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Abstract

One of the most challenging and interesting problems in space mission design is
the low-thrust space trajectory optimization.  Nevertheless, it can often result
very difficult as it involves the solution of a two-point boundary value problem
at least, characterized by a set of non-linear coupled differential equations.  This
problem  can  be  faced  according  to  different  techniques.   The  most  simple
approach relies on the procedure of  direct transcriptions and the use of the
resulting direct methods.  

Until nowadays, the main drawback of the trajectory optimization has been the
lack of coupling of trajectory, propulsion, and power system.  The focus of this
thesis is to bridge this gap, providing a robust algorithm capable of optimizing
space trajectories in time-optimal problems and in fuel-optimal problems, taking
into account mathematical models of solar electric propulsion systems in the
trajectory design process. 

Keywords: trajectory optimization, low-thrust, solar electric propulsion models,
nonlinear programming, direct methods. 





Sommario

Uno dei problemi più impegnativi ed interessanti nella progettazione di missioni
spaziali  è  l'ottimizzazione di  traiettorie  a  bassa spinta.   Tuttavia,  spesso può
risultare molto difficile in quanto comporta almeno la soluzione di un problema
al contorno, caratterizzato da un insieme di equazioni differenziali non lineari
accoppiate.  Questo problema può essere affrontato secondo tecniche diverse,
ma le più semplici adottano le procedure di  trascrizione diretta ed utilizzano i
risultanti metodi diretti. 

Fino al giorno d'oggi il principale svantaggio dell'ottimizzazione di traiettorie è
stata la mancanza di considerare contemporaneamente la traiettoria, il sistema
propulsivo ed il sistema di generazione di potenza nella fase di progettazione.
L'obiettivo  di  questa  tesi  è  di  colmare questa  lacuna,  fornendo un algoritmo
robusto in grado di ottimizzare le traiettorie spaziali in problemi tempo-ottimali
e  di  minimizzazione  di  propellente  e  di  integrare  nello  stesso  tempo  le
informazioni derivanti dai modelli di propulsione elettrica solare. 

Parole chiave: ottimizzazione di traiettorie, bassa spinta, modelli di propulsione
elettrica solare, programmazione non lineare, metodi diretti.





Chapter 1 

Introduction

1.1 State of the Art

A lot of researchers  tried to perform space trajectory optimization with low-
thrust propulsion, in particular in the last years when the technological advances
in  electric  propulsion  enabled  the  design  of  interplanetary  missions  with
significant savings of propellant mass. 

The first types of approaches used to deal with space trajectory design problem
are  the  indirect  methods,  which  are  based  on  the  calculus  of  variations.
According  to  these  methods,  a  cost  function  is  differentiated  through  the
calculus of variations, ending up with a set of Euler-Lagrange equations which
form a boundary value problem.  The Euler-Lagrange equations consist in a set
of coupled ordinary differential equations where only states and costates appear
and only initial conditions are required to solve the problem.  These approaches
have the advantage that very accurate results can be obtained; however, a rather
good initial approximation of the optimal trajectory is needed and a rather large
amount of work has to be done by the user to derive the adjoint differential
equations. 

In the recent years,  Politecnico di Milano has focused the attention on space
trajectory indirect optimization.  Rasotto [1] formulated a code capable of facing
fuel-optimal  transfers  in  two-body  and  three-body  dynamics,  including  the
possibility of  performing intermediate  fly-by,  rendez-vous and  gravity assist.
Catucci  [2] developed an  algorithm capable of optimizing  space trajectories in
low-thrust propulsion, in particular the optimization is related to the propellant
consumption in a time-fixed space  transfer with many revolutions around the
primary attractor.

To avoid the issues of the direct methods, the approaches used in this thesis are
the  direct  methods,  where the optimal  control  problem is  transformed into a
nonlinear programming problem, as accurately presented in Chapter 2. 

The  formulation  proposed  by Betts  [3] represents  the  master  key  for  space
trajectory  optimization  using  direct  methods.   Starting  from  this  theoretical
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basis, Patel  [4] provided methods which can be used to auto-generate feasible
electric propulsion interplanetary trajectories, using Chebyshev polynomials to
model the trajectory.  Zhang and Topputo [5][6] gave a complete overview of
direct transcription and collocation techniques, providing codes for a practical
implementation into orbit transfer problems.

1.2 Motivation and Goal

The  traditional  shortcoming  of  the  trajectory  optimization  is  the  absence  of
coupling of trajectory, propulsion, and power system models in design process.
Indeed, the classical way to include all the three elements in the design is based
on a step-by-step approach: the optimal trajectory is obtained first; then the best
electric propulsion engine that permits it is searched for together with the power
system to support the associated power request.  However, this strategy is not
integrated inside the optimization algorithm and, even though it can be iterated
several times, it could not provide the choice of the best thruster and the correct
respect of all the mission requirements.

Recently,  the  studies  of  Englander  et  al.  [7][8] represent  an  important
breakthrough  in  the  solution  of  this  issue.   Indeed,  they  developed  a  fully
automated tool (EMTG) that provides single-click automated optimization of a
full-fidelity low-thrust trajectory, modeling several types of electric thrusters.

This thesis tries to bridge this gap, implementing in the codes given by Zhang
and Topputo the engine models provided by Englander et al., thus obtaining at
the end an algorithm capable of optimizing  space trajectories in time-optimal
problems  and in  fuel-optimal  problems,  taking into  account  models  of  solar
electric propulsion in a completely automatic way.  In this manner it is possible
to  evaluate  vary  fast  if  a  particular  type  of  engine  is  capable  to  perform a
required mission by verifying that all mission requirements are met, including
the actual performances of the adopted propulsion and power systems. 

1.3 Structure of the Dissertation

Chapter  2 describes  the  trajectory  optimization  via  direct  transcription  and
collocation.   In  particular,  it  starts  from an overview of  the  optimal  control
problem,  then  continues  with  the  formulation  of  the  space  trajectory  design
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problem and the nonlinear programming problem.  It ends with the definition of
direct transcription procedure and the direct method approach.

Chapter  3 describes the integration between the SEP models and the trajectory
optimization algorithm treated in the previous chapter.  It also introduces the
planar two-body dynamics used in the test cases and details the procedure to
overcome the issues of setting the constraints of the problem.

Chapter  4 deals  with  the  results  obtained  on  practical  test  cases.   More
specifically, time-optimal problems and fuel-optimal problems are considered,
with different type of thruster models integrated in each problem. 

Chapter  5 ends the dissertation,  discussing the validation of  the method and
suggesting future developments. 
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Chapter 2 

Low-Thrust Trajectory Optimization 
via Direct Transcription and Collocation

2.1 The Optimal Control Problem

Optimal  control  theory is  a  mathematical  optimization  method for  finding a
control law to minimize certain objective function while simultaneously subject
to a set of constraints. 

Given a set of n first-order differential equations describing a generic dynamics 

ẋ= f ( x ,u ,t ) ,  (2.1)

the  m control  functions  u(t ) , t∈[t i t f ] must  be  determined  such  that  the
following performance index

J=φ ( x (t f ) , t f )+∫
ti

t f

L (x ,u , t)dt ,  (2.2)

is minimized and q final boundary conditions

ψ (x ( t f ) ,u( t f ) , t f )=0,  (2.3)

are satisfied.

The solution to this  problem is  derived by the calculus of variations and its
complete investigation is beyond the purposes of this  thesis.  Thus, only the
derivation of the Euler-Lagrange equations will be briefly recalled.  Introducing
two kinds of Lagrange multipliers - the q-dimensional constant vector ν for the
final boundary constraints and the n-dimensional variable vector λ of adjoint or
costate variables for the dynamics - the augmented performance index is defined
as 
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J̄=φ( x (t f ) , t f )+ν
Tψ (x ( t f ) ,u( t f ) , t f )+

+∫
ti

t f

[L(x ,u , t)+λT ( f (x ,u , t)− ẋ)] dt.
 

(2.4)

It is important to observe that the dynamics (2.1) is included in the performance
index  (2.2) in the same fashion of a  constraint.   In other words, the optimal
solution must both minimize the objective function and satisfy the dynamics.
This is an alternative way of thinking at the dynamics that is in contrast to the
dynamical system theory.

The  problem  consists  now  in  formulating  the  necessary  condition  for  a
stationary point of J̄ ; this is achieved by imposing that its first variation is zero,
namely δ J̄=0.  In order to write the necessary condition in a compact form, it
is convenient to define the Hamiltonian of the problem as 

H (x ,λ ,u , t)=L( x ,u ,t )+λ T f (x ,u , t) .  (2.5)

The  necessary  conditions  for  optimality,  also  referred  as  Euler-Lagrange
equations, are 

ẋ=H λ , λ̇=−H x , H u=0,  (2.6)

where the first  is  equivalent  to  the dynamics  (2.1),  the second describes the
dynamics of the costates, and the third is an algebraic equation for the control
functions.  The necessary equations are obtained by integrating by parts the last
term in (2.4), and imposing the necessary conditions to the function δ J̄.  Thus,
a solution satisfying the equations (2.6) is not necessarily a minimum of J̄ ; this
is the reason why the conditions are only necessary.  The differential-algebraic
system (2.6) must be solved together with the final boundary conditions  (2.3)
and the following transversality conditions 

λ (ti)=0, λ (t f )=[φ x+ν
Tψ x]t=t f

.  (2.7)

The problem so defined represents a two-point boundary value problem.

The  last  of  equations  (2.6) is  an  application  of  the  Pontryagin  maximum
principle.  A more general expression is in fact 

u=arg min
u∈U

H ( x ,λ ,u ,t )  

where U defines the domain of feasible controls.  The maximum principle states
that  control  variables  must  be  chosen  to  optimize  the  Hamiltonian  at  every
instant of time: the solution of the optimal control problem is an extremum for
H.  In essence the maximum principle is a constrained optimization problem in
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the variables u(t ) at all values of t.

A classical optimal trajectory design problem is  stated in a slightly different
fashion  than  the  classical  optimal  control  problem  illustrated  above.  The
formulation  proposed by  Betts [3] fits  better  the numerical  methods used  to
solve the trajectory design problem. 

Typically the dynamical system incorporates a number of constant parameters p
through: 

ẋ= f ( x (t) ,u( t) , p ,t ) ,  (2.8)

and initial and final conditions are defined within some prescribed lower and
upper bounds as 

ψ i , l ≤ ψ i (x (t i) ,u(t i) , p , t i) ≤ ψ i ,u ,
ψ f , l ≤ ψ f ( x( t f ) ,u( t f ) , p , t f ) ≤ ψ f , u .

 (2.9)

In addition, the solution must satisfy algebraic path constraints of the form 

g l ≤ g ( x (t) ,u (t) , p , t ) ≤ gu ,  (2.10)

as well as simple bounds on the state variables 

x l ≤ x (t) ≤ xu ,  (2.11)

and on the control variables 

ul ≤ u (t) ≤ uu .  (2.12)

The basic problem is to determine the control vectors u(t ) and the parameters p
to minimize the performance index 

J=ϕ( x (t f ) ,t f ) ,  (2.13)

here written in the Mayer form.

2.1.1 The Space Trajectory Design Problem

Some  spacecraft  equipments  can  create  very  small  acceleration  levels  (if
compared to those produced by conventional chemical rockets) while achieving
very  high  specific  impulses  and  long  working  hours.   Examples  of  these
equipments are the ion engines, hall-effect engines, solar sails, etc.  “Spacecraft
low-thrust trajectory design” is sought to extremize some performance measures
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(e.g., maximize residual fuel or minimize transfer time), while simultaneously
satisfying a series of constraints.  These constraints can be as follows: states and
controls have upper and lower bounds, the transfer orbit should be subject to the
dynamic equations, and the spacecraft might be required to be in a destination
orbit  after  a  sequence  of  maneuvers.   The  study of  such low-thrust  optimal
spacecraft trajectories is a specialization of the optimal control theory. 

In space flight mechanics, the equations of motion (2.1) have the form 

ẋ={ṙv̇}={ v
g (r )+ac û}  (2.14)

where g (r ) is the vector field (e.g., two- or n-body dynamics), ac is the control
thrust  acceleration  magnitude,  and  û is  the  thrust  unit  vector.   The  control
acceleration  magnitude  is  upper  bounded for  technological  reasons,  meaning
that  0≤ac≤ac

max .  To  minimize  the  total  velocity  change,  and  therefore  the
propellant  mass,  the  objective  function  (2.2) is  such that  L=ac ,φ=0.  The
Hamiltonian (2.5) is therefore 

H=ac+λ r⋅v+λv⋅[ g (r )+ac û ]=ac [1+λv⋅û]+λ r⋅v+λ v⋅g (r ) ,  (2.15)

where λ r ,λv are the costate vectors associated to the dynamics (2.14).

The control variables are ac and û .  As the Hamiltonian is linear in the control,
the last of equations (2.6) cannot be applied.  The optimal control law is chosen
instead according to the Pontryagin’s Minimum (or Maximum) Principle, which
states  that  at  any  time  the  control  variables  are  chosen  to  minimize  the
Hamiltonian.  Because of this property, the following observations can be made:

1. the  thrust  unit  vector  û is  to  be  parallel  and  opposite  to  λ v ; i.e.
û=−α λ v with  α>0 ; this  explains why  λ v is also referred to as the
primer vector; 

2. it  is  important  to choose a value of  ac , 0≤ac≤ac
max , according to the

sign of the switching function 

S=1+λ v⋅û .  (2.16)

In particular,  ac=ac
max when  S<0 and  ac=0 when  S>0.  This makes

the function  ac (t) to have a  bang-bang structure; i.e.,  it  is piece-wise
discontinuous and is either zero or maximum.  This property is of great
importance to evaluate the optimal control profile a posteriori.

The  necessary  conditions  only  guarantee  that  the  optimal  trajectory  is  an
extremum for the Hamiltonian.  Thus, to assess the optimality of the solutions,
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one is  supposed to check the second-order conditions.   However,  due to the
nature of the space trajectory problem, there is no upper bound to the propellant
that can be consumed in one trajectory, so one may be confident that a solution
that  satisfies  the  necessary  conditions  is  a  local  minimum  and  not  a  local
maximum. 

2.1.2 The Nonlinear Programming Problem

Essentially,  any  numerical  method  for  solving  the  trajectory  optimization
problem incorporates some type of iteration with a finite set of unknowns.  In
Section 2.2 it is shown how an optimal control problem can be transformed into
a  nonlinear  programming  problem,  NLP for  brevity.   A NLP problem  is  a
decisional  problem  concerning  a  scalar  algebraic  function  and  an  algebraic
vector of constraints.  As opposite to the optimal control problem, no dynamics
is involved into a NLP problem.

Suppose that the n variables x must be chosen to solve 

min
x

F (x ) ,  (2.17)

subject to the m equality constraints 

c ( x)=0,  (2.18)

where m≤n.  The Lagrangian of this problem is 

L( x ,λ )=F ( x )−λ T c ( x) ,  (2.19)

which is a scalar function of the  n variables  x and the  m Lagrange multipliers
λ .  The necessary conditions for a point (x* ,λ*

) to be a constrained optimum
require solving the following system 

∇ x L (x ,λ )=g (x )−GT
( x )λ=0,

∇λ L (x ,λ )=−c (x )=0,
 (2.20)

where  g=∇ x F and  G are the gradient of the objective function  F(x) and the
Jacobian of the equality constraint vector c(x), respectively.  The system (2.20)
can be solved via a Newton’s method to find the  (n +  m) variables  (x* ,λ*

).
Given a generic initial guess (x ,λ ) , its corrections (Δ x ,Δλ ) to construct the
new solution (x+Δ x ,λ+Δλ ) are given by solving the linear system 
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[H L −GT

G 0 ]{Δ xΔλ}={−g−c },  (2.21)

also  referred  as  Karush-Kuhn-Tucker  system;  in  (2.21),  the  term  HL is  the
Hessian of (2.19) in x, namely 

H L=∇ x
2 F−∑

i=1

m

λ i∇ x
2 ci .  (2.22)

It is important to observe that an equivalent way to defining the search direction
Δ x is to minimize the quadratic form 

1
2
Δ xT H LΔ x+g

T
Δ x  (2.23)

subject to the linear to the linear constraints 

G Δ x=−c .  (2.24)

This  is  the  reason  why  this  problem  is  also  referred  to  as  a  quadratic
programming (QP) problem. 

The NLP problem formulated above can be generalized to the case that occur
when inequality constraints are imposed; the m constraints are of the form 

c ( x)≥0.  (2.25)

Constraints  that  are  strictly  satisfied,  i.e.  ci  (x)  >  0,  are  called  inactive;  the
remaining active set of constraints are on their bounds, i.e.  ci  (x) = 0.  If the
active set of constraints is known, the inactive constraints are ignored and the
problem is simply solved using the method for an equality constrained problem
discussed above.

In summary, the general NLP problem requires finding the n vectors to solve 

min
x

F (x ) ,  (2.26)

subject to the m constraints 

c L≤c (x )≤cU ,  (2.27)

and bounds 

x L≤x≤xU .  (2.28)

In this formulation equality constraints can be imposed by setting cj,L = cj,U.
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2.1.3 Direct Transcription

The optimal trajectory design is a continuous optimal control problem that can
be solved with the Euler–Lagrange equations  (2.6).  This way of solving the
optimal control problem is called indirect method.  Another philosophy consists
in translating the continuous optimal control problem into a NLP problem and
solving for a finite set of variables: this procedure is called direct transcription
and the approach is said direct method.

With a direct approach, the solution of the optimal control problem is strictly
connected to the numerical integration of the differential equations.  The core of
this method consists in fact in the way of dealing with the dynamical system: the
set of differential equations governing – in the case of this thesis – the motion of
a spacecraft, can be transcribed into a  finite set of equality constraints.  If the
solution to the NLP problem satisfies these constraints, then the original optimal
control problem is solved within the degree of accuracy of the numerical scheme
used.

Let’s  consider  the optimal  control  problem formulated through the equations
(2.8)-(2.13).  The time domain can be discretized as 

t i=t 1<t 2<…<t N=t f ,  (2.29)

where the time labels are referred to as mesh points or nodes;  ti and  tf are the
initial and final time, respectively, and h = (tf − ti) / (N − 1) is the step size of the
discretization.   The states  and the controls can be discretized over  the mesh
(2.29) by defining  xk =  x(tk)  and  uk =  u(tk).   The  discretized  states  and  the
controls are  now ready to be treated as  a  set  of NLP variables.   The whole
variable vector of the problem is 

y={x1,u1,… , xN ,uN }
T .  (2.30)

The  differential  equations  are  replaced  by a  finite  set  of  defects  constraints
derived by the numerical integration scheme.  If a classical Runge-Kutta scheme
is used, the defects are of the form 

ζ i≡x i+1−x i−hi∑
j=1

k

β j f ij ,  (2.31)

with an appropriate definition of fij; for a multistep method, the defects depend
instead by only the mesh points through 
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ζ i+k−1≡x i+1−∑
j=0

k−1

α j x i+ j−h∑
j=0

k

β j f i+ j ,  (2.32)

where fk = f(xk, uk, p, tk). 

In any case, as a result of the transcription, the optimal control constraints (2.9)-
(2.10) are replaced by the NLP constraints 

c L≤c ( y)≤cU ,  (2.33)

where 

c ( y )≡{ζ 1,ζ 2,… ,ζ N−1 ,ψ 0,ψ f , g1, g2,… , gN }
T ,  (2.34)

and 

c L≡{0 ,… , 0 , g L ,… , g L}
T ,  (2.35)

with a corresponding definition of cU. 

The first  n(N −1) equality constraints in  (2.34) require that the defect vectors
ζ k , k=1,… , N−1, are zero, thereby they satisfy the differential equations (2.8)
within  the  accuracy  of  the  numerical  integration  scheme.   The  boundary
conditions  (2.9) are enforced directly by the equality constraints on  ψ0 and  ψf,
and the nonlinear path constraints  (2.10) are imposed at the grid points.  In a
similar fashion the objective function, either in the form (2.2) or (2.13), can be
written in terms of the NLP variable vector  y, namely  F =  F(y).  The optimal
control problem has been so translated into the form (2.26)-(2.28) and it can be
solved as a standard NLP problem through (2.17)-(2.22).  The method so stated
is said direct transcription and collocation. 

2.2 Direct Transcription and Collocation

A variety of direct transcription methods emerged for solving optimal spacecraft
trajectory  problem,  whose  main  difference  is  on  how  the  state  and  control
variables are discretized and how the dynamic constraints are satisfied.

In particular, in mathematics, a collocation method is a method for the numerical
solution  of  ordinary  differential  equations,  partial  differential  equations  and
integral equations.  In optimal control problems, collocation method is used to
transcribe differential  dynamic constraints  into a  set  of algebraic  constraints.
The basic idea is to choose a polynomials up to a certain degree with a number
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of points in the domain (collocation points), and to evaluate the solution which
satisfies the given equation at the collocation points. 

2.2.1 Hermite-Simpson Method

A basic form of collocation method (Hermite–Simpson method) is illustrated in
Figure  2.1.   As  for  other  direct  methods,  the  whole  trajectory  in  [ti,  tf]  is
decomposed into a number of subintervals.  Within each of these segments [tk,
tk+1],  the two end points, denote as ‘nodes’ (blue dots), set the corresponding
state and control as NLP decision variables, i.e. [xk, uk, xk+1, uk+1].  The dynamic
equation are performed to provide time derivative values at the two nodes, so
four available information [xk, xk+1, f(xk, uk), f(xk+1, uk+1)] can be used to construct
a 3rd-order hermite interpolate polynomial.  So far, the interpolate polynomial
can’t  meet  dynamic  constraints  at  any time  within  [tk,  tk+1],  because  it  only
naturally satisfies the dynamic constraints at the two boundary points.  Then,
denote  the  middle  of  [tk,  tk+1]  as  tc and  the  corresponding  state  and  control
variables as [xc, uc], this new point is called ‘collocation point’ (red diamond).  If

collocation  constraint  Δ= ẋc− f ( xc , uc) is  enforced  equal  to  zero,  the
interpolate  polynomial  not  only  naturally  satisfies  the  dynamics  at  the  two
boundary, but also meets the dynamics at the middle point  tc.  If a very large
scale of subintervals is used, the state motion will approach the real dynamics
within the whole time domain [ti, tf]. 

The  detailed  procedure  can  be  derived  as  follows.   Let  the  states  x(t)  be
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represented on each segment through cubic-spline of the form 

x (t)=a0+a1 t+a2 t 2
+a3t 3 ,  (2.36)

followed by the first order derivative of the polynomial 

ẋ (t)=a1+2 a2 t+3a3t 2 ,  (2.37)

where [a0, a1, a2, a3] are all coefficients of the polynomial.  In order to simplify
the argument, the time domain is transformed such that t∈[0, h ] (h is the time
interval  of  the  segment);  let x (0)= xk , x(h)=xk+1 , ẋ (0)= ẋ k , ẋ (h)= ẋk+1 , Eq.
(2.36) and Eq. (2.37) are evaluated at t = 0 and t = h:

[
x (0)
ẋ (0)
x (h)
ẋ (h)
]=[

1 0 0 0
0 1 0 0
1 h h2 h3

0 1 2 h 3 h2][
a0

a1

a2

a3
].  

The four coefficients of interpolate polynomial can be given by 

[
a0

a1

a2

a3
]=[

1 0 0 0
0 1 0 0

−
3
h2 −

2
h

3
h2 −

1
h

2

h3

1

h2 −
2

h3

1

h2
][ x (0)ẋ (0)

x (h)
ẋ (h)
].  

Take [a0, a1, a2, a3] into Eq. (2.36) and Eq. (2.37), then the interpolated value of
x(t) located at the center of the segment tc is 

xc=x (
h
2
)=

1
2
(xk+xk+1)+

h
8
[ f (x k , uk )− f ( xk+1 , uk+1)]  (2.38)

and the derivation of interpolation polynomial  evaluated at  the center  of  the
segment is 

ẋc= ẋ (
h
2
)=−

3
2 h
(xk−xk+1)−

1
4
[ f ( xk , uk)+ f (xk+1 , uk+1)] .  (2.39)

The control variable located at the middle of the segment can be implemented 
by simple linear interpolation which is given by 
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uc=
uk+uk+1

2
.  (2.40)

Finally,  the  difference  between  the  interpolated  Eq.  (2.39) and  calculated
derivatives at the midpoints defines a constraint 

Δ= ẋc− f ( xc , uc)=

=−
3

2 h
(x k− xk+1)−

1
4
[ f (xk , uk )+ f (xk+1 , uk+1)]− f ( xc , uc )=

=
3

2 h
( xk− xk+1)+

1
4
[ f (x k , uk )+4f ( xc , uc)+ f ( xk+1 , uk+1)]=

= xk− xk+1+
h
6
[ f ( xk , uk )+4f (xc , uc)+ f ( xk+1 , uk+1)]=0.

 (2.41)

When the NLP solver goes, selecting [xk,  uk,  xk+1,  uk+1] to drive  Δ to zero will
enforce the interpolate polynomial to accurately approximate the true dynamics.
One interesting thing is that the last row of Eq.  (2.41) is actually an implicit
hermite integration.  So, if collocation constraints are satisfied,  the system is
said to be ‘implicitly’ integrated.

The structure of Jacobian with free final time tf is shown in Figure 2.2, where the
rows are constraints while the columns are NLP decision variables. 
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Figure 2.2. Jacobian structure for Hermite-Simpson
method.
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Space Trajectory Optimization 
with Solar Electric Propulsion Models

3.1 Solar Electric Propulsion Models

In this thesis, several types of electric thrusters are modeled according to the
effective  characterization  proposed  by  Englander  et  al.  [7][8].   This
characterization relies on linking the thrust supplied by the thrusters to the input
power in terms of polynomials.  The resulting performance polynomials assume
the form: 

T=aT P4
+bT P3

+cT P2
+d T P+eT  (3.1)

where T is the thrust measured in mN, P is the available power measured in kW,
and the coefficients {aT, bT, cT, dT, eT} are drawn from public literature [7][8][9]
[10] and  are  curve  fits  to  laboratory  test  data.   Each  thruster  also  has  an
associated  minimum power  Pmin and  maximum power  Pmax.   If  the  available
power  P is less than  Pmin,  then  T is zero.   If  P is greater than  Pmax,  then the
performance polynomials are evaluated at Pmax.

The available power  P is the difference between the power generated by the
spacecraft Pgenerated and the power required to operate the spacecraft bus Ps/c, 

P=P generated−P s /c .  (3.2)

The power delivered by a solar array is given by 

Pgenerated=
P0

r 2 (γ 0+γ 1/r+γ 2/r
2

1+γ 3r+γ 4 r2 )  (3.3)

where γi are user-defined solar panel coefficients, r is the distance between the
Sun and the spacecraft in Astronomical Unit (AU) and P0 is the “base power”
delivered by the array at 1 AU. 

The power required by the spacecraft bus Ps/c is specific to each mission and is
set to 300W to the test cases presented in this work. 
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Now that all the elements of the models have been described, they are collected
and resumed in the following algorithm (Figure 3.1): 

• at each iteration, the variable vector, with states and controls for each
mesh point, enters as input; 

• the generated power is evaluated according to the positions contained in
the vector, next the available power is found; 

• thrust is then evaluated with (3.1) if the available power is inside the
range of powers permitted by the thruster, otherwise it is evaluated with
Pmax if P > Pmax or T = 0 if P < Pmin; 

• next  umax is calculated dividing the thrust by the mass of the spacecraft
(umax=T /ms / c) and then it is used to find u – umax, where u is taken from
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Figure 3.1. Schematic of the engine algorithm.
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the input vector;

• finally,  umax and  u -  umax are the output of the flow chart and afterward
they are used in several parts of the optimization algorithm. 

Focusing on the third and fourth passages of the algorithm, it can be seen the
dependence of T on the state and, as a result, the dependance of u itself from the
state, according to the relation T=ms /c⋅u .

3.2 Integration between Trajectory Optimization 
and SEP Models

Such type of engine models are integrated inside the optimization tool proposed
by Zhang and Topputo [5][6], as illustrated in Figure 3.2 as schematic.  As it is
possible to note, it is composed by different blocks that together contribute to
the optimization with IPOPT (Interior Point OPTimizer).  In the following, a
brief description of each piece of the algorithm is proposed. 

First of all, there is the statement of the global data of the problem, the initial
and final boundary conditions and the data of the thrusters.  Then the algorithm
starts  to evaluate and to store the different structures of the Jacobian matrix:
defect constraints,  boundary constraints and path constraints are differentiated
with respect to the state and control variables, as well as to the time step h. 
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Secondly, there is the evaluation of the initial guess of the transfer orbit, through
the numerical integration of the ordinary differential dynamics equations.  The
solver integrates the system of differential equations  from the initial time to the
final one with initial conditions, finding where a function, called event function,
is zero.  For this event function, it is specified that the integration is to terminate
at a zero and that all the zeros are to be computed.  In this work a zero is found
when the spacecraft intersects the final orbit. 

Next  there is  the  declaration  of  the  variables  and constraints  bounds,  whose
definition is described in Section 3.3.

Finally the optimizer IPOPT is run, by declaring the following functions:

• objective,  in  this  thesis  the  minimization  of  the  transfer  time  or  the
maximization of the final spacecraft mass;

• gradient of the objective function;

• constraints, where there is the construction of defect, boundary and path
constraints;

• Jacobian, necessary if constraints are present, where there various part of
the Jacobian matrix are assembled;

• Jacobian  structure,   necessary  if  constraints  are  present,  is  a  sparse
matrix  with  ones  wherever  the  constraint  Jacobian  potentially  has
nonzero entries.

Essentially, the thruster algorithm shown in Figure 3.1 is integrated three times
inside the optimization algorithm, as highlighted in Figure 3.2: the first time in
the Jacobian box, when the derivatives of the path are evaluated; the second
time in the evaluation of the initial guess, where the propulsive acceleration is
needed  by  the  ODE;  finally  in  the  constraints  box,  to  evaluate  the  path
constraints.

3.3 Planar Two-Body Dynamics

A simple planar low-thrust orbit  transfer problem is considered to assess the
performances of the proposed technique.  For this type of problem, Cartesian
coordinates are the simplest choice but the most disadvantageous too, because a
lot of discrete points will be used to catch the rapidly changing position and
velocity variables.  On the contrary, slowly changing state variables make NLP
solvers to improve both efficiency and robustness.  Polar coordinates are then
used for the planar two-body dynamics; i.e. 
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{
ṙ=v r

θ̇ =
v t

r

v̇r=
v t

2

r
−
μ

r2+u sinϕ

v̇ t=−
vr v t

r
+ucosϕ .

 (3.4)

In Eq. (3.4), r is the spacecraft radius, θ is phase angle,  vr and vt are the radial
and transversal velocities respectively,  μ is the gravitational constant,  u is the
propulsive acceleration and ϕ is the thrust angle (see Figure 3.4).

Thereby, the variables discretized over the mesh are the states {r,  θ,  vr,  vt} and
the controls {u, ϕ}.  In a classical space trajectory design problem, each variable
has  an  upper  and lower  bound which  are  constant  limits  along  all  the  time
domain.  In particular, the thrust acceleration has limits of this type: 

0≤u( t)≤umax ,  (3.5)

with umax maximum thrust acceleration.

With the introduction of the SEP models inside the dynamics equation, it is no
longer  possible  to  use  this  type  of  formulation,  because  umax becomes  state-
dependent.  It is then necessary to impose the satisfaction of a nonlinear path
constraint, which is now dependent on u and r: 
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Figure 3.3. 2-body orbit transfer in polar coordinates.
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u−umax(r )⏟
g (u , r )

≤0 .  
(3.6)

In terms of the algorithm, the Jacobian matrix undergoes a dimension change,
with the addiction of  N rows of algebraic path constraints,  one for each mesh
point, as shown in Figure 3.4. 
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Figure 3.4. Jacobian structure with path constraints.
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Results

4.1 Assumptions

All transfers in this chapter are designed taking into account the assumptions
proposed by Englander et al.  [7], using reasonable initial mass, propulsion and
power, as described in Table 4.1. 

Table 4.1. Problem assumptions.

Parameter Value 

Initial spacecraft mass 3618 kg

Beginning of life (BOL) solar array 
output at 1 AU

20 kW

Spacecraft bus power 300 W

Solar panel γi (Ultraflex)
[1.1705, 0.0289, -0.2197, -0.0202,

-0.0001]

Three  electric  thrusters  are  modeled,  including  NSTAR,  XIPS-25  and  BPT-
4000.  The first two are high-power ion thrusters and the last is a Hall thruster.
The performance polynomial  coefficients for all  three thrusters are  shown in
Table 4.2.  The power ranges over which the performance polynomials are valid
are shown in  Table 4.3.  The performance curves are the red lines shown in
Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4, where the blue lines represent
the minimum and maximum power admissible for each thruster. 

37



Chapter 4 

Table 4.2. Thruster polynomials.

Thruster a b c d e

NSTAR 5.145602 -36.720293 90.486509 -51.694393 26.337459

XIPS-25 0.0367 -0.4966 1.4111 35.3591 -0.3984

BPT-4000
(High-Isp)

-0.095437 1.637023 -9.517167 72.030104 -7.181341

BPT-4000
(High-
Thrust)

0.173870 -1.150940 -2.118891 77.342132 -8.597025

Table 4.3. Thruster power ranges.

Thruster min power (kW) max power (kW)

NSTAR 0.525 2.600

XIPS-25 0.436 5.030

BPT-4000 0.302 4.839
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Figure 4.1. Thrust vs. power for the NSTAR.
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Figure 4.2. Thrust vs. power for the XIPS-25.

Figure 4.3. Thrust vs. power for BPT-4000 High Isp.
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The planar two-body problem concerns a transfer orbit that insert the spacecraft
from an initial circular orbit at 1 AU to a final circular orbit at 4 AU. 

Initial  and  final  boundary  conditions  are  modelled  on  those  of  Zhang  and
Topputo [5][6].  The initial ones for the spacecraft in its initial circular orbit at ti

are 

{
r (ti)=1
θ (t i)=0
vr (t i)=0
v t (ti)=1

 (4.1)

and the final ones that places the spacecraft into a target circular orbit at tf are 

{
r (t f )=4
vr (t f )=0
v t (t f )=0.5.

 (4.2)

The  standard  gravitational  parameter is  μ  = 1,  after  a  normalization  of  the
distance and of the time such that the orbital period of the Earth is equal to 2π. 

As introduced before in the text, the high efficient NLP solver IPOPT is used for
large-scale nonlinear optimization (refer to the IPOPT documentation  [11] for
more details). 
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Figure 4.4. Thrust vs. power for the BPT-4000 High Thrust.
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4.2 Time-Optimal Problem

The goal of the time-optimal problem is to find the functions u(t) and ϕ(t) that
minimize the performance index 

J=t f  (4.3)

under the dynamic constraint (3.4)-(3.6) and the boundary conditions (4.1)-(4.2)
given above. 

4.2.1 Constant Maximum Thrust Acceleration

In order  to  validate  the modified  code,  the example  proposed in  Zhang and
Topputo  [5][6] is  addressed  first,  with  non-dimensional  constant  thrust
acceleration  umax = 0.01.  This problem is solved with N = 200 uniformly spaced
points, i.e. 1201 NLP variables.  Figure 4.5 shows the transfer trajectory, where
the  cyan  line  is  the  initial  guess  and the  starred  blue  line  denotes  the  final
transfer orbit.  Figure 4.6 shows the time history of the state variables.  Figure
4.7 shows the profile of the optimal control variables u, ϕ, where it is possible to
note that the thruster is providing its maximum thrust across the entire duration
of the mission to shorten the transfer time.  

41

Figure 4.5. Optimal transfer orbit for time-optimal
problem with constant umax.
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The results are identical to those of the reference, including the non-dimensional
final transfer time tf, which is 55.5 (8.83 years).  The only interesting difference
is  that  the  modified  code,  used  in  this  thesis,  slightly  improves  the
computational efficiency, as shown in Table 4.4.
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Figure 4.7. Time history of control variables for
time-optimal problem with constant umax.

Figure 4.6. Time history of state variables for time-
optimal problem with constant umax.
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Table 4.4. Computational efficiency for time-optimal problem.

Method No. of iterations
CPU secs in

IPOPT

CPU secs in NLP
function

evaluations

Without path 
constraints

67 1.445 4.340

With path 
constraints

64 1.347 4.043

4.2.2 NSTAR Thruster

This section deals with the results of NSTAR thruster.  This problem is solved
with N = 200 uniformly spaced points.  The non-dimensional final transfer time
is 128.3 (20.4 years).  Figure 4.8 shows the optimal orbit, Figure 4.9 shows the
profile of the optimal state variables, and Figure 4.10 shows the time history of
the control variables.  Comparing these last two figures, it is interesting to note
how the acceleration begins to decrease at a certain instant of time, following
then a classical  1/r2 behavior.   In particular,  this happens when the radius is
sufficiently high to reduce the available power below  Pmax, in this case about
3 AU.  
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Figure 4.8. NSTAR optimal transfer for time-
optimal problem.



Chapter 4 

4.2.3 XIPS-25 Thruster

The following section presents the results of XIPS-25 thruster.  This problem is
solved with N = 200 mesh points and the non-dimensional final transfer time is
88.4 (14.1 years).  Figure 4.11 shows the transfer trajectory, Figure 4.12 shows
the time history of state variables, and  Figure 4.13 shows the optimal control
variables.  Also in this case the control acceleration decreases as the distance
from the Sun increases.  The behavior is however different from the previous
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Figure 4.9. NSTAR time history of state variables
for time-optimal problem.

Figure 4.10. NSTAR time history of control
variables for time-optimal problem.
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one, due to the different optimal trajectory found by the solver.  
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Figure 4.11. XIPS-25 optimal transfer for time-
optimal problem.

Figure 4.12. XIPS-25 time history of state variables
for time-optimal problem.
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4.2.4 BPT-4000 Thruster

This section deals with the performances of BPT-4000 thruster, both in the High
Isp mode  and  in  High  Thrust  mode.   This  problem is  solved  with  N =  300
uniformly spaced points.  The non-dimensional final transfer time is 60.4 (9.6
years)  for  the  first  type,  whereas  it  is  53.8  (8.6  years)  for  the  second  one.
Figures 4.14-4.19 show the results in terms of orbit and time history of state and
control variables.  It can be seen that the comparison between the two graphs of
the trajectory shows exactly the different transfer time between the two modes:
the High Isp one, indeed, takes about a half turn more to reach the final orbit than
the High Thrust one.
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Figure 4.13. XIPS-25 time history of control
variables for time-optimal problem.
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Figure 4.14. BPT-4000 High Isp

optimal transfer orbit for time-optimal
problem.

Figure 4.15. BPT-4000 High Thrust
optimal transfer orbit for time-optimal

problem.

Figure 4.16. BPT-4000 High Isp time
history of state variables for time-

optimal problem.

Figure 4.17. BPT-4000 High Thrust
time history of state variables for time-

optimal problem.

Figure 4.18. BPT-4000 High Isp time
history of control variables for time-

optimal problem.

Figure 4.19. BPT-4000 High Thrust
time history of control variables for

time-optimal problem.
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4.3 Fuel-Optimal Problem

In the fuel-optimal problem, the functions u(t) and ϕ(t) are sought to minimize
the performance index 

J=∫
ti

t f

u dt .  (4.4)

4.3.1 Constant Maximum Thrust Acceleration

As in the time-optimal section, the first example is the same one of Zhang and
Topputo  [5][6], with non-dimensional constant thrust acceleration  umax = 0.01.
This problem is solved with N = 800 mesh points, i.e. 4801 NLP variables, and a
tangential thrust with magnitude of 0.5 umax is used to produce the initial guess.
Figure 4.20 shows the transfer trajectory, where the cyan line is the initial guess
and the blue line denotes the final transfer orbit.  Figure 4.21 shows the time
history  of  state  variables  and  Figure  4.22 shows  the  profile  of  the  optimal
control variables, u and ϕ.  Making a comparison through the figures, it can be
seen that the thruster is on duty only across the periapsis, whereas across the
apoapsis it is performed only a maneuver to inject the spacecraft into a nearly
circular orbit to acquire the final orbit.  In particular, the acceleration vs time
plot in Figure 4.22 shows a bang-bang structure, so indicating the optimality of
the solution found.
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Figure 4.20. Optimal transfer orbit for fuel-optimal
problem with constant umax.

Figure 4.21. Time history of state variables of fuel-
optimal problem with constant umax.
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The results are identical to those of the reference, including the non-dimensional
final transfer time tf, which is 122.6 (19.5 years) for both cases.  Unlike the time-
optimal case, the modified code does not improve the computational efficiency,
as shown in Table 4.5.

Table 4.5. Computational efficiency for fuel-optimal problem.

Method No. of iterations
CPU secs in

IPOPT

CPU secs in NLP
function

evaluations

Without path 
constraints

304 21.264 142.360

With path 
constraints

368 34.408 321.345

4.3.2 NSTAR Thruster

This section deals with the results of NSTAR thruster.  This problem is solved
with N = 500 uniformly spaced points.  The non-dimensional final transfer time
is 283.4 (45.1 years).  Figure 4.8 shows the optimal orbit, Figure 4.9 shows the
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Figure 4.22. Time history of control variables of
fuel-optimal problem with constant umax.
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profile of the optimal state variables and Figure 4.10 shows the time history of
the control variables.  It can been seen that the bang-bang structure is bounded
by the maximum acceleration allowed by the thruster, in particular when the
spacecraft reaches the periapsis and the thruster is on duty. 
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Figure 4.23. NSTAR optimal transfer orbit for fuel-
optimal problem.

Figure 4.24. NSTAR time history of state variables
for fuel-optimal problem.
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4.3.3 XIPS-25 Thruster

The following section presents the results of XIPS-25 thruster.  This problem is
solved with N = 700 mesh points and the non-dimensional final transfer time is
178.6 (28.4 years).  Figure 4.26 shows the transfer trajectory,  Figure 4.27 the
time  history  of  state  variables,  and  Figure  4.28 shows  the  optimal  control
variables.  It is interesting to note the different behavior from the previous ion
thruster, with less maneuver to reach the final orbit.  
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Figure 4.25. NSTAR time history of control
variables for fuel-optimal problem.

Figure 4.26. XIPS-25 optimal transfer orbit for
fuel-optimal problem.
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4.3.4 BPT-4000 Thruster

This section deals with the performances of BPT-4000 thruster, both in the High
Isp mode and in High Thrust mode.  These problems too are solved with N = 700
uniformly spaced points.  The non-dimensional final transfer time is 120.1 (19.1
years) for the High Isp mode, whereas it is 101.1 (16.1 years) for High Thrust
mode.  Figures 4.29-4.34 show the results in terms of orbit and time history of
state and control variables.   It  can been seen the different optimal  trajectory
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Figure 4.27. XIPS-25 time history of state variables
for fuel-optimal problem.

Figure 4.28: XIPS-25 time history of control
variables for fuel-optimal problem.
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performed by the thruster according to the used mode, and consequently the
different bang-bang structure of the acceleration.
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Figure 4.29. BPT-4000 High Isp

optimal transfer orbit for fuel-optimal
problem.

Figure 4.30. BPT-4000 High Thrust
optimal transfer orbit for fuel-optimal

problem.

Figure 4.31. BPT-4000 High Isp time
history of state variables for fuel-

optimal problem.

Figure 4.32. BPT-4000 High Thrust
time history of state variables for fuel-

optimal problem.
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Figure 4.33. BPT-4000 High Isp time
history of control variables for fuel-

optimal problem.

Figure 4.34. BPT-4000 High Thrust
time history of control variables for

fuel-optimal problem.
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Conclusions

This  thesis  consider  the optimization of  space  trajectory with the innovative
addition of solar electric propulsion models inside the algorithm of optimization.
First of all, the optimal control problem and the direct method approach used to
face  it  are  discussed.   Then,  the  models  of  SEP  are  introduced,  with  an
explanation  of  the  consequences  in  terms  of  the  algorithm  and  of  the
mathematics  of  the  method.   Finally,  both  time-optimal  and  fuel-optimal
problems are solved through the IPOPT NLP solver, with different thrusters as
examples.  The results confirm the initial expectations of the work, indeed the
physical characteristics and limits of each thruster influence the final trajectory
of the supposed mission, both in terms of orbit and time history of variables.
The  algorithm  turns  out  to  be  relatively  inexpensive,  in  terms  of  both
computation time and human effort.   The global  search is  not  robust,  as the
optimizer may show convergence problems and is not always able to identify a
global  optimum  solution.   These  problems  can  be  partially  alleviated  by
changing the number of mesh points, and consequently running the optimizer
for a longer time.  

The next steps to this project could be:

• consider the decreasing of the spacecraft mass inside the algorithm, due
to the fuel consumption;

• modify the algorithm in such a way that it  automatically provides the
user with the best-performing thruster according to the required type of
mission;

• consider more models of thrusters to enlarge the range of possibilities;

• modify the  algorithm to provide the  user  with the wet  weight  of  the
spacecraft  according to the required type of mission and required dry
weight:  it  means  considering  models  of  all  the  subsystems  of  the
spacecraft inside the optimization algorithm;

• finally,  consider  multiple-flyby inside  the  computation  of  the  optimal
trajectory.
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Acronyms

EMTG Evolutionary Mission Trajectory Generator
IPOPT Interior Point Optimizer
NLP Nonlinear Programming Problem
SEP Solar Electric Propulsion
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