

POLITECNICO DI MILANO

FACOLTÁ DI INGEGNERIA DELL’INFORMAZIONE

POLO REGIONALE DI COMO

MASTER OF SCIENCE IN COMPUTER ENGINEERING

REVIEW OF PERFORMANCE EVALUATION

BENCHMARKS OF APACHE HADOOP

SUPERVISOR: PROF. MARCO GRIBAUDO

MASTER GRADUATION THESIS BY:

 BLENDI PUSTINA

 ID NUMBER: 749598

ACADEMIC YEAR: 2013/2014

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 2

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 3

Preface

To my family who supported me unconditionally and believed in me.

To Italy, for giving me this opportunity and unforgettable time.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 4

Acknowledgement

I would like to express my sincerest gratitude to Prof Marco Gribaudo and Pietro Piazzolla

for guiding and helping me throughout the entire process of writing this thesis. Their

expertise in this field motivated and encouraged me to take into consideration big data and

cloud computing for my future career goals.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 5

Abstract

With the Internet and data growth increasing trends, big data is becoming an extremely

important and challenging problem for Data Centers. Many platforms and frameworks are

working to bring a cutting edge technology to this problem.

Apache Hadoop is a software framework addressing the big-data processing and storing on

clusters, providing reliability, scalability and distributed computing.

Hadoop has a distributed file system to store vast amount of data in distributed

environments, and uses MapReduce algorithm to perform the computations and process

large amount of data, by parallelizing the workload and storage. In comparison to other

relational database systems, Hadoop works well with unstructured data.

Our work is focused on performance evaluation of benchmarks of Hadoop, which are

crucial for testing the infrastructure of the clusters. Taking into consideration the

sensitiveness and importance of data, it’s inevitable testing the clusters and distributed

systems before deploying. The benchmark results can lead to optimizing the parameters

for an enhanced performance tuning of the cluster.

This thesis covers the necessary related topics of Hadoop and a comprehensive listing of

benchmarks used to test Hadoop, while providing detailed information for their appliance

and procedures to run them.

We tested benchmarks in a virtual environment, with different parameters and options

which yielded results that led to the conclusion of this thesis.

Keywords: hadoop, big data, mapreduce, benchmark, distributed filesystem

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 6

Table of Contents

Preface ... 3

1. Introduction ... 8

1.1. Hadoop Architecture ... 10

1.2. Map Reduce .. 11

1.3. Master Slave model ... 12

1.4. Hadoop Daemons ... 13

1.4.1. NameNode ... 13

1.4.2. DataNode ... 13

1.4.3. Secondary NameNode .. 14

1.4.4. Job Tracker ... 14

1.4.5. Task Tracker .. 14

1.4.6. Balancer ... 14

1.4.7. Hadoop Web User Interface ... 15

1.5. Big Data .. 16

1.5.1. Structured Data VS Unstructured Data .. 17

1.5.2. Hadoop Data ... 17

2. Performance Tuning .. 18

2.1. Parameters .. 18

3. Benchmarking... 21

3.1. Introduction to Benchmarking in Hadoop ... 21

3.2. Counters ... 21

3.3. Hadoop Benchmarks ... 23

3.3.1. HDFS Test Benchmark Suite .. 23

TestFileSystem ... 23

DistributedFSCheck (Write) .. 23

3.3.2. Hadoop MapReduce Benchmark Suite ... 24

MapRedTest ... 24

MRReliabilityTest .. 24

MRBench ... 25

LoadGen .. 25

NNBench ... 26

TestBigMapOutput .. 27

ThreadedMapBench ... 27

3.3.3. Hadoop Sort Benchmark ... 27

RandomWriter .. 27

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 7

TestMapRedSort .. 27

3.3.4. TEST DFS IO .. 28

3.3.5. TeraSort Benchmark Suite.. 29

3.3.6. GridMix ... 31

3.3.7. MalStone .. 31

3.3.8. HiBench Benchmark Suite .. 32

Micro Benchmarking .. 32

Web Search .. 33

Machine Learning .. 34

Hive Bench ... 35

HDFS ... 36

3.3.9. Puma.. 36

4. Performance evaluation of Hadoop benchmarks ... 40

4.1. Benchmark testing ... 40

4.2. Benchmark 1: Block size.. 40

4.3. Benchmark 2: Replication Factor... 42

4.4. Benchmark 3: Sorting Benchmarks .. 43

4.4.1. Sorting benchmark : Terasort and HiBench Sort ... 43

4.4.2. Sorting block size ... 45

5. Conclusion .. 46

Reference... 47

Bibliography ... 48

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 8

1. Introduction

Apache Hadoop initially derived from a white paper published by Google, for Google file

System (GFS), that was built to provide them efficiency and reliability to their clusters.

Hadoop is a software used for distributed infrastructures with particular focus on big data,

ensuring scalability and reliability for distributed data centers. Hadoop has its own

filesystem, Hadoop Filesystem or HDFS that differs from other filesystem due its large

block size, which was designed to be robust to many problems that other Distributed

Filesystems couldn’t handle such as fault tolerance, reliability and scalability. Distributed

systems have existed before, but with Hadoop the data and work are automatically

distributed across machines and the CPU usage are parallelized. As most distributed

filesystem, HDFS is based in an architecture where data is separated from the namespace.

HDFS is a best effort solution to fault tolerance in a very large data center. Its purpose is to

distribute large amount of data across many machines (nodes). As an input Hadoop

receives a very large file and divides it into chunks called blocks, which then are stored and

replicated across different machines. So when a machine in the distributed environment

will fail due to some problem, HDFS will provide the missing blocks which were replicated

in some other machines. In this way HDFS ensures reliability so end users won’t be affected

by a single machine failure since data is distributed.

Although Hadoop is a recently developed framework, there are great expectations in its

quick development and spreading in the near future. According to Philip Russom, as

revealed in his research on ‘Integrating Hadoop into Business Intelligence and Data

Warehousing’, first hand users of Hadoop have confessed that there are still many areas of

improvement to the software in regards to security, administration, availability and others.

However, the open source community is continuously addressing these issues and is also

steadily contributing to improving Hadoop products which leads to anticipating greater

capabilities and usage of the software in the next years. In addition, a survey of

organizations conducted under the umbrella of this research, 10% of the organizations

stated that they are already using Hadoop in their production, while a surprising 51% are

expected to use one in the next three years. Russom also states that: “If this trend pans out,

Hadoop will impact at least half of BI/DW environments soon. Hence, users need to prepare

for Hadoop usage now.” (Russom, 2013)

Hadoop has gained considerable attention, but it still remains a new software out there and

many professionals of the field are not sure on what it is and what is does. Russom explains

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 9

10 facts in regards to Hadoop that are currently misunderstood or unknown to many users

of the software:

1. Contrary to the opinion of many, Hadoop is not one single software. It is rather a group of

open source products which are provided by Apache Software Foundation. Hadoops library

includes: HDFS, MapReduce, Pig, Hive and others.

2. Hadoop’s open source software are initially and mainly offered from Apache. However

there also a few other vendors that offer a more complete package that includes more tools

and better ways to use it.

3. Hadoop represents a growing ecosystem of products that are provided by vendors other

than Apache too. These products from other vendors blend with Hadoop technologies and

are used to expand them.

4. Hadoop is not a database management system but its main purpose is to serve as a

distributed file system. As such, Hadoop does not have capacities of a DBMS (i.e. indexing,

query optimization, random access to data, etc.). However, on the other hand, the

advantages of Hadoop distributed file system is to manage and process large masses of files

and data which is unstructured.

5. Although Hive, a Hadoop product, resembles SQL a lot, there are many issues that arise

when it comes to compatibility with SQL based tools.

6. Hadoop is related to MapReduce, however they can work independently. There are users

who deploy HDFS using Hive and Hbase, without the use of MapReduce.

7. MapReduce is not only used for analytics, but is an execution engine used for general

purposes which is capable to process complexities of network communication.

8. Hadoop not only processes large amounts of data but also has capabilities of processing

many different types of data given that these data can be put in a file and copied into

Hadoop.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 10

9. Hadoop serves as a complement to Data Warehousing, however it cannot be considered a

replacement for it.

10. Although Hadoop receives most of attention because of the way companies use it to

perform web analytics, it has capabilities to perform analytics of other types of large piles

of data such as those coming from sensory devices and robotics. (Philip Russom, “Integrating Hadoop

into Business Intelligence and DataWarehousing”

1.1. Hadoop Architecture

HDFS architecture consists of nodes or machines which are grouped in a rack, whereas

several racks form a HDFS cluster. HDFS cluster has several slave nodes or DataNodes and

a Master node or NameNode. HDFS stores filesystem metadata on NameNode dedicated

server and application data on another dedicated server called DataNodes. In Hadoop

datanodes do not rely on RAID protected mechanism, instead the data is replicated in

multiple datanodes for reliability.

All servers are fully connected to each other and communicate using TCP based protocol.

The HDFS file replication starts by a request submitted by the client in NameNode, which

checks if the file does already exist, and if the client has the permission to write the file. The

File is chunked into blocks (default size 64MB) which are then used to be placed into

DataNodes.

NameNode then determines the DataNode to which to write the first block to. If client is

running on DataNode, it will first try to place it there, otherwise it chooses a DataNode at

random. By default DataNode is replicated at two other nodes in the cluster, preferring

different rack from the first block.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 11

A pipeline is built between DataNodes where blocks are stored. When the blocks are

written an acknowledgement is sent back to HDFS client and NameNode completes the

process if the minimum blocks replicas are placed.

Apache Hadoop YARN is a sub-project of Hadoop at the Apache Software Foundation

introduced in Hadoop 2.0 that separates the resource management and processing

components. YARN was born of a need to enable a broader array of interaction patterns for

data stored in HDFS beyond MapReduce. The YARN-based architecture of Hadoop 2.0

provides a more general processing platform that is not constrained to MapReduce. (Horton

Works)

1.2. Map Reduce

Hadoop MapReduce is a network-based parallel programming paradigm for implementing

data computation over big data using a cluster of community computer systems (Moody &

Jobs)

MapReduce, is divided into two major separate tasks, Mapping and Reducing. In the first

phase, the input data is converted to another type of data by using filtering and sorting

techniques, where the elements of the data are chunked and grouped in a key/value pairs.

The Reduce task, collects the intermediate data and merges them into a single output, by

showing their occurrence in intermediate phase.

Figure 1 Map Reduce

MapReduce Foundation: Typing of MapReduce.

http://www.infosun.fim.uni-passau.de/cl/MapReduceFoundations

A good example in the figure by MapReduce Foundation, shows the input data as it is

received by Mapping and transferred in an intermediate phase to be then proceeded by

Reduce task.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 12

The reason why MapReduce algorithm is applied to distributed filesystem, is its ability to

spread the data processing into parallel computing. By applying MapReduce, a large

amount of processing will be done by several processing units, and by doing so, it’s capable

of handling vast amount of data in Hadoop.

One key feature of MapReduce that differentiates it from previous models of parallel

computation is that it interleaves sequential and parallel computation.

(Karloff, Siddharth, & Vassilvitskii‡)

1.3. Master Slave model

Hadoop Architecture is based on Master/Slave model which allows it to perform

distributed data storage and distributed or parallel computing.

Master/slave is a model of communication where one device or process has

unidirectional control over one or more other devices. In some systems a master is elected

from a group of eligible devices, with the other devices acting in the role of slaves (Obaidat

& Misra, 2011)

In Hadoop Clusters, NameNode has the role of the Master and DataNodes have the role of

Slaves. Normally there is one NameNode per Cluster and several Racks consisting of several

DataNodes.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 13

1.4. Hadoop Daemons

1.4.1. NameNode

NameNode distributes the workload and job executions across Slaves and stores

filesystem metadata or the location where the data blocks are stored in DataNodes.

NameNode’s hardware performance should be taken into consideration since entire

clusters information is stored in the Metadata files of NameNode. This is the core

node of HDFS file system, and clients communicate first with namenode to locate a

file or perform any operation on it.

In the following screenshot, you can the information that Namenode keep track of.

1.4.2. DataNode

DataNode Daemons are the storage nodes where the fileblocks of HDFS are stored.

Basically it performs read and writes into storage from the client, by asking

NameNode for the location of data in the cluster, saved on its metadata. DataNode

continuously keeps NameNode informed for the actions and changes.

DataNode’s send signals to NameNode indicating that they’re alive usually referred

as heartbeat of DataNode. If NameNode doesn’t receive the heartbeat from

DataNode in certain time, it considers it dead and replicates another copy of it,

somewhere in the cluster.

Datanodes communicate with each other, to rebalance data and make sure the

replication of blocks is done. A pipeline is built between datanodes, connecting the

replicas of the same blocks in datanodes . If a block is damaged or is not sending

heartbeat, with the command of namenode, the datanodes replicate it through the

pipeline.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 14

1.4.3. Secondary NameNode

Hadoop is very flexible and fault tolerant in DataNode’s, whereas in NameNode is

the critical part where all the information of Meta data is stored. As a solution to

this, Hadoop provides a backup node for Namenode.

Secondary NameNode is the replica of NameNode, and keeps track of NameNode by

taking checkpoints, so that in case NameNode goes down, it can be recovered from

Secondary NameNode.

1.4.4. Job Tracker

The tasks of NameNode and DataNode are performed by Job Tracker and Task

Tracker respectively. JobTracker keeps track and manages the lifecycle of

TaskTrackers whereas TaskTrackers have to report to JobTracker about their tasks.

Job Tracker is the daemon service for submitting and tracking Map Reduce jobs in

Hadoop. There is only One Job Tracker process run on any Hadoop cluster. (Vishwas

& Shweta, 2013)

1.4.5. Task Tracker

A TaskTracker is a node in the cluster that accepts tasks - Map, Reduce and Shuffle

operations - from a JobTracker. Every TaskTracker is configured with a set of slots,

these indicate the number of tasks that it can accept. (Apache)

Each DataNode has its own TaskTracker, which mainly does the map and reduce

functions on the nodes. Task tracker is configured preliminary for the number of

tasks it can accept, simultaneously. When job tracker tries to assign a task to

tasktracker, first it checks its availability.

1.4.6. Balancer

When HDFS stores its blocks into the datanodes, it might happen that some nodes

are getting overloaded and some are empty. Having unbalanced blocks stored in

your cluster, might cause bottlenecks. HDFS Balancer will balance the data blocks

across the cluster, with a threshold parameter as an allowance of difference

between DataNodes.

The command to run balancer

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 15

$ hdfs balancer -threshold 25

Threshold’s value is from 1-100

1.4.7. Hadoop Web User Interface

Hadoop has its own Web User Interface, providing severe information for the tasks,

states and data running in Hadoop. An interface is dedicated to Job Tracker showing

the running and completed jobs with detailed information accessible by default via

port 50030.

On the screenshot above, a Cluster Summary shows the Nodes, Tasks, Map and

Reduce Slots and Capacity information regarding the running Hadoop jobs.

Furthermore, jobs can be accessed and detailed information are shown on their

page.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 16

1.5. Big Data

Big data is a large collection of data sets which differs from normal data stored in the sense

that it requires special dedication to process and store. Recently, the big data solutions are

cutting edge technologies in the market, which help companies and organizations maintain

their infrastructure and cut financial cost.

According to CISCO, the amount of data center traffic will triple from 2012 to 2017.

(Tech Dynamics)

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 17

As you can see, in the graph above by Tech Dynamics, the amount of data is expecting to

grow exponentially in the upcoming years, and the needs to process, distribute and store

this data will have to meet the requirements.

1.5.1. Structured Data VS Unstructured Data

Structured data is data that is stored in a structured form in a relational database, stored

on spreadsheet or filesystems. The structure of Data depends on its ability to be accessed,

processed and stored, as in relational databases where data is easily searchable by using

algorithm for querying it (such as Structured Query Language) . The opposite of Structured

data is Unstructured data where, the data does not have a predefined data model and it

usually comes as a text, or multimedia content. However the unstructured data content,

internally it may contain structured content.

One of the main benefits of implementing Hadoop, is its ability to store unstructured data

which wasn’t able to be handled by traditional relational databases.

1.5.2. Hadoop Data

Hadoop was invented as a solution to vast amount of data, and struggle of handling such

big data streams. However, the data generated and stored in Hadoop cluster, is playing an

important role on organizations analysis and statistics to improve their business

performance.

According to (Horton Works), there are five types of new data in Hadoop for this purpose.

Sentiment Data: The unstructured data generated by social networks, which can lead an

organization to extracting information as how customers might feel about their products.

Clickstream Data : Data collected from the weblogs of the clicks, the user makes in a

website.

Server Log Data: Log files saved by computer in networks which might be used in many

manners.

Sensor / Machine Data: Automatic data generated by sensors and machines, by monitoring

or measuring many factors. Extracting information from these logs can help organizations

analyze and forecast the operations.

GeoLocation Data: GeoLocation data, mostly coming from mobile devices. Extracting this

information can lead organizations to analyze the geographical density.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 18

2. Performance Tuning

HDFS Parameters are the configurable parameters to tune Hadoop and customize it for the

adequate performance. Most parameters are directly adjusting the performance, security,

timing and addressing of Name node and Data nodes, where many features of Hadoop can

be set, activated or deactivated.

Tuning Hadoop can be a very challenging task, due to many configurable parameters and

distributed environment where many aspect have to be taken into consideration.

It requires techniques, such as data collection by running controlled experiments under

different parameter settings, data analysis using optimization techniques, and analytical

and reasoning skills. (Shumin, 2013)

2.1. Parameters

Parameters can be added using the XML structure as the example below on hdfs-site.xml
file, whereas the original ones can be found on hdfs-default.xml

Below are listed some of parameters which have higher impact on Hadoop’s performance.

<property>

 <name>fs.default.name</name>
 <value>hdfs://localhost:50030</value>

</property>
<property>

 <name>mapred.job.tracker</name>
 <value>hdfs://localhost:50031</value>

</property>
<property>

 <name>dfs.replication</name>
 <value>3</value>

</property>
<property>
<property>
 <name>dfs.block.size</name>
 <value>134217728</value>
 <description>The default block size for new files.</description>
</property>
<property>
 <name>dfs.default.chunk.view.size</name>
 <value>32768</value>
 <description>The number of bytes to view for a file on the browser.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 19

 </description>
</property>

 Replication(dfs.replication): This is the value of how many times we want to

replicate the blocks across the nodes in Cluster. It’s the most critical parameter to

affect the performance of our cluster. Normally, the default value of this parameter

is 3, so the block files get replicated 3 times in the cluster. Setting it higher might

lower the performance of our Cluster, whereas setting it lower might increase the

risk of losing data.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 20

 Block size (dfs.block.size): Here is where we set the size of blocks, partitioned

from files that were chunked. The default size that comes with Hadoop installation

is 64MB, whereas most commonly used is 128MB. Hadoop works best with large

files, so setting it higher might (not in all cases) improve performance of Hadoop by

lowering seek time.

 Heartbeat.interval: Datanodes send heartbeat signals to Namenode to confirm

that they’re alive. This parameter sets the interval in seconds to notify NameNode

for each DataNode that is alive. (i.e. If NameNode doesn’t receive heartbeat for a

certain datanode in a certain amount of time, considers it dead)

 failed.volumes.tolerated : The limit number of volumes allowed to fail, before

datanode stops offering service. By default, every volume fail will cause DataNode to

stop.

 client.block.write.retries :How many times a user is allowed to try and write data,
before he receives failure of application

 dfs.default.chunk.view.size: Number of bytes the user views when visiting a page
in a browser. Default value is set to 32KB.

Performance of Hadoop Map-Reduce job can be increased without increasing the hardware

cost, by just tuning some parameters according to the cluster specifications, input data size

and processing complexities. (Hadoop Performance Testing, Technologies, Impetus)

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 21

3. Benchmarking

3.1. Introduction to Benchmarking in Hadoop

Benchmarking in distributed architecture systems where the performance of your clusters

is affected by many hardware and software components is crucial. Benchmark is the

evaluation of the capacity and performance, measured in many parameters which are

yielded as outcome of benchmarking tests. Based on the results of these parameters we can

decide how to tune Hadoop Cluster for best performance. The aim of Hadoop benchmarks

is to push the workload to the limit and find the bottlenecks of cluster, by estimating the

cost of tasks. Most benchmarks come with data generators(scripts that generate data),

providing them the input data to be able to apply different algorithm on it, and test the

performance of the cluster under heavy workload, trying to cause the bottlenecks of the

system.

3.2. Counters

While running benchmarks in Hadoop, at each iteration a list of Counters is yielding

statistical information about the running tests. Counter are grouped into different

categories, listing detailed data on running benchmark, such as CPU time spent, Bytes read,

Total time spent by reduce and map tasks etc.

Counters are useful to get statistical data from your running tests and be aware of the

default values that are set on the benchmark. Counter are grouped into set of counters,

based on the task they’re conducting.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 22

In the screenshot above, you can see a list of counters, showing details of computations

from a TestDFSIO benchmark.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 23

3.3. Hadoop Benchmarks

In this section, a list of Benchmark Suites will be briefly described, showing necessary

information to run them and adjust parameters, as well as the yielded outcome after

running them.

3.3.1. HDFS Test Benchmark Suite

 The following benchmarks come with the Hadoop installation package.

 TestFileSystem: Tests the HDFS filesystem by generating a number of files with

 certain size. This benchmark does not yield any outcome, if not received any error

 the testing is considered successful.

o Parameters:

 Number of files
 Number of MB per file

o Expected Output:

There is no output for this benchmark, if there is no error outcome it means the

 testing was successful and filesystem is ready.

o Command:

 hadoop jar $HADOOP_HOME/hadoop-test.jar testfilesystem -files 20 - megaBytes

 20

 DistributedFSCheck (Write) : This benchmark will check the read and write

 consistency on distributed filesystem, giving a workload with number of files with

 certain size.

o Parameters:

 Number of files
 Number of MB per file

o Expected Output:

 Throughput mb/sec

 Average IO rate mb/sec

 IO rate std deviation

 Test exec time sec

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 24

o Command

hadoop jar $HADOOP_HOME/hadoop-test.jar DistributedFSCheck -write - nrFiles

 10 - fileSize 50

 hadoop jar $HADOOP_HOME/hadoop-test.jar DistributedFSCheck -read - nrFiles

 10 - fileSize 50

3.3.2. Hadoop MapReduce Benchmark Suite

 The following benchmarks come with the Hadoop installation package.

MapRedTest: This benchmark tries to benchmark Map Reduce by loading a

number of random generated integers, which test read and write capabilities.

o Parameters:

 Range
 Count

o Expected Output:

 Original sum

 Recomputed sum

 Success / Fail

o Command

 hadoop jar $HADOOP_HOME/hadoop-*test*.jar mapredtest 5 500

 MRReliabilityTest: This benchmark will test the failure of Task Tracker, by

 making it fail intentionally and killing its task several times. By killing tasks, jobs

 will not be failing if the cluster is flexible to task failures. This test checks the task

 failure of MapReduce, so if job will fail, it means we have to tune the task trackers

 performance.

 This benchmarks requires to run solely, with no other tasks running in parallel.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 25

o Command

 hadoop jar $HADOOP_HOME/hadoop-test-*.jar MRReliabilityTest –libjars

 HADOOP_HOME/hadoop-examples-*.jar

 MRBench: MRBench or MapReduce Benchmark is one of main benchmarks

 of MapReduce, it executes a large number of small jobs to be able to check the

 capability responsiveness of the map reduce in the cluster.

o Parameters:

 numRuns [How many times the job will run]
 maps
 reduces
 inputLines
 inputType

o Expected Output:

 AvgTime (milliseconds)

o Command

 hadoop jar $HADOOP_HOME/hadoop-test-*.jar mrbench -numRuns 15

 LoadGen: Load Generator Benchmark

o Parameters:

 Maps
 Reduces
 keepmap
 keepred

o Expected Output:

 Original sum

 Recomputed sum

 Success

o Command

 hadoop jar $HADOOP_HOME/hadoop-test .jar loadgen -m 100 -r 10 -keepmap 50 -

 keepred 50 -indir input -outdir output

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 26

 NNBench : Namenode is the master part of an HDFS filesystem, and it keeps all the

 information regarding other files stored in the cluster. NNBench or Namenode

 benchmark is capable of making a powerful load test of NameNode’s hardware and

 configuration, by generating many requests with small payloads in order of

 putting HDFS in a stress-test of NameNode. Request operations that this benchmark

 generates can be of reading, creating, deleting and renaming files. Moreover, this

 benchmark can be adjusted with several parameters to perform different type of

 tests.

o Parameters:

 Operation :
 create_write
 open_read
 rename_delete

 maps
 reduces
 startTime
 blockSize
 bytesToWrite
 bytesPerChecksum
 numberOfFiles
 replicationFactorPerFile
 baseDir
 readFileAfterOpen

o Expected Output:

 TPS: Create/Write/Close

 Avg Exec Time(ms): Create/Write/Close

 Avg Latency(ms) / Create/Write

 Avg Latency / Close

 RAW DATA: AL Total

 RAW DATA: TPC Total(ms)

 RAW DATA: Longest Map Time (ms)

 RAW DATA: Late maps

 RAW DATA: # of executions

o Command

 hadoop jar $HADOOP_HOME/hadoop-test-*.jar nnbench –operation

create_write –m 50 –r 50 –blockSize 64

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 27

 TestBigMapOutput: This Map Reduce benchmark works with very big files that

 cannot be split.

 hadoop jar $HADOOP_HOME/hadoop-*test*.jar testbigmapoutput -input

 /user/home/Downloads -output /user/home/Downloads/temp -create 1024

 ThreadedMapBench: A Map Reduce benchmark that compares the maps

 performance with many spills or collapses and maps performance with a single

 spill.

 hadoop jar $HADOOP_HOME/hadoop-test-*.jar threadedmapbench

3.3.3. Hadoop Sort Benchmark

 MapReduce concept derives from filtering and sorting operations and in this Sort

 benchmark we will Sort random data and boost the performance of our Hadoop

 Cluster to the peak level.

 RandomWriter : This is a data generation script which generates random data to

 be used later by Sorting benchmarks as an input.

o Expected Output:

 The job took seconds.

o Command

 hadoop jar $HADOOP_HOME/hadoop-examples-*.jar randomwriter

 random.writer.out

 TestMapRedSort: To validate the Sort benchmark

o Expected Output:

 Map output records

 Job ended (if succeeded)

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 28

o Command:

 hadoop jar $HADOOP_HOME/hadoop-test-*.jar testmapredsort -m 50 -r 5 -sortInput

 random.writer.out -sortOutput random.writer.out.sorted

3.3.4. TEST DFS IO

 TestDFSIO Benchmark is used for testing I/O performance of Hadoop. DFSIO or

 Distributed Filesystem Input/Output writes or reads into a specified number of

 files and sizes. TestDFSIO is used to evaluate the performance of the throughput, by

 putting it on a stress test.

 Stress testing (sometimes called torture testing) is a form of deliberately intense

 or thorough testing used to determine the stability of a given system or entity. It

 involves testing beyond normal operational capacity, often to a breaking point, in

 order to observe the results. (Wikipedia)

 This benchmark uses a MapReduce Job to read and write files into separate map

 tasks, whose output is used for collecting statistics that are accumulated in the

 reduce tasks to produce a summary result.

 The Benchmark data then is appended to a local file named TestDFSIO_results.log

 and written to standard output.

o Parameters:

 Operation

 nrFiles

 fileSize

 result File Name

 Buffer Size

o Expected Output:

 Throughput mb/sec

 Average IO rate mb/sec

 IO rate stf deviation

 Test Exec Time sec

o Command

 hadoop jar $HADOOP_HOME/hadoop-*test*.jar TestDFSIO -read | -write | -clean [-

 nrFiles N] [-fileSize MB] [-resFile resultFileName] [-bufferSize Bytes]

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 29

20 Files of 20 000MB processed with TestDFSIO benchmark

3.3.5. TeraSort Benchmark Suite

 TeraSort is Hadoop’s mainly used benchmark for sorting tests.

 TeraSort Benchmark is used to test both, MapReduce and HDFS by sorting some

 amount of data as quickly as possible in order to measure the capabilities of

 distributing and mapreducing files in cluster. This benchmark comes into hand

 when comparing different clusters for their performance.

 This benchmark consists of an Input Generator called TeraGen which generates

 random data, and then another benchmark TeraSort does the sorting. To be later

 validatet by Teravalidate.

o Parameters:

 Number of 100 byte rows

o Expected Output:

 Task finished / Done

o Commands

 hadoop jar $HADOOP_HOME/hadoop-*examples*.jar teragen <number

 of 100-byte rows> <output dir>

 hadoop jar $HADOOP_HOME/hadoop-*examples*.jar terasort <input

 dir> <output dir>

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 30

 When sort was done, TeraValidate is run to ensure the data was sorted correctly.

 hadoop jar $HADOOP_HOME/hadoop-*examples*.jar teravalidate

 <output dir> <terasort-validate dir>

 When running terasort, there will be no output details when job is finished. Instead you

 can use the command of

 hadoop job –history all /directory.

 The benchmark history contains very useful and detailed information for the test

Hadoop job: 0016_1404952474849_user

=====================================

Job tracker host name: job

job tracker start time: Wed May 19 22:24:51 EDT 1976

User: user

JobName: TeraSort

JobConf: hdfs://localhost:9000/tmp/hadoop-

user/mapred/staging/user/.staging/job_201407091526_0016/job.xml

Submitted At: 9-Jul-2014 20:34:34

Launched At: 9-Jul-2014 20:34:35 (0sec)

Finished At: 9-Jul-2014 20:36:21 (1mins, 46sec)

Status: SUCCESS

 It even shows analysis of the tests based on the tasks.

Analysis
=========

Time taken by best performing map task task_201407091526_0016_m_000001: 30sec
Average time taken by map tasks: 36sec
Worse performing map tasks:
TaskId Timetaken
task_201407091526_0016_m_000003 43sec
task_201407091526_0016_m_000002 42sec
task_201407091526_0016_m_000000 31sec
task_201407091526_0016_m_000001 30sec
The last map task task_201407091526_0016_m_000003 finished at (relative to the Job
launch time): 9-Jul-2014 20:35:56 (1mins, 20sec)

Apache Hadoop Terasort benchmark new world record set by MapR Technologies

on a 1003-node cluster running on Google Compute Engine on the Google Cloud

Platform. (Mapr)

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 31

3.3.6. GridMix

 GridMix is a Hadoop benchmark suite that approaches most to a real cluster. It

 imitates the real life workload problems and tests the cluster for its performance.

 The input data in GridMix normally is random format, so it tests the performance

 of the cluster on different data format.

 GridMix is configurable using its parameters.

 hadoop jar <gridmix-jar>

 org.apache.hadoop.mapred.gridmix.Gridmix \ [-generate

 <size>] [-users <users-list>] <iopath> <trace>

3.3.7. MalStone

 MalStone is Hadoop benchmark used for data intensive computing that uses

 records generated by MalGen. The records are a simulation of log files, where

 MalStone adapts a schema to common log file format containing EventID,Time

 Stamp, Site ID, Compromise flag, Entity ID.

 Shortly, MalStone is a benchmark used on clusters whose big data comes as result

 of log files from wide range of applications.

o Parameters

 Number of records

o Command

To generate the input : python malgen.py

bin/hadoop jar ${HOME}/malstone_0.8.0.jar com.opendatagroup.malstone.hadoop.

MalStoneB \ testdata malstoneB_output -r 199 2> ${HOME}/malstoneB_run.txt

i.e.

 $ python malgen.py -O /home/user/testdata/ -t 0 1000000 10000000 25

We call MalStone stylized since we do not argue that this is a useful or effective

algorithm for finding compromised sites. Rather, we point out that if the log data is

so large that it requires large numbers of disks to manage it, then computing

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 32

something as simple as this ratio can be computationally challenging. (Collin,

Grossman, & Seidman, 2009)

3.3.8. HiBench Benchmark Suite

 HiBench Benchmark is a suite of Hadoop testing programs that help evaluate the

 performance of the cluster in many aspects. Using HiBench, we can determine

 the speed, bandwidth, throughput, resource utilization etc. HiBench benchmark

 performs 9 different types of tests.

 The recent versions of HiBench, generate the input data themselves, so no need

 to run any additional scripts nor provide input data.

 HiBench suite is a more realistic and comprehensive benchmark suite for

 Hadoop, including not only synthetic micro-benchmarks, but also real- world

 Hadoop applications representative of a wider range of large-scale data analysis

 (e.g., search indexing and machine learning)

 (Shengsheng, Jie, Jinquan, & Tao)

 The benchmark starts by preparing or generating data to be used later by the

 benchmark.

 Not necessarily the list of 9 benchmarks, has to run when running HiBench. It’s

 easily configured under conf/benchmarks.lst, by allowing you to choose the list

 and order of benchmarks.

 Command to run all HiBench scripts: HiBench/bin bash run*.sh

 Running scripts separately: I.E. HiBench/bin/wordcount bash run.sh

 Micro Benchmarking

Sort: The data is generated by RandomTextWriter, and then accepted by this

benchmark which then sorts input. It’s a typical MapReduce task testing cluster with

a heavy load.

o Outcome: The time the job took to execute in seconds and Job Counter

details.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 33

o Parameters:

 DataSize

 Maps

 Reduces

o Command:

HiBench/bin/sort bash run.sh

WordCount : Receives input from the RandomTextWriter generator, and counts all

the words and their occurrence in the input data.

Sort and WordCount programs are representative of a large subset of real-world

MapReduce jobs – one transforming data from one representation to another, and

another extracting a small amount of interesting data from a large data set.

(Shengsheng, Jie, Yan, & Lan)

TeraSort: TeraSort Benchmark applied as part of HiBench. Data generated by

TeraGen. (information for this benchmark described above)

o Command:

HiBench/bin/terasort bash run.sh

 Web Search

Nutch Indexing: Used for large scale search indexing. It benchmarks the

automatically generated web data, based on number of pages.

o Parameters:

 Maps

 Reduces

 Pages

o Command:

 HiBench/bin/nutchindexing bash run.sh

PageRank: Benchmarks web data generated by its own script, by doing iterations

on the IO operations.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 34

o Parameters:

 Maps

 Reduces

 Pages

 Number of iteration

 Block

 Block width

o Command:

 HiBench/bin/pagerank bash run.sh

 Machine Learning

Bayesian Classification:

o Outcome:

 Running time of benchmark

o Parameters:

 Pages

 Classes

 Maps

 Reduces

 NGrams

o Command:

 HiBench/bin/bayes bash run.sh

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 35

K-Means Clustering: Benchmark for testing K-Means algorithm for data mining and

knowledge discovery. First it generates Mahout data sets as input and then runs

benchmark iteration for each cluster.

o Outcome:

 Running time of benchmark

o Parameters:

 Number of Clusters
 Number of Samples
 Samples per Input file
 Dimensions
 Max Iteration

o Command:

HiBench/bin/kmeans bash run.sh

 Hive Bench

 Hive Query Benchmark: Receives input from its own data generator. Test the

 cluster for its capabilities to handle large queries of Aggregation and Join. While

 performing map and reduce tests, it constantly measures the cumulative CPU

 usage in seconds.

o Parameters:

 User Visits

 Pages

 Maps

 Reduces

o Expected Output:

 MapReduce Total cumulative CPU time

 Total MapReduce CPU Time Spent

 Time taken

o Command:

HiBench/bin/Hive bash run.sh

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 36

 HDFS

Enhanced DFSIO: It does the read and write operation of TestDFSIO, giving

consequent outcome.

o Parameters:

 Read number of files

 Read file size

 Write number of files

 Write file size

o Outcome READ/WRITE:

 Throughput mb/sec

 Average IO rate mb/sec

 IO rate std deviation

 Test exec time sec

 Average of Aggregated Throughput

 Standard Deviation

 Time spots Counted in Average

o Command

 HiBench/bin/dfsioe bash run.sh

3.3.9. Puma

 This benchmark suite consists of 13 benchmarks, including the existing benchmarks

 of Hadoop’s distribution package TeraSort, Word-Count and Grep. The set of

 Puma benchmark suite, are intended to test MapReduce performance.

 Word-Count : Can receive any type of document as input.

o Parameters:

 reduces

o Expected Output:

 Word

 count

o Command

$ bin/hadoop jar hadoop-*-examples.jar wordcount –r <num-reduces> <input-dir>

<output-dir>

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 37

 Inverted-Index :

o Parameters:

 Maps

 reduces

o Expected Output:

 Word

 Doc id

o Command

 $ bin/hadoop jar hadoop-*-examples.jar invertedindex –m<num-maps> -r <num-

reduces> <input-dir> <output-dir>

 Term-Vector:

o Parameters:

 Maps

 reduces

o Expected Output:

 Host

 Term vector

o Command

 $ bin/hadoop jar hadoop-*-examples.jar termvectorperhost –m<num-maps> -r

<num- reduces> <input-dir> <output-dir>

 Self-Join

o Parameters:

 Maps

 reduces

o Command

 $ bin/hadoop jar hadoop-*-examples.jar selfjoin –m<num-maps> -r <num-reduces>

<input- dir> <output-dir>

 Adjacency-List

o Parameters:

 Maps

 reduces

o Command

 $ bin/hadoop jar hadoop-*-examples.jar adjlist –m<num-maps> -r <num-reduces>

<input- dir> <output-dir>

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 38

 K-Means

o Parameters:

 Maps

 reduces

o Command

 $ bin/hadoop jar hadoop-*-examples.jar kmeans_itertxt_hr –m <num-maps> -r

 <num- reduces> <input-dir> <output-dir>

 Classification:

o Parameters:

o Expected Output:

o Command

 bin/hadoop jar hadoop-*-examples.jar classification –m <num-maps> -r <num-

 reduces> <input-dir> <output-dir>

 Histogram-Movies: Used for data analysis, using the logic of average rating of

 movies, where in the mapping phase the average ratings are computed and in the

 reduce phase the output is collected and yielded.

o Parameters:

 Maps

 reduces

o Expected Output:

 Value/rating

 Nr of movies

o Command

 Histogram-Ratings:

o Parameters:

 Maps

 reduces

o Expected Output:

 Rating

 Nr of user views

o Command

 bin/hadoop jar hadoop-*-examples.jar histogram_ratings –m <num-maps> -r <num-

 reduces> <input-dir> <output-dir>

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 39

 Sequence Count: Counts consecutively the set of 3 words for each tuple.

o Parameters:

 Maps

 reduces

o Expected Output:

 Word 1 word 2 word 3 / count of them

o Command

 bin/hadoop jar hadoop-*-examples.jar sequencecounts –m <num-maps> –r <num-

 reduces> <input-dir> <output-dir>

 Ranked-Inverted-Index: Ranked Inverted Index benchmark takes a list of words in

 a document and their occurrence and yields the outcome of the words sorted by

 frequency in inverted order.

o Parameters:

 Word sequence

 File name

o Expected Output:

 Word sequence

 Count of files

o Command

 bin/hadoop jar hadoop-*-examples.jar rankedinvertedindex –m <num-maps> –r

 <num-reduces> <input-dir> <output-dir>

 Grep: Used by data analyses to search for patterns

o Command

 bin/hadoop jar hadoop-*-examples.jar grep <input-dir> <output-dir> <num-

 reduces> <regex> [<group>]

(Ahmad, Seyong, Mithuna, & T.N)

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 40

4. Performance evaluation of Hadoop benchmarks

4.1. Benchmark testing

In this chapter, we applied the benchmarks listed above on a Hadoop installed machine, to

be able to evaluate the performance of these benchmarks. Normally, evaluating

benchmarks must be done in a real distributed environment, to be able to extract the key

factors when adjusting a Hadoop performance, but in this document we focused on

parameters which can be applied in a single machine and yield some reasonable outcome,

based on which we can conclude their performance.

The benchmarking tests were performed in a virtual machine environment, with a Single

Node Hadoop Cluster installed.

Processors: 2 (Intel Core I7- 3632QM CPU 2.20 GHZ)

Memory : 4GB

JAVA VERSION: 1.7.0_51

HADOOP VERSION: 1.2.1

VM TYPE: 32 bit

The following benchmarks are intended to observe the difference of outcomes when

running on different Hadoop parameters, and the way we can optimize cluster tuning to

improve the performance.

4.2. Benchmark 1: Block size

The parameter of block size that can be altered in Hadoop configuration is one of the key

elements when optimizing the HDFS and Mapreduce to chunk out files into blocks, which

then will be stored into datanodes. Not coincidentally, TestDFSIO was chosen as

benchmark to test the block size, due to its testing capabilities of Input/Output rate and

Throughput.

In this test, the benchmarks ran with different block and number of files, with the same

total processed size in a Hadoop Cluster. The aim of this benchmark is to optimize the

cluster for best performance depending on the block size, while testing it with different

number of files and different file size.

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 41

The test was made using three different block size, starting with the Hadoop default block

size, 64MB and continuing with most preferred block size in Hadoop clusters 128MB, and

testing as well 256MB.

We used only the write operations of TestDFSIO benchmark, to make this test.

In the graph below you can see the line of throughput. The throughput with block size

128MB is higher than 64MB, whereas with 256MB takes a slight increase. The same occurs

with IO rate, where 128MB and 256MB block size show a better performance in time.

Nr
Files

File
Size*mb

Total
MBytes
processed

Throughput
mb/sec:

Average IO
rate mb/sec

IO rate std
deviation

Test exec
time sec:

Block
size /
MB

20 1000 20000 6.60346926 8.068416595 3.11433541 1671.748 64

20 1000 20000 15.601342 16.03536606 2.35043977 742.937 128

20 1000 20000 17.1439984 17.25997162 1.34668632 758.815 256

Three tests were conducted, and as a result we can conclude that when using block size of

64MB, the throughput and I/O rate will be lower than with 128MB.

0

5

10

15

20

64 128 256

Th
ro

u
gh

p
u

t
m

b
/s

e
c:

Write: Throughput / Block size

0

5

10

15

20

64 128 256

A
ve

ra
ge

 I
O

 r
at

e
 m

b
/s

e
c

Write:IO Rate / Block size

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 42

4.3. Benchmark 2: Replication Factor

When HDFS stores its blocks in the datanodes, it replicates them into different nodes and

racks in order to provide reliability and fault tolerance to the clients.

By default, the blocks are replicated into 3 different nodes. In this test, we will examine the

outcome with different replications and see what happens.

Write: Throughput Write: IO rate

The tests were conducted using TestDFSIO benchmark, and we can the result in the graphs.

OPERATION: WRITE

Nr
of
Files

File
Size*m
b

Total
MB
process
.

Throughput
mb/sec:

Average IO
rate mb/sec

IO rate std
deviation

Test exec
time sec:

replicatio
n

30 500 15000 15.2172876 15.5987920 2.29424213 632.973 1

30 500 15000 6.10441231 9.38677406 4.87247412 1673.214 2

30 500 15000 4.81853710 11.5737876 4.31595184 1737.307 3

Throughput has a significant difference when replicating blocks into more than 1 node, due

to the transfer and write time of pipeline between nodes.

IO rate as well, has a higher speed with 1 replication, but the difference isn’t significant as

in Throughput.

We performed the same benchmark, on Read operation. The throughput in read operation

is increasing with higher number of replications.

0

5

10

15

20

1 2 3

Th
ro

u
gh

p
u

t
m

b
/s

ec
:

0

5

10

15

20

1 2 3

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 43

 OPERATION: READ

Nr
of
Files

File
Size

Total MB
processe
d

Throughpu
t mb/sec:

Average IO
rate mb/sec

IO rate std
deviation

Test exec
time sec:

replicatio
n

30 500 15000 13.115614 18.4255561 4.9526637 985.927 1

30 500 15000 14.698173 15.4223184 3.18655343 672.85 2

30 500 15000 18.838351 19.2239780 2.59074374 528.509 3

4.4. Benchmark 3: Sorting Benchmarks

4.4.1. Sorting benchmark : Terasort and HiBench Sort

Sorting benchmarks, take as input randomly generated data and the challenge of this

benchmark is to sort it as quickly as possible. In this test, we used Terasort and Sort (from

HiBench Suite), to test the sorting time.

We used the same number of maps and reduces in both tests, and tested them with two

different filesizes.

In the graph below, you can see on the Y axis the number of seconds it took to generate sort

and validate the data for the benchmarks.

0

5

10

15

20

1 2 3

Th
ro

u
gh

p
u

t
m

b
/s

ec
:

0

5

10

15

20

25

1 2 3

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 44

Terasort sorted the 200MB file few seconds earlier than Sort, whereas Sort benchmark

sorted the 1GB file 181seconds in advance. In fact the sorting process was almost the same

of terasort and sort benchmarks, the phase which delayed Terasort was the Teragen

preparing the input and Sort benchmark validates its content as it sorts it, whereas

Terasort has a separate task to validate content.

 200MB 1GB
TeraGen 55 286

TeraSort 106 450

TeraValidate 57 55

 218 791

Preparing Sort data 62 161

Sorting 163 449

 225 610

0

100

200

300

400

500

600

700

800

900

terasort sort

200MB

1GB

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 45

4.4.2. Sorting block size

In this test, we tried the Sorting benchmark HiBench Sort, with different block size. Sorting

benchmark performs many read and write operations, so changing block size must have an

impact on its outcomes.

We used a filesize of 1GB and sorted it with block size of 64MB, 128MB and 256MB, in

order to find the optimum block size for sorting in a quicker way.

In the graph above, you can see that the minimum time it took to sort the file, was with

128MB, which not coincidentally is the most common block size used in Hadoop.

Apparently the default block size of Hadoop, 64MB gave the slowest output and therefore,

when adjusting your cluster parameters this parameter should be taken into consideration

if your cluster is going to perform sorting computations.

Filesize Time/sec Blocksize/MB

1GB 610 64

1GB 341 128

1GB 394 256

0

100

200

300

400

500

600

700

64 128 256

Time (sec) / Block size(MB)

Time/sec

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 46

5. Conclusion

Benchmarking Distributed Filesystem’s is not a simple process, and in order to make a

proper benchmark many factors should be taken into consideration.

In this document, with the benchmarks we tried to show, how by tuning few parameters

we can increase the performance of the HDFS Filesystem and Mapreduce. We used

Hadoop’s main parameters, to be able to show a significant change on the outcomes of the

tests.

As a conclusion, benchmarking depends on the output parameters you want to estimate. If

you already have a cluster running and want to improve it, than you can decide on what

parameters to benchmark, whereas in the case when you have a new cluster, the entire

benchmarking suite such as HiBench or Puma can be suitable to find the bottlenecks and

peak points of your cluster. If we want instead to see the mapreduce installation, Terasort

benchmark would be suitable, or the HDFS benchmark suite for stress-testing the

daemonds of Hadoop. NNBench, is the benchmark intended to test the most critical part of

Hadoop, and should take place in all benchmarking tests when evaluating the performance

of your cluster.

Based on our mechanism of testing, we can conclude that replication factors affects most

the Input/Output write operations, as tested with TestDFSIO benchmark, whereas it has

different effect on read operations of Input/Output. Block size should be taken into

consideration when performing sorting computations..

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 47

Reference

Ahmad, F., Seyong, L., Mithuna, T., & T.N, V. (n.d.). PUMA: Purdue MapReduce Benchmarks

Suite. Retrieved from

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1438&context=ecetr

Apache. (n.d.). Retrieved from http://wiki.apache.org/hadoop/TaskTracker

Collin, B., Grossman, R., & Seidman, J. (2009). MalStone: A Benchmark for Data Intensive

Computing.

Hadoop Performance Testing, Technologies, Impetus. (n.d.).

Horton Works. (n.d.). Retrieved from Horton Works Business Value of Hadoop:

http://hortonworks.com/wp-

content/uploads/2014/05/Hortonworks.BusinessValueofHadoop.v1.0.pdf

Horton Works. (n.d.). Retrieved from Horton Works:

http://hortonworks.com/hadoop/yarn/

Karloff, H., Siddharth, S., & Vassilvitskii‡, S. (n.d.). A Model of Computation for MapReduce.

Mapr. (n.d.). Retrieved from http://www.mapr.com/resources/videos/mapr-terasort-

record

Moody , C., & Jobs, W. (n.d.). Overcoming Networking Bottlenecks of Hadoop MapReduce.

Obaidat, M. S., & Misra, S. (2011). Cooperative Networking. Wiley.

Russom, P. (2013). Integrating Hadoop into Business Intelligence and Data Warehousing.

Shengsheng, H., Jie, H., Jinquan, D., & Tao, X. (n.d.). The HiBench Benchmark Suite:

Characterization of the MapReduce-Based Data Analysis.

Shengsheng, H., Jie, H., Yan, L., & Lan, Y. (n.d.). HiBench: A Representative and Comprehensive

Hadoop Benchmark Suite.

Shumin, G. (2013). Hadoop Operations and Cluster Management Cookbook. Packt Publishing.

Tech Dynamics. (n.d.). Retrieved from http://www.tech-dynamics.com/solution-

overview/big-data

Vishwas, C., & Shweta, S. (2013). Knowledge Management in Cloud Using Hadoop.

Wikipedia. (n.d.). Retrieved from http://en.wikipedia.org/wiki/Stress_testing

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 48

Bibliography

Ahmad, F., Seyong, L., Mithuna, T., & T.N, V. (n.d.). PUMA: Purdue MapReduce Benchmarks

Suite. Retrieved from

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1438&context=ecetr

Apache. (n.d.). Retrieved from http://wiki.apache.org/hadoop/TaskTracker

Collin, B., Grossman, R., & Seidman, J. (2009). MalStone: A Benchmark for Data Intensive

Computing.

Hadoop Performance Testing, Technologies, Impetus. (n.d.).

Horton Works. (n.d.). Retrieved from Horton Works Business Value of Hadoop:

http://hortonworks.com/wp-

content/uploads/2014/05/Hortonworks.BusinessValueofHadoop.v1.0.pdf

Horton Works. (n.d.). Retrieved from Horton Works:

http://hortonworks.com/hadoop/yarn/

Karloff, H., Siddharth, S., & Vassilvitskii‡, S. (n.d.). A Model of Computation for MapReduce.

Mapr. (n.d.). Retrieved from http://www.mapr.com/resources/videos/mapr-terasort-

record

Moody , C., & Jobs, W. (n.d.). Overcoming Networking Bottlenecks of Hadoop MapReduce.

Obaidat, M. S., & Misra, S. (2011). Cooperative Networking. Wiley.

Russom, P. (2013). Integrating Hadoop into Business Intelligence and Data Warehousing.

Shengsheng, H., Jie, H., Jinquan, D., & Tao, X. (n.d.). The HiBench Benchmark Suite:

Characterization of the MapReduce-Based Data Analysis.

Shengsheng, H., Jie, H., Yan, L., & Lan, Y. (n.d.). HiBench: A Representative and Comprehensive

Hadoop Benchmark Suite.

Shumin, G. (2013). Hadoop Operations and Cluster Management Cookbook. Packt Publishing.

Tech Dynamics. (n.d.). Retrieved from http://www.tech-dynamics.com/solution-

overview/big-data

Vishwas, C., & Shweta, S. (2013). Knowledge Management in Cloud Using Hadoop.

Wikipedia. (n.d.). Retrieved from http://en.wikipedia.org/wiki/Stress_testing

Review of Performance Evaluation Benchmarks for Apache Hadoop 2014

Politecnico di Milano Page 49

