
Politecnico di Milano

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Spaziale

Dipartimento di Scienze e Tecnologie Aerospaziali

Lunar Landing Navigation with Mono-camera

Relatore: Prof. Michèle LAVAGNA

Correlatore: Prof. Kazuya YOSHIDA

Tesi di laurea di:

Aureliano RIVOLTA Matr. 782471

Anno Accademico 2013�2014

To dad, grandparents

and all others

that aren't here anymore.

Acknowledgments

This work could not be completed without experimental activity held in the Space

Robotics Laboratory of the Tohoku University, a Japanese university of Sendai city.

This advanced laboratory is guided by professor Yoshida together with associate

professor Nagatani and their assistant professors Sakamoto, Kuwahara and Nagaoka.

A special thanks to Nathan J. Britton and Yudai Yuguchi for the very precious help

in the development of the experimental set up, and all the students, starting from

Daichi senpai, that worked in the lab every day easing the whole process.

The experience in Japan would not have been possible without the agreement re-

sulting from the partnership of Prof. Lavagna and Prof. Yoshida, for that I am

thankful.

This thesis would not have been readable and understandable without the very fast

review of Paolo Lunghi, that has my most sincere thanks.

Fifteen man on the dead man's chest

Yo-ho-ho, and a bottle of rum!

Drink and the devil had done for the rest

Yo-ho-ho, and a bottle of rum!

Treasure Island, Robert Louis Stevenson

The (little) free time that I had back in Japan wouldn't have been the same without

the people from the dormitory. I would like to thank Eri, Gabriele, Hosam, Jun,

Masaru, Murat, Nevena, So�a, and the others, whose name I probably never learned

due to laziness.

Aside from the dormitory membership, I would like to thank John and Mingyo for

the (multiple) gyoza-time, Wudom for the ramen, Fujii for the delicious tonkatsu,

the Italians lost-in-Sendai Matteo, Monica, Martin and Teo, the Brazilian colony of

Joao, Paula and their friends.

Friendships are to preserve forever, therefore special thanks to Ilaria, Marco, Martina,

Marty, Melissa and Stefano for being there since years and years ago.

Per aspera ad astra

Hercules Furens, Lucio Anneo Seneca

This thesis on vehicle navigation wouldn't have been written by me if it wasn't for

the precious experience in Skyward Experimental Rocketry. I would like to thank all

the members of the past, present and future for the shared hopes and contagious

passions. In particular my gratitude is for Giovanni and Michele for accepting me

and giving me something I lacked: a dream to pursue. This little part of my life

made me meet a lot of wonderful people like Ruben, Umberto, Mattia, Dario, Luca

& Luca, Luigi & Luigi, Antonio, Gabriele, Francesco, Federico, Pietro... And for

that I am grateful.

Many years later, as he faced the �ring squad,

Colonel Aureliano Buendía was to remember

that distant afternoon when his father took him

to discover ice.

One hundred years of solitude,

Gabriel García Márquez

I apologize to my family for being absent during the development of this thesis. In

particular I thank my mother Gabriella, my uncle Carlo and aunt Francesca and my

great-aunt Agostina for bearing with my absence.

Abstract

Autonomous landing of space vehicles is a challenging problem and navigation is the

most critical aspect. The application of computer vision in such problem is still a

new and not fully tested approach, although being used for minor navigation tasks

in other space missions.

The aim of this work was the development of a computer vision algorithm suitable

for descent and landing phases of a moon lander using a single camera as main

sensor. Generality, fast computation and reduced costs were the main driver for

the navigation system design. The algorithm performance have been assessed in an

experimental campaign carried out at the Space Robotics Lab in Tohoku University.

Spacecraft dynamics and environment have been simulated by a camera and an

inertial measurement unit, moved by a manipulator over a lunar surface reference.

The algorithm has been designed within the imposed limitations and the experimen-

tal activity increased the design robustness by showing a partial weakness in the

computer vision algorithm that has been corrected accordingly. The experiments

have shown that the proposed navigation algorithm is capable to reconstruct the

motion of a lander with good precision even without the use of any �lter, whose

application could even increase such performance.

Sommario

L'allunaggio di veicoli autonomi è un problema stimolante il cui aspetto più critico

è la navigazione. L'applicazione della computer vision è un approccio relativamente

nuovo e non completamente testato, sebbene sia stato utilizzato per minori attività

di navigazione in altre missioni spaziali.

Lo scopo di questo lavoro è stato lo sviluppo un algoritmo di computer vision adatto

per fasi di discesa e allunaggio di un lander usando una camera singola come sensore

principale. Generalità, computazione veloce e costi ridotti sono stati gli obiettivi

primari per il design del sistema di navigazione. Le performance dell'algoritmo sono

state determinate con una campagna sperimentale portata avanti allo Space Robotics

Lab della Tohoku University. La dinamica del veicolo e l'ambiente sono stati simulati

con una camera e un'unità inerziale mosse da un manipolatore verso una super�cie

lunare di riferimento.

L'algoritmo è stato progettato entro le limitazioni imposte e l'attività sperimen-

tale ha incrementato la robustezza del design mostrando una parziale debolezza

dell'algoritmo di computer vision che è stato concordemente corretto. Gli esper-

imenti mostrano che l'algoritmo di navigazione proposto è capace di ricostruire il

moto di un lander con buona precisione anche senza l'uso di �ltri addizionali, la cui

applicazione potrebbe anche incrementare tali performance.

Contents

1 Lunar landing optical navigation 1

1.1 Premise . 1

1.1.1 System requirement . 2

1.2 State of the art . 2

1.2.1 Landing navigation systems 2

1.2.2 Optical navigation in landings 3

1.3 Literature review . 3

1.3.1 Optical-Inertial navigation . 4

1.3.2 SLAM . 5

1.3.3 Experimental validation . 6

1.4 Thesis structure . 6

2 Landing framework and INS 7

2.1 Landing phases . 7

2.2 Reference frames . 8

2.2.1 Moon-centric reference frame 8

2.2.2 Terrain relative frame . 8

2.2.3 Lander orbit frame . 9

2.2.4 Lander principal axis frame 9

2.2.5 Sensor reference frame . 9

2.3 Inertial Navigation System . 9

2.3.1 Gyroscopes . 9

2.3.2 Accelerometers . 10

2.3.3 INS �ow for inertial reconstruction 11

2.3.4 INS for relative reconstruction - real model 12

I

3 Camera models 15

3.1 Pinhole camera model . 16

3.2 A�ne camera model . 17

3.3 Weak perspective camera model . 18

3.4 Camera calibration . 18

3.5 Way to extract information from a stream of images 19

4 Features detection and matching 21

4.1 Feature detection . 21

4.1.1 Landmarks . 21

4.1.2 Corners . 22

4.1.3 Regions . 24

4.1.3.1 Scale Invariant Feature Transform 24

4.1.3.2 Speeded Up Robust Features 26

4.2 Feature Matching . 27

4.2.1 Template matching . 27

4.2.1.1 Computation . 28

4.2.2 From template matching to feature matching 28

4.3 Feature choice . 28

5 Computer Vision algorithms 31

5.1 Models and properties of image stream 31

5.1.1 Rigid transformation and indetermination 31

5.1.2 Epipolar constraint . 32

5.1.2.1 Fundamental and Essential matrix properties 34

5.1.2.2 Computing translation and rotation from essential

matrix . 34

5.2 Computer Vision algorithms . 36

5.2.1 Fundamental matrix estimation 36

5.2.1.1 Eight point algorithm 36

5.2.1.2 RANSAC . 38

5.2.2 Non-linear estimation of rigid transformation 39

5.2.2.1 Problem formulation 39

5.2.2.2 Gradient descent method 40

5.2.2.3 Newton-Gauss method 41

5.2.2.4 Levenberg-Marquard method 42

5.2.2.5 3-D �tting . 43

5.2.2.6 Drawbacks of the non-linear methods 44

5.2.3 Comparison between numerical methods 44

6 Navigation algorithm 47

6.1 Planar model . 48

6.2 Derivation of Jacobian . 50

6.2.1 Partial derivatives . 51

6.2.2 Jacobian . 52

6.2.3 Alternate formulation . 54

6.3 Weakness assessment . 57

6.4 Navigation Algorithm: Dokuganryuu 57

6.4.1 Algorithm �ow . 58

6.4.2 Levenberg-Marquard implementation 58

7 Experimental validation 61

7.1 Experimental setup . 61

7.1.1 Camera . 62

7.1.2 IMU . 63

7.1.2.1 Synchronization . 64

7.1.3 Manipulator . 65

7.1.3.1 Integration . 66

7.1.3.2 Motion . 67

7.1.4 Simulated lunar surface . 67

7.1.5 Algorithm and acquisition . 70

7.2 Assessing the weakness of the full state reconstruction 70

7.3 Tests . 72

7.3.1 Vertical descent . 74

7.3.1.1 Vertical descent with perfect attitude 80

7.3.2 Vertical descent with roll . 81

7.3.3 Horizontal �ight . 86

7.3.3.1 Horizontal �ight with perfect attitude and altimeter 91

7.3.4 Horizontal �ight with pitch 92

7.3.5 Horizontal �ight with yaw . 98

7.3.6 Diagonal �ight . 104

7.3.7 Diagonal �ight with pitch . 110

7.4 Comparison with previous works . 115

7.5 Algorithm sensitivity . 117

7.5.1 Focal length . 117

7.5.2 Optical axis coordinates . 120

7.5.3 Initial conditions . 123

7.5.4 Data rate . 126

8 Conclusions 129

Bibliography 130

List of Figures

3.1 Projection of a point . 15

4.1 SURF features . 29

4.2 Harris corner features . 29

4.3 Matching: SURF vs Harris . 30

7.1 Experimental setup sketch . 61

7.2 Phidget IMU . 63

7.3 Mitsubishi PA10 manipulator . 65

7.4 System with adapter . 66

7.5 Integration with the PA10 . 66

7.6 Crater Field . 68

7.7 Crater Field Overexposed . 69

7.8 Lunar Plains . 69

7.9 Horizontal �ight: pure leftward translation 70

7.10 Horizontal �ight with pitch Leftward translation and rightward rotation 71

7.11 Feature matched in Horizontal �ight with pitch 71

7.12 Vertical descent - Reconstructed trajectory and terrain 74

7.13 Vertical descent - Features and error comparison 75

7.14 Vertical descent - Mapped terrain . 76

7.15 Vertical descent - Attitude (gyroscope) 76

7.16 Vertical descent - Attitude Error (gyroscope) 77

7.17 Vertical descent - Position . 78

7.18 Vertical descent - Position Error . 79

7.19 Vertical descent - Perfect attitude (CF sequence) 80

7.20 Vertical descent with roll - Reconstructed trajectory and terrain . . . 81

V

7.21 Vertical descent with roll - Features and error comparison 82

7.22 Vertical descent with roll - Mapped terrain 82

7.23 Vertical descent with roll - Position 83

7.24 Vertical descent with roll - Position Error 84

7.25 Horizontal �ight - Reconstructed trajectory and terrain 86

7.26 Horizontal �ight - Features and error comparison 87

7.27 Horizontal �ight - Mapped terrain 87

7.28 Horizontal �ight - Attitude (gyroscope) 88

7.29 Horizontal �ight - Attitude Error (gyroscope) 88

7.30 Horizontal �ight - Position . 89

7.31 Horizontal �ight - Position Error . 90

7.32 Horizontal �ight - Perfect attitude and altimeter measure (CF sequence) 91

7.33 Horizontal �ight with pitch - Reconstructed trajectory and terrain . 92

7.34 Horizontal �ight with pitch - Features and error comparison 93

7.35 Horizontal �ight with pitch - Mapped terrain 93

7.36 Horizontal �ight with pitch - Attitude (gyroscope) 94

7.37 Horizontal �ight with pitch - Attitude Error (gyroscope) 94

7.38 Horizontal �ight with pitch - Position 95

7.39 Horizontal �ight with pitch - Position Error 96

7.40 Horizontal �ight with yaw - Reconstructed trajectory and terrain . . 98

7.41 Horizontal �ight with yaw - Features and error comparison 99

7.42 Horizontal �ight with yaw - Mapped terrain 99

7.43 Horizontal �ight with yaw - Attitude (gyroscope) 100

7.44 Horizontal �ight with yaw - Attitude Error (gyroscope) 100

7.45 Horizontal �ight with yaw - Position 101

7.46 Horizontal �ight with yaw - Position Error 102

7.47 Diagonal �ight - Reconstructed trajectory and terrain 104

7.48 Diagonal �ight - Features and error comparison 105

7.49 Diagonal �ight - Mapped terrain . 105

7.50 Diagonal �ight - Attitude (gyroscope) 106

7.51 Diagonal �ight - Attitude Error (gyroscope) 106

7.52 Diagonal �ight - Position . 107

7.53 Diagonal �ight - Position Error . 108

7.54 Diagonal �ight with pitch - Reconstructed trajectory and terrain . . 110

7.55 Diagonal �ight with pitch - Features and error comparison 111

7.56 Diagonal �ight with pitch - Mapped terrain 111

7.57 Diagonal �ight with pitch - Attitude (gyroscope) 112

7.58 Diagonal �ight with pitch - Attitude Error (gyroscope) 112

7.59 Diagonal �ight with pitch - Position 113

7.60 Diagonal �ight with pitch - Position Error 114

7.61 Trajectory from Roumeliotis et al . 115

7.62 Diagonal �ight sequences . 116

7.63 Diagonal �ight with pitch sequences 117

7.64 Horizontal �ight CFO sequence - focal length 118

7.65 Vertical descent CF sequence - focal length 119

7.66 Vertical descent with roll CF sequence 120

7.67 Diagonal �ight with pitch CF sequence - optical axis 121

7.68 Vertical descent CF sequence - optical axis 122

7.69 Diagonal �ight with pitch CF sequence - initial condition error . . . 123

7.70 Initial and �nal point distribution of Diagonal �ight with pitch - initial

condition error . 124

7.71 Horizontal �ight CF sequence - initial condition error 124

7.72 Initial and �nal point distribution of Horizontal �ight - initial condi-

tion error . 125

7.73 Vertical descent CF sequence - initial condition error 125

7.74 Initial and �nal point distribution of Vertical descent CF - initial con-

dition error . 126

7.75 Vertical descent CF sequence - position error at di�erent data-rates . 127

7.76 Horizontal �ight CFO sequence - position error at di�erent data-rates 128

List of Tables

7.1 Camera data sheet . 62

7.2 IMU Data sheet . 64

7.3 Manipulator Data sheet . 65

7.4 Motion test data . 72

IX

List of Algorithms

2.1 INS - inertial . 11

5.1 Eight point algorithm . 37

5.2 RANSAC . 38

5.3 Outliners removal . 44

6.1 Dokuganryuu navigation algorithm 58

6.2 Levenberg-Marquard for planar matching 59

XI

Nomenclature

Roman Symbols

ak LM state vector at step k

A (u, v) , B (u, v) , C (u, v) Coe�cients

ai Inertial acceleration vector

am Accelerometer measure

ba,bg Accelerometer and gyroscope biases

c (u, v) Cross correlation

C Consensus of a �tting

da,b Distance from a to b

d2a,b (u, v) Squared distance from a to b

dk Point k distance along a line from surface

E, Ei,j Essential matrix and its i,j component

E1,2 (u, v) ,F1,2 (u, v) Autocorrelation between 1 and 2 (also rotated)

f Focal length

F, Fi,j Fundamental matrix and its i,j component

g (u, v, σ) Gaussian function

g Gravity force per unit mass

H Hessian matrix

I Identity matrix

XIII

J Jacobian

K calibration matrix

l̂ Unitary calibrated coordinate in terrain reference frame

na,ng Accelerometer and gyroscope measures noises

P, Pu,v Image and its intensity at coordinates u, ypix

q Quaternion vector

Q1,Q2,Q3,Q4 DCM partial derivatives w.r.t. quaternion

q1, q2, q3, q4 Quaternion component (q4 scalar)

r Residual vector

R12 Rotation matrix (DCM) from 2 to 1

Rtc,1 DCM from terrain to camera frame at instant 1

S Matched points space

tk, tk+1 Time instants

t, t̂ Translation vector (also unitary)

U,Σ,V Single value decomposition matrices

u0, v0 Optical axis coordinates

u, v Pixel coordinates

Va Covariance matrix of a

vl,1 Lander velocity vector at instant 1

v↓, v↑ LM damping parameter updater

W Weighting matrix

wa,wg Accelerometer and gyroscope biases noise driver

xl,1, Z1, X1, Y1 Lander position at instant 1 and its components

x, y,d Pixel directions and their vector

x, y, z Rectangular coordinates

xtr, ytr, ztr Rectangular coordinates in terrain reference frame

ŷ Fitting function

Greek Symbols

χ2 (k) Chi squared criterion at step k

δak LM state vector increment at step k

ε1, ε2, ε3, ε4 LM Threshold

η1,i i-th calibrated camera coordinate vector of image 1

ϕ (u, v) Image edge direction

γ (u, v) Normalized cross correlation

κk (u, v) Curvature index

λk LM damping parameter at step k

ωm Gyroscope measures

Ωpl Planet angular velocity

ωr Relative angular velocity

ρ (k) LM metric at step k

τ1,i i-th feature depth of image 1

θ, xe, ye, ze Euler angle and Euler axis components

ϑx, ϑy, ϑz Rotation around axes x, y and z

ξ1,i i-th pixel coordinate vector of image 1

ζ1,i i-th depth over translation magnitude of image 1

Acronyms

CF Crater Field surface image

CFO Crater Field Overexposed surface image

CV Computer Vision

d.o.f. Degrees of Freedom

EDL Entry Descent and Landing

(E)KF (Extended) Kalman Filter

SVD Single Value Decomposition

GNC Guidance Navigation and Control

IMU Inertial Measurement Unit

INS Inertial Navigation System

LM Levenberg-Marquardt (algorithm)

LP Lunar Plains surface image

RANSAC RAndom SAmple Consensus

SLAM Simultaneous Localization And Mapping

Other Symbols[
()×
]

Cross matrix[
()××
]

Double cross matrix[
()⊗
]

Quaternion cross matrix

Chapter 1
Lunar landing optical navigation

1.1 Premise

Landing a vehicle on the Moon is not a trivial task, even if it has been done a lot

in the past sixty years and more. The Moon represents still an important target

for exploration, scienti�c research and colonization, therefore ensuring a safe and

precise landing is mandatory. In case of human �ight the lander can be not fully

autonomous and be piloted by astronauts, like it happened for the Apollo 11 mission,

however the general aim is to reduce the need of human intervention in such tasks

by making the landing autonomous. Both manned and unmanned vehicles should

not be piloted from Earth during the descent for numerous reasons: an automated

Guidance Navigation and Control (GNC) system must be used.

The system guidance must determine the optimal trajectory and thrust pro�le in

order to get to a safe and interesting landing point, but it needs a good navigation

in order to do its job. Navigation is in fact the most critical aspect in the landing

phase since the absence of precise information on ground distance and landing point

could lead to a fatal failure.

The subject of this thesis work is the development and testing of a navigation algo-

rithm for lunar landing1 with a single camera as main sensor. Cameras o�er a cheap

system that can reduce weight, power and cost demand on the lander. The scope

is thus to explore the possible application of mono-camera in the reconstruction of

the lander state with the aim to have a robust, fast and cheap navigation system.

Since a mono-camera cannot determine by itself a 6 d.o.f. motion model the use of

auxiliary sensors is required to complete the reconstruction; anyway a limit in power,

cost, weight and volume is implicitly intended.

The navigation algorithm need to be as general as possible, in order to be tested and

1In general the problem is under the Entry Descent and Landing (EDL) framework. In lunar
landing only descent and landing phase are taken into account.

1

1. Lunar landing optical navigation

replicated on other systems. As a matter of fact such navigation can be theoretically

used in other contexts, maybe removing some of the constraint imposed by the space

mechanics (low computational power, very fast motion, kilometers of altitude, etc.).

1.1.1 System requirement

The navigation system that is investigated in this work must abide the following

limitations:

� Use a mono-camera as the leading sensor,

� Use no map of the landing site,

� Track general features (craters excluded),

� Computational time as low as possible to be used on real space hardware.

These limitations de�ne quite heavily the boundaries of this work and embody the

principle of low-cost, general and easy to test navigation system. As shown in the

following sections, these requirements obligate the algorithm to take a certain shape,

leaving not much room for alternatives. The proposed algorithm have been tested

with an experimental set up and a real camera in order to assess the robustness and

performance achieved. Moreover the design of the algorithm should be intended to

reduce as much as possible the computational time.

1.2 State of the art

1.2.1 Landing navigation systems

The �rst landing on an extraterrestrial body was performed in 1959 in the soviet

Luna 2 mission with an impactor. The �rst soft landing was achieved in 1966 with

the Luna 9 mission. At the time the most used sensors are radar altimeter and

Inertial Measurement Units (IMUs), however the precision of the landing was really

low. Landing on a pre-determined area was not easy due to IMU drift; higher

precision was attained by the Apollo missions with the intervention of a human

pilot. Navigation system performance were strongly limited by weak computational

capabilities available in those years [1].

Radar altimeter were the main measure of distance to the ground and the guidance

and control of the lander in such conditions relied more on this information than

on IMUs measurements. The ranging measurement of radar altimeter are nowadays

given to an evolution of laser altimeters (LIDARs), however they do not come at an

easy price in terms of money, weight and power consumption. Lidars are studied a

2

1.3. Literature review

lot in lunar landing applications and seem a promising navigation tool that has less

limitation than cameras, however the technological complication are still high and

camera are a viable alternative for lunar landing. Nevertheless lidars can be coupled

with optical devises to have a more robust navigation system.

1.2.2 Optical navigation in landings

In planetary landing camera measurement have been used by the Mars Exploration

Rovers Spirit and Opportunity, although to reconstruct partially the lander state. In

fact a downward camera has been used to determine the horizontal velocity on the

lander since it was not possible to mount a Doppler radar by the time they found

such information necessary. An algorithm called Descent Image Motion Estimation

System (DIMES) [2,3] have been developed in order to check if a transverse impulse

was needed in order to reduce horizontal velocity. The successful landing of Spirit,

in which the system e�ectively entered in action, gave the basis for the use of cam-

era in planetary landing [4].The DIMES was required to match images from highly

di�erent conditions in altitude and attitude. Despite the already proven technology,

the DIMES approach is not suitable for a complete navigation.

In the HAYABUSA (MUSES-C) Japanese mission to asteroid Itokawa, an autonomous

optical system for navigation and guidance has been used on board. Obtained re-

sults [5] have demonstrated that optical navigation is valid also in small body explo-

ration. The technology readiness level of computer vision (CV) in landing scenario is

not so high, however similar approaches have been carried out successfully, ensuring

the appeal of such topic.

1.3 Literature review

The problem of the reconstruction of the state of a moving camera is in general

called �ego motion� and has been studied for a long time. Camera can be used also

to extract information about external environment: for example in planetary landing

application images can be exploited to determine the hazard level of a landing site.

Sometimes, if the feature tracked are craters or similar landmark, it is possible to

fuse the hazard detection, hazard avoidance and navigation in one single algorithm.

Since this was not the scope of this work, the hazard detection is left for further

works.

The big limit of a single camera is that by itself it cannot sense depth, therefore

all measures are a�ected by a scale factor. This implies that a single camera is not

enough to produce a full navigation without additional inputs. One of this external

input can be a map, a reference where landmarks such as craters are positioned.

3

1. Lunar landing optical navigation

In space exploration computer vision problems craters detectors have been studied

intensively. In [6], for example, a Canny edge detector is used to generate an edge

map, then clustering is applied to get preliminary points and crater radius. The

�nal step makes use of a GVF-snake algorithm to detect the edges of the crater:

this technique is often used for deformable shape recognition. Instead, in [7, 8], the

algorithm searches for ellipses in the edge map and tries to re�ne and evaluate the

results afterward. In [7] the navigation has been addressed using these landmarks as

reference but not comparing them with a given map, instead a subset of craters and

their relative position is exploited. In [9], after edge detection, a Hugh-transform

based approach is enforced to detect ellipses on an asteroid.

The Vision Aided Inertial Navigation (VISNAV) 2 is a proposed navigation method

that uses landmarks and reference map but also other sensors to increase robust-

ness. Another e�ective procedure is fusion between vision algorithms and inertial

navigation system to remedy the lack of information.

1.3.1 Optical-Inertial navigation

Inertial Navigation Systems (INS) have been used for a long time in navigation prob-

lems, therefore their properties and weaknesses are well known. INS can reconstruct

the full 6 d.o.f. of a vehicle in an absolute (inertial) reference frame but due to error

integration tends to su�er from long term drift. In order to determine the terrain

relative motion, the angular velocity of the celestial body as well as its gravity �eld

must be known beforehand, since accelerometers cannot measure gravity accelera-

tions. Other sensors or an accurate motion model are required to reduce the drift.

In lunar landing scenario, like for any Earth-based INS, the angular velocity and

rotation motion is in general well known, of course this cannot apply for asteroid

navigation. On Earth the most common complementary measure for the INS is the

Global Positioning System (GPS) but in outer space this cannot be exploited, there-

fore camera aided INS has become a popular topic in the recent years [10�16]. One

e�ective way to correct INS is to use an indirect Kalman Filter [17], thus modeling

the INS error, and the rigid transformation between two camera views [15]. Most

of these method augment the state with measured features, that is always computa-

tionally expensive. In ego motion about one hundred of tracked points are enough,

therefore the already big state is augmented with twice or three times the number of

feature found in the images [15]. As for other approaches, this kind of augmentation

is not considered in this work since the computational time is a huge issue.

On the other hand, the use of the reconstructed 3-D motion between views seems

an appealing choice, however one particular point must be stressed out: in order to

2for example [10], but the number of papers about VISNAV is higher and do not include more
information for this work.

4

1.3. Literature review

guarantee convergence, the camera reconstruction shall not be in�uenced by the INS.

An error in the INS could cause an error in the computer vision algorithm resulting

in divergence. In fact, some of the algorithms require an initial guess, that is better

not to be based on INS if the intent is to correct the very INS reconstruction.

Another approach, exploited in [11], is to enforce a geometrical constraint known as

the epipolar constraint (see Chapter 5), however this approach augment the system

state, assume a perfect rotation reconstruction and has four numerical complications

that may provoke the system failure. This constraint is deeply connected with the

rigid motion, therefore the base is the same as the previous one.

Looking at the few comparable experimental activities presented in the aforemen-

tioned papers, it has been showed that coupling INS with camera measurement can

reduce e�ectively the INS drift and be closer to the real path. In those papers where

it is shown also the reconstruction by camera alone, it seems that the camera recon-

struction is almost as precise as the �ltered and coupled system, therefore a question

about the need for inertial system coupling may arise. It is undoubtedly true that

INS can provide an higher data rate than CV systems, however the INS gain more

in terms of correction from the camera than the camera obtains from INS. In fact,

the vision system without INS but with a sensor capable of getting depth, like an

altimeter, can be used e�ectively as an appealing alternative to INS.

1.3.2 SLAM

Robot navigation has been studied for a long time but in recent years it has been

found that good navigation can be achieved when also reconstructing a map of the

environment. The problem of Simultaneous Localization And Mapping (SLAM)

has been studied intensively in the last decades when it has been demonstrated its

convergence [18,19]. In the most naive implementation the SLAM based navigation

algorithm uses a Kalman �lter with a state augmented with the measured landmarks,

suggesting an high computational cost. The idea is that the robot increase the

precision of its positioning by successive measurement of landmarks, enabling the

formation of a map or sub-maps [19] that can be re-used over time. One of the main

branches in SLAM study is the EKF-SLAM where it uses an Extended Kalman

Filter to handle non-linearity [20�23]. The other approach is called FAST-SLAM

[19,24] and make use of particle �lters. A comparison can be found in [25] or related

articles. Should be noticed that landmark acquisition include both optical and range

measurement, therefore di�erent kind of SLAM can be designed for the purpose.

In [21,22,26,27] just one camera and a SLAM approach have been used for navigation,

in other cases inertial navigation is exploited [28], but the drawbacks of this approach

make it not available option for lunar landing navigation. The computational cost

is the main drawback of this kind of methods: while for surface rovers may be

5

1. Lunar landing optical navigation

an appealing alternative, for the fast motion typical of a landing phase it is not.

Moreover during landing it is unlikely for the lander to go back and re-visit a zone,

therefore the map creation is useless for the majority of the travel. Should be noticed

that this drawback is removed in case of small body navigation (asteroid, debris) or

in cases where the lander makes numerous orbits before insertion in order to map

possible landing sites.

1.3.3 Experimental validation

There are many papers about 6 d.o.f. reconstruction of a robot, however not many

have been tested on real images and motion. Sometimes tests are conducted with lim-

ited motion and rotation and in almost all the cases the algorithms have been tested

o�ine, therefore not involving real image capture, elaboration and state estimation

on board. Many of the algorithms presented before have a non negligible compu-

tational burden that makes them not appealing for this work. In [15] experimental

validation is carried out, but rotations are not included.

1.4 Thesis structure

This thesis starts with an introduction to reference frames, motion phases and in-

ertial navigation system with Chapter 2. In Chapter 3 di�erent camera models are

presented and the strategy to get information from the sensors is described. A brief

introduction to the image analysis problem is reported in Chapter 4 along with fea-

tures and matching procedures. Chapter 5 is dedicated to the comparison of di�erent

algorithms suitable for the navigation system. The selected algorithm is studied in

detail in Chapter 6 and a �nal navigation algorithm is proposed. The validation of

such algorithm is handled in Chapter 7 through the results of experimental activity

held in the Space Robotics Laboratory. Di�erent motion sequences are analyzed,

together with the sensitivity of certain parameter in order to address robustness and

performance. A comparison with accredited papers is exploited to ensure the ef-

fectiveness of the algorithm. Conclusion and future improvements are presented in

Chapter 8.

6

Chapter 2
Landing framework and INS

The �rst step towards the de�nition of a navigation system is the assessing of the

framework in which the system is designed to operate. At the beginning a brief

introduction to the landing phase of a space vehicle shows the motion range and the

application boundaries of the camera. Then, di�erent reference frames, needed to

properly handle the problem, are introduced. The most used navigation system for

landing, the INS, is presented at the end, putting emphasis on its errors and the

studied remedies.

2.1 Landing phases

A landing maneuver can be divided in sub phases characterized by di�erent motions

and operative modes. For coherence the division described in [29,30] is adopted:

� Coasting phase: in this phase the lander travel along a ballistic elliptical orbit.

An attitude maneuver is performed to orient the main thrusters in the forward

direction, in order to be able to reduce the velocity in subsequent phases.

In many application the thruster positioning implies a complete 180° turn,

therefore it is unlikely to use the camera for this particular maneuver. The

altitude is lower than 5500 km.

� Main brake phase: the �rst part of the so called powered descent phase starts

at the perilune of the elliptical orbit. Main thrusters are activated at the

maximum available magnitude with the aim to drop the most part of the

horizontal velocity. Navigation is of the utmost importance in this phase to

assure that the correct pro�le given by the Guidance system is followed. At

the end of this phase, at an altitude of about 2 km, the target landing site

comes into the camera �eld of view.

7

2. Landing framework and INS

� Approach phase: during this phase, the thrust is reduced in order to gain ma-

neuverability. The lander motion is su�ciently smaller to be able to analyze

the landing site for hazards and, if needed, plan one or two retargetings. As-

sessing the hazard level of the landing site is required in order to assure an

autonomous and safe landing.

� Terminal descent : the last phase usually starts at very low altitude (tens of

meters) and ends at touchdown, after a vertical descent at constant speed.

Camera can still be used for navigation even if it is not strictly required.

From this basic phases division it is possible to address the range of use of the

navigation system. Camera are mostly employed in the second and third phases

where precise trajectory estimation and hazard avoidance must be performed. The

altitude substantially changes during these phases, therefore the precision of the

computer vision is expected to increase as that distance decreases. This is very

intuitive and it is related to the size of the pixel: at high altitude it can represent a

square of hundreds of meter, while in the �nal phase it could be less than one meter.

This is strictly connected with the capabilities of the onboard camera.

2.2 Reference frames

In order to better understand the navigation problem a proper de�nition of reference

frames is needed.

2.2.1 Moon-centric reference frame

This reference frame is centered on the center of mass of the body the lander is going

to land, in this speci�c case the Moon. Axes are aligned towards �xed absolute

directions (or their approximations over relative short time span, like the Gamma

point). From the point of view of a lander, whose EDL phases last a very short

time compared with the revolution period of the planet, this reference frame can be

considered inertial and �xed.

2.2.2 Terrain relative frame

Since the Moon and in general celestial bodies are rotating while revolving around a

main attractor, it is important to have a reference frame �xed with the body, rotating

with it. This frame is of course not inertial, with all the complications that arises

with that. Since there is freedom to de�ne it, in this work this reference frame is

considered to be �xed with the Moon surface and its origin is the vertical projection

of the lander center of mass on the ground at the time instant the current landing

phase begins.

8

2.3. Inertial Navigation System

2.2.3 Lander orbit frame

This reference frame is �xed with the trajectory of the lander, centered in its center

of mass. The motion w.r.t. this frame is fast and not negligible, so it cannot be

considered as an inertial frame. Usually axis are considered oriented toward the

velocity vector and its orthogonal directions. This frame has not been considered in

this work.

2.2.4 Lander principal axis frame

This reference frame is centered in the lander center of mass and aligned with its

principal axis of inertia. It is particularly useful to describe the rotational behavior

of the spacecraft.

2.2.5 Sensor reference frame

Should be noticed that some sensors measure quantities in their own reference frame

and the rigid transformation between this reference frame and the principal axis

frame must be known. In this work, the two reference frames (camera and principal

axis) are considered as coincident, since the experimental activity aims to verify that

the camera is able to understand its own motion. The generalization step should

come afterward with little e�ort.

2.3 Inertial Navigation System

As stated back in Chapter 1, INS is one of the most exploited navigation technologies

in lunar landing. For a better comprehension of the problematic of such systems, as

well as possible remedy, a brief introduction is here reported. First of all an IMU

consists of a gyroscope and an accelerometer, therefore it is important to understand

what they measure.

2.3.1 Gyroscopes

Gyroscopes are sensors that measure the rotational velocity of the body they are

attached to. Measures are given in the gyroscope reference frame but can be easily

translated in the principal axis of the vehicle. These rotation velocity are absolute,

meaning that in the case of the lander they detect rotation of the body w.r.t. an

inertial frame like the one �xed with the Moon. These sensors are not capable by

themselves to address the relative rotation of a body w.r.t. another rotating body.

The measured angular velocity ωm can be seen as a combination of planet rotation

9

2. Landing framework and INS

velocity Ωpl and the relative angular velocity ωr, all expressed in the sensor reference

frame.

ωm = ωr + RsiΩpl = Rsiωi (2.1)

The planet rotational velocity vector is thus dependent on the relative orientation of

the body thanks to the rotation matrix Rsi that links an inertial reference frame with

the sensor reference frame. ωi is the inertial rotational velocity that is measured by

gyroscope in their own reference frame �xed with the body. In order to get attitude

information from these sensors are needed an inertial reference frame and the initial

orientation of the vehicle in that frame. Then the measures of the gyroscopes are

integrated with a proper procedure and attitude parametrization. By representing

the lander attitude with a quaternion parametrization, the cinematic update equation

is:

q̇ =
1

2

[
(ωm)⊗

]
q (2.2)

where the quaternion cross matrix for the 3-D vector ωm is

[
(ωm)⊗

]
=

0 r −q p

−r 0 p q

q −p 0 r

−p −q −r 0

 (2.3)

with p, q and r that represent the scalar components of the body angular velocity

vector ωm in its own reference frame. This procedure can be carried out with gyro-

scope measures ωm and a numerical integration methods for (2.2). Sometimes it is

used also gyro measure interpolation, whenever this prove necessary.

2.3.2 Accelerometers

Accelerometers are sensors capable to measure the translational acceleration compo-

nents of the vehicle they are mounted on, rotated in its own sensor reference frame.

Moreover these sensors are not able to measure the gravity acceleration, therefore a

free fall on the Moon would result in null measurement from them. Taking Ris the

rotation matrix that rotates the sensor reference frame onto the chosen inertial ref-

erence frame and g as the gravity force per unit mass expressed in the same inertial

reference frame leads to

10

2.3. Inertial Navigation System

am = Rsi (ai − g) (2.4)

ai = Risam + g (2.5)

Then the inertial frame acceleration ai are integrated two times to get velocity and

position. In this procedure an accurate gravity model is required, otherwise the

integration would lead to huge errors. The problem is that such model depends on

the distance from the center of the planet, i.e. the position, therefore an error in

position would increase over time.

2.3.3 INS �ow for inertial reconstruction

The procedure to reconstruct an inertial position makes use of the following formu-

lation

d
dtvl, = Risam + g

d
dtxl, = vl,

d
dtq = 1

2

[
(ωm)⊗

]
q

Ris = Ris (q)

(2.6)

with the following �ow

Algorithm 2.1 INS - inertial

procedure INS-inertial(am, ωm,Ri0,xl,0,vl,0)

loop

(am, ωm,Rik,xl,k,vl,k)←
Rik+1 ← (ωm,Rik) . Update attitude
gk ← xl,k . Get the gravity model based on position
aik+1 = Rk+1iam + gk . Rotate accelerations
(xl,k+1,vl,k+1)← (xl,k,vl,k,aik+1) . Integrate

return (Rik+1,xl,k+1,vl,k+1)
end loop

end procedure

In order to reconstruct the relative state, it is possible to rotate afterward the inertial

quantities into the rotating terrain frame or by incorporating the rotation velocity of

the planet inside the whole process. The main source of error in INS is the drift of

the state due to the integration of instrument noise and of course the most a�ected

measure is the position since it relies on double integration and rotation.

11

2. Landing framework and INS

2.3.4 INS for relative reconstruction - real model

In order to characterize the most used navigation tool in landing scenarios an error

analysis is necessary. Taking into account the real measurements gives the following

model ai = Ris (am − ba − na) + g

ωr = ωm −RaiΩpl − bg − ng
(2.7)

Where na and ng are respectively accelerometer and gyroscope noise modeled as

white noises (zero mean, Gaussian distribution) and ba and bg the biases modeled

as integrated white noises with the simple model d
dtba = wa

d
dtbg = wg

(2.8)

with wa and wg considered as white noises. In a very straightforward interpretation

biases are low frequency high amplitude signals that corrupt velocity and attitude

integration.

d
dtvl, = Ris (am − ba − na) + g − 2

[
(Ωpl)×

]
vl, −

[
(Ωpl)

×
×

]
xl,

d
dtxl, = vl,

d
dtq = 1

2 [(ωm −RsiΩpl)×] q

d
dtba = wa

d
dtbg = wg

(2.9)

While (2.6) reconstructed the state in the inertial reference frame, (2.9)1 reconstruct

the relative state in the rotating terrain frame [31]. Should be noticed that here the

angular velocity fed to the quaternion update is in the sensor frame, therefore relates

the change of the latter with respect to the inertial and not vice versa. It is possible

to reconstruct the relative attitude in two directions without problems.

A complete error model can be derived by subtracting the noiseless model to the real

model. In the error model, since the quaternion parametrization has high mathemati-

cal complications, a small angle approximation is considered in attitude parametriza-

tion. Regardless of the error model it is important to notice the �ow of the error.

1For better understanding of the matrices:
[
(ωm)×

]
=

 0 −r q
r 0 −p
−q p 0

 ,
[
(ωm)××

]
=−q2 − r2 pq pr

pq −p2 − r2 qr
pr qr −p2 − q2

12

2.3. Inertial Navigation System

Biases increase the error on the long run and an error in attitude increase the error

in velocity and position. The latter has the highest diverging rate since it integrates

twice the accelerometer bias and attitude error caused by gyro bias.

The inverse Kalman �lter approach takes the INS error model as the system to

observe and requires the measurement of part of the error state. The error measure-

ments are usually obtained by subtracting the INS integrator to the same measures

obtained by di�erent sensors. In fact the �lter is coupled with an INS integrator

that runs in parallel and takes the error determined by the �lter as additional input

for the following estimate. This strategy permit to use sensor with lower data-rate

to correct the INS. It is important to analyze the observability of such error model

in order to choose which kind of sensors to use: in general by measuring position

and attitude it is possible to determine the state error and the biases [17]. In [15]

a method to correct INS using computer vision reconstruction is proposed. If the

rigid transformation between two camera views is available it is in general possible

to address the whole correction, however this requires the computer vision algorithm

to give information not based on INS, otherwise it could cause divergence. Recent

studies by Roumeliotis et al. are focused on the observability analysis of such sys-

tem [32�35].

13

2. Landing framework and INS

14

Chapter 3
Camera models

In order to address the measurement coming from the camera, a proper introduction

to the projection of a 3-D point onto an image is needed. For the sake of simplicity

the camera models described in the textbook [36] are considered.

(a) Model 1 (b) Model 2

Figure 3.1: Projection of a point, from [36]

The principal axis depicted in both images of Figure 3.1 is often called optical axis.

The image plane showed is the ideal plane collecting the light from the exterior, while

in reality the Charged Coupled Device (CCD) collecting the image in its pixels is

placed behind the center of projection and of course the image is rotated. The focal

distance f is the distance between the point where all the projection meets, the center

of projection, and the image plane (real or ideal is the same). Following Figure 3.1

notation, the projected point pi =
{
xi yi

}T
can be determined knowing the real

point pp =
{
xp yp zp

}T
. The two images represent two di�erent parametrization

of the same model. Using the projection of Figure 3.1a through triangular similarity:

yi
f =

yp
zp

xi
f =

xp
zp

(3.1)

rearranging the terms

15

3. Camera models

yi = f
yp
zp

xi = f
xp
zp

(3.2)

Using the de�nition of Figure 3.1b leads to a similar form

yi
f

=
yp − yi
zp

(3.3)

yi =
yp

1 + 1
f zp

(3.4)

therefore

yi =

yp
1+ 1

f
zp

xi =
xp

1+ 1
f
zp

(3.5)

Both methods represent the projection, the only di�erence lies in the de�nition of

zp but since f � zp the di�erence between the two is very small. In case of lunar

landing scenarios this is particularly true. Starting from these parametrizations three

di�erent camera models have been created: pinhole, a�ne and weak perspective.

3.1 Pinhole camera model

The pinhole camera model is one of the most used and relates the 2-D pixel mea-

surement to a 3-D combination of parameters in the camera frame. Taking a point p

in the 3-D reality and its respective equivalent in the unitary projective plane1 and

making use of (3.2)

p =

x

y

z

 = z

x/z

y/z

1

 (3.6)

However this still does not corresponds to the pixel coordinates
{
u v

}T
of the

camera image. In fact x/z is a non dimensional ratio between two real world scale

coordinates. The next step needs to take into account the camera optical properties

like the focal length, the pixel dimensions and the optical axis. This can be done using

the so-called intrinsic parameter of the camera gathered all in one transformation,

giving birth to the intrinsic parameter or calibration matrix K

1A vector in the projective plane is usually written as
{
wx wy w

}
with w an arbitrary

number. Clari�cation and explanation can be found in a textbook like [36].

16

3.2. A�ne camera model

x/z

y/z

1

 = K

u

v

1

 (3.7)

with

K =

αu c u0

0 αv v0

0 0 1

 (3.8)

αu = fmu (3.9)

αv = fmv (3.10)

where
{
u0 v0

}T
are the centroid (optical axis) coordinates2, f the focal distance,

mu and mv the coe�cient that relate distance to pixels and c the skew coe�cient

between x and y axis of the image, often 0. The relation between a 3-D point p and

its pixel coordinate projection ξ is

p = zK

u

v

1

 = zKξ (3.11)

Therefore, if the camera calibration parameters and point depth are known it is

possible to reconstruct the 3-D coordinates starting from the pixel coordinates on

the image. Without the depth there is no way to get the 3-D coordinates but just

their projective ratios.

3.2 A�ne camera model

The a�ne camera model can be seen as a particular case of the perspective camera

model where the focal length is taken as in�nite. Taking (3.5) and setting the focal

length to in�nity gets to

yi = yp

xi = xp
(3.12)

2In this form the coordinates are not expressed in pixels but in meter over pixel to be consistent

17

3. Camera models

that simplify enormously the model by making it linear. However by doing so the

depth information is completely lost and is no more possible to address translation

in depth. Since this is a serious drawback in our scheme this model is not useful and

therefore discarded.

3.3 Weak perspective camera model

This model can be seen as a scaling of the a�ne camera model and in general identi-

�ed as a model between the �rst two. In this model equations (3.2) are approximated

as

yi = f
zp
yp

xi = f
zp
xp

(3.13)

where zp is the average points depth. Basically the approximation lies in the consid-

eration that all the points relative depths are negligible w.r.t. the focal length. This

approximation can be considered valid when the camera is looking at almost planar

surfaces, normal to the optical axis. In lunar landing the surface, especially from an

high altitude, can be considered �at and the relative depth negligible: this requires

a camera that is always nadir pointing. This possibility is not considered due to

exaggerated constraint on the lander con�guration, nevertheless it would simplify

the discussion here after. The pinhole camera model is the only model valid for this

work.

3.4 Camera calibration

The determination of the intrinsic parameters is necessary in order to have measures

from a camera. This process is called Calibration and must be enforced whenever

real imagery is involved. Even if a camera is mass produced it is always necessary

to calibrate because small imperfections or variation can have a huge impact on the

measures.

One of the nowadays most used techniques is found in [37]. The method is quite

simple and �exible and has been used in many calibration tools software. This

method requires to have di�erent images from di�erent viewpoint of a chessboard

of known dimensions, the more the better. Chessboards are nice real-world object

useful for calibration since a corner detector for each box is easily implemented

and with good precision. In all the images is adopted a common reference frame

�xed on the chessboard and used to get the real world coordinates by knowing the

dimensions of each square. Then the 3-D rigid transformation from real coordinates

18

3.5. Way to extract information from a stream of images

to pixel coordinates is simpli�ed using the reference frame of the board and an

homography is computed using all the points detected in each image. Homographies

are rigid transformation in homogeneous coordinates. Afterward the calibration

matrix components are extracted using multiple views of the board, enforcing the

orthonormality of the direction cosines matrix columns. An analytical solution is

exploited as a �rst guess for a numerical re�nement using a non linear optimization

algorithm like the Levenberg-Marquardt algorithm, resulting in a simple and robust

method.

Since the aim of this work is to demonstrate the capability of a visual navigation

system there is no need to address a more complex camera calibration: a step by

step procedure can be found, for example, in [38].

3.5 Way to extract information from a stream of images

Excluding the use of a reference map, the motion is reconstructed from a starting

point by processing a stream of sequential images taken by the camera. This implies

that the initial conditions are very important and that the navigation system is

bound to diverge for error accumulation. Given two consecutive images from the

same camera there are two possible way of computing the relative movement: feature

tracking (point matching) and optical �ow. In a certain sense both methods track

points from one image to the other, the �rst by selecting speci�ed points in both

views, the second by computing the variation of whole portions of images.

The �rst method requires similar feature points to be extracted from both images

and then matched: all the points matched in this way are used to determine the rigid

transformation between the two views. The quality of the estimation increases with

the number of features and matching accuracy process. This procedure is capable of

addressing wide motion.

Optical �ow is based on the images intensity di�erentiation to be able to determine

the motion. If two images are equal the di�erence of all pixel brightness gives zeros,

but if there is a motion it is possible to determine the pixel position change. The

great limitation of such methods is the weakness to large displacement, hence in

lunar landing framework is advisable to use the �rst method [15].

19

3. Camera models

20

Chapter 4
Features detection and matching

In this Chapter the process of feature extraction and matching is expounded: at

�rst features of the same kind are detected in two consecutive images, then those

that appears in both images are matched forming couples. Features can be roughly

divided into two subset depending on what they are representing:

� Landmarks (high level features)

� Interesting points (low level features)

The latter includes a lot of di�erent kind of interesting points like corners, edges or

even regions. For the sake of brevity in this presentation are shown a corner detector

and two region-based detectors.

4.1 Feature detection

In general feature detection algorithms make use of so called detectors, particular

mathematical operations aimed to �nd points in an image that have peculiar char-

acteristics. These characteristics are usually exploited confronting the brightness of

a point with its neighbors.

4.1.1 Landmarks

Landmarks are feature points that are related to the environment the camera is

looking at, implying that some information must be known beforehand. This means

that it is possible to program a detector to search for particular objects by using some

of their characteristics, like shape for craters on the Moon. The power of such method

is that it is possible to match the terrain features to a map in order to determine,

at least, the scale and subsequently the full state reconstruction. The drawback is

21

4. Features detection and matching

that if no features of this kind are found, the software have to switch to another

method. Even if multiple kinds of terrain features are involved, the robustness of

the system lies on the probability to �nd such features. Landmarks are considered

high level feature recognized by speci�c combination of low level features like edges

or corners and/or other information, like the direction of the sun. Computation of

high level features is in general computationally expensive, therefore less suitable for

a fast navigation algorithm.

4.1.2 Corners

There are several corner detectors, but for the sake of brevity only the most popular,

the Harris detector, is addressed [36].

Corners are low level features that correspond to a rapid direction changes in edges.

If needed, corner points can be exploited to bound shapes and reconstruct high level

features. Corner detectors must compute a measure to discriminate corner points

from non-corner points, i.e. a measure of curvature. The Harris corner detector

exploits image intensity changes to estimate the local curvature of each considered

point of coordinates {u, v}T . The curvature is addressed through the de�nition of

auto-correlation, i.e. a measure of the matching of a signal with itself.

The autocorrelation function in direction d = {x, y}T over a window of size 2w + 1

is de�ned as

Ex,y (u, v) =
w∑

i=−w

w∑
j=−w

[Pu+i,v+j − Pu+i+x,v+j+y]2 (4.1)

In Moravec's corner detector the measure of curvature is obtained by computing

the minimum value of Ex,y (u, v) with shifts in the four main directions
{

1 0
}T

,{
0 1

}T
,
{
−1 0

}T
,
{

0 −1
}T

. The increment in the image intensity function is

approximated by the directional derivative along d giving the image brightness at

the end point as

Pu+i+x,v+j+y ' Pu+i,v+j + x
∂

∂u
Pu+i,v+j + y

∂

∂v
Pu+i,v+j (4.2)

Substituting (4.2) in (4.1) and expanding

Ex,y (u, v) = A (u, v)x2 + 2C (u, v)xy +B (u, v) y2 (4.3)

Ex,y (u, v) = dT

[
A (u, v) C (u, v)

C (u, v) B (u, v)

]
︸ ︷︷ ︸

M

d (4.4)

22

4.1. Feature detection

where the three coe�cients depends only on the image and the point coordinates as

follows.

A (u, v) =

w∑
i=−w

w∑
j=−w

(
∂

∂u
Px+i,y+j

)2

(4.5)

B (u, v) =
w∑

i=−w

w∑
j=−w

(
∂

∂v
Px+i,y+j

)2

(4.6)

C (u, v) =
w∑

i=−w

w∑
j=−w

(
∂

∂u
Px+i,y+j

∂

∂v
Px+i,y+j

)
(4.7)

The coe�cients represent summation of squared components of gradient direction for

all the pixel in the window, and in general is weighted through a Gaussian function

to reduce the noise sensitivity of the result.

Equation (4.3) has a quadratic form, therefore it has two orthogonal principal axes.

It is possible to exploit this property by rotating the function to make the two axis

coincide with the principal axis and remove the middle term, that is equivalent of

making the matrix M diagonal.

Fx,y (u, v) = (Rd)T M (Rd) (4.8)

Fx,y (u, v) = dT RTMR︸ ︷︷ ︸
G

d (4.9)

Fx,y (u, v) = dT

[
α 0

0 β

]
d (4.10)

Fx,y (u, v) = α2x2 + β2y2 (4.11)

where α and β are point dependent variables proportional to the auto-correlation

function along the principal axes. Corner points are characterized by higher values

of α and β while if one of the two is signi�cantly smaller than the other the points

is a �at border. If both terms are small then the points is not even an edge.

Following this reasoning a curvature measure can be de�ned as

κk (u, v) = αβ − k (α+ β)2 (4.12)

that, in fact, increases if both values increase accordingly and decreases whenever

just one of the two term is large. k is a parameter that selects the sensitivity of

the detector: the higher the value the more the measure is noise sensitive. There

is no need to actually compute α and β, since the goal is to compute the curvature

23

4. Features detection and matching

κk (u, v). From linear algebra is known that G is the orthogonal decomposition of

M representing its eigenvalues.

αβ = A (u, v)B (u, v)− C (u, v)2 (4.13)

α+ β = A (u, v) +B (u, v) (4.14)

Finally, by substituting (4.13) and (4.14) into (4.12) the curvature measure is esti-

mated.

κk (u, v) = A (u, v)B (u, v)− C (u, v)2 − k (A (u, v) +B (u, v))2 (4.15)

Applying this scheme to every point in an image would require an unacceptable

computational e�ort, therefore in practical implementations an edge detector is used

before in order to reduce the number of corner candidates [36].

4.1.3 Regions

The purpose of region based feature detection is to solve some of the drawbacks of

corner tracking, in particular the sensitivity to image scale. This approach introduces

the notion of scale space to �nd features that have higher probability to be tracked

as scale changes.

4.1.3.1 Scale Invariant Feature Transform

The most signi�cant region based feature detection is the Scalar Invariant Feature

Transform (SIFT), that has the peculiarity of using a descriptor after the detector.

Descriptors are mathematical operators that allows the feature to be described within

certain parameters, allowing comparison and relevance assessment. SIFT detects

features that are invariant to feature size (image scale), rotation and partially to

illumination changes. Occlusion and noise e�ects on feature extraction are reduced

[36]. First, the di�erence of Gaussians operator is applied to an image to identify

features of potential interest. The formulation aims to ensure that feature selection

does not depend on feature size (scale) or orientation. Features are then analyzed to

determine location and scale before the orientation is determined by local gradient

direction. Finally features are transformed into a representation that can handle

variation in illumination and local shape distortion.

The �rst step is the computation of the Laplace of Gaussian (LoG) operator obtained

by approximation through di�erence of Gaussians. This process enables the search

for second order edges detection.

24

4.1. Feature detection

σ∇2g (u, v, σ) =
∂g

∂σ
' g (u, v, kσ)− g (u, v, σ)

kσ − σ
(4.16)

For the image P

D (u, v, σ) = (g (u, v, kσ)− g (u, v, σ)) ∗P (4.17)

D (u, v, σ) = L (x, y, kσ)− L (x, y, σ) (4.18)

where g (u, v, σ) is the Gaussian function, ∗ is the convolution operation and L (,) is

a scale-space function used to di�erent scale smoothed images de�nition. Candidate

key-points are detected by comparison with the nearest pixel points. The comparison

takes place on the scale level, comparing a point and its eight neighbors with the nine

points in each of the adjacent scales to determine if it corresponds to a maximum or

a minimum. The image can be re-sampled to ensure comparison between di�erent

scales.

The key-points candidates are further �ltrated rejecting the low local contrast points

and the points badly localized along an edge. This procedure requires a uniform

thresholding to reject low contrast edges and a curve �tting that address strength,

stability and location of such points. Location issues can be addressed by considering

the curvature ratio between the edge direction and its perpendicular direction. This

can be obtained by thresholding the ratio of the terms in (4.13) and (4.14).

Filtered points are then characterized at each scale. The magnitude MSIFT and

orientation ϑSIFT of the gradient are computed as:

MSIFT (u, v) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2

(4.19)

ϑSIFT (u, v) = arctan

(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
(4.20)

The peak of the orientation histogram of a key-point is selected as the local feature

direction and used to derive a canonical orientation. Analyzing regions in the locality

of a viewpoint makes the descriptor invariant to rotation as well as reducing viewpoint

and non linear changes in brightness sensibility1 [36]. A complete explanation of

SIFT can be found in [39].

1Linear changes are removed by the gradient operation

25

4. Features detection and matching

4.1.3.2 Speeded Up Robust Features

The main drawbacks of SIFT are the high computational e�ort, as stated indirectly

in [39], and the number of features delivered [36]. Speeded Up Robust Features

(SURF) have been created to cope with this problems as well as maintaining good

invariance properties. Instead of using di�erence of Gaussians SURF employs a

second order edge detection approximation at di�erent scales [36, 40].

The integral image approach is used to compute the approximation of second order

derivatives that in practice are an approximation of the Laplacian of Gaussian (LoG)

operator with σ = 1.2. The image brightness is expanded through Taylor series (4.2)

and forms the following Hessian matrix whose maxima are used to derive the features:

H =

[
Lxx Lxy

Lxy Lyy

]
(4.21)

Lxx =
∂2

∂x2
g (u, v, σ) ∗ Px,y (4.22)

Lxy =
∂2

∂x∂y
g (u, v, σ) ∗ Px,y (4.23)

Lyy =
∂2

∂y2
g (u, v, σ) ∗ Px,y (4.24)

the maxima are then derived using the determinant of the Hessian matrix

det (H) ' LxxLyy − wL2
xy (4.25)

where the parameter w is chosen to balance the components of the equation for

better computing.

Scale space is obtained by upscaling the approximation with larger templates, a

technique that is faster than the smoothing and re-sampling employed by SIFT and

similar methods. Interest points localization over scale is conducted by applying

suppression of non maximum in a 3 × 3 × 3 neighborhood, thus considering three

di�erent scales. The maxima of the determinant are then interpolated in scale and

image space and then orientation-described by vertical and horizontal Haar wavelets.

The wavelets [36] are a rather new application of a rather old principle in signal

processing whose main advantage is the allowance of di�erent scale/resolution anal-

ysis. Haar wavelets are in substance binary functions that forms averages over set of

points and are therefore well suited for image compression. The process consist of

successive averaging and di�erentiating that can be applied at di�erent scales while

retaining the local shape. Vertical and horizontal templates in the Haar wavelets can

detect points that are brighter in one side with respect to the other side, vertically or

26

4.2. Feature Matching

horizontally. The direction of gradient can be easily addressed by combining vertical

and horizontal wavelet.

SURF operator puts emphasis on speed, performance and optimization by accurate

calibration of templates, w factor and interpolation.

This presentation used the rather simple explanation approach found in [36], for a

step by step description of the feature extraction algorithm refer to [40,41].

4.2 Feature Matching

After features detection and extraction from two consecutive images, corresponding

couples have to be matched correctly. This kind of procedure falls in the template

matching area, therefore it is better to start by explaining the process starting from

the matching of a template t within an image f.

4.2.1 Template matching

The distance measure equal to the squared Euclidean distance between a template t

and an image f is

d2f,t (u, v) =
∑
x, y

[f (x, y)− t (x− u, y − v)]2 (4.26)

where the summation over x and y is done in the window around the feature stationed

in position
{
u v

}T
. Expanding the squared term gives

d2f,t (u, v) =
∑
x, y

[
f2 (x, y) + t2 (x− u, y − v)− 2f (x, y) t (x− u, y − v)

]
(4.27)

The t2 term is constant and if the image energy
∑

x, y f
2 (x, y) is almost constant,

the cross correlation term is

c (u, v) =
∑
x, y

f (x, y) t (x− u, y − v) (4.28)

If the image energy is not constant then the image correlation may fail. These

problems are solved using a normalized cross correlation γ (u, v) where image and

template vectors are normalized.

γ (u, v) =

∑
x, y

[
f (x, y)− fx,y

] [
t (x− u, y − v)− t

]√∑
x, y

[
f (x, y)− fx,y

]2 [
t (x− u, y − v)− t

]2 (4.29)

27

4. Features detection and matching

where t is the mean of the template and fx,y is the mean of f (x, y) in the region

under the template [42].

4.2.1.1 Computation

The normalized cross correlation computation (4.29) can be simpli�ed by computing

�rst the numerator. If the search window is of size M2, the template is N2 and

the images have already been detracted by their mean values the computational

cost of (4.29) numerator is about O
(

2N2 (M −N + 1)2
)
, considering additions and

multiplications. The computation of the numerator can be carried out by Fourier

transform since it is equal to the convolution of the image f with the inverse template

t (−x, −y). With a proper implemented Fast Fourier Transform the computational

cost of the numerator is O
(
30M2 log2 (M)

)
[43]. The latter method is generally

found more performing with M ' N and both quite high [42,43].

4.2.2 From template matching to feature matching

In the case of feature matching it is possible to take both f and t as portion of an

image around a feature point. The matching process of a feature i of image 1 with

a feature j in image 2 is simply the computation of the normalized cross correlation

γ (u, v) between the feature i and all the features detected in image 2: the one with

the highest correlation is deemed to be the match feature j. The process is then

repeated for all the features in i. With respect to cross correlation the normalized

cross correlation reduces the possibilities of having a mismatch, however the possi-

bility of such event is of course not zero. This means that additional algorithms are

required to cope with this possibility: pairs that do not represent a coherent motion

with the majority of the pairs should be discarded.

4.3 Feature choice

As stated before it is not convenient to use landmarks like craters in this navigation

algorithm in order to retain generality. Between corners, SIFT and SURF the choice

fell onto the SURF algorithm, due to its speed and good traceability performance.

This can be shown by a simple comparison: Figures 4.1 and 4.2 report the features

extracted from two images in a vertical descent by the SURF and Harris detectors.

Should be noticed that this is just an example using the computer vision toolbox

of Matlab® with default settings for the feature matching in both cases. A more

detailed and rigorous analysis require an intensive study and the development of a

dedicated matching algorithm.

28

4.3. Feature choice

(a) Image 1 (b) Image 2

Figure 4.1: SURF features

(a) Image 1 (b) Image 2

Figure 4.2: Harris corner features

In this case the Harris corner detector curvature threshold has been set in order to

match the number of features taken in image 1 by SURF detector. The images come

from a vertical downward sequence, separated by about 10 seconds. This exaggera-

tion is intentional and aims to make more evident the motion between frames.

29

4. Features detection and matching

(a) SURF (b) Harris corner

Figure 4.3: Matching: SURF vs Harris

Images 4.3 show that with almost the same number of feature extracted from the

images, SURF detector delivers more match than Harris corner detector. In other

related works the SIFT/SURF have been deemed not necessary [44] while in some

other SIFT are presented as a good alternative to crater matching while in occlusion.

It is the author opinion that SURF features have adequate computational e�ective-

ness and precision to be used on a Moon lander. It is possible to see SURF as a

re�nement of corner points, being able to deliver fewer features with a slightly better

traceability. The only drawback that has been noticed about SIFT (and SURF) [44]

is the weakness to relatively high light variations. That may prove to be problematic

when comparing a scene and a map, however in the image stream approach here

taken it is less likely to happen since light conditions do not change signi�cantly in

a short time.

30

Chapter 5
Computer Vision algorithms

In this chapter, di�erent algorithms for the rigid motion determination are reported

and analyzed. First of all an introduction to motion models for computer vision

is addressed, then some algorithms and their computational process are analyzed.

Upon such considerations a suitable navigation algorithm approach is proposed.

5.1 Models and properties of image stream

Given two images 1 and 2 it is possible to extract n1 feature points of pixel camera co-

ordinate ξ1,i =
{
u1 v1 1

}T
i
from the �rst and n2 points ξ2,j =

{
u2 v2 1

}T
j
from

the second. Then a matching procedure is used to get the n features in the �rst im-

age that have a counterpart in the second one. Of course of the i ∈ N : 1 ≤ i ≤ n1

and j ∈ N : 1 ≤ j ≤ n2 features in the images just a subset is chosen, therefore

n ≤ n1 and n ≤ n2. The di�erent index for each image feature is discarded for the

sake of simplicity and the matched couple are referred as i ∈ N : 1 ≤ i ≤ n .

5.1.1 Rigid transformation and indetermination

The rigid transformation between two 3-D points p1 and p2 is

p2 = R21p1 + t (5.1)

Where t is the translation from 1 to 2 and R21 is the rotation that move a vector

in the reference frame 1 into the reference frame 2. Assuming that both points are

projected onto two di�erent images taken by the same camera

31

5. Computer Vision algorithms

τ2,iKξ2,i = τ1,iR21Kξ1,i + t (5.2)

τ2,iη2,i = τ1,iR21η1,i + t (5.3)

if the depths τ1,i and τ2,i are known it is possible to determine the rigid transformation

or, vice versa, knowing the rigid transformation and determining depths as it is

usually done with stereo-cameras. With a single camera the depths are unknown,

therefore a multiplication by a scalar does not change the results of the equality:

it is possible to normalize the translation vector by dividing for its indeterminable

modulus.

τ2,i
‖t‖

η2,i =
τ1,i
‖t‖

R21η1,i +
t

‖t‖
(5.4)

ζ2,iKη2,i = ζ1,iR21η1,i + t̂ (5.5)

Where ζ1,i and ζ2,i are the ratios of depths over translation magnitudes and t̂ is the

translation unit vector. In case of an image sequence where image 2 is taken after

image 1 the problem can be addressed in two ways: transformation from 1 to 2 or

from 2 to 1. The �nal result is the same but of course the values for R21 and t̂ are

going to be di�erent.

The model is the same for all the n features, therefore R21 and t are collective

parameters of the matched features, while each feature depth is a parameter of each

single pair.

5.1.2 Epipolar constraint

The so called epipolar constraint [45�47] is a relation between points in a image

sequence1 that must be satis�ed due to geometrical reasons. Every couple i must

satisfy the epipolar constraint in this form:

ξT2,iFξ1,i
∣∣
i

= 0 ∀i ∈ N : 1 ≤ i ≤ n (5.6)

where F is the fundamental matrix, constant for all matched points between two

images. For a couple of feature points i, (5.6) is a scalar equation

1or in two images of the same object taken at the same instant by two di�erent cameras. This
constraint is often used for stereo vision.

32

5.1. Models and properties of image stream

u1u2F11 + u1v2F21 + u1F31 + v1u2F12 + v1v2F22 + v1F32 + u2F13 + v2F23 + F33 = 0

(5.7)

that can be arranged in a linear system as

[
u1u2 u1v2 u1 v1u2 v1v2 v1 u2 v2 1

]

F11

F21

F31

F12

F22

F32

F13

F23

F33

= 0 (5.8)

Therefore to determine F it is possible to write as many lines as the number of

couples and solve a least square problem. Details about algorithms that exploit such

procedure are given in 5.2.1.

If the intrinsic matrix K is known, it is possible to address the epipolar constraint

using the essential matrix E instead of F [46]. Substituting the calibrated coordinates

in (5.6)

ξT2,iFξ1,i = 0 (5.9)(
K−1η2,i

)T
FK−1η1,i = 0 (5.10)

ηT2,i K
−TFK−1︸ ︷︷ ︸

E

η1,i = 0 (5.11)

In this way it is possible to enforce the epipolar constraint also in homogeneous

coordinates. The relation between essential matrix and rigid transformation is of

course

E = K−TFK−1 (5.12)

33

5. Computer Vision algorithms

5.1.2.1 Fundamental and Essential matrix properties

Both E and F are semi positive de�nite and rank de�cient. F has rank 2 due to the

intrinsic indetermination in depth and scale factor. In fact the matrix F can be arbi-

trary multiplied by a scalar leaving unchanged the results of (5.6): a single-camera

sequence alone cannot be used to determine a complete 6 d.o.f rigid transformation.

The relation between the essential matrix and the rigid transformation composed by

the rotation R21 and the translation direction t̂ [47] is

E =
[
t̂×
]
R21 (5.13)

This composition inherently contains the rank de�ciency. Let us examine the com-

position of the essential matrix for a small rotation between views

E =

 0 −tz ty

tz 0 −tx
−ty tx 0

 1 −ϑz ϑy

ϑz 1 −ϑx
−ϑy ϑx 1

E =

−tzϑz − tyϑy −tz + tyϑx ϑxtz + ty

tz + txϑy −ϑztz − txϑx ϑytz − tx
−ty + txϑz ϑzty + tx −ϑyty − txϑx

It is easy to see that if there is no translation between two views all the essential

matrix components should be zero, this implies that the rank of E is not 2 but zero.

This event may also happen when some components are null, for example take the

case where just tx and ϑy are non-null
2

E =

 0 0 0

txϑy 0 −tx
0 tx 0

 (5.14)

Any numerical method used to determine such matrix should take care of similar

cases.

5.1.2.2 Computing translation and rotation from essential matrix

Once E has been obtained it is possible to compute both the rotation matrix and

the translation direction vector [47]. Through Single Value Decomposition (SVD) it

is possible to obtain the left and right matrices U and V

2This implicitly means tx ' 1.

34

5.1. Models and properties of image stream

E = UΣVT (5.15)

From which can be obtained the rotation matrix multiplying for a matrix S or its

transpose ST [47].

S =

0 −1 0

1 0 0

0 0 1

 (5.16)

R21 =

USVT

USTVT
(5.17)

This means that there are two possible solutions for the rotation and this implies also

two distinct translation direction that di�ers in orientation. Then, there are a total

of four di�erent solutions that must be assessed to �nd the only solution coherent

with the motion.

The translation unit vector can be obtained as the eigenvector corresponding to

the minimum eigenvalue (theoretically zero) from U. As alternative the following

procedure can be used.

EET =
[
t̂×
] [

t̂×
]T

(5.18)

EET =

t
2
z + t2y −txty −tztx
−txty t2z + t2x −tzty
−tztx −tzty t2x + t2y

 (5.19)

since the translation vector modulus is one

t2x + t2y + t2z = 1 (5.20)

EET =

1− t2x −txty −tztx
−txty t2z + t2x −tzty
−tztx −tzty t2x + t2y

 (5.21)

and since

35

5. Computer Vision algorithms

t̂t̂T =

 t2x txty txtz

tytx t2y tytz

tztx tz, ty t2z

 (5.22)

that gives

t̂t̂T = I−EET (5.23)

bust since this requires more computation it is advisable to use the eigenvector

method.

5.2 Computer Vision algorithms

There are di�erent numerical methods that can be used to determine the relative

motion of the camera using two consecutive images. In this section two algorithms

are presented for the fundamental matrix estimation and other three algorithms show

the possible application of the 3D point matching.

5.2.1 Fundamental matrix estimation

There are quite a few method to estimate the fundamental matrix (or the essential)

with all the features or with a minimum number of these. Among the latter there are

the Five Point Algorithm, the Seven Point Algorithm and the Eight Point Algorithm.

The �rst two methods have multiple solution, therefore the number of possible rigid

transformation rises. One of the most used methods is the eight point algorithm that

make use of just 8 features to determine the fundamental matrix through epipolar

constraint between the two views [45].

RAndom SAmple Consensus (RANSAC) based estimators use a random search for

the determination of F. The method came out in the eighties [48] and many varia-

tions have been made through the years.

A deep comparison between a wide number of method for the determination of F can

be found in [49]. This work is focused on the determination of a robust algorithm,

rather than comparing many already-existing algorithms.

5.2.1.1 Eight point algorithm

With n matched points it is possible to construct a simple linear system from (5.8):

Af = 0 (5.24)

36

5.2. Computer Vision algorithms

where f =
{
F11 F21 F31 F12 F22 F32 F13 F23 F33

}T
. If n > 9 the system

is over determined. Limiting to just 9 matches gives a direct solution that can be

obtained with a lot of numerical methods for solving linear systems. However, since

F is de�ned only up to an unknown scale it is needed to enforce also ‖f‖ = 1. In

this way the minimum number of matched point can be reduced to eight, hence the

name of the algorithm. Should be noticed that for noiseless measurement also A is

rank de�cient. In order to have a non-zero solution in the real case a search for a

least square solution minimizing ‖Af‖ with constraint fT f = 1 must be carried out.

Using Lagrange multipliers the solution is the unit eigenvector corresponding to the

smallest eigenvalue of ATA. Notice that if A is a 8× 9 matrix then ATA is a 9× 9

matrix. The eigenpair can be obtained through a single value decomposition or using

Jacobi's algorithm. The obtained matrix F is not rank de�cient due to numerical

errors and sensor noise, therefore a re�nement of F must be carried out. It is possible

to apply a single value decomposition again and generate a matrix F′ such that the

minimum eigenvalue (last value of Σ) is set to zero. This forceful method is found

to minimize the Frobenius norm of (F′ − F).

A more robust estimation can be obtained by the use of normalized coordinates at

the price of extra computation. The normalization procedure requires the shifting of

the reference system to have the centroid of all features in the center of the image,

in order to reduce numerical problems related to the di�erent order of magnitude of

the pixel coordinates. Then all the points are scaled such that the average distance

from the center is
√

2 (isotropic scaling). All these procedure must be performed

independently on each image [45]. Additional methods for further re�nement of F,

here neglected for the sake of brevity, can be found in [50].

Algorithm 5.1 Eight point algorithm

function NormalizedEightPoint(ξ1,i, ξ2,j)

isotropic scaling← (ξ1,i, ξ2,j)
A← . Form the matrix
UΣVT = A . Solve the system
F← f ← U

UΣVT = F
Σ′ ← Σ . Null third eigenvalue
F′ = UΣ′VT

reverse isotropic scaling← F′

return F . Return the transformed fundamental matrix
end function

The main limitations of the eight point algorithm are the additional computational

37

5. Computer Vision algorithms

load introduced by isotropic scaling and scarce robustness to outliners, i.e. bad

feature matches non coherent with the motion.

5.2.1.2 RANSAC

Since the 8-point algorithm is sensitive to noise and to outliners, a RANSAC proce-

dure (presented in its original version, found in [48]) is often used to remove outliners

and make use of all the possible tracked features matches. In this presentation of

the algorithm the focus is on the original RANSAC in order to describe better its

characteristic. The topic is so much explored and popular that has its own �for dum-

mies� version [51]. Given a set S of matched points the RANSAC algorithm �ow is

described in 5.2.

Algorithm 5.2 RANSAC

function RANSAC(ξ1,i, ξ2,i)

while k < nmax do . Continue until max iteration
i = RandomNumber (8)
Fk ← NormalizedEightPoint (ξ1,i, ξ2,i)
rk ← . Get the residual of all point in S
Ck ← rk . Get the consensus set

if Ck > Cbest then . Check if iteration is better
Cbest ← Ck
Fbest ← Fk

if Cbest > Cmin then . Stop if consensus is enough
break

end if

end if

end while

return Fbest

end function

The minimum number of iterations can be addressed knowing w, the fraction of

inliners in S. If N points are randomly selected from S:

� The probability to take an inliner are approximately wN ,

� The probability that not all N points are inliners is given by 1− wN ,

� The probability that not all N points are inliners in k iterations is
(
1− wN

)k
,

� The probability that in k iteration, at least once, all N points are inliners is

psuccess = 1−
(
1− wN

)k
.

38

5.2. Computer Vision algorithms

Solving for k gives the inequality

k >
log (1− psuccess)

log (1− wN)
(5.25)

this is an optimistic estimation since also inliners can produce bad results due to

noise or numerical errors.

Numerous variations of this algorithm have been proposed, among the which the

MSAC [52] that sorts the pairs with regard of their �tness to the model. Inliners

are sorted basing on their �tness while the outliners have a constant consensus.

There are various kind of RANSAC algorithms that try to reduce the computational

burden, while others try to increase the precision of the results with methods that

include M-estimators [53] or Iteratively Reweighted Least Squares combined with

Levenberg-Marquardt optimization [50].

The drawback of this method is that requires a lot of computation to get the de-

termination of the essential matrix and a good result is not always delivered. It is,

however, robust to noise and outliners.

5.2.2 Non-linear estimation of rigid transformation

The aforementioned methods try to �nd F to get rotation and translation direction,

however there are multiple solutions and the determination of translation magnitude

needs to be addressed anyway. Instead of relying on the estimation of essential matrix

it is possible to make use of a rigid transformation model to estimate directly and

without multiple solutions the transformation between the two views. If the system

is linear then the least squares framework can still be applied, however the non

linear projective model and the rotation parametrization with quaternions, chosen

to prevent singularity, require non linear estimation.

In literature the most popular method to solve such problems applied to computer vi-

sion is the Levenberg-Marquard (LM) algorithm, a non linear minimization that can

shift between two other methods: the gradient descent algorithm and the Newton-

Gauss algorithm. These methods can often be seen as a non linear extension of the

least-squares problem, and similarly the robustness of the estimation can be a�ected

by noise and, most importantly, by outliners. An outliner removal routine can be in-

troduced inside the LM algorithm to eliminate the wrong matches without reducing

the precision of the estimation nor causing divergence [15].

5.2.2.1 Problem formulation

In order to describe the application of the aforementioned algorithms to computer

vision, here they are �rstly presented in the more easy-to-get curve �tting problems.

39

5. Computer Vision algorithms

In certain conditions these methods can be used as curve �tting algorithms also for

computer vision. The dissertation here presented follows the same scheme of [54].

Assume to have a �tting function ŷ (a, ti) of independent variables ti and a vector a of

m parameters that have to �t n measured points yi corresponding to the independent

variables ti. The sum of weighted residuals between the measured data and the �tting

function is then minimized with respect the �tting parameters vector a. This scalar

value is often called the chi-squared error criterion:

χ2 (a) =
n∑
i=1

(
yi − ŷi (a, ti)

wi

)2

(5.26)

In matrix formulation3

χ2 (a) = yTWy − 2yTWŷ + ŷTWŷ (5.27)

where W is the m × m diagonal weighting matrix with Wii = 1/w2
i , y and ŷ are

vectors containing all the n measures and their �ts. wi can be considered a measure

of the goodness of the measure, however in computer vision is not always easy to

address such quantities. In the practical implementation of the algorithm this aspect

is not investigated, here it is reported for the sake of generality.

5.2.2.2 Gradient descent method

The gradient descent method, often called steepest descent method, minimize χ2 (a)

by updating the parameter a in the opposite direction of the gradient of χ2 (a).

This means that the parameter vector a tends to go in the opposite direction of

maximum error increment, therefore going in the right direction to reduce it. For

simple problems this algorithm is found be highly converging towards the minimum

of the �tting function. The gradient of the objective function is

∂χ2 (a)

∂a
= − (y − ŷ)T WJ (5.28)

where J is the m× n Jacobian of the �tting function, de�ned as

J =
∂ŷ

∂a
(5.29)

The parameter variation is

δa = αJTW (y − ŷ) (5.30)

3since yTWŷ is a scalar and W is diagonal the use of yTWŷ = ŷTWy is allowed.

40

5.2. Computer Vision algorithms

where α is the positive scalar that determines the length of the step that has to be

taken opposite to the gradient direction. At each step k the Jacobian Jk, residual

rk = (y − ŷk) and the parameter variation δak are computed. Then the parameter

variation is computed and the parameter vector updated

ak+1 = ak + δak (5.31)

Should be noticed that the Jacobian can be computed through numerical methods

or using the analytical expression if the �tting function is well known.

5.2.2.3 Newton-Gauss method

Unlike the previous method, in this algorithm the objective function is considered

approximately quadratic in the parameters when the solution is near the minimum

[55]. The �tting function can be approximated through Taylor series expansion as

follows

ŷ (a + δa) = ŷ (a) +
∂ŷ

∂a
δa +O

(
‖δa|2

)
(5.32)

ŷ (a + δa) ' ŷ (a) + Jδa (5.33)

substituting in the squared criterion for the perturbed parameter vector, an addi-

tional contribution due to the perturbation appears

χ2 (a + δa) = χ2 (a)− 2 (y − ŷ)T WJδa + δaTJTWJδa (5.34)

The gradient in the perturbation is

∂χ2 (a + δa)

∂δa
=

∂

∂δa

(
χ2 (a)− 2 (y − ŷ)T WJδa + δaTJTWJδa

)
(5.35)

∂χ2 (a + δa)

∂δa
= −2 (y − ŷ)T WJ + 2δaTJTWJ (5.36)

At the minimum the value of such gradient should be zero, therefore the equation

for the perturbation vector can be written as

[
JTWJ

]
δa = JTW (y − ŷ) (5.37)

The update is carried out as in the gradient descent method.

41

5. Computer Vision algorithms

5.2.2.4 Levenberg-Marquard method

The original formulation of the Levenberg method adaptively varies the parameter

update between the two methods previously discussed, by the introduction of the

parameter λ [56].

[
JTWJ + λI

]
δa = JTW (y − ŷ) (5.38)

As λ→ 0 the method approaches the Newton-Gauss method, while for higher values

of λ it approaches the steepest descent method. In fact, if λ � diag
{
JTWJ

}
or

the problem is dominated by the diagonal elements of
[
JTWJ + λI

]
, it is possible

to approximate as

δa ' 1

λ︸︷︷︸
α

JTW (y − ŷ) (5.39)

Marquard, while resuming Levenberg work, suggested in [57] the use of local pa-

rameter variation curvature to speed up the computation and have a better matrix

conditioning, leading to the well known form

[
JTWJ + λdiag

{
JTWJ

}]
δa = JTW (y − ŷ) (5.40)

At each iteration the solution is checked with a metric function to see if the step is

pushing towards the minimization of χ2 () and how fast it is. The metric function of

the step k is de�ned as

ρ (δak) =
χ2 (ak)− χ2 (ak + δak)

2δaTk (λkδak + JTW (y − ŷ (ak)))
(5.41)

If the metric of the step is above a user speci�ed positive threshold ε1 then the

step is deemed worthy, a is updated as ak+1 = ak + δak and λ is decreased. Oth-

erwise the step is not accepted, the parameters not updated and λ is increased to

set the algorithm more on the gradient direction. This should always happen when

χ2 (ak + δa) > χ2 (ak), meaning that the algorithm is getting away from the mini-

mum. There are di�erent updating procedures but the most common is

λk =
λk−1

v↓
if ρ (δak) > ε1

λk = λk−1 · v↑ if ρ (δak) < ε1
(5.42)

where the updating parameters v↑ and v↓ can be di�erent. The choice of these

parameters in�uences the speed of the LM algorithm.

42

5.2. Computer Vision algorithms

The minimum is considered to be reached if one of the following criteria is satis�ed:

� gradient convergence, when the maximum component of the gradient is below

a user de�ned threshold,

� parameter convergence, when the maximum of |δak/ak| is below a user de�ned

threshold,

� �tting convergence, when χ2(ak)
n−m+1 is below a user de�ned threshold,

� maximum number of iterations reached.

The LM algorithm, as well as the other two methods, can be used to minimize the

sum of squared error of a generic function f (a, ti) = 0, in fact

[
JTWJ + λdiag

{
JTWJ

}]
δa = −JTWr (5.43)

where the residual is the n× 1 vector whose components are de�ned as

ri = f (a, ti) (5.44)

It is possible to address the covariance matrix Va of the estimated parameters in

order to assess the quality of the parameter determination:

Va =
(
JTWJ

)−1
(5.45)

5.2.2.5 3-D �tting

In case of a 3-D �tting there are two options to use this method: have the residual

and Jacobian length equal to 3n or address a scalar function that includes all the 3-D

components. In the �rst case the problem lies on the metric and �tting parameter

since they became vectors, while on the second it is possible to fall into numerical

problems. For example to minimize the distance between two 3-D points i and j one

must write

di =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (5.46)

∂dij
∂xj

= − 1

dij
(xi − xj) (5.47)

the Jacobian components values increase as the distance is shortened, therefore when

di → 0 the values of the Jacobian tends to in�nity and the solution diverges. This

can be settled in two ways: using the squared distances for the minimization or solve

43

5. Computer Vision algorithms

the perturbation equation using a SVD and eliminating the rows and column that

makes the solution divergent. Needless to say that the �rst way is computationally

safer and more e�ective.

5.2.2.6 Drawbacks of the non-linear methods

All the above non-linear methods have the same weakness of least-squares problems:

noise and outliners. In the computer vision problem outliners are the most dangerous

source of errors and in some cases it is not easy to solve. One strategy could be the

use of a RANSAC procedure to determine the outliners before using the non-linear

methods, however this increase greatly the computation time, therefore a removal

strategy inside the algorithm is the best approach, although not easy.

For instance if the parameter state is feature dependent the removal of outliners

should be handled with extra care. In other cases, an outliner removal strategy must

be used without a user de�ned absolute threshold but using a relative threshold

in order to avoid exaggerated point reductions. The strategy from [15] has been

deemed very e�ective and thus adopted for this algorithm. Given the residual r of

the n features, the removal procedure needs to

Algorithm 5.3 Outliners removal

function OutlinerRemoval(r)

r↑ ← r . Sort r in ascending order
ε = r↑

(
n
2

)
+ 3

[
r↑
(
3n
4

)
− r↑

(
n
4

)]
. Set the relative threshold

for i← 1, n do
if r↑ (i) < ε then

ISINLINER← i
end if

end for

return ISINLINER . Return the inliner couples
end function

This strategy is e�ective and remove the needs of RANSAC costly computation to

have a robust estimation.

5.2.3 Comparison between numerical methods

The epipolar-based algorithms have the intrinsic limitation derived by the funda-

mental matrix handling:

� multiple solutions,

44

5.2. Computer Vision algorithms

� inability to determine translation magnitude by themselves,

� error-prone in case of null translation.

Moreover RANSAC-based routines are in general quite costly for the result that

they can provide. This implies that the non linear methods and in particular the

LM algorithm are chosen for the computation of the lander state. This choice is also

supported by the good results of [15].

45

5. Computer Vision algorithms

46

Chapter 6
Navigation algorithm

In order to determine the 6 d.o.f. of the lander during the descent phase without using

other sensors, it is almost mandatory to use a non-linear method like the Levenberg-

Marquard algorithm. The motion parameters and a rigid body transformation that

relates two di�erent views have to be de�ned in order to use such method. From [15]

the full state reconstruction is possible if each feature depth is known: with a single

camera this is impossible. However, if the depth of all the feature in the �rst image

are known, it is possible to determine the depths of feature in the second and have

a real 3D reconstruction, eliminating the indetermination in scale. This imposes a

requirement for the algorithm: the initial distance from the ground must be known

beforehand (with other sensors).

For each feature i the relation between the �rst and the second image features is

given by (5.3), R12 is parametrized in terms of the quaternion q. In this expression

for sure η2,i and η1,i are known, while all τ1,i must be addressed by knowing the

previous camera position w.r.t. the terrain. Following this model the LM algorithm

parameter state vector is thus

a =
{

t q τ2,1 · · · τ2,i · · · τ2,n

}T
(6.1)

that is a 7+n long vector. This suggest that the computational burden is quite heavy

and feature dependent. In order to address the problem using the LM algorithm it is

better to re-write (5.3) as a 3D point matching. To better understand the problem

a reference frame change is performed. The variables are rotated in the the terrain

reference frame using the rotation matrix Rtc,1 that rotates from the camera position

at instant 1 to the terrain frame.

47

6. Navigation algorithm

τ1,iη1,i = τ2,iR12η2,i + t (6.2)

Rtc,1τ1,iη1,i = τ2,i [Rtc,1R12] η2,i + [Rtc,1t] (6.3)

τ1,iRtc,1η1,i = τ2,iRtc,2η2,i + tt (6.4)

τ1,iRtc,1η1,i = τ2,iRtc,2η2,i + [xl,2 − xl,1] (6.5)

τ1,iRtc,1η1,i + xl,1 = τ2,iRtc,2η2,i + xl,2 (6.6)

Equation (6.6) represent the matching of the features in the terrain reference frame.

It uses the lander position at instant 1 xl,1, the 3D points (τ1,iη1,i) reconstructed by

the camera and of course the rotation from the camera reference frame to the terrain

reference frame. The same model is thus applied to data of instant 2. The 3D terrain

position of a generic feature i detected by the camera at an instant k is thus

pk,i = τk,iRtc,kηk,i + xl,k (6.7)

In this reference frame, the lander position vector at the second time instant is

considered instead of the translation between views in LM optimization:

a =
{

xl,2 q1,2 τ2,1 · · · τ2,i · · · τ2,n

}T
(6.8)

6.1 Planar model

Before searching for ways to simplify the computation, the determination of all τ1,i

has to be settled. In navigation problems where the camera is looking at the terrain

from an high altitude it is possible to simplify greatly the computation by approx-

imating the terrain surface as a �at plane. If the standard deviation of the terrain

altitude is negligible w.r.t. the altitude of the lander, errors due to this approxi-

mation should be small. Moreover the terrain is considered still since on the Moon

atmospheric elements and life forms are not present.

Taking a plane described in vector notation as a set of points pj with origin p0 and

normal direction n̂pl

(pj − p0) · n̂pl = 0 (6.9)

and a line described by a origin point l0, its direction l̂ and the distance from the

origin dk

pk = dk l̂ + l0 (6.10)

48

6.1. Planar model

The distance of intersection between line origin and plane can be obtained easily as

follows, if all quantities are expressed in the same reference frame.

(
dk l̂ + l0 − p0

)
· n̂pl = 0 (6.11)

(l0 − p0) · n̂pl = −dk l̂ · n̂pl (6.12)

dk = −
(l0 − p0) · n̂pl

l̂ · n̂pl
(6.13)

Taking the terrain surface as a �at plane with the origin of axes coinciding with the

reference frame, i.e. p0 = 0, and l0 as the camera position vector, the term l0 · n̂pl
is the distance of the camera from the terrain: the lander altitude. The term l̂ · n̂pl
then relates the orientation of the line w.r.t. the terrain. The line used is no less

than the line that connect the feature on the camera with its corresponding real 3D

point:

{
l̂1,i

}
=

η1,i
‖η1,i‖

(6.14)

however the feature direction components are given in the camera reference frame,

therefore this vector has to be rotated in the terrain relative frame. The rotation

Rtc,1 that changes a vector from the camera reference to a terrain reference frame

at instant 1 is used as follows:

l̂1,i = Rtc,1
η1,i
‖η1,i‖

(6.15)

Therefore the depth of feature in the �rst image, given the lander altitude when the

�rst shot has been taken Z1, is

τ1,i = − Z1(
Rtc,1

η1,i
‖η1,i‖

)
·

0

0

1

(6.16)

where the plane normal has been taken as the local zenith direction. Following this

thread, the 3D points of the �rst image in the terrain reference frame is determined

by substituting (6.16) into (6.7):

49

6. Navigation algorithm

p1,i = − Z1(
Rtc,1

η1,i
‖η1,i‖

)
·

0

0

1

Rtc,1η1,i +

X1

Y1

Z1

 (6.17)

In a similar fashion

p2,i = − Z2(
Rtc,2

η2,i
‖η2,i‖

)
·

0

0

1

Rtc,2η2,i +

X2

Y2

Z2

 (6.18)

Since each point in the terrain frame must coincide in both picture

− Z1(
Rtc,1

η1,i
‖η1,i‖

)
·

0

0

1

Rtc,1η1,i +

X1

Y1

Z1

 = − Z2(
Rtc,2

η2,i
‖η2,i‖

)
·

0

0

1

Rtc,2η2,i +

X2

Y2

Z2

(6.19)

This expression is basically (6.16) substituted into (6.6). In the end the choice in

which reference frame the model is written is up to the user. From here onwards

terrain coordinates are considered, gaining a better understanding of the problem.

The planar approximation, within its applicability limits, also enables to greatly

reduce the computational burden by not including each feature depth in the mini-

mization. The LM parameter state vector now is

a =
{

xl,2 q1,2

}T
(6.20)

6.2 Derivation of Jacobian

In the LM algorithm the knowledge of the model allows to compute the Jacobian

directly. Jacobian depends, of course, on the function that the LM algorithm is going

to minimize, however given the general 3D point formulation is possible to address

the partial derivatives independently.

50

6.2. Derivation of Jacobian

6.2.1 Partial derivatives

By expanding the model of (6.7) for the i feature in the second of a couple of images,

all the optimization variables of (6.20) are visible:

p2,i = − Z2(
Rtc,1R12

η2,i
‖η2,i‖

)
·

0

0

1

Rtc,1R12η2,i +

X2

Y2

Z2

 (6.21)

Instead of t now there is the camera position in the terrain reference frame, therefore

the partial derivatives w.r.t. the lander position are

∂

∂X2
p2,i =

1

0

0

 (6.22)

∂

∂Y2
p2,i =

0

1

0

 (6.23)

∂

∂Z2
p2,i =

0

0

1

− 1

(
Rtc,1R12

η2,i
‖η2,i‖

)
·

0

0

1

Rtc,1R12η2,i (6.24)

The rotation is expressed using the quaternion q =
{
q1 q2 q3 q4

}
connected to

the Euler angle θ and Euler axis
{
xe ye ze

}
as follows:

q =
{
xe sin θ ye sin θ ze sin θ cos θ

}
(6.25)

The Direction Cosine Matrix (DCM) can be expressed in terms of quaternion com-

ponents

R12 =

q
2
1 − q22 − q23 + q24 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) −q21 + q22 − q23 + q24 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) −q21 − q22 + q23 + q24

 (6.26)

then the partial derivatives of the DCM w.r.t. the quaternion components are

51

6. Navigation algorithm

Q1 =
∂

∂q1
R12 = 2

q1 q2 q3

q2 −q1 q4

q3 −q4 −q1

 (6.27)

Q2 =
∂

∂q2
R12 = 2

−q2 q1 −q4
q1 q2 q3

q4 q3 −q2

 (6.28)

Q3 =
∂

∂q3
R12 = 2

−q3 q4 q1

−q4 −q3 q2

q1 q2 q3

 (6.29)

Q4 =
∂

∂q4
R12 = 2

 q4 q3 −q2
−q3 q4 q1

q2 −q1 q4

 (6.30)

Therefore the partial derivatives of p2,i with respect to the quaternion can be ad-

dressed considering n̂pl =
{

0 0 1
}T

and l̂2,i = Rtc,2
η2,i
‖η2,i‖ for simplicity.

∂

∂q1
p2,i = −Z2Rtc,1

l̂2,i · n̂pl

(
Q1 −R12

1

l̂2,i · n̂pl

((
Rtc,1Q1

η2,i
‖η2,i‖

)
· n̂pl

))
η2,i (6.31)

∂

∂q2
p2,i = −Z2Rtc,1

l̂2,i · n̂pl

(
Q2 −R12

1

l̂2,i · n̂pl

((
Rtc,1Q2

η2,i
‖η2,i‖

)
· n̂pl

))
η2,i (6.32)

∂

∂q3
p2,i = −Z2Rtc,1

l̂2,i · n̂pl

(
Q3 −R12

1

l̂2,i · n̂pl

((
Rtc,1Q3

η2,i
‖η2,i‖

)
· n̂pl

))
η2,i (6.33)

∂

∂q4
p2,i = −Z2Rtc,1

l̂2,i · n̂pl

(
Q4 −R12

1

l̂2,i · n̂pl

((
Rtc,1Q4

η2,i
‖η2,i‖

)
· n̂pl

))
η2,i (6.34)

6.2.2 Jacobian

Two di�erent models can be considered for the representation of the Jacobian in the

LM algorithm. The �rst can be considered the 3D extension of the �tting problem

exploited to explain the LM algorithm, de�ning the �tting function as simply equal

to (6.21). In this case the Jacobian is composed of 3n rows as follows:

52

6.2. Derivation of Jacobian

Ji =
∂p2,i

∂a
(6.35)

Ji =
[

∂
∂X2

p2,i
∂
∂Y2

p2,i
∂
∂Z2

p2,i
∂
∂q1

p2,i
∂
∂q2

p2,i
∂
∂q3

p2,i
∂
∂q4

p2,i

]
(6.36)

J =

J1

...

Ji
...

Jn

(6.37)

This formulation, as stated before, has the weakness of having �tting parameters

and metric as vectors, increasing the di�culty of handling the con�rmation of a step

towards the minimum.

The second model involves the minimization of a function that describes the error

in a scalar way. The simplest choice is the distance between the reconstructed point

p2,i =
{
x2 y2 z2

}T
i
and the 3D points of the previous image p1,i =

{
x1 y1 z1

}T
i

f (a, η2,i) =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

∣∣∣∣
i

(6.38)

To address the Jacobian it is needed the derivation w.r.t. the coordinates, for example

∂

∂x2
f (a, η2,i) =

(x1 − x2)√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

∣∣∣∣∣∣
i

(6.39)

as predicted this function tends to in�nity as the error approaches zero, therefore is

not suited for this problem unless special care is taken in the linear system compu-

tation. A more suitable variation is

f (a, η2,i) = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
∣∣∣
i

(6.40)

where the derivatives are proportional to the error in components, in fact

53

6. Navigation algorithm

∂

∂x2
f (a, η2,i) = 2 (x1 − x2)|i (6.41)

∂

∂y2
f (a, η2,i) = 2 (y1 − y2)|i (6.42)

∂

∂z2
f (a, η2,i) = 2 (z1 − z2)|i (6.43)

∂

∂p2,i
f (a, η2,i) = 2 (p1,i − p2,i)

T (6.44)

This leads to

Ji =
∂

∂a
f (a, η2,i) (6.45)

Ji =
∂f (a, η2,i)

∂p2,i

[
∂p2,i

∂X2

∂p2,i

∂Y2

∂p2,i

∂Z2

∂p2,i

∂q1

∂p2,i

∂q2

∂p2,i

∂q3

∂p2,i

∂q4

]
(6.46)

Ji = 2 (p1,i − p2,i)
T
[
∂p2,i

∂X2

∂p2,i

∂Y2

∂p2,i

∂Z2

∂p2,i

∂q1

∂p2,i

∂q2

∂p2,i

∂q3

∂p2,i

∂q4

]
(6.47)

The Jacobian row has dimension 1 × 7 since
∂f(a, η2,i)
∂p2,i

has dimension 1 × 3 and the

terms in brackets are the same as in (6.36). With this approach the Jacobian total

dimension is reduced to n× 7 and the problem is scalar, easing its handling.

6.2.3 Alternate formulation

It is possible to show that the quaternion parametrization has a weakness in case of

small rotations. Take (6.34) and a case where the camera is pointing downwards.

For small rotations ϑx, ϑy and ϑz the matrix Q4 is simpli�ed:

R12 '

 1 −ϑz ϑy

ϑz 1 −ϑx
−ϑy ϑx 1

 (6.48)

Q4 ' 2

 1 ϑz
2 −ϑy

2

−ϑz
2 1 ϑx

2
ϑy
2 −ϑx

2 1

 (6.49)

Q4 ' I + RT
12 (6.50)

With the camera pointing downwards from an high altitude, ignoring misalignment

on the direction parallel to the terrain

54

6.2. Derivation of Jacobian

η2,i '
{

0 0 1
}T

(6.51)

Rtc,1 =

1 0 0

0 1 0

0 0 −1

 (6.52)

Substituting into (6.34)

∂

∂q4
p2,i ' Z2

−3ϑy

3ϑx

0

 (6.53)

while for other components it gets, for example

∂

∂q1
p2,i ' 2Z2

ϑz + ϑxϑy

1− ϑ2x
0

 (6.54)

With small angles approximation the second order terms can be removed

∂

∂q1
p2,i ' Z2

2ϑz

2

0

 (6.55)

It is straightforward to see that the order of magnitude of some elements is very

di�erent: in fact the middle terms in (6.53) and (6.54) are bound to ϑx � 1. Some-

times this can result in a bad conditioned matrix for the LM that badly a�ects the

result of the algorithm. This can be interpreted as a result of �saturation� of one

quaternion component and since the rotation between two views cannot be too high

is unlikely that the �rst three components would cause problems. Solving directly

for Rtc,2 is an exception to this reasoning.

Without invoking particular checks on the Jacobian and linear system resolution it

is possible, looking at (6.25), to use a quaternion parametrization limiting the Euler

angle within 90°. This can be done removing the fourth component of the quaternion

from the minimization parameters and substituting the unitary requirement of the

quaternion in the rotation parametrization as follows

55

6. Navigation algorithm

q4 =
√

1−
(
q21 + q22 + q23

)
(6.56)

R12 =

 1− 2q22 − 2q23 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) 1− 2q21 − 2q23 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) 1− q21 − q22

 (6.57)

therefore the matrices Q1, Q2 and Q3 are modi�ed accordingly. The partial deriva-

tive of q4 w.r.t. the other three components are

∂q4
∂q1

=
q1
q4

(6.58)

∂q4
∂q2

=
q2
q4

(6.59)

∂q4
∂q3

=
q3
q4

(6.60)

That leads to

Q4 =

 0 q3 −q2
−q3 0 q1

q2 q1 0

 (6.61)

Q1 =
∂

∂q1
R12 = 2

 0 q2 q3

q2 −2q1 q4

q3 −q4 −2q1

+
q1
q4

Q4 (6.62)

Q2 =
∂

∂q2
R12 = 2

−2q2 q1 −q4
q1 0 q3

q4 q3 −2q2

+
q2
q4

Q4 (6.63)

Q3 =
∂

∂q3
R12 = 2

−2q3 q4 q1

−q4 −2q3 q2

q1 q2 0

+
q3
q4

Q4 (6.64)

The form of equations (6.31), (6.32) and (6.33) is still maintained by simply changing

the de�nition of Q1, Q2 and Q3. This strategy enables numerical robustness and

eliminates one variable from the state vector a, reducing the computation time. The

only limitation is that in this formulation q4 is always positive and since it is de�ned

as the cosine of the Euler angle of the rotation this limits the Euler angle between

±90°. It is an acceptable limitation since the lander it is not supposed to turn

abruptly by 90° between two consecutive frames.

56

6.3. Weakness assessment

6.3 Weakness assessment

The algorithm presented may have an important weakness caused by the enforced

simpli�cations. Since it is assumed that the surface the camera views is planar

there is a possibility that the vision system cannot distinguish out of plane rotations

from parallel translation. When using a reference map or stereo vision this may not

happen since 3D points have a relative altitude that may help the vision system to

distinguish a rotation from a translation. 3D information are not recoverable from

single camera view alone, the use of a gyroscope might be the best solution.

Gyroscopes are sensors capable of sensing inertial angular velocities and can be

used to determine rotation though proper integration. In lunar landing scenarios

gyroscopes measures must be handled with care since the celestial body is rotating.

Even if the rotation of the Moon is small compared with the descent time window,

it is always present and became a source of errors if not counted in the attitude

reconstruction. Using gyroscopes to determine rotation while the vision system only

determines translation is a possible solution. The system results to be faster but

prone to attitude drift and less precise. Such a system is very similar to an INS

system, however the drift in position should be way inferior.

6.4 Navigation Algorithm: Dokuganryuu

Taking into account the numerical methods and limitations of the navigation sen-

sors considered, the �nal version of the navigation algorithm here presented exploits

gyroscopes to reconstruct rotations and the camera addresses the translation. The

LM algorithm is used to determine the lander position based on the previous posi-

tion, the images of the previous and the current instant and of course the rotation

computed by the gyroscopes.

The name of the algorithm here presented is Dokuganryuu, in honor to the Japanese

feudal lord Date Masamune, main sponsor of the city of Sendai where the experimen-

tal activity to validate such algorithm has been carried out. Dokuganryuu means

�one-eyed dragon� in Japanese and was the nickname of Date Masamune because

his right eye was blind since childhood, making this name be�tting the navigation

system itself.

57

6. Navigation algorithm

6.4.1 Algorithm �ow

The algorithm has been devised in di�erent steps, given a previous image Pk and

the current image Pk+1, respectively taken at time tk and tk+1 the algorithm does:

Algorithm 6.1 Dokuganryuu navigation algorithm

procedure Dokuganryuu

loop

ωm ← . Get gyro measure
Rtc,k+1 ← (Rtc,k, ωm) . Get attitude from gyroscope measure

Pk,Pk+1 ← . Take images
(ξk+1,i, ξk,j)← (Pk,Pk+1) . Detect SURF
Match feature i, j . Match features to get couples
(ηk,i, ηk+1,i)← (ξk,i, ξk+1,i) . Transform coordinates with K
pk ← (xl,k,Rtc,k, ηk,i) . Obtain 3D point of �rst image

xl,k+1 ← LevenbergMarquardt (ηk+1,i,pk,Rtc,k,Rtc,k+1,xl,k)
k ← k + 1

return (Rtc,k+1,xl,k+1)
end loop

end procedure

6.4.2 Levenberg-Marquard implementation

The LM algorithm takes the 3D points reconstructed from the previous image and

an initial guess that can be either the old position or the forecast position based on

previous ones. In order to have an initial evaluation the residual and �tting function

are computed using the initial guess. The �rst value of χ2 (a0) is used as a reference

in the metric computation while the residual is used to roughly remove the worst

outliners using 5.3:

The LM algorithm requires to set λ0, v↑, v↓ in some way before the actual compu-

tation. There is not a univocal solution for the choice of these parameters, di�erent

authors have worked on the topic [54, 58, 59] but in general λ0 is found to depend

on the distance of the initial guess from the �nal solution. Basically, the further

the initial guess is supposed to be from the �nal solution the higher λ should be. A

bigger λ0 is always suggested, even if this could reduce the speed of the algorithm.

58

6.4. Navigation Algorithm: Dokuganryuu

Algorithm 6.2 Levenberg-Marquard for planar matching

function LevenbergMarquard(η2,i,p1,Rtc,1,Rtc,2,a0)

r0 ← (η2,,p1,Rtc,1,Rtc,2,a0)
χ2 (a0)← r0
outliner removal {r0} . Gross outliner removal

while k 6= nmax do . Continue until max iterations

Jk, rk ← (η2,,p1,Rtc,1,Rtc,2,ak)
δak ←

[
JTk Jk + λkdiag

{
JTk Jk

}]
δak = −JTk rk

ρ (δak + ak)←
(
χ2 (ak) , χ

2 (δak + ak)
)

if ρ (δak + ak) > ε1 then . Check the metric

ak+1 ← ak + δak . Update the state parameter vector

if max
(
JTk rk

)
< ε2 then . Check for gradient convergence

break

else if max
∣∣∣ δak
ak

∣∣∣ < ε3 then . Check for parameter convergence

break

else if
χ2(ak+1)
n−m+1 < ε4 then . Check for �tting convergence

break

end if

outliner removal {rk}
λk+1 = λk

v↓
. λ update

count← 0

else

λk+1 = λk · v↑ . λ update
count← count+ 1

if count > nfail then . Check for consecutive failure
break

end if

end if

end while

return a . Return the best estimate
end function

59

6. Navigation algorithm

60

Chapter 7
Experimental validation

In order to verify the quality of the designed algorithm, as well as to identify its

limits, an experimental activity has been carried out. The main purpose of this

activity has been the demonstration of the potential of the algorithm. Despite the

limited time and resources, the results are enough to demonstrate the potential of

such algorithm.

7.1 Experimental setup

Figure 7.1: Experimental setup sketch

The experimental setup designed for the validation of the navigation algorithm is

composed by:

� navigation suite (camera and IMU)

� robotic manipulator

61

7. Experimental validation

� projector of lunar surface

� screen

An example of the disposition of these elements is presented in Figure 7.1. Camera

and IMU are �xed together on an aluminum plate connected to the robotic arm tip,

the connection is designed to be �exible to allow di�erent camera orientations. The

screen with the lunar surface projected images is positioned about 2 meters from the

camera and illuminated by a projector, placed on a table beside the robotic arm in

order to avoid projection interference, as shown in the �gure. Lights were kept to a

minimum in order to have a good projected image on the screen. The aforementioned

elements of the setup are presented in details.

7.1.1 Camera

The camera selected for this experiment is the Matrix Vision BlueFox-MLC205.

Camera technical speci�cations are summarized in Table7.1.

Table 7.1: Camera data sheet

Parameter Value Units

Resolution 2592×1944 pixels
Max Frame rate 5.8 Hz
Shutter type Rolling/Global Reset
Sensor size 1/2.5�
Pixel size 2.2×2.2 mm

Exposure time 10÷ 106 ms
ADC resolution/output 10 / 10 ÷ 8 bit

SNR > 38 dB
DR (normal / HDR) > 70 dB
Sensor Manufacturer Aptina

Sensor Name MT9P031

Frame rate and resolution have been reduced during the tests. In fact current space

camera system cannot a�ord such high performance. Also, the actual computational

load depends depends on the size of the image stream. If the image processing

algorithm is not fast enough having an high frame rate is just useless.

The framerate for the following tests has been �xed at 2 fps and images are cropped

to form a 300×300 pixel stream of images.

62

7.1. Experimental setup

7.1.2 IMU

Figure 7.2: Phidget IMU

The Phidgets Spatial 3/3/3 1056 version 100 (product release) has been selected as

IMU. It includes a 3-axis accelerometer, a 3-axis gyroscope and a 3-axis magnetic

compass (not considered in this research project). Table 7.2 shows related technical

data.

Before the test campaign, the sensor has been tested for noise, drift and bias when

standing still. It has been found that the measured acceleration is slightly di�erent

from the standard 9.81m/s2; a small bias has been spotted also in angular rate mea-

sures around all three axes. Then, a IMU calibration procedure has been performed

independently before each navigation system test runs, after experimental activity.

Please notice that the sensor always takes samples at the higher frequency, regardless

of the user requests. The actual output measure is computed internally by averaging

all the samples taken between two consecutive user request. This means that sam-

pling at 8ms produces an output signal that is the mean between two consecutive

samplings at 4ms. In order to reconstruct the weak signal of the IMU the acquisition

system has been set to sample at the maximum allowed speed.

63

7. Experimental validation

Table 7.2: IMU Data sheet

(a) Accelerometer

Parameter Value Units

Resolution 228 mg
Bandwidth 110 Hz

Max Acceleration ±5 g
X-Axis Noise Level 300 mg
Y-Axis Noise Level 300 mg
Z-Axis Noise Level 500 mg
Rotation Error 2 mg

(b) Gyroscope

Parameter Value Units

Max Angular Speed 400 °/s
Resolution 0.02 °/s

Drift 4 °/min

(c) Board

Parameter Value Units

Max Current Consumption 45 mA
Min Sampling Speed 1 s
Max Sampling Speed 4 ms

Analog to Digital Converter Resolution 16 bit
USB Min Voltage 4.8 V

DC USB Max Voltage 5.3 V
Min Operating Temperature 0 °C
Max Operating Temperature 70 °C

7.1.2.1 Synchronization

IMU and camera take samples independently, but some form of synchronization is

required to properly match the signals of the two sensors. In this �rst application,

data are saved together at the time instant they are written, with the PC internal

temporal marker. This provide a good synchronization for post processing data,

but in case of a real system the timing should be obtained in a more rigorous and

controlled way.

64

7.1. Experimental setup

7.1.3 Manipulator

Figure 7.3: Mitsubishi PA10 manipulator

The manipulator used for the experiments is the 7 joints PA10 from Mitsubishi. Its

joints permit it to have a good spatial excursion and a good rotational movement of

the tip where the navigation system is attached. Manipulator data are reported in

Table 7.3, while joints identi�cation and reference frame are reported on Figure 7.3.

Table 7.3: Manipulator Data sheet

(a) General properties

Parameter Value Units

Shoulder reach 315 mm
Upper arm 450 mm
Lower arm 500 mm
Wrist reach 80 mm

Max integrated speed 1.55 m/s
Load Capacity 10 kgf
Maximum reach 1345 mm

(b) Joints

Joint Limit angle Max Speed

S1 ±177° ±57.3°/s
S2 ±91° ±57.3°/s
S3 ±174° ±114.6°/s
E1 ±137° ±114.6°/s
E2 ±255° ±360°/s
W1 ±165° ±360°/s
W2 ±360° ±360°/s

In order to �x the navigation system to the PA10 tip an adapter made using alu-

minum plates and aluminum pro�les has been designed and realized. The sensor

assembly can be mounted pointing toward any orthogonal direction.

65

7. Experimental validation

Figure 7.4: System with adapter

The system exchange data with the acquisition PC through two 5m long USB cables.

7.1.3.1 Integration

Figure 7.5: Integration with the PA10

Figure 7.5 shows one of the integration con�gurations between navigation hardware

and manipulator arm. This con�guration has been used for all the motion where the

camera moves towards the lunar surface.

In the sequences that exploit a translation parallel to the ground the robotic arm

starting point was symmetric w.r.t. the one in Figure 7.5. That con�guration cannot

introduce a pitching rotation, therefore for one particular sequence the positioning

has been devised di�erently. During those simulations the camera is not positioned

as in Figure 7.5 but it exploits the �exibility of the connections, leading to a di�erent

rotation between PA10 data and camera coordinates.

In all simulations a coordinate transformation of PA10 data is performed in order to

have the reference in terrain coordinates. The rotation between the tip coordinates

and the camera coordinates has been exploited in order to determine the initial

attitude conditions of the navigation system w.r.t. terrain coordinates.

66

7.1. Experimental setup

7.1.3.2 Motion

The robotic arm can be moved using three di�erent programs:

� point to point by joint angle command,

� point to point by position command,

� tip velocity command.

Point to point by joint is the simplest method, but requires the user to solve an inverse

dynamic problem in order to convert the desired trajectory into joint angles pro�les.

Mitsubishi provided a position control where the manipulator can be controlled by

position and orientation of the tip: in this case the inverse dynamic is directly

solved by robotic arm's software. Singularities problems can occur during simulation.

Moreover, in both point to point control modes a tremble movement, arising at the

beginning of each motion, has been observed and detected by the IMU: unrealistic

peaks contaminated the signal.

This lead to the choice of tip velocity control. In this mode the PA10 internal

software solves the inverse dynamics and provides encoder measures for all the joints

during the whole run. Even in this mode singularity may compromise the whole

sequence, therefore the sequences used in the following tests have been obtained by

trial and error procedure. In order to distinguish IMU signal from its noise the tip

velocity have been set not too slow and the maximum excursion of the tip results to

be con�ned due to geometrical constraints.

7.1.4 Simulated lunar surface

A 3D mock-up of real lunar terrain is costly and di�cult to obtain; moreover there

are some general problems in the camera focus regulation due to limited space in

the laboratory. In fact, in the case of a real landing scenario, the distance from the

ground during the navigation phase is in the order of km and is shortened just on

the �nal phase. With such distance the camera can be set with a focus at∞ in order

to see everything clearly. A surface put on the ground would have been too close to

the camera due to the manipulator arm reach, therefore it has been decided to use

a vertical surface placed at about 2 meters from the PA10.

The best method found is to use a projector and with lunar-like surfaces on a screen.

This requires a good planning of lights during the experiments, however it is the

fastest and cheapest way to address a preliminary testing of the algorithm.

The main drawback in this approach is the lack of dimensionality of projected images.

Since the navigation system, in its computation, assumes the surface to be �at the

67

7. Experimental validation

experimental validation could incur in inconsistency. Further experiments with 3D

models should be considered in future activities.

Three di�erent lunar surface images1, depicted in Figures 7.6, 7.7 and 7.8, have been

considered in the test campaign. The �rst image is to be referred as Crater Field

(CF), the second to Crater Field Overexposed (CFO) and the third to Lunar Plains

(LP). The use of lunar images has been decided in order to have experimental data

for future testing: any image could have been used by the navigation algorithm since

Dokuganryuu do not exploit high level features like craters. These three images have

been selected among others also for their size and resolution in order to have good

projections on the screen.

Figure 7.6: Crater Field

1Freely taken from the internet.

68

7.1. Experimental setup

Figure 7.7: Crater Field Overexposed

Figure 7.8: Lunar Plains

Figures 7.6 and 7.7 depict the same area of the Moon, ideally with two di�erent

brightness settings in order to test the algorithm robustness to various light condi-

tions. The second one presents an higher contrast due to an arti�cial modi�cation

of the projected image fed to the projector. The third sample, shown in Figure 7.8,

represents a di�erent area of the Moon and has been selected to assess algorithm

performance with di�erent terrain.

The terrain reference frames orientation is shown in all three �gures. In accord with

these axes it has been decided to de�ne pitching when the camera rotates around

ytr axis, yawing when rotating around xtr and rolling when rotating around ztr, not

shown in the picture but placed to form a right-hand tern.

69

7. Experimental validation

7.1.5 Algorithm and acquisition

Data acquisition from the camera-IMU system has been handled by a single PC. The

parallel C++ acquisition software has been coded to work on that speci�c PC. PA10

was controlled by another computer with an already existing C program running

on ARTLinux: coupling robotic arm handling and camera-IMU acquisition on the

same device was not possible at the time. The computer dedicated to manipulator

control handled also data acquisition from the PA10 internal encoders, providing the

position and attitude reference used in the tests.

After the acquisition the images from the stream are cropped and and IMU data are

pre-processed. Subsequently the two sensors are synchronized and matched with the

PA10 data. These data are �nally elaborated by Dokuganryuu on the acquisition

PC. Direct computation during a test was not possible at the time. The navigation

algorithm has been developed on Matlab® using the computer vision toolbox for

feature extraction and matching to reduce the development time; the LM algorithm

is custom made.

7.2 Assessing the weakness of the full state reconstruc-

tion

The �nal version of Dokuganryuu use gyro measures to determine rotation d.o.f. and

images to get the translation d.o.f. The reasoning behind this choice is a possible

lack of robustness when the algorithm has to distinguish planar translation from

out of plane rotations. This can be veri�ed using the images from two sequences:

Horizontal �ight and Horizontal �ight with pitch.

(a) Beginning (b) Half way (c) End

Figure 7.9: Horizontal �ight: pure leftward translation

Figure 7.9 present a sequence where the camera is parallel to the ground and it

is moving leftward. The motion can be intuitively perceived seeing the craters at

the bottom of the �rst image moving rightward in the following two images. If the

70

7.2. Assessing the weakness of the full state reconstruction

camera is considered still, the ground moves rightward, if the ground is still the

camera is moving leftward. Like a human being the CV algorithm can reconstruct

such behavior. In case of rightward motion the terrain seems to move leftward in a

specular case to the one in the picture: looking at the picture from the last up to

the �rst permits to see the specular motion as well.

(a) Beginning (b) Half way (c) End

Figure 7.10: Horizontal �ight with pitch Leftward translation and rightward rotation

Figure 7.10 images come from a similar sequence where the camera is moving left-

ward and tilting rightward. The translation direction and magnitude for the whole

sequence is the same as the previous, however the camera is subjected to out of plane

rotation. Looking at the terrain it seems to move leftward, suggesting a rightward

camera motion. The distortion caused by the rotation is not recoverable from one

image to the other leading to the drawback of image stream reconstruction that was

speculated before.

Figure 7.11: Feature matched in Horizontal �ight with pitch

Figure 7.11 shows that even when the motion is not very small it is very di�cult

to �nd a distortion that might be caused by rotation. The full state reconstruction

is not a viable option, Dokuganryuu �nal con�guration might be able to solve this

issue through the use of gyroscopes.

71

7. Experimental validation

7.3 Tests

In this section, obtained experimental results are presented. Test cases have been

selected in order to test the most complete as possible combinations of fundamental

translations and rotations. In each case, the test is repeated with the same path

for each available landing surface. Nominal motion parameters for the experimental

sequences are listed in Table 7.4. Velocities are given in terrain reference frame and

all simulations lasts 15 seconds.

All the images shown in the section come from real data recorded by the camera

during tests. Perspective distortion, visible in some graphs, has been applied with a

bi-dimensional model.

Position and attitude error are measured by confronting Dokuganryuu reconstruction

with position and attitude computed with the PA10 joint angle measurements. The

joints angles positions are used to reconstruct the tip trajectory for their precision,

leading to the assumption that they represent the �true motion� of the camera-IMU

ensemble. The precision of the reference is deemed to be in the order of the centime-

ter, since it involves the tip motion while the camera reconstruct its own motion:

misplacement of the references might results in apparent error. The initial conditions

for Dokuganryuu are taken from this reference and the altitude was measured each

test run, since the projector positioning may have varied from case to case.

Table 7.4: Motion test data

Sequence
Translation Velocity Rotational Velocity

ztr [cm/s] xtr [cm/s] xtr [°/s] ytr [°/s] ztr [°/s]

Vertical descent -4 0 0 0 0
Vertical descent with roll -4 0 0 0 2.5

Horizontal �ight 0 -3 0 0 0
Horizontal �ight with pitch 0 -3 0 -1 0
Horizontal �ight with yaw 0 -3 -0.5 0 0

Diagonal �ight -4 1 0 0 0
Diagonal �ight with pitch -4 1 0 0.5 0

The number of feature processed by Dokuganryuu has not been limited in order to

show how their number may a�ect the precision of the reconstruction. Limiting the

number of feature to be processed reduces the computation time, however this impor-

tant aspects has not been included in the experimental validation of the algorithm

due to time and budget constraints.

Another useful insight about the algorithm performance is given by the comparison

between the maximum and mean error in the 3D matching with the apparent pixel

dimension. The pixel dimension has been obtained through camera intrinsic param-

eters (K) and the local distance of the optics from the screen. The confrontation

72

7.3. Tests

permits to assess the matching between subsequent images through the LM and its

model. Should be noticed that it is an index of LM performance since it is not

directly dependent from the motion model coded.

In some cases it has been investigated the precision of the vision system by the

introduction of �exact� measures. Rotations and altitude information have been

computed using the PA10 measures, i.e. the reference trajectory. Such measures

permits to see how the system would have performed in case of better gyroscopic

measures or with the addition of an altimeter.

Di�erence in brightness in cumulative plots are added arti�cially, with the sole pur-

pose to highlight subsequent image boundaries for abetter readability. A good over-

lapping between images is itself a representative index of the e�ectiveness of the

proposed method.

73

7. Experimental validation

7.3.1 Vertical descent

(a) CF (b) CFO

(c) LP

Figure 7.12: Vertical descent - Reconstructed trajectory and terrain

Figure 7.12 presents three simple sequences where the camera is moving on a straight

line towards the screen, simulating a vertical descent towards the landing site.

74

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.13: Vertical descent - Features and error comparison

Figure 7.13 shows that the maximum error in feature matching is always smaller than

the dimensions of the projected pixel dimension. This implies that the reconstruction

of the image stream is smooth: consecutive images are superimposed perfectly. The

number of feature shown in Figure 7.13 are a�ected by the image contrast, in fact

the second sequence images produce more features than the other two with lower

contrast. This implies that a pre-processing of the images can be used to increase or

decrease the number of feature to be tracked. Moreover, the number of feature does

not seem to a�ect the determination error, hence a proper reduction in the number

of feature used in the algorithm should not reduce performance and should reduce

the computation time.

75

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.14: Vertical descent - Mapped terrain

The projection on the ground of reconstructed images is reported in Figure 7.14. for

a better readability, only the �rst and the last processed images are shown. In all

the three scenarios a perfect matching is achieved.

(a) CF (b) CFO

(c) LP

Figure 7.15: Vertical descent - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

Figure 7.15 reports a comparison between the attitude reconstructed by IMU and

76

7.3. Tests

and reference. It is noticeable that some images are not equally spaced in time (this

phenomenon can be observed also in other test results). This can be caused by the

computer gathering data time code writing or directly by sensor delay. A proper

management on a real embedded system should solve this issue.

(a) CF (b) CFO

(c) LP

Figure 7.16: Vertical descent - Attitude Error (gyroscope)

Gyroscope integrated signals drift as expected (Figure 7.16). With a better data �l-

tering or better hardware it is possible to obtain more precise attitude determination,

yet it has been decided to keep noisy measurement to manifest and analyze drift-

ing e�ects. The drift in rotation determination a�ects indirectly also the position

estimation, as seen in Figure 7.17 and 7.18.

77

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.17: Vertical descent - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

78

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.18: Vertical descent - Position Error

79

7. Experimental validation

Anyway, the macro motion is well recognized by the vision algorithm although gyro

drift a�ects measurement, as seen in Figure 7.17 and 7.18. As expected the position

error tends to increase as time goes on. From Figure 7.18c is evident that the drift

in position of the LP sequence is lower since the attitude drift is lower than in the

�rst two tests, as clearly shown by Figure 7.16.

7.3.1.1 Vertical descent with perfect attitude

(a) Position (b) Position error

Figure 7.19: Vertical descent - Perfect attitude (CF sequence)
In the �rst image the blue lines represent the PA10 reference while the red circles represent Dokuganryuu

reconstruction.

In order to assess the impact of gyroscopes drift over the reconstructed path, an addi-

tional run of the algorithm has been performed considering �true� attitude measures

directly from the manipulator. Results reported in Figure 7.19 shows the error in

xtr and ytr direction to decrease signi�cantly.

80

7.3. Tests

7.3.2 Vertical descent with roll

(a) CF (b) CFO

(c) LP

Figure 7.20: Vertical descent with roll - Reconstructed trajectory and terrain

In the sequence depicted in Figure 7.20 the camera performs a screw descent. While

descending at constant speed, exactly as the previous sequence, it rotates around ztr

axis for 37.5 degrees.

81

7. Experimental validation

(a) CF (b) CFO

(c) LP

Figure 7.21: Vertical descent with roll - Features and error comparison

Except some isolated points, the error in 3D reconstruction, visible in Figure 7.21,

still remains below the pixel limit. In these sequences the attitude has been recon-

structed perfectly from PA10 joints in order to show a possible robustness failure.

(a) CF (b) CFO (c) LP

Figure 7.22: Vertical descent with roll - Mapped terrain

The superimposition of the images still remains perfect, as reported in Figure 7.22.

82

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.23: Vertical descent with roll - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

83

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.24: Vertical descent with roll - Position Error

84

7.3. Tests

Figure 7.23 and 7.24 put in evidence that in all the three tests the camera recon-

struction drifts along the xtr axis: the error is not due to attitude reconstruction

or LM failure. The best explanation of the phenomena is that the camera is not

mounted perfectly on the PA10 tip and the center of rotation is not coincident with

the camera optical axis. This misplacement is all but easy to determine and thus

suggest to deepen the question for vehicle application. In these experiments it is

not possible to evaluate such eccentricity, therefore the reference is not exactly com-

parable with the reconstruction of the camera, since it is based on the navigation

suit motion instead of the PA10 tip motion. Since it is unlikely to have the camera

perfectly aligned with the center of mass of the lander it is advisable to estimate

the eccentricity. Theoretically it is possible to include the rotation eccentricity in

the LM algorithm and determine the center of mass of the lander if it is rotating

accordingly.

85

7. Experimental validation

7.3.3 Horizontal �ight

(a) CF (b) CFO

(c) LP

Figure 7.25: Horizontal �ight - Reconstructed trajectory and terrain

In this sequence the camera moves along a straight line at the constant altitude and

a constant speed of −0.03m/s along xtr axis (Figure 7.25).

86

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.26: Horizontal �ight - Features and error comparison

From Figure 7.26 the obtained matching error magnitude is greater than the pre-

vious cases of Vertical descent. This is probably due to the larger displacement

between features. The maximum error still remains on the same order of magnitude

of projected pixels, giving a good reconstruction of the landscape from the stream

of images.

(a) CF (b) CFO (c) LP

Figure 7.27: Horizontal �ight - Mapped terrain

The projected images from Figure 7.27 show once again that the vision system works

�ne and the estimated position is coherent with the model it has been given.

87

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.28: Horizontal �ight - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

(a) CF (b) CFO

(c) LP

Figure 7.29: Horizontal �ight - Attitude Error (gyroscope)

Figures 7.28 and 7.29 shows that the measured attitude error is always lower than

0.5 degrees at the end of the test. Despite of this low value, this error still remains

an indirect source of errors also in position determination, as can be seen in Figures

7.30 and 7.31.

88

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.30: Horizontal �ight - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

89

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.31: Horizontal �ight - Position Error

90

7.3. Tests

The drifts visible in Figure 7.30 and 7.31 are more signi�cant than in the previous

Vertical descent tests. The most relevant component is the drift in altitude, since it

provokes more error in the other two directions, being extremely correlated to the

scale of the image 3-D points. An error in altitude results in an increased error in

the other two directions, therefore reducing this error would increase the robustness

of the system.

7.3.3.1 Horizontal �ight with perfect attitude and altimeter

(a) Position (b) Position Error

Figure 7.32: Horizontal �ight - Perfect attitude and altimeter measure (CF sequence)
In the �rst image the blue lines represent the PA10 reference while the red circles represent Dokuganryuu

reconstruction.

Figure 7.32 shows that if the attitude error is removed and the altitude is measured

by a somehow precise instrument di�erent from the camera (radar or laser altimeter

for instance) the drift is highly reduced obtaining both precision and robustness.

91

7. Experimental validation

7.3.4 Horizontal �ight with pitch

(a) CF (b) CFO

(c) LP

Figure 7.33: Horizontal �ight with pitch - Reconstructed trajectory and terrain

The sequence presented in Figure 7.33 follows the same trajectory of the previous

one, but a constant angular rate of −1°/s is imposed around ytr axis resulting in a

rightward pitching motion. The horizontal motion is coupled with a rotation that

has more e�ect on the vision than the translation itself, resulting in an apparent

backward motion. Although borderline, this sequence helps to address the limits of

the system.

92

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.34: Horizontal �ight with pitch - Features and error comparison

In opposition with the previous simulation, the combined rototranslation points the

camera towards the same portion of the surface, with a small displacement between

views. This of course in�uence the error shown in Figure 7.34 that is more aligned

with the Vertical descent tests.

(a) CF (b) CFO (c) LP

Figure 7.35: Horizontal �ight with pitch - Mapped terrain

Also in this case the the matching error remains always below the projected pixel

size, the images superimpositions in Figure 7.35 are coherent.

93

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.36: Horizontal �ight with pitch - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

(a) CF (b) CFO

(c) LP

Figure 7.37: Horizontal �ight with pitch - Attitude Error (gyroscope)

In these particular cases the attitude error drifts of about one full degree (Figure

7.36 and 7.37).

94

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.38: Horizontal �ight with pitch - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

95

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.39: Horizontal �ight with pitch - Position Error

96

7.3. Tests

As could be expected from a vision reconstruction of a borderline sequence the errors

and drift are evident (Figure 7.39), although the left macro motion is still captured

(Figure 7.38). The use of gyroscopes proves to be necessary, looking at the results.

This con�rms that the speculation over out of plane rotations was correct and that

Dokuganryuu is capable of reconstructing the trajectory even in these cases.

97

7. Experimental validation

7.3.5 Horizontal �ight with yaw

(a) CF (b) CFO

(c) LP

Figure 7.40: Horizontal �ight with yaw - Reconstructed trajectory and terrain

This sequence exploit the same leftward motion as Horizontal �ight and Horizontal

�ight with pitch, but add a constant rotation around the xtr axis, as seen in Fig-

ure 7.40. Without the use of gyroscope the computer vision algorithm would have

probably reconstructed a translation in both on xtr and ytr.

98

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.41: Horizontal �ight with yaw - Features and error comparison

As for the case of Section 7.3.3, the relative large displacement between matched

features causes an increase in their displacement error, still under the pixel dimension

threshold (7.41).

(a) CF (b) CFO (c) LP

Figure 7.42: Horizontal �ight with yaw - Mapped terrain

Despite the errors in 3-D feature matching, the projected images in Figure 7.42 are

well overlapped.

99

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.43: Horizontal �ight with yaw - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

(a) CF (b) CFO

(c) LP

Figure 7.44: Horizontal �ight with yaw - Attitude Error (gyroscope)

In Figure 7.44 is possible to see that the roll error presents a sudden increase just at

the beginning of the maneuver.

100

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.45: Horizontal �ight with yaw - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

101

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.46: Horizontal �ight with yaw - Position Error

102

7.3. Tests

Figures 7.45 and 7.46 shows an initial error in the reconstruction of ytr direction that

produces somehow a constant error. This is a typical example of system drift: an

error in reconstruction a�ects permanently all the subsequent estimations. Unless a

proper �lter modeled on the lander dynamics is designed or some limits are removed,

there is no way that such a system can recover the error. The tracking of features

in a longer time window should increase the robustness, but this is possible only if

features remain in sight for enough frames. In a landing scenario, this could happen

only in the very last phases, when the horizontal speed is low and the trajectory is

near vertical.

103

7. Experimental validation

7.3.6 Diagonal �ight

(a) CF (b) CFO

(c) LP

Figure 7.47: Diagonal �ight - Reconstructed trajectory and terrain

This motion sequence combines pure translation along two directions: xtr and ztr.

The camera is mounted like the Vertical descent case and it moves towards the screen

at −0.04m/s and partly on the xtr axis with a velocity of 0.01m/s. The trajectory

is shown in Figure 7.47.

104

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.48: Diagonal �ight - Features and error comparison

Since the observing camera window is looking more or less at the same portion of

land the feature displacement in Figure 7.48 is contained and thus the error is below

pixel size.

(a) CF (b) CFO (c) LP

Figure 7.49: Diagonal �ight - Mapped terrain

The good images overlapping shown in Figure 7.49 con�rms the considerations based

on the good matching error of Figure 7.48.

105

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.50: Diagonal �ight - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

(a) CF (b) CFO

(c) LP

Figure 7.51: Diagonal �ight - Attitude Error (gyroscope)

The gyro drift is mostly signi�cant just in one axis, as shown in Figures 7.50 and

7.51.

106

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.52: Diagonal �ight - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

107

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.53: Diagonal �ight - Position Error

108

7.3. Tests

As expected combining two motions result in an higher drift (Figure 7.52 and 7.53).

The error in ytr is mostly given by gyro drift while error in the xtr directions can be

caused by erroneous distance measurement or by miscalculation in intrinsic camera

parameters.

109

7. Experimental validation

7.3.7 Diagonal �ight with pitch

(a) CF (b) CFO

(c) LP

Figure 7.54: Diagonal �ight with pitch - Reconstructed trajectory and terrain

This sequence is similar to the previous but it adds a pitching rotation at the con-

stant rotational speed of 0.5°/s around ytr (Figure 7.54). The combination of two

translations, an in plane rotation and the analysis of previous tests suggest an higher

drift.

110

7.3. Tests

(a) CF (b) CFO

(c) LP

Figure 7.55: Diagonal �ight with pitch - Features and error comparison

The complex rototranslation motion imposed on the camera involves a relative larger

displacement between subsequent images. This involves larger errors in feature

matching, as con�rmed by Figure 7.55. Despite of this, feature displacement er-

ror still remains below the pixel size limit, giving a good landscape reconstruction

visible in Figure 7.56.

(a) CF (b) CFO (c) LP

Figure 7.56: Diagonal �ight with pitch - Mapped terrain

111

7. Experimental validation

(a) CF (b) CFO (c) LP

Figure 7.57: Diagonal �ight with pitch - Attitude (gyroscope)
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

(a) CF (b) CFO

(c) LP

Figure 7.58: Diagonal �ight with pitch - Attitude Error (gyroscope)

The attitude reconstruction from Figures 7.57 and7.58 is mostly on line with the

previous cases, matching the macro rotation and drifting below 0.3 degrees.

112

7.3. Tests

(a) CF

(b) CFO

(c) LP

Figure 7.59: Diagonal �ight with pitch - Position
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

113

7. Experimental validation

(a) CF

(b) CFO

(c) LP

Figure 7.60: Diagonal �ight with pitch - Position Error

114

7.4. Comparison with previous works

It is possible to see in Figure 7.60 that the accuracy in position determination is

better than the one obtained without out of plane rotation, despite the more complex

motion. In the sub-case of Figure 7.60a an additional position error seems involved.

Even so, the drifting behavior of the system is still clearly visible.

7.4 Comparison with previous works

Other works adopting an approach similar to the one presented here are rare in

literature; usually rotations are not explicitly addressed, therefore is not easy to

confront the problematic here discovered. In [15] a similar testbed is used, but due

to weight limitations rotations are not tested, therefore not being able to show this

behavior. In many works the vision system is coupled with INS and used to constrain

the navigation through epipolar constraint like in [11,16], moreover in [11] rotations

are addressed just by gyroscopes and the CV algorithm do not attempt to correct

them. Many works in the �eld use maps to correlate the images or remove the two-

view limitations, other fuses with INS with an augmented state vector like SLAM

approaches. Here emphasis is put on attaining an algorithm speed capable to work

with high constraints.

Figure 7.61: Trajectory from Roumeliotis et al.

Some comparison can be made with experimental results given in [15]. In this refer-

ence the similar testbed used a 3D mockup of the lunar surface instead of a projector.

Plus the IMU involved granted a better accuracy, but at the price of high weight that

limited he rotational capabilities of the robotic arm during experiments. Rotations

were not involved in that work. Figure 7.61 reports the reconstruction of one tra-

jectory presented in the reference [15]: as in the work presented here, the trajectory

given by the robotic arm has been considered as reference and reconstructed by the

vision system. Plus, in [15] also a Kalman Filter has been used in order to improve

the reconstruction. From the graph, the �nal error of the vision system seems about

3-5 cm, while the �nal error in their KF seems about few centimeters.

115

7. Experimental validation

Figure 7.62: Diagonal �ight sequences
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

Figure 7.61 can be compared with the cases with two axis translation seen in 7.3.6 and

7.3.7. Figure 7.62 reports the motion in ztr and xtr for the three sub-cases of Diagonal

�ight, while Figure 7.63 incorporates also the rotation around ytr. These results

have been obtained without using an altimeter but using a good initial positioning

to estimate depth and using gyro measures. No �lter, beside a low pass �lter on IMU

measurements, has been used to re�ne the motion. The results are very similar to the

results shown in Figure 7.61 for the pure CV algorithm and this seems a promising

beginning to the system improvement: a proper �lter can be used to re�ne the results

and �ts better the motion.

116

7.5. Algorithm sensitivity

Figure 7.63: Diagonal �ight with pitch sequences
The blue lines represent the PA10 reference while the red circles represent Dokuganryuu reconstruction.

7.5 Algorithm sensitivity

During Dokuganryuu runs some pre-determined values have been considered: in par-

ticular camera calibration parameters and initial conditions on position and attitude.

The vision algorithm presented, and validated through tests, uses some pre-determined

values to run: in particular the camera calibration and the initial conditions on po-

sition and attitude. In this section the sensitivity of such parameters on the �nal

position determination is addressed through a Monte Carlo simulation. The goal of

this procedure is not to compute the data dispersion, but to address qualitatively

the weight of uncertainties in the �nal position determination, therefore the number

of samples is smaller than usual Monte Carlo application.

7.5.1 Focal length

As seen in Section 3.4 the calibration procedure determines the calibration matrix

values and in particular the focal distance and the pixel dimensions. In this section

it has been considered αu = αv (see (3.9) and (3.10)). Since the pixel dimension is

�xed a change in these two parameters is a change in focal length. This parameter

117

7. Experimental validation

links the pixel measure to the ratio of in-plane distance from central point and

feature depth, therefore it is very important, especially for the in-plane motion. The

stochastic simulations were computed with 100 samples varying only the focal length

with uniform distribution (5% maximum variation). The simulations uses real gyro

output, no correction, of the second pure horizontal motion of Section 7.3.3.

(a) Focal length histogram (b) Positions

(c) Final point distribution

Figure 7.64: Horizontal �ight CFO sequence - focal length

Figure 7.64 shows the variation in position estimation due to the uniform distribu-

tion of uncertainty in focal length. Such distribution is presented in Figure 7.64a,

while Figure 7.64b presents with a blue line the trajectory from the PA10 and with

black dots the trajectories determined by Dokuganryuu changing the focal length as

mentioned above. Figure 7.64c shows the �nal landing point distribution in three

dimensions.

Results clearly indicates that a variation in focal length a�ect mostly the in-plane

motion, therefore a�ecting the landing point coordinates (±2 cm on xtr) more than

the distance to the ground (±0.5 cm on ztr). This is caused by the sequence higher

118

7.5. Algorithm sensitivity

macro motion on xtr, while on ztr the motion is almost locked. In order to con�rm

that, a similar simulation has been carried out using the vertical descent sequence

where the camera mostly travels on ztr.

(a) Focal length histogram (b) Positions

(c) Final point distribution

Figure 7.65: Vertical descent CF sequence - focal length

Confronting the distribution of landing points in Figure 7.65 with the ones in Figure

7.64, the variation in all three axes is way lower in this case (±0.2 cm on ztr, ±0.02 cm

on xtr and ytr). This is a realistic outcome since the depth variation is due to the

ratio of pixel coordinates and a small change do not a�ect much the result. The

error is higher in the direction of motion: in the �rst case on xtr and in the latter

case on ztr. The magnitude of the error is higher in motion that deals with plane

translation like the one in Figure 7.64.

119

7. Experimental validation

7.5.2 Optical axis coordinates

The optical axis coordinates are the other two main parameters given by the cali-

bration. The vertical rotation sequence in 7.3.2 has showed that if the optical axis is

not coincident with the rotation axis the apparent error increases. It is checked if a

static variation of the reference point, i.e. the optical axis, can reduce the drift seen

in these sequences (validating the assumptions) and how heavy that in�uence is on

the determination of the landing site. In the following simulations the optical axis

coordinates are changed for each run of Dokuganryuu with a uniform distribution of

100 samples (40% maximum error), shown in Figure 7.66a.

(a) Optical axis histogram (b) Positions

(c) Final point distribution

Figure 7.66: Vertical descent with roll CF sequence

From the simulations in Figure 7.66, the variation in the reference indeed a�ect

greatly the �nal position, but this is mostly connected to the in-plane rotation.

Another interesting fact is that few simulations arrived near the PA10 reference for

the �nal point and as suggested a �xed variation of reference in the image can reduce

120

7.5. Algorithm sensitivity

the apparent drift. Should be noticed that this variation is constant in this case, since

the motion and rotation are at constant speed, in a real scenario the rotation axis,

i.e. the center of mass, should be addressed in real time since the variation of mass in

the lander, the fuel sloshing and other causes may change the center of rotation. The

results prove that with little improvement the algorithm might be able to determine

eccentricity and thus directly give the vehicle state without further operations.The

variation of this reference should also in�uence other motions that involve rotations.

Taking for example the �rst sequence of Diagonal �ight with pitch and applying the

same procedure the results are given in Figure 7.67.

(a) Optical axis histogram (b) Positions

(c) Final point distribution

Figure 7.67: Diagonal �ight with pitch CF sequence - optical axis

The variation shown in Figure7.67 the dispersion of the �nal point is not located on

the horizontal plane only, but, more generally, it tends to lie in a plane perpendicular

to the trajectory. The e�ect of rotation axis uncertainty may be dramatic.

121

7. Experimental validation

(a) Optical axis histogram (b) Positions

(c) Final point distribution

Figure 7.68: Vertical descent CF sequence - optical axis

In case of pure vertical motion without rotation (Figure 7.68) such uncertainty is

less e�ective. Should be noticed that in these simulation the variation in optical

axis position is intentionally larger than the values that could be expected by a

wrong calibration, in order to represent uncertainty in the axis of rotation taken as

reference.

122

7.5. Algorithm sensitivity

7.5.3 Initial conditions

Initial conditions are always problematic in INS based navigation, and this of course

re�ects on the optical navigation algorithm here devised, since it focuses on monocu-

lar image sequence and needs an initial estimate in order to reconstruct the full 3-D

motion. In order to address better the uncertainty on initial position and attitude, a

simulation similar to the previous one is carried out on the Diagonal �ight with pitch

CF sequence, that excites two translations and one rotation degrees of freedom.

(a) Attitude error histogram (b) Position error histogram

Figure 7.69: Diagonal �ight with pitch CF sequence - initial condition error

The initial attitude error and position distributions shown in Figures 7.69a and

7.69b represent the 300 sample used for the simulation. A normal distribution with

standard deviation of ' 3 cm has been used for the position error; a ' 2° standard

deviation has been used for the normal distribution of the attitude error.

The initial errors in xtr and ytr coordinates are included but the e�ect on the �nal

result are static since they are not exploited by Dokuganryuu: an initial error in xtr

or ytr lead to, at least, the same error in the �nal point. On the other hand the

altitude uncertainty a�ects the whole reconstruction since it is used as scale factor

for the images. The errors in attitude are proven to do the same.

123

7. Experimental validation

Figure 7.70: Initial and �nal point distribution of Diagonal �ight with pitch - initial
condition error

The �nal point distribution depicted in Figure 7.70 shows that a uniform uncertainty

in the three directions leads to a non-uniform distribution at the end of the sequence.

In Figure 7.70 it is easy to see that the standard deviation on the ztr axis is reduced

while on the other two axes is increased, con�rming the divergent nature of the error

in xtr and ytr directions. The reduction on ztr is probably due to the intrinsic nature

of the algorithm that tends to reduce uncertainty whenever the motion is toward the

vertical direction.

(a) Attitude error histogram (b) Position error histogram

Figure 7.71: Horizontal �ight CF sequence - initial condition error

124

7.5. Algorithm sensitivity

Figure 7.72: Initial and �nal point distribution of Horizontal �ight - initial condition
error

With a similar experiment on the Horizontal �ight CF sequence, presented in Fig-

ures 7.71 and 7.72, it is possible to see that uncertainties in xtr and ytr are almost

unchanged, while the uncertainty in ztr increases signi�cantly. This lead to the as-

sumption that ztr uncertainty reduction, seen in Figure 7.70, is deeply connected

with the downward motion.

(a) Attitude error histogram (b) Position error histogram

Figure 7.73: Vertical descent CF sequence - initial condition error

125

7. Experimental validation

Figure 7.74: Initial and �nal point distribution of Vertical descent CF - initial con-
dition error

In order to con�rm that behavior, another simulation with the Vertical descent se-

quence has been carried out. Figure 7.74 seems to con�rm the speculation of un-

certainty reduction on altitude whenever the motion is towards the ground. The

uncertainty is however connected with the mean �nal point instead of the true ref-

erence, therefore it is not strictly correct to assume that errors in ztr reduces over

time, due to the diverging behavior of the system. What is presented is the behavior

of the system that, in case of vertical translation, tends to converge to a point, i.e.

a �xed error. Future works will deepen such study.

7.5.4 Data rate

Another important setting in the algorithm is the camera data rate. In the experi-

ments above the camera sampled at two Hertz (every 0.5 seconds) and the analysis

was carried out with that sequence, however the algorithm may work at di�erent

data rates. This analysis allows to to understand better the diverging behavior of

the system.

A Vertical descent sequence is analyzed by Dokuganryuu with di�erent frequency

updates, varying from 2Hz (0.05s) to 0.33Hz (3s). Figure 7.75 shows the result of

these simulations. Apparently a variation in datarate does not a�ect precision in

position reconstruction. Despite of that, an excessive decrease of the computation

frequency is not advisable: in fact an increase in the time between consecutive images

corresponds to a larger displacement between them. This involves a decrease of the

number of matching features available for the computation, that �nally could bring

a lack of robustness of the navigation algorithm.

126

7.5. Algorithm sensitivity

(a) 0.5 s (b) 1 s

(c) 1.5 s (d) 2 s

(e) 2.5 s (f) 3 s

Figure 7.75: Vertical descent CF sequence - position error at di�erent data-rates

A further veri�cation has been obtained by applying the same analysis to the case

of Section 7.3.3 with the CFO terrain. For this trajectory a slower frequency still

reduces the amount of matched features but their number remains su�ciently larger.

The obtained results, summarized in Figure 7.76, con�rm the independence of the

accuracy with respect to the update rate. Anyway, more detailed research on the

127

7. Experimental validation

topic should be carried out in future works.

(a) 0.5 s (b) 1 s

(c) 1.5 s (d) 2 s

(e) 2.5 s (f) 3 s

Figure 7.76: Horizontal �ight CFO sequence - position error at di�erent data-rates

128

Chapter 8
Conclusions

In this work a further step in lunar landing navigation has been taken, showing the

appeal of a computer vision based state reconstruction. A rather simple navigation

algorithm has been devised taking care of the imposed limits:

� the use of low level features ensures robustness and generality,

� low computational complexity is maintained,

� the sensor suite is reduced to a single camera and a 3-axis gyroscope.

Experimental activity proved the inability of a single camera to autonomously recon-

struct its position and orientation without external data, moreover in Dokuganryuu

the attitude is reconstructed just by gyroscopes, since including the attitude in the

LM solver could lead to erroneous position determination. Should be noticed that

the algorithm determines relative position and attitude (in the experiments all the

equipments were �xed to the ground, therefore corrections due to planet rotation

were not considered. In real operational environment the gyroscope signal should

be corrected), while it does not explicitly determine velocity and angular velocity,

although easily obtainable by di�erentiation. The algorithm can be easily coupled

with a Kalman �lter that uses the actual lander motion model to reconstruct better

the whole motion.

The level of precision obtained in experimental activities is comparable with previous

works, although the computation here is simpli�ed. The precision of the algorithm

is surely superior to the INS with less drift alt ought with slower data-rate. The

computational speed of the algorithm on real space hardware was not possible, but

the algorithm has been designed to be as fast as possible.

129

8. Conclusions

Future development

The Dokuganryuu algorithm is just but an initial step in computer vision navigation

for lunar landing and can be further optimized and validated. Main critical points

that could be improved are:

� LM algorithm improvement, including λ, v↑, v↓parameter and core modi�ca-

tions to speed up computation

� Model enhancement, including center of mass determination and a more re�ned

motion model

� A more e�cient feature matching, by now the task that requires most of the

computational e�ort during each algorithm update.

From the architecture point of view an instrument fusion with altimeter measures

seems the most probable combination for this algorithm. Testing INS and Doku-

ganryuu on a mobile vehicle should answer to the questions left unsolved here. The

system could also be improved with a re�ned model of motion and a Kalman Filter.

That approach could be explored in case of a substantial modi�cation in hardware

passing from a single camera to a stereo vision: this case seems more appealing and

robust, but at the price of an increased computation time.

In case of a stereo-vision application the Dokuganryuu can still be included in the

design to improve robustness and computation time. In fact, it has been proven that

over short time spans the algorithm does not diverge signi�cantly. Then it can be

exploited to estimate the state at high frequency between consecutive update of the

slower stereovision, saving computation time. Plus, in case failure of one camera, the

navigation could be carried on by Dokuganryuu, still able to work with monocular

vision.

130

Bibliography

[1] NASA, �National space science data center.� Accessed June 2014, from

http://nssdc.gsfc.nasa.gov/.

[2] Y. Cheng, A. Johnson, and L. Matthies, �Mer-dimes: a planetary landing appli-

cation of computer vision,� in Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 806�813, IEEE,

2005.

[3] Y. Cheng, J. Goguen, A. Johnson, C. Leger, L. Matthies, M. Martin, and

R. Willson, �The mars exploration rovers descent image motion estimation sys-

tem,� Intelligent Systems, IEEE, vol. 19, no. 3, pp. 13�21, 2004.

[4] M. Maimone, A. Johnson, Y. Cheng, R. Willson, and L. Matthies, Autonomous

navigation results from the Mars Exploration Rover (MER) mission. Springer,

2006.

[5] J. Kawaguschi, A. Fujiwara, and T. Uesugi, �Hayabusa (muses-c) rendezvous

and proximity operation,� in 56th International Astronautical Congress, 2003.

[6] Z. Zexu, W. Weidong, and C. Pingyuan, �An algorithm of asteroid craters de-

tection based on gradient vector �ow snake model,� in Systems and Control

in Aeronautics and Astronautics (ISSCAA), 2010 3rd International Symposium

on, pp. 545�549, IEEE, 2010.

[7] Y. Cheng and J. Miller, �Autonomous landmark based spacecraft navigation

system,� 2003.

[8] Y. Cheng, A. E. Johnson, L. H. Matthies, and C. F. Olson, �Optical landmark

detection for spacecraft navigation,� 2003.

[9] B. Leroy, G. Medioni, E. Johnson, and L. Matthies, �Crater detection for au-

tonomous landing on asteroids,� Image and Vision Computing, vol. 19, no. 11,

pp. 787�792, 2001.

131

Bibliography

[10] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, J. Montgomery,

A. Ansar, and L. Matthies, �Coupled vision and inertial navigation for pin-point

landing,� in NASA Science and Technology Conference, 2007.

[11] D. D. Diel, P. DeBitetto, and S. Teller, �Epipolar constraints for vision-

aided inertial navigation,� in Application of Computer Vision, 2005.

WACV/MOTIONS'05 Volume 1. Seventh IEEE Workshops on, vol. 2, pp. 221�

228, IEEE, 2005.

[12] M. George and S. Sukkarieh, �Inertial navigation aided by monocular camera

observations of unknown features,� in Robotics and Automation, 2007 IEEE

International Conference on, pp. 3558�3564, IEEE, 2007.

[13] L. Kneip, A. Martinelli, S. Weiss, D. Scaramuzza, and R. Siegwart, �Closed-

form solution for absolute scale velocity determination combining inertial mea-

surements and a single feature correspondence,� in Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pp. 4546�4553, IEEE, 2011.

[14] A. I. Mourikis and S. I. Roumeliotis, �A multi-state constraint kalman �lter

for vision-aided inertial navigation,� in Robotics and Automation, 2007 IEEE

International Conference on, pp. 3565�3572, IEEE, 2007.

[15] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery, �Augmenting iner-

tial navigation with image-based motion estimation,� in Robotics and Automa-

tion, 2002. Proceedings. ICRA'02. IEEE International Conference on, vol. 4,

pp. 4326�4333, IEEE, 2002.

[16] D. Zachariah and M. Jansson, �Camera-aided inertial navigation using epipo-

lar points,� in Position Location and Navigation Symposium (PLANS), 2010

IEEE/ION, pp. 303�309, IEEE, 2010.

[17] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, �Circumventing dynamic

modeling: Evaluation of the error-state kalman �lter applied to mobile robot

localization,� in Robotics and Automation, 1999. Proceedings. 1999 IEEE Inter-

national Conference on, vol. 2, pp. 1656�1663, IEEE, 1999.

[18] H. Durrant-Whyte and T. Bailey, �Simultaneous localization and mapping: part

i,� Robotics & Automation Magazine, IEEE, vol. 13, no. 2, pp. 99�110, 2006.

[19] T. Bailey and H. Durrant-Whyte, �Simultaneous localization and mapping

(slam): Part ii,� IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108�

117, 2006.

[20] L. M. Paz, P. Jensfelt, J. D. Tardos, and J. Neira, �Ekf slam updates in o

(n) with divide and conquer slam,� in Robotics and Automation, 2007 IEEE

International Conference on, pp. 1657�1663, IEEE, 2007.

132

Bibliography

[21] J. Sola, �Consistency of the monocular ekf-slam algorithm for three di�erent

landmark parametrizations,� in Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pp. 3513�3518, IEEE, 2010.

[22] T. Suzuki, Y. Amano, and T. Hashizume, �Development of a sift based monoc-

ular ekf-slam algorithm for a small unmanned aerial vehicle,� in SICE Annual

Conference (SICE), 2011 Proceedings of, pp. 1656�1659, IEEE, 2011.

[23] Z. K. Yavuz and S. Yavuz, �Improvement of the measurement update step of ekf-

slam,� in Intelligent Engineering Systems (INES), 2012 IEEE 16th International

Conference on, pp. 61�65, IEEE, 2012.

[24] M. Montemerlo, S. Thrun, and B. Siciliano, FastSLAM: A scalable method for

the simultaneous localization and mapping problem in robotics, vol. 27. Springer,

2007.

[25] A. Monjazeb, J. Sasiadek, and D. Necsulescu, �Autonomous navigation among

large number of nearby landmarks using fastslam and ekf-slam-a comparative

study,� inMethods and Models in Automation and Robotics (MMAR), 2011 16th

International Conference on, pp. 369�374, IEEE, 2011.

[26] E. Wu, L. Zhao, Y. Guo, W. Zhou, and Q. Wang, �Monocular vision slam based

on key feature points selection,� in Information and Automation (ICIA), 2010

IEEE International Conference on, pp. 1741�1745, IEEE, 2010.

[27] G. Bresson, T. Féraud, R. Aufrere, P. Checchin, and R. Chapuis, �Parsimonious

real time monocular slam,� in Intelligent Vehicles Symposium (IV), 2012 IEEE,

pp. 511�516, IEEE, 2012.

[28] M. Kleinert, C. Ascher, and U. Stilla, �Comparison of inertial mechanization

approaches for inertial aided monocular ekf-slam,� in Information Fusion (FU-

SION), 2012 15th International Conference on, pp. 1594�1600, IEEE, 2012.

[29] P. Lunghi, �Robust control for planetary landing maneuvers,� 2013.

[30] J. Delaune, D. De Rosa, and S. Hobbs, �Guidance and control system design for

lunar descent and landing,� 2010.

[31] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F. Mont-

gomery, �Vision-aided inertial navigation for pin-point landing using observa-

tions of mapped landmarks,� Journal of Field Robotics, vol. 24, no. 5, pp. 357�

378, 2007.

[32] F. M. Mirzaei and S. I. Roumeliotis, �A kalman �lter-based algorithm for

imu-camera calibration: Observability analysis and performance evaluation,�

Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 1143�1156, 2008.

133

Bibliography

[33] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, �Observability-

constrained vision-aided inertial navigation,� University of Minnesota, Dept. of

Comp. Sci. & Eng., MARS Lab, Tech. Rep, vol. 1, 2012.

[34] C. X. Guo and S. I. Roumeliotis, �Imu-rgbd camera 3d pose estimation and

extrinsic calibration: Observability analysis and consistency improvement,� in

Robotics and Automation (ICRA), 2013 IEEE International Conference on,

pp. 2935�2942, IEEE, 2013.

[35] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, �Camera-imu-

based localization: Observability analysis and consistency improvement,� The

International Journal of Robotics Research, p. 0278364913509675, 2013.

[36] M. S. Nixon and A. S. Aguado, Feature Extraction & Image Processing for

Computer Vision. Academic Press, 2012.

[37] Z. Zhang, �A �exible new technique for camera calibration,� Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, pp. 1330�1334,

2000.

[38] C. Minwalla, E. Shen, P. Thomas, and R. Hornsey, �Correlation-based measure-

ments of camera magni�cation and scale factor,� Sensors Journal, IEEE, vol. 9,

no. 6, pp. 699�706, 2009.

[39] D. G. Lowe, �Distinctive image features from scale-invariant keypoints,� Inter-

national journal of computer vision, vol. 60, no. 2, pp. 91�110, 2004.

[40] H. Bay, T. Tuytelaars, and L. Van Gool, �Surf: Speeded up robust features,� in

Computer Vision�ECCV 2006, pp. 404�417, Springer, 2006.

[41] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, �Speeded-up robust features

(surf),� Computer vision and image understanding, vol. 110, no. 3, pp. 346�359,

2008.

[42] J. Lewis, �Fast template matching,� in Vision Interface, vol. 95, pp. 15�19, 1995.

[43] J. Lewis, �Fast normalized cross-correlation,� in Vision interface, vol. 10,

pp. 120�123, 1995.

[44] A. E. Johnson, A. Ansar, L. H. Matthies, N. Trawny, A. I. Mourikis, and S. I.

Roumeliotis, �A general approach to terrain relative navigation for planetary

landing,� in AIAA Aerospace@ Infotech Conf., Rohnert Park, CA, 2007.

[45] R. I. Hartley, �In defense of the eight-point algorithm,� Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 19, no. 6, pp. 580�593, 1997.

134

Bibliography

[46] H. Longuet-Higgins, �A computer algorithm for reconstructing a scene from two

projections,� Readings in Computer Vision: Issues, Problems, Principles, and

Paradigms, MA Fischler and O. Firschein, eds, pp. 61�62, 1987.

[47] R. Y. Tsai and T. S. Huang, �Uniqueness and estimation of three-dimensional

motion parameters of rigid objects with curved surfaces,� Pattern Analysis and

Machine Intelligence, IEEE Transactions on, no. 1, pp. 13�27, 1984.

[48] M. A. Fischler and R. C. Bolles, �Random sample consensus: a paradigm for

model �tting with applications to image analysis and automated cartography,�

Communications of the ACM, vol. 24, no. 6, pp. 381�395, 1981.

[49] P. H. Torr and D. W. Murray, �The development and comparison of robust meth-

ods for estimating the fundamental matrix,� International journal of computer

vision, vol. 24, no. 3, pp. 271�300, 1997.

[50] T. Botterill, S. Mills, and R. Green, �Re�ning essential matrix estimates from

ransac,�

[51] M. Zuliani, �Ransac for dummies,� With examples using the RANSAC toolbox

for Matlab and more, 2009.

[52] P. H. Torr and A. Zisserman, �Mlesac: A new robust estimator with application

to estimating image geometry,� Computer Vision and Image Understanding,

vol. 78, no. 1, pp. 138�156, 2000.

[53] R. A. Maronna and V. J. Yohai, �Robust estimation of multivariate location

and scatter,� Encyclopedia of Statistical Sciences, 1998.

[54] H. Gavin, �The levenberg-marquardt method for nonlinear least squares curve-

�tting problems,� Department of Civil and Environmental Engineering, Duke

University, 2011.

[55] H. O. Hartley, �The modi�ed gauss-newton method for the �tting of non-linear

regression functions by least squares,� Technometrics, vol. 3, no. 2, pp. 269�280,

1961.

[56] K. Levenberg, �A method for the solution of certain problems in least squares,�

Quarterly of applied mathematics, vol. 2, pp. 164�168, 1944.

[57] D. W. Marquardt, �An algorithm for least-squares estimation of nonlinear

parameters,� Journal of the Society for industrial and Applied Mathematics,

vol. 11, no. 2, pp. 431�441, 1963.

[58] H. B. Nielsen, �Damping parameter in marquardt's method,� tech. rep., Infor-

matics and Mathematical Modelling, Technical University of Denmark, DTU,

1999.

135

Bibliography

[59] B. P. Flannery, W. H. Press, S. A. Teukolsky, and W. Vetterling, �Numerical

recipes in c,� Press Syndicate of the University of Cambridge, New York, 1992.

136

	Lunar landing optical navigation
	Premise
	System requirement

	State of the art
	Landing navigation systems
	Optical navigation in landings

	Literature review
	Optical-Inertial navigation
	SLAM
	Experimental validation

	Thesis structure

	Landing framework and INS
	Landing phases
	Reference frames
	Moon-centric reference frame
	Terrain relative frame
	Lander orbit frame
	Lander principal axis frame
	Sensor reference frame

	Inertial Navigation System
	Gyroscopes
	Accelerometers
	INS flow for inertial reconstruction
	INS for relative reconstruction - real model

	Camera models
	Pinhole camera model
	Affine camera model
	Weak perspective camera model
	Camera calibration
	Way to extract information from a stream of images

	Features detection and matching
	Feature detection
	Landmarks
	Corners
	Regions
	Scale Invariant Feature Transform
	Speeded Up Robust Features

	Feature Matching
	Template matching
	Computation

	From template matching to feature matching

	Feature choice

	Computer Vision algorithms
	Models and properties of image stream
	Rigid transformation and indetermination
	Epipolar constraint
	Fundamental and Essential matrix properties
	Computing translation and rotation from essential matrix

	Computer Vision algorithms
	Fundamental matrix estimation
	Eight point algorithm
	RANSAC

	Non-linear estimation of rigid transformation
	Problem formulation
	Gradient descent method
	Newton-Gauss method
	Levenberg-Marquard method
	3-D fitting
	Drawbacks of the non-linear methods

	Comparison between numerical methods

	Navigation algorithm
	Planar model
	Derivation of Jacobian
	Partial derivatives
	Jacobian
	Alternate formulation

	Weakness assessment
	Navigation Algorithm: Dokuganryuu
	Algorithm flow
	Levenberg-Marquard implementation

	Experimental validation
	Experimental setup
	Camera
	IMU
	Synchronization

	Manipulator
	Integration
	Motion

	Simulated lunar surface
	Algorithm and acquisition

	Assessing the weakness of the full state reconstruction
	Tests
	Vertical descent
	Vertical descent with perfect attitude

	Vertical descent with roll
	Horizontal flight
	Horizontal flight with perfect attitude and altimeter

	Horizontal flight with pitch
	Horizontal flight with yaw
	Diagonal flight
	Diagonal flight with pitch

	Comparison with previous works
	Algorithm sensitivity
	Focal length
	Optical axis coordinates
	Initial conditions
	Data rate

	Conclusions
	Bibliography

