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Abstract 

 

The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. 

Modeling it and embedding it into sensorimotor tasks allows us to create functional links between 

plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time 

control of a Neurorobot, the cerebellar model has to deal with a real noisy and changing environment, 

thus showing its robustness and effectiveness in learning. 

A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear 

sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative 

Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and 

with different stimuli/perturbation patterns. The cerebellar controller succeeded to generate 

conditioned responses and finely tuned eye movement compensation, thus reproducing human-like 

behavior. Through a productive plasticity transfer from cortical to nuclear sites, the 3-site  distributed 

cerebellar controller showed in both tasks the capability to optimize the learning on multiple time-

scales, to store permanent motor memory and to effectively adapt to dynamic ranges of stimuli. 

In the dissertation the following steps have been carried out: 

 Design of  Robotic protocols 

 Controller development embedding the cerebellum adaptive model 

 Test and results interpretation  
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Sommario 

 

Il cervelletto svolge un ruolo cruciale nell’apprendimento motorio ed agisce come un controllore 

predittivo. La sua modellazione e integrazione all’interno di compiti sensorimotori permette di creare 

legami funzionali tra i meccanismi di plasticità, i circuiti neurali e l'apprendimento comportamentale. 

Inoltre, se applicato al controllo in tempo reale di un Neurorobot, il modello cerebellare deve svolgere 

il suo compito all’interno di un ambiente rumoroso e variabile, dimostrando in questo modo la sua 

robustezza ed efficacia nel processo di apprendimento.  

In questo lavoro è stato utilizzato un modello biologicamente ispirato al cervelletto, con una plasticità 

distribuita sia a livello corticale sia a livello dei nuclei cerebellari profondi. Sono stati progettati due 

paradigmi di apprendimento nei quali il cervelletto svolge un ruolo predominante: un compito di 

associazione temporale pavloviana e il riflesso vestibolo-oculare. I paradigmi sviluppati prevedevano 

sessioni multiple di acquisizione ed estinzione e differenti tipologie di stimolo/perturbazione. Il 

controllore cerebellare è riuscito a generare risposte condizionate e a regolare in modo fine il 

movimento degli occhi in risposta ad una rotazione della testa, riuscendo quindi a riprodurre il 

comportamento riscontrato nei soggetti umani in letteratura. Attraverso un produttivo trasferimento di 

plasticità dai siti di plasticità corticali a quelli nucleari, il controllore cerebellare provvisto di tre siti di 

plasticità ha mostrato in entrambi i compiti la capacità di ottimizzare l'apprendimento su molteplici 

scale temporali, di sviluppare una memoria motoria persistente e di adattarsi efficacemente ad una 

gamma dinamica di stimoli. 

Nella tesi sono state sviluppate le seguenti parti: 

 Progettazione di protocolli robotici 

 Sviluppo di un controllore includendo il modello adattivo di cervelletto 

 Test e interpretazione dei risultati  
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1. Introduction 

There  has  recently  been  a  renewal  of  interest  in  studying  the  mechanisms  and structure  of  

the  brain, and modeling these structures to yield  systems  that  learn. To distinguish these  

computational  structures  from  their  biological  counterparts they  are  called artificial  neural  

networks. Artificial  neural  networks  can be  thought  of  as  a  class  of  computational  models  for  

representing  non-linear input-output  mappings.  Learning occurs by training with examples rather 

than explicit programming.  These properties make neural networks very attractive for robot control.  

Control  of  robots  requires  the  solution  of  the  complex  inverse kinematic  and  dynamic  

equations,  which  is  a  computationally  intensive  process. Also  the  parameters  of  a  robot  such  

as  moments  of  inertia  and  joint  friction cannot  be  determined  precisely and obtaining 

meaningful  model  equations  is difficult.  Hence  the  idea  of  obtaining  these  relations  based  on  

measured  input- output  data  is  very  appealing. 

Neurorobotics is a science which is a combination of neuroscience, robotics, and artificial 

intelligence studies as well as technology to represent autonomous neural systems. Neural systems 

include brain-inspired algorithms such as “connection networks”, “computational models of 

biological neural networks”, in conjunction with real biological nervous systems make neural 

systems. It is possible to represent such kind of neural systems either in machines with mechanic or 

any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, 

at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures [1]. 

At its core, neurorobotics is based on the idea that the brain is embodied and the body is embedded 

in the environment. Therefore, most neurorobotics are required to function in the real world, as 

opposed to a simulated environment (Fig.1). 

 

Figure 1: Neurorobotics integrates brain-inspired modules and robotic devices and it allows to validate 

biological models or to improve the control system of robots 

http://en.wikipedia.org/wiki/Neuroscience
http://en.wikipedia.org/wiki/Robotics
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The Cerebellum is a region of the brain that plays an important role in motor control [2]. 

Cerebellum-dependent learning is demonstrated in different contexts, such as multiple forms of 

associative learning, where the learning is based on the stimulus-response association. Eye-blink 

conditioning, saccadic eye movements, vestibular ocular reflex and reaching arm movements are 

well-known examples of these mechanisms. 

The cerebellum does not initiate movement, but it contributes to coordination, precision, and 

accurate timing. It receives input from sensory systems of the spinal cord and from other parts of 

the brain, and integrates these inputs to fine tune motor activity. Cerebellar damage does not 

cause paralysis, but instead produces disorders in fine movement, equilibrium, posture, and motor 

learning. 

What is the role of the cerebellum in the control of reaching movements? Bastian et al. (1996b) 

demonstrated that the cerebellum compensates for interaction torques that would otherwise push the 

arm off its desired equilibrium path during fast-reaching movements. While feedback control could, 

in principle, compensate for interaction torques, it is limited by both long delays in the nervous 

system and the dynamic properties of muscles and proprioceptors. The cerebellum can implement a 

Feed Forward, nonlinear predictive regulator by learning part of the inverse dynamics of the arm. 

After learning, accurate fast movements can be performed in spite of the long conduction delays [3]. 

The Vestibulo-ocular reflex is based on the temporal association of the two stimuli, head turn and 

motion of retinal image, i.e. the system learns that one stimulus will be followed by another stimulus 

and a consequent predictive compensatory response is gradually produced and accurately tuned. 

Most of the theoretical models of the sensorimotor derive from early models formulated by David 

Marr and James Albus, which were motivated by the observation that each cerebellar Purkinje cell 

receives two dramatically different types of input: one type is of thousands of inputs from parallel 

fibers, each individually very weak; the other is the input from one single climbing fiber, which is, 

however, so strong that a single climbing fiber action potential will reliably cause a target Purkinje 

cell to fire a burst of action potentials. The basic concept of the Marr-Albus theory [4] is that the 

climbing fiber serves as a "teaching signal", which induces a long-lasting change in the strength of 

synchronously activated parallel fiber inputs. Observations of long-term depression in parallel fiber 

inputs have provided support for theories of this type, but their validity remains controversial. 

Thus in order to learn and store information about body environment dynamics in internal models 

of movement so as to act as a predictive controller, the cerebellum is thought to employ long-term 

synaptic plasticity (Long-term Depression (LTD) and Long-Term Potentiation (LTP)). The plasticity 

at the  Parallel  Fibers/Purkinje  Cells  (PF-PC)  synapses  has classically  been  assumed  to  sub 

serve  this  function . 

The aim of the project is the customization of a real human-like sensorimotor platform controlled 

by a cerebellum realistic model. It controls the robot through torque values which represent motor 

commands to its joints. Motor commands are added to an AD-HOC tuned feedback controller. 

 

http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Motor_control
http://en.wikipedia.org/wiki/Motor_coordination
http://en.wikipedia.org/wiki/Sensory_system
http://en.wikipedia.org/wiki/Spinal_cord
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Paralysis
http://en.wikipedia.org/wiki/Equilibrioception
http://en.wikipedia.org/wiki/Human_positions
http://en.wikipedia.org/wiki/Motor_learning
http://en.wikipedia.org/wiki/Motor_learning
http://en.wikipedia.org/wiki/David_Marr_(neuroscientist)
http://en.wikipedia.org/wiki/David_Marr_(neuroscientist)
http://en.wikipedia.org/wiki/Parallel_fiber
http://en.wikipedia.org/wiki/Parallel_fiber
http://en.wikipedia.org/wiki/Climbing_fiber
http://en.wikipedia.org/wiki/Long-term_depression
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2. State of the Art 

Motor learning result from practice or a novel experience, in the capability for responding in a 

complicated environment. It often involves improving the smoothness and accuracy of movements 

and is obviously necessary for complicated movements such as speaking, playing the piano, 

and climbing trees; but it is also important for calibrating simple movements like reflexes or 

associative patterns, as parameters of the body and environment change over time. 

In the structure of motor control, human-like movement planning and adaptive neural systems 

inside the same controller can be a useful way for creating a control system that display a human-like 

behavior.  

In the role of the cerebellum in motor control, it can say that is necessary for several types 

of motor learning, most notably learning to adjust to changes in sensorimotor relationships. Several 

theoretical models have been developed to explain sensorimotor calibration in terms of synaptic 

plasticity within the cerebellum. 

In the following, we explain about the motor control and motor planning in detail and about the 

mechanisms of the learning in the cerebellum and the mechanisms of the controller in the robotic 

system. 

2.1 Motor control and Motor Planning 

 Computational models can provide useful guidance in the design of behavioral and 

neurophysiological experiments and in the interpretation of complex, high dimensional biological 

data. Because many problems faced by the primate brain in the control of movement have parallels in 

robotic motor control, models and algorithms from robotics research provide useful inspiration, 

baseline performance, and sometimes direct analogs for neuroscience. 

The theory of motor control was largely developed in classical engineering fields such as 

cybernetics, optimal control, and control theory [5]. 

The control diagram joining between computational modeling and theories in artificial intelligence 

and robotics in Figure 2 can also function as an abstract guideline for research in biological motor 

control. This diagram distinguishes between five major stages of motor control: first, the higher level 

processing and decision making, which defines the intent of the motor system; second, the motor 

planning stage; third, the potential need and problem of coordinate transformations; fourth, the final 

conversion of plans to motor commands; and fifth, the preprocessing of sensory information such that 

it is suitable for control. Of course, the separation of the stages in Figure 2 might not be present in 

some control algorithms and in biological systems, but, as will be seen below, a conceptual 

differentiation of these stages will be useful for our discussion [6]. 

http://en.wikipedia.org/wiki/Speech_communication
http://en.wikipedia.org/wiki/Piano
http://en.wikipedia.org/wiki/Climbing
http://en.wikipedia.org/wiki/Reflex
http://en.wikipedia.org/wiki/Motor_learning
http://en.wikipedia.org/wiki/Synaptic_plasticity
http://en.wikipedia.org/wiki/Synaptic_plasticity
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 Figure 2: Sketch of a generic motor control diagram, typically used in robotics research that can also function as a 

discussion guideline for biological motor control. 

 

The study of motor control is a fundamental of the study of sensorimotor transformations. For the 

motor control system to move its effectors to apply forces on objects in the world or to place its 

sensors with respect to objects in the world, it must coordinate a variety of forms of sensory and 

motor data. These data are generally in different formats and may refer to the same entities but in 

different coordinate systems. Transformations between these coordinate systems allow motor and 

sensory data to be related, closing the sensorimotor loop. Equally fundamental is the fact that the 

motor control system operates with dynamical systems, whose behavior depends on the way energy is 

stored and transformed. The study of motor control is therefore also the study of dynamics.  

If we consider a sensorimotor loop, the coordinate transformations allow motor and sensory data 

to be related and they can be subdivided into kinematic and dynamic transformations. The kinematic 

transformations convert the systems coordinates (i.e. from Cartesian to joint coordinates) while 

dynamic transformations translate the coordinates in motor command (i.e. the force to apply in order 

to obtain the desired movement). Therefore the movements happen through three transformation: 

planning, inverse kinematic and inverse dynamic.  

Redundant degrees of freedom is one of the problem of the moving organ (e.g. to move 

manipulator to a target position, there is an infinite number of possible paths that the manipulator 

could follow and for each of these paths there is an infinite number of velocity profiles the 

manipulator could follow) and motor planning is needed.  

To solve the three levels of uncertainty of the system in motor control (i.e. kinematic chain, 

angular configurations and muscular activations) motor planning is a fundamental phase that is 

needed [7]. For any reach target there is infinite number of possible path and velocity pattern that a 

part of body or limb can follow. Once these parameters have been fixed, there are infinite 

combinations of muscle activations and infinite relative joint angle configurations that can achieve the 

established trajectory. Motor planning is thus the computational process that selects one single 

solution from the many alternatives provided for this task. 
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Indeed, with the motor planning we want to assign the way the robot evolves from an initial 

posture to a final one. Kinematic and dynamic models. A widely used kinematic based model is the 

minimum jerk model which predicts that the parameter controlled by the nervous system is the spatial 

path of the hand [8, 9].  

On the other hand, the kinematic models give the positions and velocities of the arm joints so after 

continue planning, an inverse kinematic model is implemented to obtain joint-space kinematics. 

Cerebellum plays a crucial role in motor coordination, following the organism to learn through 

trial and error what exact pattern and sequence of motor commands is necessary to produce rapid, 

accurate, and effortless movements.  

We will review models that are aimed at understanding the cerebellum’s possible role in motor 

learning and control at the functional level. The approaches we will review are intimately linked to 

the notion that the cerebellum contains an internal model or models of the motor apparatus. There are 

two varieties of internal model, forward and inverse models. 

Forward models capture the forward or causal relationship between inputs to the system, such as 

the arm, and the outputs. A forward dynamic model of the arm, for example, predicts the next state 

(e.g. position and velocity) given the current state and the motor command. In contrast, inverse 

models invert the system by providing the motor command that will cause a desired change in state. 

They are, therefore, well suited to act as controllers as they can provide the motor command 

necessary to achieve some desired state transition. 

  

 

 

Figure 3: The general feedback-error-learning model 
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Figure 4: The cerebellar feedback-error-learning model 

The ‘controlled object’ is a physical entity that needs to be controlled by the central nervous 

system (CNS), such as the eyes, hands, legs or torso [10]. The control system can be considered as a 

cascade of transformations between motor command (e.g. joint torques or muscle activations) and 

linkage motion (e.g. joint angular position, velocity and acceleration), and between this linkage 

motion and the controlled object motion . 

 

2.2 Learning Mechanisms and the cerebellum  

The cerebellar cortex is often viewed as an array of perceptrons (Marr 1969; Albus 1971; Ito 

1984). In this theory, the granule cells (GCs) - Purkinje cell (PC) synapses can be modified by 

climbing fiber (CF) inputs. 

The input to the cerebellum is characterized by its divergence from the mossy fibers (MF) to the 

GCs (Ito 1984). The GCs are known to give, via their axons, the parallel fibers, excitatory projections 

to the PCs and to all the inhibitory interneurons (basket, stellate and Golgi cells) of the cerebellar 

cortex. The Golgi cells (GOs) Feed-Back onto the GCs and have very powerful synapses with long 

lasting effects. As PCs have inhibitory action upon nuclear cells (collaterals of some MFs excite the 

nuclear cells), they modulate the signal flow from the nuclear cells. The PCs of the intermediate 

cerebellum project to the interpositus nucleus (IP), which itself projects to the motor cortex via the 

thalamus and to the spinal cord via the red nucleus.  

Thus, the intermediate cerebellum plays a major role in controlling ongoing movements. The 

climbing fibers, which are the axons of inferior olive cells (IOs), convey signals encoding error in the 
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performance of the system in which the cerebellar subsystem is installed. CF signals induce long-term 

depression (LTD) in those PF-PC synapses that were activated in conjunction with the climbing fiber 

(Figure 5). 

 

 

Figure 5: The cerebellum microcircuit 

 

In order to learn and store information in internal models of movement so to act as a predictive 

controller, the cerebellum is thought to employ long-term synaptic plasticity (Long-Term Depression 

(LTD) and Long-Term Potentiation (LTP)). The plasticity at the Parallel Fibers/Purkinje Cells (PF-

PC) synapses has classically been assumed to sub serve this function [4].  

However, multiple processes, with different learning rates, may contribute to these mechanisms 

[11, 12,13] and PF-PC single plasticity cannot account for the broad dynamic ranges and multiple 

time scales of cerebellar adaptation. One hypothesis is that the cerebellum learns basically on two 

time scales ascribable to two anatomical sites: the cerebellar cortex operates as a fast learning module 

while deeper structures operate as a slow learning module where the motor skill is transferred and 

consolidated into more persistent memory [14]. Indeed, the activity of the Deep Cerebellar Nuclei 

(DCN) can be modulated; DCN spike times are strongly correlated with memory acquisition 

[15].However, there have been few physiological studies on long-term plasticity in DCN and on their 

roles in motor learning paradigms. Cerebellar cortical and nuclear plasticity have been proposed to be 

involved and complementary in controlling cerebellar learning in EyeBlink Classical Conditioning 

(EBCC) [16, 17, 18] and in Vestibulo-Ocular Reflex (VOR) [19, 20]. Indeed, inactivation of 

cerebellar cortex [21], cerebellar nuclei [22] or Inferior Olive (IO) [23] all prevent acquisition skills.  

There are several possible molecular and cellular mechanisms that could underlie adaptation of the 

vestibulo-ocular reflex and Eyeblink conditioning. Behavioral observations showed common and 

robust mechanisms between EBCC and VOR tasks: slow and fast complementary adaptation 
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processes, spontaneous recovery of the original response and faster relearning through consolidation 

mechanisms. However, causal relationships between particular cellular processes individual 

components of a learned behavior have not been demonstrated unequivocally [24]. 

2.3 Control Mechanisms of Robotic Systems  

2.3.1 Kinematic Model  

Robot kinematics applies geometry to the study of the movement of multi-degree of 

freedom kinematic chains that form the structure of robotic systems. The emphasis on geometry 

means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide 

pure rotation or translation. 

Robot kinematics studies the relationship between the dimensions and connectivity of kinematic 

chains and the position, velocity and acceleration of each of the links in the robotic system, in order to 

plan and control movement and to compute actuator forces and torques.  

The kinematic model is fundamental for motion planning and it is composed by two main 

components: the forward (direct) kinematic and the inverse kinematic. 

The forward kinematic problem establishes the relationship between Cartesian coordinates 

(workspace) of the end effector and the joint angles in joint-space frame, once the joint position (q), 

velocity (q̇) or acceleration (q̈) are known. It is embedded in a function f defined between the joint 

space (ℝn) and the work space (ℝm) such that: 

 

𝑥 = 𝑓(𝑞, 𝑞 ,̇ 𝑞,̈ ) ,         𝑥 ∈ ℝ𝑚  , q ∈ ℝ𝑛  

The inverse kinematic problem computes the joint angles as a function of the end effector 

Cartesian coordinates, g = f−1 ℝ→ℝn such that: 

𝑞 = 𝑔(𝑥) = 𝑓−1(𝑥),      𝑥 ∈ ℝ𝑚  , q ∈ ℝ𝑛   

To define the direct kinematic model, homogeneous transformations are used. 

A robotic manipulator is a mechanism composed by a chain of links (i.e. rigid bodies) connected 

by joints. A reference frame is associated to each link and homogeneous matrices are used to describe 

their relative position and orientation. The reference frames are assigned according to the Denavit- 

Hartenberg (D-H) convention which allows to describe position and orientation of a 3D rigid body 

with only four parameters. 

Once the D-H parameters of a manipulator with n+1 links are defined, the homogeneous 

transformation matrices between frame i-1 and i (i−1Hi, i = 1...n), are computed and then, the direct 

kinematic model can be found setting 

f =0Tn, with 0Tn =
0H1

1H2...
n−1Hn. 

The inverse kinematic problem does not have a unique solution; indeed in general the equation 

system modelling the problem can have no solution, a finite set of solutions or infinite solutions. 

http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Degree_of_freedom_(mechanics)
http://en.wikipedia.org/wiki/Degree_of_freedom_(mechanics)
http://en.wikipedia.org/wiki/Kinematic_chain
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Rigid_bodies
http://en.wikipedia.org/wiki/Kinematics
http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Acceleration
http://en.wikipedia.org/wiki/Actuator
http://en.wikipedia.org/wiki/Torque
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In order to obtain a closed form solution to the inverse kinematic problem, two approaches are 

possible: an algebraic approach or a geometrical approach. The first considers the elaboration of the 

kinematic equations until a suitable set of simple equations is obtained for the solution while the 

geometric approach is based, when possible, on geometrical considerations.  

It analyzes the kinematic structure of the manipulator as a physical characteristic or workspace and 

provides constraints and boundary conditions that may help in the solution. 

2.3.2 Dynamic Model 

The relationship between mass and inertia properties, motion, and the associated forces and 

torques is studied as part of robot dynamics. 

The dynamic model establishes the relationships between the motion and the forces involved, 

taking into account the masses and moments of inertia. Similarly to kinematics, also for the dynamics 

it is possible to define two “models”: the direct model and the inverse model. 

The direct dynamic model once the forces/torques applied to the joints, as well as the joint 

positions and velocities are known, compute the joint accelerations: 

𝒒̈ = 𝒇(𝒒, 𝒒̇, 𝝉) 

𝒒̇ = ∫ 𝒒̈ 𝒅𝒕 

𝒒 = ∫ 𝒒̇𝒅𝒕 

The inverse dynamic model, once the joint accelerations, velocities and positions are known, 

compute the corresponding forces/torques  

𝜏 = 𝑓−1(𝑞̈(𝑡), 𝑞̇(𝑡), 𝑞(𝑡)) = 𝑔(𝑞̈(𝑡), 𝑞̇(𝑡), 𝑞(𝑡)) 

Normally, a manipulator is composed by an open kinematic chain, and its dynamic model is 

effected by several “drawbacks” like low rigidity (elasticity in the structure and in the joints) and 

potentially unknown parameters (dimensions, inertia, mass. . .) or dynamic coupling among links. 

Other nonlinear effects are usually introduced by the actuation system is friction or dead zones and 

excreta (i.e. the range of input signals that do not generate an output in the system). For these reasons, 

in the derivation of the dynamic model, it is necessary to make an approximation of the system to an 

ideal case of a series of connected-rigid bodies. 

There are several reasons for studying the dynamics of a manipulator: 

• Simulation: test desired motions without resorting to real experimentation 

• Analysis and synthesis of suitable control algorithms 

• Analysis of the structural properties of the manipulator since the design phase. 

Two approaches for the definition of the dynamic model: the Euler-Lagrange method and the 

Newton-Euler approach. 

http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Inertia
http://en.wikipedia.org/wiki/Multibody_system
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The Euler-Lagrange formulation is an energy-based approach which uses the kinetic K(q,q̇) and 

potential P(q) energies of the system as a starting point on the formulation of its equations of motion. 

It is a closed-form model since the solution is computed in an analytical way: 

𝜏 =
𝑑

𝑑𝑡

𝜕 𝐿(𝑞,𝑞̇)

𝜕 𝑞𝑖
− 

𝜕 𝐿(𝑞,𝑞̇)

𝜕 𝑞𝑖
   , 𝑖 = 1 … . 𝑛  

Where: 

𝐿(𝑞, 𝑞̇) = 𝐾(𝑞, 𝑞̇) − 𝑃(𝑞) 

The Newton-Euler approach is based on analysis of forces and moments due to constraints acting 

between links. It first computes the angular velocity (ω), angular acceleration (ω̇), linear velocity (v) 

and linear acceleration (v̇) of each link in terms of the preceding link and then computes the joint 

forces F , one link at time, starting from the end-effector link and ending at the base link. It is a 

computationally efficient recursive technique but it is not expressed in a closed-form: 

𝐹 = 𝑚𝑣̇ 

𝑀 = 𝐼𝜔̇ + 𝜔 × 𝐼𝜔 

Where: 

F is the force causing the acceleration, 

M is the moment causing the rotation, 

m is the mass, and 

I is the moment of inertia. 

The two techniques are equivalent and provide the same results, that is, they deduce the elements 

of the inertia matrix M (q), of the Coriolis and centrifugal forces matrix C (q,q̇) and of the elements of 

the gravity vector N (q). 

𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇) + 𝑁(𝑞) + 𝜏𝑓(𝑞̇) 

Where: 

τf is the friction component. 

2.3.3 Cerebellum Inspired Module 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, process information. The key element of this 

paradigm is the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to solve specific 

problems. ANNs, like people, learn by example. An ANN is configured for a specific application, 

such as pattern recognition or data classification, through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between the neurons. This is true 

of ANNs as well. 



18 
 

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise 

data, can be used to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. A trained neural network can be thought of as an "expert" in 

the category of information it has been given to analyses. This expert can then be used to provide 

projections given new situations of interest and answer "what if" questions. Other advantages include: 

 Learning: An ability to learn how to do tasks based on the data given for training or initial 

experience. 

 Self-Organization: An ANN can create its own organization or representation of the 

information it receives during learning time. 

 Real Time Operation: ANN computations may be carried out in parallel, and special 

hardware devices are being designed and manufactured which take advantage of this 

capability. 

 Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads 

to the corresponding degradation of performance. However, some network capabilities may 

be retained even with major network damage. 

Multilayer FeedForward networks and recurrent networks are two forms of neural network 

architectures used in robotics. A multilayer perceptron (MLP) is a FeedForward artificial neural 

network model that maps sets of input data onto a set of appropriate outputs. The number of layers is 

the number of layers of perceptrons .They can learn many behaviors / sequence processing tasks / 

algorithms / programs that are not learnable by traditional machine learning methods. A MLP consists 

of multiple layers of nodes in a directed graph, with each layer fully connected to the next one. 

Except for the input nodes, each node is a neuron (or processing element) with a nonlinear activation 

function. MLP utilizes a supervised learning technique called back propagation for training the 

network. 

Many different types of neural networks have been implemented in robotic system control, like 

trajectory control, feedback linearization and control error compensation. 

In the robot control, neural network controllers are traditionally used to generate a compensating 

joint torque to account for the effects of the uncertainties in the non-linear robot dynamic model. 

Another application of this type of controller is to improve performances using the neural network as 

a non-linear filter; it acts as the inverse model of the plant and it can be trained on-line with joint 

errors. 

Spiking neural networks (SNNs) is third generation of neural network models, increasing the level 

of realism in a neural simulation. In addition to neuronal and synaptic state, SNNs also incorporate 

the concept of time into their operating model. The idea is that neurons in the SNN do not fire at each 

propagation cycle (as it happens with typical multi-layer perceptron networks), but rather fire only 

when a membrane potential an intrinsic quality of the neuron related to its membrane electrical 

charge reaches a specific value. When a neuron fires, it generates a signal which travels to other 

neurons which, in turn, increase or decrease their potentials in accordance with this signal. 

In the context of spiking neural networks, the current activation level (modeled as 

some differential equations) is normally considered to be the neuron's state, with incoming spikes 

pushing this value higher, and then either firing or decaying over time. Various coding methods exist 

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Activation_function
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Electrical_synapse
http://en.wikipedia.org/wiki/Operating_Model
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Perceptron
http://en.wikipedia.org/wiki/Membrane_potential
http://en.wikipedia.org/wiki/Differential_equation
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for interpreting the outgoing spike train as a real-value number, either relying on the frequency of 

spikes, or the timing between spikes, to encode information. 

This kind of neural network can in principle be used for information processing applications the 

same way as traditional artificial neural networks. However due to their more realistic properties, they 

can also be used to study the operation of biological neural circuits. Starting with a hypothesis about 

the topology of a biological neuronal circuit and its function, the electrophysiological recordings of 

this circuit can be compared to the output of the corresponding spiking artificial neural network 

simulated on computer, determining the plausibility of the starting hypothesis. 

3. The Project and the Specific Goals of This Work 
 

What is the REALNET? 

Realnet (http://www.realnet-fp7.eu/) is a European project about Realistic real-time Networks and 

computation dynamics in the cerebellum. In this project, they develop specific chips and imaging 

techniques to perform neurophysiological recordings from multiple neurons in the cerebellar network 

and monitor its Spatio-Temporal dynamics. Based on the data, they develop the first realistic real-

time model of the cerebellum and connect it to robotic systems to evaluate circuit functioning under 

closed-loop conditions. The data deriving from recordings, large-scale simulations and robots will be 

used to explain the implicit dynamics of the circuit through the adaptable Spatio-Temporal filter 

theory. REALNET, through its network architecture based on realistic neurons, will provide a 

radically new view on dynamic computations in central brain circuits laying the basis for new 

technological applications in sensory-motor control and cognitive systems. 

Cerebellum model Embed different plasticity rules and adaptation scales, in direct, which can be 

shown learning in different sensorimotor tasks carried out by a neurorobot. 

Different protocols for stressing the role of the cerebellum have been designed and implemented; 

some of them like the force field perturbations, and the obstacle avoidance, before have been tested; 

in my work I focus these two protocols: 

 Vestibulo-ocular reflex (VOR) 

 EBCC (Eye blinking classic conditioning) 

The goal of this project is the development of a brain inspired controller through the design and 

the implementation of a robotic platform in order to test the learning properties of the controller in 

cerebellar-driven tasks and to simulate the sensorimotor mechanisms.  

3.1 Computational Model of the Cerebellum  

Synaptic plasticity is the ability of synapses to strengthen or weaken during the time, in response 

to increases or decreases in their activity. Plastic change also results from the alteration of the number 

of receptors located on a synapse. There are several underlying mechanisms that cooperate to achieve 

synaptic plasticity, including changes in the quantity of neurotransmitters released into a synapse and 

changes in how effectively cells respond to those neurotransmitters. Synaptic plasticity in both 

http://en.wikipedia.org/wiki/Spike_train
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Electrophysiology
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Synapses
http://en.wikipedia.org/wiki/Chemical_synapse#Synaptic_strength
http://en.wikipedia.org/wiki/Neurotransmitter
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excitatory and inhibitory synapses has been found to be dependent upon postsynaptic calcium release. 

Since memories are postulated to be represented by vastly interconnected networks of synapses in 

the brain, synaptic plasticity is one of the important neurochemical foundations 

of learning and memory. 

The cerebellar system implemented and embedded into the whole control system takes into 

account the major functional hypotheses that each cerebellar layer endows. It models Mossy Fibers 

(MF), Granular layer (GR), Inferior Olive (IO), Purkinje cell layer (PC) and Deep Cerebellar Nuclei 

(DCN). These cerebellar layers are inter connected, as shown in Fig 6 where Parallel Fibers (PF) are 

the axons of GR cells and the Climbing Fibers (CF) come from the Inferior Olive (IO).  

 

Figure 6: The plasticity sites 

The Granular layer is modeled as a state generator; it identifies each time state for each task 

repetition i.e. there is one parallel fiber for each time sample of the trial. The large number of granular 

cells (and then of their axons, i.e. PF) guarantees a reliable pattern separation, which means that 

similar input patterns would be sparsely re-encoded into largely not-overlapping populations of 

granular cells activity. The number of parallel fibers defined in the model changes with the task to be 

tested. The granular layer was hypothesized to perform expansion recoding of input signals and the 

PF-PC synapse to learn and store relevant patterns under the control of the teaching signal provided 

by CFs. On the basis of electrophysiological determinations, it has been suggested that the inferior 

olive, by comparing proprioceptive and predicted signals, is indeed able to provide quantitative error 

estimation [25]. 

The model considers a constant firing rate from mossy fiber (MF (t) =1) multiplied by a "gain" 

which represents MF→DCN synapses. Indeed, it is assumed that this constant input to the granular 

layer circuit does not affect its capability to generate time-evolving states. The PC layer has been 

suggested to correlate the PF input activity with the CF error-based teaching signal [26]. It associates 

http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Memory
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the actual state with an output firing rate learned along the trial and it drives the PF→PC long-term 

plasticity. The activity of the PC layer is defined as follows: 

𝑃𝐶𝑖(𝑡) = 𝑓𝑖(𝑃𝐹(𝑡))  , 𝑖 = 1,2, … 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑠𝑐𝑙𝑒𝑠  

Where PCi(t)represents the firing rate of the PCs associated with the (i-th) muscle and fi 

associates each granular layer state (i.e., one active PF) with a particular output firing rate at the (i-th) 

PC. 

The DCN cells integrate the excitatory activity coming from MFs and the inhibitory activity 

coming from PCs. By linearly approximating the influence of excitatory and inhibitory synapses on 

DCN firing rate, the output of the DCN cell population was described as follows: 

𝐷𝐶𝑁𝑖(𝑡) = 𝑊𝑀𝐹−𝐷𝐶𝑁𝑖
− 𝑃𝐶𝑖(𝑡). 𝑊𝑃𝐶𝑖−𝐷𝐶𝑁𝑖   ,    𝑖 = 1,2, … 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 

Where DCNi(t) represents the average firing rate of the DCN cell associated with the (i-th) 

muscle, WMF−DCNi
 is the synaptic strength of the MF-DCN connection at the (i-th) muscle, and 

WPCi−DCNi   is the synaptic strength of the PC-DCN connections at the (i-th) muscle. Thus, the DCN 

layer was implemented as an adder/subtracted and the afferent activity coming from the MFs and PCs 

was scaled by synaptic strengths (MF-DCN and PC-DCN synapses, respectively). 

These synaptic weights were progressively adapted during the learning process. It is important to 

note the absence of an MF activity term. We assume a constant input rate from MFs during the 

learning process. Thus, the excitatory component of the DCN firing rate is dependent only on the MF-

DCN synaptic weight. 

PF-PC synaptic plasticity is the most widely investigated cerebellar plasticity mechanism and 

different studies have supported the existence of multiple forms of LTD and LTP. The main form of 

LTD [27] is heterosynoptically driven by CF activity, and is therefore related to the complex spikes 

generated by CFs, while the main form of LTP [28] is related to the simple spikes generated by PFs. 

The present model implements PF-PC synaptic plasticity as follows: 

∆𝑊𝑃𝐹𝑗 − 𝑃𝐶𝑖(𝑡) = {

𝐿𝑇𝑃𝑀𝑎𝑥

(𝜀𝑖(𝑡) + 1)𝛼
− 𝐿𝑇𝐷𝑀𝑎𝑥. 𝜀𝑖(𝑡)     𝑖𝑓𝑃𝐹𝑗  𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 𝑎𝑡 𝑡 , 𝑖 = 1,2, … .

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 

Where ∆WPFj − PCi(t) is the weight change between the (j-th) PF and the target PC associated 

with the (i-th) muscle, εi is the current activity coming from the associated CF (which represents the 

normalized error along the executed arm plant movement), LTPMax and LTDMax are the maximum 

LTP/LTD values, and α is the LTP decaying factor. LTD was generated proportionally to the 

incoming error signal through CFs, LTP was constantly generated when spikes reached the target PC 

.The  α was set at 1000 thus allowing a fast decrease of LTP and preventing early plasticity saturation 

(Figure 7).  

MF-DCN synaptic plasticity, which has been reported to depend on the intensity of DCN cell 

excitation, was implemented as [29]: 

∆𝑊𝑀𝐹−𝐷𝐶𝑁𝑖
(𝑡) =

𝐿𝑇𝑃𝑀𝑎𝑥

(𝑃𝐶𝑖(𝑡) + 1)𝛼
− 𝐿𝑇𝐷𝑀𝑎𝑥. 𝑃𝐶𝑖(𝑡) 
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Where ∆WMF−DCNi
(t) represents the weight change between the active MF and the target DCN 

associated with the (i-th) muscle, PCi(t) is the current activity coming from the associated PCs, 

LTPMax, and LTDMax are the maximum LTP/LTD values, and α is the LTP decaying factor. 

In order to maintain the stability of the learning process, the LTPMax and LTDMax values had to 

be lower than those defined at the PF-PC synapse. PF-PC plasticity was driven by CF activity, MF-

DCN plasticity was driven by PC activity.  

This mechanism can optimize the activity range in the whole inhibitory pathway comprising MF-

PF-PC-DCN connections: high PC activity causes MF-DCN LTD, while low PC activity causes MF-

DCN LTP.  

This mechanism implements an effective cerebellar gain controller, which adapts its output 

activity to minimize the amount of inhibition generated in the MF-PF-PC-DCN inhibitory loop. 

 

 

Figure 7: The learning rule for PF-PC plasticity [30]. 
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Figure 8: Embodied cerebellar model and set-up (A): cerebellar model embedded into the neurorobot, with 

EBCC-specific input and output signals. The red circles represent the plasticity sites: straight line the PF-PC 

synapses; dot line and dashed line the MF-DCN and PC-DCN synapses, respectively, activated only within the 

3-plasticity model. Arrows represent excitatory connections, whereas dot-arrows inhibitory connections. The 

EBCC-like Pavlovian task is reproduced into the robotic platform by defining the onset of the US stimulus 

based on the distance between the moving robot end-effector and the fixed obstacle placed along the trajectory 

(US-threshold), detected by the optical tracker. CS, fed into the CF pathway, represents the system time-state, 

decoded by the GR layer. CS and US coterminate “delay EBCC”. The DCN triggers the conditioned response 

(CR). (B): human-like EBCC task. (C): robotic set-up reproducing the Pavlovian EBCC-like task. (D): 

cerebellar model with VOR-specific input and output signals. The red circles represent the plasticity sites: 
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straight line the PF-PC synapses; dot line and dashed line the MF-DCN and PC-DCN synapses, respectively, 

activated only within the 3-plasticity model. Arrows represent excitatory connections, whereas dot-arrows 

inhibitory connections. The VOR is reproduced into the robotic platform by using the second joint of the robotic 

arm as the head (imposed rotation) and the third joint (determining the orientation of the second link, on which 

the green laser is placed) as the eye. The dis alignment between the gaze direction (i.e. second link orientation) 

and the environmental target to be looked at is computed through geometric equations from the optical tracker 

recording. Head vestibular stimulus represents the system time-state, decoded by the GR layer. The gaze error 

is fed into the CF pathway, the DCN modulate the compensatory eye movement. (E): human-like VOR task. (F): 

robotic set-up reproducing the VOR task. 

PC-DCN synaptic plasticity was reported to depend on the intensity of DCN cell and PC 

excitation and was implemented as [31]: 

∆𝑊𝑃𝐶𝑖−𝐷𝐶𝑁𝑖
(𝑡) =

𝐿𝑇𝑃𝑀𝑎𝑥. 𝑃𝐶𝑖(𝑡)𝛼

(𝐷𝐶𝑁𝑖(𝑡) + 1)𝛼
− 𝐿𝑇𝐷𝑀𝑎𝑥. (1 − 𝑃𝐶𝑖(𝑡)) 

 

Where ∆WPCi−DCNi
(t) is the synaptic weight adjustment at the PC-DCN connection reaching the 

DCN cell associated with the (i-th) muscle.  PCi(t) is the current activity coming from the associated 

PC (in the range [0,1]), DCNi(t) is the current DCN output of the target DCN cell, and α represents 

the decaying factor of the LTP (again, it was set at 1000 as in MF-DCN and PF-PC learning rules).  

This learning rule led the PC-DCN synapses into a synaptic weight range appropriate to match the 

synaptic weight range at PFs. the equation above caused LTP only when both the PCs and their target 

DCN cell were simultaneously active. 

For both tasks we have applied two controllers, embedding two different cerebellum model:   

1) Single Plasticity Site : only  PF-PC  

2) Three Plasticity Sites: PF-PC, MF-DCN, PC-DCN. 

4. Hardware and Software 

Modeling the cerebellar structure and embedding it into the control of a real robot immersed into 

real-world conditions is a key approach to associate the detailed model of neuronal connectivity and 

synaptic plasticity with behavioral functionalities. Experiments with real robots allow the exploration 

of the robustness and generalization of the controlling model [32]. 

4.1 Robotic Platform 

As you can see in the Figure 9, the main robot is a Phantom Premium 1.0 (SensAble™), a lower 

friction haptic device with 3 rotational Degrees of Freedom (DoFs). It is equipped with digital 

encoders at each joint and it can be controlled with force and torque commands. It is integrated with a 

motion capture device, a VICRA-Polaris (NDI™),in figure 9 which is an optical measurement system 

acquiring marker-tools at 20 Hz. 
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Figure 9: Phantom Premium 1.0 SensAble Technologies®. 

 

Visual information from both the internal and the external environment has been handled thanks to 

the IGSTK libraries (http://www.igstk.org/). When the visual integration is necessary, wireless 

passive tools are placed in correspondence of the robotic end-effector and of the objects of interest in 

the environment. In order to allow the match of information carried by signals from the tracking 

device (Visual system Vr) and the robot (Proprioceptive system Pr), a-priori calibration has been 

defined which itself identifies the constant Roto-translation between the reference systems of the two 

devices. 

 

 

Figure 10: VICRA Polaris® NDI 



26 
 

 

Figure 11: The implemented robotic platform with hardware and software components 

 

The controller of robotic platform has been developed in Visual C++. 

As we explain that before the hardware is the Phantom Premium 1.0 from the SensAble 

Technologies® which displays higher fidelity, stronger forces, and lower friction respect older 

version of that. Phantom Premium 1.0 have 3 DoF haptic devices with three active rotational joints 

and two links. It is provided with digital encoders which measure the Cartesian position of the end-

effector or the angle of each joint, and they can be controlled through force or torque commands. 

Each of the three arm joints is driven by a Maxon 118743 DC brushed motor with a shaft-mounted 

HEDM-5500-B02 optical encoder. Drum and capstan cable drives are used to connect the motors to 

the respective joints. Torques from the motors are transmitted through pre-tensioned reduction cables 

to a stiff, lightweight aluminum linkage. At the end of this linkage there is a passive, three degrees of 

freedom gimbal attached to a thimble. Because the three passive rotational axes of the gimbal 

coincide at a point, there can be no torque about that point, only a pure force.it has been designed so 

that the transformation matrix between motor rotations and endpoint translations is nearly diagonal.  

An interesting design feature of the Phantom Premium 1.0 is that two of the three motors move in 

such a manner as to counterbalance the linkage structure. Because the Phantom Premium 1.0 is 

statistically balanced, there is no need to compromise the dynamic range of the device by actively 

balancing the structure with biased motor torques. Conveniently, the first rotational axis of the 

Phantom Premium 1.0 is located directly above the wrist of the user. This permits aligning the 

inherently spherical workspace of the mechanism with similarly spherical wrist. The complexity of 

the cable reduction mechanism is minimized by using a single cable to "mesh" two motor capstans 

with another pulley. This minimizes mechanism width and tensioning difficulty. In conclusion, the 

Phantom Premium 1.0 can be considered a joint low friction haptic device with low inertia and high 

stiffness. 

Another device is the VICRA Polaris® an optical measurement system which gets 3D positions of 

active and passive markers applied to specific tools. Passive markers are highly reflective spheres, 
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which reflect the light emitted through a ring of IRED positioned around the Polaris® sensors. The 

light is captured from the cameras and through the col linearity equations the coordinates in the 2D 

sensor planes are related to the object coordinates (in three dimensions).It connects to the computer 

via the USB 2.0 port and its maximum update rate is 20Hz. The technical specifications of these 

instruments are compatible with the slower refresh of the visual information compared to the 

vestibular and proprioceptive information (state of the system provided by joint encoders). 

The controller was developed in Visual C++, exploiting the OpenHaptics™ Toolkit and the 

Image-Guided Surgery Toolkit (IGSTK).  

Phansim© Toolkit: The controller has been developed exploiting the OpenHaptics Toolkit 

(SensAble™) and the Image-Guided Surgery Toolkit (IGSTK). In the OpenHaptics Toolkit, the 

Haptic Device Application Programming Interface (HDAPI) provides low-level access to the haptic 

device allowing torque signals to be sent to the robotic DoFs and signals from the encoders to be 

received. In order to guarantee stability, the control loop must be executed in a separate, high-priority 

thread at 1 kHz rate. The hdSet and the hdGet functions have been included in the main code of the 

controller and integrated with different algorithms developed to run the experiments. Depending on 

the protocols, the number of employed DoFs has been changed. 

OpenHaptics™ Toolkit: The OpenHaptics™ enables users to add haptics and true 3D navigation 

to a broad range of applications. It is a haptic library developed by SensAble Technologies® and it is 

intended to ease adoption of haptics technology. This toolkit has a layered architecture composed by 

the Haptic Device Application Programming Interface (HDAPI) which provides low-level functions 

for device access offering control over configuring the runtime behavior of the drivers and the Haptic 

Library Application Programming Interface (HLAPI) that handles the collision detection and 

response for haptic rendering of shapes and effects. In order to implement the torque control strategy, 

the computed motor commands are sent as joint torques by setting the 

HD_CURRENT_JOINT_TORQUE parameter, which allows full torque control of the Phantom 

device in the joint space domain. The servo loop refers to the tight control loop used to calculate 

forces/torques to send to the haptic device. For stability, this loop must be executed at a consistent 1 

kHz rate which is possible thanks to the Scheduler. This mechanism is embedded in the HDAPI and it 

facilitates thread-safe synchronization between threads (i.e. HDCALLBACKS). In order to maintain 

such a high update rate, the servo loop is thus executed in these high-priority threads. 

Image-Guided Surgery Toolkit Image-Guided Surgery Toolkit (IGSTK) is an Open Source 

software toolkit (http://www.igstk.org/) designed to facilitate the development of image-guided 

surgery applications. In the controller development, the low-level libraries related with the integration 

of optical trackers have been embedded. IGSTK is developed on top of other toolkits (ITK, VTK, 

FLTK). All of them are C++ software systems. The main steps include activating the serial 

communication with the tracker, “attaching” the defined tools to be tracked and reading the position 

and orientation of each tool (transform) at a defined frequency (20Hz). The tracking procedure is 

triggered by “observer” elements able to listen to the transform events. Each desired tool to be tracked 

is identified by a .rom file, which defines the unique geometry of the reflective markers composing 

the tool itself. 

http://www.igstk.org/
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5. Protocol Design and Tests  

Two different protocols stressing the role of the cerebellum have been designed and implemented 

the VOR and the EBCC. The VOR create eye movements which aim at stabilizing images on the 

retina during head movement. It's tuning the main attribute to the cerebellum loop. The learning is 

based on the two stimuli temporal association, head turn and motion of retinal image, i.e. the system 

learns that one stimulus will be followed by another stimulus and a in the resulting predictive 

compensatory response is slowly produced and accurately tuned [20]. The Eye-blink conditioning is 

an example of related learning in which a puff of air act as unconditioned stimulus (US) that evokes a 

reflex eyelid response and it is always predicted by a tone which act as conditioned stimulus (CS). If 

CS-US pairs are issued, with repetitions, an eye-blinking response is slowly expanded until the tone 

evokes a learned eyelid response even without US. The main feature of EBCC is that the temporal 

conjunction of two stimuli causes learning, thus it is a temporal associative learning. The cerebellum 

learns that one stimulus (tone) will be followed by another stimulus (air puff) and uses this 

information producing an anticipatory response (eye-blink). Thus the cerebellum learns the correct 

timing of the response. Moreover, the role of additional two plasticity site in controlling cerebellar 

learning in eye-blink conditioning has been demonstrated [33]. 

Learning by cerebellum network with single plasticity site: 

First we consider the single site synaptic Plasticity PF-PC, In particular as the learning rule,PF-PC 

plasticity operated as a time correlation between the actual input state and the system error. This 

synaptic plasticity is occurred in the cerebellar cortex and generated LTP and LTD. 

By some experiences the values for single plasticity has been obtained: 

LTPMax=0.01 and LTDMax=0.04. 

Learning by cerebellum network with three plasticity site: 

The LTPmax and LTDmax of each plasticity site could be tuned. Some constraints came from 

neurophysiology properties. In the 1st plasticity site (PF-PC), LTPmax has to be lower than LTDmax, 

otherwise LTP, constantly generated when a state-related activity come from GRs, could 

counterbalance and nullify LTD effects. Moreover, to maintain the stability of the learning process, 

LTPmax and LTDmax values of the other two plasticity rules have to be lower than those defined at 

the PF-PC synapses. 

The following values have been set for three plasticity sites: 

 

o  (PF-PC) →  LTPMax=0.01   and   LTDMax=0.04  

o (MF-DCN) →   LTPMax=3×10-6   and   LTDMax=5×10-8  

o (PC-DCN) →   LTPMax=2×10-6   and   LTDMax=2×10-6    

5.1 VOR (Vestibulo-Ocular Reflex) 

Vestibulo ocular reflex (VOR) is a reflex eye movement that stabilizes images on the 

retina during head movement by producing an eye movement in the direction opposite to head 

movement, thus preserving the image on the center of the visual field. For example, when the head 

moves to the right, the eyes move to the left, and vice versa. Since slight head movement is present all 

http://en.wikipedia.org/wiki/Reflex
http://en.wikipedia.org/wiki/Eye_movement_(sensory)
http://en.wikipedia.org/wiki/Image_stabilization
http://en.wikipedia.org/wiki/Retina
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the time, the VOR is very important for stabilizing vision: patients whose VOR is impaired find it 

difficult to read using print, because they cannot stabilize the eyes during small head tremors. The 

VOR does not depend on visual input and works even in total darkness or when the eyes are closed. 

However, in the presence of light, the fixation reflex is also added to the movement [34]. 

The VOR has both rotational and translational aspects. When the head rotates about any axis 

(horizontal, vertical, or torsional) distant visual images are stabilized by rotating the eyes about the 

same axis, but in the opposite direction. When the head translates, for example during walking, the 

visual fixation point is maintained by rotating gaze direction in the opposite direction, by an amount 

that depends on distance.  

 

 

Figure 12: Vestibulo ocular reflex 

The VOR consists of eye movements stabilizing images on the retina during head motion, and its 

tuning is ascribed mainly to the cerebellar flocculus [35]. 

 

http://en.wikipedia.org/wiki/Fixation_reflex
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Figure 13: Cerebellum Cell in VOR protocol  

5.1.1 Robotic implementation 

 For avoiding the gravitational effects in this protocol, the Phantom Premium 1.0 was rotated and 

used on a horizontal plane. The joint 1 is inactive and fit in the base of the robot. Because of the 

mechanical coupling of the device, the head rotation is imposed sending the appropriate torques to 

both joint 2 and joint 3, while the corrective torque resulting from learning is applied only to joint 

3.we have two tools. One of them is attached to the ended of the premiums end-effector. Another one 

is the target .Both of them observed and record as an image by optical measurement system VICRA. 

The VICRA system records the current position of the image as well as the End-effector of the 

Phantom Premium 1.0 on which another tool is attached. 
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Figure 14: premium robot in VOR protocol  

 

 

Figure 15: links and joints of the Premium 

The cerebellum is triggered by the start of the head motion and receives the gaze error that 

computed by the gaze error algorithm. This algorithm computes the dis-alignment angle between the 

second link, which represents the gaze direction, and the tool that represents the target.  
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As shown in Figure 16 the angle (α) is found with the formulation below and considering to the 

segment which represents the second link , V, and the segment which links the center of the image-

tool to the second joint , U. 

cos ∝=
𝑈. 𝑉

ǁ𝑈ǁǁ𝑉ǁ
 

 

 

Figure 16: The gaze error  

  

5.1.2 Learning by Cerebellum Network Result  

 

 Only joint 2 and 3 are activated in the vestibule-ocular reflex protocol. The cerebellum control only 

the third joint (number of the cerebellum joints).Different sequences of repetitions were tested, some 

parameters were kept constant in all the tests while others were changed depending on the task. In this 

experiment, the repetition duration step was consider 3000 milliseconds and the repetition duration 

time was 3 seconds. 

The test was made up of two VOR sessions (session1 and session2) with fixed target. Each VOR 

session consisted of 40 trials of acquisition by imposing a pre-defined head rotation, directly followed 

by 20 extinction trials (head turn null). 

In order to validate the robustness of the embedded cerebellar controller, different vestibular 

stimulus patterns, i.e. three Head Rotation (HR) profiles were set: HR1 = 25° in 2 seconds, HR2 = 

30° in 2 seconds, HR3 = 35° in 2 seconds. For each HR, 15 tests were carried out. 

In order to check the capacity to rapidly face changes of the stimulus, for each cerebellar 

controller, a second test was carried out. It reproduced initially the VOR session1with HR1 = 25° in 2 
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seconds, but during the steady plateau of the network outcomes (at the 35th trial of acquisition), gain-

up stimulus was provided: the head rotation was increased 1.5 times, from 25° to 37.5°, and imposed 

for other 15 trials. Thus, the test was made up of 50 repetitions. 

Gaze error and DCN activity were analyzed; since the protocol required a continuous shape 

modulation of the motor response, we focused on the Root Mean Square (RMS) of the net DCN 

activity (taking into account the net activity, DCN+ and DCN-) within each trial. 

All tests were performed embedding the 1-plasticity cerebellum model (PF-PC) and the 3-

plasticity model (PF-PC, MF-DCN, PC-DCN).   

The vestibular stimulus onset, i.e. the onset of MF activity, started the generation of the granular 

layer state sequence and also provided the excitatory drive to DCN cells. The decoding of the gaze 

error reached continuously the Purkinje cells through the IOs. The Purkinje cells in turn inhibited the 

DCNs. At the beginning of the acquisition phase, Purkinje cell was spontaneously active, supplying 

tonic inhibition to the DCNs (Fig. 17.A).  

After acquisition, PC+ activity was decreased; summing up all the presynaptic (constant or plastic) 

inputs to DCN+, DCN+ neurons began to fire so as to continuously counterbalance the head 

movement, minimizing the gaze error (Fig. 17.B). Then during extinction trials, PC activity was 

progressively re-increased; and DCN decreased the output motor commands actuating eye motion 

(Fig. 17.C). 

 

Figure 17: Acquisition time in VOR  

 

The DCN output of the 3-plasticity model showed an evolution across sessions, while the DCN 

output of the 1-plasticity model repeated exactly the same adaptation process regardless any previous 

achieved acquisition (Fig. 18.A). Since the functioning of the cerebellum as predictive controller 

acting based on previous trials, during the extinction phases the after-effects occurred for few 

repetitions: even if the head rotation was canceled, the network output still produced eye 
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compensation; this overcompensation led to a gaze error with opposite sign (Fig. 18.B). Rapidly, the 

network learned to bring back the error to zero level. 

The modulation of each plastic connection embedded into the cerebellar models represents the 

intrinsic mechanisms underlying these observed behaviors. For each trial, the PFs active without a 

correlated CF signal on the PC underwent an LTP, while PFs corresponding at the time-states when a 

signal arrived to the PC from CF developed LTD. All the 2000 PFs decoded system-state during head 

motion, thus corresponding to a not-null gaze error; they underwent to a proportional LTD, so 

spreading within the weight range (0-1) (Fig. 18.C, D, E, F). The PF-PC weights histograms (Fig. 

18.C, D) clearly showed that in late acquisition, the same behavioral outcomes, i.e. steady eye motion 

perfectly compensating head motion, was achieved by different weight distributions between the two 

models.  

 

 

Figure 18: RMS Gaze Error in one and three plasticity in VOR 
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Figure 18: PF-PC Weights and connections 

 

Most of these weights in the 1-plasticity controller was saturated at 0 level; whereas, in the 1-

plasticity one, they were more distributed around half value of their range. The main phenomenon 

driving acquisition was the development of LTD at the synapses PF-PC; however, in the 3-plasticity 

model, in the meanwhile, with a slower rate, plasticity at the MF-DCN synapse and at the PC–DCN 

synapse occurred (Fig. 18.G, H, I, L). Thus a partial transfer of activity generating motor responses 

occurred from cortical to nuclear plasticity sites. These changes of weights at DCNs allowed to 

partially clear the cortical synapses. The network was then able to decrease the eye motion by fast PF-

PC LTP, but without canceling the slower nuclear plastic changes had occurred. Thus, session2 

controlled by the 3-plasticity model started with the cerebellar synapses in a different state than when 

controlled by the 1-plasticity model: the distributed plasticity dynamics, able to store information, 

was responsible for the higher learning rate in session2. 

 

 

Figure 18: PC-DCN Weights and connections 
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The memory transfer effect pointedly arose in the gain-up VOR test (Fig. 19). Indeed, the passage 

from cortical to nuclear sites made the PF-PC synapses ready for further plasticity. In this way, they 

were able to react to other additive perturbations, suddenly presented to the system.  

 

 

Figure 19: RMS Gaze Error and weights of three synaptic plasticity 

In late acquisition, the performances of the two models were comparable, but the PF-PC synapses 

of the 1-plasticity controller were close to saturation. When the gain-up stimulus was provided, the 1-

plasticity model exploited the residual cortical plasticity till complete saturation; it did not allow to an 

accurate eye compensatory movement. Whereas, the 3-plasticity model exploited the permanent 

nuclear changes and the much more residual plasticity at cortical level; it allowed to accurately 

recalibrate the eye motion. 
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5.2  EBCC (Eye Blink Classical Conditioning) 
 

Eye blink classical conditioning (EBCC) is a form of classical conditioning that has been used 

extensively to study neural structures and mechanisms that underlie learning and memory. The 

procedure is relatively simple and usually consists of pairing an auditory or 

visual stimulus (the conditioned stimulus (CS)) with an eye blink-eliciting unconditioned 

stimulus (US) (e.g. a mild puff of air to the cornea or a mild shock). Naïve organisms initially 

produce a reflexive, unconditioned response (UR) (e.g. blink or extension of nictitating membrane) 

that follows US onset. After many CS-US pairings, an association is formed such that a learned blink, 

or conditioned response (CR), occurs and precedes US onset. The magnitude of learning is generally 

gauged by the percentage of all paired CS-US trials that result in a CR. Under optimal conditions, 

well-trained animals produce a high percentage of CRs (> 90%). The conditions necessary for, and 

the physiological mechanisms that govern, eye blink CR learning have been studied across 

many mammalian species, including mice, rats, guinea pigs, rabbits, ferrets, cats, and humans. 

Historically, rabbits have been the most popular research subjects [36]. 

In neuroscience, classical conditioning is typically studied by experiments on eye blink 

conditioning. In these experiments, rabbits (or rodents) associate an auditory tone (conditioned 

stimulus) with an air puff (unconditioned stimulus) to perform an eye blink (unconditioned response). 

Essentially, after multiple trials, the rabbit will eye blink in response to the tone alone. 

Eye blink conditioning is now known to involve the cerebellum.  

The anatomy of the cerebellum is well understood (figure 20). The major output regions of the 

cerebellum are the deep cerebellar nuclei: activation of these nuclei results in the activation of motor 

commands. These nuclei receive inputs from excitatory ascending fibers (mossy fibers, climbing 

fibers) that promote motor commands; they also receive inhibitory inputs from Purkinje cells that 

inhibit motor commands. Therefore, whether or not a motor command is executed depends on the 

level of activation of the deep cerebellar nuclei, which is in turn dependent on the activity of both 

mossy and climbing fibers as well as Purkinje neurons. Climbing fiber synapse is very strong on the 

Purkinje cell while the parallel fiber synapses on the Purkinje cell are very weak. We see this 

experimentally: parallel fiber response increases linearly with increased stimulation while the 

climbing fiber has more of an all or nothing response. 

In classical conditioning, the conditioned stimulus (CS), a tone, will activate mossy fibers 

originating in the pontine nuclei that in turn send projections to granule cells in the cerebellar cortex. 

The synapses between mossy fibers and granule cells are excitatory: activation of the mossy fiber will 

result in activation of the granule cell. The axons of granule cells are termed parallel fibers and form 

excitatory synapses onto Purkinje cells, the major inhibitory neuron of the cerebellar cortex. The 

activation of the Purkinje neuron by granule cell results in inhibition of the deep cerebellar nuclei (the 

interpositus nuclei, according to the figure 20), which is the motor output region of the cerebellum. 

This inhibition will prevent any motor response by the animal. 

The cerebellum learns the correct timing of the response. Therefore besides the other implemented 

paradigms, eye-blink conditioning allows only the timing aspect of learning to be focused. 

http://en.wikipedia.org/wiki/Classical_conditioning
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Stimulus_(physiology)
http://en.wikipedia.org/wiki/Conditioned_stimulus
http://en.wikipedia.org/wiki/Unconditioned_stimulus
http://en.wikipedia.org/wiki/Unconditioned_stimulus
http://en.wikipedia.org/wiki/Unconditioned_response
http://en.wikipedia.org/wiki/Conditioned_response
http://en.wikipedia.org/wiki/Learning
http://en.wikipedia.org/wiki/Trial
http://en.wikipedia.org/wiki/Mammalian
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Figure 20: Mechanism of learning in eye blinking  

The unconditioned stimulus (US), an air puff to the eyelid, automatically leads to a blink but also 

activates climbing fibers that originate in the inferior olive. Exactly one climbing fiber innervates one 

Purkinje neuron in the cerebellar cortex. This connection is powerful and results in very strong 

depolarization of the Purkinje cell. As stated above, activation of the Purkinje neuron results in the 

inhibition of the deep cerebellar nuclei. 

In the figure 20 you can see the cerebellar mechanism of learning. From the anatomy of the 

cerebellum, it can be automatically realized that there are two sites of convergence for the US and CS 

pathways: the deep cerebellar nuclei and the Purkinje neuron. 
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5.2.1 Robotic implementation 

In this protocol the Phantom Premium 1.0 placed in the vertical plane with three joint for it. Also 

the sinusoidal wave form as a desired position for the first joint was defined and for the second joint 

another trajectory was defined. However, for the third joint the desired position was fix and zero. Two 

tools is used here, one of them is attached to the end effector of the premium and another one is the 

target, both of them were observed by optical measurement system VICRA and recorded as an image. 

 In this protocol two methods were considered for the controller: 

 Proportional controller (P) 

 Proportional and derivative controller(PD)  

 

 

Figure 21: premium robot in EBCC protocol  

 

5.2.2 Learning by Cerebellum Network with single Plasticity Site 

In order to decrease the output error two methods were used, the proportional controller as the 

feedback controller and also the experimental PID tuning method for tuning the system. 

Proportional Control is a useful method for designing control systems.  In this control method, the 

control system acts in a way that the control effort is proportional to the error. In other words, the 

output of a proportional controller is the multiplication product of the error signal and the 

proportional gain. This can be mathematically expressed as:  Pout = Kpe(t) + P0  

Where   P0 is Controller output with zero error, Pout is Output of the proportional controller Kp is 

Proportional gain , e(t) is Instantaneous process error at time t, e(t) = SP − PV where SP is Set point 

and PV is Process variable. 

Currently, more than half of the controllers used in industry are PID controllers. In the past, many 

of these controllers were analog; however, many of today's controllers use digital signals and 

computers. When a mathematical model of a system is available, the parameters of the controller can 
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be explicitly determined. However, when a mathematical model is unavailable, the parameters must 

be determined experimentally. Controller tuning is the process of determining the controller 

parameters which produce the desired output. Controller tuning allows for optimization of a process 

and minimizes the error between the variable of the process and its set point. 

Types of controller tuning methods include the trial and error method, and process reaction curve 

methods. The most common classical controller tuning methods are the Ziegler-Nichols and Cohen-

Coon methods. These methods are often used when the mathematical model of the system is not 

available.  

The trial and error tuning method is based on guess-and-check. In this method, the proportional 

action is the main control, while the integral and derivative actions refine it. The controller gain, Kc, 

is adjusted with the integral and derivative actions held at a minimum, until a desired output is 

obtained. 

The time-evolving states were decoded into the granular layer. From granule cells, activity was 

transmitted to the PC and in parallel excited the DCN. The US-related pattern reached the Purkinje 

cell when US threshold was detected. The Purkinje cell in turn inhibited the DCN. At the beginning 

of the acquisition phase, Purkinje cell was spontaneously active, supplying tonic inhibition to the 

DCN (Fig. 22.A). After acquisition, PC activity was decreased; summing up all the presynaptic 

(constant or plastic) inputs to DCN, DCN neurons began to fire strongly before the onset of the US as 

neurorobot acquired the CR (Fig. 22.B).Then during extinction trials, PC activity was progressively 

re-increased; and DCN did not produce CR anymore (Fig. 22.C). 

 

 

Figure 22: Acquisition time 
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The modulation of each plastic connection embedded into the cerebellar models represents the 

intrinsic mechanisms underlying these observed behaviors. For each trial, the PFs active without a 

correlated CF signal on the PC underwent an LTP, while PFs corresponding at the time-states when a 

signal arrived to the PC from CF developed LTD. Since the trial-by-trial variability within each test, 

the LTD/LTP did not develop perfectly in fixed PF-bundles; the most of PFs decoded system-state 

outside US (80% of trial duration) and thus maintained maximum values (saturated LTP); the PFs 

always decoding system-state during US underwent an equal strong LTD; the few PFs at the US time-

window borders underwent different balance LTD/LTP, thus they spread within the weight ranges (0-

1) (Fig.23.B, C, D, E). 
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Figure 23: Three plasticity weights and DCN output  

  

The main phenomenon driving acquisition was the development of LTD at the PF-PC synapses. In 

the 3-plasticity model, in the meanwhile, with a slower rate, plasticity at the MF-DCN synapse and at 

the PC–DCN synapse occurred (Fig. 23.F,G,H,I). Thus a partial transfer of activity generating motor 

response occurred from cortical to nuclear plasticity sites. In session1, this transfer did not change any 

overall learning performances. The network was able to rapidly extinct the stimuli association by fast 

PF-PC LTP, but without canceling the slower nuclear plastic changes had occurred. Thus, session2 

controlled by the 3-plasticity model started with the cerebellar synapses in a different state than when 

controlled by the 1-plasticity model: the distributed plasticity dynamics, able to store information, 

was responsible for the higher learning rate in session2. 

5.3 Multi-Rate Two State Model of Learning 

The message is our results for both tasks reflect the Multi-rate adaptation processes as stated in the 

Multi-rate two state model of learning.  
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Savings is a fundamental property of memory. If savings is present, relearning will proceed more 

quickly than initial learning [37].  

The study of Kojima showed that (1) savings can occur in a motor adaptation task, (2) it can cause 

a sudden jump in performance if a block of no-feedback (dark) trials is inserted between the 

extinction and re-adaptation blocks, and (3) it can be washed out if a block of baseline trials is 

inserted between the extinction and re-adaptation blocks. 

 We know that learning an initial motor adaptation reduces not only the initial performance but 

also the time constant for subsequently learning the opposite adaptation. Two other important 

observations are rapid DE- adaptation and rapid downscaling. Where fully or partially unlearning a 

motor adaptation can be faster than initial learning of this adaptation. 

To account for the results of their savings experiments, Kojima et al. suggested a novel two-state 

model in which distinct mechanisms specialized in increasing the gain of saccades versus decreasing 

it. The two-state model in which each state learned at a different rate, rather than in a different 

direction, might be able to account for the full pattern of savings. 

We simulated the progression of motor output in this learn unlearn-relearn paradigm a two-state, 

gain-independent, multi rate model. The learning rules for these models are shown below: 

 

𝑥1(𝑛 + 1) = 𝐴𝑓 . 𝑥1(𝑛) + 𝐵𝑓 . 𝑒(𝑛) 

𝑥2(𝑛 + 1) = 𝐴𝑠. 𝑥2(𝑛) + 𝐵𝑠. 𝑒(𝑛) 

𝐵𝑓 >  𝐵𝑠 , 𝐴𝑠 >  𝐴𝑓 

𝑥 = 𝑥1+ 𝑥2 

X(n) is Net motor output on trial n, and X1 and X2 are internal states that contribute to the net 

motor output, e (n) is error on trial n, B is learning rate and A is Re-tension factor. In all these models 

error arises because there is a difference between the motor output x(n) and the state of the 

environment f(n) such that :e(n)=f(n)-x(n). 

Our multi-rate model produce savings and predict decay in the amount of savings if null trials are 

inserted before the learning block as a figure 42: 

 

Figure 24: Paradigm for basic savings experiment. 
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Figure 25: Adaptation 

 

Figure 26: Paradigm for savings experiment with washout 

 

Figure 27: The amount of savings found in simulation, as a function of the number of washout trials. The amount of 

savings is measured as the percent improvement in performance on the 30th trial in the relearning block compared to the 

30th trial in the initial learning block. 

 

In the case of the multi-rate model, relearning is faster than initial learning because when 

relearning starts, the slow state is already biased towards relearning, making relearning more 

dependent on the fast state compared to initial learning. 

The multi-rate model predicts a rebound effect, or spontaneous recovery, during this same period. 

Instead of remaining at zero, predicted motor output during the zero error block transiently rebounds 

toward the motor output during the initial learning block like the figure 28 (Error-clamp paradigm): 
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Figure 28: Motor Adaptation in the Error-Clamp Paradigm 

 

Figure 29: the multi-rate model predicts a transient rebound of motor output in the error-clamp block. This 

rebound is in the direction of the motoroutput displayed in the initial learning block, resulting in spontaneous 

recovery. 

 

Figure 30: The multi-rate model predicts that performance at the start of the relearning block is already better 

than baseline. This jump-up in performance is caused by adaptation rebound in the error-clamp phase 

The time course of the rebound—a rapid rise then a slow decline—was also predicted by the 

multi-rate model. Also in multi rate model the time constant for an initial motor adaptation is faster 

than the time constant for subsequent adaptation to the oppositely directed adaptation stimulus. The 

multi-rate model correctly predicts slower learning of the second adaptation in the interference 

paradigm. The multi-rate model predicts slower learning because the slow learning module is initially 

biased against learning the second adaptation. 

The multi-rate model not only explains when a motor adaptation is learned then washed out, the 

rate of de-adaptation back to baseline can be faster than the rate of initial adaptation but explains why 

the apparent magnitude of this effect can vary substantially from one paradigm to another like the 

figure 31: 
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Figure 31: Rapid unlearning 

Also the multi rate model can explain that the time constant for adapting to a scaled down version 

of a previously learned force-field adaptation can be even faster than the rate of de-adaptation to 

baseline. This effect can also be explained by the multi-rate model in Figure 32: 

 

 

Figure 32: Rapid downscaling 

One important feature of the class of multi rate model is that multiple realizations of the same 

input-output behavior are possible, i.e., internal system architectures are not unique. Of particular 

interest are the two equivalent system architectures diagrammed in Figure 33 and 34. In the first 

representation, two learning modules independently adapt from error and their outputs are combined 

to produce changes in net motor output. In the second representation, the two learning modules are 

cascaded such that the fast module adapts directly from error while the slow module adapts indirectly 

via the output of the fast module.  

 

Figure 33: Two Different Internal Realizations of a Linear, parallel representation  
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Figure 34: Two Different Internal Realizations of a Linear, Two-State, and Multi-Rate System 

6. Discussion and Conclusions 

In this work, two robotic protocols (Vestibulo-Ocular Reflex and Eyeblink Classical 

Conditioning) have been tested and implemented on a real robot and the embedded adaptive 

controller for cerebellum model has been developed. The main observation is that plastic mechanisms 

at DCN synapses effectively complement the learning capabilities of PF-PC synapses and contribute 

to the acquisition of the dynamics model of the arm or object plant. A correct synaptic weight adjust 

the  DCN synapses that acts as a gain adaptation and allowing the PFs to work in their effective 

operative range, thus making the plasticity mechanisms between PFs and PCs more precise. 

Two different learning time scales consisting of: (1) a fast learning process, in which temporal 

information was assumed and gathered from PF-PC synapses, and (2) a slow learning process, in 

which the cerebellar excitatory and inhibitory gain values were adapted in the DCN and the 

manipulation precision increased.  

In this experiment, by ingratiating distributed synaptic plasticity and by generating closed-loop 

simulations, allowed to decrease the growing error based on feedback from the actual movement and 

accounted for three main theoretical point of cerebellar functioning.it means that (1) the cerebellum 

operates as a corrective inverse dynamic model. The granular layer was implemented as a non-

periodic state generator. This states are then correlated with the error-based teaching signal received 

through the CFs [38]. (2) The PF-PC plasticity temporally connected the input state and the error 

estimation obtained during execution of the manipulation task. Instead, MF-DCN and PC-DCN 

plasticity's store the excitatory and inhibitory gain of the neural network required to generate accurate 

correction of movement. Thus, the DCN afferent synapses deduced the main properties of the object 

under manipulation, while the PF-PC synapses store the temporal characteristics of the task.(3) the  

evolution for the PF-PC plasticity is rapidly, while the evolution for the DCN plasticity is more 

slowly, because it depends on the previous evolution of plasticity at the PF-PC synapse itself.  

According to what it said, this experiment proposes a reasonable describe on how multiple 

plasticity sites, including the PF-PC and the MF-DCN and PC-DCN synapses, may effectively 

implement cerebellar learning control. 

The behavioral fall-outs of this model emerged in our tests. To our knowledge, it is the first time 

an embodied distributed realistic cerebellar model, tested in cerebellum-mediated paradigms, came 
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across able to robustly reproduce human-like effective learning properties in acquisition, extinction 

and re-acquisition, dealing with different external and noisy stimuli in real-world. 

In the Pavlovian task, the neurorobot expressed response levels comparable to those found in 

human EBCC with similar ISIs, where a stable behavior was achieved in about 30 trials [39, 40]. 

Concerning the VOR task, neurophysiological studies showed how in a visual-vestibular training the 

cerebellum functioning led to an image slip minimization around 0.2° [41]. 

The 3-plasticity-site model unveiled in the motor memory transfer between cerebellar sites; in this 

way, the cerebellar model was equipped with the intrinsic capability to optimize the learning on 

multiple timescales and to effectively adapt to dynamic ranges of stimuli. These outcomes are 

consistent with the hypothesis about the coexistence of two processes proceeding at different rates in 

the cerebellum-mediated learning and located in different cerebellar sites, cerebellar cortex and deep 

cerebellar structures [42, 43]. 

In conclusion, we have linked low-level brain circuits with high-level functions integrating a 

detailed adaptive cerebellar controller into a neurorobot operating in real-time. The low-level 

embedded neuron connection dynamics were observed in high-level behavioral tasks: the 

fundamental aspects of cerebellar function - prediction, learning, timing and memory - were 

generated [44]. As a further advance, the platform could be updated with new neurophysiological 

properties and the distributed plasticity model could be translated into a more realistic spike-timing 

computational scheme [45]. 

In multi rate process cerebellar controller with multisite plasticity can effectively drive timing task 

as EBCC and complex VOR paradigm in a real robot. The multisite plasticity proved superior to 

single-site plasticity in generating human-like VOR acquisition, extinction and consolidation 

especially in complex tasks like gain-up and multi-session VOR. 

The three plasticity controller was able to behave both as timing and gain controller, 

demonstrating   high accuracy in a closed-loop sensorimotor task. The cerebellar model extension 

with the DCN plasticity sites improved robot adaptation allowing to deal with changing stimuli and 

environmental conditions. 
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