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Abstract

In recent years, concerns about reactor safety have increased the need for

computational methods that can provide accurate information about time-

evolving scenarios, such as those occurring by design (transients, start-up,

etc.) or by accident (rod ejection, for instance). In this respect, the atten-

tion has been directed to the Monte Carlo methods, which are very accurate

since introduce a minimal amount of approximations. Monte Carlo methods

including the time dependence have been recently proposed: the Dynamic

Monte Carlo methods, which allow assessing the complete time evolution of

the neutron population. However, a non-negligible drawback is that these

methods suffer from slow convergence and are very time-consuming. If one is

interested in the asymptotic (long time) behaviour of the system, instead of

the full time dynamics, a possible solution is to resort to the α-static Monte

Carlo method, which is very accurate and less time-consuming than dynamic

methods. This latter is the subject of this thesis.

We will show that the α-static Monte Carlo method allows determining

the asymptotic time behaviour of the neutron population by transforming

the time-dependent Boltzmann equation into an eigenvalue problem (the so

called α eigenvalue). The mathematical theory at the basis of this method

and the properties of the α-eigenvalue spectrum of the Boltzmann operator
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will be explained; in particular, we will show that the asymptotic time be-

haviour of the neutron population is dominated by the algebraically largest

eigenvalue, named the fundamental eigenvalue. Then, we will present a

Monte Carlo algorithm to solve the eigenvalue problem.

Finally, we will address the diffusion of neutrons in moderating materials

and we will assess the asymptotic time behaviour of the system by using

the α-static method. To this aim, during the work of this thesis, we have

developed a Monte Carlo α-static code, based on the algorithm proposed,

which provides the fundamental eigenvalue α0 and the associated eigenfunc-

tion. We have also developed a dynamic Monte Carlo code, which can be

used as reference to assess the time behaviour of the system. Finally, we

have developed a deterministic solver, which provides a picture of the entire

α-eigenvalue spectrum.

The key results of the simulations performed will be presented with a dou-

ble aim: to validate the α static methods and to explore some interesting

physical properties of moderators.
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Sommario

Negli ultimi anni, la crescente attenzione verso la sicurezza dei reattori nucle-

ari ha evidenziato la necessità di metodi computazionali che possano fornire

informazioni accurate sulla dinamica degli scenari dipendenti dal tempo, sia

quelli previsti by design (avvio del reattore, transitori di potenza, etc.) sia

quelli incidentali, per esempio l’espulsione di una barra di controllo. In questo

contesto, è naturale che l’attenzione si sia rivolta ai metodi Monte Carlo, nei

quali le approssimazioni introdotte sono minime e, pertanto, sono molto accu-

rati. Recentemente sono stati proposti dei metodi Monte Carlo che includono

la dipendenza dal tempo: i metodi Monte Carlo dinamici, che permettono di

stimare l’intera evoluzione temporale della popolazione neutronica. Tuttavia,

questi metodi hanno un innegabile svantaggio: è necessario un considerevole

tempo di calcolo per ottenere dati statisticamente validi. In alcune situazioni,

può capitare che non sia necessario conoscere la dinamica completa del sis-

tema considerato, ma che sia sufficiente il solo comportamento asintotico: in

questo caso, una possibile soluzione consiste nel ricorrere al metodo Mon-

tecarlo α-statico che, pur essendo molto accurato, richiede tempi di calcolo

decisamente inferiori rispetto ai metodi dinamici. Questa tesi è incentrata

proprio sul metodo α-statico.

Nel seguito, verrà mostrato come il metodo α-statico, trasformando l’equazione
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di Boltzmann dipendente dal tempo in un problema agli autovalori, consenta

di trovare il comportamento asintotico nel tempo della popolazione neu-

tronica. Nella tesi verranno descritte la teoria matematica alla base di tale

metodo e le proprietà dello spetto degli autovalori α associati all’operatore di

Boltzmann; in particolare, verrà dimostrato che il comportamento asintotico

della popolazione neutronica è dominato dal più grande tra gli autovalori:

l’ autovalore fondamentale α0. Successivamente, presenteremo un algoritmo

Monte Carlo per risolvere il problema agli autovalori.

Infine, tratteremo la diffusione dei neutroni nei materiali moderatori e cercher-

emo il comportamento asintotico del sistema usando il metodo α-statico. A

tale scopo, durante questo lavoro di tesi, è stato sviluppato un codice Monte

Carlo α-statico, basato sull’algoritmo proposto, capace di trovare l’autovalore

fondamentale α0 e l’autofunzione a questo associata. Abbiamo sviluppato an-

che un codice Monte Carlo dinamico, il quale fornisce la completa evoluzione

temporale del sistema; i dati forniti da questo secondo codice possono essere

considerati i risultati di riferimento per valutare la correttezza delle infor-

mazioni fornite dal codice α-statico. Infine, abbiamo sviluppato anche un

solver deterministico, che fornisce l’intero spetto degli autovalori α. I risul-

tati più importanti delle simulazioni effettuate verranno presentati con un

duplice obiettivo: la validazione dei metodi α-statici e lo studio di alcune

interessanti proprietà fisiche dei moderatori.
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Chapter 1

Introduction

This thesis represents the final project for the Master of Science program

in Nuclear Engineering of the Politecnico di Milano (Italy) and is the re-

sult of a six months internship at the Service d’Etudes des Réacteurs et de

Mathématiques Appliquées (SERMA) of CEA/Saclay.

The aim of the SERMA is the modelisation of nuclear systems, in particu-

lar in the field of reactor physics and radiation shielding. My work has been

carried out at the Laboratoire du Transport Stochastique et Déterministe

(LTSD), which conceives mathematical and numerical algorithms and devel-

ops computer codes aimed at simulating radiation transport. In particular,

the LTSD laboratory is in charge of developing the 3-dimensional continuous-

energy Monte Carlo code TRIPOLI-4 R©.

Monte Carlo methods allow evaluating neutron and photon flux (i.e, solving

the Boltzmann linear transport equation) by simulating the stochastic tra-

jectories of neutrons and photons in phase space.
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For historical reasons, also due to the limited computer power available at

the time these methods were first introduced, Monte Carlo is mainly adopted

to determine the stationary solution of the Boltzmann equation, where the

time evolution can be safely neglected (the so called “static” calculations).

In particular, in the context of radiation shielding Monte Carlo methods are

typically used to solve for fixed-source problems, whereas in reactor physics

they are typically used to determine the effective multiplication factor (keff) of

the system and for this reason take the name of k-static methods. Generally

speaking, Monte Carlo methods are very accurate, because they introduce a

minimal amount of approximations, but they suffer from slow convergence

and are thus more time-consuming than deterministic methods. In this re-

spect, Monte Carlo simulation is typically adopted for performing reference

calculations, against which the results of the faster (but approximated) de-

terministic solvers are then validated.

In recent years, concerns about reactor safety have increased the need for

computational methods that can provide accurate information about time-

evolving scenarios, such as those occurring by design (transients, start-up,

etc.) or by accident (rod ejection, for instance). In the context of Monte

Carlo simulation, current research trends focus on dynamic methods, which

follow the particles along their time evolution. Unfortunately, these methods

demand an even larger computer time than static methods.

An intermediate bridge between static Monte Carlo and dynamic Monte

Carlo is represented by the so-called α-static Monte Carlo. This method

actually allows the prompt and delayed reactor period to be determined by

transforming the time-dependent Boltzmann equation into a static eigen-
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value problem (the so called α or time eigenvalue). In this respect, α-static

methods are ideally suited so as to assess the asymptotic time behaviour of

the system.

A Monte Carlo algorithm to find the α-eigenvalue has been recently de-

veloped at the LTSD laboratory and implemented in the development version

of the TRIPOLI-4 R© code.

The aim of this work is to verify and validate these new methods. The α-

static Monte Carlo has been applied to the study of some simple physical

systems: the outcomes of Monte Carlo simulations have been compared to

reference results, coming either from exact analytical solutions (when avail-

able), or from independent numerical codes. By virtue of this analysis, the

strengths and the weaknesses of the α-static algorithm have been put in ev-

idence, and an improved understanding of the method has been achieved.

This document is structured in five chapters:

1. In the first chapter, we shall familiarize with:

• time dependent problems concerning nuclear systems;

• the time dependent Boltzmann equation and its stationary form;

• the state-of-art numerical methods to solve the Boltzmann equa-

tion.

2. In the second chapter, we shall focus on the α-static methods:

• the basic mathematical theory;

• the algorithm implemented in TRIPOLI-4 R©;
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• the physical meaning of the fundamental discrete eigenvalue and

some issues about its existence.

3. In the third chapter, we shall present some physical systems of interest

and we will revisit the knowledge present in literature concerning their

time behaviour, i.e. their α-eigenvalues spectrum.

4. In the fourth chapter, we shall show the results of our simulations. In

particular, we shall compare the results of the α-static code to those

coming from a dynamic Monte Carlo code and a deterministic solver.

5. Finally, in the last chapter, we shall explain our conclusions about the

potentialities and the drawbacks of the α-static methods.



Chapter 2

Numerical methods for nuclear

systems

In this chapter, we shall introduce the Boltzmann equation governing the

time-dependent neutron transport. We shall briefly discuss the numerical

methods (deterministic and Monte Carlo) usually adopted to solve the sta-

tionary form of this equation. Then, we will address the additional difficul-

ties arising from explicitly considering the time dependence. Finally, we will

evaluate the potentialities and the drawbacks of the recently proposed Monte

Carlo methods for dealing with time-dependent systems: the dynamic Monte

Carlo and the α static Monte Carlo.

2.1 The Boltzmann equation

Consider the statistical behaviour of a large population of neutrons in a

bounded domain, under transient or steady state conditions. We define the

particle density n(~r, v, Ω̂, t) as the average number of neutrons present in

5



2.1. The Boltzmann equation 6

the infinitesimal volume of the six-dimensional phase space (~r ÷ ~r + d~r, v ÷

v + dv, Ω̂ ÷ Ω̂ + dΩ̂) at time t. Starting from a given initial condition, the

time evolution of the neutron density n(~r, v, Ω̂, t) in a system is provided by

the time-dependent linear Boltzmann equation, possibly coupled with the

equations for the precursors concentrations c(~r, t) [3]. In neutron transport,

it is reasonable to suppose the absence of particle-particle interactions (due

to the weak neutron density as compared to that of the nuclei of the traversed

medium [3]) and this implies that the equations are linear. The derivation of

such equations is based on the principle of particle conservation in the phase

space [3, 17, 20].

The linear Boltzmann equation for the neutron density reads

∂

∂t
n(~r, v, Ω̂, t) + Ln(~r, v, Ω̂, t) = Fp n(~r, v, Ω̂, t) +

∑
i,j

χi,jd (~r, v)

4π
λi,jci,j(~r, t)

(2.1)

where we have defined the linear transport operator

Lf = vΩ̂ ·∇f +vΣtf −
∞∫

0

∫
4π

Σs(~r, v
′ → v, Ω̂′ → Ω̂)v′f(~r, v′, Ω̂′)dΩ̂′ dv′ (2.2)

and the prompt fission operator

Fp f =
χp(~r, v)

4π

∞∫
0

∫
4π

νpΣf (~r, v
′)v′f(~r, v′, Ω̂′)dΩ̂′ dv′ (2.3)

Here notation is as follows: v is the neutron speed, ~r is the position vector

and Ω̂ is the angular direction vector, Σt is the total cross-section, Σs is the

differential scattering cross-section, χp is the normalized speed spectrum for

prompt fission neutrons, νp is the average number of prompt fission neutrons,

Σf is the fission cross-section, χi,jd is the normalized spectrum of delayed neu-

trons emitted from precursor family j of isotope i, λi,j is the decay constant

of precursor family j of isotope i and the double sum is extended over all
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fissile isotopes i in the system and over all precursor families j for each fissile

isotope.

The Boltzmann equation for the neutron density is then coupled to the equa-

tion for the evolution of the precursor concentration, which reads

∂

∂t
ci,j(~r, t) =

∞∫
0

∫
4π

νi,jd Σi
fv
′n(~r, v′, Ω̂′, t) dΩ̂′ dv′ − λi,jci,j(~r, t), (2.4)

where νi,jd is the average number of delayed fission neutrons of precursor fam-

ily j of isotope i.

The equations above are completed by assigning the proper initial and bound-

ary conditions for n and ci,j.

For very short time scales t � λ−1
ij , the impact of delayed neutrons can be

safely neglected, so that we would have

∂

∂t
n(~r, v, Ω̂, t) + Ln(~r, v, Ω̂, t) = Fp n(~r, v, Ω̂, t), (2.5)

but this is not the case for observation times t comparable to the decay

lifetimes λ−1
i,j of the precursors [3]. Furthermore, we have assumed here that

all physical parameters (such as cross-sections, energy spectra, and so on)

are time-independent: this amounts to taking t shorter than the typical

time scale of thermal-hydraulic and Doppler feedback [24, 1]. If N fissile

isotopes are present, each associated to M precursors families, equations (2.1)

and (2.4) form a system of 1 +N ×M equations to be solved simultaneously.

In the following we will address this issue.

2.2 Stationary problems

For customary problems emerging in reactor physics and radiation shielding,

we are only interested in determining the steady-state of a system and we
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can eliminate the time dependence from our equations. This can be achieved

by resorting to two different approaches, depending on the physical situation

we are dealing with.

The first approach emerges in radiation shielding calculations, where a

fixed source Q is typically imposed. In this case, we simply integrate in time

from zero to infinity in order to eliminate the time dependence.

By observing that we have ∂tn = ∂tc = 0, combing equations (2.1) and (2.4)

yields

Ln(~r, v, Ω̂) = (Fp +Fd)n(~r, v, Ω̂) +Q(~r, v, Ω̂) (2.6)

where n(~r, v, Ω̂) is the stationary neutron density and

Fd f =
∑
i,j

χi,jd (~r, v)

4π

∞∫
0

∫
4π

νijd Σf (~r, v
′)v′f(~r, v′, Ω̂′)dΩ̂′ dv′ (2.7)

Eq. (2.6) is again a balance equation: the total net disappearances (due to

absorptions or leakage, minus scattering, which preserves the particle num-

ber) must be balanced by the total productions (prompt and delayed fissions,

if any) plus the contribution of the source.

The second approach emerges in reactor physics calculations, in which we

are interested in finding the critical (i.e., stationary) core configuration. In

this case, one tries to make the system time-independent by balancing the

lack or the excess of neutrons through a “control coefficient”, named effective

multiplication factor keff. Conceptually, keff can be defined as a scalar such

that, if the number of neutrons generated by each prompt and delayed fission

interaction is scaled by this number, the reactor is then artificially critical.

Therefore, by setting the time-derivative to zero and introducing keff, Eq. (2.1)
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becomes [3]

Ln(~r, v, Ω̂) =
1

keff
(Fp +Fd)n(~r, v, Ω̂) (2.8)

where we have again collected the prompt and delayed fission terms. Remark

that in this case we require Fp +Fd > 0. Eq. (2.8) is formally an eigenvalue

problem for the eigenvalue-eigenfunction pair {k, n} [8]. It can be shown

that Eq. (2.8) admits an infinite number of discrete eigenvalues k under mild

conditions about geometry, boundary conditions and cross sections [3, 17];

the corresponding eigenfunctions n = nk(~r, v, Ω̂) are referred to as k-modes.

The multiplication factor keff is the largest k-eigenvalue whose associated k-

mode is everywhere non-negative (the so-called fundamental mode).

Since Eq. (2.8) has been made stationary by artificially introducing keff as

a population control acting on the number of fission, the shape of the fun-

damental k-mode is not expected represent any real neutron density except

when the reactor is exactly critical, i.e., keff = 1. In other words, if we are

dealing with a system that is far from critical and we solve Eq. (2.8) for this

system, the obtained k-modes do not carry any physical meaning.

The main aim of Eq. (2.8) is to provide information concerning the value of

keff for a given reactor configuration. If keff > 1 the reactor is supercritical, if

keff < 1 the reactor is subcritical, and if keff = 1 the reactor is exactly critical.

The system reactivity can be obtained as ρ = (k − 1)/k.

There are two methods for solving equations (2.6) and (2.8): the so-called

deterministic approach, which basically consists in discretizing the solution

in the space, energy and angle variables and solving the resulting linear

system as a set of equations where the unknown is the vector containing the

discretized solution; and the so-called stochastic approach, which consists in

solving the equation by resorting to Monte Carlo methods. In the following,

we will deal with the latter.
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2.2.1 Monte Carlo transport theory

It can be shown [41] that the integro-differential equation (2.6) can be equiv-

alently written in integral form:

ψ(~r, v, Ω̂) =

∫
Γ

ψ(~r′, v′, Ω̂′)K(~r′ → ~r, v′ → v, Ω̂′ → Ω̂)d~r′dv′dΩ̂′ + S(~r, v, Ω̂),

(2.9)

where:

ψ = vΣt(~r, v)n(~r, v, Ω̂) is the collision density, i.e., the average number of

particles interacting with the matter at point (~r, v, Ω̂) of the phase

space;

K(~r′ → ~r, v′ → v, Ω̂′ → Ω̂) = C(v′ → v, Ω̂′ → Ω̂, ~r)T (~r′ → ~r, v, Ω̂) is the trans-

port kernel, which represents the particle density traveling from point

(~r′, v′, Ω̂′) of the phase space Γ and reaching point (~r, v, Ω̂);

S(~r, v, Ω̂) represents the first collision source and is equal to

S =
∫
T (~r′ → ~r, v, Ω̂)Q(~r′, v, Ω̂)d~r′, i.e., the average number of parti-

cles coming from the physical source Q(~r′, v, Ω̂) and having their first

collision at point (~r, v, Ω̂).

The transfer kernel T may be characterized by stating that, for a particle

leaving a collision at point (~r′, v, Ω̂), the expected number of next collisions

in the spatial volume Vr is: ∫
Vr

T (~r′ → ~r, v, Ω̂)d~r. (2.10)

If Vr represents an infinite medium, the integral must give 1, meaning that

the event of a particle leaving position ~r′ and having a collision somewhere

in a infinite medium is a certain event.
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The transfer kernel T reads

T (~r′ → ~r, v, Ω̂) = Σt(~r, v) exp[−
∫ Ω̂·(~r−~r′)

0

Σt(~r′ + sΩ̂, v)ds]. (2.11)

The collision kernel is defined so that, for a particle entering a collision at

point (~r, v′, Ω̂′), the expected number of particles leaving the collision in the

speed-direction volume VE is:∫
VE

C(v′ → v, Ω̂′ → Ω̂, ~r)dvdΩ̂. (2.12)

The collision kernel reads

C(v′ → v, Ω̂′ → Ω̂, ~r) =
I∑
i

pi(v
′, ~r′)yi(v

′)fi(v
′ → v, Ω̂′ → Ω̂, ~r), (2.13)

where:

pi(v
′, ~r′) is the probability of undergoing reaction i out of a set of I possible

reactions; it is represented by

pi =
Σi(v

′, ~r′)

Σt(v′, ~r′)
, (2.14)

i.e., the ratio between the reaction cross section Σi and the total cross

section Σt;

yi(v
′) is the multiplicity of secondary neutrons leaving reaction i;

fi(v
′ → v, Ω̂′ → Ω̂, ~r) is the normalized distribution in the speed-direction

space of secondary neutrons.

The sum of pi and the integral of the distribution function over the whole

energy space are normalized to one. The multiplicity term yi(v
′) depends on

the reaction (it can be zero for absorption, one for scattering, or larger for

other reactions).
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Observe that we are assuming that the only transported particles are neu-

trons. The coupling with other particles, such as for instance photons, will

be neglected.

The Monte Carlo method for solving Eq. (2.9) (or equivalently Eq. (2.6))

consists in generating a large number of neutron random walks in the phase

space so that their ensemble average converges to ψ (or n). Each random walk

can be seen as the physical random trajectory of the transported particle,

which travels along straight lines according to the transfer kernel T , separated

by collisions with the nuclei, described by the collision kernel C. The random

walks start from the source Q, have k collisions in the viable space and are

eventually lost from boundaries or absorbed. Such random walks are defined

by the set of coordinates in the phase space reached by the particles (for the

sake of simplicity, from now on the coordinates in the phase space will be

denoted by the point P = (~r, v, Ω̂)).

The construction of the random walk is the basic step to be performed in

order to simulate the transport of particles. Once the particle is created from

the source Q, it travels through the phase space via the K(P, P ′) kernel.

Assuming full knowledge of the kernels at each point of the viable phase

space, the random walks can be then generated by:

• sampling the traveled distance from the continuous density function of

the transfer kernel T;

• sampling the reaction event from the discrete probability function pi;

• sampling the energy and the direction of the secondary particle after

the collision from the continuous distribution function fi associated to

the sampled reaction.
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The topic of sampling techniques will be not approached in the following.

Once an ensemble (i.e., a large collection) of random walks has been sam-

pled, the purpose of a Monte Carlo simulation is in general to define the

appropriate random variable ξ(α) associated to the random walk α whose

expected value provides an estimate for the quantity:

E[ξ(α)] ≡
〈
n(~x)

∣∣∣g(~x)
〉

=

∫
Γ

n(~x)g(~x)d~x, (2.15)

which represents the inner product of the particle density n(~x) times a general

test function g(~x) on a defined volume of the phase space. The function g(~x)

is precisely the score that is desired, and 〈n|g〉 represents the density-averaged

score over the volume of interest. The quantity ξ(α), which must be properly

chosen so to ensure the convergence E(ξ) = 〈n|g〉, takes the name of Monte

Carlo estimator [41]. The expected value of an ensemble of N random walks

can be computed as:

E[ξ(α)] =

∑
n ξ(αn)

N
, (2.16)

where αn is the n − th random walk and ξ(αn) is the associated random

variable. It can be shown [41] that convergence of the estimator as a func-

tion of the number of simulated random walks goes with the square root of N .

The first kind of estimator is the so-called collision estimator, defined as:

ξcoll(α) =
∑
m

g(~xm)

Σt(vm)vm
, (2.17)

If we are interested in evaluating a score in a portion V of the phase space,

the test function must be zero everywhere but in V ; in other words, the test

function must be multiplied by the marker function χV (~x):

χV (~x) =

 1 if ~x ∈ V

0 if ~x /∈ V
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By progressively reducing the dimensions of such volume V , we can obtain

the value of the score evaluated at a single point of the phase space. On

the other hand, the smaller the volume, the smaller is the probability to

obtain a sample of the event in that position. Special techniques exist to

obtain an estimate of the pointwise distribution of a physical quantity in the

phase space (the so-called point-flux estimation: here we will not address

this issue). Observe that we have here considered density-averaged scores:

more often, quantities of interests in reactor physics require averages over

the neutron flux φ = nv. The corresponding flux estimator of collision type

can be constructed as

ξcoll(α) =
∑
m

g(~xm)

Σt(vm)
, (2.18)

which is such that E(ξ) = 〈φ|g〉.

As an alternative to the collision estimator, the track estimator allows ob-

taining a better estimation of density-averaged scores in small volumes. It is

defined as [41]:

ξtrack(α) =
k∑

m=1

g(~xm)tm, (2.19)

where tm is the time spent by the m − th particle in the volume V of the

phase space. For flux-averaged scores, we can then define

ξtrack(α) =
k∑

m=1

g(~xm)dm, (2.20)

where dm is the track of the m-th particle in the volume V .

It can be shown [41] that, for any given g, we have ξtrack(α) ≡ ξcoll(α),

which implies that the two estimators converge to each other when N →∞,

i.e., they are unbiased.
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The variance associated to the estimators depends on the problem we

want to solve. In general, the collision estimator (Eq. 2.17) works better

in large volumes, whereas the track estimator (Eq. 2.19) is better suited for

small volumes. We will make use of both in our simulations.

2.2.2 Monte Carlo power iteration

The Monte Carlo method for solving criticality problems, which are described

by Eq. (2.8), is slightly different from the one just shown. In fact, in this

case, we do not have a source distribution from which starting the particle

random walks. However, Eq. (2.8) describes a linear eigenvalue problem that

can be solved by power iteration method [26].

We can begin with a guess neutron distribution n0(~r, v, Ω̂), called generation

zero.

Then, we obtain the generation-one neutron density by applying a proper

integral transport operator to the previous neutrons

n1(~r, v, Ω̂) = K n0(~r, v, Ω̂). (2.21)

and we find the first estimate of the k factor, which is given by the ratio

k1 =
|n1|
|n0|

. (2.22)

In order to avoid that neutron population goes to zero or diverges, we have

to apply a population control, by dividing n1 for k1, so that we start the next

generation with the same number of particles. We simulate the next gener-

ation, starting the particle stories from the fission positions of the previous

generation and we iterate this procedure for a large number M of neutron

generations:

ni+1(~r, v, Ω̂) = K ni(~r, v, Ω̂). (2.23)
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In the limit of M → ∞, ki → keff and the limit neutron density ni(~r, v, Ω̂)

is the eigenfunction associated to keff [26].

2.3 Time-dependent problems

In chapter 2.2, we have seen how to solve the steady-state transport Boltz-

mann equation by Monte Carlo methods. We now move to consider the full

time-dependent Boltzmann equation.

Assessing the time behaviour of neutron transport is important in several

situations of interest in nuclear engineering: reactor start-up, reactivity mea-

surement, safety calculations, kinetics of accelerator-driven systems (ADS),

only to name a few. In fact, the knowledge of the reactor kinetics is funda-

mental both for normal scenarios (start-up, power transients) and accidental

situations (rod ejection). Moreover, some reactor designs, such as the Ac-

celerator Driven Subcritical system (ADS), intrinsically work at non-steady-

state. The ADS has been investigated in the last decades as a promising

tool to incinerate actinides and to transmute long-lived radioactive wastes.

The nuclear fuel configuration is subcritical and an external neutron source

(driven by an accelerator) is used to sustain the chain reaction. The time

behaviour of such a system is subject to several transients and knowledge of

the neutron dynamics is therefore needed [22].

In order to assess the reactor kinetics, we have to solve the time-dependent

Boltzmann equation, which is a daunting task and demands special numer-

ical methods so as to cope with the complexity of the involved system of

equations.
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2.3.1 Deterministic methods

Until now, the analysis of transient dynamics of a neutron population has

been mainly carried out by resorting to deterministic methods. Here, for the

sake of completeness we briefly recall some of the basic deterministic meth-

ods [8, 22].

The direct method is a straightforward way to solve a time-dependent

equation [8]. The time interval of interest is divided in small time sub-

intervals [tj, tj+1], and for every sub-interval a stationary Boltzmann equa-

tion is solved, by means of the usual numerical techniques (spatial discretiza-

tion, multigroup energy approximations and so on). The direct method is

complicated by the presence of very different time scales, which makes the

Boltzmann equations a “stiff” system: indeed, an extremely fine time step is

required to accurately describe the prompt-neutron behaviour (t ≈ µs) and

a large number of time steps is required to represent the delayed-neutron

behaviour (t ≈ s). Therefore, this method is seldom used.

The space-time factorization method is based on the idea of factorizing

the neutron density into two parts: n(~r,~v, t) = T (t)n0(~r,~v, t) (for shortness,

we have represented the angular dependence in the velocity vector), where

the amplitude T depends only on time and the shape function n0 varies slowly

in time. Under this assumption, we can accurately obtain n0 even adopting

large time-steps. Suppose now that the shape function is known. It can

be shown [8] that, if we substitute the factorized density into Eq. (2.1) and

Eq. (2.4) and we integrate over the space and energy domain weighting for
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the adjoint flux, we obtain the point-reactor kinetics equations:

dT (t)

dt
=
ρ(t)− β(t)

Λ(t)
T (t) + λc(t) (2.24)

dc(t)

dt
=
β(t)

Λ(t)
T (t)− λc(t) (2.25)

where ρ(t), β(t) and Λ(t) are the kinetics parameters defined in terms of

the shape function n0 integrated in space and energy (therefore the only left

dependence is on time). In particular, β(t) is the effective delayed-neutron

fraction, Λ(t) is the neutron mean generation time and ρ(t) is the reactivity

of the system, each depending on the time step. The actual implementation

of the space-time factorization method is based on an iterative scheme. The

shape function is first approximated by a known function in a large time step

(shape step). With the approximated n0, the kinetics parameters β(t), ρ(t)

and Λ(t) are calculated within the shape step. Equations (2.24) and (2.25)

are then solved for the amplitude function T (t) with fine time steps (ampli-

tude steps). Usually, the shape steps are several times larger than amplitude

steps.

The modal expansion method is based on the hypothesis of total sep-

aration between time dependence and space-energy dependence [8]. The

approximated time-dependent solutions is written as

n(~r,~v, t) =
∑
n

An(t)nαn(~r,~v) (2.26)

c(~r, t) =
∑
n

An(t)cαn(~r) (2.27)

where nαn and cαn are (precomputed) space-energy dependent expansion func-

tions, the so-called α-modes and An(t) is the expansion coefficient for the

nthα-mode. The modes nαn and cαn can be obtained by plugging (2.26)
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and (2.27) into equations (2.1) and (2.4) and solving the resulting equa-

tions.

All such methods, even the direct method, introduce several approxi-

mations, which are intrinsically due to the nature of deterministic solvers.

Sometimes, it is desirable to have a higher-fidelity method for transient anal-

ysis. In this respect, Dynamic Monte Carlo methods have been recently

proposed to solve the time-dependent Boltzmann equation [22].

2.3.2 Dynamic Monte Carlo

The basic ideas behind Monte Carlo theory simulation have been recalled in

chapter 2.2 as far as the solution of the stationary problems is concerned. As

remarked, Monte Carlo methods solve the Boltzmann equation by simulat-

ing particle histories, therefore introduce as few approximations as possible.

The accuracy and the general applicability of these methods represent some

of the reasons why many researchers and designers choose Monte Carlo sim-

ulation, which is typically used as the reference for deterministic codes. A

non-negligible drawback is that Monte Carlo in most practical cases turns

out to be much slower than deterministic solvers. It is tempting to apply

Monte Carlo methods also to transient calculations, which goes under the

name of dynamic Monte Carlo method.

There are several new problems that need to be addressed in order to

perform kinetic calculations with Monte Carlo codes [22]. First of all, the

time factor, i.e., ∂n
∂t

, is explicitly present, so that when sampling random

walks we not only have to record the position in the phase space (~r,~v) but

also the time instants of birth, interaction and death of the particles. For
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this reason, we have to split the time domain into bins and tally the scores of

each event per bin. Moreover, a serious issue comes from the delayed neutron

population. As we said, the time scale of delayed neutrons is much larger

than that of prompt neutrons. In fact, while prompt neutrons are (almost)

instantaneously emitted at fission events, the delayed neutrons come from the

beta decay of precursors. Therefore, the probability density that a delayed

neutron is emitted obeys the exponential decay law:

P (t) = λie
−λit (2.28)

where λ is the specific decay constant of the ith precursor. In principle, when

a Monte Carlo simulation is performed, it is possible to sample νp prompt

neutrons at the time of fission event tf ans sample νd delayed neutrons at

time t = tf + td, where td is drawn from Eq. (2.28). This method mimics

what actually happens in the physical system, but it would create too much

variance, due to the very different time scales of the two populations [22].

Indeed, for a Monte Carlo calculation it is important to have enough statis-

tics per tally bin. A possible remedy is therefore to force the precursors to

generate a delayed neutron in each time bin; then, in order to obtain an

unbiased score, we have to attribute to this neutron a modified statistical

weight [22].

This algorithm is named forced precursors decay. With this method, all pre-

cursors are stored, in order to have a decay in each time interval subsequent

to the precursor appearance in the system. This implies that the total num-

ber of precursors increases continuously. Therefore, population control is

needed, not only for neutrons as customary, but also for precursors.

The precise details of the algorithm can be found in [22]. This prelim-

inary discussion suggests that the explicit time dependence makes Monte
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Carlo simulation much more complex than for static calculations. As a gen-

eral rule, dynamic Monte Carlo methods demand an even larger simulation

time than static simulations.

Despite all these drawbacks, dynamic Monte Carlo methods are quite appeal-

ing for the reactor physics, and are going to be implemented in the devel-

opment version of the Monte Carlo code TRIPOLI-4 R©. This future version

of the code will make possible to compute reactor power transients in regu-

lar operation as well as in accidents, and eventually integrate the feedback

coming from thermal-hydraulic codes.

2.3.3 Alpha static methods

In many practical situations, the knowledge of the full time dynamics of

the system is not needed, and only the asymptotic (long time) behaviour is

sought for. This is the case, for instance, of pulsed-neutron experiments or

reactivity measures, where one is interested in determining the asymptotic

relaxation of the system, following a given initial burst of neutrons at t = 0

[3, 17].

Asymptotic relaxation phenomena do not involve the solution of the full

time-dependent Boltzmann equation, and can be dealt with by resorting to

a different approach. The idea is similar to the modal expansion method, in

which the neutron density is decomposed in a separated-variable form as

n(~r,~v, t) =
∑
n

An(t)nαn(~r,~v). (2.29)

Indeed, in the analysis of asymptotic time relaxation, it is postulated that

the neutron population obeys

n(~r,~v, t) =
∑
α

nα(~r,~v)eαt (2.30)
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so that for long times we have

n(~r,~v, t) ≈ nα0(~r,~v)eα0t, (2.31)

where α0 is the algebraically largest value among all α of the expansion.

In other words, we are assuming that the neutron population at long times

will grow or decay in an exponential fashion, with asymptotic period given by

α0. As for the space and velocity behaviour, Eq. (2.31) implies that at long

times the functional shape of n will not change anymore, and will be given

by n ≈ nα0(~r,~v). As for the precursor population, it is similarly demanded

that

c(~r, t) =
∑
α

cα(~r)eαt. (2.32)

If we are interested in knowing the complete time behaviour of n(~r, v, Ω̂, t)

and c(~r, t), we should replace the full expansions (2.30) and (2.32) into the

Boltzmann equation and explicitly solve the resulting equations. However,

due to the postulated exponential nature of the neutron and precursor pop-

ulations, after a transient, only the term with the algebraically largest coef-

ficient α0 will survive. Therefore, in order to assess the asymptotic neutron

and precursor behaviour, we are led to consider only the dominant frequency

α0.

By replacing n = nαe
αt and c = cαe

αt into Eq. (2.1) and Eq. (2.4) respec-

tively, we get a set of coupled equations

αnα(~r, v, Ω̂) + Lnα(~r, v, Ω̂) = +FP nα(~r, v′, Ω̂′) +
∑
i,j

χi,jd (~r, v)

4π
λi,jc

i,j
α (~r)

(2.33)

and

αci,jα (~r) =

∞∫
0

∫
4π

νi,jd Σi
f (~r, v

′)vnα(~r, v′, Ω̂′) dΩ̂′ dE ′ − λi,jci,jα (~r), (2.34)
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which are formally a system of eigenvalue equations, whose dominant eigen-

value is precisely α0 [3]. Equations (2.33) and (2.34) do not depend on time

anymore and therefore look like static equations (in a sense that will be made

clear in the following chapter). Due to the presence of the α term, eqs. (2.33)

and (2.34) take the name of α-static equations: the next chapter will be de-

voted to the specific Monte Carlo methods conceived to assess the asymptotic

time behaviour of nuclear systems by solving the α-static equations.

We conclude by observing that approximating the full expansion (2.30)

with the fundamental mode nα0e
α0t is formally equivalent to adopting the

space-time factorization with a time-independent shape function: n(~r,~v, t) =

T (t)n0(~r,~v). In this case, the kinetics parameters previously introduced,

namely ρ, Λ and β, are all constant. Therefore, equations (2.24) and (2.25)

simply become the point kinetic equations :

dT (t)

dt
=
ρ− β

Λ
T (t) + λc(t) (2.35)

dc(t)

dt
=
β

Λ
T (t)− λc(t). (2.36)





Chapter 3

The α static methods

In the previous chapter, we have introduced the α-static method. In this

chapter we shall make clear the mathematical basis of this method and then

we shall introduce the algorithm developed in TRIPOLI-4 R©.

3.1 The mathematical theory

The full time behaviour of the neutron density in a system is provided by

the time-dependent Boltzmann equation

∂

∂t
n(~r, v, Ω̂, t) + Ln(~r, v, Ω̂, t) = Fp n(~r, v, Ω̂, t) +

∑
i,j

χi,jd (~r, v)

4π
λi,jci,j(~r, t)

(3.1)

coupled with the precursor equation (2.4)

∂

∂t
ci,j(~r, t) =

∞∫
0

∫
4π

νi,jd Σi
fv
′n(~r, v′, Ω̂′, t) dΩ̂′ dv′ − λi,jci,j(~r, t). (3.2)

25
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When the long-time (asymptotic) behaviour is sufficient so as to characterize

the system evolution [3, 17], an exponential relaxation of the kind

n(~r, v, Ω̂, t) = nα(~r, v, Ω̂)eαt (3.3)

and

ci,j(~r, t) = ci,jα (~r)eαt (3.4)

is postulated for both the neutron flux and the precursors concentrations,

where the parameter α (carrying the units of the inverse of a time) plays

the role of the inverse of the asymptotic relaxation time scale [3, 17]. Equa-

tions (3.3) and (3.4) formally stem from imposing the separation of variables

in Eqs. (3.1) and (3.2), and can be more rigorously justified by resorting

to Laplace transform analysis or equivalently to spectral analysis [17]. Yet,

proving the feasibility of such exponential relaxation is highly non-trivial in

general, and precise (although not very restrictive) conditions are required

on the geometry of the domain and on the material cross-sections [3, 17, 28].

We shall discuss this issue later.

Replacing Eqs. (3.3) and (3.4) into Eqs. (3.1) and (3.2), respectively, yields

the so-called α-static equations

αnα(~r, v, Ω̂) + Lnα(~r, v, Ω̂) = +FP nα(~r, v′, Ω̂′) +
∑
i,j

χi,jd (~r, v)

4π
λi,jc

i,j
α (~r),

(3.5)

αci,jα (~r) =

∞∫
0

∫
4π

νi,jd Σi
f (~r, v

′)vnα(~r, v′, Ω̂′) dΩ̂′ dE ′ − λi,jci,jα (~r), (3.6)

which form a stationary, coupled system, formally representing an eigenvalue

problem. Finally, solving with respect to nα results into the (nonlinear)

eigenvalue problem [3, 43, 9, 19]

αnα(~r, v, Ω̂) + Lnα(~r, v, Ω̂) = Fp nα(~r, v, Ω̂) +
∑
i,j

λi,j
λi,j + α

F i,j
d nα(~r, v, Ω̂),

(3.7)
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where α is the eigenvalue and nα the associated eigenmode, and we have

defined

F i,j
d f =

χi,jd (~r, v)

4π

∞∫
0

∫
4π

νi,jd Σi
f (~r, v

′)f(~r, v′, Ω̂′) dΩ̂′ dv′. (3.8)

In principle, Eq. (3.7) has 1 + N ×M sets of eigenvalues (one prompt and

N ×M delayed eigenvalues) associated to each eigenmode nα [3, 9, 19]. In

order to determine the asymptotic time behaviour of the system, Eq. (3.7)

must be solved for the algebraically largest eigenvalue α, so that the corre-

sponding fundamental mode nα(~r, E, Ω̂) will provide the asymptotic space,

angle and energy shape of the neutron flux at long times. We shall treat the

problems of the prompt and delayed behaviour separately.

3.1.1 The prompt behaviour

When delayed contributions can be neglected (i.e., F i,j
d nα = 0), α is called

the prompt time eigenvalue: the mathematical properties of the resulting

(linear) eigenvalue equation

αnα(~r, v, Ω̂) + Lnα(~r, v, Ω̂) = Fp nα(~r, v, Ω̂) (3.9)

and the numerical schemes for assessing the dominant eigenvalue have been

the subject of considerable research efforts (see for instance the comprehen-

sive works [3, 17, 28, 2] about theoretical aspects and [21, 6, 15, 39, 45, 34, 48]

concerning numerical methods).
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Knowledge of the spectrum σ(A) of the Boltzmann operator

Af = (−L+Fp)f = −vΩ̂ · ∇f − vΣtf+

∞∫
0

∫
4π

Σs(~r, v
′ → v, Ω̂′ → Ω̂)v′f(~r, v′, Ω̂′)dΩ̂′ dv′+

χp(~r, v)

4π

∞∫
0

∫
4π

νpΣf (~r, v
′)v′f(~r, v′, Ω̂′)dΩ̂′ dv′ (3.10)

is fundamental so as to determine the properties of Eq. (3.9) and in partic-

ular of its dominant eigenvalue and eigenmode.

3.1.1.1 Finite spatial domain

An exhaustive analysis of the spectrum σ(A) of the Boltzmann operator A

has been provided by Larsen and Zweifel in [28] for a broad class of collision

kernels and geometries. Here, we recall the main results [28] for the eigenvalue

problem

Anα = αnα.

We define A in an L1(D× V ) space, where D is the bounded spatial domain

and V is the velocity domain, i.e., v0 < v < v1, where v0 < v1 < c, c being

the speed of light. First, we consider the streaming and removal operator T ,

defined as

T = −[~v · ∇r + vΣT (~r, v)]. (3.11)

Let us denote v0 the minimum allowed neutron speed. It can be then shown

that [28]:

• If v0 > 0, then the spectrum σ(T ) consists solely of the point at infinity:

σ(T ) = {∞}.
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• If v0 = 0, then the spectrum σ(T ) consists of the complex half plane:

σ(T ) = {α | Re{α} ≤ α∗}, where α∗ = − lim
v→0

vΣT (v).

The spectrum σ(T ) of the operator T may then contain a continuum por-

tion. The limiting value α∗ takes the name of Corngold limit and physically

represents the minimum collision frequency. We consider now a one-speed

transport operator A0, defined as

A0 = T +K0, (3.12)

where K0 is a collision operator that does not change the neutron speed.

This operator describes a purely elastic or Bragg scattering and has the form

K0 f =

∫
v′
k0(~r, v′, Ω̂′ → Ω̂)δ(v′ → v)f(v′)dv′ (3.13)

Therefore, the operator A0 does not change the neutron speed and depends

only parametrically upon v. It can be shown [28] that the one-speed operator

A0 has a spectrum σ(A0) entirely formed by isolated eigenvalues, for fixed v.

The eigenvalues depend parametrically upon the neutron speed. In general,

as v varies between v0 and v1, some of the eigenvalues will remain stationary

and some will shift and trace out curves. Thus, the spectrum σ(A0) will

consist of isolated points and curved lines. As in the previous case, if we

allow v0 = 0 there will be also a continuum half-plane in the α-spectrum.

Finally, we consider the general case where the transport operator A is

A = T +K, (3.14)

where K is the scattering operator, physically corresponding to fission, slow-

ing down, thermal scattering and Bragg scattering.

It can be shown [28] that the eigenvalue spectrum σ(T +K) differs from the
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spectrum σ(T +K0) only by the addition of a point spectrum.

Summarizing, the collision terms of the Boltzmann operator contribute to

the α-spectrum σ(A) with discrete eigenvalues and (Bragg scattering) curves.

The streaming operator may induce (under the assumption of v0 = 0) the

presence of a continuum half-plane in the spectrum. If this is the case, a

question of utmost importance concerns the existence of a simple dominant

eigenvalue, i.e., a simple eigenvalue α0 whose real part is larger than any other

α in the spectrum, and whose associated eigenfunction nα is non-negative.

In fact, if a continuum portion is present in the spectrum σ(A), the neutron

density expansion (2.30) must be written in the more general form

n(~r,~v, t) =
∑
α

nα(~r,~v)eαt +

∫ α∗

−∞
G(α)nα(~r,~v)eαtdα, (3.15)

where G(α) are weight functions expressing the amplitude density of each

continuum eigenfunction. If the fundamental eigenvalue exists (i.e., if the

discrete sum in Eq. (3.15) is not empty), the asymptotic behaviour will be

dominated by the exponential term with α = α0. If α0 ≤ α∗, the discrete spec-

trum disappears into the continuum and the sum in Eq. (3.15) is empty. In

this case, the asymptotic behaviour of the neutron density will be dominated

by the continuum and it will not be possible to extract a single dominant

exponential decay [17]. It can be shown that α0 disappears into the contin-

uum if the radius of the domain D is smaller than a critical value, which is

typically of the order of a mean free path [32, 44].

3.1.1.2 Infinite spatial domain

We now discuss the behaviour of the spectrum σ(A) for infinite spatial do-

mains. An analysis of this case has been provided by Duderstadt [17] and
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Corngold [13]. We have again an eigenvalue problem of the type:

Anα = αnα. (3.16)

Maintaining the same notation, the operator A is given by A = T +K. In

this case, the streaming and removal operator T is simply

T = −vΣT (v) (3.17)

and K is the scattering kernel. Note that, under the assumption of infinite

and homogeneous medium, the angle and position dependencies have been

eliminated by integrating over these variables.

The spectral analysis of Duderstadt [17], carried out under the hypothesis of

allowing v0 = 0, shows that the spectrum σ(A) of the Boltzmann operator

A for an infinite medium is composed by:

• a continuum unidimensional set σc(A) = {α : α = −vΣt(v), v ∈ [0,∞)}

• a real discrete set of eigenvalues α ≥ α∗, where α∗ = − lim
v→0

vΣT (v).

Corngold has shown [13] that the properties of the discrete set depend on the

scattering kernel considered, i.e., on the diffusion properties of the medium.

For example, for incoherent solids, the discrete eigenvalues are finite in num-

ber. Ordinarily, only few discrete α exist, or sometimes only the fundamental

α0 exists. It is also possible, by introducing an absorption rate Σa(v)v which

increases sufficiently strongly with v, to have an empty discrete set. On the

contrary, for gases, we find an infinite set of discrete eigenvalues, with α∗ ap-

pearing as a limit point of this set. In this case, the possibility of an empty

point spectrum, by introducing an absorption rate strongly increasing with

v, is not realistic.
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3.1.2 The α-problem with delayed neutrons

The full Eq. (3.7)

αnα(~r, v, Ω̂) + Lnα(~r, v, Ω̂) = Fp nα(~r, v, Ω̂) +
∑
i,j

λi,j
λi,j + α

F i,j
d nα(~r, v, Ω̂)

including delayed contributions (in which case α is called the delayed time

eigenvalue, and physically represents the inverse of the reactor period) has

received comparatively less attention (see for instance [3, 9, 19, 23] for a

survey) but has recently attracted renewed attention [22, 7, 40, 31] in view

of the practical applications in reactor kinetics. Indeed, integrating Eq. (3.7)

over all phase space variables leads to the reactor inhour equation [3]

ρ0 = αΛ0 +
∑
i,j

α

λi,j + α
βi,j0 (3.18)

where ρ0 = (k0 − 1)/k0 is the reactivity, with

k0 =
〈1, Fp φα +

∑
i,j F

i,j
d φα〉

〈1, L φα〉
, (3.19)

Λ0 is the mean generation time

Λ0 =
〈1, 1

v
φα〉

〈1, Fp φα +
∑

i,j F
i,j
d φα〉

, (3.20)

and βi,j0 are the flux-averaged delayed fractions

βi,j0 =
〈1, F i,j

d φα〉
〈1, Fp φα +

∑
i,j F

i,j
d φα〉

, (3.21)

with
∑

i,j β
i,j
0 = β0. In the equations (3.19), (3.20), and (3.21), the impor-

tance function has been chosen equal to 1. From Eq. (3.18) it is apparent

that α plays the role of the reactor period in the inhour equation.
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3.2 The proposed algorithm

We present now a Monte Carlo method to find the dominant eigenvalue α0.

We begin with the algorithm for prompt eigenvalue (the equation without

delayed contributions) and then extend it so as to cover the full Eq (3.7).

The fundamental eigenvalue α0 can be estimated via Monte Carlo methods

by adapting the power iteration algorithm for k static criticality calculations

(described in Chapter 2). The method is then called α-k power iteration al-

gorithm and its specific details depend on the sign of the dominant eigenvalue

α [21, 6, 15, 48]. In the following, we sketch the structure of the algorithm

by considering supercritical (α > 0) and subcritical (α < 0) configurations

separately.

3.2.1 Positive dominant eigenvalue, α > 0

When F i,j
d nα = 0 and α > 0, Eq. (3.7) can be identically rewritten as [21, 6]

Lα nα(~r, v, Ω̂) =
1

k
Fp nα(~r, v, Ω̂), (3.22)

where Lα = L+Σα is a modified transport operator, Σα = α and α is to be

determined such that the fictitious parameter k = 1 in Eq. (3.22) . By re-

marking that the positive term Σα can be interpreted as an additional sterile

capture cross-section added to the total cross section, the usual α-k power

iteration algorithm is applied as follows: we start from a tentative distri-

bution n0
α (zero-th iteration) for the neutrons and provide a guess value for

α0. Then, we search for the corresponding k eigenvalue by standard power

iteration, which will depend on the current value of α. On the basis of k, we

will then adjust the value of α for the next generation (for instance, one can

take αj+1 = kαj). This procedure is iterated until k converges to k = 1: the
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corresponding value of α will provide the fundamental prompt eigenvalue,

and the associated nα the fundamental eigenmode.

The delayed contributions can be included [50] by rewriting

Lα nα(~r, v, Ω̂) =
1

k

[
Fp nα(~r, v, Ω̂) +

∑
i,j

λi,j
λi,j + α

F i,j
d nα(~r, v, Ω̂)

]
, (3.23)

where the factor

γi,j = λi,j/(λi,j + α) > 0 (3.24)

in front of the F i,j
d terms acts as a population control tool to be applied

to each delayed neutron coming from delayed fission. This means that the

weight of delayed neutrons is first multiplied by a factor γi,j and then divided

by a factor k before being assigned to the next generation.

3.2.2 Negative dominant eigenvalue, α < 0

When F i,j
d nα = 0 and α < 0, the standard α-k power iteration algorithm

applied to Eq. (3.7) is known to be numerically unstable and usually leads

to abnormal code termination [21]. In reference [48] an improved algorithm

for negative α has been provided and shown to be numerically stable. The

key ingredient consists in rewriting Eq. (3.7) as follows

Lα,η nα(~r, v, Ω̂) =
1

k

[
Fp nα(~r, v, Ω̂) + Fα,η nα(~r, v, Ω̂)

]
, (3.25)

where Lα,η = L+Σα,η, Σα,η = −ηα (η being an arbitrary positive constant)

and we have formally defined the creation operator

Fα,η f =

∞∫
0

∫
4π

νηδ(v − v′)δ(Ω̂− Ω̂′)Σα,ηf(~r, v′, Ω̂′)v′ dΩ̂′ dv′ (3.26)
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with νη = (η + 1)/η > 0.

The term Σα,η acts here as an additional creation cross-section, whose asso-

ciated creation operator Fα,η appears at the right hand side of the equation

(with a delta-spectrum in energy and angle). Then, Eq. (3.25) can be solved

by applying the power iteration similarly as done above. Observe in particu-

lar that Eq. (3.25) holds also for moderating materials, where Fp φα vanishes:

in this case, neutrons are promoted to the next generation of the power iter-

ation algorithm only via the creation operator Fα,η [48].

Including delayed contributions [50] leads to

Lα,η nα =
1

k

[
Fp nα + Fα,η nα +

∑
i,j

γi,j F
i,j
d nα

]
, (3.27)

where again the factor γi,j = λi,j/(λi,j + α) in front of the F i,j
d terms acts as

a population control tool. Observe however that now γi,j introduces singu-

larities in Eq. (3.27) at the values α = −λi,j, α being negative. If we restrict

our search to the dominant α eigenvalue, this implies that α must be found

in the interval −λα < α < 0, where λα = mini,j λi,j is the smallest decay

constant over all fissile isotopes and over all precursors families. Bearing this

consideration in mind, the treatment of delayed neutrons proceeds as above,

i.e., the weight of delayed neutrons is first multiplied by a factor γi,j and then

divided by a factor k before being assigned to the next generation.

3.3 Verification tests

The Monte Carlo method discussed above has just been recently implemented

in the development version of the Monte Carlo code TRIPOLI-4 R©. Prelim-

inary validation and verification tests have been satisfactory [42, 50].
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The aim of this work is to verify and validate the α-k power iteration algo-

rithm in some specific situations. We have seen in paragraph 3.1 that, under

the hypothesis of minimum neutron speed v0 = 0, the α spectrum contains a

continuum half-plane. We have also seen that all discrete eigenvalue might

disappear into the continuum, so that a fundamental α eigenvalue does not

exist anymore, and the asymptotic decay is not exponential.

Then, what is the behaviour of the α-static code in this particular situation?

Does it converge to any value and, if this is the case, can we associate a

physical meaning to this value? What is the shape of the associated eigen-

function, if any? We shall try to answer these questions.

Actually, a word of caution is necessary here. As we said, the presence of

a continuum portion in the spectrum σ(A) intrinsically depends on the min-

imum neutron velocity v0 being allowed to vanish, i.e., v0 = 0. In industrial

Monte Carlo codes, such as TRIPOLI-4 R©, this can not happen in prac-

tice: the tabulated continuous-energy cross sections typically assume that

E0 ∼ 10−5eV , whence v0 ∼ 44 m/s. Then, v0 being small but non-vanishing,

a dominant eigenvalue surely exists and the questions above can not be sim-

ply answered within the code. For this reason, we have developed a specific

(and simplified) α-static Monte Carlo code for testing the α − k algorithm.

This allows also simple hypotheses and transport models to be checked sep-

arately, without being hindered by the full complexity of the TRIPOLI-4 R©

code. The results of our α-static code have been verified against exact or

numerical solutions, when available. Also, an analog dynamic Monte Carlo

code has been developed, with the aim of performing dynamic simulations by

following neutrons in time: this latter code has been used so as to validate

the α-static algorithm. This work will be detailed in the following.



Chapter 4

Physical models for neutron

transport in moderating

materials

Our aim being the verification and validation of the α-static method, we look

for reasonably simple nuclear systems where analytical or numerical solutions

are easily available and can therefore be used as a reference. Starting from

the full time-dependent Boltzmann equation, we will introduce a series of

simplifications that will allow reaching our goal, yet retaining the key physical

features of the systems at hand.

Under these assumptions, we will recall here the key results concerning the

fundamental time eigenvalue and the associated fundamental eigenmode for

such systems. Only moderating configurations will be examined. The results

obtained in this chapter will be used in Chapter 5 to validate our α-static

code.

We begin by considering the simplest possible case of neutron transport,
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namely, the diffusion of thermal neutrons through a medium when multipli-

cation (fission) is neglected.

Such situation occurs in the analysis of asymptotic relaxation phenomena

in neutron thermalization [44, 17] . For instance, one may be interested in

injecting a burst of neutrons in a sample,and measuring the subsequent de-

cay of the neutron population as a function of time. Such pulsed-neutron

experiments provide information about the neutron transport parameters

(such as the diffusion coefficient) and have been extensively performed in the

sixties so as to characterize various moderating materials, such as water or

graphite [13].

We begin our analysis by considering the diffusion of one-speed neutrons

in an infinite medium. Then, we take into account finite-size effects by in-

troducing the simplest possible leakage model, the so-called rod model. Next

we address the thermalization of continuous-energy neutrons in two differ-

ent kinds of moderators: the hydrogen-based moderators and the crystalline

moderators. Finally, we treat the case of fast neutrons transport.

4.1 One-speed neutron diffusion

4.1.1 Infinite medium

In the case of one-speed transport in an infinite homogeneous medium, cross

sections are constant and Eq. 2.1 simplifies to:

∂

∂t
n(t) + Σtvn(t) = Σsvn(t), (4.1)

where n(t) =
∫
4π

n(Ω̂, t)dΩ̂ is the neutron density integrated over directions.

Note also that, in this simple case, the cross sections become constants. The

one-speed transport model is quite trivial, yet provides a rough idea of the
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asymptotic time behaviour of a moderating system.

Recalling equation 4.1, and observing that Σt = Σs + Σa, we simply have

n(t) = n0e
−Σavt, (4.2)

where n0 = n(t = 0) is the initial condition for the neutron density. Neutrons

disappear from the system with a decay constant equal to the absorption

rate: this means that α0 = −Σav, which provides a first elementary check

for α-static methods.

4.1.2 The rod model

In order to go a step further in our analysis, we must include finite-size

effects due to spatial boundaries. To simplify the matter, we will consider

the so-called rod model. Neutrons move on a 1-dimensional interval [0,L],

where only two directions are allowed (forward and backward). Moreover,

we assume that scattering is isotropic. The system has been extensively used

in reactor physics [17, 30, 46, 48, 49] because it is rather easily amenable to

analytical solutions and yet retains the key mechanisms of leakages from the

boundaries.

The Boltzmann equation for rod model degenerates in two coupled linear

differential equations for the two components of the angular density, namely,

∂

∂t
n+(x, t) + Σtvn

+(x, t) + v
∂

∂x
n+(x, t) =

1

2
Σsv[n+(x, t) + n−(x, t)] (4.3)

∂

∂t
n−(x, t) + Σtvn

−(x, t)− v ∂
∂x
n−(x, t) =

1

2
Σsv[n+(x, t) + n−(x, t)] (4.4)

where n+(x, t) = n(x, Ω̂ = +, t), n−(x, t) = n(x, Ω̂ = −, t) and x is the

spatial coordinate oriented in the forward direction.
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Considering leakage, we can impose the boundary conditions:

n+(0, t) = 0 (4.5)

n−(L, t) = 0 (4.6)

Observe that we have here used the hypothesis of isotropy for the scattering

term: half of the neutrons coming from a collision are re-emitted in the

forward direction, and half in the backward direction, whence the 1/2 factor

appearing in front of the diffusion cross-section.

We seek then separate-variable solutions of the form n±(x, t) = n±(x)eαt.

Replacing this functional form into equations (4.3) and (4.4), we obtain the

system

+ v
∂

∂x
n+(x) + Σtvn

+(x) + αn+(x) =
1

2
Σsv(n+(x) + n−(x)) (4.7)

− v ∂
∂x
n−(x) + Σtvn

−(x) + αn−(x) =
1

2
Σsv(n+(x) + n−(x)). (4.8)

Montagnini and Pierpaoli [30] have shown that the α eigenvalue spectrum

of the one-speed isotropic rod model is composed of a finite, non-void set of

real eigenvalues and an infinite set of pairs of complex conjugates eigenvalues

(falling in pairs). It is actually possible to find a dispersion relation Λ(α) = 0

whose roots are the discrete α-eigenvalues [46] by solving the system of equa-

tions 4.7 and 4.8.

Equations 4.7 and 4.8 are homogeneous, so that the trivial solutions n+ =

n− = 0 are possible and satisfy the boundary conditions. Searching for

non-trivial solutions, and imposing boundary conditions, leads to a determi-

nant equation for the α-eigenvalues, in the form Λ(α) = 0, i.e., a dispersion

relation [48]. Carrying out the calculations leads to
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cosh

(
LΣt

√
α

vΣt

(
α

vΣt

− 1

))
+

(
α

vΣt

− 1
2

)
sinh

(
LΣt

√
α

vΣt

(
α

vΣt

− 1

))
√

α

vΣt

(
α

vΣt

− 1

) = 0,

(4.9)

whose numerical roots are precisely the α-eigenvalues of our system.

Eq. (4.9) relates the physical parameters of the system to the α-eigenvalues.

Based on physical considerations, the dominant α must be negative: the

neutron population comes to extinction because of leakage and absorption.

The full α-eigenvalue spectrum can be easily obtained by either numerically

searching for the roots of Eq. (4.9), or discretizing Eqs. (4.7) and (4.8) and

finding the eigenvalues of the corresponding matrix. A qualitative picture of

the spectrum is shown in figure 4.1.

Fig. 4.1: α-eigenvalue spectrum of the rod model for one-speed neutron transport

The one-speed rod model has been successfully used in [46] for the veri-

fication of the α-static method.
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4.2 Neutron thermalization

We move now to the more realistic case of neutron thermalization, where

particles are allowed to change their speed at each collision with the sur-

rounding nuclei. In this case, the neutron density depends on speed, and

cross sections are also (generally speaking) speed-dependent. We will use in

this paragraph the functional forms for the cross sections and the scattering

kernel that are characteristic of the hydrogen-based moderators.

4.2.1 Infinite medium

We begin by considering the neutron thermalization in an infinite medium.

Recalling Eq. (2.1) and making use of the hypothesis of isotropic scattering

allows integrating n(x, v, Ω̂) over all directions, which yields

∂

∂t
n(v, t) + vΣt(v)n(v, t) =

∞∫
0

v′Σs(v
′ → v)n(v′, t)dv′ (4.10)

Since we consider a pulsed source at t = 0, the source term does not

explicitly appears in Eq. (4.10) and is present only in the initial condition.

As customary, we look for solutions of the form n(t) = n0(v)eαt: by replacing

this functional form in Eq. (4.10), we obtain:

αn(v) + vΣt(v)n(v) =

∞∫
0

v′Σs(v
′ → v)n(v′)dv′. (4.11)

This equation can be rewritten in a compact form as:

αn(v) = Ln(v), (4.12)

where L is the Boltzmann operator for neutron transport in an infinite
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medium, in the absence of multiplication, namely,

L = −vΣt(v) +

∞∫
0

v′Σs(v
′ → v)dv′. (4.13)

Equation (4.12) is formally an eigenvalue problem of the same kind studied

in Chapter 3. The general features of the eigenvalue spectrum can be inferred

by resorting to the analysis of the operator L, as discussed in Chapter 3. Here

we recall some useful properties: the spectrum of the Boltzmann operator is

composed of:

• a set of real discrete eigenvalues in the interval (α∗, 0], where α∗ =

−minvε[0,∞)[vΣt(v)];

• a continuous spectrum C = (−∞, α∗].

A qualitative picture of the spectrum is shown in figure 4.2.

The discrete eigenvalues are associated to regular eigenfunctions that ac-

tually correspond to a form of neutron density n(v, t) that is separable in

velocity and time. When the discrete set is not empty, the larger of these

eigenvalues is the inverse of the fundamental time constant of the system

and the associated eigenfunction will provide the asymptotic time behaviour

of the neutron density. We have seen that the smallest possible value for

a discrete eigenvalue is equal to −minvε[0,∞)[vΣt(v)], that is the opposite of

the minimum collision frequency. This intuitively means that the neutron

distribution can not decay faster than the infinitesimal group of neutrons

with the smallest possible collision rate [13]. Usually, this value is attained

for v → 0.

The precise details of the eigenvalue spectrum, in particular of the dis-

crete set, depend on the explicit form of the scattering kernel. If we restrict
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Fig. 4.2: α-eigenvalue spectrum for the neutron thermalization in an infinite moder-

ating medium

our attention to the thermalization process, i.e., the interaction between the

neutrons and the nuclei at thermal equilibrium, the scattering kernel must

satisfy the detailed balance:

vM(v)Σs(v → v′) = v′M(v′)Σs(v
′ → v), (4.14)

where M(v) is the Maxwell-Boltzmann distribution with most probable speed

vT

M(v) =
4√
πv3

T

v2e−v
2/v2T (4.15)

and Σs(v → v′) depends on the structural properties of the nuclei in the

traversed medium.

Corngold and Kuscer [13] have thoroughly examined how the different corre-

lation functions for a gas, a liquid and a solid are reflected in the behaviour

of the differential cross sections Σs(v → v′) at low energy, and their impact
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on the eigenvalue spectrum. We summarize here their results:

• Non-absorbing material. When the absorbing cross section vanishes

(Σa=0), it is possible to show that the only solution to Eq. (4.11) is

just the Maxwell-Boltzmann distribution M(v) at the temperature T

of the host medium.

The corresponding fundamental eigenvalue is simply α = 0. Neutron

density does not evolve in time, in the absence of leakages and absorp-

tions.

• 1/v absorption. If the absorption cross section is of the kind Σa(v) ∝

1/v over all speeds, the absorption rate Σa(v)v is constant. Then,

it can be shown [3] that the Maxwellian distribution is still a solu-

tion of Eq. (4.11), and the fundamental discrete eigenvalue is equal to

α = −vΣa(v). After a possible transient, the neutron density asymp-

totically approaches a Maxwell Boltzmann distribution, whose ampli-

tude decreases exponentially in time, with a time constant equal to the

absorption rate:

n(v, t) = e−Σa(v)vtM(v). (4.16)

• Non-1/v absorption. When the absorption rate is not constant, the

discrete eigenvalue set can significantly change and it is even possible

for the discrete set to be empty. The shape of the spectrum is related to

the particular properties of the scattering kernel, which in turn depend

on the type of material:

– Gaseous moderator. For a gaseous moderator, it has been shown [13]

that there exists an infinite set of discrete decay constants, accu-

mulating towards the lower limit α∗. In theory, it is possible to

have an empty set, but only by introducing an absorption section
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differing violently from the 1/v law in the small-v range. This in

practice never happens for gases.

– Solid moderator. For a solid moderator, the decay constants are

finite in number (usually, only a few αj or sometimes just the

fundamental eigenvalue). Moreover, by introducing an absorp-

tion rate that increases sufficiently strongly with v, the discrete

eigenvalue set can be empty.

These results show that the loss of discrete eigenvalues is caused by ab-

sorption rates increasing with speed. When this is the case, fast neutrons

disappear from the system sooner than the slow neutrons: the neutron den-

sity undergoes an absorption cooling [10]. Usually, the competition between

the thermalization process and the absorption cooling eventually leads to an

asymptotic speed distribution (the fundamental eigenmode). However, if the

fast neutron absorption is too strong, the thermalization process is not able

to compete with absorption cooling and the neutron distribution degenerates

into a singular mode (containing a δ(v) term) where a finite fraction of the

population is to be found at v = 0.

We are going now to introduce a particular scattering kernel that makes pos-

sible to explicitly observe the disappearance of discrete constant decay due

to absorption cooling [10].

The analysis of the spectrum of the Boltzmann operator for moderating

materials is made simpler if we introduce a separable scattering kernel of the

form [17]:

Σs(v
′ → v) = βvΣs(v)M(v)Σs(v

′), (4.17)

where β is a normalization constant defined as β−1 =
∞∫
0

vΣs(v)M(v)dv. The

kernel of equation (4.17) does not correspond to any physical model but
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it has the useful property of giving the correct total cross section and of

satisfying detailed balance [17, 44]. This kernel is sometimes known as the

amnesia kernel because the scattering probability p(v′ → v) is independent

of the initial velocity of the neutron and thus the scattering spectrum has no

knowledge of how it was produced [44].

If we replace (4.17) into Eq. (4.11), we obtain

[α + vΣt(v)]n(v) = βvΣs(v)M(v)

∞∫
0

v′Σs(v
′)n(v′)dv′ (4.18)

If we search for the discrete eigenvalues, we know that the term [α+ vΣt(v)]

is not zero [17]. We can divide (4.18) by this term, then multiply by [vΣs(v)]

and integrate over all velocity values. We find that the discrete time constants

must satisfy the dispersion relation [17]:

Λ(α) = 1− β
∞∫

0

[vΣs(v)]2M(v)

α + vΣt(v)
dv = 0. (4.19)

The dispersion relation allows to find the discrete eigenvalues, by analytic or

numerical methods. We will make an extensive use of this relation for our

verification tests in the next chapter .

4.2.2 Bounded medium

We now turn our attention to the more general problem of neutron diffusion

in a finite non-multiplying medium. Specific geometries, such as spheres,

slabs, and so on, have been extensively considered in literature [32]. Before

proceeding to the analysis of the rod-model geometry, we begin by recalling

some general results concerning the eigenvalue spectrum of the Boltzmann
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operator in three dimensions.

We rewrite the Boltzmann equation for the finite homogeneous case:

∂

∂t
n(~r, v, Ω̂, t) + vΩ̂ · ∇n(~r, v, Ω̂, t) + vΣt(v)n(~r, v, Ω̂, t) =

∞∫
0

∫
4π

Σs(v
′ → v, Ω̂′ → Ω̂)v′n(~r, v′, Ω̂′, t) dΩ̂′ dv′. (4.20)

Eq. 4.20 depends on the space variable and we must also include the bound-

ary conditions. For the transport equation, it is common to impose the

free-surface boundary conditions: this means that neutrons can not re-enter

from the system boundaries.

Fig. 4.3: α-eigenvalue spectrum for the neutron thermalization in a bounded moder-

ating medium

The streaming term Ω̂ · ∇ in the equation makes the analysis of the

spectrum much more difficult. A qualitative representation of this spectrum
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is reported in figure 4.3. It can be shown [3, 44] that the smallest discrete

eigenvalue α0 must lie in the region

α0 ≥ − lim
v→0

[vΣt(v)]. (4.21)

Although this condition has a different origin from the one discussed above

for the infinite case, for typical moderators, the behaviour of cross-sections

in the small-v range is such that this condition coincides with that of infinite

domains, namely :

min
vε[0,∞)

[vΣt(v)] = lim
v→0

[vΣt(v)]. (4.22)

However, while the minimum collision frequency is a physical bound for the

discrete dominant eigenvalue for infinite domains, in the case of finite domains

the discrete spectrum can be empty. Indeed, it can be shown that the discrete

dominant eigenvalue decreases monotonically with the system dimension, if

the other physical parameters are left unchanged. Therefore, there must exist

a critical dimension of the system where

α0 = − lim
v→0

[vΣt(v)]. (4.23)

If the system size is further reduced below this limit, the discrete eigenvalue

disappears into the continuum. This has been confirmed by rigorous analysis

of scattering models in both solids and gases.

In the previous section, we have seen that the disappearance of the fun-

damental mode can occur in an infinite medium because of a non-constant

absorption rate, which leads to a cooling of the speed spectrum. The leak-

age term is actually responsible for a similar effect: in fact, the neutrons

with larger speed may escape more easily from the medium. This effect is

known as diffusion cooling, because the net result of this preferential leak-

age is to shift the neutron spectrum towards energies lower than those of a
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Maxwellian distribution at the temperature of moderator. There is again a

competition between two opposite effects: leakage and energy transfer. The

former cools down the neutron spectrum, whereas the latter one tends to re-

store the Maxwellian distribution. When an equilibrium between these two

phenomena is reached, a fundamental mode exists, with an associated dom-

inant time decay constant. On the contrary, if the escape rate is too strong,

the equilibrium is broken and no discrete eigenvalue exists.

4.2.3 The minimum neutron speed

Before concluding the discussion about the pure thermalization case, we have

to make some clarifications about the continuum part of the spectrum.

Until now, we have implicitly assumed that the minimum possible neutron

speed is zero, e.g. the Maxwellian energy distribution is defined between zero

and infinity. If we impose a cut-off on the minimum neutron speed v0 > 0, it

can be demonstrated [28] that the continuum spectrum part does not exist

any more.

We have understood that the possible disappearance of the fundamental

mode must be due to the zero-speed neutrons. It seems that, when the

faster neutrons quickly disappear from the system (diffusion or absorption

cooling), the existence of zero-speed neutrons, whose flight time is very long

(possibly infinite) , generates a sort of conflict, which leads to the loss of a

regular behaviour.

However, we have to remember that the limit of zero neutron velocity does

not satisfy the conditions for the applicability of the transport equation [32].

In fact, the Boltzmann equation can be used only to describe the motion of

classical particles; but, in the zero velocity limit, the De Broglie wavelenght

for neutrons is no more negligible. Hence, we should include quantum me-
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chanic calculation in transport theory [32].

The scientific literature is divided on this point. Larsen [28] asserts that a

theory with a cut off on the minimum possible velocity is closer to the phys-

ical reality. On the contrary, Nelkin [32] says that including the uncertainty

principle would not change the results previously discussed. The fact that

the disappearance of an exponential time behaviour has been observed [44]

in some experiments bring us to agree with the physical analysis of Nelkin.

4.2.4 The rod model equations

For the case of the one-dimensional rod model, Eq. 4.20 greatly simplifies.

In fact, as shown before, the term Ω̂ · ∇ can be split into two simple spa-

tial derivatives: ± ∂
∂x

. Moreover, with the hypothesis of isotropic separable

scattering kernel previously introduced, the equations become

∂

∂t
n+(x, v, t) + vΣtn

+(x, v, t) + v
∂

∂x
n+(x, v, t) =

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′, t) + n−(x, v′, t))dv′ (4.24)

∂

∂t
n−(x, v, t) + vΣtn

−(x, v, t)− v ∂
∂x
n−(x, v, t) =

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′, t) + n−(x, v′t))dv′, (4.25)

together with the boundary conditions:

n+(0, v, t) = 0 (4.26)

n−(L, v, t) = 0 (4.27)
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We search for separate-variable solutions of the type n(x, v, t) = n(x, v)eαt.

Then, substituting this functional form into equations 4.24 and 4.25 we find

+ v
∂

∂x
n+(x, v) + vΣtn

+(x, v) + αn+(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)(n+(x, v′) + n−(x, v′))dv′. (4.28)

− v ∂
∂x
n−(x, v) + vΣtn

−(x, v) + αn−(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)(n+(x, v′) + n−(x, v′))dv′. (4.29)

The simple form of equations 4.28 and 4.46 allows explicit results con-

cerning the eigenvalue spectrum to be derived.

4.3 Neutron thermalization and Bragg scat-

tering

In section 4.2.1, we have shown two important features concerning the dis-

crete eigenvalue set of a bounded system:

• the greatest discrete eigenvalue can not be smaller than the Corngold

limit α∗;

• there exists a minimum system size L∗ such that no discrete eigenvalues

exist for systems smaller that the critical size; this implies that the

asymptotic time behaviour of neutron flux is not exponential in these

small systems.
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However, some pulsed neutron experiments in polycrystalline moderators

have shown a discrepancy between theory and experiments. In fact, some

experimental works have found, for very small systems, a good exponential

decay with decay constant smaller than |α∗|−1. A considerable amount of

theoretical work has been motivated by this apparent lack of coherence.

Conn and Corngold [10, 11] have found a good explanation for the exper-

imental results using the asymptotic reactor theory, which is a good approxi-

mation only for systems whose dimensions are much larger than a mean free

path (as it would be clear in a while) but has turned out to be a successful

tool to study moderators with Bragg scattering.

The asymptotic reactor theory supposes a separable solution of the form

n(~r, v, Ω̂, t) = nB(v, Ω̂, t)ei
~B·~r, (4.30)

where | ~B| is a fixed, real number. The idea behind the asymptotic reactor

theory is to expand the solution in a Fourier series of spatial modes, each

indexed by a different B. In practice, however, one makes the hypothesis

that a single value of B suffices to characterize the spatial shape of the fun-

damental eigenmode [17, 44]. This particular value of B takes the name of

geometrical buckling and satisfies: | ~B| ≈ π/L, where L is a characteristic

dimension of the system.

If we applied this theory to the study of moderators with regular scat-

tering kernel, like those analyzed in chapter 4.2, we would find a critical

buckling B∗ in correspondence of the critical size L∗. The Corngold theorem

[12, 13] asserts that no discrete eigenvalues exist for systems characterized

by a buckling larger than B∗; notice that the theorem is equivalent to the

condition on the critical size discussed in chapter 4.2.1.
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Returning to polycrystalline moderators, the experiments seem to prove

that the maximum B theorem is not valid: a particular elastic coherent scat-

tering occurring in crystalline materials, the Bragg scattering is responsible

for the discrepancy between theory and experiments.

The Bragg scattering cross section has a step behaviour and vanishes below

a characteristic speed, the Bragg cut-off vb. In this interaction, the neutron

does not change its speed. Therefore, in the hypothesis of isotropic Bragg

scattering, we have to add to the scattering kernel a term of the type

ŜB =

∞∫
0

δ(v − v′)v′Σb(v
′)dv′ (4.31)

where Σb(v
′) is defined only for v ≥ vB.

The real behaviour of this scattering cross sections is quite complicated be-

cause it exhibits a series of finite discontinuities. We are going to use a

simpler description of this interaction, like Conn and Corngold did [10, 11].

Fig. 4.4: Cross-sections modeling for crystalline moderators
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The thermalization kernel is modeled with the simple separable kernel

previously introduced 4.17 and a simple model of Bragg scattering is in-

troduced. The scattering cross-section used are illustrated in Figure 4.4. As

indicated, the total cross section is assumed constant above the Bragg cut-off

while the Bragg cross section tends to zero at high energies. The thermal-

ization cross section is of type 1/v at low energies and slowly re-increases at

high energies.

Fig. 4.5: The α-eigenvalue spectrum for crystalline moderators

Summarizing, for a three-dimensional bounded polycrystalline medium,

the equation becomes:

∂

∂t
n(~r, v, Ω̂, t) = (S+SB −A−L)n(~r, v, Ω̂, t) (4.32)

where SB is the Bragg scattering operator. If we suppose a solution of the

form n(~r, v, Ω̂, t) = nB(v, Ω̂, t)ei
~B·~r, substitute it into the equation and use

Laplace transform technique [10], we can find that the α plane structure is
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similar to that of figure 4.5.

We find:

• The area to the left of αA = −minvε[v+b ,∞)[vΣT (v)] is the set defined by

α + vΣT (v) + iBvµ = 0 (4.33)

(where µ is the cosine between the buckling vector and the velocity)

for v > vB. It reflects the nature of ΣT (v) above the Bragg cutoff. This

area can become fragmented if we account for the small discontinuities

in ΣT (v) caused by higher order Bragg reflections.

• The vertical line cut at α∗ = −minvε[0,∞)[vΣT (v)] is a result of the

constant collision frequency below the Bragg cutoff. It is therefore

called the sub-Bragg continuum, ΓSB. It is also defined by Eq. 4.33

for 0 6 v 6 vB and it is disjoint from the area because ΣT (v) is

discontinuous at vB. If we abandon the hypothesis of constant collision

frequency below the Bragg cutoff, the line is expanded into a narrow

area, extending along the real axis from α∗ to Re{α} = −vB[Σs(vB) +

Σa(vB)] (where Σs does not include the Bragg scattering).

• The horizontal line defined by

1− ΣB(v)

B
tan−1 Bv

α + vΣT (v)
= 0 (4.34)

is the elastic continuum Γe. The maximum value of this set is αel =

−minvε[v+B ,∞) α(B2, vB) and it is obtained when ΣT (v) and ΣB(v) are

evaluated just above the Bragg cutoff. Note that, for fixed v, Eq. 4.34

has the form of the one-velocity dispersion law and proves the one-speed

nature of Bragg-scattered neutrons.
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• A set of discrete eigenvalues that must be real and negative but are

not necessarily bounded by α∗. By examining figure 4.5, we see it is as

usual possible for discrete eigenvalues to exist between the origin and

α∗ and, as well, in the gap between ΓSB and Γe. Those in the gap will

have magnitude greater than α∗ and be bounded by the edge of the

elastic continuum, αel(B
2).

The final statement contradicts the maximum B theorem, but this is not

really shocking because in order to prove it we need to assume some cross

sections features; these features are not respected by Bragg cross section be-

cause of its discontinuity. The appearance of gaps makes the statement of the

theorem a little different. There is now a critical buckling B∗2 , such that, if

B2 > B∗2, an exponential can be observed and any discrete eigenvalue which

exists is α < α∗, and a critical buckling B∗∗2, such that if B2 > B∗∗2, no

discrete eigenvalues exist. However, even when isolated discrete eigenvalues

exist for B2 > B∗2, the exponential behaviour is no longer dominant at long

times. It can be shown [10] that the eigenfunction associated with a discrete

eigenvalue < α∗ cannot be everywhere positive and thus cannot dominate

the solution at long times. The asymptotic behavior of the neutron density

cannot be described by this eigenfunction alone: there must be a continuum

contribution.

We can now compare the theoretical eigenvalues and the experimental

measured time decay constants α0:

• When α0 > α∗, the exponential behaviour observed in the laboratory

may be immediately associated with the fundamental eigenvalue.

• When αel < α0 < α∗, an exponential decay could be observed in lab-
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oratory but its interpretation is not so simple. We have now to take

into account three contributions: the discrete eigenvalue, the sub-Bragg

continuum contribution, the elastic continuum contribution (the area

continuum contribution can be neglected because it vanishes much too

rapidly). If B2 & B∗2, α0 is “far” from αel and the decay is well repre-

sented by the contributions of the discrete pole and ΓSB. In this case,

it can be observed an exponential decay but it is followed, at very long

times, by non-exponential behaviour, due to ΓSB.

As the size of system is reduced, both α0 and αel become more negative,

but their difference vanishes. The contribution of the discrete eigen-

value becomes less important, until a ”mode-switching” occurs and the

decay is described by the contributions from Γe and ΓSB.

• If the system size is too small, no more exponential behaviour is ob-

served. It means that the discrete eigenvalue has disappeared and the

spectrum is made of only continuous sets.

The unexpected results of diffusion experiments in poly-crystals have been

explained with the asymptotic reactor theory. We should now ask if these

conclusions are still valid including the correct boundary conditions. There

are a lot of discussions about this point in the scientific literature [28, 16,

27, 5, 4]. In fact, the construction of a rigorous transport theory turns out

to be quite insidious as depending on the existence domain chosen for the

eigenfunctions. Generally speaking, the results found for transport theory

are similar to those obtained in the asymptotic approximation [4].
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4.4 Slowing down and thermalization

A very important class of transport phenomena involves the slowing down

of fast particles as they move through a host medium. If the energy of the

particles is much larger than thermal energy of the host material, it is fair

to ignore the microscopic motion of the particles comprising the host and to

treat all interactions as if the energetic particles collided with particles which

are at rest. In such interactions the energetic particles can only lose energy

and the upscattering in energy can be ignored. Such superthermal particle

transport problems arise in a variety of applications such as the slowing down

of fission neutrons (with initial energy of 106 eV ), but also the transport of

energetic charged particles through matter and the thermalization of ener-

getic particles in gases or plasmas.

The simplification of ignoring the motion of the background atoms con-

siderably changes the mathematical nature of the appropriate form of the

transport equation from that we encountered in thermalization problems. In

particular, the neglect of microscopic motion in the host material greatly

simplifies the form of the scattering kernel. Indeed, on occasion it even al-

lows for an analytical treatment of the transport process.

We now introduce the new operators of fission and slowing down. The

transport equation describing fast neutrons moving in a three dimensional

bounded system is

∂

∂t
n+ vΩ̂ · ∇n+ vΣt(v) = S n+ SSD n (4.35)

where n(~r, v, Ω̂, t) depends on space, direction, velocity and time, S is the

usual thermalization scattering operator and SSD is the slowing down scat-
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tering operator.

Because of the lack of upscattering, the integral slowing down operator is

of the form:

SSD =

∫ ∞
v

K(v, v′)dv′

and so it differs from S for the extremes of integration: the lower bound is no

more zero. Nicolaenko [33] has proven that this operator has the following

properties:

• it is completely continuous, therefore possessing no continuous spec-

trum

• it has no eigenvalue spectrum except for the point at infinity.

We can give a physical explanation for these properties [17]. The existence of

eigenvalues, that is, of nontrivial solutions f for the problem SSD nα = αnα

implies physically that the scattering operator is able to regenerate or pre-

serve the energy spectrum of n(v). But the absence of upscattering implies

that SSD always generates an energy spectrum with a lower average energy.

Hence the slowing down kernel in the fast regime is incapable of maintaining

an equilibrium energy spectrum; that is, the corresponding scattering oper-

ators have an empty point eigenvalue spectrum.

In our models, we will use a slowing down scattering operator of the form

SSD = vΣsd

∫ ∞
v

const

v′
dv′ (4.36)

which takes into account:

• the absence of upscattering;

• a cross section Σsd constant in the slowing down range;
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• an uniform energy distribution after scattering. It means that a neu-

tron with an initial energy E ′, after a scattering, will have a new energy

E between 0 ≤ E ≤ E ′, with equal probability. We have to clarify that

this is exactly correct only for scattering with hydrogen: the neutron

can lose its whole energy (E = 0) with a single collision only if the tar-

get has its same mass (mass number A ' 1). We rewrite this condition

in term of the velocity probability density:

p(E ′ → E)dE = p(v′ → v)dv, (4.37)

p(v′ → v) = p(E ′ → E)
dE

dv
=

1

E ′
dE

dv

Substituting E = 1
2
mv2, we finally obtain:

p(v′ → v) =
2v

v′ 2

Under these hypothesis, the slowing down scattering operator

SSD =

∫ ∞
v

Σsv
′p(v′ → v)dv′

assumes the form of Eq. (4.36) with const = 2.

We recall here the form of the thermalization scattering operator has the

form:

S = βvΣs(v)M(v)

∫ ∞
0

Σs(v
′)v′dv′ (4.38)

Note that the thermalization scattering operator can provide both a

downscattering and an upscattering mechanism. The latter can regenerate

the energy spectrum and create point eigenvalues, as seen in paragraph 4.2.

We shall rewrite the Eq. (4.35) for an infinite medium and for the rod

model.
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4.4.1 Infinite medium

We begin by consider the fast neutron transport in an infinite medium. Re-

calling Eq. (4.35), the form of scattering operators previously introduced

and making use of the hypothesis of isotropic scattering allows integrating

n(~r, v, Ω̂, t) over all directions, which yields:

∂

∂t
n(v, t) + vΣt(v)n(v, t) =

= 2vΣsd

∫ ∞
v

n(v′, t)

v′
dv′ + βvΣs(v)M(v)

∫ ∞
0

Σs(v
′)v′n(v′, t)dv′. (4.39)

Since we consider a pulsed source at t = 0, the source term does not explicitly

appear in Eq. (4.39) and is included in the initial condition. As customary, we

look for solutions of the form n(v, t) = n(v)eαt: by replacing this functional

form in Eq. (4.39), we obtain:

[α+vΣt(v)]n(v) = 2vΣsd

∫ ∞
v

n(v′)

v′
dv′+βvΣs(v)M(v)

∫ ∞
0

Σs(v
′)v′n(v′, t)dv′.

(4.40)

4.4.2 The rod model

We direct now our attention to the one-dimensional rod model. As usual,

Eq. (4.35) greatly simplifies: the term Ω̂ · ∇ can be split into two simple

derivatives: ± ∂

∂x
. Adding the slowing down operator, the rod model equa-

tions become:
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∂

∂t
n+(x, v, t) + vΣtn

+(x, v, t) + v
∂

∂x
n+(x, v, t) =

vΣsd

∫ ∞
v

n+(x, v′, t) + n−(x, v′, t)

v′
dv′+

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′, t) + n−(x, v′, t))dv′ (4.41)

∂

∂t
n−(x, v, t) + vΣtn

−(x, v, t)− v ∂
∂x
n−(x, v, t) =

vΣsd

∫ ∞
v

n+(x, v′, t) + n−(x, v′, t)

v′
dv′+

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′, t) + n−(x, v′, t))dv′, (4.42)

together with the usual boundary conditions:

n+(0, v, t) = 0 (4.43)

n−(L, v, t) = 0 (4.44)

We search again for separate-variable solutions of the type n±(x, v, t) =

n±(x, v)eαt. Then, substituting this functional form into equations 4.41

and 4.42 we find

+v
∂

∂x
n+(x, v)+vΣtn

+(x, v)+αn+(x, v) = vΣs

∫ ∞
v

n+(x, v′) + n−(x, v′)

v′
dv′+

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′) + n−(x, v′))dv′ (4.45)

−v ∂
∂x
n+(x, v)+vΣtn

−(x, v)+αn−(x, v) = vΣs

∫ ∞
v

n+(x, v′) + n−(x, v′)

v′
dv′+

βvΣs(v)M(v)

∞∫
0

1

2
v′Σs(v

′)(n+(x, v′) + n−(x, v′))dv′. (4.46)





Chapter 5

Assessing the properties of

moderators with α-static

methods

In the previous chapters we have discussed the mathematical theory of the

alpha-static methods and the details of the algorithm at the base of the

Monte Carlo α-static code that we have developed. We have also introduced

in chapter 4 some physical models of interest for moderating materials. We

shall proceed now to present some results of the simulations performed by

our code with a double aim:

• the verification and validation of the α static methods;

• exploring the physical properties of moderators and the asymptotic

time relaxation of the neutrons in these materials.

The α-static Monte Carlo code used for the simulations has been de-

veloped in C++ language; it is based on the algorithm presented in chapter

3 and it is able to simulate the transport of neutrons with a velocity distribu-

65
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tion in infinite media or bounded one-dimensional media. The alpha-static

code results will be compared to reference results:

• analytical solutions, coming from literature or directly obtained in this

work;

• independent numerical codes. In particular, we have developed:

– a dynamic Monte Carlo code, in C++ language; this code is a

valuable tool because, as we have discussed in chapter 2, dynamic

Monte Carlo methods reproduce the real physics of a process in

time and can be used as reference for the other numerical methods;

– a deterministic solver, in Matlab; this code finds the eigen-

values of the Boltzmann stationary equation by discretizing the

space and energy domains. Even if deterministic methods give an

approximated solution, as seen in chapter 2, this solver is useful

because it finds all the eigenvalues of the Boltzmann operator and

so provides a picture of the entire spectrum.

5.1 Preliminary tests: one-speed transport

We briefly present as a first check the simulation results for the simplest case

discussed in paragraph 4.1: the one-speed neutron transport in moderating

media.

We have seen in paragraph 4.1.1 that, in the case of an infinite medium,

if we inject a burst of neutrons at t = 0, the fundamental eigenvalue α0

characterizing the neutron decay is equal to the opposite of the absorption
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rate, namely, α0 = −Σav. We summarize the data utilized for the simulation

in the following table:

L infinite

Σs 1.0 cm−1

Σa 0.5 cm−1

v 1.0 cm s−1

For this case, with these parameters, we run the α-static code and we

obtain the α convergence as function of generations; we can see in figure 5.1

the result of the simulation. The α0 eigenvalue averaged over the last 50

generations (after discarding the first 50) is plotted as a green line of figure

5.1 and we see that it is in very good agreement with the value given by

theory (purple line of figure 5.1).

Fig. 5.1: Diffusion of one-speed neutrons in an infinite medium: the fundamental

eigenvalue α0 provided by the α-static code plotted as a function of the generations.

We pass now to the rod model presented in paragraph 4.1.2. We have seen
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that the discrete α eigenvalues can be found by solving the dispersion relation

of Eq. (4.9). We proceed by simulating a pulsed-neutron experiment: we

inject a burst of neutrons in the center of the rod and simulate their transport.

The parameters adopted here are:

L 3.0 cm

Σs 0.9 cm−1

Σa 0.2 cm−1

v 1 cms−1

Using Eq. (4.9), we find that the fundamental eigenvalue is α0 ' −0.7698 s−1

(plotted as a purple line in figure 5.2). We run the alpha-static code and we

obtain the α convergence as a function of the generations, shown in figure

5.2. After discarding the first 50 generations, we compare the α0 averaged

over the last 50 generations (the green line in figure 5.2) and compare this

value to that computed by using the Eq. (4.9): we find again a very good

agreement between the analytic and numerical result.

Fig. 5.2: Diffusion of one-speed neutrons in a bounded medium: the fundamental

eigenvalue α0 provided by the α-static code plotted as a function of the generations.
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5.2 Neutron thermalization simulations

We shall focus now on the problem of the neutron thermalization analyzed in

paragraph 4.2. Before discussing the results for the infinite medium and for

the rod model, we summarize some modeling parameters that are common

to both systems:

• the source used for the simulations is a burst of one-speed neutrons

(v = 1 cm/s) injected at t = 0;

• the scattering and absorption cross sections are of the kind 1/v plus a

constant:

Σs(v) =
Σs

v
+ Σ0

s , Σa(v) =
Σa

v
+ Σ0

a. (5.1)

Their qualitative behaviour is represented in figure 5.3

• the scattering kernel is the amnesia kernel of Eq.(4.17): a single shock

is sufficient to thermalize the neutron;

• the most probable speed of the Maxwellian distribution is vT = 1.

Fig. 5.3: Absorption and scattering cross-sections modeling
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5.2.1 Infinite medium

We have discussed the α spectrum features of an infinite moderating system

in paragraph 4.2.1. We recall the most important results:

1. the spectrum is composed of real discrete eigenvalues in the interval

(α∗, 0] and of a continuum spectrum C = (−∞, α∗]; see figure 4.2;

2. the limit of the continuum set α∗ is the opposite of the minimum reac-

tion rate; considering the cross sections introduced above, we have:

α∗ = − min
vε[0,∞)

[vΣt(v)] = −[v(
Σs

v
+ Σ0

s +
Σa

v
+ Σ0

a)]v=0 = −(Σs + Σa);

(5.2)

3. the discrete eigenvalues are the solutions of the dispersion relation [17]

that we recall here:

Λ(α) = 1− β
∞∫

0

[vΣs(v)]2M(v)

α + vΣt(v)
dv = 0, (5.3)

where β is the normalization constant defined as β−1 =
∞∫
0

vΣs(v)M(v)dv;

4. the disappearance of discrete eigenvalues can occur in the presence of

an absorption rate that increases strongly enough with v because of the

absorption cooling [13] discussed in 4.2.1.

Considering an absorption cross section of the type Σa(v) =
Σa

v
+ Σ0

a,

it follows that the absorption rate increases with increasing Σ0
a. We have

been able to find the critical value Σ0 ∗
a corresponding to the disappearance

of discrete eigenvalues by substituting α = α∗ + ε into Eq.(5.3) and taking

the limit for ε→ 0. If our system is characterized by a Σ0
a < Σ0 ∗

a , at least
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one discrete eigenvalue exists; on the contrary, if Σ0
a > Σ0 ∗

a there are no

discrete eigenvalues in the Boltzmann operator spectrum. By carrying out

the explicit calculation, we find

Σ0 ∗
a =

(
Σs

vT
)2 +

Σs

v̄
Σ0
s

Σs(v̄)
, (5.4)

where v̄ is the average velocity of the Maxwell-Boltzmann distribution

v̄ =
2√
π
vT . (5.5)

We shall discuss two simulations: in the former, we shall choose Σ0
a < Σ0 ∗

a

and we expect to find at least one discrete eigenvalue; in the latter, on the

contrary, we shall choose Σ0
a > Σ0 ∗

a in order to test the behaviour of the

α-static code in the absence of discrete eigenvalues.

Simulation 1 (Σ0
a < Σ0 ∗

a )

We summarize the parameters used for the simulation in the following table:

L infinite

Σs 1.0 s−1

Σ0
s 0.1 cm−1

Σa 0.5 s−1

Σ0
a 0.8 cm−1

vT 1.0 cm s−1

Considering these data, using equations (4.21) and (5.4), we find that the

continuum limit is characterized by:
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α∗ -1.5 s−1

Σ0 ∗
a ' 1.1038 cm−1

Thanks to the deterministic solver that we have developed, we can find the

eigenvalue spectrum of this case, which is shown in figure 5.4. The spectrum

has been obtained by using an energy discretization with M meshes; increas-

ing M , the interval of the spectrum to the left of α∗ is progressively filled :

this shows that the interval (−∞, α∗] is actually a continuum, in agreement

with the theory. Indeed, the spectrum obtained by our deterministic solver

is similar to that one of figure 4.2 discussed in 4.2.1. We can observe in fig-

ure 5.4 that there is a single discrete eigenvalue behind the continuum region.

Fig. 5.4: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in an infinite moderating medium with Σ0
a < Σ0 ∗

a .

Following this analysis of the spectrum, we run the α-static code for this

case and we obtain the α convergence as a function of the generations; we

can see in figure 5.5 the result of the simulation. We see that the α0 averaged

over the last 50 generations (plotted as a green line of figure 5.5) is in very

good agreement with the single discrete eigenvalue of the spectrum of figure
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5.4 given by the deterministic solver.

Fig. 5.5: Neutron thermalization in an infinite medium with Σ0
a < Σ0 ∗

a : the fun-

damental eigenvalue α0 provided by the α-static code plotted as a function of the

generations.

The existence of a discrete eigenvalue means that, after a transient, the

neutron density n(v, t) can be represented by the separable form

n(v, t) = n0(v)eα0t,

where n0(v) is the eigenfunction associated to α0 and physically represents

the asymptotic velocity distribution of the neutrons. To assess the behaviour

of the neutron population in time, we run the dynamic Monte Carlo code

(used as a reference simulation). Then, we compare the asymptotic time

behaviour (eα0t) and the neutron density n(v) provided by the alpha-static

code to the reference results of the dynamic Monte Carlo code.

In figure 5.6(a), we can observe that the behaviour of the neutron population

with respect to time (green curve), after a transient, is well fitted by an

exponential decay with rate α0. There is a good agreement also in the neutron

velocity distribution provided by the static (blue curve) and dynamic (green
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(a) The time decay of the neutron popula-

tion in an infinite medium with Σ0
a < Σ0 ∗

a .

(b) The asymptotic velocity distribution of

the neutron population in an infinite medium

with Σ0
a < Σ0 ∗

a .

Fig. 5.6: The α-static results (blue) compared to the Dynamic Monte Carlo results

(green).

curve) codes, as shown in figure 5.6(b). Furthermore, we notice that the

velocity distribution of the α static code is much less dispersed than that

of the dynamic code: as we mentioned in chapter 2, dynamic codes need

a very large number of simulated particles to achieve good statistics. On

the contrary, α-static codes need a relatively smaller number of simulated

particles.

Simulation 2 (Σ0
a > Σ0 ∗

a )

We summarize the parameters adopted for the second simulation in the fol-

lowing table:
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L infinite

Σs 1.0 s−1

Σ0
s 0.1 cm−1

Σa 0.5 s−1

Σ0
a 1.4 cm−1

vT 1.0 cm s−1

Summarizing, the only parameter changed with respect to the previous

simulation is the constant part of the absorption cross section (so that α∗

is unchanged). We use our deterministic solver to compute the eigenvalue

spectrum for this latter case and we show it in figure 5.7. We see that the

only difference with respect to the previous spectrum of figure 5.4 is the

absence of discrete eigenvalues, as expected.

Fig. 5.7: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in an infinite moderating medium with Σ0
a > Σ0 ∗

a .

Then, we run the α-static code for this latter case and we plot the the α

convergence as a function of the generations in figure 5.8; we note that the
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code still converges to a value: the Corngold limit α∗. However, we see that

convergence is quite slow. In fact, convergence is achieved after almost 2000

generations. This difficulty is due to an “attraction” toward lower values of

α, that is toward the continuum part of the spectrum.

Fig. 5.8: Neutron thermalization in an infinite medium with Σ0
a > Σ0 ∗

a : the fun-

damental eigenvalue α0 provided by the α-static code plotted as a function of the

generations.

Does the convergence of the α-static code imply that the neutron density

n(v, t) has a separable form with an exponential time behaviour characterized

by a rate α∗? To answer this question, we have to investigate the time

behaviour of the neutron population and for this reason we run the dynamic

Monte Carlo code. In figure 5.6(a) we compare the reference neutron time

decay obtained by the dynamic Monte Carlo code (green) to an exponential

function with rate α0 given by the α-static code (blue). The two curves in

figure 5.6(a) do not have the same slope. Moreover, in figure 5.6(b), we see

that the neutron velocity distribution given by the α-static code (blue) is

different from the neutron velocity distribution given by the dynamic Monte

Carlo code (green).
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(a) The time decay of the neutron popula-

tion in an infinite medium with Σ0
a > Σ0 ∗

a

(b) The asymptotic velocity distribution

of the neutron population in an infinite

medium with Σ0
a > Σ0 ∗

a

Fig. 5.9: The α-static results (blue) compared to the Dynamic Monte Carlo results

(green).

Therefore, for this choice of the physical parameters, we can conclude

that the results provided by the α-static code are not representative of the

asymptotic time behaviour. This is not surprising, because the hypothesis of

variable separation is no more valid when a discrete eigenvalue is missing, as

learned in chapter 4. Actually, as expected from theory [12], the disappear-

ance of discrete eigenvalues corresponds to singular velocity distribution, i.e.

with a δ(v) term. In other words, a finite fraction of neutrons has v = 0; this

is confirmed also by Monte Carlo simulations (both static and dynamic), as

shown by the peaks at zero velocity in figure 5.9(b).

The conclusion about the α-static code unreliability in this case is not

really troubling. In fact, the situation analyzed is quite pathological : like we

have said in paragraph 4.2.1, absorption rates so high are not common.
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5.2.2 The rod model

In paragraph 4.2.2, we have discussed the α spectrum features of a bounded

three-dimensional medium. We summarize the basic results:

1. the spectrum is composed of real discrete eigenvalues in the interval

(α∗, 0] and of a continuous planar spectrum C = (−∞, α∗], as qualita-

tively shown in figure 4.3;

2. the continuum limit or Corngold limit is

α∗ = − lim
v→0

[vΣt(v)]; (5.6)

3. the discrete dominant eigenvalue decreases monotonically with the sys-

tem dimension, if the other physical parameters are left unchanged.

Therefore, there must exist a critical dimension of the system where

α0 = α∗; if the system size is further reduced below this limit, the

discrete eigenvalue disappears into the continuum. This is due to the

diffusion cooling discussed in paragraph 4.2.1.

For a bounded one-dimensional system we still expect a discrete eigen-

value set and a continuum interval, separated by the Corngold limit. How-

ever, what can be said about the continuum region? Has it the same planar

structure? To answer this question, we resort to the deterministic solver,

which computes the spectrum by solving the eigenvalue problem. The so-

lution provided by the deterministic solver depends on the number of space

(N) and energy (M) discretization meshes: the exact spectrum would be ob-

tained by increasing N and M to infinity.

In figure 5.10 we plot two spectra obtained with different N and M: in figure

5.10(a), N is fixed (N = 40) and M changes (M = 20 for the green spectrum,
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M = 30 for the blue spectrum and M = 40 for the purple spectrum). In

figure 5.10(b), on the contrary, M is fixed (M = 40) and N changes (N = 20

for the green spectrum, N = 30 for the blue spectrum and N = 40 for the

purple spectrum).

(a) Spectrum obtained with N (space dis-

cretization meshes) fixed and M (energy dis-

cretization meshes) increasing

(b) Spectrum obtained with M (energy dis-

cretization meshes) fixed and N (space dis-

cretization meshes) increasing

Fig. 5.10: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in a one-dimensional bounded moderating medium

The continuous form is not so obvious: it seems a bullet-shape but we no-

tice that the spectrum considerably changes with the discretization. In fact,

increasing the energy mesh number, the continuum is filled (like in the in-

finite case) but also slightly pushed toward the real axis; on the contrary,

increasing the space mesh number, the continuum grows, filling a plane.

This latter effect seems to be dominant: we conjecture that the continuous

interval structure of the one-dimensional medium is planar as in the three-

dimensional case.
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In analogy with the three-dimensional case, we suppose that the funda-

mental discrete eigenvalue disappears in the continuum for a critical length

L∗ of the rod; we search now for an analytic expression for L∗. We recall the

stationary equations (4.28) and (4.46) for the rod:

+ v
∂

∂x
n+(x, v) + vΣtn

+(x, v) + αn+(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)[n+(x, v′) + n−(x, v′)]dv′

− v ∂
∂x
n−(x, v) + vΣtn

−(x, v) + αn−(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)[n+(x, v′) + n−(x, v′)]dv′

together with the boundary conditions:

n+(0, v) = 0 (5.7)

n−(L, v) = 0. (5.8)

We suppose that the constant part of the scattering and absorption cross

sections is zero:

Σs(v) =
Σs

v
, Σa(v) =

Σa

v
; (5.9)

under this hypothesis, the Corngold limit is

α∗ = −(Σs + Σa). (5.10)

Recalling the expression of the Maxwell-Boltzmann distribution (Eq.(4.15))

M(v) =
4√
πv3

T

v2e−v
2/v2T
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with the cross sections just defined, the normalization factor β is simply

β−1 =

∞∫
0

vΣs(v)M(v)dv = Σs. (5.11)

Substituting this β value, replacing α = α∗ into the stationary rod equations

and dividing by v, we obtain

∂

∂x
n+(x, v) =

1

2

M(v)

v

∞∫
0

v′Σs[n
+(x, v′) + n−(x, v′)]dv′ (5.12)

− ∂

∂x
n−(x, v) =

1

2

M(v)

v

∞∫
0

v′Σs[n
+(x, v′) + n−(x, v′)]dv′. (5.13)

If we integrate over velocity, defining n(x) =
∞∫
0

n(x, v)dv, the equations be-

come:

d

dx
n+(x) = Γ[n+(x) + n−(x)] (5.14)

− d

dx
n−(x) = Γ[n+(x) + n−(x)] (5.15)

where Γ is a constant equal to

Γ =
Σs

vT
√
π

=
Σ(vT )√

π
. (5.16)

Equations (5.14) and (5.15) form a system of two coupled ordinary dif-

ferential equations. Solving the system with the boundary conditions (5.23)

(5.24) leads to an analytic formulation for L∗:

L∗ =

√
π

Σs(vT )
, (5.17)

which is of the order of the mean scattering free path and does not depend on

the absorption cross section. This is not surprising, because, the existence of
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a critical dimension is due to the diffusion cooling, which is related to leakage

alone.

We shall now discuss two simulations: in the former, we shall choose a rod

length greater than L∗, expecting to find at least one discrete eigenvalue; in

the latter, on the contrary, we shall choose a rod dimension smaller than L∗,

in order to test the behaviour of the α-static code in the absence of discrete

eigenvalues.

Simulation 1 (L > L∗)

We summarize the parameters adopted for the simulation in the following

table:

L 2 cm

Σs 1.0 s−1

Σ0
s 0 cm−1

Σa 1.0 s−1

Σ0
a 0 cm−1

vT 1.0 cm s−1

Considering these data, using equations (5.10) and (5.17) we find that the

continuum limit is characterized by:

α∗ -2.0 s−1

L∗ ' 1.7725 cm

In figure 5.11, we display the eigenvalue spectrum obtained by the deter-

ministic solver, using an energy discretization with M meshes and a space

discretization with N meshes. We observe that there exists a discrete eigen-

value.
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Fig. 5.11: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in a bounded moderating medium with L > L∗

With these parameters, we run the α-static code and we obtain the α

convergence as a function of the generations; we can see in figure 5.12 the

result of the simulation. The α0 eigenvalue averaged over the last 50 gener-

ations (after discarding the first 50) is plotted as a green line in figure 5.12

and we see that it is in very good agreement with the discrete value given by

the deterministic solver.

As usual, if at least one discrete eigenvalue exists, after a transient, the

neutron density n(v, t) can be represented by the separable form n(v, t) =

n0(v)eα0t, where n0(v) is the eigenfunction associated to α0 and physically

represents the asymptotic velocity distribution of the neutrons.

To assess the behaviour of the neutron population in time, we run the ref-

erence dynamic Monte Carlo code. Then, we compare the asymptotic time

behaviour (eα0t) and neutron density n(v) provided by the α-static code to

the results of the dynamic code.

Figure 5.13(a) shows that the time behaviour of the neutron population ob-

tained by the dynamic code (green), after a transient, is well fitted by an
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Fig. 5.12: Neutron thermalization in a bounded medium with L > L∗: the fundamental

eigenvalue α0 provided by the α-static code plotted as a function of the generations.

exponential decay whose rate is α0 (blue). There is a good agreement also in

the neutron velocity distribution provided by the static (blue) and dynamic

(green) code, as shown in figure 5.13(b). We notice that again the veloc-

ity distribution of the α static code is much less dispersed than that of the

dynamic code.

(a) The time decay of the neutron popula-

tion in a bounded medium with L > L∗.

(b) The asymptotic velocity distribution

of the neutron population in a bounded

medium with L > L∗.

Fig. 5.13: α-static results (blue) compared to Dynamic Monte Carlo results (green).
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Simulation 2 (L < L∗)

We reduce the rod size to a dimension smaller than L∗. We summarize the

parameters adopted for the simulation in the following table:

L 1.2 cm

Σs 1.0 s−1

Σ0
s 0 cm−1

Σa 1.0 s−1

Σ0
a 0 cm−1

vT 1.0 cm s−1

The deterministic solver shows the absence of a discrete eigenvalue set,

as shown in figure 5.14.

Fig. 5.14: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in a bounded moderating medium with L < L∗.

Which is the α-static code behaviour in this case? We run the α-static

code and we obtain the α convergence as a function of the generations, which
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is shown in figure 5.15. We see that the α-static code converges to the Corn-

gold limit, even if there are some fluctuations toward lower values, similarly

as observed in the second simulation of subsection 5.2.1.

Fig. 5.15: Neutron thermalization in a bounded moderating medium with L < L∗:

the fundamental eigenvalue α0 provided by the α-static code plotted as a function of

the generations.

We wonder again if the α0 and the associated eigenfunction found by the

α-static code have a physical meaning (respectively the inverse of the time

constant and the neutron velocity distribution) like in the previous case. To

answer the question, we explore the time behaviour of the neutron popula-

tion by resorting to the reference results of the dynamic Monte Carlo code.

Figure 5.16(a) shows that the neutron time decay (blue) is no more fitted

by an exponential with rate α0. Indeed, the Corngold theory (see subsec-

tion 4.2.2) shows that the exponential factorization is no more valid; for this

case, Corngold has proposed an empirical formula [12, 13]:

n(x, v, t) ' n(x, v)
eα0t

t2
, (5.18)
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which agrees with the time behaviour observed in the dynamic Monte Carlo

(the purple fitting). Moreover, in figure 5.6(b), we see that also the neutron

velocity distribution given by the α-static curve (blue) is different from the

neutron velocity distribution of the dynamic Monte Carlo code (green). We

remark again that the neutron density is characterized by a singular δ(v)

term, which is represented by the peaks at v = 0 of figure 5.16(b).

(a) The time decay of the neutron population

in a bounded medium with L < L0 ∗.

(b) The asymptotic velocity distribution

of the neutron population in a bounded

medium with L < L0 ∗.

Fig. 5.16: The α-static results (blue) compared to the Dynamic Monte Carlo results

(green).

Like in the infinite medium case of simulation 2 discussed in paragraph

5.2.1, we can conclude that it is no more possible to find the fundamental

eigenvalue by the α-static code simply because a discrete eigenvalue does not

exist anymore.
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5.3 Thermalization with Bragg scattering

In paragraph 4.3, we have discussed the Bragg scattering features and the α

spectrum of a bounded medium with Bragg scattering. A qualitative picture

of the spectrum is provided in figure 4.5 and we summarize here the basics

results:

1. the Corngold limit is

α∗ = − min
vε[0,∞)

[vΣt(v)]; (5.19)

2. there is a discrete eigenvalue set for α > α∗ (possibly empty);

3. a vertical line (or a narrow area) at α = α∗ constitutes the sub-Bragg

continuum ΓSB;

4. an horizontal line for α ≤ αel(B
2, vB) constitutes the elastic continuum

Γel;

5. a discrete eigenvalue set may exist in the gap between the sub-Bragg

continuum and the elastic continuum;

6. for α < αA, where αA = −minvε[v+b ,∞)[vΣT (v)], there is a continuum

area;

7. the system is characterized by two critical sizes: L∗ and L∗∗; for L 6 L∗

the discrete eigenvalue set [α > α∗] is empty; for L ≤ L∗∗ < L∗ there

are no discrete eigenvalues.

We emphasize that the starting point of the elastic continuum αel changes

as a function of the rod length, contrary to the moderators seen until now,

where only the discrete eigenvalues decrease as decreasing the system size
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and the continuum set does not depend on the system dimension. Conn

and Corngold [10] have shown that the equation Γe(B, v, α) = 0 satisfied

by the elastic continuum set, for fixed v, has the form of a one-velocity

dispersion relation law; this is due to the one-speed nature of the Bragg-

scattered neutrons. They have also shown that αel, i.e., the point of the

elastic continuum set closest to the origin, is obtained for v = vB. Then, we

can use the one-speed dispersion law of the rod model, given by Eq. (4.19),

to compute αel; we just have to substitute Σt = Σt(vB) =
vB
Σs

+ ΣB. Then,

we obtain:

cosh

(
LΣt(vB)

√
αel

vBΣt(vB)

(
αel

vBΣt(vB)
− 1

))
+

+

(
αel

vBΣt(vB)
− 1

2

)
sinh

(
LΣt(vB)

√
αel

vBΣt(vB)

(
αel

vBΣt(vB)
− 1

))
√

αel
vBΣt(vB)

(
αel

vBΣt(vB)
− 1

) = 0

(5.20)

that allows finding αel, once the parameters of the system are fixed .

We now search for an analytical expression of L∗: the critical length such

that α0 → α∗ . We re-write the stationary equations for the rod model in

the presence of the Bragg scattering:
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+ v
∂

∂x
n+(x, v) + vΣtn

+(x, v) + αn+(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)[n+(x, v′) + n−(x, v′)]dv′+

+

∞∫
0

1

2
ΣB(v′)v′δ(v − v′)[n+(x, v′) + n−(x, v′)]dv′ (5.21)

− v ∂
∂x
n−(x, v) + vΣtn

−(x, v) + αn−(x, v) =

β

2
vΣs(v)M(v)

∞∫
0

v′Σs(v
′)[n+(x, v′) + n−(x, v′)]dv′+

+

∞∫
0

1

2
ΣB(v′)v′δ(v − v′)[n+(x, v′) + n−(x, v′)]dv′ (5.22)

together with the usual boundary conditions:

n+(0, v) = 0 (5.23)

n−(L, v) = 0. (5.24)

We recall that the Bragg scattering is a threshold process. We take into

account this feature and choose a simple piecewise constant cross section for

the Bragg scattering:

ΣB(v) =

0 v < vB

ΣB v > vB

(5.25)

Moreover, to simplify the calculation, we neglect the absorption and we

choose a 1/v form for the thermalization scattering contribution:

Σs(v) =
Σs

v
. (5.26)
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The cross sections characterizing the medium are shown in figure 5.17.

Fig. 5.17: Scattering cross section modeling for a medium with Bragg scattering

The Corngold limit in this case is α∗ = −minvε[0,∞)[vΣt(v)] = −Σs. In

order to compute the critical length L∗, we substitute α = α∗ into equations

(5.21) and (5.22) and we re-write them by explicitly plugging the chosen

cross sections. We separately consider the two cases v < vB or v > vB.

For n(x, v) with vε[0, vB):

+ v
∂

∂x
n+(x, v) =

β

2
ΣsM(v)

∞∫
0

Σs[n
+(x, v′) + n−(x, v′)]dv′ (5.27)

− v
∂

∂x
n−(x, v) =

β

2
ΣsM(v)

∞∫
0

Σs[n
+(x, v′) + n−(x, v′)]dv′. (5.28)

For n(x, v) with vε[vB,∞):
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+ v
∂

∂x
n+(x, v) + vΣBn

+(x, v) =
β

2
ΣsM(v)

∞∫
0

Σs[n
+(x, v′) +n−(x, v′)]dv′+

+

∞∫
vB

1

2
ΣBv

′δ(v − v′)[n+(x, v′) + n−(x, v′)]dv′ (5.29)

− v ∂
∂x
n−(x, v) + vΣBn

−(x, v) =
β

2
ΣsM(v)

∞∫
0

Σs[n
+(x, v′) +n−(x, v′)]dv′+

+

∞∫
vB

1

2
ΣBv

′δ(v − v′)[n+(x, v′) + n−(x, v′)]dv′. (5.30)

We now define:

ñ±(x) =

vB∫
0

n±(x, v) (5.31)

n̄±(x) =

∞∫
vB

n±(x, v). (5.32)

To keep notation simple, in the following we will not explicitly show the space

variable.

Then, we divide by v and integrate equations (5.27) and (5.28) between 0

and vB and equations (5.29) and (5.30) between vB and ∞. Carrying out

the calculation and using the definitions of equations (5.31) and (5.32), we

obtain:
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d

dx
ñ+ =

Γ̃

2
Σs(ñ

+ + ñ− + n̄+ + n̄−) (5.33)

− d

dx
ñ− =

Γ̃

2
Σs(ñ

+ + ñ− + n̄+ + n̄−) (5.34)

d

dx
n̄+ =

Γ̄

2
Σs(ñ

+ + ñ− + n̄+ + n̄−) +
ΣB

2
(n̄+ + n̄−) (5.35)

− d

dx
n̄− =

Γ̄

2
Σs(ñ

+ + ñ− + n̄+ + n̄−) +
ΣB

2
(n̄+ + n̄−) (5.36)

where

Γ̃ =

vB∫
0

βM(v)
Σs

v
dv (5.37)

Γ̄ =

∞∫
vB

βM(v)
Σs

v
dv. (5.38)

Equations (5.33), (5.34), (5.35), (5.36) form a system of four coupled ordi-

nary differential equations, with the boundary conditions given by equations

(5.23) and (5.24). Searching for non-trivial solutions leads to an implicit

relation for L∗:

F (L∗) = (1+e
− v2B

v2
T ) cos(kL∗)+

√√√√ 2e
−

v2
B

v2
T

πΣBΣs(vT )
sin(kL∗)+e

− v2B
v2
T −1 = 0 (5.39)

where

k =

√
2√
π

ΣBΣs(vT )e
−

v2
B

v2
T . (5.40)

We will now discuss two simulations: in the former, we shall choose a

rod length greater than L∗, expecting to find at least one discrete eigenvalue

above α∗; in the latter, we will choose a rod length smaller than L∗, in order

to investigate the possible existence of discrete eigenvalues below α∗ and their

effect on the time behaviour of the neutron population.
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The source used for both simulations is still a burst of neutrons with v =

1 cm/s injected at t = 0.

Simulation 1 (L > L∗)

We summarize the parameters adopted for the simulation in the following

table:

L 13 cm

Σs 0.05 s−1

Σ0
s 0 cm−1

ΣB (only for v > vB) 1 cm−1

Σa(v) 0 cm−1

vT 1 cm s−1

vB 0.4 cm s−1

Considering these data, using equations (5.19) and (5.39) we find that the

Corngold limit is characterized by:

α∗ -0.05 s−1

L∗ ' 12.031 cm

Thanks to the deterministic solver, we find the eigenvalue spectrum of this

case, which is shown in figure 5.18.

The spectrum has been obtained by using an energy discretization with M

meshes and a space discretization with N meshes. The discussion about the

space and energy discretization made in paragraph 5.2.2 is still valid: in-

creasing M the continuum regions are progressively filled; increasing N the
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two-dimensional continuum below αa grows, filling a plane. Taking into ac-

count these considerations, we remark the similarity between the spectrum

of figure 5.18 and the spectrum predicted by the theory, shown in figure 4.5.

Finally, we observe that there exists a discrete eigenvalue to the right of α∗.

Fig. 5.18: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in a moderating medium with Bragg scattering (L > L∗).

Following this analysis of the spectrum, we run the α-static code for this

case and we obtain the α0 convergence as a function of the generations; we

see in in figure 5.19 the result of the simulation. The α0 eigenvalue averaged

over the last 50 generations (after discarding the first 50) is plotted as a green

line in figure 5.19 and we see that it is in good agreement with the discrete

eigenvalue given by the deterministic solver.
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Fig. 5.19: Neutron thermalization in a medium with Bragg scattering (L > L∗): the

fundamental eigenvalue α0 provided by the α-static code plotted as a function of the

generations.

As usual, if at least one discrete eigenvalue exists, after a transient, the

neutron density n(v, t) can be represented by the separable form n(v, t) =

n0(v)eα0t, where n0(v) is the eigenfunction associated to α0 and physically

represents the asymptotic velocity distribution of the neutrons.

To assess the behaviour of the neutron population in time, we run the ref-

erence dynamic Monte Carlo code. Then, we compare the asymptotic time

behaviour (eα0t) and neutron density n(v) provided by the α-static code to

the results of the dynamic code.

Figure 5.20(a) shows that the time behaviour of the neutron population,

after a transient, is well fitted by an exponential decay with rate equal to the

eigenvalue α0 given by the α-static code. There is a very good agreement

also in the neutron velocity distribution provided by the static (blue) and

dynamic (green) code, as shown in figure 5.20(b).

Observing figure 5.20(b), we note that the neutron velocity distribution of

this case is different from the others seen until now: there is a discontinuity
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(a) The time decay of the neutron popu-

lation in a medium with Bragg scattering

(L > L∗).

(b) The asymptotic velocity distribution of

the neutron population in a medium with

Bragg scattering (L > L∗)

Fig. 5.20: α-static results (blue) compared to Dynamic Monte Carlo results (green).

in v = vB. This feature is related to the Bragg scattering that, as said, is a

threshold process: the discontinuous form of the Bragg cross section induces

a discontinuity also in the neutron density n(v).

Simulation 2 (L < L∗)

We reduce the rod size to a dimension smaller than L∗. We summarize the

parameters adopted for the simulation in the following table:

L 11.5 cm

Σs 0.05 s

Σ0
s 0 cm−1

ΣB (only for v > vB) 1 cm−1

Σa(v) 0 cm−1

vT 1 cm s−1

vB 0.4 cm s−1
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We use the deterministic solver to obtain a picture of the spectrum, shown

in figure 5.21.

The deterministic solver shows the presence of a single discrete eigenvalue in

the gap between α∗ and αel, that is between the sub-Bragg continuum and

the elastic continuum.

Fig. 5.21: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

thermalization in a moderating medium with Bragg scattering (L < L∗). It is possible

to observe a single discrete eigenvalue in the gap between two continuum regions.

We wonder whether the α-static code is able to find a discrete eigenvalue

below the Corngold limit α∗. Therefore, we run the α-static code for this

case and obtain the α convergence as a function of the generations, which is

shown in figure 5.22. We see that the α-static converges without difficulty

to an eigenvalue α0 smaller than the Corngold limit, in agreement with the

value of the deterministic solver.
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Fig. 5.22: Neutron thermalization in a medium with Bragg scattering (L < L∗): the

fundamental eigenvalue α0 provided by the α-static code plotted as a function of the

generations.

What is the physical meaning of this discrete eigenvalue? To answer this

question, we need to assess the behaviour of the neutron population in time:

for this reason, we first run the dynamic Monte Carlo code.

In figure 5.23(a) we compare the reference neutron time decay obtained by

the dynamic Monte Carlo code (green) to an exponential function with rate

α0 given by the α-static code (blue). We see that, after a transient, the two

curves have the same slope. There is a good agreement also in the neutron

velocity distribution provided by the α-static code (blue) and the dynamic

code (green), as shown in figure 5.23(b).

However, we know from theory that the discrete eigenvalue found in the

gap is not a fundamental eigenvalue, as explained in paragraph 4.3. In fact, it

can be shown [10] that the eigenfunction associated with a discrete eigenvalue

α0 < α∗ cannot be everywhere positive and thus the asymptotic behavior of
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(a) The time decay of the neutron popu-

lation in a medium with Bragg scattering

(L < L∗).

(b) The asymptotic velocity distribution of

the neutron population in a medium with

Bragg scattering (L < L∗)

Fig. 5.23: The α-static results (blue) compared to the Dynamic Monte Carlo results

(green).

the neutron density cannot be described by this eigenfunction alone: there

must be a continuum contribution. Actually, as explained in chapter 4.3, to

describe the neutron density we should take into account three contributions:

the discrete eigenvalue, the sub-Bragg continuum contribution and the elastic

continuum contribution. However, for dimensions only slightly smaller than

L∗, the discrete eigenvalue is very “close” to α∗ and “far” from αel, so that the

elastic continuum contribution can be neglected. In this case, an exponential

decay can be observed but this must be followed, at very long times, by a non-

exponential behaviour, due to the sub-Bragg continuum ΓSB. We conjecture

that this is the case in our simulation. To check this hypothesis, we compute

αel by using Eq. 5.20 and summarize the situation in the following table:

α∗ -0.05 s−1

α0 ' -0.053 s−1

αel ' -0.073 s−1
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Note that the value αel obtained using Eq. 5.20 is in good agreement

with the spectrum of figure 5.21.

We conclude that in this system the elastic continuum contribution is negli-

gible and that the exponential decay that we observe is transient: it must be

followed, at very long times, by non-exponential behaviour. Unfortunately,

it is difficult to “follow” the neutrons for such long times with the dynamic

Monte Carlo code because we should simulate too many particles in order to

have good statistical data.

5.4 Slowing down and thermalization

In paragraph 4.4, we have discussed the properties of the slowing down in-

tegral operator SSD and we have seen that its spectrum is composed only

of the point at −∞. For this reason, if we add the slowing down process to

the neutron transport cases studied in paragraph 5.2 (we neglect the Bragg

scattering for simplicity) we do not expect changes in the spectrum features:

the slowing down operator does not add other discrete eigenvalues or con-

tinuum intervals to the spectrum. However, we expect to find quantitative

differences with respect to the previous cases. For instance, the presence of

the operator SSD will probably modify the asymptotic velocity distribution:

in particular, we expect to find a lower average velocity. Does the slowing

down process affect also the time behaviour? To verify our hypotheses, we

propose now a study of the effects of the neutron slowing down operator on

the α eigenvalue spectrum.

We reconsider the cases for the infinite medium and the rod model, presented

in paragraph 5.2, introducing the slowing down. For this reason, we add to

the 1/v thermalization scattering and absorption cross sections a constant
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slowing down scattering cross section, like shown in figure 5.24.

Fig. 5.24: Cross section modeling for slowing down and thermalization

Note that this model is quite “artificial”: as explained in paragraph 4.4,

the properties of the slowing down operator are stem from considering fast

neutrons transport, with speed several orders larger than the speed of the

background atom motion. For this reason, in order to have a more realistic

model, we should separate the range of thermalization scattering from that

of slowing down. Then, we should use a speed source much greater than that

used for the precedent simulations. Note that the distribution source does

not affect the α-static code: the asymptotic behaviour, that is the funda-

mental eigenvalue and the associated eigenmode, and the whole spectrum,

do not dependent on the initial condition. The choice of the source influences

only the time transient provided by the Monte Carlo code. Unfortunately,

adopting this scheme we would have some “practical” problems:

• in order to properly treat a large speed range, we should increase the

energy discretization mashes of the deterministic solver: this is quite

problematic for our simple deterministic solver developed in MATLAB;

• we have seen that for our systems characterized by negative α0, it is
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difficult to obtain good statistical data by the dynamic Monte Carlo

code: simulating fast particles, this problem is emphasized. In fact,

all particles would be absorbed or would escape before reaching the

asymptotic regime.

Note that the α-static code can easily handle the simulation of fast parti-

cles. However, in order to have the possibility to compare the α-static code

results to those of the other codes, we prefer to treat the simple model de-

scribed above and a source speed only slightly larger than the previous one

(vsource = 5 cm/s in the following simulations).

5.4.1 Infinite medium

We re-consider the first simulation of paragraph 5.2.1: for this case we had

chosen Σ0
a < Σ0∗

a and so we had found a discrete eigenvalue (α0 ' −1.28 s−1).

We now add the slowing down scattering; the parameters adopted are:

L infinite

Σs 1.0 s−1

Σ0
s 0.1 cm−1

Σa 0.5 s−1

Σ0
a 0.8 cm−1

Σsd 1 cm−1

vT 1 cm/s

We use the deterministic solver to obtain a picture of the spectrum, shown

in figure 5.25. We observe that the spectrum is qualitatively similar to that

of the case without slowing down, in figure 5.4; as previewed, there are no
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additional discrete eigenvalues and the continuum is unchanged. However,

we note that the discrete eigenvalue is larger than that previously found.

Fig. 5.25: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

slowing down and thermalization in an infinite moderating medium with Σ0
a < Σ0 ∗

a .

We run the α-static code and obtain the α0 convergence as a function of

the generations shown in figure 5.26; the result agrees with the deterministic

code: the fundamental eigenvalue is above the previous one.

Fig. 5.26: Neutron slowing down and thermalization in an infinite medium with

Σ0
a < Σ0 ∗

a : the fundamental eigenvalue α0 provided by the α-static code plotted

as a function of the generations.
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(a) The time decay of the neutron popula-

tion in an infinite medium with Σ0
a < Σ0 ∗

a

(with slowing down scattering).

(b) The asymptotic velocity distribution

of the neutron population in an infinite

medium with Σ0
a < Σ0 ∗

a (with slowing

down scattering)

Fig. 5.27: The α-static results (blue) compared to the Dynamic Monte Carlo results

(green).

Finally, we run the dynamic Monte Carlo code to assess the complete time

behaviour of the neutrons.

Figure 5.27(a) confirms that the time decay of the neutron population ob-

tained by the dynamic code (green), after a transient, is well fitted by an

exponential with rate α0. In figure 5.27(b), we see that there is also an

agreement in the neutron velocity distribution provided by the static (blue)

and dynamic (green) code, even if the dynamic data are very dispersed.

We use the good statistical α-static data to compare the velocity distribution

of the two cases with and without slowing down. We can observe this com-

parison in figure 5.28, which shows that the velocity distribution is shifted

toward lower velocities, as expected.
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Fig. 5.28: The asymptotic velocity distribution in the pure thermalization case (black)

and in the slowing down + thermalization case (red). (Infinite medium with Σ0
a <

Σ0 ∗
a )

Summarizing, the introduction of the slowing down has produced a change

in the velocity distribution form and in the average velocity, which is smaller

than the average velocity without slowing down; it has also induced a shift

of the fundamental eigenvalue: in other words, the slowing down operator

removes the fundamental eigenvalue from the Corngold limit.

We wonder whether the disappearance of the discrete eigenvalue into the

continuum is still possible. To answer the question, we have run the α-

static code with different values Σ0
a, leaving unchanged the other parameters.

The α0 (averaged over the last generations) provided by the α-static code

is plotted as a function of Σ0
a in figure 5.29(a). We see that the Corngold

limit is achieved for an absorption rate considerably larger (Σ0∗
a ' 1.88 cm−1)

than that of the case without slowing down (Σ0∗
a ' 1.104 cm−1). This result

is confirmed also by the deterministic solver, as shown in figure 5.29(b),

where we see that the discrete eigenvalue moves toward the continuum with

increasing Σ0
a.
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(a) The average α0 obtained by the α-static code plotted as a function of Σ0
a.

(b) The single discrete eigenvalue in the spectrum decreases with increasing Σ0
a.

Fig. 5.29: The discrete eigenvalue α0 as a function of Σ0
a for the neutron slowing down

and thermalization in an infinite medium.
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5.4.2 The rod model

We re-consider the first simulation of paragraph 5.2.2: for this case we

had chosen a length L > L∗ and so we had found a discrete eigenvalue

(α0 ' −1.882 s−1). We now add the slowing down scattering; the adopted

parameters are:

L 2 cm

Σs 1.0 s−1

Σ0
s 0 cm−1

Σa 1.0 s−1

Σ0
a 0 cm−1

Σsd 1.0 cm−1

vT 1.0 cms−1

We use the deterministic solver to obtain the spectrum, which is shown

in figure 5.30. We observe that it is qualitatively similar to the spectrum of

the rod without slowing down, in figure 5.11. The spectrum confirms that

there are no additional discrete eigenvalues and the continuum is unchanged;

moreover, comparing 5.30 to 5.11 we note again that the discrete eigenvalue

is larger than that of the case without slowing down (the discrete eigenvalue

on the spectrum of figure 5.30 is approximately α0 ' −1.48).

We run the α-static code and obtain the α0 convergence as a function of

the generations shown in figure 5.31; the result agrees with the deterministic

code: the fundamental eigenvalue is above the previous one.
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Fig. 5.30: α-eigenvalue spectrum (obtained by the deterministic solver) for the neutron

slowing down and thermalization in a bounded moderating medium with L > L∗.

Fig. 5.31: Neutron slowing down and thermalization in a bounded medium with L >

L∗: the fundamental eigenvalue α0 provided by the α-static code plotted as a function

of the generations.
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We use now the α-static code (whose data are statistically better then

those of the dynamic code) to compare the velocity distribution of the two

cases with and without slowing down. Figure 5.32 shows that also for a

bounded medium the velocity distribution is shifted toward lower velocities.

Fig. 5.32: The asymptotic velocity distribution in the pure thermalization case (black)

and in the slowing down + thermalization case (red). (Bounded medium with L > L∗)

We conclude that also in a bounded medium the introduction of the slow-

ing down has induced a change in the velocity distribution form and in the

average velocity, which is smaller than the average velocity without slowing

down; it has also induced a shift of the fundamental eigenvalue: the slowing

down operator removes the fundamental eigenvalue from the Corngold limit.

In order to test the possible disappearance of the discrete eigenvalue into the

continuum, we have run the α-static code with different rod length values,

leaving unchanged the other parameters. The α0 (averaged over the last

generations) provided by the α-static code is plotted as a function of L in

figure 5.33(a). We see that the Corngold limit is achieved in correspondence
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of a rod length considerably smaller (L ' 0.89 cm) than that of the case

without slowing down (L∗ ' 1.77 cm). This result is confirmed also by the

deterministic solver, as shown in figure 5.33(b), where we see that the dis-

crete eigenvalue moves toward the continuum with decreasing L.

(a) The average α0 obtained by the α-static code plotted as a function of L

(b) The single discrete eigenvalue in the spectrum decreases with decreasing  L

Fig. 5.33: The discrete eigenvalue α0 as a function of L for the neutron slowing down

and thermalization in a bounded medium
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In summary, we have found the same effects for infinite and bounded me-

dia. The introduction of the slowing down causes a shift of the fundamental

eigenvalue and a change in the neutron velocity distribution.

We observe that the model adopted to describe the slowing down and ther-

malization of fast neutrons is quite simplified, as explained at the beginning

of section 5.4. However, this analysis of the slowing down effects on the neu-

tron behaviour is a good example of the α-static method capability in the

study of moderator properties.



Chapter 6

Conclusions

The Monte Carlo method is a powerful tool to solve transport problems, as

neutron transport, because it is very accurate, since introduces a minimal

amount of approximations. The Monte Carlo method has been adopted to

determine the stationary behaviour of nuclear systems, i.e., to solve the sta-

tionary Boltzmann equation, since the beginning of the nuclear technology

development. These “static calculations” neglect the time evolution.

In recent years, the interest toward numerical methods that allow assess-

ing the time behaviour of neutron transport has grown. This interest has

been raised on one hand by the improved computer power and on the other

hand by the concerns about reactor safety. In fact, knowledge of the neutron

time behaviour is important in nuclear engineering both for normal scenarios

(start-up, power transients) and accidental situations [8, 22]. Until now, the

analysis of transient dynamics of a neutron population has been mainly car-

ried out by resorting to deterministic methods by solving the time-dependent

Boltzmann equation; unfortunately, these latter introduce several approxi-

mations and in some situations it is desirable to have a higher-fidelity tool

for transient analysis. In this respect, Monte Carlo methods including the

113
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time dependence have been recently proposed: the Dynamic Monte Carlo

methods, which allow assessing the complete time evolution of the neutron

population [22]. However, a non-negligible drawback of Monte Carlo meth-

ods is that they suffer from slow convergence and are more time-consuming

than deterministic methods; these drawbacks are accentuated for the dy-

namic Monte Carlo methods. If one is interested in the asymptotic (long

time) behaviour of the system, instead of the full time dynamics, a possible

solution is to resort to the α-static Monte Carlo method [48, 50], which is

very accurate and less time-consuming than dynamic methods. This latter

method is the subject of this thesis.

We have shown that the α-static Monte Carlo method allows determining

the asymptotic time behaviour of the neutron population by transforming

the time-dependent Boltzmann equation into an eigenvalue problem (the so

called α eigenvalue), where the time dependence is not explicit (for this reason

the method is called “static”). In particular, in chapter 3 we have shown that

the mathematical assumption at the basis of the method is the possibility

of decomposing the neutron density n(~r, v, Ω̂, t) in a separate variable form

with exponential time behaviour [3, 17, 44] of the kind

n(~r, v, Ω̂, t) =
∑
i

nαi
(~r, v, Ω̂)eαit, (6.1)

so that for long time we have

n(~r, v, Ω̂, t) ' nα0(~r, v, Ω̂)eα0t, (6.2)

where α0 is the algebraically largest value among all αi of the expansion.

If α0 < 0, the neutron population decays in time; if α0 > 0, the neutron

population grows in time. Note that the latter case is possible only if there

are fissile materials in the system.
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Substituting the solution given by Eq. (6.2) into the time-dependent Boltz-

mann equation leads to

Lnα0(~r, v, Ω̂, t) = α0nα0(~r, v, Ω̂, t) (6.3)

where L is the linear Boltzmann operator introduced in chapter 2. The

equation (6.3) is formally an eigenvalue problem; for this reason α0 is named

the fundamental eigenvalue and the associated nα0 is the fundamental eigen-

mode. We note that the fundamental eigenvalue physically represents the

rate of variation of the neutron population and that the fundamental eigen-

mode is the asymptotic neutron distribution in space, direction and velocity.

An algorithm to solve the eigenvalue problem defined by Eq. 6.3 has been

recently proposed by the LTSD laboratory of the CEA/Saclay [48, 49, 50].

In particular, the α-static algorithms are historically known to be numeri-

cally unstable when α0 < 0; the proposed algorithm has solved this problem

thanks to a mathematical trick. Further details can be found in chapter 3.

We have also shown that the α-static method depends on the features of

the spectrum of the Boltzmann operator, which is rather complicate. Indeed,

generally speaking, the spectrum does not consist only of discrete eigenvalues.

In fact, for negative α, below a limit value α∗, the spectrum contains a

continuum interval [3, 12, 13, 17, 28, 44]. We know from literature [12,

13, 28] that, for some moderating systems, the fundamental eigenvalue can

disappear in the continuum if the system size is too small or the absorption

rate is too strong. For this reason, we have decided to focus our attention

on moderating materials, in order to test the α-static method behaviour in

such particular situations and also to better understand some interesting

moderator properties.

To this aim, we have developed an α-static Monte Carlo code, based on the



116

α-static algorithm explained in chapter 3, which provides the fundamental

eigenvalue α0 and the associated fundamental eigenmode nα0 . We have also

developed a dynamic Monte Carlo code, which can be used as reference

to assess the time behaviour of the system. Finally, we have developed a

deterministic solver which can provide a picture of the entire spectrum of

the Boltzmann operator.

We have used these codes to extensively study the diffusion of thermal neu-

trons in moderating materials. The physical models we have dealt with have

been described in chapter 4. In summary:

• we have studied the neutron transport in infinite media and in one-

dimensional bounded media (the rod model);

• we have considered two different kinds of moderators: hydrogen-based

moderators and crystalline moderators. In the former, a single shock

is sufficient to thermalize the neutron; in the latter, also an elastic

coherent scattering (or Bragg scattering) can occur for neutrons with

large enough velocities. The Bragg scattering is a threshold process

that leaves unchanged the neutron speed.

The key results of the simulations have been presented in chapter 5.

First of all, we have performed several simulations in hydrogen-based modera-

tor systems. Whenever a fundamental discrete eigenvalue exists, the α-static

code has been able to correctly provide a value α0, as confirmed by the dy-

namic Monte Carlo code and by analytical results (when available). In fact,

the α-static code has been able to provide the asymptotic time decay and

the asymptotic velocity distribution of the neutron population. For this kind

of asymptotic analysis, we have also observed that the α-static code gives

data statistically better than those of the dynamic Monte Carlo code. For
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hydrogen-based moderators, in agreement with the theory reported in chap-

ter 4, we have found that the fundamental discrete eigenvalue α0 disappears

in the continuum for system dimensions smaller than a critical dimension L∗

or for absorption rates that strongly increase with increasing neutron speed.

In this case, the α-static code converges to the continuum limit α∗: the code

can not find the fundamental eigenvalue, because this does not exist any-

more. In these cases, the exponential expansion of Eq. (6.1) at the basis of

the α-static method is no more valid; in fact, by using the dynamic Monte

Carlo code, we have observed that the time behaviour is no more exponential.

However, the behaviour of the α-static code in these situations is not really

troubling: the disappearance of the discrete eigenvalues is a pathological and

quite uncommon behaviour.

Following the results about the hydrogen-based moderators, we have ad-

dressed the thermalization of neutrons in crystalline moderators. We have

found again a very good agreement between the α-static code and the dy-

namic Monte Carlo code for the cases where the fundamental eigenvalue α0

exists. Moreover, the α-static code has been able to detect a peculiarity of

these moderators. As explained in section 4.3, the Bragg scattering induces

the presence of several continuum regions in the spectrum; in particular,

two of these regions are separated by a gap. For system dimensions slightly

smaller than the critical dimension  L∗, it is possible to find a discrete eigen-

value in this gap, below the (sub-Bragg) continuum limit α∗ but above the

beginning of the other continuum region (the elastic continuum). As ex-

plained in section 4.3, a discrete eigenvalue α0 smaller than α∗ can not be a

true fundamental eigenvalue: this means that the asymptotic time behaviour

is not exponential and the neutron asymptotic density is not given only by

the eigenfunction associated to this α0, but also by a continuum contribu-
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tion. However, as shown in section 4.3, in this case it is possible to observe

an exponential time behaviour with rate α0 during a very long transient.

Our simulations agree with the theory: the α-static code is able to find the

discrete eigenvalue in the gap and the velocity distribution of the neutron

population during the long transient, as confirmed by the dynamic Monte

Carlo code.

Finally, in chapter 5 we have presented some simulations concerning a very

simple model of neutron slowing down. As stressed also in section 5.4, the

adopted model is too approximated to give a physical meaning to the ob-

tained results, but provides an example of the α-static code capability in the

study of the moderator properties.

We conclude with an important final remark. In this thesis, we have ap-

plied the α-static method only to moderating systems. However, as said in

chapter 3, the proposed algorithm can be applied also to multiplying systems

and furthermore includes both the prompt and delayed neutrons. Several

tests have been performed for fissile materials by the LTSD-laboratory (be-

fore and during this work of thesis) and they have provided very good results

[50].

We know that, when fissile materials are present, the fundamental eigenvalue

α0 can be positive (supercritical system) or negative (subcritical system).

In this respect, it would be interesting to perform other simulations with

our codes in subcritical systems to investigate the consequent change of the

Boltzmann operator spectrum and to understand if the disappearance of the

fundamental eigenvalue into the continuum is still possible in presence of

fissile materials.



Bibliography

[1] Akcasu, Z., Lellouche, G., Shotkin, L.M., Mathematical methods in

nuclear reactor dynamics, Academic Press (1971).

[2] Albertoni, S., Montagnini, B., “On the spectrum of neutron transport

equation in finite bodies,” J. Math. Anal. and Appl., 13: pp. 19-48

(1966).

[3] Bell, G.I., Glasstone, S., Nuclear reactor theory, Van Nostrand Rein-

hold Company (1970).

[4] Beauwensen, R., Mika, J., Transport theory stat. Phys., 2, (1971).

[5] Borysiewicz, M., Mika, J., Proceedings symposium on neutron thermal-

ization and reactor spectra, (IAEA, Vienna, 1967), 1, p. 45.

[6] Brockway, D., Soran, P., Whalen, P., “Monte Carlo eigenvalue calcu-

lation,” LA-UR-85-1224 (1985).

[7] Betzler, B.R., et al., “Calculating alpha eigenvalues in a continuous-

energy infinite medium with Monte Carlo,” LA-UR-12-24472 (2012).

[8] Cao.,Y., “Space-time kinetics and time-eigenfunctions”, University of

Michigan, (2008).

119



BIBLIOGRAPHY 120

[9] Cohen, E. R., “Some topics in reactor kinetics”, In Proceedings of

the 2nd UN conference of the peaceful uses of atomic energy, P/629,

Geneva, Switzerland (1958).

[10] Conn R., Corngold N., “A theory of pulsed neutron experiments in

polycristalline media” In Nuclear science and engineering, 37: pp. 85-

93 (1969).

[11] Conn R., Corngold N., “Analysis of pulsed neutron experiments in

polycristalline media using a model kernel” In Nuclear science and

engineering, 37: pp. 94-103 (1969).

[12] Corngold N., “Quasi-exponential decay of neutron fields”, In Advances

in nuclear science and technology, 8: pp. 1-46 (1975).

[13] Corngold, N., Kuscer, I., “Discrete Relaxation Times in Neutron Ther-

malization”, In Physical Review, 139(3A) (1965)

[14] Corngold, N., Nucl. Sci. Eng., 37(85) (1969)

[15] Cullen, D.E., et al., “Static and dynamic criticality: are they differ-

ent?,” UCRL-TR-201506 (2003).

[16] De Saussure, “A note on the measurement of diffusion parameters by

pulsed-neutron source technique”, In Nuclear science and engineering,

(1961).

[17] Duderstadt, J.J., Martin, W.R., Transport theory, J. Wiley and sons,

New York (1979).

[18] Hansen, G.E., “Rossi alpha method,” LA-UR-85-4176 (1985).



BIBLIOGRAPHY 121

[19] Henry, A. F., “The application of inhour modes to the description

of nonseparable reactor transients,” Nucl. Sci. Eng., 20: pp. 338-351

(1964).
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Appendix A

Spectral theory of operators

We here define the concept of an eigenvalue of an operator A. We usually

refer to α as an eigenvalue of A if there exist nontrivial solutions to

Aψα = αψα. (A.1)

Before talking about the eigenvalues α, it is necessary to decide just what

class of functions are going to be allowed as eigenfunctions. This specification

must usually be determined from the physics of the problem. When ψα(v)

is going to be used in the calculation of a particle density n(v, t), almost the

only physical restriction we can demand is that the corresponding detector

response is bounded and non-negative

0 ≤
∞∫

0

vΣd(v)ψα(v)dv <∞. (A.2)

This specific class of functions is referred to as Banach class or space LP .

However, most authors [17] prefer to use the class of all square-integrable

functions f(v) such that
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∞∫
0

|f(v)|2dv <∞. (A.3)

This class is the Hilbert space of functions or space L2. Hence even though

physics demands a general function space such as a Banach space, mathemat-

ical convenience demands that we study instead the eigenvalues of operators

A defined on a Hilbert space of functions. We trust that most of the results

we obtain for such a function space will not be altered appreciably for a more

general class of functions.

Now we study the spectral theory of operators that act on functions contained

in the Hilbert space.

Linear operators on Hilbert space

A Hilbert space L2 is (i) a linear vector space over the complex field, (ii)

a metric space whose metric is defined from an inner product: ||f || =

[
∞∫
0

f(v) ∗ f(v)dv]1/2, and (iii) a complete space (containing the limits of all

Cauchy sequences).

Operators defined on a Hilbert space of functions

1. An operator A is a mapping of the function space L2 into L2;

2. the domain of an operator A, D(A), is defined to be the class of all

functions for which Af is defined;

3. the range of an operator A, R(A), is the set of functions generated by

letting A act on all functions f ∈ D(A);
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4. we define the norm of an operator as ||A|| = max{||Af ||/||f || : f ∈

D(A)}; an operator is bounded if ||A|| < c.

5. we define the adjoint A† of an operator A by requiring that

(A† f, g) = (f, A g) for all f ∈ D(A), g ∈ D(A†).

An operator is self-adjoint if A† = A;

6. we denote with fn a sequence of functions that converges to f , fn → f ;

an operator is completely continuous or compact if for fn, f ∈ D(A),

fn → f =⇒ Afn → Af ;

7. to define the inverse of an operator A, consider the equation Af = g.

Then we say that the inverse A−1 exists if for any g contained in the

range R(A), there exists a unique f such that Af = g, that is, we can

solve Af = g uniquely for f for any g ∈ R(A).

With this background involving operators defined on a Hilbert space, we can

proceed to study the eigenvalue problem Aψα = αψα.

The spectral theory of operators defined on a Hilbert space

The spectral theory of operators is approached in an indirect manner by

considering the inhomogeneous problem

(A−α)f = g (A.4)

and looking for the values of α for which we have trouble inverting (A−λ) to

solve for f . The values of α for which this inhomogeneous problem is “sin-

gular” make up the eigenvalue “spectrum” of the operator A. First consider

those values of α for which everything is well behaved, that is, the set of all

α for which we can invert (A−α) to find f with no difficulty. This set of

“nice” α is called the resolvent set and is defined as the set of all α for which:
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1. (A−α)−1 exists;

2. (A−α)−1 is a bounded operator;

3. the closure of the range of (A−α), R(A−α) ≡ L2.

All the rest of the complex α-plane is defined to be in the spectrum of the

operator A. From the three conditions necessary for α to be in the resolvent

set, we can see that there are three possible types of spectrum:

• the point spectrum σp(A). Those α for which (A−α)−1 does not exist;

• the continuous spectrum σc(A). Those α for which (A−α)−1 exists,

but (A−α)−1 is an unbounded operator;

• the residual spectrum σr(A). Those α for which (A−α)−1 exists, but

R(A− α) is a proper subset of the Hilbert space.

The point spectrum corresponds to what we have been calling discrete or

point eigenvalues. The existence of a point spectrum implies that there must

be some nontrivial ψα such that Aψα = αψα.

The continuous spectrum does not corresponds to the condition Aψα = αψα

and, indeed, reflects the unboundedness of (A−α)−1. It is more correct to

say that, for α ∈ σc(A) there are no solutions ψα that are in the Hilbert space.

However, there are solutions to this equation that lie outside the space but

involve singularities such as delta functions or weak divergences.

Finally, we observe that the terms “point” and “continuous” are misleading

because the concept of a point or continuous set does not enter into their

definition. In fact, it is possible to have a point eigenvalue in the midst of

a continuous spectrum (an “embedded” eigenvaue) and a α ∈ σc(A) that is
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an isolated point (e.g., an eigenvalue of infinite multiplicity). Most of the

time, however, σp(A) corresponds to a point set and σc(A) corresponds to a

continuous set.

The residual spectrum σr(A) usually does not arise in the transport theory

applications. Our transport operators usually possess “enough symmetry”

to avoid having a residual spectrum [17].

We conclude this discussion with some useful properties of the operators

defined on the Hilbert space [38]

• a self-adjoint operator possesses a real spectrum σ = σp + σc;

• a completely continuous (compact) operator has only a point spectrum.

(In this sens, the compact operator is the direct analogue to a matrix);

• a completely continuous self-adjoint operator possesses only a point

spectrum, and it is also characterized by a complete, orthonormal set

of eigenfunctions;

• adding a compact, self-adjoint operator B to another operator A does

not change the continuous spectrum: σc(A+B) = σc(A).


	Abstract
	Sommario
	Introduction
	Numerical methods for nuclear systems
	The Boltzmann equation
	Stationary problems
	Monte Carlo transport theory
	Monte Carlo power iteration

	Time-dependent problems
	Deterministic methods
	Dynamic Monte Carlo
	Alpha static methods


	The  static methods
	The mathematical theory 
	The prompt behaviour
	Finite spatial domain
	Infinite spatial domain

	The -problem with delayed neutrons

	The proposed algorithm 
	Positive dominant eigenvalue, >0
	Negative dominant eigenvalue, < 0

	Verification tests

	Physical models for neutron transport in moderating materials
	One-speed neutron diffusion
	Infinite medium
	The rod model

	 Neutron thermalization
	Infinite medium
	Bounded medium
	The minimum neutron speed
	The rod model equations

	Neutron thermalization and Bragg scattering
	Slowing down and thermalization
	Infinite medium
	The rod model


	Assessing the properties of moderators with -static methods
	Preliminary tests: one-speed transport
	Neutron thermalization simulations
	Infinite medium
	The rod model

	Thermalization with Bragg scattering
	Slowing down and thermalization
	Infinite medium
	The rod model


	Conclusions
	Spectral theory of operators

