. Taken together the findings of this
study suggest that although K-Majority is the most reasonable option it is rather
not an optimal one because it produces clusters of dubious quality.

Regarding image description the evidence from this study suggested that: 1) salient
keypoints aren’t optimal for landmark images retrieval, confirming the findings of
[18], and 2) retrieval performance can be outperformed with a denser description. An
implication of this is that features corresponding to surroundings do help recognition
as pointed by [2].

Significance of the findings

The present study makes several noteworthy contributions to the existing base of
knowledge in visual recognition. First, this is one of the earliest works in proposing
and exhaustively evaluating a method for visual places recognition using BoF vec-
tors obtained from binary features. Second, this work presented thorough review of
the issues related to clustering binary data. Third, to promote further research in
the area I published at GitHub9 the source code of my implementation. Among the
released code I contributed to the OpenCV community the wrappers of the authors’
implementations of the AGAST feature detector and D-BRIEF features descriptor

8Something impossible with salient point detectors such as DoG but possible with fast detectors
such as AGAST.

9https://github.com/gantzer89/VLRPipeline
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into the OpenCV feature extraction framework. And fourthly, the methods pre-
sented here and the lessons learned are applicable to other areas such as visual
robot localization.

Limitation of the study

The findings derived from this study are subject to some limitations that must be
considered for proper interpretation. The major limitation is the low retrieval per-
formance achieved by the Hierarchical K-Majority approach. Another limitation
it’s related with the generalizability of the findings because although the evidence
indicates that flatter vocabularies show higher retrieval performance, it wasn’t pos-
sible to build flat vocabularies of enough size. Similarly the generalizability it’s
compromised because the experiments that led to them were performed only over
datasets composed by images crawled from the Web. On the other hand the validity
of the findings lack contrast because besides K-Majority no alternative clustering
approaches were explored.

Future work

Aiming at increasing retrieval performance and overcoming some of the described
limitations, in this section are discussed some potentially promising directions for
future work.

The current implementation of this system is capable of clustering descriptors in the
order of millions, extracted from a few thousands of images, nevertheless datasets at
the city-scale contain many more10. To deal with large-scale training sets it is neces-
sary to store database images descriptors in a sufficiently fast database engine. Such
condition would require also a significant reduction in the vocabulary construction
time for which I propose to explore the possibility of parallel processing.

In this work it weren’t explored many alternatives for clustering binary data but
only discussed the issues around it. Future trials should investigate other approaches
such as the ones described in [19].

Considering the results of the tests regarding flat vocabularies, it is strongly recom-
mended further research into its use. To do so it would be necessary to investigate
some alternative algorithms for ANN search such as LSH or HCT, for the latter
however it would be required a better understanding of the issue identified in the
previous chapter.
10An example is the San Francisco landmarks dataset, firstly used in [5]. It consists of 1.7 million

perspective images extracted from approximately 150K panoramic images, and 803 cell phone
query images.
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To complement the analysis in terms of retrieval performance it would be of great
help to assess the improvement in terms of query retrieval times of pipelines built
on top of binary features to that of pipelines built on top of SIFT descriptors.
Even if the achieved retrieval performance is lower than the performance achieved
by state-of-art techniques, it would be interesting to use the lessons learned here
to address the location recognition problem. To do so it would be necessary to use
a dataset with associated geographic information using as input query videos in
conjunction with some scheme for aggregating frames information.

Final words

The possibility of describing images at low computational cost in an efficient man-
ner enables performing complex visual analysis tasks in devices with low resources.
Bridging this gap between state-of-art visual recognition methods and computers
with low processing and storage capabilities sets this work as an innovative contri-
bution to the base of knowledge in visual recognition.
Despite the numerous limitations of this study, the findings achieved remain use-
ful and promising. It is expected that such findings as well as the released code
have a positive impact on the research on visual recognition and encourage future
developments.
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Nomenclature

AGAST Adaptive Generic Accelerated Segment Test

AKM Approximate K-Means

ANN Approximate Nearest Neighbors

BoF Bag-of-Features

BRIEF Binary Robust Independent Elementary Features

BRISK Binary Robust Invariant Scalable Keypoint

CBIR Content-based Information Retrieval

DOF Degrees of freedom

DoG Difference-of-Gaussians

HARRIS Harris corner detector

HCT Hierarchical Clustering Trees

HKM Hierarchical K-Means

KMAJ K-Majority

KNN K-Nearest neighbors

LSH Local-sensitive hashing

RANSAC RANdom SAmple Consensus

SIFT Scale Invariant Feature Transform
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