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Sommario

Questo elaborato di tesi si inserisce nel progetto FEMOS (Finite Ele-
ment Method Oriented Solver) che costituisce all’interno dell’azienda Micron
Technology una piattaforma per la simulazione 3D multifisica (termo-elettro-
chimica-meccanica) delle memorie elettroniche. In particolare questo lavoro
di tesi si è occupato della trattazione dell’approccio Drift-Diffusion [Jac84]
per i semiconduttori la cui risoluzione si è basata sull’algoritmo della mappa
di Gummel [Gum64]. La discretizzazione delle equazioni è stata realizzata
secondo il metodo di Galerkin agli elementi finiti (FEM) ed in particolare per
il problema di Poisson si è scelta una formulazione agli spostamenti, mentre
per l’equazione di continuità ci si è affidati allo schema numerico EAFE pre-
sentato in [XZ99]. Il problema non lineare di Poisson è stato affrontato con
il metodo di Newton.

La parte più originale del lavoro è costituita dalle tecniche sviluppate al
fine di calcolare la corrente ai contatti e all’interno dei dispositivi. Nel primo
caso abbiamo esteso al caso tridimensionale il metodo dei residui presenta-
to in [GS06]. Per il secondo abbiamo proposto due schemi innovativi volti
all’estensione tridimensionale della formula di Scharfetter-Gummel [GS69].

Sono stati condotti numerosi test di simulazione su vari dispositivi a se-
miconduttore (diodo, n-MOSFET/p-MOSFET) ed i risultati ottenuti sono
stati confrontati con quelli forniti da un solutore commerciale di uso comune
nel presente contesto dimostrando un ottimo accordo.
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Abstract

This thesis is part of the FEMOS (Finite Element Method Oriented Solver)
project which is a modular numerical code designed for the treatment of
multiphysical effects (thermal-electrical-chemical-mechanical) applied to the
most modern memory devices. More precisely in this work the Gummel map
algorithm [Gum64] is employed to solve the Drift-Diffusion model [Jac84]
for semiconductors. The Non Linear Poisson equation has been discretized
using the Galerkin finite element method [QV08] following a displacement
formulation and the Continuity equations have been treated using the EAFE
scheme [XZ99].

The original part of this work is the calculation of the current both at
contacts and inside the device. In the first case we extended to the 3D
framework the residual method [GS06], while in the second one we proposed
two novel schemes in order to extend the Scharfetter-Gummel formula [GS69]
to the 3D case.

The code has been thoroughly tested on different semiconductor devices
(p-n junction, p-n junction in oxide and n-channel/p-channel MOSFET),
comparing the results with a commercial tool as reference reaching a very
good agreement.
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Estratto della tesi

Lo sviluppo tecnologico nell’industria dei semiconduttori è in rapidissima
crescita in questi ultimi anni e in particolare non solo secondo il tradiziona-
le shrinking tecnologico, ma grazie anche all’utilizzo di nuovi principi fisici
complementari o alternativi alla fisica dei semiconduttori. In particolare, l’u-
tilizzo di nuovi materiali richiede capacità di sviluppo e comprensione decisa-
mente superiori rispetto al passato. Proprio per rispondere a queste esigenze
in Micron Technology (una delle compagnie leader fra le industrie di semicon-
duttori) è nato il progetto FEMOS (Finite Element Method Oriented Solver).
FEMOS è un codice numerico modulare in grado di affrontare problematiche
di diversa natura fisico-chimica, di trasporto termico ed elettronico in mezzi
anisotropi e di meccanica dei continui, applicate ai più moderni dispositivi di
memoria (a cambiamento di fase, a movimento ionico). A completamento di
questo progetto si è resa necessaria la possibilità di simulare i materiali a se-
miconduttore: questo lavoro di tesi si inserisce proprio in questo contesto. In
particolare ci siamo occupati della trattazione dell’approccio Drift-Diffusion
[Jac84] per i semiconduttori la cui risoluzione si è basata sull’algoritmo del-
la mappa di Gummel [Gum64]. La discretizzazione delle equazioni è stata
realizzata secondo il metodo di Galerkin agli elementi finiti (FEM) ed in
particolare per il problema di Poisson si è scelta una formulazione agli spo-
stamenti, mentre per l’equazione di continuità ci si è affidati allo schema
numerico EAFE presentato in [XZ99]. Il problema non lineare di Poisson è
stato affrontato con il metodo di Newton.

La parte più originale del lavoro è costituita dalle tecniche sviluppate
al fine di calcolare la corrente ai contatti e all’interno dei dispositivi. Nel
primo caso abbiamo esteso il metodo dei residui presentato in [GS06] al caso
tridimensionale. Per il secondo abbiamo proposto due schemi innovativi volti
all’estensione al caso 3D della formula di Scharfetter-Gummel [GS69].

Sono stati condotti test di simulazione su vari dispositivi a semiconduttore
(diodo, n-MOSFET/p-MOSFET) ed i risultati sono stati confrontati con un
solutore commerciale di uso comune nel contesto in esame, dimostrandosi in
ottimo accordo con essi.
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L’elaborato è organizzato come segue:

Capitolo 1 richiamiamo brevemente le proprietà fisiche dei semicondutto-
ri ed enunciamo le principali relazioni che intercorrono fra le
grandezze fondamentali (potenziale elettrostatico, campo elet-
trico, densità di portatori e di corrente). Presentiamo il mo-
dello Drift-Diffusion e alcuni dei principali modelli di mobilità
dei portatori e dei fenomeni di R/G.

Capitolo 2 questo capitolo è diviso in due sezioni. Nella prima ci occupia-
mo di introdurre le geometrie considerate durante le simulazio-
ni e le relative notazioni. Nella seconda parte illustriamo gli
algoritmi usati al fine di trattare il modello esposto nel primo
capitolo (mappa di Gummel).

Capitolo 3 la buona posizione delle equazioni trattate e i metodi utilizzati
per discretizzarle sono approfonditi in questo capitolo. Parti-
colare attenzione viene posta su alcuni aspetti che ne rendono
difficile la risoluzione numerica.

Capitolo 4 questo capitolo contiene i risultati ottenuti. La validazione
dei tests è stata condotta su dispositivi a semiconduttore tipi-
ci delle applicazioni microelettroniche (diodo, n-MOSFET/p-
MOSFET) confrontando le soluzioni con un software commer-
ciale. La parte finale del capitolo riguarda l’estensione del
metodo dei residui al caso 3D per il calcolo della corrente ai
contatti [GS06].

Capitolo 5 in questo capitolo vengono trattate alcune tecniche che per-
mettono la ricostruzione delle densità di corrente all’interno
dei dispositivi. Proponiamo due schemi innovativi al fine di
estendere la formula di Scharfetter-Gummel [GS69] al caso 3D.
Infine confrontiamo i risulati con il simulatore commerciale.

Capitolo 6 contiene una sintesi delle tematiche e dei metodi proposti ed
impiegati nella tesi, e affronta alcuni punti aperti che saranno
oggetto della futura ricerca in questo ambito.

Sono infine incluse due Appendici dedicate a illustrare brevemente la
struttura del codice FEMOS.
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Introduction

In the last years there has been a continously technological development in
the semiconductor industry according to the traditional technological shrink-
ing but also for the introduction of new complementary or alternative physical
principles into the modern devices. This has led to the use of new materi-
als which need higher development and comprehension skills than in the
past. In order to satisfy these requirements in Micron Technology (one of
the leader companies among semiconductor industries) the FEMOS project
(Finite Element Method Oriented Solver) was born. FEMOS is a modular
numerical code designed for the treatment of different physical and chemi-
cal phenomena, thermal and electrical transport inside anisotropic materials
and mechanical effects applied to the most modern memory devices (i.e.
phase change memories, ionic transport). In order to complete the FEMOS
project the urgent need of simulating semiconductor materials has recently
manifested: this is the object of this work of thesis. More precisely the Gum-
mel map algorithm [Gum64] is employed to solve the Drift-Diffusion model
[Jac84]. The Non Linear Poisson has been discretized using the Galerkin
finite element method [QV08] following a displacement formulation and the
Continuity equations have been treated using the EAFE scheme [XZ99]. The
Non Linear Poisson problem is solved with the Newton method.

The original part of this work is the calculation of the current both at
contacts and inside the device. In the first case we extended to the 3D
framework the residual method [GS06], while in the second one we proposed
two novel schemes in order to extend the Scharfetter-Gummel fromula to the
3D case [GS69].

The code has been thoroughly tested on different semiconductor devices
(p-n junction, p-n junction in oxide and n-channel/p-channel MOSFET),
comparing the results with a commercial tool as reference reaching a very
good agreement.

The thesis is organized as follows:

17



Chapter 1 we briefly recall the semiconductor material properties, physi-
cal behaviour and relations between the fundamental quantities
(electrostatic potential, electric field, carrier densities and cur-
rent densities). The classical Drift-Diffusion model is discussed
in detail; with the needed models for carrier mobilities and gen-
eration/recombination phenomena.

Chapter 2 this chapter consists of two main sections. The first one presents
the geometry framework and introduces some useful notation.
The second one illustrates the algorithms used in order to treat
the equations of the first chapter (decoupled Gummel map ap-
proach).

Chapter 3 the well-posedness analysis and the numerical approximation
of the equations is discussed in detail. Special emphasis is also
devoted to illustrating several issues that make the numerical
approximation a difficult task.

Chapter 4 in this chapter we present the numerical results. The valida-
tion tests are performed on typical semiconductor devices (p-n
junction, n-channel/p-channel MOSFET) comparing the results
with a commercial software. At the end the calculation of the
current at contacts is performed, extending the residual method
[GS06] to the 3D case.

Chapter 5 we investigate some techniques that allow to reconstruct the
current density inside the device. We propose two novel schemes
in order to extend the 1D Scharfetter-Gummel formula [GS69]
to the 3D case. Finally, we compare the results with the com-
mercial software.

Chapter 6 contains summarising conclusions of the thesis work and ad-
dresses future research perspectives.

Two concluding Appendices are devoted to briefly illustrating the FEMOS
code.

18



Chapter 1

Physical models for charge
transport in semiconductor
materials

In this chapter we present the basic physical properties of semiconductor
materials according to the quantum mechanics theory [YT09] and the Drift-
Diffusion model [Jac84].

1.1 Basic Device Physics

Since the most used material in the fabrication of VLSI devices technology
is silicon, the following description is based on this material choice.

1.1.1 Intrinsic semiconductor

In a silicon crystal each atom has four valence electrons to share with its four
neighboring atoms. The valence electrons are shared in a paired configuration
called covalent bond. In a solid semiconductor energy levels of electrons are
grouped into bands separated by regions of not allowed energy, the so-called
forbidden gaps. The highest energy band completely filled by electrons at
0[K] is called valence band (EV ), the next band is called conduction band
(EC).

As in silicon the band gap is 1.11 [eV] [BGB00], at room temperature a
small fraction of the electrons are excited into the conduction band, leaving
behind vacancies (called holes) in the valence band. In contrast, an insulator
has a much larger forbidden gap making room-temperature conduction vir-
tually impossible, while metals have partially filled conduction bands even

19



(a) Metal (b) Insulator

Figure 1.1: Two typical examples of state density occupation (g(E)) and proba-
bility distribution (f(E)).

at absolute zero temperature, making them excellent conductors at any tem-
perature.

A suitable formulation of the electron concentration in the conduction
band is given by the following integral

n =

∫ ∞
Ec

g(E)f(E) dE (1.1)

where g(E)dE represents the number of electronic states per unit volume
with an energy between E and E + dE in the conduction band and f(E)
is the Fermi-Dirac distribution function, which gives the probability that an
electronic state at energy E is occupied by an electron

fD(E) =
1

1 + exp

(
E − Ef
kBT

) . (1.2)

In (1.2) kB = 1.38× 10−23[J/K] is Boltzmann’s constant, T is the abso-
lute temperature and Ef is the Fermi level. Fig.1.1 shows the state density
occupation g(E) and the probability distribution f(E) for a metal and a
semiconductor. In order to obtain an analytic formula for the state density
occupation g(E), we can consider the well known parabolic approximation
of the conduction band [PN]

E = Ec +
~2

2m∗e
k2 (1.3)

where ~ = h/2π and h = 6.63 × 10−34[J s] is Planck’s constant, m∗e the
electron effective mass, Ec the minimum value of the conduction band and
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k the wavenumber. Using this approximation, conduction band density of
states can be calculated as

g(E) =
m∗e
√

2m∗e(E − Ec)
π2~3

. (1.4)

We point that (1.1) is a Fermi integral of order 1/2 and must be evaluated
numerically.

Definition 1.1. The Fermi level (Ef ) is the energy at which the probability
of occupation of an energy state by an electron is equal to 1/2.

In most cases, when the energy is at least several kBT above or below
the Fermi level (non degenerate semiconductor), equation (1.2) can be well
approximated by the Maxwell-Boltzmann statistics, which reads as follows:

fD(E) ' fMB(E) =


exp

(
−E − Ef

kBT

)
E � Ef

1− exp

(
−Ef − E

kBT

)
E � Ef .

(1.5)

The Fermi level plays an essential role for the equilibrium of a system, it
is important to keep in mind the following observation.

Observation 1.1. When two systems in contact are in thermal equilibrium
with no current flow between them, their Fermi levels must be equal: in other
words for a continuous region (of metals or semiconductors in contact), the
Fermi level at thermal equilibrium is spatially constant.

Replacing (1.5) and (1.4) into (1.1) we obtain

n = Nc exp

(
−Ec − Ef

kBT

)
. (1.6)

Using the similar approach for the holes, the concentration p in the valence
band is

p = Nv exp

(
−Ef − Ev

kBT

)
. (1.7)

Nc and Nv are the effective density of states while Ev is the maximum
value of the valence band. In an intrinsic semiconductor n = p and the
intrinsic Fermi level Ei can be calculated by (1.6) and (1.7) as:

Ei = Ef =
Ec + Ev

2
− kBT

2
ln

(
Nc

Nv

)
. (1.8)
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By replacing (1.8) in (1.6) we obtain the intrinsic carrier concentration
ni = n = p

ni =
√
NcNvexp

(
− Eg

2kBT

)
(1.9)

where Eg = Ec − Ev is the semiconductor energy gap.

Observation 1.2. Since the thermal energy, kBT is much smaller than the
usual semiconductor bandgap Eg, the intrinsic Fermi level is very close to
the midgap.

Equations (1.6) and (1.7) can be written in terms of the intrinsic carrier
density (ni) and energy (Ei) as:

n = ni exp

(
Ef − Ei
kBT

)
(1.10)

p = ni exp

(
Ei − Ef
kBT

)
. (1.11)

Finally we remark that at thermal equilibrium the mass action law holds

np = n2
i . (1.12)

The analysis of the work principles of devices can be effectively done by
the band diagram (Fig.1.2), which summarizes the information presented
above.

Figure 1.2: Construction of the band diagram.
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1.1.2 Extrinsic semiconductor

At room temperature an intrinsic semiconductor has an extremely low free-
carrier concentration, therefore, its resistivity is very high. In order to im-
prove the conductivity of the semiconductor, impurities atoms are added in
the material. This introduces additional energy levels in the forbidden gap:
the impurities are easily ionized adding either electrons to the conduction
band or holes to the valence band, in such a way that the electrical conduc-
tivity is dominated by the type and concentration of the impurity atoms.

Two are the types of impurities which are electrically active: those from
column V of the Periodic Table such as arsenic or phosphorus, and those
from column III such as boron or indium.

The thermal energy at room temperature is sufficient to ionize the im-
purities and free the extra electron to the conduction band (column V) or
accept an electron from valence band (column III). Column V impurities are
called donors ; they become positively charged when ionized. Silicon material
doped with column-V impurities or donors is called n-type silicon.

Column III impurities are called acceptors : they become negatively charged
when ionized. Silicon material doped with column-III impurities or acceptors
is called p-type silicon.

A p-type or an n-type is named as extrinsic silicon. In terms of the
energy-band diagram, donors add allowed electron states in the bandgap
close to the conduction-band edge, while acceptors add allowed states just
above the valence-band edge.

The Fermi level in n-type silicon moves up towards the conduction band
while in p-type silicon it moves down towards the valence band. This be-
haviour is presented in the band diagrams of Fig.1.3.

EC

EV

Ef

Ei

(a) n-type

EC

EV
Ef

Ei

(b) p-type

Figure 1.3: Band diagrams of extrinsic silicon for (1.18) and (1.19).

The position of the Fermi level depends on both the ionization energy
and the concentration of dopants. For the sake of simplicity we consider that
at room temperature all impurties are ionized (Nd = N+

d and Na = N−a ).
For an n-type material with a donor impurity concentration, Nd, the charge
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neutrality condition requires that

n = N+
d + p (1.13)

where N+
d is the density of ionized donors. Similarly for a p-type material

with acceptor impurity concentration Na we have

p = N−a + n. (1.14)

Since the magnitude of impurities is in the range of 1016÷1020[cm−3], and
intrinsic carrier concentration in the order of 1010[cm−3], we can approximate
the carrier concentrations as:

n ' N+
d , p ' n2

i

N+
d

(n− type)

p ' N−a , n ' n2
i

N−a
(p− type).

(1.15)

Replacing (1.15) in (1.6) and (1.7) in (1.13) and (1.14) and solving the
corresponding algebraic equation, we have:

Ec − Ef = kBT ln

(
Nc

N+
d

)
(1.16)

Ef − Ev = kBT ln

(
Nv

N−a

)
. (1.17)

Equations (1.16) and (1.17) can be written in a more useful form using
(1.9) and (1.8) (for ni and Ei):

Ef − Ei = kBT ln

(
N+
d

ni

)
(1.18)

Ei − Ef = kBT ln

(
N−a
ni

)
. (1.19)

Observation 1.3. The distance between the Fermi level and the intrinsic Fermi
level is a logarithmic function of doping concentration.

1.1.3 Carrier densities at nonequilibrium condition

In VLSI devices a nonequilibrium condition is often possible: the densities
of one or both types of carriers depart from their equilibrium as given by
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(1.10) and (1.11). In particular, the minority carrier concentration can be
easily overwhelmed by the injection from neighboring regions. Under these
circumstances, while electrons and holes are in local equilibrium with them-
selves, they are not in equilibrium with each other. In order to extend the
relationship between Fermi level and densities discussed above, we can in-
troduce different Fermi levels for electrons and holes. They are called quasi
Fermi levels defined as:

Efn = Ei + kBT ln

(
n

ni

)
(1.20)

Efp = Ei − kBT ln

(
p

ni

)
. (1.21)

Considering the well known relation between electrostatic potential and
energy ϕ = −E/q, (1.20) and (1.21) can be written as:

n = ni exp

(
ϕi − ϕn
kBT/q

)
(1.22)

p = ni exp

(
ϕp − ϕi
kBT/q

)
(1.23)

where ϕn and ϕp are the quasi Fermi potential levels and ϕi is the midgap
potential level, while q = 1.602e−19[C] is the elementary charge.

Observation 1.4. In non equilibrium conditions, the quasi Fermi levels have
the same physical meaning in terms of the state occupancy as the Fermi
level, therefore the electron (hole) density in the conduction band can be
calculated using Efn (Efp).

1.1.4 Carrier transport in a semiconductor

Carrier transport or current flow is driven by two different mechanisms:

• the drift, which is caused by the presence of an electric field;

• the diffusion, which is caused by a spatial gradient of electron or hole
concentration.

Drift current - Ohm’s law

When an electric field is applied to a device, the free carriers are accelerated
and acquire a drift velocity superimposed upon their random thermal motion.
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Observation 1.5. The drift velocity of holes (h) is in the direction of the
applied field, and the drift velocity of electrons (e) is opposite to the field.

The velocity of the carriers does not increase indefinitely under field ac-
celeration, since they are scattered frequently and lose their acquired mo-
mentum after each collision. During their motion throughout the lattice
structure, carriers travel at an average speed defined by:

ved = −qEτe
m∗e

, vhd = +
qEτh
m∗h

(1.24)

where E is the electric field, τe, τh the average times between two consecutive
scattering events and m∗e, m

∗
h the effective masses of electron and hole respec-

tively. The coefficient qτe/me (qτp/mp) characterizes how quickly a carrier
move through the lattice and is known as carrier mobility [cm2V −1s−1]. In
general, to include different scattering mechanisms Mathiessen’s rule is used
to calculate the resulting mobility

1

µ
=

1

µL
+

1

µI
+ · · · (1.25)

where µL and µI correspond to the lattice and impurity scattering (for a
more detailed description of mobility models see [YT09]).

Therefore the drift electron (hole) current density reads as follows:

Jn =− qnvnd = qnµnE = σnE (1.26)

Jp = + qpvpd = qpµpE = σpE. (1.27)

The scalar coefficient qnµn(qpµp) is called electron (hole) conductivity
σn(σp).

Relations (1.26) and (1.27) express the well known Ohm’ law stating that
the current density is directly proportional to the applied electric field.

Diffusion current - Fick’s law

In semiconductor devices it is very common to have different profiles of
dopant in order to allow specific electrical behaviors. This implies a non
uniform concentration of carriers which also diffuse as a result of a gradient
concentration. This leads to an additional current contribution according to
the classical Fick’s law :

Jn = −Dn(−q∇n) (1.28)

Jp = −Dp(+q∇p). (1.29)
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The constants Dn and Dp are called electron and hole diffusion coefficients
and have units of [cm2s−1]. Drift and diffusion are closely associated with
the random thermal motion of carriers and their collisions with the silicon
lattice in thermal equilibrium. The Einstein relation (1.30) expresses the
relation between diffusivity and mobility

Dn =
kBT

q
µn, Dp =

kBT

q
µp. (1.30)

Drift-Diffusion transport equations

By considering (1.26), (1.27), (1.28) and (1.29), the electron and hole current
densities become [Sie84]:

Jn = qnµnE + qDn∇n (1.31)

Jp = qpµpE− qDp∇p. (1.32)

The total conduction current density is

J = Jn + Jp.

Equations (1.31) and (1.32) are called constitutive laws and can be written
in two other ways highlighting different physical explanations of the same
phenomenon. These interpreations give also different starting points for the
mathematical formulation and solution of the Drift-Diffusion model.

Considering that the electric field is related to the scalar potential through
the quasi-static approximation

E = −∇ϕ, (1.33)

using (1.30) the current densities can be written as:

Jn = −qnµn
(
∇ϕ− kBT

qn
∇n
)

(1.34)

Jp = −qpµp
(
∇ϕ+

kBT

qp
∇p
)
. (1.35)

Considering equations (1.22) and (1.23) the current densities are equal
to:

Jn = −qnµn∇ϕn (1.36)

Jp = −qpµp∇ϕp. (1.37)
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With these equations we underly an important aspect which occurs in a
semiconductor:

Observation 1.6. The current density is proportional to the gradient of the
quasi Fermi potential.

The third way to represent the current density is based on Slotboom vari-
ables which are particularly suited for the mathematical analysis of the semi-
conductor equations:

un = ni exp

(
−ϕn
Vth

)
(1.38)

up = ni exp

(
ϕp
Vth

)
(1.39)

where Vth = kBT/q. Replacing these equations into (1.31) and (1.32) we
obtain:

Jn = qDn exp

(
ϕ

Vth

)
∇un (1.40)

Jp = −qDp exp

(
− ϕ

Vth

)
∇up. (1.41)

Observation 1.7. The drift-diffusion current density in a semiconductor is a
purely diffusive flux of a new kind of carrier with a properly modified diffusion
coefficient.

1.2 Drift Diffusion Model for semiconductors

In the study of integrated devices the Drift Diffusion model (DD) is the most
widely used mathematical approach, in particular in industrial simulation.
In this section we show how the DD model can be obtained.

1.2.1 Drift Diffusion formulation

The system of Maxwell equations describes the propagation of electromag-
netic signal in a medium [Jac84]:
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∇×H = J +
∂D

∂t
(1.42)

∇× E = −∂B

∂t
(1.43)

∇ ·D = ρ (1.44)

∇ ·B = 0 (1.45)

with the following set of constitutive laws that characterize the electromag-
netic properties of the medium:

D = εE
B = µmH

(1.46)

where ε is the material dielectric permittivity [Fcm−1] and µm is the magnetic
permeability [Hcm−1]. Since ∇ · (∇ × A) = 0 for any vector A, (1.45) is
satisfied by introducing a vector potential A such that B = ∇·A. We replace
it in (1.43) to obtain

∇×
(

E +
∂A

∂t

)
= 0. (1.47)

From this we can state that there exists a scalar potential ϕ such that

E +
∂A

∂t
= −∇ϕ. (1.48)

Applying the divergence operator and using (1.33), (1.46) and (1.44),
relation (1.48) becomes

ρ+
∂A

∂t
= −∇ · (ε∇ϕ). (1.49)

We now assume that
∂A

∂t
= 0 (quasi static approximation) and we have

the Poisson Equation

∇ · (ε∇ϕ) = ρ. (1.50)

Applying the divergence operator to (1.42) and considering (1.50) we get
the Continuity Equation

∂ρ

∂t
+∇ · J = 0. (1.51)
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To close system given by (1.50) and (1.51), we need specify the mathe-
matical form of the electric charge density (ρ) and the electric conduction
current density (J). Considering (1.15), ρ can be expressed as

ρ = q(p− n)︸ ︷︷ ︸
ρfree

+ q(ND −NA)︸ ︷︷ ︸
ρfixed

(1.52)

in which we can distinguish the two following contributions:

• free charge (ρfree) (free electron and holes carriers),

• fixed charge (ρfixed) (ionoized dopant impurities).

Notice that we assume N+
D and N−A to be time invariant (∂N+

D/∂t =
∂N−A /∂t = 0).

Splitting the continuity equation (1.51) into two distinct equations (for
holes and electrons), Drift Diffusion (DD) model formulation reads as follows:



∇ · (−ε∇ϕ) = q(p− n+N+
D −N

−
A )

−q∂n
∂t

+∇ · (−qµnn∇ϕ+ qDn∇n) = qR

q
∂p

∂t
+∇ · (−qµpp∇ϕ− qDp∇p) = −qR

(1.53)

where the arbitrarily introduced function R = R(x, t) can be considered as
the net rate of generation and recombination. The system is an incompletely
parabolic initial value/boundary problem in three scalar unknown dependent
variables ϕ(x, t), n(x, t) and p(x, t): the presence of the drift terms (n∇ϕ
and p∇ϕ) makes (1.53) a nonlinear coupled system of PDE’s.

From Maxwell equations we are able to guarantee only that J is a solenoidal
field. The stationary form can be easily deduced from (1.53) by neglecting
the temporal derivatives.

1.2.2 Generation and Recombination phenomenon

The modelling of R(x, t) is fundamental for device simulation due to its role
in determining the current-voltage characteristic.

It is important to keep in mind that electrons and holes are in continuos
fluctuation due to their thermal energy, the macroscopic result is that the
net recombination rate at equilibrium is identically zero. Our interest is to
analyze the deviations from this condition.
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While generation events are usually due to thermal agitation or an exter-
nal input source, the recombination events happen in order to neutralize an
excess of charge.

The phenomenological model for the net recombination rate R is often
given in the following

R(n, p) = (pn− n2
i )F (n, p) (1.54)

where F is a function accounting for specific recombination/generation
(R/G) events. In the following we present the classical theory that includes
three specific kind of contributions.

Shockley-Read-Hall recombination (SRH)

Electron and hole generation and recombination can take place directly be-
tween the valence band and the conduction band, or mediated via trap centers
in the energy gap. Shockley-Read-Hall phenomena is a two-particle process
which matematically expresses the probability that:

• an electron in the conduction band neutralizes a hole at the valence
band through the mediation of an unoccupied trapping level located at
the energy gap (RSRH),

• an electron is emitted from the valence band to the conduction band,
through the mediation of an unoccupied trapping level located at the
energy gap (GSRH).

The modeling function F is given by

FSRH(n, p) =
1

τn

(
p+ ni cosh

(
ET
kBT

))
+ τp

(
n+ ni cosh

(
ET
kBT

)) (1.55)

where ET is the energy level of the traps, τn and τp are called carrier lifetimes
and are physically defined as the reciprocals of the capture rates. The typical
order of magnitude of the lifetimes lies in the range of 10−3µs ÷ 1µs (see
[VOT83] and [GH92]).

Auger recombination (AU)

Auger R/G is a three-particle process and takes place directly between the
valence band and the conduction band. We distinguish four cases which
depend on the type of carriers involved:
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Parameter Unit Electrons Holes

τ s 1.0× 10−5 3.0× 10−6

ET eV 0.0 0.0

Table 1.1: Parameters in the Shockley-Read-Hall generation/recombination
model.

R2n,1p
AU a high-energy electron in the conduction band moves to the valence

band where it neutralizes a hole, transmitting the excess energy to
another electron in the conduction band;

G2n,1p
AU an electron in the valence band moves to the conduction band by

taking the energy from a high energy electron in the conduction
band and leaves a hole in the valence band;

R2p,1n
AU an electron in the conduction band moves to the valence band where

it neutralizes a hole, transmitting the excess energy to another hole
in the valence band;

G2p,1n
AU an electron in the valence band moves to the conduction band by

taking the energy from a high energy hole in the valence band and
leaves a hole in the valence band.

The modeling function F is

FAU(n, p) = Cnn+ Cpp (1.56)

where the quantities Cn and Cp are the so called Auger capture coefficients
tipically in the order of magnitude of 10−25[cm6s−1] [LH80]. Note that Auger
R/G is relevant only when both carrier densities are high.

Parameter Unit Magnitude

Cn cm6s−1 2.9× 10−31

Cp cm6s−1 1.028× 10−31

Table 1.2: Parameters in Auger generation/recombination model.

Impact ionization (II)

The impact ionization mechanism is a three-particle phenomena where carrier
generation is triggered by the presence of a high electric field: due to this
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field an electron could gain enough energy to excite an electron-hole pair out
of a silicon lattice bond. Then the process can be repeated until an avalanche
of generated carriers is produced within the region: this process can not be
described by a relation of the form (1.54).

Among the different formulations for the impact ionization generation
we choose the van Overstraeten - de Man model [vOdM70], based on the
Chynoweth law [Chy58]:

GII(n, p) = αnn|vn|+ αpp|vp| (1.57)

with:

α(Eava) = γa exp

(
− γb

Eava

)
(1.58)

γ =

tanh

(
~ωop

2kBT0

)
tanh

(
~ωop
2kBT

) (1.59)

where ~ωop is the phonon energy, b the critical electric field and γ the temper-
ature dependence of the phonon gas against which carriers are accelerated.
Two sets of coefficients a and b are used for high and low ranges of electric
field. The values alow, blow are used in the low field range up to E0 and the
values ahigh, bhigh apply in the high field region above E0. Eava is the driving
force that can be computed as:

• the component of the electrostatic field in the direction of current flow

En,p
ava =

E · Jn,p
||Jn,p||

(1.60)

• the module of the quasi fermi gradient

En,p
ava = |∇ϕn,p|. (1.61)

1.2.3 Mobility models

In this section we illustrate the most common phenomenological models for
carrier mobilities. The main physical phenomena underlying a mobility re-
duction with respect to its bulk value are:

• interaction with the silicon atoms (due to thermal vibrations);

• interaction with ionized dopant impurities in the crystal.
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Parameter Unit Electrons Holes Valid range of electric field

E0 V cm−1 4.0× 105 4.0× 105

ahigh cm−1 7.03× 105 6.71× 105 E0 to 6.0× 105

alow cm−1 7.03× 105 1.582× 106 1.75× 105 to E0

bhigh V cm−1 1.231× 106 1.693× 106 E0 to 6.0× 105

blow V cm−1 1.231× 106 2.036× 106 1.75× 105 to E0

~ωop eV 0.063 0.063

Table 1.3: Parameters in van Overstraeten-de Man model.

Scattering with lattice

Carrier mobility is a decreasing function of temperature, as we expect colli-
sions become more and more frequent as T gets higher (see [Lom88]). This
can be represented by

µLν = µ0
ν

(
T

T0

)−βν
ν = n, p (1.62)

where µ0
ν is the low-field mobility, βν are positive numbers and T0 is a

reference temperature, typically T0 = 300[K].

Parameter Unit Electrons Holes

µ0 cm2V −1s−1 1417.0 470.5
β 1 2.5 2.2

Table 1.4: Parameters for mobility models including scattering from lattice ther-
mal vibrations.

Scattering from ionized impurities

Dopant ionized impurities induce local perturbations of the periodic silicon
lattice, they strongly influence the carrier motion through electrostatic inter-
action, reducing the mobility. To take into account this physical effect the
following model has been proposed in [MS83]

µ = µmin1 exp

(
− Pc
Ntot

)
+

µL − µmin2

1 +

(
Ntot

Cr

)α − µ1

1 +

(
Cs
Ntot

)β (1.63)
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where Ntot = N+
D + N−A , µLν is given by (1.62), µmin1 and µmin2 are the

minimum values of µ; Pc, Cr and Cs are reference doping values.

Parameter Unit Electrons Holes

µmin1 cm2V −1s−1 52.2 44.9
µmin2 cm2V −1s−1 52.2 0
µ1 cm2V −1s−1 43.4 29.0
Pc cm−3 0 9.23× 1016

Cr cm−3 9.68× 1016 2.23× 1017

Cs cm−3 3.43× 1020 6.10× 1020

α 1 0.680 0.719
β 1 2.0 2.0

Table 1.5: Parameters for models including scattering from ionized dopant im-
purities.

Veclocity saturation at high electric field

Under the assumption of low electric field, mobilities are reasonably constant
and the carrier drift velocity is proportional to the electric field. As the
applied field strength increases, the above assumption predicts an unbounded
carrier velocity as |E| → ∞. This outcome is physically incorrect, indeed at
high fields, carriers lose their energy by optical-phonon emission [YT09]. We
can take this into account by considering that

lim
| ~E|→∞

µ|E| = vsat. (1.64)

A common adopted formula is the Canali model [Can75]

µ =
µL[

1 +

(
µL|E|
vsat

)β]1/β
(1.65)

where µL is (1.62) while vsat and β are given by

vsat = v0exp

(
300

T

)vexp
β = β0

(
T

300

)βexp
. (1.66)

where v0 and βexp are fitting parameters.
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Parameter Unit Electrons Holes

v0 cm s−1 1.07× 107 8.37× 106

vexp 1 0.87 0.52
β0 1 1.109 1.213
βexp 1 0.66 0.17

Table 1.6: Parameters for mobility models including scattering from velocity
saturation.
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Chapter 2

Solution of the Drift-Diffusion
system

In this chapter we introduce geometry and boundary conditions for the sta-
tionary form of system (1.53) and we discuss the functional iteration algo-
rithms used to decouple the problem.

2.1 Geometry and boundary conditions

In order to close the Poisson equation and the Drift Diffusion equation for
electrons and holes in the stationary form of problem (1.53), suitable bound-
ary conditions must be considered.

Let us consider the device domain as the union of two open disjoint sub-
sets, ΩSi (doped silicon part), and Ωox (oxide part), such that their intersec-
tion ∂ΩSi ∩ ∂Ωox = Γint is the interface. The oxide region Ωox is assumed to
be a perfect insulator so that:

n = p = 0
Jn = Jp = 0.

(2.1)

The device boundary ∂Ω is divided into two disjoint subsets: ∂Ωc and
∂Ωa. The subset ∂Ωc includes the so called ohmic contacts (with ohmic con-
tacts we define every electrical terminal of the device on which the external
input voltages are applied). Ohmic contacts are assumed to be ideal, they
are equipotential surfaces and no voltage drop occurs at the interface be-
tween the contact and the neighbouring domain. This is well represented
by suitable Dirichlet boundary conditions, therefore in the following we set
∂Ωc = ΓD and enforce:
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ϕ = ϕD
n = nD onΓD.
p = pD

(2.2)

We point that in the case of a perfect insulator domain, (2.2) reduces to
the only condition on the electrostatical potential.

Artificial boundaries (∂Ωa) are needed in order to obtain a self-contained
simulation domain. On these boundaries no electric and current flux is ex-
changed with the surrounding environment, this fact being well represented
by homogeneous Neumann boundary conditions (∂Ωa = ΓN):

D · n = 0
Jn · n = 0 onΓN
Jp · n = 0

(2.3)

where n is the outward unit normal vector defined over ∂Ω. As we noted
before on ∂Ωox ∩ ΓN condition (2.3) is reduced to the first equation.

When oxide is present, the silicon boundaries for continuity equations
become

ΓD,Si = ΓD ∩ ∂ΩSi

ΓN,Si = ΓN ∩ ∂ΩSi ∪ Γint.
(2.4)

(a) (b)

Figure 2.1: (a) MOS device with net dopant concentration distributed according
to a gaussian profile and ΓD colored in black. The oxide layer is colored in light
blue. (b) Outline of the MOS device with Γint in light gray.
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Fig.2.1 shows an example of boundary setting for a MOS device: in
Fig.2.1a contacts are colored in black and in Fig.2.1b with light gray we
indicate the interface between oxide and silicon.

Thermodynamical equilibrium and charge neutrality are the physical char-
acteristic of an ideal contact. These conditions correspond to the following
algebraic system for nD and pD:

{
pDnD = n2

i

pD − nD +N+
D −N

−
A = 0

. (2.5)

Solving (2.5) on ΓD,Si we have:

nD =
D +

√
D2 + 4n2

i

2
(2.6)

pD =
−D +

√
D2 + 4n2

i

2
(2.7)

where D := N+
D − N−A is the net doping concentration. Furthermore at

each contact, the quasi Fermi potential levels of silicon are aligned with the
external applyed voltage Vext

ϕn = ϕp = ϕf = Vext. (2.8)

where ϕf = −Ef/q is the unique quasi Fermi potential level defined at the
contacts. As a consequence, we can easily determine potential condition on
ΓD,Si using (1.10) and (1.11)

ϕD = ϕf + Vth ln

(
nD
ni

)
= ϕf − Vth ln

(
pD
ni

)
. (2.9)

When Ωox 6= ∅ we set ϕD equal to the external applied voltage on
ΓD/ΓD,Si.

The stationary form of (1.53) can be now written in closed form as:
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∇ · (−ε∇ϕ)− q(p− n) = qD inΩ = Ωox ∪ ΩSi

ϕ = ϕD onΓD
∇ϕ · n = 0 onΓN

∇ · (qµnn∇ϕ− qDn∇n) = −qR inΩSi

n = nD onΓD,Si
∇n · n = 0 onΓN,Si

∇ · (−qµpp∇ϕ− qDp∇p) = −qR inΩSi

p = pD onΓD,Si
∇p · n = 0 onΓN,Si.

(2.10)

The highly nonlinear coupled nature of system (2.10) makes an analytical
treatment very difficult, if even not impossible. For this reason, numerical
schemes must be used to compute an approximate solution.

2.2 Iteration algorithms

The most used algorithms for the iterative treatment of (2.10) are the fully
coupled Newton’s method and the decoupled Gummel map. System (2.10) can
be written in compact form as

F(U) = 0 (2.11)

where

U := [ϕ, n, p]T , F(U) :=

 F1(U)
F2(U)
F3(U)

 (2.12)

having set:

F1(U) = ∇ · (−ε∇ϕ)− q(p− n+D)

F2(U) = ∇ · (qµnn∇ϕ− qDn∇n) + qR

F3(U) = ∇ · (−qµpp∇ϕ− qDp∇p) + qR.

Problem (2.11) is the generalization of the search of a zero for a real
function f : R → R. Since the vector function F is a nonlinear differential
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operator, the associated problem which we intend to solve is: given a func-
tional space V and the operator F : V → V , find U ∈ V such that (2.11) is
satisfied.

In our application, the function space V is typically a subset of the
Sobolev space [H1(Ω)]d (where d is the number of component of F). The
general form of a Sobolev space for an integer m ≥ 0 is

Hm(Ω) :=
{
v : Dαv ∈ L2(Ω),∀|α| ≤ m

}
. (2.13)

where L2(Ω) is the space of square integrable functions on Ω defined as

L2(Ω) :=

{
v :

∫
Ω

|v|2dΩ = ||v||2L2(Ω) < +∞
}
. (2.14)

On these spaces, we use the semi-norm

|v|2m,Ω =
∑
|α|=m

||Dαv||2L2(Ω) (2.15)

and the norm

||v||2m,Ω =
∑
k≤m

|Dαv|2k,Ω. (2.16)

We also need consider functions that vanish on either the entire or a part
of the boundary:

H1
0 :=

{
v : v ∈ H1(Ω), v|∂Ω = 0

}
(2.17)

H1
0,ΓD

:=
{
v : v ∈ H1(Ω), v|ΓD = 0

}
(2.18)

For v ∈ H1
0 (Ω), H1

0,ΓD
(Ω) we have the Poincaré - Friedrich’s inequality

[Sal10]

|v|0,Ω ≤ C(Ω)|v|1,Ω (2.19)

from which it follows that the seminorm | · |Ω is actually a norm in H1(Ω),
equivalent to || · ||1,Ω.

The above function spaces (for a more detailed description see [AF03])
are used widely in this work, especially during the well-posedness analysis as
reported in Chapter 3.
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2.2.1 Newton’s method

Definition 2.1 (Frechèt differentiability). Let beX and Y two vector spaces.
Given f, g ∈ X and a functional F : X → Y , the functional F is Frechét
differentiable if there exists a linear bounded operator Af : X → Y such that

lim
||g||→0

||F (f + g)− F (f)− Af (g)||Y
||g||X

= 0, (2.20)

where || · ||X and || · ||Y are the norms on X and Y respectively. If the above
limit exists, we write DF (f) = Af and call it the Frechét derivative of F at
f .

Considering the functional operator (2.12) we can easily compute the
associated Jacobian matrix F′, whose (i, j)− th entry represents the Frechét
derivative of the i − th row of the non linear operator with respect to the
j − th variable, defined as

F′ij(U)[V]j := lim
η→0

Fi(U + η[V]j)− Fi(U)

η
V ∈ V (2.21)

where [V]j ∈ V is the projection of V in the j − th direction.
F′ij(·) is a linear operator from V into the space L(V, V ) of linear continuos

functionals from V into V , while F′ij(U) is the Frechét derivative of the
functional Fi with respect to the variable [U]j.

According to the above definitions the Newton method reads as follows:

Let X, Y be two vector spaces and F : X → Y a function operator
Frechèt differentiable, given an initial datum U0 ∈ X and toll > 0, for
all k ≥ 0 solve the following linear problem:

F′(Uk)δUk = −F(Uk)
Uk+1 = Uk + δUk (2.22)

until ||F(Uk+1)||Y < toll.

Newton’s method

The application of Newton’s method has transformed the original problem
(2.11) into the fixed-point problem of finding U ∈ V such that

U = TF(U) (2.23)

where
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TF(U) = F′(U)−1(F′(U)U− F (U)) (2.24)

is the iteration function associated with the Newton method. The main
result about the convergence of this method is the following [OR70].

Theorem 2.1. Let U ∈ V be a solution of problem (2.11). Assume that F′

is Lipschitz continuous in the ball B(U, δ), i.e., that there exists K > 0 such
that

||F′(v)− F′(z)||L(V,V ) ≤ K||v − z||V ∀v, z ∈ B(U, δ), v 6= z. (2.25)

Then there exists in correspondence δ′ > 0, with δ′ ≤ δ, such that for all
U0 ∈ B(U, δ′) the sequence

{
Uk
}

generated by (2.22) converges quadratically
to U, i.e., there exists C > 0 such that, for a suitable k0 ≥ 0 we have

||U−Uk+1||V ≤ C||U−Uk||2V ∀k ≥ k0. (2.26)

2.2.2 Fully coupled Newton’s method

If we consider the linearization of system (2.10) the Jacobian matrix of the
Newton method is a 3x3 matrix and the associated problem is F1,ϕ F1,n F1,p

F2,ϕ F2,n F2,p

F3,ϕ F3,n F3,p

 δϕ
δn
δp

 =

 −F1(ϕ, n, p)
−F2(ϕ, n, p)
−F3(ϕ, n, p)

 . (2.27)

Each row of the above matrix is a PDE that can be discretized using the
FEM. Denoting by Ndof the number of degrees of freedom (dofs) to represent
δϕ, δn and δp we see that the structure of the discrete problem associated
with (2.27) is the following linear algebraic system K1,ϕ K1,n K1,p

K2,ϕ K2,n K2,p

K3,ϕ K3,n K3,p

 δϕ
δn
δp

 =

 −F1(ϕ, n, p)
−F2(ϕ, n, p)
−F3(ϕ, n, p)

 (2.28)

where each matrix K is a block of size Ndof×Ndof . This implies that at every
iteration step we have to solve a linear problem of 3×Ndof variables. More-
over, to ensure convergence of the Newton iterative process, it is important
to provide a very good initial guess vector [ϕ0, n0, p0]. Because the problem
variables have different orders of magnitude and the Jacobian matrix is of-
ten quite ill-conditioned, appropriate scaling and balancing techniques are
needed in order to avoid problems associated with round-off error.
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2.2.3 Gummel map algorithm

In 1964 H. K. Gummel proposed an original and alternative to (2.27) ap-
proach in order to solve system (2.10) in a semiconductor device in one
spatial dimension [Gum64]. The main idea of the algorithm is to move the
nonlinearity to the Poisson equation only, and once obtained the electric po-
tential profile, both continuity equations are solved in linear form. This is
possible if we consider the Maxwell-Boltzmann approximation for electrons
(1.10) and holes (1.11) obtaining

F1(ϕ) = ∇ · (−ε∇ϕ)− q(ni(e(ϕp−ϕ)/Vth − e(ϕ−ϕn)/Vth) +D). (2.29)

[ϕ, n, p]start NLP

k

DD electrons

DD holes

i

ϕk+1

ϕi+1

ni+1

pi+1

[ϕ, n, p]end

Figure 2.2: Flow chart of Gummel algorithm.

The Gummel algorithm is represented by the following iteration.
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0. Give a suitable initial condition for ϕ0 and set a positive parameter
tollGM > 0 (Gummel Map tollerance)

1. Fix a positive parameter tollNLP > 0 (Non Linear Poisson toler-
ance), solve the linearized Non Linear Poisson equation (NLP) in
Ω using the Newton method until ||F1(ϕk+1)|| > tollNLP :

∇ · (−εSi∇δϕk) +
1

Vth
σkSiδϕ

k = fkSi in ΩSi

∇ · (−εox∇δϕk) = fkox in Ωox

δϕk = 0 on ΓD

∇δϕk · n = 0 on ΓN

ϕk+1 = ϕk + δϕk

(2.30)

having set:

σkSi(ϕ
k) = qni

[
e(ϕp−ϕk)/Vth − e(ϕk−ϕn)/Vth

]
fkSi(ϕ

k) = ∇ · (−ε∇ϕk) + qni

[
e(ϕp−ϕk)/Vth − e(ϕk−ϕn)/Vth +D

]
fkox(ϕ

k) = ∇ · (−ε∇ϕk).

2. Solve the Linear Electron Continuity Equation (LEC):
∇ · (qµnn∇ϕi − qDn∇n) = −qR(ni−1, pi−1) in ΩSi

n = nD on ΓD,Si

∇n · n = 0 on ΓN,Si

(2.31)

3. Solve the Linear Hole Continuity Equation (LHC):
∇ · (−qµpp∇ϕi − qDp∇p) = −qR(ni−1, pi−1) in ΩSi

p = pD on ΓD,Si

∇p · n = 0 on ΓN,Si

(2.32)

4. If max{||ϕi − ϕi−1||L∞ , ||pi − pi−1||L∞ , ||ni − ni−1||L∞} > tollGM
restart from step (1).

Decoupled Gummel map.
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Fig.2.2 shows a flow chart of the Gummel algorithm where k is the it-
eration step of the inner loop, while i is the iteration step of the Gummel
Map.

For the Gummel map, a result analogous to Thm.2.1 can be found in
[Jer96], but the convergence rate is linear, although heuristic experience often
shows superlinear convergence behaviour.

There are several advantages which make Gummel map algorithm more
attractive than the Fully Coupled Newton’s Method: first of all simulation
experience shows that the Gummel process is much more insensitive to the
choice of the initial guess than Newton’s method. This is particularly im-
portant in multidimensional problems where it is far from trivial to design a
good starting point for initializing the iterative procedure. Another impor-
tant feature is the reduced computational effort and memory cost: at each
iteration step the Gummel algorithm requires the successive solution of three
problems, each one of size equal to Ndof ×Ndof .

Let us discuss again steps 2-3 of Decoupled Gummel map. According with
(1.54) the general R/G phenomenon can be separated in a reaction term and
a force term (except for the II which is only a force term contribution).
Letting:

Ri−1
n (n) = σi−1

n n− f i−1

Ri−1
p (p) = σi−1

p p− f i−1 (2.33)

where

σn =
pi−1

F (pi−1, ni−1)
σp =

ni−1

F (pi−1, ni−1)

f =
n2
i

F (pi−1, ni−1)
,

(2.34)

we can write systems (2.31) and (2.32) as:


∇ · (qµnn∇ϕi − qDn∇n) + qσi−1

n n = qf i−1 in ΩSi

n = nD on ΓD,Si

∇n · n = 0 on ΓN,Si

(2.35)


∇ · (−qµpp∇ϕi − qDp∇p) + qσi−1

p p = qf i−1 in ΩSi

p = pD on ΓD,Si

∇p · n = 0 on ΓN,Si .

(2.36)
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The above splitting of R/G term is called lagging approach [Jer96] and
corresponds to extending to the non-linear case the classical Jacobi method
for the iterative solution of linear algebraic systems. Since equations are
sequentially solved, it is possible to take advantage of the solution at the
present step. Indeed an alternative approach would be use the solution of
the first solved equation to compute the R/G contribution in the second
equation. In such a case, the lagging method corresponds to extending to
the nonlinear case the classical Gauss-Seidel method for the iterative solution
in linear algebraic systems.
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Chapter 3

Finite element discretization

In this chapter we present the weak formulation of problems (2.30), (2.35)
and (2.36). For each weak problem we discuss the well-posedness analysis
and describe the finite element discretization.

3.1 Non Linear Poisson Equation: weak form

Let us write problem (2.30) in compact form:
∇ · (−ε∇δϕk) + σkδϕk = fk in Ω

δϕk = 0 on ΓD
∇δϕk · n = 0 on ΓN

ϕk+1 = ϕk + δϕk

(3.1)

having set:

ε = εsIΩSi + εoxIΩox

f = fsIΩSi + foxIΩox

σ = σsIΩSi

where IA(x) is equal to 1 if x ∈ A and 0 otherwise. System (3.1) is a
Diffusion-Reaction (DR) problem in Ω, with respect to the dependent vari-
able δϕk. Now we multiply the first equation in (3.1) by a test function
v ∈ H1

ΓD
(Ω) and integrating over all the domain we obtain

−
∫

Ω

∇ · (−ε∇δϕk)v dΩ +

∫
Ω

σkδϕkv dΩ =

∫
Ω

fkv dΩ ∀v ∈ H1
ΓD

(Ω).

(3.2)
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Applying Green’s formula and including the boundary conditions, we
obtain the weak formulation of (3.1) which reads: find δϕk ∈ H1

ΓD
(Ω) such

that

∫
Ω

ε∇δϕk∇v dΩ +

∫
Ω

σkδϕkv dΩ =

∫
Ω

fkv dΩ ∀v ∈ H1
ΓD

(Ω). (3.3)

We are able to define the following bilinear form

a : H1
ΓD

(Ω)×H1
ΓD

(Ω)→ R, a(u, v) =

∫
Ω

ε∇u∇v dΩ +

∫
Ω

σkuv dΩ. (3.4)

and the linear and bounded functional

F : H1
ΓD

(Ω)→ R, F (v) =

∫
Ω

fkv dΩ. (3.5)

In order to prove the existence and uniqueness of the solution of (3.3), we
apply the Lax-Milgram theorem [Sal10]. Well-posedness is ensured by several
physical hypotheses:

• ε ∈ L∞(Ω) and ε(x) > 0 a.e. in Ω;

• ∀k ≥ 0 σk ∈ L∞(Ω) and σk(x) > 0 a.e. in ΩSi.

We define some useful quantities:

εM = maxΩ ε εm = minΩ ε
σM = maxΩ σ σm = minΩ σ = 0

Taking into account the above hypotheses it is possible to prove the fol-
lowing properties:

• Continuity of the bilinear form:

∀u, v ∈ H1
ΓD

|
∫

Ω ε∇u∇v +
∫

Ω σ
kuv| ≤ εM ||∇u||L2 ||∇v||L2 + σM ||u||L2 ||v||L2

≤ max{εM , σM} (||∇u||L2 ||∇v||L2 + ||u||L2 ||v||L2)
≤ max{εM , σM}||u||H1

ΓD

||v||H1
ΓD

.
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• Coercivity of the bilinear form:

∀u ∈ H1
ΓD

|
∫

Ω
ε∇u∇u+

∫
Ω
σku2| ≥ εm||∇u||2L2 + σm||u||2L2

= εm||∇u||2L2

= εm|∇u|2H1
ΓD

≡ εm||u||2H1
ΓD

.

• Continuity of the functional:

|
∫

Ω
fkv| ≤ ||fk||L2 ||v||H1

ΓD
∀v ∈ H1

ΓD
.

Then we can state that ∀k ≥ 0 there exists a unique weak solution of the
linearized Non Linear Poisson equation.

3.2 Continuity Equations: weak form

Without loss of generality we consider only the electron continuity equation.
System (2.35) is a diffusion-advection-reaction (DAR) problem in conserva-
tive form. With a suitable change of variables we are able to treat these PDE
likewise the linearized Non Linear Poisson equation in the previous section.
In fact, using the Slotboom variable (1.38), we can write system (2.35) as:


∇ ·
(
−qDne

ϕi/Vth∇un
)

+ σi−1
n eϕ

i/Vthun = f i−1 in ΩSi

un = nDe
−ϕi/Vth on ΓD,Si

∇un · n = 0 on ΓN,Si .
(3.6)

Proceeding as in Section 3.1, the weak formulation of the Electron Con-
tinuity equation is:

find un ∈ H1
ΓD,Si

(Ω) such that

∫
ΩSi

qDne
ϕi/Vth∇un∇v dΩ +

∫
ΩSi

σi−1
n eϕ

i/Vthunv dΩ =

∫
ΩSi

f i−1v dΩ ∀v ∈ H1
ΓD,Si

.

(3.7)

Existence and uniqueness of the unknown variable un ensures the same
properties on n, thanks to the relation (1.38) between un and n. Further
hypotheses on the coefficients ∀i ≥ 0 are:

• qDne
ϕi/Vth ∈ L∞(ΩSi) and Dn(x) > 0 a.e. in ΩSi;

• σi−1
n eϕ

i/Vth ∈ L∞(ΩSi) and σi−1
n (x) > 0 a.e. in ΩSi.
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We define the bilinear form

a(u, v) =

∫
ΩSi

qDne
ϕi/Vth∇un∇v dΩ +

∫
ΩSi

σi−1
n eϕ

i/Vthunv dΩ (3.8)

and the linear and bounded functional

F (v) =

∫
ΩSi

f i−1v dΩ (3.9)

Well-posedness of problem (3.7) is verified using the same arguments as
in Section 3.1.

3.3 Numerical approximation

In this section we introduce the Galerkin method to approximate the weak
formulations (3.3) and (3.7) (see [QV08]). Each of them can be represented
in compact form as:

find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V (3.10)

where V is the space of admissible functions, i.e., H1
ΓD

(Ω) or H1
ΓD,Si

(ΩSi).
Let us introduce Vh which is a family of finite-dimensional subspaces of V ,
depending on a positive parameter h, such that

Vh ⊂ V, dimVh <∞ ∀h > 0 (3.11)

The Galerkin problem associated with (3.10) reads:
find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh. (3.12)

Unique solvability of (3.12) is an immediate consequence of the analysis
carried out in Sections 3.1 and 3.2.

Let Th be a partition of Ω, and K a generic element of Th such that Ω̄ =⋃
K̄. In this case the parameter h represents the characteristic dimension

of each element K. Let us introduce the general finite element spaces of the
polynomial elementwise functions

Xr
h(Ω) := {vh ∈ C0(Ω̄) : vh|K ∈ Pr(K),∀K ∈ Th} (3.13)

and the associated space where functions vanish on boundaries
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Xr
h,ΓD

(Ω) := {vh ∈ Xr
h : vh|ΓD = 0}. (3.14)

If Ω ⊂ R3 we have

dimPr(K) :=

(
3 + r

r

)
. (3.15)

We approximateH1
ΓD

(Ω) withX1
h,ΓD

(Ω) andH1
ΓD,Si

(ΩSi) withX1
h,ΓD,Si

(ΩSi).

Therefore according to (3.15) we have:

dimP1(K) = 4

dimX1
h = Nh

dimX1
h,ΓD

= Nh −Ng

where Nh is the number of vertices of the partition Th and Ng is the number
of vertices that belong to the Dirichlet boundary.

We denote by {ψj}Nhj=1 the Lagrangian basis of the space X1
h in such a

way that

uh(x) =

Nh∑
j=1

ujψj(x). (3.16)

Since each function of Vh is a linear combination of ψi for i = 1, . . . , Nh,
the Galerkin problem (3.12) becomes:

find [u1, u2, ..., uNh ]T ∈ RNh such that

Nh∑
j=1

uja(ψj, ψi) = F (ψi) ∀i = 1, . . . , Nh. (3.17)

In order to implement problem (3.17) it is convenient to express the bi-
linear form a(·, ·) and the linear functional F (·) with respect to each element
of the partition Th as

Nh∑
j=1

uj
∑
K∈Th

aK(ψj, ψi) =
∑
K∈Th

FK(ψi) ∀i = 1, . . . , Nh. (3.18)

3.3.1 Geometrical discretization

Each element K ∈ Th is a tetrahedron of volume |K|. From now on, we
assume that there exists a constant δ > 0 such that
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hK
ρK
≤ δ ∀K ∈ Th (3.19)

where hk = diam(K) = maxx,y∈K |x − y| and ρK is the diameter of the
sphere inscribed in the tetrahedron K. Condition (3.19) is the so called mesh
regularity condition [Qua08] [QV08]. We denote with Eh, Vh and Fh the set
of all the edges, vertices and faces of Th respectively, and for each K ∈ Th
we denote by ∂K and n∂K the boundary of the element and its outward unit
normal.

We notice that Th is built in such a way that every K belongs to a single
region, while it is possible that its vertices belong to different regions.

3.3.2 Linearized Non Linear Poisson equation

Concerning with the linearized NLP equation we have

a(ψj, ψi) =

∫
Ω

ε∇ψj∇ψi dΩ +

∫
Ω

σkψjψi dΩ (3.20)

and the restriction on each element K is

aK(ψj, ψi) =

∫
K

ε∇ψj∇ψi dK +

∫
K

σkψjψi dK. (3.21)

Equation (3.21) contains two distinct contributions: the first one identifies
the diffusive contribution and generates the so-called stiffness matrix, while
the second refers to the reaction term and generates the mass matrix.

The coefficient ε is a piecewise constant function, which changes on dif-
ferent material regions. Therefore ε is constant over each element and the
first integral in (3.21) becomes easier to compute.

As a consequence of choosing the discrete space X1
h, we can not expect

a better convergence rate than the first order in || · ||1,Ω with respect to
h [QV08]. This implies that the trapezoidal rule is enough accurate and an
high-order quadrature rule is not needed. The main consequence of the using
trapezoidal quadrature rule is that the mass-matrix becomes diagonal. This
technique is well known as lumping procedure applied on the mass-matrix.

The entries of the local system matrix AkK are

[AkK ]ij = εKLij +
|K|
4
σki (3.22)

having set:
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Lij =
∫
K
∇ψi∇ψj dΩ

σki = σk(xi).
(3.23)

The construction of the right hand side of (3.18) using the trapezoidal
rule yields

[FK ]ki = fki
|K|
4
'
∫

Ω

fkψi dΩ. (3.24)

The local contributions of each element K are assembled in the global
matrix A as follows. Let I be the global index of a generic vertex belonging
to the partition Th. We denote by JK : VTh → VK the map which connects
I to its corresponding local index i = 1, . . . , 4 in the element K. Then we
have

AkIJ =
∑

∀K∈Ths.t.
JK(I),JK(J)⊂VK

[AK ]kij. (3.25)

Analogously the force term bk is

bkI =
∑

∀K∈Ths.t.
JK(I)⊂VK

[FK ]ki . (3.26)

Once we have built the global matrix Ak and the global vector bk we
need to take into account the essential boundary conditions. In fact the dis-
placement formulation is a primal method which enforces Dirichlet boundary
condition in a strong manner. Therefore we have to modify the algebraic
system. We choose the diagonalization technique which does not alter the
matrix pattern nor introduce ill-conditioning in the linear system. Let iD
be the generic index of a Dirichlet node, we denote by [δϕD]i (which in this
case is equal to zero) the known value of the solution δϕ at the node. We
consider the Dirichlet condition as an equation of the form β[δϕ]i = β[δϕD]i,
where β 6= 0 is a suitable coefficient. In order to avoid degradation of the
global matrix condition number, we take β equal to the diagonal element of
the matrix at row iD.

Finally, the discretization of step 1 in the Gummel algorithm, reads:{
Akδϕk = bk

ϕk+1 = ϕk + δϕk.
(3.27)

As every iteration procedure, problem (3.27) needs a suitable convergence
break criterion. A good approach is based on checking the satisfaction of the
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fixed point equation (2.11) by the k-th solution. In this case the inner loop
of the Gummel Map reads as: given a tolerance toll > 0 solve problem (3.27)
until

||b(ϕk+1)||2 > toll (3.28)

where || · ||2 is the usual Euclideian norm for a vector.

Damping

Despite the validity of Thm.2.1, the use of the Newton method may be af-
fected by numerical implications. The main problem is the fact that the
method overestimate the length of the correction step. This phenomenon is
frequently indicated as overshoot. In the case of the semiconductor equations
this overshoot problem can be treated by simply limiting the size of the cor-
rection vector (δϕ) determined by Newton’s method. The usual established
modifications to avoid overshoot are given by the following formulation

Ã(ϕk) =
1

tk
A(ϕk) (3.29)

where tk is a positive parameter to be properly chosen. With tk = 1 the
modified Newton method reduces to the classical Newton method. For the
case (3.29) a simple criterion suggested by Deuflhard [Deu74], prescribes tk
to be taken in (0, 1] in such a way that for any norm, we have

||A(ϕk)
−1b(ϕk − tkA(ϕk)

−1b(ϕk))|| < ||A(ϕk)
−1b(ϕk)||. (3.30)

Condition (3.30) guarantees that the norm of the residual is decreasing
with k. This condition is hardly to be evaluated because of the presence of
the inverse of A. If the solution is accomplished using a direct method like
the LU factorization, the evaluation of the argument of the norm on the left
hand side of (3.30) is reduced to a forward and backward substitution and
the evaluation of b(ϕ). However we use an iterative method (BCG solver
based on [PTVF07]) and this implies serious difficulties to the application
of the criterion (3.30). In order to overcome this problem we replace A in
(3.30) with the main diagonal D(ϕk):

||D(ϕk)
−1b(ϕk − tkD(ϕk)

−1b(ϕk))|| < ||D(ϕk)
−1b(ϕk)||. (3.31)

This criterion has been adopted in our code. However the value to use
for tk is a question of trial and error. Frequently the following sequence is
used:
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tk =
1

2i
(3.32)

tk =
1

2

i(i+ 1)

2

(3.33)

where i is the number of subiterations of the damping procedure needed to
satisfy (3.31). Close to the solution, (3.30) (and so (3.31)) will be satisfied
with tk = 1 so that the quadratic convergence properties of the classical
Newton method Thm.2.1 are recovered.

The benefits due to the damping techinque are visible in Fig.3.1a, where
for different voltages applied to a p-n junction, the evolution of the residual,
for the first Gummel map iteration, is shown. When damping is switched
off the first iterations are critical, because the solution found is very far
from the real one. When damping is switched on this problem is removed
and the scheme converges with fewer iterations. In some heuristic sense this
procedure guarantees a progressive approaching of the solution to the ball
mentioned in Thm.2.1, where the convergence rate is quadratic. In Fig.3.1b
the evolution of the coefficient tk as a function of the iteration counter k is
shown. The curves are monotonic from 0 to 1 below and this means that
damping procedure is more relevant in the first iterations than in the last,
where the standard Newton method is recovered.

Finally, we notice that for high voltages the scheme needs more iterations
to converge. This phenomenon is strictly related to the shape of the initial
guess as we shall see in detail in Section 4.1.1.
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3.3.3 Continuity equations

Concerning with equation (3.6) we can write the bilinear form as

a(u, v) =

∫
ΩSi

qDne
ϕi/Vth∇ψj∇ψi dΩ +

∫
ΩSi

σi−1
n eϕ

i/Vthψjψi dΩ. (3.34)

Even if this form allows an immediate analysis of well-posedness, the
choice of using Slotboom variables un and up causes the onset of overflow
problems due to the evaluation of exp(ϕ/Vth), which can be a rapidly varying
function according to the behaviour of the potential ϕ.

Therefore special care has to be taken in the treatment of the diffusion
coefficient. In view of further discussion we introduce some useful notation.
For each set S ⊂ Ω having measure |S|, we introduce the following averages
of a given function g that is integrable on S:

MS(g) =

∫
S
g dS

|S|
, HS = (MS(g−1))−1. (3.35)

Notice that MS is the usual integral average, while HS is the harmonic
average. It is well-known that the use of the harmonic average provides a
superior approximation performance in one spatial dimension [IE83].

The weak form (3.34) is the result of a standard displacement approach,
although different variational formulations and therefore different finite ele-
ment approximations may be used, like a primal mixed approach (PM). First
of all it is convenient to formulate problem (2.35) by using relations (1.38)
and (1.40) in a more generic form as:

∇ · Jn(n) + σn = f in ΩSi

Jn(n) = qDne
ϕ/Vth∇(e−ϕ/Vthn) in ΩSi

n = nD on ΓD,Si

Jn(n) · n = 0 on ΓN,Si.

(3.36)

Problem (3.36) can be discretized using the Edge Averaged Finite El-
ements (EAFE). The complete derivation of this scheme can be found in
[XZ99] [ZL12].

The EAFE scheme is particularly suited for problems with a highly vari-
able diffusion coefficient. Furthermore this approach has several good proper-
ties, i.e., in a 2D framework if Th is a Delaunay partition the system matrix is
an M-matrix [BCC98a]. The main consequence of this statement is that the
solution satisfies the Discrete Maximum Principle. This is a notable property
which implies that no negative concentrations are admitted. Unfortunately
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this property is not anymore valid in a 3D framework, because the Delaunay
condition on the mesh is not enough to guarantee that the system matrix is
an M-matrix. A more general condition is presented in [XZ99].

Theorem 3.1 (Zikatanov condition). The system matrix of the EAFE scheme
is an M-matrix if and only if for any fixed edge E of the partition Th the fol-
lowing inequality holds

ωE =
1

d(d− 1)

∑
K⊃E

|kKE |cotθKE ≥ 0, (3.37)

where
∑

K⊃E means summation over all simplexes K containing E, θKE is
tha angle between the faces fi, fj ∈ Th such that fi

⋂
fj = E and kKE is the

edge in K which does not share any verticies with E.

Observation 3.1. For d = 2, condition (3.37) means that the sum of the
angles opposite to any edge is less than or equal to π, which implies that the
partition is a Delaunay triangulation.

Observation 3.2. Condition (3.37) highlights that in order to satisfy the dis-
crete maximum principle, a partition without obtuse angles is preferable.

We remark that presently meshing algorithms are oriented to care about
the minimum angle of the elements, rather than the maximum, this implying
that to obtain a mesh which satisfies condition (3.37) is a really difficult task.

Fig.3.2 shows a simple partition of a cube performed with the Synopsis
tool SNMESH. For every element we evaluated how many edges do not satisfy
condition (3.37). It is clear that there are a lot of edges which do not fulfil
the condition and a precise pattern cannot be singled out. When several bad
edges belong to a single element we can identify the presence of many obtuse
angles.

In order to avoid this problem some alternative solutions are proposed
in the literature. In particular conditions the system matrix can be changed
to a M-matrix using the Orthogonal Subdomain Collocation method [PC98],
but also this approach is not a definite solution.

Therefore, in 3D numerical simulation, in presence of a negative concen-
tration the most used technique to recover carrier density positivity is to use
local mesh refinement in the regions where trouble occurs, which often are
the ones where the carrier density decreases.
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Figure 3.2: Verification of Thm.3.1 over a simple partition. Red elements do
not satisfy condition (3.37) over four edges while blue elements fully satisfy the
criterion.
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Chapter 4

Simulation results

In this chapter we present the work done in order to validate the numerical
implementation of the discretization method illustrated in Chapter 3 in the
FEMOS 3D code compared with a reference simulation tool (SDEVICE, com-
mercialized by Synopsis [Sde13]). In particular we illustrate (and compare)
the algorithm used to calculate the current at the ohmic contacts.

4.1 Test cases

We consider three kinds of semiconductor devices:

• p-n junction

• p-n junction in oxide

• n-channel / p-channel MOSFET

4.1.1 p-n junction

In this example we consider a simple p-n junction. Fig.4.1 presents the
partition and the doping profile for this test. The section of the parallelepiped
is a 0.05× 0.05[µm2] square while the device is 0.1[µm] long. The number of
vertices are 4933, while the elements are 24576. The doping concentration is
obtained setting a constant profile of acceptors over all the domain (N−A =
1.0 × 1017[cm−3]) overwhelmed by a doping profile of donors (N+

D = 1.0 ×
1018[cm−3]) bounded on one side of the device and resulting in an almost
abrupt junction. Two contacts are defined: (A) contact is placed at Z =
0.1[µm] and (B) contact is placed at Z = 0.0[µm].

In order to analyze the operating function of the diode, two cases of direct
bias are performed: 0.3[V ]-1.0[V ]. The setting values and the parameters
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(a) Mesh. (b) Doping concentration.

Figure 4.1: p-n junction.

are summarized in Tab.4.1. Fig.4.2 reports the solutions for VA = 0.3[V ] and
VA = 1.0[V ], along a line parallel to the Z-axis and placed at the center of the
device. Because the built-in voltage is around 0.7÷0.8[V ] the behaviour of the
device is different when the applied bias is below or above this threshold. At a
bias voltage of 0.3[V ], potential drop is almost bounded around the junction,
and due to the asymmetric doping, is mostly extended in the p-side. Carriers
cannot cross the potential barrier and this causes low current flux inside
the device. At 1.0[V ] the minority carrier density becomes almost ten order
bigger, resulting in a large amount of current toward the contacts: the device
turns from exponential to linear resistive. This is clear in Fig.4.2b where
the potential shape becomes similar to a that of a resistance voltage profile
(linear potential profile). Comparing the quasi Fermi potentials of Fig.4.2e
and Fig.4.2f the boundary layers at contacts increase with the applied bias.
This effect is related to the ohmic contact hypothesis, and can be changed
by adopting different boundary condition: this occurs also for the carrier
concentration because at the contacts, charge neutrality and thermodynamic
equilibrium are imposed.

Figs.:4.3-4.5 show the comparison between SDEVICE and FEMOS in 3D
plots for electrostatic potential, electron and hole densities at 0.3[V ], while
Figs.:4.6-4.8 show the same comparison at 1.0[V ]. In both conditions the
agreement is very good.

Test case [V ] Mobility model [cm2V −1s−1] R/G model εSi

VA = 0.3 µn = 1417, µp = 470.5 SRH, Auger 11.6
VA = 1.0 µn = 1417, µp = 470.5 SRH, Auger 11.6

Table 4.1: p-n junction - list of settings, parameters and models.
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Figure 4.2: 1D plots of the solutions and the quasi fermi potential levels along
the line parallel to the Z-axis and placed at the center of the device of Fig.4.1. On
the left is presented the test case at VA = 0.3[V ] while on the right at VA = 1.0[V ].
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(a) FEMOS (b) SDEVICE

Figure 4.3: p-n junction 0.3[V] - Electrostatic Potential.

(a) FEMOS (b) SDEVICE

Figure 4.4: p-n junction 0.3[V] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.5: p-n junction 0.3[V] - Hole density.
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(a) FEMOS (b) SDEVICE

Figure 4.6: p-n junction 1.0[V] - Electrostatic Potential.

(a) FEMOS (b) SDEVICE

Figure 4.7: p-n junction 1.0[V] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.8: p-n junction 1.0[V] - Hole density.
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Computational cost and initial condition

Computational experience demonstrates that the convergence of the Gummel
algorithm is strictly related to the kind of chosen initial condition: the closest
to solution, the better the convergence. However, to predict in every situation
the possible shape of the solutions is hard (if not even impossible). For
this reason we have adopted a common and general approach splitting the
domain in several regions according to their doping concentration: each of
the semiconductor regions are treated as they are in equilibrium with the
nearest contact, then the initial guess for ϕ is obtained using the relations
(1.22) or (1.23). This choice corresponds to a case close to equilibrium and
guarantees good performance of the algorithm.

In order to analyze the response of the system at different bias an addi-
tional test is realized: in the range between 0.0[V ] and 3.0[V ] several voltages
are applied on the previous device and for each bias point the initial guess is
computed as described.

Fig.4.9 shows how the computational cost increases as the applied bias is
increased. Moreover as expected if the mesh is finer, the time needed to find
the solution increases, resulting in a rigid upper shift of the curve.

Let us consider the case with a coarse mesh. In Fig.4.10 it is clear how the
average time spent to solve the NLP and the DD equations remains almost
unchanged. On the contrary the number of GM iterations needed by the
system to reach the solution, increases for voltages above ≈ 1.5[V ].

A possible explanation of this trend can be found comparing solution
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Figure 4.9: Total time Gummel Map.
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Figure 4.10: Time to solve the NLP and DD equations, and number of iterations
of the Gummel map.

and initial guess for a bias below and above 1.5[V ] (similar considerations
can be done for carrier densities). When voltage is low, like in Fig.4.11a
(VA = 0.1[V ]), the potential shape is well predicted by the initial guess,
resulting in a better convergence for the Gummel map algorithm. On the
contrary in Fig.4.11b (VA = 1.6[V ]) the device operates as a resistance and
the potential profile is close to a linear function: this implies that the solution
is far from the initial guess of equilibrium condition and the algorithm needs
more steps.
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Figure 4.11: Initial guess for different bias compared with the final solution of
the device of Fig.4.1.

69



4.1.2 p-n junction in oxide

In this test case a silicon p-n junction 0.3[µm] long is surrounded by an oxide
layer 0.025[µm] thick. The section of the silicon part is a 0.1 × 0.1[µm2]
square. We employ 6334 vertices and 33121 elements overall the domain.
The structure and the doping are shown in Fig.4.12. The setting of the
electrodes is similar to the previous test case and contacts are defined only
on silicon surface. Tab.4.2 reports settings, models and parameters used in
the simulations.

Fig.4.13 shows the solutions and the quasi Fermi potential levels along a
line parallel to the Z-axis and placed at the center of the device. The main
features are similar to the previous test case, also for the boundary layers at
contact for carriers and quasi Fermi potentials. Figs.:4.14-4.16 show the 3D
solutions for the test at 0.3[V ], while Fig.4.17-4.19 refer to the case at 1.0[V ].
Both the 1D cuts and 3D plots agreement with the commercial software are
very good.

(a) Mesh (b) Doping concentration

Figure 4.12: Test case p-n junction in oxide.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VA = 0.3 µn = 1417, µp = 470.5 SRH, Auger 11.6 3.9
VA = 1.0 µn = 1417, µp = 470.5 SRH, Auger 11.6 3.9

Table 4.2: p-n junction in oxide - list of settings, parameters and models.
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(c) Hole and electron densities.
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Figure 4.13: 1D plots of the solutions and the quasi Fermi potential levels along
the line parallel to the Z-axis and placed at the center of the device of Fig.4.12.
On the left test case at VA = 0.3[V ] is reported while on the right at VA = 1.0[V ].
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(a) FEMOS (b) SDEVICE

Figure 4.14: p-n junction in oxide 0.3[V] - ElectrostaticPotential.

(a) FEMOS (b) SDEVICE

Figure 4.15: p-n junction in oxide 0.3[V] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.16: p-n junction in oxide 0.3[V] - Hole density.
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(a) FEMOS (b) SDEVICE

Figure 4.17: p-n junction in oxide 1.0[V] - Electrostatic Potential.

(a) FEMOS (b) SDEVICE

Figure 4.18: p-n junction in oxide 1.0[V] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.19: p-n junction in oxide 1.0[V] - Hole density.
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3D effect on the electric field

Fig.4.14 shows how, at low bias, the electrostatic potential behaves in a
different manner in the oxide with the respect to the silicon region. Since we
impose ∇ϕ · n = 0 on the oxide boundary no field lines of the electric field
can cross that boundary and, as a consequence, field lines can start and end
only at contact A or B. The electric field inside the device is due only to the
displacement effect in the junction of the silicon which imposes the electric
response also in the oxide material where the solution is no more linear.
Fig.4.20 reports the electric field lines in the case of VA = 0.3[V ] compared
with the commercial software: agreement is very good. The lower magnitude
of the electric field in the oxide, results in a more diffused potential.

At high bias (Fig.4.17) the influence of the contacts (A,B) becomes higher
and the electrostatic potential is much more similiar in the two subdomains.

(a) FEMOS (b) SDEVICE

Figure 4.20: Test case dide p-n in oxide 0.3[V] - Electric field.

It is important to notice that the displacement formulation approach
does not satisfy in a strong manner the action reaction principle at inter-
element boundaries. This is equivalent to saying that given two elements
Ki, Kj ∈ Th such that Ki

⋂
Kj = fi where fi ∈ Fh and denoting by ni the

outward normal vector of ∂Ki and nj the outward normal vector of ∂Kj, the
following equations are satisfied only in a weak sense:
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D|Ki · ni = D|Kj · nj (4.1)

Jn|Ki · ni = Jn|Kj · nj (4.2)

Jp|Ki · ni = Jp|Kj · nj. (4.3)

In fact, taking in consideration equation (4.1), we can state that along
the interface silicon-oxide the following equality holds

εoxE|Ki · ni = εSiE|Kj · nj ⇒ [E|Ki ]y =
εSi
εox

[E|Kj ]y. (4.4)

According with the parameters used in the simulations the jump of the
electric field component from oxide to semiconductor is around 3.00. Fig.4.21
shows the plots of Ey along a line parallel to the Y-axis crossing both oxide
and silicon: the ratio expressed by (4.4) is almost 3.6 at y = 0.05[µm] and
y = 0.15[µm] where the interfaces are located.

Each tetrahedral interface of the partition is affected by the same prob-
lem, which means that the normal component of the electric field from one
element of the grid to the neighbouring is not conserved even if the material
is homogeneous and there is no charge at the interface. Despite this draw-
back, the solutions are acceptable. But if we would like to satisfy equation
(4.1) in a strong manner, the use of a mixed-hybrid formulation is needed to
ensure the conservation of the flux also under possible strong discontinuities
of material properties.
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Figure 4.21: Ey along a line parallel to Y-axis, z = 0.22[µm] and x = 0.1[µm].
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4.1.3 n-channel MOSFET

The description of the working principle of a MOSFET device can be found
in [YT09]: it is a four-terminal device with the electrodes designated as gate
(G), source (S), drain (D) and substrate or bulk (B). The gate electrode is
usually made of metal or heavily doped polysilicon and is separated from
the substrate by a thin silicon dioxide. The surface region under the gate
oxide between source and drain is called channel region. Because the current
in a MOSFET is due to carriers of one polarity, the MOSFET is usually
referred as a unipolar or majority-carrier device: n-channel (n-MOSFET)
and p-channel (p-MOSFET) are considered in the test. A n-MOSFET (p-
MOSFET) consists of a p-type (n-type) silicon substrate into which two
n-regions (p-regions) are designed as source and drain. The n-regions (p-
regions) are doped according to a Gaussian profile as in a real implantation
process. Fig.4.22a and Fig.4.22b show the geometry and the doping con-
centration for the n-MOSFET with a coarse mesh (2739 vertices and 12338
elements). We note that the mesh has been refined where the more interest-
ing phenomena occur, i.e., along channel and at drain/source contacts.

If a sufficiently large positive voltage is applied to the gate, the silicon sur-
face is inverted to n-type (p-type), which forms a conducting channel between
the source and drain: applying a small positive voltage to the drain (source)
the electrons (holes) start to flow from source (drain) to drain (source) and
therefore a current is generated.

The visualization of the MOSFET working principle is better clarified in
Fig.4.23 where the band profile along the channel axis is reported for two
different gate bias. The voltage applied to the gate tends to decrease the
energy barrier in the channel region: a little drain voltage causes the flow
of the electrons. Fig.4.24a shows the profile of carrier concentrations in the

(a) Mesh (b) Doping concentration

Figure 4.22: Geometry of a n-channel MOSFET.
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Figure 4.23: Energy band levels for a n-MOSFET along the channel.

middle of the channel with a cut perpendicular to the gate, for off-state and
on-state: the inversion occurs when the gate voltage is higher than the well
known threshold voltage. Fig.4.24b shows the 3D view of the n-channel space
charge after inversion.

Finally Fig.4.25 reports the streamline plot of the electric field inside the
device for FEMOS and the SDEVICE in the case of on-state MOSFET.

Settings, parameters and models used for these simulations are summa-
rized in Tab.4.3. Figs.:4.26-4.28 show the 3D view of the electrostatic poten-
tial, electron and hole densities obtained by FEMOS and by the commercial
code in the off-state (VG = 0.0[V ]), while Figs.:4.29-4.31 refer to the on-state
(VG = 2.0[V ]): the agreement is very good.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V−1s−1]

VG = 0.0[V ], VD = 0.0[V ], µn = 1417
SRH, Auger, II 11.6 3.9

VS = VB = 0.0[V ] µp = 470.5

VG = 2.0[V ], VD = 0.1[V ], µn = 1417
SRH, Auger 11.6 3.9

VS = VB = 0.0[V ] µp = 470.5

Table 4.3: n-MOSFET - list of settings, parameters and models.
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Figure 4.24: Channel of the n-MOSFET.

(a) FEMOS (b) SDEVICE

Figure 4.25: n-MOSFET VG = 2.0[V ] - Electric field.
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(a) FEMOS (b) SDEVICE

Figure 4.26: n-MOSFET VG = 0.0[V ] - Electrostatic potential.

(a) FEMOS (b) SDEVICE

Figure 4.27: n-MOSFET VG = 0.0[V ] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.28: n-MOSFET VG = 0.0[V ] - Hole density.
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(a) FEMOS (b) SDEVICE

Figure 4.29: n-MOSFET VG = 2.0[V ] - Electrostatic potential.

(a) FEMOS (b) SDEVICE

Figure 4.30: n-MOSFET VG = 2.0[V ] - Electron density.

(a) FEMOS (b) SDEVICE

Figure 4.31: n-MOSFET VG = 2.0[V ] - Hole density.

80



Reverse bias

In Section 3.3.3 we pointed out that the discretization scheme (EAFE) cannot
satisfy the discrete maximum principle in 3D simulations unless we satisfy
condition (3.37). Therefore it is possible to encounter situations where nega-
tive solutions are obtained and this usually happens when the concentration
of electrons and holes become low.

In order to highlight this possible critical situation, a n-channel MOSFET
is simulated in reverse bias regime by grounding all the contacts except the
drain which is ramped to 0.5[V ]: Tab.4.4 reports the needed indications for
the simulation.

Fig.4.32 reports the electron density computed with FEMOS and SDE-
VICE using the mesh presented in Fig.4.22b: the results are comparable,
but near the drain-bulk junction FEMOS presents some points with nega-
tive concentrations. Increasing drain bias the phenomenon tends to spread
over a larger area, until it affects irremediably the simulation of the device.
As we anticipated in Chapter 3, the most practice technique to limit this
problem is local mesh refinement. Fig.4.33a represents a finer mesh with
13000 points and 67388 elements. Using this mesh the correctness of the
solution is recovered Fig.4.33b. Fig.4.34 shows how the satisfaction of (3.37)
changes between the different meshes: increasing the number of vertices over
the critical region a better fulfillment of (3.37) is guaranteed. Results suggest
that in order to treat this situation it may be useful to implement a suitable
a-posteriori error estimation and adaptive mesh refinement techniques.

Finally Fig.4.35 and Fig.4.36 report FEMOS electrostatic potential and
hole density for the finer mesh compared with the commercial tool: the
agreement is very good.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V−1s−1]

VG = 0.0, VD = 0.5, µn = 1417
SRH, Auger, II 11.6 3.9

VS = VB = 0.0 µp = 470.5

Table 4.4: n-MOSFET (reverse bias) - list of settings, parameters and models.
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(a) FEMOS (b) SDEVICE

Figure 4.32: n-MOSFET reverse bias: negative carriers spots for the electron
density solution.

(a) Mesh (b) FEMOS

Figure 4.33: n-MOSFET reverse bias: electron density with finer mesh.

(a) Coarse mesh. (b) Fine mesh.

Figure 4.34: n-MOSFET: verification of (3.37) condition.

82



(a) FEMOS (b) SDEVICE

Figure 4.35: n-MOSFET reverse bias - Electrostatic potential.

(a) FEMOS (b) SDEVICE

Figure 4.36: n-MOSFET reverse bias - Hole density.
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4.2 Current evaluation at the Ohmic contacts

During the analysis of an electric device, one of the most important informa-
tion is the electrical response at terminals. In order to accomplish this target
we have to compute the integral of the electron and hole current density
over a generic 2D electrode. We refer here to the procedure found in [GS06]
(residual method) for the 2D case: the analysis is easily extendable to the
3D case if we consider also [HEML00]. Moreover we remark that the method
can be successfully applied to a wide spread of applications, including contact
charges, carrier quantum probability fluxes and heat fluxes.

A contact is defined by a surface: we can consider ΓD,Si =
⋃d
c=1 Γc where

d is the number of terminals on the device and ∀c = 1, ..., d, Γc is the c-th
contact. For each contact we need to compute the total current Ic as

Ic = Inc + Ipc (4.5)

where Inc and Ipc are the contribution of the electron and hole current. For
a given contact Γc, the flux of the current density is defined as

Iνc =

∫
Γc

Jν(ν) · n dΓ ν = {n, p} (4.6)

where n is the unit outward normal of the domain boundary. It is well known
that the evaluation of boundary integrals is a difficult task. Most problems in
(4.6) arise from singularities in spatial derivatives of the approximate solution
nh or ph near the contact edges, due to a change in the boundary condition
type from Dirichlet to Neumann.

Let η be the set of all vertices of the partition Th for the discretized
electron continuity problem (3.34). We can split the set of total nodes in
contact nodes ηg ∈ ΓD,Si and the complementary part ηn ∈ ΓN,Si. We define
an auxiliary flux Hh on ΓD,Si as

Hh =
∑
i∈ηg

Hh,iψi. (4.7)

Now, given the spaces:

Vh = span{ψi}i∈ηn
Vh = span{ψi}i∈ηg
Sh = {u ∈ Vh ⊕Vh : u|ΓD,Si = nD}

it is possible to write a modified form of Galerkin method which reads as:
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find nh ∈ Sh and Hh ∈ Vh such that

(Wh, Hh)ΓD,Si = a(Wh, nh)− F (Wh) ∀Wh ∈ Vh ⊕Vh (4.8)

where a(·, ·) is the bilinear form (3.34) and F (·) the associated linear func-
tional. Equation (4.8) splits into two subproblems:

0 = a(wh, nh)− F (wh) ∀wh ∈ Vh (4.9)

(Wh, Hh)ΓD,Si = a(Wh, nh)− F (Wh) ∀Wh ∈ Vh. (4.10)

Problem (4.9) is identical to the unmodified case and can be treated as
before or using a different discretization scheme. Once obtained the solution
nh, problem (4.10) is fully decoupled from (4.9) and we can determine Hh by
solving the following equation

(Hh, ψi)ΓD,Si = a(ψi, nh)− F (ψi) ∀i ∈ ηg. (4.11)

In [HEML00], it is shown that Hh defines the conserved total flux along
ΓD,Si and the following equality is obtained starting from (4.11)∫

ΓD,Si

Hh dΓ = −
∫

ΩSi

qR dΩ. (4.12)

On the other hand if we apply the divergence theorem to (2.31) we get∫
ΓD,Si

Jn · n dΓ =

∫
Ω

−qR dΩ. (4.13)

Equations (4.12) and (4.13) lead us to conclude that for all contacts it
holds

Inc =

∫
Γc

Hh dΓ. (4.14)

In order to compute (4.14), let ηc be the set of nodes of the contact Γc.
Then, the following equalities hold∑

l∈ηc

∫
Γc

Hhψl dΓ =

∫
Γc

Hh

∑
l∈ηc

ψl dΓ =

∫
Γc

Hh dΓ. (4.15)

According to (4.15) we can interpret (Hh, ψi)ΓD,Si as the contribution to
the flux at node i and therefore the current at contact c is given by summing
this quantity over the vertices ηc.
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The residual method is thus defined as: given the system matrix A of
the Drift-Diffusion equation, the solution nh and the right hand side b, the
contribution to the total contact current ∀c = 1, ..., d is

Inc = (Anh − b) · Ic (4.16)

where

[Ic]i :=

{
0 i /∈ ηc
1 i ∈ ηc.

(4.17)

The above results hold also for the hole continuity equation.

4.2.1 Simulation results

The residual method is applied to the already analysed devices and compared
with the SDEVICE results. In this section, different mobility and recombi-
nation/generation models are tested and verified along with the solution of
the commercial code.

p-n junction

Considering the p-n junction of Section 4.1.1 we ground the B contact and
then A contact is ramped from −7.5[V ] to 2.0[V ] in order to obtain the
well known diode characteristic. Tab.4.5 reports the parameters used in the
simulation. In Fig.4.37 we plot the electron and hole current at contact A.
Diode breakdown voltage is appearing around −7.0[V ] and it is quite well
aligned with SDEVICE.

Test case Mobility model
R/G model εSi[V ] [cm2V −1s−1]

VA = −7.5÷ 1.5, µn = 1417 SRH
11.6

VB = 0.0 µp = 470.5 II, Auger

Table 4.5: p-n junction (characteristic) - list of settings, parameters and models.

Fig.4.38 shows the different behaviour of the SRH and Auger R/G contri-
bution at two voltages (plots are made along a line parallel to the Z-axis and
placed at the center of the device). Under the built-in condition, both SRH
and Auger mechanisms are not significant. Auger contribution decreases in
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Figure 4.37: p-n junction characteristic.

the depletion region due to its strict dependence on the carrier concentra-
tions. At the built-in condition the R/G phenomenon quite increase and are
distributed over the entire device causing its saturation. The agreement with
the commercial tool is very good.
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Figure 4.38: p-n junction SRH and Auger RG contribution.
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p-n junction in oxide

For diode in oxide we analyze the influence of the Masetti mobility model
introduced in Section 1.2.3. Fig.4.39a reports electron and hole currents at
contact A using the constant mobility model, while Fig.4.39b refers to the
Masetti mobility model. This model predicts a decreased value of current
flow due to the scattering with impurity dopants, as shown in the 1D plot
proposed by Fig.4.39d. Agreement with SDEVICE is very good.

Test case [V ] Mobility model [cm2V−1s−1] R/G model εSi ε0x

VA = 0.0÷ 1.5, µn = 1417 SRH
11.6 3.9

VB = 0.0 µp = 470.5 II, Auger

VA = 0.0÷ 1.5,
Masetti

SRH
11.6 3.9

VB = 0.0 II, Auger

Table 4.6: p-n junction in oxide - list of settings, parameters and models.
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Figure 4.39: p-n junction in oxide current at contact - Forward bias.
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n-channel/p-channel MOSFET

Results for the n-MOSFET and the p-MOSFET are shown in this section.
For the n-channel device we refer to Fig.4.22a while for the p-channel device
Fig.4.40 shows mesh (2618 vertices and 11514 elements) and doping profile
(a Gaussian profile in source and drain regions). In order to validate the
code we test the following device conditions:

1. ID − VG characteristic at low drain bias with several mobility
models;

2. ID − VG characteristic for different drain bias;

3. ID − VD characteristic in off-state (reverse bias).

Tab.4.7 and Tab.4.8 show simulation settings of the first test case for the
n-MOSFET and the p-MOSFET respectively. Fig.4.41 reports the results
for the n-MOSFET: Figs.:4.41a-4.41d show how the current densities change
as a function of the use of different mobility models, the agreement with
SDEVICE is very good.

Similar test is performed for the p-MOSFET, but considering that a p-
channel usually operats for negative values of the gate bias, we have to apply
a positive bias at the source terminal. The results are shown in Fig.4.42: the
agreement with SDEVICE is again very good.

Fig.4.43 presents the characteristic of the n-MOSFET at different values
of the drain voltage. The analogous test for the p-MOSFET is presented in
Fig.4.44. Both are very well in agreement with the commercial code results.

(a) Mesh. (b) Doping profile.

Figure 4.40: p-MOSFET.
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Figure 4.41: ID − VG n-MOSFET characteristic - mobility models.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VG = −0.5÷ 2.0, µn = 1417
SRH, Auger 11.6 3.9

VD = 0.1,VS = VB = 0.0 µp = 470.5

VG = −0.5÷ 2.0,
Masetti SRH, Auger 11.6 3.9

VD = 0.1, VS = VB = 0.0

VG = −0.5÷ 2.0,
Canali SRH, Auger 11.6 3.9

VD = 0.1, VS = VB = 0.0

Table 4.7: ID − VG n-MOSFET characteristic - list of settings, parameters and
models.
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Figure 4.42: IS − VG p-MOSFET characteristic - mobility models.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VG = −1.5÷ 0.5, µn = 1417
SRH, Auger 11.6 3.9

VS = 0.1,VD = VB = 0.0 µp = 470.5

VG = −1.5÷ 0.5,
Masetti SRH, Auger 11.6 3.9

VS = 0.1, VD = VB = 0.0

VG = −1.5÷ 0.5,
Canali SRH, Auger 11.6 3.9

VS = 0.1, VD = VB = 0.0

Table 4.8: IS − VG p-MOSFET characteristic - list of settings, parameters and
models.
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All values and models used for these simulations are summarized in
Tab.4.9 for the n-MOSFET and Tab.4.10 for the p-MOSFET.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VG = −0.5÷ 2.0,
Canali SRH, II 11.6 3.9

VD = 0.1, VS = VB = 0.0

VG = −0.5÷ 2.0,
Canali SRH, II 11.6 3.9

VD = 0.2, VS = VB = 0.0

VG = −0.5÷ 2.0,
Canali SRH, II 11.6 3.9

VD = 0.5, VS = VB = 0.0

VG = −0.5÷ 2.0,
Canali SRH, II 11.6 3.9

VD = 1.0, VS = VB = 0.0

VG = −0.5÷ 2.0,
Canali SRH, II 11.6 3.9

VD = 2.0, VS = VB = 0.0

Table 4.9: ID − VG n-MOSFET for different drain voltages - list of settings,
parameters and models.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V−1s−1]

VG = −1.5÷ 0.5,
Canali SRH, II 11.6 3.9

VS = 0.05, VD = VB = 0.0

VG = −1.5÷ 0.5,
Canali SRH, II 11.6 3.9

VS = 0.1, VD = VB = 0.0

VG = −1.5÷ 0.5,
Canali SRH, II 11.6 3.9

VD = 0.2, VD = VB = 0.0

VG = −1.5÷ 0.5,
Canali SRH, II 11.6 3.9

VS = 0.5, VD = VB = 0.0

Table 4.10: IS − VG p-MOSFET for different source voltages - list of settings,
parameters and models.
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Figure 4.43: ID − VG n-MOSFET for different drain voltages.
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Figure 4.44: IS − VG p-MOSFET for different source voltages.
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Impact-ionization model

To visualize the effects of impact ionization (II, Van Overstraeten - de Man
model see Section 1.2.2) we investigate the devices in off-state with increasing
drain (n-MOSFET) or source voltage (p-MOSFET).

The parameters are summarized in Tab.4.11 for the n-MOSFET and in
Tab.4.12 for the p-MOSFET.

In order to avoid possibly negative concentration also for the p-channel
MOSFET, we add degrees of freedom at the source-bulk junction region as
shown in Fig.4.45 (15504 vertices and 81587 elements).

For the n-MOSFET, increasing drain voltage a large amount of generation
is produced around the drain-bulk junction as shown in Fig.4.46, where we
compare the contribution due to the II model computed at VD = 0.5[V ]
between FEMOS and SDEVICE. Some differences arise but the discrepancy
does not affect the computation of the current at contacts. Figs.:4.49 and 4.50
confirm the very good agreement with the commercial tool also for the bulk
current. In off-state condition no channel is formed beneath the oxide layer,
therefore no preferential path is allowed for electron (or hole) conduction:
carriers can move toward source (drain) and bulk contact.

Due to the difference in the doping level between n-MOSFET and p-
MOSFET the generation of carriers for II is different as shown in Fig.4.46
(n-MOSFET) compared with Fig.4.47 (p-MOSFET) for VS = VD = 0.5[V ]
and Fig.4.48 also for VS = 1.2[V ].
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Figure 4.45: pMOSFET mesh.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VD = 0.0÷ 1.0, µn = 1417 SRH
11.6 3.9

VG = VS = VB = 0.0 µp = 470.5 Auger, II

Table 4.11: n-MOSFET ID−VD off-state characteristic - list of settings, param-
eters and models.

Test case Mobility model
R/G model εSi ε0x[V ] [cm2V −1s−1]

VS = 0.0÷ 1.5, µn = 1417 SRH
11.6 3.9

VG = VD = VB = 0.0 µp = 470.5 Auger, II

Table 4.12: p-MOSFET ID −VS off-state characteristic - list of settings, param-
eters and models.
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(a) FEMOS (b) SDEVICE

Figure 4.46: n-MOSFET VD = 0.5[V ]: contribution of impact ionization with
the Van Overstraeten - de Man model.

(a) FEMOS (b) SDEVICE

Figure 4.47: p-MOSFET VS = 0.5[V ]: contribution of impact ionization with
the Van Overstraeten - de Man model.

Figure 4.48: p-MOSFET VS = 1.2[V ]: contribution of impact ionization with
the Van Overstraeten - de Man model.
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Figure 4.49: n-MOSFET off-state characteristic.
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Figure 4.50: p-MOSFET off-state characteristic.
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Chapter 5

Post-Processing techniques for
current density calculation

In many physical and engineering problems the real interesting variable of
the conservation law is the flux inside the domain. The study of micro and
nano electronics devices does not except this observation, so that, an accurate
description of the current density is a basic requirement. However, we recall
that with a displacement-based finite element approach the current density is
not a dependent variable of the system but rather a post-calculated quantity.

In this chapter we present the standard Drift-Diffusion formula and we
propose an extension of the Scharfetter-Gummel scheme [GS69] to the 3D
case through two novel schemes based on:

- edge average approximation;

- alternative upwinding technique.

The results obtained are compared with a well tested field simulator as a
reference (SDEVICE).

5.1 Drift-Diffusion formula

In Section 1.1.4 we have presented three different but mathematically equiva-
lent ways to represent the current density, but not all of them are appropriate
for numerical implementation. In particular we exluded from our analysis the
Slotboom equations (1.40)-(1.41) because the exponential dependency on the
factor ϕ/Vth brings unavoidable numerical instability. The classical Drift-
Diffusion formula (1.31)-(1.32) presents also some difficulties: the drift and
diffusion contributions are respectively well defined but their combination
may give rise to unphysical oscillations due to numerical cancellation.
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Let us introduce some useful notation: with the subscript K we refer to
a quantity defined on elements, while the subscript h refers to a quantity
defined on vertices. The solutions ϕh, nh and ph obtained with the dis-
cretization scheme presented in Section 3.3 are piecewise linear continuous
functions over Th. According to (1.31) and (1.32), in order to compute Jn
and Jp numerical differentiation of the solutions must be carried out. Notice
that Jn,Jp ∈ [X0

h]3. If we want to combine solutions and their derivatives,
we have to compute appropriate projection of nh and ph:

n|K :=< nh >

p|K :=< ph > .

where with the symbol < · > we refer to a suitable average on the element,
as presented in Section 3.3.3. If the diffusion and the mobility coefficients
are variable functions of the space and defined on vertices they also have to
be projected on the space X0

h.
We implemented a numerical differentiation based on Lagrange polyno-

mial interpolation:

∇n ' ∇(Π1
hn) =

Nh∑
i=1

ni∇ψi = ∇nh

∇p ' ∇(Π1
hp) =

Nh∑
i=1

pi∇ψi = ∇ph.

Notice that ∇nh, ∇ph ∈ X0
h. The discretized form of equations (1.34),

(1.35) reads as:

Jn|K = −qn|Kµn∇ϕh + qDnn|K∇nh (5.1)

Jp|K = −qp|Kµp∇ϕh − qDpp|K∇ph (5.2)

where for sake of simplicity we assume constant diffusion and mobility coef-
ficients in K. Equations (5.1) and (5.2) can be easily computed over each
element of Th.

5.2 Edge averaging techniques

It is well known that the classical Scharfetter-Gummel (SG) scheme for dis-
cretizing drift-diffusion models has proven to be the workhorse for semi-
conductor device modeling codes [GS69]. As a matter of fact the EAFE
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scheme proposed in Section 3.3.3 is strictly related to the FVSG (Finite Vol-
ume Scharfetter-Gummel) method presented by Bank, Fichtner and Rose
[BRF83].

In this section we recall the Scharfetter-Gummel formula in a 1D spatial
domain and we report the extension of the method to the 2D case proposed
in [BCC98b]. Finally we present a novel method in order to extend the
Scharfetter-Gummel approach to the 3D framework.

5.2.1 The 1D Scharfetter-Gummel scheme

Consider the solution of the electron continuity equation along a one-dimen-
sional domain. For sake of simplicity, we assume a uniform partition. More-
over at every node is defined ϕh, and in every element the associated elec-
trostatic field EK .

In 1969 D. Scharfetter and H.K. Gummel (two scientists of Bell Labs),
introduced a formula to compute the current densities given ϕh and nh, ph
at each node of the discretization grid.

The constitutive law for the current density is composed by a drift com-
ponent, which depends on the electric field, and a diffusion component, which
depends on the variation of the carrier density. Considering the geometry
shown in Fig.5.1, given a generic element K and defining the voltage drop
∆ϕ|K = ϕi+1 − ϕi we can distinguish three limit situations:

• ∆ϕ|K � 0, mainly drift component from right to left

• ∆ϕ|K � 0, mainly drift component from left to right

• ∆ϕ|K ' 0, mainly diffusion component

K

ni ni+1

+ −
E

Jn = qµnni+1E

K

ni ni+1

− +
E

Jn = qµnniE

Figure 5.1: Effect of a high electric field over the current density of electron.

All of these situations can be accounted for by the following unified for-
mula
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Jn|K = q
Dn

h

[
ni+1B

(
∆ϕ|K
Vth

)
− niB

(
−∆ϕ|K

Vth

)]
. (5.3)

In the case ∆ϕ|K = 0, the SG formula becomes simply

Jn|K = qDn
ni+1 − ni

h
(5.4)

which is the correct approximation of the current density using a P1 basis for
nh. When ∆ϕ|K � 0, the SG formula becomes

Jn|K = qµnni
∆ϕ|K
h

(5.5)

while for ∆ϕ|K � 0 we have

Jn|K = qµnni+1
∆ϕ|K
h

. (5.6)

The current density on the element K becomes similar to the Ohm’s law
where the carrier transported is ni+1 when ∆ϕ|K � 0 or ni when ∆ϕ|K � 0.
These situations are well illustrated in Fig.5.1. Analogous considerations
holds for holes, and the associated formula for the current density is

Jp|K = q
Dp

h

[
pi+1B

(
−∆ϕ|K

Vth

)
− piB

(
∆ϕ|K
Vth

)]
. (5.7)

5.2.2 The 2D Scharfetter-Gummel scheme

One of the main results of [BCC98b] is the equivalence between the finite
volume approach and the finite element Galerkin discretizations of the con-
tinuity equation. In order to facilitate the connection between these two
different discretization approaches the authors introduce for each K ∈ Th a
linear map JK : R3 → R2 defined by

JK({γi}3
i=1) =

1

|K|

3∑
i=1

γi|ei|siti (5.8)

where si is the measure of the segment from the midpoint of ei to the inter-
section of the perpendicular edge bisectors and ti denotes the unit tangent
vector of the edge ei (see Fig.5.2). JK has the following properties:
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JK({J · ti}3
i=1) = J (5.9)

JK({s−1
i }3

i=1) = 0 (5.10)∫
K

JK({γi}3
i=1) · ∇ψ dK = γi+1si+1 − γi−1si−1. (5.11)

Equation (5.9) states that if we are able to compute the tangential com-
ponent of the current density over all edges, we can combine these values
according to (5.8) and obtain the current density ∀K ∈ Th.

Using the EAFE scheme, in the case of electrons we have

Jn · ti = qDn
B(δi(ϕh/Vth))nh,k − B(−δi(ϕh/Vth))nh,j

|ei|
(5.12)

where

δi(ϕh/Vth) =
ϕh,k − ϕh,j

Vth
. (5.13)

The extension of this procedure to the 3D case is non trivial, because the
characterization of the cross-section si becomes much more complex.

v2

v1

v3

e2

e1

e3

s2

s1

s3

t1

t2

t3

Figure 5.2: Parameters associated with element K for the current density calcu-
lation.

5.2.3 The 3D Scharfetter-Gummel scheme

In this section we present a novel method for the calculation of the electron
current density over each element of the grid that is based on the so-called
Primal-Mixed formulation [RT91].
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We start by recalling the formula for the electron current density ex-
pressed as a function of the quasi Fermi potential

Jn = −qµnn∇ϕn. (5.14)

Relation (5.14) can be written considering equation (1.22) as

Jn

exp

(
ϕn − ϕ
Vth

)
qµnni

+∇ϕn = 0. (5.15)

Let Jn ∈ [L2(Ω)]3 and ϕn, ϕ ∈ H1(Ω). We multiply (5.15) with a generic
function q ∈ [L2(Ω)]3 and then intagrate over the domain Ω

∫
Ω

exp

(
ϕn − ϕ
Vth

)
qµnni

Jn · q dΩ +

∫
Ω

∇ϕn · q dΩ = 0. (5.16)

We proceed using the discrete space of the piecewise constant functions
over Th

Vh =
{
w ∈ L2(Ω) : w|K ∈ P0∀K ∈ τh

}
. (5.17)

Now the discrete quantities are Jhn ∈ [Vh]
3 and ∇ϕhn ∈ Vh. We consider

the following choice of the test function qh ∈ [Vh]
3

qh1,2,3 =


1

0
0

0
1
0

0
0
1

 . (5.18)

From (5.16) we obtain a system of equations defined for each K ∈ Th:

∫
K

exp

(
ϕn − ϕ
Vth

)
qµnni

Jhn · qhi dK +

∫
K

∇ϕhn · qhi dK = 0 i = 1, 2, 3. (5.19)

After integration we have for the generic component of the current density
the following equation

[Jn]i = −HK

(
qµnni exp

(
ϕ− ϕn
Vth

))
∂ϕhn
∂xi

i = 1, 2, 3, ∀K ∈ Th. (5.20)

We do not evaluate the harmonic average with an exact 3D integration
because it may be computationally expensive. Therefore, we approximate
HK(·) by the following quadrature
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(∫
K
f−1 dK

|K|

)−1

'
(∫

e∗ f
−1 de

|e∗|

)−1

(5.21)

where

f = qµnni exp((ϕ− ϕn)/Vth) ,

and e∗ is the edge of ∂K where the maximum drop of f occurs. The choice
of the approximate formula (5.21) is motivated by the fact that the diffusion
coefficient inside the element K may be well represented by the edge where
the diffusion phenomenon is more important rather than considering the
entire element: the problem now is the indentification of the correct edge.
Let us consider a quantity defined at the vertices

Φ :=
ϕ− ϕn
Vth

(5.22)

which is the difference between the electrostatic potential and the quasi Fermi
potential level. Now for every element consider two vertices: xm s.t. Φ(xm) =
Φm := minK(Φ) and xM s.t. Φ(xM) = ΦM := maxK(Φ). Obviously there
exists only one edge which connects these two points: on this edge (e∗) we
perform the 1D integration (5.21).

Along the edge e∗ we have

f(s) = qµnni exp

(
Φm + (ΦM − Φm)

s− sm
|e∗|

)
(5.23)

where s ∈ [sm, sM ] is the parameter refered to the edge e∗ s.t. f(sm) =
f(xm) and f(sM) = f(xM). We can solve (5.21) with the following change
of variables η := (s− sm)/|e∗| and proceed with trivial integration steps, to
obtain

∫
e∗
f−1 de = |e∗|

∫ 1

0

exp (−Φm − (ΦM − Φm)η)

qµnni
dη

= |e∗|exp(−Φm)

qµnni

exp(Φm − ΦM)− 1

Φm − ΦM

= |e∗|exp(−Φm)

qµnni

1

B(Φm − ΦM)

from which we finally get∫
K

f−1 dK ' qµnni exp(Φm)B(Φm − ΦM). (5.24)
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Similar results may be obtained repeating the integration and considering
sM as starting point∫

K

f−1 dK ' qµnni exp(ΦM)B(ΦM − Φm) . (5.25)

Equation (5.24) and (5.25) can be combined to find

Jn|K = −qµn
[
nminB(−∆Φmax) + nmaxB(∆Φmax)

2

]
∇ϕhn (5.26)

where nmin = nie
Φm and nmax = nie

ΦM while ∆Φmax := ΦM −Φm. If we con-
sider equation (5.26) over a one-dimensional domain we can recover equation
(5.3), which shows that the above described approach is the natural exten-
sion of the Scharfetter-Gummel formula to the 3D case. Following the same
procedure we obtain for the hole current density

Jp|K = −qµp
[
pminB(∆Φmax) + pmaxB(−∆Φmax)

2

]
∇ϕhp . (5.27)

5.3 Upwinding techniques

It is well known that the classical finite element method applied to a con-
vection-diffusion problem is unstable when the solution presents boundary
layers. This has led to the introduction of upwinding techniques which in 1D
case consists of adding an artificial diffusion term to the original problem.

Using the finite element spaceX1
h, in the case of the 1D electron continuity

equation we have the following perturbed problem

−∂x(qDn(1 + Φ(Pe|K))∂xn− qµnn∂xϕ) = −qR. (5.28)

where Φ is the stabilization function and Pe|K is the local Pèclet number
defined as

Pe|K =
h∂xϕh
2Vth

=
∆ϕ

2Vth
.

The weak form associated with problem (5.28) is

ah(n, v) = a(n, v) +
∑
K∈Th

∫
K

Φ(Pe|K)∂xn · ∂xv dK (5.29)
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and relation (5.1) becomes

Jn|K = −qn|Kµn∂xϕh + qDn(1 + Φ(Pe|K))n|K∂xnh. (5.30)

where, considering local indices for the vertices of K, we have:

n|K =

∫
K
nh dx

|K|
=
n1 + n2

2

∂xϕh =
ϕ2 − ϕ1

h
=

∆ϕ

h

∂xnh =
n2 − n1

h
.

In order to guarantee the consistency of (5.29) with respect to the stan-
dard Galerkin weak form the stabilization function must satisfy

lim
Pe|K→0

Φ(Pe|K) = 0 ∀K ∈ Th. (5.31)

The efficiency of an upwinding scheme is related to the choice of Φ(Pe|K)
and as we are perturbing the problem we would like to satisfy some interesting
limiting cases for the current density in the the original problem:

1 Constant carrier concentrations (only drift contribution),

Jn = qµnnE , Jp = qµppE .

2 Constant potential (E = 0, only diffusive contribution),

Jn = qDn∇n , Jp = −qDp∇p .

3 Constant quasi Fermi potential, which implies that n = C1e
ϕ/Vth

and p = C2e
−ϕ/Vth where C1 and C2 are two arbitrary constants such

that
C1 = exp(−ϕ̄n/Vth) C2 = exp(ϕ̄p/Vth)

where ϕ̄n and ϕ̄p are given contact values. Under this assumption from
equations (1.34) and (1.35) we have:

Jn = −qµn(n∇ϕ− Vth(
C1

Vth
∇ϕeϕ/Vth) = 0

Jp = −qµp(p∇ϕ+ Vth(−
C1

Vth
∇ϕe−ϕ/Vth) = 0 .

107



Constant quasi Fermi potentials correspond to thermodynamical equi-
librium condition for the carrier densities and imply no current flow in
the device.

Thanks to assumption (5.31) the stabilized current (5.30) satisfies case 1
and case 2. Case 3 is recovered imposing

Jn|K(Πk
1(Ceϕ/Vth)) = 0. (5.32)

Using (5.32) in (5.30) we have:

qµn < nh > ∂xϕh = qDn(1 + Φ(Pe|K)∂xnh

< nh > ∂xϕh = Vth(1 + Φ(Pe|K))∂xnh

and finally we get the following relation for the stabilization function

Φ(Pe|K) = σPe|K
n1 + n2

n2 − n1

− 1 (5.33)

where

σ = sign(∆ϕ).

Now we impose the constant quasi Fermi potential hypothesis (ni =
exp(ϕi/Vth))

Φ(Pe|K) = σPe|K
eϕ1/Vth + eϕ2/Vth

eϕ2/Vth − eϕ1/Vth
− 1

= σPe|K
e∆ϕ/Vth + 1

e∆ϕ/Vth − 1
− 1

= σPe|K
e2σPe|K + 1

e2σPe|K − 1
− 1.

Setting X := 2σPe|K we have

Φ(X) =
X

2

(
eX

eX − 1
+

1

eX − 1

)
− 1

=
1

2
(B(−X) + B(X))− 1

=
1

2
(X + B(X) + B(X))− 1

= B(X) +
X

2
− 1.
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Replacing the definition of X we obtain for both ∆ϕ > 0 and ∆ϕ < 0

Φ(Pe|K) = B(2Pe|K) + Pe|K − 1. (5.34)

Replacing (5.34) in (5.30) we have the well known 1D Scharfetter-Gummel
discretization scheme proposed by Allen and Southwell in [AS55]. In a 3D
framework it is not intuitive how to evaluate equation (5.34), but considering
(5.33) we can say that a straightforward extension to the 3D case of the 1D
Scharfetter-Gummel stabilization can be found considering a 3× 3 diagonal
tensor ΦK defined on each element as follows

ΦK

ii
= −< Πk

1(eϕ/Vth) > ∂xiϕ

∂xiΠ
k
1(eϕ/Vth)Vth

− 1 i = 1, 2, 3, (5.35)

In (5.36) the argument of the exponential can be a highly varying function

over K, therefore it is better to consider a reference value for the electrostatic
potential. Observing that ϕ|K ∈ [ϕmin, ϕmax] we can use one of these values
as reference and having

ΦK

ii
= −< Πk

1(e(ϕ−ϕmin)/Vth) > ∂xiϕ

∂xiΠ
k
1(e(ϕ−ϕmin)/Vth)Vth

− 1 i = 1, 2, 3. (5.36)

Finally, the 3D electron current density is

Jn|K = −qn|Kµn∇ϕh + qDnn|K(I + Φ
K

)∇nh (5.37)

where I is the 3 × 3 identity tensor and n|K = M(nh), where M(·) is the

integral average defined in (3.35).
Following the same procedure we obtain the hole current density relation

Jp|K = −qp|Kµp∇ϕh − qDpp|K(I + Φ
K

)∇ph (5.38)

where

ΦK

ii
= −< Πk

1(e(ϕmin−ϕ)/Vth) > ∂xiϕ

∂xiΠ
k
1(e(ϕmin−ϕ)/Vth)Vth

− 1 i = 1, 2, 3. (5.39)

5.3.1 Results

In this section we compare the performance of the different current compu-
tational methods . The tests are the p-n junction (Tab.4.1 VA = 1.0[V ]) and
the n-MOSFET (Tab.4.3 on-state condition). We recall the procedures we
used for the calculation:
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• Drift-Diffusion defined by (5.1) and (5.2);

• 3D edge average Scharfetter-Gummel defined by (5.26) and (5.27);

• 3D upwinding Scharfetter-Gummel defined by (5.37) and (5.38).

The electron and hole current densities for the forward biased p-n junction
are depicted in Fig.5.3 using 1D plots along a line parallel to the Z-axis and
placed at the center of the device. We note that the best agreement is
obtained by the 3D upwinding SG method. The expected critical behaviour
of Figs.:5.3a and 5.3b, due to the wrong balance between drift and diffusion
contributions, is fixed by the upwinding technique as shown in Figs.:5.3e and
5.3f.

Considering Fig.5.3c, the 3D edge average SG scheme is well aligned with
the commercial tool inside the device but we note important differences at
the contact where electrons are minoritary carriers. (Fig.5.3d shows the dual
effect for the hole current). Physically speaking the current densities com-
puted by the SG 3D formula are not wrong: in fact assuming ideal contacts
we are enforcing that all the recombination of the excess carriers occurs at
the contact surface. This phenomenon is restricted to the elements close to
the Ohmic contacts and therefore it is strictly related to mesh refinement as
shown in Fig.5.4. Fig.5.4a well depictes the behaviour of the boundary layers
of the hole quasi Fermi potential, while Fig.5.4b shows that as we refine the
grid the effect is more confined at the contact leading to a better prediction
of the current density.

The results for the n-MOSFET are shown in Fig.5.5 compared with SDE-
VICE (Fig.5.5a). In order to avoid the above problem we refined each Ohmic
contacts and as a consequence the 3D edge average SG scheme performs very
well (Fig.5.5b). Fig.5.5c shows that when the current density presents more
than one main component or equation (5.36) is next to critical computations
(zero division or overflow) the upwinding scheme behaves worse. In fact, the
principal problem of the 3D upwinding SG scheme is the numerical evaluation
of (5.36). However, the numerical issues can be partially solved using a finer
mesh as shown in Fig.5.5d, where we use a mesh with 35342 vertices (about
ten times the number of degrees of freedom of the standard mesh). Fig.5.5e
shows the current density computed with the standard Drift-Diffusion for-
mula using the same mesh. Comparing Fig.5.5c, Fig.5.5e and Fig.5.5d we
can say that even if the 3D upwinding SG scheme is unstable, the addition
to the standard Drift-Diffusion formula of an artificial diffusion modulates
by the coefficient (5.36), gives better results also for a coarse mesh.
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Figure 5.3: 1D plot p-n junction, hole and electron current densities - VA = 1.0[V ]
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Figure 5.4: p-n junction forward biased, hole quasi Fermi potential and hole
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along Z-axis near the contact)
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(a) SDEVICE

(b) 3D edge average SG (c) 3D upwinding SG

(d) 3D upwinding SG (finer mesh) (e) Standard DD (finer mesh)

Figure 5.5: n-MOSFET on-state, calculation of Jn with different methods com-
pared with the commercial code.
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Chapter 6

Conclusions and future work

In this MD Thesis, we have addressed the simulation of semiconductor de-
vices in 3D framework. The Gummel map algorithm [Gum64] is employed
to solve the Drift-Diffusion model [Jac84]. The Non Linear Poisson has
been discretized using the Galerkin finite element method [QV08] following
a displacement-based formulation and improving the convergence algorithm
with the damping technique [Deu74]. The Continuity equations have been
treated using the EAFE scheme [XZ99] reserving a particular attention to
the Zikatanov condition (presented in [XZ99]) in order to discuss the discrete
maximum principle.

This mathematical framework has been implemented through shared li-
braries using an object-oriented programming language (C++).

The code has been thoroughly tested on different semiconductor devices
(p-n junction, p-n junction in oxide and n-channel/p-channel MOSFET),
comparing the results with a commercial tool as reference.

A great effort has been spent in order to compute the current both at
contacts and inside the device. In the first case we extended the residual
method [GS06] to the 3D framework with excellent results.

Concerning the evaluation of the current density we proposed two novel
schemes to post-process the solutions extending the Scharfetter-Gummel
scheme to the 3D case:

• edge average technique, based on a primal mixed formulation of the
continuity equation, followed by the approximation of the harmonic
average of the diffusion coefficient;

• alternative upwinding technique, based on a generalization of the 1D
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stabilization function associated with the Scharfetter-Gummel tech-
nique.

To conclude, we wish to mention some possible directions for future ac-
tivities and investigations:

• the novel schemes presented in Chapter 5 could be also used to dis-
cretize the continuity equation. Moreover, as regards the edge average
technique, some care must be taken due to the highly non linear de-
pendence of the diffusion coefficient on the quasi Fermi potential levels;

• in order to complete the integration with the other modules of FEMOS
the coupling with the multiphysical environment must be developed;

• the available mobility and R/G models must be extended to include
other physical effects;

• the treatment of floating semiconductor regions;

• the development of the mixed hybrid strategy in order to guarantee the
conservation of the flux across each internal face of the triangulation;

• implementation of the fully coupled Newton method.
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Appendix A

FEMOS inputfile

In this appendix we address the information in order to personalize the input
file (input.txt) of the FEMOS executable. The parsing of the input file is
managed by the library reading files.so. The file is organized in sections
identified by a name and a scope; each voice of a section could be a vector
of string (:), a vector of double (=) or a vector of pair of string and double
(:=).

Now we describe each section. The section File sets the input and output
path.

F i l e {

Input : . / input /MosMesh . tdr ;
# s e t s mesh f i l e path

Output : . / output / MosSimulation ;
# s e t s output f i l e path and name

Output type : xmf ;
# s e t s output f i l e ( . vtk / . xmf )

Par : . / input /MosParameter . par
# s e t s parameter f i l e path

}

In the Mesh section it is possible to activate some checks on the mesh and
the related prints (if one activated check fails simulation is aborted).

Mesh {
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R e g u l a r i t y C l a s s i c : no ;
# a c t i v a t e the r e g u l a r i t y check on the mesh and the a s s o c i a t e d

p r in t

RCtoll = 1000 ;
# s e t s the t o l e r a n c e f o r the r e g u l a r i t y check

Regular ityDelauny : no
# a c t i v a t e s the Zikatanov cond i t i on check on the mesh and the

a s s o c i a t e d p r in t

}

The Equation section sets which equations are solved in the general Gum-
mel Map. At the stage of code development, semiconductor physics is work-
ing by activating carriers type when silicon material is present in the mesh.

Equation {

Poisson : no ;
# a c t i v a t e s the Linear Poisson equat ion ( not used f o r

semiconductor mate r i a l )

C a r r i e r s t y p e : E lec t ron , Hole ;
# d e f i n e s c a r r i e r types

C a r r i e r s := Elect ron −1 , Hole 1 ;
# d e f i n e s c a r r i e r charges

Thermal : no ;
# a c t i v a t e s the Thermal equat ion

Chemicals type : no ;
# d e f i n e s chemical s p e c i e s

Chemicals := no 0 ;
# d e f i n e s e f f e c t i v e charge o f chemica l s p e c i e s

Mechanical : no
# a c t i v a t e s the Mechanical equat ion

}

Contacts are defined in the section Electrode. The ramping procedure
is managed by the variables listed in the section Stationary.
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Elec t rode {

# d e f i n i t i o n o f contac t s and t h e i r i n i t i a l vo l tage [V]
Contact := Source 0 .0 , Drain 0 .1 ,

Bulk 0 .0 , Gate 0 .0 ;

# d e f i n i t i o n o f the workfunct ion o f each e l e c t r o d e [ eV ]
Workfunction := Source 4 .65 , Drain 4 .65 ,

Bulk 4 .65 , Gate 4 .65
}

Stat i onary {
# d e f i n i t i o n o f the f i n a l vo l tage f o r each contact [V]
GoalContact := Source 0 .0 , Drain 0 .1 ,

Bulk 0 .0 , Gate 2 .0 ;

# d e f i n e s the number o f s t ep s between i n t i a l e f i n a l vo l tage
Steps = 20 ;

# d e f i n e s the minimum bia s s tep ( only f o r semiconductor ) i f
the ramping procedure i s a c t i v e

MinStep = 0.01 ;

# a c t i v e s the ramping procedure
Checkramp : yes

}

Each physical module of FEMOS has a default group of printable vari-
ables defined inside the library libUtility.so. The output can be person-
alized by changing the Plot section of the input file.

Plot {

# d e f i n e s which v a r i a b l e p r i n t in the output f i l e ( v a r i a b l e s
f o r semiconductor )

eDensity : yes ; # [ cm−3]
hDensity : yes ; # [ cm−3]
DopantConc : yes ; # [ cm−3]
DonorConc : yes ; # [ cm−3]
AcceptorConc : yes ; # [ cm−3]
E l e c t r o s t a t i c P o t e n t i a l : yes ; # [V]
E l e c t r i c F i e l d : yes ; # [V cm−1]
eQuas iFermiPotent ia l : yes ; # [V]
hQuasiFermiPotent ia l : yes ; # [V]
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MiddleBandLevel : yes ; # [ eV ]
CondBand : yes ; # [ eV ]
ValBand : yes ; # [ eV ]
eQuasiFermiBand : yes ; # [ eV ]
hQuasiFermiBand : yes ; # [ eV ]
SRH : yes ; # [ cm−3 s−1]
Auger : yes ; # [ cm−3 s−1]
Impact Ion i zat ion : yes ; # [ cm−3 s−1]
Jn ver tex : yes ; # [A cm−2]
Jp ver tex : yes ; # [A cm−2]
Jn element : yes ; # [A cm−2]
Jp element : yes ; # [A cm−2]

}

In the Math section it is possible to choose the kind of solver and the
related tolerance for the different equations. In the case of semiconductor
devices other information are added in the Semiconductor section for the
manage of the Drift-Diffusion Gummel map. Moreover in the same section
it is possible to set mobility and R/G models, current density calculation
methodologies and ASCII output files for convergence and contact current
plots.

Math {

So lve r : BCG NR;
# d e f i n e s the kind o f s o l v e r use f o r the l i n e a r problems . The

f o l l o w i n g s o l v e r are a v a i l a b l e :
# BCG NR, b i g r a d i e n t con iugate implemented with

Numerical Rec ipes l i b r a r y
# BCG E, b i g r a d i e n t con iugate implemented with Eigen

l i b r a r y
# GMRES E, g e n e r a l i z e d minimal r e s i d u a l method

implemented with Eigen
# LU NR, LU f a c t o r i z a t i o n implemented with Numerical

Rec ipes l i b r a r y
# PartialLU E , p a r t i a l LU f a c t o r i z a t i o n implemented with

Eigen
# FullLU E , f u l l LU f a c t o r i z a t i o n implemented with Eigen
# QR E, QR f a c t o r i z a t i o n implemented with Eigen

P o i s s o n e r r = 1e−40 ;
# s e t s the t o l e r a n c e f o r the i t e r a t i o n s o l v e r f o r Poisson and

Non Linear Poisson equat ion

GM err = 5e−3 ;
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# s e t s the t o l e r a n c e f o r the gene ra l Gummel map

GM max iter = 5 ;
# s e t s the maximum number o f i t e r a t i o n f o r the gene ra l Gummel

map

C a r r i e r e r r = 1e−40 ;
# s e t s the t o l e r a n c e f o r the Car r i e r equat ion

Temperature err = 1e−7 ;
# s e t s the t o l e r a n c e f o r the Thermal equat ion

Chemica l err = 1e−6 ;
# s e t s the t o l e r a n c e f o r the Chemical equat ions

GM chem err = 5e−3 ;
# s e t s the t o l e r a n c e f o r the inner Gummel map o f the Chemical

equat ions

GM chem max iter = 4
# s e t s the maximum number o f i t e r a t i o n f o r the inner Gummel map

o f the Chamical equat ions

Mechan ica l e r r = 1e−10
# s e t s the t o l e r a n c e f o r the Mechanical equat ion

}

Semiconductor ( type : model ) {
mode l l i b : /home/LIBRERIE/ l i b m o d e l s l i b . so ;
# s e t s the path where f i n d the model l i b r a r y

J bulk method : DDcorretto ;
# s e t s the method f o r cur rent dens i ty c a l c u l a t i o n :
# SG, 3D edge average SG ;
# DD, standard DD ;
# DDmodified , 3D upwinding SG;
# QF, quas i f e rmi .

i n i t g u e s s = 2 ;
# s e t s the kind o f i n i t i a l guess performed f o r the Non Linear

Poisson problem :
# 1 , guess computed take in to account the ramping procedure ,
# 2 , guess based on the thermal equ i l i b r i um hypothes i s

damp : yes ;
# a c t i v a t e s the damping procedure
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tollNLP = 1.0 e−26 ;
# s e t s the t o l e r a n c e f o r the Non Linear Poisson Newton

algor i thm

maxitNLP = 100 ;
# s e t s the maximum number o f i t e r a t i o n f o r the Non Linear

Poisson Newton algor i thm

tollGM = 1.0 e−24 ;
# s e t s the t o l e r a n c e f o r the Gummel map

maxitGM = 40 ;
# s e t s the maximum number o f i t e r a t i o n f o r the Gummel map

showRAMP : yes ;
# a c t i v a t e s the semiconductor p r i n t s e c t i o n

TXTvi : yes ;
# a c t i v a t e s the p r i n t o f . txt f i l e f o r the contact cur rent

p l o t s

TXTnlp : yes ;
# a c t i v a t e s the p r i n t o f . txt f i l e f o r Non Linear Poisson
convergence p l o t s

TXTgm : no ;
# a c t i v a t e s the p r i n t o f . txt f i l e f o r Gummel map
convergence p l o t s

Mobi l i ty : Constant , Masett i ;
# s e t s the mob i l i ty models :
# Constant ,
# Masetti ,
# Canal i

RG: SRH , I I
# s e t s the R/G models :
# SRH
# Auger
# I I

}
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Appendix B

FEMOS organization notes

FEMOS code is composed by 28 internal libraries plus the external HDF5-
1.8.10 library, with a total number of 50000 rows. The compile session is
managed by makefile. The output files are visualized with Paraview.

The semiconductor part is integrated in the FEMOS project through five
libraries with a total number of 5000 rows. In the following we give a brief
description of the contents of each library:

Semiconductor the main object of this library is the Semiconductor

class, where the fundamental relations between the char-
acterizing quantity of a semiconductor material are im-
plemented.

NLPoisson this library gathered the utility functions to manage the
Newton method applied to the Poisson equation.

DD semiconductor this library includes both the functions assigned to the
Continuity equation solver and the post-processing util-
ities for the evaluation of the current at contacts and
inside the device.

ModelManage the main object of this library is the ModelsManage class
which puts in contact the internal variables of the code
with the models (mobility or R/G) loaded by the user.

Models this library stores all the mobility and R/G models.
Moreover new models can be added easily without chang-
ing other parts of the code.
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