

 POLITECNICO DI MILANO

Scuola di

Laurea in Ingegneria Informati
Dipartimento di Elettronica,

Design and imple
to import and integrate

in a genomic and proteomic data warehouse

Advisor: Prof. Marco Masseroli, Ph.D

Co-advisor: Arif Canakoglu

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale
e dell'Informazione

Laurea in Ingegneria Informatica
Dipartimento di Elettronica, Informazione

Bioingegneria

Design and implementation of automatic procedures
to import and integrate data

in a genomic and proteomic data warehouse

Prof. Marco Masseroli, Ph.D

Arif Canakoglu, MS

 Master Graduation Thesis
 Vincenzo Di Girolamo

 ID Number: 783097

Academic Year 2013-2014

Informazione e

automatic procedures

in a genomic and proteomic data warehouse

Master Graduation Thesis:
Vincenzo Di Girolamo

783097

POLITECNICO DI MILANO

Scuola di

Laurea in Ingegneria Informatic
Dipartimento di Elettronica,

Design and implementation of automatic procedures
to import and integrate

in a genomic and proteomic data warehouse

Thesis by: __

Advisor: ___________________________

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale
e dell'Informazione

Laurea in Ingegneria Informatica
Dipartimento di Elettronica, Informazione

Bioingegneria

Design and implementation of automatic procedures
to import and integrate data

in a genomic and proteomic data warehouse

(Vincenzo Di Girolamo)

(Prof. Marco Masseroli)

Academic Year 2013-2014

Informazione e

Design and implementation of automatic procedures

in a genomic and proteomic data warehouse

A Giada, Lina

 e Mario

Acknowledgements

First, I would like to thank the advisor, Prof. Marco Masseroli, for his

valuable teachings and for having always supported my work with

passion, stimulating my interest in Bioinformatics.

I also want to thank Arif Canakoglu for the valid and constant help that

he has given me in the technical aspects of this Thesis and for being a

friend as well as a guide.

Table of contents

Master Thesis by Vincenzo Di Girolamo Page I

Table of contents

List of figures ... III

List of tables .. V

Abstract / Sommario ... VI

1 Introduction .. 1

2 State of the art ... 4

2.1 Genomic and proteomic research .. 4

2.2 Controlled vocabularies, ontologies and functional annotations .. 5

2.3 Biomolecular databanks ... 7

2.4 Data file formats .. 11

2.5 Difficulties in effectively using of available biomolecular data .. 12

3 Thesis goals ... 14

4 Genomic and Proteomic Data Warehouse (GPDW) software framework 16

4.1 Used software and tools ... 16

4.2 GPDW integrated data model... 16

4.3 GPDW framework description ... 18

4.4 Data import procedures ... 19

4.5 Data integration procedures .. 22

4.6 Metadata computation and storage .. 24

5 GPDW framework enhancements .. 26

5.1 Enhancement of GPDW_definition.xml configuration file .. 27

5.2 Enhancement of feature_definitons.xml configuration file ... 30

5.3 Automatic import of source tables ... 33

5.3.1 Generic main source tables Loader ... 36

5.3.2 Generic additional source tables Loader ... 37

5.3.3 Relationship tables Loader .. 38

5.4 Post-processing and data recovery components .. 40

5.4.1 Post-processing ... 44

5.4.2 Data recovery .. 45

6 Considered data sources .. 46

6.1 Gene Ontology - GO ... 47

6.2 Gene Ontology Annotation - GOA .. 51

6.3 Entrez Gene ... 55

Table of contents

Master Thesis by Vincenzo Di Girolamo Page II

6.4 Expert Protein Analysis System ENZYME - ExPASy ENZYME 58

6.5 Online Mendelian Inheritance in Man - OMIM .. 61

7 Implementation of data import automatic procedures .. 67

7.1 Parser implementation for GO go_daily-termdb.obo-xml data file 67

7.2 Import of source tables .. 73

7.2.1 ExPASy ENZYME enzyme.dat data file ... 73

7.2.2 GOA gene_association.goa_<species> data files .. 76

7.3 Post-processing and data recovery operations on import omim.txt data file 79

8 Validation and testing .. 86

8.1 Imported data errors and inconsistencies ... 86

8.1.1 GO .. 86

8.1.2 GOA ... 87

8.1.3 Entrez Gene ... 88

8.1.4 ExPASy ENZYME .. 89

8.1.5 OMIM ... 89

8.2 Quantification of imported data and running time ... 90

9 Final discussions and conclusions ... 94

10 Future developments ... 96

References ... 97

List of figures

Master Thesis by Vincenzo Di Girolamo Page III

List of figures

Figure 1 – Moore's law ... 7

Figure 2 – Internet domain survey host count ... 7

Figure 3 – Databanks growth .. 9

Figure 4 – Biomolecular databanks and their relations ... 10

Figure 5 – Genomic data file formats .. 11

Figure 6 – Tabular file types .. 11

Figure 7 – XML file types .. 12

Figure 8 – General conceptual model for feature from different sources ... 17

Figure 9 – GPDW software architecture components .. 18

Figure 10 – Sequence diagram of import process .. 20

Figure 11 – Sequence diagram of integration process ... 23

Figure 12 – metadata.source2feature_association database table. ... 25

Figure 13 – GPDW framework import layer components ... 26

Figure 14 – Example of source file definition .. 28

Figure 15 – XML Schema description of feature definition... 29

Figure 16 – Example of feature association definition .. 30

Figure 17 – Similarity integrated table template ... 31

Figure 18 – Source tables definition of ExPASy ENZYME databank .. 32

Figure 19 – Templates for imported additional source tables .. 32

Figure 20 – GenericLoader workflow - part I .. 34

Figure 21 – GenericLoader workflow - part II ... 35

Figure 22 – Method insertSourceTableEntry ... 38

Figure 23 – Relationship imported table template ... 39

Figure 24 – Example of query generated by RelationshipDataLoader ... 39

Figure 25 – ImportManager workflow - part I ... 41

Figure 26 – ImportManager workflow - part II ... 42

Figure 27 – ImportManager workflow - part III .. 43

Figure 28 – Example of GO gene product annotation ... 48

Figure 29 – GO ER schema .. 49

Figure 30 – GO Logical schema - cellular component source tables ... 50

Figure 31 – GO Logical schema - association tables ... 50

Figure 32 – GO Logical schema - integrated source tables .. 51

List of figures

Master Thesis by Vincenzo Di Girolamo Page IV

Figure 33 – Example of records in file pfam2go.. 52

Figure 34 – GOA ER schema ... 54

Figure 35 – GOA Logical schema .. 54

Figure 36 – Query results for human muscular dystrophy in Entrez Gene .. 55

Figure 37 – Example of records in file gene2go... 56

Figure 38 – Entrez Gene ER schema .. 57

Figure 39 – Entrez Gene Logical schema ... 57

Figure 40 – Example of records in file enzclass.txt ... 58

Figure 41 – ExPASy ENZYME ER schema .. 59

Figure 42 – ExPASy ENZYME Logical schema - imported tables ... 60

Figure 43 – ExPASy ENZYME Logical schema - integrated tables .. 60

Figure 44 – OMIM ER schema - part I ... 62

Figure 45 – OMIM ER schema - part II ... 63

Figure 46 – OMIM Logical schema - gene ... 64

Figure 47 – OMIM Logical schema - genetic disorder ... 65

Figure 48 – OMIM Logical schema - clinical synopsis ... 66

Figure 49 – OMIM Logical schema - association tables ... 66

Figure 50 – go_daily-termdb.obo-xml header .. 68

Figure 51 – OBO ontology term .. 69

Figure 52 – Example of GO obsolete term .. 70

Figure 53 – Example of GO synonym term ... 71

Figure 54 – Example of GO term's relationship .. 72

Figure 55 – Example of records in file enzyme.dat ... 73

Figure 56 – Entry creation for expasy_enzyme table .. 75

Figure 57 – Entry creation for expasy_enzyme_action table ... 75

Figure 58 – Example of records in file gene_association.goa_human ... 78

Figure 59 – Entry creation for GOA association tables ... 78

Figure 60 – Base xml structure for OMIM clinical synopsis normalization .. 79

Figure 61 – log.omim_history_tmp table .. 84

Figure 62 – System log warning messages for omim.txt ... 84

Figure 63 – SQL query for OMIM relationship tables .. 85

Figure 64 – SQL query for gene2genetic_disorder_imported ... 85

Figure 65 – biological_function_feature2pathway_imported table ... 86

Figure 66 – SQL queries for GOA secondary association table .. 87

Figure 67 – Proposed solution for GOA secondary association tables.. 88

List of tables

Master Thesis by Vincenzo Di Girolamo Page V

List of tables

Table 1 – List of features considered in GPDW .. 17

Table 2 – Table of colors and types of Logical schemas tables ... 47

Table 3 – Associations in gene_association.goa_uniprot.. 53

Table 4 – Number of entries in OMIM .. 61

Table 5 – Field labels in file enzyme.dat .. 73

Table 6 – Field labels in file omim.txt .. 80

Table 7 – Total number of imported entries and running time ... 90

Table 8 – Details of imported tables of GO ... 91

Table 9 – Details of imported tables of GOA .. 91

Table 10 – Details of imported tables of Entrez Gene ... 92

Table 11 – Details of imported tables of ExPASy ENZYME .. 92

Table 12 – Details of imported tables of OMIM ... 93

Abstract

Master Thesis by Vincenzo Di Girolamo Page VI

Abstract

The growing of information technologies and biotechnologies provides new scenarios for

novel research approaches and greatly influences the evolution of modern disciplines as

Bioinformatics.

New biomedical applications, providing effective data management and analysis support,

allow the integration and evaluation of controlled data with the goal of unveil new

biomedical knowledge. Data warehousing is the main significant approach used in data

integration when, as in the case of genomics and proteomics, transformation is required to

clean data and make them available for querying and integrated analysis.

Bioinformatics highlights the relevance of using computational technologies to describe

and analyze biological systems in order to formulate hypothesis about life's molecular

processes. The goal of Bioinformatics is to organize databases, analyze the acquired

knowledge about genome and proteome and finally store, retrieve, visualize and effectively

evaluate the available data and information.

Today there are several public biomolecular databanks that offer to biologists, physicians

and researchers the possibility of online consultation and download of such data freely.

However these data are very heterogeneous and distributed, so that it is quite hard to create

a consistent global overview of them. Therefore it is needed to have computational tools

that overcome cross-search problem and provide the information not directly available

from individual data sources. Already proposed models are quite complex, mainly suitable

for single organisms and, in many cases, they require notable maintenance effort, in

particular when data evolve rapidly, also in their structure.

For this purpose, the Bioinformatics and Web Engineering Lab of Politecnico di Milano is

working on a project, named Genomic and Proteomic Data Warehouse (GPDW), in order

to create a data warehouse that integrates distributed information from many sources of

genomic and proteomic data so that the integrated information is frequently updated,

ensuring the quality of available biomolecular data integrated.

The primary goal of this Thesis is to extend and generalize the process of the creation of

the data warehouse, by creating new generic and automatic procedures for data extraction,

transformation and load. The second Thesis goal is to implement necessary operations to

integrate data, from the considered databanks, to the GPDW project, by developing

generic components to be integrated to the existing GPDW software architecture.

GPDW framework is based on a flexible multi-level data model which includes a source-

import lower tier, an instance-aggregation middle tier and a concept-integration upper tier.

This model is composed of interconnected modules, representing biomolecular entities and

their biomedical features.

A conceptual module, or feature, is structured in two levels, import and aggregation levels,

whose concrete data computation is realized by data import and integration automatic

Abstract

Master Thesis by Vincenzo Di Girolamo Page VII

procedures. The supporting structure of metadata provides a complete description of the

conceptual data model, and eases data traceability, validation and consistency.

Relevant aspects of Computer Science and Software Engineering are actually considered in

the design of a new set of abstract procedures. The integration of new components to the

framework extends generalization and modularity properties; in the same time, automatic

procedures are able of adapting to small changes in data formats and to the continuous

evolution of data in integrated sources.

The customization of data parsing and loading procedures is applied to the considered data

sources through the extension of the generic procedures defined and the specification of

suitable metadata; additional operations of post-processing and data recovery are

implemented, when closely required, by extending and customize generic procedures

defined for this purpose, in order to complete the import process effectively.

Testing and consistency checking are designed to validate the data imported in the data

warehouse, by highlighting errors and anomalies, which trigger evaluations on possible

enhancements and future developments.

Sommario

Master Thesis by Vincenzo Di Girolamo Page VIII

Sommario

Lo sviluppo delle tecnologie informatiche e delle biotecnologie offre nuovi scenari per un

nuovo approccio nella ricerca scientifica e influenza l'evoluzione delle moderne discipline

come la Bioinformatica.

Le nuove applicazioni biomediche, che forniscono un efficace supporto all'analisi e alla

gestione delle informazioni, consentono l'integrazione e la valutazione di dati controllati

con lo scopo di svelare nuova conoscenza biomedica. A tal proposito, il data warehousing è

stato significativamente usato per integrare dati che richiedono, come nel caso della

genomica e della proteomica, di essere ripuliti prima di poter essere interrogati e sottoposti

ad una analisi complessiva.

La Bioinformatica evidenzia l’importanza di utilizzare le tecnologie computazionali per

descrivere e analizzare i sistemi biologici allo scopo di formulare ipotesi sui processi

molecolari della vita. Il fine della Bioinformatica è organizzare banche dati, analizzare le

conoscenze acquisite sul genoma e sul proteoma e, per finire, conservare, recuperare,

visualizzare e valutare efficientemente i dati e le informazioni disponibili.

Oggi, esistono diverse banche dati biomolecolari, liberamente accessibili sul Web, che

offrono a biologi, medici e ricercatori la possibilità di consultare online e scaricare tali dati.

Tuttavia questi dati sono molto eterogenei e dispersi così che è abbastanza difficile creare

una coerente visione d'insieme di essi. Nasce quindi la necessità di avere strumenti

informatici per eseguire ricerche incrociate e recuperare le informazioni che non sono

direttamente disponibili nelle diverse sorgenti considerate singolarmente. I modelli che

sono stati proposti risultano complessi, principalmente adatti a descrivere singoli organismi

e, nella maggior parte dei casi, richiedono un notevole lavoro di manutenzione, soprattutto

quando i dati evolvono, anche nella loro struttura.

In tal senso, il laboratorio di Bioinformatics and Web Engineering del Politecnico di

Milano sta lavorando alla realizzazione di un progetto denominato Genomic and Proteomic

Data Warehouse (GPDW), con l'obiettivo di creare un data warehouse che integri le

informazioni distribuite su molte sorgenti di dati genomici e proteomici, in modo che i dati

integrati siano frequentemente aggiornati e validati.

Il primo scopo di questa Tesi è quello di estendere e generalizzare il processo di creazione

del data warehouse, realizzando nuove procedure automatiche per l’estrazione, la

trasformazione e caricamento dei dati. Il secondo obiettivo è quello di implementare le

operazioni necessarie per l'integrazione dei dati, forniti dalle banche dati considerate, nel

progetto GPDW, sviluppando nuovi moduli software, da integrare ai componenti presenti

nell’architettura framework del GPDW.

Il framework GPDW si basa su un modello dei dati flessibile e multilivello che include uno

strato inferiore di importazione, uno intermedio di aggregazione e uno superiore di

Sommario

Master Thesis by Vincenzo Di Girolamo Page IX

integrazione concettuale. Questo modello si compone di moduli interconnessi,

rappresentati dalle entità biomolecolari e dalle loro caratteristiche biomedicali.

Un modulo concettuale, o feature, è strutturato su due livelli, di importazione e di

integrazione, la cui concreta realizzazione è operata dalle procedure automatiche di

importazione e integrazione dei dati. La definizione dei metadati, inoltre, fornisce una

completa descrizione dello schema concettuale dei dati, facilitando la loro tracciabilità,

validazione e consistenza.

Gli aspetti rilevanti dell'Informatica e dell'Ingegneria del Software sono concretamente

considerati nel design di un nuovo insieme di procedure astratte. L'integrazione di nuovi

componenti al framework estende i concetti di generalizzazione e modularità; inoltre, le

procedure automatiche restano valide in caso di piccoli cambiamenti nel formato dei dati o

del continuo aggiornamento dei dati nelle sorgenti integrate.

La personalizzazione delle procedure di parsing e caricamento dei dati è realizzata per le

sorgenti dati considerate, mediante l’estensione delle procedure generiche definite e la

specificazione di adeguati metadati; aggiuntive procedure di post-processing e recupero dati

sono implementate, quando strettamente necessario, estendendo e personalizzando le

generiche procedure definite a questo scopo, in modo da completare il processo di

importazione in modo corretto.

Verifiche di consistenza e test sono progettati per validare i dati importati nel data

warehouse, evidenziando anomalie ed errori che diventano spunti di riflessione per possibili

miglioramenti e sviluppi futuri.

Introduction Chapter 1

Master Thesis by Vincenzo Di Girolamo Page 1

1. Introduction

Bioinformatics is the application of statistics and computer science to the field of molecular

biology [1].

Bioinformatics involves the use of techniques and concepts from mathematics, informatics,

statistics, artificial intelligence, chemistry, biochemistry and physics to solve problems in

biology, most commonly molecular biology. In general, the aims of Bioinformatics are:

• Provide qualified statistical models for understanding the meaning of data from

biochemistry and molecular biology experiments in order to unveil common

patterns and identify general laws;

• Propose new models and mathematical tools to analyze DNA, RNA and protein

sequences with the goal of creating a set of knowledge about frequent sequences,

their evolution and their functions;

• Organize data and global knowledge about genome and proteome into curated and

computationally inferred databases in a way that allows researchers to easily access

to existing information, submit new entries and retrieve meaningful data.

Traditionally, Bioinformatics concerned to individual systems, studying RNA and DNA

sequences in detail. The evolution of Bioinformatics has led to a pervasive use of computer

sciences in biology and the birth of a new discipline called Computational Biology, which

properly explains the strong connection between biology and information technologies.

Over the past few decades, major progresses in the field of molecular biology, coupled with

advances in genomic technologies, have caused an explosive growth in the biological

information generated by the scientific community.

This amount of genomic information has, in turn, led to an absolute requirement for

computerized databases to store, organize, and index the data and for specialized tools to

retrieve and analyze these data [2].

A biological database is a large, organized container of persistent data, usually associated

with computerized software designed to update, query, and retrieve information stored

within the system. A simple database might be a single file containing many records, each

of which includes the same set of information.

For example, a record associated with a nucleotide sequence database typically contains

information such as contact's name, input sequence, description of the molecule's type,

scientific name of the source organism from which it was isolated and, often, literature

citations associated with the sequence.

Thus Bioinformatics is the scientific field in which biology, computer science, and

information technology merge into a single discipline; its ultimate goal is to enable the

discovery of new biological insights as well as to create a global perspective from which

Introduction Chapter 1

Master Thesis by Vincenzo Di Girolamo Page 2

unifying biological principles can be discerned. At the beginning of the genomic revolution,

Bioinformatics aimed to create and maintain databases to store biological information, such

as nucleotide and amino acid sequences.

This type of databank requires facing design and implementation issues but also the

development of complex interfaces whereby biologists and researchers could both access

existing data as well as submit new or revised ones.

In order to study how normal cellular activities are altered in different disease states, the

biological data must be combined to give a comprehensive picture of these activities.

Hence, Bioinformatics has evolved in the direction of extending the analysis to various

different types of data, including nucleotide and amino acid sequences, protein domains,

and protein structures.

The actual process of analyzing and interpreting data is referred to as Computational

Biology. Important sub-disciplines within Computational Biology include:

• Development and implementation of tools that enable efficient access, usage and

management of various types of information;

• Development of new algorithms and statistics to discover relationships among

members of large data sets, e.g. methods to locate a gene within a sequence, to

predict protein structure and/or function, and to cluster protein sequences into

families of related sequences.

Today, the first challenge facing the bioinformatics community is the intelligent and

efficient storage of this mass of information, besides of the responsibility to provide easy

and reliable access to these data.

The data itself is meaningless before the analysis and its huge volume makes it impossible,

even for a trained biologist, any manual interpretation. Therefore, powerful computer tools

must be developed to allow the extraction of meaningful biological information. There are

three central biological processes (central dogma of Bioinformatics) around which

bioinformatics tools must be developed:

• DNA sequence determines protein sequence;

• Protein sequence determine protein structure;

• Protein structure determines protein function.

The integration of information learnt about these key biological processes should allow the

achievement of the long term goal represented by the complete understanding of

organisms' biology.

Introduction Chapter 1

Master Thesis by Vincenzo Di Girolamo Page 3

Following the introduction, Chapter 2 is about the conceptual meaning of Bioinformatics,

with the origins and the historical development of the discipline and its main tasks and

goals. Information about genomic and proteomic fields is briefly explained, together with

the importance of information technologies in biomedical and biomolecular research.

Then the chapter deals with controlled vocabularies, ontologies, functional annotations and

their usage in Bioinformatics. In the end, the chapter presents an overview on biomolecular

databanks that are available online and data types and formats that they provide.

The goals of the thesis are discussed in Chapter 3.

Chapter 4 starts with the analysis of the data model used in GPDW framework. The main

components that manage the entire process of creation of the data warehouse are

described. Afterwards, the activities required for the whole process of data importing,

integration and metadata computation and storing into the data warehouse are discussed,

pointing out their design limits.

Chapter 5 contains the description of the automatic procedures for data importing and

integration. The design choices, related to the relevant aspects of computer science, and the

workflows of GPDW framework processes are illustrated. In details, the first part is about

the enhancements in the configuration files; the second part describes the design and

implementation of new components devoted to the source tables data importing; the third

part focuses on the implementation of post-processing and data recovery generic and

customizable procedures, used to manage specific sources issues.

In Chapter 6, the databanks considered in this Thesis are presented by explaining some

general, historical and statistical information. For each data source it is also provided the

designed ER Schema and Logical Schema containing the description of imported and

integrated tables.

Chapter 7 describes use cases of the enhancements to the software architecture; the

content of the files that are objects of the analysis is briefly explained and the design

choices and strategies adopted to achieve a correct and consistent import are illustrated.

Chapter 8 underlines errors and inconsistencies of imported data; the chapter also shows

some quantitative results related to the imported data and the time taken to import them.

In Chapter 9, the final discussion shows the conclusions and the summary of achieved

results, which confirm the legitimacy of the design choices and activities undertaken to

achieve the goals.

Chapter 10 proposes suggestions for future developments.

In conclusion, it is shown the list of references to books, scientific papers and web sites

referred in the elaboration of this Thesis.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 4

2. State of the art

The goal of this chapter is to describe the conceptual meaning of Bioinformatics and the

importance of information and communication technologies in biomedical and

biomolecular investigation, with particular attention to the main aspects of genomic and

proteomic research and to the instruments used in data analysis and management

Finally the chapter presents an overview on biomolecular databanks that are available

online and data types and formats that they provide.

2.1 Genomic and proteomic research

Genomics is a discipline in genetics concerning the study of the genome of organisms. In

particular, it focuses on the structure, content, functions and evolution of genome.

It is based on Bioinformatics in order to process and display enormous amount of data and

it is strictly connected to Molecular Biology techniques, such as gene cloning and DNA

sequencing.

The complete knowledge of organisms' genome facilitates a new approach in biological

research based on in silico experiments, i.e. the replication of experimental results

via computer simulation.

Thanks to the human DNA sequencing by Human Genome Project (HGP) in 2000, today

it is possible to predict the incidence of certain pathology on an individual or target sample

in respect to the population it comes from. Genomics has the aim of preparing genetic

maps of living beings by the completion of DNA sequencing. Next it continues with DNA

sequence annotation, that is the identification of all the genes and significant sequence's

portions, together with their available information.

The next step in relation to genomics has led to the identification of a new discipline called

proteomics. The term "proteomics" was first coined in 1997 [3] to make an analogy with

genomics, the study of the genes.

The term "proteome" is a blend of "protein" and "genome" and it was coined by Marc

Wilkins in 1994 to describe the entire set of protein products expressed by a genome of an

organism or a biological system. Proteome differs from cell to cell and it continuously

interacts with genome and evolves to answer environmental modifications.

Proteomics research evaluates protein activities, modifications and localization; it identifies

the interactions of proteins in complexes and allows to correlate the level of produced

proteins to the activity state of a given cell or tissue.

Unlike genome, proteome is a dynamic system, which shows radical changes that are

modulated by many factors, both in physiological and pathological states. The proteome of

each cellular type of an organism is unique.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 5

Only a small part of potentially active genes is transcribed and translated in a certain type of

cells, with the number of RNA copies which does not strictly correlate to the number of

proteins synthesized in these cells. The factors influencing proteome variability include

mRNA editing, alternative splicing, co- and post-translational modification.

The area of genomic and proteomic research concerns activities based on molecular

research of transcripts and proteins expressed in a cellular compartment; molecular

research involves separation of hundreds of protein products, quantification of protein

products expression and investigation of biological processes basic mechanisms.

This area is very multidisciplinary and requires the integration of biochemical, bioanalytic,

bioinformatics and biomolecular knowledge.

The final purpose is the development of new methods to improve selection, accuracy, and

interpretation of data connected to biological signals in order to identify molecular targets

involved into the gene expression alterations.

In this complex context, information technologies and computer science provide tools and

analysis techniques to manage the big amount of data generated by genomic and proteomic

research; these instruments organize data in a reliable and effective way to guide scientists

and researchers to the evaluation and comprehension of experimental results. These

instruments are represented by controlled vocabularies, ontologies and annotations.

2.2 Controlled vocabularies, ontologies and functional annotations

A controlled vocabulary is a set of selected terms that provides a method to organize

knowledge into an ordered, consistent, easy readable and preferably unique way.

This set of terms must be approved by the designer, in contrast to natural language

vocabularies where there are no restrictions on the lexicon; in this way, the problems of

homographs, synonyms and polysemies are solved, or nearly so, reducing ambiguity

inherent in human languages where the same concept is usually given by different names.

Thus, controlled vocabularies enable fast access and retrieval of information by computers.

Each term in a controlled vocabulary is uniquely identified by an alphanumeric code that

represents a particular concept or feature.

A common example of controlled vocabulary is represented by UMLS (Unified Medical

Language System) Metathesaurus, which was created and it is maintained as a support for

integration of biomedical textual annotations scattered in distinct databanks, providing a

single concept connecting together all related biomedical concepts [4]. Its goals are:

• Develop computer tools that parse and understand the biomedical language;

• Facilitate the communication between different systems;

• Design information retrieval on patient record systems.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 6

In the context of genomic annotation, controlled vocabularies can be divided into two

main categories:

• Flat controlled vocabulary or terminology: the terms in the vocabulary are not

structured or linked through relationships;

• Structured controlled vocabularies or ontologies: the entities in the vocabulary are

structured hierarchically, from most generic (root) to the most specific (leaf)

through relationships characterized by a particular semantic meaning, which

represent the so called semantic network.

In the following of the thesis, often the terms gene and protein will be substituted by the

expression biomolecular entity, that groups them into a unique term, when the topics will

be valid for both objects. Generally, biomolecular entity will refer to all the elements that

can be described through specific terms of controlled vocabularies.

The definition of term ontology is not universally accepted. According to B. Smith, "we use

the term ontology in what follows to refer to any theory or system that aims to describe,

standardize or provide rigorous definitions for terminologies used in the domain".

Then, ontology is a formal representation of knowledge, described in both textual and

computable form, as a set of concepts within a domain and the relationships between those

concepts [5]. While in the last few decades the use of ontology was limited, nowadays the

number of organizations adopting ontologies exponentially increased and many flat

vocabularies have been converted in structured ones.

In biological and biomolecular fields, among flat controlled vocabularies, the most popular

are OMIM (Online Mendelian Inheritance in Man) for genetic diseases' description,

containing a catalogue of human genes and genetic phenotypes, and Reactome for the

description of human reactions and pathways [6].

The OBO (Open Biological Ontologies) project, that is part of the resources of the NCBO

(National Center for Biomedical Ontology), represents an effort to create controlled

vocabularies for shared use across different biological and medical domains. It establishes

principles and standard rules that must be respected for ontology design and development,

to reach the goal of integrating and organizing knowledge in a common, structured and

well documented manner [7][8]. Examples of OBO ontologies are ChEBI (Chemical

Entities of Biological Interest), which focuses on chemical components, and Gene

Ontology (GO), the most famous ontology for biomolecular entities annotation, that will

be well discussed in Chapter 6.

Annotation is defined as the association between a biomolecular entity and a specific term

of a controlled vocabulary; which describes its characteristics. In ontology, node properties

are implicitly inherited from root to leaves so ontological annotations are unfolded from

leaves to root.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 7

Functional annotations can be assigned to genes and proteins in two ways: manually

(human curated) and computationally inferred. Several methods have been proposed for

detecting biomolecular annotations [9][10][11]; many of them are based on predictive

models and provide probabilistic predictions of functional annotations.

Other methods, instead, promote the effective semantic clustering and the simple transitive

relationship approaches [12][13].

2.3 Biomolecular databanks

Since the first appearance of computers, and more in the last twenty years, the power of

computers has experienced an exponential growth, in agreement with Moore's Law which

states: "The performance of the processors and the number of transistors on it are

doubling almost every 2 years", as shown by the graph in Figure 1.

Figure 1 - Moore's law

In parallel to the rise of computational power, as a consequence of it, also Internet has

suddenly evolved as proved by the graph in Figure 2.

Figure 2 - Internet domain survey host count

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 8

The great growth of computers and Internet has contributed to the development of

Bioinformatics. The advent of information technology caused the development of

databases. The term database, or databank, means a collection of data organized to model

relevant aspects in a way that supports processes requiring this information. A database is

usually connected to a DBMS (Database Management System), i.e. a set of software

applications that allows a unified and high-level data administration by enabling the

definition, creation, querying and update of databases [14]. Biological databanks are mostly

public and freely accessible [15]. They are consistent archives and contain wide spectrum

data fields of molecular biology. Biological databases can be subdivided in two groups:

• Primary databanks, containing data about nucleic and amino acids sequences. These

databases are defined primary because they contain only the minimal information to be

associated with a certain sequence. DNA databanks include:

� GenBank at NCBI - http://www.ncbi.nlm.nih.gov/Genbank/

� EMBL at EBI - http://www.ebi.ac.uk/embl/

� DDBJ - http://www.ddbj.nig.ac.jp/

 Protein databanks include:

� UniProt - http://www.uniprot.org/

• Derivative or specialized databanks, containing information on protein families and

domains, pathways, genomes, genetic disorders and literature citations. These databases

collect heterogeneous data from the taxonomic and functional point of view, adding to

the information available on primary databanks revised and annotated data. Examples

of derivative databanks are:

� KEGG - http://www.genome.jp/kegg/

� PubMed - http://www.ncbi.nlm.nih.gov/PubMed/

� GDB - http://www.gdb.org/

It is essential that these databanks are easily accessible and that they provide an intuitive

query system to enable the scientific community to obtain specific information about a

particular biological argument. For these reasons there were created specialized databases

for particular subjects such as genomes, proteins, nucleotides, scientific literature,

microarrays data and taxonomies.

As shown in Figure 3, the databases have been a large expansion during last years.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 9

Figure 3 - Databanks growth

Databanks provide different access methods:

• Access via Web interfaces (HTML or XML): the information is usually returned as

unstructured data through heterogeneous interfaces; it allows single sequence query

results mainly in HTML format, thus it takes a long time to answer.

• Access via Web Services: this service is available for few databases with a limited

number of items and usually it needs good computer skills to be properly exploited.

• Access via FTP server: it needs re-implementation of the database locally, requiring

considerable human and computer resources.

• Direct access: it is rarely available for security issues and it highlights the lack of a

common vocabulary.

Figure 4 shows the largest biomolecular databases on the Web.

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 10

Figure 4 - Biomolecular databanks and their relations

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 11

2.4 Data file formats

The databases can provide the same data in different formats. There is no common

standard for the file type and format which represent information [16]. Genomic data are

usually provided with different types of files, as shown Figure 5.

Figure 5 - Genomic data file formats

The flat file format is defined as a structured text file containing values and relations of

these values. In the field of genomic data, a flat file is a text file in which each row has a

different semantics, defined by the label which is inserted at the beginning of the line. It is

possible that in the same line there can be two or more labels where the successive labels

specify the semantics of the previous ones; if the beginning of a line is not indicated by any

particular label, the line inherits the semantics of the previous line.

Tabular format contains data that are organized into rows and columns separated by one or

more separators. In this case, the semantic value of a given position depends on its row and

column. In this file format, if present, the header helps to understand the contents of the

file or it includes statistics and other supporting information. In Figure 6 there are

described the different types of existing tabular file.

Figure 6 - Tabular file types

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 12

Some databanks, usually very specific DBMS, provide their data as SQL dump file; this

format is not portable because of the lack of foreign keys and constraints in the dump.

Using this format, different DBMS or earlier versions of the same DBMS cannot import

data properly.

XML (eXtensible Markup Language) is a meta-language, i.e. a format to represent data,

proposed by the World Wide Web Consortium (W3C) to describe and distribute structured

electronic documents in the Web [17]. It is also an instrument for exporting data from

heterogeneous sources.

Because of these characteristics many databases provide their data in XML format. The

structure of the instance of an XML document can be described and validated by the

Document Type Definition (DTD) or the XSD (XML-Schema). In Figure 7 there are

described the different types of existing XML file.

Figure 7 - XML file types

The RDF (Resource Description Framework) format is another standard XML format. It is

also proposed by the W3C for the encoding, exchange and reuse of structured metadata

and it provides interoperability between applications that exchange information over Web.

RDF format is based on two components: RDF Model and Syntax, which describes the

syntactical structure of the RDF model; RDF Schema, that shows the syntax in order to

define schemas and vocabularies for metadata.

2.5 Difficulties in effectively using of available biomolecular data

According to the characteristics of biomolecular databanks previously described, it is

possible to summarize the main issues concerning the usage of biological and biomolecular

information.

Firstly, there are geographically distributed databases which can include redundant and

overlapping data. In most cases gene and protein data are sparsely stored among

State of the art Chapter 2

Master Thesis by Vincenzo Di Girolamo Page 13

heterogeneous databanks and complex techniques for summarizing, visualizing and

comparing them are required.

Consequently there exist the problems of managing the large amount of heterogeneous

data and of giving to the system's users a homogeneous view as possible.

In recent years, scientific community is working on the integration of these data into a

single central database. Indeed, when the data to be integrated are very numerous and off-

line processing is required to efficiently and comprehensively mine the integrated data, data

warehousing is the most adequate approach [18]. For this purpose, GPDW and other data

integration systems have been developed. For example, BioKleisli [19] is a federated

database using an object-oriented type system but it is based on a specific warehouse

schema that requires to be perfectly known to be queried. K2 [20] represents the evolution

of BioKleisli; it relies on GUS (Genomics Unified Schema), a complex relational database

global schema that is no flexible and needs to be continuously integrated.

Then, another issue concerns the controlled vocabulary. Despite claiming to be as

orthogonal to each other, there are relationships between a controlled vocabulary set and

another, more in case of different organizations management. As a result of it,

interoperability between different systems is still far from being achieved.

In the end, there are problems concerning the quality of annotations in databases, the

difficulties faced by the curators to validate new records and the difficulty in managing and

maintaining such records.

For all these reasons, ontological query answering is still problematic and specific solutions

need to be found for databanks with different access methods. This thesis tries to answer,

efficiently and effectively, these issues in the development of Genomic and Proteomic Data

Warehouse.

Thesis goals Chapter 3

Master Thesis by Vincenzo Di Girolamo Page 14

3. Thesis goals

The integration of biomolecular data is an important aspect of the bioinformatics research,

both for the role it has in the life sciences context research and for the challenges it

requires to overcome, including efficient data storage, consistency checking and

provenance checking. Biomolecular investigation allows answering questions of interest by

analyzing the various types of data and information in order to obtain evidences that

support results and conclusions; this investigation process contributes to the extraction of

knowledge that can be used to formulate and validate hypothesis, possibly to discover new

biomedical knowledge.

The exponential increment of available biomolecular information in structured or semi-

structured forms, the variety, dispersion and fast evolution of such genomic and proteomic

data into several distributed databanks demand continuous efforts for integration and

automatic analysis methods.

The project GPDW (Genomic and Proteomic Data Warehouse) focuses on this problem.

The GPDW aims not only to create a local data warehouse that easily imports and

integrates data records and external references from several well-known databases, but also

to keep the integrated information frequently updated, make them available to the scientific

community, improve available biomolecular data quality and infer new information from

available integrated data.

Indeed, GPDW allows highlighting unexpected information patterns leading to biomedical

discoveries and new annotations prediction through transitive closure and semantic

clustering approaches, as previously reported.

This Thesis has as primary goal to extend and completely generalize the procedure for the

creation of an integrative data warehouse, in particular with reference to the extraction,

transformation and load staging procedures involved in the data warehousing data

integration and their clearing and quality improvement.

In the specific case of GPDW, the completion of design and implementation of data

importing general procedures in the software framework by reengineering XML

configuration files and by extending modules and automatic programs for data import and

integration.

The second goal is to use such enhanced procedures to import and integrate data from

sources that are not yet considered in the GPDW project and, at the same time, improve

the procedures already integrated in the GPDW software architecture. In details, the

development of the second objective requires:

• Conceptual and logical analysis and modeling of data provided by considered

sources;

Thesis goals Chapter 3

Master Thesis by Vincenzo Di Girolamo Page 15

• Development and configuration of automatic components for the import and

integration of data into the GPDW data warehouse; the developed modules are

integrated with the existing components and take part in the data transformation

and loading process at different stages.

• Implementation of parsing procedures, according to the specific data file format,

and importing procedures to insert into the data warehouse the information

extracted from considered source;

• Design of testing procedure for consistency checking and reporting of data

anomalies. Analysis of metadata and reporting of the errors discovered in import

data operations are used to highlight data inconsistencies.

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 16

4. Genomic and Proteomic Data Warehouse

(GPDW) software framework

In the following pages, GPDW software framework architecture is presented. First the

description of the flexible global data schema of GPDW framework is introduced. Then,

the discussion continues with an overview on the main software packages available in the

framework that manage the data warehouse creation process. Data import and integration

procedures are discussed, pointing out their design limitations. The chapter terminates with

a section dedicated to explain the metadata computation.

4.1 Used software and tools

GPDW framework has been developed in Java programming language using Eclipse, an

open-source integrated development environment (IDE) that contains a

base workspace and an extensible plug-in system for customizing the environment in order

to manage all the software life cycle.

PostgreSQL is the software used for the data structure; it is a popular and reliable object-

relational database management system (ORDBMS) that handles complex SQL queries and

complies with ACID model of databases. PostgreSQL is cross-platform and it can run on

many operating systems

The design of the structures, ER schemas and logical schemas of the data warehouse has

been realized using the tool Microsoft Visio ®.

4.2 GPDW integrated data model

The project GPDW has been developed to create a data structure to support the

integration of genomic and proteomic controlled annotations of different species

representing the current biomedical-biomolecular knowledge available on Internet.

GPDW is based on a multi-level data architecture that includes a source-import lower tier,

an instance-aggregation middle tier and a concept-integration upper tier. This structure

supports integration of data sources that are fast evolving in data content, structure and

number, and assures provenance tracking of the integrated data.

The data warehouse uses a flexible data model that provides a unified global view of the

data. This model is composed of multiple interconnected modules; it can be extended in a

modular way, virtually with no limitations, to include new modules.

Each module represents a single feature that can be a biomolecular entity or a biomedical

feature. Additional aspects can extend the basic definition of feature, depending on the

information provided by the data source. A feature module can also include similarity and

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 17

history aspects [12]. As shown in Figure 8, a feature module, biomolecular entity or

biomedical characteristic, can be specified in sub-features, each one with data from one or

more sources.

Figure 8 - General conceptual model for features from different sources

The feature module is internally structured in two levels: import level and aggregation level.

The import level is represented by separated sub-schemas, one for each data source, that

are structured in a global-as-view (GAV) data integration style. In import level, a feature is

identified by its id and source attributes, while the Reference attribute represents the

provenance of the data. In the aggregation level, the main attribute of a feature are

associated with a unique OID. Features, both in import and aggregation level, are pair wise

associated through association or annotation data. The list of all the feature modules

considered by GPDW framework is given in Table 1.

BIOMEDICAL FEATURES BIOMOLECULAR FEATURES

Biological function feature Dna sequence

Cdna library Gene

Clinical synopsis Protein

Gene expression feature Small molec

Genetic disorder Transcript

Enzyme

Organism

Pathway

Protein fam dom

Publication reference

Snp

Table 1 - List of features considered in GPDW

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 18

4.3 GPDW framework description

GPDW framework manages the entire process of import and integration, starting from the

creation of a supporting database containing metadata, that are needed to run importing

and integration procedures.

GPDW follows the Extract-Transform-Load (ETL) paradigm, typical in data warehouse

systems and very appropriate when integration of data from multiple applications, typically

developed and supported by different organizations, is required [21].

In details, GPDW has multi-level data architecture including:

• Importing level, where biomolecular entities, biomedical features and their

annotations and relations data are directly imported from the original sources;

• Aggregation level, where data from different sources regarding the same features are

integrated;

• Concept-integration level, where different concept instances of the aggregation tier

are integrated and identified by a unique concept OID (Object Identifier).

The main components of the software architecture for the integration of heterogeneous

distributed data are sketched in Figure 9.

Figure 9 - GPDW software architecture components

The database generated by the execution of this software framework is composed of four

schemas:

• public schema: it contains imported tables, where there are stored data directly

imported from source files, and aggregated level tables related to them, that are

generated during the aggregation step.

• flag schema: it contains tables that store encoded values of public schema tables.

• metadata schema: it stores tables containing metadata, i.e. information about

imported sources, imported files, defined features and their properties and relations.

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 19

• log schema: it contains temporary and supporting tables created by automatic

procedures to manage complex operations and specific requirements; this schema

also includes tables filled by the records removed from public schema tables, such as

duplicated entries or inconsistent values, in order to keep trace of all the imported

data and their anomalies.

The whole ETL process can involve considerable complexity and significant operational

problems caused by improperly designed processes. In many cases, Extract part is the most

challenging aspect of the process, since extracting data correctly sets the stage for how

subsequent processes go further. In case of GPDW, both extraction and transformation

phases require the implementation of abstract and generic procedures that can be

customized to face the heterogeneity of data representation and format, the evolution of

data in number and structure [22][23].

4.4 Data import procedures

The importing phase was designed to be flexible and easy extensible. In order to reach this

purpose, the whole process is guided by xml configuration files.

Data import operations firstly require the registration of the data source and its feature

tables in the configuration files GPDW_definition.xml.

GPDW_definition.xml must contain the list of all the data sources considered by the project,

together with their high-level characteristics, the features and relations between features

that the source treats. Moreover, when the considered source contains data about a feature

not yet considered by GPDW, first of all it is necessary to define the new feature in the

configuration file feature_definitions.xml, specifying if it is a biomedical feature or a

biomolecular entity, if ontological and if it provides data about history and similarity.

Secondly, data import procedures require the execution of the standard processes that will

be described below. The main software components involved in importing procedures are:

• ImportManager

• Importer

• Loader

• Parser

The main tasks performed by the automatic procedure for data import and the interactions

between the components are illustrated in Figure 10.

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 20

Figure 10 - Sequence diagram of import process

ImportManager.java is the singleton class that guides the whole importing layer. This class

instantiates, configures and executes the objects GenericImporter.java and

DuplicatesChecker.java. The former manages the operations to configure and start the import

phase of each single source; the latter calls the methods to set constraints and to create

indexes on the created importing level database's tables.

The importing phase is concluded by a standard unfolding process of the DAG ontology

described by the imported data; an instance of class UnfolderHelper manages all the

operations to calculate the position of each feature record and the level of the nodes in the

ontology. For each couple of instances of a given feature, the Lowest Common Ancestor

(LCA) is calculated to complete the analysis of the ontological data structure.

For each data source that is going to be imported, GenericImporter.java checks the list of

source files and the names of Loader classes. This class can be directly used to instantiate,

configure and run the Loaders used for the import of each source file or it can be extended

by specific source Importer.

Source Importer can override the inherited methods and, in addition, it may include pre-

processing operations and particular functions to manage non-standard properties of the

considered data source.

For each importer

For each loader

Import Manager Importer Loader parser

configure

run

run

For each record

token

parsing file

Inserting db

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 21

The abstract class GenericLoader.java, which is extended by all specific file Loaders,

implements the standard operations that actually import data in the data warehouse:

• It reads the part of GPDW_definition.xml referred to the considered file in order to

get information about the presence of external reference, relationship, history,

similarity and association relations between features;

• For each type of relation, it instantiates the specific relation DataLoader, where the

database's tables will be created and populated;

• For each relation, it configures lists of specific entries and additional parameters that

will contain data to store in the DW. The lists are inserted into HashMap structures

using as key the unique handle defined for each relation in the configuration file;

• When file parsing is done, it processes lists of entries and it executes operations to

populate database tables through specific DataLoaders;

• In the end, it executes commit() of the updates, it generates statistics information to

insert in metadata schema and it closes the open connections to the database. In

case of error, rollback() is executed.

The specific relation DataLoaders implemented in GPDW framework are:

SimilarityDataLoader, AssociationDataLoader, RelationshipDataLoader, HistoryDataLoader and

ExternalReferenceDataLoader. All of them have common tasks:

• Creation of the imported level tables;

• Definition of the flags associated to the fields that will be codified;

• Checking of identifiers, provided by the source files, through an instance of the class

IdentifierMatcher.java. Identifiers must conform to the regular expressions defined in

PCRE format [24] in the configuration file;

• Automatic insertion of the entries into the created table of the data warehouse.

The specific file Loader extends an object of type Parser. The distinction between Parser

and Loader is not well defined for many data sources.

Usually, a parser extracts data from input source files and produces data tokens usable by

the loader, that is responsible for associating a semantic meaning to the tokens and

inserting them into the database.

However, in many cases, loader needs to analyze tokens received from the parser in details,

by executing some parsing operations itself. GPDW framework includes standard and

parsers for the most common file formats:

• FlatFileParser: it is used to manage generic flat files without header. This class is

extended by FlatFileWithHeaderParser and FlatFileWithFixLengthHeaderParser classes,

which manage flat files that include header lines;

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 22

• TabularFileParser: it is used to manage tabular files that use single field separator. This

class is extended by other two classes, TabularFileWithHeaderParser and

TabularFileWithFixLengthHeaderParser, which manage tabular files that include header

lines;

• TabularFileMultipleSeparatorParser: it is used to manage tabular files with multiple field

separator. This class is extended by TabularFileWithHeaderMultipleSeparatorParser

which manage tabular files with multiple field separator that include header lines.

Loader extending FlatFileParser implements and overrides its abstract method

onNextRecord(), that handles the processing of tokens extracted from data file; loader

extending TabularFileParser overrides its abstract method onNextLine(), that handles the

processing of single line extracted from the file.

The description of the framework reveals that it shows many limitations because there are

some elements that are not sufficiently generalized.

For example, the "entry" objects are specific for each type of data, even if they represent

the same concept in the database language. Furthermore, the management of source level

tables, containing data about feature's characteristics as they are provided by the source file,

is not enough generalized because it is totally left to the specific file Loader, that it is

responsible for creation and population of these tables.

As a consequence, the project is plenty of useless repetitions of code and of specific classes

that do not follow the same procedural rules. It means that any possible modification of

the framework will require the redefinition of all the classes previously implemented.

As mentioned in the previous pages, the software platform includes a module named

DuplicatesChecker.java that is dedicated to the elimination of duplicated tuples and the

aggregation of those data referred to the same feature but stored in different records of the

same table [25]. DuplicatesChecker is executed at the end of the import process, before

enabling primary and foreign keys, creating indexes and setting constraints on tables’ fields

in order to point out inconsistencies and to improve query response time.

The current software architecture, on the contrary, does not include any module to

perform additional operations that could be necessary to complete the import phase in the

correct way for those data sources that do not fully fit the automatic general procedures.

4.5 Data integration procedures

The main operations performed for data integration are described in the sequence diagram

in Figure 11. These tasks can be grouped in two phases: aggregation and integration. In the

former, data from the different sources, imported in the previous data import step, are

gathered and normalized into a single representation in the aggregation level. In the latter,

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 23

data are organized into informative clusters in the concept-integration tier of the global

model [2][12].

Figure 11 - Sequence diagram of integration process

During the initial aggregation phase, integrated tables are created and populated starting

from imported data.

Then, similarity integrated tables, containing data about similarity between different entries

of the same feature (e.g. homology between genes or proteins) and historical integrated

tables, containing obsolete feature identifiers and the IDs to which they have been

propagated, are created by translating the IDs provided by the data sources to data

warehouse OIDs.

Genomic and Proteomic Data Warehouse (GPDW) software framework Chapter 4

Master Thesis by Vincenzo Di Girolamo Page 24

Translation tables for biomolecular entity and biomedical feature IDs are also created by

using translated similarity data and unfolded historical ID data. These tables are used as

main entry points to navigate the data warehouse. Finally, associations (annotations)

between pairs of feature are created by performing OID translation of the imported

association data expressed through the source IDs. Association data may refer to features

that have not been imported in the data warehouse. In this case, missing integrated feature

entries are synthesized and marked as such.

During the final integration phase, by doing a similarity analysis, it is tested whether single

feature instances from different sources represent the same feature concept. In positive

case, they are associated with a new single concept OID.

At the end of the integration process, on all integrated tables indexes, primary and foreign

keys and integrity constraints are enabled in order to detect possible data duplications and

to improve the time of access to the integrated data.

4.6 Metadata computation and storage

The metadata schema is created to store the information describing the data in the public

schema of the database. In details, it contains 29 tables used to store framework metadata,

such as general information about the data stored by imported and integrated tables.

These tables are created at the moment of the launch of the program, before the beginning

of importing procedures, by three different classes:

• DatabaseMetadata.java reads the file db_config.xml and it creates metadata.database and

metadata.creation_step tables, containing broad information about the created database

and each performed step at each level of the global model;

• FeatureMetadata.java reads the file feature_definition.xml and it stores the metadata of all

the features defined in that configuration file. For example, metadata.feature_association

table contains the list of all the annotations, providing annotation complete name with

encoded values of the affected features;

• ReferenceDB.java reads the file GPDW_definition.xml and generates metadata such as

name of main tables, which sources are imported and which are synthesized, which

sources/features are ontological, regular expression patterns and many other

information.

An example of table in metadata schema is displayed in Figure 12, where the table

metadata.source2feature_association contains the records related to the import of GOA

database. The picture shows that features identifier values are encoded using small integers

and that database identifiers are provided as bitmap codes.

Genomic and Proteomic Data Warehouse (GPDW) software framework

Master Thesis by Vincenzo Di Girolamo Page

Figure 12

After an exhaustive analysis of the procedures dedicat

evaluation of metadata tables’

optimization of metadata, by adding the information still ignored

generated. Indeed, the correct computation of metadata is fundamental to

correspondence between what defined in conceptual and logical diagrams

the global data schema, and what created in the database through the implementation of

the set of automatic procedures.

Genomic and Proteomic Data Warehouse (GPDW) software framework

i Girolamo Page

 – metadata.source2feature_associaton database table

After an exhaustive analysis of the procedures dedicated to the metadata creation and

evaluation of metadata tables’ content, the reengineering work proceeded with the

, by adding the information still ignored

generated. Indeed, the correct computation of metadata is fundamental to

what defined in conceptual and logical diagrams

data schema, and what created in the database through the implementation of

the set of automatic procedures.

 Chapter 4

i Girolamo Page 25

ed to the metadata creation and the

proceeded with the

or not properly

generated. Indeed, the correct computation of metadata is fundamental to check the

what defined in conceptual and logical diagrams, on the basis of

data schema, and what created in the database through the implementation of

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 26

5. GPDW framework enhancements

The description of the framework architecture provided in the previous chapter highlights

design limitations and the necessity for a complete generalization of importing procedures.

This Thesis is mainly developed on the import process of GPDW framework, by providing

a higher abstraction of general procedures and by extending those operations that show

some limitations in design and implementation.

In following sections, there will be described the details of the analysis of procedures

already realized and new implementation choices, based on abstraction and customization

aspects. The result of this renovation work is sketched in Figure 13, where new modules

for post-processing and data recovery operations are integrated at different level of the

architecture with already existing components to build the final structure of the framework.

Figure 13 - GPDW framework import layer components

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 27

5.1 Enhancement of GPDW_definition.xml configuration file

The entire import process is guided by xml configuration files in order to create a

structured definition of the framework content and to reduce the amount of Java code

implementing the automatic import procedures.

The file GPDW_definition.xml includes the description of all the data sources considered by

the project, both imported and synthesized. Each imported data source definition must

contain all the necessary information to correctly understand data from its files. In details,

for each source the following elements are defined:

• <importer> (required): it can be the GenericImporter class itself or a specific source

Importer class, in case of additional operations to the standard ones are necessary;

• <post_processing> (optional): the list of the names of classes that handles the post-

processing operations at different levels of the import layer.

• <data_recoveries> (optional): it contains the names of classes dedicated to the

retrieval of data from log schema in different phases of the import procedure;

• <file_definition_list> (required): the list of considered source files, grouped into

documentation files and data files;

• <feature_list > (optional): the list of features to which imported data refer;

• <feature_association_list> (optional): the list of annotations to which imported data

refer.

In the file list, every <data_file_definition> element must specify in its attribute loader the

name of the Loader object that handles the population of database entries, according to the

information provided by the file.

Element <file> is univocally identified by its attribute handle; it contains information about

the URL address for the download of the file from the source website. This element also

allows the possibility of specifying a list of additional parameters, which are passed to the

Loader in the moment of configuration, that contains useful information not explicitly

given by the data in the file.

For each file it is necessary to define which features its records describe and which type of

information it provides about these features (sub-features, external reference, relationship,

history and similarity). Moreover, the file defines which annotations are described by its

data, including possible relations with data in other sources.

All these information must be reflected by what is defined later in the detailed description

of <feature_list> and <feature_association_list>.

Figure 14 shows the XML definition of the considered files of OMIM data source.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 28

Figure 14 - Example of source file definition

Following the definition of source files, there is the definition of features considered by

such files that are, in case of OMIM, gene, genetic disorder and clinical synopsis.

In order to manage both feature and sub-feature entities in the same way, the existing

feature definition was generalized by creating a new template called base_feature_definition.

So, it is possible to treat both features and sub-features as the same object type from the

computational point of view, avoiding to create ad-hoc procedures to manage sub-feature

data as it was in the previous version of software architecture.

<data_source_definition handle ="omim" name="omim" import ="false" download ="true" >
 <description> Description of omim source </description>
 <importer> it.polimi.gfinder2.importer.omim.OmimImporter </importer>
 <download_uri>
 <file_definition_list>
 <data_file_definition loader ="it.polimi.gfinder2.importer.omim.OmimLoader" >
 <url handle ="omim_omimData_DownUrl" name="ftp://.../omim.txt" download ="true" >
 <file handle ="omim_omimData_File" import ="true" >
 <file_path> omim/omim.txt </file_path>
 <loader_post_processing> it.pol...omim.OmimLoaderPostProc </loader_post_processing>
 </file>
 </url>
 <data>
 <feature_list>
 <feature handle ="gene" >
 <relationship handle ="omim_gene_relationship" />
 <history handle ="gene_history" />
 </feature>
 <feature handle ="genetic_disorder" >
 <relationship handle ="omim_disorder_relationship" />
 <history handle ="genetic_disorder_history" />
 </feature>
 <feature handle ="clinical_synopsis" >
 <relationship handle ="omim_clinical_synopsis_relationship" />
 </feature>
 </feature_list>
 <feature_association_list>
 <feature_association handle ="gene2genetic_disorder" >
 <match handle ="omim2omim" />
 </feature_association>
 <feature_association handle ="gene2clinical_synopsis" >
 <match handle ="omim2omim" />
 </feature_association>
 <feature_association handle ="genetic_disorder2clinical_synopsis" >
 <match handle ="omim2omim" />
 </feature_association>
 </feature_association_list>
 </data>
 </data_file_definition>

 <data_file_definition loader ="it.polimi.gfinder2.importer.omim.PubmedLoader" >
 <url handle ="omim_pubmed_cited_DownUrl" name="ftp://.../pubmed_cited" download ="true" >
 <file handle ="omim_pubmed_cited_File" import ="true" >
 <file_path> omim/pubmed_cited </file_path>
 </file>
 </url>
 <data>
 <feature_association_list>
 <feature_association handle ="gene2publication_reference" >
 <match handle ="omim2pubmed" />
 </feature_association>
 <feature_association handle ="genetic_disorder2publication_reference" >
 <match handle ="omim2pubmed" />
 </feature_association>
 </feature_association_list>
 </data>
 </data_file_definition>
 </file_definition_list>
 </download_uri>

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 29

This base definition embodies the essential elements shared by main features and sub-

features, i.e. source tables, hierarchical relationship, history and similarity. It can be also

extended to include additional elements, i.e. external references, regular expressions and

URI (Uniform Resource Identifier) addresses, which are considered meaningful only in

case of parent features.

The XML Schema code that shows this enhancement is given in Figure 15.

Figure 15 – XML Schema description of feature definition

Finally, associations between the features described by the considered source and other

features, given by the other databanks of the project, are described in order to reflect those

associations included in the definition of the source files.

The association data provided by Gene Ontology are displayed in Figure 16.

.....
<xs:complexType name="base_feature_definition">
 <xs:sequence>
 <xs:element name="source_table" type="source_table_definition"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="relationship" type="feature_relationship_type"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="history" type="feature_history_type" minOccurs="0"
 maxOccurs="1" />
 <xs:element name="similarity" type="feature_similarity_type"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="handle" type="xs:string" use="required" />
</xs:complexType>
.....
<xs:complexType name="data_source_feature">
 <xs:complexContent>
 <xs:extension base="base_feature_definition">
 <xs:sequence>
 <xs:element name="external_reference" type="feature_ext_ref"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="sub_feature_list" minOccurs="0"
 maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sub_feature" type="base_feature_definition"
 minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="reg_expr_list"
 type="data_source_feature_reg_expr"
 minOccurs="0" maxOccurs="1">
 </xs:element>
 <xs:element name="display_uri" type="text_url"
 minOccurs="0" maxOccurs="1" >
 <xs:unique name="feature_display_uri_unique_key">
 <xs:selector xpath="d:url" />
 <xs:field xpath="@display_class" />
 </xs:unique>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
.....

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 30

Figure 16 - Example of feature association definition

5.2 Enhancement of feature_definitions.xml configuration file

The file feature_definitions.xml includes the description of all the features considered by the

project, already listed in Table 1.

For each feature, it is specified as either biomedical feature or biomolecular feature, if it is

ontological feature (it has hierarchical relationships), if it has history and similarity relations.

All the feature elements contain the definition of the aggregation level tables, where

eventual additional attributes could extend the standard template used as skeleton for the

database tables.

In the same manner, the structure of history, similarity and association tables is defined

using the templates specified at the top of the configuration file. As an example, template

used for similarity tables is shown in Figure 17.

<feature_association_list>
 <feature_association handle="biological_function_feature2enzyme"
 source_feature_handle="biological_function_feature"
 destination_feature_handle="enzyme" >
 <association_type handle="related_to" />
 <match handle="go2expasy_enzyme">
 <from_data_source handle="go" />
 <to_data_source handle="expasy_enzyme" />
 </match>
 </feature_association>
 <feature_association handle="biological_function_feature2pathway"
 source_feature_handle="biological_function_feature"
 destination_feature_handle="pathway" >
 <association_type handle="related_to" />
 <match handle="go2reactome">
 <from_data_source handle="go" />
 <to_data_source handle="reactome" />
 </match>
 </feature_association>
 </feature_association_list>
</data_source_definition>

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 31

Figure 17 - Similarity integrated table template

These templates have been designed as general as possible and contain only the fields

shared among the table of same type but of different features. Instead, there is no template

designed for the feature tables of the imported level. Thus, all the imported feature tables

must be described by the specific source file Loader. This is clearly a limitation that

produces code redundancy and neglects the possibility to extend generalized automatic

procedures to import the feature tables.

A detailed analysis of existing database schemas and importing procedures brings the work

in the direction of designing a new part of xml code, and the related xsd code to validate it.

This new block, represented by the element <custom_source_tables>, contains the

description of imported level feature tables; each source table definition extends one of the

following novel table templates, that have been added to the existing templates:

• feature_source_imported, used for the main source feature table;

• feature_relationship_imported_temp, used for relationship imported table;

• feature_additional_table, for integrated feature table with primary key;

• feature_additional_table_unique, for integrated feature table with unique index;

• fetaure_additional_table_imported, for imported feature table with primary key;

• fetaure_additional_table_imported_unique, for imported feature table with unique index.

Figure 18 illustrates the definition of all the source tables created by the automatic

importing procedures for the source ExPASy ENZYME. The standard templates for

additonal source feature tables are shown in Figure 19.

<template name="feature_similarity">
 <table name="baseName_similarity" xmlns="http://polimi.it/gfinder2/table_definition">
 <attribute name="baseName_oid" type="BIGINT" nullable="false"/>
 <attribute name="similar_baseName_oid" type="BIGINT" nullable="false"/>
 <attribute name="reference" type="DATA_SOURCE_ID_TYPE" nullable="false"/>
 <attribute name="similarity_type" type="SMALLINT" nullable="false" encoded="true"/>
 <attribute name="inferred" type="INTEGER" nullable="true" encoded="true"/>
 <primary_key>
 <attribute name="baseName_oid" />
 <attribute name="similar_baseName_oid" />
 <attribute name="reference" />
 </primary_key>
 <foreign_key name="baseName_term_fk" references="baseName">
 <attribute name="baseName_oid" references="baseName_oid" />
 </foreign_key>
 <foreign_key name="baseName_simil_term_fk" references="baseName">
 <attribute name="similar_baseName_oid" references="baseName_oid" />
 </foreign_key>
 <index name="baseName_similarity_idx1">
 <attribute name="baseName_oid" integrated="true" />
 </index>
 <index name="baseName_similarity_idx2">
 <attribute name="similar_baseName_oid" integrated="true" />
 </index>
 <index name="baseName_similarity_idx3">
 <attribute name="similarity_type" integrated="true" />
 </index>
 <index name="baseName_similarity_idx4">
 <attribute name="inferred" integrated="true" />
 </index>
 </table>
</template>

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 32

Figure 18 - Source tables definition of ExPASy ENZYME databank

Figure 19 - Templates for imported additional source tables

<template name="feature_additional_tables_imported">
 <table name="baseName_tableName" xmlns="http://polimi.it/gfinder2/...">
 <attribute name="baseName_oid" type="BIGINT" nullable="false" />
 <attribute name="reference_file" type="bit(256)" nullable="false" />
 <primary_key>
 <attribute name="baseName_oid" />
 </primary_key>
 <foreign_key name="baseName_tableName_fk" references="baseName">
 <attribute name="baseName_oid" references="baseName_oid" />
 </foreign_key>
 <index name="baseName_tableName_baseName_oid_idx">
 <attribute name="baseName_oid" />
 </index>
 </table>
</template>

<template name="feature_additional_tables_unique_imported">
 <table name="baseName_tableName" xmlns="http://polimi.it/gfinder2/...">
 <attribute name="baseName_oid" type="BIGINT" nullable="false" />
 <attribute name="reference_file" type="bit(256)" nullable="false" />
 <foreign_key name="baseName_tableName_fk" references="baseName">
 <attribute name="baseName_oid" references="baseName_oid" />
 </foreign_key>
 <index name="baseName_tableName_baseName_oid_idx">
 <attribute name="baseName_oid" />
 </index>
 <unique name="baseName_tableName_uidx">
 <attribute name="baseName_oid" />
 </unique>
 </table>
</template>

<custom_source_tables>
 <source name="expasy_enzyme">
 <table_list>
 <table_derived name="baseName" baseTemplate="feature_source_imported" xmlns="...">
 <attribute name="name" type="VARCHAR(256)" nullable="false" />
 <attribute name="catalytic_activity" type="VARCHAR" nullable="true" />
 <attribute name="cofactor" type="INTEGER" nullable="true" encoded="true" />
 </table_derived>
 <table_derived name="baseName_comment" baseTemplate="feature_additional..." xmlns="...">
 <attribute name="comment" type="VARCHAR" nullable="false" />
 <primary_key>
 <attribute name="comment" />
 </primary_key>
 </table_derived>
 <table_derived name="baseName_alternative_name" baseTemplate="feature_addit..." xmlns="...">
 <attribute name="alternative_name" type="VARCHAR(256)" nullable="false" />
 <primary_key>
 <attribute name="alternative_name" />
 </primary_key>
 </table_derived>
 <table_derived name="baseName_action" baseTemplate="feature_additional..." xmlns="...">
 <attribute name="action" type="SMALLINT" nullable="false" encoded="true" />
 <primary_key>
 <attribute name="action" />
 </primary_key>
 </table_derived>
 </table_list>
 </source>

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 33

5.3 Automatic import of source tables

In this part of the Thesis, there are illustrated the components designed to extend

automatic procedures of importing process to the creation of database source tables.

The java classes representing these components have been designed by using the same

conceptual organization of those classes, already present in the previous version of GPDW

framework, that manage the importing operations for association, similarity and history

tables. The class RelationshipDataLoader.java, on the other hand, was completely rebuilt in

order to fit new updates of the proposed solution that ensures higher accuracy of imported

data and reduces the possibility of unexpected errors.

It is the GenericLoader class, as done for the specific relation DataLoader, that instantiates

the objects of new classes, and that configures, and finally processes, the lists of specific

entries and additional parameters that will contain data from source files.

The new workflow diagram of GenericLoader.java is illustrated in figures 20 and 21.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 34

Figure 20 - GenericLoader workflow - part I

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 35

Figure 21 - GenericLoader workflow - part II

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 36

5.3.1 Generic source tables Loader

The class MainSourceTableDataLoader.java handles the generic logic to configure the import

process of main source tables, also called source feature table. This component performs

many standard operations that can be summarized in four steps:

• Configuration: an instance of the class is created, a connection to the DB is

opened, the database table is created, if it does not already exist, flags are defined

for encoded fields, if present. Besides, an instance of IdentifierMatcher class is created

to recover the regular expressions defined in GPDW_definition.xml for the

considered feature;

• Insertion of entry: for each entry, before inserting all the information into the

database, the source identifier is matched to the regular expressions list. In case of

failure, an error message is displayed in the log and the entry is discarded.

Otherwise, a new unique OID is generated for the entry, incrementing the relative

counter, and the entry is inserted in the TableLoader instance attached to the

supplied database connection. TableLoader.java is a class that is a helper used to fill

the database tables hiding all the low level SQL details.

• Insertion of additional entry: in case of additional source tables, which are related

to the main one by a foreign key constraint, the method to insert additional entries

in the proper tables are called passing the unique OID as parameter. The

operations for inserting additional entries are fully managed by the class

AdditonalSourceTableDataLoader.java (see section 5.3.2);

• Disposing: flags and TableLoader instance are flushed so that the commit of all the

database operations is allowed. All the connections to the database are closed and

statistical information are generated and inserted in metadata schema.

The creation of the table in the public schema of the DB is done by using the information

passed as parameters by GenericLoader. These parameters include all the required

information defined in the configuration files:

• factory – the ConnectionPoolFactory instance to access the database;

• sourceHandle – the unique handle of the data source;

• featHandle – the unique handle of the feature;

• featName – the name of the feature;

• mainFeatHandle – handle of parent feature, if present;

• params – list of attributes derived from <custom_source_tables>.

The management of encoded value is done in the configuration method by creating a list of

flags implemented through a HashMap structure, where column’s name is used as key: The

value of the codified fields is handled by the interface IFlag, specially created for this task.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 37

5.3.2 Generic additional source tables Loader

The class AdditionalSourceTableDataLoader.java handles the generic logic to configure the

import process of additional source tables.

Additional source tables are used by GPDW architecture to expand the information about

a feature (or sub-feature); they include some relevant fields extracted from source files in

order to store them in more compact tables that can be quickly accessed and queried.

Additional tables cannot exist without the main feature table they refer to.

This component is closely related to the component MainSourceTableDataLoader,

reflecting the connection that exists between the tables they create.

Indeed, AdditionalSourceTableDataLoader performs the same basic operations in the

configuration step that are listed below:

• Open a connection to the database;

• Creates the database table in public schema;

• Create an instance of TableLoader and attach it to the open DB connection;

• Define flags for encoded fields.

Then, it works by inserting the entries one by one if no exceptions have been raised. In

case of number or type of optional parameters does not match the definition of the

associated table, that is derived by merging the base template to the attribute list provided

in feature_definitions.xml, an error message is shown in the log and the entry is discarded.

For example, as shown in Figure 18, data imported from ExPASY ENZYME are

organized into a single feature table, expasy_enzyme, and three additional tables where

storing information about enzymes' alternative names, actions and comments provided by

databank's curators.

The prior software framework allowed to any Loader of managing the tables they fill,

independently from general procedures, via local implementation of insertion operations.

Now, the implementation of these two modules makes the insertion of feature entry

objects in the database table a broad and standard operation that is exclusively performed

by instances of these classes in a more consistent and reliable manner.

The general method used by MainSourceTableDataLoader to insert entry's values in the

imported level database table is shown in Figure 22. This method is used by the entire set

of Loaders that imports feature records from source files.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 38

Figure 22 – Method insertMainSourceTableEntry

5.3.3 Relationship tables Loader

Since the insertion of relationship entries is done in parallel to the insertion of main source

tables entries, it is possible that, in a certain moment, the related feature described by the

relationship data has not yet been read from the file and, consequently, that a unique OID

has not yet been created for the related feature entry.

This eventuality leads to the impossibility of inserting relationship entry content directly

into the database, at least by using the current table template in Figure 23, where there are

stored only the OIDs of related features.

public boolean insertMainSourceTableEntry(MainSourceTableEntry e,ReferenceFile refFile)
 throws SQLException{

 if (idMatcher.sourceIdMatchIdentifier(e.getSource_id())){
 long feature_oid = oid_generator.getId();

 try {
 loader.beginRow();
 loader.column(FEATURE_OID, feature_oid);
 loader.column(SOURCE_ID, e.getSource_id());
 loader.column(SOURCE_NAME, e.getSource_name());
 loader.column(REFERENCE_FILE, refFile);
 loader.column(FEATURE_TYPE, e.getFeature_type());
 /* Adding optional params */
 if (e.getParams() != null)
 for (int i=0; i < additional_fields_cnt; i++) {
 AdditionalParam p = e.getParams().get(i);
 if (p.getValue() != null)
 if (p.is_encoded())
 loader.column(EXTRA_FIELDS + i, flagList.get(p.getColumnName()).
 getFlagId(p.getValueToString()).
 getId());
 else
 loader.column(EXTRA_FIELDS + i, p.getValue());
 else
 loader.column(EXTRA_FIELDS + i, TableLoader.NULL);
 }
 else {
 return false ;
 }

 loader.endRow();
 main_tbl_entries_cnt++;
 } catch (IOException e1) {
 logger.error("Error in insert entry for table " + tableHandle, e1);
 return false ;
 }
 insertAdditionalSourceTables(e, feature_oid, refFile);
 return true ;
 }
 else {
 logger.error("Error: source_id does not matches with regular expressions");
 return false ;
 }
}

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 39

Figure 23 – Relationship imported table template

In order to manage the issue, the previous version of RelationshipDataLoader.java class has

been modified by creating a temporary table, in the log schema, that will contain the

relationship entries filled by the file Loader class. The new template designed to handle

relationship data stores the feature id and the source id instead of OIDs.

Finally, before disposing object’s instance and closing the connection to the database, the

log table is joined to the related main source table to recover features' OIDs and insert all

the fields into the imported relationship table, where records are permanently stored.

Figure 24 shows an example of a query generated by the application of new

RelationshipDataLoader procedure to the data provided by Gene Ontology.

Figure 24 - Example of query generated by RelationshipDataLoader

INSERT INTO go_cellular_component_relationship

SELECT DISTINCT a.go_cellular_component_oid, b.go_cellular_component_oid,

log.relationship_type, log.inferred, log.reference_file

FROM log.go_cellular_component_relationship_temp_1 AS log

JOIN go_cellular_component AS a

ON log.term_id = a.source_id AND log.term_source = a.source_name

JOIN go_cellular_component AS b

ON log.related_term_id = b.source_id AND log.related_term_source = b.source_name

<template name="feature_relationship_imported" >
 <table name="baseName_relationship" xmlns ="http://polimi.it..." >
 <attribute name="term_oid" type ="BIGINT" nullable ="false" />
 <attribute name="related_term_oid" type ="BIGINT" nullable ="false" />
 <attribute name="relationship_type" type ="INT" nullable ="false" encoded ="true" />
 <attribute name="inferred" type ="INTEGER" nullable ="true" encoded ="true" />
 <attribute name="reference_file" type ="bit(256)" nullable ="false" />
 <primary_key>
 <attribute name="term_oid" />
 <attribute name="related_term_oid" />
 <attribute name="relationship_type" />
 </primary_key>
 <foreign_key name="baseName_rel_fk1" references ="baseName" >
 <attribute name="term_oid" references ="baseName_oid" />
 </foreign_key>
 <foreign_key name="baseName_rel_fk2" references ="baseName" >
 <attribute name="related_term_oid" references ="baseName_oid" />
 </foreign_key>
 <index name="baseName_relationship_term_idx" >
 <attribute name="term_oid" />
 </index>
 <index name="baseName_relationship_rel_idx" >
 <attribute name="related_term_oid" />
 </index>
 <index name="baseName_relationship_type_idx" >
 <attribute name="relationship_type" />
 </index>
 <index name="baseName_relationship_inf_idx" >
 <attribute name="inferred" />
 </index>
 </table>
</template>

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 40

This extension and renovation work allows to significantly reduce redundant code and to

eliminate some ad-hoc packages and classes, specifically created for each data source.

As discussed in section 3, Chapter 4, at the end of import procedure the module named

DuplicatesChecker deals with the elimination of duplicated entries and the aggregation of

those data referred to the same feature but stored in different records of the same table.

Since source tables had not been yet considered by this module, these activities have been

spread to both main source tables and additional source tables through the use of abstract

classes GenericDuplicatesChecker.java and GenericEnableConstraints.java [25].

In the previous version of the framework, such abstract objects were implemented by

specific classes, defined at the top of the xml definition of each imported source. There,

the name of table fields implicated in indexes, primary keys and integrity constraints were

manually set.

It was an evident design limitation because potential changes to the logical schemas of the

database would have required the update of all the parameters used to check duplicates and

to enable table's constraints. Hence, the extension of DuplicatesChecker procedures to the

source tables, by creating adequate data structure to store information about table fields,

was consequently implemented; these structures are filled at the beginning of the import

procedure, when configuration files are scanned. and their data can be retrieved by the

ImportManager before the execution of DuplicatesChecker.

Thanks to this last modification, in the new version of GPDW framework, the importing

process of source tables have been aligned to the importing procedure already

implemented for history, similarity, external reference and association table. All the

operations regarding the import level have been generalized in order to be automatically

guided by configuration files.

5.4 Post-processing and data recovery components

The current section illustrates the main features of new modules designed and

implemented to complete the import layer of GPDW architecture.

These components have been designed to answer specific data source requirements that

can occur during the whole import process. The analysis of data imported, generated

through standard procedures of the existing framework, suggests to create two modules for

post-processing and data recovery operations, enabling their execution in different

moments of the process, according to the specific requirement to fulfill.

The following sub-sections focus on design choices and adopted technological solutions to

implement the components that complete the platform architecture. The addition of these

modules requires a reengineering process on the workflow of the ImportManager; the

result of these enhancements is shown in figures from 25 to 27.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 41

Figure 25 – ImportManager workflow - part I

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 42

Figure 26 – ImportManager workflow - part II

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 43

Figure 27 – ImportManager workflow - part III

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 44

5.4.1 Post-processing

Post-processing module performs many operations that are specific for each data source

that need to instantiate an object of this type. Post-processing operations can be configured

and executed at different steps of the import process. In details:

• Loader level: post-processing can regard a single source file, or a group of files

using the same Loader class. For example, the specific data file format can require

the creation of many tables in log schema to temporally store data that cannot be

inserted in the proper table at the moment of the parsing. The post-processing

classes of this type receive, during the configuration step, the same parameters of

the related Loader class to have the possibility of using the same information and

extending the set of operations realized by the Loader itself.

• Importer level: additional operations before the execution of DuplicatesChecker

procedures on source tables can be useful to merge information from different

files of the same data source or to limit the amount of data that will be inserted in

error tables created by the duplicates' checking.

• ImportManager level: in many cases it could be necessary that specific Importer

class instantiated for a certain source have completed tables population to allows

the correct insertion of association, similarity or external reference data from

another source. Hence, these post-processing operations are executed before

running the DuplicatesChecker on imported relation tables.

Post-processing operations are collected in appositely created classes that must be defined

in the GPDW_definition.xml configuration file. The name of these classes is usually self-

explanatory in order to indicate the main operations performed. All the post-processing

classes implement the interface that have been specially created to manage the standard

configure, run and dispose operations. These interfaces are:

• IGenericImportMgrPostProcessing;

• IGenericImporterPostProcessing;

• IGenericLoaderPostProcessing.

Specific implementation of post-processing classes will be discussed in Chapter 7, where a

use-case scenario will be presented for OMIM data sources.

GPDW framework enhancements Chapter 5

Master Thesis by Vincenzo Di Girolamo Page 45

5.4.2 Data recovery

Data Recovery module is responsible for the retrieval of those information that populate

the error tables during the aggregation and elimination process of duplicated tuples. In

many cases, it could happen that tables containing entries deleted from database public

schema store some useful data. It is verified, for example, when different sources provide

feature identifiers that can be matched by the same regular expression and, consequently,

the primary key field source_name cannot be univocally determined.

Data recovery operations can be configured and executed at different moments of the

import process:

• Importer level: when data to recover do not refer to multiple sources, data

recovery operations can be executed at the end of source Importer execution,

before running Unfolder and Lowest Common Ancestor (LCA) modules.

• ImportManager level: data recovery operations, at this level, represent the last

activities of the import process, when necessary.

For example, in case of GAD data source, that is not considered in this Thesis, an

ImporterManager data recovery module has been successfully implemented to handle the

insertion of data in gene_similarity_imported and genetic_disorder_similarity_imported according to

the value of the source identifiers that are matched to those provided by OMIM files.

These operations, before the design of data recovery component, were manually

implemented in specific phase of the software execution. As done for post-processing

module, data recovery classes are defined in configuration file. They extend an abstract

generic class that provides standard methods for configuration, database connection and

disposing of objects' instances.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 46

6. Considered data sources

Design and implementation of the database have been realized in three steps:

• Conceptual design: modeling of Entity Relationship (ER) schema that represents

informal requirements into a formal description of the considered domain that is

independent from the representation model used by the DBMS

• Logical design: translation of relationships and dependencies of conceptual model

into a logical structure which can be mapped into the storage objects supported by

the DBMS. Like the conceptual schema, logical schema does not depend on

physical implementation details.

• Physical design: refinement of the logical schema including the choice of physical

parameters to store data, file distribution policy and indexes organization. In

an Object database the storage parameters correspond directly to the objects used

by the OOP language chosen to implement the applications that will manage and

access the data.

The design of ER schemas and logical schemas of GPDW databanks has been realized

using the tool Microsoft Visio ®, while the physical implementation is directly connected

to the framework procedures previously described. In the next pages, the following

information will be point out for each data source considered in this Thesis:

• General description of the source;

• The content of few imported files and the list of tables they populate.

• Conceptual and logical diagrams;

Graphical conventions have been adopted in the design of data source schemas. In ER

schemas some attributes are represented in red color to highlight that they are omitted in

the importing process. In logical schemas different colors are used for different table types,

as explained in Table 2.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 47

Table color Table type

ID translation table

 Integrated association table

 Integrated similarity or history table

Integrated unfolding table

Integrated relationship table

Integrated feature table

Imported association table

Imported similarity or history table

Imported unfolding table

Imported relationship table

Imported feature table

 Table 2 - Table of colors and types of Logical schemas tables

Besides, table's attributes in logical schemas follow a set of rules:

• Fields in bold typeface are mandatory (cannot have null value);

• PK means that the field is part of the primary key of the table;

• FK means that the field is a foreign key used to link data from two tables;

• Un means that the field is part of a unique index;

• In means that the field is part of an index;

• Fields preceded by * character are encoded and their original values are stored in

DB flag schema;

• Fields precede by + character are encoded and their original values are stored in

DB metadata schema.

6.1 Gene Ontology - GO

The Gene Ontology (GO) project is a collaborative effort to address the need for

consistent descriptions of gene products in different databases. The GO Consortium was

established in 1998 as a cooperation between three model organism databanks, FlyBase

(Drosophila), the Saccharomyces Genome Database (SGD) and the Mouse Genome Database

(MGD). Since then, the GO project has grown including many repositories for plant,

animal and microbial genomes [26][27].

The Gene Ontology project has developed three structured controlled vocabularies that

describe gene products in term of their associated biological processes, cellular components

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 48

and molecular functions. A biological process is a set of molecular events pertinent to the

living entity's functionalities. A cellular component is a part of a cell or its extracellular

environment, that may be an anatomical structure or a gene product group. A molecular

function describes the basic activity of a gene product that occurs at molecular level [21].

The ontologies are structured so that they can be queried at different levels, depending on

the depth of knowledge about the considered entity. GO project offers the possibility to

search, browse and visualize Gene Ontology data through the browser AmiGO, that is

reachable from http://amigo.geneontology.org/amigo.

Currently, Gene Ontologies contain 41218 terms (39403 not obsolete). The set of terms

includes 26840 (26048) biological processes, 3689 (3537) cellular component and 10657

(9750) molecular functions.

Figure 28 illustrates an example of gene product annotation.

Figure 28 - Example of GO gene product annotation

GO databank provides all the ontological data into a single file that can be downloaded in

different file format such as OBO, MySQL and SQL dump, RDF-XML, OBO-XML and

OWL. In GPDW project, the choice of analyzing the OBO-XML file go_daily-termdb.obo-

xml.gz requires the implementation of a new parser class, described in section 1, Chapter 7.

The ER schema designed for GO data source is illustrated in Figure 29.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 49

Figure 29 - GO ER schema

The complexity of the logical diagram and the high number of tables it contains create

difficulties in representing the complete Logical schema. For this reason, the following

figures will show the main parts of the designed schema separately.

Figure 30 introduces imported source tables for the sub-feature cellular component; for the

other sub-features, molecular function and biological process, the same tables, with equal field

names and number, are filled. In Figure 31 the association imported and integrated tables

are shown. All the integrated tables of biological function feature, its history and similarity tables

are displayed in Figure 32.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 50

Figure 30 - GO Logical schema - cellular component source tables

Figure 31 - GO Logical schema - association tables

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 51

Figure 32 - GO Logical schema - integrated source tables

6.2 Gene Ontology Annotation - GOA

The Gene Ontology Annotation (GOA) database aims to provide high-quality electronic

and manual annotations to the UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-

PSD) using the standardized vocabulary of the Gene Ontology [28]. It is the largest and

most comprehensive open-source contributor of annotations to the GO Consortium

annotation effort, providing annotated entries for nearly 60000 species.

GOA project distributes, in addition to a non-redundant set of annotations to the human

proteome (GOA-Human) and monthly releases of its GO annotation for all species

(GOA-SPTr), a series of GO mapping files and specific cross-references in other

databases. The electronic assignment of GO terms to UniProt entries has been made

possible by successfully converting part of the existing knowledge held within the flat files

into GO terms.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 52

For example, UniProt data may contain references to Enzyme Commission (EC or

ExPASy Enzyme) numbers. Using an existing mapping of EC numbers to the GO

molecular function ontology (ec2go) and a mapping of protein accession numbers to EC

numbers, GOA can produce a UniProt to GO association.

In order to provide more reliable and specific annotation, GOA also makes use of manual

curation using information extracted from scientific literature. Manual annotation is high-

quality and reliable because it is validated by a team of skilled biologists.

Each assigned term is associated with a GO experimental evidence code and a PubMed ID,

which allows users to track the literature source and type of experiment used to support the

annotation.

There are various ways of accessing and searching GOA project information. In addition to

several web-based browsers, GOA files and mappings can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/.

The list of GOA files considered in GPDW project contains:

• ec2go: mapping of EC numbers to GO terms;

• interpro2go: mapping of InterPro entries to GO terms;

• pfam2go: mapping of Pfam entries to GO terms;

• gp2protein.geneid: mapping of Entrez Gene ids to UniProtKB entries;

• gene_association.goa_<species> (where <species> can be uniprot, human, arabidopsis,

chicken, cow, mouse, rat, zebrafish): it contains all GO annotations and protein

information for a species subset of proteins in the UniProtKB.

gp2protein.geneid and gene_association.goa_* are tabular files with header while pfam2go, ec2go,

and interpro2go are tabular files with header lines and multiple field separator.

In file pfam2go, that is imported by class PfamToGoLoader.java, the fields in the file are

separated by characters ' > ' and ' ; ' as shown in Figure 33.

Figure 33 - Example of records in file pfam2go

Header lines, identified by the exclamation mark at the beginning, are not imported. The

analysis of the first line after the header allows extracting the following fields:

!version date: 2014/06/07 14:46:03
!description: Mapping of GO terms to Pfam entries. This mapping is generated from data
supplied by InterPro for the InterPro2GO mapping.
!external resources: http://www.ebi.ac.uk/interpro, http://pfam.sanger.ac.uk/
!citationÂ : Hunter et al. (2009) Nucleic Acids Res. 37Â :D211-D215
!contact:interhelp@ebi.ac.uk
!
Pfam:PF00001 7tm_1 > GO:G-protein coupled receptor activity ; GO:0004930
Pfam:PF00001 7tm_1 > GO:G-protein coupled receptor signaling pathway ; GO:0007186
Pfam:PF00001 7tm_1 > GO:integral component of membrane ; GO:0016021
Pfam:PF00002 7tm_2 > GO:G-protein coupled receptor activity ; GO:0004930
Pfam:PF00002 7tm_2 > GO:G-protein coupled receptor signaling pathway ; GO:0007186
Pfam:PF00002 7tm_2 > GO:integral component of membrane ; GO:0016021

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 53

• Field1: Pfam id = Pfam:PF00001 7tm_1

 Identifier assigned by Pfam data source.

• Field2: GO name = GO:G-protein coupled receptor activity

Name of the GO term (field not imported).

• Field3: GO id = GO:0004930

The identifier of the GO term.

The source identifiers of protein domain and biological function feature are matched to the

regular expressions provided by the related data source definitions in GPDW_definition.xml.

The table biological_function_feature2protein_fam_dom_imported is populated by parsing this file.

The latest version of GOA UniProt released on 10 June, 2014 and assembled using the

publicly released data available in the source databases on 07 June, 2014 is briefly described

in Table 3. The original Table is available from: http://www.ebi.ac.uk/GOA/uniprot_release.

GOA annotation source Number of

associations

Number of

distinct proteins

Electronic GO annotation using InterPro to GO mapping 145931441 43005436

Electronic GO annotation using EC to GO mapping 6941248 6610288

Total Electronic GO annotation 304393501 45287137

Manual GO annotation by UniProt 256372 44478

Manual GO annotation by Reactome 72113 7663

Manual GO annotation by IntAct 53802 13506

Total Manual GO annotations 1526919 269947

Total GOA annotations 306020420 45372323

Total number of PubMed references 937423

Table 3 - Associations in gene_association.goa_uniprot

The ER schema designed for GOA data source is illustrated in Figure 34. GOA Logical

schema displayed in Figure 35 shows the annotation (association) between GO biological

function feature and the following features:

• Protein from IPI, UniProt, RefSeq and Ensembl;

• Enzyme from ExPASy ENZYME;

• Protein families and domains from InterPro and Pfam.

• Annotation between gene (Entrez Gene) and protein (UniProt) are inserted into

the table gene2protein_imported.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 54

Figure 34 - GOA ER schema

Figure 35 - GOA Logical schema

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 55

6.3 Entrez Gene

Entrez Gene is one of the several online databanks provided by NCBI (National Center for

Biotechnology Information), founded in 1988 at US National Institute of Health (NIH).

Entrez Gene aims to provide tracked, unique identifiers for genes and to report

information associated with those identifiers for unrestricted public use; it focuses on the

genomes that have been completely sequenced or that are scheduled for intense sequence

analysis [29]. The content of Entrez Gene stretches from gene products and map locations

to phenotypes, sequences, variation details, homologs and protein domains.

Entrez Gene provides unique integer identifiers for genes and other loci for a subset of

model organisms. These identifiers (GeneIDs) are specific for each species, i.e. an integer

assigned to a protein in human is different from that in any other species. Identifiers are

assigned to what is annotated as a gene as result of automated integration of data from

NCBI's Reference Sequence project (RefSeq) and from many other databases from NCBI.

Currently, the database contains more than 7 million GeneID records distributed among

more than 7300 taxonomies, most of which about viruses (~ 2400), archea/bacteria

(~ 2300) and eukaryotes (~ 2300).

Entrez Gene provides a unified environment that allows to query the database and search

genes by name, symbol, accessions, publications, chromosome numbers, GO terms, EC

numbers. In Figure 36 a snapshot shows the results of search for human muscular dystrophy.

Figure 36 - Query results for human muscular dystrophy in Entrez Gene

Only the file gene2go was considered for the development of the Thesis. It is a tabular file

with header lines and it reports the GO terms that have been associated with genes in

Entrez Gene. This file, that is available from ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz, is

automatically and daily recalculated by processing the gene_association files on the GO ftp

website http://www.geneontology.org/GO.current.annotations.shtml.

The loader that manages its import is the class GeneToGoLoader.java. An example of records

contained in the file is shown in Figure 37.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 56

Figure 37 - Example of records in file gene2go

The header line, identified by the hash at the beginning, is compared to the list of header

parameters, contained in the variable headerParams in GeneToGoLoader.java, through the

method headerControl() in order to check if errors in file format exist. By analyzing the last

line in the figure, it is possible to identify eight fields:

• Field1: tax_id = 3702 (Arabidopsis)

Unique identifier provided by NCBI Taxonomy for the species.

• Field2: GeneID = 814630

Unique identifier for a gene.

• Field3: GO ID = GO:0045449

GO term identifier.

• Field4: Evidence = TAS

Evidence code in the gene_association file.

• Field5: Qualifier = - (not present in this case)

A qualifier for the association between the gene and the GO term.

• Field6: GO term = regulation of transcription

Name of the term indicated by the GO ID. This field is not imported.

• Field7: PubMed = 11118137

Pipe-delimited set of PubMed ids reported as evidence for the association.

• Field8: Category = Process

GO category (Function, Process, or Component). This field is not imported.

Tables that are populated by parsing this file are gene2biological_function_feature_imported and

pub_ref_4_gene2biological_function_feature_imported.

The Entity Relationship and Logical schemas shown in Figure 38 and Figure 39

respectively include only the association data considered by this file and information about

source attributes, history and similarity.

#Format: tax_id GeneID GO_ID Evidence Qualifier GO_term PubMed Category (tab is used as a separator,
pound sign - start of a comment)
3702 814629 GO:0003676 IEA - nucleic acid binding - Function
3702 814629 GO:0005575 ND - cellular_component - Component
3702 814629 GO:0008150 ND - biological_process - Process
3702 814629 GO:0008270 IEA - zinc ion binding - Function
3702 814630 GO:0003700 ISS - transcription factor activity 11118137 Function
3702 814630 GO:0045449 TAS - regulation of transcription 11118137 Process

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 57

Figure 38 - Entrez Gene ER schema

Figure 39 - Entrez Gene Logical schema

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 58

6.4 Expert Protein Analysis System ENZYME - ExPASy Enzyme

ExPASy (Expert Protein Analysis System) ENZYME is the Swiss Institute of

Bioinformatics (SIB) repository of information about nomenclature of enzymes [30][31].

ExPASy was established in 1993 to offer to the scientific community a new instrument for

the analysis of protein sequences and the prediction of their tertiary structure.

ExPASy server allows access to several genomic and proteomic data sources, with

particular attention to their integration and cooperation. Indeed, ExPASy plays as main

host of following databanks, mainly promoted by SIB in Geneva:

• SWISS-PROT

• SWISS-2DPAGE

• PROSITE

• ENZYME

• SWISS MODEL

ExPASy ENZYME describes each type of characterized enzyme for which an EC

(Enzyme Commission) number has been provided, giving information about alternative

names, catalytic activities, cofactors and pointers to human diseases associated to a

deficiency of the enzyme. Source files of ExPASy ENZYME, available from

ftp://ftp.expasy.org/databases/enzyme/, are:

• enzclass.txt, that contains the international hierarchical classification of enzymes,

providing identifiers of enzymes classes, subclasses and sub-subclasses;

• enzyme.dat, that contains the complete database of enzymes ordered by EC number.

The loader that manages the import of tabular file enzclass.txt is the object

EnzymeClassLoader.java, that extends the parser TabularFileWithFixLengthHeaderParser.java.

The first records of the file are shown in Figure 40.

Figure 40 - Example of records in file enzclass.txt

ENZYME nomenclature database
Swiss Institute of Bioinformatics (SIB). Geneva, Switzerland

Description: Definition of enzymes classes, subclasses and sub-
Subclasses
Name: ENZCLASS.TXT
Release of: 22-Jan-2014

1. -. -.- Oxidoreductases.
1. 1. -.- Acting on the CH-OH group of donors.
1. 1. 1.- With NAD(+)or NADP(+) as acceptor.
1. 1. 2.- With a cytochrome as acceptor.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 59

The header is identified by a line of dashes and it contains information about file’s version,

authors and many additional data that are meaningless for the import operations. Header

lines are compared to the list of parameters contained in the variable headerParams in

EnzymeClassLoader.java and then they are discarded by overriding the method

onHeaderRead().

Hierarchical classification of enzymes is realized through a tree structure. For example, the

subclass '1. 1. -.-' has parent class '1. -. -.-'. The use of string management's methods allows

formatting enzyme ids by removing the last part of identifier that is made of repeated

sequences of characters ' .- '.

The conceptual diagram for ExPASy ENZYME data source is displayed in Figure 41.

Figure 41 - ExPASy ENZYME ER schema

The parsing of enzclass.txt populates tables expasy_enzyme and expasy_enzyme_relationship. All

the other tables that appear in Logical schemas in Figure 42 and Figure 43 are populated by

the file enzyme.txt.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 60

Figure 42 - ExPASy ENZYME Logical schema - imported tables

Figure 43 - ExPASy ENZYME Logical schema - integrated tables

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 61

6.5 Online Mendelian Inheritance in Man - OMIM

OMIM is a complete and daily updated catalog of human genes and genetic disorders, with

links to scientific literature references, sequence records, maps and related databases, such

as DNA, protein sequences and locus-specific mutation databases.

OMIM data provide information about all well-known Mendelian disorders, concentrating

on relation between genotype and phenotype. OMIM data source started in 1960s thanks

to the contribution of Dr. Victor A. McKusick.

Today OMIM is authored and edited at the McKusick-Nathans Institute of Genetic

Medicine, Johns Hopkins University School of Medicine, under the direction of Dr. Ada

Hamosh. The online version of OMIM, available on the WEB since 1987, is attended by

the National Center Biotechnology Information (NCBI) [32][33]. Currently, OMIM data

source provides more than 20000 entries, as shown in Table 4.

Number of entries in OMIM

Prefix Autosomal X Linked Y Linked Mitochondrial Totals

* Gene description 13859 675 48 35 14617

+ Gene and phenotype, combined 99 2 0 2 103

Phenotype description, molecular basis

known

3814 285 4 28 4131

% Phenotype description or locus, molecular

basis unknown

1562 134 5 0 1701

Other 1738 115 2 0 1855

Totals 21072 1211 59 65 22407

 Table 4 - Number of entries in OMIM

OMIM files considered in the GPDW data warehouse are:

• omim.txt: flat file containing all OMIM human genes and phenotypes description;

• genemap.key: flat file describing encoded fields of genemap file;

• genemap: list of OMIM genes ordered by cytogenetic location;

• morbidmap: list of alphabetical ordered genetic diseases in OMIM;

• pubmed_cited: it contains PubMed publication references about genes and disorders.

All these files are freely available from ftp://ftp.ncbi.nih.gov/repository/OMIM/. The

complexity of both conceptual and logical diagrams makes their full representation quite

difficult. The ER schema is split in two parts (Figure 44 and 45), while tables of the Logical

schema are displayed in figures from 46 to 49.

The analysis of source files shows that there are two main ontological entities, omim_gene

and omim_disorder, that are associated each other. There is also a small entity named

omim_clinical_synopsis that is hierarchical self-related and associated to both main features.

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 62

Figure 44 - OMIM ER schema - part I

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 63

Figure 45 - OMIM ER schema - part II

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 64

Figure 46 - OMIM Logical schema - gene

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 65

omim_disorder

PK,FK1 omim_disorder_oid

U1 omim_disorder_id

U1 +omim_disorder_source

+reference

+reference_file

+feature_type

disorder_title

disorder_subitle

disorder_symbol

creation_date

creation_author

I1 is_obsolete

*status

comments

mouse_correlate

year

month

day

*cytogenetic_location

*chromosome

*map_ entry_ number

*molecular_basis_type

*mutation_position

*disease_type

limbo_status

clinical_synopsis_creation_author

clinical_synopsis_creation_date

*term_postion

genetic_disorder

PK genetic_disorder_oid

U1 genetic_disorder_id

U1 +genetic_disorder_source

+reference

+feature_type

name

definition

is_obsolete

*term_position

I1 *inferred

I2 genetic_disorder_concept_oid

omim_disorder_reference_publication

FK1,U1,I1 omim_disorder_oid

U1 author

U1 year

ord

text

U1 progressive_year

+reference_file

omim_disorder_text

PK,FK1,I1 omim_disorder_oid

PK ord

*title

*sub_title

body

+reference_file

omim_disorder_contributors

PK,FK1,I1 omim_disorder_oid

PK ord

author

date

*action

+reference_file

omim_disorder_edit_history

PK,FK1,I1 omim_disorder_oid

PK ord

author

date

+reference_file

omim_disorder_alternative

FK1,U1,I1 omim_disorder_oid

U1 disorder_title

U1 disorder_symbol

+reference_file

genetic_disorder_history_unfolded

U1,I1 genetic_disorder_discontinued_id

U1,I1 +genetic_disorder_source

U1 +reference

FK1,U1 genetic_disorder_oid

I2 *history_type

I3 *inferred

genetic_disorder_history_imported

U1,I1 genetic_disorder_discontinued_id

U1,I1 +genetic_disorder_source

U1 +reference

+reference_file

U1 genetic_disorder_id

I2 *history_type

genetic_disorder_id_translation

U1,I1 genetic_disorder_id

U1,I1 +genetic_disorder_source

FK1,U1,I2 translated_genetic_disorder_oid

is_obsolete_record

I3 *inferred

I4 translated_genetic_disorder_concept_oid

omim_disorder_clinical_synopsis_contributors

PK,FK1,I1 omim_disorder_oid

PK ord

author

date

*action

+reference_file

omim_disorder_clinical_synopsis_edit_history

PK,FK1,I1 omim_disorder_oid

PK ord

author

date

+reference_file

omim_disorder_method

PK,FK1,I1 omim_disorder_oid

PK *method

+reference_file

genetic_disorder_relationship

PK,FK1,I1 term_oid

PK,FK2,I2 related_term_oid

PK,I3 *relationship_type

I4 *inferred

omim_disorder_relationship

PK,FK1,I1 term_oid

PK,FK2,I2 related_term_oid

PK,I3 *relationship_type

I4 *inferred

+reference_file

Figure 47 - OMIM Logical schema - genetic disorder

Considered data sources Chapter 6

Master Thesis by Vincenzo Di Girolamo Page 66

Figure 48 - OMIM Logical schema - clinical synopsis

Figure 49 - OMIM Logical schema - association tables

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 67

7. Implementation of data import automatic

procedures

This chapter is dedicated to the concrete implementation of the automatic procedures for

importing the information provided by data sources previously described.

All the design choices and technical solutions adopted try to concretely implement

computer science best practices in programming, software engineering and database

management [34][35]. Specific use-cases are illustrated to prove the quality of introduced

enhancements and the correctness of the operations performed by new modules described

in the previous chapters.

The discussion focuses on the concrete implementation of the procedures for the

alignment of source feature tables data import to the existing software framework.

The cases in which the format of data defined in source files do not exactly fit the generic

procedures included in GPDW framework, so that the design and implementation of new

components was required, are highlighted to prove the reliability of the resulting platform.

7.1 Parser implementation for go_daily-termdb.obo-xml data file

The import of go_daily-termdb.obo-xml.gz file required the implementation of a new parser to

manage OBO-XML file's type. The parsers already present in the framework do not

include any class that can process this file format; hence, before considering the import of

GO file, it was created the generic abstract class XmlFileParser.java.

This object uses the java package javax.xml.parsers to parse the content of the input file as an

XML document. An instance of DocumentBuilder.java class allows to parse the OBO-XML

document and to return it as Document Object Model (DOM) from which a list of nodes

is built. DOM is an object oriented model to represent structured documents. It is the

W3C language independent standard for representing and interacting with objects in

HTML and XML documents [36].

This model allows dynamically accessing content, structure and style of web document; the

nodes of documents are organized in a tree structure, called the DOM tree, with topmost

node named Document object. This type of implementation requires that the whole content of

the document is analyzed and stored in the local memory, that is a computationally

intensive process that can produce a considerable waste of memory in case of huge files. In

case of GO, this choice is acceptable in relation to the dimension of the file that is

approximately 50 MB.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 68

The implemented Parser explores the list of nodes representing the DOM tree and

"element" nodes are separately scanned by ad-hoc abstract methods according to their

name:

• source - it contains metadata about the source file, such as its identifier, type and full

path. These data are not relevant to the import process;

• header - it includes information about format version, release date, generation date

and namespace of the current ontology. This element also contains the list of

accepted subset and synonym type definitions;

• term - element that describes a GO term;

• typedef - element similar to term;

• instance - element similar to term but not currently used.

The manipulation of the data is left to the concrete implementation of the class, that is an

instance of GOLoader.java in this case. The header tag is shown in Figure 50 and the

semantic structure of element <term> is described in Figure 51.

Figure 50 - go_daily-termdb.obo-xml header

<obo>
 <source>
 <source_id>/share/godev/goterm/... </source_id>
 <source_type>file</source_type>
 ...
 </source>
 <header>
 <format-version>1.2</format-version>
 <data-version>2014-06-14</data-version>
 <date>13:06:2014 07:57</date>
 <saved-by>dph</saved-by>
 <auto-generated-by> TermGenie 1.0</auto-generated-by>
 <subsetdef>
 <id>Cross_product_review</id>
 <name>Involved_in</name>
 </subsetdef>
 <subsetdef>
 <id>goslim_aspergillus</id>
 <name>Aspergillus GO slim</name>
 </subsetdef>
 ...
 <subsetdef>
 <id>virus_checked</id>
 <name>Viral overhaul terms</name>
 </subsetdef>
 <synonymtypedef>
 <id>systematic_synonym</id>
 <name>Systematic synonym</name>
 <scope>EXACT</scope>
 </synonymtypedef>
 <default-namespace>gene_ontology</default-namespace>
 ...
 <ontology>go</ontology>
 <property_value>propformat-version "1.2" xsd:string</property_value>
 </header>

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 69

Figure 51 - OBO ontology term

Below there is a detailed description of each tag of element <term>:

• <id> - The unique id of the current term; it is a seven digit identifier prefixed by

"GO:" and it is usually called term accession number. The numerical portion of the ID has

no inherent meaning or relation to the position of the term in the ontologies.

• <name> - The term name, e.g. mitochondrion, glucose transport, amino acid binding.

Any term may have only one name defined. If multiple term names are defined, it is a

parse error.

• <namespace> - Denotes which of the three sub-ontologies the term belongs to -

cellular component, biological process or molecular function.

• <def> - A textual description of what the term represents, plus references to the

source of the information. All new terms added to the ontology must have a definition;

there remains a very small set of terms from the original ontology that lack definitions,

but the vast majority of terms are defined.

• <is_a> - Describes a sub-classing relationship between one term and another. The

value is the id of the term of which this term is a subclass. A term may have any

number of is_a relationships.

• <alt_id> - Defines an alternate id for the current term. A term may have any number

of alternate identifiers.

• <subset> - Indicates a term subset to which the term belongs. The value of this tag

must be a subset name as defined in a subsetdef tag in the file header. If the value of this

term =
 ## Terms are the fundamental units in an obo ont ology
 ## Also known as classes
 ## Note: here 'term' refers to the primary term - synonyms are a
 ## a different representational entity
 element term {
 id
 & name
 & \namespace
 & def?
 & is_a*
 & alt_id*
 & subset*
 & comment?
 & is_anonymous?
 & is_obsolete?
 & consider*
 & replaced_by*
 & is_root?
 & xref_analog*
 & synonym*
 & relationship*
 & intersection_of*
 & union_of*
 & disjoint_from*
 }

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 70

tag is not mentioned in a subsetdef tag, a parse error will be generated. A term may

belong to any number of subsets.

• <comment> - A comment providing extra information about the term and its usage.

There must be zero or one instances of this tag per term description. More than one

comment for a term generates a parse error.

• <is_anonymous> - Whether or not the current term has an anonymous id.

• <is_obsolete> - Boolean value that indicates whether or not the term is obsolete.

Obsolete terms must have no relationships and no defined is_a, inverse_of, union_of,

disjoint_from or intersection_of tags.

Figure 52 - Example of GO obsolete term

• <consider> - Gives a term which may be an appropriate substitute for an obsolete

term, but needs to be looked at carefully by a human expert before the replacement is

done. This tag may only be specified for obsolete terms. A single obsolete term may

have many consider tags. This tag can be used in conjunction with replaced_by.

• <replaced_by> - Gives a term which replaces an obsolete term. The value is the id of

the replacement term. The value of this tag can safely be used to automatically reassign

instances whose instance_of property points to an obsolete term. The replaced_by tag may

only be specified for obsolete terms. A single obsolete term may have more than

one replaced_by tag. This tag can be used in conjunction with the consider tag.

• <is_root> - Boolean value that may be set to true if the term is a root in the current

ontology.

• <xref_analog> - A database cross-reference, or dbxref, that describes an analogous

term in another vocabulary. A term may have any number of dbxrefs. For instance, the

molecular function term retinal isomerase activity is cross-referenced with the Enzyme

Commission (ExPASy ENZYME) entry EC:5.2.1.3;

<term>
 <id>GO:0003732</id>
 <name>snRNA cap binding</name>
 <namespace>molecular_function</namespace>
 <def>
 <defstr>OBSOLETE. Interacting selectively with....</defstr>
 <dbxref>
 <acc>mah</acc>
 <dbname>GOC</dbname>
 </dbxref>
 </def>
 <comment>This term was made obsolete...</comment>
 <is_obsolete>1</is_obsolete>
 <consider>GO:0000339</consider>
 </term>

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 71

• <synonym> - A synonym for the current term, together with cross-references to

describe the origins of the synonym. This tag may also indicate a synonym category or

scope information. The synonym scope may be one of four

values: EXACT, BROAD, NARROW, RELATED. The synonym type must be the id

of a synonym type defined by a synonymtypedef line in the header. If the synonym type

has a default scope, that scope is used regardless of any scope declaration given by a

synonym tag. A term may have any number of synonyms.

Figure 53 - Example of GO synonym term

• <relationship> - Describes a typed relationship between the current term and another

term. The value of this tag should be the relationship type id, and then the id of the

target term. If the relationship type name is undefined, a parse error will be generated.

If the id of the target term cannot be resolved by the end of parsing the current batch

of files, this tag describes a "dangling reference". If a relationship is specified for a term

with true value for is_obsolete , a parse error will be generated.

• <intersection_of> - Indicates that the term is equivalent to the intersection of several

other terms. The value is either a term id, or a relationship type id, a space, and a term

id. A collection of intersection_of tags appearing in a term is also known as a cross-

product definition

• <union_of> - Indicates that the term represents the union of several other terms. The

value is the id of one of the other terms of which this term is a union. If

any union_of tags are specified for a term, at least 2 union_of tags need to be present or it

<term>
 <id>GO:0008152</id>
 ...
 <dbxref>
 <acc>0198547684</acc>
 <dbname>ISBN</dbname>
 </dbxref>
 </def>
 <comment>Note that...</comment>
 <subset>goslim_pir</subset>
 ...
 <synonym scope="narrow">
 <synonym_text>metabolic process resulting in cell growth</synonym_text>
 </synonym>
 <synonym scope="exact">
 <synonym_text>metabolism</synonym_text>
 </synonym>
 ...
 <xref_analog>
 <acc>Metabolism</acc>
 <dbname>Wikipedia</dbname>
 </xref_analog>
 <is_a>GO:0008150</is_a>
 </term>

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 72

is a parse error. The full union for the term is the set of all ids specified by all union_of

tags for that term.

• <disjoint_from> - Indicates that a term is disjoint from another, meaning that the two

terms have no instances or subclasses in common. The value is the id of the term from

which the current term is disjoint. This tag may not be applied to relationship types.

Figure 54 - Example of GO term's relationship

The three different gene products' categories (ontologies) provided by GO are included, in

GPDW framework, as shown in the Logical diagrams supplied in Chapter 6, into the same

major biomedical feature called biological function feature. Hence, in the importing layer,

source tables are populated for each category, or sub-feature, as suggested by GO

ontologies; in the aggregation step, however, all these information are integrated into

database tables directly referring the main entity biological function feature.

<term>
 <id>GO:0098538</id>
 <name>lumenal side of transport vesicle membrane</name>
 <namespace>cellular_component</namespace>
 <def>
 <defstr>The side (leaflet) of the transport vesicle membrane that faces the lumen.</defstr>
 <dbxref>
 <acc>ab</acc>
 <dbname>GOC</dbname>
 </dbxref>
 </def>
 <synonym scope="exact">
 <synonym_text>internal side of transport vesicle membrane</synonym_text>
 </synonym>
 <is_a>GO:0044433</is_a>
 <is_a>GO:0098576</is_a>
 <relationship>
 <type>part_of</type>
 <to>GO:0030658</to>
 </relationship>
 </term>

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 73

7.2 Import of source tables

The following sections contain two examples of concrete implementation of the importing

procedures described in this Thesis for the automatic import of source feature tables.

The population of imported enzyme tables of ExPASy ENZYME and imported

association tables of GOA have been selected as valid examples of the correct integration

of new components in the framework architecture.

7.2.1 ExPASy ENZYME enzyme.dat data file

The file enzyme.dat contains the complete ENZYME database. The object

EnzymeDataLoader.java is the loader that instantiates the parser FlatFileWithHeaderParser.java

to enable parsing operations for the import of data from this file. The code displayed in

Figure 55 describes a typical record of enzyme.dat.

Figure 55 - Example of records in file enzyme.dat

Each line of the data record is identified by a label of two characters. The string '//' is the

termination line and it indicates the end of the record. All the possible labels are listed in

Table 5, where cardinality values are also specified.

Field label Field name Label cardinality

per record

Values

cardinality

per record

ID Identification 1:1 1:1

DE Description 1:n 1:1

AN Alternate Name(s) 0:n 0:1

CA Catalytic Activity 1:n 0:1

CF Cofactor(s) 0:n 0:1

CC Comments 0:n 0:n

PR PROSITE cross-references 0:n 0:n

DR Database cross-references 0:n 0:n

Table 5 - Field labels in file enzyme.dat

ID 1.1.1.2
DE Alcohol dehydrogenase (NADP(+)).
AN Aldehyde reductase (NADPH).
CA An alcohol + NADP(+) = an aldehyde + NADPH.
CF Zinc.
CC -!- Some members of this group oxidize only p rimary alcohols;
CC others act also on secondary alcohols.
CC -!- May be identical with EC 1.1.1.19, EC 1.1 .1.33 and EC 1.1.1.55.
CC -!- Re-specific with respect to NADPH.
PR PROSITE; PDOC00061;
DR Q6AZW2, A1A1A_DANRE; Q568L5, A1A1B_DANRE; Q24 857, ADH3_ENTHI ;
....
//

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 74

Below, the record's fields are briefly described:

• Field1: Identification

EC number is always the first line of an entry.

• Field2: Description

It contains the NC-IUB recommended name for an enzyme. Obsolete EC numbers

are indicated by the following DE line syntaxes:

- DE Deleted entry. for removed enzymes;

- DE Transferred entry: x.x.x.x. where x.x.x.x is the new valid EC number.

• Field3: Alternate Name(s)

Alternative names, different than the recommended one, that are used in the

literature to describe an enzyme.

• Field4: Catalytic Activity

CA lines are used to indicate the reactions catalyzed by an enzyme. The majority of

reactions are described through standard chemical reaction format, while in some

cases free text is used.

• Field6: Cofactor(s)

It indicates which cofactors are required by an enzyme. The format of CF lines is

Cofactor_1; Cofactor_2 or Cofactor_3[; Cofactor_N...].

• Field7: Comments

Free text comments that may be used to convey information on enzyme similarity,

history and actions performed by enzymes, such as catalysis, hydrolysis, reduction

and oxidation.

• Field8: PROSITE cross-references

PR lines are used as pointers to the PROSITE document, specified by its accession

number, that mentions the enzyme being described. The document entry must be

validated by matching the regular expressions defined for PROSITE data source.

• Field9: Database cross-references

DR lines are used as pointers to the UniProtKB/Swiss-Prot entries that correspond

to the enzyme being described. The entry must be validated by matching the regular

expressions defined for UniProt data source.

This meticulous analysis of the file allows the creation of objects of type String, List, Arrays

or HashSet that will act as temporary containers for the data to insert into the specific

Entry structures, mainSrcTblEntries and addSrcTblEntries, that are configured and managed by

GenericLoader. In this way, the insertion of records in database tables become an

automatic standard operation as shown in figures 56 and 57.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 75

Figure 56 - Entry creation for expasy_enzyme table

Figure 57 - Entry creation for expasy_enzyme_action table

/**
* This method creates entries for the expasy_enzyme_action table
*/
private void insertAction(){

 if (action.size() > 0){
 Iterator<String> it = action.iterator();
 for (int i = 0; i < action.size(); i++) {

 mainSrcTblImporters.get(EXPASYENZYME).getAddSrcTblParams().
 get(EXPENZYACT).get(ACT).
 setValue(it.next().toString());
 AdditionalSourceTableEntry ent = new
 AdditionalSourceTableEntry(mainSrcTblImporters.get(EXPASYENZYME).
 getAddSrcTblParams().get(EXPENZYACT));

 entry.getAddSrcTblEntries().get(EXPENZYACT).add(ent);
 actionCnt++;
 }
 }

}

/**
* This method creates entries for the expasy_enzyme source table.
*/
private void insertExpasyEnzyme(){

 if (!expasy.contains(sourceID)) {
 expasy.add(sourceID);

 mainSrcTblParams.get(EXPASYENZYME).get(NAME).setValue(enzymeName);
 if (catalyticActivity.matches(""))
 mainSrcTblParams.get(EXPASYENZYME).get(CATAL).setValue(null);
 else
 mainSrcTblParams.get(EXPASYENZYME).get(CATAL).setValue(catalyticActivity);
 if (cofactor.matches(""))
 mainSrcTblParams.get(EXPASYENZYME).get(COFACT).setValue(null);
 else
 mainSrcTblParams.get(EXPASYENZYME).get(COFACT).setValue(cofactor);

 entry = new MainSourceTableEntry(sourceID, reference, featureTypeEnzyme,
 mainSrcTblParams.get(EXPASYENZYME),
 mainSrcTblImporters.get(EXPASYENZYME).getAddSrcTblEntries());
 insertComment();
 insertAlternativeName();
 insertAction();
 mainSrcTblEntries.get(EXPASYENZYME).add(entry);
 enzymeCnt++;
 }
 else
 logger.warn("Duplicated entry: expasy_id: " + sourceID + " already exists.");
}

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 76

7.2.2 GOA gene_association.goa_<species> data files

Loader class GOAAssociationLoader.java, that extends the class TabularFileWithHeaderParser,

is used to import association data provided in the following files:

• gene_association.goa_uniprot;

• gene_association.goa_human;

• gene_association.goa_arabidopsis;

• gene_association.goa_chicken;

• gene_association.goa_cow;

• gene_association.goa_mouse;

• gene_association.goa_rat;

• gene_association.goa_zebrafish.

The file gene_association.goa_uniprot contains both electronic - computed by using mapping

files - and manual - provided by several data sources - GO annotations. It includes

unfiltered associations between gene products, GO terms and associated annotation

information for all the species considered in UniProt Knowledgebase.

The remaining files provide species-specific annotation and they consider only the subset

represented by individual species; for each file, the annotation set is filtered in order to

reduce redundancy. All the files share the same tabular structure with a single delimiter

represented by the tab character; the information is distributed into the following fields:

• Field1: DB

Database from which annotated entity has been taken. This field is not imported.

• Field2: DB_Object_ID

A unique identifier in the database for the item being annotated. Example: O00165.

• Field3: DB_Object_Symbol

A unique and valid symbol (gene name) that corresponds to the DB_Object_ID.

This field is not imported.

• Field4: Qualifier

This column is used for flags that modify the interpretation of an annotation. The

values that may be present in this field are:

- NOT;

- (NOT|) colocalizes_with;

- (NOT|) contributes_to;

• Field5: GO ID

The GO identifier for the term attributed to the DB_Object_ID.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 77

• Field6: DB:Reference

A single reference to support an annotation. Where an annotation cannot reference

a paper, this field contains a GO_REF identifier [37]. Examples:

GO_REF:0000020, PMID:9058808. This field is mapped into two columns,

reference_ref_id and evidence_ref_source_name by separating the id from the source name;

• Field7: Evidence Code

This column is used for one of the evidence codes supplied by the GO

Consortium. Examples: IDA, IEA.

• Field8: With (or) From

Additional identifier(s) to support annotations using certain evidence codes

(including IEA, IPI, IGI, IMP, IC and ISS evidences). Examples:

InterPro:IPROO1878, EC:3.1.22.1. This field is mapped into two table columns,

supporting_id and supporting_source_name by separating the identifier from the name of

the source;

• Field9: Aspect

One of the three GO ontologies: P (biological process), F (molecular function) or

C (cellular component). This field is not imported.

• Field10: DB_Object_Name

The full UniProt protein name will be present here, if available from UniProtKB. If

a name cannot be added, this field will be left empty. This field is not imported.

• Field11: DB_Object_Synonym

Alternative gene symbol(s) or UniProtKB identifiers are provided pipe-separated, if

available from UniProtKB. If none of these identifiers have been supplied, the field

will be left empty. This field is not imported.

• Field12: DB_Object_Type

The entity being annotated, that is always 'protein' for these files. This field is not

imported.

• Field13: Taxon

Identifier for the species. An interacting taxonomy ID may be included a pipe to

separate it from the primary taxonomy ID. Examples: taxon:9606 (human).

• Field14: Date

The date of last annotation update in the format 'YYYYMMDD'.

• Field15: Assigned_By

Attribution for the source of the annotation. Examples: UniProtKB, AgBase.

• Field16: Annotation_Extension

This column contains cross-references to other ontologies/databases that can be

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 78

used to qualify or enhance the GO term applied in the annotation. This field is not

imported.

• Field17: Gene_Product_Form_ID

The identifier of a specific splice form of the DB_Object_ID. This field is not

imported.

An example of record in gene_association.goa_human file is shown in Figure 58.

Figure 58 - Example of record in file gene_association.goa_human

In GOAAssociationLoader there is a unique method that manages the population of

entries, containing only those field for tables protein2biological_function_feature_imported and

pub_ref_4_protein2biological_function_feature_imported. This method is shown in Figure 59.

Figure 59 - entry creation for GOA association tables

private void insertAssociation() {
 Reference source_id = null ;
 if (!dbxref.isEmpty()){ //secondary association table
 for (Pair<String,String> p: dbxref)
 if (evidenceRefId != null && evidenceRefSourceName != null && evidence != null){
 assSecParams.get(PUBREF4PROT).get(PUBREF_EVIDENCE).setValue(evidence);
 assSecParams.get(PUBREF4PROT).get(PUBREF_QUALIFIER).setValue(qualifier_value);
 assSecParams.get(PUBREF4PROT).get(PUBREF_EV_REF_ID).setValue(evidenceRefId);
 assSecParams.get(PUBREF4PROT).get(PUBREF_EV_REF_SRC_NAME).setValue(evRefSourceName;
 String tempSourceName = evidenceRefSourceName.toUpperCase();
 if (tempSourceName.equals("REACTOME"))
 source_id = ReferenceDB.getInstance().getReferenceId("reactome");
 else
 if (tempSourceName.equals("PMID"))
 source_id = ReferenceDB.getInstance().getReferenceId("pubmed");
 else
 if (tempSourceName.equals("GO_REF"))
 source_id = ReferenceDB.getInstance().getReferenceId("goa");
 else
 source_id = null ;
 assSecParams.get(PUBREF4PROT).get(PUBREF_EV_REF_SOURCE).setValue(source_id);
 assSecParams.get(PUBREF4PROT).get(PUBREF_DATE).setValue(date);
 assSecParams.get(PUBREF4PROT).get(PUBREF_SUPP_ID).setValue(p.getSecond());
 assSecParams.get(PUBREF4PROT).get(PUBREF_SUPP_SOURCE_NAME).setValue(p.getFirst());
 assSecParams.get(PUBREF4PROT).get(PUBREF_REF_FILE).setValue(refFile);
 assSecEntries.get(PROT2BFF).get(PUBREF4PROT).
 add(new AssociationSecondaryEntry(assSecParams.get(PUBREF4PROT), refFile));
 pubRefCnt++;
 if (pubRefCnt % BATCH_SIZE == 0)
 logger.debug("Inserted: " + pubRefCnt + " entries");
 }
 dbxref.clear();
 }
 assParams.get(PROT2BFF).get(PROT2BFF_ASSIGNED_BY).setValue(assigned_by);
 assParams.get(PROT2BFF).get(PROT2BFF_PROT_ID_VER).setValue(proteinId_version);
 assParams.get(PROT2BFF).get(PROT2BFF_INTER_WITH_TAX_ID).setValue(inter_with_tax_id);
 assParams.get(PROT2BFF).get(PROT2BFF_TAXONOMY_ID).setValue(taxonomy_id);
 assEntries.get(PROT2BFF).add(new AssociationEntry(proteinId, goId, "ANNOTATED_TO",
 assParams.get(PROT2BFF), assSecEntries.get(PROT2BFF)));
 protein2bffCnt++;
 if (protein2bffCnt % BATCH_SIZE == 0)
 logger.debug("Inserted: " + protein2bffCnt + " entries");

}

UniProtKB A0AV96 RBM47 GO:0005634 GO_REF:0000039 IEA UniProtKB-SubCell:SL-0191 C

RNA-binding protein 47 RBM47_HUMAN|RBM47 protein taxon:9606 20140607 UniProt

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 79

7.3 Post-processing and data recovery operations on import omim.txt

data file

Before proceeding with the import of OMIM source files, the specific Importer

OmimImporter must perform some pre-processing operations. In particular, it is necessary to

normalize the information about phenotypes localization, that will be stored in the table

omim_clinical_synopsis, in order to build a hierarchical structure of controlled terms. This

requirement is due to the presence of several terms that define the same concept in OMIM

free text files. This issue has been overcame by creating a supporting structure in

GPDW_definition.xml where, for each possible value of field name in omim_clinical_synopsis

table, preferred value, synonyms, group and hierarchical father values are defined. The

skeleton of this supporting structure is displayed in Figure 60.

Figure 60 - Base xml structure for OMIM clinical synopsis normalization

The values extracted from this supporting structure are inserted in the table

log.omim_clinical_synopsis_normalization, that is queried by OmimLoader during the data

extraction from file omim.txt.

The import phase for OMIM has to start with files omim.txt and genemap.key because they

respectively provide information required to identify OMIM entries typology and the

description of codes used in files genemap e morbidmap.

The flat file omim.txt contains the whole free text OMIM database. In this file, a record is

identified by keyword *RECORD* and its fields are associated to keyword *FIELD* XX,

where XX is the label that identifies each field; the values that can be taken by this label are

summarized in Table 6. The structure of an element *FIELD* may differ from that of

other fields according to the semantic meaning of the information it contains; the number

and the order of sub-fields is independently managed by the main field itself. The string

THE END represents the end of the file.

<omim_clinical_synopsis_synonyms source_handle="omim" file_handle="...">
 <group name="..." group_handle="..." />
 <group name="..." group_handle="..." />
 <item name="...">
 <synonym_name />
 <group handle="..."/>
 </item>
 <item name="...">
 <is_preferred />
 <group handle="..."/>
 <group handle="..."/>
 </item>
</omim_clinical_synopsis_synonyms>

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 80

Field label Field name Field cardinality

FIELD NO Mim number Required

FIELD TI Title Required

FIELD TX Text Required

FIELD AV Allelic Variants Optional in gene records. Not present in phenotype records

FIELD SA See also Optional

FIELD RF References Optional

FIELD CN Contributors Optional. This label may be present two times

FIELD CD Creation Date Required. This label may be present two times

FIELD ED Edit History Optional. This label may be present two times

FIELD CS Clinical Synopsis Optional

Table 6 - Field labels in file omim.txt

Below, a detailed explanation of the content of records is provided; it is essential for

understanding the complex data format of the file that causes the modification of the

standard procedures and the use of additional operations:

• *FIELD* NO

The value of Mim number, the unique identifier of OMIM entities, i.e. gene and

genetic disorder, is extracted from this field.

• *FIELD* TI

This field is composed by the following sub-fields:

o Record type. It is identified by the following symbols:

- * : gene with known sequence;

- +: gene with known sequence and phenotype;

- #: phenotype with known molecular bases;

- %: Mendelian phenotype with unknown molecular base;

- ^ : history record;

- The absence of symbol means phenotype with suspected Mendelian base.

o Mim number. The unique identifier already extracted from previous field.

o Title. Feature’s title. In case of history record, the title is substituted by the

operation performed:

- ^275600 REMOVED FROM DATABASE indicates that Mim id 275600

has been deleted from the database;

- ^275650 MOVED TO 214950 indicates that the feature with id 275650 has

been replaced by that with Mim number 214950.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 81

o Symbol (optional). The symbol of gene or genetic disorder.

o Alternative title (optional). Text enclosed between sequence of characters “;;”

and “;;” or between “;;” and “;”

o Alternative symbol (optional). Text enclosed between sequence of characters “;”

and “;;”.

• *FIELD* TX

The field is composed by three optional sub-fields: Title, Subtitle and Body.

• *FIELD* AV

The field is associated only to genes and provides notes on the allelic variants, i.e.

the alteration of the normal gene sequence.

• *FIELD* SA

The field contains information about publication references but is not imported.

• *FIELD* RF

This optional field provides cross-references between OMIM record and scientific

publications. Each reference is fully described with author(s), article’s title, book or

journal’s name, year, volume’s number and pages.

• *FIELD* CN

Optional field used to insert references to contributors of OMIM database

integration. This field includes the name of the author and the type of action, that

can assume the following values: updated, reorganized, revised, edited, reviewed.

• *FIELD* CD

It contains references to the creation of the present record. The name of the author

and the creation date of the current item are included in a single text line.

• *FIELD* ED

This optional field provides references to the revision of the present item. The field

includes the author and the date of the review.

• *FIELD* CS

Optional field that contains data about phenotypes localization. This information

contributes to the definition of the clinical synopsis structure described before. The

field is divided into three sub-fields: Title, Subtitle and Symptom. This field may

include one or many fields of type *FIELD* CD, *FIELD* ED and *FIELD* CN.

All the clinical synopsis original names extracted from fields *FIELD* CS populate the

table log.omim_clinical_synopsis_orig, in order to keep trace of them. Moreover, preferred

values of the same clinical synopsis group populate table omim_clinical_synopsis_subgroup.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 82

If an unknown value of clinical synopsis name is provided by omim.txt, in case of the release

of a new version of the file, the system log prints an error message but the entry is still

inserted in omim_clinical_synopsys table. The ontological structure of clinical synopsis created

by pre-processing operations allows to fill the table omim_clinical_synopsis_relationship by

inserting parent-child relations among the phenotype localization entities.

According to the record type, different source tables are populated by parsing omim.txt.

• If the record describes a gene:

- omim_gene;

- omim_gene_alternative;

- omim_gene_text;

- omim_gene_edit_history;

- omim_gene_contributors;

- omim_gene_reference_publication;

- omim_gene_allelic_variant;

- omim_gene_clinical_synopsis_edit_history;

- omim_gene_clinical_synopsis_contributors;

• For record of phenotypes:

- omim_disorder;

- omim_disorder_alternative;

- omim_disorder_text;

- omim_disorder_edit_history;

- omim_disorder_contributor;

- omim_disorder_reference_publication;

- omim_disorder_clinical_synopsis_edit_history;

- omim_disorder_clinical_synopsis_contributors;

• Independently from record type, the following tables are populated when the field

FIELD CS is present:

- omim_clinical_synopsis;

- omim_clinical_synopsis_subgroup;

- omim_clinical_synopsis_relationship.

The population of history, relationship and association tables for gene and genetic disorder

cannot be directly done in the moment in which the record is parsed.

This issue is due to the way how information is described in the source file and to the

decision, when the extension of the automatic import procedures was designed, of realizing

the entries' processing for all the imported tables in parallel.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 83

Moreover, the population of source feature tables is done using the supporting

TableLoader object, avoiding the direct access to the tables, unlike it was previously done,

until the connection is closed and all the objects that access the DB are flushed.

In details, parsing and loading operations for omim.txt produce the following scenario:

during its execution, when the parser faces an historical record, that is recognized by the

symbol '^' in *FIELD* TI, it is not able to understand if the current entry refers to a gene

or a phenotype, even if in the sub-field Title it is specified the feature that have replaced it

in the source databank. There is no possibility of inserting the history entry in the proper

table and, more important, all the data included in the other fields of the record, that may

be still current and useful, are lost.

This happens because the information provided by the file is not sufficient to support a

deeper analysis and because querying the database is avoided during importing, even

useless when the replacing entity has not been parsed and imported yet.

Similar problems are encountered in populating relationship table omim_gene_relationship and

omim_disorder_relationship and association table gene2genetic_disorder_imported when the

information contained in the record is not sufficient to distinguish between gene and

genetic disorders entities.

The solution to this problem was found by implementing a concrete instance of the post-

processing module. This class, called OmimLoaderPostProc.java, was designed to execute its

operation at Loader level. It was a necessary step because, as already said, the information

provided by omim.txt is used to recognize data in the other OMIM files.

The workflow of the cooperation between OmimLoader and OmimLoaderPostProc can

be summarized by the following points:

• If post-processing flag is off, history records parsed by OmimLoader are inserted in

the database table log.omim_history_tmp as they are stored in the source file, by

copying the full text of the entry. This trick allows to postpone the parsing of these

data during the next post-processing phase. The content of log.omim_history_tmp is

shown in Figure 61.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 84

Figure 61 - log.omim_history_tmp table

• When, for a certain record of gene or disorder, the origin of the Mim number

associated to the current one cannot be identified, the information is parsed and

inserted into a specific ArrayList, where it is stored until the end of file is reached.

Before disposing the Loader, these data populate one of the temporary tables

log.omim_gene_association_tmp and log.omim_disorder_association_tmp, specifically

designed to prepare the population of the final relationship and association tables.

• After that OmimLoader is disposed, post-processing class, defined in xml

configuration file, component is configured. It creates a new instance of

OmimLoader passing as input stream the content of table log.omim_history_tmp.

Post-processing flag is enabled and the standard operations of parsing and loading

of data are performed. A warning message is sent to the log for those records

marked that cannot be inserted in the proper history table in any case, as shown in

Figure 62.

Figure 62 - System log warning messages for omim.txt

[2014-06-19 08:01:59,303]TRACE[omim] - OmimLoader - History record with mimID: 102930 is

REMOVED FROM DATABASE. This entry is not inserted into the DB.

[2014-06-19 08:01:59,303]TRACE[omim] - OmimLoader - History record with mimID: 194530 is

REMOVED FROM DATABASE. This entry is not inserted into the DB.

[2014-06-19 07:59:22,447]TRACE[omim] - OmimLoader - History record with mimID: 600199 is

MOVED TO mimID: 300021 that is unknown. This entry is not inserted into the DB.

[2014-06-19 07:59:22,585]TRACE[omim] - OmimLoader - History record with mimID: 600255 is

MOVED TO mimID: 400000 that is unknown. This entry is not inserted into the DB.

Implementation of data import automatic procedures Chapter 7

Master Thesis by Vincenzo Di Girolamo Page 85

• Finally, when all the data of omim_gene and omim_disorder tables have been loaded in

the database, the SQL queries displayed in figures 63 and 64 are executed in order

to insert data stored in temporary tables in the proper association and relationship

tables.

Figure 63 - SQL query for OMIM relationship tables

Figure 64 - SQL query for gene2genetic_disorder_imported table

INSERT INTO gene2genetic_disorder_imported

(SELECT nextval('value'), source1_id, source1_name, source2_id, source2_name, reference,

reference_file, association_type, taxonomy_id

FROM log.omim_gene_associations_tmp

WHERE (source2_id, source2_name) IN

(SELECT omim_disorder_id, omim_disorder_source

FROM omim_disorder

WHERE omim_disorder_id=source2_id AND omim_disorder_source=source2_name))

INSERT INTO gene2genetic_disorder_imported

(SELECT nextval('value'), source1_id, source1_name, source2_id, source2_name, reference,

reference_file, association_type, taxonomy_id

FROM log.omim_disorder_associations_tmp

WHERE (source2_id, source2_name) IN

(SELECT omim_gene_id, omim_disorder_source

FROM omim_gene

WHERE omim_gene_id=source2_id AND omim_gene_source=source2_name))

nextval('value') retrieves the last oid in the databse, after that the ownership of the generator is passed to the DBMS.
Finally the ownership is reclaimed and the OidGenerator is synchronized with the state of the sequence on the DBMS.

INSERT INTO omim_gene_relationship

(SELECT DISTINCT a.omim_gene_oid, b.omim_gene_oid, tmp.relationship_type, tmp.inferred,

tmp.reference_file

FROM log.omim_gene_associations_tmp AS tmp

JOIN omim_gene AS a ON tmp.source1_id=a.omim_gene_id AND

tmp.source1_name=a.omim_gene_source

JOIN omim_gene AS b ON tmp.source2_id=b.omim_gene_id AND

tmp.source2_name=b.omim_gene_source

WHERE (a.omim_gene_oid, b.omim_gene_oid, tmp.relationship_type, tmp.inferred,

tmp.reference_file)

NOT IN (SELECT term_oid, related_term_oid, relationship_type, inferred, reference_file

FROM omim_gene_relationship))

INSERT INTO omim_disorder_relationship

(SELECT DISTINCT a.omim_disorder_oid, b.omim_disorde_oid, tmp.relationship_type,

tmp.inferred, tmp.reference_file

FROM log.omim_disorder_associations_tmp AS tmp

JOIN omim_disorder AS a ON tmp.source1_id=a.omim_disorder_id AND

tmp.source1_name=a.omim_disorder_source

JOIN omim_disorder AS b ON tmp.source2_id=b.disorder_gene_id AND

tmp.source2_name=b.omim_disorder_source

WHERE (a.omim_disorder_oid, b.omim_disorder_oid, tmp.relationship_type, tmp.inferred,

tmp.reference_file)

NOT IN (SELECT term_oid, related_term_oid, relationship_type, inferred, reference_file

FROM omim_disorder_relationship))

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 86

8. Validation and testing

8.1 Imported data errors and inconsistencies

This section groups all the anomalies found during the import operations of the considered

data source files. Additional testing has been performed to validate the content of data in

imported tables and new technical solutions have been proposed to manage errors and

inconsistencies.

8.1.1 GO

The anomalies encountered during the import of file go_daily-termdb.obo-xml concern the

definition and the content of <xref_analog> and <synonym> tags in many GO term

description.

The element <xref_analog> is used to specify id and name of entity from different data

sources that are referred by the current term to describes associations.

A limited number of pathway identifiers from REACTOME do not match the regular

expressions provided for the databank; this particular format, indeed, includes details on

the pathaway id version. Using string management's methods, pathway ids are formatted in

the proper manner. In order to store this additional information, the definition of

biological_function_feature2pathway_imported table has been updated by adding the column

pathway_id_ver at the end, as shown in Figure 65.

Figure 65 – biological_function_feature2pathway_imported table

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 87

The second anomaly in the source data file was encountered in the description of term with

identifier GO:0031362 where, for a given synonym definition, null value of tag

<synonym_text> and empty value of attribute scope generate an IllegalArgumentException

error message in the log that forces the termination of the parser.

This issue has been solved by adding a conditional block to avoid stopping the execution

of the parsing and loading of the obo-xml file. In this case, a warning message is printed in

the system log, specifying the details of the error.

8.1.2 GOA

No anomalies have been discovered during the import operations of files ec2go, interpro2go,

pfma2go and gp2protein.geneid. Analysis and testing mainly focused on the huge amount of

records imported from files gene_association.goa_<species>, already described in Chapter 7,

section 2.2.

The complexity of the relations between the fields described in these files required a deep

investigation of the information included in the UniProt-GOA website and in the

README files provided there. Furthermore, a direct explaination request to database

curators have been sent to confirm the analysis carried out.

In details, these files populate the table protein2biological_function_feature_imported and

pub_ref_4_protein2biological_function_feature_imported shown in the logical diagram of GOA.

A set of tests have been performed to validate the proposed organization of the data into

the two tables, ensuring that no additional tuples are generated and no related information

are separated by this logical division. A temporary table including all the file’s fields under

analysis have been created to run the tests. Two examples of these tests are displayed in

Figure 66: the former checks the cardinality of column evidence_ref_id (derived from file’s

field DB:Reference) for each association record; the latter verifies that columns supporting_id

and supporting_source_name (derived from file’s field With (or) From) are related to the data in

evidence_ref_id and not to the association imported oid.

Figure 66 – SQL queries for GOA secondary association table

SELECT COUNT (DISTINCT evidence), association_imported_oid, evidence_ref_id, evidence_ref_source_name

FROM pub_ref_4_protein2bff_temp

GROUP BY association_imported_oid, evidence_ref_id, evidence_ref_source_name

HAVING COUNT (DISTINCT evidence) > 1

SELECT association_imported_oid, COUNT (DISTINCT evidenc_ref_id), COUNT (supporting_id)

FROM pub_ref_4_protein2bff_temp

GROUP BY association_imported_oid

HAVING COUNT (supporting_id) > 1 AND COUNT (evidence_ref_id) > 1

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 88

The result of the tests shows that a further organization of the data that populate

pub_ref_4_protein2biological_function_feature_imported table is not allowed; all the fields that are

object of the analysis have to be constrained by a unique index to ensure the goodness of

imported data.

A new solution for the organization of secondary association tables has been proposed in

order to simplify data access and speed-up querying time, that are necessary for densely

populated tables. This proposal includes the addition of another level of secondary

association tables but it has not been still implemented because it probably requires several

changes in both AssocitionDataLoader and xml configuration files’ structure.

The usage of this enhancement, that will be definitively implemented in the future

developments of GPDW project, for GOA association tables is sketched in Figure 67.

Figure 67 – Proposed solution for GOA secondary association tables

8.1.3 Entrez Gene

No anomalies or errors have been encountered during the import of association data

between gene and biological_function_feature entities from the single file, gene2go, that has

been considered in the development of the Thesis.

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 89

8.1.4 ExPASy ENZYME

There are no inconsistencies discovered during the import of files enzclass.txt and enzyme.dat.

However it has been decided to report in the system log few unusual situations that can

help the administrator to verify the absence of errors into the imported data:

• The import of EC numbers that identify enzymes for which there exists no enzyme

class or subclass they belong to.

• In enzyme.dat, the matching of substrings in field Comment, labeled with symbol CC,

with the recognized similarity patterns that describe the enzyme actions. In few

cases no related EC numbers are not specified and similarity relations cannot be

identified.

8.1.5 OMIM

Below there is an overview of the problems found during the validation of the import

procedures for OMIM files. The action taken to solve these issues are briefly described.

• omim.txt

- During the parsing of field *FIELD* CS several errors due to a wrong format

of the textual block describing the clinical synopsis information have been

discovered; the anomalies are reported in the log of the program. In case of

new definitions of clinical synopsis in the new release of the file, the

administrator can update the omim_clinical_synopsis_synonyn structure to

overcome the errors.

- The records in the field *FIELD* CN where there are not present the name

and action of the contributor to the integration of OMIM database are

discarded and the incosistent information is reported in the log.

- As shown in Figure 62, warning messages are sent to the log of the program for

history records that, after the post-processing operations, cannot be inserted in

the correct history table because of the uncertainty on the feature type. This

issue is reflected and may propagates to the parsing of genemap and morbidmap

files.

• genemap

- According to the content of genemap.key file, the records provided by genemap are

made of 18 fields. In many cases, when the last field Reference is not specified,

the record counts only seventeen columns and the TabularFileParser may

generate an exception. This problem goes over through redefining the method

that check this event so that no warning messages are displayed.

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 90

- A list, made of 11 items, of the method codes that differ from the expected flag

values defined in genemap.key is returned at the end of GenemapLoader

execution. These entries are not inserted in the database.

- From the set of fields named Disorders it is possible to retrieve the name and the

Mim number of the phenotypes related to the current entity, that can be a gene

or another disorder. There were discovered more than 700 records that contain

only the name of disorder; the lack of the identifiers determines the

impossibility of inserting these additional information in the database, hence

data from this field are discarded and warning messages are displayed in the log.

8.2 Quantification of imported data and running time

Below there is a list of tables containing running time and quantification of imported data

from the data sources considered for the development of the Thesis. Testing phase has

been performed on a machine with processor Intel CoreTM i5-3210M with 2.5Ghz

processor speed and disk HITACHI with 5400RPM and 8Mb of cache.

Data source Parser Table populated Number of entries Running time

GO GOLoader 22 328.202 223 sec

GOA

EcToGoLoader 1 5.253 1 sec

PfamToGoLoader 1 10.579 2 sec

InterproToGoLoader 1 28.393 6 sec

GpToProteinLoader 1 11.547.100 2.471 sec

GOAAssociationLoader 2 597.351.000 113.550 sec

Entrez Gene GeneToGoLoader 2 1.595.794 315 sec

ExPASy

ENZYME

EnzymeClassLoader 2 660 < 1 sec

EnzymeDataLoader 9 38.506 12 sec

OMIM

OmimLoader 22 818.190 8.095 sec

GenemapKeyLoader 0 - < 1 sec

GenemapLaoder 10 51.779 662 sec

MorbidmapLoader 6 12.358 88 sec

PubmedLoader 2 143.745 2.131 sec

Table 7 – Total number of imported entries and running time

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 91

Data source Table name Number of entries

GO

biological_function_feature_similarity_imported 1.660

biological_function_feature_history_imported 2.225

biological_function_feature2enzyme_imported 5.407

biological_function_feature2pathway_imported 28.848

go_biological_process 25.390

go_biological_process_synonym 58.633

go_biological_process_subset 5.772

go_biological_process_dbxref 1.698

go_biological_process_definition_dbxref 44.612

go_biological_process_relationship 56.533

go_cellular_component 3.298

go_cellular_component_synonym 2.919

go_cellular_component_subset 829

go_cellular_component_dbxref 406

go_cellular_component_definition_dbxref 5.952

go_cellular_component_relationship 5.868

go_molecular_function 10.446

go_molecular_function_synonym 26.502

go_molecular_function_subset 3.264

go_molecular_dbxref 9.795

go_molecular_function_definition_dbxref 16.651

go_molecular_function_relationship 11.494

Table 8 – Details of imported tables of GO

Data source Table name Number of entries

GOA

biological_function_feature_imported2enzyme_imported 5.271

biological_function_feature_imported2protein_fam_dom_imported 38.972

gene2protein_imported 11.547.100

protein2biological_function_feature_imported 264.694.000

pub_ref_4_protein2biological_function_feature_imported 332.657.000

Table 9 – Details of imported tables of GOA

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 92

Data source Table name Number of entries

Entrez Gene
gene2biological_function_feature_imported 1.171.140

pub_ref_4_gene2biological_function_feature_imported 424.654

Table 10 – Details of imported tables of Entrez Gene

Data source Table name Number of entries

ExPASy ENZYME

enzyme2protein_fam_dom_imported 1.283

enzyme_history_imported 2150

enzyme_similarity_imported 48

expasy_enzyme 5.778

expasy_enzyme_action 872

expasy_enzyme_alternative_name 9.326

expasy_enzyme_comment 9.940

expasy_enzyme_relationship 5.772

protein2enzyme_imported 3.997

Table 11 – Details of imported tables of ExPASy ENZYME

Validation and testing Chapter 8

Master Thesis by Vincenzo Di Girolamo Page 93

Data source Table name Number of entries

OMIM

gene2clinical_synopsis_imported 952

gene2genetic_disorder_imported 6.341

gene2publication_reference_imported 91.061

gene_history_imported 473

genetic_disorder2clinical_synopsis_imported 25.556

genetic_disorder2publication_reference_imported 52.480

genetic_disorder_history_imported 394

omim_clinical_synopsis 77

omim_clinical_synopsis_relationship 19

omim_clinical_synopsis_subgroup 78

omim_disorder 5.018

omim_disorder_alternative 4.604

omim_disorder_clinical_synopsis_contributors 956

omim_disorder_clinical_synopsis_edit_history 5.438

omim_disorder_contributors 7.206

omim_disorder_edit_history 41.996

omim_disorder_method 617

omim_disorder_reference_publication 30.700

omim_disorder_relationship 3.203

omim_disorder_text 11.060

omim_gene 10.324

omim_gene_allelic_variant 17.634

omim_gene_alternative 11.123

omim_gene_clinical_synopsis_contributors 35

omim_gene_clinical_synopsis_edit_history 66

omim_gene_contributors 29.869

omim_gene_edit_history 96.239

omim_gene_method 12.611

omim_gene_reference_publication 76.274

omim_gene_relationship 32.935

omim_gene_text 38.542

phenotype_4_gene2clinical_synopsis_imported 6.534

phenotype_4_genetic_disorder2clinical_synopsis_imported 185.089

Table 12 – Details of imported tables of OMIM

Final discussions and conclusions Chapter 9

Master Thesis by Vincenzo Di Girolamo Page 94

9. Final discussions and conclusions

The proposed goals of this Thesis have been achieved through a reengineering activity of

the GPDW framework, the renovation of data importing procedures, the enhancements of

configuration processes and the creation of new software packages that accomplish the

requirement of modularity, abstraction and generalization of the automatic procedures of

GPDW data import and integration.

The final result of this Thesis is represented by the integration of new components,

described in Chapter 5, to the existing software framework; they generalize and ease the

automatic import, aggregation and quality improvement of genomic and proteomic data

from different biomolecular databanks, which will be available to the scientific community

through the Genomic and Proteomic Knowledge Base (GPKB) Web interface, that is

available from http://www.bioinformatics.dei.polimi.it/GPKB/ [29].

The work has been scheduled into three main stages:

1. Analysis of the existing GPDW framework in order to highlight design limitations,

limitations and procedures that needed to be optimized.

2. Design and implementation of generic and customizable procedures for automatic

importing and integration of data in the data warehouse. This stage can be divided

into three main activities:

• Enhancements of GPDW_definition.xml and feature_definitions.xml

configuration files in order to overcome limitations in the description of

features and sources and to introduce new templates for the definition of

feature tables.

• Development of generic and reusable Loader components for the

automatic import of source feature tables.

• Design of new modules for post-processing and data recovery operations

that can be implemented at different stages of the import process.

3. Application of the implemented procedures for the importing of data provided by

Gene Ontology, GOA, Entrez Gene, OMIM and ExPASy ENZYME databanks.

In particular, this task required the following activities:

• Analysis of source data files to verify the consistency and the truthfulness

of conceptual and logical diagrams previously designed for the considered

data sources; the update of these schemas to face changes in data provided

by the considered databanks was performed, when necessary.

• Insertion in the GPDW framework configuration files of source definitions

and of the description of data file content, i.e. feature and annotation items.

Final discussions and conclusions Chapter 9

Master Thesis by Vincenzo Di Girolamo Page 95

When additional information are available, directly or indirectly, from the

data, the description is extended with data of similarity, history, hierarchical

relationship, sub-features and external references to information supplied

by other sources.

• Development of Parser and specific Loader java objects, by extending the

developed generic classes, to extract data from the considered sources and

enabling their automatic importing in the data warehouse.

• Validation of the generic procedures for specific source cases. This step can

highlight data errors, also due to particular data of the considered source,

that may be fixed through the use of specific post-processing and data

recovery operations, whose generic calling has been designed and

implemented.

• Final testing and validation of imported data, quantification of errors and

inconsistencies, and evaluation of import time.

The use of generic abstract classes, the implementation of new automatic procedures for

the import of source tables, and the design and development of generic classes for data

recovery and post-processing make the import layer completely generalized and available

for considering a growing number of databanks. The developed importing architecture

allows a robust control of imported data and their quality and provenance, and opens the

way to validate their high accuracy by cross-references between data imported from

different sources.

The amount and, mainly, the quality of data concerning both biological and biomolecular

entities that have been imported and integrated in the data warehouse may unveil new

knowledge about genomice and proteomice features. The quality check automatically

performed in parsing, data loading and at the end of the import process may also reveal

inconsistencies and missing information in the databanks, supporting the quality

improvement of genomic and proteomic data available and used by biologists and

researchers.

Future developments Chapter 10

Master Thesis by Vincenzo Di Girolamo Page 96

10. Future developments

Genomic and Proteomic Data Warehouse project aims to introduce a novel approach to

support the integration of a considerable number of data sources that deal with biomedical

and biomolecular information.

GPDW project will continue by increasing the number of considered data sources. The

import approach, developed with the contribution of the enhancements described in this

Thesis, that is now applied to Gene Ontology, GOA, EntrezGene, GAD, OMIM and

ExPASy ENZYME will be extended to other public databanks that are matter of interest

for the goals of the project.

A future development concerns update of the conceptual and logical design of database

schemas. The designed diagrams derive from the concrete translation for the specific

sources of the global conceptual data model. The objective will be to extend the model,

preserving its key feature, abstraction, generalization and customization, in order to

improve the logical organization of data. For example, the introduction a second level of

additional association tables and additional feature tables may reduce the complexity of

database tables and speed-up their access time.

This task will require a partial reimplementation of Loader java objects that manage this

specific table’s types and, moreover, the review of XML configuration files to enable the

extension of the automatic import procedures to the new database tables.

Furthermore, the implementation of procedures for the aggregation and elimination of

replicated records is still problematic and time-consuming; a simplification of the whole

replicates checking and merging/elimination process can be useful to reduce its impact in

terms of time and memory waste, in particular when the amount of file entries is quite

large.

Finally, it is already planned the update of the group of packages for downloading the files

of the considered databanks directly from the original source, in order to fully automate the

import process, supply frequently updated information to the framework and,

consequently, guarantee higher quality and consistency of imported data.

References

Master Thesis by Vincenzo Di Girolamo Page 97

References

[1] Masseroli M. Biomolecular Databanks. Bioinformatica e biologia computazionale per

la medicina molecolare [Online]; 2010. Available from:

http://www.bioinformatics.polimi.it/masseroli/bbcmm/dispense/9_BiomolecularDat

aBanks.pdf

[2] Canakoglu A. Integration of biomolecular interaction data in a genomic and proteomic

data warehouse [Online]; 2011; p. 5-6, 20-24.

Available from: https://www.politesi.polimi.it/handle/10589/16924

[3] Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC et al. From proteins

to proteomes: large scale protein identification by two-dimensional electrophoresis and

amino acid analysis. Bio/technology (Nature Publishing Company); 1996; 14(1):61-65.

[4] Masseroli M. BioMedical Terminologies and Ontologies. ICT for Health Care and Life

Sciences [Online]; 2013. Available from:

http://www.bioinformatics.deib.polimi.it/masseroli/ICT4HCLS/material/4a_BioMedi

calTerminologies-Ontologies.pdf

[5] Masseroli M, Pinciroli F. Using Gene Ontology and genomic controlled vocabularies to

analyze high-throughput gene lists: three tool comparison. Computer in biology and

medicine. 2006 Jul-Aug; 36(7-8): p.731-747.

[6] Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B et al. Reactome

knowledgebase of human biological pathways and processes. Nucleic Acids Res. Jan

2009; 37:D619-D622.

[7] OBO - Open Biological and Biomedical Ontologies. 2014.

Available from: http://www.obofoundry.org/about.shtml

[8] Smith B, Ashburner M, Rosse C, Bard J, Ceusters W, Goldberg LJ et al. The OBO

Foundry: coordinated evolution of ontologies to support biomedical data integration.

Nat Biotechnol. 2007 Nov; 25(11):1251-1255.

[9] Khatri P, Done B, Rao A, Done A, Draghici S. A semantic analysis of the annotations

of the human genome. Bioinformatics 2005, 21(16):3416-3421.

[10] Masseroli M, Chicco D, Pinoli P. Probabilistic Latent Semantic Analysis for prediction

of Gene Ontology annotations. In: Proc. WCCI 2012 IEEE World Congress on

Computational Intelligence; The 2012 Int. Joint Conf. Neural Networks (IJCNN).

Edited by Abbass HA. Piscataway, NJ, IEEE 2012, 2891-2898.

[11] Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol. Syst.

Biol. 2007, 3:88.

References

Master Thesis by Vincenzo Di Girolamo Page 98

[12] Masseroli M, Canakoglu A, Quigliatti M. Detection of Gene Annotations and Protein-

Protein Interaction Associated Disorders through Transitive Relationships between

Integrated Annotations. BMC Bioinformatics. 2014 (submitted for publication).

[13] Masseroli M, Canakoglu A. Genomic and proteomic data integration and identification

of missing annotations. In: Fogolari F, Policriti A, editors. BITS 2013: 10th Annual

Meeting of the Bioinformatics Italian Society; May 21-23, 2013; Udine, IT. Udine, IT: IGA;

2013. p. 101.

[14] Atzeni P, Ceri S, Fraternali P, Paraboschi S, Torlone R. Basi di dati: Architetture e

linee di evoluzione. McGraw-Hill Italia. 2007.

[15] Maffezzoli A, Masseroli M. Chapter XLV: Genomic databanks for biomedical

informatics. In: Lazakidou AA, editor. Handbook of Research on Informatics in Healthcare and

Biomedicine. ISBN 1-59140-982-9. Hershey, PA: Idea Group Inc.; 2006. P.357-366.

[16] Ghisalberti G, Masseroli M. Tassonomia di file di dati di annotazioni genomiche e

proteomiche. Bioinformatica e biologia computazionale per la medicina molecolare.

[Online]; 2010. Available from:

http://www.bioinformatics.polimi.it/masseroli/bbcmm/dispense/esercitazioni/E4_T

assonomiaFileDati.pdf

[17] XML - eXtensible Markup Language. 2014.

Available from: http://www.w3.org/standards/xml/core

[18] Canakoglu A, Masseroli M. Genomic and proteomic data integration for

comprehensive biodata search. In: Masseroli M, Romano P, Lisacek F,

editors. EMBnet.journal 2012 Nov; 18(Supplement B) NETTAB 2012: “Integrated Bio-

Search”; 2012 Nov 14-16; Como, IT. ISSN 1023-4144. Nijmegen, NL: EMBnet

Stichting; 2012. Vol. 18, Supplement B, p. 89-91.

[19] Davidson SB, Overton C, Tanen V, Wong L. BioKleisli: a digital library for biomedical

researchers. Int. J. Digit. Libr. 1997, 1:36-53.

[20] Davidson SB, Crabtree J et al. K2/Kleisli and GUS: Experiments in integrated access

to genomic data sources. IBM System Journal vol. 40, no. 2, p. 512-531, 2001.

[21] Canakoglu A, Masseroli M, Ceri S, Tettamanti L, Ghisalberti G, Campi A. Integrative

warehousing of biomolecular information to support complex multi-topic queries for

biomedical knowledge discovery. In: Nikita SK, Fotiadis DI, editors. Proceedings of the

2013 Thirteenth IEEE International Conference on Bioinformatics and Bioengineering: BIBE

2013, 2013 Nov 10-13; Chania, GR. [CD-ROM] ISBN 978-1-4799-3163-7. Los

Alamitos, CA: IEEE Computer Society; 2013. 159, p. 1-4.

[22] Canakoglu A, Ghisalberti G, Masseroli M. Integration of biomolecular interaction data

in a genomic and proteomic data warehouse to support biomedical knowledge

discovery. In: Biganzoli E, Vellido A, Ambrogi F, Tagliaferri R, editors. Computational

References

Master Thesis by Vincenzo Di Girolamo Page 99

Intelligence Methods for Bioinformatics and Biostatistics. ISBN 978-3-642-35685-8. Heidelberg,

D: Springer; 2012. p. 112-126. (Lecture Notes in Bioinformatics; vol 7548).

[23] Sujansky W. Heterogeneous database integration in biomedicine. J. Biomed. Inform. vol

34, no. 4, p. 285-298, 2001.

[24] PCRE - Perl Compatible Regular Expression. 2014. Available from:

http://www.pcre.org/pcre.txt

[25] Di Stefano D. Architetture per l'importazione automatica di dati genomici e

proteomici in un data warehouse integrato [Online]; 2011. p. 19-20, 37-43.

Available from: https://www.politesi.polimi.it/handle/10589/16983

[26] GO - Gene Ontology. 2014.

Available from: http://www.geneontology.org/GO.doc.shtml

[27] Harris M, Lomax J, Ireland A, Clark JI. The Gene Ontology project. John Wiley & Sons,

Ltd. Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. Part 4. Bioinformatics

4.7. Structuring and Integrating Data, 2005.

[28] Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J et al. The Gene

Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene

Ontology. Nucleic Acids Res. Jan 1, 2004; 32: D262-D266.

[29] Maglott D, Ostell J, Tatusova T. Entrez Gene: gene-centered information at NCBI.

Nucleic Acids Res. (2011) 39 (suppl 1): D52-D57.

[30] ExPASy ENZYME - Expert Protein Analysis System ENZYME. 2014. Available

from: http://enzyme.expasy.org/

[31] Artimo P, Jonnlagedda M, Arnold K, Baratin D, Csardi G, de Castro E et al. ExPASy:

SIB bioformatics resource portal. Nucleic Acids Res. 2012 Jul; 40:W597-603.

[32] OMIM - Online Mendelian Inheritance in Man. 2014. Available from:

http://www.ncbi.nlm.nih.gov/omim

[33] Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick’s Online Mendelian

Inheritance in Man (OMIM). Nucleic Acids Res. 2009 Jan; 37: D793-6.

[34] van Vlie H. Software Engineering: Principles and Practice. 3rd ed. Wiley. 2008.

[35] Elmasri R, Navathe SB. Fundamentals of Database Systems. 6th ed. Pearson. 2010

[36] Document Object Model (DOM). 2014.

Available from: http://www.w3.org/DOM/

[37] Gene Ontology Reference Collection. 2012.

Available from: http://www.geneontology.org/doc/GO.references

