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Riassunto in Italiano Questa tesi si propone come obiettivo lo studio
di varie strategie di ottimizzazione nella messa in opera di ponti arco in
calcestruzzo armato.

Durante la posa in opera dei segmenti dell’emiarco collocando gli stralli
in opportuni punti e tensionando le pre-tensioni da affibbiare agli stessi con
valori ”smart” è possibile generare una configurazione di chiusura in chi-
ave d’arco vantaggiosa. Il sostanziale vantaggio sta nel non dover modificare
durante l’intera messa in opera delle sezioni del ponte le pre-tensioni degli
stralli, tale miglioramento comporta conseguenti benefici sia pratici che eco-
nomici.

E’ dunque importante, non solo assicurare che per ogni stage di lavo-
razione l’arco sia stabile, ma anche che gli sforzi durante l’intero processo
siano all’interno di un range di valori, in particolare il Momento Flettente
agente lungo l’intero processo dovrà essere inferiore al Momento Resistente
ammissibile.

Valutando il processo di ”back destruction” è stato possibile ricavare
quelli che sono i momenti massimi negativi e positivi ai quali l’emiarco è
sottoposto lungo l’intera messa in opera.

L’obbiettivo di questo elaborato è di proporre una serie di strategie gen-
erali che permetta di minimizzare l’utilizzo di materiali, quindi costi.

Parole Chiave: strategie di ottimizzazione, ponti arco in calcestruzzo,
pre-tensioni, stralli, back destruction.
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Abstract This thesis proposes as its objective the study of various opti-
mization strategies in the implementation of reinforced concrete arch bridges.

During the installation of the segments of the rib placing the tiebacks at
appropriate points and tensioning the pre-tensions to tie to the same smart
values it is possible to generate a advantageous closed configuration in mid-
dspan. The substantial advantage is not having to change during the entire
implementation of the sections of the bridge the pre-tension of the stays, this
improvement involves consequent benefits, both practical and economic.

It is therefore important, not only to ensure that each stage of process-
ing the arch is stable, but also that the efforts during the entire process are
within a range of values, in particular the bending moment acting along the
entire process must be less than the allowable moment.

Evaluating the process of ”back-destruction” could be deduced maximum
positive and negative moments at which the emiarch is submitted through
the entire installation.

The goal of this paper is to propose a set of general strategies that allow
to minimize the use of materials, and so costs.

Keywords: Optimization strategies, concrete arch bridges, pre-tensions,
tiebacks, back destruction.
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1 Introduction

The primary advantage of an arch bridge is that compression is the dominant
stress induced in the arch under uniform loading. Materials such as stone
and concrete, with low cost and high compressive strength, are well suited
to the arch form. These heavy material arch bridges have historically been
used in small and medium spans and were constructed using a full shoring
system. Advances in the use of high strength concrete, steel, and concrete-
steel composites in recent years have significantly reduced the weight of the
structure and have extended the limits of arch bridges to longer spans.
From the 1998 no arch concrete bridge longer than 420 m (Wanxian, China
1998) has been designed; they didn’t cross limits like cable-stayed bridge or
suspension bridge.
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1.1 General Introduction

The height of the pylons, in a cable-stayed bridge, influences the amount
of cable-stay steel material and the longitudinal compressive forces in the
bridge deck. Leonhardt [5] has developed a relationship for suspension and
cable-stayed bridges in which the amount of cable steel required for a given
cable force is considered to be a function of the ratio of the tower height
to the center span. The effect of the weight of the cable and any load
concentrations are neglected. The equation for the resulting weight of the
cable required to support a given tensile force is

W =
qλL2

σ
(1)

Where:
W = weight of steel in cables in lbs
q = total load (dead load plus live load)
λ = specific weightof cable steel
σ = allowable cable stress in psi
L = lenght of main span in ft
C = dimensionless coefficient depending on bridge type

1.2 Cost of Cantilever Launching Method in Arch Bridges

In the same way has been done for cable-stayed bridge is possible to evaluate
the weight of steel in cables for an arch bridge construction; in particular is
possible to calculate the weight of steel in cables using the cable-stayed free
cantilever launching method.
In fact, one of the three most important components in the cost of anrch
bridge constructed by the cable-stayed free cantilever launching method is
the weight of the cables. If we call C1 the cost of the cables, C2 the cost
of the foundations to anchor the cables and C3 the cost of the provisional
tower the total cost Ctot of the construction is based on the sum of these
three components

Ctot = C1 + C2 + C3 (2)
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2 Literature Review and Background Information

2.1 Historical Evolution of Concrete Arch Bridges

Thanks to the greater compression strenght of concrete, it is reasonable to
use it in arch bridge because arch works essentially in compression.
The first concrete arch bridge spanning more than 100m, the Risorgimento
Bridge in Rome, was built 100 years ago.
Along with the rapid development of construction technology and improve-
ment of structural materials, the span record of concrete arch bridges has
been refreshing continually. In 1979, the completion of Krk I Bridge in Croa-
tia with the main span of 390m made a miracle at that time in concrete arch
bridge. This bridge was constructed by temporary truss method. However,
the lengthening cantilever of arch ring undoubtedly increases the difficulty
of construction. Currently the Krk arch bridge still ranks as the world’s
longest arch bridge erected by cantilever-contruction method.
Now Wanxian Yangtze River Bridge with span of 420m in China is the
longest concrete arch bridge in the world. It was built by embedded form-
work comprising a latticework structure of concrete-filled steel tubes (CFST).
The scaffolding was erected by cantilever cable-stayed method (Yan and
Yang 1997). The concrete was cast in situ ring by ring transversally and
sectin by section longitudinally to avoid overloading of the formwork and
hence also very labor consuming. Therefore, these construction methods
are only suitable for the countries with very cheap labor costs. Theoreti-
cal studies show that limit spans for concrete arches will not exceed those
already built (Wanxian-Yangtze, Krk I).

2.2 Methods of Construction for Concrete Arch Bridges Struc-
tures

For long-span arch bridge construction, it is often difficult and costly to
erect a temporary shoring system, especially for bridges across deep water
channels. Construction methods developed to reduce and even eliminate the
requirement for shoring include the cantilever launching method as well as
the horizontal and vertical swing methods. The cantilever launching method
uses main and auxiliary cables to maintain stability and balance during
construc- tion. The horizontal swing method begins with prefabricating
a complete half-leaf of an arch rib parallel to the river on both banks with
their ends supported on spherical hinges at the abutments. With the help of
balance weights and hydraulic jacking equipment, the two prefabricated ribs
can be rotated horizontally to the closure position. Using the vertical swing
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method, two half-leaves of arch ribs are fabricated at ground level to save
shoring cost, and then rotated to the closure position. The combined use of
horizontal and vertical swing techniques is also feasible for lightweight arch
bridges. Construction methods to maintain balance and stability become
more difficult as the span increases and as the arch weight increases.
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3 Design Of Concrete Arch Bridges

3.1 Layout and Cross-Section

A parametric study was made analyzing 12 different concrete arch bridges.
It is been necessary to analyze plan’s bridges one by one to calculate the
values of the area all over the archs, so the selfweight and the value of
tensions in correspondence of the abutments.
It will be necessary to estimate the weight of the deck, piles, transversal
beam if is present and so on with all the components of the bridge.
Here is a list of equation will be used to calculate all these components taken
in count in the line before.

Pf = sBγ (3)

Ppv = BγI (4)

Ptb =
BIsIBγ

i
(5)

Pl = mB (6)

Pa = Aγ (7)

Where:
s is the thickness of the flange,
B is the width of bridge’s deck,
γ is the specific weight of the concrete,
γI is the specific weight of the pavement,
BI is the width of the transversal beam,
sI is the thickness of the transversal beam,
i is the center to center distance,
m is the distributed weight per m2, present in EN 1991-2,
A is the area of the arch section.

Liveload Details Concern to the 5kN
m2 used to calculate the liveload on

the bridges, it is necessary to specify that was used the Crowd Loading
Method to evaluate it, present in [1] in section LOAD MODEL 4.

3.1.1 Wanxian Bridge

The Wanxian Yangtze River Bridge [6] (Yan and Yang 1997) is a record-
breaking design for a reinforced concrete arch bridge with a main arch span
of 420 m and an 84 m rise. It was completed in July 1997 figure 1. The
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total length of the bridge is 856 meters. The north approach consists of eight
simple spans of 30,7 m and the south approach consists of five simple spans
of 30,7 m. The bridge carries four-lane traffic and two pedestrian sidewalks.
The arch is a catenary with a rise-to-span ratio of 1

5 .
The deck is 24 m wide, accomodating dual 7,5 m wide lanes for vehicle traffic
and dual 3,0 m lanes for pedestrians. A 16,0m wide and 7,0m deep three-cell
reinforced concrete box section was selected for the arch rib [figure 2].

Figure 1: Wanxian Span

Figure 2: Wanxian Section

If the conventional cantilever launching method were used, crane lifting
capacity as well as number of precasted units would be very high. In ad-
dition, a very large temporary balance tower system would be required to
maintain the balance and stability of the massive cantilever arch rib. For
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these reasons, construction cost of the arch would be much higher than that
for other design alternatives. To reduce the cost and complexity of construc-
tion, a new self-shoring construction method was developed. The method
uses a truss frame fabricated with steel tubes by the conventional canti- lever
launching technique. This steel tube frame performs the dual role of arch
falsework and arch main reinforcement. After the steel tube truss frame is
completed, concrete fill is pumped into the steel tubes to increase the ca-
pacity of the truss frame system. The stiffened truss frame is then encased
by subsequent concrete placements to become the main reinforcement of the
completed arch section.

Wanxian Parametric Study In first istance was calculated stress based
on self-weight and overloads.

Ppb = 10 ∗ 21, 7
kN

m
= 217

kN

m

Pf = 0, 25m ∗ 24m ∗ 25
kN

m3
= 150

kN

m

Ppv = 24m ∗ 2
kN

m2
= 48

kN

m

Ptb =
1, 70m ∗ 1, 30m ∗ 24m ∗ 25kN

m3

30, 7m
= 43, 20

kN

m

Pl = 5
kN

m2
∗ 24m = 120

kN

m

Pp = 46, 9
kN

m

Pa = 25
kN

m3
∗ 35, 66m2 + 25

kN

m3
∗ 19, 74m2 = 692

kN

m

Where:
Ppb is the precasted beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Ppb + Pf + Ppv + Ptb + Pl + Pp + Pa
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The total stress is Ptot,l = 1317, 6kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptot,ll

2

8fcos(α)
= 468048kN

Remembering the value of the Area A = 35, 6m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 13125

kN

m2

And the total stress without the liveload is Ptot = 1197kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 425423kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 11930

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.2 Krk Bridge

The idea of building a bridge which would link the Mainland with the biggest
Croatian island Krk has been pursued for a very long time, though many
years have passed from idea to realization. Finally in 1975, construction
funds were raised and it was to be decided about the future bridge structure.
In a very tough competition with different domestic and foreign proposals
(suspended bridges, continuous beam structures, beam structures with in-
clined cables, steel arches), the solution with reinforced concrete arches was
chosen as the best one in technical, economical and aesthetical respects.
The Krk I bridge arch between the Mainland and St. Marc Island with its
390 m span and its 60 m rise figure 3 with the rise to span ratio of 1

6,5 was
at that time the world record holder for classically built concrete arches.
The cross-section is a three-cell box type with constant outer dimensions
along the entire length of the bridge figure 4.
The arch width was defined as 1/30 of the arch span and the depth as
approximately 1/60 of the arch span.
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Figure 3: Krk Span

Figure 4: Krk Section

Krk Parametric Study The horizontal beams of 33,5 m span, extending
to the shores, are of box type cross section of varying dimensions from
4,82*13,0 m at the arch connection to 3,0*20,0 m at the other hinged end
of the beam, highlights in [9].

Ppb = 3 ∗ 12, 0
kN

m
= 36

kN

m

Pf = 0, 18m ∗ 11, 4m ∗ 25
kN

m3
= 51, 3

kN

m

Ppv = 11, 4m ∗ 2
kN

m2
= 22, 8

kN

m
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Figure 5: Krk Deck

Ptb =
1, 70m ∗ 1, 30m ∗ 11, 4m ∗ 25kN

m3

33, 5m
= 18, 8

kN

m

Pl = 5
kN

m2
∗ 11, 4m = 57

kN

m

Pp = 16, 5
kN

m

Pa = 25
kN

m3
∗ 43, 7m2 = 330

kN

m

Where:
Ppb is the precasted beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Ppb + Pf + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 532, 4kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptot,ll

2

8fcos(α)
= 180090kN
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Remembering the value of the Area A = 13, 2m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 15279

kN

m2

And the total stress without the liveload is Ptot = 475, 4kN/m and the
axial force in the foundation is:

N =
Ptot ∗ l2

8 ∗ fcos(α)
= 217547kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 13643

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.3 Hoover Dam Bridge

This 1060 foot (323 m) long arch span is the 4th longest concrete arch in
the world, and the longest in the United States figure ??. With a rise of 277
feet (84,43m) it has a rise-to-span ratio of 1

4 .
A 14,0m wide and 4,3m deep two-cell reinforced concrete box section was
selected for the arch rib figure 6.
The scale of concrete construction for the bridge is impressive. Four form
travelers advanced to the crown of the cast-in-place arch supported by 88
carefully tuned stay cables, while precast segmental construction was used
for the tallest precast columns erected to date.

Hoover Parametric Study Here there are the self-weight and overloads
stress.

Psb = 4 ∗ 0, 1723m2 ∗ 78, 5
kN

m3
= 54, 1

kN

m

Pf = 0, 25m ∗ 26, 8m ∗ 25
kN

m3
= 167, 5

kN

m

Ppv = 26, 8m ∗ 2
kN

m2
= 53, 6

kN

m
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Figure 6: Hoover Section

Ptb =
2, 10m ∗ 3, 00m ∗ 26, 8m ∗ 25kN

m3

36, 5m
= 115, 6

kN

m

Pl = 5
kN

m2
∗ 26, 8m = 134

kN

m

Pp = 71, 2
kN

m

Pa = 25
kN

m3
∗ 15, 5m2 = 387, 5

kN

m

Where:
Psb is the steel beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 983kN/m and it will be used to calculate the
axial force in the foundation.
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Nl =
Ptotl

2

8fcos(α)
= 252774kN

Remembering the value of the Area A = 15, 5m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 16308

kN

m2

And the total stress without the liveload is Ptot = 849kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 218335kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 14086

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.4 Infante Henrique

The new bridge, Infante Henrique [8] on Duero river in Oporto, needed to
connect the old central part of Oporto city with Gaia city. The Infante
Henrique bridge with its 280 m of span, was the winner in the International
Challange of Projects and Constructions convened from Metro de Oporto.

Figure 7: Infante Henrique Span
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Infante Henrique Parametric Study In this bridge, designers were
finding the minimum visual alteration, this is the reason why this bridge
has an important span and a huge abasement, with a relation rise/span of
1/11,20. The deck is 20 m large.

Pb = 190, 0
kN

m

Ppv = 20, 0m ∗ 2
kN

m2
= 40

kN

m

Pl = 5
kN

m2
∗ 20m = 100

kN

m

Pp = 95, 2
kN

m

Pa = 25
kN

m3
∗ 22, 5m2 = 562, 5

kN

m

Where:
Pb is the beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 987, 7kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 409473, 8kN

Remembering the value of the Area A = 30, 0m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 13649, 1

kN

m2

And the total stress without the liveload is Ptot = 887, 7kN/m and the
axial force in the foundation is:
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N =
Ptotl

2

8fcos(α)
= 368017, 4kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 12267, 2

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.5 Bloukrans Bridge

As built, the chord was 272 metres and the rise was 62 m, the rise chord
thus being 0,228.
The 19-metre spacing between the columns was set right from the first, the
19-m lenghts also meant an improved distribution of the liveloads over the
arch, together with cutting down the bending moment peaks.

Figure 8: Bloukrans Span

Bloukrans Parametric Study The reinforced-concrete arch has a 12 m
wide three-cell box cross section whose depth varies from 3,6 m at the crown
lo 5,6 m at the sprI`ngers, where it has a slope of 46,2◦. The box comprises:
two slabs, upper and lower, of the same depth, running from 36 cm at the
crown lo 43,5 cm near the abutments, al the abutments reaching 75 cm;
two side webs 36 cm thick; and two inside webs 30 cm thick. The arch’s
parabolic curve is very close lo the dead load funicular, with a rise/chord of
0,228, since its chord is 272 m long and its rise is 62 m.

Pb = 200, 7
kN

m

26



Figure 9: Bloukrans Section

Ppv = 14, 2m ∗ 2
kN

m2
= 32

kN

m

Pl = 5
kN

m2
∗ 16m = 80

kN

m

Pp = 28, 9
kN

m

Pa = 25
kN

m3
∗ 20, 4m2 = 510

kN

m

Where:
Pb is the beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 852kN/m and it will be used to calculate the
axial force in the foundation.
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Nl =
Ptotl

2

8fcos(α)
= 175344kN

Remembering the value of the Area A = 23, 41m2 of the arch section,
the stress σl is evalueted in:

σl =
Nl

A
= 7490

kN

m2

And the total stress without the liveload is Ptot = 772kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 158886kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 6787

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.6 Contreras Bridge

The reinforced concrete arch bridge of a 261 m span [7], with an upper pre-
stressed concrete deck and a total length of 587.25 m, spans the Contreras
Reservoir on the Madrid-Levante high-speed railway line. The mid-span sag
is 36.944 m thus determining a span-to-rise ratio of over 6.77 to 1, which is a
low rising arch although not excessively so. On the construction completion
date, the span between the arch supports was holder of the world record for
a concrete railway arch bridge 10.

The cross section is a box girder with a variable depth ranging from
2.8 m at mid-span to 3.4 m at the ends figure 11. The box girder width
is also variable ranging from 6.0 m in the centre of the arch to 12.0 at
the foundations embedding, which is the width required to resist the great
bending moments of the vertical axis produced by the plan curvature of the
arch and the crosswind. The box girder walls range from 0.6 to 1.35 m
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Figure 10: Contreras Span

Figure 11: Contreras Section

Contreras Parametric Study

Pb = 262, 1
kN

m

Pf = 0, 25m ∗ 14, 2m ∗ 25
kN

m3
= 88, 75

kN

m

Ppv = 14, 2m ∗ 2
kN

m2
= 28, 4

kN

m

Pl = 78, 48
kN

m
∗ 1, 21 ∗ 2 = 189

kN

m

Pp = 16
kN

m

Pa = 25
kN

m3
∗ 25, 7m2 = 749

kN

m
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Where:
Pb is the beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 1058kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 271588kN

Remembering the value of the Area A = 43m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 7559

kN

m2

And the total stress without the liveload is Ptot = 868kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 222842kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 6202

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.7 Los Tilos Bridge

The following is a description of the main characteristics of the Los Tilos
arch (figure 2). The complete structure includes the arch itself and two
access viaducts on either side. The complete bridge length is 319 m. The
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access viaducts are 32 m long at both sides of the main span, with two spans
each of 15 and 17 m. Over the arch, the deck is connected with the arch in
another 15 spans of 17 m in length. The arch has a span of 255 m and its
rise is of 46.20 m; therefore the span rise ratio is 5.52.

Figure 12: Los Tilos Span

Los Tilos Parametric Study

Pf = 0, 28m ∗ 12, 00m ∗ 25
kN

m3
= 84, 00

kN

m

Psb = 61, 6
kN

m

Ppv = 12, 0m ∗ 2
kN

m2
= 24, 0

kN

m

Pl = 5
kN

m2
∗ 12, 0m = 60

kN

m

Pp = 39
kN

m

Pa = 25
kN

m3
∗ 17, 5m2 = 438

kN

m

Where:
Psb is the steel beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Pl + Pp + Pa
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The total stress is Ptot,l707 = kN/m and it will be used to calculate the
axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 157853kN

Remembering the value of the Area A = 17, 52m2 of the arch section,
the stress σl is evalueted in:

σl =
Nl

A
= 9009

kN

m2

And the total stress without the liveload is Ptot = 647kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 144457kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 8245

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.8 Almonte Bridge

The arches for both carriageways are identical, with 184 metres span and
42 metres deflection, and, therefore, the sag/span ratio is 1/4.

Figure 13: Almonte Span
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Almonte Parametric Study The section is a single cell box with a thick-
ness varying linearly between 3.00 metres at springings and 1.80 metres at
the crown, with slenderness ratios of 1/61.33 and 1/102.22.
The width is kept constant at 6.00 metres, with 0.35 metre web and top and
bottom slab thicknesses, and tapered beams in the slabs 0.50 metres long
and 0.30 metres thick inside and, 0.30x0.30 outside, with which the overall
width of the slabs is 6.60 metres

Figure 14: Almonte Section

Pb = 190
kN

m

Ppv = 14, 2m ∗ 2
kN

m2
= 27

kN

m

Pl = 78, 48
kN

m
∗ 1, 21 ∗ 2 = 67

kN

m
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Pp = 53
kN

m

Pa = 25
kN

m3
∗ 25, 7m2 = 157, 5

kN

m

Where:
Pb is the beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 495kN/m and it will be used to calculate the
axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 71901kN

Remembering the value of the Area A = 6, 7m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 10731

kN

m2

And the total stress without the liveload is Ptot = 428kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 62101kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 9268

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

34



3.1.9 Traneberg Bridge

The arch bridge over Tranebergssund [4] in Stockholm built during 1932 to
1934 combining railway and road bridge is at present the widest arch bridge
in the world having a span of 181 m figure 15. It has a relation rise/span of
1/7.

Figure 15: Traneberg Span

Traneberg Parametric Study

Pb = 190, 0
kN

m

Ppv = 27, 5m ∗ 2
kN

m2
= 55, 0

kN

m

Pl = 11, 7m ∗ 5
kN

m2
= 250, 0

kN

m

Pp = 54, 1
kN

m

Pa = 25
kN

m3
∗ 16, 0m2 = 400

kN

m

Where:
Pb is the beam weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Ppv + Ptb + Pl + Pp + Pa
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The total stress is Ptot,l = 949, 7kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 171376, 4kN

Remembering the value of the Area A = 16, 0m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 7772, 2

kN

m2

And the total stress without the liveload is Ptot = 700kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 126277, 0kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 5726, 8

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.10 Ulla Bridge

The Ulla Viaduct [3] is the crossing of the N-NW Spanish High Speed Rail-
way over the “Ulla-Deza Fluvial System”, Place of Community Interest
(LIC), with height above that level of 115m. Strong winds are usual in
this valley. The viaduct is 630 m long. A lightly pointed arch, 168 m of
span and 105 m of rise, crosses over the river.
The access viaducts are made of spans that are 52m lengtheach. The deck
is a prestressed concrete box, 3,89 m height constant. It is made using a
self-cast formwork. The architself is a boxsection, dimensions 7,7x3,50 m;the
archaxis is a polygonal line.

Ulla Parametric Study Is now evalueted the tension that is working on
the basement of the bridge.

Pf = 0, 28m ∗ 12, 00m ∗ 25
kN

m3
= 84, 00

kN

m
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Figure 16: Ulla Span

Figure 17: Ulla Section

Psb = 61, 6
kN

m

Ppv = 12, 0m ∗ 2
kN

m2
= 24, 0

kN

m

Pl = 5
kN

m2
∗ 12, 0m = 60

kN

m

Pp = 149
kN

m

Pa = 25
kN

m3
∗ 17, 5m2 = 438

kN

m

Where:
Psb is the steel beam weight,
Pf is the flange weight,
Ppv is the pavement weight,
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Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Pf + Ppv + Pl + Pp + Pa

The total stress is Ptot,l889 = kN/m and it will be used to calculate the
axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 46013kN

Remembering the value of the Area A = 17, 52m2 of the arch section,
the stress σl is evalueted in:

σl =
Nl

A
= 3098

kN

m2

And the total stress without the liveload is Ptot = 793, 8kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 41096, 7kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 2686

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.

3.1.11 Burguillo Bridge

The Burguillo Bridge has a 161m span and a 25m rise with the rise to span
ratio of 1

6,4 .

Burguillo Parametric Study

Pb = 171
kN

m

Ppv = 12, 0m ∗ 2
kN

m2
= 24, 0

kN

m
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Pl = 12, 0m ∗ 5
kN

m2
= 60

kN

m

Pp = 20, 9
kN

m

Pa = 258
kN

m

Where:
Pb is the beam weight,
Ppv is the pavement weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 534, 4kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 85043kN

Remembering the value of the Area A = 12, 4m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 6858, 3

kN

m2

And the total stress without the liveload is Ptot = 474, 4kN/m and the
axial force in the foundation is:

N =
Ptotl

2

8fcos(α)
= 75495kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 6088

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.
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3.1.12 Cieza Bridge

The arch has a 141m span between both roots and is 32m in height.
It fallows a 2◦ parabola and the edge varies between 2,6m at the root and
1,8m at the crown section.

Cieza Parametric Study

Pb = 144, 2
kN

m

Ppv = 11, 7m ∗ 2
kN

m2
= 23, 4

kN

m

Pl = 11, 7m ∗ 5
kN

m2
= 58, 5

kN

m

Pp = 41, 8
kN

m

Pa = 25
kN

m3
∗ 5, 2m2 = 130

kN

m

Where:
Pb is the beam weight,
Ppv is the pavement weight,
Ptb is the transversal beam weight,
Pl is the liveload,
Pp is the pile weight,
Pa is the arch self-weight.

Ptot,l = Psb + Ppv + Ptb + Pl + Pp + Pa

The total stress is Ptot,l = 397, 9kN/m and it will be used to calculate
the axial force in the foundation.

Nl =
Ptotl

2

8fcos(α)
= 43405kN

Remembering the value of the Area A = 5, 2m2 of the arch section, the
stress σl is evalueted in:

σl =
Nl

A
= 8347

kN

m2

And the total stress without the liveload is Ptot = 339kN/m and the
axial force in the foundation is:
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N =
Ptotl

2

8fcos(α)
= 37024kN

Finally is calculated a stress σ without the contribute of liveload eval-
ueted in:

σ =
N

A
= 7120

kN

m2

Where:
l si the total span of the bridge,
f is the ratio of the bridge,
α is the slope of arch in foundation.
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3.2 Statistical Analysis

It is necessary create a cloud of informations about areas and tensions (Axil
in correspondence of the support) of bridges analysied in the previous section
and a cloud of informations about medium and small area. Finally using
excell functions it will be possible to find the equation that governs the
scattergram distribution of the cloud of points.

In first instance it is necessary to build a summary table with all area
velues calculate in chapter 2.

Bridge Max Area [m2] Med Area [m2] Min Area [m2]

Wanxian 35,7 27,9 20,2

Krk 13,2 13,2 13,2

Hoover 15,5 15,5 15,5

Infante Henrique 30,0 22,5 15,0

Bloukrans 23,4 20,4 17,4

Contreras 35,9 22,5 9,0

Los tilos 17,5 17,5 17,5

La Regenta 10,6 9,0 7,3

Almonte 6,7 6,3 5,9

Traneberg 22,0 13,2 12,8

Ulla 21,4 14,3 10,2

Burguillo 10,3 10,3 10,3

Cieza 5,4 5,2 5,0

Table 1: Areas Bridge’s Summary
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Maximum Arch Area This is a scattergram of the Maximum Area of the
analyzed bridges. Specifically is the Area of the Section in correspondence
of the supports. On the x-axis we find the span and in the y-axis the value
of the Maximum Area.

Figure 18: Maximum Area

And the equation that governs the scattergram distribution in [figure 18]
is:

y = 0, 0883x− 1, 3646 (8)

Median Arch Area This graphic represents a cloud of points, in which
every point is the Median Arch Area per each bridge analyzed.

On the x-axis we find the span and in the y-axis the value of the Median
Area.

And the equation that governs the scattergram distribution in [figure 19]
is:

y = 0, 0734x− 1, 9981 (9)

Minimum Arch Area This graphic represents a cloud of points, in which
every point is the Minimum Arch Area per each bridge analyzed. This is
going to happens in the midspan of the bridge and in the very next parts
to it. On the x-axis we find the span and in the y-axis the value of the
Minimum Area.
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Figure 19: Median Area

Figure 20: Minimum Area

And the equation (regression line) that governs the scattergram distri-
bution in [figure 20] is:

y = 0, 0491x+ 0, 5759 (10)
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3.2.1 Upper and Lower Bounds of Arch Cross Section

It is necessary now to avaluete a range between the estimated regression line
and massive bridges (upper limit) and between the estimated regression line
and light bridges (lower limit).

3.2.2 Standard Deviation

It is necessary to estimate
√
σ2, the assumed constant standard deviation

(following called SD) of Y given x.
The obvious estimator of σ2, is the average of the squared residuals.
This method has been taken from [2].

That is:

s2 = σ2 =
1

n− 2

n∑
n=1

[yi− (α+ β ∗ xi)]2 (11)

The average value of the area is:

ymed =
12∑
i=1

yi

n
(12)

The average value of the span is:

xmed =

12∑
i=1

xi

n
(13)

Is now possible to estimate the two parameters α and β:

β =

12∑
i=1

xiyi− nymedxmed
xi2 − nxmed2

(14)

α = (ymed− β)xmed (15)

Where:
n is the number of bridges analyzed.
yi is the ordinate of the graphic representing the area of the bridge.
xi is the abscissa of the graphic representing the span of the bridge.

It is required now to apply this equations to the regression lines functions.
In this way, we will obtain the standard constant deviation for each graphic
showed in subsection 3.2
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Maximum Arch Area SD Remembering the equation (8), we are going
to evaluate its SD.
Using the equation (12) we estimate:

ymed = 19, 54

Using the equation (13):
xmed = 236, 66

Using the equation (21):
β = 0, 0883

Using the equation (15):
α = −1, 364

Using the equation (11):
s2 = 64, 79

Finally the value of the SD for the Maximum Arch Area graphic regression
line is:

s =
√
s2 = 8, 049

So now the value of s will be used to ”move” the regression line up with
a value of y = f(x) + 8, 049 and down with a value of y = f(x)− 8, 049.
Where y=f(x) is the equation (8).

Median Arch Area SD Remembering the equation (9), we are going to
evaluate its SD.
Using the equation (12) we estimate:

ymed = 15, 38

Using the equation (13):
xmed = 236, 66

Using the equation (21):
β = 0, 073
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Figure 21: SD Area on Supports

Using the equation (15):
α = −1, 998

Using the equation (11):
s2 = 15, 68

Finally the value of the SD for the Median Arch Area graphic regression line
is:

s =
√
s2 = 3, 96

So now the value of s will be used to ”move” the regression line up with
a value of y = f(x) + 3, 96 and down with a value of y = f(x)− 3, 96.
Where y=f(x) is the equation (9).

Minimum Arch Area SD Remembering the equation (10), we are going
to evaluate its SD.
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Figure 22: SD Area in The Center of The Rib

Using the equation (12) we estimate:

ymed = 12, 19

Using the equation (13):
xmed = 236, 66

Using the equation (21):
β = 0, 049

Using the equation (15):
α = 0, 576

Using the equation (11):
s2 = 9, 79

Finally the value of the SD for the Median Arch Area graphic regression line
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is:
s =
√
s2 = 3, 13

So now the value of s will be used to ”move” the regression line up with
a value of y = f(x) + 3, 13 and down with a value of y = f(x)− 3, 13.
Where y=f(x) is the equation (10).

Figure 23: SD Area in Midspan
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4 Contreras Arch Bridge Like a Sample

The reinforced concrete arch bridge of a 261 m span, with an upper pre-
stressed concrete deck and a total length of 587.25 m, spans the Contreras
Reservoir on the Madrid-Levante high-speed railway line. The mid-span sag
is 36.944 m thus determining a span-to-rise ratio of over 6.77 to 1, which is a
low rising arch although not excessively so. On the construction completion
date, the span between the arch supports was holder of the world record for
a concrete railway arch bridge. It was built by free cantilever system using
a temporary pier that was dismantled once the two semi-arches had been
joined. The deck was built span by span with a scaffolding truss on either
side of the arch. Jacks at the crown of the bridge were not used since they
would not have improved significantly the global forces in the bridge.

Figure 24: Contreras’ Temporary Supporting System

4.1 Construction Process

Various preliminary calculations were carried out to check the construction
process, among which was arranging a lattice in the trapeziums resulting
from the piers, arch and deck (Fig. 26).

This classic and intuitively logical solution consists of forming a lattice in
the course of the process. Within this lattice, the arch acts as the lower com-
pression chord, the deck is the upper tension chord and the piers supported
on the arch serve as vertical bars. Temporary elements act as diagonals,
resisting tensile stresses.
The first conceptual problem in this construction process is encountered
when a concrete element such as the deck is used as a stay cable for the
lattice. Nevertheless, as this is a prestressed element, this solution may be
convenient in case the tension during the process is resisted through a mod-
erate increase of prestressing required for the service situation.
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Figure 25: Free Cantilever Construction of The Arch With Temporary cable-
staying from the pier at the springs

Figure 26: Cantilever construction between de Arch and the Deck

After carrying out the corresponding analysis, this solution turned out clearly
unfavourable from the economic point of view. The magnitude of the length
spanned by each semi-arch implied having to solve great tension in the deck,
which in its turn required a large amount of reinforcement. The extra cost
of the said prestressing, as well as the difficulty of its installation, makes this
method more expensive and than others, even those that require additional
auxiliary means. This is, therefore, the least economical construction sys-
tem for large-span arches such as this one. It is, however, quite competitive
for smaler arches.
The construction method eventually chosen for this bridge and given its
situation with respect to the water of the reservoir and the land was the
cable-stayed free cantilever launching of the two semi-arches embedded in
their foundations Fig. 26.

However, this process was modified at the request of the Construction
Company and of EIPSA, acting as technical advisor of the construction
company throughout the proj- ect execution. The proposal was to build
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the arch by cable- stayed incremental launching as well, only it was to be
launched from the first pier of the arch, which was to be extended until
reaching the ground where it was then appropriately founded. At the be-
ginning of the construction, after a particularly favourable hydrological year
for our purposes, the reservoir water level was such that the foundations of
the temporary pier were above water level for months on end.

Moving the cable-staying pier forward considerably lowers the costs of
the construction process, since it reduces the weight of the arch to be sup-
ported, with the subsequent reduction of the number and length of tempo-
rary stay cables. Nevertheless, this is not a universal solution (bathymetry,
geotechnical engineering, etc.).

Figure 27: Centering Supported on the Ground

At this point the execution of the arch begins. The first section of each
semi-arch, between the foundation and temporary piers, is built upon a
centering supported on the ground (Fig. 27). For that purpose, a series
of temporary steel supports are arranged to support the arch formwork.
We must emphasise the need for a perfect conception and revision of all
the details of the auxiliary structures, which are essential in this stage of
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construction.
The centering is then dismantled and the advance of the semi-arches is
initiated using cable stayed free cantilevers. To this end we placed metal
pylons on the deck, following the vertical line of the temporary piers. From
this moment on, the semi-arches advanced in free cantilevers while concreted
in situ using form traveller. To enable such proce- dure, we placed nine
successive bundles of stay cables on each semi-arch. Each bundle consisted
of a couple of front cables anchored in the executed arch segments and a
couple of rear ones anchored in the arch plinths.

53



5 Previously Approximate Evaluations To The Cal-
ibration Of The TOA Method

For a pre planning, the estimation of the tensions the values of the static
tensions in the tiebacks have been done considering pins among the can-
tilevered sections as is possible to view in the picture ??.

Figure 28: Emiarch And Tieback Lenght Lt

5.1 Beam on Elastic Supports - Winkler foundation

It is obvious that is possible to compare the static model of the emiarch
(Picture 29) with a Winkler foundation, a simplified elastic-support model
showed in the picture 30.

The elastic constant k of a single tieback is equal to:

k =
EsA

Lt
(16)
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Figure 29: Emiarch Compared to a Winkler Beam

Figure 30: Winkler foundation

with Es Young Modulus of the steel.

And Lt is the avarage lenght of the tieback:

Lt ∼ α ∗H (17)

Where:
H is the height of the tower,
EA is the stiffness of the tieback.

Indeed the total stiffness K of the system ”tiebacks” is:
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K =
k

δ
(18)

Where δ is:

δ =
Lt
2n

(19)

with n number of tiebacks.

And the stiffness of the emiarch is:

w =
EcI

L4
(20)

with L lenght of the emiarch.

Finally the relation between the stiffnesses of the two components, for
better say, K for the tieback’s system and w for the emiarch will be:

β =
K

w
=
EsAL

4

EcILtδ
(21)

Remembering the equations 19 and 17 and replacing them in the equa-
tion 21 is obtained:

β =
EsAL

42n

EcIH2
(22)
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Here it is showed a table summerizing a step of values of diameters for
different types of tiebacks:

D[m] A [m2] β Rx
Ry

T1
V1

T2
V2

T3
V3

T4
V4

T5
V5

T6
V6

T7
V7

T8
V8

∑ Ti
Vi

0.01 7.85.10−5 0.15 10527
6397

554
541

1264
1136

1875
1436

2173
1368

2185
1126

2047
866

1861
668

1676
519

13635
7660

0.10 7.80.10−3 15 10527
7837

275
271

660
606

1158
928

1687
1118

2109
1128

2336
1017

2373
863

2278
720

12876
6651

0.20 3.14.10−2 62 10179
8462

324
318

592
543

903
724

1409
933

2027
1085

2524
1099

2747
999

2721
860

13247
6561

0.30 7.07.10−2 140 11828
9000

433
425

651
597

827
663

1269
841

1999
1070

2719
1183

3122
1136

3161
998

14181
6913

0.40 1.256.10−1 247 12966
9732

522
513

700
642

803
643

1199
794

2010
1076

2955
1287

3578
1302

3711
1172

15478
7429

P1 P2 P3 P4 P5 P6 P7 P8 PTot
1823 1823 1823 1823 1823 1823 1823 1823 14584

Table 2: Characteristics of λ and the tiebacks in At Variation

In particular the diameter elected for the next samples will be D = 10cm
because of the homogeneous distribution among the tensions in the tiebacks.

For better explain, if the system of tiebacks is very stiff (D = 0.30/0.40m)
the tensions are concentreted in the zone next to the mid-span, otherwise
if the tiebacks’ system is not so stiff (D = 0.01m), then the tensions are
concentreted in the central zone of the rib.
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6 Optimization Of The Construction Process

6.1 Tiebacks’ Optimization Algorithms TOA

Take in account what has been study in the article write by Au, Wang and
Liu [10], and in particular if we consider a typical stage i during the can-
tilever erection of the arch rib of a bridge we need to ensure not only the
stability of the assembly but also that the stresses are within the allowable
limits. In this case limits will be represented from Admissible Bending Mo-
ments.

What they proposed in [10] is to determinate the minimum tieback forces
and the maximum tieback forces from the following equation:

{f t} = {gt}+ [A]{T} (23)

{f b} = {gb}+ [B]{T} (24)

Where the vectors f t and f b contain the stresses at the top and bottom
fibers, respectively, and the vectors gt and gb contain the stresses due to
dead load at the top and bottom fibers, respectively, of the control sections
if the incomplete arch rib is assumed to be cantilevered from the abutment;
[A] and [B]= influence matrices for the top and bottom fibers, respectively,
of the control sections due to tieback forces; and T contains the tieback
forces Tj .

Similar to what has been done in [10] we can consider a clamped semi-
arch and a number j of ties applied at S-sections along the acting as sus-
penders before crown closing as shown in Figure 31.

If MG is the vector of the bending moments in the M-sections due to
the arch self weight, A is the influence matrix, T is the vector of the tieback
forces and M is the vector contains the Bending Moment along the arch rib
one can write:

{M} = {MG}+ [A]{T} (25)

The equation 25 will be study in detail in the following section.
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Figure 31: Before Crown Closing
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6.1.1 Value of T Optimizing The Static Response

Being Aij the influence coefficients defining the target internal actions (i.e.
M) in a number i of M-sections and being Tj the value of the optimized
tensions, a simple formulation is derived:

MT,i =
∑

AijTj (26)

A→ Aij (27)

Denoting with MG,i the moments in M-sections due to the arch self
weight, it is possible to write and calling now, A the total matrix of the
influence coefficients:

Mi = MG,i +
∑

AijTj (28)

Finally it is possble to establish in matrix terms:

M = MG +AT (29)

The optimal design problem requires to determine the values T optimiz-
ing the static response, in fact:

min
∑

M2
i = min(M tM) (30)

that is:

∂

∂T
(M tM) = 2

∂M t

∂T
M = 0 (31)

replacing the equation 29 in the equation 31 it is obtained:

At(MG +AT ) = 0 (32)

finally:

(AtA)T = −AtMG (33)
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with solution:

T = −(AtA)−1AtMG (34)

The equation 34 is suitable to every arch bridge erected with the Can-
tilever Launching Method.
The values of the optimized tensions in the vector T will produce the best
diagram of Bending Moment along the emiarch.
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6.1.2 Pretensions Applied to Tiebacks

An other algorithm has been realized to obtain the tiebacks’ forces distri-
bution already deduced from the equation (34).
In other words, if it is applied to the tiebacks the pretensions gains from the
equation (34) directly to the tiebacks, the output of the Solver in Straus7
will give back a wrong moment distribution, this is because of the static
contribution in the tiebacks.
Indeed, to ensure that tiebacks work at the rate Ti determinated by the
equation (34) like the optimal one it is possible to follow a similar strategy
of calculus used to define the Ti selves.
First of all has been calculated the vector NG, the vector of the axial forces
into the tiebacks due to selfweight of the semiarch.
In a second step the matrix Dij has been calculated, which supply in columns
the axial forces per each tieback under the effect of a pre-tension No unitary.
So the forces per each tieback is given by the equation:

Ni = NGi +DijN
o
j (35)

Imposing the relation:

Ni = Ti (36)

D = Dij (37)

it is obtained:

DijN
o
j = Ti −NGi (38)

in matrix terms:

DNo = T −NG (39)

To finally obtain the equation:

No = D−1(T −NG) (40)
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The values No (i.e. pretensions) obtained from the equation (40) have
to be applied to the tiebacks as pretensions to ensure that the tiebacks are
working at the forces extracted from the equation (34).

6.2 Sample TOA Bridge Application

In this section will be applied the previous algorithms to a pratical case,
showed in the picture 32

Figure 32: Sample Bridge

The bridge has a span of 200m and the relation rise
span is r

s = 1
6 , in fact

the rise is 33,3 m. This r
s value has been choose because of the avarage of

bridges already constructed.
Here it is a table summarizing all the characteristics of this bridge:

Span [m] Rise [m] A [m2] fyk [MPa] fck [MPa] Ec [MPa] Es [MPa]

200 33, 3 5, 67m2 450 40 34290 200000

Table 3: Sample Bridge’ Characteristics
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Where:
A is the area of the arch section,
fyk is the specified characteristics yield stress of bars,
fck is the specified characteristics yield stress of the concrete,
Ec is the Young Modulus of the concrete,
Es is the Young Modulus of steel (i.e. bars and steel),
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6.2.1 Application Of The Optimizing Alghorithms to The Sample
Case

The configuration of tiebacks is the one showed in the picture 32.
First of all is important to construct a model in which is applied a force
equal to the unit per each tieback, so it is possible to compose the matrix
A, the one containing the influence coefficients defining the target internal
actions (i.e. M) settle in the section 6.1.1.

Unitary Force in tieback 1 position:

Figure 33: Unit Force T1

Decompose of the unitary force in tieback 1 position:

Figure 34: Decompose Force T1
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Coefficients:

Figure 35: Coefficients Product From Force T1

Unitary Force in tieback 2 position:

Figure 36: Unit Force T2
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Decompose of the unitary force in tieback 2 position:

Figure 37: Decompose Force T2

Coefficients:

Figure 38: Coefficients Product From Force T2
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Unitary Force in tieback 3 position:

Figure 39: Unit Force T3

Decompose of the unitary force in tieback 3 position:

Figure 40: Decompose Force T3
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Coefficients:

Figure 41: Coefficients Product From Force T3

Unitary Force in tieback 4 position:

Figure 42: Unit Force T4
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Decompose of the unitary force in tieback 4 position:

Figure 43: Decompose Force T4

Coefficients:

Figure 44: Coefficients Product From Force T4
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Unitary Force in tieback 5 position:

Figure 45: Unit Force T5

Decompose of the unitary force in tieback 5 position:

Figure 46: Decompose Force T5
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Coefficients:

Figure 47: Coefficients Product From Force T5

Unitary Force in tieback 6 position:

Figure 48: Unit Force T6
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Decompose of the unitary force in tieback 6 position:

Figure 49: Decompose Force T6

Coefficients:

Figure 50: Coefficients Product From Force T6
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Unitary Force in tieback 7 position:

Figure 51: Unit Force T7

Decompose of the unitary force in tieback 7 position:

Figure 52: Decompose Force T7
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Coefficients:

Figure 53: Coefficients Product From Force T7

And finally, this is the contribution of the Bending Moment products by
the self weight:

Figure 54: Self Weight Bending Moment’ s Contribution
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Considering the equation 27 this is the matrix containing influence co-
efficents:

Figure 55: Influence Coefficients’ Matrix A

And this is the contribution of the Self Weight’s Bending Moment:

Figure 56: Bending Moment’ s Contribution

The vectonr B = MG in matlab.
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Applying now the algorithm 34 is possible to calculate the values of op-
timized T expressed in the section 6.1.1:

Figure 57: Optimized T

Conforming with all was established in the section 6.1.2 pretensions No

are now evaluated.
First of all, an other influence coefficients’ matrix must be calculated, the
one explained in the equation 37.

In the following pictures is showed how these coefficients have been cal-
culated:

A force F = 1 has been applied to the tieback 1:

And this is the corresponding influence coefficients:
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Figure 58: Unitary Pretension Applied into the Tieback 1

Figure 59: Coefficients Given by Tieback 1
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A force F = 1 has been applied to the tieback 2:

Figure 60: Unitary Pretension Applied into the Tieback 2

A force F = 1 has been applied to the tieback 3:

Figure 61: Unitary Pretension Applied into the Tieback 3
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A force F = 1 has been applied to the tieback 4:

Figure 62: Unitary Pretension Applied into the Tieback 4

A force F = 1 has been applied to the tieback 5:

Figure 63: Unitary Pretension Applied into the Tieback 5
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A force F = 1 has been applied to the tieback 6:

Figure 64: Unitary Pretension Applied into the Tieback 6

A force F = 1 has been applied to the tieback 7:

Figure 65: Unitary Pretension Applied into the Tieback 7
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In the following picture is showed the value of matrix D:

Figure 66: Matrix D

And this is the value of the static axial response in the cables:

NG

92, 95

413, 52

1025, 22

1828, 39

2591, 52

3128, 54

3379, 11

Table 4: Static Axial Forces in Tiebacks

And this is the vector T −Ng in Matlab called E:

Appling the equation 6.1.2 is possible to deduce the values of pretensions
No called F in Matlab:

Those values No must be applied to cables in the Straus7’s Model, in
this way is possible to let tiebacks’ Axial Forces be the value desumed from
the equation 34.

This is a table summarizing the values evaluated in this section.
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Figure 67: Vector T-Ng

Figure 68: Pretensions No

Tieback Number T [kN ] Ng [kN ] E [kN ] No [kN ]

T1 926, 80 92, 95 833, 85 887, 1

T2 161, 50 413, 52 −252, 02 31, 7

T3 1046, 80 1025, 22 21, 58 851, 9

T4 1227, 60 1828, 39 −600, 79 1000, 0

T5 1304, 30 2591, 52 −1287, 22 1076, 9

T6 556, 00 3128, 54 −2572, 54 359, 3

T7 7538, 10 3379, 11 4158, 99 7369, 2

Table 5: Optimization Results’ Summary
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Finally is possible to apply the values of the pretensions No to the model;
the Bending Moment diagram produced is the optimized one (Picture 69).

Figure 69: Closing Arch Configuration

84



Back Destruction It is important now evaluate how is the Bending Mo-
ment distribution variating when step by step we proceed in back destruc-
tion.
The starter configuration is the one showed in the picture 69.

The section number S8 [Fig. 31] has been deleted in the Step 1:

Figure 70: Section 8 Deleted
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The tieback number T7 [Fig. 31] has been deleted in the Step 2:

Figure 71: Tieback 7 Deleted
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The section number S7 [Fig. 31] has been deleted in the Step 3:

Figure 72: Section 7 Deleted
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The tieback number T6 [Fig. 31] has been deleted in the Step 4:

Figure 73: Tieback 6 Deleted
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The section number S6 [Fig. 31] has been deleted in the Step 5:

Figure 74: Section 6 Deleted
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The tieback number T5 [Fig. 31] has been deleted in the Step 6:

Figure 75: Tieback 5 Deleted
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The section number S5 [Fig. 31] has been deleted in the Step 7:

Figure 76: Section 5 Deleted
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The tieback number T4 [Fig. 31] has been deleted in the Step 8:

Figure 77: Tieback 4 Deleted
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The section number S4 [Fig. 31] has been deleted in the Step 9:

Figure 78: Section 4 Deleted
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The tieback number T3 [Fig. 31] has been deleted in the Step 10:

Figure 79: Tieback 3 Deleted

94



The section number S3 [Fig. 31] has been deleted in the Step 11:

Figure 80: Section 3 Deleted
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The tieback number T2 [Fig. 31] has been deleted in the Step 12:

Figure 81: Tieback 2 Deleted
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The section number S2 [Fig. 31] has been deleted in the Step 13:

Figure 82: Section 2 Deleted

In all the process of back destruction the Maximum values of the Bend-
ing Moment are:

Step Number M+ [kNm] M− [kNm]

1 31515,124 -

10 - -43383,3622

Table 6: Maximum Moments

97



6.2.2 Variable Distribution - VD

An other concept can be developed focus the attention on the fact that the
angle along the emiarch is varying, for better say, the angle is decreasing
from 33◦(i.e. abutment) to 0◦(i.e. midspan), like is shown in the picture [83]

Figure 83: Angle Decreasing

Let’s introduce a coefficent α like the increment of L′, where L′ in this
case is the lenght of the last segment in projection, as it’s easy to understand
from the picture number 83.

Considering the first segment α L′ showed in the picture [83] and the last
segment is L′ it is possible develope a function for interpolation:

If we consider L the value of the lenght of the midspan known and in-
variable, N is the number of segments and α can be any.

It ensures that the lenght of the last segment L′ is equal to:

L′ =
2L

N(1 + α)
(41)
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And so the increment will be:

∆ L′ =
L′(α− 1)

N − 1
(42)

For differents values of α is possible to have a different distribution of
tiebacks from the configuration analyzied in the section 6.2.1. In particular
way, is possible to increase the lenght of the span αl′ close to the abutment
reducing the concentration of tiebacks in that zone and thicken the one next
to the middspan. In this new configuration the Maximum Bending Moment
will be less heavy.

And now, in the same way was made in the paragraph 6.2.1 pretensions
No must be calculated.
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Case in which α = 1, 2 and N=8 Let’s evaluate differents situations,
this one in particular has an α = 1, 2 and a number of segments N=8.

Figure 84: N=8 α = 1, 2

The last segment is:

L′ = 2∗100
8(1+1,2) = 11, 364m

The increment is:

∆ L′ = 11,364(1,2−1)
8−1 = 0, 325m

In the picture 84 is showed the following configuration.

It is now useful apply the TOA and analyze the Bending Moment Dia-
gram.

Now, appling the same procedure explained in the paragraph 6.2.1 is
possible to evaluate the Bending Moment’s Diagram:
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Considering the equation 27 this is the matrix containing influence co-
efficents:

Figure 85: Influence Coefficients’ Matrix in VD case α = 1, 2

And finally, this is the contribution of the Self Weight Bending Moment
products by the self weight:

Figure 86: Self Weight Bending Moment’ s Contribution in VD case α = 1, 2
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Applying now the algorithm 34 is possible to calculate the values of op-
timized T expressed in the section 6.1.1:

Figure 87: Optimized T in VD case α = 1, 2

And now, in the same way was made in the paragraph 6.2.1 pretensions
No must be calculated.

In the following picture is showed the value of the matrix D:

Figure 88: Matrix D in VD case α = 1, 2

And this is the value of the static axial response in the cables:

And this is the vector T −Ng:

It is important to emphasize in this case that the value of the pretension
No

7 is negative, it means that i need to apply a ”pre-detension”.
Appling the equation 6.1.2 is possible to deduce the values of pretensions No:
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Ni

153, 307

598, 8755

1265, 751

1960, 67

2512, 176

1851, 458

2989, 544

Table 7: Static Axial Forces in Tiebacks in AF case α = 1, 2

Figure 89: Vector T-Ng in VD case α = 1, 2

Figure 90: Pretensions No in VD case α = 1, 2

Those values No must be applied to cables in the Straus7’s Model, in
this way is possible to let tiebacks’ Axial Forces be the value desumed from
the equation 34.
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This is a table summarizing the values evaluated in this section.

Tieback Number T [kN ] Ng [kN ] T −Ng [kN ] No [kN ]

T1 938, 60 153, 307 785, 29 818, 6

T2 541, 10 598, 87 −57, 78, 116, 1

T3 972, 60 1265, 75 −293, 15 257, 1

T4 1262, 30 1960, 67 −698, 37 384, 7

T5 1745, 00 2512, 176 −767, 18 819, 7

T6 458, 90 2851, 458 −2392, 56 −445, 8

T7 6713, 00 2989, 54 3723, 46 5858, 8

Table 8: Optimization Results’ Summary in VD case α = 1, 2

Finally is possible to apply the values of the pretensions No to the model;
the Bending Moment diagram produced is the optimized one (Picture ??).

Figure 91: Closing Arch Configuration in VD case α = 1, 2

Comparing this Bending Moment diagram with the one in the picture 69
it’s underline that the Maximum Moment in the Closing Arch Configuration
has been reduced comparing with the one in the picture 69.
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Precisely in this table are summarized the values of the Maximum Pos-
itive and Negative Bending Moment:

Configuration M+ [kNm] M− [kNm]

Standard Configuration 2638 -11977

AF α = 1, 2 981,68 -10828,03

Table 9: Maximum Moments in VD case α = 1, 2 Closing Arch Configura-
tion
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Back Destruction It is important now evaluate how is the Bending Mo-
ment distribution variating when step by step we proceed in back destruction
in the same way has been done in the section 6.2.1.
The starter configuration is the one showed in the picture 112.

The section number S8 [Fig. 31] has been deleted in the Step 1:

Figure 92: Section 8 Deleted in VD case α = 1, 2
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The tieback number T7 [Fig. 31] has been deleted in the Step 2:

Figure 93: Tieback 7 Deleted in VD case α = 1, 2

The section number S7 [Fig. 31] has been deleted in the Step 3:

Figure 94: Section 7 Deleted in VD case α = 1, 2
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The tieback number T6 [Fig. 31] has been deleted in the Step 4:

Figure 95: Tieback 6 Deleted in VD case α = 1, 2
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The section number S6 [Fig. 31] has been deleted in the Step 5:

Figure 96: Section 6 Deleted in VD case α = 1, 2
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The tieback number T5 [Fig. 31] has been deleted in the Step 6:

Figure 97: Tieback 5 Deleted in VD case α = 1, 2
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The section number S5 [Fig. 31] has been deleted in the Step 7:

Figure 98: Section 5 Deleted in VD case α = 1, 2
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The tieback number T4 [Fig. 31] has been deleted in the Step 8:

Figure 99: Tieback 4 Deleted in VD case α = 1, 2
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The section number S4 [Fig. 31] has been deleted in the Step 9:

Figure 100: Section 4 Deleted in VD case α = 1, 2
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The tieback number T3 [Fig. 31] has been deleted in the Step 10:

Figure 101: Tieback 3 Deleted in VD case α = 1, 2
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The section number S3 [Fig. 31] has been deleted in the Step 11:

Figure 102: Section 3 Deleted in VD case α = 1, 2
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The tieback number T2 [Fig. 31] has been deleted in the Step 12:

Figure 103: Tieback 2 Deleted in VD case α = 1, 2
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The section number S2 [Fig. 31] has been deleted in the Step 13:

Figure 104: Section 2 Deleted in VD case α = 1, 2

In all the process of back destruction the Maximum values of the Bend-
ing Moment are:

Step Number M+ [kNm] M− [kNm]

1 23699 -

10 - -43160

Table 10: Maximum Moments Through the Back Destruction case α = 1, 2
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Case in which α = 1, 5 and N=8 The next case we are going to analyze
is the one in which, α = 1, 5 and a number of segments N=8.

Figure 105: N=8 α = 1, 5

The last segment is:

L′ = 2∗100
8(1+1,5) = 10m

The increment is:

∆ L′ = 10(1,5−1)
8−1 = 0, 714m

In the picture 105 is showed the following configuration.

It is now useful apply the TOA and analyze the Bending Moment Dia-
gram.

Now, appling the same procedure explained in the paragraph 6.2.1 is
possible to evaluate the Bending Moment’s Diagram:
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Considering the equation 27 this is the matrix containing influence co-
efficents:

Figure 106: Influence Coefficients’ Matrix in VD case α = 1, 5

And finally, this is the contribution of the Self Weight Bending Moment
products by the self weight:

Figure 107: Self Weight Bending Moment’ s Contribution in VD case α =
1, 5
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Applying now the algorithm 34 is possible to calculate the values of op-
timized T expressed in the section 6.1.1:

Figure 108: Optimized T in VD case α = 1, 5

And now, in the same way was made in the paragraph 6.2.1 pretensions
No must be calculated.

In the following picture is showed the value of the matrix D:

Figure 109: Matrix D in VD case α = 1, 5

And this is the value of the static axial response in the cables:

Ni

201, 47

725, 43

1397, 90

2021, 79

2441, 68

2682, 20

2774, 04

Table 11: Static Axial Forces in Tiebacks in VD case α = 1, 5
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And this is the vector T −Ng:

Figure 110: Vector T-Ng in VD case α = 1, 5

Appling the equation 6.1.2 is possible to deduce the values of pretensions
No:

Figure 111: Pretensions No in VD case α = 1, 5

Those values No must be applied to cables in the Straus7’s Model, in
this way is possible to let tiebacks’ Axial Forces be the value desumed from
the equation 34.
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This is a table summarizing the values evaluated in this section.

Tieback Number T [kN ] Ng [kN ] T −Ng [kN ] No [kN ]

T1 843, 10 201, 47 641, 63 779, 8

T2 822, 20 725, 43 96, 77 631, 8

T3 1174, 70 1397, 90 −223, 20 883, 9

T4 878, 30 2021, 79 −1143, 50 549, 6

T5 2047, 00 2441, 68 −394, 68 1725, 7

T6 786, 90 2682, 20 −1895, 30 488, 1

T7 6077, 20 2774, 04 3303, 16 5802, 9

Table 12: Optimization Results’ Summary in VD case α = 1, 5

Finally is possible to apply the values of the pretensions No to the model;
the Bending Moment diagram produced is the optimized one (Picture ??).

Figure 112: Closing Arch Configuration in VD case α = 1, 5

Comparing this Bending Moment diagram with the one in the picture
69 it’s underline that the Maximum Moment in the Closing Arch Configu-
ration has been reduced until become the middle of the one in the picture 69.
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Precisely in this table are summerized the values of the Maximum Posi-
tive and Negative Bending Moment:

Configuration M+ [kNm] M− [kNm]

Standard Configuration 2638 -11977

AF α = 1, 5 1648 -6682,

Table 13: Maximum Moments in VD case α = 1, 5 Closing Arch Configura-
tion
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Back Destruction It is important now evaluate how is the Bending Mo-
ment distribution variating when step by step we proceed in back destruction
in the same way has been done in the section 6.2.1.
The starter configuration is the one showed in the picture 112.

The section number S8 [Fig. 31] has been deleted in the Step 1:

Figure 113: Section 8 Deleted in VD case α = 1, 5
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The tieback number T7 [Fig. 31] has been deleted in the Step 2:

Figure 114: Tieback 7 Deleted in VD case α = 1, 5

The section number S7 [Fig. 31] has been deleted in the Step 3:

Figure 115: Section 7 Deleted in VD case α = 1, 5
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The tieback number T6 [Fig. 31] has been deleted in the Step 4:

Figure 116: Tieback 6 Deleted in VD case α = 1, 5
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The section number S6 [Fig. 31] has been deleted in the Step 5:

Figure 117: Section 6 Deleted in VD case α = 1, 5
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The tieback number T5 [Fig. 31] has been deleted in the Step 6:

Figure 118: Tieback 5 Deleted in VD case α = 1, 5
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The section number S5 [Fig. 31] has been deleted in the Step 7:

Figure 119: Section 5 Deleted in VD case α = 1, 5
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The tieback number T4 [Fig. 31] has been deleted in the Step 8:

Figure 120: Tieback 4 Deleted in VD case α = 1, 5
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The section number S4 [Fig. 31] has been deleted in the Step 9:

Figure 121: Section 4 Deleted in VD case α = 1, 5
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The tieback number T3 [Fig. 31] has been deleted in the Step 10:

Figure 122: Tieback 3 Deleted in VD case α = 1, 5
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The section number S3 [Fig. 31] has been deleted in the Step 11:

Figure 123: Section 3 Deleted in VD case α = 1, 5
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The tieback number T2 [Fig. 31] has been deleted in the Step 12:

Figure 124: Tieback 2 Deleted in VD case α = 1, 5
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The section number S2 [Fig. 31] has been deleted in the Step 13:

Figure 125: Section 2 Deleted in VD case α = 1, 5

In all the process of back destruction the Maximum values of the Bend-
ing Moment are:

Step Number M+ [kNm] M− [kNm]

1 21945 -

12 - -43510

Table 14: Maximum Moments Through the Back Destruction
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Case in which α = 1, 8 and N=8 The next case we are going to analyze
is the one in which, α = 1, 8 and a number of segments N=8.

Figure 126: N=8 α = 1, 8

The last segment is:

L′ = 2∗100
8(1+1,8) = 8, 928m

The increment is:

∆ L′ = 10(1,8−1)
8−1 = 1, 02m

In the picture 126 is showed the following configuration.

It is now useful apply the TOA and analyze the Bending Moment Dia-
gram.

Now, appling the same procedure explained in the paragraph 6.2.1 is
possible to evaluate the Bending Moment’s Diagram:
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Considering the equation 27 this is the matrix containing influence co-
efficents:

Figure 127: Influence Coefficients’ Matrix in VD case α = 1, 8

And finally, this is the contribution of the Self Weight Bending Moment
products by the self weight:

Figure 128: Self Weight Bending Moment’ s Contribution in VD case α =
1, 8

Applying now the algorithm 34 is possible to calculate the values of op-
timized T expressed in the section 6.1.1:

And now, in the same way was made in the paragraph 6.2.1 pretensions
No must be calculated.

In the following picture is showed the value of the matrix D:
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Figure 129: Optimized T in VD case α = 1, 8

Figure 130: Matrix D in VD case α = 1, 8

And this is the value of the static axial response in the cables:

Ni

243, 297

831, 715

1505, 798

2049, 884

2395, 331

2564, 199

2607, 883

Table 15: Static Axial Forces in Tiebacks in VD case α = 1, 8

And this is the vector T −Ng:

Appling the equation 6.1.2 is possible to deduce the values of pretensions
No:
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Figure 131: Vector T-Ng in VD case α = 1, 8

Figure 132: Pretensions No in VD case α = 1, 8

Those values No must be applied to cables in the Straus7’s Model, in
this way is possible to let tiebacks’ Axial Forces be the value desumed from
the equation 34.

139



This is a table summarizing the values evaluated in this section.

Tieback Number T [kN ] Ng [kN ] T −Ng [kN ] No [kN ]

T1 907, 80 243, 297 664, 50 792, 9

T2 887, 20 831, 715 55, 49 520, 4

T3 1093, 00 1505, 798 −412, 80 527, 7

T4 1315, 20 2049, 884 −734, 68 670, 6

T5 1869, 90 2395, 331 −525, 43 1222, 0

T6 830, 90 2564, 199 −1733, 30 210, 6

T7 5670, 30 2607, 883 3062, 42 5085, 7

Table 16: Optimization Results’ Summary in VD case α = 1, 8

Finally is possible to apply the values of the pretensions No to the model;
the Bending Moment diagram produced is the optimized one (Picture ??).

Figure 133: Closing Arch Configuration in VD case α = 1, 8

Comparing this Bending Moment diagram with the one in the picture 69
it’s underline that the Maximum Moment in the Closing Arch Configuration
has been reduced from the one in the picture 69.
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Precisely in this table are summerized the values of the Maximum Posi-
tive and Negative Bending Moment:

Configuration M+ [kNm] M− [kNm]

Standard Configuration 2638 -11977

AF α = 1, 8 1162,47 -9023,88

Table 17: Maximum Moments in VD case α = 1, 8 Closing Arch Configura-
tion
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Back Destruction It is important now evaluate how is the Bending Mo-
ment distribution variating when step by step we proceed in back destruction
in the same way has been done in the section 6.2.1.
The starter configuration is the one showed in the picture 112.

The section number S8 [Fig. 31] has been deleted in the Step 1:

Figure 134: Section 8 Deleted in VD case α = 1, 8
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The tieback number T7 [Fig. 31] has been deleted in the Step 2:

Figure 135: Tieback 7 Deleted in VD case α = 1, 8
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The section number S7 [Fig. 31] has been deleted in the Step 3:

Figure 136: Section 7 Deleted in VD case α = 1, 8
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The tieback number T6 [Fig. 31] has been deleted in the Step 4:

Figure 137: Tieback 6 Deleted in VD case α = 1, 8
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The section number S6 [Fig. 31] has been deleted in the Step 5:

Figure 138: Section 6 Deleted in VD case α = 1, 8

146



The tieback number T5 [Fig. 31] has been deleted in the Step 6:

Figure 139: Tieback 5 Deleted in VD case α = 1, 8
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The section number S5 [Fig. 31] has been deleted in the Step 7:

Figure 140: Section 5 Deleted in VD case α = 1, 8

148



The tieback number T4 [Fig. 31] has been deleted in the Step 8:

Figure 141: Tieback 4 Deleted in VD case α = 1, 8
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The section number S4 [Fig. 31] has been deleted in the Step 9:

Figure 142: Section 4 Deleted in VD case α = 1, 8
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The tieback number T3 [Fig. 31] has been deleted in the Step 10:

Figure 143: Tieback 3 Deleted in VD case α = 1, 8
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The section number S3 [Fig. 31] has been deleted in the Step 11:

Figure 144: Section 3 Deleted in VD case α = 1, 8
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The tieback number T2 [Fig. 31] has been deleted in the Step 12:

Figure 145: Tieback 2 Deleted in VD case α = 1, 8
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The section number S2 [Fig. 31] has been deleted in the Step 13:

Figure 146: Section 2 Deleted in VD case α = 1, 8

In all the process of back destruction the Maximum values of the Bend-
ing Moment are:

Step Number M+ [kNm] M− [kNm]

1 18704,73 -

12 - -47178,74

Table 18: Maximum Moments Through the Back Destruction case α = 1, 8
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Comparison Among α Cases Analyzed In this table are summarized
the maximum Bending Moments per each α.

α M+ [kNm] M− [kNm]

1,2 23699 -43160

1,5 21945 -43510

1,8 18704 -47178

Table 19: Comparison Among 3 different α in VD case

It is clear how the Variable Distribution is decreasing the bending mo-
ment, take in account an α = 1, 2 the minimum negative bending moment is
obtained, otherwise what concern an α = 1, 8 the minimum positive bending
moment is evaluated.
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6.2.3 Moment’s Redistribution

Once it is known the value T the value of the optimized tensions, and the
back destruction have been perfomed, is possible to redistribuate the values
of the bending moments along the emiarch.
The purpose is to deduce the number of tiebacks that redistribute the Bend-
ing Moment tensions.

Figure 147: Sample of a Bending Moment Diagram in an Middlearch

Take in account the Bending Moment destribution in the picture 147 is
simple to assert:

Defining η in the following way:

η =
Mstress

Madm
≤ 1 (43)

Where
Mstress is the Stress Bending Moment actually working into the arch,
Madm is the Admissible Bending Moment from the section,
l′ is the span we are proposing to reach,
l is the span we already evaluated in the section 6.2.1 (i.e. l=13,4m).

It is possible to write the relation

l′2 = ηl2 (44)
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Consequentally it is possible to write

l′ =
√
ηl (45)

And so

l′

l
=
√
η (46)

Remembering that N number of tiebacks analyzed in the paragraph 6.2.1
is inversely proportional to the span between two tiebacks l:

N ∝ α

l
(47)

So one can write recovering the equation 46 that:

N

N ′
=
√
η (48)

And so remembering the equation 43

N ′ = N

√
Mstress

Madm
(49)

From the equation 49 is possible to evaluate the number of tiebacks can
redistribute the Bending Moment Mstress.
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Sample Case Recording the sample considered in the paragraph 6.2 let’s
calculate a new number of tiebacks N ′ that can redistribuate the Bending
Moment MStress.

First of all we need to evaluate the Admissible Bending Moment Madm

taking into account the arch section analyzed in the paragraph 6.2 showed
in the picture 148.

Figure 148: Arch’s Section

The configuration from which we are going to start is the one showed in
the picture 32.
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The total Area interested in the calculus of the Admisible Bending Mo-
ment Madm is equal to Atot = A1 +A2 +A3.

The Axial Forces interested are:

Fc1 = γcfckA1 (50)

In this particular case A1 = 2450000mm2 and A2 = A3 = 1750000mm2.

Fc2 = Fc3 = γcfckA2 = γcfckA3 (51)

Where the safety factor is γc = 0, 85 and the concrete fck = 70MPa.

The resultant of the Axial Concrete Force is:

Fc = Fc1 + Fc2 + Fc3 = γcfckAtot (52)

And the Admisible Bending Moment is:

Madm = Fc1d1 + Fc2d2 + Fc3d2 (53)

Where the values of the distance di is:
d1 = 2, 45m
d2 = 1, 75m

In this table are summarized all values concerning the previously calcu-
lus:

η Fc1 [kN ] Fc2 [kN ] Fc [kN ] Madm [kNm] Mstress [kNm]

- 145775 208250 354025 721586 43383

Table 20: Moment’s Redistribution Summary
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6.3 Resultant Tieback

It is possible to calculate the horizontal forces and vertical forces into tiebacks.
In this way it is possible if the inclination of the resultant’s tieback is known
it is possible to obtain the arm respect to the point 0, in fact the position
of the resultant tieback is calculated.

∑
Rx = 10584, 8kN (54)∑
Ry = 6185, 0kN (55)

The inclination of the resultant tieback will be:

arctan

∑
Ry∑
Rx

= 30, 3o (56)

Figure 149: Tieback Resultant
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6.4 Anchorage’s Volume

Figure 150: Anchorage System

The volumen of the anchorage is:

V =
N

fy
L (57)

These quantities are showed in the picture (151), in details; N is the
axial force into the cable, L is the lenght of the cable of anchorage, fy is the
stiffness of the steel.

Having N = TH
cosθ e cosθ = d√

h2+d2
the equation (57) become:

V =
THL

fycosθ
=
TH
√
h2 + d2

fyd

√
h2 + d2 =

TH(h2 + d2)

d
(58)

Deriving the function V

minV :
2d ∗ d− (h2 + d2)1

d2
= 0 (59)

Finally:

2d2 − h2 − d2 = 0− > h = d (60)

161



Figure 151: Anchorage’s Optimum Slope
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7 Conclusions and Future Developments

In this work various strategies of optimization have been adopted to better
distribute the Bending Moment along the emiarch.

7.1 Variation Of The Height Of The Tower

It is possible to analyze all the configurations analyzed in this work with a
different value of the height H of the provisional tower.

Figure 152: Variation Of The Height Of The Provisional Tower
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7.2 Conclusions

Starting from what has been done in the article [10], in which, Au and Wang
proposed a method of ”two-stage” tensioning like one of the most practical
we proposed ourselves the target to find a method of ”one-stage” tensioning.
The advantage is huge, once a pre-tension have been applied to a tieback
there is no need to adapt the pre-tensions of the others tiebacks.

Applying the process analyzed in the section 6.2.1 is possible to evalu-
ated the optimized tensions producing the best Bending Moment diagram
per every arch bridge, actually what concerned this thesis is applicable not
only to concrete arch bridge having the characteristics of the sample cases
take into account in this thesis.

And then, applying the strategy analyzed in the section 6.2.2, especially
checking the values of the Bending Moment through the back destruction, it
is clear that inserting the tiebacks in appropriate position, depending to the
value of α (look back section 6.2.2) it is possible to reduce further the maxi-
mum values of the Bending Moment along the entire process of construction.

Other manners to reduce the bending moment along the rib can be the
Moment’s Redistribution examined in the section 6.2.3, this method propose
to deduce the number of tiebacks that can redistribute the Bending Moment
defining a coefficient η relationship between MStress the Stress Bending Mo-
ment actually working into the arch and Madm the Admissible Bending
Moment from the section, finally getting N’ the number of tiebacks we fixed
like target.
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