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Abstract

The dynamic response of the structures in the elastic range is very important
in the majority of engineering applications, particularly in Space and Aero-
nautics �eld, where a wrong control of vibrations can produce unreliable
safety conditions and sometimes catastrophic. In addition to uncontrolled
movement, another e�ect of the vibrations of the structures is given by the
radiated acoustic power that is perceived by the human ear in form of pres-
sure waves. This phenomenon, for some types of applications, it may be
undesirable or unpleasant.
For this reason it is very important the optimum design of the structure and
a control system that is able to reduce its vibrations to an acceptable level
of safety and comfort .
Some types of structures, for their shape and boundary conditions, have
limitations in being able to design an appropriate monitoring system, often
leading to suboptimal results .
The work of this thesis, starting with some recent methods for �nding op-
timal solutions of placement for sensors and actuators on two-dimensional
membranes (Xu et al. - "Optimum Location and Gains of Sensors and Ac-
tuators for Feedback Control "; Abdullah - "Optimal Location and Gains of
Feedback Controllers at Discrete Locations"), wishes to extend the search
for optimal solutions in plates with variable characteristics, dimensions and
arbitrary boundary conditions. The work will also explore the optimal solu-
tions for the minimization of the acoustic radiation power produced.
The result obtained was a complete algorithm for the analysis of a generic
model of plate, to control both the vibratory and acoustic behavior, with
good results from the convergence point of view.
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Sommario

La risposta dinamica delle strutture in campo elastico è molto importante
nella stragrande maggioranza delle applicazioni ingegneristiche, in partico-
lar modo in campo Spaziale e Aeronautico, dove un errato controllo delle
vibrazioni può produrre condizioni di sicurezza non a�dabile e a volte catas-
tro�che. Oltre al movimento incontrollato, un altro e�etto delle vibrazioni
delle strutture è dato dalla potenza acustica irradiata che viene percepita
dall'orecchio umano sottoforma di onde di pressione. Anche questo fenomeno,
per alcuni tipi di applicazioni, può risultare indesiderato o sgradevole.
Per questo motivo è molto importante il progetto ottimale della struttura
e un sistema di controllo che sia in grado di ridurre le sue vibrazioni a un
livello di sicurezza e comfort accettabili.
Alcuni tipi di strutture, per come sono fatte, hanno delle limitazioni nel poter
progettare un sistema di controllo adeguato, portando spesso a risultati non
ottimali.
Il lavoro di questa tesi, partendo da alcuni recenti metodi per la ricerca di
soluzioni ottime di posizioni per sensori e attuatori su membrane bidimen-
sionali (Xu et al. - "Optimum Location and Gains of Sensors and Actuators
for Feedback Control "; Abdullah - "Optimal Location and Gains of Feedback
Controllers at Discrete Locations"), intende estendere la ricerca di soluzioni
ottimali a pannelli dalle caratteristiche, dimensioni e condizioni al contorno
arbitrarie. Questo lavoro intende inoltre esplorare soluzioni ottime anche nel
campo di una minimizzazione della radiazione acustica prodotta.
Il risultato ottenuto è quello di un algoritmo completo per l'analisi di un
modello generico di piastra, per un controllo sia vibratorio che acustico, con
buoni risultati dal punto di vista della convergenza.
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Chapter 1
Introduction

I
n general, elasic structures, and in particular space structures, such as a
space station and the large solar arrays of a solar power station satel-

lite have the characteristics of a �exible structure by the demands for light
weight and large size. Hence, in large space structures that are character-
ized by their inherent natures -in�nite dimension, distributed parameter, low
damping, and densely populated modes- and stringent performance require-
ments in space, there are many vibration modes within the frequency band of
disturbances and control bandwidth. Once they are disturbed, these modes
are likely to remain excited for a long time because of their low natural
frequency and small damping, which might hamper their missions in space.
Therefore, to comply with the request of vibration suppression, the concept
of actively controlled large �exible structures with sensors and actuators lo-
cated on the structure has to be introduced.
Generally, a large number of sensors and actuators are required for the ac-
tive vibration control of �exible structures. Thus, the problem of choosing
the appropriate number and locations of actuators and sensors is important,
since an arbitrary decision is expected to degrade the system performance
and directly limit the range of practical applications. In choosing the ap-
propriate number and locations of sensors and actuators, our aim will be to
excite the structure with minimum control e�ort for vibration suppression
and also minimize the sensor signal power for the measurement of a given
excitation of the structure. For instance, a poor system in which actuators
are placed on or near the nodes (or node line) of vibration mode requires
an excessively large control force at best, or uncontrollable at worst. Con-
sequently, the optimal placement of actuators and sensors to maximize the
degrees of controllability and observability can improve the control and esti-
mation performance of a closed-loop system.
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2 1. INTRODUCTION

The design of an optimal feedback control systems for �exible structures,
includes two sets of design parameters, the gains of the control matrix and
the positions of sensors and actuators. There are well-established methods
for determining optimal gains; however, methods for optimal placement are
relatively new. Previously, for the minimization of a certain functional, the
location of the sensors and actuators was only supposed, and then the op-
timization of feedback gains was done separately. Schultz and Heimbold
developed a method of concurrent design of both placement and gains. The
method is optimal in that it maximizes energy dissipation due to control ac-
tion. The solution to the optimization problem was obtained by a gradient-
based nonlinear programming technique.
The original method from Xu et al. [9] consisted of calculating the gradients
of the performance function not only with respect to the feedback gains but
also with respect to sensor and actuator placement. Only the dimensions of
the example structure limited the placement of the collocated sensors and
actuators. In most gradient-based optimal control problems, each of the de-
sign variables are permitted to take any real value. But is not always possible
to place control sensors and actuators at arbitrary positions. In many cases,
there is a discrete and �nite set of possible locations within the structure
where the sensors and actuators can be placed. In solving problems of this
nature, it is necessary to use integer-programming techniques, that is the
work developed by Abdullah [1]. For problems where all or some of the de-
sign variables must be from a discrete set, the most feasible way to �nd a
solution is using integer-programming methods. Abdullah used an integer-
programming method to �nd optimal placement of controllers and actuators
at discrete locations.
Relatively very little work has been done in the area of nonlinear and mixed
integer (problems with both integer and continuous design variables) pro-
gramming. In many cases, linear integer programming techniques have been
used to solve some nonlinear problems. It is known that these nonlinear
integer-programming methods are not as robust as their continuous counter-
parts.
A new method was proposed by Abdullah [1], for well-de�ned functions. It
has been shown that a constrained nonlinear problem can be converted into
an unconstrained problem using a transformation of variables. This tech-
nique is very easy to program. In the proposed method, the use of transfor-
mations was generalized where a change of the dependent variables was used
to transform the constrained integer problem to an unconstrained continuous
one. Because the performance function is well de�ned, it was demonstrated
that this change of variables is an e�ective means of �nding integer optimal
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values.

However, since the purpose of this thesis is to provide a model of the
structure much more complex of the previous works, including loads and
generic boundary conditions, as well as a re�ned model of the acoustic ra-
diated power, sensors and actuators are permitted to take any positions on
the structure, belonging in a real domain. So the problem is focused on a
nonlinear real-programming technique.

The method used for the numerical optimization is the very robust David-
ionFletcherPowell (DFP) algorithm. Knowing analitically the expression of
the gradient for the cost functional for a feedback optimal control approach,
the only di�culty lies in understanding the dependence of the position vari-
ables from such a gradient.

Once the complete state space model for the system will be de�ned, in-
cluding the structural state and the "acoustic state", �nding an optimal so-
lution becomes quite straightforward although it requires some computation
time.

1.1 Problem understanding

The considered vibrating structure is a rectangular Kircho� plate.

i-th controller

a
xi

yi

b

Figure 1.1: Rectangular Kircho� plate.

Once the structural and acoustic modelization will be performed, the
augmented state space system will be the starting point for the optimization
process.
For the control, a feedback control strategy will be considered, with a certain
number of sensor and actuators.



4 1. INTRODUCTION


ẋ = Ax+Bu

y = Cx

u = −Gy

(1.1)

After the performance index has been modeled as

J =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt (1.2)

Consider the optimization problem

min J(xs,xa,G) → x∗
s,x

∗
a,G

∗ (1.3)

where J is the cost functional de�ned in Eq.(1.2), xs and xa are the
placement of sensors and actuators respectively, and G is the feedback gain
matrix, whereas x∗

s, x
∗
a and G∗ are the optimum values that minimize J .

The variables xs and xa in a continuous case are subject to constraints

xs ∈ Xs, xa ∈ Xa (1.4)

whereXs andXa are subsets of the real domain limited by the dimensions
of the structure.

As can be noted, it is a multivariable optimization problem, whose size
and computation time depend on the number of actuators and sensors adopted
in the procedure.



Chapter 2
State of the Art

M
any numerical research has been done since the 80's on combined meth-
ods for the reduction of vibration and acoustic radiation caused by

structures of automobiles, airplanes and buildings in general.
There are active and passive methods on which one can base the control of a
structure. Passive approaches are based on the design of material properties
or shapes of the structure so as to minimize vibrations and radiated noise.
Exploiting damping layers in the structure is a good example of passive noise
control. Recent advances in computing resources and numerical optimization
procedures have made optimization feasible for complex structures using ac-
tive techniques.
Smart materials or structures have emerged as promising active techniques
to reduce the kinetic energy and the radiated sound. In longer available
structures, piezoelectricceramics are widely used as active devices on the
structures. Much research has been done experimentally, analytically and
for piezoelectricactive, adaptive, or intelligent structures. However, the de-
sign of smart structures for minimal sound radiation is a multidisciplinary
and challenging problem, which involves a complex model of the structure
with active devices made of piezoelectric materials, understanding of struc-
tural acoustics, and large numbers of parameters that a�ect the active system
performance.

2.1 Optimal locations on a membrane - K. Xu,

P. Warnitchai, T. Igusa - 1993

The purpose of the study was to present a new and e�cient method for
optimal design of placement and gains of actuators and sensors in output

5
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feedback control systems. This work extends the method developed by Levine
and Athans by solving for optimal placement. It is e�cient and can handle
a large number of optimization variables. Multiple local minima for the
performance function were found for the optimal placement problem, and a
randomly generated initial values for the optimization variables were used to
obtain a set of solutions.

2.1.1 Formulation of the problem

Consider the response of a general elastic structure subjected to an applied
force F (x, t)

[
m0

d2

dt2
+ c0

d

dt
+ λL

]
w(x, t) = F (x, t) (2.1)

The considered structure was a rectangular membrane with dimensions
a = 1.00 and b = 1.03, as shown in Fig. 2.1. The open-loop modal damping
rations are 0.005 for all modes; a total of 11 modes are considered in the
numerical analysis. For the derivation of the dynamic and control equations
refer to [9].

i-th controller

a
xi

yi

b

Figure 2.1: Rectangular membrane.

An optimal design procedure is developed for the actuator placement, xaj,
sensor placement, xsp, and feedback gains F. First, a performance function
is chosen which includes both the structural response and the control e�ort.
The standard performance function is considered

J =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt (2.2)
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with the following weighting matrices:

Q =

[
Λ 0
0 I

]
, R = R

[
I 0
0 I

]
. (2.3)

For the control strategy a de-centralized control is assumed, with collo-
cated sensor and actuators.

2.1.2 Results

Three numerical studies where presented: optimal placement and gains for 1
and 11 actuators, and optimal gains for 100 actuators. Single-loop feedback
control gains where used, making the gain matrix diagonal. A separate study
had shown that performance function di�ers by less than 1% when diagonal
or full gain matrices are used.

Optimal placement and gains for a single actuator/sensor . The
simplest optimal design problem is for a single actuator and collocated sen-
sor. There are only three optimization variables: the velocity gain, x and y
coordinates of the controller. The control penalty is R = 10. If the coordi-
nates of the controller are �xed, there is only a single value for the velocity
gain which minimizes the performance function. However, with the three
optimization variables, there are many local minima. To obtain as many dif-
ferent local minima as possible, many simulation are executed with random
initial values.

Six distinct solutions were obtained. The placement of the actuators, and
the corresponding values for the performance function J , and gains fopt, are
shown in Fig.2.2. The di�erence between the smallest and largest perfor-
mance values is only 5%, but the di�erence between the smallest and the
largest gains is 34%. Thus, for this problem, the multiple local minima yeld,
nearly equivalent performance values.

The six placement results are superimposed in Fig.2.3; they are plotted
only in the upper-right portion of the structure. The nodal lines of the open-
loop mode shapes are also indicated by dashed lines. The �gure shows that
the placement of the actuators lie away from the nodal lines, as expected from
controllability theory. In each of these regions, local minima exist; however,
they are considerably higher than the remaining six local minima.
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Pattern (a):
J = 45.47, f  = 0.264opt

Pattern (b):
J = 45.61, f  = 0.286opt

Pattern (c):
J = 45.80, f  = 0.264opt

Pattern (d):
J = 46.77, f  = 0.355opt

Pattern (e):
J = 47.39, f  = 0.321opt

Pattern (f):
J = 47.99, f  = 0.293opt

Figure 2.2: Placements for the single controller case.

0

b

a

Figure 2.3: Superimposed placements for the single controller case - nodal lines for
the open loop modes.
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Optimal placement and gains for 11 actuator/sensors. In this case,
the number of actuators is equal to the number of modes in the structural
model. There are 33 optimization variables: three for each controller. As in
the previous case, the control penalty is R = 10.

Pattern (a): J = 5.87 Pattern (b): J = 5.97 

Pattern (c): J = 6.14 Pattern (d): J = 6.15 

Pattern (e): J = 6.66 Pattern (f): J = 7.02 

Figure 2.4: Placements for 11 controllers case.

Six distinct solutions were obtained. The placement of the actuators,
and the corresponding values for the performance function J , are shown in
Fig.2.4. Solution (a) yields the smallest values, J = 5.87, which, as expected,
is considerably lower than the value for a single controller. Solution (f) yields
the largest value, J = 7.82, which di�ers from solution (a) by 20%. Fig.2.4
shows that solution (a) has the most evenly distributed placement pattern.
Some of the other solutions have placements which are concentrated on one
side of the structure. For all cases, the gains of the single-loop actuators are
close 0.2.
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0

b

a

Figure 2.5: Superimposed placements for the 11 controllers case - nodal lines for
the open loop modes.

The placement results are superimposed in Fig. 2.5, and, as in Fig. 2.3,
the nodal lines of the open-loop mode shapes are indicated by dashed lines.
The actuator placements are clustered in certain nearly symmetric locations
about the membrane. Some of the actuator locations lie on nodal lines; these
actuators are still e�ective since several of the open-loop modes do not have
nodal lines at these locations.

Optimal gains for 100 actuator/sensors. The placement of controllers
is shown in Fig.2.6. Since the actuators are uniformly placed throughout the
structure, optimal placement is not considered. The control penalty is R =
100, which yields control with relatively low authority. This optimization
problem is a simple study of distributed control, which have wide potential
applications. The problem is also a demostration of how easy the nonlinear
programming algorithm can handle 100 variables.

2.2 Optimal discrete locations on a membrane

- M. Abdullah - 1998

It is not always possible to place control sensors and actuators at arbitrary
positions. It is possible that for many structures the optimal locations for
sensors and actuators to minimize vibrations are not feasible. Simply round-
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Figure 2.6: Placements of 100 controllers.

ing solutions can give very umpredictable results. It is possible to round the
location of an actuator to a position where a mode would be uncontrollable.
In this case, the desired and actual control e�ects can di�er drastically.
A new method where proposed. For well-de�ned functions, it has been shown
that a constrained nonlinear problem can be converted into an unconstrained
problem using a transformation of variables. This technique is very easy to
program. In the proposed method, the use of transformations is generalized
where a change of the dependent variables will be used to transform the con-
strained integer problem to an unconstrained continuous one. Because the
performance function is well de�ned, it is demonstrated that this change of
variables is an e�ective means of �nding integer optimal values.

2.2.1 Discrete location programming technique

The problem is now (or can be represented as) a mixed integer problem,
where a partial set of variables (actuators and sensor placements) are inte-
gers and the remaining variables (gain assignments) are non-integers. It is
useful to �nd a transformation to make all of the variables non-integers so
that the problem becomes a non-integer problem. Taking into account the
Eq.(1.3), this objective would be accomplished if a function x = h(y) could
be found so that
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min J(h(ys), h(ya),F) → ys
∗,ya

∗,F∗ (2.4)

subject ton constraints

ys ∈ Xs, ya ∈ Xa (2.5)

where y is a continuous variable that produces an integer value for x, and
Xs and Xa, still are the subsets of the domain of the structure.
The function h should be a round-o� step function, which would round any
number to the closest integer. However, this step function is discontinu-
ous and, therefore, its derivative is unde�ned at each step. This renders
gradient-based nonlinear programming methods unusable because the gradi-
ents of J [h(y),F] would also be discontinuous. Thus, it is important to use
a function that looks like a step function and is yet continuous.
It can be shown that the sine function raised to an even power, as the even
power becomes large, begins to look like a periodic impulse function. If this
function is multiplied by a constant to make the area under each impulse
equal to one, the following integral becomes an approzimation for the step
function:

xi = h(yi) = A2N

∫ yi

0

[sin(πu)]2N du (2.6)

where

A2N =
22N(N !)2

(2N)!
(2.7)

and N is an integer for the approximation of the step function. The
constant values for A2N were found analytically. As N increases, the ap-
proximation to the step function improves, getting quite accurate for reason-
able values of N . But as N gets large, it becomes increasingly di�cult for
nonlinear-programming methods to �nd noninteger values, because: First,
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the gradients at integer values are much smaller that those at noninteger
values; Second, the noninteger values begin to occupy a smaller range. This
can also be seen in Fig.2.7.
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a) N = 0 a) N = 1

a) N = 8 a) N = 16

Figure 2.7: Transformation of variables.

2.2.2 Results

The example structure was a rectangular membrane with the same dimen-
sions of the previous one, as shown in Fig.2.1. The derivation of the quations
of motion and the control strategy are similar. For more details refer to [1].

During the study, several numerical examples of an elastic membrane were
completed. Three arrangements were considered: the placement of 1 actuator
with 1 mode, the placement of 1 actuator with 11 modes, and the placement
of 11 actuators using 11 modes. The discrete location one-actuator example
was done for �ve equally spaced divisions on both the x and y axes. This
produces 36 discrete locations, 16 on the interior and 20 on the boundary.
The discrete location 11-actuator example was done for 11 equally spaced
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divisions on both the x and y axes. This produces 144 discrete location, 100
on the interior and 44 on the boundary. Each case was performed with and
without the integer-programming technique to compare with the results of
Xu et al.. Because the complexity of the cost function, also in this case, it is
possible for the control algorithm to settle on many possible local minima.
The minima that yielded the lowest value of the cost function were deemed
the optimal solutions. The percentage of occurence of the optimal solutions
is also found for each of the examples. This is de�ned as the percentage
of optimal solutions found from the 20 initial points. All of the continuous
examples converged in much less than the allowed 100 iterations for 100%
convergence.

Single actuator/sensor for one mode. The simple optimal design prob-
lem is a single actuator and collocated sensor with one mode. There are only
three optimization variables: the velocity gain and the x and y coordinates of
the controller. The control penalty is R = 10, which yields control with rel-
atively high authority. With only one mode, there is only one local minima,
which is at the center of the membrane. It is expected that the best solution
will be the one nearest the local minima. For the plot of the cost function
J with respect to the placement coordinates, shown in Fig.2.8, the gain of
the controller was held constant. Fig.2.8 shows that the minumum values
of J is at the crossing of grid lines nearest to the minimum, as shown in
Fig.2.9, as expected. Because this membrane is symmetric about the center,
this solution represents all four solutions surrounding the center.

Table 2.1: One actuator/sensor, one-mode case

Optimal Optimal Optimal Cost
Design type Convergence, % convergence, % placement (x,y) gain function J
Continuous 100 100 (0.50,0.50) 0.425 3.244
Discrete location 85 55 (3/5, 3/5) 0.470 3.564
Percent change 9.8 %

Single actuator/sensor for 11 modes. The optimal location for the
local minima is shown in Fig.2.11, which is consistent with results of Xu
et al.. Note that the optimal discrete location of the grid is not the one
closest to that minimum; in fact, it is closer to another local minimum.
Fig.2.10 is a plot of the cost function for a constant gain. This plot is not as
simple as the plot for one mode. It was necessary to search all of the local
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Figure 2.8: Cost function J with respect to single actuator/sensor placement, 1
mode, gain = 0.160.

Figure 2.9: Actuator/sensor placement for one mode: •, J(0.6,0.6) = 3.564 and
gain = 0.106; ×, J(0.5,0.5) = 3.244 and gain = 0.125.

minima to �nd the optimal grid-line solution, and it does not necessarily
exist around the absolute minimum.

Table 2.2: One actuator/sensor, 11-mode case

Optimal Optimal Optimal Cost
Design type Convergence, % convergence, % placement (x,y) gain function J
Continuous 100 40 (0.79,0.82) 0.264 45.468
Discrete location 75 45 (4/5, 3/5) 0.279 45.775
Percent change 0.6 %
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Figure 2.10: Cost function J with respect to single actuator/sensor placement, 11
mode, gain = 0.160.

Figure 2.11: Actuator/sensor placement for one mode: •, J(0.8,0.6) = 45.775 and
gain = 0.279; ×, J(0.790,0.825) = 45.468 and gain = 0.264.

11 actuators/sensors for 11 modes. The number of actuators is equal
to the number of modes in the structural model. This problem was chosen
because it is the case with the most variables to optimize. There are 33
optimization variables, 22 of which are integer variables. As in the preceding
example, the control penalty is R = 10. The nonlinear-programming algo-
rithm is executed with 20 computer-generated random initial values for the
optimization variables. The noninteger example shown in Fig.2.12 is again
consistent with Xu et al.. For this example, the algorithm converged to the
grid pattern 9 of 20 times. Because of the increasing number of combinations
and 100 possible interior points to choose from, the optimal discrete location,
as shown in Fig.2.13 was found only once. Because of the restrictions on ac-
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tuators/sensors placement, the range of gains was increased. In general, it is
advantageous for controllers not to fall on mode lines where a mode would
be uncontrollable and unobservable; this greatly a�ected the placement and
gains of the present controllers, because several mode lines come very close
to the grid lines.

Table 2.3: Case of 11 actuators/sensors, 11 modes

Optimal Optimal Optimal Cost
Design type Convergence, % convergence, % placement (x,y) gain function J
Continuous 100 10 (0.20,0.20) 0.190 5.873

(0.20,0.79) 0.192
(0.79,0.20) 0.192
(0.81,0.80) 0.192
(0.16,0.50) 0.199
(0.84,0.50) 0.195
(0.50,0.84) 0.192
(0.50,0.16) 0.199
(0.48,0.58) 0.192
(0.53,0.53) 0.208
(0.58,0.48) 0.192

Discrete location 40 5 (1/11, 2/11) 0.281 7.614
(2/11, 9/11) 0.178
(9/11, 8/11) 0.168
(9/11, 2/11) 0.221
(5/11, 1/11) 0.275
(4/11, 9/11) 0.221
(9/11, 4/11) 0.246
(1/11, 5/11) 0.215
(6/11, 5/11) 0.206
(8/11, 6/11) 0.194
(4/11, 3/11) 0.227

Percent change 29.6 %
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Figure 2.12: Optimal placement for
11 actuators/sensors for 11 modes
where J = 5.873 and gains = {0.190,
0.192, 0.192, 0.192, 0.192, 0.192,
0.195, 0.195, 0.199, 0.199, 0.208}.

Figure 2.13: Optimal placement for
11 actuators/sensors for 11 modes
where J = 7.614 and gains = {0.168,
0.178, 0.194, 0.206, 0.215, 0.221,
0.221, 0.227, 0.246, 0.275, 0.281}.



Chapter 3
Problem statement

V
arious control strategies can be used to control the vibration of plates.
They can be aimed speci�cally at controlling the kinetic energy of the

plate (active vibration control, AVC) or the sound radiation (active struc-
tural acoustic control, ASAC). If a reference signal is not available, control
strategies are limited to the use of feedback controllers.These can vary greatly
in complexity.
Decentralized, static gain control is the simplest form of feedback control. If
it is applied in a stable system where the sensors and actuators are colocated
and dual, then stability is, in theory, guaranteed. In a practical situation, it
can have the extra advantage that no connections are required between dif-
ferent control locations and/or a central processing unit and that actuator,
sensor and controller could be produced as identical modular units.
It is also known that direct feedback from velocity sensors to collocated ideal
force actuators adds damping to a structure and is unconditionally stable,
even for multiple channels. While velocity signals may be derived relatively
easily from accelerometers above a certain frequency, the notion of an ideal
point force is rarely realizable since there is generally no other structure to
react such a force o�.
However, as there are sensors and actuators with a very fast dynamics, such
as piezoceramics, model of instantaneous force can be justi�ed, and since
the purpose of the research is to �nd the optimal locations on the structure
where these forces have to be applied, a model that excludes the dynamics
of sensors and actuators is fully accounted for by this type of analysis.

19
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In light of this, consider the following hypothesis:

(i) The number of sensors is equal to the number of actuators. Call it Nsa.

(ii) Sensors and actuators are collocated.

(iii) The control is decentralized, so G = diag{gi}.

The controllers will be optimized for di�erence performance measures:
the kinetic energy of the plate or the sound power radiated into the far �eld.
The actuators are assumed to be ideal point force actuators, and the sensors
ideal velocity sensors.

So, according to what stated in Eq.(1.3), the purpose is to �nd

min J(xsa,G) → x∗
sa,G

∗ (3.1)

where xsa are now the coordinates of the collocated sensors/actuators.

3.1 Structural model

The model of the structure is fully described by Dozio [3], exployting a Ritz-
based approach, due to its conceptual simplicity, wide �exibility, high reli-
ability and computational e�ciency. The Ritz tecnique has been developed
with the aim of providing an uni�ed framework for general plate analysis
which can be accurate, e�cient and easy for computer implementation. The
goal is to investigate the dynamic response of plates which may be subject
to various complicating factors, thus extending the potential of the method.
Several e�ects representing practical situations are considered, including in-
plane loads, elastically restrained edges, rigid/elastic concentrated masses,
intermediate line and point supports or their combinations.
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3.1.1 Ritz formulation

Consider a thin rectangular orthotropic plate of Fig.3.1, with length a and
width b lying in the (x, y) plane. The plate may be subjected to various com-
plicating external conditions. Normal displacement of the plate is indicated
by w = w(x, y, t), where the origin of the (x, y) coordinate system is located
at the plate center.

i-th controller

a

b

z
y

x

Figure 3.1: Rectangular plate lying in the (x, y) plane.

Throughout the remainder of the thesis, the counterclockwise four-letter
symbolic notation introduced by Leissa [7], is used for describing classical
boundary conditions for each edge:

(i) S = simply supported: zero de�ection and free rotation.

(ii) C = clamped: zero de�ection and zero rotation.

(iii) F = free: free de�ection and free rotation.

Consider now the non-dimensional coordinates:

ξ =
2x

a
, η =

2y

b
, (3.2)

The Ritz approximation is employed by assuming the following solution:
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w(ξ, η, t) = W (ξ, η)µ(t) (3.3)

where

W (ξ, η) =
M∑

m=1

N∑
n=1

Φm(ξ)Φn(η) (3.4)

with the admissible functions proposed by Beslin and Nicolas [2]:

Φm(ξ) = sin(amξ + bm)sin(cmξ + dm) (3.5)

where the coe�cients ai, bi, ci and di can be selected according the bound-
ary conditions, as proposed by Dozio [3]. The functions Φn(η) are de�ned
accordingly to Eq. (3.5), where ξ and m are replaced by η and n, respec-
tively.
Equation (3.3) can be conveniently vritten in matrix form as the scalar prod-
uct of a line vector of Ritz shapes at position (ξ, η),

W(ξ, η) = ⌊W11(ξ, η) W12(ξ, η) . . . WMN(ξ, η)⌋ (3.6)

and a column vector with the generalized coordinates

µ(t) = [µ11 µ12 . . . µMN ]
T (3.7)

thus:

w(ξ, η, t) = W(ξ, η)µ(t) (3.8)
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3.1.2 Dynamic Equations

Once selected the material properties, the plate dimensions, the boundary
conditions and the other complicating factors on the plate (look Appendix
A), the model ends up with the complete Mass and Sti�ness matrices of the
plate.

Ms Ks (3.9)

This matrices have dimensions of (M ·N ×M ·N), where M and N are
the orders of the series expansion for the Ritz functions on x and y direction.
After selecting the number of sensor/actuators with which perform the nu-
merical optimization, Nsa, is possible to write the dynamic equation in ma-
tricial form, for the generalized coordinates µ, including the ideal point force
F (ξ, η, t), acting on the plate, induced by the actuators at points (ξsa,ηsa).
According the Principle of Virtual Work, the equation of motion can be writ-
ten as:

Msµ̈(t) +Ksµ(t) = F(ξ, η, t) = bu(t) (3.10)

where u(t) is the vector of actuator forces, Ms and Ks are sparse matrix
resulting from the routine, and b is the matrix containing the Ritz functions
evaluated at the controllers locations:

b(M ·N,Nsa) =
[
W(ξ1, η1)

T W(ξ2, η2)
T . . . W(ξNsa , ηNsa)

T
]

(3.11)

The problem is transformed in modal coordinates in order to diagonalize
and simplify the numerical calculations.
The resulting eigenproblem, even when it is large since many functions are
used in the Ritz approximation, Eq.(3.4), can be solved numerically in a very
e�cient way with a MATLAB function. 1

1Using, for example, iterative projection methods of Arnoldi type. An algorithmic
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After computing eigenvalues and eigenvectors, a small amount of damp-
ing, ζ, is included in the response of the modes. Beeing q(t) the vector of
modal coordinates, the new matrix formulation of the problem becomes:

q̈(t) +Diag{2ζiωi}q̇(t) +Diag{ω2
i }q(t) = UTbu(t) (3.12)

where ωi are the eigenvalues of the plate, U is the mass-normalized eigen-
vectors matrix, and q, q̇ and q̈ are, respectively, vectors of the modal ampli-
tude, modal velocity and modal acceleration, such that µ(t) = Uq(t).

For direct output velocity feedback control, the n-dimensional measure-
ment vector y(t) is given by

y(t) = cµ̇(t) = cUq̇(t) (3.13)

where c is the placement matrix

c(Nsa,M ·N) =


W(ξ1, η1)
W(ξ2, η2)

...
W(ξNsa , ηNsa)

 = bT (3.14)

The control force is proportional to the output measurements

u(t) = −Gy(t) (3.15)

where G is the unknown time-invariant gain matrix.

variant of the Arnoldi process called the Implicity Restarted Arnoldi method is used as
implemented in MATLAB via the built-in eigs function. To have a look of the compu-
tation e�ciency of the method refer to Dozio [3], where density of the mass and sti�ness
matrices and execution e�ort taken for calculating the �rst ten frequencies of the mated
eigenproblem are presented.
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The kinetic energy of the plate at any particular point in time, can be
calculated as:

Ek =
1

2

∫ a

0

∫ b

0

ρhẇ(x, y)2 dA =
1

2

ρhab

4

∫ 1

0

∫ 1

0

ẇ(ξ, η)2 dξ dη

=
1

2

ρhab

4

∫ 1

0

∫ 1

0

µ̇TWTWµ̇ dξ dη

=
1

2
q̇TUT ρhab

4

∫ 1

0

∫ 1

0

WTW dξ dη︸ ︷︷ ︸
Ms

Uq̇

=
1

2
q̇T UTMsU︸ ︷︷ ︸

I

q̇ (3.16)

So, for the chosen mode shape rapresentation, as the matrix U contains
mass-normalized eigenvectors, the performance index for the vibration of the
plate can be calculated as the sum of the squared modal velocities.

Jke =
1

2
q̇T(t)q̇(t) (3.17)
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3.1.3 State space representation of the structural model

It is convenient at this point to express Eqs.(3.12) to (3.15) as a �rst-order
state space equation:

{
q̇
q̈

}
=

[
0 I

−Diag{ω2
i } −Diag{2ζiωi}

]
︸ ︷︷ ︸

As

{
q
q̇

}
+

[
0

UTb

]
︸ ︷︷ ︸

Bs

u (3.18)

y(t) =
[
0 cU

]︸ ︷︷ ︸
Cs

{
q
q̇

}
(3.19)

Summarizing:


ẋs(t) = Asxs(t) +Bsu(t)

y(t) = Csxs(t)

u(t) = −Gy(t)

(3.20)
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3.2 Radiation model

For the purpose of estimating their sound radiation characteristics, many
structures of practical interest may be modelled su�ciently accurately as
rectangular, uniform, �at plates. For example, consider walls and �oor of
buildings, machinery casings, part of vehicle, plane and satellite shells and
hulls and bulkheads of ships. The natural modes of vibration of such plates
vary in shape and frequency with their edge conditions and it is not strictly
correct to consider the modes of isolated panels when they are dynamically
coupled to contiguous structures, except in a purely mathematical sense as
component modes of larger systems. However, the isolated rectuangular
panel forms a useful starting point for modeling the radiation behaviour.
The modeling of sound radiation of a plate in an in�nite ba�e is usually
done in one or two ways, either by analyzing modal radiation or the so-called
radiation modes.

3.2.1 Sound Radiation formulation

Referring to the book by Fahy and Gardonio, the time-averaged total sound
power radiation of a ba�ed plate can be formulated in terms of the far-�eld
sound intensity over a hemisphere surface positioned with reference to the
centre of the panel. For harmonic vibration,

P̄ (ω) =
1

2

∫ a

0

∫ b

0

Re (v(x, y, ω)∗p̃(x, 0, y, ω)) dx dy (3.21)

where v is the transverse velocity of the plate determined through mode
shape terms v(x, y) = ⌊ϕ(x, y)⌋{v}, ∗ denotes the complex conjugate, and
the surface acoustic pressure p̃ can be written in terms of the normal surface
velocity through the Rayleigh integral as

p(x, 0, y, ω) =
jωρ0
2π

∫ a

0

∫ b

0

v(x′, y′, ω)
e−jkR

R
dx′ dy′ (3.22)

where, R =
√
(x− x′)2 + (y − y′)2 is the distance between the point (x,y)

where the sound pressure is estimated and the vibrating surface element at
(x′, y′). Substituting Eq.(3.22) into Eq.(3.21), the time-average total sound
power is given by the quadruple integral, which, using the vector expression
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for v(x, y) becomes

P̄ (ω) =
1

2
ℜ
{jωρ0

2π

∫ a

0

∫ b

0

∫ a

0

∫ b

0

{v}H⌊ϕ(x, y)⌋T

×e−jkR

R
⌊ϕ(x′, y′)⌋{v}

}
dx′ dy′ dx dy

(3.23)

where H denotes the Hermitian transpose (transpose and conjugate).
Since je−jkR/R = j(cos kR− j sin kR)/R, and because {v}H{v} is bound to
be real positive, this expression can be rewritten as

P̄ (ω) =
ωρ0
4π

{v}H
(∫ a

0

∫ b

0

∫ a

0

∫ b

0

⌊ϕ(x, y)⌋T sin kR
R

⌊ϕ(x′, y′)⌋ dx′ dy′ dx dy

)
{v}

(3.24)

or, alternatively, in matrix form

P̄ (ω) = {v}H [A(ω)] {v} (3.25)

where [A] is an (n × n) matrix (n represents the number of structural
modes), which is normally referred to as the Power Transfer Matrix.

3.2.2 Formulation in terms of Elementary Radiators

Although the formulation presented above seems to be quite simple and neat,
the derivation of the quadruple integrals for the elements in the power trans-
fer matrix [A] is relatively complex and involver. An alternative non-modal
approach based on the elementary radiators is therefore presented as de-
scribed by Fahy and Gardonio [5].

As shown in Fig.3.2, the ba�ed panel is divided into a grid of R rect-
angular elements whose transverse vibrations are speci�ed in terms of the
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y x

z

ver

Figure 3.2: Subdivision of a panel into elementary radiators.

velocities ver at their centre positions so that, assuming time-harmonic mo-
tion, the overall vibration of the panel can be described by the following
column vector of complex amplitudes:

{ve} = ⌊ve1 ve2 . . . veR⌋T (3.26)

If the amplitudes of the sound pressures acting on each element are also
grouped into a column vector, as

{pe} = ⌊pe1 pe2 . . . peR⌋T , (3.27)

assuming that the dimensions of the element are small compared with
both the structural wavelength and the acoustic wavelength, the total ra-
diated sound power can then be expressed as the summation of the powers
radiated by each element expressed as P̄er = 1/2AeRe (v

∗
erper), so that

P̄ (ω) =
R∑

r=1

1

2
AeRe (v

∗
erper) =

S

2R
Re

(
{ve}H {pe}

)
(3.28)
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where Ae and S are respectively the areas of eah element and of the
whole panel. The pressure on each element is generated by the vibrations of
all elements of the panel. Assuming that

√
Ae ≪ λ, where λ is the acoustic

wavelength, Eq.(3.22) gives

pei(xi, yi) =
jωρ0Aee

−jkRij

2πRij

vej(xj, yj) (3.29)

with Rij the distance between the centres of the i-th and j-th elements.
The vector of sound pressures can therefore be expressed by the impedence
matrix relation

{pe} = [Z] {ve} (3.30)

where [Z] is the matrix incorporating the point and transfer acoustic
impedence terms over the grid of elements into which the panel has been
subdivided: Zij(ω) = (jωρ0Ae/2πRij)e

−jkRij . Note that, because of reci-

procity, the impedance matrix [Z] is symmetric, in which case [Z] = [Z]T .
Substituting Eq.(3.30) into the expression for the total radiated sound power
given in Eq.(3.28), we obtain

P̄ (ω) =
S

2R
Re

(
{ve}H [Z] {ve}

)
(3.31)

which, because [Z] is symmetric, can be rewritten as

P̄ (ω) =
S

4R
{ve}H

(
[Z] + [Z]H

)
{ve} = {ve}H [R] {ve} (3.32)
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The matrix [R] is de�ned as the Radiation Resistance Matrix for the el-
ementary radiators which, for the ba�ed panel, is given by

[R] =
S

2R
Re ([Z]) =

S

4R

(
[Z] + [Z]H

)

=
ω2ρ0A

2
e

4πc


1 sin(kR12)

kR12
. . . sin(kR1R)

kR1R
sin(kR21)

kR21
1

... . . .
. . . . . .

sin(kRR1)
kRR1

1


(3.33)

where ω is the circular frequency in rad/s , ρ0 is the density of the air, Ae

is the area associated with the discretized radiator, c is the speed of sound in
air, k is the wave number (ω/c), and Rij is the distance between the center
of the i-th and j-th velocity locations.
Since Rij = Rji, the radiation matrix is symmetric, and as found for the
power transfer matrix [A], it is also positive de�nite since the quadratic ex-
pression for the power radiation in Eq.(3.32) is bound to be positive.

The agreement between the two models is generally good provided that
the dimensions of the discrete elements are both much less than the acoustic
wavelength and the modal wavelengths in the panel, i.e., much greater than
the Cartesian components of the plate modal wavenumber vectors.
In general, the modal approach can be used for regular shapes and com-
mon boundary conditions such that analytical expressions can be derived for
the mode shapes. In the elementary radiator model, the velocities of the
elementary radiators can be derived using general Ritz functions (or Finite
Elements analysis) which enables the study of non-uniform, ba�ed plates of
complex geometry having non-classic boundary conditions which can result
from interfaces with other �exible structures, that are the basis of this work.

3.2.3 Radiation modal expansion (RME)

Before assembling the augmented plant model, a model which incorporates
the physics associated with the structural acoustic coupling must be devel-
oped. This dynamic model is used to "�lter" the discrete velocity measure-
ments such that the rms sound power radiated from the structure can be
estimated.
Since the radiation matrix is also a function of frequency, a singular value
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decomposition can be performed to determine the dominant radiation modes
of the system at each frequency. Singular value decomposition is performed
at frequency ωi as follows:

R(ωi) = uΣuH (3.34)

where u is an (R×R) matrix whose columns are the normalized radiations
modes of the matrix at frequency ωi, and Σ is an (R × R) diagonal matrix
whose elements are the singular values, decreasing monotonically along the
diagonal. The magnitude fo the j-th diagonal element, σj, of Σ determines
the relative importance of the j-th radiation mode compared to other radia-
tion modes.
In order to predict the total power radiated over some bandwidth, the char-
acteristics of the R matrix must be modeled over the bandwidth. Thus, for
an (R×R) matrix, a total of R2 transfer functions must be modeled �tting
the trend of the singular values versus frequency. This level of complexity is
impractical for control system design, since the order of the dynamic com-
pensator is typically the same order as the augmented plant. "Optimal"
controllers cannot be improved by going to higher orders.
A special curve �tting technique, called Radiation Modal Expansion (RME)
is introduced, as presented by Gibbs et al. [6], which provides a reasonable
approximation to the dynamics of the R matrix using a small fraction of the
original number of states. This technique exploits the "nesting" property of
the radiation modes: the space spanned by the signi�cant radiating modes at
frequency below some arbitrary maximum frequency of the bandwidth ωmax

is a subspace of the space spanned by the radiating modes at the frequency
ωmax. Thus, the set of singular vectors at ωmax corresponding to the signi�-
cant radiating modes can be used as a basis to describe the radiation at any
frequency below ωmax.
The key to incorporating the essential physics of structural acoustic coupling
rests in curve �tting the dominant radiating modes over the bandwidth,
which is performed using the RME techinque outlined in this section. In
this technique, the signi�cant radiation modes at the upper frequency of the
bandwidth of interest are used as a basis to curve �t the properties of the R
matrix over the entire bandwidth. The amplitude-weighting coe�cients are
determined by the radiated power of each respective normalized radiation
mode shape at each frequency ω over the bandwidth as follows:
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Ψ2
i (ω) = uH

i,maxR(jω)ui,max (3.35)

where Ψ2
i (ω) is the radated power of the i-th radiating mode (shape de-

termined at ωmax), and ui,max is the i-th radiating mode shape determined
at ωmax. A plot of the amplitude-weighting coe�cients Ψi(ω) for the �rst six
radiation modes is shown in Fig. 3.3.
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Figure 3.3: Radiation modal expansion coe�cients (Ψi) for the �rst six radiation
modes. The model is calculated with a generic rectangular geometry in air at
standard conditions, up to 500 Hz.

In order to create a model of the RME system it is only necessary to
curve �t in frequency 2 the dynamics described by the RME coe�cients, Ψi,
shown in Fig.3.3. An example of curve �tting with the �tmagfrd function of
MATLAB is shown in Fig.3.4.
Comparing the two �gures do not notice visible di�erences between the trend

2The curve �tting of the frequency response is performed with a MATLAB function
�tmagfrd that needs as input the frequencies and the magnitude of the response and
returns the corresponding sate space matrices . For more details refer to the help of
MATLAB.
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of the model and the MATLAB �tting, despite using relatively low order
transfer functions: for the �rst 6 radiation modes, until 500 Hz, 3rd order
transfer functions are su�cient.
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Figure 3.4: Fitting of the radiation modal expansion coe�cients (Ψi) for the �rst
six radiation modes, up to 500 Hz, with 3rd order radiation �lters.
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3.2.4 State space representation of the acoustic model

At the end of the �tting operation, the MATLAB routine eds up with the fol-
lowing state space matrix for the radiation �lters, one for wach �lter, which
dimensions depends from the order of the transfer functions adopted in the
�tmagfrd procedure:

Arf Brf Crf Drf (3.36)

But in order to rewrite the radiation model in a state space representa-
tion, the input to each radiation mode has to be calculated as a function of
the modal velocities as:

{ve} = cUq̇(t) (3.37)

where c is the placement matrix of Eq.(3.14), evaluated in the coordi-
nates of each elementary radiatior velocity (ξe, ηe). At this point, applying
the frequency dependent �lters, the sate space model can be derived for each
radiation �lter:

{
ȧrfi = Arfiarfi +Brfiu

H
icUq̇

yrfi = Crfiarfi +Drfiu
H

icUq̇
(3.38)

and then, incorporating all the radiation modes considered in the model,
the representation becomes:


ȧrf1

ȧrf2
...

ȧrfN

 =


Arf 0 . . . 0

0 Arf2
...

...
. . . 0

0 . . . 0 ArfN


︸ ︷︷ ︸

Aac


arf1

arf2
...

arfN

+


Brf1u

H
1cU

Brf2u
H

2cU
...

BrfNu
H

NcU


︸ ︷︷ ︸

Bac

q̇ (3.39)
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yac =


yrf1

yrf2
...

yrfN



Crf 0 . . . 0

0 Crf2
...

...
. . . 0

0 . . . 0 CrfN


︸ ︷︷ ︸

Cac


arf1

arf2
...

arfN

+


Drf1u

H
1cU

Drf2u
H

2cU
...

DrfNu
H

NcU


︸ ︷︷ ︸

Dac

q̇

(3.40)

which, written in a more compact form becomes:

{
ȧac = Aacaac +Bacq̇

yac = Cacaac +Dacq̇
(3.41)

where aac are the states of the radiation �lters, the matrix Bac describes
the excitation of the �lters as a function of the modal velocities, and Aac

describes the dynamics, Cac describes the relation between the states of each
�lter and its output and Dac is a direct feedthrough matrix of the structural
modal velocities to the cost variables.
At this point, an estimation of the sound radiation Jac is possible:

Jac = yT
ac(t)yac(t) (3.42)
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3.3 Global state space representation

An e�cient way to simultaneously deal with the structural and the acoustic
model, as they are coupled, is embedding them in a global state space repre-
sentation with a state vector which includes structural modes and acoustic
modes. Combining Eqs.(3.20) and (3.46), obtain:


q̇
q̈
ȧac

 =

 0 I 0
−Diag{ω2

i } −Diag{2ζiωi} 0
0 Bac Aac


︸ ︷︷ ︸

A


q
q̇
aac

+

 0
UTb
0


︸ ︷︷ ︸

B

u (3.43)

yv(t) =
[
0 cU 0

]︸ ︷︷ ︸
C1


q
q̇
aac

 (3.44)

yac(t) =
[
0 Dac Cac

]︸ ︷︷ ︸
C2


q
q̇
aac

 (3.45)

that summarizing become:


ẋ(t) = Ax(t) +Bu(t)

yv(t) = C1x(t)

yac(t) = C2x(t)

u(t) = −Gyv(t)

(3.46)





Chapter 4
Optimization problem

I
n the following, an optimal design procedure is developed of the actuator
and sensor placements (ξsa, ηsa), and the feedback gains G, that for the

Decentralized constant gain control considered, constitute a total of 3×Nsa

optimization variables.
First, a performance function is chosen that includes both the structural re-
sponse and the control e�ort. The standard performance function is

J =
1

2

∫ ∞

0

(
xTQx+ uTRu

)
dt (4.1)

where Q is chosen according to the type of optimization performed, ki-
netic energy or radiated sound power (look Appendix A for reference), while
the control penalty matrix R is the symple diagonal matrix

R = R

[
I 0
0 I

]
. (4.2)

where R varies depending on the type of optimization performed.
Eq.4.1 can be expressed as function of the state vector by substituting the
expression u = −GCx, obtaining

J =
1

2

∫ ∞

0

xT
(
Q+CTGTRGC

)︸ ︷︷ ︸
WG

x dt (4.3)

39
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Introducing the closed loop matrix Ā = A−BGC, the state vector can
be expressed as function of the initial conditions x(0) = x0

x(t) = eĀtx0 (4.4)

so obtain a performance index as function of the initial state vector

J =
1

2
xT
0

[∫ ∞

0

(eĀt)TWGe
Āt dt

]
︸ ︷︷ ︸

P

x0 =
1

2
xT
0Px0 =

1

2
tr[xT

0Px0] (4.5)

which, introducing the property of the trace operator becomes

J =
1

2
tr[Px0x

T
0 ] =

1

2
tr[PX0] (4.6)

At this point, referring to the classical theory of optimal control, the
Lagrangian multipliers are introduced, because matrix P is a solution of a
Lyapunov equation. Therefore it must comply with the following constraint:

J =
1

2
tr[PX0 +ΛT (ĀTP+PĀ+WG)] (4.7)

This performance function, which is expressed implicitly in terms of actu-
ator and sensor placement vector xsa (embedded in the matrices B and C),
and the feedback gain matrix G is used in the following for the optimizaiton
problem.
As the optimization variables are non-integer values, the optimization prob-
lem can be solved with standard nonlinear-programming techniques. Because
the performance function gradients can be found analytically, descent meth-
ods can be used to solve this problem. The derivation of the gradients is
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shown in the following.
Exploiting the properties of the trace operator, take the partial derivatives of
the cost function, and obtain 2 constraint Lyapunov equations (Eq.(4.8)), and
3 equations of gradients with respect to the optimization variables (Eq.(4.9)):


∂J

∂Λ
= ĀTP+PĀ+WG = 0

∂J

∂P
= X0 + ĀΛ+ΛĀT = 0

(4.8)



∂J

∂G
= −BTPΛCT +RGCΛCT = 0

∂J

∂B
= −PΛCTGT = 0

∂J

∂C
= −GTBTPΛ+GTRGCΛ

(4.9)

The gradients with respect to the adimensional coordinates (ξsa, ηsa), are
subsequently obtained by the chain rule as follows:

∂J

∂ξi
=

∂J

∂Bkl

∂Bkl

∂brs

∂brs
∂Wmn(ξi)

∂Wmn(ξi)

ξi
(4.10)

where

∂Bkl

∂brs
=

{
0, if 1 ≤ k ≤ MN

δ(k−MN)rδls, if MN + 1 ≤ k ≤ 2MN
(4.11)

∂brs
∂Wmn(ξi)

= U(mn,i) (4.12)
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∂Wmn(ξi)

ξi
= {am[cos(amξi + bm) sin(cmξi + dm)]

+ cm[cos(cmξi + dm) sin(amξi + bm)]}
× sin(anηi + bn) sin(cnηi + dn) (4.13)

After substitution and manipulation, it is found that Eq.(4.10) can be
simpli�ed to

∂J

∂ξi
=

MN∑
k=1

∂J

∂B(k+mn)i

U(mn,i){am[cos(amξi + bm) sin(cmξi + dm)]

+ cm[cos(cmξi + dm) sin(amξi + bm)]}
× sin(anηi + bn) sin(cnηi + dn) (4.14)

where U is the eigenvectors matrix of the structural dynamic model, and
am, bm, cm and dm, are the coe�cients of the series expansion relative to
the actual boundary conditions. In similar way, the partial derivative with
respect to the η coordinate is obtained. While for the derivative with respect
to the gains, simply assume:

∂J

∂gi
=

∂J

∂Gii

(4.15)

At this point a set of 3×Nsa gradients value is available for the numerical
optimization algorithm.
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4.1 Gradient-based numerical optimization

One of the most robust gradient-based optimization techniques is the Davidon-
Fletcher-Powell (DFP) algorithm (for more in-depth theory refer to [8]),
which is summarized by the �ow chart in Fig.4.1.

Start with initial values
X (N  x 1), H = I (N  x N )1 sa 1 sa sa

i = 1

Compute objective 
function and gradient

J(X ) and ∂J/∂Xi i

Find search direction
S = - H ∂J/∂Xi i i

One dimensional
minimization

Convergence test
Yes

No

Update H matrix and Xi i 

i = i + 1

Output solution
X = Xopt i+1

J = J(X )opt i+1

Figure 4.1: Flow chart of the DFP algorithm.

The basic parameters for each iteration i are: the vector of optimiza-
tion variables Xi, an appropriate inverse of the Hessian matrix, Hi, and a
search direction vector Si. After the search direction vector is computed,
the one-dimensional minimization proceeds as follows. An accelerated step
size algorithm is used to determine an interval in the search direction which
contatins at least one local minimum. Then, within this interval, an in-
terpolation function is used to �nd a minimum. For a well-de�ned convex
performance function, convergence is rapid, and the metric approaches the
inverse of the Hessian at the solution. However, if there are more than one
local minima in the searching direction, convergence may be slow.
In the last step of the algorithm, the following convergence tests are used:
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∣∣∣∣J(Xi+1)− J(Xi)

J(Xi)

∣∣∣∣ ≤ ε1 (4.16)

∣∣∣∣ ∂J∂Xj

∣∣∣∣ ≤ ε2 j = 1, . . . , Nsa (4.17)

where ε1 and ε2 are the convergence control parameters, and Xj is the
j-th component of vector Xi. In the simulation a value of 1e-7 is used for
both the convergence tests.
In the following the step-by-step DFP algorithm is summarized:

1. Choose X1 positive de�nite (identity matrix), [H1], Niter

ε1 and ε2 (tolerance for stopping criteria)
Set i = 1 (initialize iteration counter)

2. Si = [Hi] ∂J/∂Xi(Xi)
Xi+1 = Xi + αiSi; ∆X = αiSi

αi is determined by minimizing J(Xi+1)

3. If Eq.(4.16) holds → stop (function not changing)
If Eq.(4.17) holds → stop (gradient tends to zero)
If i+ 1 = Niter → stop (iteration limit)

Else

Y = ∂J/∂Xi(Xi+1)− ∂J/∂Xi(Xi);

Z = [Hi]Y;

[B] =
∆X∆XT

∆XTY
;

[C] = −ZZT

YTZ
;

[Hi+1] = [Hi] + [B] + [C];

i = i+ 1;

Go to step 2

In the above the matrices are enclosed by square brackets. The initial
choice of the metric is a positive de�nite matrix. The identity matrix is a
safe choice.



Chapter 5
Convergence study

F
or the validation of the results obtained (see next chapter), a study of
convergence of the method was carried out, without control simulation,

both for the structural and the acoustic model. The results were compared
with both analytical solutions (where it is possible) of the frequency response,
and the solutions coming from literature.
As plate model was adopted the same used by Engels et al. [4], with the
purpose to obtain comparable results:

Table 5.1: Variables of the plate used in the simulation.

E = 7× 1010 Pa Young's modulus
ρ = 2720 kg/m3 density of the plate
ζ = 0.01 modal damping factor

fmax = 1 kHz maximum frequency of interest

h = 0.001 m tickness of the plate
a = 0.247 m x dimension of the plate
b = 0.278 m y dimension of the plate
J = h3/12 m3 bending sti�ness

45
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5.1 Convergence of the structural model

Considering a simply supported plate, a modal model can be easily carried
out with the mode shapes de�ned as:

Ψmn(x, y) = sin(kmx) sin(kny) (5.1)

with km = mπ/a and kn = nπ/b. The natural frequency corresponding
to the above mode shape can be computed as:

ωmn =

√
EJ

ρh
(k2

m + k2
n) (5.2)

The analytical solution of Eq.(5.2) was compared with a simply supported
plate model (SSSS) generated by the routine, varying the number of term
adopted in the series expansion for the Ritz functions. Results are obtained
by using a square selection strategy, i.e., the same number of terms M = N
is adopted in the series.
The resulting frequencies are listed in Table 5.2, for frequencies below fmax =
1 kHz.

As one would expect, as the degree of the Ritz functions increases, the
solution is getting closer to the exact one, from the top, due to the higher
sti�ness of the approximated structure. In theory, the exact solution would
be achieved with an in�nite number of Ritz admissible functions.

A further convergence stuty for the structural model has been done on
the frequency response of the kinetic energy. As reference, the spectrum
of expected kinetic energy by Engels et al. [4], has been considered. They
assumed a modal model of a simply supported plate (which characteritics
are listed in Table 5.1), and an excitation by a pressure �eld p(x, y), with a
white spectrum in time, as well in space. In order to plot the same e�ect,
a constat modal distribution of the pressure �eld was chosen, equal for each
modal coordinate.
In the Figure 5.1 the spectra of kinetic energy are shown, without control
action, compared with that obtained by Engels et al. for a white noise exci-
tation, increasing the order of the Ritz functions.
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Table 5.2: Convergence study of a (SSSS) plate for frequencies below fmax. Com-
parison with the exact solution, for a simply supported input plate reported in
Table 5.1.

f = ωmn/2π M=N

(Hz) 4 8 12 16 20 24 30 40 50

67,47 67.60 67.48 67.47 67.47 67.47 67.47 67.47 67.47 67.47
156,76 157.13 156.80 156.77 156.76 156.76 156.76 156.76 156.76 156.76
180,59 181.05 180.63 180.60 180.59 180.59 180.59 180.59 180.59 180.59
269,88 270.42 269.93 269.89 269.89 269.88 269.88 269.88 269.88 269.88
305,59 341.82 306.27 305.74 305.65 305.62 305.60 305.60 305.59 305.59
369,11 416.31 370.01 369.31 369.19 369.15 369.13 369.12 369.11 369.11
418,71 449.11 419.25 418.83 418.75 418.73 418.72 418.71 418.71 418.71
458,41 500.09 459.17 458.58 458.47 458.44 458.42 458.41 458.41 458.41
513,94 600.72 515.97 514.45 514.14 514.04 514.00 513.97 513.96 513.95
607,23 666.53 608.23 607.44 607.31 607.27 607.25 607.24 607.23 607.23
627,06 705.28 628.81 627.49 627.23 627.14 627.11 627.08 627.07 627.06
633,05 744.63 635.67 633.70 633.31 633.18 633.12 633.08 633.06 633.05
722,34 826.40 724.72 722.93 722.57 722.46 722.41 722.37 722.35 722.35
781,83 912.75 793.71 783.84 782.53 782.16 782.01 781.92 781.86 781.85
815,58 985.01 817.49 816.02 815.75 815.67 815.63 815.61 815.59 815.59
871,17 1221.18 873.52 871.72 871.38 871.27 871.23 871.20 871.18 871.17
894,94 905.91 896.75 895.57 895.23 895.10 895.02 894.97 894.96
972,39 987.62 974.98 973.30 972.82 972.62 972.51 972.44 972.41

Underlined bold numbers denote convergent values to four signi�cant �gures.

As can be seen, increasing the order of the Ritz functions, and so gradually
re�ning the model, the frequency response becomes more precise, stabilizing
to that computed by Engels et al. [4], with the peaks coincident with the
solutions found analitically. It can be noted how (look at Fig. 5.1d), with a
relatively low order of approximation, a fairly accurate representation of the
frequency response of the structure is obtained.

The convergence of the structural model has been also veri�ed for di�erent
boundary conditions, for which there is no analytical solution. As there is
no literature in a representation of the spectrum of the kinetic energy, the
analysis was performed by comparing the result with a more accurate one,
iterating the procedure.
As reference, a fully clamped plate on the four edges was considered (CCCC),
with the same characteritics in Table 5.1, excited by the same pressure �eld
p(x, y). In the Figure 5.2 the spectra of kinetic energy are shown, without
control action, compared with themself, increasing the number of the Ritz
functions.

As can be seen, also for the fully clamped plate, increasing the order of the
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(a) N = M = 6 (b) N = M = 8

(c) N = M = 10 (d) N = M = 12

Figure 5.1: Spectrum of kinetic energy, assuming white noise excitation, varying
the order of Ritz functions. With� is plotted as reference the spectrum obtained
by Engels et al. taking into account all the mode shapes with a natural frequency
up to fmax = 3 kHz, which results in 60 modes taken into account.

Ritz functions, and so gradually re�ning the model, the frequency response
becomes more precise, stabilizing to a �xed rapresentation. It can be noted
how (look at Fig.5.2d), with only 14 admissible Ritz functions, the spectrum
is very precise at low frequencies and accurate enough at high frequencies
below the frequency of interest.

For completeness, as in the (SSSS) case, in Table 5.3 the frequencies of
the structure are reported, varying the terms of the series expansion M = N .

Due to the higher complexity of the problem, with respect to the simply
supported plate, the convergence is slower, as can be seen from the slower
trend of the frequency approximation, but still guaranteed, with a higher
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(a) N = M = 4, 6
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(b) N = M = 6, 8
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(c) N = M = 8, 10
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(d) N = M = 12, 14

Figure 5.2: Spectrum of kinetic energy, assuming white noise excitation, varying
the order of Ritz functions. With � is plotted the spectrum obtained with a lower
order of approximation; with � is plotted the spectrum obtained with a higher
order of approximation.

number of Ritz functions.

5.2 Convergence of the acoustic model

Even for the acoustic radiation model an analysis of convergence was made,
in order to verify the e�ectiveness of the method. A good yardstick is the
spectrum of the acoustic radiated power, which is an optimization variable
of the problem.
In Table 5.4 the input data used for the computation are listed.

Figure 5.3 shows the trend of the spectra keeping �xed the structural ap-
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Table 5.3: Convergence study of a (CCCC) plate for frequencies below fmax. Input
plate variables are reported in Table 5.1.

M=N

4 6 8 12 16 20 24 30 40 50

124.51 123.87 123.66 123.53 123.49 123.47 123.47 123.46 123.46 123.46
236.08 234.49 233.91 233.53 233.41 233.37 233.34 233.33 233.32 233.31
272.23 270.49 269.86 269.44 269.31 269.25 269.23 269.21 269.20 269.20
376.48 373.26 372.02 371.16 370.88 370.77 370.71 370.67 370.65 370.64
420.58 412.87 410.49 409.04 408.62 408.46 408.39 408.34 408.31 408.29
508.46 499.30 496.49 494.77 494.29 494.10 494.02 493.96 493.92 493.91
557.00 546.10 542.44 540.06 539.35 539.07 538.93 538.84 538.78 538.76
610.82 598.68 594.70 592.13 591.37 591.07 590.93 590.83 590.76 590.74
663.65 652.56 648.75 646.21 645.43 645.11 644.96 644.85 644.78 644.75
790.89 768.22 760.69 755.80 754.35 753.78 753.51 753.32 753.20 753.16
796.69 782.03 776.70 772.98 771.80 771.31 771.07 770.90 770.79 770.75
817.64 804.27 799.69 796.63 795.69 795.30 795.12 794.99 794.91 794.87
918.60 902.01 896.05 891.91 890.59 890.05 889.79 889.60 889.48 889.43
1028.79 966.51 952.75 945.16 943.09 942.29 941.92 941.67 941.50 941.45
1097.69 1000.87 990.95 984.12 981.98 981.10 980.68 980.38 980.18 980.11

Underlined bold numbers denote convergent values to four signi�cant �gures.

Table 5.4: Acoustic data used in the simulation.

ρ = 1.2754 kg/m3 air density at standard conditions
c = 331.3 m/s speed of sound at standard conditions

fmax = 1 kHz maximum frequency of interest

Ex = 6 elementary radiators on the x axis
Ey = 5 elementary radiators on the y axis
ord = 4 order of the �tting transfer functions

proximation terms, and varying the number of radiation modes. The graphs
are compared with themeself until reaching a stable rapresentation.

Also the radiated acoustic power shows a clear convergence trend with
a relatively low number of radiation modes. In Fig.5.3d the rapresentation
reaches a su�cient accuracy so as to allow the implementation of the model
for further optimization analysis.



5.2. CONVERGENCE OF THE ACOUSTIC MODEL 51

0 100 200 300 400 500 600 700 800 900 1000
−120

−100

−80

−60

−40

−20

0

20

Frequency [Hz]

R
ad

ia
te

d 
so

un
d 

po
w

er
 [d

B
(W

)]

 

 

(a) N = M = 12. RM = 2, 3
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(b) N = M = 12. RM = 4, 5
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(c) N = M = 12. RM = 6, 8
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(d) N = M = 12. RM = 8, 10

Figure 5.3: Spectrum of the radiated sound power, assuming white noise excitation,
varying the number of radiation modes. With � is plotted the spectrum obtained
with less radiation modes; with � is plotted the spectrum obtained with more
radiation modes.





Chapter 6
Analysis and Results

I
n this chapter the most interesting part of the job is presented and dis-
cussed. Particular cases were taken into account, which di�er for the input

parameters assigned, in order to highlight the di�erences between the various
scenarios. As starting point, the study of Engels et al. [4] is reproduced, for
a plate equipped with ideal actuators and senors in �xed positions, for the
minimization of its kinetic energy and acoustic radiated power. Once one
understood the di�erences between the results obtained and how they are
in�uenced by the input parameters, it is possible to further research into the
optimal locations to be assigned to sensors and actuators, for plates subjected
to di�erent boundary conditions and di�erent loading conditions.

6.1 Optimization of gains with a �xed grid of

controllers (Engels [4])

To carry out the same type of optimization a modi�ed version of the routine
has been used, which maintains a �xed position of the sensors and actuators,
performing the minimization of gains only, for a Decentralized constant gain
controller.

i-th controller

a

b

Figure 6.1: Equally spaced sensors and actuators as adopted by Engels et al. [4].
Each dot represents colocated velocity sensors and point force actuator pair.
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In this study 16 equally spaced control locations are used, as indicated in
Fig.6.1 and 6.2. At each control locations, ideal velocity sensors are assumed
that are colocated with ideal force actuators.
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Figure 6.2: Equally spaced sensors and actuators as as adopted by Engels et al.
[4]. 2D view.

Figure 6.3 shows the resulting spectrum of the kinetic energy and acoustic
radiation with a control action optimized for kinetic energy. A white noise
excitation is assumed and the control e�ort weighting was adjusted such
that the expected controller e�ort was equal to 300 N2 for each controller
(R = 1/300).

The kinetic energy around the �rst resonance frequency is reduced by
about 25 dB dropping o� to about 10 dB reduction at other resonances.
Look at [4] for more details and comparison whith other type of control ac-
tion.
From the Figure 6.3 you can note that at certain frequencies (780 Hz, 900 Hz,
980 Hz) there is no attenuation of both energy and sound radiation. This
result was also obtained by Engels et al., which performed also a further
analysis with a red noise excitation on the plate obtaining the conclusion
that such frequencies could not be mitigated by any type of control strategy
adopted in the simulation.
In Figure 6.4 the same analysis are shown with the same grid of sensors and
actuators, but with a stronger control action. The result is always the same:
those frequencies are una�ected by the action of controllers. Why?
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Figure 6.3: Spectrum of kinetic energy and radiated sound power assuming white
noise excitation, before and after control, using decentralized constant gain con-
troller. The average control e�ort for each controller was limited to 300 N2.
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Figure 6.4: Spectrum of kinetic energy and radiated sound power assuming white
noise excitation, before and after control, using decentralized constant gain con-
troller. The average control e�ort for each controller was limited to 1000 N2.
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6.1.1 Emprovement of the grid arrangement

In order to answer this question, a second slightly di�erent grid formed by
the same number of sensors and actuators was assumed. In Figure 6.5 they
are compared.
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(a) Old con�guration [4].
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(b) Emproved con�guration.

Figure 6.5: Equally spaced sensors and actuators in the old and the new emproved
arrangement. Each dot represents colocated velocity sensors and point force actu-
ator pair.

Looking at the results in Figure 6.6 we can �nd the answer. The reason
lies in the fact that such a grid of sensors and actuators arranged in the initial
manner (Fig.6.2) is not able to mitigate those particular frequencies. From
this fact comes the need to �nd an optimum arrangement of the actuators,
so that the whole spectrum of frequencies of interest may be attenuated. In
Fig.6.6 is possible to note that with the same control e�ort of 300 N2, the
overall spectrum is attenuated, and the force of the actuators is more spanned
and better distributed over the plate for a global but lower attenuation.

Finding an optimum solution is the purpose of the next results. This
solution will optimize both the arrangement of sensors and actuators on the
plate and the attenuation of the performance, once selected an appropriate
control e�ort weighting coe�cient.
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Figure 6.6: Spectrum of kinetic energy and radiated sound power assuming white
noise excitation, before and after control, using decentralized constant gain con-
troller. The average control e�ort for each controller was limited to 300 N2.
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6.2 Di�erences in minimizing Kinetic energy or

Radiated sound power

In the previous section, cases optimized for kinetic energy were considered.
In fact, as has been noted, for the same control e�ort, the attenuation of
radiated sound power is lower. What happens performing the optimization
for the sound power?
Holding the same grid of sensors and actuator of Fig.6.2 some analysis are
performed for both the kinetic energy and acoustic power optimizations,
changing che control e�ort parameter. Figure 6.7 and Eq.(6.1) show the
results in terms of frequency response and minimum gains for an optimization
of the radiated sound power, keeping the control e�ort weighting R = 1/300,
such that the expected average control e�ort is limited to 300 N2. As one
can see, also for the acoustic optimization, is clearly visible the ine�ectiveness
of this type of con�guration for the frequencies around 780 Hz, 900 Hz and
980 Hz.
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Figure 6.7: Spectrum of radiated sound power assuming white noise excitation,
before and after control, using decentralized constant gain controller. The average
control e�ort for each controller was limited to 300 N2.
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G300 = diag{6.78 4.60 4.60 6.78 4.93 3.81 3.81 4.93

4.93 3.81 3.81 4.93 6.78 4.60 4.60 6.78} (6.1)

The attenuation is much more pronounced than that obtained with an
optimization of the kinetic energy. The reason for this lies in the value of the
functional J . For both cases, it is given by the equations:

Jke =
1

2

[
q̇T (t)q̇(t) + uT (t)Ru(t)

]
(6.2)

Jac =
[
yT
ac(t)yac + uT (t)Ru(t)

]
(6.3)

where u is the vector of control signals applied by the controller and R
is the weighting matrix of the control e�ort.
Taking as an example the two simulations for the optimization of the kinetic
energy and the radiated sound power, made with R = 1/300, we get the
following values for the performance indices:

Jke = 2.214× 107 (6.4)

Jac = 1.327× 109 (6.5)

As one can see, Jac is much higher with respect to Jke, so R should
be tuned in such a way to yields an e�ective control for that particular
index. Accordingly, for the optimization of the radiated sound power, R
should be higher, with respect to the kinetic energy optimization, due to
the greater magnitude of the acoustic index. In Figure 6.8 a new acoustic
optimization is performed, keeping the control penalty R = 1/30. In this
case the sound power density around the �rst resonance frequency is reduced
by about 40 dB, that is a more realistic result, and the optimum static gains
of the control matrix are much lower (Eq.(6.6)), that is a very important
result in terms of control power saving.
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Figure 6.8: Spectrum of radiated sound power assuming white noise excitation,
before and after control, using decentralized constant gain controller. The average
control e�ort for each controller was limited to 30 N2.

G30 = diag{1.02 0.78 0.78 1.02 0.67 0.56 0.56 0.66

0.67 0.56 0.56 0.67 1.02 0.78 0.78 1.02} (6.6)

The overall di�erence in the cost function is di�cult to see from these plots
and it is not clear whether a level of e�ort is more appropriate than another.
Therefore, the overall reduction in the expected kinetic energy and sound
radiation should be examined as a function of control e�ort. Still higher
control e�orts can be achieved by using higher gains in the control loops, but
this results in worse, rather than better performance.
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6.3 Comparison between �xed locations and op-

timized ones

This section will analyze the most interesting results of this work: the di�er-
ences between a grid of sensors and actuators �xed a priori, and an optimized
one through an objective function.
In the following, three numerical studies are presented: optimal placement
and gains for 1, 16 and 100 actuators, with variable terms of the series expan-
sion M = N and with 6 most signi�can radiation modes. All the simulation
are performed for a simply supported plate (SSSS) with characteristics listed
in Tab. 5.1, and for both kinetic energy and acoustic power optimization.

6.3.1 Optimal placement and gains for a single con-
troller - Kinetic energy optimization

The simplest optimal design problem is for a single actuator and collocated
sensor. There are only three optimization variables: the velocity gain, and
the ξ and η coordinates of the controller. The control penalty is set to R =
1/500, and the terms of the series expansion are M = N = 4, which involves
an excellent approximation for the �rst four characteristic frequencies, with
an error of about 0.2%, and a bad approximation for the higher frequencies
with errors gradually increasing.
If the coordinates of the controller are �xed, there is only a single value
for the velocity gain which minimezes the performance function. However,
with the three optimizazion variables, there are many local minima. To
obtain as many di�erent local minima as possible, the nonlinear programming
algorithm is executed more times, with random generated initial values for
the optimization variables. In Figure 6.9 is represented the solution with
the velocity gain optimized for kinetic energy, with a �xed central position
for the actuator placement. It is compared with the placement optimized
soultions from Fig. 6.10 to 6.13.
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(a) Jke = 6.866× 105 , gopt = 1.69.
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(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 500 N2.

Figure 6.9: Fixed central position - Placement and frequency responce for the single
controller case. Single gain optimization for kinetic energy.
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(a) Jke = 6.705× 105 , gopt = 1.38.
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(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 500 N2.

Figure 6.10: Solution 1 - Placement and frequency responce for the single controller
case.
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(a) Jke = 6.705× 105 , gopt = 1.38.
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(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 500 N2.

Figure 6.11: Solution 2 - Placement and frequency responce for the single controller
case.
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(a) Jke = 6.613× 105 , gopt = 1.28.

0 100 200 300 400 500 600 700 800 900 1000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Kinetic energy vs. frequency − White noise excitation

Frequency [Hz]

K
in

et
ic

 e
ne

rg
y 

[d
B

(J
)]

 

 
Uncontrolled
Controlled

(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 500 N2.

Figure 6.12: Solution 3 - Placement and frequency responce for the single controller
case.
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(a) Jke = 6.533× 105 , gopt = 1.21.

0 100 200 300 400 500 600 700 800 900 1000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Kinetic energy vs. frequency − White noise excitation

Frequency [Hz]

K
in

et
ic

 e
ne

rg
y 

[d
B

(J
)]

 

 
Uncontrolled
Controlled

(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 500 N2.

Figure 6.13: Solution 4 - Placement and frequency responce for the single controller
case.
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Four distinct solution are shown, for the kinetic energy optimization. The
placement of the actuators, and the corresponding values for the performance
function Jke, and gains gopt, are attached to the �gures.
Comparing the solution with the �xed central position for the actuator and
the others optimized, it can be noted the purpose of the optimization. Even
if in the �xed position solution there is a pronounced attenuation of the �rst
frequency (of about 25 dB), it has the largest values of Jke and gopt. The
optimized solutions instead, even if in smaller amounts, act on the entire
spectrum of frequencies considered.
The �rst optimized solution (Fig.6.10), contrary to what you might imagine,
yields the largest performance value and largest gain, but it has a higher level
of attenuation at low frequency; instead the last solution yields the lowest
performance value and lowest gain, and it has a higher level of attenuation
at high frequency. In a certain way, it can be deduced that the position of
the actuator on the plate is also linked to the frequency band that is able to
handle.
In the �gures the level curves of the performance function are visible, and
they somehow remaind to the "nodal lines" of the open-loop Ritz-function
approximation. The �gures show that the placement of the actuators lie
away from this lines, as expected from controllability theory. Such "nodal
lines" bound some empty regions. In each of these regions, local minima
exist, and therefore can be occupied by actuators.
Figure 6.14 shows a 3D representation of the cost function with respect to
placement coordinates.
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Figure 6.14: Cost function Jke with respect to single actuator/sensor placement,
N = M = 4, g = 1.38.
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6.3.2 Optimal placement and gains for a single con-
troller - Acoustic power optimization

Also in this case there are only three optimization variables: the velocity
gain, and the ξ and η coordinates of the controller. The control penalty is
set to R = 1/200, the terms of the series expansion are M = N = 4, and the
most signi�can radiation modes taking into account are 6, which involve a
good level of approximation, as seen in Chapter 5.
As for the kinetic energy optimization case, with the three optimizazion
variables, there are many local minima. To obtain as many di�erent local
minima as possible, the nonlinear programming algorithm is executed more
times, with random generated initial values for the optimization variables.
In Figure 6.16 is represented the solution with the velocity gain optimized for
acoustic radiation, with a �xed central position for the actuator placement.
It is compared with the optimized placement soultions from Fig.6.17 to 6.20.
Also in this case, comparing the solution with the �xed central position for
the actuator and the others optimized, a pronounced attenuation of the �rst
frequency can be appreciated (of about 25 dB). It has the largest values of
Jac and a small gopt, but is less powerful than the optimized solutions regard
to the frequency response.
Figure 6.15 shows the 3D plot of Jac with respect to placement coordinates.
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Figure 6.15: Cost function Jac with respect to single actuator/sensor placement,
N = M = 4, RM = 6, g = 2.87.
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(a) Jac = 3.234× 106 , gopt = 2.07.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 200 N2.

Figure 6.16: Fixed central position - Placement and frequency responce for the
single controller case. Single gain optimization for radiated sound power.
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(a) Jac = 2.920× 106 , gopt = 2.87.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 200 N2.

Figure 6.17: Solution 1 - Placement and frequency responce for the single controller
case.
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(a) Jac = 2.920× 106 , gopt = 2.87.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 200 N2.

Figure 6.18: Solution 2 - Placement and frequency responce for the single controller
case.
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(a) Jac = 2.856× 106 , gopt = 2.40.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 200 N2.

Figure 6.19: Solution 3 - Placement and frequency responce for the single controller
case.
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(a) Jac = 3.018× 106 , gopt = 2.02.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 200 N2.

Figure 6.20: Solution 4 - Placement and frequency responce for the single controller
case.
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6.3.3 Optimal placement and gains for 16 controllers.
Kinetic energy and acoustic optimization

In this case the order of the series expansion is increased, until to have a very
good approximation (with a maximum error of 0.5%) of the �rst 8 frequen-
cies M = N = 6. The number of the most signi�cant radiating modes is
kept costant. At this time there are 48 optimization variables: three for each
controller. The control penalty is R = 1/1000 for kinetic energy optimization
and R = 1/100 for the acoustic optimization. For both the situations a com-
parison is made with a �xed grid of sensors and actuators as schematized in
Fig.6.5b. The best frequency responce plots of each optimization procedure
are shown, comparable with those of the �xed con�guration.

Results of kinetic energy optimization. As you can see comparing the
two frequency response of Fig.6.21b and Fig.6.24 the spectrum of the kinetic
energy is almost the same, also for such a badly distributed optimal solution,
but the velocity gains are lower for the optimized one.

Results of acoustic power optimization. Also in this case comparing
the two frequency response of Fig.6.25b and Fig.6.28 the spectra of the ra-
diated sound power are very similar, the optimal solution seems to be well
distributed over the plate, and the velocity gains are lower with respect to
the �xed grid optimization.
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(a) Jke = 2.527× 106 , Gopt = diag{1.043 1.056 1.056 1.040
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1.057 1.060 1.043}.
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(b) Spectrum of kinetic energy assuming white noise excitation,
before and after control. The average control e�ort for the con-
troller was limited to 1000 N2.

Figure 6.21: Fixed ccon�guration - Placement and frequency responce 16 con-
trollers case. Gains optimization for kinetic energy.
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(a) Jke = 2.458× 106.
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(b) Jke = 2.381× 106.
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(c) Jke = 2.337× 106.
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(d) Jke = 2.374× 106.

Figure 6.22: Optimized placements for the 16 controller case. Kinetic energy opti-
mization
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Figure 6.23: Cost function Jke with respect to 16 actuator/sensor placement, N =
M = 6, g = 0.62.
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Figure 6.24: Spectrum of kinetic energy assuming white noise excitation,
before and after control, for the optimum solution of Fig.6.22c. The av-
erage control e�ort for the controller was limited to 1000 N2. Gopt =
diag{0.820 1.123 0.880 0.899 1.100 0.886 1.056 0.938 0.871 0.803
0.974 0.838 0.939 1.012 1.008 0.879}.
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(a) Jac = 5.639× 107 , Gopt = diag{1.507 1.776 1.770 1.501
2.040 2.787 2.798 2.045 2.038 2.783 2.793 2.044 1.513
1.766 1.772 1.508}.
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(b) Spectrum of radiated sound power assuming white noise exci-
tation, before and after control. The average control e�ort for the
controller was limited to 100 N2.

Figure 6.25: Fixed ccon�guration - Placement and frequency responce 16 con-
trollers case. Gains optimization for radiated soun power.
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(a) Jac = 4.324× 107.
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(b) Jac = 4.273× 107.
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(c) Jac = 4.536× 107.
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(d) Jac = 4.222× 107.

Figure 6.26: Optimized placements for the 16 controller case. Radiated sound
power optimization.
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Figure 6.27: Cost function Jac with respect to 16 actuator/sensor placement, N =
M = 6, RM = 6, g = 1.43.
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Figure 6.28: Spectrum of radiated sound power assuming white noise exci-
tation, before and after control, for the optimum solution of Fig. 6.26d.
The average control e�ort for the controller was limited to 100 N2. Gopt =
diag{1.419 1.728 1.693 1.420 1.965 1.725 1.725 1.975 1.836 1.730
1.880 1.833 1.434 1.706 1.672 1.437}.
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6.3.4 Optimal placement and gains for 100 controllers.
Kinetic energy and acoustic optimization

Simulation are done with with an increasing order of the series expansion
N = M = 7, and the same number of radiation modes RM = 6. The optimal
placement of controllers is shown in Fig.6.29 for kinetic energy optimization
and in Fig.6.31 for acoustic optimization. As expected, the placement results
uniformly distributed throughout the plate, in such a way that all the local
minima of the function are identi�ed. This optimization problem is a simple
study of distributed control, which have wide potential applications. The
problem is also a demonstration of how easy the nonlinear programming
algorithm can handle 300 variables.
Figures 6.30 and 6.32 show di results in terms of the frequency response.
The attenuation at this time is very strong over the whole band of interest.
The �nal optimal results for the gains are plotted as a function over the
plate in Fig.6.33 and 6.34. The gain levels assume a sort of symmetrical
distribution with respect to the structure geometry, and are nearly constant.
This indicates that for distributed control, spatially constant gains may be
an appropriate design strategy.
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Figure 6.29: Placement of 100 controllers - Kinetic energy optimization
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Figure 6.30: Spectrum of kinetic energy assuming white noise excitation, before
and after control. The average control e�ort for the controller was limited to 900 N2
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Figure 6.31: Placement of 100 controllers - Radiated sound power optimization
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Figure 6.32: Spectrum of radiated sound power assuming white noise excitation,
before and after control. The average control e�ort for the controller was limited
to 100 N2
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Figure 6.33: Optimal gains for the 100 controllers' case - Kinetic energy optimiza-
tion.

Figure 6.34: Optimal gains for the 100 controllers' case - Acoustic optimization.
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6.4 Results for di�erent boundary conditions

In the following, signi�cant results are presented, with the aim of showing
that there are di�erences by applying optimization to structures with di�er-
ent boundary conditions. Some standard and simple results are shown for
demonstration purposes, performing only kinetic energy optimization. These
results, together with those that follow, represent the �nal goal of this thesis.

6.4.1 Fully clamped plate (CCCC)

A fully clamped plate with zero de�ection and rotation on all four edges.
The control e�ort weighting coe�cient is set to R = 1/500. In Figure 6.36
four optimal solution are presented, and at the end the frequency response
for the best one is plotted in Fig.6.37. The reported plots show the expected
results: with a fully clamped plate, the optimal positions are more displaced
toward the center of the plate, because of the greater rigidity of the plate
near the edges (null displacement and rotation).
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Figure 6.35: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 0.86.
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(a) Jke = 5.721× 105.
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(b) Jke = 5.722× 105.
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(c) Jke = 5.725× 105.
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(d) Jke = 5.676× 105.

Figure 6.36: Optimized placements for 8 controllers. (CCCC) plate. Kinetic energy
optimization.
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Figure 6.37: Spectrum of kinetic energy assuming white noise excitation, be-
fore and after control, for the optimum solution of Fig.6.36d. The av-
erage control e�ort for the controller was limited to 500 N2. Gopt =
diag{0.842 0.876 0.850 0.817 0.848 0.829 0.826 0.868}.
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6.4.2 Half clamped, half simply supported plate (CCSS)

This is a plate with zero de�ection and rotation on 2 adjacent edges and
zero de�ection and free rotation on the other 2 adjacent edges. The control
e�ort weighting coe�cient is set to R = 1/500. In Figure 6.38 four optimal
solution are presented, and at the end the frequency response for the best one
is plotted in Fig.6.40. Also in this case the plots show the expected results:
the CCSS plate has non-symmetric boundary conditions, so the placement
of controllers should comply with the same geometry. In fact the edges with
a simply supported conditions show controllers located closer to those edges.
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(a) Jke = 5.885× 105.
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(b) Jke = 6.131× 105.
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(c) Jke = 5.946× 105.
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(d) Jke = 5.992× 105.

Figure 6.38: Optimized placements for 8 controllers. (CCSS) plate. Kinetic energy
optimization.
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Figure 6.39: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 0.79.
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Figure 6.40: Spectrum of kinetic energy assuming white noise excitation, be-
fore and after control, for the optimum solution of Fig.6.38a. The av-
erage control e�ort for the controller was limited to 500 N2. Gopt =
diag{1.055 0.670 0.819 0.818 0.863 0.759 0.724 0.790}.
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6.4.3 Clamped free plate (CCCF)

This plate has zero de�ection and rotation on 3 adjacent edges and free de-
�ection and free rotation on one edge. The control e�ort weighting coe�cient
is set to R = 1/300. In Figure 6.41 four optimal solution are presented, and
at the end the frequency response for the best one is plotted in Fig.6.43. In
this case the results are particularly signi�cant: as it should be, the minimum
of the function J is concentrated around the free edge of the plate. This is
because it is the only side that has complete freedom to move and through
which, then, it is easier to control the entire structure. Other local minima
are visible in the central areas, which provide alternative optimal solutions.
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(a) Jke = 3.895× 105.
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(b) Jke = 6.251× 105.
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(c) Jke = 4.317× 105.
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(d) Jke = 6.263× 105.

Figure 6.41: Optimized placements for 8 controllers. (CCCF) plate. Kinetic energy
optimization.
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Figure 6.42: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 0.68.

0 100 200 300 400 500 600 700 800 900 1000
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Kinetic energy vs. frequency − White noise excitation

Frequency [Hz]

K
in

et
ic

 e
ne

rg
y 

[d
B

(J
)]

 

 
Uncontrolled
Controlled

Figure 6.43: Spectrum of kinetic energy assuming white noise excitation, be-
fore and after control, for the optimum solution of Fig.6.41a. The av-
erage control e�ort for the controller was limited to 300 N2. Gopt =
diag{0.606 0.071 0.063 0.714 0.609 0.707 0.659 0.682}.
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6.5 Results with the addition of complicating

e�ects

Here comes the most interesting results of the study. At the simple plate with
general boundary conditions, other external complicating e�ect were added,
to aggravate the dynamics of the structure, i.e., the mass and sti�ness matrix
of the plate, as described by Dozio [3]. In order to not increase too much
the CPU time of computing, all simulations were made with N = M = 4
(which provide an excelent approximation of the �rst frequencies), with the
placement of 8 controllers. The most characteristic results are shown, as a
starting point for the most varied applications.

6.5.1 Elastic point supports

Ideal support conditions, i.e., exactly zero normal displacement of the plate,
imply in�nitely rigid supports, which rarely occur in practice. So the elastic-
ity of any intermediate support is introduced as described in [3]. The plate
is a simply supported plate (SSSS), which characteristics are listed in Table
5.1. The control e�ort weighting coe�cient is set to R = 1/800, and an
optimization of the kinetic energy is performed. In Fig.6.44 the 3D repre-
sentation of the performance index, clearly shows a maximum peak at the
position of the point support. Figures 6.45 and 6.46 presents one optimal
solution with the realtive spectrum of the kinetic energy.
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Figure 6.44: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 1.45. Point support at position (0.1, 0.1), with dimensionless
translational sti�ness kTa3/D11 = 1× 108.
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Figure 6.45: Jke = 1.557× 106.
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Figure 6.46: Spectrum of kinetic energy assuming white noise excitation,
before and after control, for the optimum solution of Fig.6.45. The av-
erage control e�ort for the controller was limited to 800 N2. Gopt =
diag{1.413 1.179 1.313 1.413 1.242 1.313 1.142 1.459}.
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6.5.2 Elastic line supports

At this time the translation spring is imposed on the entire line crossing the
plate. The simply supported plate (SSSS) with the same dimensions, at this
time is modeled with di�erent material properties to prove the capabilities of
the method. A T-graphite/epoxy is considered, which properties are listed
in Table A.3. The control e�ort weighting coe�cient is set to R = 1/1200,
and an optimization of the kinetic energy is performed. In Fig.6.47 the 3D
representation of the performance index clearly shows a maximum peak at
the entire line support. Figures 6.48 and 6.49 presents one optimal solution
with the realtive spectrum of the kinetic energy.
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Figure 6.47: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 1.24. Line support at position η = 0.2, with dimensionless
translational sti�ness kTa3/D11 = 1× 109.
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Figure 6.48: Jke = 3.230× 107.
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Figure 6.49: Spectrum of kinetic energy assuming white noise excitation,
before and after control, for the optimum solution of Fig.6.48. The av-
erage control e�ort for the controller was limited to 1200 N2. Gopt =
diag{0.878 1.010 0.147 0.822 0.476 1.018 0.806 1.248}.
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6.5.3 In-plane loaded plate

Keeping the same tipe of material (T- graphite/epoxy) this time a constant
in-plane load per unit width is considered. The routine involves the insertion
of in-plane loads Nx and Ny acting in the x-and-y directions, respectively,
together with constant in-plane shear force per unit width Nxy. For this
simulation only Nx is considered, in order to perceive its e�ect on the per-
formance index. The control e�ort weighting coe�cient is set to R = 1/10,
and an optimization of radiated soun power is performed. In Fig.6.50 the 3D
representation of the performance index shows a particolar shape of the local
minima that exhibit an elongation in the direction opposite to the Nx direc-
tion. Figures 6.51 and 6.52 presents one optimal solution with the realtive
spectrum of the radiated sound power. It can also be noticed a lower acoustic
performance index with respect to the previous similar cases, because of the
larger sti�ness of the structure due to the preload to which it is subjected.
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Figure 6.50: Cost function Jac with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 0.55. In-plane load per unit width Nx = 100.
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Figure 6.51: Jac = 2.661× 107.
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Figure 6.52: Spectrum of radiated sound power assuming white noise exci-
tation, before and after control, for the optimum solution of Fig.6.51. The
average control e�ort for the controller was limited to 10 N2. Gopt =
diag{0.541 0.533 0.374 0.693 0.478 0.598 0.704 0.557}.
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6.5.4 Rigid concentrated masses

Often plates may be loaded with a variety of devices attached to them. Such
loading conditions represent a further complicating factor for the plate analy-
sis in addition to dealing with general boundary conditions and intermediate
elastic supports. Tipically, they have a strong e�ect on the natural frequen-
cies and mode shapes of the loaded plate and therefore their contribution
cannot be disregarded without adversely a�ect the accuracy of the solution.
The approximation of this behavoiur is made considering a concentrated mass
on a �xed location of the plate. The control e�ort weighting coe�cient is set
to R = 1/50, and an optimization of radiated sound power is performed. In
Fig.6.53 the 3D representation of the performance index shows a sort of "for-
bidden region", corresponding to the location of the attached mass, where
the controllers cannot be e�ective . Figures 6.54 and 6.55 presents one opti-
mal solution with the realtive spectrum of the radiated sound power.
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Figure 6.53: Cost function Jac with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 2.37. Rigid concentrated mass m = 30%mplate at position
(-0.2, 0.3).
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Figure 6.54: Jac = 1.806× 107.
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Figure 6.55: Spectrum of radiated sound power assuming white noise exci-
tation, before and after control, for the optimum solution of Fig.6.54. The
average control e�ort for the controller was limited to 50 N2. Gopt =
diag{2.033 1.715 1.492 1.632 1.486 1.742 1.869 2.375}.
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6.5.5 Sensors and actuators with mass

In light of the previous result, a simulation where the attached masses were
constituted by the controllers, which positions have to be optimized, is per-
formed. This leads to an optimization with changing dynamic, since the mass
matrix changes at each interation. The algorithm converges even in this case,
making the results even more realistic. A (CCSS) T-graphite/epoxy plate
is considered with in-plane load Ny applied. The control e�ort weighting
coe�cient is set to R = 1/1000, and an optimization of kinetic energy is
performed. In Fig.6.56 the 3D representation of the performance index is
plotted. Figures 6.57 and 6.58 presents one optimal solution with the real-
tive spectrum of the kinetic energy.
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Figure 6.56: Cost function Jke with respect to 8 actuator/sensor placement, N =
M = 4, RM = 6, g = 1.29. Sensor/actuator mass m = 3%mplate. In-plane load
per unit width Ny = 100.
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Figure 6.57: Jke = 9.273× 105.
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Figure 6.58: Spectrum of radiated sound power assuming white noise exci-
tation, before and after control, for the optimum solution of Fig.6.57. The
average control e�ort for the controller was limited to 1000 N2. Gopt =
diag{1.347 1.271 1.241 1.193 1.216 1.379 1.433 1.298}.



Chapter 7
Conclusions

A
new emproved method is presented for optimal design of placement and
gains of actuators and sensors in output feedback control system, for

kinetic energy and acoustic optimization, on various plate problems with an
arbitrarily selected subset of complicating factors including in-plane stresses,
elastic boundaries, concentrated attachments and internal supports.
A structural modelization (re�ering to Dozio [3]) and an acoustic modeliza-
tion (referring to Gibbs et al. [6] and Fahy and Gardonio [5]) of a plate were
performed summarizing the entire problem in a state space representation.
The method enhances the nonlinear programming approach with the use of
analytical expressions for the gradients of the performance functions. This
method is e�cient and can handle a large number of optimization variables.
It has a good convergence with an excellent approximation for the �rst nat-
ural frequencies.
Increasing the order of the series expansion for the modelization of the plate,
the time-computing for the optimization procedure grows exponentially, due
to the resolution of Lyapunov equations for bigger and bigger matrices. So
only few terms were considered, till N = M = 10, 12, which, however, lead
to a good approximation for most of the real problems. Moreover, the two
performance indeces considered for the optimization are strongly dependent
from the weighting control e�ort coe�cient, so it should be accurately se-
lected in order to generate reliable results.
Several numerical studies were performed �nding that multiple local minima
for the performance functions are possible for the optimal placement prob-
lem. They are located all over the plate and in some way they are connected
to the minimization of a certain range of frequencies. Local minima on the
center of the plate, well control the low frequency range, instead those closest
to the edges well control the high frequency range. This makes sense because
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low-frequency oscillations involves the �rst vibration modes and manifest
large displacements in the central areas of the plate, while high-frequency
oscillation modes also involve higher modes, with displacement also in the
extreme areas, in the edges proximity.
In conclusion, the present analysis has shown the versatility and reliability
of the approach, that can be considered a valuable tool for projecting con-
trol systems for thin rectangular plates for a wide class of problems with
complicating e�ect.

7.1 Future developments

The work presents a large variety of numerical or phisical aspects that can
be improved, or adapted to di�erent types of applications and challenging
situations, starting from the complicating e�ects for the structure, to the
de�nition of new performance functions to be minimize.
Here follows, as an example, a small list of topics that can be taken as a
direction path for future research work.

� Improvement of the numerical optimization thecnique using Hessian
based methods, instead of a Gradient based one.

� Consider not-colocated sensors and actuators, with their own internal
dynamics.

� Consider centralized control or other tipe of control strategies.

� De�ne new tipes of perfomance indeces, also based on the frequency
domain.

� Built a structure model with the inclusion of varying in-plane loads,
cutouts, non-uniform thickness.

� Include a new tipe of plate geometry in the optimization procedure.

� Extend the method to the resarch of optimal location for sensors and
actuators on three-dimensional structures.



Appendix A
Input parameters

T
he optimization process needs the inclusion of some input variables re-
lated to the type of optimization performed, the characteristics of the

plate used, with the corresponding boundary conditions and complicating
e�ects, and the acoustic model adopted. In the following, these variables are
described.

According to Eq.6.3 and the state vector adopted in Eq.3.43, the weight-
ing matrix Q exploited in the kinetic energy optimization is:

Q =

0 0 0
0 I 0
0 0 0

 (A.1)

While, according to Eq.3.42, the weighting matrix Q exploited in the
acoustic optimization is:

Q =

 0
Dac

Cac

 [
0 Dac Cac

]
(A.2)
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In the following, the other input variables are tabulated:

Table A.1: Variables of the structural model.

Plate variables

a, b x and y dimensions of the plate
Nsa number of sensor/actuators used in the simulation
M = N terms of the series expansion in x and y direction
msa mass of sensor/actuators with resepct to the plate mass
ζ modal damping coe�cient
R control e�ort penalty

Complicating e�ects

bcs boundary conditions

mat material of the plate (listed in Tab.A.3)

Γpre =
[
Nx Ny Nxy

]
in-plate loads per unit width

Γeb =

[
Trasl. coe�s.
Rotat. coe�s.

]
dimensionless values of the transverse spring and rota-
tion spring for elastic boundary condition

Γlsx =

[
ξi

Elastic coe�s.

]
ξ coordinates and elastic coe�cients of elastic interme-
diate lines supports

Γlsy =

[
ηi

Elastic coe�s.

]
η coordinates and elastic coe�cients of elastic interme-
diate lines supports

Γps =

 ξi
ηi

Elastic coe�s.

 ξ and η coordinates and elastic coe�cients of elastic
intermediate point supports

Γpm =

 ξi
ηi
mi

 ξ and η coordinates and masses of rigid concentrated
masses
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Table A.2: Variables of the sound radiation model.

RME variables

Ex elementary radiators on the x axis
Ey elementary radiators on the y axis
m most signi�can radiation modes
ord order of �tting transfer functions
fmax maximum frequency of interest

Phisical variables

ρ air density [kg/m3]
c speed of sound [m/s]

Table A.3: Material properties embedded in the routine.

Material D22 D12 D66 ν

M0 Isotropic D11 νD11 (1− ν)D11/2 0.3
M1 Orthotropic-1 D11/2 νD11 D22 0.3
M2 Orthotropic-2 2D11 νD11 0.35D11 0.3

E1(GPa) E2(GPa) G12(GPa) ν12 ρ(kg/m3)

M3 T-graphite/epoxy 185 10.5 7.3 0.28 1600
M4 B-boron/epoxy 208 18.9 5.7 0.23 2000
M5 K-aryl/epoxy 76 5.6 2.3 0.34 1460

More material properties can be added mody�ng the MATLAB script.
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