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Abstract

Plates are often used in many engineering applications as primary structures,
and with the growing use of laminated composite and sandwich plates, accu-
rate assessment of their response is becoming more and more crucial. Con-
trary to single-layer metallic structures made of isotropic materials, multi-
layered constructions are typically characterized by high shear deformation,
displacements in the thickness direction may exhibit discontinuous deriva-
tives in correspondence to each layer interface and, in addition for equilib-
rium reasons, transverse shear and normal stresses shall satisfy appropriate
interlaminar continuity conditions. Several plate theories have been devel-
oped to calculate the �exural response of plates and to provide results that
will match the solution of the elasticity equations. Since classical plate the-
ories do not give acceptable results except in some particular cases, several
advanced plate theories have been derived to correctly model the behaviour
of thick and laminate plates.

This thesis is focused in the advanced modelling of thick laminate or sand-
wich plates, equipped with masses or patches and loaded with various types
of static or time dependant forces. The bending, free and forced vibration
problems are solved with di�erent 2D theories adopting a variable kinematic
approach based onto the Carrera uni�ed formulation. The solution of the
response problems is then sought adopting the Ritz method, capable of pro-
viding upper-bound vibration solutions for plates with arbitrary laminate
layups and arbitrary boundary conditions.

The numerical results obtained with the present method is presented in
order to show that, the more the plate is thin, also by a dynamical point
of view, the more the mechanical displacements and stresses distributions
along the thickness of the plate tend to be linear. In this case, classical
plate theories give acceptable results and ESL theories, give very good re-
sults. Otherwise, as the plate begins to be thicker, classical plate theories
are strongly not recommended and ESL theories do not correctly model the
discontinuities of displacement and stresses at layers interfaces and layerwise
theories are needed to correctly represent them, whereas ESL are still ca-
pable to give a rough approximation of the macroscopic dynamical response
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of whole plate. This last statement falls down when thicker and very or-
thotropic plates, such as sandwiches, are considered. Then the adoption of
LW theories becomes mandatory for all kind of analysis.

II



Estratto del lavoro svolto

Le piastre sono largamente usate come componenti strutturali primari in
parecchi campi ingegneristici e, con il crescente uso di laminati in materi-
ali compositi e piastre sandwich, la loro corretta modellazione é diventata
un aspetto sempre piú cruciale. Contrariamente alle piastre isotrope e sot-
tili, anche da un punto di vista dinamico, i laminati sono caratterizzati da
rapporti spessore lato mediamente elevati, soprattutto nel caso di piastre
sandwich dove le peculiari proprietá di queste ultime derivano proprio dal
loro intrinseco spessore. Soprattutto, le diverse proprietá meccaniche tra i
diversi strati del laminato fanno si che gli spostamenti

e gli sforzi possano esibire derivate discontinue in presenza delle interfacce
tra gli strati. Inoltre, a tali interfacce gli sforzi normali e i tagli trasversali de-
vono soddisfare appropriate condizioni di continuitá per ragioni di equilibro.
Per questi motivi la modellazione attraverso le teorie classiche delle piastre
non é piú realistica e numerose teorie avanzate sono state sviluppate per
tener conto dei suddetti e�etti senza dover per forza ricorrere a modellazioni
completamente 3D.

Questa tesi é focalizzata sulla modellazione avanzata di laminati e piastre
sandwich, equipaggiate con una varietá di masse e patches, soggette a diverse
condizioni di carico statico e dinamico. I problemi �essionali e le vibrazioni
libere e forzate sono modellati adottando di�erenti teorie 2D avanzate grazie
ad un approccio a cinematica variabile basato sulla formulazione uni�cata di
Carrera. La soluzione di tali problemi é poi ottenuta attraverso una classica
espansione alla Ritz, tale da porre un limite superiore per le frequenze proprie
di una piastra con arbitrari schemi di laminazione e arbitrarie combinazioni
di condizioni al contorno.

I risultati numerici ottenuti con il metodo adottato sono presentati nel
proseguo per mostrare come nel caso di piastre sottili, anche dal punto di
vista dinamico, gli andamenti degli spostamenti e degli sforzi siano e�etti-
vamente lineari nello spessore della piastra, mentre nel caso di piastre con
elevato grado di ortotropia e spessore comparabile con le altre dimensioni,
ció non sia piú vero e le discontinuitá presenti alle interfacce non riescano ad
essere correttamente valutate a meno di impiegare teorie con una cinematica
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dedicata ad ogni strato del laminato. Verrá ora presentato un estratto rias-
suntivo dei risultati piú signi�cativi trovati, utili per apprezzare le di�erenze
caratteristiche dei risultati ottenibili attraverso due diverse famiglie di teorie
avanzate: le ESL, nelle quali la cinematica é la stessa per descrivere ogni
strato della piastra e le LW , nelle quali ogni strato ha una sua cinematica
dedicata con opportune condizioni di continuitá interlaminare.

In �gura 1 sono rappresentati gli andamenti nello spessore della piastra
della componente xx degli sforzi, sia per una piastra sottile sia per una spessa,
entrambe fatte dello stesso materiale ortotropo e con lo stesso schema di
laminazione.
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Figure 1: σxx adimensionale valutato a (a2 ,
b
2), per una piastra sottile, h

a = 0.01,

(sinistra) ed una piastra spessa, h
a = 0.25, (destra). Laminato in materiale or-

totropico, E1
E2

= 40, schema di laminazione (0/90/0/90)

Come si puó notare, per il caso di piastra sottile gli andamenti per le varie
teorie sono concordanti e lineari strato per strato, mentre nel caso di piastra
spessa questo non é piú vero e si vengono inoltre a creare degli andamenti a
Zig Zag, caratterizzati da derivate discontinue nelle interfacce tra gli strati.
Per carpire questi andamenti l'adozione di teorie LW é richiesta, mentre le
teorie ESL garantiscono solo una migliore approssimazione globale rispetto a
ció che sarebbe possibile adottando teorie classiche. Questa approssimazione
é migliorabile aumentando l'ordine della teoria adottata.

In tabella 1 sono riportate le prime sei frequenze proprie di una piastra
sandwich quadrata con un riempimento estremamente so�ce, sia nel caso di
piastra sottile sia in quello di piastra moderatamente spessa.
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Spessore Teoria Frequenze proprie adimensionali
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

h
a

= 0.01 ED3 15.5455 39.2599 39.2599 55.1396 73.4883 73.4883
ED5 12.8426 26.3405 26.3405 35.1669 41.6706 41.6706
LD2 11.9457 23.4140 23.4140 30.9599 36.1634 36.1634
LD3 11.9457 23.4140 23.4140 30.9599 36.1634 36.1634

h
a

= 0.1 ED3 4.9618 8.1928 8.1928 10.5185 11.9857 11.9857
ED5 2.1587 3.6851 3.6851 4.8601 5.8204 5.8204
LD2 1.8492 3.2217 3.2217 4.2925 5.2270 5.2270
LD3 1.8492 3.2217 3.2217 4.2925 5.2267 5.2267

Table 1: Prime sei frequenze proprie di una piastra sandwich con riempimento

so�ce e di�erenti spessori

Come si puó notare, le teorie ESL sovrastimano le frequenze sia nel caso
sottile che in quello spesso, in quest'ultimo in maniera drammatica. Tale
sovrastima nasce dalla descrizione del campo di spostamento di tutta la pi-
astra tramite variabili globali, non capaci di approssimare e�cacemente le
grandi diversitá delle proprietá meccaniche tra le facce e il riempitivo del
sandwich. Tale cattiva stima porta a sovrastimare la rigidezza della piastra
stessa, portando non solo a delle frequenze proprie piú elevate ma anche ad
una risposta dinamica completamente diversa, come si puó notare in �gura
2.
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Figure 2: Spostamento trasversale adimensionale w̄(t). Risposta al transitorio

valutata alle coordinate (a2 ,
b
2 , 0), per una piastra sandwich quadrata

Da questa �gura é facile notare come la sovrastima della rigidezza della
piastra porti ad una risposta dinamica totalmente diversa tra il modello ESL
e quello LW, infatti la risposta ESL non solo é piú veloce ma con un ampiezza
minore, entrambi classici indicatori di una rigidezza piú alta rispetto a quella
del modello LW. Da notare come queste di�erenze siano evidenti anche se la
teoria ESL considerata é del quinto ordine, cioé molto ra�nata. ció porta
a sconsigliare vivamente la modellazione di sandwich con teorie classiche o
di basso ordine in quanto darebbero risultati assolutamente non veritieri.
Queste di�erenze portano a dire che la modellazione di piastre sandwich puó
essere fatta con modelli ESL solo nel caso interessi una rozza approssimazione
di una risposta statica, mentre, per un'approssimazione piú realistica o se una
risposta dinamica é cercata, l'adozione di teorie LW diventa obbligatoria.

Il lavoro é poi proseguito ipotizzando la presenza di equipaggiamento
sulle super�ci delle piastre, modellato come masse perfettamente incollate
o sospese elasticamente e patches, cioé strati di dimensione ridotta dotati
di una propria rigidezza. Le analisi sono state rivolte alla valutazione di
come la presenza di equipaggiamento puó variare il comportamento dinamico
caratteristico della piastra, creando possibili accoppiamenti indesiderati.
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Chapter 1

Introduction

In the past decades composite materials have been increasingly used in many
engineering �elds, such as civil, marine, aerospace and automotive, to create
lightweight components with precise characteristics in terms of mechanical,
electrical and chemical properties. With the growth of the knowledge of
these materials, composite components which at the beginning were adopted
to save weight in secondary part of structures, has became the backbone
of almost all high performance structures to create e�cient and lightweight
primary structural components. Nowadays it is common that the chassis of
racing car or the framework of a plane, and recently also its wings, are made
by composite materials.

Space engineering has always been a �eld focused into the pursuit of
extreme e�ciency in all aspects of the whole design of spacecraft and rockets
to save mass, since every minimal increase of weight led to other increases
in terms of fuel or structural masses. Composite materials are commonly
applied to spacecraft parts due to their high strength, feasible sti�ness-to-
weight ratios, and low thermal expansion coe�cient. Despite the fact that the
traditional aluminium honeycomb sandwich panel is the most commonly used
panel type in satellite structures, the use of lightweight composite materials
is increasing in the manufacturing of spacecraft structures thanks to the
advantages that they have, not only for their light weight, but also for their
durability and structural stability upon temperature variations when used in
conjunction with metals.

As their operating characteristics, satellites experience several types of
mechanical, thermal, and electromagnetic disturbances during their devel-
opment, launch and operating life in space. Among them, vibration must
be carefully considered in the design of structural components to sustain
correctly the launch loads and do not create coupling between equipments
attached to them. In fact, while the launch phase is carried out with con-
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�dence, coupling between spacecraft equipments and structural components
are subject of studies: the improvements of scienti�c instruments and the
pursuit of new, challenging scienti�c goals, have arose new criticality in the
structural design of a satellite: Spacecraft microvibrations are de�ned as very
low amplitude disturbances which can occur at any frequency between 1 and
1000 Hz and are due to the normal functioning of spacecraft components, like
reaction wheels or thrusters. Despite the low amplitude of these disturbances
they can signi�cantly degrade the performance of sensitive instruments [8].

The correct understandings of this phenomena, needed to design correctly
the structure of the new generation of scienti�c spacecraft, and, to develop
passive and also active vibration control and vibration suppression systems,
is subordinate to a precise modelling of the components involved, to get
realistic results from the structural analysis performed onto them. In a more
general speaking, re�ned structural models are required every time a precise
design of a component is sought, although it will be mounted in a spacecraft
or in any kind of structure.

The spreading of composite materials, in conjunction with the need of
precise components models, have led the way to 3D modelling techniques,
better suited to handle the peculiar mechanical characteristics of composite
materials which are anisotropic or, at least orthotropic. 3D models however
are very large and requires powerful calculators to perform very demanding
analysis in terms of computing power and time, which are not so suited when
huge optimization studies have to be carried out in the preliminary stages
of the design process. For this reason, when the shape of the structural
component does not need a 3D modelling, its preferable to relay on lighter,
and thus less computationally demanding, 2D modelling. This is the classical
case of plates or shells with not accentuated curvatures, with which a 3D
modelling is used principally to create �ne benchmark models.

Plates are often used in many engineering applications as primary struc-
tures, and with the growing use of laminated composite and sandwich plates,
accurate assessment of their response is becoming more and more crucial.
Most of the satellites developed in the last years in the world have frame-
panel composite structures, however new satellite structure design concept
suggested to eliminate the need for a frame and joining composite sandwich
panels together [9].

Contrary to single-layer metallic structures made of isotropic materials,
multilayered constructions are typically characterized by high shear defor-
mation, displacements in the thickness direction may exhibit discontinuous
derivatives in correspondence to each layer interface and, in addition for equi-
librium reasons, transverse shear and normal stresses shall satisfy appropriate
interlaminar continuity conditions.
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1.1 State of the art: Plate models

Several plate theories have been developed to calculate the �exural response
of plates and to provide results that will match the solution of the elasticity
equations. E�ort has been done to identify which aspects of the plates be-
haviour shall be properly modelled, with the aim of obtaining a reliable but
simple models without unnecessary complexity.

1.1.1 Classical plate theories

Among plate theories, the classical plate theory, CPT , is most widely known
and adopted. It is based on the Kircho�-Love hypothesis [7] which extend to
plates the Bernoulli-Euler theory of beams, which assumes a linear variation
of bending strain across thickness, neglecting the e�ects of transverse shear.

Another theory widely used is the �rst order shear deformation theory,
FSDT , based on the Reissner-Mindlin plate model. Transverse shear strains
are assumed to be uniform through the thickness of the plate as CPT , and as
CPT , it fails to predict the changes in shear strains caused by the variation
of material properties of each layer while multilayered plates are considered.
Another drawback of this theory is the nonzero shear strain at top and bot-
tom free surfaces of the plate that violates the physical boundary conditions.
Normally, a shear correction factor is introduced to get nonzero shear strain
at free lateral surfaces.

Both these theories gives acceptable results only for thin plates, vibrating
at relatively low frequencies, where transverse shear e�ects are negligible. In
fact, a plate to be considered thin, by a dynamical point of view, shall has
not only one dimension very smaller with respect of the other two, but that
dimension shall be also smaller of the dimension of the half waves associated
at the highest vibration mode shape of interest.

Under those rigid hypothesis CPT and FSDT gives a reasonable approx-
imation of the plate dynamical behaviour with a simple model that could be
handled by hand or by the calculation capabilities available at the time they
were derived.

A re�nement of FSDT is the third order shear deformation theory TSDT ,
developed by [10]. TSDT has only �ve degrees of freedom just as FSDT ,
but it accommodates a cubic variation of the transverse shear strains so that
no shear correction factor is required.
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1.1.2 Advanced plate theories

Classical plate theories are not capable to correctly model the mechanical be-
haviour in case of multilayered composite plates made of di�erent materials
with arbitrary stacking sequences and to overcome this problem, advanced
plate theories have been developed. These more re�ned theories include an
enriched set of kinematic variables while preserving the 2D nature of the mod-
els. Then, more complicate problems, including static and dynamic response
of laminated and sandwich plates with moderate thickness to length ratios
or high degree of orthotropy, can be solved with better accuracy, without the
need of computational demanding 3D analysis.

The subsequent step to get a more re�ned plate model is the adoption
of one of the displacement-based higher-order equivalent single layer ESL
theories, where the conventional single-layer displacement form of FSDT
is enriched with various high-order terms as power series expansion of the
thickness coordinate. The idea at the base of family of ESL theories is simple:
augmenting the order of the theory, and so, adding terms of high order to the
kinematic of the model, the precision of the modelling will be improved. As
shown in the following of this work, this idea is not true at all, since after a
certain point augmenting the order of the theory the approximation will not
improve so much or not at all, especially if the property of the composite are
highly orthotropic, the plate is thick or there is a great di�erence between
the layers of the laminate.

To overcome this last problem and, to accurately model the through-the-
thickness distribution of displacements and stresses due to the variations of
material sti�ness from layer to layer, layerwise LW theories have been devel-
oped [11]. LW theories models each layer of the laminate with independent
degrees of freedom, hypothesizing that the layers are perfectly bonded. Using
this family of theories, increasing the order of distribution of the unknowns
parameters along the thickness of the plate, the results tend to completely
converge to the exact 3D values also for multilayered or sandwich thick plates.

The implementation of these theories can be very di�cult and cumber-
some, especially for problems with which both ESL or LW theories can be
adopted without a prior de�nite choose between them. A powerful approach,
referred as Carrera uni�ed formulation CUF [5], resolve this problem and
permit to handle in an uni�ed manner both families of ESL and LW axiomatic
plate theories with variable kinematic properties [18]. The attribute variable
kinematic stands for the property of the formulation of being invariant with
respect to the speci�c plate theory. In other words, the kinematics of the
plate model, from the very simple to the very complex, can be conveniently
changed without the need of a new mathematical development each time.
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1.2 Aim of the thesis

This thesis is focused in the advanced modelling of thick laminate or sandwich
plates, equipped with masses or patches and loaded with various types of
static or time dependant forces. The bending, free and forced vibration
problems are solved with di�erent 2D theories adopting a variable kinematic
approach based onto the Carrera uni�ed formulation.

Starting from the constitutive equations of plates expressed for a k-th
layer, the �rst step of this work has the goal to �nd the fundamental CUF
nuclei formulation of laminate plates, and then plates equipped with punctual
and distributed loads, punctual and distributed attached masses, suspended
masses and then patches.

The solution of the problem is then sought adopting the Ritz method,
capable of providing upper-bound vibration solutions for plates with arbi-
trary laminate layups and arbitrary boundary conditions. Hence, once the
nuclei are derived for the discretization chosen, the assembly procedure from
nuclei to plate matrices is presented. Moreover, an overview of the solution
methods adopted to calculate the dynamic responses in terms of time and
frequencies is also presented.

Finally, a brief description and the numerical results of plate problems
analyzed are presented. The results clearly show that, the more the plate is
thin, the more the distribution of displacements along the thickness of the
plate tends to be linear and so, classic plate theories are adequate in pro-
viding accurate results. On the other hand, as the plate thickness increases,
advanced layerwise theories are necessary to correctly model the dynamic
behaviour of the plate, especially in modelling softcore sandwich plates.
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Chapter 2

Constitutive equations

2.1 Generalized Hooke's law

Constitutive equations are the mathematical laws describing how strain and
stress are related each other for every materials and characterize theirs re-
sponse to applied loads. In addition to the assumption of small displacements
and displacement gradients, here we shall consider only elastic materials with
linear behaviour. An elastic material will return to its initial con�guration
upon unloading and the con�guration adopted by a stressed elastic material
does not depend upon the history of loading.

The following dissertation is not intended to be comprehensive, for further
details the interested reader might be relay on [12], [14].

Generalized Hooke's law is considered for mechanical case by employing
a linear constitutive model for in�nitesimal deformations. These equations
are obtained in material coordinates and then modi�ed in a general reference
system.

In general, for an anisotropic material, the generalized Hooke's law is
given in contracted notation as:

σij = Cijklεkl (2.1)

Where σij and εkl are respectively the stress and the strain tensors, and
Cijkl is the sti�ness tensor, all referred to an orthogonal cartesian coordinate
system (x1, x2, x3). Both stress ad strain tensors are symmetric,

σij = σji εkl = εlk (2.2)

Hence, only six independent components of stress are related to six indepen-
dent components of strain. As a result, there are at most 36 distinct elastic
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coe�cients in the sti�ness tensor since:

Cijkl = Cjikl (2.3)

Furthermore the elastic coe�cients also possess the following symmetry:

Cijkl = Cklij (2.4)

Which reduces the the number of independent components of the sti�ness
tensor C to 21. Moreover, the following matrix notation can be adopted

σ = Cε (2.5)

or, more explicitly, in the material coordinate system (x1, x2, x3):

σ11

σ22

σ33

σ23

σ31

σ12


=


C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66





ε11

ε22

ε33

ε23

ε31

ε12


(2.6)

It is also assumed that the above relation is invertible. Thus, the components
of strain are related to the components of stress by

ε = C−1σ = Sσ (2.7)

where S is the material compliance matrix.
What presented above refers to the general case of a solid body made of

anisotropic material. Further reduction in the number of independent sti�-
ness and compliance parameters comes from the material symmetry. When
the material possesses one or more planes of symmetry, the number of in-
dependent elastic coe�cients is reduced. For materials with three mutually
orthogonal planes of symmetry, called orthotropic materials, the number of
material parameters reduces to 9, while, materials which has identical me-
chanical properties in every direction are called isotropic materials and the
number of material parameters have a further reduction to 3 parameters. In
this thesis only isotropic and orthotropic materials are considered.

2.1.1 Isotropic material

For isotropic materials, the Hooke's law in the material coordinate system
takes the following form:

8





σ11

σ22

σ33

τ23

τ31

τ12


=


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





ε11

ε22

ε33

γ23

γ31

γ12


(2.8)

Where the engineering stress and strain vectors have been used,

τ23 = σ23 (2.9)

τ31 = σ31 (2.10)

τ12 = σ12 (2.11)

γ23 = 2ε23 (2.12)

γ31 = 2ε31 (2.13)

γ12 = 2ε12 (2.14)

Due to their symmetry, isotropic materials involve only three elastic con-
stants: C11, C12 and C44. Such components can be related to mechanical
properties of the isotropic material:

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
(2.15)

C12 =
Eν

(1 + ν)(1− 2ν)
(2.16)

C44 = G (2.17)

where E is the Young modulus, ν is the Poisson ratio and G = E
2(1+ν)

is the
shear modulus of the material.

2.1.2 Orthotropic material

Orthotropic materials have three mutually orthogonal planes of elastic sym-
metry. In the material coordinate system, the Hooke's law takes the form:

σ11

σ22

σ33

τ23

τ31

τ12


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ31

γ12


(2.18)
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The Hooke's law for orthotropic materials can be also rearranged in an
alternative form, grouping the in-plane stress and strain components and the
out-of-plane stress and stress components as well, taking the following form:

σ11

σ22

τ12

τ13

τ23

σ33


=


C11 C12 0 0 0 C13

C12 C22 0 0 0 C23

0 0 C66 0 0 0
0 0 0 C55 0 0
0 0 0 0 C44 0
C13 C23 0 0 0 C33





ε11

ε22

γ12

γ13

γ23

ε33


(2.19)

This formulation becomes very useful in developing the dynamics of lami-
nated composite plates, as will be shown in the following chapters. Putting
2.19 in compact notation led to:

σl = Cεl (2.20)

Where the subscript l indicates this constitutive relation is written in the
layer (or material) reference frame. Thus, for othotropic elastic bodies, there
are 9 elastic constants. As done for the isotropic case, all of the components
of the elastic matrix introduced above can be related to the mechanical prop-
erties of the material:

C11 =
E1(1− ν23ν32)

∆
(2.21)

C12 =
E1(ν21 + ν31ν23)

∆
(2.22)

C13 =
E1(ν31 + ν21ν32)

∆
(2.23)

C22 =
E2(1 + ν31ν13)

∆
(2.24)

C23 =
E2(ν32 + ν31ν12)

∆
(2.25)

C33 =
E3(1 + ν12ν21)

∆
(2.26)

C44 = G23 (2.27)

C55 = G31 (2.28)

C66 = G12 (2.29)

where
∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν32ν13 (2.30)
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and

νij
Ei

=
νji
Ej

(i, j = 1, 2, 3) (2.31)

where Ei are the Young moduli in the i material direction, νij are the Poisson
ratios and Gij are the shear moduli in (i, j) planes respectively.

2.2 Reference frame rotation in multilayered

plates

Composite plates are typically multilayered laminated plates, so it is conve-
nient to write the Hooke's law both in the layer reference frame (x1, x2, x3)
and in the plate reference frame (x, y, z). In fact, composite laminates have
several layers, each with di�erent orientation of their material coordinates
with respect to the plate coordinates. As presented by [11], consider the
two di�erent coordinate systems previously introduced such that x3 axis is
parallel to z axis and the x1 axis is oriented at the angle ϑ counterclockwise
from the xaxis.

The coordinates of a material point in the two coordinate systems are
related as follows:

x
y
z

 =

cos(ϑ) −sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1


x1

x2

x3

 = L


x1

x2

x3

 (2.32)

Since the stress and strain tensors are second-order tensors, it is possible to
transform them according to the formulas:

σl = LTσL σ = LσlL
T (2.33)

εl = LTεL ε = LεlL
T (2.34)

Where the subscript l indicates the value referred to the layer reference frame.
Carrying out the matrix multiplications in Eqs. (2.33) and (2.34), with L
de�ned by Eq. (2.32), ad rearranging the equations, yields:

σ = Tσl εl = T−1ε (2.35)

(2.36)
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where,

T =


cos2(ϑ) sin2(ϑ) −2 cos(ϑ) sin(ϑ) 0 0 0
sin2(ϑ) cos2(ϑ) 2 cos(ϑ) sin(ϑ) 0 0 0

cos(ϑ) sin(ϑ) − cos(ϑ) sin(ϑ) cos2(ϑ)− sin2(ϑ) 0 0 0
0 0 0 cos(ϑ) − sin(ϑ) 0
0 0 0 sin(ϑ) cos(ϑ) 0
0 0 0 0 0 1


(2.37)

Moreover T−1 = T T and L−1 = LT since are rotation matrices. Then, Eq.
2.20 can be rewritten as:

σ = TCT Tε (2.38)

(2.39)

Finally it is possible to write Es. (2.38) in the following compact form,

σ = C̃ε (2.40)

with

C̃ = TCT T (2.41)

σ =
[
σxx σyy τxy τxz τyz σzz

]T
(2.42)

ε =
[
εxx εyy γxy γxz γyz εzz

]T
(2.43)

Laminated composite plates are made of Nl layers and each layer is con-
sidered here to be homogeneous, operating in the elastic range. Since the
material of each layer can be di�erent from those of the others, the consti-
tutive relation in Eq. (2.40) must be written for the k-th layer. Introducing
the superscript k to denote the k-th layer, we can write:

σk = C̃
k
εk (2.44)

Now, is useful to divide the constitutive equations in the in-plane and out-
of-plane components [21]. Stress and strain are partitioned as,

σkp =


σkxx
σkyy
τ kxy

 σkn =


τ kxz
τ kyz
σkzz

 εkp =


εkxx
εkyy
γkxy

 εkn =


γkxz
γkyz
εkzz

 (2.45)
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The matrix of sti�ness coe�cients, C̃
k
, follows a similar partition:

C̃
k

pp =

C̃k
11 C̃k

12 C̃k
16

C̃k
12 C̃k

22 C̃k
26

C̃k
16 C̃k

26 C̃k
66

 C̃
k

pn =

0 0 C̃k
13

0 0 C̃k
23

0 0 C̃k
36

 (2.46)

C̃
k

np =

 0 0 0
0 0 0

C̃k
13 C̃k

23 C̃k
36

 C̃
k

nn =

C̃k
55 C̃k

45 0

C̃k
45 C̃k

44 0

0 0 C̃k
33

 (2.47)

Finally, it's possible to obtain the constitutive equations for the k-th layer in
the plate reference system:

σkp = C̃
k

ppε
k
p + C̃

k

pnε
k
n (2.48)

σkn = C̃
k

npε
k
p + C̃

k

nnε
k
n (2.49)
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Chapter 3

Advanced plate theories

The plate approximation makes possible to reduce a 3D problem to a 2D
one. Plates are typically de�ned as 2D �at structures, where one dimension,
generally the thickness h, is at least one order of magnitude lower than
representative in-plane dimensions a and b which lies on the reference plate
surface Ω.

A multilayered plate, which is the common case of plate made by com-
posite materials, is a plate made by several layers bonded together under a
lamination scheme that indicates the sequence and the relative direction of
the layer reference frame (xl, yl, z) with respect to the plate reference frame
(x, y, z), as stated in section 2.2 and sketched in �gure: 3.1. The lamination
scheme also indicates the layers thickness that can be di�erent for each one.
Ω is the middle reference surface of the multilayered plate while Ωk is the
reference surface for each k layer of thickness hk. A local reference frame
(xk, yk, zk), directed as the plate reference frame, can be de�ned for each
layer.
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...

Z

Ω

K=Nl

K=2

K=1

h

hk

Figure 3.1: Geometrical notation for a multilayer plate

The 2D modeling of plates relies on the elimination of the thickness coor-
dinate z, which is usually performed on integration of the equilibrium equa-
tions, compatibility equations, and physical constitutive relations.

While analyzing multilayered plates, new e�ects can arise with respect to
isotropic plates. In fact in-plane anisotropies and transverse anisotrpies can
occur. The former means that the structure has di�erent mechanical prop-
erties in di�erent in-plane directions, the latter means that the structures
exhibit di�erent mechanical properties in the thickness direction z. A con-
sequence of in-plane anisotropy is coupling between shear and axial strains.
Such a coupling leads to many complications in the solution procedure of an
anisotropic structure. Discontinuous transverse mechanical properties cause
a displacement �eld, u, in the thickness direction which can exhibit a rapid
change in its slopes corresponding to each layer interface. This e�ect is known
as the Zig Zag form of the displacement �eld in the thickness direction z,
and it is clearly visible in the sandwich structure. In-plane anisotrpy is taken
into account making use of ESL family of theories while, in order to consider
the Zig Zag form of displacements in deformed multilayered structures, a
Layerwise approach may be necessary.

3.1 Carrera uni�ed formulation

As stated by [5], the Carrera unified formulation, CUF , is a technique
that permits to handle and implement easily a large variety of plate models
in a uni�ed manner. According to CUF , the obtained theories can have any
order of expansion and can be chose between LW and ESL families select-
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ing di�erent thickness functions. ESL theories can be enriched to cope with
those stated by Murakami to be capable of recognize the Zig Zag e�ects
[19], however this kind of theories can not be adopted in this study.

With CUF , governing equations are written in terms of a fundamental
nuclei which do not formally depend nor on the order of expansion N used
in the z direction nor on the family of theories used.

CUF is based on the following general assumption:

u(x, y, z, t) = Fτ (z)uτ (x, y, t) τ = t, b, r r = 2, 3, ..., N (3.1)

where Fτ (z) are given thickness functions and uτ (x, y, t) are unknown vari-
ables,

uτ (x, y, t) =


uτ (x, y, t)
vτ (x, y, t)
wτ (x, y, t)

 (3.2)

Note that the Einstein's convention of summation of indexes has been
adopted in Eq (3.1). In this way, CUF reduces the 3D problem to a 2D
one, obtaining the following displacements �eld,

u = Fτuτ = Ftut + Fbub + Frur =


Ftut + Fbub + Frur
Ftvt + Fbvb + Frvr
Ftwt + Fbwb + Frwr

 r = 2, 3, ..., N

(3.3)

Subscripts t and b indicate top and bottom and, as shown later, are useful
in the assembling procedure of multilayered plates. N denotes the order of
expansion used. Several theories can be implemented with this formulation,
employing the appropriate thickness functions, which will assume a di�erent
formulation for each family of theories, as shown in the followings paragraphs.

3.2 Equivalent single layer theories

In ESL family of theories, the constant and linear terms have been denoted
by subscript t and b, respectively. Higher order terms are denoted by the
corresponding order in Taylor expansion as follows,

Ft(z) = 1 (3.4)

Fb(z) = z (3.5)

Fr(z) = zr r = 2, 3, ..., N (3.6)
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These related theories will be indicated as EDN , where the �rst letter de-
notes that the kinematics is preserved for the whole layers of the plate, the
second letter denotes that only displacements unknowns are used and the
last number denotes the order of expansion in z. Shall be noted that z in
the physical thickness coordinate, referred to the middle reference surface of
the multilayered plate Ω.

3.2.1 ED4 theory

For example, ED4 theory, under CUF assumptions, will be formulated as:

u = Fτuτ τ = t, b, 2, 3, 4 (3.7)

where

Ft = 1 Fb = z (3.8)

F2 = z2 F3 = z3 F4 = z4 (3.9)

In explicit form

u =


u0 + zu1 + z2u2 + z3u3 + z4u4

v0 + zv1 + z2v2 + z3v3 + z4v4

w0 + zw1 + z2w2 + z3w3 + z4w4

 (3.10)

3.3 Layerwise theories

The family of LW theories involve kinematics which are independent for each
layer. Hence, it is possible to write Eq. (3.3) as follows

uk = Fτu
k
τ = Ftu

k
t + Fbu

k
b + Fru

k
r =


Ftu

k
t + Fbu

k
b + Fru

k
r

Ftv
k
t + Fbv

k
b + Frv

k
r

Ftw
k
t + Fbw

k
b + Frw

k
r

 r = 2, 3, ..., N

(3.11)

The Taylor thickness expansion used for ESL theories is now substituted by a
more convenient description to impose easily the interlaminar continuity for
displacements. Moreover, in the case of LW models, the thickness functions
are function of the local layer thickness coordinate ζk = 2

hk
z− zk+1+zk

hk
, de�ned

in the domain −1 ≤ ζk ≤ +1. This leds to thickness functions de�ned by

Ft(ζk) =
P0 + P1

2
(3.12)

Fb(ζk) =
P0 − P1

2
(3.13)

Fr(ζk) = Pr − Pr−2 r = 2, 3, ..., N (3.14)
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where Pi(ζk) is the Legendre polynomial of i-th order.
The chosen functions have the following useful properties:

ζk =

{
1 → Ft = 1, Fb = 0, Fr = 0

−1 → Ft = 0, Fb = 1, Fr = 0
(3.15)

Thus, the displacement variables ub and ut are respectively the displacements
at the bottom and top surfaces of the layer and the inter-laminar continuity
can be easily imposed as follows:

ukt = uk+1
b k = 1, 2, ..., Nl − 1 (3.16)

where Nl denotes the number of layers of the plate.
Such related theories will be indicated as LDN , where the �rst letter

denotes that the kinematics is assumed independent for each layer of the
plate, the second letter denotes that only displacement unknowns are used
and the last number denotes the order of expansion in ζk direction.

3.3.1 LD4 theory

For example, LD4 theory, under CUF assumptions, the displacement �eld
for the k-th layer will be formulated as:

uk(x, y, ζk) =


Ft(ζk)u

k
t + Fb(ζk)u

k
b + F2(ζk)u

k
3 + F3(ζk)u

k
3 + F4(ζk)u

k
4

Ft(ζk)v
k
t + Fb(ζk)v

k
b + F2(ζk)v

k
3 + F3(ζk)v

k
3 + F4(ζk)v

k
4

Ft(ζk)w
k
t + Fb(ζk)w

k
b + F2(ζk)w

k
3 + F3(ζk)w

k
3 + F4(ζk)w

k
4


(3.17)

where the thickness function are formulate as in Eqs: (3.12 - 3.14), with the
�rst �ve Legendre polynomials de�ned as:

P0 = 1 (3.18)

P1 = ζk (3.19)

P2 =
3ζ2
k − 1

2
(3.20)

P3 =
5ζ3
k − 3ζk

2
(3.21)

P4 =
35ζ4

k − 30ζ2
k + 3

8
(3.22)

(3.23)
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Chapter 4

Derivation of the equations of

motion

The Principle of virtual works PVW has been used to retrieve the equation
of motion of the plate �rstly, and then for retrieve the terms related to the
plates equipments. To exploit the whole potential of the CUF technique,
and moreover to develop a formulation valid to analyze plates with every
combination of homogeneous boundary conditions and arbitrary lamination
scheme a Ritz-Galerkin approach is adopted for discretizing the continuous
plate domain in its plane Ω.

The Ritz method is capable of providing a global approximation and an
upper bound vibration solutions, has an high spectral accuracy and converge
faster than local methods such as �nite elements. Since the Ritz approxi-
mation will be derived relaying to CUF technique, the formulation can be
de�ned as a variable kinematic Ritz formulation [22]. The formulation will
be derived for both ESL and LW families of theories for rectangular and skew
laminated plates with homogeneous boundary conditions and homogeneous
layers. In this work, boundary conditions are considered to be homogeneous
through the height of the same edge section, so, identical boundary condi-
tions are imposed in each layer of the plate edge.
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A X

Y

B

CD

γ

Figure 4.1: Geometrical notation for a skew plate

A skew �at laminated plate of total thickness h is considered. The plate
has side lengths a,b, and skew angle γ with respect to y axis as shown in
�gure 4.1. The plate consists of Nl layers, which are assumed to be made of
orthotropic material. The k-th layer has thickness hk and is located between
interfaces z = zk and z = zk+1 in the thickness direction. In this work, the
layer numbering begins at the bottom surface of the laminate. A four let-
ter compact symbolic notation is used for describing simply supported (S),
clamped (C) and free (F ) boundary conditions, numbered in a counterclock-
wise direction beginning from edge DA.

4.1 Plate equation of motion

For the sake of convenience, the plate coordinate system is expressed in
nondimensional form with the following change of variables:

ξ = 2
a
(x− y tan γ)− 1

η = 2
b
(y sec γ)− 1

ζk = 2
hk
z − zk+1+zk

hk


∂
∂x
∂
∂y
∂
∂z

 =

 2
a

0 0
− 2
a

tan γ 2
b

sec γ 0
0 0 2

hk


∂
∂ξ
∂
∂η
∂
∂ζk


(4.1)

The constitutive equation of a generic layer k, written in the plate reference
coordinate system, are those derived in precedence and expressed in Eqs:
(2.48-2.49).

According to the CUF formulation the displacement vector for each k-
th lamina uk is expressed as reported in Eq: (3.1), which, adopting the
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adimensionalization of the reference system proposed above becomes:

u(ξ, η, ζk, t) = Fτ (ζk)ûτ (ξ, η)ejωt τ = t, b, r r = 2, 3, ..., N (4.2)

where the thickness functions Fτ (ζk) are those de�ned in the previous chap-
ter.

According to the outlined framework, the in-plane and out of plane strain
components can be written in the following form:

εkp(ξ, η, ζk, t) = DpFτ (ζk)û
k
τ (ξ, η)ejωt (4.3)

εkn(ξ, η, ζk, t) = DnFτ (ζk)û
k
τ (ξ, η)ejωt +

2

hk
Fτ/ζk (ζk)û

k
τ (ξ, η)ejωt (4.4)

(4.5)

with

Dp =

 2
a
∂
∂ξ

0 0

0 2
b

sec γ ∂
∂η
− 2

a
tan γ ∂

∂ξ
0

2
b

sec γ ∂
∂η
− 2

a
tan γ ∂

∂ξ
2
a
∂
∂ξ

0

 (4.6)

Dn =

0 0 2
a
∂
∂ξ

0 0 2
b

sec γ ∂
∂η
− 2

a
tan γ ∂

∂ξ

0 0 0

 (4.7)

Under those assumption the PVW for a multilayered plate can be man-
aged as follows, starting by its de�nition for the 3D continuum:∫

V

(δεijσij)dV = −
∫
V

δuiρüidV (4.8)

Then splitting the volume domain V in the plate surface Ωk and ζk direction
for the k-th lamina, the PVW can be expressed as:∑

k

∫
Ωk

∫
ζk

[
δεk

T

p σ
k
p + δεk

T

n σ
k
n

]
dζkdΩk = −

∑
k

∫
Ωk

∫
ζk

δuk
T

ρkükdζkdΩk

(4.9)
Now, substituting the constitutive equations of Eqs: (2.48-2.49) derived in
the previous chapter and then the de�nition of strains under CUF derived
above in Eqs: (4.3-4.4), the PVW becomes:
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∑
k

+1x

−1

[
δ

(
Dpû

k
τ

)T(
C̃
k

ppDpE
k
τsû

k
s + C̃

k

pnDnE
k
τsû

k
s + C̃

k

pnE
k
τs/ζk

ûks

)
+

+ δ

(
Dnû

k
τ

)T(
C̃
k

npDpE
k
τsû

k
s + C̃

k

nnDnE
k
τsû

k
s + C̃

k

nnE
k
τs/ζk

ûks

)
+

+ δ

(
ûkτ

)T(
C̃
k

npDpE
k
τ/ζks

ûks + C̃
k

nnDnE
k
τ/ζks

ûks+

C̃
k

nnE
k
τ/ζks/ζk

ûks

)]
ab

4
cos γdξdηejωt =

= ω2
∑
k

+1x

−1

δûkτE
k
τsρ

kûks
ab

4
cos γdξdηejωt

(4.10)

where the plate domain Ωk is been referred to the adimensional reference
frame (ξ, η) proposed above and the followings thickness integrals has been
introduced:

4.1.1 Thickness integrals in ESL theories

The thickness integrals of ESL models are de�ned over all the plate thickness.
The thickness integrals for each layer k take the form:

Ek
τs =

∫ zk+1

zk

Fτ (z)Fs(z)dz (4.11)

Ek
τ/zs

=

∫ zk+1

zk

Fτ/z(z)Fs(z)dz (4.12)

Ek
τs/z

=

∫ zk+1

zk

Fτ (z)Fs/z(z)dz (4.13)

Ek
τ/zs/z

=

∫ zk+1

zk

Fτ/z(z)Fs/z(z)dz (4.14)

where τ, s = t, r, b and k = 1, ..., Nl.

4.1.2 Thickness integrals in LW theories

The thickness functions of LW models are de�ned over all the plate thickness.
The thickness integrals for each layer k take the form:
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Ek
τs =

hk
2

∫ +1

−1

Fτ (ζk)Fs(ζk)dζk (4.15)

Ek
τ/ζks

=

∫ +1

−1

Fτ/ζk (ζk)Fs(ζk)dζk (4.16)

Ek
τs/ζk

=

∫ +1

−1

Fτ (ζk)Fs/ζk (ζk)dζk (4.17)

Ek
τ/ζks/ζk

=
2

hk

∫ +1

−1

Fτ/ζk (ζk)Fs/ζk (ζk)dζk (4.18)

where τ, s = t, r, b , k = 1, ..., Nl and hk is the thickness of the k-th layer
Adopting the thickness integrals the triple integrals in the PVW become

double integrals on the plain domain (ξ, η), hence it is possible to introduce
the Ritz approximation.

4.1.3 Ritz approximation

A standard Ritz solution is sought by expressing the components of each
displacement unknown as sets of bidimensional �nite series based appropriate
admissible shape functions Nδτi (δ = u, v, w):

ûkτ
v̂kτ
ŵkτ

 =

Nuτi(ξ, η) 0 0
0 Nvτi(ξ, η) 0
0 0 Nwτi(ξ, η)


ckuτi
ckvτi
ckwτi

 (4.19)

The bidimensional shape functions employed in this thesis are de�ned as:

Nδτi = Φδτm(ξ)Ψδτn(η) m,n = 1, ..., P (4.20)

where

Φδτm(ξ) = fδτ (ξ)pm(ξ) (4.21)

Ψδτn(η) = gδτ (η)pn(η) (4.22)

P is the order of expansion in each direction ξ and η, and

pl(χ) = cos[(l − 1) arccos(χ)] l = m,n χ = ξ, η (4.23)

is the one-dimensional Chebyshev polynomial along χ direction. The Cheby-
shev polynomial set is a complete and orthogonal series in the interval [−1,+1].
This ensures that better convergence and numerical stability can be accom-
plished compared with other polynomial set [4]. fδτ and gδτ are boundary
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compliant functions corresponding to the type of boundary conditions along
ξ and η respectively, and, are de�ned as:

fδτ (ξ) =(1− ξ)e1(1 + ξ)e2 (4.24)

gδτ (η) =(1− η)e1(1 + η)e2 (4.25)

where e1 and e2 assumes values 0 or 1 with respect to the boundary conditions
and the direction considered.
The hypothesis of homogeneous boundary condition makes that the above
Ritz functions are considered to be layer independent and they can be written
in compact form as:

ûkτ = N τi(ξ, η)ckτi (4.26)

Putting the Eq: (4.26) in the PVW expression previously derived yields:

∑
k

+1x

−1

{
δck

T

τi

[(
DpN τi

)T(
Ek
τsC̃

k

ppDpN sj + Ek
τsC̃

k

pnDnN sj + Ek
τs/ζk

C̃
k

pnN sj

)
+

+

(
DnN τi

)T(
Ek
τsC̃

k

npDpN sj + Ek
τsC̃

k

nnDnN sj + Ek
τs/ζk

C̃
k

nnN sj

)
+

+NT
τi

(
Ek
τ/ζks

C̃
k

npDpN sj + Ek
τ/ζks

C̃
k

nnDnN sj+

+ Ek
τ/ζks/ζk

C̃
k

nnN sj

)]
cksj

}
ab

4
cos γdξdη =

= ω2
∑
k

δck
T

τi

+1x

−1

NT
τiE

k
τsρ

kN sj
ab

4
cos γdξdηcksj

(4.27)

Now, as stated for the PVW, the the virtual works had to vanish and con-
sidering the arbitrariness of the virtual variation, the resultant plate equation
of motion is: ∑

k

Kk
τsijc

k
sj = ω2

∑
k

M k
τsijc

k
sj (4.28)

where the 3x3 matrices Kk
τsij and M

k
τsij are the Ritz fundamental nuclei of

the Carrera uni�ed formulation. Hence, introducing the following notation,
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as stated in [22]:

Iefαmβm̄ =

∫ +1

−1

de

dξe
[φατm(ξ)]

df

dξf
[φβsm̄(ξ)]dξ m, m̄ = 1, 2, · · · , P (4.29)

Jefαnβn̄ =

∫ +1

−1

de

dηe
[ψατn(η)]

df

dηf
[ψβsn̄(η)]dη n, n̄ = 1, 2, · · · , P (4.30)

which are the surface integrals of the Ritz shape functions. These integrals
have been calculated numerically adopting the Gauss-Legendre method. Now
for the k-th layer the terms of the Ritz sti�ness nuclei can be explicitly written
as:

Kk
τsij(1, 1) =

(
Ek
τsC̃

k
11

b

a
cos γ − 2Ek

τsC̃
k
16

b

a
sin γ + Ek

τsC̃
k
66

b

a
tan γ sin γ

)
I11
umum̄J

00
unun̄

+
(
Ek
τsC̃

k
16 − Ek

τsC̃
k
66 tan γ

) (
I10
umum̄J

01
unun̄ + I01

umum̄J
10
unun̄

)
+ Ek

τsC̃
k
66

a

b
sec γI00

umum̄J
11
unun̄ + Ek

τ/ζks/ζk
Ck

55

ab

4
cos γI00

umum̄J
00
unun̄

(4.31)

Kk
τsij(1, 2) =

(
Ek
τsC̃

k
16

b

a
cos γ − Ek

τsC̃
k
12

b

a
sin γ − Ek

τsC̃
k
66

b

a
sin γ

+ Ek
τsC̃

k
26

b

a
tan γ sin γ

)
I11
umvm̄J

00
unvn̄

+
(
Ek
τsC̃

k
12 − Ek

τsC̃
k
26 tan γ

)
I10
umvm̄J

01
unvn̄

+
(
Ek
τsC̃

k
66 − Ek

τsC̃
k
26 tan γ

)
I01
umvm̄J

10
unvn̄

+ Ek
τsC̃

k
26

a

b
sec γI00

umvm̄J
11
unvn̄ + Ek

τ/ζks/ζk
Ck

45

ab

4
cos γI00

umvm̄J
00
unvn̄

(4.32)

Kk
τsij(1, 3) =

(
Ek
τs/ζk

C̃k
13

b

2
cos γ − Ek

τs/ζk
C̃k

36

b

2
sin γ

)
I10
umwm̄J

00
unwn̄

+ Ek
τs/ζk

C̃k
36

a

2
I00
umwm̄J

10
unwn̄

+

(
Ek
τ/ζks

C̃k
55

b

2
cos γ − Ek

τ/ζks
C̃k

45

b

2
sin γ

)
I01
umwvm̄J

00
unwn̄

+ Ek
τ/ζks

Ck
45

a

2
I00
umwm̄J

01
unwn̄

(4.33)
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Kk
τsij(2, 1) =

(
Ek
τsC̃

k
16

b

a
cos γ − Ek

τsC̃
k
12

b

a
sin γ − Ek

τsC̃
k
66

b

a
sin γ

+ Ek
τsC̃

k
26

b

a
tan γ sin γ

)
I11
vmum̄J

00
vnun̄

+
(
Ek
τsC̃

k
12 − Ek

τsC̃
k
26 tan γ

)
I01
vmum̄J

10
vnun̄

+
(
Ek
τsC̃

k
66 − Ek

τsC̃
k
26 tan γ

)
I10
vmum̄J

01
vnun̄

+ Ek
τsC̃

k
26

a

b
sec γI00

vmum̄J
11
vnun̄ + Ek

τ/ζks/ζk
Ck

45

ab

4
cos γI00

vmum̄J
00
vnun̄

(4.34)

Kk
τsij(2, 2) =

(
Ek
τsC̃

k
66

b

a
cos γ − 2Ek

τsC̃
k
26

b

a
sin γ + Ek

τsC̃
k
22

b

a
tan γ sin γ

)
I11
vmvm̄J

00
vnvn̄

+
(
Ek
τsC̃

k
26 − Ek

τsC̃
k
22 tan γ

) (
I10
vmvm̄J

01
vnvn̄ + I01

vmvm̄J
10
vnvn̄

)
+ Ek

τsC̃
k
22

a

b
sec γI00

vmvm̄J
11
vnvn̄ + Ek

τ/ζks/ζk
Ck

44

ab

4
cos γI00

vmvm̄J
00
vnvn̄

(4.35)

Kk
τsij(2, 3) =

(
Ek
τs/ζk

C̃k
36

b

2
cos γ − Ek

τs/ζk
C̃k

23

b

2
sin γ

)
I10
vmwm̄J

00
vnwn̄

+ Ek
τs/ζk

C̃k
23

a

2
I00
vmwm̄J

10
vnwn̄

+

(
Ek
τ/ζks

C̃k
45

b

2
cos γ − Ek

τ/ζks
C̃k

44

b

2
sin γ

)
I01
vmwm̄J

00
vnwn̄

+ Ek
τ/ζks

Ck
44

a

2
I00
vmwm̄J

01
vnwn̄

(4.36)

Kk
τsij(3, 1) =

(
Ek
τs/ζk

C̃k
55

b

2
cos γ − Ek

τs/ζk
C̃k

45

b

2
sin γ

)
I10
wmum̄J

00
wnun̄

+ Ek
τs/ζk

C̃k
45

a

2
I00
wmum̄J

10
wnun̄

+

(
Ek
τ/ζks

C̃k
13

b

2
cos γ − Ek

τ/ζks
C̃k

36

b

2
sin γ

)
I01
wmum̄J

00
wnun̄+

+ Ek
τ/ζks

Ck
36

a

2
I00
wmum̄J

01
wnun̄

(4.37)
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Kk
τsij(3, 2) =

(
Ek
τs/ζk

C̃k
45

b

2
cos γ − Ek

τs/ζk
C̃k

44

b

2
sin γ

)
I10
wmvm̄J

00
wnvn̄

+ Ek
τs/ζk

C̃k
44

a

2
I00
wmvm̄J

10
wnvn̄

+

(
Ek
τ/ζks

C̃k
36

b

2
cos γ − Ek

τ/ζks
C̃k

23

b

2
sin γ

)
I01
wmvm̄J

00
wnvn̄

+ Ek
τ/ζks

Ck
23

a

2
I00
wmvm̄J

01
wnvn̄

(4.38)

Kk
τsij(3, 3) =

(
Ek
τsC̃

k
55

b

a
cos γ − 2Ek

τsC̃
k
45

b

a
sin γ + Ek

τsC̃
k
44

b

a
tan γ sin γ

)
I11
wmwm̄J

00
wnwn̄

+
(
Ek
τsC̃

k
45 − Ek

τsC̃
k
44 tan γ

) (
I10
wmwm̄J

01
wnwn̄ + I01

wmwm̄J
10
wnwn̄

)
+ Ek

τsC̃
k
44

a

b
sec γI00

wmwm̄J
11
wnwn̄ + Ek

τ/ζks/ζk
Ck

33

ab

4
cos γI00

wmwm̄J
00
wnwn̄

(4.39)

while explicit non-null terms of the mass Ritz nucleus are:

Mk
τsij(1, 1) = Ek

τsρ
k ab

4
cos γI00

umum̄J
00
unun̄ (4.40)

Mk
τsij(2, 2) = Ek

τsρ
k ab

4
cos γI00

vmvm̄J
00
vnvn̄ (4.41)

Mk
τsij(3, 3) = Ek

τsρ
k ab

4
cos γI00

wmwm̄J
00
wnwn̄ (4.42)

4.1.4 Assembly procedure of fundamental nuclei

The Ritz nuclei necessitate an expansion procedure to �nd the mass and
sti�ness plate matrices and this assembly procedure is done in three expan-
sion steps. The �rst one is a layer-level expansion, in which the nuclei are
expanded over τ and s indices according to the general assumption of the
uni�ed formulation. The second expansion is a multilayer-level expansion
over layer index k, according to lamination sequence of the modelled plate.
The third step is the expansion of the multilayer-level matrices over indices
i and j, according to the square value of Ritz approximation order, M = P 2.
In the following is presented the assembly process of the sti�ness matrix only,
the mass matrix is assembled in the same way.
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First of all, the fundamental nuclei are expanded at a layer level through
variation of the theory-related indices τ and s over the previously de�ned
ranges:

Kk
ij =

Kk
ttij Kk

trij Kk
tbij

Kk
rtij Kk

rrij Kk
rbij

Kk
btij Kk

brij Kk
bbij

 (4.43)

The fundamental nuclei are grouped into 3 × 3 matrices, while after the
�rst expansion the layer level matrices has dimensions of 3(N+1)×3(N+1).
Multilayer-level expansion is the second step and is carried out over index k
from (k = Nl to k = 1), where k is the layer index and Nl is the number of
layers of the plate. The multilayer-level expansions is di�erent for LW and
ESL families of theories and in the two cases is carried out as followings.

The ESL multilayer-level expansions, since displacement variables and
their variations are the same for each layer, is a simply summation:

KESL
ij =

Nl∑
k=1

Kk
ij (4.44)

In LW multilayer-level expansion, since variables are de�ned indepen-
dently for each layer, the layer matrix are expanded in a way which enforce
the continuity at the interfaces as written in Eq. (3.16).

KLW
ij =



KNl
ttij KNl

trij KNl
tbij

KNl
rtij KNl

rrij KNl
rbij

KNl
btij KNl

brij KNl
bbij +KNl−1

ttij KNl−1
trij KNl−1

tbij

KNl−1
rtij KNl−1

rrij KNl−1
rbij

KNl−1
btij KNl−1

brij KNl−1
bbij +KNl−2

ttij
. . .


(4.45)

After the multilayer-level expansion the matrices has dimensions respec-
tively of 3(N + 1) × 3(N + 1) for ESL and of 3(N + 1)Nl − 3(Nl − 1) ×
3(N + 1)Nl − 3(Nl − 1) for LW problems. The third and last step is the
plate expansion, carried out through variation of Ritz-related indices i and
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j, following a similar to nuclei-to-layer expansion:

K =


Kth

11 Kth
12 · · · Kth

1M

Kth
21 Kth

22 · · · Kth
2M

...
...

...
Kth

M1 Kth
M2 · · · Kth

MM

 (4.46)

where matrices Kth
ij are the multilayer-level matrices derived before and M

is the square value of Ritz approximation order P . The matrices of the plate
has dimensions respectively of [3(N + 1)]M × [3(N + 1)]M for ESL and of
[3(N + 1)Nl − 3(Nl − 1)]M × [3(N + 1)Nl − 3(Nl − 1)]M for LW problems.

4.2 Derivation of loads fundamental nuclei

The PVW stated in Eq: (4.8) takes into account only the sti�ness and the
inertia of the plate and after its solution the eigenvalue analysis of the plate
can be performed. To be able to calculate the forced response of a plate a
new terms shall be added to the PVW:∫

V

(δεijσij)dV = −
∫
V

δuiρüidV +

∫
Ω̄

δuipdΩ̄ (4.47)

where p is a generic force distributed onto the surface Ω̄, portion of the plate
surface, located at thickness z̄ with respect of the plate reference plane Ω.

p(x, y, z̄) =


px
py
pz

 (4.48)

Then, adopting the adimensionalization of the reference system proposed
above becomes:

p(ξ, η, ζ̄k) =


pξ(ξ, η, ζ̄k)
pη(ξ, η, ζ̄k)
pζk(ξ, η, ζ̄k)

 (4.49)

where pδ are the load amplitudes at coordinates (ξ, η, ζ̄k) in direction δ. Now,
managing the integral on the forced plate surface Ω̄, the force PVW term
can be expressed as:∑

k

δ(k − k̄)

∫
Ωk

δuk
T

(ζ̄k)H(ξ̄, η̄)p(ξ, η)dΩk (4.50)
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in which a combination of unitary step functions H(ξ̄, η̄) has been used to
expand the generic loaded surface Ω̄ to the plate domain Ωk, while the di-
rak δ has been used to put the integral into a summation over the layers
of the plate. In fact the term δ(k − k̄) has unitary value only when the k̄-
th layer, in which the load is applied, is taken into account in the summation.

Substituting the CUF formulation of the displacement vector for each
k-th lamina uk expressed in Eq: (4.2) and the Ritz approximation of Eq:
(4.26) leds to:

∑
k

δ(k − k̄)

(
δck

T

τi

+1x

−1

H(ξ̄, η̄)NT
τiF

k
τ (ζ̄k)p(ξ, η)

ab

4
cos γdξdη

)
(4.51)

in which, the e�ect of the combination of step functions is to vary the integrals
extreme to integrate the Ritz shape functions only onto the loaded surface
as followings:∑

k

δ(k − k̄)

(
δck

T

τi

∫
ξ̄

∫
η̄

NT
τiF

k
τ (ζ̄k)p(ξ, η)

ab

4
cos γdξdη

)
(4.52)

Now, as stated for the PVW, the the virtual works had to vanish and con-
sidering the arbitrariness of the virtual variation, the resultant component of
the equation of motion, which has to be added in the right side of Eq: (4.28),
is: ∑

k

δ(k − k̄)F τi (4.53)

where the 3× 1 vector F τi is the Ritz fundamental nuclei of loads. The load
geometrical distribution can be taken into account into the following manner:

p(ξ, η, ζ̄k) =


pξ
pη
pζk

 p̄ξ(ξ)p̄η(η) (4.54)

where p̄ξ(ξ)p̄η(η) are the geometrical functions which de�nes the amplitude
of the loads point by point with respect to the maximum amplitude in each
direction. Hence, introducing the following notation:

LΦ
αm =

a

2

∫
ξ̄

φατm(ξ)p̄ξ(ξ)dξ m = 1, 2, · · · , P (4.55)

LΨ
αn =

b

2
cos γ

∫
η̄

ψατn(η)p̄η(η)dη n = 1, 2, · · · , P (4.56)
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which are the load surface integrals of the Ritz shape functions. These inte-
grals have been calculated numerically adopting the Gauss-Legendre method.

These integrals have been de�ned taking into account also the terms
related to the change of variables caused by the adimensionalization of the
reference frame since they shall be integrated into the domain de�ned by
(ξ̄, η̄), which in general is a portion of the plate surface, but as can be the
whole plate, it can be also a point in the case of a concentrate force. In this
last case the integrals are no more integrals but the Ritz shape function
evaluate at the force coordinate:

LΦ
αm = φατm(ξ̄) m = 1, 2, · · · , P (4.57)

LΨ
αn = ψατn(η̄) n = 1, 2, · · · , P (4.58)

and the terms related to the change of variables are no more present, since
also in te PVW there is no need of an integral. This leads to a formulation
of the nuclei which is invariant of the spatial distribution of the loads. Now
for the k-th layer the terms of the Ritz load nuclei can be explicitly written
as:

F k̄
τ i(1) = F k

τ (ζ̄k)L
Φ
αmL

Ψ
αnpξ (4.59)

F k̄
τ i(2) = F k

τ (ζ̄k)L
Φ
αmL

Ψ
αnpη (4.60)

F k̄
τ i(3) = F k

τ (ζ̄k)L
Φ
αmL

Ψ
αnpζk (4.61)

Load nuclei can now be assembled in a similar way of plate matrices,
with the only di�erence that a vector is involved instead of a matrix. Shall
be remarked that the presence of the term δ(k − k̄) has the e�ect of give
a non zero nuclei only for the k̄-th layer on which the load is applied. For
other layers the load nuclei are automatically zeroes. In this thesis only load
applied on the top or bottom surfaces have been considered. At layer level
load vector become:

F k
i =


F k
ti

F k
ri

F k
bi

 (4.62)

Then, multilayer level load vectors, for ESL and LW theories are assembled
as follows:

F ESL
i =

Nl∑
k=1

F k
i (4.63)
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F LW
ij =



FNl
ti

FNl
ri

FNl
bi + FNl−1

ti

FNl−1
ri

FNl−1
bi
...


(4.64)

Thus, the Ritz expansion:

F =


F th

1

F th
2
...
F th
M

 (4.65)

After the assembly procedures, when the plate load vector F have been built,
the time dependence can be taken into account as:

F (t) = FPtemp(t) (4.66)

where Ptemp(t) is a load temporal function which describes the time behaviour
of loads with respect their maximum amplitude with respect to time.

4.3 Derivation of attached masses fundamental

nuclei

The PVW can be enriched to take into account the presence of Nm attached
masses, de�ned as distributed masses which does not prevent the deformation
of the plate and are attached at its surface. This hypothesis permits to
describe the mass with the coordinates of the plate which describe the motion
of the surface at which the mass is attached. Thus, at the PVW of Eq: (4.8)
a new term will be added:∫

V

(δεijσij)dV = −
∫
V

δuiρüidV −
Nm∑
m=1

∫
Ω̄m

δuim̄müidΩ̄m (4.67)

where m̄m is the density for unit surface of the m-th attached mass and
Ω̄m is the area occupied by the mass on the plate surface. Now, managing
the Ω̄m integral, the new PVW term for the m-th attached mass can be
expressed as:

−
∑
k

δ(k − k̄)

∫
Ωk

δuk
T

(ζ̄k)H(ξ̄, η̄)m̄mü
k(ζ̄k)dΩk (4.68)
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As for load nuclei derivation, also in this case a dirak function and a combi-
nation of step functions have been used. Substituting the CUF formulation
of the displacement vector for each k-th lamina uk expressed in Eq: (4.2)
and the Ritz approximation of Eq: (4.26) leds to:

− ω2
∑
k

δ(k − k̄)

(
δck

T

τi

∫
ξ̄

∫
η̄

NT
τiF

kT

τ (ζ̄k)m̄mF
k
s (ζ̄k)N sj

ab

4
cos γdξdη

)
cksj

(4.69)

Now, as stated for the PVW, the the virtual works had to vanish and con-
sidering the arbitrariness of the virtual variation, the resultant component of
the equation of motion for the m-th attached mass, which has to be added
in the right side of Eq: (4.28), is:

− ω2
∑
k

δ(k − k̄)Mm
τsij (4.70)

where the 3× 3 Mm
τsij is the nuclei mass matrix for the m-th attached mass.

The surface integrals are de�ned as:

IAmassαmβm̄ =
a

2

∫
ξ̄

φατm(ξ)φβsm̄(ξ)dξ m, m̄ = 1, 2, · · · , P (4.71)

JAmassαnβn̄ =
b

2
cos γ

∫
η̄

ψατn(η)ψβsn̄(η)dη n, n̄ = 1, 2, · · · , P (4.72)

As done before, the surface integrals have been de�ned taking into account
also the terms related to the change of variables caused by the adimension-
alization of the reference frame to be changed in case of punctual attached
masses positioned at coordinates (ξm, ηm):

IAmassαmβm̄ = φατm(ξm)φβsm̄(ξm) m, m̄ = 1, 2, · · · , P (4.73)

JAmassαnβn̄ = ψατn(ηm)ψβsn̄(ηm) n, n̄ = 1, 2, · · · , P (4.74)

This leads to a formulation of the nuclei which is invariant of the spatial
distribution of the attached mass. Now for the k-th layer the terms of the
Ritz attached mass nuclei can be explicitly written as:

Mm
τsij(1, 1) = F k

τ (ζ̄k)F
k
s (ζ̄k)m̄mI

Amass
umum̄ J

Amass
unun̄ (4.75)

Mm
τsij(2, 2) = F k

τ (ζ̄k)F
k
s (ζ̄k)m̄mI

Amass
vmvm̄ JAmassvnvn̄ (4.76)

Mm
τsij(3, 3) = F k

τ (ζ̄k)F
k
s (ζ̄k)m̄mI

Amass
wmwm̄J

Amass
wnwn̄ (4.77)

Where the thickness functions shall be evaluate at:
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ESL: z̄ =
h

2
k̄ = Nl if attached mass is located on top surface

z̄ = −h
2

k̄ = 1 if attached mass is located under bottom surface

LW: ζ̄k = +1 k̄ = Nl if attached mass is located on top surface

ζ̄k = −1 k̄ = 1 if attached mass is located under bottom surface

Table 4.1: Thickness function for attached masses

Now, the nuclei mass matrix can be assembled in the same way of the mass
matrix of the plate, taking into account the presence of the dirak function,
which implies that the only non null nuclei are those referred to the k̄ layer
on which the mass is attached. This process can be done for each attached
mass present on the plate and then the mass matrices of the attached masses
can be summed with the plate mass matrix to compute the system mass
matrix, which will be then used in the dynamical analysis.

4.4 Derivation of suspended masses fundamen-

tal nuclei

The suspended masses considered in this work as been modelled as point
masses mounted onto massless linear springs, which can extend only in the
direction of the device and have in�nite sti�ness out of that direction. This
type of device can be mounted only on the top surface or under the bottom
surface of the plate, hence, the thickness function shall be evaluated as re-
ported in tab: 4.1, and only for the related layer. The PVW can be enriched
to take into account the presence of Ns suspended masses, de�ned as a point
mass m̄ suspended onto a spring of sti�ness k0, applied at coordinates(ξs, ηs)
and directed in z direction. Thus, at the PVW of Eq: (4.8) new terms will
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be added:

∫
V

(δεijσij)dV = −
∫
V

δuiρüidV −
∑
Ns

δzsm̄sz̈s

−
Ns∑
s=1

δ[zs − uz(ξs, ηs, ζ̄ks)]k0s [zs − uz(ξs, ηs, ζ̄ks)]

−
Ns∑
s=1

δux(ξs, ηs, ζ̄ks)m̄süx(ξs, ηs, ζ̄ks)

−
Ns∑
s=1

δuy(ξs, ηs, ζ̄ks)m̄süy(ξs, ηs, ζ̄ks)

(4.78)

The �rst added term is related to the inertia of the suspended mass in
the direction of the device, z in this case, which shall be described employ-
ing a further degrees of freedom for each s-th suspended mass. The second
term is the virtual work done by the spring sti�ness, which works for its
elongation, so, for the di�erence between the displacement of the mass and
the displacement of the plate in z direction. The third and fourth terms are
related to the inertia of the suspended mass in the other two directions, as
the mass is attached to the plate, since the spring has in�nite sti�ness in
those directions.
Now the e�ects of the added terms can be described with the CUF displace-
ment �eld expressed in Eq: (4.2) and the Ritz approximation of Eq: (4.26).
Each term will be described separately. Taking into account the third and
fourth terms added at Eq: (4.78), they can be described as in the previous
case of concentrated attached mass, neglecting the contribution in the de-
vices direction, hence in this case the fundamental nuclei are directly de�ned
as:

M s
τsij(1, 1) = F k

τ (ζ̄ks)F
k
s (ζ̄ks)m̄sI

Amass
umum̄ J

Amass
unun̄ (4.79)

M s
τsij(2, 2) = F k

τ (ζ̄ks)F
k
s (ζ̄ks)m̄sI

Amass
vmvm̄ JAmassvnvn̄ (4.80)

M s
τsij(3, 3) = 0 (4.81)

with the surface integrals evaluate as described in Eqs: (4.73) and (4.74) at
the devices coordinate. The nuclei can be assembled as described before for
plate mass nuclei to create the matrix M s with the same dimension of the
plate matrices.
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The second term added at Eq: (4.78), can be seen as:

−
Ns∑
s=1

δuz(ξs, ηs, ζ̄ks)k0suz(ξs, ηs, ζ̄ks) +
Ns∑
s=1

δuz(ξs, ηs, ζ̄ks)k0szs

+
Ns∑
s=1

δzsk0suz(ξs, ηs, ζ̄ks)−
Ns∑
s=1

zsk0szs

(4.82)

The �rst term of Eq: (4.82), under the CUF assumption and the Ritz ap-
proximation of Eq: (4.26), has a very similar description of concentrated
mass since it its related to a concentrate sti�ness, so, the fundamental nuclei
can be retrieved in a very similar way, considering only the contribution in
the devices direction, leading to:

Ks
τsij(1, 1) = 0 (4.83)

Ks
τsij(2, 2) = 0 (4.84)

Ks
τsij(3, 3) = F k

τ (ζ̄ks)F
k
s (ζ̄ks)k0sI

Amass
vmvm̄ JAmassvnvn̄ (4.85)

with the surface integrals evaluate as described in Eqs: (4.73) and (4.74) at
the devices coordinate. The nuclei can be assembled as described before for
plate sti�ness nuclei to create the matrixKs with the same dimension of the
plate matrices.

The second term of Eq: (4.82) becomes:

Ns∑
s=1

[∑
k

δ(k − k̄s)
(
δck

T

τiN
T
τi(ξs, ηs)F

k
τ (ζ̄ks)k0szs

)]
(4.86)

where,

k0s(1) = 0 (4.87)

k0s(2) = 0 (4.88)

k0s(3) = k0s (4.89)

This term is now very similar with that encountered in derivation of load
fundamental nuclei, then the derivation of the nuclei on the mixed sti�ness
matrices can be directly written as:

Kuz
τi (1) = 0 (4.90)

Kuz
τi (2) = 0 (4.91)

Kuz
τi (3) = −F k

τ (ζ̄ks)L
Φ
αmL

Ψ
αnk0s (4.92)
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with shape functions integrals evaluated as stated in Eqs: (4.57) and (4.58)
at the device coordinate. The minus sign has been putted into the nuclei
to consider that the contribution will be moved in the left side of the PVW
statement, as done for the other suspended mass nuclei before. The nuclei
can be assembled as described before for load nuclei to create the matrix
Kuz with the same number of rows of the plate matrices and columns equal
at the number of the suspended masses. The third term of Eq: (4.82) has
the same description of the just view second term leading to:

Kzu = KuzT (4.93)

The fourth term of Eq: (4.82) and the �rst therm of Eq: (4.78) have the
e�ect of putting the mass and sti�ness values of the s-th device into diagonal
matrices of dimension Ns ×Ns:

M zz = diag{m̄s} (4.94)

Kzz = diag{k0s} (4.95)

Now collecting all zs degrees of freedom into the vector z the augmented
system equation of motion, resulting from PVW of Eq: (4.78) considering
also the presence of a forcing term, can be written as follows:[

M plate +M s 0
0 M zz

]{
ü
z̈

}
+

[
Kplate +Ks Kuz

Kzu Kzz

]{
u
z

}
=

{
F
0

}
(4.96)

which can be seen in the following compact notation:

M augmüaugm +Kaugmuaugm = F augm (4.97)

and treated as usual.

4.5 Derivation of patches fundamental nuclei

To consider the sti�ness e�ect of attached distributed masses theirs thickness
shall be considered. To do that, under CUF assumptions, it is no more
possible to use the displacements of the surface of the layer at which they
are attached and an independent formulation of the displacement of patches
shall be used.

For this reason, patches have been treated as layers of reduced dimension,
adding in the PVW statement a layer dependant combination of step func-
tions Hk(ξ̄, η̄), similarly at what done before for zonal loads and distributed
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masses, to vary the domain of integration of the k-th layer from the surface
of the plate Ωk to the surface of the patch Ω̄k, when in the layer summation
the layer which contains the patch is take into account. Refers as layer of
patches is not very accurate, but take meaning considering that patches are
considered as layer with a surface of reduced dimension. For this reason,
when patched have to be accounted, the caption layer will be used.∑

k

∫
Ωk

∫
ζk

Hk(ξ̄, η̄)

[
δεk

T

p σ
k
p + δεk

T

n σ
k
n

]
dζkdΩk

= −
∑
k

∫
Ωk

∫
ζk

δuk
T

Hk(ξ̄, η̄)ρkükdζkdΩk

(4.98)

From there, the derivation of fundamental nuclei is quite straight forward
and led to the same mass and sti�ness nuclei of the plate case, with the
di�erence that the surface integrals of Eqs: (4.29) and (4.30), have to be
calculate on the domain described byHk(ξ̄, η̄) and not always in the interval
[−1,+1], which however do not coincides only when the layer of the patch
is considered.

This formulation can be also extent to consider the presence of two or
more patches in the same layer. In fact, using a summation over the o-th
object present in the k-th layer and remembering that for classical layer the
only object present is the layer itself, is possible to write:∑

k

{∑
o

∫
Ωk

∫
ζk

Hk(ξ̄o, η̄o)

[
δεk

T

po σ
k
po + δεk

T

noσ
k
no

]
dζkdΩk

}
= −

∑
k

{∑
o

∫
Ωk

∫
ζk

δuk
T

Hk(ξ̄o, η̄o)ρ
kükdζkdΩk

} (4.99)

From there, the derivation of fundamental nuclei is carried on as before and
led to the same mass and sti�ness nuclei of the plate case with same consid-
eration made before on the surface integrals domain. Di�erence in this case
arises in the calculation of the layer level matrices when layers of patches
are considered. In that case if more than one patch is present, the layer level
matrices for each patch shall be calculated and then summed, prior to be
inserted in the multilayer level matrices.

The formulation presented so far for patches works only for ESL theories
while convergence problems are arose with LW theories, probably because of
the hypothesis of homogeneous boundary condition, after the adoption of the
same Ritz functions of the plate, which does not take into account that the
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patches edges are free and not subjected to the plate boundary conditions.
Di�erence between the two families of theories in the capabilities of solute
anyway the problems with the right convergence referring to the Ritz expan-
sion order can be searched into the di�erent CUF unknowns formulation:
for ESL the degrees of freedom are the same for the whole problem, while for
LW theories the degrees of freedom related to layers of patches are no more
de�ned onto the whole domain.
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Chapter 5

Methods for plate problems

solving

Once the system mass and sti�ness matrix and the load vector have been
assembled, its static and dynamic responses can be evaluated. To do that,
in some cases it is possible to proceed directly employing pre-implemented
routines, while in other cases it have to be implemented taking into account
known methods.

5.1 Static response

The static response of the system can be easily found solving the Eq. (5.2):

Kc = F (5.1)

in the Ritz unknowns c, which can be done directly using pre-implemented
routines.

5.1.1 Displacements and stresses recovery

After the solution of the bending problem, displacements can be recovered
from the vector c, taking into account the Ritz expansion of Eq: (4.26) to
recover the CUF displacements and then the real displacements using the
CUF formulation of Eq: (3.1).

Stresses can be recovered in the same way adding another step, using
the constitutive equation presented in Eqs: (2.48) and (2.49) with the real
displacements. This way of stresses recovering gives good results with LW
theories, while out of plane stress resultants of ESL theories present a dis-
continuous behaviour which degrades heavily the accuracy of the results. To
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overcome this problem, for ESL theories, the out of plane stresses have been
recovered solving the equilibrium equation:

∇ · {σ} = 0 (5.2)

in the unknowns σxz and σyz starting from the well approximated σxx, σyy
and σxy, leading to a remarkable improving of the accuracy of ESL theories
in the stresses recovery.

5.2 Eigenvalue problem

The system natural frequencies can be found solving the Eq. (5.3):

K − ω2M = 0 (5.3)

in the unknowns ω, which can be done directly using pre-implemented rou-
tines.

5.3 Modal reduction

The modal reduction technique has been used to have the possibility of handle
still accurate model of dramatically reduced order. This is done taking a
subset of the system eigenvector matrix coming from the eigenvalue problem,
with columns equal to the order of the desired reduction, then premultiplying
and postmultiplying the matrices of mass and sti�ness of the system with the
transpose and the subset eigenvector matrix respectively. The load vector
will be only premultiplied by the transpose of the subset eigenvector matrix.

This approach decouples the equations of motion and allows to solve a
small number of equations instead of systems of thousands equations coupled
together. After the solution of time and frequency response in the modal
unknowns, premultiplying them by the matrix of eigenvector subset the Ritz
unknowns can be retrieved.

5.4 Time response

The time response of the full system have been calculated adopting the New-
mark integration method, described in [25], to integrate directly the equation
of motion:

Mc̈(t) +Kc(t) = F (t) (5.4)
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The modal model time response have been calculated solving the following
equation for each DOF of the model, as stated by [26]

qi(t) =
1

Mω0

∫ t

0

sin[ω0(t− τ)]Qi(τ)dτ + q0 cos(ωot) +
q̇0

ω0

sin(ωot) (5.5)

5.5 Frequency response

The frequency response is sought imposing a sinusoidal response at each
frequency ω:

F (t) = F ejωt (5.6)

u(t) = uejωt (5.7)

Then, Eq: (5.4) can be seen as:

(−ω2M +K)c = F (5.8)

which can be directly resolved for retrieve the unknowns c at each frequency
of interest ω.

The Ritz unknowns c can be computed also using the modal model,
resolving for each frequency of interest ω:

qi =
1

mi(ω2
i − ω2

Qi (5.9)

then, premultiplying the modal unknowns by the matrix of eigenvector subset
for each ω the same solution of the full model frequency response is obtained.

Once calculated the Ritz coordinates c for each frequency ω, the FRF of
the model, J(ω), can be evaluated as [2]

u(ω) = |J(ω)|F (ω) (5.10)

where both the Ritz approximation of Eq: (4.26) and the CUF displacements
�eld of Eq: (3.1) shall be inserted to retrieve the real displacements from the
Ritz unknowns.
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Chapter 6

Finite elements models

Three FEM models have been designed to model plates with attached dis-
tributed masses and patches since no reliable benchmarks have been found
in the literature.

6.1 Isotropic-1 model

The Isotropic-1 FEM model is the model of a fully clamped isotropic squared
plate with a square isotropic patch at its center. This loaded plate has been
modelled in three version, the �rst represent the plate without any loadings,
in the second a distribute attached mass without sti�ness has been inserted,
while in the third case its sti�ness has been considered. In all cases the
boundary conditions have been modelled using a rigid RBE3 element to
constraint the edge nodes.

This model has been constructed adopting a full 3D technique, using 3D
Hex meshing solid elements, as depicted in �gure 6.1, and relying on 2D
isotropic plate elements, as depicted in �gure 6.2, founding that the results
of both models are very accurate.
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Figure 6.1: Full 3D Isotropic-1 �nite element model

Figure 6.2: 2D Isotropic-1 �nite element model

6.2 Laminate-5 model

The laminate-5 FEM model is the model of a FCCF squared laminate plate
with di�erent loading conditions, each one modelled with a speci�c FEM
model. In the �rst case only the laminate plate is considered, it has been
modelled relying onto 2D laminate elements, which have a LW formulation.
The second case refers to the plate with an attached distributed mass at its
center mounted onto the top surface, while in the third case a patch of the
same dimension of the attached mass has been inserted in the same position
instead of the mass, to consider the sti�ening e�ects of the patch. In the
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fourth case, two patches have been mounted on the plate, as depicted in
�gure 6.3. In all cases the boundary conditions have been modelled using a
rigid RBE3 element to constraint the edge nodes.

Figure 6.3: Laminate-5 �nite element model

6.3 Sandwich-9 model

The Sandwich-9 FEM model is the model of a fully clamped sandwich plate,
with a two layers crossply faces and a very soft core, which have been mod-
elled using 2D laminate elements for the faces and 3D Hex meshing solid
elements to model the core, similary to what done in [17]. This base model
have been improved in other three versions, all with an attached mass at the
center of the top surface, but with di�erent boundary conditions: the �rst is
a fully clamped (CCCC) sandwich plate depicted in �gure 6.4, the second is
a cantilever plate (CFFF) and the third is a partially clamped plate (FCCF).
In all cases the boundary conditions have been modelled using a rigid RBE3
element to constraint the edge nodes.
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Figure 6.4: Laminate-5 �nite element model
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Chapter 7

Results

A large numerical investigation has been conducted to validate the code
implemented with the theories described in the previous chapters. Several
cases has been analyzed for each one of the aspects considered, like bending or
direct time integration, comparing the results obtained with those reported
onto research publications of various authors, or, adopting validated �nite
element models as benchmark when comparable results are not found in
literature.

The campaign of validation has been conducted comparing displacements
and stresses for static analysis and the natural frequencies for dynamic anal-
ysis. Time and frequency response have been validated also comparing the
resulting plots of the analysis

The validated code has then been used to analyze new interesting cases,
like equipped sandwich plates, and also to present new results of the cases
studied which are not present in the documents used for the validation.

7.1 Material Properties

The plates considered in the analysis are made of isotropic and orthotropic
materials, whose mechanical characteristics are presented in table 7.1 for
materials with dimensional properties. Since adimensionalization are widely
adopted in literature, adimensional property material have been modelled to
create some characteristic case of orthotropic materials with de�nite sti�ness
ratios between their principal directions. The characteristics of adimensional
materials are presented in 7.2.
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Isotropic [GPa] E1 E2 E3 G12 G23 G13 ν12 ν23 ν13 ρ [Kg]
Al7075 73 73 73 28.077 28.077 28.077 0.3 0.3 0.3 2800
Al6061 69 69 69 25.939 25.939 25.939 0.33 0.33 0.33 2700
Al5086 71 71 71 26.400 26.400 26.400 0.33 0.33 0.33 2660
Al2024 72.4 72.4 72.4 27.015 27.015 27.015 0.34 0.34 0.34 2780
Steel 205.1 205.1 205.1 78.884 78.884 78.884 0.3 0.3 0.3 7850

Orthotropic
CFRP7 181.0 10.3 10.3 7.17 2.87 7.17 0.28 0.33 0.28 1578
CFRP8 50 10 10 5 5 5 0.25 0.25 0.25 1600
Mat4 276 6.9 6.9 6.9 6.9 6.9 0.25 0.3 0.25 681.8
Mat5 0.577 0.577 0.577 0.107 0.222 0.107 0.0025 0.0025 0.0025 1000
BoEp 208 18.9 18.9 5.7 2.317 5.7 0.23 0.23 0.23 2000
ArEp 76 5.6 5.6 2.3 2.089 2.3 0.34 0.34 0.34 1460
RaoF 131 10.34 10.34 6.895 6.895 6.205 0.22 0.49 0.22 1627

Sandwich cores [MPa] E1 E2 E3 G12 G23 G13 ν12 ν23 ν13 ρ [Kg]
RaoC 6.89 6.89 6.89 3.45 3.45 3.45 0 0 0 97
OrthoCore 137.9 137.9 137.9 0 51.71 134.45 0 0 0 121.83
Nomex 0.01 0.01 75.85 0 22.5 22.5 0 0 0 32

Table 7.1: Mechanical properties of dimensional materials

Isotropic E1 E2 E3 G12 G23 G13 ν12 ν23 ν13 ρ
Isot 1 1 1 0.4 0.4 0.4 0.25 0.25 0.25 1
Isot2 1 1 1 0.385 0.385 0.385 0.3 0.3 0.3 1

Orthotropic
CFRP1 40 1 1 0.6 0.5 0.6 0.25 0.25 0.25 1
CFRP2 25.1 4.8 0.75 1.36 0.47 1.2 0.036 0.171 0.25 1
CFRP3 40 1 1 0.6 0.5 0.5 0.25 0.25 0.25 1
CFRP4 25 1 1 0.5 0.2 0.5 0.25 0.25 0.25 1
CFRP5 10 1 1 0.6 0.5 0.6 0.25 0.25 0.25 1
CFRP6 30 1 1 0.5 0.35 0.5 0.3 0.49 0.3 1
CFRP9 10 1 1 0.5 0.2 0.5 0.25 0.25 0.25 1

Sandwich cores E1 E2 E3 G12 G23 G13 ν12 ν23 ν13 ρ
Core1 1 1 1 0.016 0.06 0.06 0.25 0.25 0.25 1
Mat1 2 1 1 1.1 0.3846 1.1 0.3 0.3 0.3 1

Table 7.2: Mechanical properties of adimensional materials

7.2 Static Analysis

Several stacking sequence, geometries and loading conditions have been con-
sidered to validate the capability of the code to get the correct response of
plates statically loaded and present the di�erences which characterize the
plates theories considered.
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The static response analyses gives results in terms of displacements and
stresses, which in this thesis, are calculated at the following coordinates:

Transverse displ. w computed at: (a
2
, b

2
, 0)

Sigmax σxx computed at: (a
2
, b

2
, h

2
)

Sigmayy σyy computed at: (a
2
, b

2
, h

2
)

Sigmaxy σxy computed at: (0, 0,−h
2
)

Sigmaxz σxz computed at: (0, b
2
, 0)

Sigmayz σyz computed at: (a
2
, 0, 0)

Then the values of displacements and stresses are adimensionalized with
respect to the followings adimensionalizations:

Transverse displ. w̄ =
100h3E2

Pza4
w

Sx =
h2

Pza2
σxx

Sy =
h2

Pza2
σyy

Sxy =
h2

Pza2
σxy

Sxz =
h

Pza
σxz

Syz =
h

Pza
σyz

The young modulus used in the adimensianalization is E2, related to the
mechanical properties of the top layer of the plate, while, Pz is the maximum
amplitude of the load considered unless di�erently speci�ed in problems de-
scription.

7.2.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

First of all a preliminary study has been done to assess the convergence
of the solution with respect to the proposed Ritz expansion. The transverse
displacements and stress Sx are obtained with various boundary conditions,
load geometries and lamination schemes and are reported in the followings
tables.
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In tables 7.3 and 7.4 are shown the variation of displacements and stress
Sx obtained with two di�erent boundary conditions, for various ESL and
LW theories, with respect of the order of the Ritz expansion. The plate
considered is a square three layer laminate with an height to side ratio of
h
a

= 0.1. All layers have the same thickness and are made of CFRP1 and the
lamination scheme is (0/90/0). The load applied is a pressure of constant
distribution Pz which acts on the top surface of the plate.

BCS Theory Displacement w̄
P 7 9 10 11 12 13

CFSF ED2 0.4152 0.4151 0.4151 0.4151 0.4151 0.4151
ED5 0.4621 0.4622 0.4622 0.4622 0.4622 0.4622
LD2 0.4612 0.4613 0.4613 0.4613 0.4613 0.4613
LD4 0.4628 0.4629 0.4629 0.4630 0.4630 0.4630

FCCF ED2 1.3460 1.3466 1.3466 1.3466 1.3468 1.3468
ED5 1.4408 1.4432 1.4429 1.4430 1.4432 1.4433
LD2 1.4394 1.4415 1.4413 1.4414 1.4416 1.4417
LD4 1.4469 1.4494 1.4491 1.4492 1.4495 1.4496

Table 7.3: Convergence of w̄ for di�erent theories. Di�erent boundary conditions

BCS Theory Stress Sx
P 7 9 10 11 12 13

CFSF ED2 0.4442 0.4434 0.4434 0.4438 0.4438 0.4437
ED5 0.5278 0.5194 0.5194 0.5229 0.5229 0.5217
LD2 0.5246 0.5205 0.5205 0.5219 0.5219 0.5215
LD4 0.5291 0.5185 0.5186 0.5243 0.5243 0.5214

FCCF ED2 -0.4248 -0.4258 -0.4251 -0.4251 -0.4256 -0.4256
ED5 -0.3680 -0.3774 -0.3767 -0.3730 -0.3739 -0.3752
LD2 -0.3709 -0.3757 -0.3748 -0.3736 -0.3744 -0.3748
LD4 -0.3682 -0.3803 -0.3796 -0.3732 -0.3741 -0.3773

Table 7.4: Convergence of Sx stress for di�erent theories. Di�erent boundary

conditions

In tables 7.5 and 7.6 are shown the variation of displacements and stress
Sy obtained with two di�erent distribution of pressure, for various ESL
and LW theories, with respect of the order of the Ritz expansion P. The
plate considered is a rectangular, fully clamped, four layer laminate with an
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height to side ratio h
a

= 0.1 and a form factor b
a

= 1.5. All layers have
the same thickness and are made of CFRP4 and the lamination scheme is
(0/90/0/90). The load applied is a pressure with a bisinusoidal distribution
pz = Pz sin(π x

a
) sin(π y

b
), which acts on the top surface of the plate.

Pressure Theory Displacement w̄
distribution P 7 9 10 11 12 13
Triangular ED3 0.3491 0.3481 0.3482 0.3485 0.3485 0.3484
(x direction) ED6 0.3803 0.3797 0.3798 0.3800 0.3800 0.3800

LD3 0.3968 0.3959 0.3961 0.3965 0.3965 0.3964

Bisinusoidal ED3 0.5014 0.5006 0.5006 0.5009 0.5009 0.5008
ED6 0.5474 0.5469 0.5470 0.5472 0.5472 0.5472
LD3 0.5712 0.5706 0.5707 0.5710 0.5710 0.5709

Table 7.5: Convergence of w̄ for di�erent theories. Di�erent load distribution

Pressure Theory Stress Sy
distribution P 7 9 10 11 12 13
Triangular ED3 0.1181 0.1132 0.1155 0.1154 0.1143 0.1146
(x direction) ED6 0.1222 0.1173 0.1203 0.1197 0.1179 0.1186

LD3 0.1244 0.1187 0.1221 0.1219 0.1196 0.1200

Bisinusoidal ED3 0.2140 0.2106 0.2122 0.2120 0.2113 0.2116
ED6 0.2236 0.2205 0.2224 0.2218 0.2208 0.2214
LD3 0.2275 0.2239 0.2261 0.2257 0.2243 0.2247

Table 7.6: Convergence of Sy stress for di�erent theories. Di�erent load distribution

In tables 7.7 and 7.8 are shown the variation of displacements and stress
Sx obtained with two di�erent lamination sequences, for various ESL and
LW theories, with respect of the order of the Ritz expansion P. The plate
considered is a squared, simply supported, two layer laminate with an height
to side ratio of h

a
= 0.1. All layers have the same thickness and are made

of CFRP3. The load applied is a pressure with a sinusoidal distribution
pz = Pz sin(π y

b
), which acts on the top surface of the plate.
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Lamination Theory Displacement w̄
scheme P 7 9 10 11 12 13
(−45/45) ED1 0.5126 0.5126 0.5128 0.5128 0.5129 0.5129

ED4 0.6246 0.6283 0.6289 0.6296 0.6298 0.6298
LD1 0.5919 0.5956 0.5956 0.5961 0.5963 0.5963

(−30/60) ED1 0.6792 0.6803 0.6810 0.6812 0.6815 0.6816
ED4 0.7862 0.7916 0.7924 0.7933 0.7940 0.7944
LD1 0.7615 0.7668 0.7674 0.7683 0.7690 0.7692

Table 7.7: Convergence of w̄ for di�erent theories. Di�erent lamination scheme

Lamination Theory Stress Sx
scheme P 7 9 10 11 12 13
(−45/45) ED1 0.2655 0.2638 0.2663 0.2640 0.2656 0.2640

ED4 0.2855 0.2902 0.3000 0.2931 0.2982 0.2933
LD1 0.2647 0.2777 0.2807 0.2760 0.2808 0.2811

(−30/60) ED1 0.1885 0.1888 0.1917 0.1907 0.1919 0.1917
ED4 0.1997 0.2086 0.2118 0.2078 0.2118 0.2104
LD1 0.1907 0.1994 0.2027 0.1996 0.2027 0.2030

Table 7.8: Convergence of Sx stress for di�erent theories. Di�erent lamination

scheme

These results indicates that a Ritz expansion of order 11 is su�ciently
to get the convergence of the results for what concerns displacements. From
now, if not speci�ed di�erently, all the results presented are calculated using
an eleventh order Ritz expansion.

7.2.2 Problem I - Crossply square plate loaded by a

transverse pressure with constant distribution

A simply supported square plate loaded by a constant transverse distribution
of pressure Pz has been considered in tables 7.9,7.10 and �gures from 7.1 to
7.10. The plates are made of CFRP4, and follow a di�erent lamination
scheme: before a symmetrical laminate of three layers (0/90/0) is considered
and then an anti-symmetrical laminate of four layers (0/90/0/90) is used for
further investigation. All layers of the laminate are of the same thickness.
For both lamination scheme thin and thick plates are considered: the height
to side ratio is h/a = 0.01 for the thin and h/a = 0.25 for the thick plate. The
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reference values are those calculated by [6] with a layerwise mixed formulation
of the fourth order, so they can be considered highly accurate.

Results reported in table 7.9 are relative to the symmetric laminate in
both thin and thick con�guration.

h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.01 ED3 0.6706 0.8081 0.0309 0.0429 0.7318 0.4045

ED5 0.6709 0.8082 0.0309 0.0430 0.7314 0.4046
LD1 0.6702 0.8087 0.0323 0.0428 0.7250 0.4044
Ref 0.6713 0.8083 0.0428 0.7201 0.3852

0.25 ED3 2.8714 1.1031 0.1196 0.1001 0.4810 0.4657
ED5 2.9169 1.0881 0.1164 0.0989 0.4793 0.5136
LD1 2.9454 1.0049 0.1209 0.0886 0.4374 0.4014
Ref 3.0444 1.1173 0.0973 0.4435 0.4956

Table 7.9: Transverse displacement and stresses for a square plate with three layers

(0/90/0). Uniform transverse pressure

The performance obtained by di�erent ESL and LW theories can be com-
pared plotting the stresses distributions through the thickness of the lami-
nate. Plots relative at theories used in table 7.9 are presented for both thin
and thick plate, in �gures from 7.1 to 7.5.
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Figure 7.1: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.2: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.3: Sxy (0, 0), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.4: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.5: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/0) laminate

As expected, for the thin plate, both ESL and LW theories get very
similar results and are both capable to compute the displacements of the
loaded plate while, for the thick plate the results obtained suggest that the
LW theories can get better results than the ESL theories, also with lower
order theories since LW kinematic models use distinct degrees of freedom for
each layer and so the in-layer distribution of stresses and displacements is
not in�uenced by the others layer's one, except for the continuity hypothesis.
It is clearly shown in �gure 7.1 which shows that ESL models are not capable
to get the sudden Sx stress variation around layers interfaces and, also in all
layers thickness as shown in �gure 7.4, in which the Sxz stress behaviour is
correctly approximate in top and center layers by all models but only the
LW model approximate also the bottom layer behaviour.

Now the anti-symmetric square crossply will be considered, both the thin
and thick laminate are analyzed and the numeric results with the through
the thickness stress distribution are presented in table 7.10 and �gures from
7.6 to 7.10.
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h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.01 ED4 0.8117 0.0543 0.7371 0.0445 0.6217 0.6219

LD2 0.8123 0.0542 0.7371 0.0446 0.6214 0.6216
LD4 0.8123 0.0542 0.7371 0.0446 0.6214 0.6216
Ref 0.8123 0.0542 0.7371 0.0445 0.6058

0.25 ED4 2.7054 0.1057 0.9776 0.0796 0.4489 0.4882
LD2 2.9619 0.1116 1.0158 0.0878 0.4295 0.4543
LD4 2.9680 0.1111 1.0087 0.0891 0.4365 0.4617
Ref 2.9679 0.1141 1.011 0.0891 0.4209

Table 7.10: Transverse displacement and stresses for a square plate with four layers

(0/90/0/90). Uniform transverse pressure
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Figure 7.6: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.7: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.8: Sxy (0, 0), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.9: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.10: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/0/90) laminate

Consideration made for the three layer plate considered before are here
empathized by the presence of a fourth layer which makes more di�cult to
describe the stresses behaviour of the thick plate only by global degrees of
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freedom of ESL theories as shown also for Sy and Syz in �gures 7.7 and 7.10,
also adopting an ESL theory of a relative high order. The use of ED6 might
give a better approximation as reported later, but with a large model, which
cam be also larger than the LD2 model used here, capable to get always the
correct approximation of all stresses behaviour in plate thickness. This last
model can be a wise choice to create a relatively small model with respect
of an LD4 model, sacri�cing something in terms of �ne approximation, but
maintaining the capability of predict the correct stress and displacements for
the whole plate with a more e�ective model.

7.2.3 Problem II - Crossply square plate loaded by a

transverse pressure with triangular distribution

A simply supported square plate loaded by a triangular transverse distribu-
tion of pressure pz = Pz

x
a
, has been considered. The plate is made of CFRP4,

and follow a symmetrical lamination scheme of three layers (0/90/0) of equal
thickness. Both thin and thick plates are considered: the height to side ratio
is h

a
= 0.01 for the thin plate and h

a
= 0.25 for the thick plate. Results

related with this problem are presented in table 7.11 and �gures from 7.11 to
7.15. The reference values are those calculated by [6] with a layerwise mixed
formulation of the fourth order, so they can be considered highly accurate.

h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.01 ED2 0.3345 0.4036 0.0154 0.0183 0.2494 0.2021

ED4 0.3353 0.4040 0.0154 0.0184 0.2494 0.2022
LD3 0.3356 0.4637 0.0638 0.0303 0.2495 0.2022
Ref 0.3356 0.4042 0.2499

0.25 ED2 1.1635 0.3377 0.0464 0.0250 0.2169 0.2750
ED4 1.4343 0.5489 0.0580 0.0360 0.1838 0.2255
LD3 1.5223 0.6539 0.1340 0.0751 0.1681 0.2517
Ref 1.5222 0.5592 0.1656

Table 7.11: Transverse displacement and stresses for a square plate with three

layers (0/90/0). Transverse pressure with triangular distribution
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Figure 7.11: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.12: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.13: Sxy (0, 0), for a thin (left) and a thick (right )(0/90/0) laminate
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Figure 7.14: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/0) laminate
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Figure 7.15: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/0) laminate

These plots indicates that for thick laminates layerwise kinematic theories
shall be adopted if precise displacements and stresses values are required,
moreover the choice of an high order LW theory become mandatory if the
through the thickness stresses precise behaviour is sought. ESL theories
however are good if the laminate is thin or if a rough approximation of the
displacements and stresses is su�cient. In this latter case, anyway, an higher
order theory shall be preferred.

7.2.4 Problem III - Crossply square plate loaded by a

transverse pressure with bitriangular distribution

A simply supported square plate has been considered. The plate is loaded
by a bitriangular transverse distribution of pressure,

pz = Pz
2x
a

if 0 ≤ x ≤ a
2

pz = Pz(2− 2x
a

) if a
2
≤ x ≤ a
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The plate is made of CFRP4, and follow an anti-symmetrical lamination
scheme of four layers (0/90/0/90) of equal thickness. Both thin and thick
plates are considered: the height to side ratio is h

a
= 0.01 for the thin plate

and h
a

= 0.25 for the thick plate. Results related with this problem are
presented in table 7.12 and �gures from 7.16 to 7.20. The reference values
are those calculated by [6] with a layerwise mixed formulation of the fourth
order, so they can be considered highly accurate.

h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.01 ED3 0.5210 0.0371 0.4691 0.0263 0.2568 0.4392

ED5 0.5213 0.0372 0.4693 0.0263 0.2568 0.4391
LD4 0.5217 0.0371 0.4692 0.0263 0.2569 0.4389
Ref 0.5225 0.0372 0.2701 0.4261

0.25 ED3 1.7030 0.0894 0.5979 0.0455 0.2396 0.3796
ED5 1.8245 0.0890 0.6404 0.0479 0.2242 0.3472
LD4 1.9765 0.0918 0.6658 0.0496 0.2235 0.3121
Ref 1.9802 0.0955 0.2239 0.3132

Table 7.12: Transverse displacement and stresses for a square plate with four layers

(0/90/0/90). Transverse pressure with bitriangular distribution
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Figure 7.16: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.17: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.18: Sxy (0, 0), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.19: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/0/90) laminate
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Figure 7.20: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/0/90) laminate

Results reported in table 7.12 and �gures from 7.16 to 7.20 shows that
consideration made for Problem I and II are still valid in this case, where
also a re�ned ESL theory like ED5 fails in getting the correct stresses be-
haviour into the thickness of the thick laminate. However, both ESL theories
adopted here are capable to give a quite good approximation of displacements
and stresses values in the points considered.

7.2.5 Problem IV - Crossply square plate loaded by a

transverse pressure with sinusoidal distribution

A simply supported square plate loaded by a sinusoidal transverse distri-
bution of pressure pz = Pz sin(π x

a
), has been considered. The plate is

made of CFRP4, and follow a symmetrical lamination scheme of four layers
(0/90/90/0) of equal thickness. Both thin and thick plates are considered:
the height to side ratio is h

a
= 0.05 for the thin plate and h

a
= 0.25 for the

thick plate. Results related with this problem are presented in table 7.13 and
�gures from 7.21 to 7.25. The reference values are those calculated by [15]
with a mixed MLPG formulation of the �fth order.
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h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.05 ED2 0.4811 0.5287 0.0289 0.0220 0.3341 0.1485

ED4 0.5073 0.5430 0.0305 0.0229 0.3292 0.1546
LD3 0.5130 0.5428 0.0307 0.0231 0.3282 0.1556
Ref 0.5063 0.5400 0.3050 0.0224 0.4735 0.1260

0.25 ED2 1.4899 0.4334 0.0628 0.0287 0.2738 0.2672
ED4 1.8708 0.7219 0.0872 0.0447 0.2263 0.2952
LD3 1.9367 0.7204 0.0890 0.0458 0.2192 0.2915
Ref 1.8930 0.7125 0.6313 0.0459 0.3575 0.2675

Table 7.13: Transverse displacement and stresses for a square plate with four layers

(0/90/90/0). Transverse pressure with sinusoidal distribution
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Figure 7.21: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.22: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.23: Sxy (0, 0), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.24: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.25: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/90/0) laminate

The symmetry of the laminate adopted helps ESL theories in getting a
better approximation of stress behaviour like in �rst case of Problem I, in
which the di�erence between a LW approach lie in the capability of this one
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to get the sudden stresses variation around layers interfaces as depicted in
�gures 7.21 and 7.24.

A thing shall be noticed: the reference values of Sy stress are very high
with respect of the values obtained. An explanation could be that the au-
thors of [15] have reported the wrong thickness at which they had evaluate
the Sy stress. The orientation of the layers suggest that the maximum value
of Sy shall be reached in the thickness of the two central layers of 90◦ orienta-
tion, whereas in the other two layers with 0◦ orientation maintain a value in
proximity of zero, as like as the Sx stress which has the opposite behaviour,
reaching its maximum in the layers with 0◦ orientation. This is due to the or-
thotropicy of the material of which the plate is made that makes the in-plane
stresses go higher in the �ber direction.

7.2.6 Problem V - Crossply square plate loaded by a

transverse pressure with bisinusoidal distribution

A simply supported square plate loaded by a bisinusoidal transverse distri-
bution of pressure pz = Pz sin(π x

a
) sin(π y

b
), has been considered. The plate is

made of CFRP4, and follow a symmetrical lamination scheme of four layers
(0/90/90/0) of equal thickness. Both thin and thick plates are considered:
the height to side ratio is h

a
= 0.05 for the thin plate and h

a
= 0.25 for the

thick plate. Results related with this problem are presented in table 7.14
and �gures from 7.26 to 7.30. The reference values are those calculated by
[1] with a discrete shear gap �nite elements formulation.

h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.01 ED3 0.4344 0.5389 0.0268 0.0214 0.3388 0.1389

ED6 0.4345 0.5388 0.0268 0.0214 0.3388 0.1389
LD3 0.4346 0.5388 0.0268 0.0214 0.3388 0.1389
Ref 0.4347 0.539 0.271 0.0214 0.339 0.139

0.25 ED3 1.8732 0.7248 0.0899 0.0446 0.2258 0.2949
ED6 1.8960 0.7135 0.0881 0.0454 0.2214 0.2903
LD3 1.9367 0.7204 0.0890 0.0458 0.2193 0.2915
Ref 1.954 0.720 0.666 0.0467 0.270

Table 7.14: Transverse displacement and stresses for a square plate with four layers

(0/90/90/0). Transverse pressure with bisinusoidal distribution
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Figure 7.26: Sx (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.27: Sy (a2 ,
b
2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.28: Sxy (0, 0), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.29: Sxz (0, b2), for a thin (left) and a thick (right) (0/90/90/0) laminate
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Figure 7.30: Syz (a2 , 0), for a thin (left) and a thick (right) (0/90/90/0) laminate

Comments made for Problem IV are con�rmed, moreover can be appreci-
ated how ESL ED6 can approximate in a better way the trough the thickness
behaviour of Sx and Sxz stresses near the layers interfaces as shown in �gures
7.26 and 7.29.

Also in this case the reference values of Sy stress are very high with respect
of the values obtained. The reason can be sought in the same deduction
depicted in Problem IV looking at �gure 7.27.

7.2.7 Problem VI - Square sandwich plate loaded by a

transverse pressure with constant distribution

Now a square plate is considered, it consists of a two skins with equal thick-
ness 0.1h made by CFRP4 while the inner layer, the weak core, has a thick-
ness 0.8h and it's made by Core1. Both a moderately thin and thick plates
are considered: the height to side ratio is h

a
= 0.1 for the moderately thin

plate and h
a

= 0.25 for the thick plate. Results related with this problem are
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presented in table 7.15 and �gures from 7.31 to 7.35. The reference values
are those calculated by [6] with a layerwise mixed formulation of the fourth
order, so they can be considered highly accurate.

h
a

Theory w̄ Sx Sy Sxy Sxz Syz
0.1 ED4 2.9352 1.5166 0.1185 0.1323 0.5001 0.2274

LD2 3.0804 1.5026 0.1247 0.1359 0.5133 0.2570
LD4 3.0828 1.5053 0.1239 0.1372 0.5158 0.2385
Ref 3.083 1.509 0.5276

0.25 ED4 10.0373 1.9218 0.2575 0.2387 0.3764 0.2565
LD2 10.6275 1.8697 0.2657 0.2506 0.4123 0.3375
LD4 10.6813 1.8880 0.2693 0.2559 0.4288 0.3234
Ref 10.682 1.902 0.4074

Table 7.15: Transverse displacement and stresses for a square sandwich plate.

Transverse pressure with constant distribution
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Figure 7.31: Sx (a2 ,
b
2), for a moderately thin (left) and a thick (right) sandwich

plate
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Figure 7.32: Sy (a2 ,
b
2), for a moderately thin (left) and a thick (right) sandwich

plate
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Figure 7.33: Sxy (0, 0), for a moderately thin (left) and a thick (right) sandwich

plate
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Figure 7.34: Sxz (0, b2), for a moderately thin (left) and a thick (right) sandwich

plate
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Figure 7.35: Syz (a2 , 0), for a moderately thin (left) and a thick (right) sandwich

plate

The weak core makes predominant the e�ect related to transverse normal
deformability and causes an increase of the di�erences among di�erent theo-
ries in the thick plate case with respect distribution of out of plane stresses
Sxz and Syz as shown in �gures 7.34 and 7.35: ESL ED4 theory, although
been an high order and re�ned theory, miss completely the stresses distri-
bution in the core thickness and makes compulsory the adoption of a more
suited LW theory, unless only a rough approximation is sought or the plate
is thin. This last condition is of less interest since sandwich plate are widely
adopted for theirs peculiar mechanical properties which comes from their
intrinsic thickness.

The consideration made for Problems I−V I can be used as design param-
eters to choose the most e�ective kinematic theory to model a plate taking
into account its thickness and also the di�erence between the mechanical
properties of the various layers of the laminate.

7.3 Eigenvalue Analysis

Eigenvalue analysis have been carried out to ensure the capability of the code
to get the correct mass and sti�ness matrix and then solve the eigenvalue
problem of the plates considered, taking into account di�erent lamination
schemes and, in particular, di�erent boundary conditions.

The natural frequencies calculated in this thesis are adimensionalized
according the following adimensionalizations:
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λ1 : ω̄ = ωh
√

ρ
E

λ2 : ω̄ = ωa
√

ρ
E

λ3 : ω̄ = ωa2
√

hρ
D

λ4 : ω̄ = ωb2
√

hρ
D

λ5 : ω̄ = ω a2

h

√
ρ
E

λ6 : ω̄ = ω b2

h

√
ρ
E

λ7 : ω̄ = ω b2

hπ2

√
ρ
E

λ8 : ω̄ = ω a2

π2

√
hρ
D

λ9 : ω̄ = ω b2

π2

√
hρ
D

λ10 : ω̄ = ω
√

hρ
Da2

The young modulus and the �exural sti�ness used in the adimensianal-
ization are E2 and D12 related to the mechanical properties of the top layer
of the plate, unless di�erently speci�ed in problems description.

7.3.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

First of all a preliminary study has been done to assess the convergence of
the solution with respect to the proposed Ritz expansion. The �rsts natural
frequencies, adimensionalized as λ1 and reported in the followings tables, are
obtained with various boundary conditions, lamination schemes and height
to side ratios.

In table 7.16 is shown the variation of the results obtained with di�erent
ESL and LW theories, with respect of the order of the Ritz expansion. The
plate considered is a simply supported square three layer laminate with an
height to side ratio of h

a
= 0.1. All layers have the same thickness and are

made of CFRP1 and, the lamination scheme is (0/90/0).
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Theory P Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

ED2 7 0.15242 0.22688 0.24335 0.24335 0.38294 0.39808
9 0.15242 0.22687 0.24335 0.24335 0.37903 0.39808
10 0.15242 0.22687 0.24335 0.24335 0.37898 0.39808
11 0.15242 0.22687 0.24335 0.24335 0.37898 0.39808
12 0.15242 0.22687 0.24335 0.24335 0.37898 0.39808
13 0.15242 0.22687 0.24335 0.24335 0.37898 0.39808

LD4 7 0.14696 0.21675 0.24335 0.24335 0.35294 0.37354
9 0.14696 0.21675 0.24335 0.24335 0.34980 0.37354
10 0.14696 0.21675 0.24335 0.24335 0.34976 0.37354
11 0.14696 0.21675 0.24335 0.24335 0.34976 0.37354
12 0.14696 0.21675 0.24335 0.24335 0.34976 0.37354
13 0.14696 0.21675 0.24335 0.24335 0.34976 0.37354

Table 7.16: Convergence of �rst six frequency parameters for di�erent theories

In table 7.17 is shown the variation of the results obtained with two dif-
ferent boundary conditions, for ESL ED4 theory, with respect of the order of
the Ritz expansion. The plate considered is a rectangular four layer laminate
with an height to side ratio of h

a
= 0.1 and a form factor b

a
= 1.5. All layers

have the same thickness and are made of CFRP4 and the lamination scheme
is (0/90/0/90).

In table 7.18 is shown the variation of the results obtained with two
di�erent lamination sequences, for LW LD2 theory, with respect of the order
of the Ritz expansion. The squared, fully clamped plates considered are a
�ve layer laminate with an height to side ratio of h

a
= 0.2 and a sandwich

with an height to side ratio of h
a

= 0.25. In the �rst case all layers have the
same thickness, are made of CFRP3 and the lamination scheme is (45/ −
45/45/− 45/45). In the second case, the skins of the sandwich are made of
RaoF and their thickness is 1

10
of the thickness of the laminate, while the

core is made of RaoC and its thickness is the remaining 8
10

of the thickness
of the laminate.

It can be observed that convergence is monotonic from above as Ritz
terms are added and that the trend is similar for all theories selected.

These results indicates that a Ritz expansion of eleventh order is suf-
�ciently to get a good approximation of the �rst natural frequencies. Go
beyond this value does not improve so much the results while the compute
became more and more time demanding. A more re�ned Ritz expansion
is required if higher mode shall be well computed, especially in the case of
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Boundary P Adimensionalized natural frequencies
conditions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

CFSF 7 0.10203 0.10464 0.13953 0.21465 0.22583 0.24952
9 0.10202 0.10460 0.13946 0.21398 0.22395 0.24947
10 0.10202 0.10459 0.13946 0.21378 0.22390 0.24946
11 0.10201 0.10459 0.13944 0.21378 0.22390 0.24946
12 0.10201 0.10458 0.13944 0.21372 0.22388 0.24945
13 0.10201 0.10458 0.13943 0.21372 0.22388 0.24945

FCCF 7 0.03532 0.08342 0.14188 0.16626 0.17722 0.23229
9 0.03531 0.08338 0.14185 0.16617 0.17711 0.23212
10 0.03531 0.08337 0.14184 0.16616 0.17709 0.23209
11 0.03531 0.08337 0.14183 0.16615 0.17709 0.23208
12 0.03531 0.08337 0.14183 0.16614 0.17708 0.23207
13 0.03531 0.08336 0.14183 0.16614 0.17708 0.23206

Table 7.17: Convergence of �rst six frequency parameters for di�erent boundary

conditions

Lamination P Adimensionalized natural frequencies
scheme ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

(45/-45/45/-45/45) 7 0.51035 0.78949 0.85270 1.04846 1.18278 1.21759
9 0.51015 0.78921 0.85238 1.04805 1.18213 1.21696
10 0.51011 0.78915 0.85232 1.04798 1.18204 1.21686
11 0.51009 0.78911 0.85228 1.04793 1.18199 1.21681
12 0.51008 0.78909 0.85226 1.04790 1.18196 1.21678
13 0.51007 0.78908 0.85225 1.04788 1.18194 1.21676

Sandwich 7 0.14211 0.18681 0.19090 0.22436 0.26752 0.29686
9 0.14202 0.18644 0.19084 0.22406 0.26702 0.29635
10 0.14202 0.18623 0.19084 0.22388 0.26700 0.29633
11 0.14197 0.18621 0.19081 0.22386 0.26662 0.29595
12 0.14197 0.18609 0.19080 0.22376 0.26660 0.29594
13 0.14194 0.18608 0.19079 0.22375 0.26640 0.29574

Table 7.18: Convergence of �rst six frequency parameters for di�erent lamination

scheme
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clamped boundaries, which are characterized by local displacement gradi-
ents near the edge di�cult to be well approximated by global polynomials
of relatively low order. From now, if not speci�ed di�erently, all the re-
sults presented in this section are calculated using an eleventh order Ritz
expansion.

7.3.2 Problem VII - Eigenvalues of laminate square plates

with di�erent boundary conditions and lamina-

tion schemes

Three di�erent two layer laminated square plates with distinct lamination
schemes and boundary conditions involving combinations of clamped and
free edges have been analyzed. The cases considered are:

1. a fully clamped (CCCC) plate with layup (−30/45)

2. a plate with two opposite edges clamped and the others free (FCFC)
having layup (0/45)

3. a cross-ply (0/90) plate with two adjacent edges clamped and two ad-
jacent edges free (FCCF).

All layers are assumed to be of the same thickness and made of CFRP4.
A thick plates is considered: the height to side ratio is h

a
= 0.25.

The resulting �rst six natural frequencies, adimensionalized with respect
of λ5 are presented in table 7.19, and are compared with those computed by
[22] using the same theories, but also in comparison with those computed
with the Laminate-5 �nite element model.
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Case Theory Dof Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

CCCC ED4 1815 8.8695 13.6648 14.8498 18.7239 19.6378 21.8654
(−30/45) ED6 2541 8.7805 13.5256 14.6765 18.5148 19.4287 21.5954

LD2 1815 8.9607 13.7798 14.9870 18.8702 19.7755 22.0485
LD3 2541 8.7492 13.4840 14.6422 18.4751 19.3818 21.5622
ED6 Ref 8.772 13.522 14.667 18.508
LD3 Ref 8.740 13.480 14.630 18.467

FCFC ED4 1815 4.9440 5.9551 10.0156 10.5876 11.1841 12.8629
(0/45) ED6 2541 4.9162 5.9270 9.9699 10.5511 11.1177 12.7622

LD2 1815 4.9646 5.9875 10.0327 10.6080 11.2361 12.9569
LD3 2541 4.9013 5.9118 9.9518 10.5368 11.0874 12.7319
ED6 Ref 4.918 5.928 9.972 10.555
LD3 Ref 4.903 5.913 9.954 10.541

FCCF ED4 1815 2.8044 7.5097 7.7474 11.1051 14.8254 14.8396
(0/90) ED6 2541 2.7939 7.4537 7.6885 11.0167 14.6948 14.7077

LD2 1815 2.8211 7.5874 7.8268 11.1862 14.9801 14.9876
LD3 2541 2.7877 7.4346 7.6668 10.9851 14.6540 14.6647
ED6 Ref 2.794 7.454 7.689 11.017
LD3 Ref 2.788 7.435 7.667 10.986
Fem 2.7909 7.5117 7.6953 11.0525 14.8373 14.8423

Table 7.19: First six frequency parameters of square plates with di�erent boundary

conditions and lamination schemes

These results con�rmed that the present approach is capable of yielding
highly accurate results for arbitrary lamination layups and boundary condi-
tions. This statement will be stressed with the following analyses.

7.3.3 Problem VIII - Eigenvalues of a laminate square

plate

A three layer laminated square plates with a symmetric lamination scheme
of (0/90/0) have been analyzed. All layers are assumed to be of the same
thickness and made of CFRP1. Both a thin and thick plates is considered:
the height to side ratio is h

a
= 0.05 for the thin plate and h

a
= 0.2 for the thick

plate. The resulting �rst natural frequency for each case, adimensionalized
with respect of λ5, is presented in table 7.20 and is compared with those
computed by [20]. The values of the classical plate theory, CPT, are also
presented as a reference.
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Case Theory Dof Boundary conditions
SSSS SSCS CSCS FSFS FSSS FSCS

CPT 726 18.8485 28.4371 40.6497 4.4237 5.0950 8.2600

h
a

= 0.05 ED2 1098 17.7176 24.2542 31.2331 4.4314 5.0355 8.0265
ED4 1815 17.4859 23.5888 30.0186 4.4209 5.0238 7.9778
LD2 2541 17.4837 23.5880 30.0220 4.4167 5.0204 7.9755
LD4 4719 17.4809 23.5759 29.9938 4.4128 5.0168 7.9726
ED3 Ref 17.488 23.588 30.018 4.423 5.023 7.978
LD4 Ref 17.483 23.578 29.993 4.413 5.018 7.973

h
a

= 0.2 ED2 1089 10.8770 11.3636 12.1277 4.1043 4.6059 6.0837
ED4 1815 10.2665 10.8048 11.5891 3.9779 4.4767 5.9097
LD2 2541 10.2605 10.8053 11.5936 3.9335 4.4423 5.8838
LD4 4719 10.2318 10.7487 11.5100 3.8939 4.4083 5.8505
ED3 Ref 10.269 10.808 11.593 3.978 4.477 5.911
LD4 Ref 10.232 10.749 11.510 3.894 4.408 5.851

Table 7.20: First frequency parameter of a square plate of three layer (0/90/0).
Di�erent boundary conditions

It is shown that the frequency results are all in good agreement for the
thin plate while the error of CPT increases rapidly when the plate becomes
thicker. Note also that, by comparing results of ED4 and LD4 theories,
the fundamental frequency is well estimated by a fourth order ESL theory
without the need of a more computational demanding LW approach.

7.3.4 Problem IX - Eigenvalues of a soft-core sandwich

square plate

A simply supported soft-core sandwich plate is considered, the plate has
a (0/90/core/0/90) layup with the crossply faces made by RaoF and the
isotropic core made by RaoC. The ratio of thickness of the core to thickness
of the face sheet is assumed to be 10 in this example. Both a thin and
moderately thick plates is considered: the height to side ratio is h

a
= 0.01 for

the thin plate and h
a

= 0.1 for the moderately thick plate.

The resulting �rst six natural frequency, adimensionalized with respect
of λ5, is presented in table 7.21 for each case and are compared with those
computed by [22].
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Case Theory Dof Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

h
a

= 0.01 ED3 1452 15.5455 39.2599 39.2599 55.1396 73.4883 73.4883
ED5 2178 12.8426 26.3405 26.3405 35.1669 41.6706 41.6706
LD2 3993 11.9457 23.4140 23.4140 30.9599 36.1634 36.1634
LD3 5808 11.9457 23.4140 23.4140 30.9599 36.1634 36.1634
ED5 Ref 12.8426 26.3405 41.6706 35.1669 47.8077 57.1171
LD3 Ref 11.9457 23.4140 36.1634 30.9599 41.4706 49.7903

h
a

= 0.1 ED3 1452 4.9618 8.1928 8.1928 10.5185 11.9857 11.9857
ED5 2178 2.1587 3.6851 3.6851 4.8601 5.8204 5.8204
LD2 3993 1.8492 3.2217 3.2217 4.2925 5.2270 5.2270
LD3 5808 1.8492 3.2217 3.2217 4.2925 5.2267 5.2267
ED5 Ref 2.1587 3.6851 5.8204 4.8601 6.7667 8.4305
LD3 Ref 1.8492 3.2217 5.2270 4.2925 6.0989 7.6834

Table 7.21: First six frequency parameters of a square soft-core sandwich plate.

Di�erent thickness

In the case of a �exible or soft-core sandwich plate, the large di�erence
in sti�ness between the core and the faces, increase the di�culties in repre-
senting the correct dynamic behaviour with simple kinematic models. Table
7.21 shows that results computed with ESL theories grossly overestimate the
natural frequencies in comparison with LW models both for thin and mod-
erately thick plates. This is due to the large sti�ness ratio between the skins
and the core. The numerical investigation demonstrates that the discrepancy
can be contrasted by the use of layerwise kinematic theories, which appears
to be mandatory for sandwich plates with very soft core.

Now, the moderately thick sandwich plate is considered with di�erent
boundary conditions. The resulting �rst six natural frequency, adimension-
alized with respect of λ5, is presented in table 7.22 and are obtained adopt-
ing LW LD3 theory to be highly accurate. Results are compared with those
reported in [22] and also with those calculated with the Sandwich-9 �nite
element model in the fully clamped case. The number of degrees of freedom
is 5808 for the proposed LD3 model while the Sandwich-9 model has 100101
elements.
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Boundary Theory Adimensionalized natural frequencies
conditions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

SCSS LD3 1.9483 3.2842 3.4890 4.5073 5.2700 5.6795
LD2 Ref 1.9481 3.2841 3.4885 4.5069 5.2699 5.6786

SCCS LD3 2.0428 3.5465 3.5476 4.7132 5.7189 5.7200
LD2 Ref 2.0425 3.5459 3.5471 4.7124 5.7179 5.7190

SCCC LD3 2.1621 3.6204 3.8522 4.9564 5.7688 6.2166
LD2 Ref 2.1619 3.6200 3.8500 4.9542 5.7678 6.2162

CCCC LD3 2.2757 3.9200 3.9200 5.1887 6.2594 6.2650
LD2 Ref 2.2756 3.9180 3.9180 5.1853 6.2592 6.2647
FEM 2.2720 3.8603 3.9595 5.1714 6.1627 6.3207

CFFF LD3 0.6787 1.2308 2.1674 2.5629 2.8120 3.6480
LD2 Ref 0.6786 1.2311 2.1670 2.5625 2.8120 3.6477

SFCS LD3 1.5480 2.4915 3.2416 3.8868 4.0517 5.1898
LD2 Ref 1.5478 2.4914 3.2411 3.8863 4.0514 5.1892

Table 7.22: First six frequency parameters of a square soft-core sandwich plate.

Di�erent boundary conditions

Table 7.22 shows that the proposed model is capable to calculate accu-
rate natural frequencies of a soft core sandwich plate not only in the simply
supported case, but also with an other arbitrary set of boundary conditions.
Note that natural frequency of the modes in the range under investigation
get higher, with respect to the simply supported case, as the number of
clamped edges increases. This is due to the higher constraints introduced at
boundaries.

Results of Problems V II − IX shows that the code can create correct
dynamical models with any kinematic theory in the selected range. This
achievement gives the possibility to solve the eigenvalue problem for any type
of plate. Moreover, an accurate solution of the eigenvalue problem gives the
possibility of build an accurate reduce order modal model to solve dynamical
response problems with less time demanding analysis, theoretically without
an appreciable loss of accuracy.
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7.4 Dynamic time response

The capability of the code to compute the time response of a dynamically
loaded plate is validated comparing the results with those provided in [23].
For both the problems considered, the time response has been calculated
with both the direct time integration of the full model, using the Newmark
integration scheme, and the time response of the reduced order modal model.

7.4.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

A preliminary study has been done to assess the convergence of the solu-
tion with respect to the proposed Ritz expansion and the order of the modal
model.

In table 7.23 is shown the variation of the �rst six natural frequencies,
expressed in Hertz, obtained with ESL ED4 theory, with respect of the
order of the Ritz expansion. The plate considered is a fully clamped square
isotropic plate with an height to side ratio of h

a
= 0.05. The plate is made of

Al5086 and is loaded with a unitary pressure of constant spatial distribution
and amplitude varied as pz(t) = Pz[H(t − 0) − H(t − 0.02)]. The relative
resulting time responses are shown in �gure 7.36 and are calculated for the
midplane of the plate at coordinates: x = y = 1

3
.

Theory P Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6

ED4 7 444.5876 888.6499 888.6499 1285.5276 1545.2548 1555.0919
10 442.6084 883.3974 883.3974 1277.5841 1539.3895 1549.2362
13 441.4469 881.6534 881.6534 1275.2490 1535.7511 1545.5411
14 441.3336 881.2106 881.2106 1274.5832 1535.3695 1545.1569

Table 7.23: Convergence of �rst six frequency parameters for ESL ED4 theory.

Fully clamped square isotropic plate
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Figure 7.36: w̄ (a3 ,
b
3 , 0) vs. time for a thin plate under transient load, di�erent

Ritz expansion order

Figure 7.36 shows that all the presented model based on di�erent Ritz
expansions are capable to predict the behaviour of the plate during the loaded
temporal interval, while after the transient, low order Ritz expansion models
lack in accuracy and underestimate the displacements of the considered point
of the plate.

Now, the convergence of the modal solution is analyzed adopting the same
plate, with same load. A Ritz expansion of thirteenth order is selected to
create the modal base used to build up modal models of various order. The
relative resulting time responses are shown in �gure 7.37 and are calculated
for the midplane of the plate at coordinates:x = 1

5
and y = 3

4
.
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Figure 7.37: w̄ (a5 ,
3
4b, 0) vs. time for a thin plate under transient load, modal

models of di�erent order

Figure 7.37 shows that all the presented model based on di�erent modal
base order are capable to predict well the behaviour of the plate during the
whole temporal interval, however low order models lack in accuracy in the
prediction of the displacements in some time intervals. The reason is the
lack of information of higher modes caused by the earlier truncation of the
associated eigenvectors matrix.

7.4.2 Problem X - Time response of an isotropic plate

forced by a sinusoidal load

The plate considered is a fully clamped moderately thick isotropic plate,
made of Al5086, with an height to side ratio of h

a
= 0.1 and side length

a = b = 0.25. The validation has been carried out only tanking into account
this simple plate, since the capability of the code to get the correct dynamic
behaviour of laminated or sandwich plates is already validated by the analysis
reported previously.

The eigenvalue problem of the plate has been solved prior to conduct the
analysis to assure that the model of the plate is good enough to represent
the plate used in [23] and to avoid errors which could led to misunderstood-
able results. The �rst six natural frequencies, adimensionalized as λ1, are
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Case Theory Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

h
a

= 0.01 ED2 0.1010 0.1936 0.1936 0.2718 0.3212 0.3242
ED3 0.1000 0.1906 0.1906 0.2670 0.3147 0.3178
ED4 0.0999 0.1905 0.1905 0.2668 0.3145 0.3175
ED5 0.0999 0.1904 0.1904 0.2667 0.3144 0.3174
Ref 0.0999 0.1909 0.1909 0.2673 0.3144 0.3171

Table 7.24: First six frequency parameters for di�erent ESL theories. Fully clamped

moderately thick isotropic plate

compared with those reported in table 4 of [23] and presented in table 7.24.
The results are referred to a twelfth order Ritz expansion.

The plate has been modelled using ESL theories of di�erent order without
taking into account LW theories since the plate is a single isotropic lamina
and ESL results are good approximation of the real behaviour of a plate of
this kind. As it can be seen in table 7.24, ED4 can be choiced since it's
capable to get accurate results with a smaller model than ESL theories of
higher order. This lead to faster time response analysis, especially in the case
of full model time integration, which is more time demanding than the modal
time integration since the later is performed onto a reduced order model.

The results of the time response analysis, in terms of displacements ad
stresses, are referred to the followings coordinates:

Transverse displ., w, computed at: (a
2
, b

2
, 0)

Sigmax, σxx, computed at: (a
2
, b

2
, h

2
)

Sigmayy, σyy, computed at: (a
2
, b

2
, h

2
)

Sigmaxy, σxy, computed at: (0, 0,−h
2
)

Sigmaxz, σxz, computed at: (0, b
2
, 0)

Sigmayz, σyz, computed at: (a
2
, 0, 0)

Then, are adimensionalized as following:
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Transverse displ. w̄ =
100h3E

pza4
w

Sx =
h2

Pza2
σxx

Sy =
h2

Pza2
σyy

Sxy =
h2

Pza2
σxy

Sxz =
h

Pza
σxz

Syz =
h

Pza
σyz

The young modulus used in the adimensionalization is E2.

The integration parameters γ and β have been set to 0.5 and 0.25 respec-
tively to ensure that the Newmark integration method will be asymptotically
stable.

The reduced order modal model has been made adopting a twentieth order
modal expansion to be highly accurate whereas the order of the problem is
dramatically reduced from thousands to 20 degrees of freedom. For this
reason the compute of the dynamic response obtained with the modal model
is extremely fast, while the direct integration takes several minutes.

The time of integration has been set to 5 milliseconds with a time step
∆t = 2 · 10−7 seconds as stated in [23], to compare the results with those
presented there. The reference results have been calculated with a MLPG
method, which are in turn confronted with good approximation, directly with
results of a �nite element model by the authors.

The plate is loaded with a pressure of constant distribution acting on
the top surface of the plate with a sinusoidal temporal behaviour: pz(t) =
Pz sin(5000t), able to excite the �rst natural frequency of the plate, which is
at 3287 Hertz.

The computed time response, in terms of adimensionalized transverse
displacements and stresses, is presented in �gures from 7.38 to 7.40.
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Figure 7.38: w̄ (a2 ,
b
2 , 0) vs. time for a moderately thick plate under sinusoidal load
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Figure 7.39: Sx (a2 ,
b
2 ,

h
2 ) vs. time for a moderately thick plate under sinusoidal

load
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Figure 7.40: Sy (a2 ,
b
2 ,

h
2 ) vs. time for a moderately thick plate under sinusoidal

load

Figures 7.38, 7.39 and 7.40 shows that the proposed models, the full and
the modal one, are capable to match the correct dynamic behaviour in therms
of displacements and stresses. The full model time integrations shows a better
precision in the stress recovery with respect of the results of the modal model,
but it will be acquired at the price of an higher computational time.

7.4.3 Problem XI - Time response of an isotropic plate

forced by a transient load

The same plate of problem X is now loaded with a pressure of constant
distribution acting on the top surface of the plate with a transient temporal
behaviour: pz(t) = Pz[H(t−0)−H(t−0.002)], able to excite the �rst natural
frequency of the plate, which is at 3287 Hertz.

The computed time response, in terms of adimensionalized transverse
displacements and stresses, is presented in �gures from 7.41 to 7.43.
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Figure 7.41: w̄ (a2 ,
b
2 , 0) vs. time for a moderately thick plate under transient load
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Figure 7.42: Sx (a2 ,
b
2 ,

h
2 ) vs. time for a moderately thick plate under transient load
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Figure 7.43: Sy (a2 ,
b
2 ,

h
2 ) vs. time for a moderately thick plate under transient load

Figures 7.41, 7.42 and 7.43 shows that the proposed models, the full and
the modal one, are capable to match the correct dynamic behaviour in therms
of displacements and stresses. Same consideration of the previous problem
can be done.

7.5 Dynamic frequency response

The frequency response of a plate forced by a load with constant amplitude
with respect to the range of frequencies selected has been calculated with
both the full model and the reduced order modal model.

7.5.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

A preliminary study has been done to assess the convergence of the solu-
tion with respect to the proposed Ritz expansion and the order of the modal
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model.
In table 7.25 is shown the variation of the �rst six natural frequencies,

expressed in Hertz, obtained with an ESL ED4 theory model, with respect
of the order of the Ritz expansion. The plate considered is a fully clamped
square isotropic plate with an height to side ratio of h

a
= 0.02 and side length

a = 1. The plate is made of Al7075 and is loaded with a unitary pressure
of constant spatial distribution and constant amplitude for all frequencies.
The relative resulting frequency responses are shown in �gure 7.44 and are
calculated for the midplane of the plate at coordinates:x = y = 1

3
.

Theory P Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6

ED4 7 177.7628 361.7543 361.7543 531.8238 644.4254 647.6620
9 177.2437 360.5485 360.5485 529.9513 642.6772 645.8969
10 177.2187 359.9450 359.9450 528.8788 642.5416 645.7633
11 176.9472 359.7962 359.7962 528.7924 641.5107 644.7251
13 176.7636 359.3511 359.3511 528.1074 640.8470 644.0603

Table 7.25: Convergence of �rst six natural frequencies for ESL ED4 theory. Fully

clamped isotropic plate
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Ritz expansion orders
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Figure 7.45 shows that all models are capable to get the correct frequency
response with minimal di�erence between model with expansion of low and
high order. To cancel these di�erence and to ensure the correctness of the
response also at higher frequencies an high Ritz expansion shall be preferred,
since the higher modes of the plate are less well approximate than the lower
modes for low order expansion, as it can be saw in precedence in section 7.3.
For this reason the di�erences reported among the various response around
the antiresonance might be much consistent for a second antiresonance at
higher frequency.

Therefore the order of the Ritz expansion to reach the convergence of
the results shall be selected tacking into account also the frequency range of
interest. More it spreads into the high frequencies more the Ritz expansion
order shall be higher.

Now, the convergence of the modal solution is analyzed adopting the same
plate, with same load. A Ritz expansion of thirteenth order is selected to
create the modal base to create a modal model of various order. The relative
resulting frequency responses are shown in �gure 7.45 and are calculated for
the midplane of the plate at coordinates:x = 1

5
and y = 3

4
.
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Figure 7.45: |w| (a5 ,
3
4b, 0) vs. frequency for a thin plate, modal models of di�erent

order

Figure 7.45 shows that all the presented model based on di�erent modal
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base order are capable to predict well the behaviour of the plate during the
low to mid frequency range, however low order models lack in accuracy in
the prediction of the response at higher frequencies. The reason is the lack of
information of higher modes caused by the earlier truncation of the associated
eigenvectors matrix.

7.5.2 Problem XI - Frequency response of an isotropic

plate

The plate considered is a fully clamped thin isotropic plate, made of Al7075,
with an height to side ratio of h

a
= 0.02 and side length a = 1. The validation

has been carried out only tanking into account this simple plate, since the
capability of the code to get the correct dynamic behaviour of laminated or
sandwich plates is already validated by the analysis reported previously.

The eigenvalue problem of the plate has been solved prior to conduct the
analysis to assure that the model of the plate is good enough to represent the
plate used in Isotropic-1 �nite element model, to avoid errors which could led
to misunderstoodable results. The results presented in table 7.26 are referred
to a twelfth order Ritz expansion and are expressed in Hertz.

Case Theory Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6

h
a

= 0.01 ED2 176.8674 359.7191 359.7191 528.8455 641.8009 644.9982
ED3 176.7639 359.3516 359.3516 528.1081 640.8495 644.0627
ED4 176.7636 359.3511 359.3511 528.1074 640.8470 644.0603
ED5 176.7636 359.3510 359.3510 528.1071 640.8469 644.0602

Table 7.26: First six natural frequencies for di�erent ESL theories. Fully clamped

moderately thin isotropic plate

The plate has been modelled using ESL theories of di�erent order without
taking into account LW theories since the plate is a single isotropic lamina
and ESL results are good approximation of the real behaviour of a plate of
this kind. As it can be seen in table 7.26, ED3 can be the better choice since
it's capable to get accurate results with a smaller model than ESL theories
of higher order. This lead to faster frequency response analysis, especially
in the case of full model analysis, which is more time demanding than the
modal analysis since the later is performed onto a reduced order model.

The results of the analysis, in terms of displacements, are computed in
the center of the midplane of the plate.

The frequency response has been computed for a range of 1000 Hz with
a frequency step ∆f = 1 Hz, between 1 Hz and 1000 Hz. This frequency
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range has been selected since contains the �rst six natural frequencies of the
plates as an illustrative example.

The reduced order modal model has been made adopting a twentieth
order modal expansion to be highly accurate whereas the order of the problem
is dramatically reduced from thousands to 20 degrees of freedom. For this
reason the compute of the frequency response obtained with the modal model
is extremely fast, while the direct integration takes hours.

The load is a punctual force applied at the plate center with constant
intensity all over the frequency range. The load temporal behaviour has no
in�uence in this type of analysis, since it will not be taken into account.

In �gure 7.46 are presented the frequency responses, calculate directly
with the full model, of the plate modelled with the four ESL theories pre-
sented in table 7.26, while in �gure 7.47 are presented the frequency response
obtained with ESL ED2 theory, a Ritz expansion of order thirteen, calculated
directly on the full model and with the reduced order modal model.
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Figure 7.46: |w| (a2 ,
b
2 , 0) vs. frequency for a thin plate, di�erent theory orders
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Figure 7.47: |w| (a2 ,
b
2 , 0) vs. frequency for a thin plate, full and modal models

di�erences

Figures 7.46 shows that the resonance frequencies are well displayed, while
the amplitude of the respective ampli�cations are overestimate by lower or-
der theories. A di�erent consideration can be made for antiresonances: low
order theories anticipate the antiresonances at lower frequencies and also
overestimate theirs amplitudes. Figure 7.47 shows that at low frequencies
the response of the full model and the relative modal model are basically
the same, whereas increasing the frequency, the di�erence between the two
models increase.

7.6 Attached masses

The capability of the code to compute the correct mass matrix of a plate
loaded with various types of attached masses is validated solving the eigen-
value problem of the loaded plate and comparing the resulting natural fre-
quencies with those reported in literature or calculated with validated �nite
element models. Several cases has been analyzed, with respect of masses
de�nition, dimensions and position onto the plate.
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7.6.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

First of all a preliminary study has been done to assess the convergence of
the solution with respect to the proposed Ritz expansion. The �rst natural
frequencies, adimensionalized as λ1 and reported in the followings tables, are
obtained with various boundary conditions, lamination schemes and dimen-
sion of the attached mass.

In table 7.27 is shown the variation of the results obtained with di�erent
ESL and LW theories, with respect of the order of the Ritz expansion. The
plate considered is a simply supported square three layer laminate with an
height to side ratio of h

a
= 0.1. All layers have the same thickness and are

made of CFRP1 and, the lamination scheme is (0/90/0). The attached mass
considered is a punctual mass attached at center of the plate onto the top
surface and has a mass equal at the plate's one.

Theory P Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

ED2 7 0.06183 0.11447 0.12928 0.22894 0.27638 0.39452
9 0.06026 0.10871 0.12699 0.22889 0.26181 0.36399
10 0.06003 0.10870 0.12698 0.22889 0.25991 0.36393
11 0.05910 0.10369 0.12499 0.22884 0.25352 0.34192
12 0.05897 0.10368 0.12499 0.22884 0.25263 0.34189
13 0.05811 0.09928 0.12321 0.22879 0.24703 0.32658
14 0.05803 0.09927 0.12321 0.22879 0.24650 0.32656

LD4 7 0.05930 0.11193 0.12820 0.22025 0.25889 0.36944
9 0.05767 0.10533 0.12534 0.22008 0.24562 0.34788
10 0.05729 0.10529 0.12533 0.22007 0.24292 0.34772
11 0.05648 0.09950 0.12272 0.21991 0.23805 0.32676
12 0.05622 0.09947 0.12271 0.21991 0.23647 0.32667
13 0.05547 0.09434 0.12027 0.21975 0.23217 0.31219
14

Table 7.27: Convergence of �rst six frequency parameters for di�erent theories.

Punctual attached mass

In table 7.28 is shown the variation of the results obtained with two dif-
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ferent boundary conditions, for ESL ED4 theory, with respect of the order of
the Ritz expansion. The plate considered is a rectangular four layer laminate
with an height to side ratio of h

a
= 0.1 and a form factor b

a
= 1.5. All layers

have the same thickness and are made of CFRP4, the lamination scheme
is (0/90/0/90). The plate is loaded with a distributed mass attached onto
the top surface of the plate and has a mass equal at the plate's one. The
mass has sides length equal at 1

10
of the respective plate sides, its center is

positioned at coordinates: xc
a

= 0.35, yc
b

= 0.7.

Boundary P Adimensionalized natural frequencies
conditions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

CFSF 7 0.04874 0.10146 0.11294 0.13014 0.13959 0.16557
9 0.04727 0.10079 0.11048 0.12329 0.13295 0.15763
10 0.04713 0.10063 0.11012 0.11764 0.13150 0.15550
11 0.04671 0.10026 0.10932 0.11613 0.13059 0.15459
12 0.04631 0.09989 0.10796 0.10991 0.12979 0.15267
13 0.04623 0.09971 0.10700 0.10916 0.12939 0.15182
14 0.04594 0.09928 0.10479 0.10832 0.12865 0.15119

FCCF 7 0.02062 0.07465 0.09742 0.13266 0.15440 0.16920
9 0.02054 0.07417 0.09357 0.12425 0.14864 0.16330
10 0.02051 0.07381 0.09197 0.12074 0.14465 0.16040
11 0.02049 0.07367 0.09031 0.11784 0.14314 0.15886
12 0.02047 0.07351 0.08933 0.11624 0.14095 0.15791
13 0.02045 0.07328 0.08812 0.11431 0.13900 0.15646
14 0.02044 0.07319 0.08702 0.11280 0.13800 0.15588

Table 7.28: Convergence of �rst six frequency parameters for di�erent boundary

conditions. Distributed attached mass

In table 7.29 is shown the variation of the results obtained with di�erent
mass dimensions, for LW LD3 theory, with respect of the order of the Ritz
expansion. The squared, fully clamped plates considered are a three layer
laminate with an height to side ratio of h

a
= 0.15. All layers have the same

thickness, are made of CFRP3 and the lamination scheme is (45/0/ − 45).
The plate is loaded with a distributed mass attached onto the top surface of
the plate and has a mass equal at the plate's one. The mass has side length
ratios equal at c

a
= d

b
= 1

20
in the �rst case and c

a
= d

b
= 1

5
in the second case.

The mass center is positioned at the plate center in both cases.
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Mass P Adimensionalized natural frequencies
dimensions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6
c
a

= d
b

= 7 0.03551 0.05787 0.10816 0.38659 0.41885 0.44917
1
20

9 0.03393 0.05156 0.09656 0.32738 0.34302 0.35890
10 0.03389 0.05126 0.09524 0.28362 0.29381 0.29792
11 0.03265 0.04712 0.08843 0.27231 0.27832 0.28149
12 0.03262 0.04690 0.08744 0.23673 0.23847 0.24075
13 0.03159 0.04382 0.08244 0.22734 0.22765 0.22948
14 0.03157 0.04365 0.08167 0.19696 0.19848 0.20007

c
a

= d
b

= 7 0.03946 0.06939 0.12098 0.14556 0.14914 0.16146
1
5

9 0.03896 0.06604 0.10863 0.12559 0.12934 0.13366
10 0.03893 0.06536 0.10088 0.11406 0.11432 0.11779
11 0.03875 0.06436 0.09981 0.11175 0.11260 0.11539
12 0.03874 0.06388 0.09447 0.10279 0.10547 0.10619
13 0.03870 0.06352 0.09400 0.10140 0.10462 0.10490
14 0.03869 0.06323 0.09063 0.09616 0.09959 0.10010

Table 7.29: Convergence of �rst six frequency parameters for di�erent distributed

attached mass dimensions

As it can be seen from the previous tables, the attached mass, punctual
or distributed, a�ects negatively the convergence of the Ritz method, since
the local e�ects generated by the presence of the mass are di�cultly well
approximated by global polynomials of relatively low order. It can also be
noted that, between natural frequencies, some are well approximated also by
low order expansion: this is due to the position and dimension of the attached
mass, since a mass positioned in a modal node does not a�ect that mode,
and then will not a�ect the convergence of the relate natural frequency.

This behaviour implies that in case of attached mass an eleventh order
Ritz expansion might not be su�ciently accurate, as stated before in the
eigenvalue analysis section, for a not-loaded plate, and an higher order
shall be selected. Moreover, high order expansions are required when the
presence of attached masses is coupled with clamped boundaries. It can be
observed that, also in this case, the convergence is monotonic from above as
Ritz terms are added and that the trend is similar for all theories selected.

From now, if not speci�ed di�erently, all the results presented in this
section are calculated using a twelfth order Ritz expansion. Go beyond this
value will slightly improve the results while the compute became more and
more time demanding.
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7.6.2 Problem XII - Natural frequencies of an isotropic

plate with a concentrate mass

A thin, simply supported isotropic square plate is considered, it's made of
Steel with an height to side ratio of h

a
= 0.0025. The plate is loaded with a

point mass of 50kg positioned onto the top surface at xm = ym = 1
4
a. The

computed �rst �ve natural frequencies are confronted with those reported in
[27], and are reported in rad

sec
in table 7.30. The results of the loaded plate

has been modelled using only ESL theories, since LW theories have not been
taken into account since the plate is thin and isotropic.

Case Theory Dof Natural frequencies [ rad
sec

]
ω1 ω2 ω3 ω4 ω5

Plate loaded ED2 1296 31.7679 62.8709 95.4097 127.0926 180.2334
with a ED3 1728 31.7678 62.8701 95.4093 127.0913 180.2315
point mass ED4 2160 31.7677 62.8706 95.4093 127.0915 180.2314

ED5 2592 31.7672 62.8708 95.4089 127.0914 180.2312
Ref 31.8536 63.5505 95.4149 128.0735 180.8910

Table 7.30: First six natural frequencies of a square isotropic plate with di�erent

ESL theories. Punctual attached mass

As it can be seen, the computed frequencies are in good agreement with
those of reference even for lower order theories, mainly because the plate
considered is very thin and isotropic.

The e�ect of the mass is seen in the general lowering of the natural fre-
quencies of the plate, except for those frequencies associated with modal
shapes which contains the location of the concentrate mass in a nodal point.

7.6.3 Problem XIII - Natural frequencies of an isotropic

plate with a distribute mass

A thin, simply supported isotropic rectangular plate is considered, it's made
of Steel with an height to side ratio of h

a
= 0.005 and an aspect ratio: λ =

b
a

= 1.5. The plate is loaded by three di�erent distributed mass, shown in
�gure 7.48, to investigate the e�ect of size and location of distributed mass
loading on the transverse vibration of the plate itself. The additional mass
loading in all three cases is 10% of the mass of the unloaded plate. The
loaded mass in both cases (a) and (b) is distributed around the center of the
plate while that in case (c) is closer to one of the corners of the plate. The
loaded area in case (a) is the 25% of the total plate surface area while, in
case (b) and (c) it is the 1%.
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Figure 7.48: Position and dimensions of attached distributed masses of case (a)
(left), case (b) (center) and case (c) (right)

The computed natural frequencies are adimensionalized with respect to
λ10 to be confronted with those reported in [27], and are reported in table
7.31. LW theories have not been taken into account since the plate is thin
and isotropic.

The maximum kinetic energy of the vibrating plate is a�ected most if the
mass loading is added on an antinode of the plate in which case a large change
of natural frequency of the corresponding vibration mode will be e�ected.
This prediction is substantiated by observing the change of frequency in
loading case (b) as shown in table 7.31. Vibration modes with mass loading
on an antinode, such as ω̄2 and ω̄3 of case (b), have relatively larger changes
of natural frequency than the modes with mass loading about a node, such
as ω̄1 and ω̄4 of the same case. Since the mass loading in case (b) is more
concentrated than that in case (a), the e�ects of the loading on the maximum
kinetic energy of the plate for some vibration modes are more dramatic in
case (b) than that in case (a). Therefore, the frequency changes in case (a) is
generally not as great as that in case (b). In loading case (c), the added mass
is moved closer to a corner of the plate. The change of natural frequencies is
more signi�cant for modes with the mass added on an antinode such as ω̄2

and ω̄3.

7.6.4 Problem XIV - Natural frequencies of a sandwich

plate with a distribute mass

The moderately thick sandwich plate of Problem IX is now considered with
di�erent boundary conditions. The results are obtained adopting LW theo-
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Case Theory Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5

Case 0 ED2 14.2553 27.4125 43.8572 49.3382 57.0113
Unloaded ED3 14.2552 27.4122 43.8564 49.3372 57.0099
plate ED4 14.2551 27.4122 43.8564 49.3372 57.0099

ED5 14.2552 27.4122 43.8564 49.3372 57.0099
Ref 14.2561 27.4156 43.8649 49.3480 57.0244

Case (a) ED2 12.6552 25.3840 40.6031 46.5640 54.2691
ED3 12.6551 25.3837 40.6024 46.5630 54.2678
ED4 12.6551 25.3837 40.6024 46.5630 54.2678
ED5 12.6551 25.3837 40.6024 46.5630 54.2678
Ref 12.6559 25.3867 40.6104 46.5741 54.2811

Case (b) ED2 12.0062 27.2360 43.1325 43.5724 56.9993
ED3 12.0062 27.2357 43.1315 43.5715 56.9979
ED4 12.0061 27.2357 43.1315 43.5715 56.9979
ED5 12.0062 27.2357 43.1315 43.5715 56.9979
Ref 12.0753 26.8918 41.9978 45.3518 56.8956

Case (c) ED2 13.0481 24.7482 39.9342 48.5171 53.1302
ED3 13.0480 24.7479 39.9334 48.5161 53.1289
ED4 13.0480 24.7479 39.9334 48.5161 53.1289
ED5 13.0480 24.7479 39.9334 48.5160 53.1289
Ref 13.0495 24.7544 39.9536 48.5313 53.1536

Table 7.31: First six frequency parameters of a rectangular isotropic plate with

di�erent ESL theories. Distributed attached mass

ries LD2 and LD4 to be capable of get the correct behaviour of a softcore
sandwich plate, as been stated in the consideration of Problem IX, and are
compared with those calculated using the Sandwich-9 �nite element model,
already validated in Problem IX. The distributed mass is positioned onto
the top face at the plate center and has a surface of 1% of the surface area
of the plate. Several boundary conditions are considered and the results are
reported in table: 7.32 and are expressed in Hertz. To see the e�ect of the
mass on the natural frequencies of the plate, in table are presented also the
�rst frequencies of the plate without the mass attached, calculated with LW
LD4 theory and are marked as Plate.

The attached mass considered has a surface of 1% of the total plate surface
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area, an assumed height ratio with plate thickness of hm
h

= 0.3 and a density
of ρm = 10000 Kg

m3 . The mass is distributed around the center of the plate
onto the top surface of the sandwich.

The number of degrees of freedom of the proposed LD2 model is 4752,
while the degrees of freedom rises to 9072 for the proposed LD4 model while
the Sandwich-9 model has 100101 elements.

Boundary Theory Dimensional natural frequencies [Hz]
conditions ω1 ω2 ω3 ω4 ω5 ω6

CCCC Plate 91.2956 157.1810 157.1810 208.0211 251.0847 251.3084
LD2 73.5984 155.5946 155.6646 187.8739 207.9654 251.0537
LD4 73.5939 155.5781 155.6481 187.8361 207.9403 251.0065
FEM 73.4492 153.2220 157.0500 186.5601 207.3806 250.2000

CFFF Plate 27.2257 49.3726 86.9155 102.7856 112.7519 146.2908
LD2 26.1995 49.3426 79.8732 102.7134 105.3166 134.6323
LD4 26.1980 49.3371 79.8476 102.6853 105.2627 134.5761
FEM 25.2844 50.0606 77.5522 101.2431 107.2138 135.2726

FCCF Plate 38.7562 91.8611 92.0176 128.2759 164.9609 165.1030
LD2 37.3507 80.7648 91.7722 119.3720 160.7237 164.5115
LD4 37.3487 80.7429 91.7445 119.3399 160.6563 164.4099
FEM 37.3356 80.2619 92.0033 119.1614 158.1700 165.8625

Table 7.32: First six natural frequencies of a square sandwich plate with di�erent

theories. Distributed attached mass

As shown in table: 7.32, the resulting �rst natural frequency are in agree-
ment with those calculate with the Sandwich-9 �nite element model, with a
very smaller model, in all the proposed boundary conditions. The e�ect of
the distribute mass is clearly visible in the systematic lowering of the natural
frequencies. However, also in this case, some modes feels more the e�ect of
the mass presence since the mass is nearer to theirs modal antinode.

7.7 Suspended masses

The capability of the code to compute correct mass and sti�ness matrices of
a plate loaded with of suspended masses is validated solving the eigenvalue
problem of the augmented system and comparing the resulting natural fre-
quencies with those reported in literature. Several con�gurations of plates
with suspended mass have been adopted, with respect of mass values, sti�-
ness ratios and position onto the plate.

104



7.7.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

First of all a preliminary study has been done to assess the convergence of
the solution with respect to the proposed Ritz expansion. The �rst natural
frequencies, adimensionalized as λ1 and reported in the followings tables, are
obtained with various boundary conditions, lamination schemes and dimen-
sion of the attached mass.

In table 7.33 is shown the variation of the results obtained with di�erent
ESL and LW theories, with respect of the order of the Ritz expansion. The
plate considered is a simply supported square three layer laminate with an
height to side ratio of h

a
= 0.1. All plies have the same thickness and are

made of CFRP1 and, the lamination scheme is (0/90/0). The suspended
mass is located at the center of the plate onto the top surface and has a mass
equal at that of the plate. The relative sti�ness of the spring is:

K0 =
12ab(1− ν2)

E1h3
k0 = 0.5

In table 7.34 is shown the variation of the results obtained with two dif-
ferent boundary conditions, for ESL ED4 theory, with respect of the order of
the Ritz expansion. The plate considered is a rectangular four layer laminate
with an height to side ratio of h

a
= 0.1 and a form factor b

a
= 1.5. All layers

have the same thickness, are made of CFRP4 and the lamination scheme
is (0/90/0/90). The suspended mass is located at coordinates: xm

a
= 0.3,

ym
b

= 0.5 onto the top surface and has a mass equal at that of the plate. The
relative sti�ness of the spring is:

K0 =
12ab(1− ν1ν2)

E1h3
k0 = 0.8

In table 7.35 is shown the variation of the results obtained with di�erent
relative spring sti�ness, for LW LD2 theory, with respect of the order of
the Ritz expansion. The squared, fully clamped plates considered are a
three layer laminate with an height to side ratio of h

a
= 0.15. All layers

have the same thickness, are made of CFRP3 and the lamination scheme
is (45/0/ − 45). The suspended mass is located at coordinates: xm

a
= 0.7,

ym
b

= 0.6 onto the top surface and has a mass equal at that of the plate. The
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Theory P Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

ED2 7 0.01307 0.11447 0.12928 0.15468 0.22894 0.38373
9 0.01305 0.10871 0.12699 0.15467 0.22889 0.36399
10 0.01305 0.10870 0.12698 0.15467 0.22889 0.36393
11 0.01304 0.10369 0.12499 0.15467 0.22884 0.34192
12 0.01304 0.10368 0.12499 0.15467 0.22884 0.34189
13 0.01303 0.09928 0.12321 0.15467 0.22879 0.32658
14 0.01303 0.09927 0.12321 0.15467 0.22879 0.32656

LD4 7 0.01305 0.11193 0.12820 0.14931 0.22025 0.35379
9 0.01303 0.10533 0.12534 0.14930 0.22008 0.34788
10 0.01302 0.10529 0.12533 0.14930 0.22007 0.34772
11 0.01301 0.09950 0.12272 0.14930 0.21991 0.32676
12 0.01301 0.09947 0.12271 0.14930 0.21991 0.32667
13 0.01300 0.09434 0.12027 0.14929 0.21975 0.31219
14 0.01299 0.09432 0.12027 0.14929 0.21975 0.31213

Table 7.33: Convergence of �rst six frequency parameters for di�erent theories.

Punctual suspended mass

Boundary P Adimensionalized natural frequencies
conditions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

CFSF 7 0.01075 0.10143 0.10405 0.13717 0.13781 0.18886
9 0.01074 0.10114 0.10397 0.13443 0.13448 0.16015
10 0.01073 0.10110 0.10392 0.13207 0.13387 0.15753
11 0.01072 0.10068 0.10388 0.12715 0.13055 0.14662
12 0.01072 0.10067 0.10385 0.12699 0.12912 0.14651
13 0.01071 0.09998 0.10377 0.11889 0.12634 0.14338
14 0.01071 0.09964 0.10377 0.11643 0.12625 0.14285

FCCF 7 0.01040 0.03603 0.08330 0.12911 0.15162 0.17159
9 0.01039 0.03601 0.08302 0.12202 0.14851 0.16840
10 0.01038 0.03601 0.08283 0.11674 0.14715 0.16661
11 0.01038 0.03600 0.08271 0.11378 0.14652 0.16368
12 0.01037 0.03600 0.08247 0.10932 0.14575 0.16172
13 0.01037 0.03600 0.08234 0.10738 0.14545 0.15942
14 0.01036 0.03599 0.08184 0.10186 0.14472 0.15455

Table 7.34: Convergence of �rst six frequency parameters for di�erent boundary

conditions. Punctual suspended mass
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relative sti�ness of the spring are in the �rst case:

K0 =
12ab(1− ν1ν2)

E1h3
k0 = 0.3

and K0 = 1 in the second case.

Relative P Adimensionalized natural frequencies
sti�ness ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

K0 = 0.3 7 0.01541 0.21832 0.32824 0.43346 0.52771 0.53552
9 0.01540 0.19650 0.32294 0.38781 0.52684 0.53156
10 0.01539 0.18179 0.32044 0.36112 0.52650 0.53018
11 0.01539 0.17640 0.31964 0.35010 0.52637 0.52971
12 0.01539 0.16950 0.31853 0.33534 0.52623 0.52917
13 0.01538 0.15937 0.31523 0.32132 0.52609 0.52862
14 0.01538 0.15859 0.31212 0.31957 0.52606 0.52852

K0 = 1 7 0.02780 0.21841 0.32962 0.43347 0.52903 0.53568
9 0.02774 0.19654 0.32434 0.38781 0.52801 0.53188
10 0.02769 0.18182 0.32183 0.36113 0.52757 0.53061
11 0.02768 0.17642 0.32102 0.35013 0.52739 0.53018
12 0.02765 0.16952 0.31986 0.33540 0.52719 0.52971
13 0.02760 0.15938 0.31587 0.32208 0.52698 0.52924
14 0.02760 0.15860 0.31236 0.32073 0.52692 0.52916

Table 7.35: Convergence of �rst six frequency parameters for a square plate loaded

with a punctual suspended mass with di�erent relative spring sti�ness

As it can be seen from the previous tables, the presence of a suspended
mass a�ects negatively the convergence of the Ritz method, since the local
e�ects generated by the presence of the mass are di�cultly well approxi-
mated by global polynomials of relatively low order. This implies that in
case of suspended mass an eleventh order Ritz expansion might not be suf-
�ciently accurate, as stated before in the eigenvalue analysis section for a
not-loaded plate, and an higher order shall be selected as stated for attached
masses, especially if higher frequencies have to be calculated with very good
approximation. In can be observed that, also in this case, the convergence is
monotonic from above as Ritz terms are added and that the trend is similar
for all theories selected.

From now, if not speci�ed di�erently, all the results presented in this
section are calculated using a thirteen order Ritz expansion. Go beyond this
value will slightly improve the results while the compute became more and
more time demanding.
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7.7.2 Problem XV - Natural frequencies of an isotropic

plate with spring-mass system

An isotropic square simply supported thin plate has been considered. The
plate is made of Al7075, with an height to side ratio of h

a
= 0.005. The

suspended mass is located at xm = ym = 3
4
and the relative sti�ness of the

spring K0 and the mass ratio Mr = mmass
mplate

are varied in a range of values for
the sake of comparison with [3].

The resulting �rst six natural frequencies, adimensionalized with respect
to λ8, are presented in table 7.36. The results of the plate without suspended
mass has been modeled using various ESL theories to select the better model
to conduct the subsequent analysis, which is ED3, since higher order theories
not improve the results consistently whereas increase the degrees of freedom
of the model and the computing time. LW theories have not been taken into
account since the plate is thin and isotropic.

The case of spring of in�nite sti�ness has also been modeled adopting a
punctual attached mass to validate in an other way both the capability of
the code, since the results of both model shall be almost equal. The results
of these analysis are marked as ¯ED3.

It is important to notice that for some normal modes exists an e�ective
decoupling of the spring-mass system from the plate. This happens when
a nodal line of the plate oscillation contains the position of the attached
system. In that case the mass does not disturb neither the mode nor the
frequency of vibration.

It is appreciated that when the relative rigidity of the spring is small, the
�rst natural frequency practically coincides with the frequency of the one
degree spring-mass system with a negligible in�uence of the plate on it. For
higher values of relative sti�ness K0, the frequency coe�cient of the discrete
system is strongly modi�ed by the in�uence of the plate. The remaining
values show the natural frequency of the system modi�ed by the presence
of the spring-mass system, when the spring-mass system is not located at a
nodal line.

The validation has been carried out only tanking into account this simple
plates, since the capability of the code to get the correct dynamic behaviour
of laminated or sandwich plates is already validated by the analysis reported
previously.
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Relative Mass theory Adimensionalized natural frequencies
sti�ness Ratio ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

Unloaded ED2 19.7377 49.3383 49.3383 78.9319 98.6571 98.6571
plate ED3 19.7375 49.3372 49.3372 78.9292 98.6529 98.6529

ED4 19.7375 49.3372 49.3372 78.9292 98.6529 98.6529
ED5 19.7375 49.3373 49.3373 78.9292 98.6529 98.6529

K0 = 0.5 Mr = 0.25 ED3 1.4123 19.7499 49.3365 49.3567 78.9419 98.6407
Ref 1.4128 19.752 49.368 78.969 98.696

Mr = 0.5 ED3 0.9987 19.7496 49.3357 49.3560 78.9419 98.6283
Ref 0.9990 19.752 49.368 78.969 98.696

Mr = 1 ED3 0.7059 19.7489 49.3342 49.3544 78.9419 98.6029
Ref 0.7071 19.752 49.368 78.969 98.696

K0 = 5 Mr = 0.25 ED3 4.4092 19.8678 49.3365 49.5389 79.0562 98.6407
Ref 4.4084 19.869 49.550 79.083 98.696

Mr = 0.5 ED3 3.1184 19.8642 49.3357 49.5373 79.0560 98.6283
Ref 3.1180 19.866 49.549 79.083 98.696

Mr = 1 ED3 2.2053 19.8620 49.3342 49.5353 79.0559 98.6029
Ref 2.2050 19.865 49.549 79.083 98.696

K0 = inf Mr = 0.25 ED3 17.1149 34.0855 49.3365 66.2700 93.3565 98.6407
¯ED3 17.1165 34.1022 49.3365 66.2943 93.3723 98.6407
Ref 17.103 33.954 66.091 93.267 98.696

Mr = 0.5 ED3 14.8139 30.0627 49.3357 64.8788 92.8900 98.6283
¯ED3 14.8175 30.0799 49.3357 64.9043 92.9076 98.6283
Ref 14.785 29.928 64.692 92.791 98.696

Mr = 1 ED3 11.8166 27.7553 49.3342 64.1378 92.6289 98.6029
¯ED3 11.8218 27.7701 49.3342 64.1635 92.6473 98.6029
Ref 11.776 27.640 63.953 92.532 98.696

Table 7.36: First six frequency parameters for di�erent theories. Punctual sus-

pended mass with di�erent relative sti�ness and mass ratios

7.8 Patches

The capability of the code to compute the correct mass and sti�ness matrices
of a plate equipped with various types of patches is validated solving the
eigenvalue problem of the equipped plate and comparing the resulting natural
frequencies with those calculated with various �nite element models designed
for this scope. The patches has been considered with and without their
sti�ness e�ects: in this later case their contribution can be seen as the same
contribution made by a distributed attached mass.
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7.8.1 Convergence Analysis

The approximation obtained by the Ritz method can be made as accurate as
desired by increasing the number of terms in the expansion, but it is trun-
cated to a �nite value due to computational time and computer capability.
Therefore, the accuracy of the approximate solution is a�ected by the rate
of convergence associated with the choice of the set of trial functions.

First of all a preliminary study has been done to assess the convergence of
the solution with respect to the proposed Ritz expansion. The �rst natural
frequencies, adimensionalized as λ1 and reported in the followings tables,
are obtained with various ESL theories, boundary conditions and patches
dimension.

In table 7.37 is shown the variation of the results obtained with di�erent
ESL theories, with respect of the order of the Ritz expansion. The plate
considered is a simply supported square three layer laminate with an height
to side ratio of h

a
= 0.1. All plies have the same thickness and are made of

CFRP1 and, the lamination scheme is (0/90/0).
The squared patch considered has sides length equal at 1

10
of the respective

plate sides, its center is positioned at plate center, onto the top surface. The
patch is made of an isotropic material similar to Isot2 but with a density 100
times higher. The ratio between patch and plate height is: hm

h
= 0.1

Theory P Adimensionalized natural frequencies
ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

ED3 9 0.1230 0.2065 0.2204 0.2264 0.3112 0.3698
10 0.1229 0.2065 0.2204 0.2264 0.3101 0.3697
11 0.1227 0.2058 0.2201 0.2261 0.3083 0.3696
12 0.1227 0.2058 0.2201 0.2261 0.3079 0.3695
13 0.1226 0.2053 0.2199 0.2259 0.3066 0.3695
14 0.1226 0.2053 0.2199 0.2259 0.3064 0.3694

ED5 9 0.1229 0.2057 0.2202 0.2259 0.3071 0.3697
10 0.1228 0.2057 0.2202 0.2259 0.3059 0.3696
11 0.1226 0.2049 0.2200 0.2256 0.3042 0.3695
12 0.1226 0.2049 0.2200 0.2256 0.3037 0.3694
13 0.1225 0.2043 0.2198 0.2254 0.3024 0.3694
14 0.1225 0.2043 0.2198 0.2254 0.3021 0.3692

Table 7.37: Convergence of �rst six frequency parameters for di�erent theories.

Isotropic patch attached
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In table 7.38 is shown the variation of the results obtained with two dif-
ferent boundary conditions, for ESL ED4 theory, with respect of the order of
the Ritz expansion. The plate considered is a rectangular four layer laminate
with an height to side ratio of h

a
= 0.1 and a form factor b

a
= 1.5. All plies

have the same thickness and are made of CFRP4 and the lamination scheme
is (0/90/0/90).

The rectangular patch considered has sides length equal at 1
10

of the
respective plate sides, its center is positioned at coordinates: xc

a
= 0.35,

yc
b

= 0.7, onto the top surface. The patch is made of an isotropic material
similar to Isot2 but with a density 100 times higher. The ratio between patch
and plate height is: hm

h
= 0.1

Boundary P Adimensionalized natural frequencies
conditions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

CFSF 9 0.0920 0.1037 0.1364 0.1889 0.1970 0.2349
10 0.0920 0.1037 0.1363 0.1886 0.1967 0.2347
11 0.0919 0.1037 0.1363 0.1878 0.1965 0.2345
12 0.0919 0.1037 0.1362 0.1869 0.1963 0.2341
13 0.0918 0.1037 0.1362 0.1868 0.1963 0.2340
14 0.0918 0.1037 0.1362 0.1862 0.1961 0.2338

FCCF 9 0.0325 0.0821 0.1334 0.1614 0.1676 0.2225
10 0.0325 0.0821 0.1333 0.1611 0.1675 0.2220
11 0.0325 0.0821 0.1332 0.1609 0.1674 0.2216
12 0.0325 0.0821 0.1331 0.1609 0.1674 0.2213
13 0.0325 0.0821 0.1330 0.1607 0.1674 0.2211
14 0.0325 0.0821 0.1329 0.1606 0.1674 0.2208

Table 7.38: Convergence of �rst six frequency parameters for di�erent boundary

conditions. Isotropic patch attached

In table 7.39 is shown the variation of the results obtained with di�erent
patch dimensions, for ESL ED3 theory, with respect of the order of the Ritz
expansion. The squared, fully clamped plates considered are a three layer
laminate with an height to side ratio of h

a
= 0.15. All plies have the same

thickness, are made of CFRP3 and the lamination scheme is (45/0/− 45).
The squared patches are attached onto the top surface and their center

are positioned at the plate center in both cases. The patch has sides length
equal at 1

20
of the respective plate sides in the �rst case and equal at 1

5
in the

second case. The patches are made of an isotropic material similar to Isot2
but with a density 100 times higher. The ratio between patches and plate
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height is: hm
h

= 0.2 in both cases.

Patch P Adimensionalized natural frequencies
dimensions ω̄1 ω̄2 ω̄3 ω̄4 ω̄5 ω̄6

side length 9 0.2785 0.4665 0.5261 0.6266 0.6369 0.7142
ratio 1

20
10 0.2784 0.4650 0.5261 0.6229 0.6367 0.7142
11 0.2775 0.4492 0.5256 0.5961 0.6175 0.7142
12 0.2774 0.4475 0.5256 0.5941 0.6172 0.7142
13 0.2766 0.4328 0.5251 0.5792 0.6006 0.7142
14 0.2765 0.4310 0.5250 0.5779 0.6002 0.7142

side length 9 0.1356 0.2227 0.3195 0.4032 0.4222 0.4260
ratio 1

5
10 0.1356 0.2212 0.3113 0.3772 0.4013 0.4044
11 0.1354 0.2206 0.3101 0.3719 0.3966 0.3995
12 0.1354 0.2200 0.3050 0.3607 0.3829 0.3876
13 0.1353 0.2192 0.3043 0.3576 0.3809 0.3832
14 0.1353 0.2190 0.3017 0.3539 0.3731 0.3778

Table 7.39: Convergence of �rst six frequency parameters for a square plate with

an isotropic patch attached with di�erent dimensions

As it can be seen from the previous tables, the presence of the patch does
not a�ects the convergence of the Ritz method, since the patches as theoret-
ically handled as layers of reduced surface, instead of add mass a posteriori
as done for the attached masses. Again, with fully clamped boundary con-
ditions convergence is slower than in other cases. Same consideration can be
made for this issue as done for previous convergence problems. From now, if
not speci�ed di�erently, all the results presented in this section are calculated
using a twelfth order Ritz expansion.

7.8.2 Problem XVI - Natural frequencies of an isotropic

plate equipped with an isotropic patch

An isotropic square fully clamped plate has been considered. The plate is
made of Al7075, with an height to side ratio of h

a
= 0.02 and a side length

a = 1 meter. The patch is located onto the top face at the plate center and
has a surface of 1% of the surface area of the plate. The ratio between patch
and plate height is: hm

h
= 0.1 and the patch is made by an isotropic material

which has the same characteristics of Al7075 with a density 100 times higher.
To not consider the sti�ness e�ect of the patch, the young and shear modulus
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have been set as 10, to let the sti�ness of the patch be negligible with respect
to the sti�ness of the plate.

The �rst six natural frequencies are presented in table 7.40 and are ex-
pressed in Hertz. Case 0 refers to the plate without the patch, Case 1 refers
to the plate with the patch attached but without consider the sti�ness e�ect
of the patch, which is considered in Case 2. Results obtained are confronted
with those of �nite element model Isotropic-1

Case Theory Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6

Case 0 ED2 177.0411 359.8006 359.8006 528.8686 642.4252 645.6243
ED3 176.9266 359.4498 359.4498 528.1782 641.4200 644.6360
ED4 176.9265 359.4491 359.4491 528.1767 641.4191 644.6351
ED5 176.9265 359.4491 359.4491 528.1766 641.4189 644.6350
FEM 176.4279 358.5992 358.5992 526.9542 639.7706 642.9764

Case 1 ED2 138.8601 354.8723 354.8723 512.2447 528.5583 642.0435
ED3 138.7752 354.5279 354.5279 511.4945 527.8685 641.0402
ED4 138.7752 354.5273 354.5273 511.4934 527.8670 641.0393
ED5 138.7751 354.5272 354.5272 511.4906 527.8669 641.0391
FEM 138.1562 353.1300 353.1300 506.8442 525.9879 638.9488

Case 2 ED2 140.0848 355.0246 355.0246 520.0070 529.9483 644.1652
ED3 140.0029 354.6792 354.6792 519.2895 529.2603 643.1602
ED4 140.0026 354.6783 354.6783 519.2849 529.2585 643.1587
ED5 140.0023 354.6779 354.6779 519.2817 529.2582 643.1580
FEM 139.5271 353.7638 353.7638 516.6157 527.9115 641.3209

Table 7.40: First six natural frequencies of a square isotropic plate with di�erent

ESL theories and an isotropic patch attached
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Figure 7.49: Fourth modal shape of Isotropic-1 �nite element model

In in table 7.40 the sti�ening e�ect of the patch can be seen looking at
the general increasing of the natural frequencies, which is quite negligible for
lower frequency, while become considerable for ω4. This is due to the relative
mode shape: if the mode shape deforms considerably the patch, its sti�ness
become more e�ective and then increase more that natural frequency than
others. This e�ect can be predicted looking at the mode shapes presented in
�gure 7.49, relative at the fourth natural frequency of the Isotropic-1 �nite
element model. It can be seen that at this frequency the modal shape deforms
the patch considerably, then, also its sti�ness became comparable with that
of the plate.

7.8.3 Problem XVII - Natural frequencies of an orthotropic

laminate equipped with an isotropic patch

The crossply laminate of Problem V II is now considered. The laminate has
a stack sequence of (0/90), is made of CFRP4, with an height to side ratio of
h
a

= 0.25 and a side length a = 1. The plate has two adjacent edges clamped
and two adjacent edges free (FCCF). The patch is located onto the top face
at the plate center and has a surface of 1% of the surface area of the plate.
The ratio between patch and plate height is: hm

h
= 0.1 and the patch is made

by an isotropic material which has the same characteristics of Isot with a
density 100 times higher. To not consider the sti�ness e�ect of the patch,
the young and shear modulus have been set as 10−5, to let the sti�ness of
the patch be negligible with respect to the plate.

The �rst six natural frequencies presented in table 7.41 are the adimen-
sional frequencies ωn, proposed here without an adimensionalization, but still
adimensional since the materials properties are adimensional.
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Case Theory Adimensional natural frequencies
ω1 ω2 ω3 ω4 ω5 ω6

Case 0 ED2 0.1132 0.3058 0.3157 0.4502 0.6091 0.6096
ED3 0.1119 0.3003 0.3097 0.4429 0.5946 0.5952
ED4 0.1116 0.2988 0.3083 0.4418 0.5899 0.5904
ED5 0.1112 0.2967 0.3061 0.4386 0.5853 0.5859
FEM 0.1110 0.2987 0.3060 0.4395 0.5900 0.5902

Case 1 ED2 0.1104 0.2648 0.2902 0.3489 0.4025 0.5372
ED3 0.1090 0.2553 0.2662 0.3139 0.3899 0.5127
ED4 0.1087 0.2326 0.2561 0.3038 0.3841 0.4526
ED5 0.1082 0.2028 0.2498 0.2976 0.3582 0.3766

Case 2 ED2 0.1105 0.2681 0.2925 0.4095 0.5528 0.6068
ED3 0.1091 0.2627 0.2823 0.4005 0.5363 0.5683
ED4 0.1088 0.2614 0.2802 0.3988 0.5175 0.5497
ED5 0.1084 0.2596 0.2785 0.3958 0.5054 0.5428
FEM 0.1086 0.2659 0.2977 0.4053 0.5591 0.5884

Table 7.41: First six natural frequencies of a square orthotropic plate with di�erent

ESL theories and an isotropic patch attached

In in table 7.41 the sti�ening e�ect of the patch can be seen looking at the
general increasing of the natural frequencies, which is quite negligible for ω1,
while become considerable for higher frequencies. This is due to the relative
mode shape: if the mode shape deforms considerably the patch, its sti�ness
become more e�ective and then increase more that natural frequency than
others.

7.8.4 Problem XVIII - Natural frequencies of an or-

thotropic laminate equipped with isotropic patches

The crossply laminate of Problems V II and XV II is again considered. The
laminate has a stack sequence of (0/90), is made of CFRP4, with an height
to side ratio of h

a
= 0.25 and a side length a = 1. The plate has two adjacent

edges clamped and two adjacent edges free (FCCF). The patches are located
onto the top face of the plate and the �rst has a surface of 1% of the surface
area of the plate, while the second has a surface of 4%. The center of the �rst
patch is located at: xc

a
= 0.35, yc

b
= 0.7, while the center of the second patch

is located at: xc
a

= 0.3, yc
b

= 0.4. The ratio between both patches and plate
height is: hm

h
= 0.1 and the patches are made by an isotropic material which
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has the same characteristics of Isot with a density 100 times higher. To not
consider the sti�ness e�ect of the patches, the young and shear modulus have
been set as 10−5, to let the sti�ness of the patches be negligible with respect
to the plate.

The �rst six natural frequencies presented in table 7.42 are the adimen-
sional frequencies ωn, proposed here without an adimensionalization, but still
adimensional since the materials properties are adimensional.

Case Theory Adimensional natural frequencies
ω1 ω2 ω3 ω4 ω5 ω6

Case 0 ED2 0.1132 0.3058 0.3157 0.4502 0.6091 0.6096
ED3 0.1119 0.3003 0.3097 0.4429 0.5946 0.5952
ED4 0.1116 0.2988 0.3083 0.4418 0.5899 0.5904
ED5 0.1112 0.2967 0.3061 0.4386 0.5853 0.5859
FEM 0.1110 0.2987 0.3060 0.4395 0.5900 0.5902

Case 1 ED2 0.0920 0.1845 0.1961 0.2749 0.3366 0.3467
ED3 0.0905 0.1637 0.1899 0.2439 0.2714 0.2960
ED4 0.0900 0.1502 0.1863 0.2150 0.2260 0.2327
ED5 0.0892 0.1351 0.1774 0.1836 0.1911 0.1964

Case 2 ED2 0.0925 0.1986 0.2882 0.3773 0.3951 0.3971
ED3 0.0911 0.1935 0.2753 0.3592 0.3619 0.3754
ED4 0.0908 0.1908 0.2729 0.3539 0.3595 0.3657
ED5 0.0904 0.1886 0.2703 0.3493 0.3548 0.3607
FEM 0.0842 0.1808 0.2730 0.3394 0.3466 0.5884

Table 7.42: First six natural frequencies of a square orthotropic plate with di�erent

ESL theories and two di�erent isotropic patches attached

In in table 7.42 the sti�ening e�ect of the patch can be seen looking at the
general increasing of the natural frequencies, which is quite negligible for ω1,
while become considerable for higher frequencies, as seen before for Problems
XV I −XV II. In fact, the positions and the dimensions of the two patches
led to less deformation for the �rst mode with respect to deformations due
to higher modes, which will involve one or both patches. This is the case
of ω3 and ω4 which are remarkably increased by the sti�ness of the patches,
with respect to the case of patches without sti�ness, to a value near to the
respective value of Case 0.
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7.9 Novel results

7.9.1 Problem XIX - Frequency response of an orthotropic

laminate equipped with orthotropic patches and

a suspended mass

A composite rectangular laminate plate is considered. The laminate present
a symmetric stack sequence of (0/90/0), is made of CFRP7 and has an height
to side ratio of h

a
= 0.1. The aspect ratio of the plate is λ = b

a
= 0.66667

with a side length a = 1.5 meters. The plate has two opposite edges free,
one of the two others edges is clamped and the last one is simply supported
(FSFC). The patches are located onto the top face of the plate, as sketched
in �gure 7.50. The �rst patch center is located at coordinates: xc1

a
= 0.325,

yc1
b

= 0.225, while the center of the second patch is at xc2
a

= 0.25, yc2
b

= 0.7.
The dimensions of the �rst patch are c1

a
= 0.4, d1

b
= 0.25, while the dimension

of the second are c2
a

= 0.2, d2
b

= 0.3. Both patches have the same height:
hpatches = 0.02, and are made of orthotropic material CFRP8 with theirs
�ber direction parallel to the �ber direction of the central, 90deg, layer.

The plate is equipped with a suspended mass located at coordinates:
xm
a

= 0.7, ym
b

= 0.75 onto the top surface with a mass of 30 kg, while the
plate weights around 355 kg. The relative sti�ness of the spring is:

K0 =
12ab(1− ν1ν2)

E1h3
k0 = 1

.

⊙
m̄

∗ FP1

P2

y

x

a

b

Figure 7.50: Geometrical representation of loaded plate of Problem XIX

The �rst eight natural frequencies presented in table 7.43 are expressed
in Hertz and are relative to various ESL kinematic theories with a Ritz
expansion of the thirteenth order. Case 0 refers to the plate without nor
the patches and nor the masses, Case 1 refers to the plate with the patches
attached but without the suspended mass, which is then considered in Case
2.
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Case Theory Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Case 0 ED2 313.6965 368.2526 769.1370 894.6705 950.1703 993.1423 1220.0791 1418.2066
ED4 311.0547 364.8768 737.0668 880.1543 934.1170 991.2114 1180.0548 1293.8764
ED5 310.9557 364.4317 731.1476 879.7249 933.0420 991.2059 1173.8537 1277.1399
ED6 310.9534 364.4291 731.1438 879.7020 933.0215 991.1642 1173.8402 1277.1257

Case 1 ED2 322.9163 376.0834 772.9476 924.2083 988.7559 999.3861 1242.0934 1414.9663
ED4 318.6804 371.5912 740.1971 908.7551 983.6508 986.7150 1201.5730 1288.8055
ED5 318.3557 370.9660 734.1853 907.7959 981.1904 986.6685 1194.9114 1271.8578
ED6 318.2283 370.8494 733.8548 907.6349 980.5692 986.6035 1194.2820 1271.1510

Case 2 ED2 210.6863 326.2139 376.6755 771.8846 926.6410 957.9846 999.2091 1238.8413
ED4 210.1756 321.9996 372.2648 739.1633 911.1253 954.6330 983.8901 1197.9289
ED5 210.1224 321.6734 371.6527 733.1991 910.2035 954.3660 981.5399 1191.4186
ED6 210.1166 321.5418 371.5416 732.8690 910.0479 954.2482 980.9516 1190.7834

Table 7.43: First eight natural frequencies of a rectangular orthotropic plate with

di�erent ESL theories equipped with patches and a suspended mass

As shown in table 7.43, all the selected theories are capable to get the
same approximate results in terms of natural frequencies, except for ED2
theory which overestimate all natural frequencies calculated and so it will be
discarded prior to perform dynamic analyses. In fact it can be appreciated
how ED5 can get results near ED6 in the whole frequency range, while ED4
fails when frequencies goes higher than 1000 Hz. For this reason ED4 will
be also discarded and ED5 will be choose to be the model on which performs
the frequency response analysis, thanks to the good performances with an
important degrees of freedom reduction with respect to ED6.

The e�ect of the patches is seen as an increment of all the natural fre-
quencies, due to the sti�ening of the plate. However some frequencies are
increase more than others since the relative mode shape is more in�uenced
by the sti�ening e�ect of the patches, as seen in Problems XV I −XV III.

The e�ect of the suspended mass is seen in Case 2, where the �rst natural
frequency became the natural frequency of the spring-mass system. In fact,
that frequency is almost equal to the natural frequency that the suspended
mass will have if grounded: 217, 75 Hz. The other frequencies are slightly
increased if the suspended mass is nearer to one node of the respective mode
shape, while at the contrary are decreased if the suspended mass is nearer to
one respective antinode.

The model based onto ED5 theory is used to create a modal model of the
thirtieth order, to be a very accurate representation of the full model since
takes all natural modes till the thirty. This mode is relative to a frequency
of 3087 Hz for the not equipped plate, so well above the upper end of the
frequency range of interest for the analysis. In fact, the frequency range
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selected is from 1 Hz to 1500 Hz, to include the �rst eight natural frequencies
of the plate, with a frequency step ∆f = 1 Hz. The modal model is used to
get the frequency response for the three cases mentioned above.

The plate is forced by a punctual force located at coordinates: xf
a

= 0.8,
yf
b

= 0.3, acting onto the top of the plates in transverse direction, which has
constant unitary amplitude all over the whole frequency range. Frequency
responses have been calculated at the centroidal point of the plate and at
the midplate at coordinates at which the suspended mass has been located in
case 3: x

a
= 0.7, y

b
= 0.75. Resulting plots are presented in �gures 7.51 and

7.52 respectively. For case 3 also the frequency response of the suspended
mass is provided, not only with the modal model but also with the full model,
and, it is shown in �gure 7.53.
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Figure 7.51: |w| (a2 ,
b
2 , 0) vs. frequency for an equipped rectangular plate, di�erent

equipement cases
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Figure 7.52: |w| (xm, ym, 0) vs. frequency for an equipped rectangular plate, dif-

ferent equipement cases

The frequency response plots shows how the sti�ening e�ects of the
patches in�uence the behaviour of the plate: all natural frequencies are
slightly higher, as expected after the solution of the eigenvalue problem,
while the sti�ening e�ect led to a decrement of the peak response at the
respective shifted natural frequencies. This e�ects can be seen looking at the
di�erences between blue with circle and black with triangle lines in previous
plots.

Taking into account the di�erence between the black with triangle and the
red with stars lines the e�ect of the suspended mass can be recognized. The
�rst thing noticeable is the presence of the natural frequency of the suspended
mass before the �rst of the plate. Then, the presence of the suspended mass
further attenuate all peaks response at the other natural frequencies of the
plates which does not di�ers so much from that of the plate in Case 1.

At higher frequencies, not considered in table 7.43, the response becomes
more di�erent from the response of the non loaded plate. This is due to
the mode shapes relative to those frequencies: deformation related to higher
modal shapes are more complicated than the lower ones and present an higher
number of nodes and antinodes. Then, the presence of the patches and the
suspended mass in�uence more such mode shapes since it is more probable
that they are positioned near an antinode, hence modifying markedly those
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modes.

0 500 1000 1500
−260

−240

−220

−200

−180

−160

−140

−120

−100
|w

|

Frequency [Hz]

 

 
Modal model
Full model

Figure 7.53: |w| vs. frequency for the suspended mass, full model vs. modal model

The frequency response of the mass can be directly confronted with that
retrieved for the plate at the same coordinates, shown in �gure 7.52, to �nd
that the �rst peak is ampli�ed by the spring as expected, since its relative
at the suspended mass natural frequency, whereas the subsequent peaks,
relative to the plate, are then attenuated. The attenuation becomes higher
at higher frequencies. This behaviour is characteristic of the spring mass
systems which after the ampli�cation at their natural frequency starts to
attenuate theirs output.

Figure 7.53 shows the responses of both the full model and the modal
model which are practically identical for the all frequency range. This is the
proof that the modal model adopted has been build up in the correct way and
can represent the system with only 30 degrees of freedom in the frequency
range selected.

Now, the same analysis are repeated for a di�erent loading condition:
the plate is loaded by a distributed pressure acting onto the top of the plates
in transverse direction with uniform distribution and constant unitary am-
plitude allover the whole frequency range. Also in this case the frequency
responses have been calculated at the centroidal point of the plate and at
the midplate at coordinates at which the suspended mass has been located in
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case 3: x
a

= 0.7, y
b

= 0.75. Resulting plots are presented in �gures 7.54 and
7.55 respectively. For case 3 also the frequency response of the suspended
mass is provided, not only with the modal model but also with the full model,
and, it is shown in �gure 7.56.
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Figure 7.54: |w| (a2 ,
b
2 , 0) vs. frequency for an equipped rectangular plate, di�erent

equipement cases
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Figure 7.55: |w| (xm, ym, 0) vs. frequency for an equipped rectangular plate, dif-

ferent equipement cases

0 500 1000 1500
−300

−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

|w
|

Frequency [Hz]

 

 
Modal model
Full model

Figure 7.56: |w| vs. frequency for the suspended mass, full model vs. modal model
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The consideration made before for the punctual force are still valid in this
case with the plate loaded by a distribute pressure. It can be noticed that
the response is characterized by less peaks and antiresonances, this is due
to the load distribution that in this case is uniform and so can not excite as
well the modes of the plate.

Also in this case the modal model is capable to get the correct dynamical
behaviour of the system.

7.9.2 Problem XX - Time and frequency responses of a

soft core sandwich plate equipped with distribute

masses

A fully clamped sandwich plate is considered, the plate has a (0/90/core/0/90)
layup with the crossply faces made by orthotropic RaoF composite material
and the isotropic, very soft core made by RaoC. The ratio of thickness of
the core to thickness of the face sheet is assumed to be 14 in this example.
A moderately thick plates is considered: the height to side ratio is h

a
= 0.1.

The aspect ratio of the plate is λ = b
a

= 0.75 with a side length a = 0.8
meters.

This illustrative case has been designed to analyze an equipped sandwich
plate which seems like a plate adopted as side wall of a moderately small
spacecraft equipped with instruments on both sides of the plate ad subjected
to a distribuite transient load. The equipments to be modelled as attached
to the plate have been selected among real scienti�c equipments mounted on
spacecrafts and have been modelled as distributed masses of dimension and
mass comparable with those used in an hypothetical feasibility study of a
scienti�c spacecraft. The equipements modelled are:

1. a magnetometer, mass 5 kg with dimensions of 0.5 and 0.3 meters

2. a spectrometer, mass 3 kg with dimensions of 0.3 and 0.2 meters

3. a camera, mass 0.6 kg with dimensions of 0.2 and 0.1 meters

The equipments are mounted on the plate as sketched in �gure 7.57, where
the grey colour indicate that the mass is locate under the lower surface of
the plate. The �rst mass has its center located at coordinates: xc1

a
= 0.2875,

yc1
b

= 0.4625, the second at: xc2
a

= 0.7125, yc2
b

= 0.675 and the third at: xc3
a

=
0.675, yc3

b
= 0.3625. It shall be noted that the plate without any equipment

weights only 11.06 kg, so the overall mass has been almost doubled.
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Figure 7.57: Geometrical representation of loaded plate of Problem XIX

The eigenvalue problem have been solved both for the equipped plate and
for the plate only. The �rst eight natural frequencies presented in table 7.44
are expressed in Hertz and are relative to various ESL and LW kinematic
theories with a Ritz expansion of the thirteenth order. Case 0 refers to the
plate without masses while Case 1 refers to the equipped plate.

Case Theory Dimensional natural frequencies [Hz]
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Case 0 ED3 255.1642 369.0709 448.9233 514.4406 525.7752 640.6315 676.7361 679.6144
ED5 156.8686 229.8464 287.5208 329.4447 337.7298 418.2048 451.7809 455.4733
LD2 138.4809 204.0126 257.9710 295.8834 303.3615 378.0710 411.4621 416.3153
LD3 138.4695 203.9943 257.9367 295.8480 303.3219 378.0175 411.3917 416.2280

Case 1 ED3 174.0410 253.3317 298.2467 351.4821 392.5600 434.9577 478.6907 491.3193
ED5 106.8448 157.5984 188.5476 224.3230 251.5739 281.7945 318.8949 326.6011
LD2 94.2136 139.6308 168.0293 200.5848 225.1514 253.1522 288.7262 295.8579
LD3 94.2057 139.6172 168.0080 200.5575 225.1190 253.1111 288.6638 295.7941

Table 7.44: First eight natural frequencies of a rectangular sandwich plate equipped

with di�erent distribute masses

As expected, table 7.44 shows that ESL theories overestimate the natural
frequencies of the sandwich since they overestimate its sti�ness. Note also
that ED3 gives results with errors over the 70% with respect to the results
of the LW theory of the same order: LD3. ED5 gives better results than its
smaller order relative, but is however far away from resulting frequencies of
LW models, as also recognized after the analysis of Problem IX. This indi-
cates that, a priori, ESL theories should not be adopted to model sandwich
plates in dynamical analysis, as also stated in considerations of Problem V I
for static analysis. Shall be stressed that, in static response ESL theories can
however give a rough approximation of the response of the sandwich, while in
dynamic analysis they fail completely. To emphasize that, both ESL and LW
theories will be used to perform the subsequent time and frequency response
analysis.
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The ED5 and LD3 plate models have been selected to create two modal
models of the thirtieth order, to be an accurate representation of the respec-
tive full model. The models, both full and modal of each of the two theories,
are then used to calculate the time response of the equipped plate forced by
a transient distribute load pz(t) = Pz[H(t− 0)−H(t− 0.02)].

The integration parameters γ and β have been set to 0.5 and 0.25 respec-
tively to ensure that the Newmark integration method will be asymptotically
stable.

The reduced order modal model has been made adopting a thirtieth or-
der, to be an accurate representation of the full model since takes all natural
modes till the thirty which is relative to a frequency of 693 Hz. The time
of integration has been set to 0.04 milliseconds with a time step ∆t = 10−5

seconds. The computed time response, in terms of adimensionalized trans-
verse displacements w for both Case 0 and Case 1, have been evaluate for
the central point of the plate, �gures 7.58 and 7.58, then at coordinates:
x
a

= 0.2875, y
b

= 0.4625, at which is located the center of the �rst equipment
mounted onto the plate, �gures 7.60 and 7.61.
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Figure 7.58: w̄ (a2 ,
b
2 , 0) vs. time for a sandwich plate under transient load
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Figure 7.59: w̄ (a2 ,
b
2 , 0) vs. time for a sandwich equpped plate under transient load

As expected after the eigenvalue analysis, the time responses of ED5 are
completely di�erent from those of LD3, since ED5 overestimate the plate
sti�ness. This overestimation led to a response which is faster and with a
smaller amplitude, since the sti�er plate has higher natural frequencies and
obviously a lower deformation when loaded.

The e�ect of the equipments is seen as a slower response, since the nat-
ural frequencies are lower than in Case 0, and with a slightly more irregular
response, since more modes are now involved in the response after they had
been modi�ed in theirs geometry by the presence of the masses.
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Figure 7.60: w̄ (xm, ym, 0) vs. time for a sandwich plate under transient load
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Figure 7.61: w̄ (xm, ym, 0) vs. time for a sandwich equpped plate under transient

load
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Considerations made for the response in the centroidal point of the plate
are still valid for the point at which the center of the �rst mass is located,
(xm, ym, 0), for both theories di�erences and for the e�ects of the equipments,
which now is extremely visible with a very irregular time response for Case
1.

It can be noticed that modal models exhibit problems of convergence in
the last peaks of Case 1 the time responses, this is due to the not-so-high
frequency associated to the thirtieth mode if relate to the �rst eight frequen-
cies of the plate, presented in table 7.44. Nevertheless thirty modes have
been adopted, there are other many modes with frequencies almost compa-
rable with those included in the reduced order model, leading to this bad
behaviour of the response. This suggest to employ more modes in the modal
base used to create the modal model.

Then, modal models have been used to get the frequency response in the
two cases mentioned above, and resulting plots are presented in �gures 7.62
for Case 0 and 7.63 for case 1. The plate is is loaded by a distributed pressure
acting onto the top of the plates in transverse direction with uniform distribu-
tion and constant unitary amplitude allover the whole frequency range. The
frequency range selected is from 1 Hz to Hz, to include the �rst eight nat-
ural frequencies of the plate, with a frequency step ∆f = 1 Hz. Frequency
responses have been calculated for the centroidal point of the plate.
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Figure 7.62: |w| (a2 ,
b
2 , 0) vs. frequency for a rectangular sandwich plate
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Figure 7.63: |w| (a2 ,
b
2 , 0) vs. frequency for an equipped rectangular sandwich plate

The di�erence between the ESL and LW theories are again con�rmed
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looking at frequency responses: the frequencies are shifted at higher frequen-
cies and the quasi static response, characteristic of the frequency ranges away
from the natural frequencies, is lower. Moreover the peak at resonance of the
not loaded plate in �gure 7.62 is higher. Those behaviours are character-
istic signs of a sti�er plate. Hence, the adoption of LW theories should be
mandatory in dynamical analysis of sandwich plates, even if the plate is not
so thicker, because of the great di�erence between faces and core mechanical
properties which can not correctly and exhaustively described only by means
of global coordinates proper of ESL theories.

Figure 7.63, relative to the response of the loaded plate, shows how many
modes have been modi�ed by the presence of the equipments. First of all
can be noticeable that the �rst peak of resonance has a similar amplitude
but is at a lower frequency. Then, the second peak, visible in �gure 7.62,
has been cancelled and substituted with a dense series of resonances and
antiresonances. However all peaks have a smaller maximum amplitude than
the one cancelled.

Those considerations suggest that in the design of the con�guration of
an equipped plate the equipments positions should be de�ned taking also
in the account the �ne dynamical behaviour of the plate among the other
design parameters coming from the not structural aspects involved in the
project of which the plate is a part. This aspect become more and more
crucial when the vibrations transmitted through the structure have to be
minimized, since a proper con�guration might reduce the need of external
vibration suppression systems.
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Chapter 8

Conclusions

The results found simulating an testing the implemented software are com-
pletely in accordance with the theoretical expectations and with benchmark
results given in literature and obtained with self developed fem models. The
software has been implemented in order to model rectangular and skew plates
with arbitrary lamination schemes, arbitrary combination of clamped, free
and simply supported boundary conditions and made of a large variety of ma-
terials. Moreover, the software has been implemented to model such plates
using a vk-Ritz formulation under CUF assumptions to have the possibility
to choose the more suited kinematic theory case by case. Theories can be
choose from the very simple CPT to the quasi-3D LD4 passing trough a
wide choice of ESL and lover order LW theories.

The presence of equipments onto the plate surfaces has been modelled
as attached punctual or distributed masses, which in�uence only the mass
properties of the plate, or at the contrary as patches which also have proper
sti�ness. Moreover, suspended masses has been implemented as a model of
equipments not rigidly constrained to the plate.

The software has been implemented to be capable to solve static and
dynamic problems, in terms of time and frequency response. This possibil-
ity, with the possibility to make di�erent models of the same plate adopting
di�erent plate theories and di�erent theory order for each family of theories
had given the possibility to make a wide research to get the peculiar di�er-
ences among advanced plate theories and to make some consideration useful
to choose wisely what theory suits better a determined problem.

All the analyses had shown that, the more the plate is thin, also by a dy-
namical point of view, the more the mechanical displacements and stresses
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distributions along the thickness of the plate tend to be linear. In this case,
classical plate theories give acceptable results and EDN theories, give very
good results. Otherwise, as the plate begins to be thicker, classical plate
theories are strongly not recommended and ESL theories do not correctly
model the discontinuities of displacement and stresses at layers interfaces
and layerwise theories are needed to correctly represent them, whereas ESL
are still capable to give a rough approximation of the macroscopic dynamical
response of whole plate. This last statement falls down when thicker and
very orthotropic plates, such as sandwiches, are considered. This is due to
the huge di�erences between the mechanical properties of the core and that
of the faces let their response to be di�cultly described only by global vari-
ables, hence the adoption of LW theories becomes mandatory for all kind of
analysis.

In Problems I−V I the static response of various plates subjected at vari-
ous loading conditions has been investigated. Plates considered have di�erent
lamination schemes, are made by di�erent materials and in all problems a
thin and a thick con�guration have been adopted. All the analysis performed
on thin plates had shown that ESL and LW theories, from medium to high
order, are capable to get the precise displacements and stresses values and
also the stresses distribution along the plate thickness. The analysis per-
formed onto the thick plates had shown how di�erence between ESL and LW
results grown as the orthotropicity of the plate layers becomes more marked,
as for sandwich plates, or also the lamination scheme become antisymmetric.
Moreover ESL theories are no longer able to get the correct stresses distri-
bution in all thick cases, especially in the sandwich plate case.

In Problems V II − IX the eigenvalue analysis of various plates with
various boundary conditions and lamination schemes has been solved. The
analysis had shown that a re�ned Ritz expansion is required if higher mode
shall be well computed, especially in the case of clamped boundaries, which
are characterized by local displacement gradients near the edge di�cult to
be well approximated by global polynomials of relatively low order. The
frequencies resulting by models of both families of theories are all in good
agreement for the thin plate, while the error of CPT increases rapidly when
the plate becomes thicker. By comparing results of ESL and LW theories, the
fundamental frequency is well estimated by both, hence without the need of a
more computational demanding LW approach if the plate is not a sandwich.
In this last case, results computed with ESL theories grossly overestimate the
natural frequencies in comparison with LW models both for thin and moder-
ately thick plates, due to the large sti�ness ratio between the skins and the
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core and led to a sti�er plate response. This discrepancy can be contrasted
by the use of LW kinematic theories, which appears to be mandatory for
sandwich plates with very soft core.

In Problems XII−XIV the eigenvalue analysis of various plates loaded
with various types of attached masses has been solved. The analysis had
shown that the attached mass, punctual or distributed, a�ects negatively
the convergence of the Ritz method, since the local e�ects generated by the
presence of the mass are di�cultly well approximated by global polynomials
of relatively low order. The e�ect of the presence of an attached mass is seen
in the general lowering of the natural frequencies of the plate, which is more
visible for those frequencies associated with modal shapes with an antinode
near the mass location.

In Problem XV the eigenvalue analysis of an isotropic plate loaded with
a suspended mass with various combination of mass and relative sti�ness
has been solved. The presence of the suspended mass modi�es the natu-
ral frequencies of the plate, while for some normal modes exists an e�ective
decoupling of the spring-mass system from the plate. This happens when
a nodal line of the plate oscillation contains the position of the attached
system. In that case the mass does not disturb neither the mode nor the
frequency of vibration. Moreover, when the relative rigidity of the spring is
small, the �rst natural frequency practically coincides with the frequency of
the one degree spring-mass system, with a negligible in�uence of the plate
on it.

In Problems XV I − XV III the eigenvalue analysis of various plates
loaded with various types of patches has been solved. The analysis had
shown that the sti�ening e�ect of the patch can be seen looking at the gen-
eral increasing of the natural frequencies, which can be quite negligible for
some frequencies, while becoming considerable for others. This is due to the
relative modal shape associated at each natural frequency: if the mode shape
deforms considerably the patch, its sti�ness become more e�ective and then
increase more that natural frequency than others.

In Problems XIX − XX new results are achieved considering �rst an
equipped composite laminate and then and equipped sandwich plate.

In Problem XIX the e�ects of the presence of patches and a suspended
mass is investigated solving the eigenvalue problem and then evaluating the
FRFs in various point of the laminate. Those analysis have been solved
for di�erent loading cases, from the not loaded plate to the fully equipped
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system, with ESL theories of various order. The aim of the analysis was to
shown how the sti�ening e�ects of the patches in�uence the behaviour of
the plate, increasing all natural frequencies and lowering the peak responses,
and then recognize the e�ect of the suspended mass, with the presence of
the natural frequency of the suspended mass before the �rst of the plate and
then a further attenuation of all others peaks response.

In Problem XX the e�ects of the presence of various attached distributed
masses is investigated solving the eigenvalue problem and then evaluating
the transient responses and the FRFs in various point of the sandwich plate.
Those analysis have been solved for di�erent loading cases, from the not
loaded plate to the fully equipped system, with ESL and LW theories of var-
ious order. As expected, ESL theories overestimate the sti�ness of the sand-
wich leading to higher natural frequencies, a faster and with lower amplitude
time response and FRFs with higher peak responses and lower quasi-static
response. This indicates that, a priori, ESL theories should not be adopted
to model sandwich plates in dynamical analysis, since they fail completely.
The e�ect of the masses is seen as a slower and more irregular time response,
since the natural frequencies are lowered and more modes are involved after
they had been modi�ed in theirs geometry by the presence of the masses.
This di�erence can been then appreciated from the FRFs.

Suggestion for future improvement

This Thesis is the basis for a future comprehensive tool for the analysis of
equipped plates. The �rst expected expansion is the formulation of a more
re�ned kinematic for the equipments, de�ning them as boxes with de�nite di-
mensions, rotational inertia around x and y axes, translational inertia along
z direction and a proper internal resonance frequency and elastically con-
strained at the plate, to be capable to model in a more re�ned way the
interaction between the plate and the equipments.

An other development is the reformulation of the patch problem to solve
the convergence problems which had led to the use of patches only for ESL
theories. This adoption, needed to evaluate the patches sti�ening e�ects
in sandwich plate, should be seen as the starting point to a very useful
improvement: the modelling of piezoelectric patches, which makes it possible
to study active control strategies of piezoelectric plates through the use of
electric external excitations.

Furthermore, the re�ned theories here adopted can be used not only for
modelling composite rectangular and skew plates, but also improved at their
bases to be capable of modelling laminated shells.
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