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Abstract

Study of rotational dynamics in impulsively aligned molecules by

high-order harmonic generation

Luca cardellino

High Order Harmonic Generation (HHG) is a nonlinear process that occurs

when an intense femtosecond laser pulse interacts with matter. The HHG pro-

cess is important principally because it can be exploited as a coherent source of

attosecond pulse train and it represents a sensitive probe of the wave functions

of the bound states involved in the process. In this thesis work the HHG process

is performed in impulsively aligned molecular gases. The molecules are aligned

by a lower intensity laser pulse (pump) at 800 nm with a duration shorter than

the molecular rotational period. The pump excites a rotational wave-packet that

periodically rephases at such instant of time called revivals corresponding to mul-

tiple or fraction of the rotational period of the molecule. The harmonic emission,

generated by an intense laser pulse (probe) at 1450 nm from an aligned molecular

gas, is sensitive to the angle formed by the molecular axis with respect to the

polarization direction of the probe. Such angle varies with respect to the time

delay between pump and probe and this reflects on the HHG yield by an inten-

sity modulation at the time delays corresponding to the revivals. The fractional

revivals that appear in the HHG spectra are connected to the symmetry of the

highest occupied molecular orbital (HOMO) and to the geometry of the molecules.

The observation of the fractional revivals allows to get spectroscopic information

about the structure and dynamics of the molecules in the gas.

XV



Riassunto

La generazione di armoniche di ordine elevato (HHG:High Harmonic Genera-

tion) é un processo non lineare che avviene quando un impulso laser a femtosecondi

di intensitá molto elevata (dell’ordine di 1014W/cm2) interagisce con la materia.

Per via dell’interazione un elettrone viene ionizzato per effetto tunnel da un atomo

o da una molecola e successivamente accelerato nel continuo dal campo elettrico

del laser. Data l’elevata frequenza di oscillazione del campo elettrico, l’elettrone

segue l’andamento del campo e quando questo cambia verso viene fatto ricollidere

con lo ione parente. L’elettrone, ritornando allo stato legato, si diseccita e libera

l’energia cinetica acquisita nel continuo sotto forma di radiazione nella regione

spettrale dell’estremo ultravioletto (XUV). Tale processo si ripete ogni semi-ciclo

ottico del campo producendo un treno di impulsi di durata dell’ordine degli at-

tosecondi il cui spettro discreto é costituito dalle sole armoniche dispari della

frequenza fondamentale. In un mezzo gassoso, l’emissione di radiazione XUV da

parte di tutti gli atomi o di tutte le molecole si somma coerentemente dando luogo

ad un’interferenza costruttiva soltanto lungo una direzione specifica. Per questa

ragione il processo di HHG puó essere usato in mezzi gassosi come sorgente coer-

ente ad attosecondi. La generazione di armoniche é estremamente importante an-

che perchè rappresenta un’ottima sonda delle proprietá delle funzioni d’onda degli

stati legati coinvolti nel processo, in quanto la probabilità di ricollisione dipende

dalla forma funzionale dell’orbitale da cui é stato emesso. Nel caso specifico del

lavoro di tesi la generazione di armoniche di ordine elevato, prodotta da un laser

nel medio infrasosso (1450 nm) é stata applicata ad un gas di molecole allineate

XVI



Riassunto XVII

in regime impulsivo, ovvero mediante un impulso laser allineante (a 800 nm) di

durata inferiore al periodo rotazionale della molecola che permette di avere allinea-

mento anche in assenza di campo. Ció é dovuto all’eccitazione di un pacchetto

rotazionale i cui stati rientrano in fase tra loro in corrispondenza di certi istanti di

tempo chiamati ’revival’ che possono essere multipli del periodo rotazionale della

molecola oppure sue frazioni. Se in un esperimento di tipo pump-probe, in cui

l’impulso allineante rappresenta il pump e l’impulso generante il probe, facciamo

variare il ritardo tra il pump e il probe, si ottiene una mappa costituita da spettri

di armoniche acquisite a vari ritardi di tempo. L’angolo tra l’asse molecolare e la

direzione di polarizzazione del probe è un parametro chiave nel processo di ricom-

binazione dell’elettrone, il quale a sua volta è legato alla forma dell’orbitale con

cui l’elettrone ricollide. Il risultato é una modulazione dell’intensitá dell’emissione

di armoniche al variare del ritardo, che si presenta in corrispondenza di quei ri-

tardi di tempo in cui l’asse molecolare si riallinea con il campo, ovvero nei revival.

Il lavoro di tesi è incentrato sullo studio della presenza di revival frazionari in

CO2 e N2O e sulla ricerca di eventuali modifiche della forma del revival al variare

dell’ordine di armonica.
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Introduction

The (HHG)High Harmonic Generation represents an important process within

the study of the laser-matter interaction in the strong-field regime. The HHG

is a non linear process that occurs when an intense femtosecond laser pulse

(I ∼ 1013−1014W/cm2) interacts with atoms or molecules and generates high or-

der harmonics of the fundamental laser frequency. Under the effect of the electric

field an electron can be tunnel ionized from a molecule or an atom and, in the

semiclassical view [4], it is accelerated in the continuum by the electric field with

some probability to recollide with its parent ion. The recolliding electron emits

a photon in the spectral range of the XUV (extreme ultraviolet) and soft X-rays.

This process repeats every optical semi-cycle and thus the emitted radiation is

characterized by an attosecond pulse train whose spectrum is constituted by only

odd harmonics. Owing to its nature, HHG can be exploited as a coherent source

of XUV-soft X-ray attosecond pulses [5]. The recollision probability, and thus

the HHG spectra, depends on the properties of the wave function of the bound

state involved. This fact allows to extract information about the property of the

wave function of the bound state involved in the process. The recolliding elec-

tron can be used as a probe. Indeed the emitted energy, and thus the harmonic

spectra, depends on the time between the ionization instant and the recollision in-

stant. Different energies of the emitted photons correspond to different recollision

probabilities of the electron. We can perform spatial and temporal measures by

exploiting HHG process with high temporal (∼ as) and spatial resolution (∼Å):

the temporal duration of the electronic wave packet is shorter than the half optical

1



Introduction 2

cycle.

We can use HHG process in coherently aligned molecules in order to extract, for

example, the dynamic molecular structure [6, 7]. This can be seen as a pump-

probe technique in molecular gases where the pump is the aligning pulse and the

probe is the generating pulse (in particular the recolliding electron wave-packet).

The alignment establishes a quantum coherence among the rotational states that

vanishes and is recovered at multiples or fractions of the rotational period (re-

vivals). The revivals shape encodes the information about the molecular structure

by the dependence of the harmonic emission on the angle formed by the molec-

ular axis with respect to the probe polarization direction. The observation of

the appearance of revivals, in particular of the fractional revivals, and the study

of their shape variations with respect to the harmonic order could lead towards

more spectroscopic information about the molecular structure. The thesis work

is focused on the study of fractional revivals, and thus the rotational dynamics of

impulsively aligned molecules, in CO2 and N2O.
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Chapter 1

HHG: High Harmonic Generation

High-order harmonic generation (HHG) is a coherent, highly nonlinear optical

process. This effect can be understood in terms of a nonlinear dependence of the

polarization vector of the medium on the incident laser electric field and so the

generation of new frequencies, integer multiples of the incident laser frequency, oc-

curs. Atoms and molecules exposed to a strong laser field emit a light bursts with

a sub- femtosecond duration whose spectra has a universal characteristic shape.

Coherence, instead, is due to the fact that the HHG signal is a coherent super-

position of radiation emission from all the medium points [8]. The new genereted

frequencies are in the spectral region between extreme ultraviolet (XUV) and soft

X-ray and only odd multiples of the laser frequency ω appear. HHG is the only

method able to obtain a source of coherent light in the spectral region of XUV and

soft X-ray. The spectrum has repeatable features if the photon energy ~ω is much

smaller then the ionization potential of the medium. Owing to the high intensity

(I ∼ 1013− 1016W/cm2) the laser field is comparable or larger than the Coulomb

field seen by the outer electrons of the target molecule/atom. For this reason,

a non perturbative approach is required for modelling the HHG process. These

intensities can be reached using short laser pulse (femtosecond). The chapter

presents an excursus on the HHG process and provide a model for understanding

the phenomenon, first in a microscopic range (one atom or molecule) and then in

a macroscopic system (ensemble of atoms or molecules). I will first introduce a

3



Chapter 1. HHG: High Harmonic Generation 4

semiclassical model which is useful to understand the process, then I will proceed

with a more accurate quantum treatment and I will conclude with the explanation

of what happens in a macroscopic ensemble of atoms/molecules.

1.1 The semiclassical Three-Step Model

The semiclassical model was introduced by Corkum [4] and Kulander, Schafer

and Krause in 1993 and it is based on the assumption of strong-field and single-

active-electron (SAE), so the laser intensity is high enough and we consider a

single electron ionized per atom/molecule. We call this approach semiclassical

since it uses both quantum and classical mechanics: the ionization by laser field

is a quantum phenomenon and the electron motion in the continuum is described

classically. The model divide the process in three step, hence is called Three-Step

model :

1. Tunnel ionization: electron extraction occurs through tunnel effect which

is in competition with other phenomena.

2. Propagation: once ionized, the electron propagates in the continuum fol-

lowing the electric field trend; it is characterized by a nearly-plane wave

function and the more it travels in the continuum the more its wave func-

tion broadens.

3. Recombination: when the electron is in the continuum it has a certain

probability to collide with its parent ion and recombine with it. When it

returns in a bound state, owing to energy conservation, the kinetic energy

acquired during propagation is converted into one emitted photon; this emis-

sion is classically seen as an emission of radiation for Bremsstrahlung after

the recollision with the ion.
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1.1.1 First step: tunnel ionization

There are many possible ionization mechanisms depending on the Keldysh

parameter:

γ =

√
Ip

2Up
(1.1)

where Ip is the ionization potential of the atom and Up is the ponderomotive

energy of the electron,

Up =
e2E2

0

4meω2
0

(1.2)

which is the average energy of an electron moving in an oscillating electric field.

In the previous equation, e is the electron charge, me the electron mass, E0 is

the laser electric field amplitude and ω0 its oscillation frequency (fundamental

frequency):
~E(t) = ~E0 cos (ω0t). (1.3)

We distinguish two cases:

γ >> 1: it can be used a perturbative approach, LOPT (Lower Order Perturba-

tive Theory)

γ << 1: a non perturbative approach is necessary.

An atom exposed to an intense laser field experiences two processes competing

with each other: multi-photon ionization, which predominate if γ >> 1, and

tunnel ionization, which predominate if γ << 1. Since Up depends on the square of

the electric field amplitude, the higher is the intensity the lower is the γ parameter,

so with relative low intensity the problem can be treated with the perturbation

theory at the first order (photon energy much lower than ionization potential),

instead for high intensity (1013-1014 W/cm2) the perturbative approach can’t be

used. In multi-photon ionization the electron can reach the continuum absorbing

an integer number n of photon such that

n~ω0 > Ip . (1.4)
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Figure 1.1: Tunnel ionization (a) and multi-photon ionization (b) schemes.

In this case the ionization rate(ionization probability per unit of time, so the

number of emitted electron per unit of time) is Γn = σnI
n, where I is the laser

intensity and σn the cross section of the process. If the electron absorbs more pho-

tons than necessary, the exceeding photons give a contribution to the increasing

of the electron kinetic energy; this process is known as above threshold ionization

(ATI) [4].

In the tunnel ionization, which occurs if the perturbative approach isn’t applica-

ble, the laser electric field distorts the Coulombian field and the atomic potential

is deformed. The electron will thus find a potential barrier which it can pass

through thanks to tunnel effect. In this case the tunneling ionization rate can

be calculated with the ADK (Ammosov, Delone, Krainov) theory [9] in which

the tunneling time tt, the time necessary to the electron for crossing the bar-

rier, is much lower than the oscillation period of the electric field T0. It can be

demonstrated that

γ =
tt

T0/2
, (1.5)

so when γ � 1, that is the condition for which the tunnel effect predominates

on other ionization forms, is also tt � T0 [10]. tt is the time that spends the

electron to pass through the barrier. This condition allows to consider the electric
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field quasi-static and thus the barrier, generated by the field, keep on unmodified

for a time long enough to make tunneling process completed. The hypothesis for

which the frequency ω0 is much lower than ωt = 1/tt, so that we can neglect the

change of the field during the passage of the electron through the barrier, is called

adiabatic approximation. The γ parameter tell us the degree of adiabaticity of

the motion through the barrier. For laser in the spectral region of infrared and

visible, like the lasers used for HHG experiments, the approximation is valid. The

ionization rate can be calculated by

W (t) = − 1

N(t)

dN

dt
= ωp|Cn∗|2

(
4ωp
ωt

)2n∗−1

exp

(
−4ωp

3ωt

)
(1.6)

where N(t) is the atom fraction that is still unionized at the time t.

In (1.6):

ωp =
Ip
~

(1.7)

ωt =
eE(t)√
2meIp

(1.8)

n∗ = Z

√
Iph
Ip

(1.9)

|Cn∗|2 = 22n∗ 1

n∗Γ(n∗ + 1)Γ(n∗))
(1.10)

where Iph is the Hydrogen ionization potential and Γ is the Eulero Gamma func-

tion. Combining the equations above we find:

ωp
ωt

=
Ip
~

√
2meIp

eE(t)

⇓

exp

(
−4ωp

2ωt

)
= exp

(
−

2
√
me(2Ip)

3
2

3~eE

)
Finally we obtain the following dependence for the ionization rate

W ∝ exp

(
−
√
me2(2Ip)

3
2

3~eE

)
(1.11)
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Indeed W depends on the probability density that there is immediately after the

barrier, at the end of crossing, and this leads to estimate a dependence from

exp (−Ip/E), where Ip/E is closely connected to the width of the barrier (through

γ). For these calculations the electric field isn’t constant during the electron pas-

sage, but it have a rising edge. In the case γ � 1 we can still use the adiabatic

approximation, and so the ADK model, to calculate the ionization rate by aver-

aging it over an optical period of laser or using the saturation intensity Is that

is the intensity for which the ionization rate is near to one. In the experiments

realized the ionization potential is Ip ∼ 15eV and the focalization intensity is

I ∼ 1014W/cm2 so γ � 1 and tunnel ionization prevails.

1.1.2 Second step: propagation

Once the electron is ionized, it passes from a condition in which it could occupy

only a certain quantized energy state to one in which it can assume a continuum

of energies, as if it was free. The condition in which electron can take every

energy value with continuity is called continuum. In the continuum the electron

can be treated classically and we can apply the classical mechanics to describe

the electron motion and find its trajectories. Its motion can be thought as that

of a charge in oscillating electric field. We consider electron subjected only to

the force produced by the incident laser electric field; in fact in the Lorentz force

the magnetic field is weighed by v/c hence this contribution become important

only for relativistic electrons. It is worth mentioning that, in the strong-field

approximation, the Coulomb field of the ion can be neglected with respect to the

laser field. We consider an electric field of the form:

~E(t) = ~E0 cos (ω0t) (1.12)

We choose a reference system where electric field has one component in a specific

direction, supposed the x-direction. The electron is accelerated in the direction

of the electric field oscillation. The Newton equation for the motion of a charge
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in electric field can be written as:

ẍ(t) =
q

mq

E0 cos (ω0t) (1.13)

where q is the charge and mq its mass. We call ti the ionization instant and tr the

recombination instant. Integrating the equation 1.13 using the initial condition

ẋ(ti) = 0, x(ti) = 0, we obtain:

ẋ(t) =
qE0

mqω0

(
sin (ω0t)− sin (ω0ti)

)
(1.14)

Finally the trajectories are:

x(t) = − qE0

mqω2
0

(
cos (ω0t)− cos (ω0ti) + sin (ω0ti)(t− ti)ω0

)
(1.15)

For an electron q = −e:

ẋ(t) = − eE0

meω0

(
sin (ω0t)− sin (ω0ti)

)
(1.16)

x(t) =
eE0

meω2
0

(
cos (ω0t)− cos (ω0ti) + sin (ω0ti)(t− ti)ω0

)
(1.17)

At different ionization instants ti correspond different trajectories which depend

also on laser frequency and electric field amplitude (it’s only a scale factor).

1.1.3 Third step: recombination

The electron oscillating with the electric field has a certain probability to

collide with the parent ion in a specific time. The more it rests in the continuum,

the more its wave function broads, the more the superposition with the wave

function of the bound state decreases and lower is the probability to collide with

the ion. We can find the instant t = tr in which the electron recombine with his

parent ion solving the equation:

cos (ω0t)− cos (ω0ti) + sin (ω0ti)(t− ti)ω0 = 0 (1.18)

All couples (ti, tr) solutions of this equation individuates a specific trajectory of

the electron.
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Figure 1.2: Electrons trajectories for three different values of the initial phase of the electric field:
0 rad (infinite recollisions with zero energy), 0.09π rad (only one recollision),π2 rad (no
recollision).

As figure 1.2 shows, there is an instant ti from which the electron generated

never recombines with its parent ion. In particularly the maximum electric field

phase for which electron can be ionized in order to get recombination is about π/2

every semi-period. Precisely electrons recombine if they have generated when the

electric field phase is:

0° 6 ω0ti 6 80°

180° 6 ω0ti 6 260°

This process in fact happens every semi-period of electric field in opposite direc-

tion, so with a periodicity of π. The (1.18) is a transcendental equation that can

be solved graphically or numerically. The tr = tr(ti) function is plotted in figure

1.3 in terms of the phases of the electric field at ionization and recombination

time. When ω0ti = 0°+kπ, k ∈ N the electron recombines infinite times, but with

zero velocity and so zero energy. The recombination is possible only for linearly
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Figure 1.3: Electric field phase at the electron recombination in unit of π rad versus electric field
phase at the electron ionization in unit of π rad.

polarized pulses. For the conservation of energy the recombination of electron is

followed by the radiation emission that can be seen as a photon emission when

electron returns in its fundamental state:

Ehhg = Ip +K = Ip +
1

2
meẋ

2 (1.19)

Putting the equation 1.14 into the equation 1.19:

Ehhg = ~ωhhg = Ip + 2Up[sin(ω0tr)− sin(ω0ti)]
2 (1.20)

The maximum energy achieved by electron in the continuum is obtained for ω0ti =

0.09π + kπ, k ∈ N and ω0tr = 1.4π + kπ, k ∈ N:

Ehhg,MAX = ~ωcut = Ip + 3.17Up (1.21)

ωcut =
Ip + 3.17Up

~
(1.22)

The (1.21) is defined as energy cut-off.
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Figure 1.4: Kinetic energy in Up units for long (red) and short (blue) trajectories depending on
emission time ti (right) and on recombination time tr (left).

The spectrum irradiated for Bremsstrahlung, due to the sharp deceleration of

the electron, is continuous and it’s characterized by a plateau followed by a cut-off.

In the figure 1.4 we can notice that for recollision energies lower than the cutoff one

there are two trajectories available for each energy value; in fact we can distinguish

a long trajectory for 0 6 ti 6 0.09π, whereby the electron remains longer in

the continuum, and a short trajectory for 0.09π 6 0.5π. The two trajectories

degenerate in only one in the cut-off. The recollision times corresponding to short

trajectories are restricted to a temporal interval shorter than a half-cycle of the

laser, hence the radiation burst generated by such contributions has a duration of

the order hundreds of attoseconds. Moreover the figure suggests us that a chirp is

present, in fact for short trajectories electron with higher kinetic energy recollides

later. In this case energy, and so frequency, increase with time, thus the chirp is

positive.

The power radiated by an oscillating dipole is calculated by the Larmor formula in
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which the power P (t) ∝ < a(t) >2, where a(t) is the acceleration of the electron

and < a(t) > is its average over all ionization times, since the ionization is a

quantum process and we can only determine the probability that it happens in

a certain time interval [11]: in the average the various a(t; ti) are weighed by

the probability of ionization at the instant ti, pi(ti). Under the approximation of

electric dipole, the electric field radiated by the dipole, taking into account only

the recollisions in one optic cycle, is proportional to < a(t) > and its spectrum

is a continuum characterized by a plateau and a cut-off. Considering N optical

cycles, the total dipole acceleration is the sum of 2N terms because in one cycle

there are two recollision events. The spectral power density is:

S(ω) = |â(ω)|2 (1.23)

If we think N approaching to infinity the spectrum becomes more and more dis-

crete. Taking into account all optical cycles, the temporal signal is ideally a train

of bursts, spaced by T0/2:

εXUV (t) = εburst ∗ h(t) (1.24)

where

h(t) =
+∞∑

n=−∞

einπδ

(
t− nT0

2

)
(1.25)

The Fourier transform of signal is:

F[ε̃XUV ](ω) = ε̃burst(ω)h̃(ω) (1.26)

The train of Dirac delta can be expanded in Fourier series, since its a T0 periodic

signal:

h(t) = 2
+∞∑
m=1

an cos

(
m

2π

T0
t

)
(1.27)
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with

an =
1

T0

∫ T0

0

cos

(
m

2π

T0
t

) +∞∑
n=−∞

einπδ

(
t− nT0

2

)
dt (1.28)

=
1

T0

∫ T0

0

cos

(
m

2π

T0
t

)[
δ(t)− δ

(
t− T0

2

)]
dt (1.29)

=
1

T0
[1− cos (mπ)] (1.30)

The coefficients are not zero for only odd harmonics, that is m must be an odd

integer:

m = 2k + 1 (1.31)

The absence of even harmonics can be also understood thinking to the medium

non linear susceptibility, due to the anharmonicity introduced by electron recolli-

sions. Since the medium has inversion symmetry (centrosymmetric medium) the

expansion in power series of non linear susceptibility contains only odd orders.

If we consider a pulse of finite duration the harmonic line width is proportional

to the inverse of the pulse duration. The more the pulse is short the more the

spectrum is similar to a continuum. The limit is a pulse with one optical cycle for

which the spectrum is continuous. The presence of pulsed radiation causes that:

1. the number of optical cycles is finite and so the spectrum is characterized

by broader peaks for shorter driving pulses;

2. the peaks in the cutoff region of the XUV spectrum are found to be shifted

with respect to the expected harmonic frequencies owing to the phase shift

between spectra emitted from consecutive recollision events, which occur at

different laser intensities [12].

1.2 The Lewenstein model

A quantum model is necessary to overcome the hard limitations of the semiclas-

sical model, such as quantum diffusion of electron wave packets, elastic scattering
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by ion of electron, quantum interference between wave packets of different gener-

ation time and in particular the initial condition x(ti) = 0,ẋ(ti) = 0. This model

was proposed by Lewenstein et al. [8] and is based on some hypothesis:

1. SAE (Single Active Electron)

2. Strong field (SFA): allows to neglect Coulomb ion field with respect to the

laser field; its validity is confirmed for high order harmonics because typically

electron is ionized when electric field is maximum and at the recollision the

kinetic energy is much higher than the ionization energy.

3. Depletion of the fundamental state neglected: Up not too much high.

4. Contribution of bound states, except ground state, neglected: valid if ω0 is

much far from intermediate resonances between the various states and when

tunnel ionization is dominant.

We consider initially a single atom. The Time Dependent Schrödinger Equation

(TDSE) is:

i~
∂ |ψ(~r, t)〉

∂t
=

[
− ~2

2µ
∇2
~r + V0(~r) + e~r · E(t)

]
|ψ(~r, t)〉 (1.32)

where V0 is the Coulomb potential and E(t) is the laser electric field. The electron

emission happens for tunnel effect. Initially, when the electric field is off, the

electron is on the ground state:

|ψ(~r, t0)〉 = |ψ0(~r, t)〉 = e−i
E0
~ tφ0(~r) (1.33)

where E0 = −Ip.

The solution is written as a superposition of ground state and continuum states:

|ψ(~r, t)〉 = ei
Ip
~ t

[
|φ0(~r)〉+

1√
(2π)2

∫
b(~k, t)

∣∣∣ei~k·~r〉 d3k] (1.34)
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Temporal evolution is completely determined by b(~k, t) that are complex quanti-

ties. The (1.34) satisfies the eigenvalues equation:(
− ~2

2µ
∇2
~r + V0(~r)

)
|φ0(~r)〉 = −Ip |φ0(~r)〉 (1.35)

Using the (1.35), neglecting the potential V0(~r) for SFA and choosing a refer-

ence system such that electric field results polarized in x direction, we obtain the

following equation in b:

∂

∂t
b(~k, t) = − i

~

(
~2k2

2µ
+ Ip

)
b(~k, t)− i

~
eE(t)dx(~k) +

e

~
E(t)

∂

∂kx
b(~k, t) (1.36)

where dx(~k) =
〈
e−i

~k·~r
∣∣∣x ∣∣∣φ0(~r)

〉
= 1√

(2π)2

∫
e−i

~k·~rxφ0(~r)d~r is the transition dipole

between the ground state and the continuum state
〈
~k
〉
along the electric field di-

rection. Ip and φ0(~r) bring the information about V0(~r) even though it doesn’t

appear explicitly in the equation 1.36.

The (1.36) is linear and first order equation, so it can be analytically integrated

finding b(~k, t) and thus |ψ(~r, t)〉. On the basis of the solutions of (1.36), we can

calculate the expectation value of dipole moment, source of harmonics field. The

harmonics spectrum ~̃EXUV (ω) generated by the interaction between the laser elec-

tric field and a single molecule or atom can be calculated as the Fourier transform

Ft of the dipole acceleration, defined as the expectation value of dipole momentum

operator ~̂a = − i
µ
~∇rV (~r) (’acceleration gauge’):

~̃EXUV (ω) = Ft

[〈
ψ(~r, t)

∣∣∣ ~̂a ∣∣∣ψ(~r, t)
〉]

(1.37)

According to the Ehrenfest theorem the 〈~̂a〉 operator can be replaced by d〈~̂p〉
dt

(’velocity gauge’), where ~̂p = −i~∇r is the dipole momentum operator, or by d2〈~̂r〉
dt2

(’length gauge’), where ~̂r = ~r is the dipole moment operator in units of electron

charge e. The harmonics spectrum can be rewrite as following depending on the
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gauge choice:

~̃EXUV (ω) = Ft

[
d

dt

〈
ψ(~r, t)

∣∣∣ ~̂p ∣∣∣ψ(~r, t)
〉]

= iωFt

[〈
ψ(~r, t)

∣∣∣ ~̂p ∣∣∣ψ(~r, t)
〉]

(1.38)

~̃EXUV (ω) = Ft

[
d2

dt2

〈
ψ(~r, t)

∣∣∣ ~̂r ∣∣∣ψ(~r, t)
〉]

= −ω2Ft

[〈
ψ(~r, t)

∣∣∣ ~̂r ∣∣∣ψ(~r, t)
〉]

(1.39)

The three forms are not equivalent if we consider the recolliding wave as a com-

bination of plane wave and the best choice is not known a priori. We can express

generically the three operators with the operator ~̂ρ whose expectation value is

~ρ(t) = 〈~̂ρ〉 =
〈
ψ(~r, t)

∣∣∣ ~̂ρ ∣∣∣ψ(~r, t)
〉
. More simply if we have a dipole moment

~d(t) = −e~r(t) = −e~r0 cos (ωt) oscillating at ω frequency, it’s possible to calculate

classically the emitting electric field value far from the dipole at the ω frequency

which is given by:

~̃E(ω) ∝ −ω2Ft[~r(t)] = −ω2Ft

[〈
φ(~r, t)

∣∣∣ ~̂r ∣∣∣φ(~r, t)
〉]

(1.40)

Neglecting transitions between continuum states that give no contribution to

HHG, we can write the dipole moment as:

〈~r(t)〉 = −i
∫
~p

∫ ∞
t′=0

e

~4
~E(t′) · ~d(~p+e ~A(t′))~d∗(~p+e ~A(t))e−

i
~S(~p,t,t

′)d~pdt′+c.c. (1.41)

where

• S(~p, t, t′) is the quasiclassical action,

• in ~p+e ~A(t), ~p is the canonical momentum which is a constant of the motion

if V0(~r) is neglected,

• ~A(t) is the vector potential of the laser electric field,

• ~d(~p+e ~A(t)) transition dipole from ground state to continuum state
∣∣∣~k(t)

〉
=

1√
(2π)2

ei
~k·~r.
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S(~p, t, t′) =

∫ t

t′

[
|~p+ e ~A(t′′)|

2

2µ
+ Ip

]
dt′′ (1.42)

~~k(t) = ~p+ e ~A(t) (1.43)

~d(~p+ e ~A(t)) = ~d(~k(t)) =
1√

(2π)2

∫
ei
~k·~r~rφ0(~r)d~r (1.44)

The terms inside (1.41) have the following physical interpretation:

• ~E(t′) · ~d[~p+ e ~A(t′)] stands for the probability that occurs a transition from

ground state to continuum
∣∣∣~k(t′)

〉
at the time t’.

• e−
i
~S(~p,t,t

′) represents the phase acquired by electron during the propagation

from the instant t′ to a generic instant t. Electron during the propagation

changes its state from the initial one
∣∣∣~k(t′)

〉
to
∣∣∣~k(t)

〉
.

• ~d∗(~p+ e ~A(t)) stands for the probability that occurs the electron recombina-

tion at generic time t from the continuum
∣∣∣~k(t)

〉
to ground state. Between

t′ and t the canonical momentum is preserved.

Putting the expression (1.41) of dipole momentum into the equation (1.40) we

obtain:

ẼXUV (ω) ∝ iω2

∫
t

∫
~p

∫ ∞
t′=0

e

~4
~E(t′) · ~d(~p+ e ~A(t′))~d∗(~p+ e ~A(t))e−

i
~S(~p,t,t

′)d~pdt′eiωtdt

(1.45)

The equation (1.45) gives the amplitude spectrum of HHG and it’s the integral

over all possible quantum trajectories characterized by a ionization time t′, a

recombination time t and a canonical momentum ~p which doesn’t change during

the propagation.

We can also define the phase term

ΦXUV (~p, t, t′) = ωt− S(~p, t, t′) (1.46)

In order to extract an analytical solution for this integral, we can use an impor-

tant approximation, called saddle point approximation, which among all possible
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trajectories selects only few of them that give a significant contribution to the

XUV radiation. If the phase term e−
i
~S(~p,t,t

′) changes quickly with ~p respect to the

matrix elements, the integrand is an oscillating function with zero average value.

The other terms can then be brought out from the integral in ~p and then the

term containing the quasiclassical action can be expanded in Taylor series near

the saddle point ~ps; the major contribution comes from those trajectories whose

S(~p, t, t′) function is stationary:

~∇~pS(~p, t, t′)|~ps = 0 (1.47)

S(~p, t, t′) ≈ S(~ps, t, t
′) +

1

2
∇2
~pS(~p, t, t′)|~ps(~p− ~ps)2 (1.48)

The (1.48) is called ”Saddle Point Approximation”. Moreover

~∇~pS(~p, t, t′)|~ps = ~r~ps(t)− ~r~ps(t′) = 0 (1.49)

From 1.49 we understand that the predominant contribution to harmonics gener-

ation comes from electrons which recombine in the same position where they are

emitted. This fact recalls the assumptions made in the semiclassical model.

The integral in ~p after the approximation becomes

I(t, t′) =

∫
~p

e−
i
~S(~p,t,t

′)d~p (1.50)

and thus we obtain the following dipole moment:

〈~r(t)〉 =− i
∫ ∞
t′=0

e

~4

(
πµ~

α + i (t−t
′)

2

) 3
2

~E(t′) · ~d(~ps + e ~A(t′))·

· ~d∗(~ps + e ~A(t))e−
i
~S(~ps,t,t

′)dt′ + c.c.

(1.51)

where α is a positive regularization constant used to deny I(t, t′) to diverge for

t = t′. The factor
(

πµ~
α+i

(t−t′)
2

) 3
2

implies that the electrons recolliding at t longer

than the laser optical cycle give lower contribution to the harmonics generation,

in agreement with the quantum diffusion effect. The three integrations in (1.45)

are thus reduced to a double integration that can be removed by applying the
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same method as before. We can consider the action varying faster than other

factors with respect to each variable and expand it in Taylor series around their

respectively saddle points (~ps, ts, t
′
s). The saddle point approximation can be

used to further simplify the Lewenstein integral (expression 1.45) by replacing the

remaining integration in t′ and t with few dominant contributions characterized

by saddle point solutions t′s and ts:

• ~∇~pS(~p, t, t′)|~ps = 0 is the first saddle point equation, implying that the

electron recombines in the same position in which it was freed.

• ~ ∂
∂(t′)

S(~p, t, t′) = |~p+e ~A(t′)|2

2µ
+ Ip = 0 establishes a relationship between ion-

ization and recombination times together with the previous equation. If

Ip = 0 electrons appear in the continuum with zero energy and canonical

momentum is proportional to the vector potential at time t′. If Ip > 0 the

equation is verified only for complex velocity (the electron in fact has just

pass through the barrier and into the barrier the wave function is evanes-

cent). In this case a complex ionization time appears, its imaginary part is

negative and it gives rise to a real exponential with a value lower than 1.

The initial kinetic energy is therefore negative, which is explained by the

complex ionization time. The higher is Ip and so the imaginary part of the

time the lower is the probability to cross the barrier.

• ~ ∂
∂(t)

[S(~p, t, t′)−ωt] = |~p+e ~A(t)|2

2µ
+ Ip−~ω = 0 or also |~ps+e

~A(t)|2

2µ
− |~p+e ~A(t

′)|2

2µ
=

~ω express the conservation of energy by imposing that the emitted photon

energy is the sum of the kinetic energy at recollision with the ionization

energy. This condition selects the trajectories identified by (~ps, ts, t
′
s) that

give their contribution to harmonics emission.

By solving the system of three equation we find the complex solutions (~ps, t, t
′);

from these solutions one can determine the effective harmonic cutoff energy, that
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is:

ωcutoff =
1.32Ip + 3.17Up

~
(1.52)

The cutoff frequency is slightly different from that calculated with semiclassical

model and this suggests that tunneling and quantum diffusion influence the cutoff

energy. Instead of a sharp cut of the spectrum over the cut-off as predicted by

the three step model, the Lewenstein model predicts an exponential decrease of

harmonics intensity through the cutoff region.

Figure 1.5 shows a numerical solution of the saddle point equations with Ip > 0. In

analogy with semiclassical model the Lewenstein model brings also to consider two

categories of trajectories that give a predominant contribution to HHG: the long

and short trajectories. The trajectories of the electrons that are accelerated in the

continuum for a time longer then the laser optical cycle are neglected. We should

also discard the unphysical solutions as the ones whose action assumes a negative

imaginary part making the integrals in (1.45) divergent. Only the solutions with

positive imaginary part of the action are acceptable. In the figure we observe the

real part of ts and t′s. Imaginary and real parts of time could be interpreted as

tunneling time and transit time in the continuum respectively. The time spent by

the electron in the continuum changes very slightly with respect to the harmonic

order among the plateau, this suggest that in first approximation the harmonic

intensity can be considered a constant until the cutoff, whose intensity changes

roughly.

1.3 The phase matching issue

In real experiments one does not deal with isolated atoms, but usually there

is a large ensemble of atoms of molecule. Since the ionization of the gas induces

non linear effects on laser pulse and the spatial evolution of the focused beam

imposes different driving conditions along the medium, harmonics generated by

atoms or molecule in different position are not in phase with each other. This
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Figure 1.5: Solution of the saddle point equations evaluated for E = E0 cos (ω0t), E0 = 7.2×1010

V/m and λ = 800 nm. The curve corresponds to the ionization times t′s on the left
and to the recollision times ts on the right, for short (blue line) and long (red line)
trajectories. The dashed line represents the classical solutions.

effect is known as phase mismatch. The final signal is a coherent (intended as

optical coherence) sum of all single contributions. In adiabatic regime (when the

laser intensity changes slower than the optical cycle) we can individuate two pairs

of (ti, tr): one for short trajectories and one for long trajectories; contribution to

harmonics from different kind of trajectories show different mismatch conditions.

The emitted pulse is chirped because of the blue (if the emission occurs on rising

edge) and red shift (if the emission occurs in the falling edge).

Phase matching conditions can affect dramatically the harmonic spectrum. Balcou

and Saliéres proposed a geometrical method to calculate the focalization condi-

tions favored by phase matching [1, 13]. We make the following hypothesis:

1. a sinusoidal oscillating electric field; depletion of the ground state neglected

2. the laser beam is gaussian and the propagation occurs along the z axis

3. the nonlinear medium is assumed isotropic and homogeneous

4. the chromatic dispersion of the medium is neglected
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We call ~kq the wave vector of the nonlinear polarization corresponding to the

harmonic order q. The field generated by two different emitting points ~r1 and ~r2

sums constructively in the ~kq direction if:

arg

[
Pq(~r1) exp

(
i~kq · (~r2 − ~r1)

)]
= arg

[
Pq(~r2)

]
(1.53)

where Pq is non linear polarization component at the frequency qω0. We get a

perfect phase matching if

∆~k = 0 (1.54)

In perturbative regime the phase matching condition is simply ~kq = q~k1, where:

~k1 =
ω0

c
êz + ~∇φGouy (1.55)

φGouy = arg

[
1

b+ 2iz
exp

(
− ω0r

2

c(b+ 2iz)

)]
(1.56)

φGouy is a phase contribution due to the focalization, called Gouy phase. In non

perturbative regime we must add another phase term and thus define an effective

wave vector

~K(r, z) = ~∇φdip(r, z) = ~∇
(
−1

~
S(~ps, ts, t

′
s) + q~ω0

)
(1.57)

so phase matching condition becomes:

~kq = q~k1 + ~K (1.58)

On z axis, in the beam waist (r = 0, z = 0) q~k1 and ~kq have the same direction and

verse, but the amplitudes differ because of the term of phase due to focalization.

q~k1

~kq

On z axis, after the beam waist (r = 0, z > 0), effective wave vector ~K might

compensate the offset produced by the focalization. In this case we have a perfect

phase matching, called collinear phase matching, the XUV emission occurs along
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the axes and it’s characterized by spatial coherence.

q~k1

~kq

~K

Before the waist (z < 0), ~K increases the phase displacement on the z axis and

gives a non collinear phase matching off axis (r > 0) because the vectorial sum of

q~k1 and ~K is non parallel to the z axis. The q harmonic forms a ring around the

axis and diverges even though the gaussian beam converges for (z < 0).

q~k1

~kq

~K

In order to optimize the overall emission it’s important to minimize the phase

displacement averaged on all interaction volume. Far from the waist the laser

intensity decreases and so decreases also the harmonic emission of each atom or

molecule. We can tune the distance between the gas jet and the laser focus to

favour the phase matching, although the more far is the gas jet from the focus

the lower is the laser intensity in the medium.

In figure 1.6 we can see the contributions of the Gouy and the dipole phase

terms for the 45th harmonic in Neon on r = 0, by assuming a Gaussian beam

propagating along z axis with a confocal parameter b = 5 mm, a peak intensity

I0 = 6×1014 W/cm2, a duration of 150 fs, λ = 800 nm and a focus in z = 0, versus

the position of the gas jet. We can observe that for z ≈ 3 mm (z > 0) the phase

of polarization changes slowly with respect to the z direction, thus there is a good

phase matching on axis. On the other hand for z < 0 the polarization phase varies

faster along z axis and this implies that we have a good phase matching off axis.

Figure 1.7 shows the typical generation efficiency trend of a plateau harmonic. For

∆z > 0 one observes collinear phase matching, corresponding to on-axis harmonic

emission, for ∆z < 0 non collinear phase matching is present, corresponding to
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Figure 1.6: Phase of the polarization on the propagation axis (solid line), term due to the prop-
agation of the fundamental (long-dashed line ) and dipole phase for a peak intensity
I0 = 6x1014 W/cm2 (small-dashed line). The laser propagates from the left to the
right [1].

Figure 1.7: Conversion efficiency of an harmonic of the plateau versus the distance between the gas
jet and the beam waist. The radial distribution is also reported in two conditions: one
corresponds to collinear phase matching, and the other to non collinear phase matching
[1].



Chapter 1. HHG: High Harmonic Generation 26

the emission of an annular harmonic beam. We can understand it observing the

radial distribution of radiation. We note that the harmonic generation intensity

is higher when the focalization occurs after the laser jet. In non collinear phase

matching the phase mismatch increases more slowly from the point in which there

is the perfect phase matching. The presence of atomic phase dipole make the

curve asymmetric respect to z = 0.

For each plateau harmonic there are two contributions that come from long and

short trajectories. These lead to different dependence of the dipole phase on the

intensity and so different vector ~K for long and short trajectories. Thus the phase

matching condition changes according to the considered trajectories. A particular

phase matching condition can be optimal for one trajectory type and not for the

other. The long trajectories contribution, for example, is low in ∆z > 0 and

increases when the gas jet is on focus.



Chapter 2

Rotational dynamics in impulsively
aligned molecules

HHG allows to investigate the structure and the dynamics of the molecules

in gaseous phase with very high time resolution. Impulsive molecular alignment

induced with an ultrafast and moderately intense laser pulse has led to high har-

monic generation in aligned molecules that allows to obtain detailed information

with respect to randomly oriented molecules.

This chapter is devoted to HHG in impulsively aligned molecules and is divided

into two parts. The first one introduces the alignment theory in terms of rotational

states of molecules and of the temporal evolution of their angular distribution in

presence of an alignment laser pulse. The second part describes the implications

of alignment on the molecular HHG and presents two imaging methods that ex-

ploit the harmonic emission in impulsively aligned molecules. The latter focuses

on the features of the harmonic spectra with respect to the time delay between

aligning and generating pulses (fractional rotational revivals) by explaining their

connection with molecular orbitals and mentioning their possible applications.

2.1 Theory of impulsive molecular alignment

The fist evidence that a pulsed laser field can align a thermal ensemble of

molecules, prior to their dissociative ionization, is provided by the experiments

27
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conducted by Normand at al. [14]. There are two basic alignment techniques:

• adiabatic alignment , if the laser pulse duration (in the range of picosecond) is

much longer than the rotational period of molecules (that is a characteristic

time of the system);

• impulsive alignment (or nonadiabatic alignment), if the laser pulse duration

is much shorter than the rotational period of molecules.

In the measurements performed we used a nonadiabatic alignment induced by a

pulse at λ = 800nm and a duration of about 60 fs.

A nonresonant laser field interacting with a molecule of non spherical symmetry

creates an induced dipole moment that determines the rise of an anisotropy of

molecular polarizability. The anisotropy creates a coherence within the |J,M〉

states generating rotational wave-packets that are a coherent superposition of

field-free rotational states. Thus an intense laser pulse can create alignment of a

thermal ensemble of molecules [15], prior to their dissociative ionization [16]. In

the case of impulsive alignment a molecule evolves nonadiabatically from the initial

field-free eigenstate to the rotational wave-packets and at the end of the pulse

the rotational wavepacket arisen dephases and rephases periodically producing

recurrent molecular alignment along the polarization axis of the laser electric field,

under field-free conditions. It’s important that the laser radiation is nonresonant

with respect to the vibrational and electronic structure because such excitation can

produce dissociation and ionization before alignment. The alignment in intense

laser field can be easily understood classically, but the enhanced alignment after

the pulse turn-off is a quantum phenomenon.

2.1.1 Schrödinger equation and rotational states in linear
molecules

A molecule is an aggregate of N atoms held together by chemical bonds and

is characterized by 3N degrees of freedom in the three-dimensional space whose
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3N − 6 (3N − 5 for linear molecules where one rotational axis coincides with the

molecular axis) are the vibrational normal modes (internal degrees of freedom), 3

are the translational degrees of freedom of the center of mass (external degrees of

freedom) of the molecule and the remaining ones (2 for linear molecules and 3 for

the others) are the rotational degrees of freedom of the molecule approximated

as a rigid rotor. A more detailed description of the molecule as a rigid rotor is

provided in appendix B. A linear molecule is characterized by only one rotation

axis, that is orthogonal to the molecular axis, and has two rotational degrees of

freedom θ and φ (the rotation around the molecular axis is not considered). The

molecular hamiltonian can be partitioned in a sum of independent contributions

(see appendix B): the motion of the center of mass, the rotations of the molecule

thought as a rigid rotor and the vibrational normal modes (it is an approximation

since the rotations interacts with vibrations). We suppose that the molecule is on

its vibrational ground state since under a temperature of 300K the probability of

finding a molecule on a vibrational excited state is about 10−5. The calculation

of rotational eigenstates in linear molecules consists in solving the Schrödinger

equation related to the rotational part of the molecular hamiltonian under the

approximation of rigid rotor:

Hrot |J,M〉 = Erot |J,M〉 (2.1)

In the equation (2.1):

• Hrot is the rotational hamiltonian under field-free conditions expressed in

spherical coordinates:

Hrot =
Ĵ2

2I
= −~2

2I

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(2.2)

where Ĵ is the rotational angular momentum operator and I the moment of

inertia;
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• |J,M〉 are the rotational eigenstates that, for a linear rigid molecule, consist

in the spherical harmonics:

|J,M〉 = YJM(θ, φ) = (−1)M

[
2J + 1

4π

(J −M)!

(J +M)!

]1/2
PM
J (cos θ)eiMφ (2.3)

where PM
J (cos θ) = (−1)J+M (J+M)!

(J−M)!
(1−cos2 θ)−

M
2

2JJ !
dJ−M

d(cos θ)J−M (1 − cos2 θ)J is the

Legendre polynomial with |M | ≤ J .

• Erot are the corresponding eigenvalues:

Erot =
~2

2I
J(J + 1) (2.4)

A linear molecule has only one moment of inertia, thus just one rotational constant

is defined:

B =
~2

2I
(2.5)

The rotational energy levels can then be written as

Erot = BJ(J + 1) (2.6)

The spherical harmonics are eigenfunctions of both rotational angular moment

and its projection on a reference axis (e.g. z-axis):

Ĵ2YJM(θ, φ) =
[
~2J(J + 1)

]
YJM(θ, φ) (2.7)

ĴzYJM(θ, φ) =
(
~M

)
YJM(θ, φ) (2.8)

The eigenstates are characterized by two quantum numbers, J and M: J is a posi-

tive integer (J=0,1,2. . . ) and defines the allowed values of the rotational angular

momentum, whereas M is an integer such that |M | ≤ J (M = 0,±1,±2, · · · ± J)

and represents the quantum number of the projection of the rotational angular

momentum on a reference axis, i.e. M determines the allowed directions of the

rotational angular momentum (see figure 2.1). Since the energy levels do not

depend on the quantum number M, the rotational states are degenerate: the en-

ergies of different rotational eigenstates |JM〉 degenerate to the same energy. The

rotational state |JM〉 is thus (2J + 1) times degenerate.
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Figure 2.1: The picture shows the quantum numbers J and M for different directions of rotation
axis with respect to an arbitrary one for a linear rigid rotor.
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2.1.2 Rotational distribution in molecular gases: from pure
to mixed rotational states

An isolated molecular gas under field-free conditions is a thermal ensemble

characterized by a rotational temperature T. Owing to the small energy separation

between two successive rotational levels,

∆Erot = EJ − EJ−1 = 2BJ (2.9)

an ensemble of molecules is usually in a thermal distribution of |J,M〉 states and

molecules are randomly oriented. The occupation probability of the state |J,M〉

is described by the Boltzmann distribution:

p(J,M) =
1

Z
exp

[
−~2

2I

J(J + 1)

KbT

]
(2.10)

where Kb is the Boltzmann constant, T the rotational temperature and Z the

partition function of the system:

Z =
∑
J,M

exp

[
−~2

2I

J(J + 1)

KbT

]
=
∑
J

(2J + 1) exp

[
−~2

2I

J(J + 1)

KbT

]
(2.11)

The rotational state of a single molecule is described by the function |Ψ(t)〉 =

|J,M〉 e−i
EJ
~ t, where ||J,M〉|2 = |YJM(θ, φ)|2 represents the quantum probability

density that the molecular axis of a molecule in the state identified by the quantum

number J and M lies on a cone surface determined by an aperture equal to 2θ

(see figure 2.2). This eigenfunction is an element of Hilbert space and evolves

according to the time-dependent Schrödinger equation:

i~
∂

∂t
|J,M〉 e−i

EJ
~ t = Hrot |J,M〉 e−i

EJ
~ t (2.12)

In an hypothetic ensemble of quantum systems (in this case molecules) all prepared

in the same way and all described by the same wave function |Ψ(t)〉, the state

|Ψ(t)〉 is called pure state. A pure state is characterized by a perfect coherence,

intended in its quantum meaning, and its evolution can be described by the time-

dependent Schrödinger equation. However a molecular gas is a thermal ensemble
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Figure 2.2: Representation of the geometry for a molecule characterized by a state |J,M〉 with
respect to a reference axis.
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of molecules characterized by the presence of a Boltzmann distribution of the

states |J,M〉, thus we have an ensemble described by different wave functions

each with a probability p(J,M), given by the equation (2.10). Such system is

said to be in a mixed state. In order to describe a mixed state we have to use

the density matrix formalism, where the density matrix operator ρ is defined as

follows:

ρ =
∑
J,M

p(J,M) |J,M〉 〈J,M | (2.13)

where the sum is extended to all wave functions |J,M〉 that describe the entire

system. The operator ρ introduced in (2.13) is an element of the Liouville space

and evolves according to the Liouville equation:

i~
∂ρ

∂t
= [Hrot, ρ] (2.14)

The expectation value of such operator A for a mixed state is calculated by ex-

ploiting the density matrix formalism:

〈A〉 =
∑
J,M

p(J,M) 〈J,M |A | J,M〉 = Tr(ρA) (2.15)

where Tr(ρA) is the trace of the matrix (ρA) .

2.1.3 Theory of optical impulsive alignment in gases of lin-
ear molecules

The dynamics of a molecule interacting with an external electric field is de-

scribed by a different Hamiltonian whose solutions have to be calculated by an

appropriate theory [17].

We consider a single molecule subject to an intense pulsed-laser electric field lin-

early polarized
~E(t) = g(t) ~E0 cos (ωt) (2.16)

with a gaussian temporal profile g(t) = exp (−t/2τ 2) and a frequency oscillation

ω. In order to obtain molecular impulsive alignment the pulse duration τ must
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be much lower than the rotational period of the molecules τrot (100 fs ÷ 10 ps),

τ � τrot, that can be expressed as

τrot =
h

2B
(2.17)

The total Hamiltonian of the molecule can be written under the dipole approxi-

mation as [17]

H = H0 − ~µ · ~E(t) (2.18)

where H0 is the total molecular Hamiltonian in field-free conditions whose eigen-

functions are the rovibronic (rotationa-vibrational-electronic) wave functions, E(t)

is the laser electric field and ~µ the dipole moment operator. Owing to the po-

tential energy due to the interaction between electric field and molecular dipole

moment, the total hamiltonian cannot be partitioned, i.e. we cannot divide the

rotations contribution from the vibrational and electronic ones. However we can

approximate the total Hamiltonian to an effective one that acts just on rotational

state within the lowest vibronic ground state [18]. The approximation is valid if

the condition |ω− ωnb| τ2π � 1 is fulfilled, where ωnb is the resonance frequency of

the transition between the vibrational and rotational levels of the molecule, i.e. if

the laser electric field is nonresonant with the vibronic transition [17]. The dipole

moment can be written as

~µ = ~µ0 −
1

2
α · ~E(t) (2.19)

where ~µ0 is the permanent dipole moment of the molecule and α is the polariz-

ability tensor:

α =

 αxx αxy αxz
αyx αyy αyz
αzx αzy αzz


For a linear molecule having the molecular axis along the z-axis the polariz-

ability tensor is a diagonal matrix with αxx = αyy = α⊥ and αzz = α‖:

α =

 α⊥ 0 0
0 α⊥ 0
0 0 α‖

 (2.20)
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where α‖ and α⊥ are respectively the parallel and perpendicular components of

the static polarizability with respect to the molecular axis. We will assume in

the following that the molecule is non-polar, thus it has not a permanent dipole

moment ( ~µ0 = 0), but only exhibits the dipole moment induced by the electric

field. With these considerations and approximations and by considering electronic

angular momentum equal to zero, we can write the effective Hamiltonian for a

linear molecule subject to the electric field (2.16) as follows [17]:

Heff (t) = BĴ2 −DĴ4 − 1

2
E2(t)

[
(α‖ cos2 θ + α⊥ sin2 θ

]
(2.21)

where Ĵ is the dimensionless angular momentum operator defined as Ĵ = −i∇,

θ is the polar angle between the molecular axis and the polarization direction of

the electric field and DĴ4 is the centrifugal correction. In order to calculate the

temporal evolution of the rotational wave function, we have to solve the time-

dependent Schrödinger equation corresponding to the Hamiltonian (2.21):

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (2.22)

Let’s define the dimensionless interaction parameters:

β‖(t) =
α‖E

2(t)

2B

β⊥(t) =
α⊥E

2(t)

2B

∆β(t) = β‖(t)− β⊥(t)

(2.23)

where ∆β(t) determines the degree of anisotropy of the molecule, i.e. how suscep-

tible is the molecule to the alignment by an external electric field. The solutions

of the equation (2.22) depend on ∆β(t), Ψ = Ψ(∆β(t)), and can be expanded in

a series of field-free rotor wave functions |J,M〉 ≡ YJM [17]:

Ψ(t) =
∑
J

dJ(t) |J,M〉 (2.24)

The problem to calculate the solutions of the time-dependent Schrödinger equation

is reduced to find the expansion coefficients of the Ψ(t). We have to substitute the
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expression (2.24) into the equation (2.22). The all explicit calculations are given

in appendix C. The result is a system of coupled differential equations in dJ(t):

i~
∂

∂t
dJ(t) =

(
BJ(J + 1)−DJ2(J + 1)2 − 1

2
E2(t)α⊥

)
dJ(t)+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)
〈
J,M

∣∣ cos2 θ
∣∣ J ′,M〉 (2.25)

where we adopted the substitution Ĵ2 |J,M〉 = J(J + 1) |J,M〉. In order to

simplify the formalism it is convenient to define the coefficients:

a0(J,M) =
2(J2 −M2 + J)− 1

(2J − 1)(2J + 3)
=

1

3
+

2

3

(
J(J + 1)− 3M2

(2J + 3)(2J − 1)

)
(2.26)

a+2(J,M) =

√
(J −M + 1)(J +M + 1)(J −M + 2)(J +M + 2)

(2J + 1)(2J + 3)2(2J + 5)
(2.27)

a−2(J,M) =

√
(J −M)(J +M)(J −M − 1)(J +M − 1)

(2J + 1)(2J − 1)2(2J − 3)
(2.28)

By the calculations performed in appendix C we can affirm that the only nonzero

matrix elements (cos2 θ)JJ ′ in (2.25) are:

〈
J,M

∣∣ cos2 θ
∣∣ J,M〉 =

1

3
+

2

3

(
J(J + 1)− 3M2

(2J + 3)(2J − 1)

)
(2.29a)

〈
J,M

∣∣ cos2 θ
∣∣ J + 2,M

〉
=

√
(J −M + 2)(J +M + 2)(J −M + 1)(J +M + 1)

(2J + 5)(2J + 3)2(2J + 1)

(2.29b)〈
J,M

∣∣ cos2 θ
∣∣ J − 2,M

〉
=

√
(J −M − 1)(J +M − 1)(J −M)(J +M)

(2J − 3)(2J − 1)2(2J + 1)

(2.29c)

We can notice that the matrix elements (2.29a), (2.29b) and (2.29c) are equal

respectively to a0(J,M), a−2(J + 2,M) and a+2(J − 2,M). By these considera-

tions and by using the interaction parameters (2.23) we can reduce the system of
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equations (2.25) to

∂

∂t
dJ(t) =

B

i~

(
J(J + 1)− D

B
J2(J + 1)2 − β⊥(t)−∆β(t)a0(J,M)

)
dJ(t)+

− B

i~
∆β(t)a+2(J − 2,M)dJ−2(t)+

− B

i~
∆β(t)a−2(J + 2,M)dJ+2(t)

(2.30)

The solutions of the system (2.30) can be expressed in terms of the evolution

matrix U(t, t0) [17]:
~d(∆β(t)) = U(t, t0)~d(∆β(t0)) (2.31)

where ~d is the vector whose components are the dJ . At this point by the calcu-

lation of the coefficient dJ we know the solutions (2.24) to the time-dependent

Schrödinger equation (2.22). It is worth noting that a linearly polarized electric

field, owing to the cylindrical symmetry of the problem, couples only the states of

the same parity (i.e. with J’s odd or even) and with the same M (i.e. ∆M = 0).

The term that determines the rotational states coupling depends just on the angle

θ, thus the solutions Ψ(t) don’t depend on the azhimutal angle φ. The geometry of

a linear molecule in presence of aligning linearly-polarized electric field is show in

figure 2.3. By using the rotating-wave approximation we can eliminate the rapid

oscillations of the electric field obtaining a time dependence due only to the pulse

shape functions g(t) (i.e. E(t) = 1
2
g(t)E0).

The alignment is realized by the electric field that excites some new rotational

states (∆J = 0,±2 and ∆M = 0) establishing a phase relationship among them.

A rotational wave-packet is characterized by a coherence among the rotational

states that compose it, if their phases are related to each other. The probability

density to find the molecular axis lying on the surface of a solid angle Ω with an

aperture 2θ now depends on time and is |Ψ(θ, t)|2, whereas |Ψ(θ, t)|2dΩ indicates

the probability that the molecular axis lies within a solid angle dΩ = sin θdθdφ,

at the time t. Hence the probability to find, at time t, the molecular axis with re-
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Figure 2.3: Representation of a linear molecule aligned at an angle θ with respect to the z-axis
by a linearly polarized electric field. α‖ and α⊥ are the parallel and perpendicular
components of the nonlinear polarizability.

spect to the polarization direction of the aligning pulse within an angle dθ centered

around θ is ∫ 2π

0

dφ|Ψ(θ, t)|2 sin θdθ = 2π|Ψ(θ, t)|2 sin θdθ (2.32)

where 2π sin θ|Ψ(θ, t)|2 is the probability density to find the molecular axis, at

time t, at an angle θ.

2.1.4 Alignment parameter and rotational revivals

The obtained Ψ(t) is a rotational wave-packet constituted by a coherent super-

position of the rotational states, whose phases depend on the aligning laser pulse

and thus are related to each other. Since the rotational wave-packet contains a

finite number of rotational states, the coherence among them is restored at specific

time instants called revivals. The revivals occur whenever a precise phase relation-

ship is established between the rotational states excited by the electric field. In

particular the revivals occurring at fractions of rotational period of the molecule
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are the fractional revivals(half revival t = Trot/2, quarter revival t = Trot/4, and

so on.) and the one occurring every rotational period is called full revival (Trot).

The degree of alignment of a molecule is characterized by the expectation value

of the square of cosine, 〈cos2 θ〉, that is called alignment parameter. It can be

defined as follows for a system described by the wave function Ψ(θ, t):

〈cos2 θ〉J,M = 2π

∫ π

0

cos2 θ|Ψ(θ, t)|2 sin θdθ (2.33)

For a single molecule that has been subject to the electric field the alignment

parameter can be calculated as:

〈cos2 θ〉J,M =
〈
Ψ(t)

∣∣ cos2 θ
∣∣Ψ(t)

〉
=

=
∑
J

d∗J(t) 〈J,M | cos2 θ
∑
J ′

dJ ′(t) |J ′,M〉 =

=
∑
J,J ′

d∗J(t)dJ ′(t)
〈
J,M

∣∣ cos2 θ
∣∣ J ′,M〉 =

=
∑
J,J ′

d∗J(t)dJ ′(t) 〈J,M | a0(J ′) | J ′,M〉+

+
∑
J,J ′

d∗J(t)dJ ′(t) 〈J,M | a+2(J
′) | J ′ + 2,M〉+

+
∑
J,J ′

d∗J(t)dJ ′(t) 〈J,M | a−2(J ′) | J ′ − 2,M〉 =

=
∑
J

|dJ(t)|2a0(J)+

+
∑
J

d∗J(t)dJ−2(t)a+2(J − 2)+

+
∑
J

d∗J(t)dJ+2(t)a−2(J + 2)

(2.34)

where the dJ(t) is the solution of equation (2.25).

A thermal ensemble of molecules is characterized by a mixed state that is described

by the matrix density. In absence of an aligning electric field the molecules are

distributed isotropically and the rotational states have a casual phase relation-

ship. If we calculate the alignment parameter for this quantum system we obtain

〈cos2 θ〉 = 1/3 (the calculations are performed in appendix D). The value found
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corresponds to the worst alignment that can be obtained. A better alignment

leads to an expectation value higher than 1/3. The density matrix of this system

has all the matrix elements equal to zero except for those in the principal diago-

nal. If we now consider an ensemble of aligned molecules, the quantum system is

a mixed state characterized by different coherent rotational wave-packets of the

form of (2.24). Owing to the specific phase relationship between the rotational

states, established by the electric field, the density matrix of the system presents

nonzero out-of-diagonal matrix elements. The expectation value of cos2 θ has to

be calculated with the density matrix formalism:

〈cos2 θ〉 =Tr(ρ cos2 θ)

=Z−1
∑
J,M

e
−BJ(J+1)

kBT 〈cos2 θ〉J,M =

=Z−1
∑
J

e
−BJ(J+1)

kBT

J∑
M=−J

〈cos2 θ〉J,M

(2.35)

where Z =
∑

J(2J + 1)e
−BJ(J+1)

kBT is the partition function, kB the is Boltzmann

constant, T is the rotational temperature, ρ is the density matrix, and 〈cos2 θ〉J,M
is the cosine-square expectation value for a pure state represented by a rotational

wave-packet excited starting from a rotational state J,M.

Let’s consider e mixed state of molecules that are randomly aligned with an align-

ment parameter 〈cos2 θ〉 = 1/3. When at t=0 the laser pulse interacts with the

ensemble, the molecules experience a prompt alignment along the direction of

pulse polarization and soon after they return to be randomly aligned. During the

fractional revival, the full revival and their multiples the alignment is restored.

The alignment recurrences are followed by anti-alignment. We call alignment the

condition where the molecular axes are along the polarization direction of the

pulse, whereas we call anti-alignment the condition where the molecular axes lie

on a plane orthogonal to the pulse polarization direction. The alignment param-

eter ranges from 1/3 (isotropic or random alignment) to 1 (perfect aligned state)

An example of the alignment parameter is showed in figure 2.4, where we can
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Figure 2.4: Example of alignment parameter calculated for the CO2 molecules. The duration of
the aligning pulse is 25 fs and the peak intensity is 1014 W/cm2.

easily note the revivals that appear as peaks in the graph. An ensemble of aligned

molecules exhibits an angular distribution, that represent the probability to find a

molecule with the axis at an angle θ with respect the pulse polarization direction

at time t, peaked about the direction of the aligning electric field. The presence

of an angular distribution demonstrates that we can never completely align an

ensemble along the polarization direction of the pulse whatever is its intensity.

The degree of alignment is influenced by some parameters as well as the rota-

tional temperature T , in fact at fixed alignment pulse properties, the value of the

alignment parameter decreases as the increasing of temperature. The intensity

of the pulse is another parameter on which the degree of alignment depends: the

higher is the intensity the higher is the number of the rotational states involved

in the wave-packet. Since the rotational wave-packets excited depends on time by

the expansion coefficient dJ , the alignment parameter is a function of time too.

In figure 2.5 the temporal evolution of 〈cos2 θ〉 is reported; we can observe that

the alignment parameter oscillates around a specific value (1/3) which represents

the randomly aligned condition. The evolution is characterized by a sequence of

maxima (alignment condition), minima (anti-alignment condition) and stationary
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Figure 2.5: At top the temporal evolution of alignment parameter for a molecular rotational wave-
packet in units of Trot with the illustrations of the corresponding probability density
of alignment, at bottom is represented the angular shape of the rotational probability
density. Figure reprinted from [2].
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regions (the rotational states are not in phase with one another). The appear-

ance of sequences of alignment and anti-alignment occurs in correspondence of

the revivals (fractions of rotational period). By observing the angular distribu-

tion at the revivals we note that there isn’t, at any delay, a perfect alignment (or

anti-alignment) along the polarization direction of the aligning electric field.

2.2 Alignment effect on HHG in molecules

HHG in molecules was studied both in isotropic distribution and in aligned

conditions. The observations showed that the HHG is sensitive to the angle be-

tween the alignment direction and the driving pulse polarization, as well as to

the spatial structure of the electronic wave-function [6]. As we have previously

seen the HHG is a method used to generate attosecond pulses and to probe the

matter with a high time resolution. In the latter case the recolliding electron

wave-packet is used to probe the medium; in fact the HHG spectrum depends on

the electron-core recollision probability that is strongly connected to the shape of

the electron bound-state (i.e. orbital). We expected that in a medium of aligned

molecules the recollision probability, and thus the HHG spectra, is influenced by

the direction of the molecular axis with respect to the direction of the driving

laser polarization. In particular the non-adiabatic alignment allows to probe a

molecular sample during a rotational revival without an external electric field.

For example it’s possible to measure the angular distribution of molecular axes

with respect to the polarization direction of the driving laser during a rotational

revival. By controlling the alignment we can minimize or maximize the harmonic

yield with respect to the angle θ, that can exhibit a suppression or an enhance-

ment with respect to the non-aligned case. The dependence of HHG spectra on

the alignment of the molecule can be exploited to extract more information, that

could be used for HHG molecular spectroscopy and, more indirectly, for the or-

bital tomography. By investigating the evolution of the HHG signal with respect



Chapter 2. Rotational dynamics in impulsively aligned molecules 45

to the angle between the aligning (pump) and the generation (probe) pulses, we

are able to access to more information about the probed sample.

2.2.1 Harmonic emission from a gas of aligned molecules

The HHG process in molecules can be understood in terms of by the semi-

classical three step model under the strong field limit: (i) tunnel ionization of the

most weakly bound electron in proximity of the peak of the laser cycle (figure 2.6)

from the outermost molecular orbital (HOMO); (ii) propagation in the contin-

uum of the electron wave-packet accelerated by the oscillating electric field; (iii)

recombination of the ionized electron that can be approximated as a plane wave

(ψc ≈ exp
(
−i~k · ~r

)
). Both the ionization and the recombination processes in a

molecule strongly depend on the angle θ between the polarization direction of the

driven laser pulse and the molecular axis as well as on the structure of the HOMO

orbital. In case of HHG from a diatomic molecule, the harmonic emission may

be seen as the overlap between emissions from the two atomic sites. These two

emissions may interfere. The interference condition is specific for the molecule and

depends on the symmetry of the orbital from which the electron is ionized and

on the interatomic distance [7]. The dependence on θ results from the projection

of the interatomic distance along the propagation direction of the recombining

electron with a De Broglie wavelength λB [19]. By acquiring many HHG spectra

at different time delay between the alignment pulse and the driving laser pulse, we

obtain the harmonic yields with respect the degree of alignment in molecules. The

molecular alignment influences the macroscopic harmonic emission by a modula-

tion of the harmonic intensity, that thus acquires a dependence on the orientation

of the molecules [20]. The modulation observed can be attributed to different

conditions of interference between the contribution to the emission from the emis-

sion centers of the molecules. This modulation appears either in the harmonic

spectrum at a fixed delay between aligning and driving pulses (and thus at a fixed

θ) or in a particular harmonic yield as a function of the delay (each time delay
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Figure 2.6: Schematic representation of tunnel ionization from a diatomic molecule subject to a
strong electric field with strength E and directed along the negative z-axis. Figure
reprinted from [19]
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correspond to a specific angle θ between the polarization directions of aligning

and generating beams). In particular the harmonic yield with respect to the time

delay between the aligning and the driving pulses is characterized by a shape that

can completely change between two different harmonic orders. In figures 2.7 and

2.9(b) we can see an intuitive demonstration of dependence of the harmonic yield

on the molecular alignment by a comparison among the harmonic emission with

and without the alignment pulse by a representation of the time delay evolution

of the ratio of intensity with and without alignment. In the first case the align-

ment is adiabatic since the pulse duration is longer than the rotational period of

molecule, whereas in the latter the alignment is non-adiabatic (impulsive align-

ment). Different harmonic yields can exhibit different time evolutions. Figure

2.8 shows an intensity modulation of two harmonic yields in impulsively aligned

CO2 molecules, owing to the half-revival, in comparison with the time evolution

of 〈cos2 θ〉. We can note that the time evolution of the harmonic yields follow in

one case the alignment parameter evolution, whereas in the other case is inverted

with respect to the alignment parameter. Moreover the evolution of the angular

distribution of the impulsively aligned molecules is reported; this indicates that

it’s impossible to have a perfect alignment along the direction of the aligning pulse

(〈cos2 θ〉=1). An intensity modulation of HHG spectra can be observed also at a

fixed time delay in the correspondent HHG spectrum as shown in figure 2.9(a),

where we can see a suppression around the 33rd harmonic. The depression is

visible also in figure 2.9(b) where is represented the ratio of the intensity with

and without the pump pulse. It’s worth noting that the ratio increases out of the

minimum and exceeds the unity at higher order of harmonics: this suggests that

the alignment produces suppression of such harmonic yield and enhancement of

others. The effect of alignment in harmonic emission increases if the rotational

temperature decreases [21]. The features of harmonic emission is strongly con-

nected to the HHG process that is significantly influenced by the orientation of the
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Figure 2.7: Ratio R of the harmonic intensity of the 9th harmonic with and without the aligning pulse
as a function of the delay ∆t between the aligning and generation pulse. The molecules
are aligned adiabatically by an aligning pulse with a duration of 300 ps and the harmonics
generation is obtained by a 70-fs pulse. The full circle represents the perpendicular
laser polarizations and the empty circle represents the parallel laser polarizations. The
samples are (a) CS2, (b) H2 and (c) N2. Figure reprinted from [21].
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Figure 2.8: Modulation of the harmonic yield in impulsively aligned CO2 molecules due to half-
revival of rotational wave packet (a) for the 33rd and (b) 49th harmonic order. Aligning
and generating pulses have parallel polarization. Pump pulse: energy 200µJ, duration
60 fs. Probe pulse: intensity 2× 1014W/cm2, duration 30 fs. Dashed curve in (a) and
(b) displays the calculated temporal evolution of the corresponding 〈cos2 θ〉. (c) Polar
plot of the angular distribution for different pump-probe delays: τ = 20.7, 21.1, and21.3
ps. Figure reprinted from [7].
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Figure 2.9: (a) Harmonic spectra generated by 30 fs pulses with (solid curve) and without (dashed
curve) aligning beam (pump and probe pulses with parallel polarization), measured for
a pump-probe delay of 21.1 ps. (b) Ratio φ = φ0 between the harmonic intensities
measured with (φ) and without (φ0) the pump pulse, measured at three pump-probe
delays of 20.7 ps (circles), 21.1 ps (squares), and 21.3 ps (triangles). The lines shows the
modulation in harmonic yield. A vertical offset term added for θ=30°(solid red online
curve) and θ=40°(dashed blue online curve). Figure reprinted from [7].
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molecules. The phenomena of the revival reversal among different harmonic yields

and the suppression of the harmonic emission at certain angles are consequences

of the destructive quantum interference (or two-center destructive interference)

at the recombination step, where the atoms are approximated as point emitters.

The modulation of the harmonic yield can be written as [7]

I(q, θ) = I0(θ)

[
1± cos

(
2πR cos θ

λB(q)

)]
(2.36)

where the signs ± represent the symmetric and the antisymmetric orbitals respec-

tively, θ is the angle between the laser polarization direction and the molecular

axis, R is the interatomic distance, λB(q) = h/
√

2me(qhν − Ip) is the De-Broglie

wavelength of the electron responsible for the emission of the q-th harmonic and

q is an integer. If the modal alignment angle increases, the harmonic order that

fulfills the interference condition increases too. The interference condition de-

pends also by the symmetry of the HOMO orbitals, that can be represented by

the superposition of atomic orbitals (LCAO: appendix A). If the combination is

antisymmetric

ψmol(θ) = φ0

(
~r +

~R

2

)
− φ0

(
~r −

~R

2

)
(2.37)

where ~R is the interatomic distance and θ is the angle between the molecular axis

and the driving laser polarization direction. The recombination dipole matrix in

velocity form among the continuum state and the bound state ψmol(θ) is given by:〈
ψmol(θ)

∣∣∣ ~̂d ∣∣∣ ei~k·~r〉 = 2i~k sin

(
kR

2
cos θ

)〈
φ0(~r)

∣∣∣ ei~k·~r〉 (2.38)

where ~(k) define the direction of the re-colliding electron and thus the driving

electric field polarization direction. The interference is destructive if:

R cos θ = nλB(q) (2.39)

where λB(q) is the De-Broglie wavelength of an electron responsible for the emis-

sion of the n-th harmonic and n is an integer. If the combination of atomic orbitals
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is symmetric ψmol(θ) = φ0

(
~r +

~R
2

)
− φ0

(
~r − ~R

2

)
, the quantum interference con-

dition becomes:

R cos θ =

(
n− 1

2

)
λe(q) (2.40)

The destructive interference corresponds to a crossing of the zero by the dipole ma-

trix element; the dipole change the sign and this fact corresponds to a phase jump

of π. This phenomenon reflects on the harmonic emission from a gas of aligned

molecules by the appearance of minima, whose position is predicted by the for-

mula (2.40) [22, 23]. The spectral features are due to the destructive interference

between the different atomic centers in the molecule and appears as minima in

the harmonic spectrum. The phase of the harmonic emission also depends on the

molecular angular distribution [21]. The intensity of a such harmonic is the result

of the contributions from all the possible angles of the molecules [21]. For instance

the macroscopic harmonic emission in aligned CO2 molecules is characterized by

the phenomenon of cutoff recession far from the rotational revivals; in fact the

macroscopic emission can be regarded as the sum among the microscopic emis-

sions from molecules with different orientation. It has been observed that there is

a phase jump near to π between the contributions of the CO2 molecules oriented

at small angles (<40°) and the CO2 molecules oriented at large angles (>40°)

for high photon energy emissions (>50 eV). The molecular distribution far from

rotational revivals is random-like, thus the XUV spectrum from CO2 exhibits a

partial suppression of the emission above 50 eV.

2.2.2 Exploitation of alignment in HHG molecular spec-
troscopy and tomography (overview)

The impulsive alignment can be exploited to increase the amount of infor-

mation that can be extracted from HHG molecular spectroscopy: this alignment

allows to probe the molecular sample during a rotational revival under field-free

conditions [24]. The modulation of the HHG spectrum, produced by the align-
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ment, is characteristic of the molecular geometry and of the orbitals that take part

to the harmonic emission [6]. The information about the molecular structure and

dynamics are encoded in the modulation of the harmonic spectrum. The study of

these features could allow to reconstruct the structure of the outermost molecu-

lar orbitals (HOMOs). The amount of information that we can extract from the

analysis of the HHG spectra depends on the extension of the cutoff; in this case it

could be useful to work with high laser wavelength (e.g. in the mid-IR). Moreover

a longer wavelength allow to obtain an higher spatial resolution due to the shorter

De-Broglie wavelength one can achieve.

A molecule exposed to a strong laser field can be tunnel ionized from more than

one orbital simultaneously, creating an electron-hole wave-packet (for instance in

aligned N2 the tunnel ionization occurs both from the highest occupied molecu-

lar orbital, HOMO, and the lower-lying orbital, HOMO-1). The evolution of the

wave-packet between ionization and recombination may be encoded as a depen-

dence of the harmonic spectral shape on the laser intensity. Such dependence

can be sometimes observed as a destructive interference in the harmonic emission

for different generation channels. Alignment can be exploited to characterize the

harmonic emission in order to individuate such channels. This allow us to ac-

cess to the dynamics of the wave-packet with attosecond temporal resolution [25].

The tunnel ionization from several outermost orbitals simultaneously may occur

owing to a small energy separation among them. The influence of alignment in

this phenomenon is connected to the angle dependence of the total dipole moment
~D(θ, qω0) of the qth harmonic. Owing to the different geometries of the contribut-

ing outermost orbitals, their ionization probability ratio is strongly dependent on

the angle θ and is maximum at a certain value of θ. It’s possible to exploit this

fact to disentangle the orbital contribution to HHG of aligned molecules [25].

The idea of tomography is based on the possibility to reconstruct the function

~rψ0(~r), where the ψ0(~r) is the molecular orbital, by measuring the HHG spectrum
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EXUV (ω). In fact remembering that

EXUV (ω) ∝ ω(t)b(~k)
〈
ψ0(~r)

∣∣∣ ~̂d ∣∣∣ ei~k(ω)·~r〉 for ω =
k2

2
+ IP , (2.41)

the measure of HHG spectra in molecules allows one to access to the dipole ma-

trix element
〈
ψ0(~r)

∣∣∣ ~̂d ∣∣∣ ei~k(ω)·~r〉 by knowing the coefficient b(~k), since the dipole

moment matrix appears as the Fourier transform of the function ~rψ0(~r) [6] :〈
ψ0(~r)

∣∣∣ ~̂d ∣∣∣ ei~k(ω)·~r〉 =

∫
~rψ0(~r)e

i~k(ω)·~rd~k (2.42)

The b(~k) is the wave-packets amplitude of the ionized electron in the continuum.

The impulsive alignment allows to acquire harmonic spectra in a molecular gas

at different angles between the polarization direction of the driving laser and

the molecular axis. By making a scan over a set of different angles we obtain

EXUV (ω, θ) with the assumption that all molecules are aligned along the polariza-

tion direction of the generating electric field and that the measured macroscopic

emission is equivalent to a single molecule signal. If we measure also the phase of

the complex harmonic signal, we can completely reconstruct the HOMO orbital

of the investigated molecules.

2.3 Fractional revivals in HHG from molecules

The revivals are the instants of time, corresponding to such delay between

aligning and generating pulses, in which the rotational wave-packet rephases giv-

ing an alignment (angular distribution centered about θ=0°with respect the po-

larization direction of the aligning pulse) followed by an anti-alignment (angular

distribution centered about θ=90°with respect the polarization direction of the

aligning pulse) condition. The rephasing is periodical with time and occurs at

instants equal to the rotational period of the molecule Trot (full revival), or frac-

tions of it (fractional revivals), and to their integer multiples. The fractional

revivals appear in the HHG spectra as intensity modulations that are clearly vis-

ible in the harmonic yields scanned along the rotational revival. Their positions
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and nature are determined by the symmetry of the molecule and by the excited

rotational states (JM). The low-order fractional revivals can be clearly seen in

the 〈cos2 θ〉 with respect to the time delay. The fractional revivals in some cases

follow the trend of the alignment parameter, but in other cases the harmonic yield

is anticorrelated with the 〈cos2 θ〉. This fact is connected to the internuclear dis-

tance and to the symmetry and shape of the molecular orbitals. However in the

〈cos2 θ〉 appear only fractional revivals up to 1/4, higher order fractional revivals

are not predicted by this function. The fact that high-order fractional revivals

appear in the harmonic yield and not in the time evolution of 〈cos2 θ〉 may be

attributed the angular distribution of the molecules in the gas [2]. Indeed, if

Ψ(t, θ, φ) is a rotational wave packet in a molecule excited by short laser pulse

and ρ(t, θ, φ)dΩ = |Ψ(t, θ, φ)|2dΩ is the probability to find the molecular axis ly-

ing within a solid angle dΩ = sin θdθdφ, and F is a physical quantity measured

exploiting the interaction between a probe laser beam with an impulsively aligned

molecular sample, we observe a convolution of the quantity with the molecular

distribution:

S(t, α) =

∫ 2π

0

dφ

∫ π

0

dθ sin θρ(t, θ, φ)Fα[θL(θ, φ)] (2.43)

where α is the angle between the polarization directions of the pump and probe

pulses and θL is the angle between the molecular axis and the polarization on

the generating electric field. By the point of view of the angular distribution,

the observable F acts as a filter, tunable by changing the probe angle α, on the

molecular distribution, and thus the harmonic yield shows some complex features

that don’t appear in the 〈cos2 θ〉. The fractional revivals in the harmonic yield

can be described by cosine moments 〈cosN θ〉; in particular cosine moments up to

N=8 can well describe the time positions of the higher-order harmonic [26].
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2.3.1 Role of molecular orbitals in the appearance of the
fractional revivals

The total molecular wave function can be factorized in a product of wave

functions:

Ψmol = ψelψrotψvibψspin (2.44)

The symmetry of Ψmol is fixed and is antisymmetric, the ψvib corresponds to the

ground state at room temperature thus is symmetric, hence the rotational wave

function symmetry is connected to the symmetry of the remaining two wave func-

tions, ψel and ψspin in order to obtain an antisymmetric total wave function. The

symmetry of the rotational wave function is determined by the quantum number

J. In particular if J is even the rotational wave function is symmetric, if J is odd

the rotational wave function is antisymmetric. This fact means that, if the sym-

metry of the spin wave function is known, the symmetry of the electronic wave

function influences the J population of the rotational wave functions; they can be

all odd, all even or a fraction odd and a fraction even. The J parity reflects on

the nature of the revivals that can be partially suppressed if the J population is a

mix of odd J and even J. For example in CO2 the HOMO orbital is antisymmetric

and the spin wave function is symmetric (the nuclei spin is zero), thus only even J

are populated, since the rotational wave function have to be antisymmetric. For

N2 the populated J are 1/3 odd and 2/3 even. The symmetry of the molecu-

lar orbitals are involved also in the quantum interference condition between the

different contributions in the molecule. For such molecules that can be approxi-

mated to a diatomic homo-nuclear molecule, the phenomenon can be treated with

the two-center interference according to which the harmonic amplitude can be

written in two different forms depending on whether the HOMO is symmetric or

antisymmetric. In the case that the molecular orbital is antisymmetric, as well as

for CO2, the harmonic amplitude is expressed as [26]:

H(θ) = A sin

(
πR

λB
cos θ

)
(2.45)
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where A is constant parameter, R is the internuclear distance, θ is the angle

between the probe polarization direction and the molecular axis. Since we have

not a perfect alignment, the harmonic yield is obtained by an integration over the

molecular distribution of molecules:

I(t) =

∣∣∣∣∣
∫ π/2

0

H(θ)ρ(θ, t) sin θdθ

∣∣∣∣∣
2

+ C (2.46)

Owing to the antisymmetry of the ionization matrix element, the integral extends

up to π/2. It’s worth noting that the rotational angular distribution ρ doesn’t de-

pend on the azimuthal angle φ if the pump and probe electric fields have parallel

polarization direction, since the angular distribution has a cylindrical symmetry

with respect to the polarization direction of the aligning pulse. Two-center in-

terference model well describes the HHG in particular linear molecules as CO2,

but is affected by some limitations as well as the assumption that it’s possible to

consider the only electronic part of the time-dependent dipole moment, neglecting

the rotations and assuming a fixed orientation of molecules or an average of the

electronic dipole over a distribution of aligned molecules [27]. In order to gain the

analytical expression of the time-dependent harmonic emission (that we observe

experimentally) we should adopt a more general theoretical model. The HHG

spectrum is the Fourier transform of the component of the dipole moment along

the polarization direction of the probe pulse n̂:

〈Ψ(t) | ~µ · n̂ |Ψ(t)〉 (2.47)

where Ψ is a rotational-electronic wave packet that combines the rotational wave

packet and the dynamics of the continuum electron [27].

The highest order revivals are strongly sensitive to the shape of the spatial filter

(equation (2.43)) which is represented by the HHG signal that reflects the struc-

ture of the molecular orbitals. Figure 2.10 shows the sensitivity of high-order

fractional revivals to the shape of molecular orbitals. The angular filter is tunable

by varying the angle α. Indeed, up to quarter revival HOMO and HOMO-1 seems
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Figure 2.10: Harmonic yield of the 31st harmonic of 800 nm pulse from three orbitals of aligned
CO2: HOMO, HOMO-1, HOMO-2. The evolution over a rotational period is rep-
resented for α=0°, whereas the evolution over the 1/8 revival is showed for α=0°,
20°40°and 90°. Figure reported from [2].

to be similar, whereas the structure of 1/8 revival changes from one to another.

We also observe that such high-order fractional revival can be visible in one or-

bital and not visible in others at a certain angle α, as well as the 1/12 revival that

doesn’t appear in HOMO-1 orbital at α = 40°.

2.3.2 Applications

The observation of the fractional revivals in HHG from impulsively aligned

molecules is a new probe technique that can have different applications:

• By extracting the electronic dipole elements from the HHG signal it’s pos-

sible to access to the continuum electron dynamics [26]. This is possible
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thanks to the high sensitivity of HHG to the rotational wave packets dy-

namics. Every fractional revival correspond to a particular rotational expec-

tation value (cosine moment) that is connected to the continuum electronic

dynamics. We can extract information on the attosecond electronic motions

that is encoded on the rotational fractional revivals structure.

• The fractional revivals in HHG can give information on the rotational wave

packets excited by an aligning laser pulse.

• High-order fractional revivals is sensitive to the molecular orbitals, thus it

can be exploited as probe of the contributing orbitals to HHG.

• The observable convoluted with the angular distribution can be use to gain

information on the molecular distribution or on the observable itself as rec-

ollision cross section, high harmonic dipole and multichannel contributions

to the HHG process.



Chapter 3

Experimental setup

This chapter aims to present the laboratory setup and the instruments used

to carry out the experiments in this thesis work. The first section will provide

a description of the laser source, that is a near-IR (1400nm ÷ 1800nm) tunable

parametric source pumped by a Ti:Sapphire laser. Then I will describe the appara-

tus used to perform experiments in vacuum in order to avoid the strong absorbtion

of XUV and soft X-ray radiation in air; it consists in a generation chamber and

an XUV spectrometer. The last section describes in brief the experiment and the

method adopted to acquire the measures analyzed in this work.

3.1 Laser source

As previously mentioned the HHG process requires a laser source able to pro-

vide ultrashort and intense laser pulses in order to induce the tunnel ionization of

the outermost electron in atoms or molecules. Moreover according to the cutoff

law (1.21) the spectral extension of the XUV burst depends on the ponderomotive

energy that is proportional to the square of generating laser wavelength Up ∝ λ2:

the higher is the wavelength λ the higher is the cut off energy. This fact im-

plies that the generation of attosecond pulses needs a low fundamental frequency.

The increase of the wavelength, however, produces a reduction of the harmonics

generation efficiency at constant intensity. In fact the harmonic emission yield

60
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Figure 3.1: Experimental setup of the laser source for the generation of high-energy-self-phase-
stabilized-IR pulses. (a) A fraction of the 800 nm pump beam with energy of 1mJ is
used for the DFG which provides the seed of the OPA. (b) A fraction of the pump
beam with 2mJ energy is used to pump the first OPA stage. (c) A third fraction of the
800 nm beam with an energy of 7mJ is used as the pump of the second OPA stage. (d)
The splitted beam of less than 1mJ is used for the alignment of the molecules emitting
high order harmonics. The figure is reproduced by [3]

decreases according to the law η(λ) ∝ λ−5 at constant intensity [28, 29]. Hence

there is a trade-off with respect to the wavelength: we can obtain a higher har-

monic cutoff reducing the efficiency or vice versa a higher efficiency with a less

extended harmonic cutoff.

For acquiring the measures during the experiment we used a laser source devel-

oped by Vozzi et. al [30, 3] that is a parametric source with passive intra-pulse

CEP stabilization, tunable between 1350 nm and 1800 nm with a pulse duration

ranging between 17 and 25 fs, according to the central wavelength. The pump

is an amplified Ti:sapphire laser that produces pulses with a duration of 60 fs, a

maximum energy of 120mJ and with a repetition rate of 10Hz. The central wave-

length of the pumping laser spectrum is λ = 800nm. A schematic representation

of the laser source for HHG is shown in figure 3.1.

A fraction of the Ti:Sapphire laser beam passes through a spatial filter in
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order to improve the spatial beam properties. After the filter the pulse energy

is about 10mJ. At first the beam is splitted in two parts: one with energy less

than 1mJ will become the aligning beam that will be exploited for impulsive

alignment of molecules undergoing high-order harmonic emission; the remaining

fraction of the beam is used to pump the parametric source. The pump beam

is splitted again by a second beam splitter in two parts, one of which with an

energy of 1mJ is focused through an iris in a krypton-filled gas cell in order to

broaden the pulse bandwidth obtaining a so called supercontinuum. Typically

the supercontinuum spectral band is in the range of 600 nm ÷ 950 nm. Owing

to the dispersion into the gas cell, the pulse at the output is chirped and thus

a compensation of the dispersion is required. A set of chirped mirrors perform

a dispersion compensation after which the pulse has an energy of 0.3mJ and a

duration of 10 fs. Afterwards the pulse is focused into a β-barium borate (BBO)

crystal of thickness 400µm for the difference frequency generation (DFG) between

the spectral tails of the high-energy supercontinuum. The DFG is a second order

nonlinear process according to which two incoming frequencies ω1 and ω2 such

that ω1 < ω2 generate a new frequency ω3 = ω2 − ω1 by an energy transfer to

the difference frequency. This process allows one to obtain at the output of the

nonlinear crystal a near-IR pulse with a spectrum extending between 1.3 and 2.2

microns and with a stable Carrier-Envelope Phase (CEP). The phase stabilization

is an important requirement for the attosecond pulse generation through the HHG

process [5, 31]. The electric field of the pump pulse is polarized parallel to the

working plane along the extraordinary axis of the crystal whereas the difference

frequency electric field is polarized along the ordinary axis perpendicular to the

working plane, therefore a type II phase matching condition is fulfilled. The

crystal is positioned far from the focus of the pump beam in order to keep the

intensity below the threshold of third order nonlinear phenomena.

Figure 3.2 shows the setup of the DFG. To increase the output pulse energy
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Figure 3.2: Setup for DFG.

a two-stage optical parametric amplifier (OPA) is used. The second beam exiting

from the second beam splitter is divided by a third beam splitter in two pulses,

both passing through irises in order to tune the pulse energy, that are respectively

the pump of the fist stage (0.5mJ) and the pump of the second stage (4mJ) of

the OPA. The parametric amplification doesn’t change the absolute phase of the

pulse, thus the CEP stabilization of the signal is preserved [3]. With the type II

phase-matching configuration we are able to tune the spectral gain bandwidth by

changing the angle between the incident beam and the OPA crystal. Since we are

interested in a few-cycle pulse duration, type II configuration is preferred to type

I, in fact the pulse obtained with the type II is shorter without any compressor

stage after the amplification. The optimal output pulse features correspond to an

energy of 1.2mJ and a duration of 17 fs, slightly longer than the transform limited

duration of 16 fs.
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Figure 3.3: Picture of the generation chamber and the detection system: on the left the vacuum
chamber, in the middle the XUV spectrometer with a variable line spacing (VLS) spher-
ical grating and on the right the CCD camera.

3.2 Generation chamber and XUV spectrometer

When XUV radiation propagates in air it experiences a strong absorption. For

this reason high harmonics radiation is generated by focusing the laser pulses on a

gas jet positioned into a vacuum chamber. The laser jet comes from a pulsed elec-

tromagnetic valve with opening rate of 10Hz, synchronized with the laser pulses,

and with a nozzle of diameter 500µm. The gas at the output of the valve experi-

ences a supersonic expansion in the vacuum, thus the molecules are rotationally

cooled and the intermolecular collisions can be neglected. The rotational temper-

ature of the gas-jet molecules in the thesis experiments conditions is about 70K.

The valve can be moved along three orthogonal axes.

Figure 3.3 shows an image of the generation chamber together with the XUV

spectrometer and the CCD camera; in figure 3.4 we can see a zoom on the vacuum

camera. The generation chamber is coupled with a flat field XUV spectrometer,

that consists of two grazing incidence optical elements (see figure 3.5):

toroidal mirror : this component allows the compensation of the astigmatism

and produces a stigmatic beam by focusing the radiation also in the di-

rection perpendicular to the grating dispersion plane (sagittal plane) [32].

Moreover it improves the grating efficiency making it able to better collects
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Figure 3.4: Picture of the vacuum chamber.

the harmonics radiation (see figure 3.6).

grating : this allows to disperse the radiation spectral components and focus

them on different spatial points of the detector in order to view the signal

for each frequency. In a spherical grating the light is focused on a cylindri-

cal surface (spectral focal plane), called Rowland cylinder, with a diameter

equal to the grating radius. In order to obtain a wide spectrum several

acquisitions are needed by moving the detector along the Rowland circle.

In our experiments we used a spherical varied line spacing (SVLS) grat-

ing [33, 34] where the spacing between lines is variable. The SVLS allows

to focus the diffracted rays along an almost flat focal surface, thus with a

curvature higher than the Rowland circle, at near normal incidence to the

detector. With a proper choice of line spacing distribution, the spectral

focal plane can become almost straight, well fitting the detector plane. In

this way we can obtain a wider spectrum for a single acquisition. We can

observe a different spectral range depending on the detector position. The

detector can move continuously.
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Figure 3.5: Picture of the XUV spectrometer: on the left the toroidal mirror and on the right the
grating.

Figure 3.6: XUV spectrometer detail: the toroidal mirror.



Chapter 3. Experimental setup 67

Figure 3.7: Picture of the detector: from the left to the right we can see the MCP and the CCD
camera.

The detector position is chosen according to the experimental requirements and

its motion can be remotely controlled by a motorized stage. When the radiation

reaches the detector the impinging photons are converted into electrons by a

magnesium fluoride photocathode (MgF2). The obtained signal is amplified by

a micro-channel plate (MCP) with a voltage of 900V. Then the electronic signal

is converted again in an optical signal by accelerating electrons onto a phosphor

screen. In the end a CCD camera acquires the final image allowing to display it

on the screen. Figure 3.7 shows a detector picture.

3.3 Revival scanning and alignement

The data analysis presented in this thesis work regards the measures of the

HHG signal emitted by CO2 and N2O molecules during a revival period. A scheme

of the experimental setup for the acquisitions is reported in figure 3.8. The pulse

at 1450 nm is the driving pulse whereas the pulse at 800 nm is the aligning one.

In order to perform the scanning with the aligning pulse polarization parallel to

that of the generating one, we introduce a λ/2 plate at 45°along the aligning

path for rotating its polarization by 90°. It’s possible to get measures also at
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Figure 3.8: Schematic representation of the acquisition setup.

different angles between the polarization directions of the aligning and generating

pulses. Since we are interested in the harmonics signal generated by the near-

IR pulse, the aligning intensity should be low enough to avoid high harmonic

generation by the 800 nm pulse. For this purpose, before entering the chamber,

the 800 nm pulse is focused into an argon-filled gas cell in order to improve its

spatial properties and create new frequencies, thereby broadening the spectrum.

After the filamentetion the pulse passes through a glass plate in order to introduce

a pulse chirp. The dispersion increases the pulse duration and the peak intensity

decreases. By broadening the pulse spectrum, the dispersion effect on the pulse

duration is more important because there are more frequencies with different group

velocity. After the filamentation chamber, the pulse propagates along a variable

delay line. A dichroic beam combiner allows to bring into the chamber the two

beams with collinear configuration. The two-color beam is focused on the gas get

by a spherical mirror.

We acquired HHG signal at different time delay between aligning and generation

pulses by changing the optical path of the 800 nm beam through a motorized stage.

In the end we have a HHG spectrum for each time delay, thus we can reconstruct
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the intensity signal with respect to the temporal delay for each harmonic.



Chapter 4

Fractional rotational revivals in
HHG from impulsively aligned
molecules

The experimental activity is focused on the observation of the rotational frac-

tional revivals in HHG from aligned molecules of N2O and CO2. The supporting

theory has been discussed in the previous chapters. In particular we have pointed

out that the harmonic emission is sensitive to the angle formed between the align-

ing and generating pulses, that we can control with a non-adiabatic alignment in

order to probe the molecules under field-free condition. The obtained high har-

monic spectra encode the information about the structure and the symmetries of

the molecular orbitals by the appearance of particular features. CO2 and N2O

are two linear molecules, thus we can apply the theory of impulsive alignment

in gases of linear molecules discussed before in order to describe the evolution of

Figure 4.1: Representation of the Highest Occupied Molecular Orbital (HOMO) for CO2 and N2O.

70
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the rotational states when they interact with an aligning laser beam. However

the two molecules have different orbital symmetries. The CO2 molecule has the

carbon atom in the middle, and the oxygen atoms at the extremes; its HOMO is

antisymmetric (πg) and presents two nodal planes, one parallel with the molecular

axis and one another orthogonal. The rotational period for CO2 is Trot=42.8 ps.

The N2O is not a symmetric molecule, indeed the oxygen atom is external and

there are one nitrogen atom in the middle and one at the other edge. Hence the

HOMO orbital has not a defined symmetry, even though it look likes to a πg sym-

metry. However the average contribution of the HOMO orbital from an ensemble

of N2O molecules to the HHG spectra is the same as CO2. N2O is characterized

by a rotational period Trot=39.8 ps. Figure 4.1 shows the shape of the HOMO

orbital for the two molecule.

The chapter provides at first a description of the data acquisition and in the sec-

ond part presents the results of data analysis according to the theory. The high

order fractional revivals are compared to the half revival for each sample analyzed

in this thesis work. The behaviour of HHG signal around a delay equal to T0/2 is

well known and studied in the literature, as opposed to the high order fractional

revivals.

4.1 HHG spectra acquisition

The data were acquired by using the setup described in chapter 3. For

both the two sets of measures the molecules were aligned by a 800 nm laser

pulse with a duration of 60 fs, much shorter then the rotational periods of the

CO2 (Trot=42.8 ps) and N2O (Trot=39.8 ps), thus a non-adiabatic alignment was

adopted. The molecules were then exposed to 1450 nm laser pulse characterized

by a duration of about 20 fs. The aligning pulse has a duration longer than the

ionizing pulse in order to keep its intensity low and avoid harmonic generation.

The HHG-photons detection system was set with MCP voltages equal to 900V
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and 4.5 kV, CCD gain equal to 1. The valve baking pressure was carefully chosen

in order to both maximize the HHG signal and prevent molecules clusterization.

The valve baking pressure used for the CO2 was equal to 5 bar, whereas that used

for the N2O was equal to 4 bar.

The synchronization between aligning and driving pulses is recognized by the oc-

currence of a prompt alignment that influences the HHG signal. Since we are

interested into the fractional revivals within a rotational period, the scanning was

limited to a suitable range of time delays. We performed a scanning along the

revival for every fractional revivals we were interested to. A certain number of

HHG spectra, that depends on measures, were acquired at each time delay be-

tween the aligning and the generating pulses starting from an initial time delay τ0

by steps of stage that vary according to the measure. In all scans the polarization

of the aligning pulse is parallel with the polarization of the generating one: the

molecular axes are aligned along the polarization direction of the probe respect to

which the angular distribution of the molecules is characterized by a cylindrical

symmetry, thus doesn’t depends on the azimuthal angle φ. Two sets of fractional

revivals scans, for CO2 and N2O, were acquired. The acquired data where then

compared

Carbon dioxide (CO2)

For the CO2 we considered the 1/8, expected around the delay τ = Trot/8 =

5.35 ps, and the 1/16, expected around the delay τ = Trot/16 = 2.675ps. The 1/8

revival scan consists of 40 acquisitions, for each of which 6 spectra were acquired

with a single-spectrum integration time equal to 5 s (this is useful to increase

the signal-noise ratio), separated by a step equal to 25 fs from an initial delay

τ0 = 4.7 ps. The obtained data, integrated along the direction orthogonal to the

detector spectral plane, are shown in figure 4.2. We can clearly see the harmonic

intensity modulation with respect to the variation of the delay. The 1/16 revival

scan, as well as for the 1/8, consists of 40 acquisitions starting from τ0 = 2.1 ps
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Figure 4.2: Time evolution of the HHG radiation from aligned CO2 molecules scanned along the
1/8 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

Figure 4.3: Time evolution of the HHG radiation from aligned CO2 molecules scanned along the
1/16 revival, normalized to the maximum of each harmonic within the revival. The
data are smoothed in order to make the view of the graph clearer.

separated by a step of 25 fs, each of one was obtained by integrating 6 spectra

for 5 s. The data acquired are reported in figure 4.3. In this case the harmonic

intensity modulation is weakly visible, but it is clearer after an elaboration of the

data. Such sets of data are compared to the half revival, expected around the

τ = Trot/2 = 21.4 ps. The half revival scan consists in 60 acquisitions starting

from τ0 = 19.5 ps separated by a step of 50 fs, with 5 spectra per acquisition and

an integration time per spectrum of 3 s. The result is a very clear modulation

that we can see in figure 4.4.
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Figure 4.4: Time evolution of the HHG radiation from aligned CO2 molecules scanned along the
1/2 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

Figure 4.5: Time evolution of the HHG radiation from aligned N2O molecules scanned along the
1/8 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

Nitrogen dioxide (N2O)

In aligned molecules N2O gas we checked the 1/8, 1/4 and 1/6 revivals. For the

1/8 revival, expected around the delay τ = Trot/8 = 4.975ps, we performed a scan

of 100 acquisitions separated by a step of 10 fs starting from the delay τ0 = 4 ps,

with 6 spectra per acquisition and an integration time per spectrum equal to 5 s.

The spectra acquired are represented in figure 4.5. A fast modulation is visible in

the raw data representation. We then scanned the 1/4 revival, expected around

the delay τ = Trot/4 = 9.95 ps, on 120 acquisitions starting from a initial delay

equal to τ0 = 8.255ps, with 2 spectra per acquisition and an integration time

per spectrum equal to 5 s. The scan is reported in figure 4.6: these spectra also

need an elaboration to make the intensity modulation observable, however we can
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Figure 4.6: Time evolution of the HHG radiation from aligned N2O molecules scanned along the
1/4 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

Figure 4.7: Time evolution of the HHG radiation from aligned N2O molecules scanned along the
1/6 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

catch a glimpse of an hole in correspondence of τ = Trot/4. The 1/6 revival was

scanned with the same parameters used for the 1/4, thus 120 acquisitions with

step of 25 fs, 2 spectra per acquisition and an integration time per spectrum equal

to 5 s, starting from the time delay τ0 = 4.92 ps, since we expect it around the

delay τ = Trot/6 = 6.633ps. The scanning results are shown in figure 4.7. In

this case we distinguish more clearly the intensity modulation. For a comparison

with the fractional revivals, an half revival scan is reported in figure 4.8. The

half revival for N2O is expected around the delay τ = Trot/2 = 19.9 ps. The scan

consists of 60 acquisitions separated by a step equal to 50 fs from an initial delay

equal to τ0 = 18.5 ps, with 3 spectra for acquisition and an integration time for

spectrum equal to 5 s.
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Figure 4.8: Time evolution of the HHG radiation from aligned N2O molecules scanned along the
1/2 revival, normalized to the maximum of each harmonic within the revival. The data
are smoothed in order to make the view of the graph clearer.

4.2 Data analysis

The raw data presented in the first paragraph were later analyzed by a Matlab

script that I wrote. In particular the script performs a search of the minima

between the harmonics in the spectrum with the most extended cutoff and then,

for each HHG spectrum acquired during the revival scan, integrates each harmonic

within its two neighboring minima obtaining a temporal trace as a function of the

harmonic order. This procedure allows to increase the signal-to-noise ratio. Hence

the harmonic yield for each time delay is normalized to the maximum yield within

the revival scan with the aim of a better rendering of the plots. The obtained

spectra are smoothed on three points with respect to both the time delay axis and

the photon energy axis in order to reduce the noise in the measures. We would like

to observe high-order fractional revivals in N2O and CO2 and investigate if the

shape of the modulation related to a particular fractional revival changes when

one moves from lower harmonic orders towards higher ones. A comparison among

the various harmonic orders is presented for each set of acquisitions.

Carbon dioxide CO2

At first we present the results for the half revival of the CO2. Figure 4.9 shows

a 2D plot of spectra with respect to the time delay and the harmonic order of
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Figure 4.9: 2D plot in linear scale of the HHG emission from aligned CO2 molecules along the half
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.

the fundamental photon energy E0 = 0.853 eV and it’s three-dimensional view. It

is worth noting the formation of an ”island” in the HHG signal during the scan.

This is due to the two center interference, discussed in chapter 2, that occurs

when the molecular axes are aligned along the polarization direction of the probe

electric field. The suppression of the HHG signal, i.e. the formation of the island,

is followed by an enhancement that represents the condition of anti-alignment

(θ=90°) of the molecular axes, according to the antisymmetry of the CO2 HOMO

orbital. Now we consider three harmonic orders:one at the low-harmonic side of

the spectrum, the other in the middle and the last one in the proximity of the

cutoff. In figure 4.10 we can se that the shape of the half revival changes drastically

from the lower harmonic order to the highest harmonic order until to reverse its

trend with respect to the time delay. The harmonic orders considered are the

41st, 69th, 95th of the fundamental one. The graph in (a) consists of all visible

normalized harmonic yields separated by a constant chosen arbitrarily, whereas

(b) and (c) compare the selected harmonics. Such behaviour is well known and

isn’t a new information got with this experimental work. The results for the scan

along the 1/8 revival are reported in the figures 4.11 and 4.12. By observing the

waterfall we note the intensity modulation for the 1/8 revival remains constant

among the different harmonic orders. However it seems that by moving towards
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(a) (b)

(c)

Figure 4.10: Harmonic yield with respect to the time delay between pump and probe from aligned
CO2 molecules along the half revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.
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Figure 4.11: 2D plot in linear scale of the HHG emission from aligned CO2 molecules along the 1/8
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.

higher harmonics the peak of the modulation decrease and the right hole begins

larger. A comparison between the 33rd, 55th and 71st harmonic orders of the

driving laser frequency shows a little enlargement of the minimum at about 5.4 ps,

in particularly in the 71st harmonic. This observation is supported by the pcolor

graph that in this case shows clearer the variation of the modulation. The

results of the 1/16, reported in the figure 4.13 and figure 4.14, appear more noisy

with respect to the other revivals, but we can observe a weak modification of the

modulation shape in the waterfall of the harmonic yield and in the superposed

yields of the 33rd, 57th and 71st harmonics. Indeed the minima at 2.5 ps and

2.7 ps become deeper by moving towards the 71st harmonic. In this case too the

pcolor plot confirms such evolution of the minima, in particularly in the three-

dimensional view, even thought it may be a noise effect. In impulsively aligned

CO2 gas the half revival experiences an inversion of its shape from lower harmonics

to higher harmonics. The high order fractional revivals exhibit a modification of

the modulation shape with respect to the harmonic order, but we can’t observe

their behaviour at higher harmonics as well as in the half revival because for the

higher order fractions of the rotational period the cutoff is shifted towards lower

harmonics.
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(a) (b)

(c)

Figure 4.12: Harmonic yield with respect to the time delay between pump and probe from aligned
CO2 molecules along the 1/8 revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.

Figure 4.13: 2D plot in linear scale of the HHG emission from aligned CO2 molecules along the 1/16
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.
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(a) (b)

(c)

Figure 4.14: Harmonic yield with respect to the time delay between pump and probe from aligned
CO2 molecules along the 1/16 revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.
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Figure 4.15: 2D plot in linear scale of the HHG emission from aligned N2O molecules along the half
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.

Nitrogen dioxide (N2O)

As for the carbon dioxide, we fists presents the results of the half revival

scan for the N2O. In the figure 4.15 it is clear that the modulation changes

drastically from the lower harmonics to the higher ones, as it happens for the

CO2, and an island appears too. The trend of the waterfall of harmonics and

the comparison among the 43rd, 65th and 89th harmonics in figure 4.16 confirm

the behaviour well described by the 2D plot. Owing to the cutoff more shifted

towards lower harmonics then the CO2 cut-off, the half of N2O doesn’t exhibit

an inversion of the modulation. However we observe that the minimum at 19.5 ps

that we can see for the 43rd and 89th harmonics is substituted by a maximum

in the 89th harmonic. We analyze now the results of the 1/8 revival scan. In

the figures 4.17 and 4.18 we observe a more clear modulation related to the 1/8

revival with respect to what seen for the CO2. The plots unequivocally show a

dramatic signal decay due to a progressive misalignment of the laser. From the

superposition of the three harmonics we note that the 77th harmonic has a more

pronounced minimum at 4.75 ps and experiences the formation of a maximum at

4.8 ps, not present in the 35th and 55th harmonics, and a minimum at 4.97 ps. In

the waterfall we can see the transformation of the modulation from the bottom
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(a) (b)

(c)

Figure 4.16: Harmonic yield with respect to the time delay between pump and probe from aligned
N2O molecules along the half revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.
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Figure 4.17: 2D in linear scale of the HHG emission from aligned N2O molecules along the 1/8
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.

(low harmonics) to the top (high harmonics). In the impulsively aligned N2O

gas the 1/4 revival is also visible as reported in figure 4.19. We can appreciate the

variations of the shape of the 1/4 revival in figure 4.20 where both the comparison

of the 33rd, 63rd and 83rd harmonics and the waterfall that reports all harmonic

orders exhibit a strong shape modification. The structure constituted by two

maxima and one minimum in the 33th harmonic is replaced by the structure with

one maximum and one minimum of the 83th harmonic. It is worth noting that

the modulation exhibit a weak inversion for high harmonics in correspondence of

the delay τ = 10.2. In the end we focalize the attention on the 1/6 revival,

whose results are shown in figure 4.21 where we clearly identify a modulation of

the HHG signal. The comparison in figure 4.22 among the harmonics 35th,59th

and 79th together with the waterfall exhibits a weak modulation for the lower

harmonic orders and a strong modulation for higher harmonic orders as well as

the 79th that is characterized by a very pronounced maximum at 6.5 ps followed

by a minimum and another maximum.
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(a) (b)

(c)

Figure 4.18: Harmonic yield with respect to the time delay between pump and probe from aligned
N2O molecules along the 1/8 revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.

Figure 4.19: 2D plot in linear scale of the HHG emission from aligned N2O molecules along the 1/4
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.
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(a) (b)

(c)

Figure 4.20: Harmonic yield with respect to the time delay between pump and probe from aligned
N2O molecules along the 1/4 revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.

Figure 4.21: 2D plot in linear scale of the HHG emission from aligned N2O molecules along the 1/6
revival, normalized to the maximum of each harmonic within the revival. In the axes
it is reported the time delay between pump and probe and the harmonic order of the
fundamental photon energy, equal to E0 = 0.853 eV. The data are smoothed in order
to make the view of the graph clearer. Pump and probe have parallel polarizations.
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(a) (b)

(c)

Figure 4.22: Harmonic yield with respect to the time delay between pump and probe from aligned
N2O molecules along the 1/6 revival, normalized to the maximum of each harmonic
within the revival:(a) waterfall of harmonic yields in which harmonic order increase
from the bottom to the top, the normalized harmonic yields are spaced by a constant
quantity; (b) comparison of the red colored harmonic in the waterfall; (c) superposition
of the three underlined harmonics. The fundamental photon energy is equal to E0 =
0.853 eV. The data are smoothed in order to make the view of the graph clearer. Pump
and probe have parallel polarizations.
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4.3 Conclusions

The half revival behaviour with respect to the harmonic order is well known

and connected to the orbital symmetry of the investigated molecules. In addition

in both CO2 and N2O the higher-order fractional revivals present a change in

their structure moving from low harmonics to high harmonics. In CO2 the 1/8

and 1/16 revivals are visible and exhibit weak variations, whereas the 1/8, 1/4

and 1/6 revivals visible in N2O experience clearer modifications of their shape

with increasing harmonic order.

We checked the appearance of the fractional revivals in the harmonic emission

from impulsively aligned gases of CO2 and N2O, discussed their behaviour and

observed that their shape is sensitive to the harmonic orders. All the sets of an-

alyzed spectra experience a variation of the revival shape, independently on the

fractional revival nature, with respect to the increasing of the harmonic order.

This fact may lead to new spectroscopic information based on the observation of

the high-order fractional revivals in the HHG spectra. We saw the importance of

the molecular orbitals (HOMO) in the appearance of fractional revivals in HHG

emission from impulsively aligned molecule; the changes of the intensity modu-

lation among different harmonic orders paves the way to possible applications in

the molecular orbital tomography and spectroscopy. Few works are present in

literature about such argument and the existing ones [26, 2] regard the study of

fractional revivals in harmonic emission generated by a 800 nm probe pulse. For

these measures we used a 1450 nm generating pulse in order to extend the cutoff

and thus observe more harmonic orders. The availability of more harmonics allows

to observe the revival shape modifications within a higher spectral range. It’s the

first time that the fractional revivals are observed in harmonic emission generated

by a mid-IR laser pulse. More investigations are needed about the nature of the

observed modulations of the high-order fractional revivals in order to establish if

such variations encode some information, depending on the harmonic order, about
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the property and the symmetry of the molecular orbitals, as in the case of the

half revival.

A very interesting aspect is that the high order fractional revivals could be more

sensitive to multi-orbital contribution in HHG, since high harmonics can be pro-

duced also by lower-energy orbitals than HOMO. In fact, as we discussed in the

section 2.3.1, the fractional revival shape changes with respect to the symmetry

of the orbital that contributes to the harmonic emission [2]. Moreover, the pos-

sibility to correlate each fractional revival to a specific dipole moment element

allows to extract information about the attosecond electronic motions and could

be exploit to explore the role of the multiple orbitals [26]. Hence the structure of

the fractional revivals can provide information not only about the rotational co-

herence, but also on the high harmonic dipole and the multichannel contribution

to the harmonic emission.



Appendix A

Molecular orbitals

The problem of calculation of molecular orbitals consists in solving the time-

dependent Schrödinger equation for a molecule:

i~
∂

∂t
|Ψmol(~r, ~R, t)〉 = Hmol |Ψmol(~r, ~R, t)〉 (A.1)

where ~r is the vector of the all electrons coordinates and ~R is the vector of the

all nuclei coordinates. By defining ~Rα the position of the α-th nucleus (α = 1÷N)

with atomic number zα and ~ri the position of the i-th electron (i = 1 ÷ N ), we

can write the explicit expression of Hmol:

Hmol = −~2

2

N∑
α=1

1

Mα

∇2
α+

− ~2

2me

N∑
i=1

∇2
i+

+
∑
α<β

zαzβe
2

4πε0|~Rα − ~Rβ|
+

+
∑
i<j

e2

4πε0|~ri − ~rj|
+

−
∑
α,i

zαe
2

4πε0|~Rα − ~ri|

where the addends are respectively the total kinetic energy of the nuclei, the

total kinetic energy of the electrons, the total repulsive potential energy arising
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from the interaction between the nuclei, the total repulsive potential energy arising

from the interaction between the electrons and the total attractive potential energy

arising from the interaction between the nuclei and the electrons. Since equation

A.1 has not analytical solutions we use some approximations in order to simplify

and thus solve the Schrödinger equation:

• Born-Oppenheimer (BO) approximation: since the electrons mass is

much smaller than the mass of the nuclei (mN/me ' 2000), the two dy-

namics occur in a different timescale thus the nuclei problem can be treated

separately from the electron problem and the total wave function can be

factorized into two terms:

|Ψmol(~r, ~R)〉 = |Ψel, ~R(~r)〉 |ΦN(~R)〉 (A.2)

where |ψel, ~R(~r)〉 is the electronic wave function at a fixed nuclei configuration

and |ΦN(~R)〉 is the nuclear wave function. We can solve first the electrons

problem by considering the nuclei as stationary and then the nuclei prob-

lem by using an effective potential energy given by the sum of the nuclei

interaction potential energy to the energy configuration of electrons.

• Orbital approximation: by neglecting the electron-electron interaction

we can factorize the molecular electronic eigenfunction in

|Ψel(~r)〉 = |ψ1(~r1)〉 |ψ2(~r2)〉 |ψ3(~r3)〉 . . . |ψN (~rN )〉 (A.3)

where |ψi(~ri)〉 is the molecular orbital. The |Ψel(~r)〉 is the molecular elec-

tronic eigenfunction and describes the all electrons population. The orbital

is a one-electron function, thus very different from the eigenfunction because

describes the spatial distribution of one electron. The molecular orbitals are

delocalized on the molecule.

• LCAO (Linear Combination of Atomic Orbital) approximation: a

generic molecular orbital can be written as a linear combination of atomic
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orbitals

|ψi(~ri)〉 =
∑
j

cij |φj(~rj)〉 (A.4)

In equation A.4 the outermost atomic orbitals are characterized by higher

values of the coefficients cij because they most contribute to the bond, in-

stead the core atomic orbitals give no contribution to the bond, thus the

corresponding coefficients are zero.

We can write the Hamiltonian in terms of K and V that are the kinetic energy

operator and the potential energy operator respectively:

Hmol = Kel + Vel,el(~r) + Vel,N(~r, ~R) +KN + VN,N(~R)

The eigenvalues equation becomes:(
Kel + Vel,el(~r) + Vel,N(~r, ~R)

)
|Ψel, ~R(~r)〉 |ΦN(~R)〉+

+
(
KN + VN,N(~R)

)
|Ψel, ~R(~r)〉 |ΦN(~R)〉 = Emol |Ψel, ~R(~r)〉 |ΦN(~R)〉

We can solve separately the electrons problem by exploiting the BO approxi-

mation: electronic part depends parametrically on the set of nuclei coordinates
~R. For every nuclei configuration we suppose that the Schrödinger equation is

verified: (
Kel + Vel,el(~r) + Vel,N(~r, ~R)

)
|Ψel, ~R(~r)〉 = Eel, ~R |Ψel, ~R(~r)〉 (A.5)

From (A.5) we extract the |Ψel, ~R(~r)〉 and the Eel, ~R for a such configuration of

nuclei position. If we repeat the computation for a range of the set ~R, we obtain

electronic eigenvalues as function of nuclei position Eel, ~R(~R):

Eel, ~R(~R) |Ψel, ~R(~r)〉 |ΦN(~R)〉+
(
KN + VN,N(~R)

)
|Ψel, ~R(~r)〉 |ΦN(~R)〉 =

Emol |Ψel, ~R(~r)〉 |ΦN(~R)〉
(A.6)

By multiplying the (A.6) for
〈

Ψel, ~R(~r)
∣∣∣ the eigenvalues equation for a molecule

becomes:

−~2
∑
α

1

2Mα

∇2
α |ΦN(~R)〉+ VBO(~R) |ΦN(~R)〉 = Emol |ΦN(~R)〉
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where VBO(~R) = VN,N(~R) + Eel, ~R(~R) is the effective potential that takes into ac-

count the presence of the electrons in the Schrödinger equation for the nuclei and

Eg
el, ~R

(~R) are the electronic eigenvalues depending on the nuclei configuation; an

electronic transition produces variations in BO-potential. The effective potential,

called Potential Energy Surface (PES), exhibits a minimum at the interatomic

distance corresponding to the equilibrium distance of atoms. The molecular or-

bital can be calculated by exploiting the Hartree-Fock (HF) method, also known

as self-consistent-field method. We compute first the atomic orbitals for each

component of molecule with the HF method and then we combine them, each

centered on their respective nucleus, by exploiting the LCAO theory. The atomic

eigenfunction is a multi-electronic wave function and can be approximated by an

antisymmetrized product of atomic orbitals. The HF method assumes that the

electron-electron interaction Vel,el =
∑

i<j
e2

4πε0|~ri−~rj | can be replaced by
∑

i Vel,i(~ri),

where Vel,i(~ri) is the potential felt by the i-th electron and exerted on it by the

mean field created by others. HF method is not the only one used for calculating

molecular orbitals.

In LCAO theory the atomic orbitals represent a basis for the construction of molec-

ular orbitals. The molecular orbitals contain the information about the symmetry

of the molecule. Let’s consider for simplicity a omonuclear diatomic molecule with

only one orbital per atom, φA and φB. There are two possible combinations of

these atomic orbitals, one at lower energy and one at higher energy. The molec-

ular orbital at lower energy is called bonding and the one at higher energy is

called anti-bonding (identified by *). A molecule with more than two atoms has

more bonding and anti-bonding orbitals. These orbitals are characterized by the

following symmetry properties:

• Symmetry with respect to molecular axis:

σ(ml = 0): no nodal plane containing the internuclear axis (cylindrical

symmetry)



Appendix A. Molecular orbitals 94

π(ml = ±1): one nodal plane containing the internuclear axis

δ(ml = ±2): two nodal plane containing the internuclear axis

• Inversion symmetry with respect to the center of the molecule:

gerade(even): if an infinitesimal element of the molecular orbital doesn’t

change its sign under an inversion with respect to the inversion center

of molecule;

ungerade(odd): if an infinitesimal element of the molecular orbital changes

its sign under an inversion with respect to the inversion center of

molecule.

We can note that the orbital σ is always gerade and the orbital σ∗ is always

ungerate. The inversion center coincides with the center of molecule and is the

point in which the π-rotational axis and the orthogonal reflection plane intersect

the molecular axis. In molecules we don’t find orbitals with spherical symmetry

that is typical of atoms, thus we can’t define the quantum number l because the

angular momentum is not conserved. The projection along molecular axis of the

angular momentum, instead, is conserved and thus ml is a good quantum number.

Two of the all bound and anti-bound orbitals of a molecule are more important

than others:

HOMO : Highest Occupied Molecular Orbital

LUMO : Lowest Unoccupied Molecular Orbital

The HOMO orbital is very important because defines the properties of the bound

and its energy determines the effective potential in which occurs the nuclear mo-

tion. The LOMO orbital determines the behaviour of molecule interacting with

an external electric field. If the LUMO behaviour is the same of figure A.1, an

excitation produces the molecular dissociation since potential energy decreases by

increasing the internuclear distance d.
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Figure A.1: Potential Energy Surface of the HOMO orbitals (solid line) and of the LUMO orbitals
(dashed line). The minimum at distance d0 is the equilibrium internuclear distance.



Appendix B

Rigid rotor molecule

As seen in appendix A, by exploiting the Born-Oppenheimer approximation

we can reduce the molecular Hamiltonian to the nuclear dynamics since electronic

dynamics is taken into account by the electrons eigenvalues at various nuclei posi-

tion, included in the effective potential exerted on the nuclei. If N is the number

of nuclei, the molecule has 3N degrees of freedom whose 3N-6 (3N-5 for linear

molecules that don’t have the rotation along the molecular axis) are the internal

degrees of freedom and the remaining ones are the cartesian coordinates in the

laboratory frame. The internal 3N-6 coordinates are called vibrational normal

mode and can describe the system if we choose a reference frame that moves and

rotates together with the molecule. The molecular Hamiltonian can be partitioned

as follows:

Hmol = HCM +Hrot +Hvib (B.1)

where HCM = − ~2
2µ
∇2

~R
is the Hamiltonian of the center of mass, with µ reduced

mass, Hrot is the rotational Hamiltonian and Hvib = Kvib + Vvib is the vibrational

Hamiltonian, with Kvib and Vvib vibrational kinetic energy and vibrational po-

tential energy operators respectively. The effective potential VBO introduced in

Appendix A can be approximated around the minimum by a parabolic poten-

tial Vvib. The nuclei oscillate around the equilibrium position like the harmonic
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oscillator, thus the energy associated to the vibrational states is:

Evib = ~ω0

(
ν +

1

2

)
ν = 0, 1, 2... (B.2)

where ω0 is the characteristic oscillation frequency of the molecule and ν is the

vibrational quantum number.

The others 6 (5 for linear molecule) degrees of freedom divide into 3 translational

coordinates of the center of mass and 3 (2 for linear molecule) rotational degrees

of freedom.

The molecule with all its masses, that occupy specific positions, is considered as a

rigid body. However the rigid body is an approximation because rotations interact

with vibrations and this fact is taken into account by a correction term due to

the Coriolis forces, that is neglected in this treatment. The molecule can rotate

around one or more of its axes, as well as a rigid rotor, in the three-dimensional

space with a rotational angular momentum:

~J = I~ω (B.3)

In (B.3) I =
∑

imir
2
i is the moment of inertia, where the mi are point mass and

the ri are the distances of the masses from the rotational axis, and ~ω is the angular

velocity. A more general definition of the rotational angular momentum is needed

if the rotational axis is not known:

~J = I~ω (B.4)

where I is the tensor of inertia. A tensor can be always reduced to its princi-

pal axes, thus the tensor of inertia can be decomposed in the moments of in-

ertia around the three principal axes of the molecule: IA,IB,IC (conventionally

IA < IB < IC , see figure B.1). The kinetic energy operator reduced to the three

principal axes is:

Krot =
J2
A

2IA
+

J2
B

2IB
+

J2
C

2IC
(B.5)
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Figure B.1: The rigid rotor molecule with its three moments of inertia; conventionally IA < IB <
IC .
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Figure B.2: Molecules symmetry classification. Examples of linear molecules are CO, CO2, N2O,
for spherical top are CH4, SF6, for symmetric top NH3 and for asymmetric top H2O.
The symmetric top represented is oblate.

Let’s now define the rotational constants:

A =
~2

2IA

B =
~2

2IB

C =
~2

2IC

(B.6)

The molecules can be divided into three classes depending on the values of the

moments of inertia (figure B.2 ):

• Spherical top, if all three moments of inertia are equal and nonzero IA =

IB = IC ; molecules with this symmetry has not permanent dipole moment

and has an isotropic polarizability, thus no pure rotational transition can be

observed.
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• Linear, if the molecules have just one moment of inertia, conventionally

chosen equal to IB = µr20, that corresponds to a rotation axis perpendicular

to the molecular axis.

• Symmetric top, if only two moments of inertia are equal, but distinct from

the third; we can distinguish two rotor types having this symmetry:

oblate, if IA = IB < IC

prolate, if IA < IB = IC

• Asymmetric top, if all three moments of inertia are different IA 6= IB 6= IC ;

by defining the asymmetry parameter

k =
2B − A− C
A− C

(B.7)

we divide molecules in those close to the oblate limit for k>0 and those close

to the prolate limit for k<0.

The kinetic energy of a linear rigid rotor is given by

Krot =
1

2
Iω2 (B.8)

In a linear molecule that we approximate as a rigid rotor, characterized by a

rotational angular momentum ~̂J and an angular quantum number J, the rotational

Hamiltonian can be written as

Hrot =
Ĵ2

2I
(B.9)

and the rotational energy level as:

Erot =
~2

2I
J(J + 1) = BJ(J + 1) (B.10)

A linear molecule has two rotational degrees of freedom that correspond to the

spherical coordinates θ and φ. By considering that ~̂J = −i~~∇ and by expressing
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Figure B.3: Euler angles representing rotations about z, N and Z. The xyz original system is shown
in blue, the XYZ rotated system is shown in red, the line of nodes N is shown in green.

the Laplace operator ∇2 in terms of the spherical coordinates (only its angular

part) we obtain:

Hrot = −~2

2I

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(B.11)

Usually in spectroscopy the energy levels are expressed in Fcm−1

Fcm−1 =
Erot
hc

=
~hJ(J + 1)

2πhcI
=

~
4πcI

J(J + 1)

If we define the rotational constant in cm−1 B̃ = B/hc the energy level can be

written as

Fcm−1 = B̃J(J + 1) (B.12)

A molecule characterized by a non linear symmetry has 3 rotational degrees of

freedom and the three coordinates are called Euler angles α,β,γ. Every reference

frame rotation can be considered as a sequence of three rotations (figure B.3 ):
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• α ∈ (0, 2π): represents a rotation around the z axis,

• β ∈ (0, π)): represents a rotation around the x’ axis,

• γ ∈ (0, 2π): represents a rotation around the z” axis.
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Calculation of rotational states in
impulsive aligned molecules

The Schrödinger equation for a single molecule subject to a nonresonant elec-

tric field is:

i~
∂

∂t
Ψ(t) = H(t)Ψ(t) (C.1)

where the Hamiltonian H(t) is the effective Hamiltonian introduced in chapter 2

[17]:

H(t) = BĴ2 −DĴ4 − 1

2
E2(t)

[
α‖ cos2 θ + α⊥ sin2 θ

]
=

= BĴ2 −DĴ4 − 1

2
E2(t)

[
(α‖ − α⊥) cos2 θ + α⊥

] (C.2)

In the equation (C.2) ~̂J is the dimensionless angular momentum operator defined

as ~̂J = −i~∇, B = ~2
2I

is the rotational constant, E(t) is the electric field with

gaussian temporal profile (E(t) = g(t)E0 cos (ωt)), α‖ and α⊥ are respectively the

parallel and perpendicular components of the static polarizability with respect

to the molecular axis, θ is the polar angle between the molecular axis and the

polarization direction of the electric field and DĴ4 is the centrifugal correction

(figure C.1). Let’s define the dimensionless interaction parameters:

β‖(t) =
α‖E

2(t)

2B

β⊥(t) =
α⊥E

2(t)

2B

∆β(t) = β‖(t)− β⊥(t)

(C.3)
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Figure C.1: Schematic representation of the effect of the centrifugal force due to the rotation.

where ∆β(t) determines the degree of anisotropy of the molecule, i.e. how sus-

ceptible is the molecule to alignment by the external electric field. The solutions

of the equation (2.22) depend on ∆β(t), Ψ = Ψ(∆β(t)), and can be expanded in

a series of field-free rotor wave functions |J,M〉:

Ψ(t) =
∑
J

dJ(t) |J,M〉 (C.4)

where the |J,M〉 are defined as:

|J,M〉 = YJM(θ, φ) = (−1)M

[
2J + 1

4π

(J −M)!

(J +M)!

]1/2
PM
J (cos θ)eiMφ (C.5)

The problem to calculate the solutions of the time-dependent Schrödinger equation

is reduced to find the expansion coefficients of the Ψ(t). We have to substitute

the expression (C.4) to the equation (C.1).

i~
∂

∂t
Ψ(t) =

[
BĴ2 −DĴ4 − 1

2
E2(t)

((
α‖ − α⊥

)
cos2 θ + α⊥

)]
Ψ(t) (C.6)

Now we substitute Ψ(t) with the expression (C.4)

i~
∂

∂t

(∑
J ′

dJ ′(t) |J ′,M〉

)
=

[
BĴ2 −DĴ4 − 1

2
E2(t)

((
α‖ − α⊥

)
cos2 θ + α⊥

)]
×

×

(∑
J ′

dJ ′(t) |J ′,M〉

)
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⇓

i~
∂

∂t

(∑
J ′

dJ ′(t) |J ′,M〉

)
=

(
BĴ2 −DĴ4 − 1

2
E2(t)α⊥

)(∑
J ′

dJ ′(t) |J ′,M〉

)
+

− 1

2
E2(t)

((
α‖ − α⊥

)
cos2 θ

)(∑
J ′

dJ ′(t) |J ′,M〉

)
⇓

i~
∑
J ′

∂

∂t
dJ ′(t) |J ′,M〉 =

∑
J ′

dJ ′(t)

(
BĴ2 −DĴ4 − 1

2
E2(t)α⊥

)
|J ′,M〉+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t) cos2 θ |J ′,M〉

By multiplying both of the members for 〈J,M | we obtain:

i~
∑
J ′

∂

∂t
dJ ′(t) 〈J,M | J ′,M〉 =

∑
J ′

dJ ′(t)
〈
J,M

∣∣∣BĴ2
∣∣∣ J ′,M〉+

−
∑
J ′

dJ ′(t)
〈
J,M

∣∣∣DĴ4
∣∣∣ J ′,M〉+

− 1

2
E2(t)α⊥

∑
J ′

dJ ′(t) 〈J,M | J ′,M〉+

−1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)
〈
J,M

∣∣ cos2 θ
∣∣ J ′,M〉

We remember that:

BĴ2 |J,M〉 = BJ(J + 1) |J,M〉 (C.7)

DĴ4 |J,M〉 = DJ2(J + 1)2 |J,M〉 (C.8)

The |J,M〉 constitutes an orthonormal basis on which the solutions Ψ(t) are pro-

jected, thus their scalar product is equal to the Kronecker Delta:

〈J,M | J ′,M〉 = δJJ ′ (C.9)

Hence we obtain:

i~
∂

∂t
dJ(t) =

(
BJ(J + 1)−DJ2(J + 1)2 − 1

2
E2(t)α⊥

)
dJ(t)+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)
〈
J,M

∣∣ cos2 θ
∣∣ J ′,M〉 (C.10)
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By considering the following recurrence relations for Legendre polynomials

(2J + 1) cos θPM
J (cos θ) = (J +M)PM

J−1(cos θ) + (J −M + 1)PM
J+1(cos θ) (C.11)

and that

|J − 1,M〉 = (−1)M
[

2J − 1

4π

(J − 1−M)!

(J − 1 +M)!

]1/2
PM
J−1(cos θ)eiMφ (C.12)

⇓

(−1)MPM
J−1(cos θ)eiMφ =

[
4π

2J − 1

(J − 1 +M)!

(J − 1−M)!

]1/2
|J − 1,M〉 (C.13)

|J + 1,M〉 = (−1)M
[

2J + 3

4π

(J + 1−M)!

(J + 1 +M)!

]1/2
PM
J+1(cos θ)eiMφ (C.14)

⇓

(−1)MPM
J+1(cos θ)eiMφ =

[
4π

2J + 3

(J + 1 +M)!

(J + 1−M)!

]1/2
|J + 1,M〉 (C.15)

we can find:

cos θ |J,M〉 = (−1)M
[

2J + 1

4π

(J −M)!

(J +M)!

]1/2
cos θPM

J (cos θ)eiMφ

⇓

cos θ |J,M〉 =(−1)MeiMφ

[
2J + 1

4π

(J −M)!

(J +M)!

(J +M)2

(2J + 1)2

]1/2
PM
J−1(cos θ)+

+ (−1)MeiMφ

[
2J + 1

4π

(J −M)!

(J +M)!

(J −M + 1)2

(2J + 1)2

]1/2
PM
J+1(cos θ)

⇓

cos θ |J,M〉 =

[
2J + 1

4π

(J −M)!

(J +M)!

(J +M)2

(2J + 1)2

]1/2
×

×
[

4π

2J − 1

(J − 1 +M)!

(J − 1−M)!

]1/2
|J − 1,M〉+

+

[
2J + 1

4π

(J −M)!

(J +M)!

(J −M + 1)2

(2J + 1)2

]1/2
×

×
[

4π

2J + 3

(J + 1 +M)!

(J + 1−M)!

]1/2
|J + 1,M〉
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By making some simplifications we have that:

cos θ |J,M〉 =

[
(J −M)(J +M)

(2J + 1)(2J − 1)

]1/2
|J − 1,M〉+

+

[
(J −M + 1)(J + 1 +M)

(2J + 1)(2J + 3)

]1/2
|J + 1,M〉

(C.16)

Now we calculate:

cos2 θ |J,M〉 = cos θ
(

cos θ |J,M〉
)

= cos θ

(√
(J −M)(J +M)

(2J + 1)(2J − 1)
|J − 1,M〉+

+

√
(J −M + 1)(J + 1 +M)

(2J + 1)(2J + 3)
|J + 1,M〉

)

⇓

cos2 θ |J,M〉 =

√
(J −M)(J +M)

(2J + 1)(2J − 1)

(√
(J − 1−M)(J − 1 +M)

(2J − 1)(2J − 3)
|J − 2,M〉+

+

√
(J −M)(J +M)

(2J − 1)(2J + 1)
|J,M〉

)
+

+

√
(J −M + 1)(J + 1 +M)

(2J + 1)(2J + 3)
×

×

(√
(J −M + 1)(J + 1 +M)

(2J + 3)(2J + 1)
|J,M〉+

+

√
(J −M + 2)(J + 2 +M)

(2J + 3)(2J + 5)
|J + 2,M〉

)
⇓

cos2 θ |J,M〉 =

√
(J −M)(J +M)(J −M − 1)(J +M − 1)

(2J + 1)(2J − 1)2(2J − 3)
|J − 2,M〉+

+

(
(J −M)(J +M)

(2J + 1)(2J − 1)
+

(J −M + 1)(J +M + 1)

(2J + 3)(2J + 1)

)
|J,M〉+

+

√
(J −M + 1)(J +M + 1)(J −M + 2)(J +M + 2)

(2J + 1)(2J + 3)2(2J + 5)
|J + 2,M〉
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We can factorize the second term in (C) as follows:

(J −M)(J +M)

(2J + 1)(2J − 1)
+

(J −M + 1)(J +M + 1)

(2J + 3)(2J + 1)
=

=
(J2 −M2)(2J + 3) + (J2 + 2J + 1−M2)(2J − 1)

(2J + 1)(2J − 1)(2J + 3)
=

=
(J2 −M2 + J2 + 2J + 1−M2)(2J + 1)− 2(2J + 1)

(2J + 1)(2J − 1)(2J + 3)
=

=
2J2 − 2M2 + 2J − 1

(2J − 1)(2J + 3)

We finally rewrite the expression of cos2 θ |J,M〉 as

cos2 θ |J,M〉 = a0(J,M) |J,M〉+ a+2(J,M) |J + 2,M〉+ a−2(J,M) |J − 2,M〉
(C.17)

where we have defined the following coefficients:

a0(J,M) =
2(J2 −M2 + J)− 1

(2J − 1)(2J + 3)
=

1

3
+

2

3

(
J(J + 1)− 3M2

(2J + 3)(2J − 1)

)
(C.18)

a+2(J,M) =

√
(J −M + 1)(J +M + 1)(J −M + 2)(J +M + 2)

(2J + 1)(2J + 3)2(2J + 5)
(C.19)

a−2(J,M) =

√
(J −M)(J +M)(J −M − 1)(J +M − 1)

(2J + 1)(2J − 1)2(2J − 3)
(C.20)

Let’s consider also that:

a+2(J − 2,M) =

√
(J −M − 1)(J +M − 1)(J −M)(J +M)

(2J − 3)(2J − 1)2(2J + 1)

a−2(J + 2,M) =

√
(J −M + 2)(J +M + 2)(J −M + 1)(J +M + 1)

(2J + 5)(2J + 3)2(2J + 1)

From the calculations we can notice that the operator cos2 θ applied to a state

|J,M〉 produces a sum of three states |J,M〉, |J + 2,M〉 and |J − 2,M〉multiplied

for appropriate coefficients, which are functions of the quantum numbers J and
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M. By using these results we can rewrite the system of equations (C.10) as:

∂

∂t
dJ(t) =

1

i~

(
BJ(J + 1)−DJ2(J + 1)2 − 1

2
E2(t)α⊥

)
dJ(t)+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)a0(J
′,M) 〈J,M | J ′,M〉+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)a+2(J
′,M) 〈J,M | J ′ + 2,M〉+

− 1

2
E2(t)(α‖ − α⊥)

∑
J ′

dJ ′(t)a−2(J
′,M) 〈J,M | J ′ − 2,M〉

(C.21)

Since 〈J,M | J ′,M〉 = δJJ ′ , 〈J,M | J ′ + 2,M〉 = δJ(J ′+2) and 〈J,M | J ′ − 2,M〉 =

δJ(J ′−2), the only nonzero matrix elements are respectively J ′ = J , J ′ = J −2 and

J ′ = J + 2:
∂

∂t
dJ(t) =

B

i~

(
J(J + 1)− D

B
J2(J + 1)2 − β⊥(t)−∆β(t)a0(J,M)

)
dJ(t)+

− B

i~
∆β(t)a+2(J − 2,M)dJ−2(t)+

− B

i~
∆β(t)a−2(J + 2,M)dJ+2(t)

(C.22)

Finally the system of coupled differential equations can be written in the form:

˙dJ(t) = k−2(t, J,M)dJ−2(t) + k0(t, J,M)dJ(t) + k+2(t, J,M)dJ+2(t) (C.23)

where we have defined:

k−2(t, J,M) = −B
i~

∆β(t)a+2(J − 2,M) (C.24)

k0(t, J,M) =
B

i~

(
J(J + 1)− D

B
J2(J + 1)2 − β⊥(t)−∆β(t)a0(J,M)

)
(C.25)

k+2(t, J,M) = −B
i~

∆β(t)a−2(J + 2,M) (C.26)

We can write a temporal evolution matrix where rows are the starting state and

columns the arrival state:
k0(t, 0) 0 k+2(t, 2) 0 0

0 k0(t, 1) 0 k+2(t, 1) 0
k−2(t, 2) 0 k0(t, 2) 0 k+2(t, 2)

0 k−2(t, 3) 0 k0(t, 3) 0
0 0 k−2(t, 4) 0 k0(t, 4)
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Alignment parameter calculation for
an anisotropic distribution

As affirmed in paragraph 2.1.2, in order to describe a thermal ensemble of

molecules, each one characterized by a rotational state |J,M〉, we have to exploit

the density matrix formalism. Let’s remember that the density matrix is defined

as

ρ =
∑
J,M

p(J,M) |J,M〉 〈J,M | (D.1)

We can calculate the expectation value of cos2 θ (alignment parameter) for a non-

aligned thermal ensemble of molecules as

〈cos2 θ〉 =Tr(ρ cos2 θ) =

=
∑
J,M

〈J,M |
(∑
J ′,M ′

p(J ′,M ′) |J ′,M ′〉 〈J ′,M ′| cos2 θ

)
|J,M〉 =

=
∑
J,M

∑
J ′,M ′

p(J ′,M ′) 〈J,M | J ′,M ′〉 〈J ′,M ′| cos2 θ |J,M〉 =

=
∑
J,M

p(J,M)
〈
J,M

∣∣ cos2 θ
∣∣ J,M〉 =

=
∑
J,M

e
−B(J(J+1)

kBT∑
J,M e

−B(J(J+1)
kBT

(
a0(J) 〈J,M | J,M〉+

+ a−2(J) 〈J,M | J − 2,M〉+ a+2(J) 〈J,M | J + 2,M〉
)

=

=
∑
J,M

e
−B(J(J+1)

kBT∑
J,M e

−B(J(J+1)
kBT

a0(J)
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By remembering that

a0(J) =
2(J2 −M2 + J)− 1

(2J − 1)(2J + 3)
(D.2)

∑
M

1 =
J∑

M=−J

1 = (2J + 1), M = −J ÷ J (D.3)

we can write

〈cos2 θ〉 =
∑
J,M

e
−B(J(J+1)

kBT∑
J,M e

−B(J(J+1)
kBT

2(J2 −M2 + J)− 1

(2J − 1)(2J + 3)
=

=
1∑

J,M e
−B(J(J+1)

kBT

∑
J,M

e
−B(J(J+1)

kBT
2J(J + 1)− 1

(2J − 1)(2J + 3)
+

− 1∑
J,M e

−B(J(J+1)
kBT

∑
J,M

e
−B(J(J+1)

kBT
2M2

(2J − 1)(2J + 3)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
2J(J + 1)− 1

(2J − 1)(2J + 3)
+

− 1∑
J(2J + 1)e

−B(J(J+1)
kBT

∑
J

e
−B(J(J+1)

kBT
2

(2J − 1)(2J + 3)

∑
M

M2

Now we consider that∑
M

M2 =
J∑

M=−J

M2 =
0∑

M=−J

M2 +
J∑

M=0

M2 = 2
J∑

M=1

M2 = 2
J(J + 1)(2J + 1)

6

(D.4)
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thus we obtain

〈cos2 θ〉 =
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
2J(J + 1)− 1

(2J − 1)(2J + 3)
+

− 1∑
J(2J + 1)e

−B(J(J+1)
kBT

∑
J

e
−B(J(J+1)

kBT
2J(J + 1)(2J + 1)

3(2J − 1)(2J + 3)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
2J(J + 1)− 1

(2J − 1)(2J + 3)
+

− 1∑
J(2J + 1)e

−B(J(J+1)
kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
2J(J + 1)

3(2J − 1)(2J + 3)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT

(
2J(J + 1)− 1

(2J − 1)(2J + 3)
+

− 2J(J + 1)

3(2J − 1)(2J + 3)

)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
4J(J + 1)− 3

3(2J − 1)(2J + 3)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
4J2 + 4J − 3

3(2J − 1)(2J + 3)
=

=
1∑

J(2J + 1)e
−B(J(J+1)

kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT
(2J − 1)(2J + 3)

3(2J − 1)(2J + 3)
=

=
1

3

1∑
J(2J + 1)e

−B(J(J+1)
kBT

∑
J

(2J + 1)e
−B(J(J+1)

kBT =

=
1

3
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