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Abstract

The interest in solving the equation of transport in stochastic media has

continued to increase these last years. Binary stochastic mixtures are partic-

ularly studied because of their several applications (diffusion of radioactive

contaminants in geological media, transport in turbolent media for the in-

ertial confinement fusion,crossing of neutrons or γ rays throughout concrete

shields, ...).

The geometries we deal with in this present thesis are assumed to be Marko-

vian, which is never the case in usual environments, but which is a necessary

approximation.

We consider a two-suite neutron transport problem for which other bench-

mark results (based on a stochastic geometry composed by a labelled plane

filled with two alternating materials) were already performed. The geometry

we use is composed by random polygons built in a plane and it is Markovian

in two dimensions, thus it better represents a real stochastic geometry. The

goal of our benchmark calculations is to compare and analyse the previous

obtained results and to test the validity of different elaborated models of the

problem.

The creation of the Markovian planar geometry is done in accordance with

the process described by Switzer in 1964, which allows to construct a two-

dimensional geometry with Markovian properties. For each one of the sev-
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eral geometry realizations, we solve the neutron transport problem with the

Monte Carlo code TRIPOLI-4, developed at CEA. Then, we average the re-

sults and we build histograms to have information also on the distributions

of the sought quantities.

In the second part of the thesis, we use the same procedure of Markovian

geometry creation and stochastic resolution of transport equation to simulate

a melted core of a PWR reactor. In this case, we do not know the distribu-

tions of the materials composing the core and we study three cases, each one

characterized by a different material mixing level. We obtain and analyze

the value of keff , to see how it varies and distributes depending on the way

the materials actually mix after the fusion of the core.



Sommario

Negli ultimi anni è andato crescendo l’interesse nella risoluzione dell’equazione

del trasporto in mezzi stocastici. In particolare, vengono studiate le miscele

binarie stocastiche, utilizzabili in molti campi (diffusione dei contaminanti ra-

dioattivi in mezzi geologici, trasporto in mezzi turbolenti per il confinamento

della fusione inerziale, attraversamento di schermi di cemento da parte di

neutroni e di raggi γ,..). Le geometrie che trattiamo in questo lavoro sono

supposte essere markoviane, cosa che non rispecchia la realtà della maggior

parte dei casi che queste geometrie cercano di simulare, ma risulta essere

un’approssimazione necessaria.

Abbiamo preso in considerazione un problema di trasporto per cui si avevano

già dei risultati di riferimento (ottenuti da una geometria planare composta

da strati alternati di due materiali). La nostra geometria è invece composta

da poligoni creati in modo casuale su un piano ed è markoviana in due di-

mensioni, cosa che la rende più affine e rappresentativa delle reali geometrie

stocastiche. Lo scopo dei nostri calcoli di riferimento è quello di confrontare

e analizzare i risultati precedentemente ottenuti e di testare la validità dei

modelli del problema che sono stati elaborati.

La realizzazione della geometria markoviana è basata sul processo descritto

da Switzer nel 1964 che permette di creare una geometria planare con pro-

prietà markoviane. Per ognuna delle molte realizzazioni geometriche effet-
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tuate, abbiamo risolto il problema di trasporto neutronico con il codice Monte

Carlo creato al CEA, TRIPOLI-4 R©. Abbiamo poi mediato i risultati e costru-

ito gli istogrammi per avere informazioni anche sulle distribuzioni delle quan-

tità cercate.

Nella seconda parte della tesi, abbiamo utilizzato la stessa procedura di realiz-

zazione di geometrie markoviane e di risoluzione dell’equazione del trasporto

per simulare un nocciolo fuso di un PWR. Anche in questo caso, non conos-

ciamo le distribuzioni dei materiali che compongono il core, ma solo le loro

proprietà. Abbiamo analizzato tre diversi casi, ognuno caratterizzato da un

certo livello di mescolanza degli elementi del nocciolo e abbiamo cercato il

valore del keff , per vedere come varia e come si distribuisce quando i materiali

si mescolano in modo casuale gli uni con gli altri.



Sommario esteso

Il seguente lavoro di tesi è stato realizzato durante uno stage di sei mesi presso

il laboratorio LTSD (Laboratoire de Transport Stochastique et Déterministe)

del centro di ricerca CEA (Commissariat à l’énérgie atomique) di Saclay.

L’argomento verte sul problema del trasporto neutronico in domin̂ı costituiti

da geometrie stocastiche. Una geometria è definita stocastica quando dei

materiali costituenti si conoscono le proprietà, ma non la distribuzione. Esse

hanno varie applicazioni in molteplici campi della fisica: dal trasporto di

contaminanti in mezzi geologici al trasporto in mezzi turbolenti per il confi-

namento della fusione inerziale. In questo caso, si analizza il problema della

risoluzione dell’equazione del trasporto neutronico in geometrie stocastiche.

Per affrontare questo problema ci sono più strade: la prima è concepire

un modello e quindi un’equazione (o un sistema di equazioni) che tenga

(tengano) conto della stocasticità del dominio.

La seconda consiste nel realizzare un elevato numero di geometrie aleatorie

(tenendo conto delle proprietà statistiche dei mezzi) e risolvere per ognuna di

esse l’equazione, ormai deterministica in quanto nota la geometria, per infine

mediarne i risultati e ottenere le medie d’insieme.

Un ulteriore metodo di risoluzione del problema è quello di costruire un al-

goritmo Monte Carlo che permetta di trovare già in una sola simulazione la

media d’insieme, ovviamente inglobando al suo interno l’informazione della
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stocasticità del dominio.

Noi abbiamo perseguito la seconda via, realizzando dei calcoli di riferimento

per un problema di trasporto neutronico noto e per cui si hanno già dei prece-

denti risultati di benchmark. Anche se il procedimento è uguale (realizzare

un gran numero di geometrie aleatorie, risolvere l’equazione e mediare), ciò

che principalmente cambia tra i primi calcoli di riferimento (a cui nella tesi

ci si riferisce come Benchmark 1D) e i nostri è il tipo di geometria aleatoria.

Nei calcoli di benchmark precedentemente effettuati, [1], la geometria aleato-

ria è una lastra piana formata da una serie di spessori di due materiali alter-

nati l’uno con l’altro lungo l’asse x (da 0 ad L). In questo caso, la dimensione

stocastica è solo una: quella lungo l’asse x. I valori degli spessori dei due

materiali vengono estratti da una distribuzione esponenziale. Ogni materi-

ale è caratterizzato da uno spessore medio, che è la media della distribuzione

esponenziale e che viene chiamato anche corda media, e da una probabilità pi

di trovare il materiale i in ogni punto del dominio (i = 0, 1). Suddetta geome-

tria è quindi markoviana 1 in una sola dimensione (x) e per questo i risultati

sono nominati Benchmark 1D. Per ogni geometria realizzata, l’equazione del

trasporto monodirezionale viene risolta con metodi deterministici [1] e ven-

gono poi mediati tutti i risultati.

La geometria su cui abbiamo effettuato i calcoli di riferimento è diversa

da quella precedentemente descritta: è un piano costituito da una serie di

poligoni realizzati aleatoriamente gettando delle rette in modo randomico

su un quadrato di lato L, secondo il processo descritto da Switzer, [11]. Si

costruisce cos̀ı una geometria con proprietà markoviane in due direzioni, x

e y, che costituisce la geometria del Benchmark 2D. Per ogni realizzazione

della geometria, abbiamo risolto il problema del trasporto con il codice Monte

1per la definizione di markovianità vedere Cap 2.2.1



Carlo TRIPOLI-4 R©, creato al laboratorio SERMA di Saclay.

Rispetto alla geometria planare stratificata, quest’ultima è meglio rappre-

sentativa dei reali mezzi stocastici: per questo, i risultati ottenuti vengono

considerati più affidabili di quelli di Benchmark 1D e sono utilizzati per val-

idare e analizzare i modelli, che forniscono una soluzione meno dispendiosa

in tempo ed energie, ma che necessita conferma di affidabilità.

Quindi questo lavoro, anche se lungo e complesso nella messa in atto, è in-

dispensabile per sapere quale modello è migliore, oltre a dare informazioni

non solo sui valori medi, ma anche sulle distribuzioni.

Nella seconda parte della tesi, abbiamo analizzato un altro tipo di geometria

aleatoria: quella costituita dal core di un reattore che ha subito fusione.

In questo caso, non si conoscono le distribuzioni dei materiali contenuti

all’interno ma ne sono note le proprietà. Dopo aver realizzato molteplici

geometrie markoviane e risolto il problema di criticità con TRIPOLI-4 R©, ab-

biamo analizzato il valore e la distribuzione del keff in tre casi, ognuno con

un diverso grado di mescolamento dei materiali.
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Chapter 1

Stochastic geometries

In the last twenty years, there has been a constant interest in solving the

equation of transport in stochastic media. In particular, binary stochastic

mixtures are studied because of their numerous applications, concerning the

diffusion of radioactive contaminants in geologic media, the crossing of neu-

trons or γ rays throughout concrete shields and the transport in turbulent

media for the inertial confinement fusion, as well as for high-temperature

gas-cooled reactors.

In all these cases, the precise composition of the two (or more) elements in-

side the medium is not known and we only have a statistical description: we

have informations on the inner structure of the media only in a statistical

sense, even if the cross section of the constituent materials are known.

Moreover, the heterogeneity of the media affects its transport properties.

First, in a stochastic scattering medium, also the effect of bypassing obsta-

cles has to be considered: particles can bypass ”obstacles” (opaque material

grains) found along their path and pass through the mixture without inter-

acting with all materials.

This effect depends upon the properties of the elements composing the medium,
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but also on its topology, which defines the possible particle paths. Since this

effect is different for each physical realization of the stochastic media, the

study of the transport problem deals with the average effect of heterogeneity

over all possible realizations, and with its fluctuations.

Even when the inner structure of the medium is known, the transport equa-

tion is too complicated to be solved analytically: an estimate for the trans-

port solution can be obtained using either numerical simulations or simplified

models of the transport process.

The solution with numerical simulations implies the construction of a large

number of stochastic realizations of the media and the solution of each of

them with deterministic or Monte Carlo codes.

In this case, it is needed a way to simulate the randomly mixed materials.

One method to create the stochastic geometries is that of simulating the

trajectory of the neutrons by sampling the distributions of chords in the dif-

ferent materials composing the medium.

Simple models of stochastic media assume that the chord length distribution

inside each material is exponential: i.e., the geometry is a Markovian one.

For binary stochastic media it is often assumed that the geometry has Marko-

vian properties, even if it is never the case in usual environments. For ge-

ometries of importance, such as those consisting of randomly placed disks

in two dimensions or spheres in three dimensions, the Markovian hypothesis

is not strictly valid outside the disks (or the spheres) and never inside, as

recently shown [9].

However, statistical geometries are often constructed on the Markovian model.

The other approach to the transport problem in stochastic mixtures is that

of using simplified models for the transport process.

In the next chapter we will analyse both the numerical simulation and the
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analytical solutions and we will compare their results with our Benchmark.

First, we will discuss, in a general manner, the transport problem in a

stochastic media.

1.1 Transport in statistical setting

Starting from the integro-differential transport equation:

1

v

∂ψ(r,Ω, E)

∂t
+ Ω · ∇ψ(r,Ω, E) + σ(r, E)ψ(r,Ω, E) = S(r,Ω, E)

+

∫ ∞
0

dE ′
∫

4π

dΩ′σs(r, E
′ → E,Ω′ ·Ω)ψ(r′,Ω′, E ′)

(1.1)

we consider the time independent formulation:

Ω · ∇ψ(r,Ω, E) + σ(r, E)ψ(r,Ω, E) = S(r,Ω, E)

+

∫ ∞
0

dE ′
∫

4π

dΩ′σs(r, E
′ → E,Ω′ ·Ω)ψ(r′,Ω′, E ′)

(1.2)

with the boundary and initial conditions:

ψ(rs, E,Ω, t) = Γ(rs, E,Ω, t), n ·Ω < 0 (1.3)

where Γ is a specified function of its arguments, rs is a point on the surface,

and n is a unit outward normal vector at this point. An important spe-

cial case of Eq. (1.3) is the so-called ”vacuum” or ”free surface” boundary

condition:

ψ(rs, E,Ω, t) = 0, n ·Ω < 0 (1.4)

This boundary condition corresponds to no particle entering the system

through its bounding surface.
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In the time variable, we assume that the range of interest is 0 ≤ t <∞ and,

hence, we need to specify the initial condition at t = 0. This is the temporal

boundary condition, also called the initial condition:

ψ(r, E,Ω, 0) = Λ(r, E,Ω) (1.5)

where Λ is a specified function of its arguments.

In the transport equation (1.1), ψ(r,Ω, E) is the angular flux, with r, Ω and

E denoting the spatial, angular and energy variables, σ(r) and σs(r,Ω→ Ω′)

are the macroscopic total cross section and the macroscopic differential scat-

tering cross section, respectively, and S(r,Ω, E) represents an external source

of particles. The time dependence is implied.

In the usual (nonstochastic) application of this equation, the cross section

σ(r, E) , the scattering kernel σs(r, E
′ → E,Ω′ ·Ω) and the source S(r,Ω, E)

are known (deterministic) prescribed functions of their arguments and it is

possible to solve the Eq. (1.1), subject to the boundary and initial conditions

given by Eqs. (1.4) and (1.5), for the intensity ψ(r, E,Ω, t).

Instead, in the stochastic setting, σ, σs and S are only known in some sta-

tistical or probabilistic sense, which means that, at each space point r and

time t, these quantities have some probability to assume certain values.

Consequently, we must consider σ, σs, S and also the intensity ψ to be a

random variables.

1.2 Ensemble-averaged transport solution

Assuming known the complete statistical description of the random variables

σ, σs and S, we seek the solution for 〈ψ〉, the ensemble-averaged of the in-
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tensity ψ.

〈ψ〉 is the expected value of the intensity of the angular flux, computed over

all possible physical realizations of the domain, accordingly to the statistical

descriptions of the quantities σ, σs and S.

There are two ways to resolve the Eq (1.1) and find 〈ψ〉.

One consists of generating, from the presumed known statistic, a certain

number of physical realization of the statistics, either deterministically or

by a Monte Carlo procedure. For each realization, the transport equation

describes a deterministic transport problem (geometry, value of σ, σs, S,

boundary and initial conditions known): the solution could be, in principle,

computed, numerically or analytically.

To obtain the ensemble-averaged solution 〈ψ〉, this process must be repeated

for all possible physical realizations: each of them will give a particular solu-

tion to the transport equation that will be averaged over all the realizations to

give the expected value of the intensity ψ. Obviously, the averaging process

must take into account the probability of having each physical realization of

the statistics.

In general, this method involves a very large number of deterministic trans-

port calculations to obtain an accurate estimate of the ensemble average.

A zero error computation of the ensemble-averaged intensity 〈ψ〉 would re-

quire an infinite number of simulations of the physical realizations and, hence,

an infinite number of deterministic transport calculations.

The other method to compute the ensemble average is to derive a relatively

small and simple set of deterministic equations which contains the ensembled-

average intensity directly as one of its unknowns.

We have here compared the results given by different resolution methods for

the transport problem in stochastic mixtures for which a detailed description
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will be given in the next chapters.

The methods are:

• Atomic Mix Approximation

• 1D Benchmark

• L-P Model

• 2D Benchmark

• Monte Carlo Algorithms: A and B

1.3 Equation of transport in statistical mix-

tures

To discuss the two possibilities of finding 〈ψ〉 from the transport equation

(1.1) in stochastic mixtures, it is convenient to consider a simple case of time

independent transport in a nonscattering medium. If we consider the term

Ω · ∇ like a directional derivative in the direction Ω, the Eq. (1.1) becomes:

dψ(s)

ds
+ σ(s)ψ(s) = S(s) (1.6)

In this equation, in which we have omitted the energy and the angular ar-

guments of all quantities since they are simple parameter, s is the spatial

variable in the direction Ω. Since the transport problem does not involve

scattering, the Eq. (1.6) is not coupled to the equations for other energies

and directions.

Taking 0 ≤ s < ∞ as the spatial region of interest, the boundary condition
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can be written as:

ψ(0) = ψ0 (1.7)

where ψ0 is the prescribed boundary data. Since we are dealing with stochas-

tic media, all the quantities σ, S, ψ0 and ψ(s) are random variables.

Let Q be a random variable, represented as the sum of its ensemble average

〈Q〉 and its deviation Q̃ from the mean:

Q = 〈Q〉+ Q̃ (1.8)

The characteristic of Q̃ is to have zero mean:

〈Q̃〉 = 0 (1.9)

Writing all the quantities like (1.8), the Eq (1.6) becomes:

d〈ψ〉
ds

+ 〈σ〉〈ψ〉+ 〈σ̃ψ̃〉 = 〈S〉 (1.10)

with its boundary condition:

〈ψ(0)〉 = 〈ψ0〉 (1.11)

To get a closure formulation and obtain the ensemble-averaged of the inten-

sity ψ, one needs to find an approximation of the correlation term 〈σ̃ψ̃〉 in

function of the quantity of interest, namely 〈ψ〉. Obviously, to do this, it is

necessary to know the statistics of the random variables σ and S.

The other way to find 〈ψ〉 it to consider the integral, rather than the differ-

ential, transport formulation of the problem.
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The solution, always in the case of no scattering, of Eq. (1.6) and (1.7) for a

given physical realization of the statistics is:

ψ(s) = ψ0 exp

[
−
∫ s

0

ds′σ(s′)

]
+

∫ s

0

ds′S(s′) exp

[
−
∫ s

s′
ds′′σ(s′′)

]
(1.12)

From the solution given by Eq. (1.12), one can obtain 〈ψ〉 by ensemble av-

eraging, over all physical realization of the statistics, the right-hand side of

the previous equation.

Once again, to perform this average, one must know the details of the statis-

tics. In particular, we can see that there is again a correlation term, given

by the joint occurrence of ψ0 and σ, as well as S and σ.



Chapter 2

Models and approaches for

solving binary stochastic

mixture transport problems

In this chapter we will show and explain the different models and methods

used to solve the transport problem in the case of binary stochastic mixtures.

We start with considering the most common approach to solve particle trans-

port problem in stochastic mixtures: the atomic mix approximation.

2.1 Atomic mix approximation

The atomic mix approximation is an appealing method thanks to its simplic-

ity and computational efficiency, but it could not be accurate enough because

of using of ensemble-averaged material properties.

To find the atomic mix transport equation, we consider the case of a back-

ground material composed by two randomly mixed solids or immiscible fluids;

9
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that is, these components can not mix at the atomic level.

We label the two components with an index k and the three quantities with

σk(r, E), σsk(r, E
′ → E,Ω′ · Ω), and Sk(r, E,Ω), with k = α, β.

During its travel, the particle encounters alternating segments of the two

components, each of which has known deterministic values of σ, σs and S.

The statistical nature of the problem arises through the statistics of the fluid

mixing, i.e, the knowledge of which fluid is present at that point r and time t.

Indeed, the global quantities σ, σs, and S are considered as discrete random

variables and they can assume, at any r, E,Ω, t, one of the two sets of values

characterising the two components of the mixture.

A physical example for this realization is a grainy background material com-

posed by randomly distributed chunks of random sizes and shapes of the two

components of the mixtures.

For any given realization, the particle flow through this mixture is described

by deterministic linear transport equation, but what we want to find is a

formulation for the ensemble-averaged intensity 〈ψ〉.

The transport equation, for a binary turbulent mixture without time depen-

dence, is :

d〈ψ〉
ds

+ 〈σ〉〈ψ〉+ 〈σ̃ψ̃〉 = 〈S〉 (2.1)

The closure for Eq. (2.1) characterising the atomic mix approximation is the

neglect of the cross correlation term 〈σ̃ψ̃〉.

This is possible, as shown by Pomraning [2], only if the characteristic chord

length Λk for the fluid packets of fluid k is small compared to the mean free

path lk in fluid k, that is:

Λk

lk
= σkΛk � 1, k = α, β (2.2)
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With this assumption, the transport equations (2.1) reduces to:

d〈ψ〉
ds

+ 〈σ〉〈ψ〉 = 〈S〉 (2.3)

where 〈ψ〉 is our unknown and 〈σ〉 and 〈S〉, assumed known, are two ensem-

ble averages defined in terms of the properties of the two mixture elements,

namely:

〈σ(s, t)〉 = pα(s, t)σα(s, t) + pβ(s, t)σβ(s, t), (2.4)

〈S(s, t)〉 = pα(s, t)Sα(s, t) + pβ(s, t)Sβ(s, t) (2.5)

where pk(s, t) is the probability of finding material k at position s at time t.

The sum of the two probability pk is unity.

pα(s, t) + pβ(s, t) = 1 (2.6)

The atomic mix transport equation, including scattering, derived from the

averaging of Eqs. (1.1), (1.3) and (1.5) and neglecting the cross correlation

term 〈σ̃ψ̃〉 and 〈σ̃sψ̃〉 is:

Ω · ∇〈ψ(E,Ω〉+ 〈σ(E)〉 〈ψ(E,Ω)〉 = 〈S(E,Ω)〉

+

∫ ∞
0

dE ′
∫

4π

dΩ′〈σs(E ′ → E,Ω′ ·Ω)〉〈ψ(E ′,Ω′)〉
(2.7)

with the corresponding boundary and initial conditions:

〈ψ(rs, E,Ω, t)〉 = 〈Γ(rs, E,Ω, t)〉, n ·Ω < 0, (2.8)

〈ψ(r, E,Ω, 0)〉 = 〈Λ(rs, E,Ω)〉 (2.9)
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The quantities σ, σs, S, Γ and Λ in Eqs. (2.7),(2.8) and (2.9) are random

variables, generally described as:

〈Q〉 = pαQα + pβ Qβ (2.10)

that is the definition always used for binary stochastic mixture transport

problem. It does not depend upon the approximation for the cross correla-

tion term.

The name “ atomic mix ” for this description of the transport problem arises

from the approximation done in Eq. (2.2), which means that small chunks

vanish in the mixture (the mean free path lk is bigger than the mean chord

length Λk in material k, so the particle does not see, during its travel, the

chunks spread in the background). Physically, the smallest chunk size possi-

ble is a single atom.

2.1.1 Remarks

As we have already seen, the atomic mix model is characterised by the ne-

glect, in the transport equation (1.1), of the cross correlation term, i.e., of

statistical effects.

This assumption, that makes the model so attractive and simple to use, can

lead to large errors in its prediction of 〈ψ〉 if Eq. (2.2) is not satisfied. This

is the case when the chunks composing the mixture are not small compared

to the particle mean free path.

In general, the atomic mix approximation underestimates transmission through

a random mixture.

To see it, we can consider time independent transport problem in a source-
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free, no scattering medium, composed by optically thin packets of element α

(σαΛα � 1) and optically thick packets of element β (σβΛβ � 1), assumed

sparse, i.e., with pβ � 1.

The mean physical realization is, then, constituted for the most part of el-

ement α, a near vacuum interspersed with very few fluid packets of infinite

optical thickness.

Physically, the particle incident upon a piece of this mixture will, on the

average, pass through the medium without interacting with the few sparse

absorbing packets of material β.

On the other hand, according to the theoretical model, neglecting the cross

correlation term 〈σ̃ψ̃〉 in Eq. (1.10), the behaviour of 〈ψ〉 will be an expo-

nential one, with a scale length 1/〈σ〉.

The term 〈σ〉 will be very large, because σβ is large; thus, the ensemble-

averaged intensity 〈ψ〉 will be very small.

The atomic mix approximation will then lead to virtually no transmission

through the mixture, that is not physical.

Also in our Benchmark calculations, we will see that the results are closed to

those given by the atomic mix approximation only in cases where the mean

physical realization is similar to an homogeneous one ( pieces of elements α

and β are small and it is possible to describe the mixture with its average

properties).
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2.2 Analytical models : the Levermore Pom-

raning model

2.2.1 The Markovian statistics

Before writing the equation for the Levermore-Pomraning model, we intro-

duce and explain Markovian statistics.

A Markov process, named after the Russian mathematician Andrey Markov,

is a“ memoryless ” process: the evolution of its present state does not depend

upon the previous states, that are all independent.

Such an approximation is very useful, in particular for neutron transport

problem: the particle history can be seen as composed by different indepen-

dent steps that can be treated separately.

In our case, also the geometry is Markovian: given Λα, the conditional prob-

ability, supposed we are in material α at some space-time position s, of being

in an other material β at s + ds in direction Ω is expressed by ds/Λα. This

probability of transition between different materials is dependent only upon

the fixed parameter of the statistics, Λα, and on the space interval ds trav-

elled in that step.

Λα is called Markovian transition probability and it is the mean chord length

in direction Ω of packets of material α.

The Markovian statistics is a renewal one in which the distribution of the

chord length x in a material α is exponential:

fα(x) =
1

Λα

e−x/Λα (2.11)
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and the mean chord length Λα is given by :

Λα =

∫ ∞
0

dx x fα(x) (2.12)

Considering a binary stochastic geometry, made by two elements α and β,

we define two mean chord lengths Λα and Λβ, whose relation gives the prob-

ability pk of finding material k at any given point in the spatial domain :

pk =
Λk

Λα + Λβ

(2.13)

with k = α, β.

The pk is the volume fraction of material k in the problem :

Vk =
Vk

Vα + Vβ
(2.14)

and the sum of pks is unity.

Having defined these quantities, we can now write the expression of the

distributions fα(x) and fβ(x) in function of pk and Λ, the mean chord length

in the “ uncoloured ” geometry1, supposed to be Markovian. In fact, we

can say that the random variables fα and fβ, describing the chord length in

material α and material β respectively, follow an exponential distribution of

parameter Λα and Λβ or equivalently of parameters Λ/(1− pα) and Λ/pα
2.

1a geometry made by random chunks in a background of the same material, or a planar
one with slabs of different width

2Given f(x) a random variable representing chord lengths in a mixture without colour,
pα the probability of finding material α in the domain (pβ = 1−pα) and fα and fβ random
variables describing the chord length in material α and β, we have that, if f(x) follows an
exponential law (for hypothesis the geometry is Markovian) of parameter Λ, then also fα
and fβ have an exponential distribution, of parameters Λ/(1− pα) and Λ/pα
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Indicating the exponential distribution with ε, we have:

fα ∼ ε

(
1

Λα

)
= ε

(
1− pα

Λ

)
(2.15)

fβ ∼ ε

(
1

Λβ

)
= ε

(pα
Λ

)
(2.16)

The demonstration is reported in [12].

The mean chord length Λ in the uncoloured geometry is the so called corre-

lation length, given by :

1

Λ
=

1

Λα

+
1

Λβ

(2.17)

If the mean chord length of one material is bigger than the that of the other,

the correlation length will be approximately like the smaller one.

2.2.2 The L-P model

Levermore-Pomraning model is an approximation of a more general one, de-

scribed by the so-called Liouville master equation, widely used in particle

transport involving stochastic mixtures.

The Liouville equation is generally associated with initial value problems in

time and it was used in particle transport context for the first time by Van

der Haegen (1986).

The master equation can fit very well the neutron transport problem, just

substituting the time variable t with the space variable s.

More details and the procedure are reported in Appendix A.

As we have already seen, to find the solution of the transport problem for

statistical mixtures, we have to compute the ensemble-averaged flux intensity

〈ψ(t, r,Ω)〉, where ψ(t, r,Ω) satisfies the integro-differential transport equa-
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tion (1.1), written with explicit dependence on r, t and Ω, that are space,

time and angular variables, respectively :

[
1

v

∂

∂t
+ Ω · ∇+ σ(r, t)

]
ψ(r,Ω, t) = S(r,Ω, t)

+

∫
4π

σs(r,Ω
′ → Ω, t)ψ(r,Ω′, t)dΩ′

(2.18)

Eq. (2.18) is a one group transport equation: the energy variable E is not

displayed: having assumed coherent scattering, it is only a parameter.

Since we are considering stochastic mixtures, the quantities σ(r,Ω, t), σs(r,Ω
′ →

Ω, t) and S(r,Ω, t) are random variables.

To describe the statistical media and get an equation for the ensemble-

averaged flux 〈ψ(r,Ω, t)〉, we need a set of states X = {ω}, corresponding

to each physical realization of the system, and a relative time-independent

probability density p(ω), that respects the normalization condition:

∫
X

p (ω) dω = 1 (2.19)

where p (ω) is the probability of observing state ω.

To each state, that is, each physical realization of the system, are associated a

corresponding angular flux, ψω(r,Ω, t), and an ensemble-averaged flux, given

by:

〈ψ(r,Ω, t)〉 =

∫
X

p(ω)ψω(r,Ω, t) dω (2.20)

Considering a finite set of materials {α}, each characterised by non stochastic

sources Sα(r,Ω, t) and cross sections σα(r,Ω, t) and σsα(r,Ω′ → Ω, t), the

ensemble-averaged flux is:

〈ψ(r,Ω, t)〉 =
∑
α

pα(r, t)〈ψα(r,Ω, t)〉 (2.21)
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where pα is the probability of finding material α at time t at position r

and 〈ψα(r,Ω, t)〉 is the mean angular flux averaged over all realizations that

have material α at (r, t), that is, for all the states belonging to the subset

Xα(r, t) = {ω ∈ X |ω(r, t) = α}. These quantities are respectively expressed

by :

pα(r, t) =

∫
Xα(r,t)

p(ω)dω (2.22)

and

〈ψα(r,Ω, t)〉 =

∫
Xα(r,t)

p(ω)ψω(r,Ω, t)dω

pα(r, t)
(2.23)

The ensemble-averaged flux is defined as the integral of the probability den-

sity p(ω) multiplied for the probability distribution function ψω, weighted by

the distribution of p(ω). Inserting Eq. (2.22) in the previous one we have :

〈ψα(r,Ω, t)〉 =

∫
Xα(r,t)

p(ω)ψω(r,Ω, t)dω∫
Xα(r,t)

p(ω)dω
(2.24)

The quantity 〈ψα〉 is called α-material average flux because material α is

present at (r, t).

Having defined the ensemble-averaged flux 〈ψ(r,Ω, t)〉 in function of the ma-

terial fluxes, it is possible to find our unknown simply by writing equations

for each of the 〈ψα(r,Ω, t)〉s.

Averaging the Eq. (2.18) for a two-element stochastic mixture, we obtain two

coupled equations, one for 〈ψα(r,Ω, t)〉 and one for 〈ψβ(r,Ω, t)〉 :
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[
1

v

∂

∂t
+ Ω · ∇+ σα

]
(pα〈ψα〉) = pα

[∫
4π

σsα(Ω′ → Ω)〈ψα(Ω′)〉dΩ′ + Sα

]
+ pβα〈ψβα〉 − pαβ〈ψαβ〉

(2.25)[
1

v

∂

∂t
+ Ω · ∇+ σβ

]
(pβ〈ψβ〉) = pβ

[∫
4π

σsα(Ω′ → Ω)〈ψα(Ω′)〉dΩ′ + Sβ

]
+ pαβ〈ψαβ〉 − pβα〈ψβα〉

(2.26)

written here omitting the arguments t, r and Ω.

In these equations new probability densities, pαβ and pβα, are introduced:

they are the probabilities per unit length of trajectory of crossing an inter-

face from material α to material β (and vice-versa) at point (r, t), along the

direction Ω. Related to the transition between materials are also the fluxes

〈ψαβ(r,Ω, t)〉 and 〈ψβα(r,Ω, t)〉, called interface average fluxes, which are

the angular fluxes averaged over all states that switch from material β to

material α (and vice-versa) at (r, t) along direction Ω.

Another approach to derive an equation for the material average flux is to

average the integral form of the transport equation over a subset of states

which have material α at position (r, t). With this method too we have the

definition of some interface fluxes, different from the preceding ones because

averaged on a different subset of states: the material average flux is here

expressed in terms of average fluxes along the past trajectory in direction

−Ω (that is, along points like (r′, t′), with r′ = r− x′Ω and t′ = t− x′/v).

The equation obtained from this method is the so-called renewal-like equa-

tion:
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〈ψα(t, r,Ω)〉 = ψbd(tbd, rbd,Ω) e−τα(rbd,t,r)Rα(rbd, t, r)

+

∫ xbd

0

e−τα(r′,t,r)
{
fsα〈ψ̄βα(t′, r′,Ω; r)〉

+Rα(r′, t, r)[

∫
4π

σsα(t′, r′,Ω′ → Ω)〈ψ̄αα(t′, r′,Ω′ → r)〉dΩ′

+ Sα(t′, r′,Ω)dx′

Independently on the formulation chosen, a problem of infinite hierarchy

arises.

There are always new unknown conditional averages that appear in the equa-

tions for the material average fluxes 〈ψα〉 and 〈ψβ〉, namely, for the case in

exam, 〈ψαβ〉 and 〈ψβα〉.

This problem is correlated to the fact that we are seeking for a mean (ensemble-

averaged) quantity: we average an equation to find the first order moment

of a probability distribution function; to do this, we have to use its second

order moment, that is unknown. So, every time a new equation in a higher

order is needed to close the previous one.

It has been shown [5] that, for collisionless transport, the infinite hierarchy of

equations can be reduced to a close set when the chord statistics, describing

chord length on a material, are renewal ones.

Statistics are defined renewal if the probability for a chord of length z of

material α is given by a predefined distribution function fα(z) and it is in-

dependent of the material distribution in the past of the trajectory.

For this type of statistics the hierarchy can have a second order closure ,

but it is possible to close the set of equations also at the first order,using a

particular type of renewal statistic: the Markovian ones, for which the dis-

tribution of the chord length z is exponential.
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The closure is given by the identity :

〈ψβα(r,Ω, t)〉 = 〈ψβ(r,Ω, t)〉 (2.27)

which means that the interface flux is equal to the material flux. In fact, with

Markovian assumption, the evolution of the current state is independent of

the previous one; so, the fact that the particle is inside the material α or

near to the interface does not affect the next step of its history, because it is

however in material α.

Obviously, this type of closure is not possible for real transport problems,

that are non-zero scattering. So, it is necessary to develop models which use

some appropriate closures to truncate this infinite hierarchy of equations.

One of them is the Levermore-Pomraning model, which suggests to enforce

the simple closure given by Eq. (2.27) also for arbitrary statistics and non-

zero collision transport problem.

We can write, in a more synthetic way, the two coupled equations describ-

ing transport problem in scattering Markovian stochastic mixtures given by

Eqs. (2.25) and (2.26), indicating with 〈φk〉 the integral of the intensity 〈ψk〉

over the angle variable:

〈φk〉 =

∫
4π

σsk(Ω
′ → Ω)〈ψk(Ω′)〉dΩ′ (2.28)

and expressing the probability of transition between one material to the

other, namely pαβ and pβα, in terms of the Markovian transition probabilities
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Λα and Λβ:

pαβ =
pα
Λα

(2.29)

pβα =
pβ
Λβ

(2.30)

We obtain the following equations:

[
1

v

∂

∂t
+ Ω · ∇+ σα

]
(pα〈ψα〉) = pα

(σsα
4π
〈φα〉+ Sα

)
+
pβ〈ψβα〉
Λβ(Ω)

− pα〈ψαβ〉
Λα(Ω)

(2.31)[
1

v

∂

∂t
+ Ω · ∇+ σβ

]
(pβ〈ψβ〉) = pβ

(σsβ
4π
〈φβ〉+ Sβ

)
+
pα〈ψαβ〉
Λα(Ω)

− pβ〈ψβα〉
Λβ(Ω)

(2.32)

that represent the standard approximate model.

With the first order closure we have the two coupled equations for the L-P

model:

[
1

v

∂

∂t
+ Ω · ∇+ σα

]
(pα〈ψα〉) = pα

(σsα
4π
〈φα〉+ Sα

)
+
pβ〈ψβ〉
Λβ(Ω)

− pα〈ψα〉
Λα(Ω)

(2.33)[
1

v

∂

∂t
+ Ω · ∇+ σβ

]
(pβ〈ψβ〉) = pβ

(σsβ
4π
〈φβ〉+ Sβ

)
+
pα〈ψα〉
Λα(Ω)

− pβ〈ψβ〉
Λβ(Ω)

(2.34)
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2.3 Monte-Carlo Algorithms

Instead of seeking ensemble-averaged transport solution using an approxi-

mate set of equations, or simulating a large number of realizations and then

solving each single problem to average them at the end, there is another pos-

sible way to compute the ensemble-averaged intensity: developing a Monte

Carlo algorithm.

Zimmerman [8] and McCormick [7] proposed independently the use of a

Monte Carlo algorithm for the solution of transport problem in binary stochas-

tic mixtures.

We present here two algorithms: algorithm A and algorithm B. The first

solves, as argued by Pomraning [6], the Levermore equations and it is, thus,

equivalent to the L-P model; the second is a more accurate algorithm, thanks

to its improved local material realization modelling.

Zimmerman and Adams [8] also proposed an algorithm C, that retains more

memory of the particle’s recent history, maintaining additional realization in-

formation: not only the current interface distance (forward and backward),

but also the distance to the next interface is kept.

However, even if the realization description is more close to the real, because

of the information regarding also surrounding materials, algorithm C is not

feasible in multiple dimensions; thus, it will not be treated in our discussion.

2.3.1 Monte Carlo transport theory

2.3.2 Algorithm A: the L-P model

For both algorithms, the particle history begins with sampling the source

particle characteristics: position, velocity and material (here material is an

attribute of the particle, just like position and velocity).
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Then, for a new event, three distances are introduced:

• db: the boundary distance; it is the distance to the zone boundary and

it is computed using the particle current position and direction of flight

and the boundaries of the spatial domain;

• di: the interface distance; it is the distance to material interface and it

is sampled by material’s chord length distribution (with the assumption

that the particle is either on an interface between materials or located

randomly inside);

• dc: the collision distance; it is the distance to the next collision and it

is sampled using material’s total cross section;

Then the steps are:

I. sample the distance to material interface di
II. calculate the distance-to-boundary db and sample the distance-to-collision

dc
III. compute the minimum of di, db and dc to determine which event occurs
IV. if db, advance the particle to the boundary: if it escapes, update the

appropriate leakage tally and terminate the history, then track a new
particle. If not, return to step I.

V. if di, advance particle and switch the material identifier (the material
changes)

VI. if dc, advance particle and sample collision type using macroscopic to-
tal and scattering cross sections for the material in which the particle
exists. If the particle is absorbed, then terminate the history and track
a new particle. If the sampled collision is scattering, sample the out-
going characteristics of the particle, that maintains its current material
identifier. Return to step I.

We emphasize that this algorithm models a Markovian transport process,

since, after each collision, the incident particle history is forgotten and the
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outgoing particles are treated as “ new ” source particles. Following a colli-

sion, a new material interface distance is sampled: this leads to an unphysical

behaviour, because in that manner the particle encounters a different material

realization every time it undergoes a collision. In particular, if the particle

backscatters, it can see a different medium than it traversed on its way to

the collision.

Thus, algorithm A will be less accurate as scattering increases.

2.3.3 Algorithm B: a more accurate one

This algorithm retains partial memory of the previous particle history.

Instead of only one, two material interface distances are sampled: one in the

forward direction, di,f , and one in the backward direction, di,b.

Upon crossing a material interface, a new di,f is sampled and di,b is set to zero.

After a collision, di,f and di,b are kept from the incident particle, or switched

if a backscatter occurs. The choice of keeping or switching the interface dis-

tance depends upon the angle between the outgoing and the incident particle

directions, and on a pseudorandom number, such that forward scattered par-

ticles keep their di,f and backward scattered particles switch it. Therefore, if

a particle backscatters, it will see the same material it just passed through,

and not a different one.

For each particle history the steps are:

I. sample the distance to material interface in the forward and in the
backward direction, namely, di,f and di,b

II. compute the distance-to-boundary db and sample the distance to colli-
sion dc

III. calculate the minimum of di,f , db and dc and determine the sampled
event
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IV. if db, initially treat as in algorithm A, step IV. Instead of resampling
the distance to material interface (returning to step 1) as in Algo-
rithm A, adjust the distance to material interface values in the forward
and backward directions to account for the distance the particle was
moved.Return to step II

V. if di,f , advance the particle of the appropriate distance, switch the ma-
terial identifier, set di,b to zero and sample a new forward distance di,f .
Return to step II

VI. if dc, treat the case as in algorithm A; instead of resampling the distance
to material interface, adjust the value for the distance the particle has
travelled. If the collision is a scattering, also adjust di in the forward
and in the backward directions and, in case, switch them. Return to
step II

2.3.4 Remarks

As we have already said, algorithm A is less accurate than algorithm B,

even if, for our benchmark problem, they produce qualitatively and semi-

quantitatively correct results [1], both for the ensemble-averaged quantity

sought and for the material scalar flux distribution, that are quite realistic.

From algorithm A to C, accuracy improves: during each history, more in-

formation about material distribution is retained. Algorithm B has a small

additional complexity, but it has also smaller errors [8]. Instead, algorithm C

additional complexity does not allow its use for multidimensional geometries.
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2.4 Benchmark 1D: planar geometry

The first benchmark results obtained for the transport problem in stochastic

mixtures [10] were done for a layered planar geometry, composed by alter-

nating slabs of two different materials, under the assumption of Markovian

statistics.

This calculations were achieved by simulating a large number of physical

realizations, through a Monte Carlo procedure, by numerically solving the

corresponding transport equation and then averaging the solutions to find

the wanted ensemble-averaged quantities.

Results were also compared to those given by the standard model, written

for the case of planar geometry.

2.4.1 Transport equation in a planar layered geome-

try

The Benchmark results we are referring to are those calculated by Brant-

ley [1], who analysed two suites of the problem, one with a unity incoming

partial current and one with an internal nonstochastic source. The equation

describing the time-independent monoenergetic neutron scattering transport

problem in a one-dimensional planar geometry, with a domain defined in x

from 0 to length L, is:

µ
∂

∂x
ψ(x, µ) + σt(x)ψ(x, µ) =

1

2
σs(x)

∫ 1

−1

ψ(x, µ′)dµ′ +
1

2
q(x) (2.35)
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0 ≤ x ≤ L, −1 ≤ µ ≤ 1 ,

with the interior source:

q(x) =

0 Suite I

1
L

Suite II

0 ≤ x ≤ L (2.36)

and boundary and initial conditions given by:

ψ(0, µ) =

2 Suite I

0 Suite II

µ > 0 (2.37)

and:

ψ(L, µ) = 0, µ < 0 (2.38)

In equation (2.35), written in standard neutronics notation, ψ(x, µ) is the

angular flux of particles at position x travelling in direction Ω, identified by

the cosine µ to respect the x axis, σ(x, µ) and σs(x, µ) are the macroscopic

total and scattering cross sections and q(x) is an interior source of particles.

The searched values are the reflection and the transmission through the lay-

ered domain corresponding to the ensemble-averaged exiting partial currents

at x = 0 and x = L, given by:

〈J0〉 =

∫ 0

−1

|µ|〈ψ(0, µ)〉dµ, (2.39)

〈JL〉 =

∫ 1

0

µ〈ψ(L, µ)〉dµ (2.40)

Suite I is the standard suite, treated also by Adams, Larsen and Pomraning

[10], characterized by an isotropic incident angular flux at one border of the

spatial domain, whereas Suite II is an interior non-stochastic spatially uni-
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form source benchmark problem. The source q(x) is of one neutron per unit

time. For Suite I the boundary conditions represent an incident angular flux

at x = 0 and a vacuum boundary at x = L. For Suite II they are, instead,

of “ free surface ” type for both of the boundaries.

Assuming spatially homogeneous 3 Markovian statistics as description of ma-

terials composing the medium, namely α and β, each slab width can be

sampled from an exponential distribution, like:

fk(x) =
1

Λk

e
− x

Λk (2.41)

with k = α, β and Λk the mean slab width of material k.

As previously defined, each material is also characterised by the volume frac-

tion pk, which is the probability of finding material k at any given point in

the spatial domain:

pk =
Λk

Λα + Λβ

(2.42)

2.4.2 Benchmark calculations

To obtain benchmark results, the procedure is the following:

• generate one physical realization: sample the material located at the

left born x = 0 using the probabilities pk defined in (2.42), sample

the first slab width from exponential distribution, (2.41), using the

appropriate Λk; sample in the same manner the next slab width until

the value x = L is reached.

• solve the transport problem for each realization, using here discrete

ordinates transport code

3 all points in the domain have identical statistical properties
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• repeat this procedure a large number of times, say M , and average the

results

The ensemble-averaged quantities we are interested in are: the ensemble-

averaged leakage values at x = 0 and at x = L,namely the reflection and the

transmission, given respectively by:

〈J0〉 =
1

M

M∑
m=1

∫ 0

−1

|µ|ψm(0, µ)dµ (2.43)

〈JL〉 =
1

M

M∑
m=1

∫ 1

0

|µ|ψm(L, µ)dµ (2.44)

where ψm(x, µ) is the solution computed for the realization m.

The transport code used by Brantley [1] employs the linear discontinuous

spatial discetization with the size ∆x of each mesh interval chosen such

that σk∆x/µmin ≤ 1/10, where µmin is the minimum direction cosine in

the quadrature set.

2.4.3 The 1D model

The standard equations (2.25) and (2.26) written for the planar geometry,

sourcefree, time-independent problem under consideration is:

µ
∂ψα(x, µ)

∂x
+ σαψα(z, µ) =

σsα
2

∫ 1

−1

dµ′ψα(z, µ′) +
|µ|
Λα

[ψβ(x, µ)− ψα(x, µ)]

(2.45)

µ
∂ψβ(x, µ)

∂x
+ σβψβ(z, µ) =

σsβ
2

∫ 1

−1

dµ′ψβ(z, µ′) +
|µ|
Λβ

[ψα(x, µ)− ψβ(x, µ)]

(2.46)
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that, in a general form, is:

µ
∂ψk(x, µ)

∂x
+ σkψk(z, µ) =

σsk
2

∫ 1

−1

dµ′ψk(z, µ
′) +
|µ|
Λk

[ψl(x, µ)− ψk(x, µ)]

(2.47)

with boundary conditions

ψk(0, µ) = 2, µ > 0; ψk(L, µ) = 0, µ < 0; with k = α, β (2.48)

The ensemble average solution 〈ψk(x, µ)〉 is given by the same expression as

Eq. (A.19), that is, the sum, overall the materials composing the mixture,

of the average flux calculated for the subset of states in which material k

is present at time t and position r times the probability pk of being in that

material.

The equation (2.45) is obtained dividing Eq. (2.25) by pα and then using

the relationship between the pks and the Λks: recalling the definition of the

probabilities pα and pβ in function of the mean slab width Λα and Λβ:

pα =
Λα

Λα + Λβ

(2.49)

pβ =
Λβ

Λα + Λβ

(2.50)

we obtain the identity:
Λα

pα
=

Λβ

pβ
(2.51)

As in previous equations, in Eqs. (2.45) and (2.46), we have the usual terms

of classical transport (the two terms on the left and the first on the right)

and two extra terms, due to the presence of stochastic mixtures. The positive

one is that corresponding to the flux getting in from material l to material

k and the negative term is the flux outgoing from material k, with l 6= k.
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Interesting here is the coupling term, |µ|/Λk, that is the fraction of the cosine

µ and the mean slab width in material k, Λk. In that case, the Markov

transition probabilities, Λα and Λβ, are angular dependent: the mean chord

length seen by a particle travelling at an angle characterized by its cosine µ

is Λk/µ.



Chapter 3

Benchmark problem

After having described some different methods and models to face the trans-

port problem in stochastic geometries, we are now dealing with transport

simulation in binary 2D Markovian geometries.

The procedure we have followed is:

• generate different statistical realizations of Markovian geometry, ac-

cordingly with Benchmark problem parameters

• solve the transport problem by the Monte Carlo code TRIPOLI-4 R©,

developed at CEA, for each realization

• average the results and make a comparison with the results previously

obtained using models or numerical simulations

Each geometry is realized in accordance with a procedure described by Switzer

[11], that allows us to first build a two-dimensional Markovian geometry in

the plane and then extend this geometry in the vertical direction.

33



3.1. Geometry construction 34

3.1 Geometry construction

Basically, the construction of the three-dimensional geometry is a two-step

process: firstly, a real Markovian two-dimensional geometry is built in a

square, secondly this two-dimensional geometry is extended in the vertical

direction. We now detail this procedure.

Fig. 3.1: Example of Markovian geometry formed by a set of polygons of two materials,
0 and 1

Its construction is done in accordance with the procedure described by

Switzer [11] in 1964, that allows to realize a bidimensional Markovian geom-

etry.

Throwing a random number of lines, following a Poisson process, on a square

domain of size L, inscribed in a circle of radius r, we obtain a set of polygons

that has Markovian properties.

The equation of any line in the (x, y) plane may be written as

ρi = xcosθi + ysinθi (−∞ < ρi <∞; 0 ≤ θi ≤ π) (3.1)

where ρi is the distance of the perpendicular from the origin O to the line and
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Fig. 3.2: Geometry construction: the solid line crosses the domain and serves to build
the stochastic geometry. The dashed line does not cross the domain and it is rejected

θi is its orientation. The distances p0 ≤ p1 ≤ p2 ≤ p3 ≤ . . ., with i = 1, . . . , n,

of the lines from point O constitute the coordinates of the events of a Poisson

process, characterized by a constant density λ. It implies that, in any interval

of length L, the number of random lines has a Poisson distribution, with mean

λL. The probability of having n events in any interval of length L is given

by:

pn =
(Lλ)n

n!
e−λL (3.2)

The lines so generated divide the square into convex polygonal cells.

One advantage property of the set of lines, called L, is that it is homogeneous:

the lines of L have a uniform density, of measure λ.
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Fig. 3.3: Throwing a line test (pink line) on this geometry, it is cut in a series of
segments, delimited by a group of intersection points

Seen in another way, we can say that, if we throw a line test on the

geometry, the points of intersection between the line and the set of lines L

constitute a Poisson process of density τ = (2λ)/π.

So, the inverse of density, τ−1, is the mean length of the segments in which

the line test is cut and the lengths of these segments follow an exponential

distribution of parameter x̄ = τ−1 = π/(2λ).

Being x the length of these segments, we have:

f(x) =
1

x̄
e−x/x̄ = τe−τx =

2λ

π
e−(x2λ)/π (3.3)

Thus, the constructed geometry is a Markovian one, apart from edge effects.
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To build these geometries we employed a code, developed by Thibaut

Lepage at CEA, that reproduces Switzer’s process.

It throws a random number of lines on a square of size L, inscribed in a

circle of radius r = L/
√

2, in accordance with a Poisson process: if the line

crosses the square domain, it is accepted; if the line crosses only the circle,

it is rejected. The probability that a line crossing the circle crosses also the

square is given by the perimeters ratio of the two figures:

4L

(2πr)
=

4

(π
√

2)
≈ 0.9 (3.4)

Fig. 3.4: Square domain and construction of the stochastic geometry: on a square of
side L a set of lines is thrown: the green crosses the domain and it is accepted, the
red does not and it is rejected

To generate the geometries, the program asks three input parameters:

the size S , the density λ and the probability p.

• The parameter size is the characteristic dimension of the domain: the

side L of the square. In our case, it is 10 cm
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• The parameter density is the density of the Poisson process used to

draw random lines on the plane. It has the measure of a density and

it is defined as the fraction of the mean number of lines in a square of

side L and the size itself:

λ =
E[L]

L
(3.5)

This positive constant characterizes the Poisson process for the con-

struction of the geometry and is independent of the distribution of the

two materials in the medium (the quantities previously defined p0 and

p1). We can have different realizations of the geometry with the same

density and different pi.

(a) λ = 1.58, p = 0.3 (b) λ = 1.58, p = 0.6 (c) λ = 1.58, p = 0.9

Fig. 3.5: Geometries with same density λ and different proba p0

For our benchmark calculations, the value of λ is not given as a prede-

fined parameter, however it can be deduced from the values of p0 and

Λ0. In fact, it is possible to find a relationship between the density

of the Poisson process, the volume fraction of one of the two mate-

rials composing the mixture and its mean chord length. Reminding

the expressions of the chord length distributions in the two materials,

Eqs. (2.15) and (2.16), and that of the chord length in the Markovian
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geometry constructed, Eq. (2.41), we have:

f0(x) =
1

Λ0

e−x/Λ0 where Λ0 = x̄/(1− p0) (3.6)

f1(x) =
1

Λ1

e−x/Λ1 where Λ1 = x̄/p0 (3.7)

Here, x̄ is the mean chord length in the geometry build up of polygons

whose expression worth x̄ = π/(2λ). Substituting this expression in

Eqs. (3.6) and (3.7) we obtain:

Λ0 =
x̄

(1− p0)
=

π

2λ(1− p0)
(3.8)

Λ1 =
x̄

p0

=
π

2λp0

. (3.9)

Then, given the values for p0 and Λ0, we can calculate the expression

for the density λ:

λ =
π

2Λ0(1− p0)
, (3.10)

that has a different value for each benchmark case.

• The parameter probability is the probability of finding one of the two

materials in the domain. Given one material, the other is found thanks

to the normalization condition p0 + p1 = 1.
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3.2 Benchmark problem description

We consider a problem of transmission and partial reflection along the x axis

(and conditions of mirror reflections on the other axes) through a solid, of

dimensions 10x10x10 cm, composed by two materials, labeled with 0 and 1,

whose parameters are given in the following tables:

Table 3.1: Material parameters for benchmark transport problem

Case Λ0 [cm] σ0
t [cm−1] Λ1 [cm] σ1

t [cm−1] Case c0 c1

1 99/100 10/99 11/100 100/11 a 0.0 1.0
2 99/10 10/99 11/10 100/11 b 1.0 0.0
3 101/10 2/101 101/20 200/101 c 0.9 0.9

Table 3.2: Ensemble-averaged material parameters

Case 〈σt〉 〈σs〉

1a,2a 1 10/11
1b,2b 1 1/11
3a 1 100/101
3b 1 1/101
1c,2c,3c 1 9/10

The table 3.1 contains the values for macroscopic total cross sections

and mean chord lengths of the two materials composing the medium. The

scattering cross section is calculated from the value of ci, defined as the ratio

between scattering and total cross section of material i : ci = σis/σ
i
t , i = 0, 1.

Giving the mean chord length Λi for each material is equivalent of having

the volume fraction pi, that is, the probability of finding material i in the

domain :

pi =
Λi

Λ0 + Λ1

(3.11)
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The benchmark problem is then split into three main cases, with the following

values for the characteristic parameters:

Table 3.3: Three cases parameters

Case λ p0

1 15.867 0.9
2 1.5867 0.9
3 0.6621 0.5

Looking at the table above, some quick considerations can be made on

each case:

• Case 1: it can be considered the “more stochastic” case, since the

mean chord lengths are small compared to the dimension 10x10cm2 of

the square. Besides the two materials are strongly mixed. The volume

fractions are p0 = 0.9 and p1 = 0.1, respectively, so it is much more

probable to find material 0 than material 1.

• Case 2: the total cross sections and the volume fractions are the same

as in Case 1, but mean chord lengths are different: for material 0 it is

9.9 cm and for material 1 it is 1.1 cm. So, in an average sense, pieces of

0 are quite big, close to the domain size, whereas material 1 is present

in small pieces.

• Case 3: materials in Case 3 have the same mean chord lengths, thus

they are present with the same volume fraction (p0 = p1 = 0.5). Pieces

are also rather big, since Λ0 = Λ1 = 5.05 cm.

For each case, there are three sub-cases, characterized by different values

of scattering and absorbing cross sections for the two materials, making 9
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(a) Case1: λ = 15.867,
p = 0.9

(b) Case2: λ = 1.5867,
p = 0.9

(c) Case3: λ = 0.6621,
p = 0.5

Fig. 3.6: Examples of the three cases

cases in total. Moreover, we will analyse two different suites for the bench-

mark problem:

• Suite I: characterized by no internal source and an input current at

the left side of the solid

• Suite II: it has an isotropic source, uniformly extended in the domain.

Since we are dealing with stochastic problem, as already mentioned, the

total and the scattering cross sections are ensemble-averaged quantities, more

precisely they are expressed by:

〈σt〉 = p0σ
0
t + p1σ

1
t (3.12)

〈σs〉 = p0σ
0
s + p1σ

1
s (3.13)

For all cases, the ensemble-averaged total cross section is unity.

The values of the different scattering cross sections, for the different cases,

are given in Table 3.2.
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Probability of one material geometry realization

According to the values of the material probability p0 and p1, we are able

to calculate for the layered geometry and estimate for the bidimensional

stochastic geometry the probability of having a realization completely filled

with only one material.

This probability is dependent upon three parameters: p0, the volume fraction

of material 0, x̄, the mean chord length, and L, the size of the domain.

For the geometry used in Benchmark calculations by Branltey [1], we can

calculate the exact value of this probability for the three cases, using the

expressions given in [13]. Instead, for the stochastic geometry composed by

polygons generated with random lines, we can not have an analytical expres-

sion for this probability. We can only have a maximum.

We report the probability values in the following table, according to the

expressions for P0, P1 and P , the probability of having, respectively, a geom-

etry composed by only material 0, material 1 and one of the two materials,

meaning, for the layered geometry:

P0 = p0e
−(1−p0)L/x̄ (3.14)

P1 = p1e
−(1−p1)L/x̄ (3.15)

P = P0 + P1 = p0e
−(1−p0)L/x̄ + (1− p0)e−p0L/x̄ (3.16)

and for the stochastic bidimensional geometry:

P0 < p0e
−2Rλ(1−p0)p (3.17)

P1 < p1e
−2Rλp0p (3.18)

P = P0 + P1 < p0e
−4
√

2Rλ(1−p0)/π + (1− p0)e−4
√

2Rλp0/π (3.19)
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where p is the probability of random lines to intercept the square, given

by p = 4/(π
√

2) and λ is the Poisson density parameter.

Table 3.4: Probability of one material geometry realization

CASE p0 p1 x̄ λ P0 P1 P

1 0.9 0.1 0.099 15.867 1D 3.69E-5 3.30E-41 3.69E-5
2D 1.52E-9 1.09E-80 1.52E-9

2 0.9 0.1 0.99 1.5867 1D 3.28E-1 1.13E-5 3.28E-1
2D 1.19E-1 1.27E-9 1.19E-1

3 0.5 0.5 2.525 0.6621 1D 6.90E-2 6.90E-2 1.38E-1
2D 9.53E-3 9.53E-3 1.91E-2

As we can see, the probability of having a realization filled with only one

material is higher for the case of layered geometry (Benchmark 1D) than the

case of a bidimensional stochastic geometry (Benchmark 2D).

In particular, this difference in the P value is more significant for Case 1,

in which the Poisson density value is high. For Case 2, the value of P for

the 2D-stochastic geometry is quite close to that of the layered geometry,

whereas for Case 3, there is a bigger discrepancy in the calculated value for

1D-P and the estimated one for 2D-P , mainly due to the values of p0 and

p1.

3.2.1 The 9 cases description

We are now analyzing in more details the nine Benchmark cases: the kind of

properties materials 0 and 1, the mean chord lengths, the value of scattering

cross sections.
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Case 1

Case 1, as we have already said, is the more stochastic case: the Poisson

density is high (15.867) compared to that of the other cases (1.5867; 0.6621).

Stochastic pieces of materials 0 and 1 are little and well mixed in the domain.

• Case a

Considering the values of c0 and c1, we can get information about the

properties of materials 0 and 1:

c0 = 0⇒ σ0
s = 0, σ0

a = σ0
tot (3.20)

c1 = 1⇒ σ1
s = σ1

tot, σ
1
a = 0 (3.21)

Material 0 is a pure absorber, with little absorbing cross section of

0.101 cm−1, whereas material 1 has only scattering properties, with a

bigger cross section (9.09 cm−1).

So, the stochastic geometry is composed by small pieces of the opaque

material (mean chord length of 0.11 cm) and by bigger pieces of the

transparent material (mean chord length of 9.9 cm).

From Eqs (3.12) and (3.13) we can derive the values of the global macro-

scopic scattering and absorbing cross sections, that are, respectively:

〈σs〉 = σ1
s p1 = 0.909 cm−1 (3.22)

〈σa〉 = σ0
a p0 = 0.091 cm−1 (3.23)

Of course, the sum of the two cross sections is unity. Thus, we have a

mainly scattering mixing.

• Case b
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Doing the same calculation of the previous case, we obtain:

c0 = 1⇒ σ0
s = σ0

tot, σ
0
a = 0 (3.24)

c1 = 1⇒ σ1
s = 0, σ1

a = σ1
tot (3.25)

This is the opposite case of Case a, because this time material 0 is

the pure scattering one and material 1 is the absorbent. Since the

total cross sections remain the same, we have a mixing characterized

by relative small transparent pieces, with little cross section, and bigger

pieces of opaque material. The total cross sections are:

〈σs〉 = σ0
s p0 =0.091 cm−1 (3.26)

〈σa〉 = σ1
a p1 =0.909 cm−1 (3.27)

and the mixing is mainly absorbent.

• Case c

This case has the ci parameters different from unity, so it is not com-

posed by pure absorbent or pure scattering materials, but they have

intermediate characteristics.

c0 = 0.9⇒ σ0
s = 0.9σ0

tot, σ
0
a = σ0

tot − σ0
s (3.28)

c1 = 0.9⇒ σ1
s = 0.9σ1

tot, σ
1
a = σ1

tot − σ1
s (3.29)

This leads to the following values: σ0
s = 0.0909 cm−1, σ0

a = 0.0101 cm−1; σ1
s =

8.181 cm−1, σ1
a = 0.909 cm−1.
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The total scattering and absorbing cross sections of the mixture are:

〈σs〉 = σ0
s p0 + σ1

s p1 =0.8999 cm−1 (3.30)

〈σa〉 = σ0
a p0 + σ1

a p1 =0.1001 cm−1 (3.31)

Case 2

Case 2 is characterized by a value of λ that is ten times smaller compared to

the that of the first case. The density of random lines crossing the domain is

not so high and the dimension of the pieces is bigger than in Case 1, as we

can see in the examples above.

Since the probability of finding materials 0 and 1 are the same as Case 1

(p0 = 0.9, p1 = 0.1) and the λ is ten times smaller, the corresponding mean

chord lengths are ten time bigger than Λ0 and Λ1 for Case 1.

The total cross sections σ0
tot and σ1

tot are the same of the first case, thus also

the values of scattering and absorbing cross sections of all the subcases are

equal to those previously calculated.

Case 3

Case 3 has a value of λ that is not so far from that of Case 2, but the big

difference between the two cases lies in the probabilities p0 and p1.

In this case, the probability of finding material 0 is the same of finding

material 1: p0 = p1 = 0.5. Joint to the quite big values of the mean chord

lengths (5.05 cm, the half of the domain size), this explains why a lot of

geometry realizations are filled with only one material.

The total cross sections of the two materials are smaller than those of Case 1

and Case 2: this leads to different values for scattering and absorbing cross

sections of each subcase.
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• Case a

Like in the other cases, material 0 is a pure absorber, with absorbing

cross section equal to the total cross section, whereas material 1 has

only scattering properties, with the cross section given by the total one.

c0 = 0⇒ σ0
s = 0, σ0

a = σ0
tot (3.32)

c1 = 1⇒ σ1
s = σ1

tot, σ
1
a = 0 (3.33)

The total scattering and absorbing cross sections of the mixture are:

〈σs〉 = σ1
s p1 =0.99 cm−1 (3.34)

〈σa〉 = σ0
a p0 =0.0099 cm−1 (3.35)

• Case b

This time, material 0 is the scattering one and material 1 is the ab-

sorbent one.

c0 = 1⇒ σ0
s = σ0

tot, σ
0
a = 0 (3.36)

c1 = 1⇒ σ1
s = 0, σ1

a = σ1
tot (3.37)

and the global cross sections are given by:

〈σs〉 = σ0
s p0 =0.0099 cm−1 (3.38)

〈σa〉 = σ1
a p1 =0.99 cm−1 (3.39)

• Case c

The values of scattering and absorbing cross sections of the two mate-



3.2. Benchmark problem description 49

rials are calculated as follow:

c0 = 0.9⇒ σ0
s = 0.9σ0

tot, σ
0
a = σ0

tot − σ0
s (3.40)

c1 = 0.9⇒ σ1
s = 0.9σ1

tot, σ
1
a = σ1

tot − σ1
s (3.41)

and they are: σ0
s = 0.01782 cm−1, σ0

a = 0.00198 cm−1; σ1
s = 1.782 cm−1, σ1

a =

0.198 cm−1.

The global cross sections are:

〈σs〉 = σ0
s p0 + σ1

s p1 =0.89991 cm−1 (3.42)

〈σa〉 = σ0
a p0 + σ1

a p1 =0.1001 cm−1 (3.43)

that are the same of cases 1c and 2c.

The resuming table of the different nine cases parameters is reported in

the following page.
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Table 3.5: Parameters of the nine cases analysed

CASE 1
λ Λ0 Λ1 σ0

t σ1
t σ0

s σ0
a σ1

s σ1
a

15.867 0.99 0.11 0.101 9.09 a 0 0.101 9.09 0
b 0.101 0 0 9.09
c 0.0909 0.0101 8.181 0.909

CASE 2
λ Λ0 Λ1 σ0

t σ1
t σ0

s σ0
a σ1

s σ1
a

1.5867 9.9 1.1 0.101 9.09 a 0 0.101 9.09 0
b 0.101 0 0 9.09
c 0.0909 0.0101 8.181 0.909

CASE 3
λ Λ0 Λ1 σ0

t σ1
t σ0

s σ0
a σ1

s σ1
a

0.6621 5.05 5.05 0.0198 1.98 a 0 0.0198 1.98 0
b 0.0198 0 0 1.98
c 0.01782 0.00198 1.782 0.198

3.3 Benchmark calculations

We will now describe the procedure to compute benchmark calculations.

We used a program that allows to generate the 2D Markovian geometry,

extend the geometry in three dimensions and run the Monte Carlo code

TRIPOLI-4 R© to find the searched values.

We used a program called “T4StochGeo”, implemented by Thibaut Lepage in

a previous stage, that generates a certain number of stochastic geometries and

creates some output files, written in the characteristic language of TRIPOLI-

4 R©.

It needs some input parameters:

• size s
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• probability p

• density λ

• geometries : number of geometries the program builds for each triplet

(size, density, proba)

• batches : number of simulations TRIPOLI-4 R© performed for each ge-

ometry

• neutrons : number of neutrons used per simulation

• red : name of the composition corresponding to material 0

• blue: name of the composition corresponding to material 1

• homogeneous : it allows to construct a homogeneous geometry for com-

parison (optional keyword)

• origin: used for Suite II, it realizes stochastic geometries in the domain

with internal uniform source of neutrons (optional keyword)

The program requires also two other files: a composition file, that contains

the list of materials simulated with the corresponding compositions, and a

path file, in which are written four paths: one for the geometry program, one

for the TRIPOLI-4 R© executable, one for its dictionary file and the last for

the composition file.

It produces some output files, among which there are the datafile, directly

used by TRIPOLI-4 R© to run the Monte Carlo simulation, and the results

file, containing results and relative errors for each simulation.

For Case1, we also performed parallel calculations: for each simulation, it

takes 6 hours in average and we had to do a great number of simulations to
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get statistical significant results.

We will now briefly describe the Monte Carlo code TRIPOLI-4 R© and the

parallel calculations.

3.3.1 TRIPOLI-4 R© description

TRIPOLI R© is a Monte Carlo code, developed by the LTSD laboratory of

CEA Saclay.

It is a three-dimensional, continuous energy computer code for particle trans-

port that can treat neutrons, photons, electrons and positrons.

In this case, we performed neutron calculations for Benchmark problem (and

criticality calculations for the keff problem- Suite III).

The scores we looked for are:

• for Suite I: the values of the outgoing currents from the domain at

x = 0 and x = L, namely reflection and transmission

Fig. 3.7: Setup for Suite I

• for Suite II: the value of the outgoing current form the domain at x = L,

namely the leakage
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Fig. 3.8: Setup for Suite II

3.3.2 Parallel calculations

We performed parallel calculations on a cluster available at CEA.

We modified the C++ main program in order to only have a great number of

stochastic geometries generated. Then, we built a series of datafile, each one

recalling the geometry and the composition of one of the previous geometry

simulation. Finally, we run TRIPOLI-4 R© for all the files.

For each job, we used 100 processors and we launched about 400 simulations.

Each processor undertook only one simulation file at a time and, only after

finished the calculation, took the next.

The mean simulation time was of 6 hours: in 24 hours, about 350 complete

simulations were done. We performed 3000 calculations for each of the three

subcases.



Chapter 4

Suite I Benchmark results

We are now reporting the results and the corresponding histograms for each

case, with remarks and comparison to the other models and benchmark re-

sults previous described.

We show here the Benchmark calculated results for the reflection, the trans-

mission and the absorption (A = 1− T − R), together with the Benchmark

results for the one-dimensional planar geometry (Benchmark 1D) and the re-

sults for the Markovian model (Markovian) and for a Monte Carlo algorithm

(Algorithm B).

For each case, we built also a table containing the differences between the

Benchmark results calculated in the 2D stochastic geometry and the other

available data.

54
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4.1 Case 1

4.1.1 Case 1a

In general, for Case 1a there is not a big discrepancy between the values

calculated for our Benchmark and the results given by Benchmark 1D calcu-

lations, Markovian model and Monte Carlo algorithm B .

Table 4.1: Case 1a results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.40528 0.43634 0.37596 0.40086
T 0.018359 0.01486 0.02589 0.02202
A 0.57604 0.5488 0.59815 0.57112

However, as we can see in the table reporting the differences, the results

of Algorithm B are the more similar to those calculated; in particular, they fit

very well for the transmission value, for which the delta is one order smaller

than the other results.

Table 4.2: Case 1a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.03106 0.02932 0.00442
T 0.00499 0.00753 0.00367
A 0.02756 0.0218 0.00076

We report also the histograms for the values of transmission and reflec-

tion and the corresponding errors.
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Fig. 4.1: Histograms of reflection and transmission for the Case 1a

As we can see, the distributions of reflection and transmission are very

peaked, even with only about 3000 simulations. This is the more stochastic

case, in which pieces are well mixed and the mean chord lengths are small

compared to the domain size: particles that enters the box will undergo

different reactions during their travel and, in the mean, the final result is

nearly the same.
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Thus, it is not necessary to perform a lot of simulations: the error is already

little and acceptable with this number of geometries.

Fig. 4.2: Histograms of reflection and transmission relative errors for the Case 1a
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4.1.2 Case 1b

Table 4.3: Case 1b results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.04558 0.08549 0.05906 0.07755
T 0.001346 0.00166 0.00153 0.00164
A 0.953074 0.91285 0.93941 0.92081

In this case, the bigger difference between Benchmark results and refer-

ence values lies in the reflection. The value calculated for the reflection is

very different from the value given by the Benchmark 1D.

Table 4.4: Case 1b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.03991 0.01348 0.03197
T 0.00031 0.00018 0.0003
A 0.04022 0.01366 0.03226

It is mainly due to the geometry configuration: in the case of planar 1D

geometry, the entering particle encounters for the 90% of times a layer of

scattering material, uniformly present along the y axis. At the contrary, in

our geometry there is a distribution of the two materials at the inlet face: the

particle can undergo a scattering reaction but also an absorbing one. Since

the mean chord lengths are not only in the x direction, in our Benchmark

calculations the particle can see the absorber material (in this case the 1)

also at a small depth from the entrance, whereas in 1D Benchmark case it

will see the first material encountered for all its x chord length.
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Fig. 4.3: Histograms of reflection and transmission for the Case 1b

The reflection and transmission distributions are quite peaked, and it

seems that only about 3500 geometries are enough to have good statistical

results.

We can notice that, whereas the error distribution for the reflection is very

defined, the distribution for the transmission is quite wide, because of the

small mean value.
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Fig. 4.4: Histograms of reflection and transmission relative errors for the Case 1b
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4.1.3 Case 1c

This is the subcase of Case 1 in which the results of the 2D Benchmark are

quite close also to those of the 1D Benchmark calculations. The Markovian

model does not predict very well the experimental results, while the Algo-

rithm B gives again a good general response.

Table 4.5: Case 1c results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.47074 0.47746 0.37066 0.40690
T 0.018359 0.01609 0.02373 0.02377
A 0.51116 0.50645 0.60561 0.56933

The good agreement between the two Benchmark results might be given

by the characteristics of the two materials: both material 0 and 1 have non

zero absorbing and scattering cross sections, so the added stochastic dimen-

sion for the geometry does not strongly affect the results. The two materials

are quite similar, because their scattering cross section is the 90% of the total

cross section: thus, between a one-dimension and a two-dimension stochastic

geometry there is not a great difference concerning the type of interaction a

particle can undergo in the first layers of the domain (there is only a difference

on the probability of interacting).

Table 4.6: Case 1c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.00672 0.10008 0.06384
T 0.00201 0.00563 0.00281
A 0.00471 0.09445 0.06103

The reflection and the transmission distributions, both for the mean and

for the error, are peaked and the number of geometries used for this case are
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less than those for case a and b: they are only 2000.

Fig. 4.5: Histograms of reflection and transmission for the Case 1c
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Fig. 4.6: Histograms of reflection and transmission relative errors for the Case 1c
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4.2 Case 2

4.2.1 Case 2a

Compared to Case 1, only the density parameter is different: it is ten times

smaller, so the chunks of materials 0 and 1 in the stochastic geometry are

bigger.

Table 4.7: Case 2a results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.23184 0.23723 0.17986 0.22235
T 0.09692 0.09843 0.12279 0.1006
A 0.67124 0.66434 0.69735 0.67705

Again, we can notice that Algorithm B is the one which goes closer to

the 2D Benchmark results, even if for the transmission value Benchmark 1D

gives a similar value.

It is remarkable that this case is less stochastic than Case 1: the results

calculated for the one-dimensional geometry (Benchmark 1D) are in general

not so far from ours, so a less accurate approximation of stochastic geometry

could be used.

It is interesting to see that, whereas for the transmission value the result of

Benchmark 1D is more close to our Benchmark, at the end regarding the

absorption value, Algorithm B is the more similar.

Table 4.8: Case 2a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.00539 0.05198 0.009493
T 0.00118 0.03087 0.009048
A 0.0069 0.02112 0.00045

Even if the error distribution of the reflection is very peaked, the mean

value distribution shows a spread and a Gaussian shape non completely filled.
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It means that other simulations are needed in order to have good statistical

results.

Moreover, we can remark that two lateral peaks begin to appear in the his-

tograms: they correspond to the case in which the geometry is constituted

by only one material. Their value on the x axis concurs exactly with the

solution of the transport problem obtained considering a one-material homo-

geneous geometry.

The probability of having a one material realization of the geometry is not

so high and, according to the values of p0 and p1, the probability for material

1 is smaller than the probability for material 0, as shown in Table 3.4.
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Fig. 4.7: Histograms of reflection and transmission for the Case 2a
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Fig. 4.8: Histograms of reflection and transmission relative errors for the Case 2a
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4.2.2 Case 2b

Results of Case 2b are quite different from those calculated in Benchmark

1D, as for the ones given by Algorithm B. Wherease, this time the Markovian

model is the one which goes closer to the values we found, as we can see in

Table 4.9.

Compared to Benchmark 1D, in Benchmark 2D both the reflection and the

Table 4.9: Case 2b results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.19807 0.28763 0.21928 0.28542
T 0.1436 0.19553 0.17869 0.19528
A 0.65833 0.51684 0.60203 0.5193

transmission decrease: in this case, even if the scattering material 0 is present

in the 90% of the volume, the contribution of material 1 is more important:

it has a greater total cross section and in the bidimensional stochastic ge-

ometry it is present in a more randomly way in all the (x, y) plane, thus the

interaction can be more frequent.

Table 4.10: Case 2b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.08956 0.02121 0.08735
T 0.05193 0.03509 0.05168
A 0.14149 0.0563 0.13903

The reflection and the transmission distribution have a similar shape, the

transmission having a more pronounced tail.

The peaks corresponding to the realization with only one material are well

visible in both the histograms.
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Fig. 4.9: Histograms of reflection and transmission for the Case 2b
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Fig. 4.10: Histograms of reflection and transmission relative errors for the Case 2b
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4.2.3 Case 2c

Compared to Benchmark 1D, the value of transmission obtained is about

the same, whereas the reflections decreases. Once again, the Algorithm B is

the one that produces the more similar results in relation to our Benchmark

calculations.

Table 4.11: Case 2c results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.3669 0.43319 0.29092 0.40092
T 0.1814 0.1869 0.1944 0.19556
A 0.4517 0.37991 0.51468 0.40352

Table 4.12: Case 2c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.06629 0.07596 0.03402
T 0.00552 0.01302 0.01416
A 0.07179 0.06294 0.04818

The Markovian model shows in general a reducing accordance in opposi-

tion to Case 1, where its results are quite close to those of Benchmark 2D.

Looking at the distributions, we can notice that the reflection distribution,

both the mean and the error, is very peaked. The transmission shows in-

stead a spread distribution, always with the peak of the one-material so-

lution, meaning that more simulations are needed. In particular, the error

distribution has a wide bell, even if the mean value is not so small compared

to transmission in previous cases.
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Fig. 4.11: Histograms of reflection and transmission for the Case 2c
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Fig. 4.12: Histograms of reflection and transmission relative errors for the Case 2c
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4.3 Case 3

4.3.1 Case 3a

Because of its little Poisson density λ, Case 3 is the less heterogeneous one.

The probability of finding materials 0 and 1 are the same (p0 = p1 = 0.5),

meaning that the mean chord lengths are almost equal to the half of the

domain size. Thus, the chunks composing the geometry are very big. Also

the probability of having realizations filled only with one material is higher

than that for Case 1, but it remains however smaller than that of Case 2, in

which the pieces have similar size, but the probability of finding material 0

is much more bigger.

According to our considerations, we can see that the results given by Bench-

mark 1D are very close to those obtained in calculations performed in binary

stochastic geometries. In particular, for Case 3a, the values we found are in

great agreement to those of Benchmark 1D.

Table 4.13: Case 3a results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.6911 0.67949 0.60694 0.65416
T 0.1635 0.16564 0.23908 0.19804
A 0.1454 0.15487 0.15398 0.1478

Table 4.14: Case 3a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.0116 0.07255 0.02533
T 0.00214 0.07344 0.0324
A 0.00946 0.00089 0.00707

The first observation regarding the histograms is that, even if the number

of realizations is bigger, the distributions are more wide and spread, com-

pared to Case 1 and also Case 2.
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Secondly, the lateral peaks of the distributions corresponding to the one ma-

terial realizations are well pronounced.

Although the reflection and the transmission distributions are spread, the

error ones are very concentrated, meaning that the value of the variance is

acceptable.

Fig. 4.13: Histograms of reflection and transmission for the Case 3a
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Fig. 4.14: Histograms of reflection and transmission relative errors for the Case 3a
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4.3.2 Case 3b

In this case, compared to results of Benchmark 1D, the reflection we calcu-

lated is increased, whereas the transmission is reduced.

However, we can see that in general the values obtained in Benchmark 1D

are quite similar to ours, just as those from the Markovian model and the

Algorithm B are.

Especially the Markovian model seems to predict the exact values for trans-

mission and reflection of this case.

Table 4.15: Case 3b results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.020991 0.03651 0.0243 0.03598
T 0.0516 0.07678 0.07546 0.076449
A 0.92741 0.88671 0.9002 0.88757

Table 4.16: Case 3b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.01552 0.003309 0.01499
T 0.02518 0.02386 0.02485
A 0.0407 0.02717 0.03984

Unfortunately, the mean values of reflection and transmission are too

little to have good distribution for the error histograms.

At the contrary, the mean value distributions have a well defined shape, that

is also about the same for the two quantities.
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Fig. 4.15: Histograms of reflection and transmission for the Case 3b



4.3. Case 3 79

Fig. 4.16: Histograms of reflection and transmission relative errors for the Case 3b
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4.3.3 Case 3c

As for Case 2c, either the transmission and the reflection decrease compared

to those of Benchmark 1D.

We can say that both the Algorithm B and the Benchmark 1D results are

quite similar to the ones we obtained, whereas the Markovian model shows

a reflection value that is far from the others.

Table 4.17: Case 3c results

Benchmark 2D Benchmark 1D Markovian Algorithm B
R 0.4116 0.44516 0.32721 0.39897
T 0.0890 0.10457 0.11946 0.11799
A 0.4994 0.45027 0.55333 0.48304

Table 4.18: Case 3c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm B
R 0.03356 0.08482 0.01306
T 0.01557 0.03013 0.02866
A 0.04913 0.0547 0.0156

Regarding the histograms, we can see that this number of geometries is

sufficient to give a satisfying statistical distribution, for both the reflection

and the transmission.

Concerning the reflection histogram, its shape is incomplete: it seems like

the bell is cut in correspondace to the solution value for the realization with

only one material. We think it is en effect due to the size of the domain

considered. In fact, doing simulation of this case with a double size s, we

obtain a normal shape, with the bell complete, as we can see in the added

histogram.
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Fig. 4.17: Histograms of reflection and transmission for the Case 3c
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Fig. 4.18: Histograms of reflection and transmission relative errors for the Case 3c



Chapter 5

Suite II benchmark results

We report here the results and the corresponding histograms for the three

cases of Suite II, with remarks and comparison to the other models and

benchmark results previously described.

We show the Benchmark calculated results for the outgoing neutron flux

from the right side of the box, the so-called leakage value, together with

the Benchmark results for the one-dimensional planar geometry (Benchmark

1D) and the results obtained by the two Monte Carlo algorithms (Algorithm

A and Algorithm B).

For each case, we built also a table containing the differences between the

Benchmark results calculated in the 2D stochastic geometry and the other

available data.
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5.1 Case 1

5.1.1 Case 1a

As we can see from the following tables, the result obtained from our Bench-

mark calculations are quite different from that of the Benchmark 1D, whereas

it is more similar to the estimated one using Monte Carlo algorithms A and

B.

The leakage is bigger than the one calculated in the planar geometry, once

again because neutrons have more probability of finding a little piece of

scattering material during their travel to the border of the domain in the

bidimensional Markovian geometry.

Table 5.1: Case 1a results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.16298 0.15268 0.16575 0.16571 0.16101

In this case, between the two algorithms, the algorithm B is the one that

gives a result closer to our.

Table 5.2: Case 1a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.01027 0.00277 0.00273 0.001966

Here we can see the histograms for the mean leakage value and the error.
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Fig. 5.1: Histograms of leakage for the Case 1a



5.1. Case 1 86

5.1.2 Case 1b

For Case 1b, the leakage of Benchmark 2D is close to the one given by

previous benchmark calculations, but once again it has a bigger value. In this

case, the scattering material (material 0) is the most present, but the total

absorbing cross section is bigger than the scattering one, so the geometry

characterization is not so relevant for the leakage value.

Table 5.3: Case 1b results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.0776 0.07316 0.06934 0.06934 0.07225

In fact, the Benchmark 1D result is really close to the one we found, as the

transmission value in Case 1b for Suite I.

Table 5.4: Case 1b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.00444 0.00826 0.00826 0.00535
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Fig. 5.2: Histograms of leakage for the Case 1b
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5.1.3 Case 1c

In this case, the calculated leakage is smaller than the other results. Once

again, compared to the Benchmark 1D, we can see the influence of the ge-

ometry composition and the distribution of the materials.

Table 5.5: Case 1c results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.16364 0.17500 0.17284 0.17286 0.17439

Between the three, the leakage estimated with the Markovian model is the

one which goes closer to the result we found, even if also the value given by

the Algorithm A is really similar.

Table 5.6: Case 1c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.01136 0.00920 0.00922 0.01075
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Fig. 5.3: Histograms of leakage for the Case 1c
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5.2 Case 2

5.2.1 Case 2a

Case 2 is the case with the same value of mean chord lengths and material

cross sections of Case 1, but it shows a different value of λ, meaning that the

pieces of the two materials are bigger. It is a less heterogeneous case, thus

the difference between the labeled geometry is not so relevant. In fact, the

calculated leakage is quite similar to the one given by Benchmark 1D.

Table 5.7: Case 2a results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.19068 0.19077 0.9537 0.19535 0.19362

Also Algorithms A and B and the Markovian model provide leakage values

close to our, with difference smaller of an order of magnitude than Case 1a.

The histogram of the mean value is quite peaked, even if the number of ge-

Table 5.8: Case 2a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.00009 0.00469 0.00467 0.00294

ometries simulated is not so big.
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Fig. 5.4: Histograms of leakage for the Case 2a

5.2.2 Case 2b

Also in this case, the leakage value we found is smaller than the one of

Benchmark 1D, Algorithm A, Algorithm B and Markovian model. Once

again, as in Case 1b, Algorithm A and the Markovian model give about the

same result, which goes closer to our. For Suite II, Algorithm A is even

better than Algorithm B, that fits very well results of Suite I.
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Table 5.9: Case 2b results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.22347 0.29265 0.26783 0.26787 0.29226

Table 5.10: Case 2b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.06918 0.04436 0.00444 0.06879

The leakage distribution is very wide and sparse, maybe because the num-

ber of geometries simulated is not sufficient to give good statistical results

(1000 geometries). However, the mean value is not really small, so the prob-

lem lies in the nature of this case, the one with material 0 as the scattering

one and material 1 as the total absorbing.

A similar remark can be done for Case 2b of Suite I, for which the distribu-

tions of reflection and transmission are not too peaked as for Case 2a.
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Fig. 5.5: Histograms of leakage for the Case 2b
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5.2.3 Case 2c

For this case, the calculated leakage is smaller than the one of Benchmark 1D

and Algorithm B, whereas it is bigger than the one provided by the Marko-

vian model and Algorithm A, which shows also the most little difference in

values.

Table 5.11: Case 2c results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.28716 0.31315 0.28361 0.28362 0.31199

Once again, Algorithm A goes closer to the leakage value we found, and it

does of one order of magnitude compared to the other methods.

Table 5.12: Case 2c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.02599 0.00355 0.00354 0.02483

The leakage distribution is quite spread, but it is symmetric. We can

notice the appearance of the side peaks associated to the one-material real-

ization of the geometry; the probability of having a geometry constituted by

only one of the two materials is higher for this case than for the others, as

we can see in Table 3.4.
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Fig. 5.6: Histograms of leakage for the Case 2c
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5.3 Case 3

5.3.1 Case 3a

Case 3 is the less heterogeneous one, because it has a very small Poisson

density (0.6621) and the mean chord lengths are the half of the domain size.

The pieces constituting the geometry are huge and in the most of the cases

the realization is characterized by only one material in a big piece and a

small chunk of the other one.

Table 5.13: Case 3a results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.4100175 0.41136 0.40941 0.40933 0.4155

As we can see from this table, the results are really close one to the other,

but once again the Markovian column reports the most similar leakage value

to the one we performed.

Table 5.14: Case 3a difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.0013425 0.0006075 0.0006875 0.0054825

The leakage distribution is quite peaked, even if 4500 simulations are not

sufficient to give a complete shape to the distribution. The peak of the one-

material solution is visible.
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Fig. 5.7: Histograms of leakage for the Case 3a
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5.3.2 Case 3b

In this case, the leakage from Benchmark 2D is smaller than the other ones,

but the value is very similar. Once again, Benchmark 1D and Algorithm B

show the same difference compared to Benchmark 2D result, whereas Algo-

rithm A and the Markovian model are the closest to our result.

Table 5.15: Case 3b results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.09648 0.12966 0.12577 0.1258 0.12944

Table 5.16: Case 3b difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.03318 0.029288 0.029318 0.032958

The distribution of the leakage shows a right decreasing tale and the

known one-material peak.
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Fig. 5.8: Histograms of leakage for the Case 3b
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5.3.3 Case 3c

Concerning the numerical results, the remarks for this case are the same than

those for the previous case: the leakage value we found is smaller than the

other reported in the table. Algorithm A and the Markovian model provide

the same numerical result, which is also the one that goes closer to our value.

Algorithm B and Benchmark 1D shows the same behavior of Case 3b.

Table 5.17: Case 3c results

Benchmark 2D Benchmark 1D Markovian Algorithm A Algorithm B
L 0.2059715 0.22563 0.21176 0.21176 0.2257

Table 5.18: Case 3c difference table

|Benchmark2D − ...| Benchmark 1D Markovian Algorithm A Algorithm B
L 0.0196585 0.0057885 0.0057885 0.0197285

The histogram is really spread, meaning the need of additional simulations

(6300 until now). The two lateral picks are visible.
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Fig. 5.9: Histograms of leakage for the Case 3c



Chapter 6

Keff suite problem description

After performing Benchmark calculations, we want to apply the stochastic

geometry generation method and the neutron simulation to a domain that

represents a melted nuclear reactor core.

The idea is that of studying the core in an accidental fusion event. In this

situation, in fact, we do not know the distributions of the materials present

in the domain and we have information only about their composition and

the relative volume proportion, thus the use of the stochastic geometry sim-

ulation is justified.

The finale goal is to analyse the behavior of the effective k parameter in a 2D

Markovian geometry representing the core (or a part of it) of a Pressurized

Water Reactor in an accidental fusion event.

We study the keff distribution in three different cases, characterized by dif-

ferent levels of material mixing and so by three different values of the Poisson

density parameter λ.
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6.1 Geometry construction and parameter char-

acterization

We consider a pin cell of a PWR, constituted by three materials: fuel, clad

and buffer, which compositions are reported in Table 6.2.

A schematic representation of the real pin cell and the values of the charac-

teristic parameters are given here.

In the picture, fuel is material C, clad is material B and buffer is material A.

Fig. 6.1: Real pin cell representation

parameter value

r 0.407 cm

R 0.4707 c

L 1.27 cm

h 10.01 cm

VA 9.1778 cm3

VB 1.7582 cm3

VC 5.2092 cm3

Table 6.1: Real pin cell characteristic
values

We need to reduce our geometry to a bi-material one: material 0 is the

fuel and material 1 is the so-called bufferclad, that is a weighted mixture of

the buffer and the clad. Therefore, the atomic densities and the volumes of

the new material can be calculated according to:

NAB = NA ·
VA
Vtot

+NB ·
VB
Vtot

(6.1)

Vtot = VA + VB (6.2)
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where NA and NB are the atomic densities of material A and material B,

respectively.

Thus, from these starting values

Table 6.2: Material composition for the real pin cell

Material Element N [at/10−24cm3 ]

BUFFER H1 0.04577
O16 0.022885
B10 4.5754E-6
B11 1.8302E-5

ZR91 0.0010492

CLAD ZR91 0.038629

FUEL U235 0.001136
U238 0.021762
O16 0.04581

we obtain those ones:

Table 6.3: Material composition for the approximate pin cell

Material Element N [at/10−24cm3 ]

BUFFER-CLAD H1 0.03841
O16 0.01921
B10 3.8398E-6
B11 1.536E-5

ZR91 0.0070911

Its graphic representation and the characteristic values are given below.



6.1. Geometry construction and parameter characterization 105

Fig. 6.2: Two-material pin cell represen-
tation

parameter value

r 0.407 cm

L 1.27 cm

h 10.01 cm

V0 5.20922 cm3

S0 25.59814 cm2

V1 10.9359 cm3

S1 50.8508 cm2

Vtot 16.1451 cm3

Table 6.4: Approximate pin cell charac-
teristic values

Defined our geometry and its composition, we have to find the associated

statistical parameters, meaning the values of the volume fraction p0 and of

the Poisson density λ.

From the two volumes V0 and V1 we can derive the volume fraction for ma-

terial 0:

p0 =
V0

V0 + V1

(6.3)

and consequently the value of p1. They are, respectively, 0.32 and 0.68.

In order to have the other statistical parameter, λ, we have to know one of the

two mean chord length. From the Cauchy’s formula, we write an expression

for the mean chord length in material 0, the fuel, that has a cylindrical shape.

Λ0 =
4V0

S0

= 2 · r (6.4)

So, the mean chord length in material 0 is equal to the diameter of the

cylinder.
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The corresponding value of λ can be find using the known expression 3.10 :

λ =
π

2Λ0(1− p0)
,

from which λ = 2.84.

6.2 Three cases definition

Like for the Benchmark calculations, we study three different cases, charac-

terized by three different values of λ.

The first case is the one previously defined, with λ = 2.84 and p0 = 0.32.

The other two cases are created in an arbitrary way, choosing the mean chord

length for material 0 once as the double and once as the half of the Λ0 cal-

culated before.

From the value of Λ0, meaning the value of the fuel cylinder radius, we can

derive the one of the Poisson density, simply considering p0 as a constant

parameter.

Thus, Case 2 is characterized by the mean chord length in material 0, Λ′0,

that is the double of Λ0 and a Poisson density, λ′, that is the half of the first

case one.

For Case 3, it is a vice versa: the mean chord length in material 0, Λ′′0, is the

half of Λ0, and the density λ′′ is the double of the density of the first case.

The values of the characteristic parameters are reported in the following

table.

It is interesting to note the different values of L, which is the side of the

pin cell in the ”deterministic” configuration. For Case 2, maintaining con-

stant p0 and p1, with a density λ′ = λ/2, the side is doubled, whereas in Case
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3, with λ′′ = 2λ, the size L is the half of that of the first case.

Table 6.5: Case 2 and Case 3 parameters

Case Λ0 [cm] r [cm] V0[cm3] V1[cm3] Vtot[cm
3] λ [cm−1] L [cm]

I 0.814 0.407 5.2092 10.936 16.145 2.84 1.27
II 1.628 0.814 20.837 44.279 65.116 1.419 2.56
III 0.407 0.2035 1.3023 2.7674 4.0697 5.676 0.638

This conclusion can be achieved also simply considering the relationship be-

tween the Poisson density and the size of the square domain in which lines

are randomly thrown:

λ =
E[N(L)]

L
(6.5)

where E[N(L)] is the mean number of lines that cross the domain of size L.

Being E[N(L)] constant (to make comparison between cases reasonable),

for each value of λ we have a different value of L:

λ′ = λ/2 →L’ = 2 L

λ′′ = 2λ →L” = L/2

L is an important parameter that we have to know to perform critical-

ity calculations in the deterministic configuration, to make comparisons also

between the deterministic and the stochastic configuration for each case.

Thus, for a domain size s, we can see the three corresponding both deter-

ministic and stochastic configurations.
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Case 1:

• deterministic configuration:

L = 1.27 cm

• stochastic configuration:

λ = 2.84, p = 0.32
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Case 2:

• deterministic configuration:

L = 2.560 cm

• stochastic configuration:

λ = 1.419, p = 0.32
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Case 3:

• deterministic configuration:

L = 0.638 cm

• stochastic configuration:

λ = 5.676, p = 0.32



6.3. Criticality calculations 111

6.3 Criticality calculations

The steps are the same as for Suite I and Suite II calculations.

We generate a great number of stochastic geometries with the set parameters

λ and Λ0 for the different cases and then we launch the Monte Carlo code

TRIPOLI-4 R© in the criticality mode to find the values of keff .

First, we perform different calculations in order to choose a value for s, the

size of the domain.

We evaluate three different sizes: 20 , 50 and 100 cm and we analyse the

convergence of the result.

At the end, we select a size s of 20 cm, because, even if the keff distribution

is more picked for the largest dimension, the huge simulation time does not

justify its choice (a single calculation requires about 60 hours). Moreover,

the mean value is nearly the same, as we can see in the following histograms.

Also between 20 and 50 cm, the selection is on the 20, since it allows to

have a good distriubtion for the mean value and a narrow distribution for

the corresponding error, with a reduced simulation time.
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Fig. 6.3: keff mean value and error distribution for s = 20 (red) and s = 50 (black)
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(a) keff distribution for s = 20 (red) and s = 100
(black)

(b) keff distribution for s = 50 (red) and s = 100 (black)
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Fig. 6.4: keff and error histograms for three domain sizes: 20 (red), 50 (green) and
100 (black) cm



Chapter 7

Suite III results

This chapter is dedicated to the results obtained for the three cases of Suite

III, for a domain size of 20 cm.

For each case, the value of the keff calculated with the standard deviation

expressed in pcm and the relative histogram are reported.
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7.1 Case 1

As we can see, the value of the keff for the stochastic configuration is statis-

tically the same of the value for the deterministic configuration.

The distribution is peaked only with 1600 simulations (1600 geometries) and

it includes the value of kdet.

CASE 1
λ 2.84
kdet 1.3038
keff 1.3066

Fig. 7.1: keff distribution for Case 1; standard deviation : 1900 pcm
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7.2 Case 2

The value of the Keff in the stochastic configuration is lower than the one of

the deterministic configuration, meaning maybe a consistent border effect.

The distribution is very spread, meaning the need of more simulations. How-

ever, it is in accordance to Case 2 and 3 of Suite I and Suite II, where the

smaller density λ implies a wider distribution of the mean value.

CASE 2
λ 1.419
kdet 1.3491
keff 1.2337

Fig. 7.2: keff distribution for Case 2; standard deviation : 6400 pcm
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7.3 Case 3

For Case 3, the value of keff is much more smaller than kdet compared to

other cases, whereas the deterministic value is not very different from the

one of the first case.

The distribution is very picked, in accordance to those of Case 1 of Suite I

and Suite II.

CASE 3
λ 5.676
kdet 1.3094
keff 1.1145

Fig. 7.3: keff distribution for Case 3; standard deviation : 3900 pcm
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7.4 Remarks and comparisons

It is interesting to compare both the deterministic and the stochastic values

of keff in the single case and the stochastic values between the three cases.

Firstly, we notice that for Case 1 the value of keff is bigger than the value

of kdet, whereas for the other cases there is an opposite behaviour, because

the value of keff in the stochastic configurations is lower than that in the

corresponding deterministic configuration.

However, the difference between the keff and the kdet in Case 1 is the smallest

compared to Case 2 and Case 3, as we can see from the following tables.

Table 7.1: Differences between keff and kdet for the three cases

Case ∆(keff − kdet)
1 0.28 %
2 11.54 %
3 19.49 %

Table 7.2: Differences between stochastic keff for the three cases

∆ k1
eff − k2

eff [pcm] k1
eff − k3

eff [pcm] k2
eff − k3

eff [pcm]
8.29 19.21 10.92

From these data, the case in which the difference between the stochastic

and the deterministic configuration is more pronounced is Case 3, the case

with the higher Poisson density (λ = 5.676).

The geometric defined configuration gives a value of keff very different from

the corresponding stochastic configuration, in which pieces of the two materi-

als are randomly disposed in the domain; this latter configuration approaches

the homogeneous one, because pieces are very small and really mixed, there-

fore the atomic mix approximation can fit quite well. So, in this case, we can

see the influence of the core composition heterogeneity on the value of keff :
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having a well defined core geometry gives a bigger keff than having materi-

als with the same volume proportion but randomly (and quite homogeneous)

distributed.

Case 3 shows this aspect very well because it is the only case in which the

stochastic configuration approaches the homogeneous one and we can make

a direct comparison between the heterogeneous and the homogeneous con-

figuration of the core.

As concern the differences between the stochastic keff values, we remark that

the values of Case 2 and Case 3 are smaller than the keff for Case 1, but,

even if the densities are once the half and once the double of λ in Case 1, the

differences do not show this proportion: keff of Case 3 is more little than

the one of Case 2.

The last comparison that we have to do is the one between the value of kdet

of Case 1 and the values of the stochastic keff for the three cases. We can see

how the effective k modifies from the deterministic configuration depending

on the way of mixing of the materials in the melted core.

Table 7.3: Differences between kdet of Case 1 and stochastic keff of the three cases

kdet ∆ k1
eff 0.28 %
k2
eff 7.01 %
k3
eff 18.93 %

Starting from the same deterministic configuration, we analyse three cases

of mixing: the case in which the mean chord length is the same as the de-

terministic configuration, the case in which pieces are bigger (there are spots

of the two materials where they concentrate) and the case characterized by

small pieces (as the two materials strongly mix and create quite an homoge-

neous configuration).

If the fuel and the buffer clad mix in a way that maintains the same charac-
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teristic chord length, the keff is bigger, but it does not change a lot. At the

contrary, if they make a well mixed configuration, the keff is really reduced.

The last case, the one that has a small Poisson density, shows a keff lower

than the deterministic value, but not so different as for Case 3.



Chapter 8

Conclusions and perspectives

The present thesis deals with stochastic geometries applied to the neutron

transport problem and it is divided into two steps.

The first one consists in performing Benchmark calculations for a well de-

fined neutron transport problem, for which several cases have been already

analysed using some different models and methods.

The second step concerns criticality calculations for a similar stochastic prob-

lem.

We performed Benchmark calculations in a real 2D Markovian geometry 1,

constituted by a plane, made up of random intersecting lines, then extended

in the vertical direction, for the 9 cases of two different suites. The goal is

to compare the last results with those obtained with calculations in a 1D

labelled planar Markovian geometry (1D Benchmark) and to analyse and/or

validate the different stochastic geometry models.

From these more realistic results, we can see if and how much the 1D Bench-

mark calculations are less accurate in finding solutions for each case. Obvi-

ously, it is a simplified model of the real stochastic geometry, but we want

1constructed following the procedure described by Switzer, explained in Chapter 2
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to see its convenience in terms of result precision and time saving compared

with a more complete but complex model, the one we realized.

The other line of investigation concerns the theoretical models that can be

used to solve the transport equation modelling stochastic geometries. We

consider the so called Markovian model and the Monte Carlo algorithms A

and B.

The Markovian model derives from a particular closure of the Levermore-

Pomraning equation that describes the transport in stochastic geometries.

It allows to have two coupled equations, each one including only one of the

two material unknowns, that can be solved with deterministic codes. The

stochastic nature of the geometry is included into the equations with the

terms pα and pβ (see Eqs. (2.33) and (2.34)).

The Monte Carlo algorithms can undergo the creation of the different several

geometry realizations, seeking directly for the mean value of the ensemble-

averaged quantity in just one simulation. The problem is that they do not

provide information about the distributions, therefore more elaborated mod-

els will be needed to have this knowledge.

So, realising 2D Markovian geometries is a very long procedure, but it is

necessary to validate simple models of stochastic geometries, like the on the

fly geometry which is used in MC algorithms A and B.

From this point, the future evolution can involve the creation of a real 3D

stochastic Markovian geometry, made up of an intersection of random planes,

and the successive simulation with the Monte Carlo code TRIPOLI-4 R©. This

kind of geometry is possible until now only in theory (the process is known

on paper, [14] and [15]), but the implementation will need some work. More-

over, even if the geometry is created, simulations will require a very long

time, considering that already in the 2D Markovian geometry for some cases
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the necessary time for MC simulations is very high.

This increases the importance of finding an alternative method to solve this

problem.

On one hand, it is possible to elaborate more complex and realistic models

of stochastic geometries, whose accuracy can be evaluated thanks to the 2D

Benchmark calculations.

On the other hand, we can think about a different kind of stochastic geom-

etry, like a structured one: if we create a geometry divided into fixed cells,

then populated by the two materials depending on the statistical probabil-

ities p0 and p1, we could achieve a faster modelisation, taking however in

account the stochastic nature of the problem. This way has not been studied

yet, but it could be a valid successive step.

In conclusion, this work is a necessary intermediate step in the resolution

of the neutron transport problem in stochastic geometries and it allows to

analyse and compare previous ways of solution and also to choose the future

direction of the studies.
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Appendix A

From the Liouville master

equation to the L-P model

A.1 The Liouville master equation

The Liouville equation describes an initial value problems in time and it was

used in particle transport context for the first time by Vanderhaegen (1986).

The description of a dynamical system with initial value in time is a Marko-

vian problem: known the solution at any time t̄, the solution is uniquely

defined fo all times t ≥ t̄. That is, to obtain the solution for t ≥ t̄, we have

only to know the solution at time t̄; the solution prior t̄ is irrelevant (it is a

“ memoryless ” process).

Then, we consider a dynamic system which can be at any time in one of two

states, namely, α and β. The process for knowing in which state the system

is supposed to be Markovian. Thus, the probability of the system being, at

time t+ dt, in state β 6= α, if it is in state α at time t, is given by:

Prob (α→ β) =
dt

λα(t)
, k = α, β, β 6= α (A.1)
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For any realization of the statistics, the dynamic system evolution is de-

scribed by the equation:

dξ(t)

dt
+ F (ξ, t) = 0 0 ≤ t ≤ ∞ (A.2)

where F (ξ, t) is a nonstochastic function, provided that the state of the sys-

tem is specified. For each state we have a Fk(ξ, t) function,with k = α, β.

The nonstochastic initial condition assigned are:

ξ(0) =

ξ̄α, if the system is in state α at t = 0,

ξ̄β, if the system is in state β at t = 0,

(A.3)

In this case, being both the nonstochastic initial value problem and the tran-

sition between states Markovian, the process is called a joint Markovian

process, for which we can use the Liouville master equation.

This equation describes, considering states as discrete, the joint probability

density Pk(ξ, t), defined such that Pkdξ is the probability that the system is

in state k at time t and in the same time that the stochastic solution lies

between ξ and ξ + dξ.

For k = α, β, the master equation is made by two coupled equations:

∂Pα
∂t
− ∂

∂ξ
(FαPα) =

Pβ
Λβ

− Pα
Λα

(A.4)

∂Pβ
∂t
− ∂

∂ξ
(FβPβ) =

Pα
Λα

− Pβ
Λβ

(A.5)

with initial conditions:

Pk(ξ, t) = pk(0) δ(ξ − ξ̄k), k = α, β (A.6)
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Here pk(t) is the probability density of having system in state k at time t

and its corresponding distribution function is Pk(ξ, t). For definition, pk(t)

satisfies:

pk(t) =

∫ ∞
−∞

dξ Pk(ξ, t) (A.7)

We can also write the coupled system in terms of simple differential equation

for the pk(t) by integrating Eqs. (A.4) and (A.5) over all ξ, obtaining:

dpα
dt

=
pβ
Λβ

− pα
Λα

(A.8)

dpβ
dt

=
pα
Λα

− pβ
Λβ

(A.9)

which relate the probabilities pk(t) to the Markov transition functions Λk.

Solving the equations (A.8) and (A.9), we have an expression for the pk(t):

pk(t) = pk(0)exp

[
−
∫ t

0

dt′′
1

Λ(t′′)

]
+

∫ t

0

dt′
1

Λl(t′)
exp

[
−
∫ t

t′
dt′′

1

Λ(t′′)

]
,

(A.10)

with k 6= l and Λ expressed by Eq. (2.17).

The ensemble average of any function of the solution, say H(ξ) is expressed

by:

〈H(ξ)〉 =

∫ ∞
−∞

dξH(ξ)[Pα(ξ, t) + Pβ(ξ, t)] (A.11)

The Liouville master equation was first used to describe particle transport

by Vanderhaegen in 1986.

He observed that the time independent, no scattering transport equation can

be thought of an initial value problem, with initial values in space instead of
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time. Thus, if the mixing statistics is Markovian, the transport problem is a

joint Markovian process.

Considering the transport equation (1.6) and replacing ξ and t by, respec-

tively, ψ and s, we have the expression for the function F in Eq. (A.2):

F (ψ, s) = σ(s)ψ − S(s) (A.12)

and the general master eqation becomes:

∂pα
∂s
− ∂

∂ψ
[(σαψ − Sα)Pα] =

Pβ
Λβ

− Pα
Λα

(A.13)

∂pβ
∂s
− ∂

∂ψ
[(σβψ − Sβ)Pβ] =

Pα
Λα

− Pβ
Λβ

(A.14)

with initial conditions given by:

ψ(0) =

ψ̄α, if the boundary point s = 0 is in material α

ψ̄β, if the boundary point s = 0 is in material β

(A.15)

where in this case they are initial condition in space, and boundary condi-

tions given by:

Pk(ψ, 0) = pk(0) δ(ψ − ψ̄k) (A.16)

for indices k = α, β. As before, Pk(ψ, s)dψ is the joint probability density

of finding material k at position s and a solution ψ lying between ψ and

ψ + dψ.

The relationship between the probability density pk(s) and the associated

probability distribution function Pk(ψ, s) is the same as for the preceding

problem, but in this case the integral of Eq. (A.7) goes from 0 to infinity,
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because there are no negative intensities of ψ:

pk(s) =

∫ ∞
0

dψPk(ψ, s) (A.17)

Defining ψk(s) as the conditional ensemble average of ψ, conditioned upon

all the positions s being in material k, the definition of Pk gives the following

relationship:

pk(s)ψk(s) =

∫ ∞
0

dψψPk(ψ, s) (A.18)

We write also the expression for the ensemble average of the intensity 〈ψ〉, the

unknown of transport equation we are interested in, which is the ensemble

average of the intensity over all the physical realizations of the statistics.

〈ψ(s)〉 = pα(s)ψα(s) + pβ(s)ψβ(s) (A.19)

The Eq. (A.19) has the same form of Eqs. (2.4) and (2.5), that express as

well other ensemble-averaged variables.

Finally, we can note that, since F (ψ, s) is linear in ψ, it is possible to write

the two coupled equations (A.13) and (A.14) in ψ simply in a system in terms

of the seeked unknown ψk.

Multiplying Eqs. (A.17) and (A.18) by ψ and integrating over 0 ≤ ψ ≤ ∞

we have :

d(pαψα)

ds
+ σαpαψα = pαSα +

pβψβ
Λβ

− pαψα
Λα

(A.20)

d(pβψβ)

ds
+ σβpβψβ = pβSβ +

pαψα
Λα

− pβψβ
Λβ

(A.21)
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Obviously, to find the corresponding initial and boundary conditions we have

to multiply Eq. (A.16) by ψ and then integrate over 0 ≤ ψ ≤ ∞:

ψα(0) = ψ̄α, ψβ(0) = ψ̄β (A.22)

Thus, we have found a complete and exact description for the ensemble-

averaged intensity 〈ψ(s)〉 for time independent, no scattering transport in

binary Markovian mixture.

A.2 The master equation for the case of non

zero scattering

As seen before, the Liouville master equation gives an exact description for

the uncollisionless initial value transport problem. This is never the real case,

in which scattering is present and important.

The master equation can not be used, in principle, when scattering is in-

cluded, because it destroyes the Markovian nature of the basic transport

problem: with scattering, the transport equation is a bounded value prob-

lem and thus it does not possess the properties of a Markov (initial value, “

memoryless ”) process.

Nevertheless, Liouville master equation is often employed, in an approximate

way, to describe time independent, scattering transport problem in Marko-

vian stochastic mixtures.

The problem with scattering included arises from the need of boundary con-

ditions: the transport equation is mixed, through the integral scattering op-

erator, for different direction. It is not possible to solve the problem for the
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intensity in a given direction independently of the solution from the other;

the single solution is dependent upon the boundary conditions for all other

directions. Further, this type of problem can not be interpreted as an initial

value problem, since the solution depends upon more than just one initial

value: the boundary conditions are applied at two spatial positions, namely

the two edges of the system.

Therefore, including scattering, the transport equation does not describe a

Markov process and, when coupled with the mixing process (Markovian or

not), the resulting joint process is not Markovian anymore.

Nevertheless, the use of the master equation can give a useful and simple,

even if approximate, model for particle transport in scattering stochastic

mixtures.

Considering the inscattering term of Eq. (1.1), namely

Inscattering =

∫ ∞
0

dE ′
∫

4π

dΩ′σs(E
′ → E,Ω′ → Ω)ψ(E ′,Ω′), (A.23)

in the same way as the internal source term S(E,Ω), we obtain two coupled

equations:

(
1

v

∂

∂t
+ Ω · ∇

)
Pα −

∂

∂ψ
{[σαψ + (Cα − σα)ψα − Sα]Pα} =

Pβ
Λβ

− Pα
Λα

(A.24)(
1

v

∂

∂t
+ Ω · ∇

)
Pβ −

∂

∂ψ
{[σβψ + (Cβ − σβ)ψβ − Sβ]Pβ} =

Pα
Λα

− Pβ
Λβ

(A.25)
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in which Ck is the collision operator for the transport equation written for

the kth material, i.e.,

Ck = σk −
∫ ∞

0

dE ′
∫

4π

dΩ′σsk(E
′ → E,Ω′ → Ω) (A.26)

and ψα(E ′,Ω′) and ψβ(E ′,Ω′) are the ensemble average of ψ over the conti-

nous states for which the system is in material α or β at any given r and t

point.

The approximation made using the master equation for the case of non zero

scattering is to replace the discete/continous random variable ψ(E ′,Ω′) in

the inscattering term with a purely discrete two state random variable.

Again, Pk(ψ, r, E, ω, t)dψ is the joint probability of finding material k at

space-time point (r, t) and having the intensity solution lying between ψ and

ψ+dψ, ψk(r, E,Ω, t) is the conditional ensemble average of ψ (averaged over

the states for which the system is in material k at time t and position r);

similarly, relationships as (A.17) and (A.18) are still valid.

In the same way as before, we can derive, by multiplying Eqs. (A.24) and

(A.25) for ψ and integrating over 0 ≤ ψ ≤ ∞, the two coupled equation in

function of the ψk(r, E,Ω, t):

1

v

∂(pαψα)

∂t
+ Ω · ∇(pαψα) + Cα(pαψα) = pαSα +

pβψβ
Λβ

− pαψα
Λα

(A.27)

1

v

∂(pβψβ)

∂t
+ Ω · ∇(pβψβ) + Cβ(pβψβ) = pβSβ +

pαψα
Λα

− pβψβ
Λβ

(A.28)

with initial and boundary conditions given by:

ψk(r, E,Ω, 0) = ψ̃k(r, E,Ω) (A.29)



and

ψk(rs, E,Ω, t) = ψ̄k(rs, E,Ω, t), n ·Ω < 0 (A.30)

where rs is a point on the surface of the system and n is a unit outward

normal vector at rs.

Equations (A.27) and (A.28) are the equations for the standard model in case

of scattering transport problem in Markovian stochastic mixtures. They rep-

resent the model from which the Levermore Pomraning model is derived.
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