
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Matematica

I M A G E TA M P E R I N G D E T E C T I O N A N D

L O C A L I Z AT I O N

Relatore: Prof. Stefano Tubaro

Tesi di Laurea di:
Lorenzo Gaborini, matricola 769924

Anno Accademico 2013-2014

Abstract

Image tampering is nowadays at everyone’s reach: this has determined the
urgent necessity of forensic tools capable of blindly distinguishing whether
and where an image has been altered. To do so without having any prior
information on the examined images reveals to be a challenging task.

The goal of this work is to propose two algorithms respectively aimed at
classifying whether any given image is fake or not, and locating such tamper-
ing. These algorithms are inspired by those who won the IEEE First Image
Forensic Challenge, the first competition organized specifically to compare
state-of-the-art methods on blind image forensics. In particular, the first algo-
rithm is strongly based on a machine learning approach, while the second one
is a fusion between two entirely novel techniques with another well-known
method.

Results, validated against the same dataset used in the Challenge, show
that in both cases our proposed algorithms reach or beat the state-of-the-art
performance on the specific dataset, yet leaving many questions open to dis-
cussion and further improvement. As a side effect of a deep joint analysis of
the Challenge dataset along with the first proposed algorithm, we also uncov-
ered a new forensic fingerprint which could be used for other attacks, proving
also that it has been unknowingly exploited in the winning submission.

I

Estratto

Oggigiorno, il fotoritocco è alla portata di chiunque: da qui la necessità di
strumenti forensi in grado di discriminare immagini autentiche da immagini
ritoccate. Fare ciò in modo completamente alla cieca, senza informazioni a
priori sulle immagini esaminate, si rivela essere un compito molto intricato.

Lo scopo del presente lavoro è quello di proporre due algoritmi in grado,
rispettivamente, di discriminare immagini autentiche da immagini ritoccate e
di individuare le zone delle immagini che sono effettivamente state modificate.
Come fonte ispiratrice di questi algoritmi ci siamo basati su quelli vincitori
della IEEE First Image Forensic Challenge, la prima competizione organizza-
ta specificamente per rendere possibile il confronto fra metodi costituenti lo
stato dell’arte dell’analisi forense di immagini. In particolare, il primo algorit-
mo è principalmente basato su un approccio di tipo machine learning, mentre
il secondo consiste in una fusione fra due tecniche interamente nuove con una
terza, ben più conosciuta nell’ambito.

I risultati, validati contro lo stesso dataset usato nella Challenge, mostra-
no che in entrambi i casi gli algoritmi proposti raggiungono o superano quelli
vincitori della Challenge sul loro stesso dataset, allo stesso tempo lasciando
aperte molte domande e possibilità di sviluppi futuri. Inoltre, come effetto
collaterale di un’analisi del dataset mediante il primo degli algoritmi proposti,
abbiamo individuato una nuova traccia forense che potrebbe essere sfruttata
per orchestrare nuovi attacchi e che è già stata individuata inconsapevolmen-
te dall’approccio vincitore della prima fase della Challenge.

III

Ringraziamenti

Innanzitutto devo ringraziare la mia famiglia per il loro costante supporto du-
rante tutti questi anni. Ringrazio il mio relatore per avermi dato l’opportunità
di svolgere questa tesi e di partecipare al progetto Rewind. Ringrazio anche
Paolo per la preziosa assistenza e disponibilità durante tutte le fasi di questo
lavoro.

Devo naturalmente ringraziare moltissimo Teo e Mara che mi sono sempre
stati vicini e mi hanno fornito preziosi consigli (e divagazioni) sugli argomenti
più disparati, in qualunque momento e luogo.

A questo punto dovrei anche citare un insieme A infinito (ma numerabile)
di amici e persone conosciute nel corso degli anni, qui al Politecnico e non, che
hanno contribuito anche loro a questa bellissima esperienza universitaria. Per
evitare di citarli tutti, introducendo necessariamente una relazione d’ordine
totale su A che non avrebbe motivo di esistere, li ringrazio tutti collettivamente
senza citarne alcuno.

V

Contents

Abstract I

Estratto III

Ringraziamenti V

Table of contents VIII

1 Introduction 1
1.1 Motivations . 1
1.2 Thesis organization . 3

2 Background 5
2.1 Image processing chain . 7
2.2 The IEEE IFS-TC Challenge . 9

2.2.1 Scoring rules . 11
2.3 State-of-the-art on image forensics 13

2.3.1 On PRNU . 16
2.3.2 Winning algorithms . 21

3 Image tampering detection 29
3.1 Proposed algorithm . 30

3.1.1 Feature-based detectors . 30
3.1.2 Simple ensemble classifiers 31
3.1.3 Best k submodels . 32
3.1.4 Boosting . 33

3.2 Experimental results . 33
3.2.1 Problem setup . 33
3.2.2 SVM calibration . 34
3.2.3 Performance on each test set 35
3.2.4 On dimensional reduction 37
3.2.5 Ensemble classifiers . 40

VII

3.2.6 Best-k models . 41
3.2.7 Boosting . 41

3.3 Deeper analysis . 43
3.3.1 Global classifiers on blocks 43
3.3.2 New datasets . 43

3.4 Conclusions . 50

4 Image tampering localization 51
4.1 Proposed algorithm . 53

4.1.1 Notation . 53
4.1.2 PRNU . 53
4.1.3 PatchMatch . 58
4.1.4 Near-Duplicate analysis . 59
4.1.5 Fusion . 63

4.2 Experimental results . 67
4.2.1 Mask interpolation . 67
4.2.2 Blind PRNU . 69
4.2.3 Near-Duplicates . 76
4.2.4 PatchMatch . 76
4.2.5 Mask fusion . 76
4.2.6 Non-blind PRNU . 80
4.2.7 Feature-based approach . 91

4.3 Conclusions . 94

5 Conclusions 95

Bibliography 99

A Support Vector Machines 107

B The Challenge dataset 109
B.1 Scoring sensitivity . 109
B.2 Submission log . 111
B.3 Dataset samples . 114

VIII

Chapter 1

Introduction

1.1 Motivations

Nowadays, the world is enormously influenced by the continuous availability
of image and video content. Huge changes happened during the last dozen
of years: one of the most significant is the source of such content. Until the
2000s, editors mostly relied on contributes produced by inside workers, such
as journalists and professional photographers.

The appearance of smartphones and social networks changed the scene
due to a variety of reasons. First, camera sensors are becoming incredibly
sensitive in low-light situations: this enables users to easily capture images at
night or in interior situations, thus documenting, for example, concert venues
or parties. Smartphones are always readily available, as their multimedia ca-
pabilities can be accessed quickly with a few touches. Dedicated user friendly
software applications enable advanced on-device processing, ranging from
lighting correction to content removal. Expert users also may rely on ever
more sophisticated programs built specifically to create forged multimedia
content. Last but not least, smartphones are always connected to Internet, en-
abling users to instantaneously share produced content with the whole world
through the usage of social networks.

Through the combination of these aspects, even a simple smartphone
now can be considered as a powerful authoring tool. Bystanders became
active producers of multimedia content, often being quicker than professional
journalists. Many abuses and crimes became famous thanks to a Twitter post,
or a Facebook status.

In the last decade, this has led us to a powerful deep change in the so-
ciety: media have being used either to circumvent government censorship
or to engage in it. This has brought unstable governments to their tipping

1

2 Chapter 1. Introduction

point, causing revolts and unrest. The known expression «A picture is worth a
thousand words» summarizes the power of social media: implied information
is delivered with much less effort than a written text, the delivery is instant
and content can spread rapidly. This also means that altered content can
diffuse much more easily than before, unsuspiciously conveying maliciously
biased information to the general public. The need for instruments capable of
distinguishing between altered and pristine multimedia content, is then more
than an urgent necessity.

In scientific literature a number of techniques have been developed to
this purpose, collectively known as “passive multimedia forensics”. The com-
mon thread is that every technique exploits a trace left behind by any non-
reversible operation which has been performed on the content. However, such
traces are very difficult to detect, thus developed techniques either work only
in restricted situations or involve some prior information on the content. Mul-
timedia forensics also distinguishes between image [1] and video [2] content:
in this work we will focus solely on the former.

Due to the increasing practical importance of forensic research, the IEEE
Information Forensics and Security Technical Committee (IFS-TC) organized
the First Image Forensics Challenge1. The Challenge is split into two parts:
detection (Phase 1) and localization (Phase 2). The detection phase is aimed
at evaluating the capabilities of tested algorithms to decide whether a given
image is tampered or not, while the goal of the localization phase is to isolate
tampered regions from pristine ones. The Challenge has ended, thus winners
have already been proclaimed, and their winning methods have been released
to the scientific community.

The goal of this work is to propose two new image forensics algorithms:
one for image tampering detection, the other for image tampering localization.
Since the Challenge is also split into tampering detection and localization,
our algorithms are tested and validated on the same image set which has
been used to train and test the submitted entries in the Challenge. As a
consequence, this also results in a deep analysis of the challenge dataset.

In particular, for the first Phase we start from the machine-learning based
approach which enabled the winners to achieve a very high score in the Chal-
lenge. We propose a way to improve it and we deeply analyze the reason why
it works.

In the second Phase, instead, we propose a method which combines three
different techniques, each one with its strenghts and its weaknesses. One of
these techniques, PRNU, is well-known in the forensic literature, even though

1http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=4

http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=4

1.2. Thesis organization 3

we propose a new paradigm to exploit it; the other two, instead, are almost
entirely novel. We also envision a way to combine said techniques in order to
strenghten them reciprocally. This enabled us to achieve a better score than
the one which has been obtained by the winners.

1.2 Thesis organization

The rest of work is organized as follows.
In Chapter 2 we introduce the necessary background in order to under-

stand the proposed techniques. In particular, in Section 2.1 we first illustrate
the image acquisition process in a digital camera: this is a conditio sine qua
non for any image forensic method, since we will exploit traces left behind
in some of the steps which any image undergoes during acquisition. After
this, we introduce the Challenge, the rules and the accompanying dataset. In
Section 2.3, we end the chapter with a description of the current state of the
art on multimedia forensics, focusing especially on image forensics. We also
detail the winning submissions since our algorithms will be built on those.

In Chapter 3 we describe the Detection problem (i.e. Phase 1). In par-
ticular we begin with a description of our proposed algorithm, first stating
the theoretical setup in Section 3.1, then illustrating obtained results in Sec-
tion 3.2. After having proven its effectiveness on the Detection problem, we
further analyze the reason why it works: we do so in Section 3.3 by building
additional datasets under different criteria, and using the same algorithm on
those.

In Chapter 4 we describe the Localization problem (i.e. Phase 2). We begin
in Section 4.1 by detailing each technique separately: we start with PRNU,
and we finish with the two novel ones. We then proceed to discuss the theory
behind the process of combining these techniques. In Section 4.2 we show the
experimental results, mirroring the structure of the preceding section: first
we report single techniques, then we discuss the fusion process. We finish also
with a tentative adaptation of the algorithm described in the Detection phase,
for the purpose of localizing altered regions.

In Chapter 5 we summarize what we did and the results we obtained.
Since this work leaves some open questions, we propose a few directions in
which next works could be oriented.

In Appendix A we briefly illustrate a machine learning classifier which is
thoroughly used in Chapter 3.

To finish the work, in Appendix B we analyze the scoring mechanism of
the Challenge and we report a log of every scores we obtained using the official

4 Chapter 1. Introduction

Challenge scoring mechanism. Finally we show some examples of tampered
images which have been included into the Challenge dataset.

Chapter 2

Background

Multimedia forensics, despite being a very recent field, is very rich in liter-
ature: this is the research community response to the the ever-increasing
availability of tools capable of modifying photographs without leaving any
clue.

The goal of multimedia forensics is to guarantee proof of authenticity of a
digital content: digital forensics techniques are able to detect whether a given
content has been modified, which operations have been performed, where they
have been applied and, in some cases, whether an alleged camera device has
captured the given content or not. Multimedia forensics can be divided in two
radically different branches: active forensics and passive forensics [1].

The active approach exploits pre-existing digital watermarks [3], pur-
posely injected to detect and identify any modification occurred to the con-
tent. These watermarks can be either hidden or visible, and are robust to
multiple destructive transformations. This approach is mainly followed by
content producers who are in need to authenticate their work, such as musi-
cians, photographers, police forces, etc. Simplicity and robustness are among
its advantages, as the prior knowledge of the presence of a watermark is a
very strong belief. The main disadvantage is that watermarks can only be
inserted during the acquisition phase, thus requiring costly specialized instru-
ments: for example, trustworthy cameras are equipped with watermarking
chips which automatically sign each image with a private key, unique to that
instance of a camera. This is infeasible, as it would require the development of
a common standard among all camera makers, both in hardware and software
requirements: for this reason, usage of trustworthy cameras is restricted to
very limited scenarios.

The second branch does not rely on any purposely inserted watermarks,
leveraging instead on recognizing traces (hereby fingerprints) left behind by

5

6 Chapter 2. Background

every operation which has been performed on the examined content. As a
consequence, this branch is called passive multimedia forensics. In fact, every
image or video is “altered” multiple times during its lifetime. The history of
an image, or a video, can be roughly split into three stages: acquisition, coding
and editing. Available passive multimedia forensics literature often target
only a single stage at a time, without considering the authoring process as a
whole. The passive approach is much more universal than active forensics,
as it does not require any watermark. More often than not, this is the only
viable approach to authenticate commonly available content. Since passive
fingerprints are considerably weaker than digital watermarks, false tamper
detection rate is much higher: therefore, the output of each passive forensic
technique needs to be used to guide a forensic expert in deciding whether a
given content is pristine or fake.

Passive multimedia forensic methods are often trained and validated
using tools borrowed from the statistical world. Those tools employ large
datasets of labeled media content, with varying degrees of prior knowledge;
some datasets are built under fully controlled conditions, e.g. by shooting
still scenes with reference objects. Others are fully blind, employing content
downloaded from large public repositories such as Google or Flickr.

It is worth mentioning that research is being conducted in order to de-
feat currently available forensics methods: this research field, named anti-
forensics or counter-forensics, leverages on the same weaknesses exposed in
forensics literature. An anti-forensic method is thus aimed at hiding one kind
of tampering from being uncovered by state-of-the-art detectors, perhaps by
altering image statistics in order to match those who characterize natural
images.

The aforementioned concepts on multimedia forensics can be applied to
any kind of media. Indeed, multimedia forensics literature cover audio [4],
image[1], and video [2] objects as well. In particular, since videos can be
often regarded as sequences of images, video forensics inherit some tools from
the image forensics field. Nonetheless, images and videos encoding schemes
can be vastly different. As a consequence, some fingerprints can be reliably
detected in both kinds of contents, such as lens aberrations, while others are
hidden by the compression stage.

In this thesis, we focus solely on techniques for detecting and localizing
tampering on images. To introduce the reader to the image forensics field
we outline in the following sections some basic concepts. These include some
background on digital image acquisition process, an overview of the image
forensics algorithms more relevant to our work, and an introduction to the
First Image Forensics Challenge organized by the IEEE, whose dataset has

2.1. Image processing chain 7

been largely used in our work.

2.1 Image processing chain
ISRN Signal Processing 3

Real-world
scene

Digital

image

processing

Final digital

image

Lenses Optical filter

Imaging
sensor

CFA
interpolation

soware
processing

(white
balancing,

contrast
saturation,

etc.)

In-camera
Jpeg

compression

CFA
pattern

Digital camera

CCD or CMOS
sensor

Out-camera

In-camera

F 2: A scheme representing the steps composing the usual life cycle a digital image undergoes.

understanding the history of digital content. According to the
previous representation of the image life cycle, we will have
then acquisition �ngerprints, coding �ngerprints, and editing
�ngerprints.

Acquisition Fingerprints. Each component in a digital acqui-
sition device modi�es the input and leaves intrinsic �n-
gerprints in the �nal image output, due to the speci�c
optical system, image sensor, and camera soware.e image
acquisition pipeline is common for most of the commercially
available devices; however, since each step is performed
according to speci�c manufacturer choices, the traces can
depend on the particular camera brand and/or model. is
means that each stage of the camera introduces imperfections
or intrinsic image regularities which leave tell-tale footprints
in the �nal image that, in a similar way to the groovesmade in
gun barrels that introduce somewhat distinct markings to the
bullet �red, represent a signature of the camera type or even
of the individual device into the image (in the literature, this
property is de�ned as image ballistic). In addition, we will see
that the presence of inconsistencies in these artifacts can be
taken as evidence of tampering.

Coding Fingerprints. Lossy compression inevitably leaves
itself characteristic footprints, which are related to the speci�c
coding architecture. As it will be described later, most of
the literature has focused on studying the processing history
of JPEG-compressed images, by noting that consecutive
applications of JPEG introduce a different �ngerprint with
respect to a single compression. Also for this kind of traces,
we will see that the presence of inconsistencies in the coding
artifacts present into an image can be taken as an evidence of
tampering.

Editing Fingerprints. Each processing applied to the digital
image, even if not visually detectable, modi�es its properties
leaving peculiar traces accordingly to the processing itself.

e previous traces can then be used for two main
aims: source identi�cation and tampering detection. In
the case of source identi�cation, some kind of ballistic
analysis is performed; some acquisition traces are usually
extracted from the image under analysis and then compared
with a dataset of possible �ngerprints speci�c for each
class/brand/model of devices: the most similar �ngerprint
in the dataset indicates the device that took the image. In
the case of forgery detection, the aim is to expose traces of
semantic manipulation, according to two possible strategies:
detecting inconsistencies or the absence of acquisition and
coding �ngerprints within the considered image indirectly
reveals that some postprocessing destroyed them; detecting
the presence of editing �ngerprints representing a given
postprocessing directly reveals the manipulation.

3. Image Acquisition

Much of the research efforts in this area have been focused on
characterizing each particular stage composing the camera
acquisition process, as summarized in the previous section:
traces le by the lens, the sensor, and the Color Filter Array.

On the other hand, image acquisition is also performed
with digital scanners, and many of the techniques developed
for camera footprint analysis have been translated to their
scanner equivalents. In addition, images could also be printed
and recaptured, so that a digital to analog (D/A) conversion
has to be considered. Finally, rendering of photorealistic
computer graphics (PRCGs), requiring the application of a
physical light transport and a camera acquisitionmodels, can
be thought of as a third acquisition modality.

3.1. Lens Characteristics. Each acquisition device model
presents individual lens characteristics; since, due to the
design andmanufacturing process, lens produce several types
of aberrations, they leave unique traces on the images being

Figure 2.1: Common image processing chain. (Figure from [1])

With reference to Figure 2.1, in this section we analyze the typical pro-
cessing chain used to generate a digital image. Understanding each step of
this chain is essential for the development of forensic algorithms, since they
leverage on traces left by processing operations to reconstruct the past history
of an image.

During acquisition, light rays are shaped by the optical system and pro-
jected over the camera sensor. Lens imperfections can have a large impact on
the resulting image quality, therefore a number of papers exploit aberrations
introduced by spherical shape of the lenses [5].

Due to costs and lack of technology, pixels in common camera sensors are
monochromatic. As a consequence, color information is captured by filtering
incoming rays with a CFA (Color Filter Array), a thin transparent film which
is patterned in a way such that each pixel captures only either the red, green
or blue component. As a result, captured signals are therefore interpolated in
order to reconstruct the full incoming color image.

An important factor in image sensors is the presence of noise during the
acquisition phase: this term actually collects a multitude of unwanted con-
tributes to the measured light values. Noise is commonly classified through

8 Chapter 2. Background

its temporal characteristics: realizations which do not change over time are
called fixed noise, whereas the rest are called random noise. The former
comprises isolated defects such as hot or stuck pixels, row and column-wise
offsets in pixel response (FPN, Fixed Pattern Noise) and pixel-wise differences
in light-to-value transfer (PRNU, Photo Response Non Uniformity), whereas
the latter can be easily seen in low light situations.

Human perception is very different to what gets captured by a camera
sensor: this is due not only to the differences between the human eye and
a CMOS sensor, but also to the massive role of the human brain. In fact,
optical illusions serve as examples of tricks which can be performed upon the
human visual system. Their occurrence is actually quite common, but we do
not consciously perceive them as our brain is adapted to their presence: a gray
sheet of paper appears hueless under very different lighting conditions, such
as sunlight or incandescent illuminants. However, the mediating mechanism
is missing in camera sensors: a raw digital photograph of the aforementioned
sheet often appears heavily tinted, and object colors can be very off from
perceived ones. Hence, the role of the human brain is mirrored by on-camera
processing, such as white balance, distortion correction, noise removal and
gamma correction.

The processed image is often too large to be cheaply stored: by leveraging
on human perception limits, a number of algorithms have been developed
in order to compress the image data. Within the vast majority of consumer
available cameras, this compression is performed directly on-board, and the
resulting image is saved in the camera memory storage, often in JPEG for-
mat. The act of discarding imperceptible information has a price in forensics
terms, as the compression algorithm can be often recognized. This stage is
the most discriminant between image and video processing chains, as video
compression greatly relies on the time axis to achieve very large compression
gains.

At this stage of the chain, the image is finally made available to the user,
who can perform at will a vast amount of actions with different aims, per-
haps to enhance content rather than hiding an object from a photograph. A
commonly used set of operations is cropping (a rectangular portion of the orig-
inal image is kept while the rest is discarded), copy-move (a portion of the
image is copied elsewhere), Healing Brush (a copy-move-like attack, where
the copied content is automatically selected from the surroundings of the tam-
pered region), splicing (a portion of an image is pasted inside another image)
and resize (an image is scaled up or down using an interpolation algorithm).
Additionally, an image can be saved multiple times during its lifetime, there-
fore the compression stage can be applied more than once, each time with

2.2. The IEEE IFS-TC Challenge 9

varying parameters and formats. Some examples of these attacks which have
been carried out in the Challenge dataset can be found in Appendix B.3, in
Figure B.2.

All the described operations (from lens effects to post-processing) leave
peculiar footprints on the final image. Blind forensics methods exploit these
footprints as an asset to detect which operations the image underwent during
its lifetime. In the following section, we focus on these forensics algorithms.

2.2 The IEEE IFS-TC Challenge

Image forensics is a lively new field, and the practical significance of forensic
research has induced The IEEE Information Forensics and Security Technical
Committee (IFS-TC) to organize the First Image Forensics Challenge1, started
in June 2013.

The purpose of the challenge is multiple: first, forensics research lacked a
clear benchmark dataset to compare on, relying instead on proprietary sources
and hand-made forgeries. Secondly, the quest served as an opportunity for
digital forensics researchers to showcase their developed algorithms and to
sharpen their skills in a real-world testbed. Finally, it suggests for a com-
mon standardization protocol as a common comparison ground truth for new
techniques.

The challenge consists of two phases: detection (Phase 1) and localization
(Phase 2). The detection phase is aimed at evaluating the capabilities of tested
algorithms to decide whether an image is tampered or not, while the goal of
the localization phase is to isolate tampered regions from pristine ones.

A set of various natural images is provided, split into a labeled training
set and a unlabeled test set (as shown in Table 2.1). The former suffices
both for detection and localization, while the latter is itself split between the
two phases: in particular, all images in Phase 2 test set have been tampered
with. Each training image is paired with a black & white mask, showing
which regions have been modified, as shown in Figure 2.2: a fully white mask
declares that the image is pristine. More samples are reported in Section B.3.

Tampered images have all been created by different attackers from all
over the world (i.e. from China to Brazil), using different kinds of forgeries.
This ensures both that the dataset is unbiased and that it contains many
different examples of forgeries commonly found in a real-world scenario. It
is worth noticing that the dataset has been created taking into account some
well known image forensics methods. To this purpose, forged images have

1http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=4

http://ifc.recod.ic.unicamp.br/fc.website/index.py?sec=4

10 Chapter 2. Background

been processed in order to fool many state-of-the-art detectors (e.g., those
exploiting JPEG compression footprints), pushing the forensics community to
propose novel techniques.

Phase Set Image count

Fake Pristine Total

Detection and Localization Training 450 1050 1500
Detection and Localization Test ? ? 5713
Localization Test 700 0 700

Total 7913

Table 2.1: Challenge dataset composition. Question marks indicate that some data has
not been publicly released.

(a) Fake image (b) Corresponding mask

Figure 2.2: A sample training image/mask pair, showing that the bar stool has been
added later.

Each challenger competes by submitting his full guesses on the nature of
one of the two test sets: a score is computed daily for each submission. To
prevent oracle attacks, the score is computed on a randomized subset of the
submitted masks.

Actually, the challenge has ended, and the winners have already been pro-
claimed, both in phase 1 and 2. However, it is still possible to submit guesses
in the both phases, as the test set ground truths have not been released yet:
the submission mechanism will be used in this thesis to evaluate the perfor-
mance of the examined algorithms, whereas the winner algorithms have been
analyzed in detail.

As a side note, 8 of the 450 masks in the Challenge training set are defec-
tive, rendering the images unusable for Localization training: still, they can

2.2. The IEEE IFS-TC Challenge 11

be used for Detection training.
It is worth noticing that the challenge also allows the use of metadata

(such as file header information) as a clue for tampering detection. However,
results obtained with these methods are not ranked together with those ob-
tained using solely signal processing techniques. Since we focus on signal pro-
cessing, we do not take into account other methods. Notice that using header
information, a participating team was able to perfectly detect tampered im-
ages into the test set (i.e., 100% accuracy). This means that the ground truth
for Phase 1 test set has been somehow revealed: as a consequence, the ground
truth labels in I1

ts have been released aside from the Challenge, hence the
analysis will extend also on the test set to discuss generalization error, with-
out exploiting it in any way to improve existing techniques or to devise others.

2.2.1 Scoring rules

The Challenge is a binary classification problem, therefore scoring is com-
puted from the contingency matrix between ground truth and the submit-
ted guesses. The Challenge phases employ different scoring systems. Let
S ⊂ {1, . . . , |I |} be a set of images whose the score will be computed on.

To prevent oracle attacks, scores are actually computed using a random-
ized subset (i.e. 70%) of S : for now, we neglect the randomization. We note
that its effect on the resulting score has been empirically analyzed in Ap-
pendix B.1.

Phase 1

Phase 1 score S1 is computed using ground truth labels li ∈ {0,1} associated to
each i-th image i ∈S , where “1” stands for “fake”, and “0” marks a pristine
image. Let l̂i be the user’s guess on the label associated to i-th image. In this
context, we define a set of quality measures as

T P= ∣∣{ i ∈S : li = 1∧ l̂i = 1
}∣∣ T N = ∣∣{ i ∈S : li = 0∧ l̂i = 0

}∣∣
FP= ∣∣{ i ∈S : li = 0∧ l̂i = 1

}∣∣ FN = ∣∣{ i ∈S : li = 1∧ l̂i = 0
}∣∣ (2.1)

P= |{ i ∈S : li = 1}| N = |{ i ∈S : li = 0}| .

Phase 1 score S1 is computed as

S1 := 1
2

T P
P

+ 1
2

T N
N

(2.2)

.

12 Chapter 2. Background

Phase 2

Phase 2 score is computed in two phases and evaluates, instead, the user
submitted masks

{
M̂i

}
i∈S against the ground truth masks

{
MGT

i
}

i∈S
.

First, a score S(i) is computed for each i-th image i ∈S . Let Mk ∈ {0,1} be
the ground truth value associated to k-th pixel in mask MGT

i and let M̂k the
user’s guess on Mk. Let K be the set of pixels in mask Mk. Akin to Equation 2.1,
for each image i ∈S we define

T P= ∣∣{k ∈K : Mk = 1∧M̂k = 1
}∣∣ T N = ∣∣{k ∈K : Mk = 0∧M̂k = 0

}∣∣
FP= ∣∣{k ∈K : Mk = 0∧M̂k = 1

}∣∣ FN = ∣∣{k ∈K : Mk = 1∧M̂k = 0
}∣∣ (2.3)

P= |{k ∈K : Mk = 1}| N = |{k ∈K : Mk = 0}| ,

where, for example, FP is the total number of pristine pixels which have been
classified as being tampered. With these definitions, for the i-th image we
compute the F1 score:

S(i) := 2T P
2T P+FP+FN

(2.4)

As an example, suppose that Mi = MGT
i is fully white (i.e. the image is

pristine), and the user submitted mask is half white and half black (i.e. the
image is classified as being half pristine and half fake). Then, T P = FN =
P = 0 (i.e. there are no fake pixels), N = |K| (i.e. all pixels are pristine), and
T N =FP= |K|

2 (we misclassified half part of figure).
Finally, the overall Phase 2 score S2 is the arithmetic mean of all S(i) as in

S2 := 1
|S |

∑
i∈S

S(i) (2.5)

Further metrics

To evaluate the performances of described methods, using the definitions we
gave in this Section we can also define other useful metrics: we summarize
them in Table 2.2.

2.3. State-of-the-art on image forensics 13

Name Definition

True Positive Rate T PR := T P
P

True Negative Rate T NR := T N
N

False Positive Rate FPR := FP
P

False Negative Rate FNR := FN
P

Accuracy ACC := T P+T N
P+N

F1 F1 := 2T N
2T N+FN+FP

Table 2.2: Statistics based on a binary contingency matrix.

2.3 State-of-the-art on image forensics

As stated in this chapter, different kinds of forensic methods are available
to deal with different media (i.e. audio, images, and video) in different ways
(i.e. passive or active). Since the goal of this work is to analyze images in
a real-world scenario, we cannot assume the usage of any fingerprinting or
watermarking method: as a consequence, we focus solely on passive image
forensic methods.

Blind image forensics methods exploit traces left by different processing
operations. Each trace is the proof that the image underwent a given process-
ing operation. Depending on the operations that are detected, an image can be
considered forged or pristine. In case these traces are extracted locally, rather
than globally on the whole image, it is also possible to localize the possible
forgery in the pixel domain. In the following, we give a brief overview of some
of the many traces that can be detected. Later on, we will focus on the traces
that we actually exploit in depth in this thesis.

Following the image processing chain (Figure 2.1), light rays are first
captured by the camera optics, shaped by its imperfections and projected
onto the camera sensors. Chromatic aberrations can be used to localize image
tampering [6] or to identify mobile phones [7]. Purple fringing can also be used
for tamper detection [8]. Since DSLR (Digital Single Lens Reflex cameras) are
vulnerable to the presence of dust particles on the sensor, they can be used as
a means to identify the used camera [9].

The color of each pixel is captured by letting the light shine trough a CFA
matrix: the resulting grid of monochromatic pixels is then interpolated in
order to reconstruct the full color information. Interpolation algorithms and
CFA structure may differ between camera models and camera manufacturers,
thus a weak form of source identification is possible [10], [11]. Moreover,

14 Chapter 2. Background

interpolation artifacts may uncover the presence of a local tampering [12],
[13]. A drawback of these methods is the large block size requirement: local
tampers smaller than the sliding block cannot be detected.

CMOS sensors are greatly affected by the presence of noise: PRNU con-
stitutes a significant non-random, temperature independent and stable con-
tribute over a camera lifetime. Due to these characteristics, it is often targeted
by forensics research; PRNU-based forensics methods can be used both to de-
tect local forgeries, where the PRNU pattern is altered, and to assign an image
to a camera. PRNU estimation usually starts from a set of images which have
been taken by the targeted camera [14], whereas camera attribution is carried
out by correlating a known fingerprint with the image noise [15]. It is also
possible to recover camera parameters such as scaling and digital zoom [16].
PRNU methods can be applied to printed images as well [16]. In [17], PRNU
is coupled to CFA for camera model/brand identification.

After acquisition, the image is often compressed using the industry-standard
JPEG algorithm [18]. The JPEG pipeline starts with downsampling the color
information present in the raw input image, as our eye is less capable of dis-
tinguishing color details than intensity variations. The raw downsampled
image is then partitioned into a grid of 8×8-sized blocks. Each block is then
transformed into frequency domain through the Discrete Fourier Transform.
As the highest frequencies often comprise noise and smaller imperceptible
details, each block is entry-wise divided by a given quantization matrix Q,
rounded up (or down), and multiplied by the same Q: this is called the quan-
tization step. Finally, the image is fed to a run-length encoder and stored into
memory.

The quantization step is the sole lossy step of the JPEG pipeline: in fact,
JPEG compression produces distinctive artifacts on the boundary of each 8×8
block. Moreover, the quantization matrix Q is not specified by the standard
but its choice is left open to the implementer. JPEG forensics methods can
be divided in two branches: those which analyze the structure of Q and those
who do not, relying instead on detecting inconsistencies across neighbouring
blocks, such as [19]. Among the first branch, we distinguish methods aimed at
detecting whether a JPEG image has been compressed more than once (the so-
called double JPEG, or DJPEG). As the first digit of quantized coefficients in
natural images follows the Benford law, this fact is exploited in [20]. Available
methods also separate the case which the latest JPEG compression has been
performed using the same grid as the preceding one (aligned DJPEG) or not
(not aligned DJPEG), such as [21].

At this step of the chain, the image can be edited by the user through
a multitude of editing operators. Forensic methods often target specific op-

2.3. State-of-the-art on image forensics 15

erations, which may span from malicious alterations, such as copy-move or
splicing, rather than simple image enhancement, such as increasing contrast
or removing noise.

The seminal paper for copy-move detection is [22], in which the image is
partitioned into blocks which will be clustered together according to their sim-
ilarity and their reciprocal distance. Large clusters of similar blocks which
are displaced by the same relative amount, reveal the presence of a copy-
move attack. Among these forensic methods, a very effective algorithm is
PatchMatch [23]: common tools for content removal (such as Adobe Photo-
shop healing brush) actually make use of PatchMatch, thus establishing its
status both as a forensic and an antiforensic method. Another approach for
copy-move detection relies on local descriptors obtained through the scale-
invariant feature transform (SIFT): instead of matching similar blocks in an
image, keypoints are clustered together in order to identify similar areas in a
picture. [24]

Geometrical transformations are not malicious per se, but they can still
be used as a mean to distort the real size of an object. As such, the attacked
image (or a part of it) is subject to resampling, thus introducing spurious cor-
relations between image pixels. Resampling detectors work by revealing such
correlations [25], or anomalous periodicities in the interpolated image. [26].

Splicing detection, however, is much more difficult than copy-move detec-
tion, although it may seem related. It can be carried out through CFA or
PRNU-based methods, as it is done in this thesis, or by dedicated content-
based methods. The human brain is weak at inferring the correct physical
and geometrical properties of a scene, therefore even a skilled attacker may
be able to craft a fake image which achieves a convincing look, but still be-
ing geometrically inconsistent. Hence, most physical-based methods target
elements which are particularly difficult to reproduce realistically. However,
the forensic process often needs to be human-assisted, thereby rendering it
inapplicable on large amounts of data.

The main targets for content-based forensic methods are lighting, shad-
ows and perspective. At present, the lighting direction of an object in an
image cannot be modified, therefore a careless splicing produce inconsistency
in illuminant direction, color, number of lights and cast shadows. The first is
addressed in [27] under a number of simplifying hypotheses, such as restrict-
ing the analysis to Lambertian surfaces on the sides of the scene objects. The
presence of multiple lights sources is exploited in [28], while their differences
in colors are studied in [29]. More interestingly, a number of methods have
been proposed in [30] and [31] which exploit shadow size, direction and pho-
tometric properties, under single (outdoor scenes) or multiple light sources

16 Chapter 2. Background

(indoor scenes). Perspective consistency is also an important forensic tool:
the uniqueness of the vanishing point of a scene is easily violated by fake im-
ages, thus enabling recognition of spliced images using, for example, human
eyes [32] or text [33].

A very effective antiforensic method is the so-called recapture, which con-
sists in taking a photograph of a reproduction of the altered photograph on a
printed media or a screen. As most forensic techniques are bound to recogniz-
ing inconsistencies with respect to the camera which took the said photograph,
a recaptured image fails to be detected. Still, some geometrical clues can be ex-
ploited [34] rather than specularities in printed images [35] or a combination
of features [36].

2.3.1 On PRNU

Since in this thesis we make largely use of PRNU, we decided to introduce a
more in depth state-of-the-art analysis of PRNU-based image forensics algo-
rithms. In particular we focus on PRNU estimation and the usage of PRNU
both for camera identification and for tampering localization.

Estimation

Stating from [14] and considering a single color channel, PRNU associated
to the pixel with coordinates (i, j), can be modeled as a multiplicative zero
mean noise K (i, j) acting on an ideally noiseless image pixel I0 (i, j), whereas
other noise sources (e.g. shot noise, quantization noise, dark currents, . . .)
are described with a spatially uncorrelated noise process Θ (i, j). Dropping the
pixel indices, the image model is the following:

I = I0 +K I0 +Θ (2.6)

The estimation of K is problematic, the term K I0 cannot be present in
regions where the incoming light has saturated the sensor (i.e., I is close to
the maximum admissible value, 255 for 8-bit images) [37], and its magnitude
is usually negligible with respect to Θ, especially in dark regions where I0 is
small.

PRNU extraction requires the possession of a set S of N unprocessed
images

S :=
{
Ik

}N

k=1

taken by the same camera. In principle, estimation of K can be performed
simply by weighted averaging. To aid PRNU extraction, image content is

2.3. State-of-the-art on image forensics 17

suppressed by subtracting from Equation (2.6) an estimate of I0: such estimate
Î0 is typically obtained with a denoising filter D, while W is the noise residual.

W := I− Î0 = I−D (I) (2.7)

In [38] and [39], the performance of several denoising filters D is compared.
In this thesis we use the Mikçak filter first described in [40]: this is a simple
adaptive spatial filter which is aimed at removing additive white Gaussian
noise, assuming the knowledge of the noise variance σ2. As suggested by [14]
and considering that the challenge images are similar both in content and in
nature with those examined in the paper, σ2 is set to 3.

Other available filters include BM3D [41], which exploits characteristics
typically shown by natural images. First, an image is decomposed into a
set of small blocks, from which a sparse representation is learned. Next,
groups of blocks are matched against each other: components shared by every
block in a group are enhanced, thereby enhancing also small recurrent details,
while others, such as noisy contributes, are shrinked. Finally, the processed
blocks are fused using a spatial collaborative Wiener filter. The obtained
non-parametric filter exhibits state-of-the-art performance.

Equation (2.7) can be further rewritten as

W = I− Î0 = I0 +KI0 +Θ− Î0 =
(
I0 − Î0

)+K(I0 − I)+KI =KI+Ξ , (2.8)

where Ξ is a term which collects multiple noise contributes and recon-
struction error introduced by the denoising filter. Let us assume that image
content is successfully suppressed in W : if I is a photograph of a well-exposed
smooth scene like a cloudy sky, it’s reasonable to assume that Ξ can be mod-
eled by a white Gaussian process with 0 mean and variance σ2, since the
skewing noise components (e.g. dark currents) are negligible. Moreover, Ξ
can be assumed as being independent from KI [14].

Under these assumptions, the maximum likelihood estimator for K from a
set of N images {Ik }N

k=1 ∈S (with corresponding noise residuals {Wk }N
k=1) can

be derived. The likelihood is

L
(
K | {Ik }N

k=1 , {Wk }N
k=1

)=−N
2

N∑
k=1

log
(

2πσ2

(Ik)2

)
−

N∑
k=1

(
Wk
Ik

−K
)2

2σ2/(Ik)2

By maximizing the likelihood, the ML estimator for the PRNU pattern K can
be written as

K̂ := argmax
K

L
(
K | {Ik }n

k=1 , {Wk }N
k=1

)= ∑N
k=1WkIk∑N

k=1 I2
k

=:
N∑

k=1
mkWk

18 Chapter 2. Background

The form of K̂ is consistent with pixel-wise averaging noises Wk over the
set S , weighted by the corresponding pixel normalized intensities mk. It is
experimentally shown that K also captures contributes not strictly related
to PRNU, such as periodic patterns induced by the CFA structure, row-wise
and column-wise offsets produced by the scanning mechanism of the camera
sensor, and other artifacts which depend on various factors such as exposure
time, focal length, lens, camera model [42]. As those contributes do not lead to
a unique camera, they are usually removed using a composition of Wiener fil-
tering in frequency domain and removal of column/row means [14]. Moreover,
pixels approaching saturation (e.g. close to the maximum possible value) do
not convey any information on PRNU, therefore a set of corrected weights m̃k

is also used. For 8-bit grayscale images, PRNU clipping is dealt by defining

m̃k =
mk if Ik < 252

0 if Ik ≥ 252
(2.9)

whereas filtering is performed as follows:

K̂0 :=F−1
{
F

(
Z

(
K̂

))−W
(
F

(
Z

(
K̂

)))}
(2.10)

where F denotes the Discrete Fourier Transform, Z is the said operator
which removes means from each row and column, and W is the 3x3 Wiener
filter with variance estimated using the image-wise sample variance of the
k-th noise residual

{
Wk (i, j)

}
i, j. From now on, for the sake of simplicity, the

symbol K̂ will denote the filtered PRNU K̂0.

Camera attribution

Let K be a camera PRNU fingerprint, previously estimated from known pris-
tine images. Let I be an image whose camera is unknown. Let K be a PRNU
pattern of a different camera. First, image noise W is extracted from I as
in Equation (2.7). Camera attribution is modeled within hypothesis testing
framework as a decision problem between two different noise models:H0 : W =KI+Θ

H1 : W =KI+Θ

where Θ is a white Gaussian noise with 0 mean. The alternative hypoth-
esis H1 holds when the camera is correctly identified by the given PRNU K,
while the null hypothesis H0 holds when either PRNU is not detected (e.g. the
image has been tampered or belongs to a camera with a PRNU pattern K 6=K).

2.3. State-of-the-art on image forensics 19

Since the term KI is usually negligible with respect to Θ [14], the hypothesis
testing problem can be reformulated as follows:H0 : W =Θ

H1 : W =KI+Θ
(2.11)

In order to write the test statistics for Equation (2.11), let us define a few
operators.

A dot product · between N ×M pixel images can be defined, along with its
induced norm ‖·‖ in the image space:

A ·B :=
N∑

i=1

M∑
j=1

A (i, j)B (i, j) ‖A‖ :=
p

A ·A

Moreover, the sample mean can also be introduced:

A := 1
NM

N∑
i=1

M∑
j=1

A (i, j) .

Borrowing from the stochastic processes theory, an image A = {
A (i, j)

}
i, j

can be viewed as a finite set of realizations of an infinite process. By applying
zero-padding, one may define convolution and cross-correlation between two
images A and B:

C =C (i, j)= (A∗B) (i. j) :=
+∞∑

m,n=−∞
A (m,n)B (i−m, j−n)

C =C (i, j)= (A⊗B) (i. j) :=
+∞∑

m,n=−∞
A (m,n)B (i+m, j+n) .

The cross-correlation range can be restricted to the closed interval [−1,1]. The
resulting operator is called normalized cross-correlation:

C =C(i. j)=NCC[A,B] (i, j) :=
(
(A−A)⊗ (B−B)

)
(i, j)∥∥∥A−A

∥∥∥∥∥∥B−B
∥∥∥ . (2.12)

Using the Generalized Likelihood Ratio Test, the test statistics for (2.11)
is the correlation ρ between IK and W :

ρ :=NCC[IK,W] (0,0) . (2.13)

H0 is rejected when ρ is lower than a correlation threshold γ . Experimen-
tal values for γ vary around 0.01 [37], and may decrease or increase due to
cropping, scaling or further processing. In Figure 2.3 we show a sample task
of detecting images taken with one camera against five other cameras.

20 Chapter 2. Background

0 20 40 60 80
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Pictures

C
o
rr

e
la

tio
n

G2

S40

A10

C765 - 1

C765 - 2

C3030

Figure 2.3: Values of ρ obtained by comparing 84 JPEG images taken by a Canon G2
with six PRNU patterns, five of which correspond to other cameras. Notice how well
a the correlation threshold γ to 0.01 discriminates images taken with the Canon G2,
whose pattern has been extracted, from images taken with other cameras. (Figure from
[37])

In the PRNU-based forensics context, NCC[A,B] (i, j) is an often sharp-
peaked function in the shift arguments i and j: this is mainly due to the fact
that IK and W are almost-everywhere uncorrelated if their relative position
is shifted from each other than the true value, e.g. whenever the query image
I has been cropped with respect to the full images used to estimate K. As a
consequence, rather than simply analyzing ρ , it is more effective to detect
whether we are approaching a peak.

In [43], the Peak to Correlation Energy ratio (PCE) is introduced as a useful
measure of peakness. Let (ipeak, jpeak) be the argmax of NCC[IK,W] (i, j), and
let N be a small neighborhood around such maximum. The PCE is defined as
follows:

PCE(A,B) :=
(
NCC[A,B] (ipeak, jpeak)

)2

1
NM−|N |

∑
i, j 6∈N

(
NCC[A,B] (i, j)

)2

As for NCC, a threshold τ is usually set on PCE, depending on the desired
significance level and the test power.

Tamper localization

The same attribution framework can also be applied by correlating N blocks
extracted from W and K, say Wb and Kb, b ∈ {1, ...,N}, to the purpose of un-

2.3. State-of-the-art on image forensics 21

covering local tampers whenever Kb is not detected. This is the preferred
approach in image forensics literature for PRNU-based methods. However,
more hypotheses are required, since a correspondence between Wb and Kb

needs to be established first: for example, processing involving scaling and
other geometrical transformations need to be ruled out.

The output of a localization approach is a correlation surface R=R (ib, jb),
where (ib, jb) are the pixel coordinates of the center of block b. Let W be
the denoising residual as in Equation (2.7). Suppose that no cropping is
performed: that is, the query image I has the same shape as the reference
pattern K. As a consequence, following Equation (2.13), each residual block
Wb can be correlated with the corresponding product Ib Kb, thus giving rise to
a test statistic for each block b:

R (ib, jb) := ρb =NCC[Ib Kb,Wb] (ib, jb) ∀b ∈ {1, ...,N} (2.14)

By applying the same thresholding procedure as in 2.3.1, a binary mask is
obtained which separates fake regions from pristine ones.

Similarly, we may compute the PCE between each block, obtaining a PCE
surface P=Pb:

Pb :=PCE (Ib Kb,Wb) ∀b ∈ {1, ...,N} (2.15)

Several variations on (2.11) have been proposed: [14] allows for small
deviations from the model in Equation (2.13), and builds a predictor for K on
regions where H0 is not rejected. In [44], the threshold γ is chosen using the
Bayesian decision theory.

2.3.2 Winning algorithms

Several groups have taken part in the Challenge. The submissions which won
both phases of the Challenge were both made by Team GRIP2 from Università
Federico II di Napoli. High scores have been achieved on both phases: see
Table 2.3a and Table 2.3b for the final ranking of the participants in both
phases.

The winners were required to submit a 4-page paper which detailed their
approach. Since these papers are the most up to date state-of-the-art algo-
rithms for tampering detection and localization, we outline the core of these
algorithms that also serve as starting point for some techniques developed in
this work.

2http://www.grip.unina.it/

http://www.grip.unina.it/

22 Chapter 2. Background

Place Leader Team Score

1 Luisa Verdoliva grip 0.942064
2 Guanshuo Xu havefun 0.937259
3 xinqi lin hryup 0.934629
4 Licong Chen Chen 0.932270
5 Khosro Bahrami Fake Bluster 0.857373
6 Dev Sh ITD 0.823980
7 Han April April 0.570658
8 Anh-Dung LE Buster 0.542519

(a) Phase 1: detection

Place Leader Team Score

1 Luisa Verdoliva grip 0.407172
2 Guanshuo Xu havefun 0.267773
3 Licong Chen Chen 0.184282
4 xinqi lin hryup 0.164267

(b) Phase 2: localization

Table 2.3: Challenge final scores, computed according to 2.2.1.

Some notation

Let I be the full image set of the Challenge. Following Table 2.1, I is split in a
training set I tr, whose image ground truths (from now on, labels) are known,
and a test set I ts, on which the Challenge scores are computed. I tr can be
itself split into I tr,P and I tr,F. The cardinalities of each set are reported in
Table 2.1. In Figure 2.4 we represented graphically the established notation
along with the Challenge dataset.

Figure 2.4: The Challenge dataset composition (not to scale): gray areas are associated
to fake images.

Let li ∈ {0,1} be the ground truth label associated to the image i ∈ I , where
the value 0 is associated to “pristine” status.

2.3. State-of-the-art on image forensics 23

Detection

Team GRIP achieved a very high score in the detection phase, using a promis-
ing new approach which involved machine learning tools trained on features
originally envisioned in the steganalysis field, further augmenting their score
using the PatchMatch algorithm. Their results have been published and are
currently available on ArXiv [45]. Moreover, due to the large amount of fea-
tures and the small size of the training dataset, they heavily rely both on
cross-validation and ensemble learning in order to obtain robust predictions.

The starting point of their approach is steganalysis based, and involves
the computation of co-occurrences in a noise-like matrix. Following [46], a
vector of 39 groups of features (from now on, submodels) is extracted for each
image, while each submodel is comprised either by 328 or 335 values in [0,1].
The extraction procedure starts with converting each image in grayscale mode:
the resulting image will be denoted as I (i, j).

Next, Cozzolino, Gragnaniello, and Verdoliva following the approach de-
scribed by Fridrich and Kodovsky, built a set of 39 high-pass-like filters acting
on each one of the I (i, j). Let N (i, j) be a small punctured disk around pixel
(i, j), and let Î [A] (i, j) be a prediction of I (i, j) using pixels in set A. Then, the
filtered image r (i, j) can be expressed as

r (i, j) := Î
[
N (i, j)

]
(i, j)−c I (i, j) ,

where c and the predictor depend on the used filter. The relationship
between the predictor and c is shown in Figure 2.5, whose color/number/shape
code is translated to the type of the operation which is performed on each pair
of pixels. Available filters include differences between neighbours and non-
linear operators such as max and min:

r (i, j)=X (i, j+1)−X (i, j)

r (i, j)=min
[(

X (i, j+1)−X (i, j)
)
,
(
X (i+1, j)−X (i, j)

)]
.

The computed residuals r (i, j) are quantized and truncated:

r (i, j) := (
TruncT ◦Round

)(r (i, j)
q

)
(2.16)

where T ∈N and q> 0 are a values of choice, Round(x) rounds x to the nearest
integer and TruncT is the truncation function:

TruncT (x) :=
x if |x| < T

T sign(x) if |x| ≥ T

24 Chapter 2. Background

1st and 3rd

ORDER:

−1

1a) spam14h,v

+1 +1 −1

1b) minmax22h,v

+1

+1

−1

1c) minmax24

+1

+1

−1

1d) minmax34h,v

+1+1

+1

−1

1e) minmax41

+1+1

+1

−1

1f) minmax34

+1

+1

+1

−1

1g) minmax48h,v

+1

+1

+1+1

−1

1g) minmax54

+1

+1

+1+1

−1

2nd ORDER:

−2

2a) spam12h,v

+1 +1 −2

2b) minmax21

+1 +1

+1

+1

−2

2c) minmax41

+1 +1

+1

+1

+1

+1

+1

+1

−2

2d) minmax24h,v

+1 +1

+1

+1

−2

2e) minmax32

+1 +1

+1

+1

+1

+1

EDGE3x3:
−4

E3a) spam14h,v

+2 +2

+2 −1−1

−4

E3b) minmax24

+2 +2

+2 −1−1

+2−1

−4

E3c) minmax22h,v

+2 +2

+2 −1−1

+2−1 −1

−4

E3d) minmax41

+2 +2

+2 −1−1

−1 −1+2

SQUARE:

−4

S3a) spam11

+2 +2

+2

+2

−1

−1

−1

−1

−12

S5a) spam11

+8 +8

+8

+8

−6

−6

−6

−6

−1

−1

−1

−1

−2 −2

−2

−2

+2

+2

+2

+2

+2

+2

+2

+2

Figure 2.5: Stencils of the high-pass filters. Further details in [46]

As a result,
{

r (i, j)
}

i, j is a matrix with the same shape as the original
image, but whose entries take values in the set −T, . . . ,T . In the examined
articles, T always takes value 2 due to excessive computational burden, while
q is varied in [46] but fixed to 1 in [45] to avoid overfitting.

Next, co-occurrence matrices are formed starting from the
{

r (i, j)
}

i, j pro-
duced by each type of submodel. The i- j-th entry of a co-occurrence matrix
counts how many times one given string of values of r (i, j) appears adjacent to
another one. The length of the string is fixed: in [46] and in the winning Chal-
lenge entry [45], the Authors experimented with 4 neighbours, but further
analyses are encouraged, while the strings are constrained to have horizontal
or vertical directions. As a result, each co-occurrence matrix has 25×25 en-
tries, where 25 is the number of possible combinations of 4 consecutive values
which can be found in r (i, j) under the previous hypotheses. This is a large
number when compared with the amount of available images, but stencil sym-
metries can be exploited to reduce the obtained degrees of freedom from 625
to 328 or 325 depending on the submodel. Finally, the resulting co-occurrence

2.3. State-of-the-art on image forensics 25

matrices are put in a vector form, concatenated together and resulting vector
is set to sum to 1.

Up to this point, Cozzolino, Gragnaniello, and Verdoliva managed to train
a supervised Support Vector Machine linear classifier3 on each submodel, inde-
pendently from the others, heavily relying on cross-validation. The Challenge
training set I tr is split at random into a cross-validation training set with
unbalanced classes, on which the SVM are trained, and a cross-validation
test set. The cross-validation scheme is represented in Figure 2.6. Following
notation described before

I tr = ICV
tr ∪ICV

ts∣∣∣ICV
tr ∩I tr,F

∣∣∣= 5/6
∣∣I tr,F

∣∣∣∣∣ICV
tr ∩I tr,P

∣∣∣= 5/6
∣∣I tr,P

∣∣
The m-th classifier is trained on the cross-validation training features

associated to the m-th submodel along with the image ground truths { li }i∈Itr

as supervised outputs; to each classifier, a cross-validation phase 1 score
is computed on the labels predicted by feeding the cross-validation test set
features to each trained classifier. The best claimed scores of the individual
classifiers are reported in Table 1 of [45] and exceed 0.94.

Figure 2.6: Cross-validation as performed in the Challenge training set.

Cozzolino, Gragnaniello, and Verdoliva, then, proceed with progressively
concatenating the best submodels so to form a bigger submodel, and the whole
training procedure is repeated. The concatenation continues until the length
of the merged submodel exceeds the cardinality of the cross-validation train-
ing set. The claimed best Phase 1 score on I tr is 0.9531.

To further increase the score, PatchMatch is also computed on each image;
since the false detection rate (i.e. pristine images being labeled as fake) of
this method is extremely low (5 false matches over 1050 pristine images),
the image is thus labeled as being fake whenever a copy-move is detected,

3See Appendix A

26 Chapter 2. Background

independently from the feature-based classifiers. Combining PatchMatch
with the best reported achieved score on the training set, the score increases
to 0.9737. As for the Challenge test set results, Cozzolino, Gragnaniello, and
Verdoliva achieved the winning score of 0.9429.

Localization

The promising approach developed by Team GRIP for the detection phase of
the Challenge has been adapted with the purpose of detecting local tampers,
along with a more conventional PRNU-based method. Here, the key idea
is to merge three different masks produced by three different detectors: i)
PatchMatch [23]; ii) local descriptors (i.e. the learned SVM on local features)
with iii) PRNU. As these masks tackle different kinds of tampering, they need
to be fused carefully, therefore a sequential strategy is developed.

Since the Challenge dataset is fully blind, no information is available on
the cameras which have been used for taking the supplied snapshots, so the
operations of camera attribution and fingerprint estimation are necessarily
intertwined. Furthermore, a significant amount of images are needed for a
successful PRNU extraction, therefore a clustering is attempted in order to
be able to extract camera fingerprints K̂ from collections of noise residuals W .

The clustering algorithm is a variant of the Pairwise Nearest Neighbour
(PNN), and alternates between hierarchically associating closest images and
fingerprint estimation inside each identified cluster. The used distance mea-
sure is the PCE, with a threshold of 50; despite having been engineered for
low resource usage, the task is still computationally demanding. After having
identified the candidate clusters, camera fingerprints are recomputed and the
camera attribution takes place, notwithstanding with a higher PCE thresh-
old. Due to the blindness of the Challenge, the whole PRNU procedure is
unreliable and needs to be taken with a grain of salt: we recall that, among
the hypotheses, PRNU estimation forbids any scaling, heavy compression and
misalignment between images used for estimating K̂.

The PatchMatch step is aimed at detecting copy-move forgeries; the algo-
rithm quickly detects similar parts in an image which may indicate that a
cloning has been performed. However, the biggest drawback of PatchMatch is
that it does not distinguish the source region from the destination, therefore
the obtained mask needs to be disambiguated in some way. Another drawback
is that PatchMatch fails whenever the tampering is not a copy-move attack: as
a consequence, a PatchMatch mask is not always available along the training
dataset.

Finally, the aforementioned approach based on co-occurrence features has

2.3. State-of-the-art on image forensics 27

been adapted to work in this situation. First, the images are partitioned into a
grid of 128×128 pixel sliding blocks, where each one is labeled as “fake” if it is
composed from 20% to 80% of forged pixels: the ansatz is to be able to detect
forgeries by observing discontinuities on the edges of the modified region.
Next, the said features are extracted and fed into a linear SVM classifier.
Along with each predicted block label, one can also compute the distance of
the feature vector from the hyperplane which separates the fake class from
the pristine one. Such distance is used as a measure of confidence: the larger
the distance, the more reliable the classification. This time, the obtained
mask is not binary any more, but needs to be thresholded first.

With the three masks at hand, the fusion strategy prioritizes PatchMatch
output (if available), eventually disambiguated using the PRNU map, if suffi-
ciently reliable. Whenever PatchMatch fails to detect anything, PRNU map
is used next, keeping local descriptors as a last resort. A chart summarizing
the decision process for this strategy is represented in Figure 2.7.

�������
����	
 �������

�������
����	
 �������

����������

���������	
� �

�!"#$

� $
%�����	
�!"#�

���������	
�!"#�

���������	
� �

���������	
&��

����� '�� '��

'��'��

'��

"�

"�

"� "�

"�

Figure 2.7: The fusion strategy flowchart. The feature-based approach is labeled as LD.
(Figure from [47])

Regarding Challenge results, Cozzolino, Gragnaniello, and Verdoliva claimed
to have reached a F1 score in the training set of 0.4153, whereas the winning
score achieved on the Challenge test set is 0.407172.

28 Chapter 2. Background

Chapter 3

Image tampering detection

In this chapter, we tackle the Detection problem paying particular attention
to the Challenge Phase 1 dataset. We remind that the Detection problem is
to be able to recognize whether a given image is fake or not. This problem
is noticeably simpler than the Localization one, which will be approached in
the next chapter: as a matter of fact, there are some tools which are able
to distinguish statistics which can be hardly found in natural images, such
as perfecly cloned objects or edges too smooth with respect to the rest of the
image. To detect these features is sufficient to solve the Detection problem,
but their exact localization is not always accurate.

We begin by implementing a variant of the winning approach described in
Subsection 2.3.2: our method is built on the same battery of 39 feature-based
detectors, as described in Subsection 2.3.2. The reason for this choice is that
global features seemed to work well with the dataset, and they were exploited
by the top two teams in the Challenge.

Once the feature detectors have been established, we analyze their gen-
eral properties on the dataset. In this section we will also make use of the
knowledge of the ground truth on the Challenge Phase 1 test set, by actually
comparing the detector performance between training and test cases.

Next, we diverge from the winning submission by conceiving several
means of producing a single decision from all 39 classifier outputs: we will
also introduce a more advanced detector, built directly on the outputs of our
39 trained classifiers, showing that further improvement from the winning
score is achievable.

Since the implemented detector is a technique heavily based on a machine
learning approach, to actually understand the reason for its top-notch perfor-
mance is a conditio sine qua non for its application in a more general context.
As a consequence, we end this chapter with a targeted analysis of the Chal-

29

30 Chapter 3. Image tampering detection

lenge dataset. A byproduct of the last step is a tentative adaptation of the
algorithm for the Localization approach, which, however, will be carried out
in the next chapter.

3.1 Proposed algorithm

3.1.1 Feature-based detectors

The feature-based detector is the same as the one which has been used in the
winning submission (2.3.2). We represented it graphically in Figure 3.1.

Feature
Extraction

SVM

SVM

SVM

Training
Set

Feature
Extraction

Test
Set

.

.

.

.

.

.

Training

Test

SVM

SVM

SVM

Fusion

Figure 3.1: The SVM block diagram. For the sake of simplicity, cross-validation phase
is not shown.

Briefly, to each image we associate a vector of 12753 features, grouped in
M = 39 submodels, each one comprising either 325 or 338 features. Features
in every submodel are positive values which sum to 1. To each image we
also associate a ground truth label, which the classifiers will be trained on,
in a supervised manner. Let x(m)

i be the feature vector assigned to image
i ∈ {1, . . . , |I | } as extracted using the submodel m ∈ {1, . . . ,M}, and let li ∈ {0,1}
be the true image label in binary form, where “1” indicates that i-th image is
fake.

We will denote a prediction of li (e.g. as a classifier output) with l̂i. Feature
vectors in I tr can be organized in a matrix form: the resulting matrix has
1500 rows, one per image, and 6×338+33×325= 12753 columns.

3.1. Proposed algorithm 31

As in Subsection 2.3.2, the training set I tr is randomly split into ICV
tr and

ICV
ts (see Figure 2.6). Here, we report our choice for cross-validation setup:

I tr = ICV
tr ∪ICV

ts∣∣∣ICV
tr ∩I tr,F

∣∣∣= 5/6
∣∣I tr,F

∣∣∣∣∣ICV
tr ∩I tr,P

∣∣∣= 5/6
∣∣I tr,P

∣∣
For each submodel m, a SVM binary classifier β

(m)
is trained on the feature

set
{

x(m)
i

}
i∈ICV

tr

, using the image labels
{

li
}

i∈ICV
tr

as supervised inputs.

To be effective for SVM classification, feature space needs to be trans-
formed first: we experimentally found out that matrix standardization is the
best choice on this dataset.

Secondly, SVMs require calibration, as a number of parameters (here,
metaparameters) have to be specified: to this purpose, we perform 5-fold cross-
validation inside ICV

tr and we chose metaparameters which maximize the
mean Phase 1 score, computed using the predicted outputs

{
l̂i

(m) }
i∈ICV

tr

. The

strategy for SVM metaparameter selection is a simple grid search on a very
coarse grid, further refined if necessary.

Next, M SVM classifiers β
(m) are trained on the whole

{
x(m)

i

}
i∈Itr

along

with
{

li
}

i∈Itr

, using the learned best metaparameters. Each β
(m), once trained,

is then used to predict the test set labels
{

l̂i
(m) }

i∈I1
ts

, whose Challenge results

will be computed onto.
As our SVM works on linear bases, to each image i we also associate the

soft decision values d (m)
i , where

l̂i
(m) = 1

2

(
sign(d (m)

i)+1
)

(3.1)

3.1.2 Simple ensemble classifiers

Up to now, for each image we have 39×2= 78 different outputs: the predicted
labels and the decision values. Our goal is, then, to obtain a single decision

from the sets
{

l̂i
(m)}K

m=1
and

{
d (m)

i

}K

m=1
. A way to choose such strategy is to

implement an ensemble classifier.
Here, we distinguish what we call simple ensemble classifiers (i.e. which

require no training) from more advanced ones, such as the boosting classifier.

32 Chapter 3. Image tampering detection

Definition 1 (Simple ensemble classifier). A simple ensemble classifier
is a function

f : {0,1}39 ×R39 → {0,1}

{ l̂i
(m)

}39
m=1 × {d (m)

i }39
m=1 7→ l̂i

(3.2)

For sake of simplicity, let us drop the image index i, and collect each submodel
output in a vector:

l :=
{

l̂i
(m) }39

m=1
d :=

{
d (m)

i

}39

m=1

We considered the following set of simple ensemble classifiers:

• Simple Majority

fSM(l,d) :=
1 if 1

39
∑39

m=1 lm > 1
2

0 else

• Signed Sum

fSS(l,d) :=
1 if

∑39
m=1 dm > 0

0 else

• Weighted Signed Sum

fWSS(l,d) :=
1 if

∑39
m=1

(
2Φ(dm)−1

)> 0

0 else

where Φ(x) := 1
1+e−x is the sigmoid function.

• Signed L2

fL2(l,d) :=
1 if

∑39
m=1

∣∣dm
∣∣2lm > 0

0 else

We found out (see 3.2.5) that majority voting is very simple, requires no
training and enables us to almost achieve the claimed Phase 1 score with no
effort.

3.1.3 Best k submodels

A variant on the previous approach is to consider only the k highest scoring
submodels on the training set. Results are available in Figure 3.7: in most
cases, the improvement is significant when choosing less than all 39 submod-
els.

3.2. Experimental results 33

3.1.4 Boosting

In addition to simple ensemble classifiers, as implemented in the previous sub-
section, we also briefly investigated a more advanced approach built directly
on the output of all 39 classifiers.

The idea is to train a device which learns from examples which are mis-
classified by a set of weak learners: the obtained classifier is stronger than
the ensemble (hence, the name strong learner), although an additional train-
ing step is required, thus necessitating more data. This procedure is named
boosting. To implement a boosting classifier, we performed a logistic regres-
sion with the decision values of each SVM as 39 predictor variables, and the
image binary label li as the outcome variable.

In equations, the model is written as

logit
(
E

[
li

∣∣∣∣ d (1)
i , . . . ,d (39)

i

])
= b0 +

39∑
m=1

bi d (m)
i ∀i ∈ I tr , (3.3)

where logit(x) := log x
1−x is the logistic function, d (m)

i is the decision value for
the i-th image as returned by the m-th classifier, and {bi }39

i=0 are the unknown
coefficients of the boosting classifier. Once all the {bi }39

i=0 are obtained, the
classifier can be used to predict l̂i on the Challenge test set I1

ts.
Due to the lack of time and large computational effort, no dimensional

reduction is attempted, relying instead on the proven capabilities of linear
SVMs to work reliably on very high dimensional data [48]. A much more
deep analysis would be required, starting perhaps from Linear Discriminant
Analysis (as in [46]) or its kernel-based variant. More remarks on dimensional
reduction can be found in 3.2.4.

3.2 Experimental results

3.2.1 Problem setup

We start by summarizing our data in Table 3.1. To perform Support Vector
Machine classification, we used LIBLINEAR [49], a free open-source library
built specifically for large datasets. Citing from the accompanying guide [49],
LIBLINEAR implements L1-loss and L2-loss binary and multi-class SVMs with
linear basis along with primal and dual solvers and L1 or L2 regularization: it
also supports probability outputs through L2-regularized logistic regression.
In our problem, we chose L2-loss along with L2 regularization; prior class
probabilities are always set to the sample class proportions.

First, a uniform cross-validation set ICV
tr is randomly extracted from I tr

with the aforementioned proportions. For now, let’s choose submodel m. We

34 Chapter 3. Image tampering detection

Data Amount

Submodel length 328 or 325
Number of submodels 39
Total number of features 12753
|I tr| 1500∣∣ICV

tr

∣∣ 1250∣∣ICV
ts

∣∣ 250∣∣I1
ts

∣∣ 5713.

Table 3.1: Detection dataset summary.

can now build the full submodel data matrix X (m) by stacking our feature
column vectors x(m)

i :

X (m) =

x(m)

1
>

x(m)
2

>

...

x(m)
N

>

 ∈RN×p (3.4)

where N = |I tr| and p ∈ {325,338} is the number of features expressed
by submodel m. To enhance the score, we chose to standardize our features:
specifically, we standardized each column, considering only entries whose
rows are in ICV

tr , and we applied the obtained transformation to the cross-
validation test set ICV

ts .

3.2.2 SVM calibration

Let β
(m) ∈ Rp be the coefficients assigned to the m-th classifier. As a slight

abuse of notation, with β
(m) we will both refer to the SVM on submodel m and

the coefficients of the same SVM. From the model in [49], once trained on ICV
tr

each β
(m) solves

β
(m) = argmin

w∈Rp

1
2

w>w + C (m) ∑
i∈ICV

tr

max
[
0,1− (2li −1) w>x(m)

i

] , (3.5)

where C (m) > 0 is a penalty parameter and the soft decision value is defined
as

d (m)
i :=w>x(m)

i (3.6)

As said before, calibration of C (m) is done for each submodel m using an ex-
haustive search on 11 values logarithmically equispaced inside {2−20,220}. To

3.2. Experimental results 35

increase robustness, we try to avoid overfitting by performing 5-fold cross-
validation 5 times inside ICV

tr : the final score for each choice of C (m) is then
set to be the mean of the scores on the remaining folds. Finally, the grid is re-
fined once around the best choice of C (m). The calibration process is shown in
Figure 3.2. The dependence of the score on the choice of C (m) is quite flat (Fig-
ure 3.2a): moreover, the score increment on each best parameter before and
after refinement (Figure 3.2b) shows that grid refinement is not necessary.

Several experiments have been performed by choosing a radial basis SVM:
obtained scores were comparable to linear basis SVM, but required calibrating
two metaparameters (hence with a quadratic complexity), with a significantly
longer training time per metaparameter choice.

3.2.3 Performance on each test set

After calibration, each SVM is tested on the cross-validation test set ICV
ts , thus

producing a set of predicted labels
{

l̂i
(m) }

i∈ICV
ts

along with the respective scores.

In Figure 3.3 we show through repetition of the cross-validation procedure
(i.e. 100 random choices of

[
ICV
tr ,ICV

ts

]
) that the Challenge training set I tr is

uniform in score for classification purposes.

As the ground truth labels in the Challenge Phase 1 test set are available,
we then proceed to evaluate the performance of each β

(m) on I1
ts. First, we

begin by retraining each β
(m) on the entire training set I tr, using the best

metaparameters learned on ICV
tr . Next, to each SVM we feed I1

ts to obtain
predicted labels, decision values and the Challenge Phase 1 score.

From Figure 3.4 we immediately observe a loss in score, although it still
remains very high. The loss is not due to a particular choice of the cross-
validation set, and it persists even if we change each one of the metaparame-
ters C (m) to make them span over the grid used in calibration (see Figure 3.4b).
We conjecture that the reason behind it is a structural difference between the
Challenge training set and the Challenge test set.

To further investigate such loss, we can exploit an oracle by training our
SVMs on I tr while seeking for the best {C (m) }39

m=1 that maximizes the score
on I1

ts. As Figure 3.5 shows, we cannot hope to reach a much better score.
Moreover, from Figure 3.5c we also note that scores on I1

ts are more stable
than scores obtained against ICV

ts : this is against all odds since the Challenge
test set is much larger than the cross-validation test set (

∣∣I1
ts

∣∣= 5713, while∣∣ICV
ts

∣∣= 250).

36 Chapter 3. Image tampering detection

Parameter #

M
o
d
e
l

Training score (CV)
it = 1/2

2 4 6 8 10

5

10

15

20

25

30

35

Parameter #

M
o
d
e
l

Training score (CV)
it = 2/2

2 4 6 8 10

5

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Color: score, Y axis: submodel m, Panels: refinements, X
axis: index of the chosen metaparameter inside m-th metapa-
rameter grid

(b) Difference between maximum scores per submodel be-
tween refinements.

Figure 3.2: Metaparameter grid search. Each reported score is obtained by training on
4/5 of ICV

tr and testing on the remaining 1/5: this procedure is repeated 5 times, and the
resulting scores are averaged. Note how quite insensitive the score is on the choice of
C (m): we remind that in the first plot of (a), the x-axis ranges inside {2−20,220}. In (b)
we show the negligible score increments for each submodel between the first and the
second grid refinement.

3.2. Experimental results 37

0.88 0.89 0.9 0.91 0.92 0.93 0.94
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Score inside k−fold CV training set

S
c
o

re
 i
n

s
id

e
 C

V
 t

e
s
t

s
e

t

Mean score inside 5−fold grid search (X
Tr

) vs mean score on CV test set (X
Ts

)

Figure 3.3: Mean 5-fold cross-validation score inside ICV
tr for each submodel (+) against

mean score on ICV
ts . Means over 100 realizations of

[
ICV
tr ,ICV

ts

]
. Gray line: bisector.

3.2.4 On dimensional reduction

We would like to remark that no dimensional reduction has been performed:
as a result, the observed loss in score may be simply due to feature dimen-
sionality and the different sample sizes, thus a much longer analysis would
be required. Still, we cite the following result by Cover [50]:

Theorem 1. Let X =
{

x(m)
i

}
i∈I be a set of N = |I | p-dimensional features cho-

sen, both randomly and independently, on Rp through a probability measure µ

on Rp. Suppose that every subset A ∈ 2X : |A| = p is linearly independent. Now,
let A,B be sets such that A⊂X , B=X \A. Then, the probability P(N, p) that A
is linearly separable from B is:

P(N, p)=
(

1
2

)N−1 p−1∑
k=0

(
N −1

k

)
(3.7)

Let us consider the training case where X =
{

x(m)
i

}
i∈Itr

, p is 338, and let

{A,B} be the partition of X as identified by the SVM. We have N = |I tr| = 1500,
p = 338. Plugging those numbers in Equation (3.7), the probability that the
partitioning is solely due to chance is:

P(1500,338)= 1.7410−106

while to reach the common p-value of 0.05, a sample size of at least 720 images
is required.

We note, however, that this result does not exploit the cross-validation
mechanism: in fact, we conjecture that the error committed due to high data

38 Chapter 3. Image tampering detection

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Score of each model

Score on training set

S
c
o
re

 o
n
 t
e
s
t
s
e
t

(a) Score on ICV
ts by training on ICV

tr against score on I1
ts by training

on Itr

0.7 0.75 0.8 0.85 0.9 0.95

0.7

0.75

0.8

0.85

0.9

Score sensitivity: comparison train/test w.r.t. parameter C
Color = model

Score on training set

S
c
o

re
 o

n
 t

e
s
t

s
e

t

(b) As (a), but varying C (m) 11 times around the best value on ICV
ts ,

grouped by submodel (colors)

Figure 3.4: Comparison between score in Itr and I1
ts. Figure (a) shows that each

submodel performs worse if it is trained on Itr and it is tested on I1
ts, rather than

having been trained on ICV
tr and tested on ICV

ts . (compare with Figure 3.3).
Plot (b) shows that this loss does not depend on the choice of C (m): we swept each
parameter on the range used in the last grid search iteration, but reported scores in
the Phase 1 test set were almost always lower than scores on the cross-validationtest
set. This hints for some underlying difference between the two datasets, which is not
expressed inside Itr.

3.2. Experimental results 39

0 5 10 15 20 25 30 35 40
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Submodel

S
c
o

re

Scores per model, with oracle

Training

Test

Oracle

(a) Score distribution across submodels

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Training Test Oracle

S
c
o

re

Score distribution

(b) Score distribution across submodels, boxplots

Submodel

S
c
o

re

Mean scores per submodel, 100 CV realizations, fill ±1σ

0 5 10 15 20 25 30 35 40
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Training mean

Test mean

Oracle

(c) Mean score distribution along submodels, means
across 100 cross-validation realizations, the fill ex-
tends up to a standard deviation from the mean.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Training means Test means Oracle

S
c
o

re

Mean score distribution per submodel, means over 100 CV realizations

(d) Distribution of mean score along submodels, 100
cross-validation realizations.

Figure 3.5: Usage of an oracle on I1
ts. We compare SVMs trained on ICV

tr and tested
on ICV

ts against SVMs trained on Itr and tested on I1
ts. In the second row, we repeat

the same experiment 100 times, each one resampling ICV
tr and ICV

ts .
The oracle, instead, is trained on Itr and tested on I1

ts: however, metaparameters C (m)

are chosen in order to maximize its score on I1
ts: this gives us an upper bound on each

classifier score. It is clear how we cannot expect our classifiers to perform equally well
on the test set rather than the training set.

40 Chapter 3. Image tampering detection

dimensionality is (partially) controlled by the usage of the test set. Also, the
framework of Theorem 1 is applicable for “fully random” classifiers: in prac-
tice, the explored sample space (that is, the possible set dichotomies) is much
smaller and distorted due to SVM penalization and metaparameter selection.
Thus, it would be more helpful to characterize a “random” to classifier to
compare against, numerically or analytically, perhaps starting with an unop-
timized linear classifier. This procedure would also clarify us the role of high
dimensionality on the Challenge score.

Again, a much more thorough analysis would be mandatory to assess
hypotheses in Theorem 1. From now on, we will take for granted our results
without approving (dismissing) them on the grounds of statistical (non—)
significance due to high dimensionality.

3.2.5 Ensemble classifiers

We proceed now with evaluating the performance of some ensemble classifiers.
In Figure 3.6 we show the results of each simple ensemble classifier. No
method is preferrable to any other, although any ensemble classifier gives a
sizable improvement over the average decision taken by all classifiers.

0.86 0.88 0.9 0.92 0.94 0.96 0.98

Score

Score distribution, over 100 CV realizations

Ensemble (L
2
), Phase 1 test

Ensemble (WSS), Phase 1 test

Ensemble (SS), Phase 1 test

Ensemble (SM), Phase 1 test

Test means over submodels

Ensemble (L
2
), Test CV

Ensemble (WSS), Test CV

Ensemble (SS), Test CV

Ensemble (SM), Test CV

Test CV means over submodels

Figure 3.6: Simple ensemble classifier scores across 100 realizations of the cross-
validation set. Blue boxplots: scores obtained by testing on ICV

ts , red boxplots: scores
obtained by testing on I1

ts. The first boxplot of each group is the cross-validation dis-
tribution of the sample mean of the scores across submodels.
Notice the sizable score gain obtained by choosing any simple ensemble classifier.

3.2. Experimental results 41

3.2.6 Best-k models

We can also modify the previous procedure by computing the score using
only the k highest scoring submodels on each training set: this strategy is
advantageous when k approaches 10 (Figure 3.7).

1 4 7 10 13 16 19 22 25 28 31 34 37 39
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

k

S
c
o
re

Scores using best k models
means over 100 CV sets

Mean of Test CV submodels

Mean of Phase 1 test submodels

Ensemble (SM) on Test CV

Ensemble (SM) on Phase 1 test

Ensemble (SS) on Test CV

Ensemble (SS) on Phase 1 test

Ensemble (WSS) on Test CV

Ensemble (WSS) on Phase 1 test

Ensemble (L
2
) on Test CV

Ensemble (L
2
) on Phase 1 test

Figure 3.7: Simple ensemble classifier mean scores using best k submodels. Means
across 100 cross-validation realizations.
Notice how deciding using the best performing classifier on Itr leads us to a loss in
score, although still being better than the average submodel.

3.2.7 Boosting

In principle, to train a boosting classifier, one ought to perform another cross-
validation step: due to the lack of time, we did not implement this necessary
precaution, training instead on ICV

tr (I tr) and testing on ICV
ts (I1

ts). As a result,
obtained inferences have to be taken with a grain of salt. Moreover, perfect
separation in the training set is achieved using

∣∣ICV
ts

∣∣ observations: that is,
there exists a linear combination of 39 columns which perfecly predicts li from{

d (m)
i

}39

m=1
for all images i ∈ ICV

tr .
In statistical literature, this is deemed to be a pathological situation, re-

quiring much more analysis in order to uncover the reason for the occurrence
of the perfect separation; another tentative remedy is to apply some form of
regularization. Nevertheless, we decided to show the results anyway, as a
boosting approach could be potentially rewarding to the purpose of decision

42 Chapter 3. Image tampering detection

fusion. An example plot is reported in Figure 3.8: from the plot, we appreciate
that a sizable gain on test set is achieved.

0.86 0.88 0.9 0.92 0.94 0.96 0.98
Score

Score distribution, over 100 CV realizations

Ensemble (Boosting), Phase 1 test

Ensemble (L
2
), Phase 1 test

Ensemble (WSS), Phase 1 test

Ensemble (SS), Phase 1 test

Ensemble (SM), Phase 1 test

Test means over submodels

Ensemble (Boosting), Test CV

Ensemble (L
2
), Test CV

Ensemble (WSS), Test CV

Ensemble (SS), Test CV

Ensemble (SM), Test CV

Test CV means over submodels

(a) Same plot as Figure 3.6, with the boosting classifier added.

1 4 7 10 13 16 19 22 25 28 31 34 37 39
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

k

S
c
o

re

Scores using best k models
means over 100 CV sets

Mean of Test CV submodels

Mean of Phase 1 test submodels

Ensemble (SM) on Test CV

Ensemble (SM) on Phase 1 test

Ensemble (SS) on Test CV

Ensemble (SS) on Phase 1 test

Ensemble (WSS) on Test CV

Ensemble (WSS) on Phase 1 test

Ensemble (L
2
) on Test CV

Ensemble (L
2
) on Phase 1 test

Ensemble (Boosting) on Test CV

Ensemble (Boosting) on Phase 1 test

(b) Same plot as Figure 3.7, with the boosting classifier added (in green).

Figure 3.8: Boosting classifier performance.

3.3. Deeper analysis 43

3.3 Deeper analysis

We devised a way to distinguish fake images from pristine ones using features
automatically learned from images. However, being an approach based on
machine learning tools, the biggest drawback is that both features x(m)

i and
individual classifiers β

(m) lack a clear meaning: the whole analysis is, thus,
incomplete. We therefore proceed to analyze their performance on custom-
built datasets in order to understand what is actually learned from the input
features.

3.3.1 Global classifiers on blocks

So far, we have built classifiers which perform very well both on the training
set and on the test set, albeit with a small score penalty. It is natural to ask
whether such effectiveness holds also on local domains. To this purpose we
tested our previously trained {β

(m) }39
m=1 on non-overlapping blocks extracted

from training images, using, e.g. the Weighted Signed Sum to decide whether
a block is fake or not.

Most of the times, results are surprising as the analyzed classifiers are
not able to recognize anything, often taking completely wrong decisions: an
example is shown in Figure 3.10. This behaviour is also mostly independent
from the size of each block, conditioned on being large enough. Notice that in
some cases we can also obtain a decision closer to the truth (see Figure 3.9):
however, this happens very rarely.

An extreme example of this anomaly can be found in Figure 3.11: this also
shows that the output of each block classifier is clearly biased by the label
assigned to the image where the blocks came from. In fact, it is reasonable to
assume that, due to the very large block size, block and image features are ap-
proximately equal, therefore each classifiers performs as if it were analyzing
the entire (fake) image.

3.3.2 New datasets

From this set of remarks, we conjecture that these classifiers are not able to
distinguish modified images from pristine ones based on local features. To fur-
ther establish this ansatz, we proceeded to create a series of four scenarios by
sampling from the one pertaining to the Challenge. Afterwards, the classifier
presented in Section 3.1 was trained and tested according to each one of them.
We depicted these scenarios in Figure 3.12.

• Scenario A: IA
tr

In this scenario, the training set IA
tr = I tr was composed by the whole

44 Chapter 3. Image tampering detection

Figure 3.9: Results of applying the global procedure on blocks extracted from images.
In this case, this method correctly mostly distinguishes the tampered region from the
rest of the image, as the ground truth masks shows (top right plot).

3.3. Deeper analysis 45

Figure 3.10: Results of applying the global procedure on blocks extracted from images.
In this case, this method classifies the images as being almost fully modified, whereas
the image has been only tampered in its lower right portion.

46 Chapter 3. Image tampering detection

Figure 3.11: Results of applying the global procedure on blocks extracted from images.
In this case, we extracted a single block which almost comprises the entire image except
for a small part, where the tampering is located.

3.3. Deeper analysis 47

Phase 1 training set. The class label li = 0 was associated to pristine
images, while li = 1 to fake ones (see Figure 3.12a).

In this scenario we expect that the trained classifier performs well on
the testing dataset.

• Scenario B: IB
tr

In this scenario, we used as training set IB
tr a set of 400×400 pixels

non-overlapping blocks, taken from either fake or pristine images. More
specifically, we associated li = 0 to blocks taken from pristine images,
while li = 1 to blocks coming from fake images and containing part of
the tampered area (see Figure 3.12b).

This scenario is similar to Scenario A, despite the fact that we train
the algorithm on smaller blocks rather than full images: therefore, we
expect the algorithm to work properly in detecting the tamperings.

• Scenario C: IC
tr

In this scenario, similarly to the previous one, the training set IC
tr was

composed selecting 400×400 pixels non-overlapping blocks. This time
we only considered fake images of the Phase 1 training set. In par-
ticular we associated li = 0 to blocks not containing any altered pixel,
and li = 1 to blocks containing at least part of the tampered region (see
Figure 3.12c).

This test aims to show whether the detection algorithm is capable to
distinguish between tampered and non-tampered regions in the same
image. Also in this case we would expect the algorithm to perform well.

• Scenario D: ID
tr

Finally, in the last scenario, we used again as training set ID
tr a set of

400×400 pixels non-overlapping blocks from the Phase 1 training set
images I tr. In this case, we associated li = 0 to blocks coming from pris-
tine images, and li = 1 to blocks coming from fake images not containing
any forged pixel (see Figure 3.12d).

In this scenario we expect the algorithm to fail, since all the blocks that
we use do not contain any tampering.

Next, after training our classifiers on each training set scenario, we com-
puted the scores using three different test sets. Obtained scores are summa-
rized in Figure 3.13.

• Cross-validation set: Figure 3.13a shows the scores achieved testing
each SVM on the dataset used to train it (i.e., the SVMs trained on Ik

tr

were then tested on Ik
ts = Ik

tr).

48 Chapter 3. Image tampering detection

(a) Scenario A: IA
tr (b) Scenario B: IB

tr

(c) Scenario C: IC
tr (d) Scenario D: ID

tr

Figure 3.12: Four different scenarios: in scenarios (b)-(c)-(d) features are extracted
from square blocks, green blocks come from pristine images, red blocks from fake ones.
Black shapes inside pictures/blocks mark tampered regions, while the assigned block
label is written underneath it.
In scenario (a), instead, IA

tr is composed by full images.

• Phase 1 training set: Figure 3.13b shows results obtained training the
SVMs in the four scenarios, and testing them on the features obtained
from the whole images (not just blocks) of the Phase 1 training set (i.e.,
I tr).

• Phase 1 test set: Figure 3.13c shows results obtained training the SVMs
in the four scenarios and testing them using the features extracted from
the whole images (not just blocks) of the Phase 1 test set (i.e., I1

ts).

These results clearly show that the algorithm is able to discriminate be-
tween the two classes with a high score in all the scenarios, excluding Scenario
C. This means that features extracted from images, or blocks, coming from
fake and pristine images respectively, are well separated in the feature space:
for this reason the SVMs can be used to separate the two classes. On the other
hand, analyzing what happens in Scenario C, we notice that the SVMs fail
in separating the two classes even on the training set. This means that, in-
dependently from the fact that blocks belong to one class contain a tampered
region, the classifier cannot distinguish them from the others.

3.3. Deeper analysis 49

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o

re

A B C D

Scenario

I
A
tr

I
B
tr

I
C
tr

I
D
tr

Training set

(a) Scores obtained by testing on Ik
tr: that is, we train on the training set of

each Scenario and we classify it.

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o

re

A B C D

Scenario

I
A
tr

I
B
tr

I
C
tr

I
D
tr

Training set

(b) Scores obtained by testing on Itr: that is, we train on the training set
of each Scenario and we apply learned classifiers on the full images in the
Challenge training set.

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o

re

A B C D

Scenario

I
A
tr

I
B
tr

I
C
tr

I
D
tr

Training set

(c) Scores obtained by testing on I1
ts: that is, we train on the training set

of each Scenario and we apply learned classifiers on the full images in the
Challenge test set.

Figure 3.13: Scores obtained by testing the scenarios on three different test sets. The
boxplots represent scores along submodels.
Notice that, regarding the obtained scores, it is indifferent whether we are examining a
set of blocks or a set of full images. What is important is that such blocks, or images,
actually are taken from different classes (i.e. some images are fake, some are pristine):
this is not true in Scenario C.
In fact, its scores are consistent with the scores obtained by a random classifier: in
other terms, the classifiers cannot separate the classes in each training set. Note that
Scenario C is the sole whose blocks are extracted from images in a single class (i.e. all
fakes).

50 Chapter 3. Image tampering detection

3.4 Conclusions

In this chapter we have shown some results obtained performing a set of tests
with an image tampering detector on the dataset distributed for Phase 1 of
the IFS-TC Image Forensics Challenge. These tests have highlighted the
fact that images labeled as fake and pristine can be reliably distinguished
using machine learning techniques. In particular, we developed a variant
of the winning algorithm in the IEEE IFS-TC Challenge, based on feature
extraction and simple ensemble classifiers to produce a final decision for each
image. However, these techniques tend to learn something not directly related
to the presence of a tampered region: indeed, when training the reported
algorithm using unaltered and forged blocks obtained segmenting fake images,
the algorithm fails.

The reason behind this behavior may be attributed to how the dataset has
been built: we have proven that images labeled as fake differ from pristine
ones for something more than the mere presence of a tampered region.

This could be attributed to the fact that large part of the fake images might
have been obtained using the same editing software: it is possible that this
editing software performs some characteristic operations on the image pixels,
probably related to color transformation, independently from the fact that the
image has been modified or not.

To verify this conjecture, a deeper analysis would be required, starting
instead from a non-blind dataset where any detail related to the images is
known, spanning from the cameras which took the photographs to the pro-
gram eventually used for saving images, or the interpolation algorithm which
has been used during the resizing phase.

From these tests we can conclude that preparing such a huge image corpus
is far from being an easy task, and even choices that in principle might seem
insignificant, can make a huge difference on the final result.

Chapter 4

Image tampering localization

In this Chapter, we tackle the Localization problem: that is, given a image
which has been modified, the goal is to localize the attacked region in a blind
fashion. To this purpose, we developed a novel tampering localization algo-
rithm, and we validate its performance on the Challenge dataset.

Available results in the Localization phase also make use of the official
Challenge submission system: only one submission per day is scored, ran-
domly evaluated on a subset of the Challenge Phase 2 test set I2

ts.
To approach the Localization problem, we combine three techniques, each

one revealing diverse information on the images: i) PatchMatch [23]; ii) Near-
Duplicate analysis; iii) a novel take on a PRNU-based approach. For each
analyzed image, every technique either fails or outputs a binary mask, show-
ing which regions have been classified has been tampered or not.

We begin the chapter by describing each technique separately. Each de-
scription is followed by results obtained both on the training set and on the
Challenge test set, using the said submission system.

In particular, PatchMatch operates just on a single image, and detects
similar regions peculiar to copy-move attacks. The output of PatchMatch is
often ambiguous, since it cannot recognize whether any detected region has
been used as a source or a destination in the copying process.

Near-Duplicate analysis is a technique which, given a set of images, re-
veals those who are almost identical to each other. It is a much stronger
technique than the other two, since it exploits a redundancy shared by this
dataset and by those built by attacks orchestrated using external content
which is available to the analyst. Near-Duplicate analysis works by compar-
ing pairs of images, isolating the differences, and combining them across all
similar images in the dataset. This approach can suffer from ambiguity prob-
lems, too: however, in some cases, we are able to correctly extract the ground

51

52 Chapter 4. Image tampering localization

truth mask. Compared to the other two methods, Near-Duplicate analysis is
much more powerful, since it is able to precisely segment tampered regions
in images; the drawback is that mask availability is scarce, as it necessarily
requires to be able to find at least one similar picture for each image.

The third technique which is employed for Localization, has been inspired
by the same PRNU-based framework presented in 2.3.1. However, instead of
thresholding the PCE surface to decide whether a given region is pristine or
not, we form our decision by looking for the best match between the image
noise and a PRNU fingerprint. The former is extracted from the examined
image, while estimation of the latter involves a great deal of computing.

In fact, as noted in Subsection 2.3.2, to be able to extract PRNU finger-
prints we first need to recognize the cameras which have taken the pho-
tographs in the Challenge dataset. To this purpose, we describe a simple
clustering algorithm which does not rely on any prior information: such clus-
ters should represent images taken by a same camera. With these clusters
at hand, under several hypotheses we are able to extract PRNU fingerprints
from each cluster.

Next, we finally detail our PRNU-based method to uncover local tamper-
ing, and we compare it with the common approach found in literature and
carried out in the winning submission.

Since PRNU methods require several hypotheses, we proceed with their
discussion and their selective weakening. To this purpose, we also make
use of an additional dataset (the Sensor Attribution Dataset, hereby SAD)
to establish another clustering: since this dataset contains images taken by
some of the source cameras in the Challenge, the goal is to obtain a clustering
closer to the ground truth. The SAD has been released unofficially to us by
the Organizers, and is not meant to be distributed to any of the Challenge
competitors. We remark that the SAD is used only for verification purposes.
Finally, we compare our simple clustering with the one obtained from the SAD,
with the aim to discuss whether we were able to effectively obtain meaningful
clusters.

To finish, we design a simple framework to merge the masks obtained for
each image by each technique, and to deal the case whether one (or more) of
the three methods fails. Fused masks are, then, used to evaluate the perfor-
mance of each technique and their combinations, in the Challenge setting.

To conclude the chapter, as previously announced in Chapter 3, we also
briefly investigate an adaptation of the feature-based detector developed for
the Detection problem (see Section 3.1). This approach has also been followed
by the winning Challenge submission, cited in [47].

Due to the high score achieved in the Challenge, the approach hereby pre-

4.1. Proposed algorithm 53

sented has been submitted to IEEE International Workshop on Information
Forensics and Security (WIFS 2014)1 as a conference paper [51], and is now
under review.

4.1 Proposed algorithm

Our proposed algorithm outputs up to three masks per image, one per tech-
nique: they are labeled as MPM (produced by PatchMatch), MPRNU (produced
by the novel approach on PRNU) and MND (produced by near-duplicate anal-
ysis). These masks will be fused together, in order to converge to a single
decision: the resulting mask is labeled Mfus. The set of all Mfus will be then
used for Challenge scoring.

Notice that MPRNU and MPM, being block based, are actually defined only
on center pixels of each block: to bring them to the resolution of the full image,
they undergo an interpolation process, discussed in Subsection 4.2.1.

4.1.1 Notation

In the Localization phase, we will mostly work on one image at a time. The
image under analysis will be denoted with the symbol I: whenever we need to
span across a set S of images, the generic one will be denoted with In, where
n ∈S .

A mask is associated to each image: if S = I tr, the ground truth mask for
the n-th image will be denoted as MGT

n , eventually dropping index n whether
it is not relevant. We remind that each mask is a set of black and white pixels,
where “0” (black) denotes that said pixel is forged, while “1” (white) indicates
that the pixel is pristine.

In this section we will often split an image into N blocks whose centers
are located at pixels (ib, jb). Whenever we obtain a scalar value for each
block b, we collect all outputs into a vector. As a slight abuse of notation, to
simplify the account we will interchangeably swap the block index b with the
corresponding center pixel of coordinate (ib, jb), whenever it is unambiguous
to do so.

4.1.2 PRNU

In this section we focus on the PRNU-based method we developed to estimate
a tampering mask. First we tackle the problem of image clustering for PRNU

1http://ieeewifs.org/

http://ieeewifs.org/

54 Chapter 4. Image tampering localization

estimation. Then, given the extracted PRNU, we focus on the localization
algorithm.

For the sake of clarity, we assume that all the images share the same size.
However, the proposed PRNU-based algorithm can be easily adapted to work
on images of different size by simply resizing images beforehand. However,
this step would uselessly make the algorithm hard to read, not adding much
information on the method. Moreover, considering that the Challenge dataset
is strongly biased towards 1024×768 pixel wide images (see Figure 4.8), one
might just use our PRNU-based as described for images sharing the same size,
still achieving very high accuracy results.

We recall the framework introduced in Section 2.3.1 for general PRNU-
based forensic methods.

PRNU clustering

In order to compute a PRNU mask, we need to group each image in the
dataset according to the cameras which took it. To do so, we applied the
camera attribution procedure to the dataset (see Subsection 2.3.1).

Let In, Im ∈ I be two images with the same size, and let Wn,Wm be the
respective noise residuals as in Equation (2.7).

For each pair of noise residuals (Wn,Wm) we computed the PCE between
them using Equation (2.3.1), collecting the results in a symmetric matrix:

P := {
P (n,m)

}
n,m = {PCE (Wn,Wm) }n,m (4.1)

Next, we thresholded the PCE matrix P with a threshold τ = 50, obtaining a
binary matrix

P := {
P (n,m)

}
n,m = {

1{P (n,m)>τ} (n,m)
}

n,m (4.2)

This could be enough to initiate a clustering over the dataset. However, re-
minding what we said in Subsection 4.1.2, we also computed the offset be-
tween each pair of noise residuals (i.e. each images) and we selected only
images which are aligned (i.e. the reciprocal offset is (0,0)). The reason be-
hind this is both to forbid cropping and to make sure that the overlapping
area between residuals is as large as possible, thus ensuring a good PRNU
estimation. To do so, we maximized the normalized cross-correlation (see
Equation (2.12)). In particular, for each pair of noise residuals Wn, Wm we
computed the L2 norm of the offset. Repeating this operation across all pairs,
we collected them in a matrix O, whose its generic entry is

O (n,m) :=
∥∥∥∥∥argmax

i, j
NCC[Wn,Wm] (i, j)

∥∥∥∥∥ (4.3)

4.1. Proposed algorithm 55

To select aligned images, we marked those pairs whose reciprocal offset is
(0,0). This can be expressed through a binary matrix

O := {
O (n,m)

}
n,m = {

1{O (n,m)=0} (n,m)
}

n,m (4.4)

Both O and P are then element-wise multiplied in order to produce the matrix
on which the clustering is based on, labeled D = O×P. Each non-zero entry,
therefore, identifies pairs of images which are associated to the same camera,
i.e. they match both in PRNU content and PRNU offset.

We can now proceed to form our clusters: this is done by aggregating each
pair of images whose threshold is reached. We can represent the clustering
process by an undirected graph G = (V,E), where the vertex set V is the set
of images which have been considered for the clustering, and the edges E are
described using D as the graph adjacency matrix. The resulting K clusters
are expressed by the connected components of G .

Finally, we proceed with computing the k-th camera PRNU fingerprint K̂k

from each one of the obtained clusters, and the clustering algorithm stops.
We note that, at this point, the clustering should continue to obtain much

better estimates of all fingerprints: however, as this process is extremely time
consuming and very hard on computational costs, we decided to trade off
accuracy for a very coarse clustering.

PRNU forgery localization

With the cluster fingerprints at hand, we can now match each image with its
own alleged PRNU. The method we propose is based on the same rationale as
Subsection 2.3.1, but we also exploit information given by blocks correlation
offsets.

Let us consider an image I, and let K̂ be the estimated PRNU that we
associate to the camera which authored I. Let K be the real PRNU associated
to the real camera. In general, simple PRNU-based approaches require two
hypotheses:

Hypothesis I (No scaling). Each image I has not been resized if com-
pared to K.

Hypothesis II (No cropping). Each image I has not been cropped if
compared to K.

56 Chapter 4. Image tampering localization

Hyp. I and Hyp. II together imply that no scaling or cropping operations
have ever been applied: as a consequence, images and PRNU fingerprints
(both K and their estimates K̂) are pixel-wise aligned.

First, suppose for now that Hyp. I and Hyp. II hold: as a consequence, we
can match any pixel in I with the same pixel in K̂. The image I is split into
overlapping blocks

{
I
}B

b=1, each one centered on the pixel with coordinates
(ib, jb). If the image is pristine, each block Ib must pass the PRNU correlation
test only when centered on PRNU pixel in coordinates (ib, jb).

To verify this condition, we compute the correlation as in Equation (2.14)
for each pair of matching blocks, with index b. In doing so, we obtain the 2D
map R (ib, jb). This operation can be greatly accelerated with the Fast Fourier
Transform. In the Fourier domain Equation (2.14) becomes (sometimes named
as phase-correlation):

Rb (ib, jb)=F−1

 F
{
W b}F

{
K̂ I

}∗∣∣∣F {
W b

}
F

{
K̂ I

}∗∣∣∣
 ∀b ∈ {1, . . . ,N} , (4.5)

where F is the Discrete Fourier Transform (zero-padded if needed), F−1 is
its inverse and ∗ denotes the complex conjugate. Notice that Rb is a 2D map,
showing the correlation between the PRNU and the b-th block shifted of ib and
jb pixels in the horizontal and vertical dimensions, respectively. Therefore,
we can compute the offset estimate between K̂ and Ib as

(îb, ĵb) := argmax
(ib, jb)

Rb (ib, jb) . (4.6)

If (îb, ĵb)= (ib, jb), the b-th block is compatible with the underlying PRNU,
hence the block is considered pristine. On the other hand, if (îb, ĵb) 6= (ib, jb),
the b-th block is not aligned with the PRNU, thus it is considered tampered
with. This condition is usually not considered in baseline PRNU-based al-
gorithms, which are based on thresholding PCE (or correlation) values. The
proposed PRNU tampering mask is then built as

MPRNU :=
1, if (îb, ĵb)= (ib, jb),

0, otherwise,
(4.7)

where 1 denotes a pristine pixel, and 0 a forged one.
A byproduct of our proposed algorithm is the displacement map: by col-

lecting the LHS of Equation (4.6) across all blocks, we obtain

D := {
(îb, ĵb)

}N
b=1 (4.8)

4.1. Proposed algorithm 57

Equivalently, by subtracting the block centers coordinates from D, we obtain
the offset map O. We also separate the coordinate components obtaining Oy

and Ox:

O := {
(îb, ĵb)− (ib, jb)

}N
b=1 (4.9)

Oy := {
îb − ib

}N
b=1 (4.10)

Ox := {
ĵb − jb

}N
b=1 (4.11)

It is worth noting that the derivation of (4.5) from (2.14) strictly requires
that the blocks are zero-padded, in order to correctly perform the linear con-
volution through the circular one. However, the cross-correlation surface
between blocks is sharply peaked when a match is established: in other cases,
the cross-correlation is close to 0. Since we seek the correct alignment using
the PCE, built specifically to detect such peak, this requirement can be heav-
ily relaxed: as a result, we can zero-pad as much as needed in order be able
to perform the matrix element-wise products in (4.5).

On hypotheses

Suppose that Hyp. II does not hold: this implies that I and K̂ are not of the
same size. The framework presented in 4.1.2 is still applicable: a match
can still be obtained by shifting either I or K̂ by the right amount, and zero-
padding in order to match their sizes. Moreover, if any of the Ib or Wb is a
matrix of zeros (i.e. the b-th block has been cropped away), the corresponding
correlation ρb is set to 0 since the NCC is not defined for constant-valued
blocks.

Now, suppose instead that Hyp. I does not hold: this implies that I and
K̂ are not of the same size, too. However, no match can be obtained between
I and K̂ either through zero-padding or shifting, since the PRNU fingerprint
of a set of images

{
In

}
n is significantly different from the one which can be

extracted from their resized versions {R [In] }n (where R is a resizing operator).
Such problem is addressed by Goljan and Fridrich in [16]. The computational
requirements are, however, extremely high since their approach requires the
images to be resized by means of a set of resizing operators, subsequently
demanding another clustering to be performed.

We will, however, experimentally deal with Hyp. I and Hyp. II in Sec-
tion 4.2.6 using an additional annotated dataset. In particular, we relax both
hypotheses and see what happens if the images underwent through a resize
to a single resolution, discussing whether the method is still applicable or not.

58 Chapter 4. Image tampering localization

4.1.3 PatchMatch

PatchMatch enables to detect whether a small patch (e.g. a 7×7 pixels block)
can be replaced with another small patch found in the same image, at a very
low computational complexity.

More formally, an image I is split into non overlapping 7×7 pixels blocks
{Ib }B

b=1, each one centered on pixel coordinates (ib, jb). For each block Ib, Patch-
Match returns the block that is most similar to it as

Îb = argmin
Iβ∈B

D
(
Ib,Iβ

)
where D is a certain distance metric (mean squared error in our experiments),
and B is a set of possible Îb candidates selected by PatchMatch to avoid full-
search and patches too close to Ib.

We then store the information about the matching patches into two matri-
ces:

• D is a map of the distances between the centers of each matching pair〈
Ib, Îb

〉
• E is a map of the Mean Squared Error (MSE) introduced if we actually

substitute a patch with its matching one.

These maps are built as

D (ib, jb)= ∥∥ (ib, jb)− (îb, ĵb)
∥∥

E (ib, jb)=MSE
(
Ib, Îb

)
,

where ‖·‖ is the L2-norm, (ib, jb) and (îb, ĵb) are vectors collecting the coordi-
nates of Ib and Îb central pixels respectively, and MSE(· , ·) computes the MSE
between two patches.

Figure 4.1, Figure 4.2 and Figure 4.3 show three examples of these two
maps computed on picture forged using copy-move and Healing Brush. Patch-
Match is also adept at recognizing cloning which cannot be distinguished even
at a close naked eye examination: an example is reproduced in Figure 4.1.

To compute the binary tampering mask MPM, we segment D in regions
with the same D value. These are areas that can be substituted with pixels at
a fixed distance. Among these areas, we select only those larger than a given
size (fixing the smallest tampered block we want to detect) and with a low E
value.

The mask MPM can be optionally refined using morphological operators.
It is worth noting that MPM suffers of ambiguity problems when copy-move

4.1. Proposed algorithm 59

attack is used, i.e. it is not possible to disambiguate between the original and
copied objects (see Figure 4.2). If more sophisticated attacks are used (e.g.
Healing Brush), this problem is less pronounced (see Figure 4.3).

(a) image (b) E (c) D

(d) MPM (e) ground truth

Figure 4.1: PatchMatch on copy-move. A forged image (a), E (b), D (c), MPM

obtained with the proposed approach (d) and the ground truth mask (e). Dark colors
represent low values. PatchMatch is adept at recognizing cloning: in particular, this
image cannot be classified as being fake even by close inspectioning.

4.1.4 Near-Duplicate analysis

When dealing with user-generated content distributed online, forged objects
are seldom created starting from undistributed original material [52]. In fact,
a common image tampering pipeline is to collect and reuse pictures found
on media sharing platforms. A typical example is that of image copy-paste
forgery operated to substitute the face of a person (e.g., a friend of the forgery
creator) with that of another (e.g., a famous artist). It is then possible to search
for near-duplicate copies of the image under analysis (i.e. versions of the same
image differing due to processing operations, or pictures of the same scene
captured from a slightly different point of view) and compare them to find the
differences. This search can be either performed via Web crawling, or in the
dataset under analysis. An example of a picture coming from the Challenge
dataset and a near-duplicate version found online is shown in Figure 4.4.

60 Chapter 4. Image tampering localization

(a) image (b) E (c) D

(d) MPM (e) ground truth

Figure 4.2: PatchMatch on copy-move. A forged image (a), E (b), D (c), MPM

obtained with the proposed approach (d) and the ground truth mask (e). Dark colors
represent low values. Here, copy-move has been performed: as a result, MPM needs to
be disambiguated.

Robust hashes

The idea of studying the relationship between pairs of near-duplicate images
to find which one has possibly been used to generate the others is at the base
of the image phylogeny research field [53]–[55].

Starting from this idea, we propose a near-duplicate-based image tamper-
ing localization approach.

The first step consists in determining which images are actually near-
duplicates. To this purpose, let us consider a set of images to analyze. We
describe each image by means of a robust hash, obtained modifying the hash
proposed for near-duplicate video matching in [52]. To build the hash, we
resize each image In to a fixed dimension (256×256 pixels in our experiments).
We then compute Yn as the 2D Discrete Cosine Transform (DCT) of the re-
sized image. We select a given number of DCT coefficients (in our experiments
256 coefficients Yn(i, j), i ∈ {2, . . . ,17}, j ∈ {2, . . . ,17} discarding horizontal and
vertical components whose i = 1 or j = 1). The selected coefficients are bina-
rized with respect to their median value to obtain the binary hash hn (a 256

4.1. Proposed algorithm 61

(a) image (b) E (c) D

(d) MPM (e) ground truth

Figure 4.3: PatchMatch on Healing Brush. A forged image (a), E (b), D (c), MPM

obtained with the proposed approach (d) and the ground truth mask (e). Dark colors
represent low values. Here, Healing Brush has been used, therefore MPM mostly agrees
with the ground truth.

bit string in our case, composed by 128 zeros and 128 ones). Hashes are then
pairwise compared by computing hamming distance between each pair. If this
distance is below a threshold (4 in our experiments), the images related to the
compared hashes are considered near-duplicates.

After we identify a near-duplicate Im of an image In under analysis, we
compare them pixel-wise to find the differences. To this purpose, we regis-
ter Im to In, in order to compensate for geometrical transformations such as
cropping and resizing. This is done using SIFT matching as suggested in [53].
Then we subtract In to the registered version of Im, obtaining a difference map.
This process is depicted in Figure 4.5.

Notice that differences between In and Im are due to the presence of tam-
pering, the presence of noise introduced by processing operations such as
JPEG compression, and errors introduced in the registration step. For this
reason, to compute the binary tampering localization mask MND, we need
to apply a thresholding operation to the difference map, and optionally use
morphological operations. Figure 4.6 and Figure 4.7 shows two examples of

62 Chapter 4. Image tampering localization

(a) Dataset (b) Web crawled

Figure 4.4: An image coming from the Challenge dataset (a) and a near-duplicate
version of it found online (b).

�
✁ ✂

✄
☎

✆

�
✁

✂
✄

☎

✝

✁

✞ ✞ ✟
✠

✂
☎

✝

✡
☎

✆

☎

✆

☛
☞

✌

✍
☎

✝

✎

✏

✑

✒

✓

✑

✒

✔

✑

✒

✏

✑

✓

✑

✔

✑

✕

✆
✆

✕

✝
✆

✕

✖
✆

✕

✆
✝

✕

✝
✝

✕

✖
✝

✕

✆
✖

✕

✝
✖

✕

✖
✝

✗
✗✘

✗
✘✘

Figure 4.5: The near-duplicate registration process: we search for a geometrical trans-
formation between In and Im using SIFT matching (on the left) and we obtain the
registered images (on the right).

near-duplicate images, and the obtained MND masks.
Notice that, if both the compared images contain tampered areas, MND

suffers of ambiguity problems like MPM. If we find K near-duplicates of a
reference image, we obtain a set

{
Mk

ND

}K
k=1 of masks (i.e. one for each near-

duplicate) that can be merged to solve the ambiguity.

In the Challenge

The Challenge dataset presents some redundancy: that is, some images can
be traced back as being multiple versions of the same root photograph, which
can either be or not be available. Hence, by comparing similar images (from
now on, near-duplicates) inside the Challenge dataset, we can both infer which
attack has been performed, and where it has been applied.

To each image I ∈ I we can associate a set of K binary masks
{

Mk
ND

}K
k=1,

where K is the number of images which are near-duplicates of I: each one of
these masks is an estimate of differences between I and its k-th near-duplicate.

4.1. Proposed algorithm 63

From this set, we can synthesize a single binary mask MND, which is an
estimate of differences that are unique to I among all its K near-duplicates.
Figure 4.6 shows an example of near-duplicate images, and the obtained MND

mask.

(a) Reference image I (b) near-duplicate (c) difference

(d) MND =M1
ND (e) Ground truth MGT

Figure 4.6: Near-Duplicates. Reference image In (a), near-duplicate Im (b), difference
between reference and registered near-duplicate (c), MND =M1

ND (d), and ground truth
mask MGT

n . Dark colors represent low values.

We remark that the method to extract MND can suffer from ambiguity prob-
lems. However, we will exploit other masks MPM and MPRNU, when available,
to attempt at disambiguating MND: this procedure is described in Subsec-
tion 4.1.5.

4.1.5 Fusion

To reach the final decision we perform three steps. First we obtain a mask for
each image with each technique (i.e. MPRNU, MPM and

{
Mk

ND

}K
k=1) whenever

it is possible to do so. We remind that each one is set to 0 to denote forged
pixels, and to 1 to denote pristine pixels according to the respective technique.
Afterwards, we try to solve the ambiguity problems which can affect MPM and
the near-duplicates. Finally, we merge the obtained disambiguated masks
into a single tampering mask Mfus.

To this purpose, let us first take into account the inherent properties of

64 Chapter 4. Image tampering localization

each kind of masks.

Mask properties

MPRNU reveals many kinds of tampering, and revealed forged areas are unam-
biguous. In other words, we can strongly trust areas detected as having been
tampered with. On the other hand, MPRNU hardly reveals forgeries smaller
than the block size used to analyze I during the PRNU analysis. For this
reason, some forged areas may not be revealed by MPRNU.

MPM is tailored to a specific kind of attack (i.e. copy-move-like), moreover
it presents ambiguous regions. The ambiguity is due to the fact that both the
original and copied patches are detected (e.g. if an object is replicated, both
replicas appear in MPM).

Each Mk
ND reveals many kind of forgeries (as MPRNU), nonetheless it suf-

fers from ambiguity problems (as MPM). Indeed, each Mk
ND contains informa-

tion about forgeries on both compared images (i.e. I and its near-duplicate).
Since each mask embeds information that might not be present into the

others, a natural method to merge them is the use of the AND operator [47].
However, due to ambiguity in certain masks, this is a suboptimal choice. The
pipeline we propose for mask fusion is then the following: we first solve the
ambiguity problem whence possible (i.e. for MND), then we select which masks
(i.e. MPRNU, MPM and MND) to merge with the AND operator, according to a
reliability index obtained evaluating the masks on the Challenge training set.

Ambiguity

Suppose that we are seeking an estimate of MGT. When dealing with masks{
Mk

ND

}K
k=1, the ambiguity problem can often be solved. Indeed, if K > 1, we can

resolve this ambiguity by comparing all the
{

Mk
ND

}K
k=1 masks. We depicted

the disambiguation process in Figure 4.7 and Figure 4.17. Each mask reveals
the forged area in both I and a near-duplicate version of it, therefore the only
forged region that appears in every mask is attributed to I. More formally, we
compute the binary mask MND = M1

ND ∨M2
ND ∨ . . .∨MK

ND, where ∨ is the OR
operator.

We note that the Near-Duplicate approach can fail even if it detects a set
of near-duplicates. For example, we may obtain a fully white MND each time
a tampering is present in every near-duplicate, so it is impossible to detect by
comparing each tuple.

A peculiarity of the Challenge Phase 2 test set I2
ts is that all images are

fake: to avoid obtaining a fully white MND (i.e. the image is classified as being
pristine), each time it happened we computed MND =M1

ND ∧M2
ND ∧ . . .∧MK

ND,

4.1. Proposed algorithm 65

(a) I1 (b) I2 (c) I3 (d) I4

I
1

I
1

I
2

I
2

I
3

I
3

I
4

I
4

M
GT
1 M

GT
2

?

M
GT
3

?

M
GT
4

M
GT
n

MNDn

(e) Images, differences (in blue), ground truths (in green) and disambiguated masks (in red).

Figure 4.7: Near-Duplicate disambiguation with 4 near-duplicates. We notice that the
bucket and the plant have been copied across images.
First row and first column: source images, in both Itr,F and I2

ts.
Images with green border: ground truth masks MGT (if present).
Masks with red border: disambiguated MNDn for n-th image in row.
Masks with blue border: mask differences between row and column images.
The algorithm computes each disambiguated MND by performing an OR on each
row/column.
Notice that the MND are the same as ground truth masks (in green).

66 Chapter 4. Image tampering localization

where ∧ is the AND operator. This marks as being fake a region that is larger
than the tampering: however, the F1 scor, employed in the Phase 2 scoring
system, favors black regions (fake) rather than white ones.

Another hint for mask disambiguation is to exploit near-duplicates labeled
as pristine, for example those in I tr,P. However, we had only 2 matches be-
tween I1

ts with known pristine images, therefore we decided not to implement
this further optimization.

Two near-duplicate disambiguation

A notable situation where a near-duplicate ambiguity cannot be solved through
a single technique, is the case where K = 2: that is, only I and one near-
duplicate is available. Clearly, we can compare both images, but we cannot
distinguish what is pristine from what is not: in fact, MND simply shows the
mutual differences.

One possible way to uncover and remove the ambiguities is to use MPM, if
available. Since the shape of forged regions is usually cleaner in MND rather
MPRNU or MPM, an idea to improve MPM is to declare as pristine each fake re-
gion in MPM which is also labeled as fake in MPM. However, an initial test with
this approach proves to be suboptimal with respect to the Challenge Phase 2
score, as shown in the Appendix. A graphical example of the disambiguation
process is reported in Figure 4.18.

Mask selection

We define a set M of possible masks obtained according to different strategies.
In our experiments we considered the following chain:

M =
{
MPRNU, MPM, MND, MPRNU ∧MPM,

MPRNU ∧MND, MPM ∧MND, MPRNU ∧MPM ∧MND

}
= {

Mp }7
p=1 ,

where ∧ is the AND operator. Notice that different sets can be defined as well.
We consider a training set I tr of forged images {In }n∈Itr

, whose ground
truth tampering mask MGT

n is known. For each image In ∈ I tr, we compute
the set of possible masks Mn =

{
Mp

n
}

p. Notice that some strategies cannot be
applied on some images (e.g. in case of unknown PRNU), thus resulting in a
different cardinality of Mn for each image.

For each image In, we select the strategy that gives the best estimated
mask as

pn = argmax
p

R
(
Mp

n , MGT
n

)
,

4.2. Experimental results 67

where R(· , ·) is a “metric” of similarity between the compared masks (in our
experiments we used the S2 score adopted for the Image Forensics Challenge
described in Section 2.2.1).

We then compute a reliability index Cp for each strategy as

Cp :=
∣∣{In ∈ I tr : pn = p}

∣∣∣∣{In ∈ I tr : ∃Mp
n }

∣∣ , p ∈ {1, . . . ,7},

where the numerator represents the number of images for which the p-th
strategy is the best one, and the denominator is the number of images on
which the p-th strategy could actually be applied.

When a new image Im 6∈ I tr is evaluated, we use the strategy

p= argmax
p

(
Cp

∣∣∣∣ ∃Mp
m

)
,

which is the strategy associated to the mask Mp
m (among those that can be

computed for Im) that maximizes the reliability index Cp. We refer to the mask
obtained with the fusion procedure as Mfus.

Fusion results are reported in Subsection 4.2.5.

4.2 Experimental results

In the localization phase, we will have to deal with images I with their re-
spective masks M. We begin with summarizing their sizes in Figure 4.8:
we immediately note that considering only 1024×768 pixel wide images for
PRNU processing is not a strong requirement.

4.2.1 Mask interpolation

PatchMatch and PRNU methods produce masks MPM and MPRNU whose coor-
dinates correspond to the center pixels of each block: as a result, their size is
very different to the ground truth mask MGT.

To obtain an image mask from MPM (and MPRNU) we first applied a bilin-
ear interpolation operator, where each entry in MPM (and MPRNU) is matched
with the center pixel of the block in the full image. As for boundary con-
ditions, we used instead a nearest neighbour interpolation: that is, pixels
whose coordinates extend farther from the outermost block center, are set to
MPM (or MPRNU) as evaluated in the nearest block center. This enables us to
correctly estimate forged objects who extend into the scene from the image
border, a rather common case inside the Challenge dataset: however, this is
not necessarily the optimal choice.

68 Chapter 4. Image tampering localization
P

hase 1 Train

P
hase 2 Test

0

250

500

750

10000

250

500

750

1000

 640x480
 760x570
 768x576
 798x563
 800x600
 845x634

1024x575
 950x634

1025x595
 916x687
 922x691

1000x659
 960x720

1024x680
1024x681
1024x683
1152x648
1000x750
1020x768
1024x765
1024x768
1024x771
1037x778
1075x806
1080x810
 960x935

1188x792
1166x875
1200x900
1280x960
1296x972

1200x1067
1385x960

1382x1037
1560x919
1600x900

1389x1042
1408x1056
1600x933

1504x1000
1424x1072
1440x1080
1546x1050
1680x994

1600x1063
1600x1067
1600x1071
1512x1134
1536x1152
1663x1109
1566x1179
1680x1120
1600x1200
1638x1229
1600x1278
1920x1080
1800x1200
1709x1286
1920x1200
1824x1368
1640x1536
2000x1331
2048x1536
2352x1637
2288x1712
2560x1600
2433x1824
2560x1920
2592x1936
2592x1944
2695x1964
2816x2112
3008x2000
2848x2144
3072x2304
3840x2160
3880x2432
3648x2736
3872x2592
3664x2748
4150x2758
3968x2976
4000x3000
4272x2848
4288x3216
4320x3240
4752x3168

Landscape size

Image count

G
roupP

hase 1 Train

P
hase 2 Test

Figure
4.8:

C
hallenge

im
age

size
distribution

in
I
tr
and

I
2ts .

To
shorten

axes,
allim

ages
have

been
flipped

to
landscape

orientation,
if
needed:

portrait
im

ages
constitute

a
very

sm
allpart

of
the

displayed
datasets.

4.2. Experimental results 69

Finally, as interpolated mask pixels now assume values in [0,1] rather
than binary values, we thresholded them using a threshold of 0.5.

4.2.2 Blind PRNU

We applied the PRNU clustering algorithm described in 4.1.2 to the datasets
I tr,F and I2

ts, considering only images in Challenge Resolution (see Hyp. III).
We report our findings in Figure 4.9 and Figure 4.10.

0 50 100 150 200
0

20

40

60

80

Obtained clusters in phase 1 training fakes: 98

Cluster size

A
m

o
u

n
t

o
f

c
lu

s
te

rs

0 50 100 150 200
0

20

40

60

80

Obtained clusters in phase 2 test: 144

Cluster size

A
m

o
u

n
t

o
f

c
lu

s
te

rs

Figure 4.9: Found clusters in Itr,F and I2
ts (using also Itr for clustering). We, respec-

tively,“identified” 98 and 144 cameras, although fingerprints were reliably estimated on
about 10 of them: other identified clusters are too small for reliable PRNU extraction.

We were able to attribute a camera, thus indentifying a PRNU fingerprint,
for the 45% of images in the former dataset, and more than the 54% in the
latter. For these images, we computed two masks, MPRNU and, for comparison,
MPCE. MPRNU is computed using the proposed method (as for Equation (4.7)),
while MPCE is built using the common approach of thresholding PCE values,
followed, e.g. in the winning submission [47].

Recalling the definition of the PCE given in Equation (2.15), from Equa-
tion (4.5) we can also compute the PCE between block Wb and the image-
PRNU product IK̂, obtaining a PCE surface P= {Pb }N

b=1, where

Pb :=PCE (K̂ I,Wb) ∀b ∈ {1, ...,N} (4.12)

70 Chapter 4. Image tampering localization

0 5 10 15 20 25 30 35 40 45
0

100

200

Number of other associations per image, phase 1 training fakes

0 5 10 15 20 25 30 35 40 45
0

100

200

Number of other associations per image, phase 2 test

Figure 4.10: Amount of images which can be associated by each image in, respectively,
Itr,F and I2

ts. Associable images are, then, clustered together in order to identify a first
clustering by camera. Images with 0 associations are, obviously, singletons.

By thresholding P with a threshold τb, we obtain the binary mask

MPCE :=
1, if Pb > τb,

0, otherwise,
(4.13)

Notice that τb is not known a priori, thus calibration is needed: MPRNU

does not suffer of this shortcoming.

Block selection

To detect forgeries with PRNU-based methods, the image needs to be first
partitioned into blocks. In our trials, we experienced a vast dependence of
resulting masks (thus, scores) from the choice of block size and block step
(i.e. the horizontal and vertical spacing in pixels between consecutive blocks):
as a consequence, we chose the optimal block parameters on the training
set I tr,F with a 2D grid search. In particular, we chose overlapping square
blocks with edge spanning over [50,64,96,128,192] pixels; instead of select-
ing a series of window spacings, we set the size-to-step ratio to span over
[16.67,12.5,10,8.33,4,17,2,1].

For example, a block size of 50 with a block step of 50 means that we are
partitioning the image into non-overlapping blocks, 50 pixels wide each. To
choose a size-to-step ratio of 2 (i.e. block step of 25), instead, produces a grid
whose consecutive blocks overlap on half of their area (or a fourth if we choose
blocks diagonally adjacent).

For each combination of plot parameters, we computed, whenever possi-
ble, MPRNU and MPCE using a suboptimal threshold of τb = 50. Finally, we
computed the scores over the obtained masks: mean results are shown in
Figure 4.11.

4.2. Experimental results 71

Window ratio

W
in

d
o

w
 s

iz
e

Score means
mask type: score_interp, score 0.3637

16.67 12.50 10.00 8.33 4.17 2.00 1.00

50

64

96

128

192

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Score using MPRNU masks.

Window ratio

W
in

d
o

w
 s

iz
e

Score means
mask type: score_PCE0_interp, score 0.3257

16.67 12.50 10.00 8.33 4.17 2.00 1.00

50

64

96

128

192

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Score using MPCE masks.

Figure 4.11: Mean score using obtained PRNU masks as a function of block parameters.
The ∗ marks the best combination, whose corresponding score is reported in the image
title.

In Figure 4.12 and Figure 4.13 we show some examples of the obtained
MPRNU masks, with corresponding MPCE and its companion PCE surface P. In
particular, note how in Figure 4.12 the PCE and the correlation surfaces P and
R exhibit various content-related structures, rendering difficult the operation
of thresholding which produces MPCE. The PRNU mask MPRNU, instead, is
clean and crisp, with no processing whatsoever.

Notice also that in Figure 4.13, our approach revealed that a copy-move
operation has been performed: from subplots (g) and (h), we read that the
tampered area correlates with the real PRNU, shifted right by 20 pixels. This
means that the road has been translated to the left by 20 pixels. No further
processing has been performed on the road: as a consequence, MPRNU is uni-
form on it. MPCE, instead, detects that the road has been modified everywhere,
but no further information is available: as an example, an attacker could have
removed road marks on this photograph in order to win a lawsuit related to
an accident.

Mask optimization

After having chosen the best block parameters that maximize score on MPCE

masks (reported in Figure 4.11b), we optimized MPCE by choosing the best
threshold τb, using the score as same criterion. As it can be seen in Figure 4.14,
the optimal threshold τb is much lower than 50 and depends strongly on the

72 Chapter 4. Image tampering localization

(a) Image I (b) Ground truth MGT

(c) Correlation surface R, interpolated. (d) PCE surface P, interpolated.

(e) MPCE using τb = 7 (f) MPRNU

(g) Detected row offset Oy using MPRNU (h) Detected column offset Ox using MPRNU

Figure 4.12: Sample image with computed masks. Notice how messy is the PCE surface
P: given the low PCE values, the top left poster is also a candidate for being a possible
fake region. In MPRNU, instead, we obtain a sharp mask with no ambiguities.

4.2. Experimental results 73

(a) Image I (b) Ground truth MGT

(c) Correlation surface R, interpolated. (d) PCE surface P, interpolated.

(e) MPCE using τb = 7 (f) MPRNU

(g) Detected row offset Oy using MPRNU (h) Detected column offset Ox using MPRNU

Figure 4.13: Sample image with computed masks. Notice that Oy is fully white (i.e.
no row offset is detected), while Ox is not. This means that the detected region has
been captured by the identified PRNU, but has been horizontally translated. We can
also read the translation offset from Ox, i.e. 20 pixels.

74 Chapter 4. Image tampering localization

block parameters: however, due to the lack of time, we did not analyze this
relation.

10
0

10
1

10
2

0.3

0.32

0.34

0.36

0.38

0.4

Mean scores w/ PCE thresholding, wsz 64, wst 8
interpolate then threshold, best: 7.0428

PCE thr

S
c
o

re

(a) Score using MPCE masks. Chosen block parame-
ters maximize the score at coarse level.

10
0

10
1

10
2

0.3

0.32

0.34

0.36

0.38

0.4

Mean scores w/ PCE thresholding, wsz 50, wst 6
interpolate then threshold, best: 4.0321

PCE thr

S
c
o

re

(b) Score using MPCE masks. Chosen block param-
eters do not maximize the score at coarse level, but
they do once level τb is optimized.

Figure 4.14: Dependence of score using MPCE as a function of PCE threshold τb.

Another kind of optimization that can be performed on masks is morpho-
logical processing: it consists in enlarging/reducing black parts of MPCE and
MPRNU to enhance the score. As Figure 4.15 shows, in general, the score in-
creases by eroding each mask with a disk of 20 pixels of diameter. However,
this step is computationally heavy, and we conjecture that its dependence
on image content is strong: a much deeper analysis would be required. Also
observe that a score increase with erosion is expected: F1 score favors black re-
gions over white ones, and we often localize altered regions which are smaller
than the corresponding zones in the ground truth masks.

A word of caution: obtained scores on each mask vary wildly, therefore
minute differences in scores, such as those reported in this subsection, may
be not statistically significant. The large variance can be appreciated in Fig-
ure 4.16, which reports the full score distribution for each choice of parameter.

Results on training set

In Table 4.1 we report some statistics obtained on Phase 1 training dataset
I tr,F. We compared MPRNU, MPCE (with optimized threshold) and MPRNU (with
morphological processing): each mask has been obtained using the best block
parameters for the chosen method. Recalling 2.2.1, we reported the statistics
defined in Table 2.2.

4.2. Experimental results 75

−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Dilation (<0) / Erosion (>0) width

S
c
o

re

Mean ph1 scores, method PCE0, 246 images, wsz 64, wst 8

(a) Mean score on dilated/eroded MPCE masks.

−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Dilation (<0) / Erosion (>0) width

S
c
o

re

Mean ph1 scores, method offset, 246 images, wsz 50, wst 6

(b) Mean score on dilated/eroded MPRNU masks.

Figure 4.15: Morphological processing. Mean score using obtained PRNU masks. For
each plot, we selected the best block parameters according to the respective plot in
Figure 4.11. Red marks show the diameter of the best structuring element and the
obtained score.

−200 −160 −120 −80 −40 0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Dilation (<0) / Erosion (>0) width

S
c
o
re

Ph1 scores, best strel size: 30 (score 0.4178)

(a) Mean score on dilated/eroded MPCE masks.

−200 −160 −120 −80 −40 0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Dilation (<0) / Erosion (>0) width

S
c
o
re

Ph1 scores, best strel size: 20 (score 0.3705)

(b) Mean score on dilated/eroded MPRNU masks.

Figure 4.16: Morphological processing. Same plot as Figure 4.15: however, we show
the full score distribution along all available masks.

76 Chapter 4. Image tampering localization

TPR (%) TNR (%) FPR (%) FNR (%) ACC (%)

MPCE (optimized) 61.36 82.51 17.49 38.64 71.93
MPRNU 68.44 74.39 25.61 31.56 71.41
MPRNU (optimized) 82.82 68.45 31.55 17.18 75.63

Table 4.1: Comparison between PRNU-based forgery localization methods.

4.2.3 Near-Duplicates

We extracted all near-duplicates across I tr,P, I tr,F and I2
ts: as one can see

from Table 4.2, near-duplicates constitute a significant part of the Challenge
datasets. Most of them, however, can be only paired together, therefore most
obtained masks are ambiguous. Nonetheless, this method still achieves a
score much higher than the others, normalized on the number of effectively
computed masks Table 4.6.

k 0 1 2 3 4

I tr,F 350 93 5 1 1
I2
ts 493 186 11 1 9

Table 4.2: Amount of images with k other near-duplicates in Itr∪I2
ts. An image with

0 near-duplicates is obviously a singleton. E.g. in Itr,F there are 93 images sharing a
near-duplicate among Itr∪I2

ts: this also means that some near-duplicates are counted
twice.

In Figure 4.7 and Figure 4.17 we show some examples of the algorithm at
work. Notice the crispness of the mask borders, thus rendering futile to apply
further morphological processing.

4.2.4 PatchMatch

In Figure 4.18 we show an example of a tentative disambiguation of a near-
duplicate pair using a PatchMatch mask.

4.2.5 Mask fusion

Using the Challenge training set, we computed the reliability index for every
fusion strategy {Mp }7p=1. It is clear from Table 4.3 that the strategies involving
only one kind of mask (i.e. MND, MPRNU, MPM) perform better than mixed
strategies.

4.2. Experimental results 77

I 1

I 1

I 2

I 2

I 3

I 3

I 4

I 4

I 5

I 5

M
G
T

1

?

M
G
T

2

?

M
G
T

3

?

M
G
T

4

?

M
G
T

5

M
G
T

n

M
N
D
n

Fi
gu

re
4.
17
:
N
ea
r-
D
up

lic
at
e
di
sa
m
bi
gu

at
io
n
w
ith

5
ne
ar
-d
up

lic
at
es
.
W
e
no

tic
e
th
at

th
e
fr
id
ge

m
ag
ne
ts

m
ov
e
ac
ro
ss

im
ag
es
.

Fi
rs
t
ro
w

an
d
fir
st

co
lu
m
n:

so
ur
ce

im
ag
es
,i
n
bo

th
I t

r,
F
an
d
I2 ts

.
Im

ag
es

w
ith

gr
ee
n
bo

rd
er
:
gr
ou

nd
tr
ut
h
m
as
ks

M
G

T
(i
f
pr
es
en
t)
.

M
as
ks

w
ith

re
d
bo

rd
er
:
di
sa
m
bi
gu

at
ed

M
N

D
n
fo
r

n-
th

im
ag
e
in

ro
w
.

M
as
ks

w
ith

bl
ue

bo
rd
er
:
m
as
k
di
ffe

re
nc
es

be
tw
ee
n
ro
w

an
d
co
lu
m
n
im

ag
es
.

T
he

al
go
rit
hm

co
m
pu

te
s
ea
ch

M
N

D
by

pe
rf
or
m
in
g
an

O
R
on

ea
ch

ro
w
/c
ol
um

n.

78 Chapter 4. Image tampering localization

(a) Reference image I1 (b) Comparison image I2

(c) MPM for I1 (d) Ambiguous MND for I1

(e) Disambiguated MND1 for I1 (f) MGT
1

Figure 4.18: ND-PM disambiguation. (a) and (b) are two near-duplicate images,
labeled I1 and I2. (d) and (c) are, respectively, the difference mask between them (i.e.
M1

ND) and the PatchMatch mask on I1.
By combining MPM and M1

ND as in 4.1.5, on I1 we obtain (e) which is different than
MGT

1 , reported in (f). (In fact, actually, I2 is pristine.)

4.2. Experimental results 79

Mp MPRNU MPM MND MPRNU ∧MPM MPRNU ∧MND MPM ∧MND MPRNU ∧MPM ∧MND

Cp (%) 23.90 25.19 33.16 1.60 13.74 2.09 0

Table 4.3: Reliability indexes on Itr,F. Each Cp is computed only on available masks
for strategy Mp. One can appreciate how single strategies are favorable over joint ones.

As a consequence, we adopted the following rationale for Phase 2 submis-
sions: for each image In ∈ I2

ts we first select the mask which corresponds to
best performing strategy among Mn, i.e. MND. If MND is not available, we
chose, in order of availability, MPM and MPRNU. If neither of these strategies
have been selected for image In, we select a fully black mask, since a white
one would have obtained a score equal to 0, by definition.

In Table 4.4 we report the same statistics as in Table 4.1 using all available
techniques. The cardinality of obtained sets is reported, instead, in Table 4.5.

We also submitted the extracted masks using the Challenge submission
systems. Selected obtained scores are presented in Table 4.6, while a full log
is available in Appendix B.2.

Along the official S2 score, we also reported a normalized version of S2,
named S2, which has been computed by weighted averaging masks effectively
submitted: this is a measure of effectiveness of each technique, defined to
be independent on the number of available masks. As a consequence, e.g.
corrected score for MND is much higher than other methods: this is due to the
fact that MND availability is scarce.

Score normalization

Suppose that we made a submission to the Challenge official system: i.e. we
submitted our guesses on I2

ts. Let N0 be the cardinality of I2
ts, and let S2 the

score returned by the official system for our submission.

Suppose that we submitted a set of N masks in I2
ts for a given technique.

As only “full” submissions are scored, we need to pad the set of submitted
masks with other guesses, for example, with Nw white and Nb black masks.
We observed that white or black masks are set to have F1 score of, respectively,
0 (by definition, since no pristine images are present in I2

ts) and 0.12 (from
submission_001 and experiments on I tr, as reported in Figure B.1).

As a consequence, neglecting the score randomization, from Equation (2.5)
we may write, on average

S2 = 1
N0

(
NS2 +0 ·Nw +0.12 ·Nb

)
,

80 Chapter 4. Image tampering localization

hence we define the normalized score S2 as

S2 := 1
N

(S2N0 −0.12Nb) . (4.14)

Technique Available
masks

TPR (%) TNR (%) FPR (%) FNR (%) ACC (%) F1

MND 100 83.75 99.05 0.95 16.25 97.81 0.7603
MPRNU (opt.) 203 82.82 68.45 31.55 17.18 69.74 0.4514
MPRNU 212 68.44 74.39 25.61 31.56 73.96 0.4165
MPM 204 55.61 94.66 5.34 44.39 91.44 0.4541
Mfus 288 67.46 92.13 7.87 32.54 89.67 0.5552

Table 4.4: Comparison between forgery localization methods. Each column is averaged
on all available masks for each technique in Itr,F. Notice how powerful is MND against
all other techniques: near-duplicate information is, in fact, a strong peculiarity of the
Challenge dataset. Reported statistics were defined in Table 2.2.

Available masks
Mask type % of I tr,F % of I2

ts

MPRNU 45 54
MPM 45 48
MND 22 29
Mfus 64 66

Table 4.5: Percentage of computed tampering masks using different methods and
datasets.

4.2.6 Non-blind PRNU

As mentioned at the start of Chapter 4, we were also provided upon our re-
quest with the Sensor Attribution Dataset, hereby shortened as “SAD”. The
SAD is a list of 35 sets of 20 pristine images each. Every set has been captured
by a single camera which might have been used in the Challenge; some sets
are extraneous, though.

We exploited the SAD in order both to precisely estimate PRNU finger-
prints beforehand, and to assess whether PRNU-based methods were applica-
ble or not.

4.2. Experimental results 81

Score on I tr,F Score on I2
ts

per image global per image global

MPRNU 0.4514 0.2483 0.3317 0.2535
MPM 0.4541 0.2563 0.4190 0.2784
MND 0.7603 0.2679 0.8448 0.3331
Mfus 0.5552 0.3853 0.5669 0.4533

Table 4.6: S2 score for the obtained masks. Scores are presented for the whole dataset
(global, that is, Itr,F or I2

ts) and averaging it only on the number of available masks
for the selected technique (S2, per image). Note that the last one is the highest score
which we ever achieved in the Challenge.

Four PRNU patterns

Instead of simply estimating one fingerprint per camera, we wish to control
all cases where a source image I0 has been resized to the Challenge resolution
(1024×768 for the vast majority of the dataset): as a big plus, this would also
be a way to deal with Hyp. I, albeit in a less generic context.

For the sake of simplicity, we will refer to 1024×768 pixel wide images as
the Challenge Resolution (CR).

Let K be the true PRNU fingerprint associated to a source image I0. We
relaxed Hyp. I to the following:

Hypothesis III (Scaling and cropping to Challenge Resolution).
Each image I0 ∈ I tr∪I2

ts has been either resized to CR, or cropped, but not
both.

Let R be the operator which resizes any source image I0 to the CR: that
is, I∗ = {

I∗ (i, j)
}

i, j :=R [I0] has the CR ∀I0.
Let {Ii }20

i=1 ⊂SAD be a set of images taken by the k-th camera.
Under Hyp. III, from each {Ii }20

i=1 we extracted four kinds of PRNU finger-
prints: (see Figure 4.19)

• Full PRNU: K̂F

K̂F is estimated from {Ii }20
i=1 using the procedure described in 2.3.1.

• Cropped PRNU: K̂C

K̂C is estimated from 1024×1024 crops taken from the center from all
images in {Ii }20

i=1, using the procedure described in 2.3.1. We assume

82 Chapter 4. Image tampering localization

that every image in I contains part of the cropped region.
With this test we simulate the cases where Hyp. I holds but Hyp. II does
not.

• Full resized PRNU: K̂FR

K̂FR is obtained by resizing K̂F to the CR:

K̂FR :=R [K̂F]

• Resized PRNU: K̂R

We applied the resizing operator R to each image in {Ii }20
i=1, thus obtain-

ing {R [Ii] }20
i=1. Next, K̂R is estimated from {R [Ii] }20

i=1 using the proce-
dure described in 2.3.1.

For each image In, we collect these PRNUs under the symbol Kn:

Kn :=
{
K̂F,K̂C,K̂FR,K̂R

}

CAD images,

same camera
PRNU “full”

Resize

1024x768

Center crop

1024x1024

PRNU “full_cropped”

PRNU “resized”

Resize

PRNU
“full_resized”

1024x768

1024x768

1024x1024

Figure 4.19: The PRNU extraction process.

This procedure has been repeated for each of the 35 cameras in the SAD,
thus obtaining 4×35 = 140 alleged PRNU fingerprints, four per camera, of
different nature one another.

We observe that in a fully blind setting, such as the Challenge one, only
K̂R can be estimated, whence the generic PRNU-based localization framework
strictly requires K̂F (see Hyp. I). As a consequence, in the 4.2.6 we first
discuss if a PRNU-based forensic approach is applicable by using K̂F and K̂C,

4.2. Experimental results 83

comparing also the attributed cameras with K̂FR. Next, in 4.2.6 we will check
whether the resizing operator R commutes with the PRNU extraction: i.e. we
compare camera attributions obtained using K̂FR and K̂R. If this assumption
is true, we conclude that we can safely apply PRNU-based methods on the
entire Challenge set I if Hyp. III holds.

Non-blind camera attribution

For each one of the 35 cameras, we estimated the aforementioned 4 kinds of
PRNU fingerprints, thus obtaining 140 PRNU fingerprints, four per camera.
Next, we matched the entired Challenge train set I tr and the Phase 2 test
set I2

ts using the Camera Attribution procedure as in 2.3.1, using a PCE
threshold of τ = 50. We represented a sample Camera Attribution procedure
on a selected image in Figure 4.20.

10
1

10
2

10
3

10
4

10
5

canon−powershot−sx1−ls
kodak−easyshare−c743

sony−cybershot−dsc−h55
sony−cybershot−dsc−s730
sony−cybershot−dsc−w50

sony−cybershot−dsc−w125
samsung−omnia

apple−iphone−4−arocha
kodak−easyshare−m340

sony−cybershot−dsc−h20
hp−photosmart−r727

canon−eos−50d
kodak−easyshare−z981

nikon−d40
olympus−sp−570uz

panasonic−lumix−dmc−fz35
sony−alpha−dslra500l

olympus−camedia−d395
sony−cybershot−dsc−w120

nikon−coolpix−s8100
sony−cybershot−dsc−w330

apple−iphone−4−arthur
cannon−powershot−a520

apple−iphone−3−tripodi
samsung−star

olympus−sp−800uz
nikon−d5000

panasonic−lumix−dmc−fz35−2
sony−alpha−dslra500−2
kodak−easyshare−z981

nikon−coolpix−p100
canon−powershot−g12

canon−eos−50d
sony−cybershot−dsc−hx1

olympus−e30

PCE

PCE values against all fingerprints on image 530

τ = 50

K̂
F

K̂
C

K̂
FR

K̂
R

Figure 4.20: Camera Attribution using SAD on image I530 ∈ Itr: we matched its noise
with all available fingerprints extracted all available cameras. The red line is the PCE
threshold τ = 50 above which we declare a camera match.
Notice the double match with a PRNU pattern which has been extracted both from
resized images and has been resized from full-sized fingerprint: since it is attributed to
a single camera, this is a desired situation, as explained in 4.2.6.

84 Chapter 4. Image tampering localization

We summarize our results in Figure 4.21 and Figure 4.22. The former
represents how many images are attributed to each camera, spliced along the
four kinds of PRNU. We observe that some cameras have not been matched,
and other constitute a significant part of the Challenge dataset, thus ren-
dering possible a good PRNU estimation. From the latter plot, we conclude
that we can reliably attribute a camera to at least half of each dataset: by
strictly considering a PCE threshold τ = 50, in I tr we declare as identified
1126 images over 1500, while in I1

ts we identify 528 images over 700.

Blind detectability

We also analyzed whether a fully blind clustering on these datasets is feasi-
ble, on the reasonable assumption that the clustering metric is PCE-based.
As such, to extract accurate PRNU fingerprints, a significant amount of im-
ages is needed: moreover, since we are in a blind setup, we need to make
sure that those images actually have been captured by the same camera. An-
other reason for this analysis is that PCE decreases whenever an image is
re-compressed or gets tampered with, thus decreasing the reliability of each
pixel to convey information on PRNU and the source camera.

The detectability plots are reported in Figure 4.23 and Figure 4.24. Each
plot is devised to assess whether a blind clustering is possible, and the ex-
pected reliability on the obtained PRNU. In these plots we work with groups
of images which have been attributed to the same camera; each group is rep-
resented on the x-axis by the distribution of the PCE of all images against
its PRNU fingerprint, while on the y-axis we report the size of the group. To
avoid clutter, instead of representing the full distribution of the PCE, we show
with a horizontal line only the first and third quartile along with the group
median.

In particular, conditions that favor a blind clustering are found into the
top-right part of each plot: that is, large amounts of images taken by the same
camera, whose attribution is safe to be assumed (i.e. higher median PCE
with lower variance). Judging by the relatively large amount of clusters of
well-identified images, we conclude that blind clustering is possible, although
not exactly favorable.

Resize

Here, we discuss whether K̂FR can be estimated with K̂R, the sole PRNU
fingerprint which can be actually computed from a fully blind standpoint,
such as the Challenge.

4.2. Experimental results 85

(a) Images in Itr. x-axis: k-th SAD camera.

(b) Images in I2
ts. x-axis: k-th SAD camera.

Figure 4.21: Distribution of attributed images for each camera in the SAD in each
dataset across Kn. The total height of each bar is the total number of images which
have been attributed (i.e. the PCE between the image noise and the camera fingerprint
is above τ = 50) to the chosen camera. Notice how some cameras have never been used
in the Challenge dataset.

86 Chapter 4. Image tampering localization

10
1

10
2

10
3

10
4

10
5

0

500

1000

1500

PCE distribution: amount of images whose PCE is above a certain threshold
1126/1500 detected images, thr=50

PCE

A
m

o
u

n
t

>
 P

C
E

(a) PCE distribution with attributed camera in Itr

10
1

10
2

10
3

10
4

10
5

10
6

0

100

200

300

400

500

600

700

PCE distribution: amount of images whose PCE is above a certain threshold
528/700 detected images, thr=50

PCE
A

m
o

u
n

t
>

 P
C

E

(b) PCE distribution with attributed camera in I2
ts

Figure 4.22: Distribution of the best PCE obtained for each image against all SAD
cameras using all Kn. The red mark is the PCE detection threshold τ = 50. These plots
show how many images can be matched with the real camera over a given PCE.

In the parallel coordinates plot in Figure 4.25, we show the PCE values
of all images that have been detected using K̂FR, K̂R and, for comparison pur-
poses, K̂F. Instead of plotting cameras rather than groups of images, here we
represent each image as a 4-point polygonal line, whose ordinates are the said
PCE values against each kind of PRNU, arbitrarily and equispatially repre-
sented on the absissae. The advantage of a parallel coordinates plot is that it
shows complex relationships between categorical variables, such as the four
PRNUs, coupled with as many continuous responses such as the PCE values.
The ordering of the absissae is actually relevant only for representation pur-
poses: the vertices constituting the polygonal line can be swapped and moved
in order to uncover more patterns.

It is clear from subfigures (a), (b), (c) and (d) how images that match with
K̂FR also match using K̂R, and vice versa, without ever matching also with
K̂F. Moreover, observe (subfigures (e) and (f)) how images that match with
K̂C also match with K̂F: this is due to the fact that only a cropping has been
performed between the two PRNU. This allows us to conclude that Hyp. II is
not strictly necessary for camera attribution, albeit a size correction on PCE
is needed. Furthermore, as we can note from subfigures (e) and (f), the same
does not happen with K̂F against K̂FR and K̂R, since a scaling is now involved.

As an additional proof, in Table 4.7 we reported how many times the same
camera is attributed in I2

ts either using one kind of PRNU or another. Granted
the preceding observations, we can appreciate that, very often, K̂FR and K̂R

4.2. Experimental results 87

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

102 103 104 105

PCE

C
lu

st
er

 s
iz

e

Identified cameras. Dataset ph1 training
Ranges = [Q1,median,Q3], group by camera.

(a) Images in Itr, with PCE > τ = 50

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

0

20

40

60

102 103 104 105

PCE

C
lu

st
er

 s
iz

e

Identified cameras. Dataset ph2
Ranges = [Q1,median,Q3], group by camera.

(b) Images in I2
ts, with PCE > τ = 50

Figure 4.23: Detectability plot. Each horizontal bar is a cluster of images taken by the
same SAD camera, as recognized by at least one of the K . Non-matched images are
not shown.
The cluster size is the y-coordinate, while on the x-axis we reported the median, first
and third quartile of the PCE value in each cluster against its SAD camera.
Ideal conditions for blind clustering can be found in the upper right part of this graph:
that is, images are easy to identify, and each camera is represented by lots of pictures.
Also, a lower variance means that the influence on image content is negligible: e.g.
images have not been aggressively compressed, or any alteration has a small area.

88 Chapter 4. Image tampering localization

(a) Images in Itr, with PCE > τ = 50

(b) Images in I2
ts, with PCE > τ = 50

Figure 4.24: Same plot as Figure 4.23: this time, however, we group each cluster along
each one of the PRNU types K .

4.2. Experimental results 89

attribute the same camera to each identifiable image: again, in other cases
this does happen much more rarely, e.g. between K̂F and K̂R.

It is thus immediate to conclude that the operation of resizing to CR (R)
can be safely swapped with the PRNU extraction.

Attributed by also matching with

K̂F K̂C K̂FR K̂R

K̂F 150 22 8 6

K̂C 0 3 0 0

K̂FR 5 9 318 303

K̂R 1 0 48 57

Table 4.7: Camera attributions in I2
ts between different sources. In (i, j)-th entry we

reported the amount of images whose attributed camera is the same using i-th PRNU
type against j-th PRNU type. As a result, one can read on the diagonal how many
images are identified using i-th PRNU type.
E.g. in I2

ts we were able to assign a camera to 150 images using K̂F. Among these
images, in 22 cases we would not attributed another camera if we used K̂C instead.

Comparison with blind results

To further verify our assertions, we compared cameras as attributed using the
SAD with the blind clustering described in 4.1.2.

In Figure 4.26 we represented the PCE obtained by correlating noise ex-
tracted from an image I ∈ I tr,F, set as fixed, with noises extracted from the
entire dataset I tr ∪I2

ts. Only 1024×768 pixel wide images are considered.
Superimposed, we also marked images whose camera has been attributed to
be the same who took I, by the two approaches.

From subfigure (a), one can see how the blind procedure is much more
restrictive than using prior information (i.e. the SAD): in fact, blind clusters
are almost always subsets of non-blind clusters. Moreover, it (almost) never
declares that two images have been taken by different cameras, given that
the camera who took them is actually the same (as attributed by the SAD).

Another remark is the presence of near-duplicates inside the dataset (see
subfigure (b)): as the area in common between them is usually large, their
mutual PCE is much higher than any other image. As a consequence, they
are forcibly clustered together by the blind PCE-based clustering algorithm.
In principle, this is not wrong; however, in near-duplicate-dominated clusters,
we conjecture that the PRNU approach becomes similar to a phylogenetic

90 Chapter 4. Image tampering localization

(a) PCE values of images in Itr whose camera has been
attributed using K̂R.

(b) PCE values of images in I2
ts whose camera has been

attributed using K̂R.

(c) PCE values of images in Itr whose camera has been
attributed using K̂FR.

(d) PCE values of images in I2
ts whose camera has been

attributed using K̂FR.

(e) PCE values of images in Itr whose camera has been
attributed using K̂F.

(f) PCE values of images in I2
ts whose camera has been

attributed using K̂F.

Figure 4.25: Distribution of PCE values of all images whose camera has been attributed
using at least one of the K . Each image is represented as a line. The red mark is the
PCE threshold τ = 50.
Columns: images in Itr and I2

ts respectively.
Rows: images attributed using K̂R, K̂FR and K̂F respectively.
E.g. an image in Itr which is matched using K̂F would, probably, have a peak in the first
column in (e) and (f) well above τ; in other plots and columns, instead, the reported
PCE values would be well under τ.

4.2. Experimental results 91

approach using such near duplicates.

4.2.7 Feature-based approach

Notwithstanding what we concluded in Section 3.4 about co-occurrence-based
method for tampering detection, we also tried to adapt the same for tamper
localization purposes.

Following what we did in 3.3.2, we collectively extracted 16678 64×64
pixels wide non-overlapping blocks from all images in I tr,F. The key idea can
also be found in the winning approach described in 2.3.2: to each block we
associated the class label li, set to 0 (i.e. pristine block) if its mask is either
completely white or completely black, while li is set to 1 (i.e. fake block) if
the block is composed from 25% to 75% black pixels. We discarded blocks
which did not comply to any of these requirements. As a result, we basically
extracted blocks either fully contained into a black (or white) region, or blocks
across the edges of any tampering.

Next, we trained the SVM classifiers on the obtained dataset, with the
same cross-validation setup as before.

First obtained results were not encouraging at all, even in training phase,
especially if compared with those obtained using entire images in the Detec-
tion phase. (see Figure 4.27a against Figure 4.27b). Even a change of block
size or feature normalization did not help: as a result, we decided not to
consider this approach for the Localization phase.

92 Chapter 4. Image tampering localization

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

10
1

10
2

10
3

PCE between image 5586 and others: found 83 matches
Missed detections: 51 true detections 83, wrong detections 0

Image index in dataset

P
C

E

I
5586

PCE

SAD clustering

Blind clustering

(a) Reference image I5586.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

10
1

10
2

10
3

PCE between image 5596 and others: found 3 matches
Missed detections: 318 true detections 3, wrong detections 0

Image index in dataset

P
C

E

I
5596

PCE

SAD clustering

Blind clustering

(b) Reference image I5596.

Figure 4.26: SAD/Blind clustering comparison. We fixed image In ∈ Itr∪I2
ts. Images

marked with ∗ have been attributed to the same camera as In using SAD. Red circles,
instead, mark images attributed to the same camera as In using our blind clustering
algorithm.

4.2. Experimental results 93

(a) Grid search results using the co-occurrence-based approach. Only one grid
refinement is performed. In the lower graph, we report the best score reached
by each submodel.
Notice also that we are inside the training set, therefore expected score on test
set is lower.

(b) Grid search score obtained in the training phase of the tampering global
detector, presented in Section 3.1.
Color: score, y-axis: submodel m, x-axis: index of the chosen metaparameter
inside m-th metaparameter grid (same as the one used in (a)).

Figure 4.27: Grid search scores obtained in the feature-based detector adapted for
tamper localization (a). For clarity, in (b) we reported the scores obtained by the same
feature-based detector in the Detection phase, using full images instead, already shown
in Figure 3.2a.

94 Chapter 4. Image tampering localization

4.3 Conclusions

In this chapter we presented three techniques, each one bearing different
strenghts and weaknesses. We also showed a possible way to combine said
techniques in order to produce a single decision for each image.

In particular, we first exposed our novel PRNU-based approach. Com-
pared to thresholding-based methods, as we verified in Subsection 4.2.2, our
method requires no training at all except for the choice of the block partition-
ing. Reported scores using MPRNU are still on-par with PCE-based methods,
both on the training set I tr,F and on the test set I2

ts: however, we note that
we mostly analyzed the performance of MPCE on the same dataset used for
training it. We therefore expect that, in general, MPCE performs worse than
MPRNU on entirely new images.

The Near-Duplicate based technique we presented is borrowed from the
image phylogeny field. The possibility of having multiple versions of a single
image is a rather strong requirement, evidenced by the fact that we were able
to find only 100 near-duplicates over 700 in the Challenge phase 2 dataset.
Nevertheless, image phylogeny is a relatively new field to work on, and the
performance exhibited by MND (when available) is much encouraging to fur-
ther work with the individual method.

To conclude the chapter, we have proven how any forensic tool, alone, is
not able to reach an acceptable accuracy and detection rate. We have also
shown that the right path is to merge the outputs of many forensic tools,
possibly in a way both to strenghten each other and to replace a technique
which fails on the analyzed image.

As far as the Challenge results, we achieved the score of 0.453273, well
over the score obtained by the winning submission (0.407172). As the scoring
mechanism involves a certain randomness, the superiority is further con-
firmed by multiple submissions of the masks produced by the proposed tech-
nique: all of them were well over the winning score.

Chapter 5

Conclusions

In this work we tackled two classic problems in image forensics: tampering
detection and tampering localization. In both cases, we proposed a method
built on current state-of-the-art techniques: we showed that suggested meth-
ods achieve better results in a fully blind fashion on the Challenge dataset
than those who won the IEEE IFS-TC Image Forensic Challenge.

In particular, in the Detection phase we refined the approach followed by
[45], showing that further improvement is possible through a more advanced
ensemble classifier, such as a Boosted Logistic Regression.

In the Localization phase, instead, we proposed an approach which com-
bines our novel take on PRNU-based forensic methods, with tools coming from
the image phylogeny world and a technique capable of revealing copy-move.

The developed PRNU-based method requires no training as opposed to
other available techniques, but it is capable of achieving the same score on the
Challenge dataset. We also proved the validity of our approach by comparison
with another dataset, the SAD, giving conditions for the establishment of a
fully blind clustering based on cameras which have been used to produce the
dataset.

The Near-Duplicate approach, instead, relies on a redundancy exhibited
by this dataset. Having said that, the shown technique is very powerful
whenever a set of near-duplicates can be identified: in fact, in most cases we
are able to exactly reconstruct the ground truth mask by comparing pairs of
images. Also, Near-Duplicate analysis is performed very quickly and reliably.
The major drawback is that it is prone to failure each time a tampering occurs
in each image. Still, this technique can be employed if the analyzed dataset
is very large, as it increases the possibility to locate similar images to the one
which is being questioned: for example, this can be exploited by crawling the
Web for near-duplicate images, as tools such as Tineye or Google Images are

95

96 Chapter 5. Conclusions

capable of doing. Being also very light on computational resources, the fertile
ground for this technique is a distributed computing platform: this enables
the analyst to exploit a collection which is too large to be stored locally, in
order to find near-duplicates extraneous to the examined collection.

However, a number of questions are left open.
In the Detection phase, we proved that the proposed detector has learned

to classify features that characterize entire images rather than local alter-
ations: however, those features do not necessarily suggest that a tampering
has been performed in the image. Their nature is still unknown: we conjec-
ture that the detector is able to recognize whether a re-save or a color space
conversion has taken place, rather than the editing program which has been
used to author the image. Future work is aimed in this direction: in particular,
we wish to investigate which one is the aspect that it is actually detected. To
do so, we will produce a series of datasets starting from pristine images in I tr:
each dataset is processed so to enhance differences introduced by each kind
of said global processing. To be able to detect such features is a factor likable
for further forensic work.

In the Localization phase, the proposed PRNU-based method is strongly
dependent on the choice of block partitioning which is performed on the image.
We dealt with this aspect by a rather crude grid search on the space of block
parameters. It would be desirable to have a lower bound on the block size,
or to be able to define a link between block parameters and the performance
of the method: this could further decrease the training required by its im-
plementation. To make sure that the blind PRNU clustering is well posed,
we also assumed both that no cropping and no resize has been performed
on the images and that they could have only been resized to a resolution of
1024×768 pixels. We showed that these requirements can be relaxed, veri-
fying it experimentally. Further work could be oriented in this direction: in
particular, it would be desirable to allow a wider spectrum of operators which
could be applied to analyzed images, such as resizing to arbitrary resolution
or multiple re-compression.

Near-Duplicate analysis is very promising due to the high scores which
can be achieved by its use. In this work we described a way to synthesize a
single mask by comparing the analyzed images with a set of near-duplicates:
we proved that, in some cases, this does not lead to a correct decision. However,
this could be circumvented by comparing tuples of near-duplicates, instead of
pairs. A weakness shared both by Near-Duplicate analysis and PatchMatch
is that they exhibit ambiguities: we proposed a way to disambiguate the
obtained masks by collectively merging different techniques. Many other
ways are possible: in particular, one could also exploit the fact that some of

97

the near-duplicates can also actually be pristine. Another improvement would
be to perform mask disambiguation using PRNU-based information.

A further development on the Near-Duplicate idea is to refine the under-
lying measure of similarity between images: in our approach we compare
images pixel by pixel. However, among the near-duplicates we may allow
for slight changes in the represented scene, perhaps to exclude small mov-
ing elements such as pedestrians, clouds, foliage, etc.; our approach, in fact,
would classify them as being tampered regions. This leads us to rethink the
definition we use for fake: untampered photographs of a real scene could
be considered as being pristine, even though a depicted object could have
moved between frames. As a result, one might shift the entire approach to
detecting whether a given scene is fake. For example, suppose that an object
has been subsequently added to a photo of a natural scene, whose a bunch
of photographs are available, ranging both in time and in space. A Near-
Duplicate analysis approach would, then, reconstruct the scene based on such
photographs, and would detect the object as being erroneous by uncovering its
inconsistency in time and space with the rest of the scene. As a consequence,
the natural framework for this approach is video forensic analysis.

We finish this work by emphasizing the importance of fusing the outputs
of several techniques in order to produce a single decision: this has been the
staple both for Phase 1 (i.e. the ensemble classifier) and Phase 2 (mask fusion).
In the latter we employed a rather simple way to synthesize a single mask
for each image. Further work could be spent to refine this process. An idea is
to merge existing prior information, both on the analyzed image and on each
mask: the former stems from the knowledge of statistics exhibited by natural
images, while the latter is proper to the employed techniques. To this purpose,
for example, one might employ tools borrowed from Bayesian statistics. In
forensic literature a similar approach has been done in [56].

All of this proves that image forensics is a field where significant improve-
ment over state-of-the-art methods is still possible, also benefiting from en-
tirely novel ideas coming from unrelated fields.

98 Chapter 5. Conclusions

Bibliography

[1] A. Piva, “An Overview on Image Forensics”, ISRN Signal Processing,
vol. 2013, pp. 1–22, 2013, I S S N: 2090-505X. D O I: 10.1155/2013/
496701.

[2] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi,
and S. Tubaro, “An overview on video forensics”, APSIPA Transactions
on Signal and Information Processing, vol. 1, Aug. 2012, I S S N: 2048-
7703. D O I: 10.1017/ATSIP.2012.2.

[3] I. J. Cox, M. L. Miller, J. A. Bloom, and C. Honsinger, Digital water-
marking. Springer, 2002, vol. 53.

[4] S. Gupta, S. Cho, and C.-C. Kuo, “Current developments and future
trends in audio authentication”, MultiMedia, IEEE, vol. 19, no. 1,
pp. 50–59, 2012.

[5] M. Visentini-Scarzanella and P. L. Dragotti, “Modelling radial distor-
tion chains for video recapture detection”, in Multimedia Signal Pro-
cessing (MMSP), 2013 IEEE 15th International Workshop on, IEEE,
2013, pp. 412–417.

[6] M. K. Johnson and H. Farid, “Exposing digital forgeries through chro-
matic aberration”, in Proceedings of the 8th workshop on Multimedia
and security, ACM, 2006, pp. 48–55.

[7] L. T. Van, S. Emmanuel, and M. S. Kankanhalli, “Identifying source
cell phone using chromatic aberration”, in Multimedia and Expo, 2007
IEEE International Conference on, IEEE, 2007, pp. 883–886.

[8] I. Yerushalmy and H. Hel-Or, “Digital image forgery detection based on
lens and sensor aberration”, International journal of computer vision,
vol. 92, no. 1, pp. 71–91, 2011.

99

http://dx.doi.org/10.1155/2013/496701
http://dx.doi.org/10.1155/2013/496701
http://dx.doi.org/10.1017/ATSIP.2012.2

100 BIBLIOGRAPHY

[9] A. E. Dirik, H. T. Sencar, and N. Memon, “Digital single lens reflex
camera identification from traces of sensor dust”, Information Forensics
and Security, IEEE Transactions on, vol. 3, no. 3, pp. 539–552, 2008,
I S S N: 1556-6013.

[10] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera iden-
tification based on CFA interpolation”, in Image Processing, 2005. ICIP
2005. IEEE International Conference on, vol. 3, IEEE, 2005, pp. III–69.

[11] A. Swaminathan, M. Wu, and K. R. Liu, “Digital image forensics via
intrinsic fingerprints”, Information Forensics and Security, IEEE Trans-
actions on, vol. 3, no. 1, pp. 101–117, 2008, I S S N: 1556-6013.

[12] A. C. Popescu and H. Farid, “Exposing digital forgeries in color filter
array interpolated images”, Signal Processing, IEEE Transactions on,
vol. 53, no. 10, pp. 3948–3959, 2005, I S S N: 1053-587X.

[13] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image forgery local-
ization via fine-grained analysis of cfa artifacts”, Information Forensics
and Security, IEEE Transactions on, vol. 7, no. 5, pp. 1566–1577, 2012,
I S S N: 1556-6013.

[14] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining Image
Origin and Integrity Using Sensor Noise”, IEEE Transactions on Infor-
mation Forensics and Security, vol. 3, no. 1, pp. 74–90, 2008, I S S N:
1556-6013. D O I: 10.1109/TIFS.2007.916285.

[15] M. Goljan and J. Fridrich, “Sensor-fingerprint based identification of
images corrected for lens distortion”, in IS&T/SPIE Electronic Imaging,
International Society for Optics and Photonics, 2012, 83030H–83030H.

[16] ——, “Camera identification from cropped and scaled images”, in Elec-
tronic Imaging 2008, International Society for Optics and Photonics,
2008, 68190E–68190E.

[17] C. McKay, A. Swaminathan, H. Gou, and M. Wu, “Image acquisition
forensics: Forensic analysis to identify imaging source”, in Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on, IEEE, 2008, pp. 1657–1660.

[18] G. K. Wallace, “The JPEG still picture compression standard”, Con-
sumer Electronics, IEEE Transactions on, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[19] Z. Fan and R. L. de Queiroz, “Identification of bitmap compression
history: JPEG detection and quantizer estimation”, Image Processing,
IEEE Transactions on, vol. 12, no. 2, pp. 230–235, 2003.

http://dx.doi.org/10.1109/TIFS.2007.916285

BIBLIOGRAPHY 101

[20] D. Fu, Y. Q. Shi, and W. Su, “A generalized Benford’s law for JPEG coef-
ficients and its applications in image forensics”, in Electronic Imaging
2007, International Society for Optics and Photonics, 2007, pp. 65051L–
65051L.

[21] T. Bianchi and A. Piva, “Detection of non-aligned double JPEG compres-
sion with estimation of primary compression parameters”, in Image
Processing (ICIP), 2011 18th IEEE International Conference on, IEEE,
2011, pp. 1929–1932.

[22] A. J. Fridrich, B. D. Soukal, and A. J. Lukás, “Detection of copy-move
forgery in digital images”, in in Proceedings of Digital Forensic Research
Workshop, Citeseer, 2003.

[23] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
Match: A Randomized Correspondence Algorithm for Structural Image
Editing”, ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 28,
no. 3, Aug. 2009.

[24] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, “Geomet-
ric tampering estimation by means of a SIFT-based forensic analysis”,
in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE Inter-
national Conference on, IEEE, 2010, pp. 1702–1705.

[25] A. C. Popescu and H. Farid, “Exposing digital forgeries by detecting
traces of resampling”, Signal Processing, IEEE Transactions on, vol. 53,
no. 2, pp. 758–767, 2005.

[26] B. Mahdian and S. Saic, “Blind authentication using periodic properties
of interpolation”, Information Forensics and Security, IEEE Transac-
tions on, vol. 3, no. 3, pp. 529–538, 2008.

[27] M. K. Johnson and H. Farid, “Exposing digital forgeries by detecting
inconsistencies in lighting”, in Proceedings of the 7th workshop on Mul-
timedia and security, ACM, 2005, pp. 1–10.

[28] M. K. Johnson and H. Farid, “Exposing digital forgeries in complex light-
ing environments”, Information Forensics and Security, IEEE Transac-
tions on, vol. 2, no. 3, pp. 450–461, 2007.

[29] C. Riess and E. Angelopoulou, “Scene illumination as an indicator of
image manipulation”, in Information Hiding, Springer, 2010, pp. 66–
80.

102 BIBLIOGRAPHY

[30] W. Zhang, X. Cao, J. Zhang, J. Zhu, and P. Wang, “Detecting photo-
graphic composites using shadows”, in Multimedia and Expo, 2009.
ICME 2009. IEEE International Conference on, Jun. 2009, pp. 1042–
1045. D O I: 10.1109/ICME.2009.5202676.

[31] Q. Liu, X. Cao, C. Deng, and X. Guo, “Identifying image composites
through shadow matte consistency”, Information Forensics and Security,
IEEE Transactions on, vol. 6, no. 3, pp. 1111–1122, 2011.

[32] M. K. Johnson and H. Farid, “Detecting photographic composites of
people”, in Digital Watermarking. Springer, 2008, pp. 19–33.

[33] V. Conotter, G. Boato, and H. Farid, “Detecting photo manipulation
on signs and billboards”, in Image Processing (ICIP), 2010 17th IEEE
International Conference on, IEEE, 2010, pp. 1741–1744.

[34] H. Farid and J. Kosecka, “Estimating planar surface orientation using
bispectral analysis”, Image Processing, IEEE Transactions on, vol. 16,
no. 8, pp. 2154–2160, 2007.

[35] H. Yu, T.-T. Ng, and Q. Sun, “Recaptured photo detection using specu-
larity distribution”, in Image Processing, 2008. ICIP 2008. 15th IEEE
International Conference on, IEEE, 2008, pp. 3140–3143.

[36] X. Gao, T.-T. Ng, B. Qiu, and S.-F. Chang, “Single-view recaptured image
detection based on physics-based features”, in Multimedia and Expo
(ICME), 2010 IEEE International Conference on, IEEE, 2010, pp. 1469–
1474.

[37] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification
from sensor pattern noise”, Information Forensics and Security, IEEE
Transactions on, vol. 1, no. 2, pp. 205–214, 2006.

[38] I. Amerini, R. Caldelli, V. Cappellini, F. Picchioni, and A. Piva, “Analysis
of denoising filters for photo response non uniformity noise extraction
in source camera identification”, in Digital Signal Processing, 2009 16th
International Conference on, IEEE, 2009, pp. 1–7.

[39] G. Chierchia, S. Parrilli, G. Poggi, C. Sansone, and L. Verdoliva, “On the
influence of denoising in PRNU based forgery detection”, in Proceedings
of the 2nd ACM workshop on Multimedia in forensics, security and
intelligence, ACM, 2010, pp. 117–122.

http://dx.doi.org/10.1109/ICME.2009.5202676

BIBLIOGRAPHY 103

[40] M. K. Mıhçak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive
statistical modeling of wavelet image coefficients and its application to
denoising”, presented at the Acoustics, Speech, and Signal Processing,
1999. Proceedings., 1999 IEEE International Conference on, vol. 6,
IEEE, 1999, pp. 3253–3256, I S B N: 0780350413.

[41] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-D transform-domain collaborative filtering”, Image Processing,
IEEE Transactions on, vol. 16, no. 8, pp. 2080–2095, 2007.

[42] T. Gloe, S. Pfennig, and M. Kirchner, “Unexpected artefacts in PRNU-
based camera identification: a’Dresden Image Database’case-study”, in
Proceedings of the on Multimedia and security, ACM, 2012, pp. 109–
114.

[43] M. Goljan, J. Fridrich, and J. Lukao, “Camera Identification from Printed
Images”, in Proceedings of SPIE, the International Society for Optical
Engineering, Society of Photo-Optical Instrumentation Engineers, 2008,
pp. 68190I–1.

[44] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva, “PRNU-based
forgery detection with regularity constraints and global optimization”,
in Multimedia Signal Processing (MMSP), 2013 IEEE 15th Interna-
tional Workshop on, IEEE, 2013, pp. 236–241.

[45] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Image forgery de-
tection based on the fusion of machine learning and block-matching
methods”, arXiv preprint arXiv:1311.6934, 2013.

[46] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital
images”, Information forensics and security, IEEE transactions on, vol.
7, no. 3, pp. 868–882, 2012.

[47] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “A novel framework for
image forgery localization”, arXiv preprint arXiv:1311.6932, 2013.

[48] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines”, ACM Transactions on Intelligent Systems and Technology, vol.
2, no. 3, 27:1–27:27, 2011.

[49] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLIN-
EAR: A Library for Large Linear Classification”, Journal of Machine
Learning Research, vol. 9, pp. 1871–1874, 2008.

[50] T. M. Cover, “Geometrical and statistical properties of systems of lin-
ear inequalities with applications in pattern recognition”, Electronic
Computers, IEEE Transactions on, no. 3, pp. 326–334, 1965.

104 BIBLIOGRAPHY

[51] L. Gaborini, P. Bestagini, S. Milani, Marco Tagliasacchi, and S. Tubaro,
“Multi-Clue Image Tampering Localization”, in Workshop on Informa-
tion Forensics and Security 2014 (GlobalSIP14-Workshop on Informa-
tion Forensics and Security 2014), Atlanta, USA, Dec. 2014.

[52] S. Lameri, P. Bestagini, A. Melloni, S. Milani, A. Rocha, M. Tagliasacchi,
and S. Tubaro, “Who is my parent? Reconstructing video sequences
from partially matching shots”, in IEEE International Conference on
Image Processing (ICIP), 2014.

[53] Z. Dias, A. Rocha, and S. Goldenstein, “Image Phylogeny by Minimal
Spanning Trees”, IEEE Transactions on Information Forensics and Se-
curity, vol. 7, pp. 774–788, 2012, I S S N: 1556-6013. D O I: 10.1109/
TIFS.2011.2169959.

[54] A. De Rosa, F. Uccheddu, A. Piva, M. Barni, and A. Costanzo, “Exploring
Image Dependencies: A New Challenge in Image Forensics”, in SPIE
Conference on Media Forensics and Security (MFS), San Jose, CA, 2010.

[55] Z. Dias, A. Rocha, and S. Goldenstein, “First steps toward image phy-
logeny”, in IEEE International Workshop on Information Forensics and
Security (WIFS), 2010. D O I: 10.1109/WIFS.2010.5711452.

[56] M. Fontani, E. Argones-Rua, C. Troncoso, and M. Barni, “The watch-
ful forensic analyst: Multi-clue information fusion with background
knowledge”, in Information Forensics and Security (WIFS), 2013 IEEE
International Workshop on, Nov. 2013, pp. 120–125. D O I: 10.1109/
WIFS.2013.6707805.

[57] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers”, in Proceedings of the fifth annual workshop
on Computational learning theory, ACM, 1992, pp. 144–152.

http://dx.doi.org/10.1109/TIFS.2011.2169959
http://dx.doi.org/10.1109/TIFS.2011.2169959
http://dx.doi.org/10.1109/WIFS.2010.5711452
http://dx.doi.org/10.1109/WIFS.2013.6707805
http://dx.doi.org/10.1109/WIFS.2013.6707805

Appendices

Appendix A

Support Vector Machines

Support Vector Machines (SVM) is a set of supervised classifiers commonly
employed in machine learning for classifying data [48]. Their general setup is
the following. For further details, we recommend the seminal paper of Boser,
Guyon, and Vapnik, [57].

Suppose that we have a set of N feature vectors, STr := {
xi

}N
i=1, each one of

dimensionality p, i.e. xi ∈Rp. Being a supervised technique, we are also pro-
vided with a set of instance labels { li }N

i=1, one for each data point. We restrict
here to the case of binary classification: that is, li ∈−1,1p ∀i ∈ 1, . . . ,N.

The goal of a SVM is to learn a relationship (i.e. training) between
{

xi
}N

i=1
and { li }N

i=1, in order to be able to classify new data.
Specifically, suppose that we are given another set of features STs :={

xi
}

i∈STs
.

A SVM trained on STr tries to predict unknown labels { li }i∈STs by applying
the previously inferred relationship on STs.

To train a SVM requires the solution of the following optimization prob-
lem [57]

min
w,b,ξ

1
2

w>w+C
N∑

i=1
ξi (A.1)

s.t. li
(
w>

φ (xi)+b
)≥ 1−ξi ∀i ∈ 1, . . . ,N

ξi ≥ 0

where C > 0 is a penalty parameter of the error term, ξi is related to the
so-called loss function and φ is a function which maps input features xi to a
higher dimensional feature space, equipped with a dot product, in order to
exploit the kernel trick.

In this context, a SVM finds the separating hyperplane with the maximum
margin in such higher dimensional space.

107

108 Appendix A. Support Vector Machines

The most important ingredient of this approach is the role of φ . In particu-
lar, instead of φ we may define the previous equation in terms of the so-called
kernel function

K(xi,x j) := φ (xi)
>

φ (x j) . (A.2)

The choice of K produces different support vector machines. In this work
we use linear kernels, i.e. φ (x) = x, therefore K(xi,x j) = xi

>x j. The resulting
SVM is, hence, called linear SVM. Notice that we are classifying the features
in their own feature space.

Another common choice is the Radial Basis Function, i.e.

K(xi,x j) := exp
(
−γ

∥∥∥xi −x j

∥∥∥2
)
, (A.3)

where ‖·‖ is the L2 norm on Rp.
In this work, SVM implementation is provided by the open-source library

LIBLINEAR [49]. In particular, Equation A.1 can be written both in primal
and dual form, with different choices of loss functions ξ . Further details can
be found in LIBLINEAR manual.

Appendix B

The Challenge dataset

B.1 Scoring sensitivity

We investigated the sensitivity of the S2 score used in Phase 2 of the Challenge.
To this purpose, we simulated sets of Phase 2 submissions (I2

ts) using fake
images in the Phase 1 training set I tr,F. We remind that

∣∣I tr,F

∣∣ = 450 while∣∣I2
ts

∣∣= 700.
Each set is characterized by a fundamental alteration which has been

performed to the submitted masks. In most tests, we selected Phase 1 ground
truth masks as starting masks to be modified: this is to evaluate the score
sensitivity to small departures from the truth. Other tests, instead, were built
to simulate random submissions, such as fully black masks or to evaluate the
expected performance of a fully random classifier.

We also simulated the randomization mechanism to evaluate its impact on
score variance, using the same randomization ratio reported in the Challenge
rules.

We simulated the following tests:

• White masks: we scored 450 fully white masks.

• Black masks: we scored 450 fully black masks.

• Salt & Pepper: we scored 450 ground truth masks corrupted by salt &
pepper noise, with p= 0.05 probability of corruption.

• Random uniform: we scored 450 masks whose pixels are sampled from
a Bernoulli random variable of parameter p = 0.5. This is consistent
with a fully random classifier.

• Random negation: we scored 450 ground truth masks whose pixels
have been misclassified with probability p ∈ {0.05,0.10,0.20}.

109

110 Appendix B. The Challenge dataset

• Dilation: we scored 450 ground truth masks whose white region has
been enlarged by P ∈ {1,5,50} pixels. This has been carried out with a
disk shaped mathematical morphological operator, with P as its diame-
ter.

• Erosion: we scored 450 ground truth masks whose black region has
been enlarged by P ∈ {1,5,50} pixels. This has been carried out with a
disk shaped mathematical morphological operator, with P as its diame-
ter.

Each test has been performed 20 times: we report the obtained results in
Figure B.1.

Notice how small is the effect size of the randomization on the obtained
score. Also, it is noteworthy how the S2 score (i.e. F1 score) favours black
pixels over white ones (e.g. compare 5 pixel dilated masks with 5 pixel eroded
masks).

Also, these scores are consistent with obtained Phase 2 results.

Figure B.1: Challenge score analysis on Itr,F

To further test the scoring mechanism of the Challenge, we manually
estimated all Phase 2 masks and submitted them. We were able to visu-
ally extract 347 masks out of 700: pairing with white masks, we obtained a
score of 0.370564 (submission_test_001 in Table B.2), well under the results
achieved by the best algorithms.

B.2. Submission log 111

B.2 Submission log

In Table B.1 we report the official scores obtained by all submissions we made,
along with their details and compositions. We also made a second account
solely for testing purposes (e.g. we submitted the said manually segmented
masks): its obtained scores are reported, instead, in Table B.2.

112 Appendix B. The Challenge dataset

Subm
ission

ID
D

escription
Score

N
orm

alized
score

subm
ission_001

allzero
(black)m

asks
0.121

subm
ission_002

allones
(w

hite)m
asks

0
subm

ission_003
P

M
:m

asks
obtained

w
ith

PatchM
atch

only,the
others

are
w

hite,371
m

asks
0.172293

0.325081
subm

ission_004
P

M
:m

asks
obtained

w
ith

PatchM
atch

only,the
others

are
black,371

m
asks

0.22119
0.310925

subm
ission_005

P
M

:sam
e

as
subm

ission_004.zip
just

to
see

the
effect

on
the

finalscore
ofrandom

sam
pling

the
test

set
0.214637

0.29856
subm

ission_006
P

M
:m

asks
obtained

w
ith

dilated
PatchM

atch
only,the

others
are

black,371
m

asks
0.27848

0.419019
subm

ission_007
m

asks
obtained

w
ith

dilated
PatchM

atch
intersected

w
ith

m
anualannotations,the

others
are

black,371
m

asks
0.320341

0.498002
subm

ission_008
F

U
S,P

M
-N

D
:subm

ission_007
m

asks,substituting
those

obtained
w

ith
N

earD
uplicates

analysis
0.411923

subm
ission_009

F
U

S,P
M

-N
D

:PatchM
atch

from
subm

ission_006
intersected

w
ith

autom
atically

generated
N

earD
uplicates

m
asks

(others
are

black)
0.397879

subm
ission_010

F
U

S,P
M

-N
D

:as
subm

ission_009
0.397359

subm
ission_011

m
asks

from
subm

ission_007
intersected

w
ith

autom
atically

generated
N

earD
uplicates

m
asks

(others
are

black)
0.406863

subm
ission_012

F
U

S,P
M

-N
D

:m
asks

from
N

earD
uplicates

analysis,m
ulti-w

ay
disam

biguated
using

N
D

,no
2-w

ay
disam

biguation,
P

M
w

hen
no

N
D

s
are

available,else
black

0.425221
0.584467

subm
ission_013

F
U

S,P
M

-N
D

:
m

asks
from

N
earD

uplicates
analysis,m

ulti-w
ay-disam

biguated
using

N
D

,2-w
ay-disam

biguated
using

PatchM
atch,P

M
w

hen
no

N
D

s
are

available,else
black

0.404191
0.552465

subm
ission_014

F
U

S,P
M

-N
D

:as
subm

ission_012
0.426302

subm
ission_015

N
D

:as
subm

ission_012,set
to

black
ifno

N
D

are
available

0.333147
0.844868

subm
ission_016

P
R

N
U

:P
R

N
U

only,offset:1
ifno

block
offsetis

detected,w
_size

64,w
_step

8,442
m

asks,1024x768
im

ages,others
black

0.253417
0.331773

subm
ission_017

N
D

:as
subm

ission_012,set
to

w
hite

ifno
N

D
are

available
0.22133

0.351317
subm

ission_018
F

U
S,N

D
-P

M
-P

C
E

:subm
ission_012

(N
D

),then
subm

ission_006
w

/o
black

im
ages

(P
M

),then
subm

ission_test_006
(thresholded

P
C

E
),then

black,522
valid?

0.447132
0.558683

subm
ission_019

F
U

S,N
D

-P
M

-P
C

E
:subm

ission_012
(N

D
),then

subm
ission_test_006

(thresholded
P

C
E

),then
subm

ission_006
w

/o
black

im
ages

(P
M

),then
black

0.415643
0.514943

subm
ission_020

F
U

S,P
R

N
U

-P
C

E
:

A
N

D
betw

een
offset

w
ith

interpolated
P

C
E

,thresholded
at

4.0321,eroded
w

ith
disk

size
20,

w
_size

50,w
_step

6,442
m

asks,1024x768
im

ages,others
w

hite
0.237449

0.37605

subm
ission_021

F
U

S,
N

D
-P

M
-P

R
N

U
:

subm
ission_012

(N
D

),
then

PatchM
atch_m

asks_eroded_strel_30_p2,
then

off-
set+m

orpho_w
sz_64_w

st_8_m
orpho_erosion_20_p2

(p1
strategy:0.5559),then

black,506
m

asks
0.441684

0.565017

subm
ission_022

subm
ission_018

0.439578
0.548553

subm
ission_023

subm
ission_018

0.433462
0.540351

subm
ission_024

subm
ission_018

0.427923
0.532924

subm
ission_025

subm
ission_018

0.435124
0.54258

subm
ission_026

subm
ission_018

0.453273
0.566918

Table
B
.1:

C
hallenge

subm
issions

using
offi

cialuser.

B.2. Submission log 113

su
bm

is
si

on
_t

es
t_

00
1

m
as

ks
m

an
ua

lly
se

gm
en

te
d

(w
hi

te
if

no
th

in
g

w
as

m
an

ua
lly

fo
un

d)
0.

37
05

64
su

bm
is

si
on

_t
es

t_
00

2
m

as
ks

m
an

ua
lly

se
gm

en
te

d
(b

la
ck

if
no

th
in

g
w

as
m

an
ua

lly
fo

un
d)

0.
43

85
58

su
bm

is
si

on
_t

es
t_

00
3

m
as

ks
au

to
m

at
ic

al
ly

an
d

m
an

ua
lly

(g
ol

de
n)

ob
ta

in
ed

us
in

g
ne

ar
-d

up
lic

at
e

an
al

ys
is

in
te

rs
ec

te
d

w
it

h
m

an
ua

lly
ob

ta
in

ed
on

es
(o

th
er

s
bl

ac
k)

0.
32

16
25

su
bm

is
si

on
_t

es
t_

00
4

as
su

bm
is

si
on

_0
03

us
in

g
si

m
pl

e
po

si
ti

on
-m

ap
pe

d
P

R
N

U
m

as
ks

w
he

n
no

Pa
tc

hM
at

ch
/N

ea
rD

up
lic

at
es

ar
e

av
ai

la
bl

e
0.

32
20

53
su

bm
is

si
on

_t
es

t_
00

6
P

C
E

:i
nt

er
po

la
te

d
P

C
E

0,
th

re
sh

ol
de

d
at

7,
w

_s
iz

e
64

,w
_s

te
p

8,
44

1
m

as
ks

,1
02

4x
76

8
im

ag
es

,o
th

er
s

w
hi

te
0.

26
23

22
0.

41
54

42
su

bm
is

si
on

_t
es

t_
00

7
P

R
N

U
:

as
Te

am
G

ab
or

’s
su

bm
is

si
on

_0
16

:
P

R
N

U
on

ly
,1

if
no

bl
oc

k
of

fs
et

is
de

te
ct

ed
,

w
_s

iz
e

64
,

w
_s

te
p

8,
44

2
m

as
ks

,1
02

4x
76

8
im

ag
es

,o
th

er
s

w
hi

te
0.

21
63

0.
34

25
57

su
bm

is
si

on
_t

es
t_

00
8

P
C

E
:i

nt
er

po
la

te
d

P
C

E
0,

th
re

sh
ol

de
d

at
4.

03
21

,w
_s

iz
e

50
,w

_s
te

p
6,

44
1

m
as

ks
,1

02
4x

76
8

im
ag

es
,o

th
er

s
w

hi
te

0.
24

62
1

0.
38

99
25

su
bm

is
si

on
_t

es
t_

00
9

P
C

E
:i

nt
er

po
la

te
d

P
C

E
0,

th
re

sh
ol

de
d

at
4.

03
21

,w
_s

iz
e

50
,w

_s
te

p
6,

44
1

m
as

ks
,1

02
4x

76
8

im
ag

es
,o

th
er

s
w

hi
te

0.
26

26
88

0.
41

60
22

su
bm

is
si

on
_t

es
t_

01
0

F
U

S,
P

C
E

-P
R

N
U

:A
N

D
be

tw
ee

n
of

fs
et

w
it

h
in

te
rp

ol
at

ed
P

C
E

0,
th

re
sh

ol
de

d
at

4.
03

21
,w

_s
iz

e
50

,w
_s

te
p

6,
44

2
m

as
ks

,1
02

4x
76

8
im

ag
es

,o
th

er
s

w
hi

te
0.

23
22

47
0.

36
78

12

su
bm

is
si

on
_t

es
t_

01
3

P
R

N
U

:o
ff

se
t,

of
fs

et
+m

or
ph

o_
w

sz
_6

4_
w

st
_8

_m
or

ph
o_

er
os

io
n_

20
_p

2,
10

24
x7

68
im

ag
es

,3
64

m
as

ks
,o

th
er

s
w

hi
te

0.
23

83
54

0.
45

83
73

su
bm

is
si

on
_t

es
t_

01
4

P
M

:P
at

ch
M

at
ch

_m
as

ks
_e

ro
de

d_
st

re
l_

30
_p

2,
ot

he
rs

w
hi

te
0.

22
70

11
0.

46
87

54

Ta
bl
e
B
.2
:
C
ha
lle
ng

e
su
bm

is
si
on

s
us
in
g
al
te
rn
at
e
us
er
.

114 Appendix B. The Challenge dataset

B.3 Dataset samples

In Figure B.2 we show some sample images in the Challenge training dataset
along with respective ground truth masks and attacks which have been per-
formed upon.

(a) Sample image. (b) Ground truth mask. Copy-move: the
plant has been duplicated.

(c) Sample image. (d) Ground truth mask. Splicing: the person
belongs to another image.

(e) Sample image. (f) Ground truth mask. Healing Brush: a
crouching person has been removed.

Figure B.2: Sample fake images in I .

	Abstract
	Estratto
	Ringraziamenti
	Table of contents
	1 Introduction
	1.1 Motivations
	1.2 Thesis organization

	2 Background
	2.1 Image processing chain
	2.2 The IEEE IFS-TC Challenge
	2.2.1 Scoring rules

	2.3 State-of-the-art on image forensics
	2.3.1 On PRNU
	2.3.2 Winning algorithms

	3 Image tampering detection
	3.1 Proposed algorithm
	3.1.1 Feature-based detectors
	3.1.2 Simple ensemble classifiers
	3.1.3 Best k submodels
	3.1.4 Boosting

	3.2 Experimental results
	3.2.1 Problem setup
	3.2.2 SVM calibration
	3.2.3 Performance on each test set
	3.2.4 On dimensional reduction
	3.2.5 Ensemble classifiers
	3.2.6 Best-k models
	3.2.7 Boosting

	3.3 Deeper analysis
	3.3.1 Global classifiers on blocks
	3.3.2 New datasets

	3.4 Conclusions

	4 Image tampering localization
	4.1 Proposed algorithm
	4.1.1 Notation
	4.1.2 PRNU
	4.1.3 PatchMatch
	4.1.4 Near-Duplicate analysis
	4.1.5 Fusion

	4.2 Experimental results
	4.2.1 Mask interpolation
	4.2.2 Blind PRNU
	4.2.3 Near-Duplicates
	4.2.4 PatchMatch
	4.2.5 Mask fusion
	4.2.6 Non-blind PRNU
	4.2.7 Feature-based approach

	4.3 Conclusions

	5 Conclusions
	Bibliography
	A Support Vector Machines
	B The Challenge dataset
	B.1 Scoring sensitivity
	B.2 Submission log
	B.3 Dataset samples

