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Abstract 

 

During the last strong earthquakes, the impact between closely adjacent structures was reported as 

one of the major causes of collapse in buildings and bridges. This impact is also called seismic pounding 

and is due to the different dynamic characteristics of those neighboring structures that make them to 

vibrate out of phase and become them in potentially dangerous. In the case of bridges, seismic pounding 

is the impact produced between deck-deck and deck-abutment. In the common engineering practice, 

bridges are designed with expansion joints or gaps to allow the expansion of the deck because of 

temperature, shrinkage or creep of concrete. Since this gap cannot be removed generally, it is a vulnerable 

part of the bridge when earthquake occurs. In addition, seismic pounding produces severe damage in 

bridges and even collapse. 

In this study, a detailed overview of the last strongest earthquakes since San Francisco earthquake in 

1906 until Tohoku earthquake in 2011 is presented focusing on different types of damages produced in 

bridges. Within all these different ways of failure and unlike other types of damages, seismic pounding 

has been less studied although it was demonstrated to be one of the main causes of damages in bridges 

during the last great earthquakes. Unidirectional and bidirectional seismic pounding are distinguished and 

a deep review in the literature is provided to know what has been done so far in the field of seismic 

pounding simulation in bridges. After that, a brief introduction of physical nature of impact as well as the 

main existing impact force models divided into linear and non-linear are presented. Then, a proposed 

impact force model based on a modified Kelvin-Voigt model where frictional forces are involved is 

developed. This proposed contact element is implemented as a biaxial contact element in an open-source 

computer program called OpenSees. This computer program was developed at University of Berkeley 

(California) and is based on the Finite Element Method. It is widely used in earthquake research because 

of is a powerful tool to deal with dynamic problems where non-linearity’s are involved. Moreover, the 

new contact element was validated for unidirectional directional using an experiment carried out at 

Harbin Institute of Technology (China) with encouraging results. 

Finally, three real and different bridges located in California are taken as seed bridges to study 

seismic pounding in bridges. Furthermore Kobe, Loma Prieta, Chi-Chi and Landers earthquake are 

chosen as input ground motions in order to have two pulse-like (Kobe and Loma Prieta) and two far-field 

(Chi-Chi and Landers) earthquakes. The isolated bridges are modeled in OpenSees and subjected to 2,688 

non-linear time history analysis simulations where the gap and the skew angle of decks are the parameters 

used to study the seismic bridge response. The results show how important the skew angle is and its 

influence in the performance of the bridge being 45º the worse scenario when pounding occurs. 
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Fig. 1.1. Damage produced by Great Kanto earthquake in (a) Tokyo and (b) Yokohama in 1923. 

(a) http://nisee.berkeley.edu/jpg/EERC_2002_0712/IMG0020.jpg, (b) http://nisee.berkeley.edu/jpg/EERC_2002_0712/IMG0015.jpg 

Chapter 1 

Introduction 

 

Since long time ago, earthquakes have been one of the most unknown natural disasters for the human 

beings due to the uncertainty of occurrence and high damage produced. In fact, the first seismic 

excitations were studied by a Chinese philosopher called Chang Heng in 132 B.C inventing the earliest 

known seismoscope (Dewey and Byerly 1969). This first seismoscope was intented to record both the 

occurrence of earthquakes and the azimuths of their origins from the observer. During the following 

centuries the seismic technology enhanced through the inventions such as the first seismoscope to record 

the time of small earthquakes invented by Palmieri in the middle of nineteenth century and the first 

seismograph of low intensity developed by Cecchi in 1875. Thanks to that, nowadays the newest 

seismographs are equipped with electromagnetic sensors that can record the ground motions with high 

accuracy and digitally. In addition, the launch of the first computers in the middle of twentieth century led 

to suppose a significant stride for the earthquake research. Hence, the modern earthquake engineering was 

born based on numerical methods and the high speed of processing supplied by the computers. 

In the past, several strong earthquakes produced a relevant damage in buildings and civil structures. 

The largest earthquake ever recorded was the Chile earthquake  9.5wM   in 1960 with a material 

damage estimated at 700 million dollars, many structures collapsed and however only dozens of people 

died because of earthquake, surprisingly. This was essentially due to the warning given by small shock 

that preceded the main earthquake by about 15 minutes (Rosenblueth 1960, 1961). Nevertheless, the 

Great San Francisco earthquake  7.6wM   in 1906 and the Great Kanto earthquake  8.3wM   in 1923 

can be considered the first strong ground motions well documented. In Japan, around 694,000 houses 

were partially or completely collapsed (James 2011). The earthquake devastated Kanto region, specially 

Tokyo and Yokohama city (Fig. 1.1(a), (b)) killing thousands of people. 

        (a) (b) 
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Since Great Kanto earthquake, there were several strong earthquakes in different points around the 

word. However, All these points are mostly concentrated in a particular region called Circum-Pacific 

Seismic Belt and widely known as Ring of Fire (Fig. 1.2). About 90 % of the world’s earthquakes and 81 

% of the largest world’s earthquakes occur there (Kious and Tilling 2001). It has horseshoe shape and 

belongs to the basin of Pacific Ocean. 

 

 

 

 

 

 

 

 

Most of the last strongest earthquakes took place in this region. For instance, in 1989 Loma Prieta 

earthquake  6.9wM   provided some interesting insights into the effects of a great earthquake in an 

urban setting (EERI 1989). Unlike other very damaging California earthquakes, such as San Fernando, 

Coalinga or Whittier events (Priestly and Eeri 1988), Loma Prieta earthquake distributed damaged 

throughout many counties. It was the largest earthquake occurred on the San Andreas Fault since the 

Great San Francisco earthquake  7.9wM   in 1906. Some years later, Northridge earthquake  6.7wM   

damaged about 12,500 structures in 1994. Of 66,545 buildings inspected, 6 % were severely damaged and 

17 % were moderate damaged (EQE 1994). Collapses and other severe damage forced closure of 11 

major roads (Fig. 1.3(a), (b)) to downtown Los Angeles such as I-5, SR-14, I-10 and SR-118 (ITS 2002). 

The next year, the Kobe earthquake  6.8wM   shook the southern side of the main island of Honshu 

(Japan) in 1995. After this earthquake 5,000 people were reported killed, more than 26,000 were injured 

and over 300,000 were left homeless (Comartin et al. 1995). Kobe, Ashiya and Nishinomiya (Fig. 1.4(a)) 

areas were specially destroyed and therefore their transportation system. The Hanshin expressway (Fig. 

1.4(b)) through the city was closed by transverse overturning and collapsed section of 18 spans (630 m of 

total length) due to flexural and shear mode damage (Hashimoto et al. 2005). A number of major 

expressways, rail lines and bridges, some of very modern design, were severely damaged. However, the 

Akashi Kaikyo bridge, the longest suspension bridge in the world, was still under construction when 

Kobe earthquake struck the city and the towers were moved by one meter increasing the main span from 

1990 m to 1991 m and the change was easily accommodated in the slightly altered final design because of 

only the towers were erected at the time. On the other hand, the Port of Kobe, much of which was new, 

was also devastated by widespread and severely liquefaction and permanent ground deformations, which 

destroyed more than 90 % of the port’s 187 berths and damaged or destroyed most large cranes (EQE 

Fig. 1.2. Scheme of the Ring of Fire. 

http://earthquake.usgs.gov/learn/glossary/images/ringoffire.gif 
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1995). Moreover, the damage to the capital stock, expressed at commercial exchange rates, was estimated 

at US$114 billion, three times the recorded cost of any previous natural disaster in the history (Horwich 

2000).  

(a)       (b) 

(a)       (b) 

Taiwan is also a seismically zone located in the Ring of Fire and therefore not exempt to suffer 

strong earthquakes frequently. Hence, in 1999 the Chi-Chi earthquake  7.7wM   devastated Taiwan and 

Taichung and Nantou counties specially. On one hand, over 2,400 lives were lost, more than 10,000 

people were injured and left and estimated 100,000 people homeless. On the other hand, over 10,000 

buildings collapsed and more than 7,000 suffered damage (Lee and Loh 2000). Moreover, highway 

damage was widespread throughout Taichung and Nantou counties due to fault rupturing, collapsed or 

crippled bridges, landslides, soil settlement and slope failures. Regarding traffic infrastructures, thirty of 

590 inspected bridges on the island sustained damage. Of those, 5 bridges collapsed, 9 bridges required 

major emergency repairs to sustain traffic and 16 bridges were damaged but rated safe (Dong et al. 2000). 

Fig. 1.3. Collapse of (a) I-5 at Gavin Canyon (Los Angeles county) and (b) a highway bridge in Granada 

 Hills (California) produced by Northridge earthquake. 

(a) http://nisee.berkeley.edu/jpg/5074_1631_0650/IMG0003.jpg, (b) http://nisee.berkeley.edu/jpg/5076_1631_2251/IMG0046.jpg 

Fig. 1.4. Collapse of (a) approach span of Nishinomiya-ko bridge and (b) Hanshin Expressway toppled to 

 the north (from Kawashima) produced by Kobe earthquake. 

(a) http://nisee.berkeley.edu/jpg/6324_3122_2969/IMG0054.jpg, (b) http://nisee.berkeley.edu/jpg/6317_3071_0981/IMG0026.jpg 
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In addition, those most seriously affected range from 3-span to 28-span. From the economic point of 

view, the economic losses were around US$12 billion. Most of the collapsed bridges (Fig. 1.5(a), (b)) 

were located on the highway Tai-3 which runs north south through Taichung and Nantou counties and 

coincides with the Chelungpu fault rupture. 

       

There have been several strong ground motions around the world after Chi-Chi earthquake and every 

year a strong earthquake occurs (Fig. 1.6). According to United States Geological Survey’s (USGS), the 

largest earthquake since year 2000 was the west coast of northern Sumatra earthquake  9.1wM   in 

2004 when a big tsunami destroyed the coasts of Indonesia, Sri Lanka, Thailand and India. The last 

significant seismic excitation due to nuclear troubles related to the earthquake was the Tohoku earthquake 

 9.0wM   off the east coast of Japan in 2011. 

 

 

 

 

 

The Tohoku earthquake is known as Great East Japan earthquake and triggered extremely destructive 

tsunami waves that reached height over 39 m (Mimura 2011). The earthquake and tsunami destroyed an 

important number of buildings and infrastructures in northeast Japan. The Japan National Police Agency 

confirmed 15,550 deaths, 5,688 injuries and 5,344 people missing as well as 224,798 housing units 

collapsed, 434,327 housing units partially damaged and 32,443 non-residential buildings damaged. 

Moreover, infrastructure damage was also widespread with 3,546 areas along roads, 71 bridges and 26 

parts of the railway system. The tsunami waves played a crucial role in the damage of the structures as 

Fig. 1.5. Collapse of (a) the Shih-Wui bridge and (b) the Wu-His bridge in highway Tai-3 produced by 

 Chi-Chi earthquake. 

(a) http://nisee.berkeley.edu/jpg/0021_3292_3456/IMG0032.jpg, (b) http://nisee.berkeley.edu/jpg/9187_3302_4395/IMG0068.jpg 

Fig. 1.6. List of the strongest earthquakes year by year since 2000. 

(b) (a) 
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Kosa (2012) concluded. The outflow of superstructures occurred to more than 300 bridges during the 

Tohoku earthquake. Among those 300 bridges, 9 national way bridges, 14 prefectural road bridges and 

101 railway bridges suffered losses. In addition, Bricker et al. (2012) carried out field surveys and 

numerical modeling to show the influence of the deck inclination, flow speed and tsunami surge in the 

deck failure. Curiously most of the bridges designed by post-1990 code were not damaged however in 

some bridges designed by 1995 code rubber bearings and dampers were severely damaged (Takahashi 

2012) contributing to the total damage of the bridge. The tsunami inundated area of 2400 km  and the area 

affected by the earthquake is still under reconstruction and the Japan Government estimates the final cost 

between 16 and 25 trillion yen. 

After doing a review of the largest earthquakes in the world in the last hundred years, it can be 

noticed the importance of correct seismic design in the structures in order to avoid collapse and severely 

damage produced by the ground motions. Conceptually, bridges are simpler structures rather than other 

structures such as, for example, buildings, tunnels or dams. Nevertheless, because of this conceptual 

simplicity and therefore its limited redundancy unlike buildings, bridges are more sensitive to be affected 

by earthquakes. Therefore, a deep knowledge of the failures produced by strong earthquakes is needed in 

order to avoid them in the future. 

1.1 Damage to Bridges in the Past Earthquakes 

Past earthquakes showed the limitations of the structural design of some bridges under strong ground 

motions. These limitations cause different types of failure making evidence the weak points of the seismic 

bridge design. According Priestley et al. (1996), three different structural deficiencies can be identified in 

different forms causing the main failures in bridges and are direct consequence of the elastic design 

philosophy. The first deficiency is seismic deflection based on the specified lateral force levels that are 

seriously underestimated because of the elastic design. The second deficiency is based on the first one 

since seismic force levels were artificially low, the ratio to gravity load to seismic force adopted for 

design was incorrect. Finally, inelastic structural actions and associated concepts of ductility and capacity 

design are crucial to the survival of inelastic systems under severe seismic response and were not 

considered in the elastic design process. 

Because of these three deficiencies in the seismic bridge design, Priestley et al. (1996) divide the 

potential failures of bridges into seven categories depending on the affected structural component: 

1. Abutment slumping: The earth pressures increase under longitudinal response due to the 

acceleration of the ground. Moreover, if impact occurs between the deck and backfill 

generates and the soil is not well compacted an increment of pressure in the low level 

pushing inwards and rotating the abutment. Costa Rica earthquake (EQE 1991) showed 

several examples of this type of failure (Fig. 1.7(a), (b)). 
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2. Column failures: the columns failures can be divided into two different groups, a) flexural 

strength and ductility failures and b) column shear failures. 

 

a) Flexural strength and ductility failures. Until the middle of twentieth century, bridge 

designers were generally unaware about ductility capacity what caused some 

troubles. The typical ductility failures are: 

 

 Inadequate flexural strength. The elastic design assumed a low seismic 

lateral force (6 % of dead weight in California) what underestimated a lot 

the real seismic forces. In fact, empirical elastic response exceeded 100 % 

this value. However, despite this large discrepancy the real strength 

difference was much less due to the nature of the conservative analysis 

adopted (Fig. 1.8(a)). 

 

 Undependable column flexural strength. The insufficient splice length above 

the foundation does not allow to develop the strength of the reinforcing bars 

and make the joint column-foundation a weak point under strong ground 

motions (Fig. 1.8(b)). 

 

 Inadequate flexural ductility. Ductility is the property of being able to 

deform through several cycles of displacements much larger than the yield 

displacement without significant strength degradation. Therefore, in order to 

survive intense seismic attack, structures must possess ductility. The lack of 

ductility in the bridges was observed in past earthquakes (Fig. 1.8(c)) and 

caused severely damage. 

 

 Premature termination of column reinforcement. The lack of the length 

enough for the reinforcing bars along the column may cause the failure of 

the whole column at the point where the reinforcement is missing. Kobe 

earthquake caused this drawback especially in 1995 (Fig. 1.8(d)). 

 

b) Column shear failures. Shear failure is a brittle failure and involves rapid strength 

degradation. Short columns are particularly susceptible to shear failure as 

consequence of the high shear/moment ratio and conservatism in the flexural 

strength design of older columns (Fig 1.9(a), (b)). 

 

3. Cap beam failures: Last earthquakes as Loma Prieta earthquake (1989) and Kobe earthquake 

(1995) made clear three relevant deficiencies regarding cap beams. (i) Shear capacity, (ii) 

premature termination of cap beam negative moment reinforcement and (iii) insufficient 

anchorage of cap beam reinforcement into the end regions. This failure produces flexural 

and shear cracks that decrease the strength of the cap beam (Fig. 1.10(a)). 
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4. Joint failures: Inappropriate shear reinforcement in joints between cap beams and piers may 

produce the shear failure. In the past, several bridge designers did not consider these shear 

forces to design the knee joints what means unsuitable shear reinforcement in that area (Fig. 

1.10(b)). 

 

5. Footing failures: In spite of the difficult of checking footings after an earthquake, some 

failures were reported in the last earthquakes such as San Fernando earthquake in 1971 (Fig. 

1.10(c)). Basically, the main deficiencies of footings are: (i) footing flexural strength, (ii) 

footing shear strength, (iii) joint shear strength in the region immediately below the column, 

(iv) anchorage and development of column reinforcement and (v) inadequate connection 

between tension piles and footings. 

 

6. Failures of steel bridge components: Steel bridge components are also susceptible to damage 

although are lighter than equivalent concrete component (by about 30 %). For instance, 

Kobe earthquake showed many examples of buckling of steel I-beam girders as result of 

inadequate bracing. In addition, steel piers were also damaged (Fig. 1.10(d)). 

 

7. Seismic displacements: Last earthquakes provided an important list of damage due to 

underestimated seismic displacements as consequence of the elastic theory used for the 

bridge design. The main failures related to seismic displacements are as defined below. 

 

a) Span failures due to unseating at movement joints. Strong ground motions may 

produce large displacements of spans in the direction of the earthquake and therefore 

to exceed the seating width in joints between either deck-deck or deck-abutment. 

This failure was reported in the most of past earthquakes (Fig. 1.4(a), Fig. 1.5(a) and 

Fig. 1.11(a)). 

 

b) Amplification of displacements due to soils effects. Soil where the bridge is built has 

a crucial role in the displacements of the spans. Soft soils will generally result in 

amplification of structural vibration response increasing the probability of unseating. 

Moreover, if soil is composed of saturated sandy silts or silty sands, liquefaction of 

the ground may occur. Bridges with simple supported span are particularly 

susceptible to span failure due to liquefaction (Fig. 1.11(b)). 

 

c) Pounding of bridge structures. Pounding between adjacent structures may occur 

when the distance in insufficient. These unpredictable impacts produce high 

pounding forces that can affect the behavior of the bridge and increase the seismic 

displacements. In addition, pounding can also increase the shear forces of the piers 

as well as acceleration response of bents (Fig. 1.14(a-f)). 
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(a) (b) 

Fig. 1.7. (a) Abutment slid towards river showing the movement of the Rio Viscaya bridge footings and 

 piles during the Costa Rica earthquake and (b) the relative rotation between abutment and deck 

 of the same bridge. 

(a) http://nisee.berkeley.edu/jpg/1351_3163_3946/046.jpg, (b) http://nisee.berkeley.edu/jpg/1351_3163_3946/044.jpg 

(a) (b) 

(c) (d) 

Fig. 1.8. (a) Heavy flexural cracking on south face of pier #38 and (b) failed splices and layered 

 longitudinal steel of southeast corner of pier #45 (Hanshin expressway), (c) plastic hinge 

 developed at about one third above the ground level (Niigata earthquake, 2004) and (d) failure of 

 the column (Hanshin expressway, Kobe earthquake 1995). 

(a) http://nisee.berkeley.edu/jpg/6317_3071_0960/IMG0020.jpg, (b) http://nisee.berkeley.edu/jpg/6317_3071_0960/IMG0040.jpg, 

(c) http://nisee.berkeley.edu/jpg/EERC_2004_1129/IMG0002.jpg, (d) http://nisee.berkeley.edu/jpg/6317_3071_0981/IMG0029.jpg 



 

 

9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Fig. 1.9. Close-up view of shear failure of (a) highway pier in Granada Hills (California) and (b) La 

 Cienaga - Venice highway bridge pier showing cracked and spalled concrete cover produced by 

 Northridge earthquake (1994). 

(a) http://nisee.berkeley.edu/jpg/5076_1631_2251/IMG0036.jpg, (b) http://nisee.berkeley.edu/jpg/EERC_2010_1906/Caltrans-NR-La-

Cienaga4.jpg 

(a) (b) 

(c) (d) 

Fig. 1.10. (a) Damage to cap beam of supporting east span of cable-stayed bridge (Chi-Chi, Taiwan

  1999), (b) knee joint failure of Cypress Street Viaduct (California 1989), (c) reinforced

 concrete abutment footings of Rio Cuba highway bridge badly cracked (Costa Rica, 1991) and

 (d) northeast corner of steel pier #55 (Hanshin expressway, 1995). 

(a) http://nisee.berkeley.edu/jpg/9189_3291_1733/IMG0083.jpg, (b) http://nisee.berkeley.edu/jpg/1351_3163_1044/073.jpg, 

(c) http://nisee.berkeley.edu/jpg/1351_3163_3722/img-066.jpg, (d) http://nisee.berkeley.edu/jpg/6317_3071_0960/IMG0055.jpg 
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Among all these different types of failure, this study is focused on pounding in highway bridges due 

to strong ground motions. 

1.2 Seismic Pounding in Bridges 

Pounding is a complex phenomenon that occurs when two structures impact to each other due to 

insufficient separation under strong ground motion and has been identified as cause of damage and 

collapse (Anagnostopoulos 1994). Due to function requirements, highway bridges are set up a distance to 

allow the out-of-phase displacement as consequence of temperature effects, creep or shrinkage of 

concrete. This distance is also known as either gap or expansion joint and is located between deck-deck 

and deck-abutment. On one hand, the difference of dynamic characteristics of neighboring structures as 

well as asynchronous seismic excitation due to the length of the bridge may induce pounding. Because of 

forces induced by pounding bridges can be severely damaged or even collapse. Three different kind of 

gaps that can be distinguished in a common isolated highway bridge and are (i) gap between left abutment 

and deck, (ii) gap between decks and (iii) gap between deck and right abutment as shown Fig. 1.12. 

(a) (b) 

Fig. 1.11. (a) Unseating between deck supported on bearing and abutment (Chi-Chi, Taiwan 1999) and 

 (b) piers and abutment moved and collapsed into the river because of pier footings suffered 

 liquefaction (Costa Rica, 1991). 

(a) http://nisee.berkeley.edu/jpg/0021_3292_3456/IMG0065.jpg, (b) http://nisee.berkeley.edu/jpg/1351_3163_3946/042.jpg 

Fig. 1.12. Sketch of two-span highway bridge supported on bearings at middle pier and abutments without 

 pounding. 

Gap Gap Gap
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On the other hand, impact occurs when the distance of the joint expansion (gap) becomes zero as 

consequence of relative displacement of the bodies involved. Assuming decks as rigid bodies, pounding 

can occur in either (i) left abutment (Fig. 1.13(a)), (ii) middle expansion joint (Fig. 1.13(b)), (iii) right 

abutment (Fig. 1.13(a)) or (iv) different places simultaneously depending on the dynamic characteristics 

of bridge system (piers, bearings and decks) as well as gaps in each location (left abutment, expansion 

joint and right abutment). These impacts may change the dynamic behavior of the whole bridge and cause 

severely concentrated damage because of pounding produces high forces in a short period of time. 

Moreover, bridges are large linear infrastructures with principal axes defined clearly along lanes. 

Therefore, bridges are sensitive structures to the direction of the seismic excitation.  

 

Pounding is a common phenomenon when bridges are shaken by strong earthquakes and have been 

widely reported during the last earthquakes. According to the National Information Service for 

Earthquake Engineering (NISEE) by the Civil and Environmental Engineering Department of the 

University of California (Berkeley), several highway bridges suffered as deck-abutment pounding as 

deck-deck pounding as well as deck displacement induced by pounding that caused unseating of some 

bents during Northridge and Kobe earthquake. In the case of Northridge earthquake, the Interstate-5/Hwy 

14 interchange (Los Angeles county) suffered severely damaged as consequence to pounding between 

deck and abutment (Fig. 1.14(a)) what caused unseating and collapse of deck. On the other hand, 

Interstate-5/210 interchange (abutment 9), showed vertical and horizontal offset and damage along the 

expansion joint (Fig. 1.14(b)). Regarding seismic displacements, Interstate-10/Fairfax Ave.-Washington 

Blvd rotated at hinge between bents 3 and 4 (Fig. 1.14(c)) and an expansion joint of the Interstate-10/14th 

St. bridge opened by 19 mm and moved to the side by 13 mm (Fig. 1.15(a)). During Kobe earthquake, 

several pounding cases were reported. For example, the impact between steel deck and RC abutment (Fig. 

1.14(d)), the off-ramp movement at abutment near bent #80 (Fig. 1.14(e)), deck displacement in (Fig. 

1.14(f)) and deck displacement at pier #30 (Hanshin expressway) as shown in Fig. 1.15(b). 

Fig. 1.13. (a) Impact between decks and abutments when decks move outwards and (b) impact between 

 decks when decks move inwards. 

(b) 

Impact Impact

Gap

Impact

Gap Gap

(a) 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 1.14. Pounding between (a) deck-abutment, (b) deck-deck and (c) rotation between two bents during 

 Northridge earthquake. Pounding between (d) deck-abutment, (e) rotation deck-abutment and (f) 

 relative displacement between decks in Nishinomiya-ko bridge during Kobe earthquake. 

(a) http://nisee.berkeley.edu/jpg/5074_1631_0651/IMG0019.jpg, (b) http://nisee.berkeley.edu/jpg/5074_1631_0651/IMG0080.jpg, 

(c) http://nisee.berkeley.edu/jpg/5074_1631_0650/IMG0040.jpg, (d) http://nisee.berkeley.edu/jpg/6324_3122_2969/IMG0047.jpg, 

(e) http://nisee.berkeley.edu/jpg/6317_3071_0960/IMG0114.jpg, (f) http://nisee.berkeley.edu/jpg/6324_3122_2969/IMG0051.jpg 
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As it has been shown in the previous section, failures as consequence of pounding are as common as 

other failures in bridges and the damage produced by this phenomena cannot be neglected. Therefore, a 

deep study is needed in order to assess the pounding forces and its influence in the total bridge behavior. 

However, before going ahead it is mandatory to review the relevant previous studies to know what have 

been done until now. 

1.3 Review of Previous Studies 

Relevant previous studies about pounding in bridges as well as buildings are basically classified in 

two main groups depending on the type of contact. The first group is unidirectional pounding and is 

defined by unidirectional ground motion where the contact points (plane of impact) are known before 

contact (Fig. 1.16(a)). Generally, it is considered unidirectional pounding when the direction of 

propagation of seismic wave coincides with the longitudinal axis of the bridge. The second group is 

bidirectional pounding and unlike unidirectional pounding, the contact points are unknown before impact 

due to the relative displacement between the contact bodies (Fig. 1.16(b)) and it is defined by 

bidirectional ground motion. It is widely established the longitudinal and transverse axis of the bridge as 

main axis to define the components of the input earthquake. While unidirectional pounding has been 

(a) (b) 

Fig. 1.15. Relative displacements between decks during (a) Northridge earthquake and (b) Kobe 

 earthquake. 

(a) http://nisee.berkeley.edu/jpg/5074_1631_0652/IMG0094.jpg, (b) http://nisee.berkeley.edu/jpg/6317_3071_0960/IMG0004.jpg 
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widely studied by researchers due to its easy implementation in computer programs, bidirectional 

pounding deals with the difficulty that the contact points are unknown a priori and deck rotation and 

friction force are also involved.  In addition, pounding in bridges has not been as studied as pounding in 

buildings. Nevertheless, much of the strides achieved in the field of buildings (base-isolated and fixed-

base buildings) are also used in bridge pounding. Furthermore, unlike unidirectional pounding, the 

potential contact area in bidirectional pounding is a point if there is deck rotation. This contact point is 

unknown because depends on the relative displacements that depends on the input ground motions and 

dynamic properties of the bridge. Fig. 16(a) shows a typical unidirectional pounding between two 

adjacent decks of base-isolated bridge along the longitudinal axis of the bridge while Fig. 16(b) shows a 

typical bidirectional pounding of the same bridge produced by bidirectional earthquake. Note the rotation 

of bearings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plane of impact

Impact

Fig. 1.16. Top view of (a) unidirectional pounding and (b) bidirectional pounding of base-isolated 

 bridge. 

(a) 

(b) 
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1.3.1 Unidirectional Pounding 

There are few studies about unidirectional pounding of bridges unlike unidirectional pounding of 

buildings that is phenomena widely studied. However most of the studies related to buildings can be also 

used for bridges. One of the earliest studies about pounding was conducted by Wolf and Shrikerud (1980) 

modeling pounding using a non-linear 1-Degree Of Freedom (DOF) system and an impact spring-dashpot 

mechanism. In addition, they also studied pounding of typical reactor building by adjacent auxiliary 

building during an earthquake using 2-DOF as well as an aircraft impact. After that, Maison and Kasai 

(1990) conducted the formulation and solution of multi DOF equations of motion for a type of structural 

pounding through the analysis of 15-stores building. In 1992, Anagnostopoulos studied mutual pounding 

effect between two adjacent buildings modeled as lump masses using MDOF and bilinear force-

deformation characteristics for the impact model. 

Pounding in bridges gained attention in 90s by researchers and in 1998 Tanabe et al. were some of 

the first researchers who found pounding as cause of collapse in bridges. At the end of this decade, the 

first studies that tried to explain the pounding phenomena in bridges appeared. On one hand, Pantelides 

and Ma. (1998) conducted a study about the interaction between decks taking account the gap and impact 

parameters. Furthermore, Malhotra (1998) developed a collinear impact between concrete rods with the 

same cross-section but different lengths in order to use these results to formulate a realistic model for 

concrete bridges. This study concluded that (i) seismic pounding generally reduces the pier forces, (ii) 

large impacts forces generated in the superstructure are not transmitted to the bridge columns and 

foundations and (iii) pounding does not increase the longitudinal separation at the hinges. A more 

accurate numerical experiment was carried out by Kim et al. (2000a) modeling 6-span bridge as 3-DOF 

(translational motion of superstructure along the main bridge axis and translational and rotational motion 

of foundations). Kim et al. found pounding to affect the global motion of the bridge and may increase or 

decrease the relative motions between adjacent bents according to the given conditions. Since the 

beginning of pounding studies in bridges, researchers tried to avoid the pounding effect using dissipating 

devices. For example, Kim et al. (2000b), Won et al. (2008) and Abdel Raheem (2009) investigated the 

efficacy of using energy dissipating restrainers at expansion joints for preventing collapse of highway 

bridges. In addition, Jankowski et al. (2000) analyzed several methods of reduction of the negative effects 

of collision induced by pounding. The results showed that the influence of pounding on structural 

response was significant in the longitudinal direction and significally depended on the gap size between 

decks. Further studies indicated that the bridge behavior could be effectively improved by placing hard 

rubber bumpers between segments and by stiff linking those segments. DesRoches and Muthukumar 

(2002) carried out a similar study to determine the effects of frame stiffness ratio, ground motions 

characteristics, frame yielding and restrainers on the pounding response of bridge frames. In addition, a 

semi-active control using dampers were implemented to mitigate the non-linear response of bridges under 

pounding effect by Ruangrassamee and Kawashima (2003). 

During the following years, researchers adopted more complex models in order to investigate the 

unidirectional pounding effect. In 2005, Chouw and Hao studied the effect of spatial variations of ground 

motions with different wave propagation apparent velocities in soft and medium soil as well as the 

influence of the soil structure interaction (SSI) on pounding response of two adjacent bridge frames. A 

response spectra approach was presented by Jankowski (2006) in order to investigate pounding showing 

peaks of pounding forces as functions of the natural structural vibration periods. A more complex 



 

 

16 

 

approach using dimensional analysis was conducted by Dimitrakopoulos et al. (2009) in order to 

determine the dynamic response of several pounding oscillators subjected to pulse-type excitations. 

Hence, the study showed that pounding structures such as colliding buildings or interacting bridge 

segments may be most vulnerable for excitations with frequencies very different from their natural 

frequencies. Moreover, one of the few experimental and analytical studies about pounding in bridges was 

carried out by Guo et al. (2009) to reduce the pounding effect using magnetorheological (MR) dampers. 

Once pounding phenomenon was understood better, researchers started to carry out parametric studies in 

order to determine the effect of those parameters in the bridge response. For example, Bi et al. (2010) 

investigated the minimum total gap that modular expansion joint (MEJ) had have to avoid pounding at 

abutments and between decks and Li et al. (2013) considered the effect of abutment motion on bridge 

pounding response. 

1.3.2 Bidirectional Pounding 

Regarding bidirectional pounding, the number of published studies is much less than unidirectional 

pounding due to the difficulty of modeling. On one hand, Jankowski et al. published one of the first 

studies about bidirectional pounding in 1998. They presented an analysis of pounding between 

superstructure segments of base isolated bridge induced by propagating seismic wave in both directions 

(longitudinal and transverse direction) using high-damping rubber bearing (HDRB) as isolation device. 

Although this study takes account frictional forces, does not consider rotation of decks. 

On the other hand, the 3D friction-model developed by Zhu et al. (2002) can be considered the 

biggest stride in the last ten years because of led the transition from simplified bidirectional models to 

general 3D model that can handle with non-linear materials and geometries. This 3D model included 

Mohr-Coulomb friction and allows overlapping material. In addition, it utilizes Lagrange multiplier 

method to impose restrictions. Nevertheless, it is incapable of dealing with non-linear materials during 

contacts. The authors implemented the model in Dynamic Analysis if Bridge Systems (DABS), computer 

program developed by themselves. Two years later, the same authors (Zhu et al. 2004) utilized DABS in 

order to evaluate the effectiveness of pounding countermeasures and the serviceability of elevated bridges 

subjected to severe ground motions. The peak and residual magnitude of gaps between girders as well as 

maximum shear deformations of bearings were used to determine the serviceability.  

When bidirectional ground motion is considered and the mass center and shear center does not 

coincide, the rotation of decks play a crucial role in the pounding response. In that sense, the work of 

Watanabe and Kawashima (2004) clarify the mechanism of rotation of skewed bridges. Skewed bridges 

show particular structural response as result of poundings of the decks to the substructures and the effect 

of restrainers. As occurred in the case of unidirectional pounding, the influence of the abutment during 

pounding was also studied for bidirectional pounding and therefore the abutment behavior was also 

included in the simulations when the phenomenon. For example, Aviram et al. (2008) evaluated the 

sensibility of bridge seismic response with respect to three different abutment modeling approaches. An 

interesting study about seismic torsional pounding between an asymmetric single story tower and 

neighboring barrier under harmonic ground excitation was carried out by Wei et al. (2009). The numerical 

simulations revealed that torsional pounding tended to be much more complex and unpredictable than 

unidirectional pounding. Unlike Wei et al. (2009) that induced rotational pounding through the offset 
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between mass center and shear center applying harmonic ground excitation along one direction 

(perpendicular to the barrier used for the study), Pant and Wijeyewickrema (2013) proposed a new 

approach to evaluate the pounding response between a building and retaining wall subjected to 

bidirectional earthquake. Hence, Pant and Wijeyewickrema concluded that considering unidirectional 

excitation instead of a bidirectional excitation under strong near-fault motions provides highly 

unconservative estimates of superstructure in some instances. 

As occurred in the unidirectional pounding, Guo et al. (2011) carried out one of the few experiments 

taking account bidirectional pounding. They presented an analytical model and pounding experiment of 

highway bridge, especially focused on the point-to-surface pounding of bridge decks due to torsional 

rotation, when subjected to extreme bidirectional earthquake excitations. The results showed that highway 

bridge was vulnerable to deck rotation and point-to-surface pounding should be considered in the 

structural design to lighten the pounding damage of the highway bridge under strong ground motion 

excitations. 

1.4 Objectives and Scope 

The main objective of this study is to develop and implement a new contact element in order to 

overcome the limitations of the previous studies discussed previously and assess the bridge response 

under strong ground motions when pounding is induced. 

On one hand, a new impact force model is presented based on the latest impact models as well as its 

implementation in the open source FE program called OpenSees. An empirical validation of the proposed 

contact element is carried out using the experiment results provided by Guo et al. (2009). Then, three real 

bridges located in two different locations in California have been designed and modeled in finite elements 

(FE) according to AASHTO LRFD Bridge Design Specifications (2012) as well as Caltrans (2013) in 

order to assess the effect of unidirectional pounding and bidirectional pounding. Moreover, a detailed 

design of lead rubber bearings (LRB) for each bridge is also conducted.  

On the other hand, three dimensional non-linear seismic pounding analysis of the three mentioned 

bridges are performed. Gap size and skew angle of the bridge are used for the parametric study. Design 

Earthquake (DE) and Maximum Considered Earthquake (MCE) are also utilized in the analysis as well as 

the lower bound and upper bound properties of the lead rubber bearings. In total, 2,688 non-linear 

analysis using FEM are performed. 

Finally, the response of bridges with and without pounding as well as both directions is evaluated in 

with the purpose of estimate the effect that pounding in (i) the relative acceleration of decks, (ii) relative 

displacement of decks, (iii) drift of pier, (iv) reactions on the base of pier (shear forces and moments) and 

(v) behavior of lead rubber bearings. 
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1.5 Outline of Thesis 

Chapter 2: A brief introduction of physical nature of impact is given. Different impact models to 

simulate pounding numerically are reviewed. A new biaxial contact element to take account the deck 

rotation is proposed as well as its implementation in OpenSees. In addition, an experimental validation of 

the proposed contact element is also conducted for unidirectional pounding. 

Chapter 3: Three real bridges located in two different locations in California are designed according 

the American and Californian code (AASHTO LRFD BDS and Caltrans). A detailed explanation about 

the lead rubber bearings design is given. Moreover, the scaling of the four ground motions used as 

earthquake input (Kobe, Loma Prieta, Chi-Chi and Landers) for the numerical simulations are also 

presented. 

Chapter 4: Detailed finite element modeling of each part of the bridge and non-linear analysis is 

presented. In addition, a sensitive study is conducted to investigate the suitability of the parameters used 

in the parametric study (gap and skewness). 

Chapter 5: Numerical results of three bridges are presented in terms of effect of unidirectional and 

bidirectional pounding when the gap size and skew angle change. The results are focused on the effect in 

(i) the relative acceleration of decks, (ii) relative displacement of decks, (iii) drift of pier, (iv) reactions on 

the base of pier (shear forces and moments) and (v) behavior of lead rubber bearings. 

Chapter 6: Main conclusions of the present study are presented as well as several recommendations 

for further studies. Moreover, limitations of the proposed contact element are also discussed. 
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Chapter 2 

Impact Force Models 

 

Since Heinrich Hertz presented his theory to the Berlin Physical Society in January 1881 and 

published his classic paper On the contact of elastic bodies in 1882, the study of contact mechanics has 

changed substantially (Johnson 1985). Apparently, impact between two colliding bodies is a simple 

phenomenon that can be seen every day in many different ways such as, for instance, walking (every 

single step is an impact between shoe and ground), playing tennis (between ball and racket), baseball 

(between bat and ball) or football (between foot and ball). However, impact is a very complex 

phenomenon that occurs in a very brief period of time and involves many different variables what make it 

difficult to model mathematically. Therefore, there have been different theories along the years in order to 

simplify the phenomenon and make it easy to handle and useful for engineering applications. 

According to the classic manuals of impact mechanics (Stronge 2000 and Goldsmith 2001), there are 

four different methods to classify collisions depending on the deformations developed during impact, the 

distribution of these deformations in each of the colliding bodies and how these deformations affect the 

period of contact. In general, these four types of analysis for low speed collisions are (i) particle impact, 

(ii) rigid body impact, (iii) transverse impact on flexible bodies and (iv) axial impact on flexible bodies. 

This study is focused on a particular approach of the rigid body impact theory in order to study pounding 

in highway bridges. To do that, the case of direct central impact is used to explain the physical nature of 

impact. 

2.1 Physical Nature of Impact 

The physical nature of impact can be easily explained using the impact between two spherical 

bodies. Fig. 2.1(a, b). shows a typical impact force-local deformation relationship during a direct central 

impact. 

 

The different stages that can be recognized in Fig. 2.1 are detailed with several remarks in Table 2.1. 

The bodies approaching towards each other with certain velocity (stage I) and come in contact (stage II) 

with a relative velocity just before impact 
0 00 red bluev v v   . After this stage, if 0 0v   (assuming 

positive velocity along the direction of red body in stage I and negative otherwise) the contact induces an 

impact force which starts at point A as shown in Fig. 2.1 and depends on the overlapping of bodies 

(indentation)  . This contact force is applied in both colliding bodies at the same time with the same 

magnitude but opposite direction. In addition, the indentation 1  depending on time is increasing during 

the stages II and IV, where it reaches the maximum value max  and 0 0v   (stage IV) marked by point B 

in Fig. 2.1. From stage II to stage IV the indentation is increasing due to relative movement of bodies and 

this phase is known as compression phase. After reaching the point B characterized by the maximum 
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indentation max  and relative velocity equal to zero, the indentation 1  starts to decrease and bodies start 

to separate each other due to relative velocity becomes negative (stage V). However, the path to go from 

stage V to stage VI in Fig. 2.1 is not the same to go from stage II to stage IV due to energy dissipation. 

The phase characterized by stages V and VI where colliding bodies move in opposite directions (from 

point B to point A) is known as restitution phase. The relative velocity at stage VI, just after the impact, 

generally it is not the same than stage II what indicates that some amount of energy is lost during the 

impact. The energy dissipation can be in two principal forms, one is heat/sound and another one is 

permanent indentation. At low velocities of impact, the permanent indentation is negligible (Lankarani 

and Nikravesh 1994). It is quite common to neglect this permanent indentation for seismic pounding 

analysis between RC building therefore this assumption is taken for this study in the case of bridges. 

Therefore, the bodies start to separate to each other at stage VI with 0   (point A in Fig. 2.1). Finally, 

the bodies reach stage VII considering that impact finished. During impact, the area under the F-  curve 

shows the energy dissipation what means that generally the final positions of bodies should not be the 

same than their positions before impact. 

Table 2.1. Representation of impact between two spherical bodies at various stages. 

Stage Illustration Remarks 

I 

 

Bodies approaching. Compression 

phase is imminent. 

II 

 C
o

m
p
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ss

io
n

 

Bodies just before impact. 

Compression phase is 

imminent. 

III 

 C
o

m
p

re
ss
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n
 

General step during 

compression phase 

IV 
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o

m
p
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Maximum indentation during 

compression phase. Restitution 

phase is imminent.  

V 

 R
es

ti
tu
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o

n
 

General step during restitution 

phase 

VI 

 R
es

ti
tu
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o

n
 

Bodies just after impact. 

Restitution phase finished. 

VII 

 

Bodies after separation. 

 

0.1629

0.2743

0.1629

1

max

1
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Energy loss

maxmax1 1 

FF

A A

B
B

Stage II-III

Stage III-IV

Stage IV-V

Stage V-VI

(a) (b) 

According to the foundations of the impact mechanics (Stronge 2000 and Goldsmith 2001), the fact 

that relative velocity of the colliding bodies just after the impact reflects the amount of energy dissipated 

during the process is the basis of several impact force models. This fact allows the use of coefficient of 

restitution to describe the amount of energy dissipated during the impact. Coefficient of restitution is 

defined as the ratio of final to initial relative velocity of bodies, which is essentially the ratio of relative 

velocities at stages VI and II. 

2.2 Numerical Simulation of Impact 

Impact between buildings and highway bridges is a complex process with non-linear damage and 

energy dissipation at the contact area of structures, such as local cracking, crushing, fracturing, friction 

and so on. Therefore, an accurate and rigorous numerical simulation is always difficult. Nevertheless, 

despite this complexity there are different methods and approaches to simplify the phenomenon in order 

to be able to deal with it.  

On one hand, the stereomechanical approach is a macroscopic attempt to model impact according to 

the classical impact theory which assumes that the impact is instantaneous (the impact duration is 

negligibly small) and the laws of momentum and energy conservation are used to determine the post-

impact velocities of colliding bodies (Stronge 2000 , Goldsmith 2001 and Muthukumar and DesRoches 

2005). Stereomechanical approach does not considered transient stress and deformation produced during 

the impact and only initial and final states of colliding bodies are of interest what means that bodies go 

from stage II to stage VI instantly (Fig 2.1(a), (b)). This approach is not widely utilized for pounding 

simulation due to its limitation to simulate the transient nature of impact properly and although the basic 

concept of this method is applicable for pounding problems, it is unsuited in finite element analysis in 

general. However, its formulation is easy because of involves minimum mathematical difficulties. This 

approach is based on coefficient of restitution r  (Eq. 2.1) to simulate the amount of energy dissipated 

Fig. 2.1. Force-deformation relationship for an instance of impact (a) according to compression and 

restitution phases and (b) according to different stages. 
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during the contact. The effect of impact is accounted for by adjusting the velocities of colliding bodies 

after the impact (Stronge 2000) as shown in Eq. (2.2). 
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where 
*
1v  and 

*
2v  are the velocities of colliding bodies with masses 1m  and 2m  after impact while 1v  and 

2v  are the velocities of the same bodies before impact. According to the momentum conservation 

principle, the range of coefficient of restitution is 0 1r  , where 0r   indicates that the velocities of 

both bodies are the same and therefore the 100 % of the energy has been dissipated during the impact 

while 1r   indicates that the relative velocities after impact are exactly the same than before impact what 

means that there is not energy dissipation during the impact. Note that 1v  cannot be equal to 2v  because 

in that case there would not be impact and therefore the coefficient of restitution is not defined. Moreover, 

since this model does not trace the structural response during the pounding and assumes that the impact 

duration is neglected, its application is limited to the analysis of pounding between two structures 

modeled as single-degree-of-freedom (SDOF) systems. In cases when the structures are modeled using 

multi-degrees-of-freedom (MDOF), the structural response within the contact interval is important. This 

is because when structural members rebound after collision, they may come into contact with other 

members. 

On the other hand, the contact element approach is a force-based approach to model the impact 

where contact element is activated when impact occurs (Fig. 2.2(a)). Generally, contact elements are set 

up between two nodes i and j and when gap becomes zero the same pounding forces are applied in both 

nodes but with opposite directions. Unlike stereomechanical approach, contact element approach 

considers the transient nature of impact what make it suitable to be utilized in order to simulation 

pounding in structures with MDOF. Moreover, contact element approach is used most widely for seismic 

pounding simulation due to its clear physical meaning and simple algorithm as well as its implementation 

in commercial and open-source finite element programs (for example Jankowski et al. 1998 and 2000, 

Zhu et al. 2002 and 2004, Abdel Raheem 2009, Guo et al. 2009 and 2011, Polycarpou and Komodromos 

2012 and Pant and Wijeyewickrema 2013). Typically, this approach uses spring elements, damping 

elements or their combination to simulation the pounding forces involved during the impact as well as the 

energy dissipation. Depending on the force-deformation relationship of these elements (springs, 

dashpots… etc), researchers have developed different types of contact elements that can be divided into 

two main categories: linear and non-linear models. 
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Nodes at contact surfacesNodes at contact surfaces
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d

(a) (b) 

2.3 Existing Impact Force Models 

This study is focused on contact element approach because of its range of applicability is higher than 

stereomechanical approach as it has been mentioned before. However, many different contact elements 

have been developed during the last years where the next contact element was the improvement of the 

previous one. Basically, all contact elements developed until now can be divided into linear and non-

linear models. In addition, these contact elements are based on the overlap indentation   between 

colliding bodies what does not have physical explanation. However, it is one of the main parameters used 

to compute the pounding forces between structures when pounding occurs. According to the two types of 

pounding considered in this study, unidirectional and bidirectional pounding, the existing impact force 

models presented from now can be modified to be used in bidirectional pounding too. Nevertheless, from 

the explanation point of view, the existing impact force models are presented for unidirectional pounding.  

 

 

 

 

2.3.1 Linear models 

 

The two basic linear models are linear spring model and Kelvin-Voigt model. These models are the 

simplest models and where used in 1980s by the first time (for example, Wolf and Shrikerud 1980 and 

Anagnostopoulos 1988). 

2.3.1.1 Linear spring model 

Linear spring model can be considered the simplest model and it uses linear spring (Fig. 2.4(a)) to 

simulate the pounding force. Therefore, the impact force F (Eq. 2.3) is directly proportional to the 

indentation   and energy dissipation is not considered. This model is set up between two nodes i and j 

(Fig. 2.2(b)) and the current indentation   is given by Eq. (2.4), 

 F       
    0

0        0 

sk  






,              (2.3) 

 i ju u d    ,               (2.4) 

where sk  is the stiffness of the spring, d  is the distance between nodes at rest (gap) and iu  and ju  are 

the displacement of nodes i and j respectively. Fig 2.4(a) shows this force-indentation relationship. 



d

Fig. 2.2. (a) Simulation of impact as overlap-material and (b) contact element between impacting bodies. 
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2.3.1.2 Kelvin-Voigt model 

Kelvin-Voigt model is defined by linear spring and dashpot in parallel in order to simulate the 

energy dissipation during the contact (Fig. 2.4(b)). The pounding force F between both bodies is given 

by, 

 F       
    0

0                0 

l lk c  



 


,             (2.5) 

where lk  is the stiffness of the spring,   is the indentation defined in Eq. (2.4), lc  is damping coefficient 

and   is the relative velocity of impact defined as, 

 i ju u   ,               (2.6) 

where iu  and ju  are the relative velocities of nodes i and j respectively. Note that the overdot denotes the 

derivation of the variable respect to the time. A typical impact force is shown in Fig. 2.4(b). The damping 

coefficient lc  can be expressed in terms of the coefficient of restitution r to indicate the amount of energy 

dissipated during the impact. Different researchers proposed an expression for the damping coefficient in 

the Kelvin-Voigt model. For example, Anagnostopoulos (1988 and 2004) proposed an expression of 

damping coefficient lc  that was used by other researchers such as Zhu et al. (2002), Jankowski (2005) 

and Muthukumar and DesRoches (2006). Hence, the damping coefficient lc  is related to coefficient of 

restitution r by equating the energy losses during the impact, 

 1 2

1 2

2l l

m m
c k

m m



,              (2.7) 

where lk  is taken as axial stiffness of colliding bodies in absence of experimental results and   is the 

damping ratio defined as follows (Fig. 2.3), 
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The disadvantage of Kelvin-Voigt model is that the viscous component is active with the same 

damping coefficient during the entire collision. This results in uniform dissipation during approach and 

restitution phases which is not consistent with realty (Goldsmith 2001). In addition, this model exhibits an 

initial jump of the impact forces upon contact due to the damping term. Therefore, these damping forces 

cause negative impact forces that pull the impacting bodies together during the restitution phase instead of 

pushing them apart. Furthermore, another limitation of the present Kelvin-Voigt model is related with 

relationship between r and  . For a perfect plastic impact ( 0r  ),   should tend to infinity and for a 

perfectly elastic impact ( 1r  ),   should be equal to zero. However, when 0r  , 1   (Eq. 2.8). 



 

 

25 

 

In order to avoid these drawbacks associated with Kelvin-Voigt model, at least four different 

modifications have been proposed until now by (a) Komodromos et al. (2007), (b) Mahmoud (2008), (c) 

Kun et al. (2009a) and (d) Pant and Wijeyewickrema (2010). 

a) Komodromos et al. (2007) proposed a modification of Kelvin-Voigt model (Fig. 2.4(c)) to 

eliminate the tensile forces during detachment removing the spring and dashpot as soon as 

the impact forces become zero in the restitution phase (Eq. 2.9). The relationship between 

damping coefficient lc  and damping ratio   is the same as Anagnostopoulos (Eq. 2.7, 2.8). 

Hence, the main drawback of Kelvin-Voigt model is overcome. Nevertheless, there is still a 

permanent indentation when impact forces are equal to zero (Fig. 2.4(c)) and sudden jump of 

the impact force at the beginning of impact ( 0  ). Therefore, allowing for the permanent 

indentation, the relationship between   and r should be changed. 

 

 F       
    0

0                0 

l lk c F

F

  


            (2.9) 

 

b) Mahmoud (2008) enhanced the work of Komodromos et al. (2007) eliminating the sticky 

tensile force just before separation of the colliding bodies (Eq. 2.10), one of the major 

shortcomings of this model and reassessed the relationship between   and r (Eq. 2.11) 

according to stereomechanical theory (Stronge 2000 and Goldsmith 2001). To do that, they 

considered that the major part of the energy is dissipated during the compression phase 

therefore dashpot is activated this phase and removed during restitution phase. However, 

after this improvement respect to the Komodromos et al. (2007) modification, the sudden 

jump at the beginning of impact is still in the model. 
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c) Kun et al. (2009) proposed a linear relationship respect to the indentation between damping 

ratio   and damping coefficient lc  (Eq. 2.12) in order to avoid the sudden jump at the 

beginning of impact. The determination of   was done according to energy loss of the 

stereomechanical model. However the dashpot is activated during the whole impact and this 

fact does not avoid the sticky forces just after impact in all the cases. In Eq. (2.12) the 

relative velocity just before impact is denoted as 0 . 
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d) Pant and Wijeyewickrema (2010) presented a linear spring and dashpot in parallel (Fig. 

2.4(d)) based on the assumption that the most part of the energy is dissipated during the 

compression phase (Eq. 2.13). The spring is activated throughout the contact (compression 

and restitution phases) while dashpot is only activated during the compression phase. Unlike 

the modification proposed by Kun et al. (2009a), the removal of dashpot from the entire 

restitution phase and the linear variation of damping coefficient lc  respect to the indentation 

 , always ensures the elimination of tensile impact force and sudden jump at the beginning 

of impact. To do that, the authors reevaluated the relationship between the damping ratio   

and damping coefficient lc  (Eq. 2.14) using the stereomechanical model according to these 

assumptions. 
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Different damping ratios   against coefficient of restitution r are compared in Fig. 2.3. Note the 

progressive variation of damping ratios in order to model the energy dissipation properly. Although the 

ratio 0lk   is bigger than one generally, in the cases of Kun et al. (2009) and Pant and Wijeyewickrema 

(2010), this ratio has been taken equal to 1 to be able to draw the curves. 
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Fig. 2.3. Comparison between damping ratios for linear models developed by different researchers. 
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2.3.2 Non-linear models 

 

The main non-linear models are (a) Hertz model, (b) Hertz model with non-linear dashpot (known 

also as Hertz damping model) and (c) non-linear viscoelastic model and are characterized by non-linear 

relationship between indentation and pounding force. 

2.3.2.1 Hertz model 

Hertz model is similar to linear spring model (Fig. 2.6(a)) unlike this model has non-linear spring to 

model pounding forces (Eq. 2.15). The use of Hertz contact law has an intuitive appeal in modeling 

pounding, since one would expect the contact area between the colliding bodies to increase as to the 

contact force increases. The impact force F is defined as, 
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Fig. 2.4. Typical force-indentation relationship of (a) linear spring model, (b) Kelvin-Voigt model, 

 modification of Kelvin-Voigt model by (c) Komodromos et al. (2007) and (d) Pant and 

 Wijeyewickrema (2010). 
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where hk  is the stiffness of the non-linear spring defined by power n that typically is taken as 3 2  and   

is the indentation defined in Eq. (2.4). As in the linear spring model, energy dissipation does not appear in 

this model. 

2.3.2.2 Hertz damping model 

Hertz damping model can be considered the improved version of Hertz model to be able to represent 

the energy dissipation (Fig. 2.6(b)). This enhanced Hertz model is used also in other fields of study such 

as robotics and multi-body systems (Lankaraniand and Nikravesh 1990). Muthukumar and DesRoches 

(2006) were the first researchers who utilized this method to study pounding simulation in buildings. The 

impact force F given by Hertz damping model is: 
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where hk  is the stiffness of the non-linear spring, n is typically taken as 3 2  and hc  is the non-linear 

damping coefficient proposed by Lankarani and Nikravesh (1994) and defined as follows (Fig. 2.5), 
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According to classical impact theory, 1r   deals with the case of a perfect elastic impact and 0r   

deals with a perfect plastic impact what indicate that for a perfect elastic impact ( 1r  ) the damping ratio 

   should be equal to zero and in the case of perfect plastic impact ( 0r  ), the damping ratio    should 

tend to infinite. However, the results obtained from Eq. (2.17) are non consistent with the classic impact 

theory because of when 0r   (perfect plastic impact), the damping ratio    does not tend to infinite (Eq. 

2.18). This disagreement with the physical nature of pounding indicates that to use Eq. (2.17) is not 

accurate to evaluate impact forces. 
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Therefore, in order to avoid this shortcoming Kun et al. (2009b) modified the damping ratio    of 

the Hertz damping model as follows (Fig. 2.5), 
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where the determination of the non-linear stiffness of the spring hk  is not obvious as Guo et al. (2012) 

concluded after doing a comparison between the theoretical value of hk  and its experimental value. 
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2.3.2.3 Non-linear viscoelastic model 

Jankowski (2005) proposed a non-linear viscoelastic model based on Hertz’s contact law, including a 

non-linear dashpot in parallel with a non-linear spring during the compression phase while during the 

restitution phase the energy dissipation is neglected. The pounding force F is defined as, 

 F       

    0,  0   (Compression phase)

             0,  0   (Restitution phase) 

0                   0

n
h h

n
h

k c

k

   

  



  

 



,        (2.20) 

where hk  is the stiffness of the non-linear spring, n is typically taken as 3 2  and hc  is the non-linear 

damping coefficient defined by Jankowski (2005) as follows, 

 1 2

1 2

2h h

m m
c k

m m
 


,            (2.21) 

where 1m  and 2m  are the masses of the colliding bodies as defined in Eq. (2.7) and   is the damping 

ratio defined by Jankowski (2006). Nevertheless, Jankowski (2006) proposed two different values of   

depending on the approximation function used to figure out   (Fig. 2.5). The first and second approaches 

of the damping ratio   are 1  and 2  respectively defined in Eq. (2.22). However, according to the 

numerical experiments carried out by Jankowski (2006), 2  matches much better with these results. 
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        (2.22) 

This model overcomes the drawbacks of Kelvin-Voigt model such as sudden jump and tensile forces 

at the beginning of impact. In addition, this impact model can produce more accurate results than linear 

models due to simulate the non-linear behavior of impact. However, the impact force-time curve obtained 

from this model does not vary smoothly between the approach and restitution phases. Moreover, as 

mentioned before, the determination of the stiffness of the non-linear spring hk  and therefore the damping 

coefficient hc , is a source of discussions among researchers when there are not experimental results as 

usual occurs (Guo et al. 2012). 

Linear models are specially used to investigate the pounding response of structures due to its easy 

implementation in commercial and open-source programs as well as the evaluation of the parameters 

involved in those models. Hence, Kelvin-Voigt model is the most utilized linear model to study pounding 

in structures. Therefore, a modification of Kelvin-Voigt model based on the model proposed by Pant and 

Wijeyewickrema (2010) is presented. 
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As mentioned in section 1.3.2, most of the studies about pounding in bridges focused on 

unidirectional pounding due to contact points are known before contact, its easy formulation and 

implementation in FE programs and the fact that frictional forces are not involved. Nonetheless, 

unidirectional pounding cannot catch a real pounding response of bridge under any condition because of 

assumes that the ground motion propagates along bridge axis and this is not always true generally. Some 

researchers such as Zhu et al. (2002) and Guo et al. (2011) worked on bidirectional pounding in bridges. 

On one hand, in the case of Zhu et al. (2002), they developed a biaxial contact element considering 

friction and implemented it in a general-purpose analysis program DABS that can take into account non-

linear response of the structure. Nevertheless, this proposed contact element cannot handle with non-

linearities material during the contact. On the other hand, Guo et al. (2011) proposed a biaxial contact 

element quite similar to the element of Zhu et al. (2002) and used it to formulate system of equations of 

motions assuming 3-DOF per deck and linear elastic response. Nonetheless, the contact elements 

developes by Zhu et al. (2002) and Guo et al. (2011) use a constant damping coefficient to simulate 
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Fig. 2.5. Comparison between damping ratios for non-linear models developed by different researchers 

 assuming  equal to one. 

Fig. 2.6. Typical force-indentation relationship of (a) Hertz model and (b) Hertz damping model. 
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energy dissipation that is known to produce unrealistic tensile forces between impacting bodies just 

before separation. This drawback was overcome, in the case of bidirectional pounding in buildings, by 

Pant and Wijeyewickrema (2013) using a modified Kelvin-Voigt model (Fig. 2.4(d)) in 2D which 

incorporates a variable damping coefficient c. This bidirectional impact model proposed by Pant and 

Wijeyewickrema in 2013 is an extension of the modified Kelvin-Voigt model for unidirectional pounding 

proposed by themselves in 2010. However, this bidirectional model was developed to be used between 

buildings and retaining walls so it cannot handle with impact bodies when both are moving at the same 

time. Therefore, a new contact element is needed for bridges in order to overcome this limitation and be 

able to model properly the deck behaviors under bidirectional ground motions. 

2.4 Proposed Impact Force Model 

A new biaxial contact element based on the element proposed by Pant and Wijeyewickrema (2013) 

is presented in order to overcome the drawbacks mentioned before. This proposed contact element 

assumes that the major part of the energy dissipation occurs during the compression phase along both 

directions (normal and tangential directions) as well as friction forces along tangential direction. To this 

end, the new biaxial contact element is presented by a linear spring and non-linear dashpot in parallel 

along normal and tangential directions and, in addition, it considers friction in tangential direction. The 

dashpot is only used during the compression phase in order to avoid the appearance of tensile forces 

between impacting bodies just before separation. In addition, the friction is governed by the well known 

Mohr-Coulomb’s law. Decks are modeled as shown in Fig. 2.7 and defined by four nodes per deck: 1L , 

1D , 2D , 2L  for deck 1 and 1R , 2R , 2A , 1A  for deck 2, respectively.  

 

 

 

 

 

 

 

Each deck has 3-DOF as shown in Fig. 2.7 where ix  and iy  are the displacements of mass center of 

deck i along the global axes X  and Y , respectively. Furthermore, i  is the rigid rotation of deck i (for 

1,2i  ). Therefore, the displacement of any point belonging decks can be known given these three 

coordinates ( ix , iy  and i ). The lengths of deck 1 and 2 are 2a  and 2c  respectively while the common 
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Fig. 2.7. Model for decks. 
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width is 2b . The gap at rest between both decks and deck-abutment is d  and is measured as the initial 

distance between adjacent decks along X -axis as shown Fig. 2.7. In addition, it is common to assume X

-axis as longitudinal axis along bridge length at initial time.  

The assumptions of the proposed biaxial contact element are: 

I. Both decks are considered as rigid bodies in-plane therefore the problem is governed by 3-

DOF per deck. 

II. Decks must have polygonal shape defined by straight lines between nodes. 

III. The initial gap d  is defined between two parallel decks. 

IV. Only the corner nodes of the attack deck ( 1L , 2L  and 1R , 2R ) can impact the target deck. 

V. Friction is only involved along tangential direction. 

VI. Vertical component Z  is not considered. 

The assumption I indicates that there are not deformations of decks after an impact. Although this 

new contact element allows to change the deck shape in each iteration, it is not a realistic response of 

decks under seismic excitations (assumption II). Generally bridge decks are modeled using four straight 

lines per deck (Fig. 2.7), however for curved bridges may be interesting to be able to model a curved deck 

with a polygonal line to match better the shape of deck to the realty. Although the gap distance changes 

during the earthquake event, the initial gap d  must be defined when both decks are parallel as usual in 

common engineering practice (assumption III). As consequence of assumption I, assumption IV is quite 

obvious, however, it is necessary to assume it during the implementation of the model in order to avoid 

numerical errors. Finally, friction forces are only possible along tangential direction of decks and vertical 

component Z  is neglected in the mathematical model. It only considers bidirectional motion within 

X Y  plane. Linear springs and non-linear dashpots in both direction as well as friction along tangential 

direction are depicted in Fig. 2.8.  

 

 

 

 

 

Where Nk  and Tk  are the normal impact stiffness in normal and tangential direction of the linear 

springs; Nc  and Tc  are the damping coefficient of the non-linear dashpots in normal and tangential 

directions and   is the coefficient of friction along tangential direction.  

Fig. 2.8. Sketch of the proposed contact element with linear springs and non-linear dashpots in both 

 directions and friction in tangential direction. 
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2.4.1 Mathematical formulation 

 

The formulation of the proposed contact element is based on the contact element developed by Pant 

and Wijeyewickrema (2013). When impact occurs, the modulus of the pounding forces in normal 

direction NF  (along local x-axis) and tangential direction TF  (along local y-axis) are given as, 

 NF      
,      (compression phase)

,                       (restitution phase)

N N

N

k c

k

  



N N

N

u u

u
,        (2.23) 

 TF      
,        

,                          

T T s

k s

k c 

 

   



T T T N

N T N

u u F F

F F F
,         (2.24) 

where  Nu  and  Tu  are the modulus of the relative displacement at the contact points in the normal 

and tangential directions defined by the normalized vectors in  and iv  (Eq. 2.25 and 2.26) respectively as 

depicted in Fig. 2.9. The coefficients of static and kinetic friction are s  and k , respectively. The 

relative displacement is evaluated as   2 1u u u  where iu  is the displacement of contact point that 

belongs to deck i (for 1,  2i  ). The overdot denotes the derivation respect to the time. Therefore,  Nu  

and  Tu  (Eq. 2.27) are the relative velocities between the contact points between attack and target deck. 
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Where kx  and ky  are the global coordinates (respect to the global reference system XOY) of node k 

(for 1k L , 2L , 1R  and 2R ). The normal and tangential components of the relative displacement u  (Eq. 

2.27) and the relative velocity u  (Eq. 2.28) respect to the deck i (defined by in ) are computed using the 

scalar product respect to the in  and then applying the Pythagoras' theorem (Fig. 2.9), 
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where   and   are the angles between in  and u  as well as in  and u , respectively. Note that the x 

component of 1n  and 2n  are always positive and negative respectively while  90,  90i    degrees. 

This is a reasonable enough hypothesis in the case of bridges because it would not be logic to have deck 

rotations about up to few degrees. In addition, the normalized normal vectors in  are defined to be always 

outwards respecting to the deck i. Fig 2.9 represents the relative displacements of two different periods of 

time (contact point 1 and 2) when the target deck is deck 1 and attack deck is deck 2 (Fig. 2.9(a)) and the 

when the target deck is deck 2 and attack deck is deck 1 (Fig. 2.9(b)). Note that by analogy, Fig. 2.9 can 

be also used to depict the relative velocities in both local directions defined by in  and iv . 

 

The damping coefficients Nc  and Tc  are the damping coefficients respecting normal and tangential 

direction, respectively. According to Pant and Wijeyewickrema (2013), the damping coefficients are 

defined as, 
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where  N0u  and  T0u  are the modulus of the relative velocities between contact points just before the 

impact along normal and tangential directions, respectively. Moreover, the coefficient of restitutions in 

normal and tangential direction are Nr  and Tr , respectively. Hence, once the mathematical formulation is 

proposed and the parameters involved in the contact element are defined, it is necessary to determine 
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Fig. 2.9. Relative displacements along local normal ( ) and local tangential ( ) direction when (a) 

 deck 1 is target deck and deck 2 is attack deck and when (b) deck 2 is target deck and deck 1 is 

 attack deck. 
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what occurs when there is impact and when impact takes place. Therefore, when there is impact,  normal 

and tangential pounding forces (Eq. 2.23 and 2.24) are applied between decks with the same magnitude 

and opposite directions as depicted in Fig. 2.10. The directions of the pounding forces are given by the 

normal ( in ) and tangential ( iv ) vectors of the deck which receives the impact (target deck).  

 

Regarding when impact occurs, on one hand there are two potential contact nodes per deck. These 

potential contact nodes are the only nodes that may touch the opposite deck as explained in assumption 

IV. In the case of deck 1, the potential contact nodes that may touch deck 2 are 1L  and 2L  while the 

potential contact nodes of deck 2 are 1R  and 2R . Therefore, only four different contacts are allowed as 

shown in Fig. 2.11. 
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Fig. 2.10. (a) Representation of pounding when L2 is the attack node and deck 2 is the target deck 

 showing (b) the normal ( ) and tangential ( ) forces involved during the impact. 
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Fig. 2.11. Contact between (a)  and deck 2, (b)  and deck 1, (c)  and deck 2 and (d)  and deck 1. 
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Indentation region

The overlap area (known also as indentation region) that can be noticed in Fig. 11 when impact 

occurs does not have physical meaning but it is used for the contact elements to compute the pounding 

forces (Fig. 2.12). The area of the indentation region can be used to formulate different equations to 

compute the pounding forces as Polycarpou and Komodromos (2012) proposed. However, this is not the 

purpose of this study (see Polycarpou et al. 2013). 

 

 

 

 

 

 

 

On the other hand, in order to detect the contact it is needed to define the contact conditions. Hence, 

the contact conditions for each type of contact depicted in Fig. 2.11 (a, b, c and d) are given by Eq. (2.30 

a, b, c and d), respectively. Therefore, considering these four possibilities of contact between decks shown 

in Fig. 2.11, the contact occurs when attack node belongs to the inner region of the target deck defined by 

the closest two edges to the point of impact as depicted in Fig. 2.13. 
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Where 
jm  (for 1,6j  ) are the slopes of the straight lines defined by corner nodes 1L , 1D , 2D , 2L , 

1R , 2R , 2A  and 1A  (Fig. 2.7) linked two by two and given in Eq. (2.31). Note that the denominators cannot 

become equal to zero due to how the nodes are located as well as the assumption that the both rotations 

would be  90,  90i    as mentioned according to the common engineering practice. Furthermore, note 

that it is considered contact since the attack node belong to the edge of the target deck ( ,    ) and not 

only when there is overlap material (<, >). 
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Fig. 2.12. Detail of a typical contact between node  and deck 2. 
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When there is contact, the displacement and velocity of the attack node are always known in each 

time step because of the corner nodes of decks are inputs for the contact element. However, the contact 

point ( Cx ) that belongs to the target deck does not coincide with any corner deck generally. Therefore, a 

linear interpolation is needed in order to figure out the displacement and velocity of the contact point 

belonging to the target deck (Fig. 2.14). In addition, despite this target contact point ( Cx ) can be only 

defined at the instant of time of contact exactly due to after the first contact the indentation region starts 

growing and the initial contact point disappears, it is considered that remains the same point during the 

whole impact as depicted in Fig. 2.15. This initial contact point is defined by the distance Cl  (Eq. 2.32) 

taken as the straight distance from the node 2L  and the contact point given for deck 1 and the distance 

from 2R  and contact point for deck 2 respectively given by Eq. 2.30. This distance Cl  remains constant 

during the contact however it updates for each different impact. According to Cl  and using a linear 

interpolation, the displacement and velocity of the target contact point is computed (Eq. 2.33). 
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Fig. 2.13. Example of pounding when attack node is  and deck 2 is the target deck showing the 

 equations of the straight lines that define both decks. 
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Fig. 2.14. Illustration of linear interpolation for deck 1 (target deck) when  is attack node where (a) it 

 represents all components of displacements, (b) x components and (c) y components of 

 displacements. 

Hence, when impact occurs between deck 2 (attack deck) and deck 1 (target deck), the displacements 

( Cu ) and velocities ( Cu ) of the contact point Cx  are given by Eq. (2.33) while when impact occurs 

between deck 1 (attack deck) and deck 2 (target deck), the displacements and velocities of Cx  are given 

by Eq. (2.34). By analogy, Fig. 2.14 can be also used to plot interpolated velocities of contact point Cx . 
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Fig. 2.15. Representation of a typical impact between deck 1 (attack deck) and deck 2 (target deck) at 

 different time steps. 
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Note that the contact point characterized by Eq. 2.32 remains the same during the whole impact in 

Fig. 2.15. Nevertheless, the displacements 1u  and 2u  as well as the velocities 1u  and 2u  change at each 

time step 
 n

t t  because of the pounding forces applied in those nodes (attack and target node), where N 

is the number of iterations computed during the whole simulation. The displacements iu  and velocities 

iu  are calculated at each time step as the difference in global coordinates between the current coordinates 

of the attack and target nodes at time step 
 1n

t


 and the previous one at 
 n

t . 
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     (2.35) 

Hence, the relative displacement and velocity, by analogy, are computed as (Fig. 2.16), 
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    (2.36) 

where C is the contact point that can belong to deck 1 or deck 2 depending on the type of contact 

explained in Fig. 2.11. Note that nodes p and s cannot be contact nodes at the same time because it is not 

allowed in the code. Therefore, when there is overlap between attack nodes the code removes the 

pounding forces of one of them and only consider one attack node in order to avoid to apply the pounding 

forces twice as is exposed in section 2.4.2. In addition, the global coordinates of nodes 1 2 1 2,  ,  ,  L L R R  as 

well as its velocities are known in each time step and provided by the code. However, the global 

coordinates and velocities of the contact point are given by Eq. (2.33) and Eq. (2.34) as mentioned before.  
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Regarding the phases of contact, unlike the case of unidirectional pounding where the relative 

velocity along direction of earthquake is used directly to know the type of phase of the contact, in the case 

of bidirectional pounding this process is not obvious. On one hand, the compression and restitution phase 

must be defined in a different way for both decks due to each deck is defined by a normalized normal 

vector in  that changes in each time step and are different by definition because the x component of 1n  is 

always positive while the x component of 2n  is always negative (Eq. 2.25). On the other hand, the 

direction of the relative velocity must be computed in order to detect in what type of phase the contact is. 

To this end, the scalar product between the relative velocity u  and normalized normal vector in  are 

used. Hence, this study proposes the following phase condition as shown in Table 2.2. 

Table 2.2. Conditions for the identification of compression and restitution phases depending on the attack 

 deck. 

Attack deck Deck 1 Deck 2 

Compression phase 0  2u n  0  1u n  

Restitution phase 0  2u n  0  1u n  

 

According to the definition of 1n , 2n  and   2 1u u u  given in Eq. (2.25) and Eq. (2.36) 

respectively, two different cases are considered depending on the attack deck. In the case of deck 1 as 

attack deck, the compression phase is considered when the normal component of the relative velocity 

 Nu  is aligned with 2n  and restitution phase otherwise (Fig. 2.17(a), (c)). In the case of deck 2 as attack 

deck, the restitution phase is considered when the normal component of the relative velocity  Nu  is 

either aligned with 1n  or equal to zero and compression phase otherwise (Fig. 2.17(b), (d)). 
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Fig. 2.17. (a) Compression and (b) restitution phase when attack deck is deck 1 and 2 respectively. (c) 

 Restitution and (d) compression phase when attack deck is deck 1 and 2 respectively. 
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Sign convention of normal pounding force NF  is defined by the normalized normal vector in  of 

target deck while sign convention of tangential pounding force TF  is defined by the relative  Tu  and iv . 

On one hand, the normal pounding force NF  is always a compression force due to the nature of impact 

and therefore opposite to the onwards normal vectors (Fig. 2.10) as defined in Eq. (2.37) and according to 

the normal vector of the target deck. On the other hand, the tangential pounding force TF  depends on the 

attack deck therefore there are two different sign conditions following the same analogy of the 

identification of the phase (Fig. 2.17). However, TF  always is aligned with iv  of the target deck. The 

direction of the tangential pounding force TF  at attack node is given by Eq. (2.38). By equilibrium, the 

normal and tangential pounding forces have the same value and opposite direction in the target deck. 

Normal pounding force NF  and tangential pounding force TF  in Eq. (2.37) and Eq. (2.38) are defined for 

the attack node where the modulus of NF  and TF  are given in Eq. (2.23) and Eq. (2.24), respectively. 

         Attack node,     Target deckN iF i   NF n         (2.37) 

 
1 2

1 2

           0           Attack node  and  (deck 1)

           0           Attack node  and  (deck 2)

T

T

F L L

F R R

   

   

T 2 2

T 1 1

F v u v

F v u v
      (2.38) 

In order to clarify the sign convention, Fig. 2.18 presents two typical impacts of the four potential 

contact nodes 1 2 1 2,  ,  ,  L L R R . It is important to note that the Eq. (2.37) and Eq. (2.38) are the pounding 

forces applied in the attack node and therefore these forces have opposite sign in the target deck. 
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Fig. 2.18. Sign convention when (a) deck 1 is attack deck and (b) when deck 2 is attack deck. 
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1.2373

3.7027

3.7782

1.3046

As mentioned in section 1.3.2, the contact point in the target deck during bidirectional pounding is 

unknown before the impact. In addition, the decks are modeled by four corner nodes per deck as depicted 

in Fig. 2.7 therefore, the probability that the contact point does not coincide with one of the input points is 

very high. Taking into account that in FEM the forces only can be applied in a given node, it is necessary 

to remove the pounding forces from its original location ( ,  O O
N TF F ) to an input node ( ,N TF  F ). To his end, 

it is assumed that the distance ph  (for 1,  2p  ) that defines the contact point and depends on the attack 

node (Fig. 2.19) is much smaller than the deck width 2b  ( 2ph b ). Considering that there are two sets 

of potential contact nodes such as upper nodes ( 1 2,  L L ) and bottom nodes ( 1 2,  R R ), these are linked two 

by two between iL  and iR  (Fig. 2.19). Hence,  

 When node 1L  is attack node the pounding forces of the target deck are relocated at node 1R  

(Fig 2.19(a)). 

 When node 2L  is attack node the pounding forces of the target deck are relocated at node 2R  

(Fig. 2.19(b)). 

 When node 1 20  is attack node the pounding forces of the target deck are relocated at node 

1L  (Fig. 2.19(c)). 

 When node 2R  is attack node the pounding forces of the target deck are relocated at node 2L  

(Fig. 2.19(d)).  

The distance ph  is defined as 1 2 Ch b l   when 1L  and 1R  are attack nodes and as 2 Ch l  when 2L  

and 2R  are attack nodes where Cl  is the distance from the bottom nodes to the contact point (Eq. 2.32). 
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Fig. 2.19. Relocation of pounding forces when the attack node is (a) node , (b) node , (c) node  

 and (d) node . 
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In fact, this assumption ( 2ph b ) only affects the normal forces in terms of an increment of 

moment M  applied in the mass center of the target deck (Eq. 2.39). However, since ph  is generally few 

centimeters in the worse scenario (under strong ground motion and both deck vibrating completely out-of-

phase), a deck width of a common highway bridge measures at least several meters depending on the 

number of lanes (see Fig. 1.15(b)) as example). Therefore, there is at least one order of magnitude less. 

This fact as well as the short period of time of the impact and the high torsional stiffness of the bearings 

(see section 3.2) legitimize this assumption. In addition, this assumption was taken in order to simplify 

the implementation of the contact element as explained in section 2.4.2. 

 
pM h  NF              (2.39) 

Moreover, this increment of the moment M  is directly proportional to the normal pounding force 

that depends on the normal impact stiffness Nk . According to Guo et al. (2012), the uncertainty about Nk  

is very high and only can be assessed with certain reliability after carrying out several experiments in the 

laboratory. These kind of pounding experiments are completely unusual in the common engineering 

practice. Pounding forces are only relocated in one node because of implementation reasons. On one 

hand, the whole behavior of both decks during the impact can be modeled through four potential contact 

nodes ( 1 2 1 2,  ,  ,  L L R R ) and only these nodes receive the pounding forces as mentioned before. On the 

other hand, the proposed contact element was defined to set up between two different nodes i and j as 

depicted in Fig. 2.8. Therefore, four different contact elements are used in order to model all the possible 

pounding forces easily. The contact elements are set up between 1L  and 1R , 1R  and 1L , 2L  and 2R  as 

well as between 2R  and 2L  using the local x and y-axis shown in Fig. 2.20(a), (b), (c) and (d) respectively, 

where the red rectangle indicates the attack node.  
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Fig. 2.20. Definition and location of the local axis x and y for (a) contact element 1, (b) contact element 2, 

 (c) contact element 3 and (d) contact element 4 indicating the attack node with a red rectangle. 
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Fig. 2.21. Console of OpenSees. 

2.4.2 Numerical implementation 

 

The new contact element known as NCM3D (New Contact Material 3-Dimentional) has been 

implemented in OpenSees (Open System for Earthquake Engineering Simulation). OpenSees is an object-

oriented open-source software framework developed at University of California, Berkeley (OpenSees 

2014) and is based on Finite Element Method (FEM). It has modular structure where each modulus can be  

an uniaxial materials, ND materials, elements, sections… etc. Opensees was selected as software to 

implement NCM3D because of its powerful tools for non-linear analysis earthquake and because it is 

open-source framework. On one hand, unlike SAP 2000, ABAQUS or ANSYS, OpenSees does not 

possess GUI (Graphical User Interface) as shown in Fig. 2.21 and the scripts simulations have to be 

programmed in TCL (Tool Command Language) and then running them into OpenSees directly. On the 

one hand, OpenSees allows the user to implement a new element using different programming languages 

such as C, FORTRAN or C++. In this study, C++ was chosen as programming language due to its object-

oriented capabilities to deal with real time problems.  

 

 

 

 

 

 

 

Microsoft Visual Studio Ultimate 2010 is the IDE (Integrated Development Environment) used to 

implement NCM3D in OpenSees. In object-oriented programming, the concepts of Class and Object are 

very important. A Class is a user-defined data type and an object is an instance of a type (Overland 2005). 

Therefore, in order to implement NCM3D, it is necessary to create a new element class for it. This new 

class can be divided into two main files, the file with .h extension and the file with .cpp extension. Both 

files must have the same name than the new class, therefore they are called NCM3D.h and NCM3D.cpp. 

Hence, NCM3D.h defines the class and the variables used throughout the whole class and NCM3D.cpp 

implements the algorithms that characterized the new class. Both files, NCM3D.h and NCM3D.cpp, are 

given in Appendix A. Here NCM3D.cpp is discussed in detail. 

Taking into account that the proposed contact element NCM3D can only be set up between two 

nodes (Fig. 2.8 ) and there are four potential contact nodes when two decks are modeled as shown in Fig. 

2.7, the source code of NCM3D is divided into four different parts depending on the attack node that 

wants to model (Fig. 2.20) known as WID j  (for 1,4j  ), where j is the contact element that defines. 
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The first part of the code is characterized by the attack node 1L  (Fig. 2.20(a)) and known as 1WID  . The 

second part of the code is characterized by attack node 1R  (Fig. 2.20(b)) and known as 2WID  . The 

third part of the code is characterized by attack node 2L  (Fig. 2.20(c)) and known as 3WID  . Finally, 

the fourth part of the code is characterized by attack node 2R  (Fig. 2.20(d)). The differences between 

these different parts of the code are minimum as explained in section 2.4.1, being the main difference the 

contact condition for each WID  defined by Eq. (2.30). 
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The basic flowchart of the main part of the code for each contact element at each time step is as 

follows, 

 

 

 

 

 

 

 

 

 

if (WID == 1) { 
 

(Main code of contact element 1) 

 

} else if (WID == 2) { 
 

(Main code of contact element 2) 

 

} else if (WID == 3) { 
 

(Main code of contact element 3) 

 

} else if (WID == 4) { 
 

(Main code of contact element 4) 
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 // NORMAL OF DECK 1  
     
double NormN1 = sqrt(pow((xL(0)-xL2(0))/(xL(1)-xL2(1)),2.0)+1); 
  
  n1(0) = 1/NormN1; 
  n1(1) = -((xL(0)-xL2(0))/(xL(1)-xL2(1)))/NormN1; 
 
 // NORMAL OF DECK 2 
 
double NormN2 = sqrt(pow((xR(0)-xR2(0))/(xR(1)-xR2(1)),2.0)+1); 
  
        n2(0) = -1/NormN2; 
  n2(1) = (xR(0)-xR2(0))/(xR(1)-xR2(1))/NormN2; 
 
 // TANGENTIAL Vector of DECK 1 (From L2 to L) 
 
double NormV1 = sqrt(pow(xL(0)-xL2(0),2.0)+pow(xL(1)-xL2(1),2.0)); 
 
  v1(0) = (xL(0)-xL2(0))/NormV1; 
  v1(1) = (xL(1)-xL2(1))/NormV1; 
 
 // TANGENTIAL Vector of DECK 2 (From R2 to R) 
 
double NormV2 = sqrt(pow(xR(0)-xR2(0),2.0)+pow(xR(1)-xR2(1),2.0)); 
 
  v2(0) = (xR(0)-xR2(0))/NormV2; 
  v2(1) = (xR(1)-xR2(1))/NormV2; 
 
        // Defining parameters 
     
        // Slopes of the straight lines 
     
        m1 = v1(0)/v1(1); 
        m2 = v2(0)/v2(1); 
  m3 = (xL(1)-xD(1))/(xL(0)-xD(0)); 
  m4 = (xL2(1)-xD2(1))/(xL2(0)-xD2(0)); 
  m5 = (xR(1)-xA(1))/(xR(0)-xA(0)); 
  m6 = (xR2(1)-xA2(1))/(xR2(0)-xA2(0)); 

 

I. Step I. The normalized normal and tangential vectors ( ,  i in v ) are computed (Eq. 2.25 and Eq. 

2.26) as well as the six slopes km  (Eq. 2.31) in each time step. 

 

 

II. Step II. Before knowing if there is impact or not, the length Cl  (Eq. 2.32) between the bottom 

nodes ( 2L , 2R ) and the velocity of the potential contact point is computing each time step in order 

to figure out the relative velocity just before impact  0u . Cl  and  0u  are saved each time step 

when there is not impact and used immediately after when it is impact in order to calculate the 

relative displacement, relative velocities of the contact node Cx  through linear interpolation (Eq. 

2.33 and Eq. 2.34 respectively) and the damping coefficients (Eq. 2.29). Although the code below 

corresponds with 1WID  , the calculus for the other contact elements are exactly the same by 

analogy. 
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// There is no contact 
 
 kvaluen = cvaluen = kvaluet = cvaluet = 0.0; 
 
 // Distance from node R to the contact point belonging deck 2 
 
 lkL0 = sqrt(pow(xL(0)-xR(0),2.0)+pow(xL(1)-xR(1),2.0));    
 
 // Relative velocity in X direction 
 IncrVelL0(0) = (velNdR2(0)-velNdR(0))*(lkL0/NormV2) + velNdR(0) - velNdL(0);
  
 // Relative velocity in Y direction 
 IncrVelL0(1) = (velNdR2(1)-velNdR(1))*(lkL0/NormV2) + velNdR(1) - velNdL(1); 
 
  if (abs(IncrVelL0(0)) < 1.0E-21) { 
   IncrVelL0(0) = 1.0E-21; // a very small value for velocity if 
  the vel. is zero (for convergence issues) 
   } 
  if (abs(IncrVelL0(1)) < 1.0E-21) { 
   IncrVelL0(1) = 1.0E-21; // a very small value for velocity if 
  the vel. is zero (for convergence issues) 
   } 

 

// WID = 1 
 
 // check for pounding condition 
 if ((xL(0) >= m2*(xL(1)-xR(1))+xR(0)) && (xL(1) <= m5*(xL(0)xR(0))+xR(1))) {; 
 
// WID = 2 
 
 // check for pounding condition 
 if ((xR(0) <= m1*(xR(1)-xL(1))+xL(0)) && (xR(1) <= m3*(xR(0)-xL(0))+xL(1))) {; 
 
// WID = 3 
 
 // check for pounding condition 
 if ((xL2(0) >= m2*(xL2(1)-xR(1))+xR(0)) && (xL2(1) >= m6*(xL2(0)-
 xR2(0))+xR2(1))) {; 

 
// WID = 4 
 
 // check for pounding condition 
 if ((xR2(0) <= m1*(xR2(1)-xL(1))+xL(0)) && (xR2(1) >= m4*(xR2(0)-
 xL2(0))+xL2(1))) {; 

 

 

III. Step III. This is the key point that distinguishes each contact element according to Eq. (2.30). 

Each contact element is characterized by a double contact condition given by the semi space 

defined by the corner nodes of the decks (Fig. 2.7). These contact conditions are independent 

between them and located in a different part of the code. However, in order to summarize them in 

the same step, these conditions are given together as, 
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// There is CONTACT 
 
     // Contact point that belongs to deck 2 
            
     xkL0(0) = (xR2(0)-xR(0))*(lkL0/NormV2) + xR(0);     
     xkL0(1) = (xR2(1)-xR(1))*(lkL0/NormV2) + xR(1);     
     
     // Increment of relative displacement 
     
     IncrDispL(0) = xkL0(0) - xL(0);                                    
     IncrDispL(1) = xkL0(1) - xL(1);         
     
     double IncrDL = sqrt(pow(IncrDispL(0),2.0)+pow(IncrDispL(1),2.0));  
     IncrDLN = abs(IncrDispL(0)*n2(0) + IncrDispL(1)*n2(1));             
     IncrDLT = sqrt(pow(IncrDL,2.0)-pow(IncrDLN,2.0));                   
     
     // Increment of the relative velocity 
 
     double Velocity1L_x = velNdL(0);        
     double Velocity1L_y = velNdL(1);         
 
     double Velocity2L_x = (velNdR2(0)-velNdR(0))*(lkL0/NormV2) + velNdR(0);     
     double Velocity2L_y = (velNdR2(1)-velNdR(1))*(lkL0/NormV2) + velNdR(1);     
     
     IncrVelL(0) = Velocity2L_x - Velocity1L_x;  
     IncrVelL(1) = Velocity2L_y - Velocity1L_y;     
     
     double IncrVL = sqrt(pow(IncrVelL(0),2.0)+pow(IncrVelL(1),2.0)); 
     double IncrVLN = abs(IncrVelL(0)*n2(0) + IncrVelL(1)*n2(1)); 
     double IncrVLT = sqrt(pow(IncrVL,2.0)-pow(IncrVLN,2.0)); 
       
     // Stiffness 
 
kvaluen = KN; 
cvaluen = 3.0*kvaluen*(1-pow(RN,2.0))*abs(IncrDLN)/(2.0*pow(RN,2.0)*abs(IncrVelL0(0)));  
kvaluet = KT; 
cvaluet = 3.0*kvaluet*(1-pow(RT,2.0))*abs(IncrDLT)/(2.0*pow(RT,2.0)*abs(IncrVelL0(1)));  

 

IV. Step IV. Once the contact element detects pounding though the contact conditions (Eq. 2.30), this 

part of the code generates all the parameters needed to calculate the normal and tangential 

pounding forces NF  and TF  respectively, as well as the sign of these forces (Eq. 2.37 and Eq. 

2.38). First of all, the code computes the global coordinates and the velocity of the contact point 

belonging to the target deck at each time step according to the linear interpolation given in Eq. (2. 

33) and Eq. (2.34). Then, the relative displacement u  and the relative velocity u  are 

computed. After that, the projections of u  and u  along normal and tangential directions are 

figure out according to Eq. (2.27) and Eq. (2.28), respectively. Finally, once ,   N Tu u  are 

known and the both components (normal and tangential) of the relative velocity just before the 

impact  0u  are given in Step II, the damping coefficients Nc  and Tc  are calculated (Eq. 2.29). 

Hence, in the case of 1WID   these calculations are computed as follow: 
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// Now calculate the forces 
   
double SpringForcen = 0.0, DampingForcen = 0.0, SpringForcet = 0.0, DampingForcet = 0.0; 
 
SpringForcen = -kvaluen*abs(IncrDLN);       
    
 if ((xL(0)-xkL0(0))*v2(0)+(xL(1)-xkL0(1))*v2(1) > 0.0) {     
  SpringForcet = -kvaluet*abs(IncrDLT);   
 } else { 
  SpringForcet = kvaluet*abs(IncrDLT); 
 } 
   
 if (abs(IncrVelL(0)*n2(0)+IncrVelL(1)*n2(1)) < 1.0E-21) { 
  DampingForcen = cvaluen*1.0E-21; 
 } else { 
  DampingForcen = cvaluen*abs(IncrVelL(0)*n2(0)+IncrVelL(1)*n2(1));          
 } 
 
 if (abs(IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1)) < 1.0E-21) {   
  DampingForcet = cvaluet*1.0E-21; 
 } else { 
  DampingForcet = cvaluet*abs(IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1));   
 } 
 
 if (-IncrVelL(0)*n2(0)-IncrVelL(1)*n2(1) < 0.0) {      
  DampingForcen = -DampingForcen;  //compression phase 
 } else { 
  DampingForcen = 0.0;    //restitution phase 
 } 
 
 if (IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1) < 0.0) {  
  DampingForcet = -DampingForcet; 
 } else { 
  DampingForcet = DampingForcet; 
 } 
      
qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + (SpringForcet+DampingForcet)*abs(v2(0)); 
qb(1) = (SpringForcen+DampingForcen)*abs(n2(1)) + (SpringForcet+DampingForcet)*abs(v2(1)); 

 

V. Step V. Since all the parameters involved in the pounding are known, it is time to calculate the 

pounding forces NF  and TF  defined in Eq. (2.23) and Eq. (2.24) respectively as well as the 

direction of those forces (Eq. 2.37 and Eq. 2.38). In order to clarify the code, both normal and 

tangential pounding forces are divided into its spring S
pF  and dashpot D

pF  components (for 

,  p N T ). First, the code computes the values of the pounding forces. Then according to the 

sign convention, the code assigns the sign to NF  and TF . Finally the code checks if the attack 

node sticks or slides along the target deck according to Mohr-Coulomb friction’s law (Eq. 2.24). 
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if (abs(SpringForcet+DampingForcet) > MUS*abs(SpringForcen+DampingForcen)) { 
 if ((xL(0)-xkL0(0))*v2(0)+(xL(1)-xkL0(1))*v2(1) > 0.0) {   
 
 qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) - 
 MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
 qb(1) = -MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
 (SpringForcen+DampingForcen)*abs(n2(1)); 
 
 } else { 
 
 qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + 
 MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
 qb(1) = MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
 (SpringForcen+DampingForcen)*abs(n2(1)); 
 
 } 
} 

 

Note that the sign convention is for the attack node therefore the other node of the contact element 

receives the same forces but in the opposite direction according to Eq. 2.37 and Eq. 2.38. Despite it seems 

more logical to set up NCM3D using the four potential contact nodes directly, the main reason is that the 

contact element would become less stable from the numerical point of view as was noticed during the 

development of NCM3D as well as would be slower in terms of computational time due to NCM3D 

should check all four contact conditions at each time step. After studying and implementing different 

versions of NCM3D using different numbers of involved nodes, it was decided to use only two nodes per 

contact element and to use four contact elements in order to model a general pounding between bridge 

decks. However, this decision has the drawback that the pounding forces can be only applied in the nodes 

of the contact element and therefore there is a small error in terms of equilibrium during the pounding 

quantified by Eq. (2.39) as explained in section 2.4.1. 

Finally, there is a small part of the code to avoid the overlap of attack nodes. It may occur that both 

nodes of the same contact element were attack nodes as depicted in Fig. 2.22 and would apply pounding 

forces twice when in fact there is only one impact. In order to avoid this effect, one of the contact nodes is 

removed. In those cases, the removed attack nodes are 1L  and 2L  applying 0 N TF F . Fig 2.22(a) 

shows the overlap region between node 1L  and 1R  therefore when this effect occurs pounding forces 

related to the contact element 1 are removed. In the case of the overlap between 2L  and 2R  (Fig. 2.22(b)), 

pounding forces related to the contact element 3 are removed.  

 

 

 

 

 

 

X

Y
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1L1R

2L2R

Fig. 2.22. Overlapping area between (a)  and  as well as (b) between  and . 

(a) (b) 
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// WID = 1 
 
// Condition to avoid overlap between node L and node R 
 
if ((xR(0) <= m1*(xR(1)-xL(1))+xL(0)) && (xR(1) <= m3*(xR(0)-xL(0))+xL(1))) { 
 
 qb(0) = 0.0; 
 qb(1) = 0.0; 
 
}  

 

// WID = 3 
 
// Condition to avoid overlap between node L2 and node R2 
 
if ((xR2(0) <= m1*(xR2(1)-xL(1))+xL(0)) && (xR2(1) >= m4*(xR2(0)-xL2(0))+xL2(1))) { 
 
 qb(0) = 0.0; 
 qb(1) = 0.0; 
} 

 

This part of the code is implemented at the end of 1WID   and 3WID   using the contact condition 

of the opposite node of the contact element supplied by Eq. (2.30). 

 

Once the algorithm of NCM3D is written in C++ and files NCM3D.h and NCM3D.cpp are generated 

with the new NCM3D class, it is necessary to implement the TCL commands in OpenSees in a different 

class in order to OpenSees was able to recognize the new element when running TCL scripts. This file is 

called TclNCM3DCommand.cpp and is given in Appendix A. Although NCM3D was implemented 

successfully in OpenSees and no logical errors were detected, it is necessary a numerical validation. 

2.4.2 Experimental validation 

Validation of NCM3D is a key point of the development process in order to ensure that there are no 

either logical errors or bugs. However, it is important to note the subtle difference between validation and 

verification. This issue has been widely discussed in the science community (Oreskes et al. 1994). 

Because of the proposed contact element NCM3D deals with some of the physical parameters involved in 

the pounding and not all of them, it should be said validation instead of verification. To this end, the 

pounding results carried out by Guo et al. (2009) are used to validate NCM3D according to the 

unidirectional and bidirectional nature of the pounding exposed in section 1.3.1 and 1.3.2 respectively. 

 

2.4.2.1 Unidirectional validation 

Unidirectional validation of NCM3D is based on the results provided by Guo et al. (2009) at Harbin 

Institute of Technology (China) and is a particular case of bidirectional pounding. They carried out an 
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experiment in the laboratory about unidirectional pounding using a bridge model scaled 1 20  as shown in 

Fig. 2.23. The experiments were performed on a tri-axial shaking table of size 5 m 5 m  at the Institute 

of Engineering Mechanics of China Earthquake Administration in Harbin. The payload of the shaking 

table is 350 kN  and the working frequency ranges go from 0.5 to 40 Hz. The shaking table is capable of 

providing maximum accelerations of 1.0g  in both horizontal directions and 0.7g  in the vertical 

direction (see Guo et al. 2009 for more details). The bridge model is a two-span-isolated bridge model 

with different dynamics characteristics for both decks supplied by the different properties of the bearings. 

The natural periods of the left and right deck are 0.47 s and 0.40 s, respectively. 

 

 

 

 

 

 

 

The bridge model has two spans with the same length of 1.80 m, width of 1.20 m and height of 1.53 

m. Each deck consists of a steel plate of 1.80 m 1.20 m 0.02 m   and an additional mass made of 

reinforced concrete embedded in the steel plate in order to increase the weight of each deck until 2,514 

kg. The gap is 3.5 mm. In addition, the height and diameter of the rubber bearings used in the experiments 

are 97.5 and 100 mm respectively, with a shear modulus of 0.39 and 0.55 MPa for left and right decks, 

respectively. The schematic diagram of the data acquisition and control system is shown in Fig. 2.24 

(more drawing details in Appendix B). An accelerometer was installed on the shaking table in order to 

measure the earthquake input. Moreover, two accelerometers are set up on the decks to measure the 

absolute acceleration of decks during the experiment. The relative displacement responses between the 

adjacent superstructures are obtained by using a Linear Variable Differential Transformer (LVDT) sensor 

installed over the expansion joint as depicted in Fig. 2.24. During the tests, the structural responses are 

measured with sampling frequency of 5000 Hz to capture the instantaneous impact between decks. 

Regarding ground motion inputs, Kobe earthquake (JMA Station FN component) with PGA (Peak 

Ground Acceleration) equal to 
2825.0 cm s  and Taft earthquake (Taf111 component) with PGA equal to 

2177.8 cm s  are chosen as near-field and far-field ground motions. Time increments of the original 

Fig. 2.23. Bridge model on the shaking table during the experiment at Harbin Institute of Technology. 

Picture taken from Guo et al. (2009). 
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ground motion records are scaled using a scale factor of 1 20  as well as the PGA of Kobe and Taft 

earthquake that were also scaled to 
2610.0 cm s  and 

2590.0 cm s  respectively. 

The recorded acceleration responses of the free vibrations are processed to obtain the natural 

frequencies of the bridge model through Fourier analysis and the logarithmic decrement method is 

adopted to identify the damping ratios of the bridge model. Therefore, the natural frequencies of the left 

and right deck are 2.17 and 2.52 Hz and the corresponding damping ratios 1  and 2  are 3.0 and 2.9 % 

respectively. Each deck can be modeled as one DOF using the displacement along the longitudinal axis of 

the bridge. Therefore, the displacements of both decks (assuming decks as rigid bodies) are governed by 

the dynamic equilibrium given in Eq. (2.40), 

 GMx   Mx Cx Kx Mr ,           (2.40) 

where  1 2,  u ux  is the vector of displacements of mass centers of deck 1 and 2 along X-axis 

respectively as depicted in Fig. 2.7, GMx  is the acceleration of the input ground motion along X-axis and 

 1,  1r . The mass, damping and stiffness matrices are M , C  and K  defined by Eq. (2.41).  

2,514 0

0 2,514

 
  
 

M  kg,  
2,055.0 0

 Ns m
0 2,306.9

 
  
 

C ,  
467.0 0

 kN m
0 629.8

 
  
 

K         (2.41) 

Viscous damping matrix C  is formulated using the Rayleigh damping approach (Chopra 2007) 

given by, 

 0 1a a C M K  ,            (2.42) 

Fig. 2.24. Schematic diagram of the measurement and control system. Units in mm. 

Picture taken from Guo et al. (2009). 
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Fig. 2.25. Variation of modal damping ratio  with natural frequency . 

where 0a  and 1a  are the damping coefficients. The damping ratio n  (Fig. 2.25) for the n-th mode of 

such a system is given by, 

 0 11

2 2
n n

n

a a
 


  ,            (2.43) 

where n  is the natural frequency for the n-th mode. The damping coefficients 0a  and 1a  can be 

determined from specified damping ratios i  and j  for the i-th and j-th modes respectively using Eq. 

(2.43). If both modes are assumed to have the same damping ratio   which is reasonable based on the 

experimental data, the damping coefficients 0a  and 1a  are given by Eq. (2.44). Both modes with 

damping ratios i  and j  are chosen to ensure reasonable values for the damping ratios in all the modes 

contributing significantly to the response (Chopra 2007). Generally, i  and j  are taken as the first and 

higher mode, respectively. 
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          (2.44) 

 

 

 

 

 

 

 

 

 

Regarding the numerical modeling of the bridge model, both deck were modeled as lumped masses 

embedded on the top of elastic piers, as depicted in Fig. 2.26, allowing the displacement along X-axis (see 

Fig. 1 of Guo et al. 2009). The stiffness of the elastic piers is given by the equivalent stiffness of the 

superstructure system of the bridge mode composed by deck and bearings in the stiffness matrix K  in Eq. 

(2.41). According McGuire et al. (1999), the elastic stiffness xk  along X-axis for a pier of height L , 

Young’s modulus E and moment of inertia xI  is given as, 

 Rayleigh damping 
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3

12 x
x

EI
k

L
 ,             (2.45) 

therefore, the moment of inertia xI  can be written as follows, 

 

3

12

x
x

L k
I

E
              (2.46) 

Assuming the height of the piers as 1 mL  , 
52.1 10  MPaE    and the equivalent stiffness xk  for 

both decks supplied by Guo et al. (2009) in Eq. (2.41), the moment of inertia xI  of the piers in order to 

have an elastic stiffness xk  is given as, 

 

 

 

1

2

3

4

5 2

3

4

5 2

1 m 467 kN m
185,317 mm

12 2.1 10  N mm

1 m 629.8 kN m
249,921 mm

12 2.1 10  N mm

x

x

I

I


 

 


 

 

         (2.47) 

Therefore, deck 1 and deck 2 are modeled as lumped masses 1 2 2,514m m   kg, length of piers 

1 2 1 mL L  , Young’s modulus 
5

1 2 2.1 10  MPaE E   , moment of inertia along X-axis 

1

4185,317 mmxI   and 
2

4249,921 mmxI  , respectively (Fig. 2.26). The gap between adjacent decks is 

3.5 mm. Due to NCM3D needs a geometry of decks to be set up, two rectangular decks were built by four 

ElasticBeams elements of length 2 1 ma   (Fig. 2.26) in OpenSees without mass. On one hand, the 

coefficient of restitution 0.64r   was taken as Guo et al. (2009). Nonetheless, the impact stiffness for 

NCM3D was chosen 
41 10  kN mk    instead of 

43 67  kN mk    used by Guo et al. (2009) because of 

the definition of the damping coefficient c in both contact elements. The impact stiffness 

43 67  kN mk    was found after carrying out a parametric study in order to assess k as close as possible 

to the numerical solution.  

2a 2c

2b

d

1.9432

8.1627

1 m

1 m
1 m

3.5 mm

XO

Z

XO

Y
1 m

3.5 mm

1m 2m

1m 2m

1f

1

1
xI

2f

2

2
xI

Fig. 2.26. Sketch of the numerical model for unidirectional pounding validation. 
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On the other hand, unlike the contact element developed by Guo et al. (2009), NCM3D uses a non-

linear damping coefficient c (Eq. 2.29) instead of the constant damping coefficient c used by Guo et al. 

(2009) and defined in Eq. (2.7). In addition, three year later the same authors (Guo et al. 2012) conducted 

a study about how to determine the impact stiffness for different impact models (see section 2.3) and 

concluded that the structural response may be highly influenced by the impact model used and therefore 

influenced by the parameters involved in those impact models.  

Two contact element were set up between nodes 1R  and 1L  (contact element 2) and between 2R  and 

2L  (contact element 4). Since unidirectional pounding is a particular case of bidirectional pounding, there 

will be also the overlap region explained and depicted in Fig 2.22. Because of this, contact element 2 (

2WID  ) and 4 ( 4WID  ) were selected as shown in Fig. 2.26. The impact stiffness 
41 10  kN mk    is 

divided into both contact elements resulting that each NCM3D has 2Ck k  to respect the symmetry of 

the unidirectional pounding. The absolute acceleration response of the numerical model described in Fig. 

2.26 was compared with the experiment before applying NCM3D (without pounding) under Taft 

earthquake and Kobe earthquake. The absolute acceleration of deck 1 and deck 2 match good enough as 

under Taft earthquake (Fig. 2.27(a), (b)) as Kobe earthquake (Fig. 2.27 (c), (d)) what indicates that the 

numerical model is acceptable and suitable (Fig. 2.27). 
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After checking that the behavior of the numerical model without pounding was as expected, contact 

element 2 and 4 were applied with the half of the total impact stiffness. The comparison of the absolute 

acceleration between NCM3D and the experiment under Taft earthquake is depicted in Fig. 2.28 as well 

as the comparison between the same experiment and the contact element developed by Guo et al. (2009). 

From the impact point of view, on the one hand NCM3D was capable to detect all the impacts (18 

impacts) while the contact element developed by Guo et al. (2009) was not able to detect seven impacts. 

On the other hand, unlike Guo et al. (2009) that detected three impacts that did not occur during the 

experiment, NCM3D detected four impacts incorrectly. Each sharp peak represents an instant of impact. 

 

 

 

The sign of the peaks accelerations due to pounding between decks are coherent with the physical 

nature of the impact. Deck 1 received impacts from its right side therefore the peaks of acceleration 

because of pounding should be negative as it is shown in Fig. 2.28(a) while deck 2 received the same 

impacts from its left side and, by equilibrium, the peaks of acceleration should be positive as depicted in 

Fig. 2.28(b). The same bridge response can be seen in the simulation ran by Guo et al. (2009) in Fig. 

2.28(c), (d). Nonetheless, none contact element could detect the negative peaks of acceleration produced 

in deck 2 (Fig. 2.28(b), (d)). By equilibrium, these peaks of acceleration should appear with positive sign 

in deck 1 however they do not. This fact induces to think that may be some error in the measurement 
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during the experiment because there is no physical explanation to this behavior. When there is 

unidirectional pounding between two adjacent decks, the pounding force applied in both bodies tends to 

change the direction of the body given by the inertia and therefore the peaks of acceleration induced by 

impact should contribute to this end as shown in Fig. 2.29. Nevertheless, the negative peaks of 

acceleration detected during the experiment does not tend to change the direction of the deck 2. 

Moreover, the acceleration induced by pounding must follow the same direction than pounding force F  

due to the second law of Newton’s laws of motion however it does not occur in this case. 

 

 

 

 

 

 

 

 

From the value of the peaks of acceleration point of view, the normalized error of the peaks of 

acceleration nE  is given by, 

 
 i i

n

i

a a
E

a






            (2.48) 

where ia  and ia  are the peak of acceleration experimentally obtained and numerically obtained 

respectively at an instant of time it . The normalized error nE  produced by Guo et al. (2009) under Taft 

earthquake for deck 1 is 52.67 % and for deck 2 is 86.71 %. In the case of NCM3D, the normalized errors 

nE  are 33.57 % and 47.72 % for deck 1 and deck 2, respectively. In the case of Guo et al. (2009), only 

the peaks of acceleration detected by the contact element were taken into account for the calculation of 

the normalized error. On one hand, the normalized error decreases substantially when NCM3D is used. 

On the other hand, considering the error E (Eq. 2.49) in each single impact, the maximum error by 

NCM3D are also lower than those by Guo et al. (2009) in both deck as shown in Fig. 2.30. While the 

maximum error E of the peaks of absolute acceleration by NCM3D are 27.09 % and 78.86 % for deck 1 

and deck 2 respectively, the maximum error E by Guo et al. (2009) for deck 1 and deck 2 are 149.66 % 

and 554.79 % respectively. 
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              (2.49) 
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Fig. 2.29. Representation of typical unidirectional pounding. 
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Fig. 2.30. Error E of the peaks of acceleration in (a) deck 1 and (b) deck 2 under Taft earthquake. 

 

 

 

 

 

 

 

 

The deck displacements and the pounding forces are coherent with the acceleration response (Fig. 

2.28) as expected. The pounding force is always positive and applied during a short period of time due to 

the physical nature of impact (Fig. 2.31(a)). In addition, this pounding reflects in the displacements of the 

decks and when there is contact both decks move back as depicted in Fig. 2.31(b). Unlike bidirectional 

pounding, in the case of unidirectional pounding it is useful to plot the displacement response of decks to 

note if there was any error during the data analysis and see that the decks did what were expected to do. 

For instance, Fig 2.31(b) marks some of the impacts detected during the simulation using NCM3D. 
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Regarding the Kobe earthquake, the same numerical analysis was carried out in order to assess the 

peaks of the absolute acceleration. As occurred under Taft earthquake, NCM3D detected all the impacts 

(10 impacts) as shown in Fig. 3.32(a), (b) while Guo et al. (2009) detected one impact less (Fig. 3.32(c), 

(d)). Nonetheless, in the case of Kobe earthquake there is a small off-set between the experimental 

response and the numerical response in both simulation using as NCM3D as contact element developed 

by Guo et al. (2009). Both contact elements detected the impacts slightly before than the experimental 

one, curiously. In addition, the order of magnitude of this off-seat in the case of this thesis and Guo et al. 

(2009) is quite similar. The same phenomenon about negative peaks of acceleration in deck 2 explained in 

the case of Taft earthquake appears under Kobe earthquake (see Fig. 2.29). 

 

 

 

In terms of normalized error nE  of the peaks of acceleration (Eq. 2.48), the results obtained with 

NCM3D are comparable with the results supplied by Guo et al. (2009). On one hand, the normalized error 

nE  of deck 1 are 53.48 % and 57.60 % using the contact element of Guo et al. (2009) and NCM3D, 

respectively. In the case of the deck 2, the normalized error obtained with Guo et al. (2009) and with 

NCM3D are 71.76 % and 66.17 %, respectively. Therefore, there is a small improvement in the deck 2 

and a little lost of accuracy in the deck 1 about 4 % in both cases. On the other hand, the errors in each 
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single impact are also comparable. The maximum error E obtained by NCM3D for the deck 1 and deck 2 

are 35.61 % and 128.62 % respectively while the maximum error obtained by Guo et al. (2009) for deck 1 

and deck 2 are 41.68 % and 114.04 %, respectively. As occurred in the case of Taft earthquake, the 

maximum error related to the deck 2 is higher than which of deck 1. Moreover, there is a small 

improvement of accuracy using NCM3D in deck 1 however there is a lost in deck 2. Fig. 2.33 shows the 

single error divided by number of impact and deck. 

Finally, the displacements of both decks and the pounding force are depicted in Fig. 2.34 to note the 

effect of the pounding in the deck displacements. When there is contact between decks, both decks moved 

back due to the pounding force applied (Fig. 2.34(a)) in the decks at the same time with the same value 

and opposite direction. This fact can be seen clearly in Fig. 2.34(b). In addition, all pounding forces are 

positive (compression) and applied during short periods of time as expected because of the physical 

nature of impact (see section 2.1). Fig. 2.34(b) shows some impacts detected during the simulation using 

NCM3D. 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

E
rr

o
r 

(%
)

Number of impact

 Guo et al. (2009)

 Present study

0 1 2 3 4 5 6 7 8 9 10

0

25

50

75

100

125

150

 

Number of impact

Fig. 2.33. Error E of the peaks of acceleration in (a) deck 1 and (b) deck 2 under Kobe earthquake. 
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2.4.2.2 Bidirectional validation 

Unlike unidirectional pounding, there are no many experimental data available about bidirectional 

pounding in bridges. As occurred in the case of unidirectional pounding, Guo et al. (2011) carried out one 

of the few experimental studies in this field. Nevertheless, the data of this study is not available. On one 

hand, since NCM3D was validated successfully for unidirectional pounding (see section 2.4.2.1) using the 

experimental data supplied by Guo et al. (2009) with encouraging results, and taking into account that the 

implemented code in OpenSees was the generic algorithm explained in section 2.4.1; there is no reason 

not to assume that bidirectional pounding using NCM3D would also provide reasonable results. In 

addition, from the algorithm point of view the only difference between the formulation for unidirectional 

and bidirectional pounding is the well known Mohr-Coulomb’s friction law. This friction model has been 

widely used by researchers around the world with acceptable results (see for example Zhu et al. 2002 and 

2004, Guo et al. 2011, Dimitrakopoulos 2011, Polycarpou et al. 2013, Bi and Hao 2013). On the other 

hand, many simulations of bridges were carried out using different bridge models and the results provided 

by OpenSees were compared with results calculated by hand and no relevant differences were found. 

Among all the simulations carried out to validate bidirectional pounding, one of them is presented in 

this section. The numerical bridge model for bidirectional pounding is the same than was used for 

unidirectional validation and depicted in Fig. 2.26. In order to simulate all the possible contacts, all four 

contact element were set up (see Fig. 2.20) instead of the two NCM3D used for unidirectional pounding. 

The static coefficient of friction 0.5s   the kinetic coefficient of friction 0.4k   were added in the 

four contact element as well as tangential coefficient of restitution taken as 0.64Tr  . Moreover, the 

value of the impact stiffness in tangential direction is 
41 10  kN mN Tk k   . The moment of inertia 

along Y-axis of the pier 1 and 2 was assumed 
1 1x yI I  and 

2 2x yI I , respectively. In addition, the same 

ground motion is used as input (Taft earthquake) for Y-axis with the goal of simplifying the comparison 

between unidirectional and bidirectional pounding response. Once the numerical model is built, the 

bidirectional simulation was carried out. On one hand, the displacement along X-axis in the case of 

bidirectional pounding shown in Fig. 2.35(a) is quite similar to unidirectional pounding (Fig. 2.31(b)), 

however it is not exactly the same. As the input along X and Y-axis and the moment of inertia are the 

same in both directions, the displacement along Y-axis looks the same than along X-axis (Fig. 2.35(b)). 
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Although Fig. 2.35(a) may be interesting to compare the displacement in X direction of both decks in 

bidirectional pounding with the same displacement in unidirectional pounding, it does not provide useful 

information about what occur with the corner nodes. Unlike unidirectional pounding where all corner 

nodes that belonged to the same deck moved in the same direction and with the same value of 

displacement, in the case of bidirectional pounding there should be a different behavior due to frictional 

forces involved. Those frictional forces induce rotation on both decks that can be detected looking at the 

displacement along X-axis of the single corner node (Fig. 2.36). The inset graph given in Fig. 2.36 shows 

the first impact. It is important to note how the displacement of the nodes belonging to the same deck are 

overlapped until the first impact when the first tangential force takes place and make decks rotate. 

Therefore, if decks rotate the displacement in X direction of their corner nodes cannot be the same after 

the first impact as shown Fig. 2.36.  
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Although the input acceleration is applied in both directions from the beginning, there is no rotation 

until the first impact because there is no offset between the mass center and the shear center. Therefore, it 

is sure that the first impact occurs when the x coordinates of the potential surfaces are equal (inset of Fig. 

2.36). Furthermore, the negative sign of the rotation of deck 1 and deck 2 at first impact confirm this fact 

as depicted in Fig. 2.37. In terms of absolute accelerations, the behavior of the decks is quite the same 

respect to the unidirectional case as expected and as shown in Fig. 2.38. 

 

 

 

Unlike the normal pounding forces that are always positive due to the physical nature of impact as 

explained in section 2.4.2.1 in for unidirectional pounding, in the case of tangential pounding forces the 

sign may change. As was described in Eq. (2.37) and Eq. (2.38), the direction of the normal pounding 

force is always opposite to the normalized normal of the target deck. However, the direction of the 

tangential pounding force depends on the scalar product between the relative displacement of the contact 

points u  and the normalized tangential vector iv  of the target deck. In addition, the same behavior is 

observed in the absolute acceleration in Y direction. While the peaks of acceleration along X-axis are 

always either positive or negative depending on the deck (Fig 2.38(a), (b)), the peaks of acceleration 

along Y-axis (Fig. 2.38(c), (d)) change the sign depending on Eq. (2.38). In addition, this behavior is also 

observed in the normal pounding forces and the tangential pounding forces as expected. Fig. 2.39 shows 

Fig. 2.38. Absolute acceleration in X direction of (a) deck 1 and (b) deck 2. Absolute acceleration in Y 

 direction of (c) deck 1 and (d) deck 2. NCM3D is used. 
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the normal and tangential forces of the four different contact elements used in the simulation. The normal 

pounding forces (Fig. 2.39(a)) are always positive (compression) and tangential pounding forces are 

positive and negative (Fig. 2.39(b)). The insets depicted in Fig. 2.39 show the typical shape of the normal 

and tangential pounding force at the same instant of time ( 7.85 st  ). The bubble shape of the normal 

pounding force is given by the compression and restitution phase (see Table 2.1). The same bubble shape 

is also found when the tangential pounding force is only either positive or negative. 

On one hand, note that the tangential pounding forces are lower than normal pounding forces but are 

not negligible and have the same order of magnitude. On the other hand, the rotation induced by 

bidirectional pounding cannot be neglected as shown in Fig. 2.37 and demonstrated in section 1.2. 

In terms of absolute acceleration response, it is interesting to compare the absolute acceleration 

response with and without pounding to determine how the bridge was influenced by the bidirectional 

pounding. To this end, Fig. 2.40 shows a comparison between the absolute acceleration in both directions 

and both decks with pounding and without pounding. Taking into account that the simple example 

presented in this section is based on the bridge scaled 1/20, the influence of the pounding is significant. 

The peaks of acceleration induced by pounding multiply the absolute acceleration several times respect to 

the bridge response without pounding. In the case of study, the acceleration in Y direction of deck 2 (Fig. 

2.40(c)) is the less influenced by bidirectional pounding while the acceleration response of deck 1 and 

deck 2 along X-axis are highly influenced when the normal pounding forces are higher, as depicted in Fig. 

2.40(a), (b). In addition, the high rotation observed (Fig. 2.37) when there is pounding (the rotation is 

almost zero when there is no pounding if there is no offset between mass center and shear center) should 
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be taken into consideration because there may be other adjacent structures to impact with such us the 

wings of the abutments. 

 

 

 

 

2.5 Conclusions 

A brief introduction of the physical nature of impact was presented. On one hand, stereomechanical 

approach and contact element approach were introduced. However, contact element approach is more 

suitable to simulate pounding in structures due to does not neglect the time of impact as occurred with 

stereomechanical approach. On the other hand, different impact models were reviewed in detail and the 

main studies about unidirectional and bidirectional pounding were exposed. Then, a new biaxial contact 

element called NCM3D was proposed to study pounding in highway bridges with deck rotation. NCM3D 

was implemented in an open-source finite element program OpenSees using the programming language 

C++. NCM3D was validated for unidirectional pounding using the experimental data supplied by Guo et 

al. (2009) with good level of accuracy. Finally, a logical explanation and numerical example was given to 

demonstrate the validation of NCM3D for bidirectional pounding. 
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Chapter 3 

Bridge Description and Design 

 

The purpose of this chapter is to provide the bridge descriptions and the design details of the bridges 

used for the numerical simulation carried out in Chapter 5. Three real highway bridges located in two 

different places in California (US) with different configurations are chosen for this study. In addition, four 

different ground motions are selected and scaled in order to fulfill the requirements of the code in each 

location. In addition, the detailed designs of the lead rubber bearings of the bridges are also provide.  

3.1 Bridges Selection and Locations 

Three real highway bridges used by Kaviani et al. (2010 and 2012) and located in two different 

places in Southern California (which is a region with high seismicity) are selected for this study. These 

bridges were recently designed (after 2000) and are called Bridge A, Bridge B and Bridge C, respectively. 

On one hand, Bridge A is a two span-single column bent bridge and corresponds with the Jack tone Road 

On-Ramp Overcrossing bridge (Fig. 3.1 and Fig. 3.2) located in city of Ripon in California with 

coordinates 37° 45' 12" N, 121° 08' 30" W. Bridge B is a two span-multi column bent bridge and 

corresponds with La Veta Avenue Overcrossing bridge (Fig. 3.3) located in city of Tustin in California 

with coordinates 33° 46' 51.08'' N, 117° 49' 51.43'' W. Bridge C is a three span-multi column bent bridge 

and corresponds with the Jack Tone Road Overhead bridge (Fig. 3.4) located close to Bridge A therefore 

from now it is considered both bridges have the same coordinates.  

The three bridges used in this study are based on the real bridges used by Kaviani et al. (2010 and 

2012) but do not have the same features exactly. The only modification in all the bridges is the 

introduction of lead rubber bearings between the substructure (piers and abutments) and the 

superstructure (decks). The reason is to extend as much as possible the results provided by the present 

study. Nowadays, most of the pounding studies in bridges consider base-isolated bridges (see for example 

Watanabe and Kawashima 2004, Wang 2007, Nielson and DesRoches 2007, Aviram et al. 2008, Guo et 

al. 2009 and 2011, Bi and Hao 2013). 

 

 

 

 

 

 
Fig. 3.1. Bridge A located in city of Ripon in California with coordinates 37° 45' 12" N, 121° 08' 30" W. 

Picture taken from Google Maps. 
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Fig. 3.2. Single pier of the Bridge A. 

 
Picture taken from Google Maps. 

Fig. 3.3. (a) General view, (b) piers and (c) abutment of Bridge B located in city of Tustin in California 

 with coordinates 33° 46' 51.08'' N, 117° 49' 51.43'' W. 

 
Pictures taken from Google Maps. 

(a) 

(b) (c) 
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Although all bridges possess a small curvature in the realty, Bridges A, B and C are considered 

straight bridges in this study. Moreover according to Kaviani et al. (2010 and 2012), the main features of 

the three bridges are listed in Table 3.1 and are as follow: 

 Bridge A: The Jack Tone Road On-Ramp bridge is a two-span bridge with 67 m of total 

length, left and right (respect to Fig. 3.1) spans of 33 m and 34 m, respectively. The 

superstructure is a three-cell reinforced concrete box-girder supported by a cap beam located 

between decks. This cap beam is supported on a single reinforced concrete (RC) circular pier 

in the middle. The diameter and the height of the pier are 1.7 m and 6 m respectively, while 

the longitudinal reinforcing steel ratio of the pier is approximately 2 %. The deck width is 

8.3 m and the deck depth is 1.4 m. In addition, the deck centroid is located to 75 cm from the 

top of the cap beam. The abutments (left and right) as well as the cap beam are seat-type 

with two circular bearings per abutment and cap beam. 

 

 Bridge B: The La Veta Avenue Overcrossing bridge is a two-span bridge with 91 m of total 

length, left and right (respect to Fig. 3.3(a)) spans of 47 m and 44 m respectively. The 

superstructure is a six-cell RC box-girder supported by a cap beam located between decks. 

This cap beam is supported on two RC circular piers located symmetrically respect to the 

longitudinal axis of the bridge. The diameter and the height of the piers are 1.7 m and 6.7 m 

respectively, while the longitudinal reinforcing steel ratio of the pier is approximately 1.9 %. 

The deck width is 23 m and the deck depth is 1.9 m. In addition, the deck centroid is located 

to 1.04 m from the top of the cap beam. The abutments (left and right) as well as the cap 

beam are seat-type with three circular bearings per abutment and cap beam. 

 

 Bridge C: The Jack Tone Road Overhead bridge is a three-span with 127.5 m of total length 

divided into three spans: the left span of 47.5 m, the middle one of 44 m and the right one of 

36. The superstructure is a seven-cell RC box-girder supported by two cap beams located 

between left and middle deck and between middle and right deck. These cap beams are 

Fig. 3.4. Bridge C located in city of Ripon in California with coordinates 37° 45' 12" N, 121° 08' 30" W. 

 
http://www.biggscardosa.com/home/images/stories/transportation/proj_trans_jacktone.jpg 
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supported on three RC circular piers per cap beam located symmetrically respect to the 

longitudinal axis of the bridge as shown in Fig. 3.4. The diameter and the height of the piers 

are 1.7 m and 7.5 m respectively, while the longitudinal reinforcing steel ratio of the pier is 

approximately 2.2 %. The deck width is 23.5 m and the deck depth is 1.92 m. In addition, 

the deck centroid is located to 1 m from the top of the cap beam. The abutments (left and 

right) as well as the cap beams are seat-type with three circular bearings per abutment and 

cap beam. 

 

Table 3.1. General properties of the seed bridges. 

Parameters Bridge A Bridge B Bridge C 

Span lengths (m) 33 + 34 47 + 44 47.5 + 44 + 36 

Deck width (m) 8.3 23 23.5 

Deck depth (m) 1.4 1.9 1.92 

Deck centroid (m) 0.75 1.04 1 

Piers per bent 1 2 3 

Pier height (m) 6 6.7 7.5 

Pier diameters (m) 1.7 1.7 1.7 

Longitudinal reinforcement steel ratio (%) 2 1.9 2.2 

 

The location of Bridge A and Bridge C is known as location I (37° 45' 12" N, 121° 08' 30" W) while 

the location of Bridge B is location II (33° 46' 51.08'' N, 117° 49' 51.43'' W). Once the bridges for the 

numerical simulations are selected and presented, the next step is to design those bridges according to the 

US code and the code of California. Nevertheless, it is necessary to determine the design response 

spectrum for location I and location II before because the design of some parts of the bridges such as the 

bearings depend on the design response spectrum. 

3.2 Ground Motion Selection and Scaling 

Each location is characterized by design response spectrum that depends basically on the seismicity 

of the region and the type of soil. For the case under study, a soil type D (stiff soil) is assume for location 

I and the soil type C (very dense soil and soft rock) is assume for location II. Given the coordinates of the 

location and the type of soils, the code AASHTO Guide Specifications for LRFD Seismic Bridge Design 

2009 provides all the parameters required to calculate the spectrum design. The first step is to figure out 

the PGA (Peak Ground Acceleration) of the region under study with 7 % probability of exceedance in 75 

years given by the Fig. 3.4.1-2 of code AASTHO LRFD SBD 2009. Then, the horizontal spectra response 

acceleration of the period 0.2 s ( sS  ) and 1.0 s ( 1S ) for 5 % of critical damping is computed using the Fig. 

3.4.1-3 and Fig. 3.4.1-4 of the same code, respectively. The next step is to find the site coefficient ( PGAF ) 

according to the type of soil and the PGA computed before.  
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The final value of PGAF  will be an intermediate value between the closest values in the Table 

3.4.2.3-1 of the AASHTO LRFD SBD 2009 using a linear interpolation. The same procedure is used to 

compute the spectral response acceleration parameter at short periods ( aF ) using the same Table 3.4.2.3-

1. After that, the mapped spectral response acceleration coefficient at 1 s period ( vF ) is calculated from 

Table 3.4.2.3-2 using the same methodology than PGAF  and aF . Finally, using the equations (3.4.1-1, 

3.4.1-12, 3.4.1-3) provided by the code the parameters needed to define the design response spectrum sA , 

DSS  and 1DS  are computed as given in Eq. (3.1) as well as 0T  and 1T . and depicted in Fig. 3.5. Table 3.2 

summarizes these values for location I and II.  

 DS D1 1;           S ;          S  s PGA a S vA F PGA F S F S             (3.1) 

 

 

 

 

 

 

 

 

 

Seismic hazard in California is governed by shallow crustal tectonics, with the sole exception of the 

Cascadia subduction zone along California’s northern coastline (Caltrans Seismic Design Criteria 1.7). 

According to the state agency responsible for highway, bridge, and rail transportation planning, 

construction, and maintenance of California (Caltrans), seismic demand for structural applications is 

represented using an elastic 5 % damped response spectrum. In general, according to Caltrans SDC 1.7 

the design response spectrum is defined as: 

1) A probabilistic spectrum based on a 5 % in 50 years probability of exceedance (or 975-years 

return period). 

2) A deterministic spectrum based on the largest median response resulting from the maximum 

rupture of any fault in the vicinity of the bridge site. 

3) A statewide minimum spectrum defined as the median spectrum generated by a magnitude 

6.5 earthquake on a strike-slip fault located to 12 km from the bridge site. 
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The state of California has taken a modified approach in which the design response spectrum is 

specified to be the largest of (a) a probabilistic response spectrum calculated in accordance with the 2008 

USGS National Hazard Map for a 5% probability of being exceeded in 50 years (or 975 years return 

period, which is equivalent to a 7 % probability of being exceeded in 75 years spectrum) and (b) a 

deterministic median response spectrum calculated based on the “Next Generation Attenuation” project of 

the PEER-Lifelines program. Spectra for this design earthquake are available online through the Caltrans 

Acceleration Response Spectra (ARS) website (Constantinou et al. 2011). Since Design Earthquake (DE) 

is the earthquake that match with the design response spectrum given by the code, the Maximum 

Considered Earthquake (MCE) have to match the design response spectrum multiply by a factor of 1.5 to 

be on the safety side. The Design Earthquake (DE) and the Maximum considered Earthquake (MCE) for 

location I and II are depicted in Fig. 3.6(a), and Fig. 3.6(b), respectively, in Fault-Normal direction (FN) 

and in Fault-Parallel direction (FP). From now, all the FN components will be considered as components 

along X-axis and FP components as Y-axis. 

Table 3.2. Parameters of the design response spectrum (DE) for location I and II. 

 Location I Location II 

Soil type D C 

PGA (g) 0.262 0.434 

SS  (g) 0.630 1.053 

1S  (g) 0.230 0.387 

sA  (g) 0.334 0.434 

DSS  (g) 0.816 1.053 

1DS  (g) 0.446 0.547 

0T  (s) 0.109 0.104 

1T  (s) 0.547 0.519 

 

 

Fig. 3.6. Design response spectrum along FN and FP of (a) location I and (b) location II. 
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Kobe, Loma Prieta, Chi-Chi and Landers are the four earthquakes chosen to study the effect of the 

unidirectional and bidirectional pounding on the three seed bridges. On one hand, Kobe (January 17, 

1995) and Loma Prieta (October 17, 1989) earthquake represent a pulse-like ground motion while Chi-

Chi (September 21, 1999) and Landers (June 28, 1992) earthquake represent far-field ground motions. All 

these earthquakes were taken from the Pacific Earthquake Engineering Research Center (PEER Center 

2013). Table 3.3 summarizes the main parameters of the original earthquakes considered in this study. 

PGA represents Peak of Ground Acceleration, PGV denotes Peak of Ground Velocity, PGD means Peak 

of Ground Displacement, wM  the moment magnitude and the epicentral distance is eR . 

 

Table 3.3. Summary of the original ground motions. 

Earthquake No. EQ Station wM  
PGA 

(g) 

PGV 

( cm s ) 

PGD 

(cm) 
eR

(km) 

Kobe 
FN 

1 Takarazuka 6.90 
0.645 72.54 20.81 

0.3 
FP 0.697 82.97 26.60 

Loma Prieta 
FN 

2 Saratoga Aloha Ave 6.93 
0.363 55.53 29.52 

8.5 
FP 0.376 43.25 15.62 

Chi-Chi 
FN 

3 CHY019 7.62 
0.054 6.77 6.12 

50.5 
FP 0.061 5.15 4.31 

Landers 

FN 

4 Mission Creek Fault 7.28 
0.122 23.16 24.32 

27 FP 0.126 6.89 2.51 

 

The acceleration time histories of the original ground motions shown in Table 3.3 are plotted in Fig. 

3.8. The 5 % damped elastic pseudo acceleration response spectra of the original ground motions for FN 

and FP directions as well as the design response spectrum (DE) of location I and II are shown in Fig. 

3.7(a) and Fig. 3.7(b), respectively. 
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Fig. 3.8. Acceleration time histories of original ground motions: (a) Kobe (FN), (b) Kobe (FP), (c) 

 Loma Prieta (FN), (d) Loma Prieta (FP), (e) Chi-Chi (FN), (f) Chi-Chi (FP), (g) Lardens (FN) 

 and (h) Lardens (FP). 
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The ground motions are matched to the design response spectrum at 5% damping using wavelet 

adjustment using the computer program RspMatch2005 (Hancock et al. 2006) for location I and II as well 

as for FN and FP. A comparison between the design response spectrum and the matched pseudo 

accelerations are depicted in Fig. 3.9. Note the accuracy of the matched response spectra using the 

improved method developed by Hancock et al. (2006). 

Table 3.4 shows a comparison of PGA, PGV and PGD between the original ground motions (FN and 

FP) and the matched ground motions for location I and II. Hence, once all earthquakes are matched to 

their corresponding locations, the design of bearings of the bridges is possible. Each bearing is designed 

for a given particular location as well as particular deck because of depends on the mass of the structure, 

basically. 
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Table 3.4: Comparison of PGA, PGV and PGD between original and matched ground motions. 

 Original Location I Location II 

No. EQ 
PGA 

(g) 

PGV 

( cm s ) 

PGD 

(cm) 

PGA 

(g) 

PGV 

( cm s ) 

PGD 

(cm) 

PGA 

(g) 

PGV 

( cm s ) 

PGD 

(cm) 

1 
FN 0.645 72.54 20.81 0.380 45.28 247.00 0.484 80.16 55.10 

FP 0.697 82.97 26.60 0.377 43.55 239.53 0.516 60.68 188.08 

2 
FN 0.363 55.53 29.52 0.372 46.58 31.44 0.480 55.06 54.83 

FP 0.376 43.25 15.62 0.374 45.56 106.47 0.485 57.73 142.45 

3 
FN 0.054 6.77 6.12 0.370 34.44 24.61 0.480 38.53 28.70 

FP 0.061 5.15 4.31 0.368 37.72 22.58 0.475 53.40 25.79 

4 
FN 0.122 23.16 24.32 0.372 47.19 42.58 0.483 56.52 38.90 

FP 0.126 6.89 2.51 0.371 48.93 27.90 0.486 56.84 31.03 

 

3.3 Seismic Isolators Design 

Seismic isolators are a fundament part of the bridge design because are the responsible devices to 

reduce forces and dissipate energy during a seismic excitation in form of hysteretic energy dissipation 

providing additional horizontal flexibility to the superstructure. Seismic protective systems (isolators and 

damping devices) were developed to mitigate the effects of the earthquake shaking and are used on 

bridges and buildings. In the case of bridges, seismic isolators are set up typically between substructure 

and superstructure what means between cap beams and decks and between abutments and decks. The goal 

of installing seismic isolator devices on bridges are basically two: 

a) Reduction of acceleration and therefore forces in the superstructure and substructure. 

b) Redistribution of forces between the piers and the abutments. 

Nowadays, seismic isolation systems in bridges allow (i) to isolate superstructure from the effects of 

the earthquake in terms of horizontal accelerations and (ii) to reduce displacements dissipating energy 

through hysteresis, friction and any inelastic response. On one hand, to fulfill the requirement of reduction 

of accelerations, typically seismic isolators systems shift the fundamental period of the structure to make 

it larger (Chen and Scawthorn 2003, Chopra 2007, Constantinou et al. 2011) and therefore reducing the 

acceleration induced by the earthquake (Fig. 3.10(a)). On the other hand, this increment of the 

fundamental period of the structure imply and increment of the displacement demand of the 

superstructure what would suppose higher pounding damage (Fig. 3.10(b)). In addition, seismic isolators 

concentrate the major part of the damage during seismic excitation into a few mechanical elements that 

may be easily checked and replaced, if need be. Seismic isolators are also used to redistribute the stiffness 

selecting the parameters involved in the seismic isolator devices such as stiffness, yield strength and 

ultimate elongation capacity as function of the desired protection and of the seismic intensity expected 

(Priestley et al. 1996). 



 

 

77 

 

 

 

 

 

 

 

 

According to Priestley et al (1996), the main parameters in a seismic isolator system to have to be 

considered are: (i) deformability under frequent quasistatic load,(ii) yielding force and displacement, (iii) 

ultimate displacement and post-ultimate behavior, (iv) capacity for self-centering after deformation 

(restoring force) and finally (v) vertical stiffness. Within all the possible devices, the most commonly 

used and available seismic isolators are: Natural Rubber Bearings (NRB), Lead Rubber Bearings (LRB) 

and Sliding Bearings (Friction Pendulum System). The main features of these devices are as follow, 

a) Natural Rubber Bearings (NRB): NRB uses natural rubber (elastomeric material) layers with 

small damping in cylindrical or rectangular block and constitutes the simplest isolator for bridges. 

The insertion of horizontal steel plates increase the vertical stiffness and improve the stability of 

the whole system. (Fig. 3.11(a)). The linear response of NRB is governed by the properties of the 

natural rubber. 

 

b) Lead Rubber Bearings (LRB): LRB are basically NRB with a lead plug. The insertion of the lead 

plug provides a better energy dissipation and increment of stiffness for static loads (Fig. 3.11(b). 

The energy dissipation is because of the deformation of the lead, basically.  

 

c) Sliding Bearings (Friction Pendulum System): Friction Pendulum System (FPS) combines 

friction action due to sliding and restoring force by geometry (Fig. 3.11(c)). The concept of FPS 

is based on the pendulum equation considering no friction. Hence, the deck weight is supported 

on rollers sliding on a spherical surface. This type of isolator is commonly used combined with 

other centering devices. 

In this thesis, LRB was chosen as seismic isolator system for the seed bridges under consideration 

because LRB are widely used in a seismic bridge design due to its damping properties and effectiveness 

to mitigate hazard of earthquakes. The design of the LRB for all three bridges is based on the technical 

report written by Constantinou et al. (2011) and according to AASHTO LRFD SBD 2009. All the 

calculations needed to get the final results are not given in this study. 
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Fig. 3.11. (a) Natural Rubber Bearing (NRB), (b) Lead Rubber Bearing (LRB) and (c) Friction 

 Pendulum System (FPS).  

 
Pictures from Chen and Scawthorn (2003). 
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3.3.1 Lead Rubber Bearings Design 

According to Constantinou et al. (2011), analysis of seismically isolated bridges should be performed 

for Design Earthquake (DE) for two different sets of mechanical properties of the LRB: Lower Bound 

(LB) and Upper Bound (UB) properties. The definitions of LB and UB provided by Constantinou et al. 

(2011) are as follow, 

a) Upper bound (UB) properties are defined to be the lower bound values of characteristic strength 

and post-elastic stiffness that can occur during the lifetime of the isolators and considering the 

effects of aging, contamination, temperature and history of loading and movement. Typically, the 

upper bound values describe the behavior of aged and contaminated bearings, following 

movement that is characteristic of substantial traffic loading, when temperature is low and during 

the first high cycle of seismic motion. The upper bound values of properties usually in the largest 

force demand on the substructure elements. 

 

b) Lower bound (LB) properties are defined to be the lower bound values of the characteristic 

strength and post-elastic stiffness that can occur during the lifetime of the isolators. Typically, the 

lower bound values describe the behavior of fresh bearings, at normal temperature and following 

the initial cycle of high speed motion. The lower bound values of properties usually result in the 

largest displacement demand on the isolators. 

 

Lead Rubber Bearings (LRB) have bilinear force-displacement response on the horizontal plane as 

shown in Fig. 3.12. The objective of the LRB design for each type of bound (lower or upper bound) is to 

find (i) initial stiffness, (ii) post-elastic stiffness and (iii) yield strength to determine when pass from the 

first initial branch to the post-elastic branch. Fig. 3.12 shows the initial stiffness ik , post-elastic stiffness 

dk , yield strength yF  and corresponding yield displacement yD , displacement demand DD  and finally 

the residual strength 0F . 
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Fig. 3.13 clarifies the concept of upper and lower bound. Typically, the yield displacement in UB is 

considered to be equal to LB and the displacement demand DD  is generally lower in UB as mentioned 

before. The area closed by the lines represents the energy dissipation through hysteresis. 

 

 

 

 

 

 

 

 

 

Note that as Fig. 3.12 as Fig. 3.13 are the bilinear force-displacement relationship for unidirectional 

motions. In the case of bidirectional motions the relationship force-displacement changes getting a 

irregular curve. Fig. 3.14 shows a comparison of the force-displacement relationship for LRB between 

unidirectional and bidirectional motions after carrying out a numerical simulation under Loma Prieta 

earthquake of Bridge A using UB values for the LRB in OpenSees. Note the differences of regularity 

between unidirectional and bidirectional motions along the X-axis in both cases. 
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Fig. 3.13. Comparison between lower and upper bound values for LRB in unidirectional motion. 
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According to the technical report called LRFD-based Analysis and Design Procedures for Bridge 

Bearings and Seismic Isolators written by Constantinou et al. (2011), as well as AASHTO LRFD SBD 

2009, the main properties of the three bridges considered in this study were calculated. A detailed 

procedure of this calculations are not given in this study. From the design point of view, all parameters 

needed to model the bridge numerically are listed in Table 3.5. Spans 1, 2 and 3 are enumerated from left 

to right side respect to the pictures of Bridge A, B and C given in Fig. 3.1, Fig. 3.3(a) and Fig. 3.4, 

respectively. The ratio   indicates the post-elastic ratio between the post-elastic stiffness dk  and the 

initial stiffness ik . Typically, the values of the vertical and torsional stiffness of LRB are much higher 

than the initial and post-elastic stiffness for horizontal displacements. Note that torsional stiffness Tk  is 

specially high in all bridges because it comes out as consequence of fulfilling all the requirements for 

horizontal displacements provided by the code. In addition, each deck has different properties for LRB 

because those depend on the mass of decks, therefore although the specific weight of all spans are the 

same, they have different lengths as shown in Table 3.1. For all spans, the live loads are assumed as the 

15 % of the dead loads defined by the dead weight of each span. 

Table 3.5. Summary of the bounding properties of LRB for Bridge A, B and C. 

 

Parameter 

Span 1 Span 2 Span 3 

 Bridge 

A 

Bridge 

B 

Bridge 

C 

Bridge 

A 

Bridge 

B 

Bridge 

C 

Bridge 

C 

L
o
w

er
 B

o
u
n
d
 (

L
B

) 

Initial stiffness ik  310  

 kN m  
3.9331 5.2409 5.8695 3.3558 5.2409 5.7229 5.5842 

Yield strength yF  

 kN  
98.33 235.84 264.13 100.67 235.84 257.53 251.29 

Vertical stiffness Vk  510  

 kN m  
6.8467 19.234 24.208 68.467 19.234 20.616 17.320 

Torsional stiffness Tk  1010  

 kN m  
1.7627 1.2747 1.7148 1.7627 12.747 12.337 8.7044 

Ratio d ik k   0.119 0.200 0.239 0.140 0.200 0.219 0.200 

U
p

p
er

 B
o

u
n

d
 (

U
B

) 

Initial stiffness ik   310  

 kN m  
4.7244 6.2996 7.0574 4.0317 6.2996 6.8800 6.7122 

Yield strength yF  

 kN  
118.11 283.48 317.58 120.95 283.48 309.60 302.05 

Vertical stiffness Vk  510

 kN m  
6.8467 19.234 24.208 6.8467 19.234 20.616 17.320 

Torsional stiffness Tk   1010

 kN m  
1.7627 12.747 17.148 1.7627 12.747 12.337 8.7044 

Ratio d ik k   0.120 0.201 0.240 0.141 0.201 0.221 0.201 
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The LRB chosen are circular bearings with circular lead in the core. Hence, the LRB for Bridge A, B 

and C with the bounding properties listed in Table 3.5, have the following geometric properties showed in 

Fig. 3.15 and listed in Table 3.6. Although the bounding properties of bearings are different for each span, 

in the case of Bridge A and B the same LRB sizes were chosen in order to simplify the bridge design and 

always from the safety side point of view. In the case of Bridge C, each span has different LRB sizes as 

listed in Table 3.6. The height of the bearing without cover plates is BH , LD  is the lead diameter, BD  is 

the bonded diameter of the rubber, ct  is the thickness of the cover plates, st  is the thickness of the steel 

shims layers and finally w  and h  are the width and height of the cover plates (see Fig. 3.11(b)).  

                                                      Table 3.6. Summary of geometric properties of LRB. 

(mm) Bridge A Bridge B 
Bridge C 

Span 1 Span 2 Span 3 

BD  608 908 958 908 858 

LD  105 115 160 160 160 

BH  455 517 409 409 409 

ct  10 10 10 10 10 

st  6 7 8 8 8 

w  650 950 1000 950 900 

h  650 950 1000 950 900 

 

 

3.4 Design of Bridge A 

The Jack Tone Road On-Ramp Overcrossing bridge shown in Fig. 3.1 Fig. 3.2 (Bridge A) is a two 

span-single column bent with the main geometric properties listed in Table 3.1. The superstructure is a 

three-cell RC box-girder with a centroid of the deck 0.75 mGy  from the cap beam as shown in Fig. 

3.16. Knowing the deck centroid, the geometry of each span and the number of cells of the RC box-

girder, several trials were needed before reaching the final cross-section of the RC box-girder in order to 

possess the same deck centroid as the Jack Tone Road On-Ramp Overcrossing bridge. The geometry of 

the cap beam was fitted to the deck geometry according to the common engineering practice. Two 

circular LRB as described in Fig. 3.15 were installed to 3.7 m between each other and symmetrically 

respect to the central pier. In addition, two more circular LRB with the same properties were installed on 

the right and left abutment accordingly. Fig. 3.16 shows the proposed scaled cross-section of Bridge A, 

cross-section A hereafter, with all the distances defined. 
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Fig. 3.15. Typical circular Lead Rubber Bearing (LRB) with its main geometric parameters. 
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Cross-section A has an area 
24.2421 mcsA   and the length of left and right spans are 33 and 34 m, 

respectively. Therefore, assuming that the whole section is made only by concrete with a density of 

32,500 kg mc  , the weight (dead load) is computed as cW Vg  where V is the volume of the rigid 

body defined by the deck edges and g is the gravity acceleration equal to 9.81 
2m s . In addition, the live 

load is assumed to be a 15 % of the dead load and uniform distributed on the deck in order to take into 

account the random traffic load. Hence, the final vertical loads for the right and left decks are 3,948.22 

and 4,067.87 kN, respectively.  

Regarding the single pier, it may be consider the central part of the bridge design because unlike 

decks, the pier has to support the flexural actions induced by the earthquake while decks behave like a 

rigid body. Therefore, the final behavior of deck will be governed by the central pier. The pier was design 

according to the only two parameters provided by Kaviani et al. (2010 and 2012) what means the 

diameter of 1.70 m and longitudinal reinforcement steel ratio equal to 2 %. From this point, all the 

parameters needed to the proper design of the pier were based on the Caltrans SDC 1.7, Caltrans Bridge 

Design Specifications 2003 and  AASHTO LRFD SBD 2009. An iterative procedure was carried out 

using and Excel spreadsheet in order to find a suitable solution from the code viewpoint. After several 

trials, as occurred with the shape of the cross-section A, it was found the number of steel reinforcing bars 

and its area. First of all, given the total cross-section area of the pier (
22.27 mA ) and knowing the 

longitudinal reinforcement steel ratio, the total area of reinforcement sA  comes out as, 

 
2 20.02 2.27 m 0.0454 msA                 (3.2) 
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Fig. 3.16. Cross section of Bridge A. Units in meters. 
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It was assumed to have 60 longitudinal reinforcing bars what means one reinforcing bar each 6 

degrees. Therefore, it is possible to assess the area for a single reinforcing bar as given in Eq. (3.3). In 

addition, according to the section 8.22 of Caltrans BDS 2003, a cover of 60 mm is considered in order to 

protect the reinforcement steel against corrosion. 

 
2 260    756.60 mm   15.52 mms sb sb sb sbA A A R R               (3.3) 

The reinforcing bars used for Bridge A are those called Metric #32 which have a diameter equal to 

32.3 mm and are those standard reinforcing bars closest to the minimum required of 15.52 mmsbR  . 

The section 8.21.1 of Caltrans BDS 2003 provides a minimum lateral distance between reinforcing bars 

defined as well as section 8.18.1.2 that provide the condition for the number of reinforcing bars and their 

sizes. 

 8.21.1. For cast-in-place concrete, the clear distance between parallel bars in a layer shall not be 

less than 1
1
/2 bar diameters, 1

1
/2 times the maximum size of the coarse aggregate, or 1

1
/2 inches. 

 

 8.18.1.2 The minimum area of longitudinal reinforcement shall not be less than 0.01 times the 

gross area, Ag, of the section. When the cross section is larger than that required by 

consideration of loading, a reduced effective area may be used. The reduced effective area shall 

not be less than that which would require one percent of longitudinal reinforcement to carry the 

loading. The minimum number of longitudinal reinforcing bars shall be six for bars in a circular 

arrangement and four for bars in a rectangular arrangement. The minimum size of bars shall be 

No. 5. 

therefore the spacing between reinforcing bars bd  is between upper and lower limitations and fulfills the 

requirement (Eq. 3.4). In addition, the number of reinforcing bars are 60, much more than the minimum 

provided by the code and the total area of longitudinal reinforcing bars are given by Eq. (3.2) and bigger 

than 1 %. Once it has been checked that to set up one reinforcing bar each 6 degrees (60 in total) with a 

diameter of 32.3 mm is allowed by the code, the design related to the longitudinal reinforcing bars is 

finished as shown in Fig. 3.17. 

 

 

 

Figure 3.17. Cross-section of the pier of Bridge A with the 60 reinforcing bars. Units in meters. 
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 46.56 mm 131.10 mm 203.20 mmbd               (3.4) 

Regarding lateral reinforcement, it was chosen a standard Metric #25 (29.9 mm of diameter) as 

reinforcing bar for the stirrups spacing 20 cm along the height of the pier, according to the section 8.3 of 

Caltrans BDS 2003. Therefore, the lateral reinforcing steel ratio is 0.91 %. The design of the abutments is 

based on the section 7.8. of the code Caltrans SDC 1.7. The backfill passive pressure force resisting 

movement at the abutment varies non-linearly with the longitudinal abutment displacement and is 

dependent upon the material properties of the backfill. Hence, the bilinear demand model provided by 

Caltrans SDC 1.7 include an effective abutment stiffness that accounts for expansion gaps, and 

incorporates a realistic value for the embankment fill response. The initial stiffness iK  for embankment 

fill material provided by Caltrans SDC 1.7 is as given, 

 
28.7 kN mm

m
iK                (3.5) 

The initial stiffness iK  must be adjusted proportional to the back wall/diaphragm height, as given in 

Eq. 3.6, 

 
1.7 m

abut
abut i abut

h
K K w

 
  

 
,             (3.6) 

where abutw  is the projected width of the back wall or diaphragm for seat and diaphragm abutments. In 

the case of Bridge A, 8.3 mabutw   and 1.855 mabuth   therefore the stiffness of the abutment is 

52.60 10  kN mabutK   . Based on a bilinear idealization of the force-displacement relationship depicted 

in Fig. 3.18, the passive pressure force at the abutment is calculated according to Eq. (3.7). 

 239 kPa
1.7 m

abut
bw e

h
P A

 
    

 
,             (3.7) 

where eA  is the effective abutment wall area defined as e abut abutA h w . Hence, the passive pressure force 

bwP  is 4,015.27 kN.  
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Fig. 3.18. Force-displacement relationship of passive pressure force in abutments. 
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3.5 Design of Bridge B 

The La Veta Avenue Overcrossing bridge shown in Fig. 3.3 is a two-span bridge supported on two 

piers per cap beam. The geometric parameters of the bridge B are given in Table 3.1. The superstructure 

is a six-cell RC box-girder and the piers are supposed to be circular with a 1.7 m diameter. The procedure 

to design Bridge B is exactly the same as followed to design Bridge A, therefore the first step was to draw 

in Autocad several decks model until reach a deck with the same deck centroid ( 1.04 mGy  ) than the 

real bridge provided by Kaviani et al. (2010 and 2012). After several trials, the final deck shape is given 

in Fig. 3.19 as well as the cap beam and the bearings. In the case of Bridge B, three circular Lead Rubber 

Bearings (LRB) are used and located symmetrically respect to the center of the cap beam and separated 

5.85 m. All the circular bearings used in Bridge B have the same size as listed in Table 3.6. 

Cross-section B has an area 
216.559 mcsA   and the length of left and right spans are 47 and 44 m, 

respectively. Therefore, assuming a density of concrete 
32,500 kg mc  , the weight of the left and 

right span is 19,087.15 and 17,868.82 kN, respectively. As occurred in the design of Bridge A, a 15 % of 

dead load is supposed to be live load to take into account the traffic load. Hence, the final vertical load 

applied on left and right decks are 21,950.22 and 20,549.14 kN, respectively. 

Regarding the piers of the Bridge B, the longitudinal reinforcing steel ratio is approximately 1.9 % 

therefore the total steel area is, 

 
2 20.019 2.27 m 0.0431 msA    ,            (3.8) 

and assuming 60 reinforcing bars as was assumed in Bridge A, the area of a single reinforcing bar is given 

by, 

 
2 260    718.77 mm   15.13 mms sb sb sb sbA A A R R               (3.9) 

According to the common engineering practice, a standard Metric #32 (32.3 mm of diameter) was 

chosen as reinforcing bars. On one hand, the minimum lateral distance between reinforcing bars defined 

in section 8.21.1 of Caltrans BDS 2003 and the condition for the number of reinforcing bars and their 

sizes given in section 8.18.1.2 are fulfilled as occurred in Bridge A. The lateral distance between 

reinforcing bars bd  is given in Eq. (3.10). Moreover, according to the section 8.22 of Caltrans BDS 2003, 

a cover of 60 mm is considered in order to protect the reinforcement steel against corrosion. Therefore, 

the cross-section of Bridge B is the same than Bridge A as depicted in Fig. 3.17. 

 45.38 mm 131.96 mm 203.20 mmbd            (3.10) 

On the other hand regarding the lateral reinforcing bars, it was chosen a standard Metric #25 (29.9 

mm of diameter) as reinforcing bar for the stirrups spacing 20 cm along the height of the pier, according 

to the section 8.3 of Caltrans BDS 2003. Therefore, the lateral reinforcing steel ratio is 0.91 %. The 

design of the abutments is based on the section 7.8. of the code Caltrans SDC 1.7. The width and the 

height   of the abutment are 23 and 2.417 m, respectively. According to Eq. (3.5), Eq. (3.6)
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Fig. 3.19. Cross-section of Bridge B. Units in meters. 
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and Eq. (3.7), the stiffness of the both abutments are 
59.39 10  kN mabutK    and the passive pressure 

force shown in Fig. 3.18 is 18,894.39 kNbwP  . 

3.6 Design of Bridge C 

The Jack Tone Road Overhead bridge is a three-span bridge supported on three piers per cap beam. 

The superstructure is a seven-cell RC box-girders and the diameter of each pier is 1.7 m. The rest of the 

geometric properties are listed in Table 3.1. As mentioned in section 3.5, the procedure to design the 

Bridge C is exactly the same than used for Bridge A. On one hand, the final shape of the seven-cell RC 

box girder was found taking into consideration the deck centroid ( 1 mGy  ) as main parameter. Hence, 

after several trials using Autocad and according to common engineering practice for bridge design, the 

final shape of Bridge C is depicted in Fig. 3.20. Three circular LRB were installed symmetrically respect 

to the central pier on the cap beams and on the abutments with the sizes listed in Table 3.6 and separated 

7.6 m. In the case of Bridge C, each deck has different LRB due to seismic design criteria suggested by 

Constantinou et al. (2011) and explained in detail in Appendix C. 

On the other hand, cross-section C has an area 
217.269 mcsA   and the length of left, middle and 

right spans are 47.5, 44 and 36 m, respectively. Therefore, assuming a density of concrete 

32,500 kg mc  , the weight of the left, middle right span is 20,117.31, 18,634.98 and 15,246.80 kN, 

respectively. As occurred in the design of Bridge A and B, a 15 % of dead load is supposed to be live load 

to take into account the traffic load. Hence, the final vertical load applied on left, middle and right decks 

are 23,134.90, 21,430.22 and 17,533.82 kN, respectively. 

Regarding the piers, the longitudinal reinforcing steel ratio is 2.2 %. Therefore, the total steel are is 

given by, 

 
2 20.022 2.27 m 0.0499 msA    ,          (3.11) 

Assuming that there are 60 reinforcing bars, the area of the single reinforcing bar is, 

 
2 260    832.26 mm   16.28 mms sb sb sb sbA A A R R             (3.12) 

According to the common engineering practice, a standard Metric #36 (35.8 mm of diameter) was 

chosen as reinforcing bars unlike Bridge A and B. On one hand, the minimum lateral distance between 

reinforcing bars defined in section 8.21.1 of Caltrans BDS 2003 and the condition for the number of 

reinforcing bars and their sizes given in section 8.18.1.2 are fulfilled as occurred in Bridge A and B. The 

lateral distance between reinforcing bars bd  is given in Eq. (3.13). Moreover, according to the section 

8.22 of Caltrans BDS 2003, a cover of 60 mm is considered in order to protect the reinforcement steel 

against corrosion. Hence, the cross-section of single pier of Bridge C is depicted in Fig. 3.21. 

 48.83 mm 129.42 mm 203.20 mmbd            (3.13) 
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Fig. 3.20. Cross-section of Bridge C. Units in meters. 
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Regarding the lateral reinforcing bars, it was chosen a standard Metric #25 (29.9 mm of diameter) as 

reinforcing bar for the stirrups spacing 20 cm along the height of the pier, according to the section 8.3 of 

Caltrans BDS 2003. Therefore, the lateral reinforcing steel ratio is 0.91 % as Bridge A and B. The design 

of the abutments is based on the section 7.8. of the code Caltrans SDC 1.7. The width abutw  and the 

height abuth  of the abutment are 23.5 and 2.329 m, respectively. Therefore, according to Eq. (3.5), Eq. 

(3.6) and Eq. (3.7), the stiffness of the both abutments are 
59.24 10  kN mabutK    and the passive 

pressure force shown in Fig. 3.18 is 17,924.58 kNbwP  . 

 

 

 

 

 

 

 

3.7 Conclusions 

Three real bridges located in California and based on the three seed bridges used by Kaviani et al. 

(2010 and 2012) have been selected to study the pounding effect under bidirectional seismic excitations 

using the proposed contact element NCM3D. Bridge A and C are located in location I while Bridge B is 

located in location II. Hence, the design response spectrum for each location was calculated according to 

AASTHO LRFD SBD 2009 and Caltrans SDC 1.7. In addition, Kobe, Loma Prieta, Chi-Chi and Landers 

earthquake were chosen from PEER database (2013) as input ground motions along Fault Normal (FN) 

and Fault Parallel (FP). Then, these earthquake were scaled using the computer program RspMatch2005 

(Hancock et al. 2006) for both locations. Once the design response spectrum was known, the Lead Rubber 

Bearings (LRB) were design according to Constantinou et al. (2011) for each bridge individually. Finally, 

a brief design description was given for each bridge based on AASTHO LRFD SBD 2009, Caltrans BDS 

2003 and Caltrans SDC 1.7. 

  

0.06

R0.85

D0.0358

Fig. 3.21. Cross-section of a pier of Bridge C with the 60 reinforcing bars. Units in meters. 
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Chapter 4 

Finite Element Modeling and Analysis 

 

The study of pounding phenomenon in highway bridges in this thesis is based on numerical 

simulations using Finite Element Method (FEM) through the contact element NCM3D developed for the 

computer program OpenSees. In order to achieve accurate results, the finite element model should 

represent as realistic as possible all the mechanical properties of the structure. To this end, three detailed 

finite element models were built in OpenSees. The different elements, the materials for those elements 

and the type of analysis used to perform the numerical solution are discussed in depth in this chapter. 

Furthermore, a sensitive study about the impact stiffness and the time step of the simulations are carried 

out to determine its influence when pounding occurs. 

4.1 Finite Element Modeling of Bridges 

The main components of a finite element model of a bridge are (i) decks, (ii) piers, (iii) bearings, (iv) 

cap beams and (v) abutments. Within these components, those that govern the behavior of the bridge are 

piers and bearings basically. On one hand, the finite element modeling of bridges is based on the 

recommendations provided by Guidelines for Non-linear Analysis of Bridge Structures in California 

(2008) and the same modeling criteria is used for the three bridges under consideration. On the other 

hand, the bridge modeling is performed according to the elements and materials available in OpenSees 

(2013). 

4.1.1 Decks 

Decks are modeled as depicted in Fig. 2.7, using four corner nodes and adding other intermediate 

nodes and mass center node. These nodes are linked between each other through Elastic Beam Column 

elements without mass as shown in Fig. 4.1. In addition, a Rigid Diaphragm is used on the top and on the 

bottom level between all these nodes using the mass center as the master node and the other ones as slave 

nodes. The intermediate nodes are added to simulate better the geometry of decks in terms of location of 

bearings. A rigid diaphragm is used to force the deck to behave as rigid body. Because of this, it does not 

matter the material properties of these elastic beam column elements. The total mass of the decks (see 

sections 3.4, 3.5 and 3.6) is divided into the mass center (MC) and the four corner nodes assigning the 60 

% to the mass center and the 10 % to each single corner node because convergence issues. Moreover, 

rotational inertia is applied to the mass center according to Eq. 4.1, where m is the total mass, a and b are 

the semi length and semi width of the deck defined in Fig. 2.7.  

 2 2
0

1

3
I m a b                     (4.1) 
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The vertical elastic beam column elements between the top level and the bottom level of the deck are 

linked using Rigid Link constraining all six degrees of freedom. Hence, the whole deck behaves as rigid 

body. The length of the vertical elastic beam column elements coincide with the deck centroid Gy . In the 

case of Bridge A where only two bearings are installed, the middle node on the bottom level is removed 

(see Fig. 3.16) due to the bottom nodes are set up exactly on the same location where the bearings are 

installed to connect the deck with the cap beams through the lead rubber bearings defined in Table 3.6.  

4.1.2 Piers 

Piers are modeled using Non-Linear Beam Column elements available in OpenSees in order to 

simulate the non-linear geometry and non-linear material behavior. On one hand, the geometric non-

linearity is modeled through P   transformation which performs a linear geometric transformation of 

beam stiffness and resisting force from the basic system to the global coordinate system, considering 

second-order P   effects. On the other hand, the non-linear material is handled using Euler-Bernoulli 

fiber beam column elements with distributed plasticity based on the work of Spacone et al. (1996a, b). 

The constitutive behavior of the section is modeled discretizing the section into fibers that can take into 

consideration the axial force-moment coupling as well as the interaction between steel and concrete. This 

element is based on the classical beam Euler-Bernoulli’s theory that assumes that the cross-section 

remains perpendicular to the axis of the beam after deformation, what implies constant shear strain 

distribution along the length of the beam. Despite this element uses distributed plasticity, the strains are 

only evaluated at certain point known as integration points. In this thesis, ten integration points along the 

length are used per pier in all three seed bridges (Fig. 4.2). The integration along the element is based on 

Gauss-Lobatto quadrature rule (two integration points at the end of the element). Although usually four 

integration points are used and there are some studies suggesting that more integration points not always 

means more accurate results (for example, Fragiadakis and Papadrakakis 2008), this study utilizes ten 

integration points because different number of integration points were used to study the response of the 

FE models and ten points provided a good response in terms of convergence. 

Elastic Beam Column

Corner node

A

A'
Top Rigid Diaphragm

Bottom Rigid

Diaphragm

2.3720

A' A

Intermediate

 node

MC

Fig. 4.1. Sketch of deck model using elastic beam column elements in OpenSees. 

Gy



 

 

93 

 

 

 

 

 

 

 

 

 

The section of the pier is discretized into three different Uniaxial Materials available in Opensees as 

depicted in Fig. 4.3: unconfined concrete for the cover ring, confined concrete for the core of the pier and 

steel for the reinforcing bars. 

 

 

 

These uniaxial materials have different non-linear constitutive relationships. On one hand, the 

unconfined and confined concrete are modeled using the model proposed by Yasin (1994) in his PhD 

dissertation at University of California at Berkeley that takes into consideration the concrete damage and 

hysteresis of concrete under cyclic loading as shown in Fig. 4.4. This concrete model is available in 

OpenSees as Uniaxial material Concrete02 and is based on the experimental results by Sinha et al. (1964) 

and Karsan and Jirsa (1969). This concrete constitutive law can model the initial cracking of the concrete 

modeling the tension branch. In this concrete model, according to Yasin (1994), the parameters for 

unconfined concrete are: 

 
' '

0 0,   ,   0,   ,   ,   0.5c c c cu u cu u t t ts cf f f f f f E E          ,         (4.2) 

Fig. 4.2. Sketch of fiber beam column element with some integration points. 

Integration points 

= + + 

RC section Unconfined concrete 

fibers 

Confined concrete 

fibers 

Reinforcing steel 

fibers 

Fig. 4.3. Different uniaxial materials of the RC section of a pier. 
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And for confined concrete: 

 

' ' '
0 0 0

' ' '
0

'

0.8
,   ,   0.2 ,   ,   ,   0.1

2 0.5
1 ,   ,   

3 0.29
0.75 0.002

145 1000

c c c cu c cu t t ts c

s yh c
c

cc c
s

hc

f Kf K f Kf K f f E E
Z

f f
K E Z

f f h
K

sf

   






      

   

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,       (4.3) 

where 0c  is the concrete strain at maximum stress, 0  is the strain at maximum stress in unconfined 

concrete taken as 0.002 in this study, cuf  is the residual stress and uf  is the crushing strength of the 

concrete where cu  is its corresponding strain, u  is the strain at crushing strength in unconfined concrete 

taken as 0.004 in this study, tf  is the maximum tensile stress and 
'

tf  is the tensile strength of the 

concrete taken as ' '0.556t cf f  according to the code, tsE  is the softening branch slope in tension, cE  

is the tangent modulus at origin, K  is a factor which accounts for the strength increase due to the 

confinement, Z  is the strain softening slope, 
'

cf  is the concrete compressive cylinder strength in MPa 

taken as 40 MPa, yhf  is the yield strength of stirrups in MPa taken as 350 MPa in this study, s  is the 

ratio of volume of hoop reinforcement to the volume of concrete core measured to outside of stirrups, 
'h  

is the width of concrete core measured to outside of stirrups and finally hs  is the center to center spacing 

of stirrups or hoops sets (Yassin 1994). The stress-strain relationship of the uniaxial material concrete02 

available in OpenSees and based on the constitutive law for confined and unconfined concrete developed 

by Yassin (1994) is depicted in Fig. 4.4. Table 4.1 summarizes all the input parameters used for 

concrete02 model. 

 

 

 

 

 

 

 

 

 

 

 

0c

cf

cuf

cu

tf





Z

tsE

cE

Fig. 4.4. Stress-strain relationship of the concrete02 model available in OpenSees. 
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Table 4.1. Summary of the input parameters used for concrete02 model in OpenSees. 

 Unconfined concrete Confined concrete 

Parameters Bridge A Bridge B Bridge C Bridge A Bridge B Bridge C 

cf  (MPa) 40 40 40 43.17 43.17 43.18 

0c  0.002 0.002 0.002 0.00216 0.00216 0.00216 

cuf  (MPa) 0 0 0 8.63 8.63 8.64 

cu  0.004 0.004 0.004 0.00970 0.00970 0.00971 

tf  (MPa) 3.52 3.52 3.52 3.65 3.65 3.65 

tsE  (MPa) 20000 20000 20000 4000 4000 4000 

 

Regarding reinforcing steel fibers in longitudinal direction, the Uniaxial material Steel02 available in 

OpenSees is based on the Menegotto and Pinto (1973) constitutive law and improved by Filippou et al. 

(1983) including isotropic strain-hardening effect. This model is governed by the yield stress yf  taken as 

420 Mpa and the modulus of elastic of the steel sE  taken as 
52 10  MPa. The transition region between 

the initial slope and the post-elastic slope is governed by three parameters taken by default in OpenSees 

and allow to represent properly the Bauschinger effect. Fig. 4.5 shows the constitutive law of the uniaxial 

material steel02 available in OpenSees used for the reinforcing steel bars 

 

 

 

 

 

 

 

 

 

  

 

In the three seed bridges, the non-linear beam column elements are used with mass density per unit 

length. This mass density is calculated taking into consideration the volume of concrete and the volume of 





yf

sE

yf

sE





Fig. 4.5. Stress-strain relationship of the steel02 model available in OpenSees. 
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Bridge A Bridge B Bridge C 

steel in each pier and their corresponding densities as well as the height of the piers. Therefore, assuming 

a density of steel equal to 7,850 
3kg m  and a density of concrete equal to 2,500 

3kg m , the mass density 

for Bridge A, B and C is 5.91, 5.89 and 5.93 
2 2kNs m , respectively. 

4.1.3 Lead Rubber Bearings 

The Lear Rubber Bearings (LRB) used to isolate the superstructure (decks) and the substructure 

(piers) are governed by bilinear stress-strain relationship depicted in Fig. 3.12. In order to model these 

LRB, Elastomeric Bearings elements available in OpenSees are used. These elements are used with the 

input parameters according to the lower and upper bounding defined and listed in Table 3.5. As shown in 

Fig. 4.6, LRB are installed between the cap beam and the bottom plane of the deck. 

 

 

Although the Elastomeric Bearing elements can be used as Zero Length element in OpenSees, the 

total height of the bearing BH  of each bridge defined in Table 3.6 is chosen in order to simulate better the 

real bridges. The input parameters needed for lower and upper bounding are: The initial stiffness ik , the 

yield strength yF , the vertical stiffness Vk , the torsional stiffness Tk  and the ratio   between the post-

elastic stiffness dk  and the initial stiffness ik  (see Table 3.5). 

4.1.4 Cap Beams 

Cap beams are modeled using Elastic Beams elements available in OpenSees without mass and 

forced to work as a rigid body through the command RigidLink Beam available in OpenSees that 

constraint the 6 degrees of freedom between two nodes using a master node. This master node is the joint 

between the cap beam and the pier as shown Fig. 4.7. The code Caltrans SDC 1.7 as well as the technical 

report Guidelines for Non-Linear Analysis of Bridge Structures in California provided by PEER Center, 

1.5175 1.5175 1.5175

Cap beam Cap beam Cap beam

Pier

Bearing

Pier Pier

Bearing BearingBH BH BH

Fig. 4.6. Schematic representation of the bearings of Bridge A, B and C. 
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allow to take this assumption. In addition, it is a common practice in numerical simulations of bridges 

(see for example Jankowski et al. 1998, Abdel Raheem 2009, Eröz and DesRoches 2013). 

4.1.5 Abutments 

The abutments are modeled according to the technical report used in the case of cap beams (see 

section 4.1.4) and the contribution on the X-Y plane of the abutments only appear when there is pounding. 

Hence, when there is pounding abutments becomes another adjacent structure where decks may impact 

with. Therefore, abutments are modeled with the proposed contact element NCM3D developed and 

implemented in OpenSees in this study. The impact stiffness in normal and tangential direction are 

assumed to be the same and equal to the stiffness of the abutment provided by section 7.8 of Caltrans 

SDC 1.7 and computed in section 3.4 (Bridge A), section 3.5 (Bridge B) and section 3.6 (Bridge C) and 

summarized in Table 4.2, the normal and tangential coefficient of restitution is 0.64N Tr r   and the 

static and kinetic coefficient of friction are assumed to be 0.5s   and 0.4k  , respectively. From the 

vertical point of view, the vertical stiffness of the abutments is given by the vertical stiffness of the LRB 

(see Table 3.5) installed due to the abutments are assumed to be fixed during the earthquake as shown in 

Fig. 4.7. 

 

Table 4.2. Summary of the impact stiffness for the abutments. 

 Abutment right Abutment left 

Parameters Bridge A Bridge B Bridge C Bridge A Bridge B Bridge C 

Stiffness 

 5 10  kN mabutk   
2.60 9.39 9.24 2.60 9.39 9.24 

Passive force   kNbwP  4,015.27 18,894.39 17,924.58 4,015.27 18,894.39 17,924.58 

 

Although the passive force listed in Table 4.2 and provided the section 7.8 of Caltans SDC 1.7 is not 

respected when NCM3D is used due to NCM3D does not use a linear relationship between displacements 

and forces, the maximum values of pounding force along normal direction are close to the passive force 

values. Therefore, in order to take into consideration the friction forces as well, NCM3D is used instead 

of an uniaxial contact element with the force-displacement relationship given by the code and showed in 

Fig. 3.18. 

Abutment Abutment Abutment

Bridge A Bridge B Bridge C 

Fig. 4.7. Schematic representation of abutments. 
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 In addition, the stiffness of the abutment given by the same code are not considered as impact 

stiffness, however in this study are taken as impact stiffness because of the order of magnitude of those 

stiffness is quite similar un many pounding studies and realistic. 

4.2 Parametric Study 

In order to summarize the global behavior of the three seed bridges under pounding phenomena, two 

parameters were used: the expansion joint (gap) and the skewness (angle). On one hand, the gap is defined 

as the distance between two adjacent decks as well as the distance between a deck and an abutment as 

shown in Fig. 1.12. On the other hand, the skew angle is defined as the angle between the expansion joint 

and the lateral edge of the deck as depicted in Fig. 4.8. The range of the gap d  is taken as the 10, 30, 50, 

70, 90 and 100% of the displacement demand DD  of the LRB using Upper Bound properties (see Table 

4.3). Therefore, each bridge has a different range for the gap. Unlike the gap, the range of the skew angle 

goes from 0 to 45 degrees using 15 degrees step between them (0º, 15º, 30º and 45º).  

Table 4.3. Gaps (d) used for the simulations for each bridge. 

Gap (mm) Bridge A Bridge B Bridge C 

0.1Dd D   9.9 15.2 11.4 

0.3Dd D   29.7 45.6 34.2 

0.5Dd D   49.5 76 57 

0.7Dd D   69.3 106.4 79.8 

0.9Dd D   89.1 136.8 102.6 

1.0Dd D   99 152 114 

 

 

 

Different combinations of the gap, skewness, direction of the ground motion (unidirectional and 

bidirectional),pounding and no pounding as well as both bounding properties of the LRB (lower and 

upper) were used in order to perform 2,688 non-linear time history FEM analysis using OpenSees. 

Fig. 4.8. Skewness. 
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4.3 Sensitive Study 

Pounding is complex phenomenon acting in a short period of time with several parameters involved 

that cannot be determined easily. Therefore, it can be imagined this phenomena may be sensitive to some 

of those parameters and modify the final response of the bridge under seismic excitation. Since pounding 

is only produced during a short period of time (in the order of miliseconds) and the impact stiffness has a 

high uncertainty (Guo et al. 2011) and only can be computed experimentally, the time step dt and the 

impact stiffness k are used to check out the sensitivity of the numerical modeling of bridges. The bridge 

model used to carry out this sensitive study was the same as used for bidirectional validation in Section 

2.4.2.2. 

4.3.1 Influence of Time Step 
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Fig. 4.9.Displacements of deck 1 along (a) X direction and (b) Y direction using NCM3D under Taft

 earthquake for different time steps. 
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Because of the duration of the pounding, the time step dt used to discretized the time may be a 

crucial parameter in order to perform a good FEM analysis as well as change the bridge response during 

the earthquake. Therefore, different time steps were used to determine their influence during pounding. 

Unlike the displacements along X and Y-axis as shown in Fig. 4.9, the accelerations in those directions are 

quite sensitive to the different time steps (Fig. 4.10). 

The displacements of deck 2 are quite similar to the deck 1 and therefore are not reported in this 

study. While the influence of the time step in terms of displacements is not relevant and does not seem 

that changes the bridge response significantly, the acceleration response is highly influenced by the time 

step as depicted in Fig. 4.10. On one hand, it changes the number and the time of the impacts as well as 

the value of those impacts. On the other hand, the response of the deck in terms of accelerations (normal 

and tangential) does not change a lot when there is no pounding. That may be why the bridge model used 

in the sensitive study is an isolated bridge through LRB between cap beam and decks. Therefore, both 

decks are very sensitive to the accelerations but low sensitive in terms of displacements. 

 

  

 

0 2 4 6 8 10 12

-15

-10

-5

0

5

0 2 4 6 8 10 12

-8

-4

0

4

A
cc

el
er

at
io

n
 (

m
/s

2
)

Time (s)

 dt = 0.01 s

 dt = 0.005 s

 dt = 0.001 s

 dt = 0.0005 s

A
cc

el
er

at
io

n
 (

m
/s

2
)

Time (s)

Fig. 4.10. Accelerations of deck 1 along (a) normal and (b) tangential direction using NCM3D under Taft
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Focusing on the acceleration response, zooming in the first impact at time 1.44 s and a random 

impact during the earthquake at time 5.75 s approximately, the main differences such us the shape of the 

impact force relationship and the dissipated energy can be compared. Fig. 4.11(a, c) shows the force-time 

relationship at the first impact for normal and tangential direction. As it can be seen, the initial contact 

takes place at the same time with all four different time steps and the peak value of those are quite similar. 

Obviously ,the shape produced by dt = 0.01 s is sharper than the other ones as expected.  

Nonetheless, the area under the curve, what means the dissipated energy, remains almost the same as 

shown in Fig. 4.11 (a, c) and the differences are not significant. However, looking at the normal and 

tangential forces produced at time 5.75 s, the influence of the time step becomes relevant and modify the 

exact time of the impact as well as its peak value and dissipated energy as depicted in Fig. 4.11(b, d). The 

error of the dissipated energy in a random time during the contact respected to the initial impact is due to 

the accumulative error. However, as it said before, the influence of the time steps in terms of 

displacement may be neglected while the effect in terms of acceleration is relevant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 4.11. Normal force of (a) the first impact and (b) a random impact. Tangential force of (c) the first

 impact and (d) random impact for different time steps. 

(a) (b) 

(c) (d) 
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In both cases, the dt = 0.01 s is when more energy is dissipated while the dissipated energy in the 

initial impact is the same for dt = 0.001 s and dt = 0.0005 s what means that dt = 0.001 s is a good 

assessment for the further time step. However, in the random impact all the dissipated energies are 

different due to the accumulative error mentioned above. Finally, the rotation of both decks was studied 

showing a slightly difference of behavior but less chaotic than the acceleration response. As it can be seen 

in both decks in Fig. 4.12, there is no difference of response during the first contact and this difference is 

growing up along the time due to the accumulative error produced by the time step. 

 

 

 

 

 

 

 

  

 

4.3.2 Influence of Impact Stiffness 

According to Guo et al. (2010), the impact stiffness k used in the mathematical model in both 

directions (see Section 2.4.1) is one of the most significant parameters in pounding modeling. Despite the 

right assessment of the impact stiffness would need to carry out several experiments in the laboratory, this 

procedure is not common in the normal engineering practice. Therefore, it is needed to estimate a value of 

the impact stiffness a priori, before knowing anything else. Some years ago, this impact stiffness was 

taken as the normal stiffness taking account the axial deformation of both colliding bodies. Nevertheless, 

Guo et al. (2010) demonstrated there was a huge gap between the real value computed experimentally and 

the theoretical axial value. Hence, different impact stiffness’s were taken to study the influence of this 

parameter in the bridge response based on the published literature. 

As occurred during the assessment of the influence of the time step, the influence of the impact 

stiffness in terms of displacements is reduced. Fig. 4.13 shows the small variations of the displacement 

Fig. 4.12. Rotation of (a) deck 1 and (b) deck 2 using NCM3D under Taft earthquake for different time

 steps. 

(a) (b) 
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along X and Y-axis of deck 1 according to the different values of the impact stiffness. However, the 

differences are bigger than those related to the time step as expected. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

As expected, the influence in the acceleration response is much higher than displacement response. 

In addition, because of the impact stiffness is directly proportional to the normal and tangential pounding 

force and therefore to the acceleration of decks, the increment of the acceleration when the impact 

stiffness is also incremented is evident. The normal and tangential acceleration of deck 1 are depicted in 

Fig. 4.14(a) and Fig. 4.14(b), respectively. However, due to the scale necessary to draw the different 

accelerations related to different impact stiffness’s in the same plot is not possible to understand it clearly 

and therefore Fig. 4.15 is provided.  

 

 

(a) 

(b) 

Fig. 4.13. Displacement of deck 1 along (a) X and (b) Y direction using NCM3D under Taft earthquake

 for different impact stiffness values. 
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Finally, the rotation of both decks are compared for different values of impact stiffness’s as shown in 

Fig. 4.16. As expected, the influence of the impact stiffness in the rotation of decks is much higher than 

the influence of the time step. Nevertheless, although the rotation response is completely different 

according to different values of the impact stiffness, it seems as constrained between the same positive 

and negative values of rotation. In other words, the absolute value of the peak rotations do not change 

significantly as shown in Fig. 4.16. 

Fig. 4.14. Acceleration of deck 1 along (a) normal and (b) tangential direction using NCM3D under Taft

 earthquake for different impact stiffness values. 

(a) (b) 

Fig. 4.15. Acceleration of deck 1 along normal direction using NCM3D under Taft earthquake for

 different impact stiffness values. 
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4.4 Analysis Method 

Non-linear time-history analysis procedures are widely recognized as the most accurate way of 

simulating the seismic response of structure and especially when pounding is involved. Time integration 

of equations of motion is accomplished using Newmark’s method of constant acceleration 

0.5,  0.25    and the time step of 0.001 s. As it was mentioned in Section 4.3.1, a time step of 0.001 

s provided good enough results in terms of displacement, energy dissipation and convergence. Among the 

2,688 non-linear time history analysis, only few simulations are carried out using a time step of 0.0005 s 

due to convergence troubles. 

The non-linearity of the problem demands an iterative solution procedure. At the beginning of each 

time step modified Newton-Raphson method is employed for the iterative solution and the method is 

changed if the convergence is not achieved in the time step. This procedure is done through a script 

written in TCL and added in each bridge model. The wide library of solvers in OpenSees supplies 

algorithms such as Newton with line search, Krylov-Newton, Secant Newton, BFGS and Broyden method. 

The convergence of the solution is based on energy increment and the Rayleigh damping used in this 

study is stiffness proportional. 

4.5 Pre-processing and Post-processing 

The open-source computer program OpenSees does not have GUI (Graphical User Interface) as 

shown in Fig. 2.21 and therefore is not user-friendly. The powerful of OpenSees for dynamic problems 

Fig. 4.16. Rotation of deck (a) 1 and (b) 2 using NCM3D under Taft earthquake for different impact 

stiffness values. 

(a) (b) 
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contrast with the lack of tools regarding pre and post-processing. On one hand, in order to overcome this 

drawback, all the TCL scripts of the three seed bridges needed to the numerical simulations were written 

using the computer program TCL editor and then loaded in OpenSees through the command source 

script.tcl. On the other hand, the output files from OpenSees came out in .txt format. A Matlab script was 

created to be able to read, summarize and screen all the significant data to study the bridge responses. The 

Matlab script is not provided in this thesis because is unnecessary and does not contribute in the 

understanding of the problem. Finally, once all the recorded parameters of the bridges were filtered and 

screened in a legible file, the final results were plotted using OriginLab (as all the graphs presented in this 

study). 

4.6 Conclusions 

Three real bridges were modeled in OpenSees according to the common engineering practice in non-

linear analysis recommended in Guidelines of nonlinear analysis in bridge structures in California 

(Aviram et al. 2008b). Basically, the main parts of the bridge which were modeled were: decks, piers, 

lead rubber bearings (LRB), cap-beams and abutments. Then, the expansion joint (d) and the skewness of 

the bridge were taken as the main parameters needed to carry out a parametric study. Different values of 

gaps and skew angles were taken and combined in order to simulate as scenarios as possible. In this study, 

2,688 non-linear time-history analysis were computed. In addition, a sensitive study related to the most 

two sensitive parameters regarding pounding phenomena such as time step and impact stiffness were 

considered. Finally, the analysis method used during the numerical simulations as well as the computers 

programs used during the pre and post-processing were explained. 
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Chapter 5 

Numerical Results and Discussion 

This chapter presents the results of all numerical simulations of the seed bridges considered in 

Chapter 3. The same type of simulations are done in the three bridges. This means to figure out a 

combination of unidirectional and bidirectional seismic excitation, pounding and no pounding, lower 

bound (LB) and upper bound (UB), four ground motions (Kobe, Loma Prieta, ChiChi and Landers 

earthquake), six different gaps depending on the bridge (see Table 4.3) and finally four different skew 

angles (0º, 15º, 30º and 45º) in each case. Combining all these cases implies 2,688 non-linear time history 

analysis. Fig. 5.1 shows, as example, a flowchart of the combination of simulations mentioned before. 
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Fig. 5.1. Flowchart of all possible combinations used in the non-linear time history simulations in

 OpenSees. 
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In the three bridges are used the same impact parameters as input of NCM3D. The normal and the 

tangential impact stiffness is taken as 51·10 kN mk  , the coefficient of restitution along normal and 

tangential direction is taken 0.64N Tr r   
while the static and kinetic coefficient of friction  and s k  are 

taken as 0.5 and 0.4 respectively. Due to the huge amount of output data of each bridge, 896 non-linear 

time history analysis for each bridge with a lot of parameters recorded in each simulation, is not possible 

to show all the results supplied by OpenSees. Nonetheless, there is a correlation between some of those 

results which allow to understand good enough the seismic response of the bridge only focusing on in 

several parameters. Therefore, although all the results were recorded, only the relative acceleration of one 

deck, the displacement of the same deck as well as the reaction of one of the piers (in the case there were 

more than one) is shown in this study. 

 It is also important to explain the way of how these results are shown. Unlike the results regarding 

the seismic behavior of bridges plotted previously in this study, the results of Section 5 are more 

concentrated and concise due to the huge amount of data to deal with. In order to do that, a new template 

of graph is created for this Section 5. The new graph used to plot as much information as possible is based 

on the base of this study: the pounding and no pounding behavior and both parameters used in the 

parametric study (gap and skewness). The circle is divided into two semicircles where the left one shows 

all the results related to unidirectional ground motion while the left side of the circle shows the results 

related to the bidirectional ground motion. At the same time, each semicircle is divided into two portions 

where the upper one concentrates all the results along X-axis while the lower portion summarizes the 

results along Y-axis. As occurred in the unidirectional semicircle (left one), the bidirectional semicircle 

(right one) is also divided into two portions where the upper one summarizes the results along X-axis and 

the lower one the results along Y-axis. Each portion is painted with a different color in order to be 

distinguished clearly. In addition, each portion is also divided into four different areas representing the 

four different skew angles used in the simulations (0º, 15º, 30º and 45º) and each of these areas is divided 

into six smaller areas which represent the six different gap sizes used (10, 30, 50, 70, 90 and 100% of the 

displacement demand provided in Table 4.3). Hence, the results of the unidirectional and bidirectional 

ground motions can be compared easily for the different parameters. 

5.1 Results of Bridge A 

The bridge A (The Jack Tone Road On-Ramp bridge) is a two-span bridge with 67 m of total length, 

left and right spans of 33 m and 34 m respectively and one pier between decks (Fig. 3.1 and 3.2). The first 

result studied is the acceleration of deck 2 in the case of Design Earthquake (DE) for the different ground 

motions as well as the lower (LB) and upper (UB) bound properties of the LRB. As can be seen in the fig. 

5.2, the peak accelerations is quite chaotic and do not follow any perceptible path. However, the point is 

not only how the peak accelerations change for the different gaps and the different skew angles. It should 

be also noted the increment of the peak accelerations in the case of pounding respect to when there is no 

pounding. As shown in Fig. 5.2, the peak accelerations when there is pounding are around ten times 

higher than when there is no pounding. As it will see after, the peak accelerations are the most chaotic 

measurement to study and provide information about local damages due to the isolation of the bridge. 
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Fig. 5.2. Peak accelerations of deck 2 of Bridge A when (a) there is no pounding and (b) pounding. 
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Fig. 5.3. Maximum displacements of deck 2 of bridge A for (a) DE and (b) MCE in the case of LB. 

(a) 
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Fig. 5.4. Maximum reaction force in the base of the pier of bridge A for (a) DE and (b) MCE in the case

 of LB. 
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The acceleration along Y-axis when applied unidirectional ground motion and there is no pounding is 

zero, as expected (Fig. 5.2(a)). Nevertheless, when there is pounding these accelerations become bigger 

than zero in the case of the skew angle is bigger than zero also. This effect also appears in terms of 

displacements (Fig. 4.3) and reactions (Fig. 5.4) and can be explained physically due to the slipping of 

both decks in the plane of contact even when the ground motions is only applied along X-axis. Moreover, 

the bigger is the skew angle the bigger are the displacements, as expected. 

On one hand, regarding the maximum displacements of deck 2, the behavior for Design Earthquake 

(DE) and Maximum Considered Earthquake (MCE) are analogous apart from the value of the 

measurement. In the case of unidirectional ground motion, the maximum displacements along X-axis 

when there is are always lower than those when there is no pounding except when the skew angle is 45º. 

In addition, the maximum displacements along Y-axis become larger than zero when the skew angle is 

bigger than 0º as commented in the previous paragraph. In the case of bidirectional ground motion it can 

be seen the same behavior. Basically, the response of the bridge in terms of maximum displacements can 

be summarized as: the bigger is the skew angle the higher are the differences between pounding and no 

pounding. These differences between the maximum displacements with and without pounding are 

growing up with the skew angle.  

On the other hand, the reaction on the base of the pier along X-axis in the case of unidirectional 

earthquake and pounding seem to be constrained to be lower than the reaction when there is no pounding. 

Only when the skew angle is 45º the reaction with pounding become larger than without pounding. As it 

is depicted in Fig. 5.4(a), there is a convergence trouble in the case of unidirectional ground motion, 45º 

of skew angle and 30% of displacement demand in both directions. The reactions do not tend to infinite 

but are much larger than expected. Nevertheless, although a smaller time step of  0.0001 s was used, it 

came out the same result. In addition, this trouble does not appear when MCE is applied what means it is 

a numerical problem in that particular case. Regarding the reaction along Y-axis, the maximum reaction is 

400 kN for 45º and therefore not negligible. In the case of bidirectional pounding, the same path observed 

for the displacement can be distinguished now. The reactions of the pier with pounding in both directions 

are lower than those without pounding when the skew angle is 0º. However for 15º, 30º and 45º the 

reactions with pounding are increasing respect to those without pounding. Regarding the reactions along 

Y-axis with pounding are always lower than those without pounding. Moreover, all reactions recorded for 

the four different earthquakes are quite similar. There are not significant differences between results using 

pulse-like ground motions and far-field ground motions. 

5.2 Results of Bridge B 

The bridge B (La Veta Avenue Overcrossing bridge) is a two-span bridge with 91 m of total length, 

left and right spans of 47 m and 44 m respectively and two piers between decks (Fig. 3.3). As occurred in 

the bridge A, despite the peaks of accelerations of deck 2 do not follow any logical path and therefore it is 

difficult to extract conclusions directly about the bridge response, those are around ten times larger when 

there is pounding respect to when there is no pounding. The graph is not provided in this study because of 

does not contribute in the knowledge of the bridge response as occurred in the bridge A. 
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Fig. 5.5. . Maximum displacements of deck 2 of bridge B for (a) DE and (b) MCE in the case of LB. 
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Fig. 5.6. Maximum reaction force in the base of the pier of bridge B for (a) DE and (b) MCE in the

 case of LB. 
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Unlike the bridge A, in the case of unidirectional ground motion and DE only the Kobe earthquake 

does not increase the displacement along X-axis when there is pounding. On one hand, as occurred in all 

the parameters studied in the bridge A, the slipping effect is also seen in the displacement of bridge B. 

The displacements along Y-axis for 0º are zero but when the skew angle is larger the displacements 

increase until not negligible values. Furthermore the larger is the skew angle the higher is the different 

between the displacement with and without pounding. In the case of MCE, pounding reduces the 

displacement in the most of the cases as depicted in Fig. 5.5(b) for the unidirectional ground motion. On 

the other hand, the same behavior is noted. For a low value of the skew angle the maximum 

displacements when there is no pounding seem to be larger than those with pounding. However, when the 

skew angle is larger than 30º and the gap is larger than 50-70% of the displacement demand, pounding 

causes larger displacements for DE. In addition, the same response is observed along Y-axis. Curiously, 

when the earthquake applied is MCE, the displacement along X-axis follows the same path than DE but 

not along Y-axis, where it seems to have an upper limit displacement when there is no pounding (Fig. 

5.5(b)). Again, the highest difference of displacement between pounding and no pounding take place for 

the skew angle equal to 45º in the case of unidirectional and bidirectional ground motion as well. 

Regarding the reaction on the base of the pier, the pier taken to measure the reaction is the closest to 

the corner 
2L  (see Fig. 2.7). On one hand, in the case of unidirectional ground motion the reactions 

related to the different earthquakes are quite similar when there is pounding and not so equal without 

pounding. In all the cases except for 45º, the reaction with pounding is lower than without pounding. In 

the case of bidirectional as DE as MCE follows the same path until 30º, the larger is the gap the higher is 

the reaction as shown in Fig. 5.6. However, up to 30º this path disappears and the reactions follow the 

same path than the displacement in the same range of skew angles. In addition, the reaction of the pier 

when there is not pounding is not constant for the different skew angles due to the two piers instead of 

one as in the case of bridge A. This effect due to the mass distribution is clearer for MCE (Fig. 5.6(b)). 

Finally, the cases where the reaction of the pier with and without pounding are exactly the same means 

that there was not contact between decks. 

5.3 Results of Bridge C 

The bridge C (Jack Tone Road Overhead bridge) is a three-span with 127.5 m of total length divided 

into three spans: the left span of 47.5 m, the middle one of 44 m and the right one of 36 m (Fig. 3.4). As 

occurred in bridge A and B, the slipping effect is also noted in this case as in terms of displacements as in 

terms of reactions of the middle pier. Regarding the peak of accelerations when there is pounding, in the 

bridge C are around five times larger than without pounding. The maximum displacement of the deck 2 

(middle one) of bridge C, as in the case of unidirectional as well as bidirectional ground motion DE along 

X-axis, the maximum displacements increase with the displacement demand. In addition, for a high 

displacement demand (up to 50%) the displacements with pounding are larger than those without 

pounding (Fig. 5.7(a)). However, in the case of MCE the maximum displacement along X-axis under 

unidirectional ground motion are lower when there is pounding apart from 45º when, again, pounding 

effect contributes to increase the displacement.  When bidirectional ground motions are used, the same 

behavior is observed along X-axis. Nonetheless, the maximum displacement along Y-axis remains quite 

similar with and without pounding for DE. 
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Fig. 5.7. Maximum displacements of deck 2 of bridge C for (a) DE and (b) MCE in the case of

 LB. 

(a) 
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Fig. 5.8.  Maximum reaction force in the base of the pier of bridge C for (a) DE and (b) MCE in the

 case of LB. 

(b) 

(a) 
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The reaction of the pier is taken in the middle pier on the base. As occurred in bridge B, the reaction 

of the pier changes for each skew angle even if there is no pounding under unidirectional earthquake. The 

reason is that the skew angle changes the shape of the deck and therefore the mass distribution. On one 

hand, the maximum reactions along X-axis under unidirectional earthquake, DE and pounding are always 

equal or lower than without pounding. However, in the case of MCE the reactions with pounding are 

much lower than those with pounding except when the skew angle is 45º, as shown in Fig. 5.8(a). 

On the other hand, the reactions under bidirectional ground motion along X-axis behave quite similar 

to unidirectional ground motion been the reactions with pounding lower than those without pounding in 

the most of the cases. Only when the skew angle gets close to 45º, this kind of behavior changes as 

depicted in Fig. 5.8. In the case of the reactions along Y-axis, as under DE as MCE, the reactions with 

pounding are always equal or lower than without pounding. 

5.4 Conclusions 

The responses of the peak accelerations and maximum displacements of deck 2 as well as the 

maximum reactions on the base of the pier of bridge A, B and C are given in this chapter. Despite all 

three bridges are different, there is a common path in all of them: the larger is the skew angle the larger 

are the displacements and reactions. Nonetheless there is a range of skew angles where the reactions when 

there is pounding are lower than there is no pounding. This range varies from each bridge but on average 

goes from 0º to 30º approximately. Furthermore, the reduction of reaction force on the base of the pier 

increased when the number of piers increased as well. While the reduction of the reaction in the bridge A 

with pounding is minimum, the reduction in the same case in bridge C is significant. Therefore, the 

influence of the skewness is much relevant than other parameters as the gap, for instance. The gap also 

influences the response of the bridge but in most of the cases the parameters under study are lower with 

pounding than without pounding. Hence, it can be concluded that the worse combination may be a skew 

angle of 45º and there are information enough to propose the worse gap in terms of increment of 

acceleration, displacement and reactions on the base of the pier. However, to use a small gap means to 

restrict the displacements and the reactions as shown the results showed previously. 
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Chapter 6 

Conclusions and Recommendations 

 

This study evaluates the effect of the seismic pounding in typical highway bridges with deck 

rotation. A bilinear contact element based on modified Kelvin-Voigt model which takes into account the 

relative displacement between deck and frictional forces involved was developed and implemented in an 

open-source computer program OpenSees based on Finite Element Method. The contact element was 

validated for unidirectional direction using an experiment carried out at Harbin Institute of Technology in 

2009. Hence, the bidirectional validation was done by analogy due to the lack of available data. Once it 

was verified that the developed contact element worked as expected, three real bridges located in 

California were chosen as seed bridges in order to apply the proposed contact element. Four different 

ground motions were taken as input seismic excitation (Kobe, Loma Prieta, Chi-Chi and Landers 

earthquake) for the numerical simulations in OpenSees. After that, the gap and the skewness were chosen 

as the main parameters of the parametric study. Therefore, 2688 non-linear time history analysis were 

simulated. 

6.1 Conclusions 

After carrying out all the simulations, several conclusions can be drawn from this study: 

1. The impact stiffness is maybe the most relevant variable involved in the pounding 

phenomenon and the assessment of its value is crucial to provide good results. The most 

common impact stiffness used in the literature for highway bridges of concrete is 
51·10 kN m.k   Larger impact stiffness might cause convergence troubles. 

2. Due to the short period of time of the pounding between adjacent structures, the selection of 

an appropriate time step becomes an important issue in seismic pounding simulation. An 

adequate time step for this kind of problems may be 0.001 s.dt   

3. The typology of the bridge as well as the number of piers and spans under consideration may 

influence significantly the whole bridge response. 

4. Unlike it was expected, pounding phenomenon restricts the displacement of decks as well as 

the reaction on the base of the pier, generally. However, it makes increase the relative 

accelerations of decks in the order of magnitude from five to ten times more approximately 

what may mean local damages on the top surface of the bridge. The isolation between deck 

and cap-beam minimize somehow these accelerations on the pier. 

5. The skew angle was detected as a main parameter of the bridge response when pounding 

occurs. The higher skew angle the larger displacements of decks and reactions of piers 

appear. In this study, the worse skew angle detected was 45º for unidirectional and 

bidirectional earthquake. 
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6. It was observed that the gap size limit the displacements and the reactions forces. Therefore, 

a gap as small as possible is recommended in order to avoid the pounding effects. However, 

the gap has to fulfill several requirements such as dilation, creep of concrete, shrinkage… 

etc. 

7. Finally, increasing the number of piers the differences of displacements and reaction forces 

with and without pounding was also increased. That means a relevant reduction of 

displacements and reaction forces when the number of piers increased. 

Taking account the large number of non-linear time history analysis carried out in this study, it 

makes a good approach to the real response of a bridge under seismic pounding. A lot of different 

variables were taking into consideration in order to simulate a situation as real as possible and find real 

results to be considered in the bridge design in the future. 

6.2 Recommendations for Further Studies 

On one hand, for the modified Kelvin-Voigt impact force model, the transition between compression 

and restitution phases of impact is not smooth. Therefore, the improvement of the model could be 

proposed in further studies. On the other hand, the assumption of rigid body for decks can be removed 

and to assume an elastic body. In addition, the hypothesis of neglecting the increment of moment due to 

the point of impact given by Eq. 2.39 can be removed and taken into consideration. Finally, the vertical 

component of the ground motions could be also used in the mathematical model in order to simulate a real 

3D pounding as well as to consider fixed bridges and not only isolated bridges in further studies. 
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Appendix A 

C++ programs of NCM3D 

 

The C++ codes (NCM3D.h, NCM3D.cpp and TclNCM3DCommand.cpp) of the proposed NCM3D 

and implemented in OpenSees 2.2.0 are provided in this Appendix. 

 

A.1 NCM3D.h 

 

/* ****************************************************************** ** 
**    OpenSees - Open System for Earthquake Engineering Simulation    ** 
**          Pacific Earthquake Engineering Research Center            ** 
**                                                                    ** 
**                                                                    ** 
** (C) Copyright 1999, The Regents of the University of California    ** 
** All Rights Reserved.                                               ** 
**                                                                    ** 
** Commercial use of this program without express permission of the   ** 
** University of California, Berkeley, is strictly prohibited.  See   ** 
** file 'COPYRIGHT'  in main directory for information on usage and   ** 
** redistribution,  and for a DISCLAIMER OF ALL WARRANTIES.           ** 
**                                                                    ** 
** Developed by:                                                      ** 
**   Frank McKenna (fmckenna@ce.berkeley.edu)                         ** 
**   Gregory L. Fenves (fenves@ce.berkeley.edu)                       ** 
**   Filip C. Filippou (filippou@ce.berkeley.edu)                     ** 
**                                                                    ** 
** ****************************************************************** */ 
 
 
// $Date: 2013-10-21 23:29:00 
// $Source: /usr/local/cvs/OpenSees/SRC/element/NCM3D/NCM3D.h,v1 
 
#ifndef NCM3D_h 
#define NCM3D_h 
 
// Written: Vicente Garcia Marin (vgarciamarin@gmail.com) at Tokyo Institute of 
Technology. 
// Created: 19/07/13 
// Revision: 1.0 
// 
// Description: This file contains the class definition for NCM3D, which is mainly based 
on ElastomericBearing3d developed by Andreas and ModifiedKelvinVoight element developed 
by Deepak Pant. This element uses Modified Kelvin-Voigt model for normal and tangential 
directions and four uniaxial material models to simulate the shear, moment and torsional 
behaviors. The NCM3D model in the tangential direction is supplemented by friction force 
also. Normal and tangential behavior is coupled, however the other directions are 
independent. 
 
#include <Element.h> 
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#include <Matrix.h> 
 
class Channel; 
class UniaxialMaterial; 
class Response; 
 
class NCM3D : public Element 
{ 
public: 
    // constructor 
    NCM3D(int tag, int NdMc1, int NdMc2, int NdL, int NdD, int NdD2, int NdL2, int NdR, 
int NdR2, int NdA2, int NdA,  
  double kn, double rn, double kt, double rt, 
  double mus, double muk, double gap, int wid,  
  UniaxialMaterial **theMaterials,  
  const Vector y, const Vector x = 0,  
  double mass = 0.0); 
    NCM3D(); 
  
 // destructor 
    ~NCM3D(); 
  
    // method to get class type 
    const char *getClassType() const {return "NCM3D";}; 
     
    // public methods to obtain information about dof & connectivity     
    int getNumExternalNodes() const; 
    const ID &getExternalNodes(); 
    Node **getNodePtrs(); 
    int getNumDOF(); 
    void setDomain(Domain *theDomain); 
  
    // public methods to set the state of the element     
    int commitState(); 
    int revertToLastCommit();         
    int revertToStart();         
    int update(); 
  
    // public methods to obtain stiffness, mass, damping and residual information     
    const Matrix &getTangentStiff(); 
    const Matrix &getInitialStiff(); 
    const Matrix &getMass(); 
  
    void zeroLoad(); 
 int addLoad(ElementalLoad *theLoad, double loadFactor); 
    int addInertiaLoadToUnbalance(const Vector &accel); 
     
    const Vector &getResistingForce(); 
    const Vector &getResistingForceIncInertia(); 
     
    // public methods for element output 
    int sendSelf(int commitTag, Channel &theChannel); 
    int recvSelf(int commitTag, Channel &theChannel, FEM_ObjectBroker &theBroker); 
    int displaySelf(Renderer &theViewer, int displayMode, float fact);     
    void Print(OPS_Stream &s, int flag = 0);     
  
    // public methods for element recorder 
    Response *setResponse(const char **argv, int argc, OPS_Stream &s); 



 

 

130 

 

    int getResponse(int responseID, Information &eleInfo); 
     
protected: 
 
private: 
    // private methods 
    void setUp(); 
    double sgn(double x); 
     
    // private attributes - a copy for each object of the class 
    ID connectedExternalNodes;          // contains the tags of the end nodes 
    Node *theNodes[10];                  // array of nodes 
 UniaxialMaterial *theMaterials[4];  // array of uniaxial materials 
     
    // parameters 
     
 double KN, RN, KT, RT, MUS, MUK, GAP;   //duplicating the inputs 
 int WID;         
 //duplicating the inputs 
  
 double kvaluen;  //stiffness in the normal direction 
 double cvaluen;  //damping coff. in normal direction 
 double kvaluet;  //stiffness in the tangential direction 
 double cvaluet;  //damping coff. in tangential direction 
 Vector x;           // local x direction 
    Vector y;           // local y direction 
    double mass;        // mass of element 
    double L;           // element length 
  
    // state variables 
 Vector ub;          // displacements in basic system (i.e, deformations): a vector 
of dimensions 6 
 Vector ubdot; 
    Vector qb;          // forces in basic system: a vector of dimensions 6 
    Matrix kb;          // stiffness matrix in basic system: a matrix of dimensions 6x6 
    Vector ul;          // displacements in local system: a vector of dimensions 12 
 Matrix Tgl;         // transformation matrix from global to local system: a matrix 
of dimensions 12x12 
 Matrix Tlb;         // transformation matrix from local to basic system: a matrix 
of dimensions 6x12 
 
 // Secondary Variables 
 
 double m1;  
 double m2; 
 double m3; 
 double m4; 
 double m5; 
 double m6; 
  
         
 double FNR; 
 double FTR; 
 double FNR2; 
 double FTR2; 
 double FNL; 
 double FTL; 
 double FNL2; 
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 double FTL2; 
 double R0; 
 double mk0; 
 double mk00; 
 double IncrVR0; 
 double IncrVR0N; 
 double IncrVR0T; 
 double IncrVR20; 
 double IncrVR20N; 
 double IncrVR20T; 
 double IncrVL0; 
 double IncrVL0N; 
 double IncrVL0T; 
 double IncrVL20; 
 double IncrVL20N; 
 double IncrVL20T; 
 double IncrDRN0; 
 double IncrDRT0; 
 double IncrDR2N0; 
 double IncrDR2T0; 
 double IncrDLN0; 
 double IncrDLT0; 
 double IncrDL2N0; 
 double IncrDL2T0; 
 double lkR0; 
 double lkR20; 
 double lkL0; 
 double lkL20; 
 double L1; 
 double L2; 
 double IncrDRN; 
 double IncrDRT; 
 double IncrDR2N; 
 double IncrDR2T; 
 double IncrDLN; 
 double IncrDLT; 
 double IncrDL2N; 
 double IncrDL2T; 
 double IncrVRN; 
 double IncrVRT; 
 double IncrVR2N; 
 double IncrVR2T; 
 double IncrVLN; 
 double IncrVLT; 
 double IncrVL2N; 
 double IncrVL2T; 
 
 Vector n1; 
 Vector n2; 
 
 Vector tk0R0; 
 Vector tk0R20; 
 Vector tk0L0; 
 Vector tk0L20; 
 Vector IncrVelR; 
 Vector IncrVelR2; 
 Vector IncrVelL; 
 Vector IncrVelL2; 
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 Vector rR0; 
 Vector rR20; 
 Vector rL0; 
 Vector rL20; 
 Vector IncrDispR; 
 Vector IncrDispR2; 
 Vector IncrDispL; 
 Vector IncrDispL2; 
 Vector tk0R; 
 Vector tk0R2; 
 Vector tk0L; 
 Vector tk0L2; 
 Vector IncrVelR0; 
 Vector IncrVelR20; 
 Vector IncrVelL0; 
 Vector IncrVelL20; 
 Vector xkR0; 
 Vector xkR20; 
 Vector xkL0; 
 Vector xkL20; 
 Vector v1; 
 Vector v2; 
 Vector xkL; 
 Vector xkL2; 
 Vector xkR; 
 Vector xkR2; 
 Vector xL; 
 Vector xL2; 
 Vector xD; 
 Vector xD2; 
 Vector xR; 
 Vector xR2; 
 Vector xA; 
 Vector xA2; 
 Vector xLdot; 
 Vector xL2dot; 
 Vector xRdot; 
 Vector xR2dot; 
 Vector Mc1; 
 Vector Mc2; 
 Vector qbL; 
 Vector qbL2; 
 Vector qbR; 
 Vector qbR2; 
 Vector DappRateR0; 
 Vector DappRateR20; 
 Vector DappRateL0; 
 Vector DappRateL20; 
 Vector VectorSpringForceN; 
 Vector VectorDampingForceN; 
 Vector VectorSpringForceT; 
 Vector VectorDampingForceT; 
 Vector xP1; 
 Vector xP2; 
 Vector xP3; 
 Vector xP4; 
 Vector xP5; 
 Vector xP6; 
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 Vector xP7; 
         
    // initial stiffness matrix in basic system 
    Matrix kbInit;  //a matrix of dimensions 6x6 
     
 static Matrix theMatrix; 
    static Vector theVector; 
    static Vector theLoad; 
}; 
 
#endif 
 

 

A.2 NCM3D.cpp 

 

/* ****************************************************************** ** 
**    OpenSees - Open System for Earthquake Engineering Simulation    ** 
**          Pacific Earthquake Engineering Research Center            ** 
**                                                                    ** 
**                                                                    ** 
** (C) Copyright 1999, The Regents of the University of California    ** 
** All Rights Reserved.                                               ** 
**                                                                    ** 
** Commercial use of this program without express permission of the   ** 
** University of California, Berkeley, is strictly prohibited.  See   ** 
** file 'COPYRIGHT'  in main directory for information on usage and   ** 
** redistribution,  and for a DISCLAIMER OF ALL WARRANTIES.           ** 
**                                                                    ** 
** Developed by:                                                      ** 
**   Frank McKenna (fmckenna@ce.berkeley.edu)                         ** 
**   Gregory L. Fenves (fenves@ce.berkeley.edu)                       ** 
**   Filip C. Filippou (filippou@ce.berkeley.edu)                     ** 
**                                                                    ** 
** ****************************************************************** */ 
 
 
// $Date: 2013-10-13 23:29:00 
// $Source: /usr/local/cvs/OpenSees/SRC/element/NCM3D/NCM3D.cpp,v1  
 
 
// Written: Vicente Garcia Marin (vgarciamarin@gmail.com) at Tokyo Institute of 
Technology.  
// Created: 19/07/2013 
// Revision: 1.0. 
// 
// Description: This file contains the implementation of the NCM3D class. 
 
 
#include "NCM3D.h" 
 
#include <Domain.h> 
#include <Node.h> 
#include <Channel.h> 
#include <FEM_ObjectBroker.h> 
#include <Renderer.h> 
#include <Information.h> 
#include <ElementResponse.h> 
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#include <UniaxialMaterial.h> 
 
#include <float.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
 
//included to write the data in a text file 
#include <iostream> 
#include <fstream> 
using namespace std; 
//end to include the data in a text file 
 
// initialize the class wide variables 
Matrix NCM3D::theMatrix(60,60); 
Vector NCM3D::theVector(60); 
Vector NCM3D::theLoad(60); 
 
 
NCM3D::NCM3D(int tag, int NdMc1, int NdMc2, int NdL, int NdD, int NdD2, int NdL2, int 
NdR, int NdR2, int NdA2, int NdA, 
    double kn, double rn, double kt, double rt, double mus,  
 double muk, double gap, int wid, 
 UniaxialMaterial **materials, 
    const Vector _y, const Vector _x, double m) 
    : Element(tag, ELE_TAG_NCM3D), 
 connectedExternalNodes(10), 
 KN(0.0), RN(0.0), KT(0.0), RT(0.0), MUS(0.0), MUK(0.0), GAP(0.0), WID(0), 
 kvaluen(0.0), cvaluen(0.0), kvaluet(0.0), cvaluet(0.0), x(_x), y(_y),  
 mass(m), L(0.0), ubdot(6), ub(6), qb(6), kb(6,6), ul(60), Tgl(60,60), Tlb(6,60), 
kbInit(6,6), m1(0.0), m2(0.0),  
 IncrVelR(2), IncrVelR2(2), IncrVelL(2), IncrVelL2(2), IncrDispR(2), IncrDispR2(2), 
IncrDispL(2), IncrDispL2(2), IncrVelR0(2),  
 IncrVelR20(2), IncrVelL0(2), IncrVelL20(2), xkR0(2), xkR20(2),  xkL0(2),  
xkL20(2), v1(2), v2(2), n1(2), n2(2), xkL(2),  
 xkL2(2), xkR(2), xkR2(2), xL(6), xL2(6), xR(6), xR2(6), xLdot(6), xL2dot(6), 
xRdot(6), xR2dot(6), Mc1(6), Mc2(6),  
 m3(0.0), m4(0.0), m5(0.0), m6(0.0), xA(6), xA2(6), xD(6), xD2(6), qbL(60), 
qbL2(60), qbR(60), qbR2(60), 
 IncrVR20(0.0), IncrVR20N(0.0), IncrVR20T(0.0), IncrVL0(0.0), IncrVL0N(0.0), 
IncrVL0T(0.0), IncrVL20(0.0),  
 IncrVL20N(0.0), IncrVL20T(0.0), IncrVR0(0.0), IncrVR0N(0.0), IncrVR0T(0.0), 
FTR(0.0), FNR(0.0), FTR2(0.0), FNR2(0.0), 
 FTL(0.0), FNL(0.0), FTL2(0.0), FNL2(0.0), lkR0(0.0), lkR20(0.0), lkL0(0.0), 
lkL20(0.0), L1(0.0), L2(0.0), IncrDRN0(0.0), 
 IncrDRT0(0.0), IncrDR2N0(0.0), IncrDR2T0(0.0), IncrDLN0(0.0), IncrDLT0(0.0), 
IncrDL2N0(0.0), IncrDL2T0(0.0), 
 IncrDRN(0.0), IncrDRT(0.0), IncrDR2N(0.0), IncrDR2T(0.0), IncrDLN(0.0), 
IncrDLT(0.0), IncrDL2N(0.0), IncrDL2T(0.0), 
 IncrVR2N(0.0), IncrVR2T(0.0), IncrVLN(0.0), IncrVLT(0.0), IncrVL2N(0.0), 
IncrVL2T(0.0), IncrVRN(0.0), IncrVRT(0.0), 
 xP1(2), xP2(2), xP3(2), xP4(2), xP5(2), xP6(2), xP7(2) 
 
{ 
       
 // ensure the connectedExternalNode ID is of correct size & set values 
    if (connectedExternalNodes.Size() != 10)  { 
        opserr << "NCM3D::setUp() - element: " 
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            << this->getTag() << "Appropriate nodes are not given to define this 
element\n"; 
    } 
     
 WID = wid; 
 
 if (WID == 1) { 
 
    // Nodes of the contact element 
     
    connectedExternalNodes(0) = NdL; 
    connectedExternalNodes(1) = NdR; 
 
 // Secondary nodes 
 
 connectedExternalNodes(2) = NdMc1; 
    connectedExternalNodes(3) = NdD; 
 connectedExternalNodes(4) = NdD2; 
    connectedExternalNodes(5) = NdL2; 
 connectedExternalNodes(6) = NdMc2; 
    connectedExternalNodes(7) = NdR2; 
 connectedExternalNodes(8) = NdA2; 
    connectedExternalNodes(9) = NdA; 
 
 } else if (WID == 2) { 
 
    // Nodes of the contact element 
     
    connectedExternalNodes(0) = NdR; 
    connectedExternalNodes(1) = NdL; 
 
 // Secondary nodes 
 
 connectedExternalNodes(2) = NdMc1; 
    connectedExternalNodes(3) = NdD; 
 connectedExternalNodes(4) = NdD2; 
    connectedExternalNodes(5) = NdL2; 
 connectedExternalNodes(6) = NdMc2; 
    connectedExternalNodes(7) = NdR2; 
 connectedExternalNodes(8) = NdA2; 
    connectedExternalNodes(9) = NdA; 
 
 } else if (WID == 3) { 
 
 // Nodes of the contact element 
     
    connectedExternalNodes(0) = NdL2; 
    connectedExternalNodes(1) = NdR2; 
 
 // Secondary nodes 
 
 connectedExternalNodes(2) = NdMc1; 
    connectedExternalNodes(3) = NdL; 
 connectedExternalNodes(4) = NdD; 
    connectedExternalNodes(5) = NdD2; 
 connectedExternalNodes(6) = NdMc2; 
    connectedExternalNodes(7) = NdR; 
 connectedExternalNodes(8) = NdA2; 
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    connectedExternalNodes(9) = NdA; 
 
 } else if (WID == 4) { 
 
 // Nodes of the contact element 
     
    connectedExternalNodes(0) = NdR2; 
    connectedExternalNodes(1) = NdL2; 
 
 // Secondary nodes 
 
 connectedExternalNodes(2) = NdMc1; 
    connectedExternalNodes(3) = NdL; 
 connectedExternalNodes(4) = NdD; 
    connectedExternalNodes(5) = NdD2; 
 connectedExternalNodes(6) = NdMc2; 
    connectedExternalNodes(7) = NdR; 
 connectedExternalNodes(8) = NdA2; 
    connectedExternalNodes(9) = NdA; 
 
 
 } 
     
    // set node pointers to NULL 
    for (int i=0; i<10; i++) 
        theNodes[i] = 0; 
     
 //initialize parameters 
 KN = kn; 
 RN = rn; 
 KT = kt; 
 RT = rt; 
 MUS = mus; 
 MUK = muk; 
 GAP = gap; 
 
  
  
 /*opserr << "kn " << KN << endln; 
 opserr << "rn " << RN << endln;  
 opserr << "wid " << WID << endln;  
 opserr << "check...program will exit";  
 exit(-1);*/ 
     
    // check material input 
    if (materials == 0)  { 
        opserr << "NCM3D::NCM3D() - " 
            << "No materials have been defined\n"; 
        exit(-1); 
    } 
     
    // get copies of the uniaxial materials 
    for (int i=0; i<4; i++)  { 
        if (materials[i] == 0) { 
            opserr << "NCM3D::NCM3D() - " 
                "null uniaxial material pointer passed.\n"; 
            exit(-1); 
        } 
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        theMaterials[i] = materials[i]->getCopy(); 
        if (theMaterials[i] == 0) { 
            opserr << "NCM3D::NCM3D() - " 
                << "failed to copy uniaxial material.\n"; 
            exit(-1); 
        } 
    } 
     
    // initialize initial stiffness matrix 
     
 kbInit.Zero(); 
    kbInit(0,0) = 0.0;         
 //initial values of stiffnesses are taken as zero so that no forces are returned 
along basic x axis 
    kbInit(1,1) = 0.0;         
 //initial values of stiffnesses are taken as zero so that no forces are returned 
along basic y axis 
    kbInit(2,2) = theMaterials[0]->getInitialTangent();   
    kbInit(3,3) = theMaterials[1]->getInitialTangent(); 
    kbInit(4,4) = theMaterials[2]->getInitialTangent(); 
    kbInit(5,5) = theMaterials[3]->getInitialTangent(); 
  
      
    // initialize variables 
    this->revertToStart(); 
} 
 
 
NCM3D::NCM3D() 
    : Element(0, ELE_TAG_NCM3D), 
    connectedExternalNodes(10), 
 KN(0.0), RN(0.0), KT(0.0), RT(0.0), MUS(0.0), MUK(0.0), GAP(0.0), WID(0), 
 kvaluen(0.0), cvaluen(0.0), kvaluet(0.0), cvaluet(0.0), x(0), y(0), mass(0.0), 
 m1(0.0), m2(0.0), L(0.0), ubdot(6), ub(6), qb(6), kb(6,6), ul(60), Tgl(60,60), 
Tlb(6,60), kbInit(6,6), 
 IncrVelR(2), IncrVelR2(2), IncrVelL(2), IncrVelL2(2),  
 IncrDispR(2), IncrDispR2(2), IncrDispL(2), IncrDispL2(2), IncrVelR0(2),  
 IncrVelR20(2), IncrVelL0(2), IncrVelL20(2), xkR0(2), xkR20(2),  xkL0(2),  
xkL20(2), v1(2), v2(2), n1(2), n2(2), xkL(2),  
 xkL2(2), xkR(2), xkR2(2), xL(6), xL2(6), xR(6), xR2(6), xLdot(6), xL2dot(6), 
xRdot(6), xR2dot(6), Mc1(6), Mc2(6),  
 m3(0.0), m4(0.0), m5(0.0), m6(0.0), xA(6), xA2(6), xD(6), xD2(6), qbL(60), 
qbL2(60), qbR(60), qbR2(60), 
 IncrVR20(0.0), IncrVR20N(0.0), IncrVR20T(0.0), IncrVL0(0.0), IncrVL0N(0.0), 
IncrVL0T(0.0), IncrVL20(0.0),  
 IncrVL20N(0.0), IncrVL20T(0.0), IncrVR0(0.0), IncrVR0N(0.0), IncrVR0T(0.0), 
FTR(0.0), FNR(0.0), FTR2(0.0), FNR2(0.0), 
 FTL(0.0), FNL(0.0), FTL2(0.0), FNL2(0.0), lkR0(0.0), lkR20(0.0), lkL0(0.0), 
lkL20(0.0), L1(0.0), L2(0.0), IncrDRN0(0.0), 
 IncrDRT0(0.0), IncrDR2N0(0.0), IncrDR2T0(0.0), IncrDLN0(0.0), IncrDLT0(0.0), 
IncrDL2N0(0.0), IncrDL2T0(0.0), 
 IncrDRN(0.0), IncrDRT(0.0), IncrDR2N(0.0), IncrDR2T(0.0), IncrDLN(0.0), 
IncrDLT(0.0), IncrDL2N(0.0), IncrDL2T(0.0), 
 IncrVR2N(0.0), IncrVR2T(0.0), IncrVLN(0.0), IncrVLT(0.0), IncrVL2N(0.0), 
IncrVL2T(0.0), IncrVRN(0.0), IncrVRT(0.0), 
 xP1(2), xP2(2), xP3(2), xP4(2), xP5(2), xP6(2), xP7(2) 
 
{  
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    // ensure the connectedExternalNode ID is of correct size & set values 
 if (connectedExternalNodes.Size() != 10)  { 
  opserr << "NCM3D::NCM3D() - " 
   <<  "Appropriate nodes are not given to define this element\n"; 
  exit(-1); 
    } 
     
    // set node pointers to NULL 
 for (int i=0; i<10; i++) 
  theNodes[i] = 0; 
     
    // set material pointers to NULL 
 for (int i=0; i<4; i++) 
  theMaterials[i] = 0; 
} 
 
 
NCM3D::~NCM3D() 
{ 
    // invoke the destructor on any objects created by the object 
    // that the object still holds a pointer to 
    for (int i=0; i<4; i++) 
        if (theMaterials[i] != 0) 
            delete theMaterials[i]; 
} 
 
 
int NCM3D::getNumExternalNodes() const 
{ 
    return 10; 
} 
 
 
const ID& NCM3D::getExternalNodes()  
{ 
    return connectedExternalNodes; 
} 
 
 
Node** NCM3D::getNodePtrs()  
{ 
 return theNodes; 
} 
 
 
int NCM3D::getNumDOF()  
{ 
    return 60;    //each node 6 dof, so in total 60 dof for the 
nodes 
} 
 
 
void NCM3D::setDomain(Domain *theDomain) 
{ 
    // check Domain is not null - invoked when object removed from a domain 
    if (!theDomain)  { 
   
  for (int i=0; i<10; i++) 
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  theNodes[i] = 0; 
         
  return; 
    } 
 
    // first set the node pointers 
 
 for (int i=0; i<10; i++) 
 
    theNodes[i] = theDomain->getNode(connectedExternalNodes(i)); 
  
  
    // if can't find both - send a warning message 
    if (!theNodes[0] || !theNodes[1])  { 
  if (!theNodes[0])  { 
   opserr << "WARNING NCM3D::setDomain() - Nd1: "  
    << connectedExternalNodes(0) << " does not exist in the model 
for "; 
  } else  { 
   opserr << "WARNING NCM3D::setDomain() - Nd2: "  
    << connectedExternalNodes(1) << " does not exist in the model 
for "; 
  } 
  opserr << "NCM3D ele: " << this->getTag() << endln; 
   
  return; 
    } 
  
 // now determine the number of dof and the dimension     
 int dofNd1 = theNodes[0]->getNumberDOF(); 
 int dofNd2 = theNodes[1]->getNumberDOF();  
  
 // if differing dof at the ends - print a warning message 
    if (dofNd1 != 6)  { 
  opserr << "NCM3D::setDomain() - node 1: " 
   << connectedExternalNodes(0) << " has incorrect number of DOF (not 
6)\n"; 
  return; 
    } 
    if (dofNd2 != 6)  { 
  opserr << "NCM3D::setDomain() - node 2: " 
   << connectedExternalNodes(1) << " has incorrect number of DOF (not 
6)\n"; 
  return; 
    } 
  
    // call the base class method 
    this->DomainComponent::setDomain(theDomain); 
     
    // set up the transformation matrix for orientation 
    this->setUp(); 
}      
 
 
int NCM3D::commitState() 
{ 
 int errCode = 0; 
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    // commit material models 
    for (int i=0; i<4; i++) 
     errCode += theMaterials[i]->commitState(); 
     
 return errCode; 
} 
 
 
int NCM3D::revertToLastCommit() 
{ 
    int errCode = 0; 
     
    // revert material models 
    for (int i=0; i<4; i++) 
     errCode += theMaterials[i]->revertToLastCommit(); 
     
    return errCode; 
} 
 
 
int NCM3D::revertToStart() 
{    
    int errCode=0; 
     
    // reset trial history variables 
    ub.Zero(); 
    qb.Zero(); 
     
         
    // reset stiffness matrix in basic system 
    kb = kbInit; 
     
    // revert material models 
    for (int i=0; i<4; i++) 
        errCode += theMaterials[i]->revertToStart(); 
     
    return errCode; 
} 
 
 
int NCM3D::update() 
{ 
 
 
if (WID == 1) { 
 
   // get global trial displacements 
    const Vector &dspNdL = theNodes[0]->getTrialDisp(); 
    const Vector &dspNdR = theNodes[1]->getTrialDisp(); 
 
 const Vector &dspMc1 = theNodes[2]->getTrialDisp(); 
    const Vector &dspNdD = theNodes[3]->getTrialDisp(); 
 const Vector &dspNdD2 = theNodes[4]->getTrialDisp(); 
    const Vector &dspNdL2 = theNodes[5]->getTrialDisp(); 
 const Vector &dspMc2 = theNodes[6]->getTrialDisp(); 
    const Vector &dspNdR2 = theNodes[7]->getTrialDisp(); 
 const Vector &dspNdA2 = theNodes[8]->getTrialDisp(); 
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    const Vector &dspNdA = theNodes[9]->getTrialDisp(); 
 
 
 // get global trial velocities 
 
    const Vector &velNdL = theNodes[0]->getTrialVel(); 
    const Vector &velNdR = theNodes[1]->getTrialVel(); 
 
 const Vector &velMc1 = theNodes[2]->getTrialVel(); 
    const Vector &velNdD = theNodes[3]->getTrialVel(); 
 const Vector &velNdD2 = theNodes[4]->getTrialVel(); 
    const Vector &velNdL2 = theNodes[5]->getTrialVel(); 
 const Vector &velMc2 = theNodes[6]->getTrialVel(); 
    const Vector &velNdR2 = theNodes[7]->getTrialVel(); 
 const Vector &velNdA2 = theNodes[8]->getTrialVel(); 
    const Vector &velNdA = theNodes[9]->getTrialVel(); 
 
 // Get GLOBAL COORDINATES 
 
 const Vector &CoorNdL = theNodes[0]->getCrds(); 
 const Vector &CoorNdR = theNodes[1]->getCrds(); 
 
 const Vector &CoorMc1 = theNodes[2]->getCrds(); 
 const Vector &CoorNdD = theNodes[3]->getCrds(); 
 const Vector &CoorNdD2 = theNodes[4]->getCrds(); 
 const Vector &CoorNdL2 = theNodes[5]->getCrds(); 
 const Vector &CoorMc2 = theNodes[6]->getCrds(); 
 const Vector &CoorNdR2 = theNodes[7]->getCrds(); 
 const Vector &CoorNdA2 = theNodes[8]->getCrds(); 
 const Vector &CoorNdA = theNodes[9]->getCrds(); 
    
 
 // Global coordinates of L 
 
 xL(0) = dspNdL(0) + CoorNdL(0); 
 xL(1) = dspNdL(1) + CoorNdL(1); 
 
 // Global coordinates of L2 
 
 xL2(0) = dspNdL2(0) + CoorNdL2(0); 
 xL2(1) = dspNdL2(1) + CoorNdL2(1); 
 
 // Global coordinates of R 
 
 xR(0) = dspNdR(0) + CoorNdR(0) + GAP; 
 xR(1) = dspNdR(1) + CoorNdR(1); 
 
 // Global coordinates of R2 
 
 xR2(0) = dspNdR2(0) + CoorNdR2(0) + GAP; 
 xR2(1) = dspNdR2(1) + CoorNdR2(1); 
 
 // Global coordinates of D 
 
 xD(0) = dspNdD(0) + CoorNdD(0); 
 xD(1) = dspNdD(1) + CoorNdD(1); 
 
 // Global coordinates of D2 
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 xD2(0) = dspNdD2(0) + CoorNdD2(0); 
 xD2(1) = dspNdD2(1) + CoorNdD2(1); 
 
 // Global coordinates of A 
 
 xA(0) = dspNdA(0) + CoorNdA(0) + GAP; 
 xA(1) = dspNdA(1) + CoorNdA(1); 
 
 // Global coordinates of A2 
 
 xA2(0) = dspNdA2(0) + CoorNdA2(0) + GAP; 
 xA2(1) = dspNdA2(1) + CoorNdA2(1); 
 
 // Velocity of L 
 
 xLdot(0) = velNdL(0); 
 xLdot(1) = velNdL(1); 
 
 // Velocity of L2 
 
 xL2dot(0) = velNdL2(0); 
 xL2dot(1) = velNdL2(1); 
 
 // Velocity of R 
 
 xRdot(0) = velNdR(0); 
 xRdot(1) = velNdR(1); 
 
 // Velocity of R2 
 
 xR2dot(0) = velNdR2(0); 
 xR2dot(1) = velNdR2(1); 
 
 static Vector ug(60), ugdot(60), uldot(60); 
 
  for (int i=0; i<6; i++)  { 
 
        ug(i) = xL(i);  ugdot(i) = velNdL(i); 
        ug(i+6) = xR(i);  ugdot(i+6) = velNdR(i); 
  ug(i+12) = Mc1(i);  ugdot(i+12) = velMc1(i); 
  ug(i+18) = xD(i);  ugdot(i+18) = velNdD(i); 
  ug(i+24) = xD2(i);  ugdot(i+24) = velNdD2(i); 
  ug(i+30) = xL2(i);  ugdot(i+30) = velNdL2(i); 
  ug(i+36) = Mc2(i);  ugdot(i+36) = velMc2(i); 
  ug(i+42) = xR2(i);  ugdot(i+42) = velNdR2(i); 
  ug(i+48) = xA2(i);  ugdot(i+48) = velNdA2(i); 
  ug(i+54) = xA(i);  ugdot(i+54) = velNdA(i); 
 
    } 
     
    // transform response from the global to the local system 
    ul = Tgl*ug; 
    uldot = Tgl*ugdot; 
     
    // transform response from the local to the basic system 
    ub = Tlb*ul; 
    ubdot = Tlb*uldot; 
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//STEP 1: 
  
     // NORMAL OF DECK 1  
     
 double NormN1 = sqrt(pow((xL(0)-xL2(0))/(xL(1)-xL2(1)),2.0)+1); 
  
     n1(0) = 1/NormN1; 
     n1(1) = -((xL(0)-xL2(0))/(xL(1)-xL2(1)))/NormN1; 
 
     // NORMAL OF DECK 2 
 
double NormN2 = sqrt(pow((xR(0)-xR2(0))/(xR(1)-xR2(1)),2.0)+1); 
  
        n2(0) = -1/NormN2; 
     n2(1) = (xR(0)-xR2(0))/(xR(1)-xR2(1))/NormN2; 
 
  // TANGENTIAL Vector of DECK 1 (From L2 to L) 
 
double NormV1 = sqrt(pow(xL(0)-xL2(0),2.0)+pow(xL(1)-xL2(1),2.0)); 
 
  v1(0) = (xL(0)-xL2(0))/NormV1; 
  v1(1) = (xL(1)-xL2(1))/NormV1; 
 
  // TANGENTIAL Vector of DECK 2 (From R2 to R) 
 
double NormV2 = sqrt(pow(xR(0)-xR2(0),2.0)+pow(xR(1)-xR2(1),2.0)); 
 
  v2(0) = (xR(0)-xR2(0))/NormV2; 
  v2(1) = (xR(1)-xR2(1))/NormV2; 
 
        // Defining parameters 
     
        // Slopes of the straight lines 
     
        m1 = v1(0)/v1(1); 
        m2 = v2(0)/v2(1); 
  m3 = (xL(1)-xD(1))/(xL(0)-xD(0)); 
     m4 = (xL2(1)-xD2(1))/(xL2(0)-xD2(0)); 
  m5 = (xR(1)-xA(1))/(xR(0)-xA(0)); 
  m6 = (xR2(1)-xA2(1))/(xR2(0)-xA2(0)); 
     
// 2) calculate the forces and stiffnesses in basic x- and y-direction 
     
 //First do it for wall ID 1 (upper boundary)   
 
  // check for pounding condition 
  if ((xL(0) >= m2*(xL(1)-xR(1))+xR(0)) && (xL(1) <= m5*(xL(0)-xR(0))+xR(1))) 
{; // OK  //implies pounding 
 
 
  // There is CONTACT 
 
           // Contact point that belongs to deck 2 
            
           xkL0(0) = (xR2(0)-xR(0))*(lkL0/NormV2) + xR(0);     
           xkL0(1) = (xR2(1)-xR(1))*(lkL0/NormV2) + xR(1);     
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           // Increment of relative displacement 
     
           IncrDispL(0) = xkL0(0) - xL(0);                                    
           IncrDispL(1) = xkL0(1) - xL(1);         
     
           double IncrDL = sqrt(pow(IncrDispL(0),2.0)+pow(IncrDispL(1),2.0));  
           IncrDLN = abs(IncrDispL(0)*n2(0) + IncrDispL(1)*n2(1));             
           IncrDLT = sqrt(pow(IncrDL,2.0)-pow(IncrDLN,2.0));                   
     
           // Increment of the relative velocity 
 
     double Velocity1L_x = velNdL(0);        
     double Velocity1L_y = velNdL(1);         
 
     double Velocity2L_x = (velNdR2(0)-velNdR(0))*(lkL0/NormV2) + velNdR(0);     
     double Velocity2L_y = (velNdR2(1)-velNdR(1))*(lkL0/NormV2) + velNdR(1);     
     
           IncrVelL(0) = Velocity2L_x - Velocity1L_x;  
           IncrVelL(1) = Velocity2L_y - Velocity1L_y;     
     
           double IncrVL = sqrt(pow(IncrVelL(0),2.0)+pow(IncrVelL(1),2.0)); 
           double IncrVLN = abs(IncrVelL(0)*n2(0) + IncrVelL(1)*n2(1)); 
           double IncrVLT = sqrt(pow(IncrVL,2.0)-pow(IncrVLN,2.0)); 
       
           // Stiffness 
 
      kvaluen = KN; 
   cvaluen = 3.0*kvaluen*(1-
pow(RN,2.0))*abs(IncrDLN)/(2.0*pow(RN,2.0)*abs(IncrVelL0(0)));    
   kvaluet = KT; 
            cvaluet = 3.0*kvaluet*(1-
pow(RT,2.0))*abs(IncrDLT)/(2.0*pow(RT,2.0)*abs(IncrVelL0(1)));    
 
  } else { 
 
  // There is no contact 
 
  kvaluen = cvaluen = kvaluet = cvaluet = 0.0; 
 
  // Distance from node R to the contact point belonging deck 2 
 
  lkL0 = sqrt(pow(xL(0)-xR(0),2.0)+pow(xL(1)-xR(1),2.0));    
 
   // Relative velocity in X direction 
   IncrVelL0(0) = (velNdR2(0)-velNdR(0))*(lkL0/NormV2) + velNdR(0) - 
velNdL(0);  
 
   // Relative velocity in Y direction 
   IncrVelL0(1) = (velNdR2(1)-velNdR(1))*(lkL0/NormV2) + velNdR(1) - 
velNdL(1);    
 
    
   if (abs(IncrVelL0(0)) < 1.0E-21) { 
    IncrVelL0(0) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
   if (abs(IncrVelL0(1)) < 1.0E-21) { 
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    IncrVelL0(1) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
    
 
  } 
 
  // Now calculate the forces 
   
  double SpringForcen = 0.0, DampingForcen = 0.0, SpringForcet = 0.0, 
DampingForcet = 0.0; 
   SpringForcen = -kvaluen*abs(IncrDLN);       
    
   
   if ((xL(0)-xkL0(0))*v2(0)+(xL(1)-xkL0(1))*v2(1) > 0.0) {     
    SpringForcet = -kvaluet*abs(IncrDLT);   
   } else { 
    SpringForcet = kvaluet*abs(IncrDLT); 
   } 
   
    
   if (abs(IncrVelL(0)*n2(0)+IncrVelL(1)*n2(1)) < 1.0E-21) { 
   DampingForcen = cvaluen*1.0E-21; 
   } else { 
   DampingForcen = cvaluen*abs(IncrVelL(0)*n2(0)+IncrVelL(1)*n2(1));          
   } 
 
   if (abs(IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1)) < 1.0E-21) {   
   DampingForcet = cvaluet*1.0E-21; 
   } else { 
   DampingForcet = cvaluet*abs(IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1));   
   } 
 
   if (-IncrVelL(0)*n2(0)-IncrVelL(1)*n2(1) < 0.0) {      
   DampingForcen = -DampingForcen;   //compression phase 
   } else { 
   DampingForcen = 0.0;     //restitutionn phase 
   } 
 
    
    
   if (IncrVelL(0)*v2(0)+IncrVelL(1)*v2(1) < 0.0) {  
    DampingForcet = -DampingForcet; 
    } else { 
    DampingForcet = DampingForcet; 
    } 
      
   qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + 
(SpringForcet+DampingForcet)*abs(v2(0));    
   qb(1) = (SpringForcen+DampingForcen)*abs(n2(1)) + 
(SpringForcet+DampingForcet)*abs(v2(1));    
   
   
  if (abs(SpringForcet+DampingForcet) > MUS*abs(SpringForcen+DampingForcen)) 
{ 
   if ((xL(0)-xkL0(0))*v2(0)+(xL(1)-xkL0(1))*v2(1) > 0.0) {   
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    qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) - 
MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
    qb(1) = -MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
(SpringForcen+DampingForcen)*abs(n2(1)); 
 
   } else { 
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + 
MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
    qb(1) = MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
(SpringForcen+DampingForcen)*abs(n2(1)); 
 
   } 
  } 
    
  kb(0,0)=kvaluen; 
  kb(1,1)=kvaluet; 
 
  // Condition to avoid overlap between node L and node R 
 
  if ((xR(0) < m1*(xR(1)-xL(1))+xL(0)) && (xR(1) <= m3*(xR(0)-xL(0))+xL(1))) 
{ 
 
    qb(0) = 0.0; 
    qb(1) = 0.0; 
 
  }  
     
} else if (WID == 2) { 
  
 
 // get global trial displacements 
    const Vector &dspNdR = theNodes[0]->getTrialDisp(); 
    const Vector &dspNdL = theNodes[1]->getTrialDisp(); 
 
 const Vector &dspMc1 = theNodes[2]->getTrialDisp(); 
    const Vector &dspNdD = theNodes[3]->getTrialDisp(); 
 const Vector &dspNdD2 = theNodes[4]->getTrialDisp(); 
    const Vector &dspNdL2 = theNodes[5]->getTrialDisp(); 
 const Vector &dspMc2 = theNodes[6]->getTrialDisp(); 
    const Vector &dspNdR2 = theNodes[7]->getTrialDisp(); 
 const Vector &dspNdA2 = theNodes[8]->getTrialDisp(); 
    const Vector &dspNdA = theNodes[9]->getTrialDisp(); 
 
 
 // get global trial velocities 
 
    const Vector &velNdR = theNodes[0]->getTrialVel(); 
    const Vector &velNdL = theNodes[1]->getTrialVel(); 
 
 const Vector &velMc1 = theNodes[2]->getTrialVel(); 
    const Vector &velNdD = theNodes[3]->getTrialVel(); 
 const Vector &velNdD2 = theNodes[4]->getTrialVel(); 
    const Vector &velNdL2 = theNodes[5]->getTrialVel(); 
 const Vector &velMc2 = theNodes[6]->getTrialVel(); 
    const Vector &velNdR2 = theNodes[7]->getTrialVel(); 
 const Vector &velNdA2 = theNodes[8]->getTrialVel(); 
    const Vector &velNdA = theNodes[9]->getTrialVel(); 
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 // Get GLOBAL COORDINATES 
 
 const Vector &CoorNdR = theNodes[0]->getCrds(); 
 const Vector &CoorNdL = theNodes[1]->getCrds(); 
 
 const Vector &CoorMc1 = theNodes[2]->getCrds(); 
 const Vector &CoorNdD = theNodes[3]->getCrds(); 
 const Vector &CoorNdD2 = theNodes[4]->getCrds(); 
 const Vector &CoorNdL2 = theNodes[5]->getCrds(); 
 const Vector &CoorMc2 = theNodes[6]->getCrds(); 
 const Vector &CoorNdR2 = theNodes[7]->getCrds(); 
 const Vector &CoorNdA2 = theNodes[8]->getCrds(); 
 const Vector &CoorNdA = theNodes[9]->getCrds(); 
    
 
 // Global coordinates of L 
 
 xL(0) = dspNdL(0) + CoorNdL(0); 
 xL(1) = dspNdL(1) + CoorNdL(1); 
 
 // Global coordinates of L2 
 
 xL2(0) = dspNdL2(0) + CoorNdL2(0); 
 xL2(1) = dspNdL2(1) + CoorNdL2(1); 
 
 // Global coordinates of R 
 
 xR(0) = dspNdR(0) + CoorNdR(0) + GAP; 
 xR(1) = dspNdR(1) + CoorNdR(1); 
 
 // Global coordinates of R2 
 
 xR2(0) = dspNdR2(0) + CoorNdR2(0) + GAP; 
 xR2(1) = dspNdR2(1) + CoorNdR2(1); 
 
 // Global coordinates of D 
 
 xD(0) = dspNdD(0) + CoorNdD(0); 
 xD(1) = dspNdD(1) + CoorNdD(1); 
 
 // Global coordinates of D2 
 
 xD2(0) = dspNdD2(0) + CoorNdD2(0); 
 xD2(1) = dspNdD2(1) + CoorNdD2(1); 
 
 // Global coordinates of A 
 
 xA(0) = dspNdA(0) + CoorNdA(0) + GAP; 
 xA(1) = dspNdA(1) + CoorNdA(1); 
 
 // Global coordinates of A2 
 
 xA2(0) = dspNdA2(0) + CoorNdA2(0) + GAP; 
 xA2(1) = dspNdA2(1) + CoorNdA2(1); 
 
 // Velocity of L 
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 xLdot(0) = velNdL(0); 
 xLdot(1) = velNdL(1); 
 
 // Velocity of L2 
 
 xL2dot(0) = velNdL2(0); 
 xL2dot(1) = velNdL2(1); 
 
 // Velocity of R 
 
 xRdot(0) = velNdR(0); 
 xRdot(1) = velNdR(1); 
 
 // Velocity of R2 
 
 xR2dot(0) = velNdR2(0); 
 xR2dot(1) = velNdR2(1); 
 
 static Vector ug(60), ugdot(60), uldot(60); 
 
  for (int i=0; i<6; i++)  { 
 
        ug(i) = xR(i);  ugdot(i) = velNdR(i); 
        ug(i+6) = xL(i);  ugdot(i+6) = velNdL(i); 
  ug(i+12) = Mc1(i);  ugdot(i+12) = velMc1(i); 
  ug(i+18) = xD(i);  ugdot(i+18) = velNdD(i); 
  ug(i+24) = xD2(i);  ugdot(i+24) = velNdD2(i); 
  ug(i+30) = xL2(i);  ugdot(i+30) = velNdL2(i); 
  ug(i+36) = Mc2(i);  ugdot(i+36) = velMc2(i); 
  ug(i+42) = xR2(i);  ugdot(i+42) = velNdR2(i); 
  ug(i+48) = xA2(i);  ugdot(i+48) = velNdA2(i); 
  ug(i+54) = xA(i);  ugdot(i+54) = velNdA(i); 
 
    } 
     
    // transform response from the global to the local system 
    ul = Tgl*ug; 
    uldot = Tgl*ugdot; 
     
    // transform response from the local to the basic system 
    ub = Tlb*ul; 
    ubdot = Tlb*uldot; 
 
//STEP 1: Figure out the normal vectors of the decks and the suitable minimum distance 
  
     // NORMAL OF DECK 1  
     
 double NormN1 = sqrt(pow((xL(0)-xL2(0))/(xL(1)-xL2(1)),2.0)+1); 
  
     n1(0) = 1/NormN1; 
     n1(1) = -((xL(0)-xL2(0))/(xL(1)-xL2(1)))/NormN1; 
 
     // NORMAL OF DECK 2 
 
double NormN2 = sqrt(pow((xR(0)-xR2(0))/(xR(1)-xR2(1)),2.0)+1); 
  
        n2(0) = -1/NormN2; 
     n2(1) = (xR(0)-xR2(0))/(xR(1)-xR2(1))/NormN2; 
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  // TANGENTIAL Vector of DECK 1 (From L2 to L) 
 
double NormV1 = sqrt(pow(xL(0)-xL2(0),2.0)+pow(xL(1)-xL2(1),2.0)); 
 
  v1(0) = (xL(0)-xL2(0))/NormV1; 
  v1(1) = (xL(1)-xL2(1))/NormV1; 
 
  // TANGENTIAL Vector of DECK 2 (From R2 to R) 
 
double NormV2 = sqrt(pow(xR(0)-xR2(0),2.0)+pow(xR(1)-xR2(1),2.0)); 
 
  v2(0) = (xR(0)-xR2(0))/NormV2; 
  v2(1) = (xR(1)-xR2(1))/NormV2; 
 
        // 1.1. Figure out the distances between the nodes and the opposite deck. 
     
        // Defining parameters 
     
        // Slopes of the straight line between nodes 1-2 (m1) and 2-3 (m2) 
     
        m1 = v1(0)/v1(1); 
        m2 = v2(0)/v2(1); 
  m3 = (xL(1)-xD(1))/(xL(0)-xD(0)); 
     m4 = (xL2(1)-xD2(1))/(xL2(0)-xD2(0)); 
  m5 = (xR(1)-xA(1))/(xR(0)-xA(0)); 
  m6 = (xR2(1)-xA2(1))/(xR2(0)-xA2(0)); 
     
// 2) calculate the forces and stiffnesses in basic x- and y-direction 
     
 //First do it for wall ID 2 (upper boundary) 
 
  // check for pounding condition 
  if ((xR(0) <= m1*(xR(1)-xL(1))+xL(0)) && (xR(1) <= m3*(xR(0)-xL(0))+xL(1))) 
{;  //implies pounding 
 
  // There is CONTACT 
 
           // Contact point that belongs to deck 2 
            
           xkR0(0) = (xL2(0)-xL(0))*(lkR0/NormV1) + xL(0);     
           xkR0(1) = (xL2(1)-xL(1))*(lkR0/NormV1) + xL(1);     
     
           // Increment of relative displacement 
     
           IncrDispR(0) = xkR0(0) - xR(0);                                    
           IncrDispR(1) = xkR0(1) - xR(1);        
     
           double IncrDR = sqrt(pow(IncrDispR(0),2.0)+pow(IncrDispR(1),2.0));  
           IncrDRN = abs(IncrDispR(0)*n1(0) + IncrDispR(1)*n1(1));              
           IncrDRT = sqrt(pow(IncrDR,2.0)-pow(IncrDRN,2.0));                   
     
           // Increment of the relative velocity 
 
     double Velocity2R_x = velNdR(0);        
     double Velocity2R_y = velNdR(1);         
 
     double Velocity1R_x = (velNdL2(0)-velNdL(0))*(lkR0/NormV1) + velNdL(0);     
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     double Velocity1R_y = (velNdL2(1)-velNdL(1))*(lkR0/NormV1) + velNdL(1);     
     
           IncrVelR(0) = Velocity2R_x - Velocity1R_x;  
           IncrVelR(1) = Velocity2R_y - Velocity1R_y;     
     
           double IncrVR = sqrt(pow(IncrVelR(0),2.0)+pow(IncrVelR(1),2.0)); 
           double IncrVRN = abs(IncrVelR(0)*n1(0) + IncrVelR(1)*n1(1)); 
           double IncrVRT = sqrt(pow(IncrVR,2.0)-pow(IncrVRN,2.0)); 
       
           // Stiffness 
 
      kvaluen = KN; 
   cvaluen = 3.0*kvaluen*(1-
pow(RN,2.0))*abs(IncrDRN)/(2.0*pow(RN,2.0)*abs(IncrVelR0(0)));    
   kvaluet = KT; 
            cvaluet = 3.0*kvaluet*(1-
pow(RT,2.0))*abs(IncrDRT)/(2.0*pow(RT,2.0)*abs(IncrVelR0(1)));    
 
 
  } else { 
 
  // There is no contact 
 
  kvaluen = cvaluen = kvaluet = cvaluet = 0.0; 
 
  // Distance from node R to the contact point belonging deck 2 
 
  lkR0 = sqrt(pow(xL(0)-xR(0),2.0)+pow(xL(1)-xR(1),2.0));     
 
   // Relative velocity in X direction 
   IncrVelR0(0) = (velNdL2(0)-velNdL(0))*(lkR0/NormV1) + velNdL(0) - 
velNdR(0);  
 
   // Relative velocity in Y direction 
   IncrVelR0(1) = (velNdL2(1)-velNdL(1))*(lkR0/NormV1) + velNdL(1) - 
velNdR(1);   
 
    
   if (abs(IncrVelR0(0)) < 1.0E-21) { 
    IncrVelR0(0) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
   if (abs(IncrVelR0(1)) < 1.0E-21) { 
    IncrVelR0(1) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
    
 
  } 
 
  // Now calculate the forces 
   
  double SpringForcen = 0.0, DampingForcen = 0.0, SpringForcet = 0.0, 
DampingForcet = 0.0; 
   SpringForcen = -kvaluen*abs(IncrDRN);       
    
   
   if ((xR(0)-xkR0(0))*v1(0)+(xR(1)-xkR0(1))*v1(1) > 0.0) {     
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    SpringForcet = -kvaluet*abs(IncrDRT);   
   } else { 
    SpringForcet = kvaluet*abs(IncrDRT); 
   } 
   
    
   if (abs(IncrVelR(0)*n1(0)+IncrVelR(1)*n1(1)) < 1.0E-21) { 
   DampingForcen = cvaluen*1.0E-21; 
   } else { 
   DampingForcen = cvaluen*abs(IncrVelR(0)*n1(0)+IncrVelR(1)*n1(1));          
   } 
 
   if (abs(IncrVelR(0)*v1(0)+IncrVelR(1)*v1(1)) < 1.0E-21) {   
   DampingForcet = cvaluet*1.0E-21; 
   } else { 
   DampingForcet = cvaluet*abs(IncrVelR(0)*v1(0)+IncrVelR(1)*v1(1));   
   } 
 
   if (-IncrVelR(0)*n1(0)-IncrVelR(1)*n1(1) < 0.0) {     
   DampingForcen = -DampingForcen;   //compression phase 
   } else { 
   DampingForcen = 0.0;     //restitutation 
phase 
   } 
 
    
    
   if (IncrVelR(0)*v1(0)+IncrVelR(1)*v1(1) > 0.0) {   
    DampingForcet = -DampingForcet; 
    } else { 
    DampingForcet = DampingForcet; 
    } 
      
   qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) + 
(SpringForcet+DampingForcet)*abs(v1(0));    
   qb(1) = (SpringForcen+DampingForcen)*abs(n1(1)) + 
(SpringForcet+DampingForcet)*abs(v1(1));    
   
   
  if (abs(SpringForcet+DampingForcet) > MUS*abs(SpringForcen+DampingForcen)) 
{ 
   if ((xR(0)-xkR0(0))*v1(0)+(xR(1)-xkR0(1))*v1(1) > 0.0) {   
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) - 
MUK*abs(SpringForcen+DampingForcen)*abs(v1(0)); 
    qb(1) = -MUK*abs(SpringForcen+DampingForcen)*abs(v1(1)) + 
(SpringForcen+DampingForcen)*abs(n1(1)); 
 
   } else { 
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) + 
MUK*abs(SpringForcen+DampingForcen)*abs(v1(0)); 
    qb(1) = MUK*abs(SpringForcen+DampingForcen)*abs(v1(1)) + 
(SpringForcen+DampingForcen)*abs(n1(1)); 
 
   } 
  } 
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  kb(0,0)=kvaluen; 
  kb(1,1)=kvaluet; 
     
} else if (WID == 3) { 
 
  // get global trial displacements 
    const Vector &dspNdL2 = theNodes[0]->getTrialDisp(); 
    const Vector &dspNdR2 = theNodes[1]->getTrialDisp(); 
 
 const Vector &dspMc1 = theNodes[2]->getTrialDisp(); 
    const Vector &dspNdL = theNodes[3]->getTrialDisp(); 
 const Vector &dspNdD = theNodes[4]->getTrialDisp(); 
    const Vector &dspNdD2 = theNodes[5]->getTrialDisp(); 
 const Vector &dspMc2 = theNodes[6]->getTrialDisp(); 
    const Vector &dspNdR = theNodes[7]->getTrialDisp(); 
 const Vector &dspNdA2 = theNodes[8]->getTrialDisp(); 
    const Vector &dspNdA = theNodes[9]->getTrialDisp(); 
 
 
 // get global trial velocities 
 
    const Vector &velNdL2 = theNodes[0]->getTrialVel(); 
    const Vector &velNdR2 = theNodes[1]->getTrialVel(); 
 
 const Vector &velMc1 = theNodes[2]->getTrialVel(); 
    const Vector &velNdL = theNodes[3]->getTrialVel(); 
 const Vector &velNdD = theNodes[4]->getTrialVel(); 
    const Vector &velNdD2 = theNodes[5]->getTrialVel(); 
 const Vector &velMc2 = theNodes[6]->getTrialVel(); 
    const Vector &velNdR = theNodes[7]->getTrialVel(); 
 const Vector &velNdA2 = theNodes[8]->getTrialVel(); 
    const Vector &velNdA = theNodes[9]->getTrialVel(); 
 
 // Get GLOBAL COORDINATES 
 
 const Vector &CoorNdL2 = theNodes[0]->getCrds(); 
 const Vector &CoorNdR2 = theNodes[1]->getCrds(); 
 
 const Vector &CoorMc1 = theNodes[2]->getCrds(); 
 const Vector &CoorNdL = theNodes[3]->getCrds(); 
 const Vector &CoorNdD = theNodes[4]->getCrds(); 
 const Vector &CoorNdD2 = theNodes[5]->getCrds(); 
 const Vector &CoorMc2 = theNodes[6]->getCrds(); 
 const Vector &CoorNdR = theNodes[7]->getCrds(); 
 const Vector &CoorNdA2 = theNodes[8]->getCrds(); 
 const Vector &CoorNdA = theNodes[9]->getCrds(); 
    
 
 // Global coordinates of L 
 
 xL(0) = dspNdL(0) + CoorNdL(0); 
 xL(1) = dspNdL(1) + CoorNdL(1); 
 
 // Global coordinates of L2 
 
 xL2(0) = dspNdL2(0) + CoorNdL2(0); 
 xL2(1) = dspNdL2(1) + CoorNdL2(1); 
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 // Global coordinates of R 
 
 xR(0) = dspNdR(0) + CoorNdR(0) + GAP; 
 xR(1) = dspNdR(1) + CoorNdR(1); 
 
 // Global coordinates of R2 
 
 xR2(0) = dspNdR2(0) + CoorNdR2(0) + GAP; 
 xR2(1) = dspNdR2(1) + CoorNdR2(1); 
 
 // Global coordinates of D 
 
 xD(0) = dspNdD(0) + CoorNdD(0); 
 xD(1) = dspNdD(1) + CoorNdD(1); 
 
 // Global coordinates of D2 
 
 xD2(0) = dspNdD2(0) + CoorNdD2(0); 
 xD2(1) = dspNdD2(1) + CoorNdD2(1); 
 
 // Global coordinates of A 
 
 xA(0) = dspNdA(0) + CoorNdA(0) + GAP; 
 xA(1) = dspNdA(1) + CoorNdA(1); 
 
 // Global coordinates of A2 
 
 xA2(0) = dspNdA2(0) + CoorNdA2(0) + GAP; 
 xA2(1) = dspNdA2(1) + CoorNdA2(1); 
 
 // Velocity of L 
 
 xLdot(0) = velNdL(0); 
 xLdot(1) = velNdL(1); 
 
 // Velocity of L2 
 
 xL2dot(0) = velNdL2(0); 
 xL2dot(1) = velNdL2(1); 
 
 // Velocity of R 
 
 xRdot(0) = velNdR(0); 
 xRdot(1) = velNdR(1); 
 
 // Velocity of R2 
 
 xR2dot(0) = velNdR2(0); 
 xR2dot(1) = velNdR2(1); 
 
 static Vector ug(60), ugdot(60), uldot(60); 
 
  for (int i=0; i<6; i++)  { 
 
        ug(i) = xL2(i);  ugdot(i) = velNdL2(i); 
        ug(i+6) = xR2(i);  ugdot(i+6) = velNdR2(i); 
  ug(i+12) = Mc1(i);  ugdot(i+12) = velMc1(i); 
  ug(i+18) = xL(i);  ugdot(i+18) = velNdL(i); 
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  ug(i+24) = xD(i);  ugdot(i+24) = velNdD(i); 
  ug(i+30) = xD2(i);  ugdot(i+30) = velNdD2(i); 
  ug(i+36) = Mc2(i);  ugdot(i+36) = velMc2(i); 
  ug(i+42) = xR(i);  ugdot(i+42) = velNdR(i); 
  ug(i+48) = xA2(i);  ugdot(i+48) = velNdA2(i); 
  ug(i+54) = xA(i);  ugdot(i+54) = velNdA(i); 
 
    } 
     
    // transform response from the global to the local system 
    ul = Tgl*ug; 
    uldot = Tgl*ugdot; 
     
    // transform response from the local to the basic system 
    ub = Tlb*ul; 
    ubdot = Tlb*uldot; 
 
//STEP 1: Figure out the normal vectors of the decks and the suitable minimum distance 
  
     // NORMAL OF DECK 1  
     
 double NormN1 = sqrt(pow((xL(0)-xL2(0))/(xL(1)-xL2(1)),2.0)+1); 
  
     n1(0) = 1/NormN1; 
     n1(1) = -((xL(0)-xL2(0))/(xL(1)-xL2(1)))/NormN1; 
 
     // NORMAL OF DECK 2 
 
double NormN2 = sqrt(pow((xR(0)-xR2(0))/(xR(1)-xR2(1)),2.0)+1); 
  
        n2(0) = -1/NormN2; 
     n2(1) = (xR(0)-xR2(0))/(xR(1)-xR2(1))/NormN2; 
 
  // TANGENTIAL Vector of DECK 1 (From L2 to L) 
 
double NormV1 = sqrt(pow(xL(0)-xL2(0),2.0)+pow(xL(1)-xL2(1),2.0)); 
 
  v1(0) = (xL(0)-xL2(0))/NormV1; 
  v1(1) = (xL(1)-xL2(1))/NormV1; 
 
  // TANGENTIAL Vector of DECK 2 (From R2 to R) 
 
double NormV2 = sqrt(pow(xR(0)-xR2(0),2.0)+pow(xR(1)-xR2(1),2.0)); 
 
  v2(0) = (xR(0)-xR2(0))/NormV2; 
  v2(1) = (xR(1)-xR2(1))/NormV2; 
 
        // 1.1. Figure out the distances between the nodes and the opposite deck. 
     
        // Defining parameters 
     
        // Slopes of the straight line between nodes 1-2 (m1) and 2-3 (m2) 
     
        m1 = v1(0)/v1(1); 
        m2 = v2(0)/v2(1); 
  m3 = (xL(1)-xD(1))/(xL(0)-xD(0)); 
     m4 = (xL2(1)-xD2(1))/(xL2(0)-xD2(0)); 
  m5 = (xR(1)-xA(1))/(xR(0)-xA(0)); 
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  m6 = (xR2(1)-xA2(1))/(xR2(0)-xA2(0)); 
     
// 2) calculate the forces and stiffnesses in basic x- and y-direction 
     
 //First do it for wall ID 3 (upper boundary) 
   
  // check for pounding condition 
  if ((xL2(0) >= m2*(xL2(1)-xR(1))+xR(0)) && (xL2(1) >= m6*(xL2(0)-
xR2(0))+xR2(1))) {;  //implies pounding 
 
  // There is CONTACT 
 
           // Contact point that belongs to deck 2 
            
           xkL20(0) = (xR(0)-xR2(0))*(lkL20/NormV2) + xR2(0);     
           xkL20(1) = (xR(1)-xR2(1))*(lkL20/NormV2) + xR2(1);     
     
           // Increment of relative displacement 
     
           IncrDispL2(0) = xkL20(0) - xL2(0);                                    
           IncrDispL2(1) = xkL20(1) - xL2(1);        
     
           double IncrDL2 = sqrt(pow(IncrDispL2(0),2.0)+pow(IncrDispL2(1),2.0)); 
           IncrDL2N = abs(IncrDispL2(0)*n2(0) + IncrDispL2(1)*n2(1));              
           IncrDL2T = sqrt(pow(IncrDL2,2.0)-pow(IncrDL2N,2.0));                   
     
           // Increment of the relative velocity 
 
     double Velocity1L2_x = velNdL2(0);        
     double Velocity1L2_y = velNdL2(1);        
 
     double Velocity2L2_x = (velNdR(0)-velNdR2(0))*(lkL20/NormV2) + 
velNdR2(0);     
     double Velocity2L2_y = (velNdR(1)-velNdR2(1))*(lkL20/NormV2) + 
velNdR2(1);     
     
           IncrVelL2(0) = Velocity2L2_x - Velocity1L2_x;    
           IncrVelL2(1) = Velocity2L2_y - Velocity1L2_y;    
     
           double IncrVL2 = sqrt(pow(IncrVelL2(0),2.0)+pow(IncrVelL2(1),2.0)); 
           double IncrVL2N = abs(IncrVelL2(0)*n2(0) + IncrVelL2(1)*n2(1)); 
           double IncrVL2T = sqrt(pow(IncrVL2,2.0)-pow(IncrVL2N,2.0)); 
       
           // Stiffness 
 
      kvaluen = KN; 
   cvaluen = 3.0*kvaluen*(1-
pow(RN,2.0))*abs(IncrDL2N)/(2.0*pow(RN,2.0)*abs(IncrVelL20(0)));    
   kvaluet = KT; 
            cvaluet = 3.0*kvaluet*(1-
pow(RT,2.0))*abs(IncrDL2T)/(2.0*pow(RT,2.0)*abs(IncrVelL20(1)));    
 
 
  } else { 
 
  // There is no contact 
 
  kvaluen = cvaluen = kvaluet = cvaluet = 0.0; 
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  // Distance from node R to the contact point belonging deck 2 
 
  lkL20 = sqrt(pow(xL2(0)-xR2(0),2.0)+pow(xL2(1)-xR2(1),2.0));    
 
   // Relative velocity in X direction 
   IncrVelL20(0) = (velNdR(0)-velNdR2(0))*(lkL20/NormV2) + velNdR2(0) - 
velNdL2(0);  
 
   // Relative velocity in Y direction 
   IncrVelL20(1) = (velNdR(1)-velNdR2(1))*(lkL20/NormV2) + velNdR2(1) - 
velNdL2(1);    
 
    
   if (abs(IncrVelL20(0)) < 1.0E-21) { 
    IncrVelL20(0) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
   if (abs(IncrVelL20(1)) < 1.0E-21) { 
    IncrVelL20(1) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
    
 
  } 
 
  // Now calculate the forces 
   
  double SpringForcen = 0.0, DampingForcen = 0.0, SpringForcet = 0.0, 
DampingForcet = 0.0; 
   SpringForcen = -kvaluen*abs(IncrDL2N);       
    
   
   if ((xL2(0)-xkL20(0))*v2(0)+(xL2(1)-xkL20(1))*v2(1) > 0.0) {     
    SpringForcet = -kvaluet*abs(IncrDL2T);   
   } else { 
    SpringForcet = kvaluet*abs(IncrDL2T); 
   } 
   
    
   if (abs(IncrVelL2(0)*n2(0)+IncrVelL2(1)*n2(1)) < 1.0E-21) { 
   DampingForcen = cvaluen*1.0E-21; 
   } else { 
   DampingForcen = cvaluen*abs(IncrVelL2(0)*n2(0)+IncrVelL2(1)*n2(1));          
   } 
 
   if (abs(IncrVelL2(0)*v2(0)+IncrVelL2(1)*v2(1)) < 1.0E-21) {   
   DampingForcet = cvaluet*1.0E-21; 
   } else { 
   DampingForcet = cvaluet*abs(IncrVelL2(0)*v2(0)+IncrVelL2(1)*v2(1));   
   } 
 
   if (-IncrVelL2(0)*n2(0)-IncrVelL2(1)*n2(1) < 0.0) {      
   DampingForcen = -DampingForcen;   //compression phase 
   } else { 
   DampingForcen = 0.0;     //restitutation 
phase 
   } 
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   if (IncrVelL2(0)*v2(0)+IncrVelL2(1)*v2(1) < 0.0) {  
    DampingForcet = -DampingForcet; 
    } else { 
    DampingForcet = DampingForcet; 
    } 
      
   qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + 
(SpringForcet+DampingForcet)*abs(v2(0));    
   qb(1) = (SpringForcen+DampingForcen)*abs(n2(1)) + 
(SpringForcet+DampingForcet)*abs(v2(1));    
   
   
  if (abs(SpringForcet+DampingForcet) > MUS*abs(SpringForcen+DampingForcen)) 
{ 
   if ((xL2(0)-xkL20(0))*v2(0)+(xL2(1)-xkL20(1))*v2(1) > 0.0) {   
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) - 
MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
    qb(1) = -MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
(SpringForcen+DampingForcen)*abs(n2(1)); 
 
   } else { 
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n2(0)) + 
MUK*abs(SpringForcen+DampingForcen)*abs(v2(0)); 
    qb(1) = MUK*abs(SpringForcen+DampingForcen)*abs(v2(1)) + 
(SpringForcen+DampingForcen)*abs(n2(1)); 
 
   } 
  } 
    
  kb(0,0)=kvaluen; 
  kb(1,1)=kvaluet; 
 
  // Condition to avoid overlap between node L2 and node R2 
 
  if ((xR2(0) < m1*(xR2(1)-xL(1))+xL(0)) && (xR2(1) >= m4*(xR2(0)-
xL2(0))+xL2(1))) { 
 
   qb(0) = 0.0; 
   qb(1) = 0.0; 
  } 
     
} else if (WID == 4) { 
 
 // get global trial displacements 
    const Vector &dspNdR2 = theNodes[0]->getTrialDisp(); 
    const Vector &dspNdL2 = theNodes[1]->getTrialDisp(); 
 
 const Vector &dspMc1 = theNodes[2]->getTrialDisp(); 
    const Vector &dspNdL = theNodes[3]->getTrialDisp(); 
 const Vector &dspNdD = theNodes[4]->getTrialDisp(); 
    const Vector &dspNdD2 = theNodes[5]->getTrialDisp(); 
 const Vector &dspMc2 = theNodes[6]->getTrialDisp(); 
    const Vector &dspNdR = theNodes[7]->getTrialDisp(); 
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 const Vector &dspNdA2 = theNodes[8]->getTrialDisp(); 
    const Vector &dspNdA = theNodes[9]->getTrialDisp(); 
 
 
 // get global trial velocities 
 
    const Vector &velNdR2 = theNodes[0]->getTrialVel(); 
    const Vector &velNdL2 = theNodes[1]->getTrialVel(); 
 
 const Vector &velMc1 = theNodes[2]->getTrialVel(); 
    const Vector &velNdL = theNodes[3]->getTrialVel(); 
 const Vector &velNdD = theNodes[4]->getTrialVel(); 
    const Vector &velNdD2 = theNodes[5]->getTrialVel(); 
 const Vector &velMc2 = theNodes[6]->getTrialVel(); 
    const Vector &velNdR = theNodes[7]->getTrialVel(); 
 const Vector &velNdA2 = theNodes[8]->getTrialVel(); 
    const Vector &velNdA = theNodes[9]->getTrialVel(); 
 
 // Get GLOBAL COORDINATES 
 
 const Vector &CoorNdR2 = theNodes[0]->getCrds(); 
 const Vector &CoorNdL2 = theNodes[1]->getCrds(); 
 
 const Vector &CoorMc1 = theNodes[2]->getCrds(); 
 const Vector &CoorNdL = theNodes[3]->getCrds(); 
 const Vector &CoorNdD = theNodes[4]->getCrds(); 
 const Vector &CoorNdD2 = theNodes[5]->getCrds(); 
 const Vector &CoorMc2 = theNodes[6]->getCrds(); 
 const Vector &CoorNdR = theNodes[7]->getCrds(); 
 const Vector &CoorNdA2 = theNodes[8]->getCrds(); 
 const Vector &CoorNdA = theNodes[9]->getCrds(); 
    
 
 // Global coordinates of L 
 
 xL(0) = dspNdL(0) + CoorNdL(0); 
 xL(1) = dspNdL(1) + CoorNdL(1); 
 
 // Global coordinates of L2 
 
 xL2(0) = dspNdL2(0) + CoorNdL2(0); 
 xL2(1) = dspNdL2(1) + CoorNdL2(1); 
 
 // Global coordinates of R 
 
 xR(0) = dspNdR(0) + CoorNdR(0) + GAP; 
 xR(1) = dspNdR(1) + CoorNdR(1); 
 
 // Global coordinates of R2 
 
 xR2(0) = dspNdR2(0) + CoorNdR2(0) + GAP; 
 xR2(1) = dspNdR2(1) + CoorNdR2(1); 
 
 // Global coordinates of D 
 
 xD(0) = dspNdD(0) + CoorNdD(0); 
 xD(1) = dspNdD(1) + CoorNdD(1); 
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 // Global coordinates of D2 
 
 xD2(0) = dspNdD2(0) + CoorNdD2(0); 
 xD2(1) = dspNdD2(1) + CoorNdD2(1); 
 
 // Global coordinates of A 
 
 xA(0) = dspNdA(0) + CoorNdA(0) + GAP; 
 xA(1) = dspNdA(1) + CoorNdA(1); 
 
 // Global coordinates of A2 
 
 xA2(0) = dspNdA2(0) + CoorNdA2(0) + GAP; 
 xA2(1) = dspNdA2(1) + CoorNdA2(1); 
 
 // Velocity of L 
 
 xLdot(0) = velNdL(0); 
 xLdot(1) = velNdL(1); 
 
 // Velocity of L2 
 
 xL2dot(0) = velNdL2(0); 
 xL2dot(1) = velNdL2(1); 
 
 // Velocity of R 
 
 xRdot(0) = velNdR(0); 
 xRdot(1) = velNdR(1); 
 
 // Velocity of R2 
 
 xR2dot(0) = velNdR2(0); 
 xR2dot(1) = velNdR2(1); 
 
 static Vector ug(60), ugdot(60), uldot(60); 
 
  for (int i=0; i<6; i++)  { 
 
        ug(i) = xR2(i);  ugdot(i) = velNdR2(i); 
        ug(i+6) = xL2(i);  ugdot(i+6) = velNdL2(i); 
  ug(i+12) = Mc1(i);  ugdot(i+12) = velMc1(i); 
  ug(i+18) = xL(i);  ugdot(i+18) = velNdL(i); 
  ug(i+24) = xD(i);  ugdot(i+24) = velNdD(i); 
  ug(i+30) = xD2(i);  ugdot(i+30) = velNdD2(i); 
  ug(i+36) = Mc2(i);  ugdot(i+36) = velMc2(i); 
  ug(i+42) = xR(i);  ugdot(i+42) = velNdR(i); 
  ug(i+48) = xA2(i);  ugdot(i+48) = velNdA2(i); 
  ug(i+54) = xA(i);  ugdot(i+54) = velNdA(i); 
 
    } 
     
    // transform response from the global to the local system 
    ul = Tgl*ug; 
    uldot = Tgl*ugdot; 
     
    // transform response from the local to the basic system 
    ub = Tlb*ul; 
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    ubdot = Tlb*uldot; 
 
//STEP 1: Figure out the normal vectors of the decks and the suitable minimum distance 
  
     // NORMAL OF DECK 1  
     
 double NormN1 = sqrt(pow((xL(0)-xL2(0))/(xL(1)-xL2(1)),2.0)+1); 
  
     n1(0) = 1/NormN1; 
     n1(1) = -((xL(0)-xL2(0))/(xL(1)-xL2(1)))/NormN1; 
 
     // NORMAL OF DECK 2 
 
double NormN2 = sqrt(pow((xR(0)-xR2(0))/(xR(1)-xR2(1)),2.0)+1); 
  
        n2(0) = -1/NormN2; 
     n2(1) = (xR(0)-xR2(0))/(xR(1)-xR2(1))/NormN2; 
 
  // TANGENTIAL Vector of DECK 1 (From L2 to L) 
 
double NormV1 = sqrt(pow(xL(0)-xL2(0),2.0)+pow(xL(1)-xL2(1),2.0)); 
 
  v1(0) = (xL(0)-xL2(0))/NormV1; 
  v1(1) = (xL(1)-xL2(1))/NormV1; 
 
  // TANGENTIAL Vector of DECK 2 (From R2 to R) 
 
double NormV2 = sqrt(pow(xR(0)-xR2(0),2.0)+pow(xR(1)-xR2(1),2.0)); 
 
  v2(0) = (xR(0)-xR2(0))/NormV2; 
  v2(1) = (xR(1)-xR2(1))/NormV2; 
 
        // 1.1. Figure out the distances between the nodes and the opposite deck. 
     
        // Defining parameters 
     
        // Slopes of the straight line between nodes 1-2 (m1) and 2-3 (m2) 
     
        m1 = v1(0)/v1(1); 
        m2 = v2(0)/v2(1); 
  m3 = (xL(1)-xD(1))/(xL(0)-xD(0)); 
     m4 = (xL2(1)-xD2(1))/(xL2(0)-xD2(0)); 
  m5 = (xR(1)-xA(1))/(xR(0)-xA(0)); 
  m6 = (xR2(1)-xA2(1))/(xR2(0)-xA2(0)); 
     
// 2) calculate the forces and stiffnesses in basic x- and y-direction 
     
 //First do it for wall ID 4 (upper boundary) 
 
  // check for pounding condition 
  if ((xR2(0) <= m1*(xR2(1)-xL(1))+xL(0)) && (xR2(1) >= m4*(xR2(0)-
xL2(0))+xL2(1))) {; //implies pounding 
 
  // There is CONTACT 
 
           // Contact point that belongs to deck 2 
            
           xkR20(0) = (xL(0)-xL2(0))*(lkR20/NormV1) + xL2(0);    
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           xkR20(1) = (xL(1)-xL2(1))*(lkR20/NormV1) + xL2(1);    
     
           // Increment of relative displacement 
     
           IncrDispR2(0) = xkR20(0) - xR2(0);                                   
           IncrDispR2(1) = xkR20(1) - xR2(1);       
     
           double IncrDR2 = sqrt(pow(IncrDispR2(0),2.0)+pow(IncrDispR2(1),2.0));  
           IncrDR2N = abs(IncrDispR2(0)*n1(0) + IncrDispR2(1)*n1(1));              
           IncrDR2T = sqrt(pow(IncrDR2,2.0)-pow(IncrDR2N,2.0));                    
     
           // Increment of the relative velocity 
 
     double Velocity2R2_x = velNdR2(0);        
     double Velocity2R2_y = velNdR2(1);       
 
     double Velocity1R2_x = (velNdL(0)-velNdL2(0))*(lkR20/NormV1) + 
velNdL2(0);     
     double Velocity1R2_y = (velNdL(1)-velNdL2(1))*(lkR20/NormV1) + 
velNdL2(1);     
     
           IncrVelR2(0) = Velocity2R2_x - Velocity1R2_x;  
           IncrVelR2(1) = Velocity2R2_y - Velocity1R2_y;    
     
           double IncrVR2 = sqrt(pow(IncrVelR2(0),2.0)+pow(IncrVelR2(1),2.0)); 
           double IncrVR2N = abs(IncrVelR2(0)*n1(0) + IncrVelR2(1)*n1(1)); 
           double IncrVR2T = sqrt(pow(IncrVR2,2.0)-pow(IncrVR2N,2.0)); 
       
           // Stiffness 
 
      kvaluen = KN; 
   cvaluen = 3.0*kvaluen*(1-
pow(RN,2.0))*abs(IncrDR2N)/(2.0*pow(RN,2.0)*abs(IncrVelR20(0)));   
   kvaluet = KT; 
            cvaluet = 3.0*kvaluet*(1-
pow(RT,2.0))*abs(IncrDR2T)/(2.0*pow(RT,2.0)*abs(IncrVelR20(1)));    
 
  } else { 
 
  kvaluen = cvaluen = kvaluet = cvaluet = 0.0; 
 
  // Distance from node R2 to the contact point belonging deck 1 
 
  lkR20 = sqrt(pow(xL2(0)-xR2(0),2.0)+pow(xL2(1)-xR2(1),2.0));   
 
   // Relative velocity in X direction 
   IncrVelR20(0) = (velNdL(0)-velNdL2(0))*(lkR20/NormV1) + velNdL2(0) - 
velNdR2(0);  
 
   // Relative velocity in Y direction 
   IncrVelR20(1) = (velNdL(1)-velNdL2(1))*(lkR20/NormV1) + velNdL2(1) - 
velNdR2(1);    
 
    
   if (abs(IncrVelR20(0)) < 1.0E-21) { 
    IncrVelR20(0) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
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   if (abs(IncrVelR20(1)) < 1.0E-21) { 
    IncrVelR20(1) = 1.0E-21;   // a very small 
value for velocity if the vel is zero (for convergence issues) 
   } 
    
 
  } 
 
  // Now calculate the forces 
   
  double SpringForcen = 0.0, DampingForcen = 0.0, SpringForcet = 0.0, 
DampingForcet = 0.0; 
   SpringForcen = -kvaluen*abs(IncrDR2N);      
    
   
   if ((xR2(0)-xkR20(0))*v1(0)+(xR2(1)-xkR20(1))*v1(1) > 0.0) {     
    SpringForcet = -kvaluet*abs(IncrDR2T);   
   } else { 
    SpringForcet = kvaluet*abs(IncrDR2T); 
   } 
   
    
   if (abs(IncrVelR2(0)*n1(0)+IncrVelR2(1)*n1(1)) < 1.0E-21) { 
   DampingForcen = cvaluen*1.0E-21; 
   } else { 
   DampingForcen = cvaluen*abs(IncrVelR2(0)*n1(0)+IncrVelR2(1)*n1(1));         
   } 
 
   if (abs(IncrVelR2(0)*v1(0)+IncrVelR2(1)*v1(1)) < 1.0E-21) {   
   DampingForcet = cvaluet*1.0E-21; 
   } else { 
   DampingForcet = cvaluet*abs(IncrVelR2(0)*v1(0)+IncrVelR2(1)*v1(1));   
   } 
 
   if (-IncrVelR2(0)*n1(0)-IncrVelR2(1)*n1(1) < 0.0) {      
   DampingForcen = -DampingForcen;   //compression phase 
   } else { 
   DampingForcen = 0.0;     //restitutation 
phase 
   } 
 
    
    
   if (IncrVelR2(0)*v1(0)+IncrVelR2(1)*v1(1) > 0.0) {   
    DampingForcet = -DampingForcet; 
    } else { 
    DampingForcet = DampingForcet; 
    } 
      
   qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) + 
(SpringForcet+DampingForcet)*abs(v1(0));    
   qb(1) = (SpringForcen+DampingForcen)*abs(n1(1)) + 
(SpringForcet+DampingForcet)*abs(v1(1));    
   
   
  if (abs(SpringForcet+DampingForcet) > MUS*abs(SpringForcen+DampingForcen)) 
{ 
   if ((xR2(0)-xkR20(0))*v1(0)+(xR2(1)-xkR20(1))*v1(1) > 0.0) {  
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    qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) - 
MUK*abs(SpringForcen+DampingForcen)*abs(v1(0)); 
    qb(1) = -MUK*abs(SpringForcen+DampingForcen)*abs(v1(1)) + 
(SpringForcen+DampingForcen)*abs(n1(1)); 
 
   } else { 
 
    qb(0) = (SpringForcen+DampingForcen)*abs(n1(0)) + 
MUK*abs(SpringForcen+DampingForcen)*abs(v1(0)); 
    qb(1) = MUK*abs(SpringForcen+DampingForcen)*abs(v1(1)) + 
(SpringForcen+DampingForcen)*abs(n1(1)); 
 
   } 
  } 
    
  kb(0,0)=kvaluen; 
  kb(1,1)=kvaluet; 
     
} 
      
 // 2) get force (sort of shear force) and stiffness in basic z-direction 
    theMaterials[0]->setTrialStrain(ub(2),ubdot(2)); 
    qb(2) = theMaterials[0]->getStress(); 
    kb(2,2) = theMaterials[0]->getTangent(); 
 
    // 3) get moment and stiffness in basic x-direction 
    theMaterials[1]->setTrialStrain(ub(3),ubdot(3)); 
    qb(3) = theMaterials[1]->getStress(); 
    kb(3,3) = theMaterials[1]->getTangent(); 
     
    // 4) get moment and stiffness in basic y-direction 
    theMaterials[2]->setTrialStrain(ub(4),ubdot(4)); 
    qb(4) = theMaterials[2]->getStress(); 
    kb(4,4) = theMaterials[2]->getTangent(); 
     
    // 5) get moment and stiffness in basic z-direction 
    theMaterials[3]->setTrialStrain(ub(5),ubdot(5)); 
    qb(5) = theMaterials[3]->getStress(); 
    kb(5,5) = theMaterials[3]->getTangent(); 
     
    return 0; 
} 
 
 
const Matrix& NCM3D::getTangentStiff() 
{ 
    // zero the matrix 
    theMatrix.Zero(); 
     
    // transform from basic to local system 
    static Matrix kl(60,60); 
    kl.addMatrixTripleProduct(0.0, Tlb, kb, 1.0); 
          
    // transform from local to global system 
    theMatrix.addMatrixTripleProduct(0.0, Tgl, kl, 1.0); 
     
    return theMatrix; 
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} 
 
 
const Matrix& NCM3D::getInitialStiff() 
{ 
    // zero the matrix 
    theMatrix.Zero(); 
     
    // transform from basic to local system 
    static Matrix kl(60,60); 
    kl.addMatrixTripleProduct(0.0, Tlb, kbInit, 1.0); 
     
    // transform from local to global system 
    theMatrix.addMatrixTripleProduct(0.0, Tgl, kl, 1.0); 
     
    return theMatrix; 
} 
 
 
const Matrix& NCM3D::getMass() 
{ 
 // zero the matrix 
    theMatrix.Zero(); 
     
 // check for quick return 
 if (mass == 0.0)  { 
  return theMatrix; 
 }     
     
 double m = 0.5*mass; 
 for (int i = 0; i < 3; i++)  { 
  theMatrix(i,i)     = m; 
  theMatrix(i+3,i+3) = m; 
 } 
  
    return theMatrix;  
} 
 
 
void NCM3D::zeroLoad() 
{ 
    theLoad.Zero(); 
} 
 
 
int NCM3D::addLoad(ElementalLoad *theLoad, double loadFactor) 
{   
 opserr <<"NCM3D::addLoad() - " 
  << "load type unknown for element: " 
  << this->getTag() << endln; 
     
 return -1; 
} 
 
 
int NCM3D::addInertiaLoadToUnbalance(const Vector &accel) 
{ 
 // check for quick return 
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 if (mass == 0.0)  { 
  return 0; 
 } 
     
 // get R * accel from the nodes 
 const Vector &Raccel1 = theNodes[0]->getRV(accel); 
 const Vector &Raccel2 = theNodes[1]->getRV(accel); 
  
 if (6 != Raccel1.Size() || 6 != Raccel2.Size())  { 
  opserr << "NCM3D::addInertiaLoadToUnbalance() - " 
   << "matrix and vector sizes are incompatible\n"; 
  return -1; 
 } 
     
 // want to add ( - fact * M R * accel ) to unbalance 
 // take advantage of lumped mass matrix 
 double m = 0.5*mass; 
    for (int i = 0; i < 3; i++)  { 
        theLoad(i)   -= m * Raccel1(i); 
        theLoad(i+3) -= m * Raccel2(i); 
    } 
     
 return 0; 
} 
 
 
const Vector& NCM3D::getResistingForce() 
{ 
    // zero the residual 
    theVector.Zero(); 
     
    // determine resisting forces in local system 
    static Vector ql(60); 
    ql = Tlb^qb; 
         
    // determine resisting forces in global system 
    theVector = Tgl^ql; 
 
 for (int i = 12; i < 60; i++)  { 
  theVector(i) = 0.0; 
 
 } 
     
    // subtract external load 
    theVector.addVector(1.0, theLoad, -1.0); 
     
    return theVector; 
} 
 
 
const Vector& NCM3D::getResistingForceIncInertia() 
{  
 theVector = this->getResistingForce(); 
  
 // add the damping forces if rayleigh damping 
 if (alphaM != 0.0 || betaK != 0.0 || betaK0 != 0.0 || betaKc != 0.0) 
  theVector += this->getRayleighDampingForces(); 
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 // now include the mass portion 
 if (mass != 0.0)  { 
  const Vector &accel1 = theNodes[0]->getTrialAccel(); 
  const Vector &accel2 = theNodes[1]->getTrialAccel();     
   
  double m = 0.5*mass; 
  for (int i = 0; i < 3; i++)  { 
   theVector(i)   += m * accel1(i); 
   theVector(i+3) += m * accel2(i); 
  } 
 } 
  
 return theVector; 
} 
 
 
int NCM3D::sendSelf(int commitTag, Channel &sChannel) 
{ 
    // send element parameters 
    static Vector data(36); 
    data(0) = this->getTag(); 
 data(1) = KN; 
    data(2) = RN; 
    data(3) = KT; 
 data(4) = RT; 
 data(5) = MUS; 
 data(6) = MUK; 
 data(7) = GAP; 
 data(8) = WID; 
    data(9) = kvaluen; 
    data(10) = cvaluen; 
    data(11) = kvaluet; 
 data(12) = cvaluet; 
 data(13) = IncrDLT; 
 data(14) = IncrDLN; 
 data(15) = IncrDL2T; 
 data(16) = IncrDL2N; 
 data(17) = IncrDRT; 
 data(18) = IncrDRN; 
 data(19) = IncrDR2T; 
 data(20) = IncrDR2N; 
 data(21) = IncrVelL0(0); 
 data(22) = IncrVelL0(1); 
 data(23) = IncrVelL20(0); 
 data(24) = IncrVelL20(1); 
 data(25) = IncrVelR0(0); 
 data(26) = IncrVelR0(1); 
 data(27) = IncrVelR20(0); 
 data(28) = IncrVelR20(1); 
 data(29) = lkL0; 
 data(30) = lkR0; 
 data(31) = lkL20; 
 data(32) = lkR20; 
    data(33) = mass; 
    data(34) = x.Size(); 
    data(35) = y.Size(); 
    sChannel.sendVector(0, commitTag, data); 
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    // send the two end nodes 
    sChannel.sendID(0, commitTag, connectedExternalNodes); 
     
    // send the material class tags 
    ID matClassTags(4); 
    for (int i=0; i<4; i++) 
        matClassTags(i) = theMaterials[i]->getClassTag(); 
    sChannel.sendID(0, commitTag, matClassTags); 
     
    // send the material models 
    for (int i=0; i<4; i++) 
        theMaterials[i]->sendSelf(commitTag, sChannel); 
     
    // send remaining data 
    if (x.Size() == 3) 
        sChannel.sendVector(0, commitTag, x); 
    if (y.Size() == 3) 
        sChannel.sendVector(0, commitTag, y); 
     
    return 0; 
} 
 
 
int NCM3D::recvSelf(int commitTag, Channel &rChannel, 
    FEM_ObjectBroker &theBroker) 
{ 
    // delete material memory 
    for (int i=0; i<4; i++) 
        if (theMaterials[i] != 0) 
            delete theMaterials[i]; 
     
    // receive element parameters 
    static Vector data(34); 
    rChannel.recvVector(0, commitTag, data);     
    this->setTag((int)data(0)); 
    KN = data(1); 
    RN = data(2); 
    KT = data(3); 
 RT = data(4); 
 MUS = data(5); 
 MUK = data(6); 
 GAP = data(7); 
 WID = (int)data(8); 
 kvaluen = data(9); 
    cvaluen = data(10); 
    kvaluet = data(11); 
 cvaluet = data(12); 
 IncrDLT = data(13); 
 IncrDLN = data(14); 
 IncrDL2T = data(15); 
 IncrDL2N = data(16); 
 IncrDRT = data(17); 
 IncrDRN = data(18); 
 IncrDR2T = data(19); 
 IncrDR2N = data(20); 
 IncrVelL0(0) = data(21); 
 IncrVelL0(1) = data(22); 
 IncrVelL20(0) = data(23); 
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 IncrVelL20(1) = data(24); 
 IncrVelR0(0) = data(25); 
 IncrVelR0(1) = data(26); 
 IncrVelR20(0) = data(27); 
 IncrVelR20(1) = data(28); 
 lkL0 = data(29); 
 lkR0 = data(30); 
 lkL20 = data(31); 
 lkR20 = data(32); 
    mass = data(33); 
    
    // receive the two end nodes 
    rChannel.recvID(0, commitTag, connectedExternalNodes); 
     
    // receive the material class tags 
    ID matClassTags(4); 
    rChannel.recvID(0, commitTag, matClassTags); 
     
    // receive the material models 
    for (int i=0; i<4; i++)  { 
        theMaterials[i] = theBroker.getNewUniaxialMaterial(matClassTags(i)); 
        if (theMaterials[i] == 0) { 
            opserr << "NCM3D::recvSelf() - " 
                << "failed to get blank uniaxial material.\n"; 
            return -2; 
        } 
        theMaterials[i]->recvSelf(commitTag, rChannel, theBroker); 
    } 
     
    // receive remaining data 
    if ((int)data(34) == 3)  { 
        x.resize(3); 
        rChannel.recvVector(0, commitTag, x); 
    } 
    if ((int)data(35) == 3)  { 
        y.resize(3); 
        rChannel.recvVector(0, commitTag, y); 
    } 
     
    // initialize initial stiffness matrix 
    kbInit.Zero(); 
 kbInit(0,0) = kvaluen; 
    kbInit(1,1) = kvaluet; 
 kbInit(2,2) = theMaterials[0]->getInitialTangent(); 
    kbInit(3,3) = theMaterials[1]->getInitialTangent(); 
    kbInit(4,4) = theMaterials[2]->getInitialTangent(); 
    kbInit(5,5) = theMaterials[3]->getInitialTangent(); 
     
    // initialize variables 
    this->revertToStart(); 
     
    return 0; 
} 
 
 
int NCM3D::displaySelf(Renderer &theViewer, 
    int displayMode, float fact) 
{ 
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    // first determine the end points of the element based on 
    // the display factor (a measure of the distorted image) 
    const Vector &end1Crd = theNodes[0]->getCrds(); 
    const Vector &end2Crd = theNodes[1]->getCrds();  
     
    const Vector &end1Disp = theNodes[0]->getDisp(); 
    const Vector &end2Disp = theNodes[1]->getDisp(); 
     
    static Vector v1(3); 
    static Vector v2(3); 
     
    for (int i = 0; i < 3; i++)  { 
        v1(i) = end1Crd(i) + end1Disp(i)*fact; 
        v2(i) = end2Crd(i) + end2Disp(i)*fact;     
    } 
     
    return theViewer.drawLine (v1, v2, 1.0, 1.0); 
} 
 
 
void NCM3D::Print(OPS_Stream &s, int flag) 
{ 
    if (flag == 0)  { 
        // print everything 
  s << "Element: " << this->getTag();  
  s << "  type: NCM3D  iNode: " << connectedExternalNodes(0); 
  s << "  jNode: " << connectedExternalNodes(1) << endln; 
        s << "  Material uz: " << theMaterials[0]->getTag() << endln; 
        s << "  Material rx: " << theMaterials[1]->getTag() << endln; 
        s << "  Material ry: " << theMaterials[2]->getTag() << endln; 
        s << "  Material rz: " << theMaterials[3]->getTag() << endln; 
        s << "  mass: " << mass << endln; 
        // determine resisting forces in global system 
        s << "  resisting force: " << this->getResistingForce() << endln; 
    } else if (flag == 1)  { 
  // does nothing 
    } 
} 
 
 
Response* NCM3D::setResponse(const char **argv, int argc, 
    OPS_Stream &output) 
{ 
    Response *theResponse = 0; 
     
    output.tag("ElementOutput"); 
    output.attr("eleType","NCM3D"); 
    output.attr("eleTag",this->getTag()); 
    output.attr("node1",connectedExternalNodes[0]); 
    output.attr("node2",connectedExternalNodes[1]); 
     
    // global forces 
    if (strcmp(argv[0],"force") == 0 || strcmp(argv[0],"forces") == 0 || 
        strcmp(argv[0],"globalForce") == 0 || strcmp(argv[0],"globalForces") == 0) 
    { 
        output.tag("ResponseType","Px_1"); 
        output.tag("ResponseType","Py_1"); 
        output.tag("ResponseType","Pz_1"); 
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        output.tag("ResponseType","Mx_1"); 
        output.tag("ResponseType","My_1"); 
        output.tag("ResponseType","Mz_1"); 
        output.tag("ResponseType","Px_2"); 
        output.tag("ResponseType","Py_2"); 
        output.tag("ResponseType","Pz_2"); 
        output.tag("ResponseType","Mx_2"); 
        output.tag("ResponseType","My_2"); 
        output.tag("ResponseType","Mz_2"); 
         
        theResponse = new ElementResponse(this, 1, theVector); 
    } 
    // local forces 
    else if (strcmp(argv[0],"localForce") == 0 || strcmp(argv[0],"localForces") == 0) 
    { 
        output.tag("ResponseType","N_ 1"); 
        output.tag("ResponseType","Vy_1"); 
        output.tag("ResponseType","Vz_1"); 
        output.tag("ResponseType","T_1"); 
        output.tag("ResponseType","My_1"); 
        output.tag("ResponseType","Tz_1"); 
        output.tag("ResponseType","N_2"); 
        output.tag("ResponseType","Py_2"); 
        output.tag("ResponseType","Pz_2"); 
        output.tag("ResponseType","T_2"); 
        output.tag("ResponseType","My_2"); 
        output.tag("ResponseType","Mz_2"); 
         
        theResponse = new ElementResponse(this, 2, theVector); 
    } 
    // basic forces 
    else if (strcmp(argv[0],"basicForce") == 0 || strcmp(argv[0],"basicForces") == 0) 
    { 
        output.tag("ResponseType","qb1"); 
        output.tag("ResponseType","qb2"); 
        output.tag("ResponseType","qb3"); 
        output.tag("ResponseType","qb4"); 
        output.tag("ResponseType","qb5"); 
        output.tag("ResponseType","qb6"); 
         
        theResponse = new ElementResponse(this, 3, Vector(6)); 
    } 
 // local displacements 
    else if (strcmp(argv[0],"localDisplacement") == 0 || 
        strcmp(argv[0],"localDisplacements") == 0) 
    { 
        output.tag("ResponseType","ux_1"); 
        output.tag("ResponseType","uy_1"); 
        output.tag("ResponseType","uz_1"); 
        output.tag("ResponseType","rx_1"); 
        output.tag("ResponseType","ry_1"); 
        output.tag("ResponseType","rz_1"); 
        output.tag("ResponseType","ux_2"); 
        output.tag("ResponseType","uy_2"); 
        output.tag("ResponseType","uz_2"); 
        output.tag("ResponseType","rx_2"); 
        output.tag("ResponseType","ry_2"); 
        output.tag("ResponseType","rz_2"); 
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        theResponse = new ElementResponse(this, 4, theVector); 
    } 
 // basic displacements 
    else if (strcmp(argv[0],"deformation") == 0 || strcmp(argv[0],"deformations") == 0 ||  
        strcmp(argv[0],"basicDeformation") == 0 || strcmp(argv[0],"basicDeformations") == 
0 || 
        strcmp(argv[0],"basicDisplacement") == 0 || strcmp(argv[0],"basicDisplacements") 
== 0) 
    { 
        output.tag("ResponseType","ub1"); 
        output.tag("ResponseType","ub2"); 
        output.tag("ResponseType","ub3"); 
        output.tag("ResponseType","ub4"); 
        output.tag("ResponseType","ub5"); 
        output.tag("ResponseType","ub6"); 
         
        theResponse = new ElementResponse(this, 5, Vector(6)); 
    } 
    // material output 
    else if (strcmp(argv[0],"material") == 0)  { 
        if (argc > 2)  { 
            int matNum = atoi(argv[1]); 
            if (matNum >= 1 && matNum <= 4) 
                theResponse =  theMaterials[matNum-1]->setResponse(&argv[2], argc-2, 
output); 
        } 
    } 
     
    output.endTag(); // ElementOutput 
     
    return theResponse; 
} 
 
 
int NCM3D::getResponse(int responseID, Information &eleInfo) 
{ 
         
    switch (responseID)  { 
 case 1:  // global forces 
        return eleInfo.setVector(this->getResistingForce()); 
         
 case 2:  // local forces 
        theVector.Zero(); 
        // determine resisting forces in local system 
        theVector = Tlb^qb; 
        return eleInfo.setVector(theVector); 
         
 case 3:  // basic forces 
        return eleInfo.setVector(qb); 
         
 case 4:  // local displacements 
        return eleInfo.setVector(ul); 
         
 case 5:  // basic displacements 
        return eleInfo.setVector(ub); 
         
    default: 
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  return -1; 
 } 
} 
 
 
// set up the transformation matrix for orientation 
void NCM3D::setUp() 
{  
    const Vector &end1Crd = theNodes[0]->getCrds(); 
    const Vector &end2Crd = theNodes[1]->getCrds();  
    Vector xp = end2Crd - end1Crd; 
    L = xp.Norm();      //element length calculated if 
required 
     
    if (L > DBL_EPSILON)  { 
  if (x.Size() == 0)  { 
      x.resize(3); 
      x = xp; 
        } else  { 
            opserr << "WARNING NCM3D::setUp() - "  
                << "element: " << this->getTag() << endln 
                << "ignoring nodes and using specified " 
                << "local x vector to determine orientation\n"; 
        } 
    } 
    // check that vectors for orientation are of correct size 
    if (x.Size() != 3 || y.Size() != 3)  { 
        opserr << "NCM3D::setUp() - " 
   //<< "element: " << this->getTag() << endln 
            << "element: " << this->getTag() <<"Ysize:" << this->y.Size() <<"Xsize:" << 
this->x.Size() << endln 
            << "incorrect dimension of orientation vectors\n"; 
        exit(-1); 
    } 
     
    // establish orientation of element for the tranformation matrix 
    // z = x cross y 
    Vector z(3); 
    z(0) = x(1)*y(2) - x(2)*y(1); 
    z(1) = x(2)*y(0) - x(0)*y(2); 
    z(2) = x(0)*y(1) - x(1)*y(0); 
     
    // y = z cross x 
    y(0) = z(1)*x(2) - z(2)*x(1); 
    y(1) = z(2)*x(0) - z(0)*x(2); 
    y(2) = z(0)*x(1) - z(1)*x(0); 
     
    // compute length(norm) of vectors 
    double xn = x.Norm(); 
    double yn = y.Norm(); 
    double zn = z.Norm(); 
     
    // check valid x and y vectors, i.e. not parallel and of zero length 
    if (xn == 0 || yn == 0 || zn == 0)  { 
        opserr << "NCM3D::setUp() - " 
            << "element: " << this->getTag() << endln 
            << "invalid orientation vectors\n"; 
        exit(-1); 
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    } 
     
    // create transformation matrix from global to local system 
    Tgl.Zero(); 
    Tgl(0,0) = Tgl(3,3) = Tgl(6,6) = Tgl(9,9)   = x(0)/xn; 
    Tgl(0,1) = Tgl(3,4) = Tgl(6,7) = Tgl(9,10)  = x(1)/xn; 
    Tgl(0,2) = Tgl(3,5) = Tgl(6,8) = Tgl(9,11)  = x(2)/xn; 
    Tgl(1,0) = Tgl(4,3) = Tgl(7,6) = Tgl(10,9)  = y(0)/yn; 
    Tgl(1,1) = Tgl(4,4) = Tgl(7,7) = Tgl(10,10) = y(1)/yn; 
    Tgl(1,2) = Tgl(4,5) = Tgl(7,8) = Tgl(10,11) = y(2)/yn; 
    Tgl(2,0) = Tgl(5,3) = Tgl(8,6) = Tgl(11,9)  = z(0)/zn; 
    Tgl(2,1) = Tgl(5,4) = Tgl(8,7) = Tgl(11,10) = z(1)/zn; 
    Tgl(2,2) = Tgl(5,5) = Tgl(8,8) = Tgl(11,11) = z(2)/zn; 
 
     
    // create transformation matrix from local to basic system (linear) 
    Tlb.Zero(); 
    Tlb(0,0) = Tlb(1,1) = Tlb(2,2) = Tlb(3,3) = Tlb(4,4) = Tlb(5,5) = -1.0; 
    Tlb(0,6) = Tlb(1,7) = Tlb(2,8) = Tlb(3,9) = Tlb(4,10) = Tlb(5,11) = 1.0; 
  } 
 
 
double NCM3D::sgn(double x) 
{  
    if (x > 0) 
        return 1.0; 
    else if (x < 0) 
        return -1.0; 
    else 
        return 0.0; 
} 
 

 

A.3 TclNCM3DCommand.cpp 

 
/* ****************************************************************** ** 
**    OpenSees - Open System for Earthquake Engineering Simulation    ** 
**          Pacific Earthquake Engineering Research Center            ** 
**                                                                    ** 
**                                                                    ** 
** (C) Copyright 1999, The Regents of the University of California    ** 
** All Rights Reserved.                                               ** 
**                                                                    ** 
** Commercial use of this program without express permission of the   ** 
** University of California, Berkeley, is strictly prohibited.  See   ** 
** file 'COPYRIGHT'  in main directory for information on usage and   ** 
** redistribution,  and for a DISCLAIMER OF ALL WARRANTIES.           ** 
**                                                                    ** 
** Developed by:                                                      ** 
**   Frank McKenna (fmckenna@ce.berkeley.edu)                         ** 
**   Gregory L. Fenves (fenves@ce.berkeley.edu)                       ** 
**   Filip C. Filippou (filippou@ce.berkeley.edu)                     ** 
**                                                                    ** 
** ****************************************************************** */ 
 
 
// $Date: 2013-10-21  
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// $Source: /usr/local/cvs/OpenSees/SRC/element/NCM3D/TclNCM3DCommand.cpp,v1  
 
// Written: Vicente Garcia Marin (vgarciamarin@gmail.com) at Tokyo Institute of 
Technology. 
  
// Created: 19/07/13 
// Revision: 1.0. 
// 
// Description: This file contains the function to parse the TCL input for the NCM3D 
element. 
// 
 
 
 
#include <TclModelBuilder.h> 
 
#include <stdlib.h> 
#include <string.h> 
#include <Domain.h> 
#include <ID.h> 
#include <Vector.h> 
 
#include "NCM3D.h" 
#include <UniaxialMaterial.h> 
 
extern void printCommand(int argc, TCL_Char **argv); 
 
 
int TclModelBuilder_addNCM3D(ClientData clientData, 
    Tcl_Interp *interp, int argc, TCL_Char **argv, Domain *theTclDomain, 
    TclModelBuilder *theTclBuilder, int eleArgStart) 
{ 
    // ensure the destructor has not been called 
    if (theTclBuilder == 0)  { 
        opserr << "WARNING builder has been destroyed -NCM3D\n";     
        return TCL_ERROR; 
    } 
     
    Element *theElement = 0; 
    int ndm = theTclBuilder->getNDM(); 
    int ndf = theTclBuilder->getNDF(); 
    int tag; 
     
    if (ndm == 2)  { 
         
            opserr << "WARNING invalid ndm: " << ndm; 
            opserr << ", NCM3D element does not work in 2D problems\n";     
            return TCL_ERROR; 
    } 
 
    else if (ndm == 3)  { 
        // check space frame problem has 6 dof per node 
        if (ndf != 6)  { 
            opserr << "WARNING invalid ndf: " << ndf; 
            opserr << ", for space problem need 6 - NCM3D \n";     
            return TCL_ERROR; 
        }  
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        // check the number of arguments is correct 
        if ((argc-eleArgStart) < 27)  { 
            opserr << "WARNING insufficient arguments\n"; 
            printCommand(argc, argv); 
            opserr << "Want: NCM3D eleTag NdMc1 NdMc2 NdL NdD NdD2 NdL2 NdR NdR2 NdA2 NdA 
kn rn kt rt mus muk gap wid -V matTag -T matTag -My matTag -Mz matTag <-orient <x1 x2 x3> 
y1 y2 y3> <-mass m>\n"; 
            return TCL_ERROR; 
        } 
         
        // get the id and end nodes 
        int NdMc1, NdMc2, NdL, NdD, NdD2, NdL2, NdR, NdR2, NdA2, NdA, matTag, argi, i, j; 
        int recvMat = 0; 
        double kn, rn, kt, rt, mus, muk, gap; 
  int wid; 
        double mass = 0.0; 
         
       if (Tcl_GetInt(interp, argv[1+eleArgStart], &tag) != TCL_OK)  { 
            opserr << "WARNING invalid NCM3D eleTag\n"; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[2+eleArgStart], &NdMc1) != TCL_OK)  { 
            opserr << "WARNING invalid Mc1\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[3+eleArgStart], &NdMc2) != TCL_OK)  { 
            opserr << "WARNING invalid Mc2\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetInt(interp, argv[4+eleArgStart], &NdL) != TCL_OK)  { 
            opserr << "WARNING invalid NdL\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[5+eleArgStart], &NdD) != TCL_OK)  { 
            opserr << "WARNING invalid NdD\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
   if (Tcl_GetInt(interp, argv[6+eleArgStart], &NdD2) != TCL_OK)  { 
            opserr << "WARNING invalid NdD2\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[7+eleArgStart], &NdL2) != TCL_OK)  { 
            opserr << "WARNING invalid NdL2\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetInt(interp, argv[8+eleArgStart], &NdR) != TCL_OK)  { 
            opserr << "WARNING invalid NdR\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[9+eleArgStart], &NdR2) != TCL_OK)  { 
            opserr << "WARNING invalid NdR2\n"; 
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            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetInt(interp, argv[10+eleArgStart], &NdA2) != TCL_OK)  { 
            opserr << "WARNING invalid NdA2\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetInt(interp, argv[11+eleArgStart], &NdA) != TCL_OK)  { 
            opserr << "WARNING invalid NdA\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
 
        if (Tcl_GetDouble(interp, argv[12+eleArgStart], &kn) != TCL_OK)  { 
            opserr << "WARNING invalid kn\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetDouble(interp, argv[13+eleArgStart], &rn) != TCL_OK)  { 
            opserr << "WARNING invalid rn\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
        if (Tcl_GetDouble(interp, argv[14+eleArgStart], &kt) != TCL_OK)  { 
            opserr << "WARNING invalid kt\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetDouble(interp, argv[15+eleArgStart], &rt) != TCL_OK)  { 
            opserr << "WARNING invalid rt\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetDouble(interp, argv[16+eleArgStart], &mus) != TCL_OK)  { 
            opserr << "WARNING invalid mus\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetDouble(interp, argv[17+eleArgStart], &muk) != TCL_OK)  { 
            opserr << "WARNING invalid muk\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetDouble(interp, argv[18+eleArgStart], &gap) != TCL_OK)  { 
            opserr << "WARNING invalid gap\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
  if (Tcl_GetInt(interp, argv[19+eleArgStart], &wid) != TCL_OK)  { 
            opserr << "WARNING invalid wid\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
 
 
        UniaxialMaterial *theMaterials[4]; 
        for (i = 7+eleArgStart; i < argc; i++)  { 
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            if (i+1 < argc && strcmp(argv[i], "-V") == 0)  { 
                if (Tcl_GetInt(interp, argv[i+1], &matTag) != TCL_OK)  { 
                    opserr << "WARNING invalid shear (-V) matTag\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                theMaterials[0] = theTclBuilder->getUniaxialMaterial(matTag); 
                if (theMaterials[0] == 0)  { 
                    opserr << "WARNING material model not found\n"; 
                    opserr << "uniaxialMaterial: " << matTag << endln; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                recvMat++; 
            } 
        } 
        for (i = 7+eleArgStart; i < argc; i++)  { 
            if (i+1 < argc && strcmp(argv[i], "-T") == 0)  { 
                if (Tcl_GetInt(interp, argv[i+1], &matTag) != TCL_OK)  { 
                    opserr << "WARNING invalid torsional (-T) matTag\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                 theMaterials[1] = theTclBuilder->getUniaxialMaterial(matTag); 
                if (theMaterials[1] == 0)  { 
                    opserr << "WARNING material model not found\n"; 
                    opserr << "uniaxialMaterial: " << matTag << endln; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                recvMat++; 
            } 
        } 
        for (i = 7+eleArgStart; i < argc; i++)  { 
            if (i+1 < argc && strcmp(argv[i], "-My") == 0)  { 
                if (Tcl_GetInt(interp, argv[i+1], &matTag) != TCL_OK)  { 
                    opserr << "WARNING invalid moment y matTag\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                 theMaterials[2] = theTclBuilder->getUniaxialMaterial(matTag); 
                if (theMaterials[2] == 0)  { 
                    opserr << "WARNING material model not found\n"; 
                    opserr << "uniaxialMaterial: " << matTag << endln; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                recvMat++; 
            } 
        } 
        for (i = 7+eleArgStart; i < argc; i++)  { 
            if (i+1 < argc && strcmp(argv[i], "-Mz") == 0)  { 
                if (Tcl_GetInt(interp, argv[i+1], &matTag) != TCL_OK)  { 
                    opserr << "WARNING invalid moment z matTag\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                theMaterials[3] = theTclBuilder->getUniaxialMaterial(matTag); 
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                if (theMaterials[3] == 0)  { 
                    opserr << "WARNING material model not found\n"; 
                    opserr << "uniaxialMaterial: " << matTag << endln; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
                recvMat++; 
            } 
        } 
        if (recvMat != 4)  { 
            opserr << "WARNING wrong number of materials\n"; 
            opserr << "got " << recvMat << " materials, but want 4 materials\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
         
        // check for optional arguments 
        Vector x(0); 
        Vector y(3); y(0) = 0.0; y(1) = 1.0; y(2) = 0.0; 
        for (i = 7+eleArgStart; i < argc; i++)  { 
            if (strcmp(argv[i],"-orient") == 0)  { 
                j = i+1; 
                int numOrient = 0; 
                while (j < argc && 
                    strcmp(argv[j],"-mass") != 0)  { 
                    numOrient++; 
                    j++; 
                } 
                if (numOrient == 3)  { 
                    argi = i+1; 
                    double value; 
                    // read the y values 
                    for (j=0; j<3; j++)  { 
                        if (Tcl_GetDouble(interp, argv[argi], &value) != TCL_OK)  { 
                            opserr << "WARNING invalid -orient value\n"; 
                            opserr << "NCM3D element: " << tag << endln; 
                            return TCL_ERROR; 
                        } else  { 
                            argi++; 
                            y(j) = value; 
                        } 
                    } 
                } 
                else if (numOrient == 6)  { 
                    argi = i+1; 
                    x.resize(3); 
                    double value; 
                    // read the x values 
                    for (j=0; j<3; j++)  { 
                        if (Tcl_GetDouble(interp, argv[argi], &value) != TCL_OK)  { 
                            opserr << "WARNING invalid -orient value\n"; 
                            opserr << "NCM3D element: " << tag << endln; 
                            return TCL_ERROR; 
                        } else  { 
                            argi++; 
                            x(j) = value; 
                        } 
                    } 
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                    // read the y values 
                    for (j=0; j<3; j++)  { 
                        if (Tcl_GetDouble(interp, argv[argi], &value) != TCL_OK)  { 
                            opserr << "WARNING invalid -orient value\n"; 
                            opserr << "NCM3D element: " << tag << endln; 
                            return TCL_ERROR; 
                        } else  { 
                            argi++; 
                            y(j) = value;   
                        } 
                    } 
                } 
                else  { 
                    opserr << "WARNING insufficient arguments after -orient flag\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
            } 
        } 
        for (i = 7+eleArgStart; i < argc; i++)  { 
            if (i+1 < argc && strcmp(argv[i], "-mass") == 0)  { 
                if (Tcl_GetDouble(interp, argv[i+1], &mass) != TCL_OK)  { 
                    opserr << "WARNING invalid mass\n"; 
                    opserr << "NCM3D element: " << tag << endln; 
                    return TCL_ERROR; 
                } 
            } 
        } 
         
        // now create the NCM3D 
        theElement = new NCM3D(tag, NdMc1, NdMc2, NdL, NdD, NdD2, NdL2, NdR, NdR2, NdA2, 
NdA, kn, rn, kt, rt, mus, muk, gap, wid, theMaterials, y, x, mass); 
         
        if (theElement == 0)  { 
            opserr << "WARNING ran out of memory creating element\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            return TCL_ERROR; 
        } 
         
        // then add the NCM3D to the domain 
        if (theTclDomain->addElement(theElement) == false)  { 
            opserr << "WARNING could not add element to the domain\n"; 
            opserr << "NCM3D element: " << tag << endln; 
            delete theElement; 
            return TCL_ERROR; 
        }        
    } 
     
    else  { 
        opserr << "WARNING NCM3D command only works when ndm is 3, ndm: "; 
        opserr << ndm << endln; 
        return TCL_ERROR; 
    } 
     
    // if get here we have sucessfully created the NCM3D and added it to the domain 
    return TCL_OK; 
} 

 


