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Abstract

The performance of the turbulent drag reduction control techniques at application-

level value of Reynolds number Re is an open question, since the methods

employed so far in their assessment are limited to low values of Re. The goal

of the present work is to understand whether and how turbulence models can

predict skin-friction drag reduction induced by wall forcing. A plane channel

flow controlled by a steady streamwise distribution of spanwise velocity is

studied via Reynolds Averaged Navier-Stokes equations (RANS), by using

two different turbulence models. Despite the quantitatively incorrect predic-

tions, both turbulent models achieve a decrease of the skin friction drag. A

preliminary analysis of the budget equations for the modelled quantities is

used to investigate the process by which the physics of turbulent drag reduc-

tion can be captured by a simple RANS turbulence model.

Keywords: RANS, drag reduction, plane channel flow, turbulent flow





Sommario

Le prestazioni delle tecniche di controllo di riduzione di attrito in flussi turbo-

lenti a valori applicativi del numero di Reynolds Re sono ad oggi sconosciute,

in quanto le tecniche usate per studiarle sono limitate a valori bassi di Re.

L’obbiettivo del lavoro è capire se e come i modelli di turbolenza possono

predire la riduzione di attrito generata da un forzamento a parete. Una cor-

rente in un canale piano forzato tramite una distribuzione stazionaria della

componente trasversale della velocià a parete, modulata nella direzione lon-

gitudinale, è stato studiato tramite RANS usando due differenti modelli di

turbolenza. Nonostante le previsioni siano quantitativamente non corrette,

entrambi i modelli di turbolenza mostrano una diminuzione della resistenza

d’attrito. Un’analisi preliminare delle equazioni di bilancio per le quantità

modellate è effettuata per indagare il processo tramite il quale la fisica del-

la turbolenza possa essere catturata da un semplice modello di turbolenza

RANS.

Parole chiave: RANS, riduzione di turbolenza, flusso in un canale piano,

flussi turbolenti
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Estratto della tesi in lingua

italiana

Le tecniche di controllo finalizzate a ridurre l’attrito in un flusso turbolento

di parete sono un argomento di ricerca molto importante nel campo della

fluidodinamica moderna. In tutti i sistemi caratterizzati da flussi turbolenti

come oleodotti, pale di turbine o velivoli dalle elevate velocità, è possibile

ottenere una diminuzione della potenza necessaria, quindi un miglioramen-

to dell’efficienza, anche a partire da un’esigua riduzione dell’azione viscosa

dovuta alla turbolenza.

I metodi di controllo si dividono in tecniche di tipo attivo (se è richiesta

potenza esterna) o passivo, e in tecniche a ciclo aperto (se la legge di controllo

è stabilita e non modificabile) o a ciclo chiuso. Sono state sviluppate varie

strategie di controllo attive e a ciclo aperto con l’obiettivo di ridurre l’attrito

in flussi turbolenti, infatti le prestazioni ottenute tramite tecniche di controllo

passivo non sono considerevoli, ad esempio con le riblets [16] è stato calcolata

una riduzione di resistenza pari a circa il 2% durante una prova di volo [41],

mentre le tecniche di controllo in ciclo chiuso sono attualmente impraticabili

in quanto complesse e di difficile implementazione.

In questo lavoro sono trattate solo le tecniche di controllo della turbolenza

attive e a ciclo aperto basate sull’imposizione di un movimento della parete

nel suo piano e la riduzione di attito è quantificata a partire dalla riduzione

del valore del coefficiente d’attrito Cf nel caso forzato rispetto a quello di

riferimento. Il metodo della parete oscillante è stato introdotto da Jung et al.

[21], i quali si sono serviti dell’osservazione di Bradshaw e Pontikos [6] per cui

un improvviso gradiente trasversale di pressione genera un calo temporaneo

delle quantità turbolente. La massima riduzione d’attrito ottenuta con questa

tecnica è 45%. Successivamente sono state proposte da Zhao et al. [44]

le onde viaggianti trasversalmente a partire dal controllo tramite forza di



volume non uniforme nello spazio studiato da Du e Karniadakis [12] e da

Du, Symeonidis e Karniadakis [13]. Le prestazioni ottenute da questo tipo

di forzamento in termini di riduzione di attrito sono però inferiori rispetto al

metodo della parete oscillante [43]. Quadrio, Ricco and Viotti in [34] hanno

introdotto le onde viaggianti longitudinalmente in cui si ha una modulazione

della componente trasversale di velocità a parete, sia nel tempo che nella

direzione longitudinale, e il caso particolare in cui la frequenza di oscillazione

è nulla corrisponde alle onde stazionarie studiate da Viotti, Quadrio e Luchini

in [40] mentre il caso particolare in cui è nullo il numero d’onda corrisponde

alla parete oscillante. Le onde viaggianti longitudinalmente sono piuttosto

promettenti: a Reτ = 200 la massima riduzione di resistenza ottenuta è pari

al 52% se i paramenti del forzamento sono scelti in modo ottimale dal punto

di vista della riduzione della turbolenza. Sfortunatamente fino ad oggi non

è stato possibile indagare le prestazioni ottenibili da questa tecnica a valori

applicativi del numero di Reynolds in quanto gli strumenti usati, ovvero

Direct Numerical Simulation (DNS) ed esperimenti, sono limitati a valori

bassi del numero di Reynolds. Questo vuol dire che è possibile ottenere

buone prestazioni ad alti valori di Reynolds se i parametri del forzamento

sono scelti in modo opportuno.

I pochi studi condotti a valori relativamente alti del numero di Reynolds

mostrano che le prestazioni del controllo diminuiscono piuttosto rapidamente

all’aumentare di tale valore, se i parametri del forzamento corrispondono a

quelli ottimi per bassi valori del numero di Reynolds. Gatti and Quadrio [17]

hanno già effettuato uno studio DNS parametrico completo a Reτ = 2100

considerando diversi valori del numero d’onda e della frequenza d’onda. Il

quadro che emerge è che, aumentando il numero di Reynolds, le prestazioni

diminuiscono in maniera fortemente dipendente dai parametri del controllo,

i cui valori ottimi non sono costanti al variare del numero di Reynolds.

Una valida possibiltà che consente di studiare correnti caratterizzate da

numeri di Reynolds alti sono le RANS. Fino ad ora nessun tentativo è

stato fatto, dunque la capacità dei modelli di turbolenza di considerare un

forzamento a parete non è nota. In questo lavoro è studiato l’effetto di un

forzamento stazionario applicato ad un flusso turbolento in un canale piano

tramite due modelli di turbolenza: il modello Launder Sharma k−ε e il mod-

ello v2 − f . Entrambi i modelli adottano l’ipotesi di Boussinesq. Il Launder

Sharma k− ε è stato ottenuto modificando il modello k− ε per mezzo di fun-

zioni di smorzamento in modo da poter integrare le equazioni fino a parete.
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Il modello v2 − f oltre alle due equazioni di bilancio per ε e per k richiede

la soluzione di due equazioni aggiuntive: una di trasposto del termine v2 e

un’equazione ellittica di rilassamento.

La geometria e il tipo di forzamento sono scelte sulla base della semplicità.

Il software OpenFOAM è utilizzato per la soluzione numerica delle equazioni

discretezzate con il metodo dei volumi finiti. La mesh è generata tramite

blockMesh. La direzione trasversale z è stata discretizzata con una sola cella

in modo da effettuare una simulazione bidimensionale, l’imposizione di con-

dizioni simmetriche al centro del canale ha consentito lo studio solo di metá

dello stesso dimezzando il costo computazionale e condizioni periodiche sono

utilizzate per l’implementazione pratica del dominio di calcolo infinito. Il

numero di condizioni iniziali e il tipo di condizioni al contorno da imporre

dipendono di modello di turbolenza utilizzato.

Le simulazioni sono condotte a Reτ = 200 e Reτ = 1000 in modo da

poter quantificare l’errore commesso rispetto ai dati disponibili da studi DNS.

Entrambi i modelli forniscono buoni risultati nel caso senza forzamento, con

un errore percentuale massimo dell’ordine del 10%. Si osserva che nel caso di

riferimento il valore del Cf calcolato è sempre minore rispetto a quello atteso.

Nel caso forzato si ottiene una riduzione del Cf che, sebbene sia diversa

di quella teorica, lascia intravedere la possibilità di studiare le tecniche di

controllo di riduzione delle turbolenza tramite forzamento a parete via RANS.

Il meccanismo tramite il quale il modello di turbolenza riesce a catturare

la fisica della riduzione di resistenza viene indagato tramite un’analisi delle

equazioni di bilancio per l’energia cinetica media e turbolenta. Queste, dopo

essere state mediate nelle direzioni omogenee z, t e nella direzione x quin-

di integrate nella direzione y, risultano essere molto semplici in quanto la

geometria e il tipo di forzamento scelto consentono di eliminare molti termi-

ni perchè matematicamente nulli o empiricamente trascurabili. Sommando i

termini rimanenti si ottiene l’equazione globale di bilancio per l’energia cinet-

ica totale nella quale emerge il ruolo fondamentale della viscosità turbolenta

ε. L’equazione di bilancio per questa quantità, fortemente coinvolta nella

modellazione, viene studiata: si osserva che il termine di produzione di ε è

un termine dominante che viene modificato molto dal forzamento. Questo è

ottenuto come somma di due termini: uno direttamente legato al forzamento,

l’altro indirettamente.

È stato possibile effettuare un’analisi quantitativa dei risultati disponen-

do di dati ottenuti tramite simulazioni DNS. L’errore percentuale commesso
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dalle RANS è moderato nel caso di riferimento non controllato, ma gli errori

sono significativi nel caso forzato. La dissipazione viscosa ε è calcolata in

maniere inaccurata. Tuttavia quando la giusta scalatura è usata per la ε cal-

colata con il modello v2 − f si osserva un andamento modulato in direzione

x che è qualitativamente corretto anche se, oltre alla differenza numerica, si

osservano delle differenze nella zona in cui il valore massimo viene raggiunto e

nella forma che mostra un prolngamento nel caso DNS nella direzione del flus-

so. In conclusione si può affermare che i modelli di turbolenza sono in grado

di considerare gli effetti del forzamento a parete, tuttavia in modo quanti-

tativamente inaccurato. In particolare è rilevante l’errore nella modellazione

della dissipazione turbolenta ε. Sarebbe interessante prendere in consider-

azione i modelli di turbolenza degli sforzi di Reynolds, ritenuti piú adatti

allo studio di fenomeni fisici complessi.
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Chapter 1

Introduction

One of the most challenging and important areas of fluid mechanics is the

reduction of the skin-friction drag in fully developed turbulent wall flows.

The growing interest in the subject lies in the significant role played by wall

friction in the energy losses in a number of technological and industrial ap-

plications such as oil and gas pipelines, high-speed aircraft wings, jet engine

intakes and turbine blades. Considerable improvements in terms of perfor-

mance and fuel consumption can be achieved even by a small reduction of

turbulent skin friction.

The control strategies are mainly grouped into passive (i.e. do not require

energy to work) and active techniques, as well as open-loop (i.e. do not need

sensors and a control law with feedback) and closed-loop techniques. Since

passive techniques have achieved limited performance1 and closed-loop tech-

niques are today still impractical, various active open-loop techniques have

been developed with the aim of reducing drag in fully developed turbulent

flow. One interesting strategy currently under active study is the streamwise-

travelling waves concept, introduced by Quadrio, Ricco and Viotti in [34].

The forcing consists in sinusoidal waves of spanwise velocity which vary in

time t and are modulated in space along the streamwise direction x :

W = A sin(κxx− ωt), (1.1)

where A is the forcing amplitude, κx = 2π/λx is the streamwise wavenumber

and ω = 2π/T is the oscillation frequency. The sign of the phase speed

1For example riblets [16] yield reduction of total aerodynamic drag of at least 2% in

flight conditions [41].
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Figure 1.1: Sketch of the turbulent channel flow with wall streamwise-travelling waves

by Quadrio, Ricco and Viotti [34]

c = ω/κx discriminates between forward- and backward-travelling waves.

Stationary waves and oscillating wall are limiting cases, obtained respectively

for ω = 0 and for κx = 0.

Several DNS studies have been carried out, as well as one experimental

investigation by Auteri et at. [2]. Unfortunately, both these techniques are

limited to low values of Reynolds number, owing to the enormous increase

of the computational cost of DNS and the shrinking of the size of required

sensors and actuators to be employed in a laboratory experiment.

The performance of these control techniques at high values of the Reynolds

number is a fundamental problem: the few higher-Re available data, achieved

with the parameters of the wall forcing set at their low-Re optimal value,

show a relative quick decrease of drag reduction when Re is increased. Typ-

ically, how the performance of the forcing depends upon the value of the

Reynolds number is quantified in the literature ([36], [7],[38], [27], [4]) through

the exponent γ of a power law Rm ∼ Reγτ that links the maximum drag re-

duction rate Rm, achieved at a fixed forcing amplitude A+ , to the value

of Reτ , the Reynolds number based on the friction velocity uτ . Gatti and

Quadrio in [17] have performed a DNS up to Reτ = 2100, considering several
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wavenumbers and frequencies at each value of Re. A marked dependence

between the rate at which drag reduction deceases and the control parame-

ters seems to exist, therefore a chance for positive net energy saving at high

Reynolds numbers is given.

In order to reach applicative value of the Reynolds number, different

proposal have been put forward, for example the linearized studies of Moar-

ref and Jovanović [27](which however required a DNS database for a non-

manipulated flow and is thus useles in the present work) and Duque-Daza,

Baig, Lockerby, Chernyshenko and Davies [14] or the perturbation analysis of

the Navier–Stokes equations for the plane channel flow carried out by Belan

and Quadrio [4]. Nowadays RANS simulations have not been carried out.

The objective of the present work is to understand whether and how the

turbulence models can include drag reduction effects generated by a wall

based forcing. A simulation of an incompressible fully developed turbulent

channel flow altered by a wall forcing, consisting of a steady distribution of

spanwise velocity, modulated in the streamwise direction, is performed via

RANS. This flow configuration is chosen as the simplicity of the plane chan-

nel makes it one of the best prototypes to understand turbulent phenomena

and the steady forcing is one of the easiest drag reduction techniques. The

focus is on how the forcing affects the energy transfer between the mean flow

and the turbulent fluctuations. In particular is investigated the viscous dissi-

pation ε that is an quantity deeply involved in the modelling. A quantitative

analysis of the results is possible starting from the DNS data.

The numerical solution is performed by means of OpenFOAM, a free,

open-source numerical simulation software with extensive Computational

Fluid Dynamics (CFD) and multi-physics capabilities.

In this paper, x, y and z are used to indicate the streamwise, wall-normal

and spanwise coordinates; the respective velocity components are U, V and

W. The subscript 0 refers to uncontrolled flow. The superscript + indicates

non-dimensional quantities scaled by the cinematic viscosity of the fluid ν

and the friction velocity uτ,0 of the uncontrolled flow, whereas superscript

∗ refers to quantities scaled by the channel half-width h and the centreline

velocity of a laminar Poiseuille flow with the same flow rate Up.
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Chapter 2

Wall-based spanwise forcing

This chapter reviews the active open-loop drag reduction techniques based

on the spanwise movement of the wall and the respective Stokes layers are

shortly described. The effect of the Reynolds number is then discussed.

The energetic performance of the control strategies is here evaluated using

the following quantities, introduced by Kasagi, Hasegawa and Fukagata in

[22]:

• the net energy saving S

S =
P0 − (P + Pin)

P0

, (2.1)

where P is the power spent to drive the fluid along the streamwise

direction and Pin is the power required to enforce the control action,

considering ideal actuators.

• the drag-reduction rate R

R =
P0 − P
P0

, (2.2)

equal to the reduction of the skin-friction coefficient Cf if the mass flow

rate is constant.

2.1 Spanwise oscillating wall

The favourable modification of wall turbulence by spanwise wall-based forcing

was first proposed by Bradshaw and Pontikos [6]. They have observed that
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a sudden spanwise pressure gradient generates a transient drop in turbulent

friction, but if the pressure gradient is kept constant there is a recovery

of it. Almost 20 years ago Jung et al. [21] and Akhavan et al. [1] have

demonstrated that a significant turbulent drag reduction is achievable by

spanwise pressure gradient harmonic in time or equivalently by harmonic

oscillation of the wall. They have introduced the spanwise-oscillating wall

technique:

W = A sin(ωt), (2.3)

where A is the forcing amplitude and T = 2π/ω is the forcing period.

The analysis has been carried on in successive studies DNS-based and

laboratory experiments ([8], [9]).

A maximum R as high as 45% is achievable once A and T are set within

the optimum range from the R viewpoint, however a Quadrio and Baron [3]

have demonstrated that a net energy saving S ' 0.07 is possible because the

net energy saving R may offset the energy loss due to the forcing against the

viscosity resistance of the flow. A qualitative explanation of this mechanism

is that the interaction between traverse oscillating boundary layer, induced

by wall motion, and the near-wall turbulent structures weakens the viscous

wall cycle.

2.2 Spanwise-travelling waves

Du and Karniadakis [12] and Du, Symeonidis and Karniadakis [13] have first

proposed a spanwise-travelling wave of spanwise body force:

Fz = Ie−y/∆ sin(κzz − ωt), (2.4)

where the intensity I has its maximum at the wall and exponentially decays

away from it. The forcing is modulated in time and in the spanwise direction

z where it can be described as a wave with wavelength λz = 2π/κz.

The limited number of parameter combinations considered in that study

makes the study non conclusive, nevertheless the flow visualizations clearly

show significant modifications of the near-wall flow structures: the wall-

streak instability can be stabilized leading to the suppression of the tur-

bulence production and to large amounts of drag reduction.

6
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Zhao et al. [44] translated the forcing (2.4) into a space-time distribution

of wall velocity:

W = A sin(κzz − ωt). (2.5)

They have carried out only two simulations, reaching similar results in terms

of drag reduction and flow statistics compared to the waves of body force, but

negative values of the net energy saving S have been found. Later, Xie [43]

demonstrated and explained that the energy performance achievable by this

kind of forcing is always worse compared with the oscillating wall technique.

2.3 Streamwise-travelling waves

They have been introduced by Quadrio, Ricco and Viotti in [34]. The forcing

consists of waves of spanwise velocity moving in the streamwise direction:

W = A sin(κxx− ωt). (2.6)

A large DNS-based parametric study, at fixed A+ = 12 and Reτ = 200

has been carried out in order to explore the dependence of the drag reduction

on the forcing parameters over the entire κx−ω plane. The limiting case for

κx or ω equal to zero correspond respectively to the oscillation wall and the

stationary waves. As shown in the Fig (2.1) the effects of the travelling waves,

in terms of the percentage change in friction drag, as function of κx and ω

are not trivial: backward travelling waves always produce drag reduction,

whereas forward travelling waves, depending on the speed of the waves, can

produce both a large drag reduction as well as a drag increase. An extremely

good occurrence is that the region of minimum Pin almost coincides with the

region of maximum drag reduction. If ω ≈ 0.15 and κx ≈ 1 the maximum

value of the net energy saving S, equal to 18,% is measured.

An experimental confirmation of the above results have been reported by

Auteri et al. [2]. They have built a circular pipe where the travelling waves

are generated by independent azimuthal oscillation of thin axial pipe slabs as

shown in Fig.(2.2). A Fourier analysis has revealed that the discrete spatial

waveform, inevitably used in the experiment, need to be accounted for, since

it is responsible for significant effects that are absent in DNS studies.

7
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Figure 2.1: Map of friction R (%) for A+ = 12 and Reτ = 200 by Quadrio et al. [34]

Figure 2.2: Experimental realization by Auteri et al. [2]

2.4 Stationary wall forcing

Viotti, Quadrio and Luchini in [40] have translated the time-dependent forc-

ing law expressed by (2.3) into a stationary formula

W = A sin(κxx). (2.7)
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In this way they have got rid of one of the main drawbacks of the oscillating

wall technique, i.e. its unsteady nature. The maximum R is up to 52%

for the forcing amplitude A+ = 20 and the forcing wavelength λ+
x = 1250

at Reτ = 200. The link between the two kinds of forcing is the convection

velocity of the turbulent fluctuations Uw. It resembles the mean velocity

profile only in the bulk of the flow but near the wall, below y+ = 15, it takes

a well-defined non-zero value Uw ' 10 as showed by Kim and Hussain in [23].

A similar space-time extension has been discussed by Bergeret al. [5] where

spanwise-oriented Lorenz volume force were simulated via DNS. However

no conclusion can be drawn a priori because of the substantial difference

between body force and wall-based forcing.

Temporal and spatial forcing show qualitative analogy: the forcing wave-

length that yields the maximum value for drag reduction has been found to

correspond to the optimal period of the oscillating wall, for all amplitudes.

Differences exist from the point of view of energetic budget: the spacial forc-

ing is more efficient both for absolute drag reduction rate R and net power

saving S.

2.5 Stokes layers

The physics behind the drag reduction is based on interaction between the

Stokes layer and the near wall turbulence. Quadrio and Baron in [3] have

attempted to explain this mechanism as a phase shift between the low-speed

streaks and the quasi-streamwise vortical structures whereas Choi, DeBisshop

and Clyton in [8] as the creation of negative spanwise vorticity during the

oscillation cycle.

In this section are addressed the three kind of Stokes layers, determined

by the different boundary conditions imposed at the wall. For each of them,

a laminar Poiseulle flow subject to a boundary forcing is first considered,

therefore the laminar solution is compared to the turbulent flow, averaged

in the homogeneous directions, and in all the cases the agreement has been

found. A clear relation between R and the thickness of the Stokes layers

exists if the phase speed of the waves is sufficiently different from the near

wall turbulent convection velocity Uw and if the waves time scale, defined as

T ≡ λx
c−Uw

, is significantly smaller that the lifetime of the turbulent structures

[31].
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2.5.1 Temporal Stokes Layer (TSL)

When the forcing (2.3) is imposed at the wall of a laminar Poiseulle flow, the

entire flow consists in a parabolic profile plus a spanwise alternating motion

called Temporal Stokes Layer (TSL). The analytical expression of the TSL is

known since it corresponds to the oscillating transversal boundary layer that

develops in the second Stokes problem: an exact solution of Navier–Stokes

equations for an incompressible laminar flow, where a still fluid is bounded

by a wall subject to harmonic oscillation. The momentum equation reduces

to:

∂W

∂t
− ν ∂

2W

∂y2
= 0 (2.8)

with boundary conditions

W (0, t) =

{
0 t < 0

W̃ cos(ωt) t > 0
(2.9)

and

W (∞, t) = 0. (2.10)

The analytical solution, function of the two independent variables (x,t),

is:

W

W̃
= e
√

ω
2ν
ycos

(
ωt−

√
ω

2ν
y

)
, (2.11)

2.5.2 Spatial Stokes Layer (SSL)

It is the spatial equivalent of the TSL, if a steady forcing (4.11) is imposed at

the wall. The approximated analytical solution exists (see [40]) for a laminar

Poiseuille flow under the assumption that the thickness of the SSL is much

smaller that the channel half-height h:

W (x, y) = CxR

[
eiκxxAi

(
− iy
δx
e−i4/3π

)]
. (2.12)

In this expression Cx represents a normalization constant, κx = 2π/λx is

the forcing wavenumber and δx is the thickness of the SSL, defined as δx =(
ν

uy,wκx

)1/3

where uy,w is the gradient of the streamwise mean velocity profile

evaluated at the wall.

It is a function of the two independent variables (x,y).
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2.5.3 Generalized Stokes Layer (GSL)

Considering a laminar Poiseulle flow, subject to the boundary forcing (2.6),

the analytical expression for the traverse boundary layer created by the

waves, has been achieved by Quadrio and Ricco in [33] under the same

hypothesis of the SSL. It is a function of the three independent variables

(x,y,t):

W (x, y, t) = AR

{
Ce

2πi(x−ct)
λ Ai

[
e
πi
6

(
2πuy,w
λν

) 1
3
(
y − c

uy,w

)]}
(2.13)

where C is a complex constant.

2.6 Reynolds number effect

The performance losses of the spanwise wall forcing at applicative values of

the Reynolds number are a open issue: the available data, from DNS of ex-

periments, concern mainly flow at very low values of Reynolds number. The

few higher-Re data suggest a dependence of the performance of the forcing

upon the value of the Reynolds number through a power law Rm ∼ Reτ
γ,

where Rm is the maximum drag reduction rate achievable at a fixed forcing

amplitude A+. The exact value of the exponent γ is not well defined: theo-

retical studies are not entirely in agreement with the empirical information.

In Fig.(2.3) the literature data for maximum drag reduction rate Rm versus

Reτ are shown. The solid line is Rm ∼ Reτ
0.2, black symbols refer to DNS

studies whereas white symbols to experimental measurements. The value of

the forcing amplitude varies in the different datasets as well as the kind of the

forcing (circles: oscillating walls ([36], [37]); triangles: stramwise-travelling

waves ([34], [2]); square: spanwise-travelling waves ([12], [13]) and diamonds:

Lorenz force ([28], [5]).

Gatti and Quadrio in [17] have carried out a parametric survey up to

Reτ = 2100 via DNS. They have found a compromise, between the compu-

tational cost and the need of time-averaging the fluctuating space-mean wall

shear stress, adjusting the size of the computational domain in the homoge-

neous directions. Although the drag reduction can be lightly overestimated,

the results are in accordance with the DNS data and when Re is increased a

relatively quick decrease of the drag reduction is observed if the parameters
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Figure 2.3: Literature data for maximum drag reduction rate Rm versus Reτ by Gatti

and Quadrio [17]. The solid line is Rm ∼ Reτ−0.2

of the forcing are kept at their low-Re optimal value. However the rate at

which R drops markedly depends on the control parameters and for higher

Re the optimal control parameters are shifted towards higher frequencies and

wavenumbers. A similar result has been achieved by Hurst and Chung [10].

In the Fig. (2.4) is sketched the change in drag reduction in the κx
+−ω+

plane when the Reynolds number is increased: the picture on the left refers

to a low-Re case and the one on the right to a high-Re case. The value of the

exponent γ is not constant when κx
+ and ω+ are varied. In particular there

are some regions that are less sensitive to Re: if ω+ = 0.08 and κx
+ = 0.035,

γ is found to be equal to -0.1 thus a large values of R seems to be achievable

also at high values of the Reynolds number.

The percentage drag reduction R, obtained by streamwise travelling waves

with constant wavelength λ+ = 1250 and A+ = 12, is plotted versus ω+ in

Fig.(2.5). Since only steady forcing has been considered in this work, the

error committed by the RANS simulations has been evaluated respect to the

value corresponding to ω+ = 0: 45% at Reτ = 200 and 30% at Reτ = 1000.
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Figure 2.4: Sketch of the changes in drag reduction at different values of Reynolds

number: low-Re on the left and high-Re on the right by Gatti and Quadrio [17]

Figure 2.5: Percentage drag reduction rate 100R versus ω+ by Gatti and Quadrio [17]
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Chapter 3

RANS equations

In this chapter the RANS equations are introduced and the closure turbulence

models used in this work are addressed.

3.1 Reynolds-Averaged Navier-Stokes equa-

tions

Different approaches to the numerical simulation of turbulent flows have been

developed through them, RANS is a cost-effective means to study flows with

high Reynolds numbers. The DNS of the Navier-Stokes equations, with ap-

propriate initial and boundary conditions lead to the most detailed solution,

but it requires the resolution of all the scales of motion. The computational

cost increases with Re3 limiting its application to low Reynolds numbers.

Large Eddy Simulation (LES) is a compromise between DNS and RANS,

however it is still expensive when applied to practical engineering problems.

The continuity and Navier-Stokes equations for a constant-proprieties

Newtonian fluid flow, are given by:

∇·U = 0 (3.1)

∂U

∂t
+ U·∇U =

1

ρ
∇p+ ν∇2 U (3.2)

where U and p are respectively velocity and pressure.

The idea behind the RANS equations is the Reynolds decomposition,

whereby an instantaneous quantity, for example velocity, is decomposed into
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its mean 〈U(x)〉t and the fluctuation u(x,t):

U(x, t) = 〈U(x)〉t + u(x, t) (3.3)

where

〈U(x)〉t = lim
T→∞

1

T

∫ T

0

U(x, t)dt. (3.4)

The equations (3.1) and (3.2) after the splitting of each instantaneous quan-

tity (i.e U and p), by means of the Reynolds decomposition, and the time-

averaging are:

∂ 〈Uj〉t
∂xj

= 0 (3.5)

〈Ui〉t
∂ 〈Uj〉t
∂xi

= ν
∂2 〈Uj〉t
∂x2

i

−
∂ 〈uiuj〉t
∂xi

− 1

ρ

∂ 〈p〉t
∂xj

. (3.6)

Eq.(3.6) are called Reynolds equations. A manipulation of them yields:

ρ 〈Ui〉t
∂ 〈Uj〉t
∂xi

=
∂

∂xi

[
µ

(
∂ 〈Ui〉t
∂xj

+
∂ 〈Uj〉t
∂xi

)
− 〈p〉t δij − ρ 〈uiuj〉t

]
, (3.7)

where the 〈uiuj〉t term can be interpreted as stress, the Reynolds stress. In

fact the terms in the square brackets represent the sum of, respectively, the

viscous stress, the isotropic stress and the Reynolds stress, pre multiplied by

density since its conventional definition.

The Reynolds stresses are the component of a symmetric tensor, of which

half of the trace is by definition the turbulent kinetic energy

〈k〉t =
1

2
〈uiui〉t , (3.8)

whereas the dissipation rate of turbulent kinetic energy ε is defined as

〈ε〉t = ν

〈
∂uj
∂xi

∂uj
∂xi

〉
t

. (3.9)

Taking the divergence of Eq.(3.6) yields a Poisson’s equation for the mean

pressure 〈p〉t:

−1

ρ

∂2 〈p〉t
∂x2

i

=

〈
∂Ui
∂xj

∂Uj
∂xi

〉
t

. (3.10)
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The four independent equations governing the mean velocity field (i.e the

continuity equation - or, alternatively, Poisson’s equation - and the 3 scalar

Reynolds equations) are not enough to solve the problem, since these equa-

tions contain more than four unknowns: 〈p〉t, 〈U〉t and 〈uiuj〉t. This leads to

the closure problem. In order to solve the Reynolds equations the Reynolds

stresses have to be determined by means of a turbulence model.

Since the early 1950s two main categories of turbulence models had

evolved:

Turbulent-viscosity hypothesis models

The turbulent viscosity models adopt the Boussinesq hypothesis based on the

proportionality between Reynolds stresses and the local velocity gradients:

−ρ 〈uiuj〉t +
2

3
ρ 〈k〉t δij = 2ρ 〈νT 〉t

(
∂ 〈Ui〉t
∂xj

+
∂ 〈Uj〉t
∂xi

)
(3.11)

where the positive scalar coefficient 〈νT 〉t is the so called eddy viscosity. Sub-

stituting the Eq.(3.11) in the Eq.(3.6), the mean-momentum equations are

obtained:

〈Ui〉t
∂ 〈Uj〉t
∂xi

=
∂

∂xi

[
〈νeff〉t

(
∂ 〈Ui〉t
∂xj

+
∂ 〈Uj〉t
∂xi

)]
−1

ρ

∂

∂xj
(〈p〉t+

2

3
ρk) (3.12)

where

〈νeff (x, t)〉t = ν + 〈νT (x, t)〉t . (3.13)

They are characterized by the same form of the steady Navier–Stokes equa-

tions, but 〈U〉t, 〈νeff〉t and 〈p〉t + 2
3
ρ 〈k〉t appear in place of U , ν and p.

The turbulent viscosity hypothesis is based on a mathematical descrip-

tion of Reynolds stresses similar to the one describing the molecular gradient-

diffusion process. But, since these two processes are based on different phys-

ical laws the turbulent viscosity hypothesis does not possesses a general va-

lidity. However, in case of simple shear flow the results obtained seem to be

adequate and so this hypothesis is often reasonably accurate.

In order to calculate the eddy viscosity, once adopted the turbulent vis-

cosity hypothesis, different models have been proposed, from the algebraic

ones, suggested by Prandtl and also known as zero equation models, to the
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n-equations models, where n is the number of equations to be solved in ad-

dition to conservation of mass and momentum equations for the mean flow.

Modelling the direct influence of viscosity in the near-wall region and the

related difficulties can be avoided through the wall functions if the value of

Reynolds number is high enough to minimize the viscous effect or to allow

the establishment of the universal wall function. Otherwise the so called low

Reynolds number models have to be employed. Those models are modified in

order to describe a flow close to a solid wall, integrating the model equations

right through the wall. Since Van Driest [39] has introduced the easiest

damping function in 1956, various models, incorporating wall damping effect

and/or molecular effect, have been developed [29].

Reynolds Stress Models

They are the most complex classical turbulence models and quantitative ac-

curacy is often not easy to achieve [42]. They require a model transport

equation for each Reynold stress component and for the dissipation 〈ε〉t.
Those models are not studied in this work, even though they probably are

more fitting to account for the wall forcing effect. In fact in contrast to

eddy-viscosity models, this category of models accommodate, without the

introduction of empirical terms, different effects such as sudden stain rate,

streamline curvature, rigid body rotation and body force. Except for near

wall treatments, generally no Reynolds number dependence has been ob-

served.

In this work we use two low-Reynolds turbulence models of the first cat-

egory, that are described below.

3.1.1 Launder Sharma k − ε model

It is a low-Reynolds turbulence model proposed by Launder and Sharma [24]

in 1974, as a variant of the k-ε model. They have studied a flow in the vicinity

of a spinning disc in order to predict swirling flows. The two equations of

the model are:

〈Ui〉t
∂ 〈k〉t
∂xi

=
∂

∂xj

[(
ν +
〈νT 〉t
σK

)
∂k

∂xj

]
+ 〈Pk〉t − 〈ε̃〉t − 〈D〉t (3.14)
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〈Ui〉t
∂ 〈ε̃〉t
∂xi

=
∂

∂xj

[(
ν +
〈νT 〉t
σε

)
∂ 〈ε̃〉t
∂xj

]
+Cε1f1

〈ε̃〉t
〈k〉t
〈Pk〉t − Cε2 〈f2〉t

〈ε̃〉t
2

〈k〉t
+ 〈E〉t ,

(3.15)

where 〈Pk〉t is the production of turbulent kinetic energy

〈Pk〉t = −〈uiuj〉t
∂ 〈Ui〉t
∂xj

. (3.16)

The dissipation variable 〈ε̃〉t = 〈ε〉t−〈D〉t is used, as Jones and Launder pro-

posed in [20], because of its numerical convenience in imposing the boundary

condition. The extra term 〈E〉t is used in the transport equation in order to

improve prediction in the wall region.

The exact equation for the dissipation rate 〈ε〉t could be derived but is

best viewed as empirical because 〈ε〉t is mainly determined by the large-scale

motions whereas the exact equation pertains to processes in the dissipative

range [30].

Then 〈νT 〉t, that depends only on the turbulence quantities 〈k〉t and 〈ε〉t,
is calculated as

〈νT 〉t = Cµ 〈fµ〉t
〈k〉t

2

〈ε〉t
. (3.17)

The values of the five adjustable constants, two extra terms 〈D〉t and 〈E〉t
and three damping function contained in the equations are given in Table

[3.1], where 〈RT 〉t =
〈k〉2t
ν〈ε̃〉t

.

〈fµ〉t f1 〈f2〉t 〈E〉t

exp

[
− 3.4

(1+
〈RT 〉t

50
)2

]
1 1− 0.3exp(−〈RT 〉t

2) 2ννT

(
∂2Ui
∂xi∂xk

)

〈D〉t Cµ Cε1 Cε2 σk σε

2ν

(
∂
√
〈k〉t

∂xj

)2

0.09 1.44 1.92 1 1.3

Table 3.1: Launder Sharma k − ε model: Constants and Functions

The boundary conditions to be imposed at the wall are 〈k〉t = 0 and

〈ε̃〉t = 0.
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3.1.2 v2 − f model

It is a near-wall turbulence model, originally proposed by Durbin in 1991

[15], where the non-locality is represented by solving an elliptic relaxation

equation for 〈f〉t, the variance of the normal velocity adjacent to a wall

is modelled through 〈v2〉t = 〈uiuj〉t ninj and there is no need for damping

functions. Some modifications have been made by Lien and Kalitzin [25] in

order to enhance the numerical stability by means of a segregated numerical

procedure which does not allow an implicit coupling between 〈v2〉t and 〈f〉t
at the wall, and later Davidson, Nielsen and Sveningsson [11] have imposed

a limit on the turbulence viscosity.

The resulting equations consist of the two standard k − ε equations

〈Ui〉t
∂ 〈k〉t
∂xi

=
∂

∂xj

[(
ν +
〈νT 〉t
σK

)
∂ 〈k〉t
∂xj

]
+ 〈Pk〉t − 〈ε〉t (3.18)

〈Ui〉t
∂ 〈ε〉t
∂xi

=
∂

∂xj

[(
ν +
〈νT 〉t
σε

)
∂ 〈ε〉t
∂xj

]
+
〈Cε1〉t 〈Pk〉t − Cε2 〈ε〉t

〈T 〉t
, (3.19)

the 〈v2〉t transport equation

〈Ui〉t
∂ 〈v2〉t
∂xi

=
∂

∂xj

[(
ν +
〈νT 〉t
σK

)
∂ 〈v2〉t
∂xj

]
+min(〈k〉t 〈f〉t ,−〈α〉t + C2 〈Pk〉t)− 6

〈ε〉t
〈k〉t

〈
v2
〉
t

(3.20)

and the elliptic relaxation equation for 〈f〉t

〈L〉t
∂2 〈f〉t
∂xjxj

= 〈f〉t −
1

〈k〉t
[〈α〉t − C2 〈Pk〉t] , (3.21)

where 〈T 〉t is the turbulent time scale

〈T 〉t = max

(
〈k〉t
〈ε〉t

, 6

√
ν

〈ε〉t

)
, (3.22)

〈L〉t is the turbulent length scale

〈L〉t = CLmax

[
〈k〉

3
2
t

〈ε〉t
, Cη

ν3

〈ε〉t

1
4

]
, (3.23)

and 〈α〉t is defined as

〈α〉t =
1

〈T 〉t

[
(C1 − 6)

〈
v2
〉
t
− 2

3
〈k〉t (C1 − 1)

]
. (3.24)
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The eddy viscosity 〈νT 〉t is given by

〈νT 〉t = Cµ
〈
v2
〉
t
〈T 〉t . (3.25)

The model coefficients are reported in Table [3.2] and the boundary condi-

Cµ C1 C2 CL Cη 〈Cε1〉t Cε2 σk σε

0.22 1.4 0.3 0.23 70 1.4
[
1 + 0.05 min

(√
〈k〉t
〈v2〉t

, 100
)]

1.9 1 1.3

Table 3.2: v2 − f model: Constants and Functions

tions to be imposed at the wall are: 〈k〉t = 0, ∇〈ε〉t = 0, 〈v2〉t and 〈f〉t = 0.
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Chapter 4

The plane channel flow and

OpenFOAM

4.1 Averaging operators

The relevant operators used in this work are here introduced. Given a quan-

tity a(x), it is averaged along the x -direction as:

〈a〉x =
1

Lx

∫ Lx

0

a(x) dx; (4.1)

a quantity a(z) is averaged along the z -direction as:

〈a〉z =
1

Lz

∫ Lz

0

a(z) dz; (4.2)

a quantity a(t) is averaged along the time t as:

〈a〉t =
1

T

∫ T

0

a(t) dx; (4.3)

and, analogously to previous work [35], a quantity a(y) is integrated along

the y-direction as:

〈a〉y =

∫ h

0

a(y) dy. (4.4)

Given a quantity a(x, y, z, t), averaged over the N wavelengths λx as:

a(x, y, z, t) =
1

N

N−1∑
n=0

a(nλx + x, y, z, t), (4.5)
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it is convenient to define the following operators:

〈a〉zt (xy) =
1

Lz

1

T

1

N

∫ T

0

∫ Lz

0

N−1∑
n=0

a(nλx + x, y, z, t) dz dt, (4.6)

〈a〉xzt (y) =
1

λx

1

Lz

1

T

1

N

∫ T

0

∫ Lz

0

∫ λx

0

N−1∑
n=0

a(nλx + x, y, z, t) dx dz dt, (4.7)

〈a〉xy (zt) =
1

λx

1

N

∫ h

0

∫ λx

0

N−1∑
n=0

a(nλx + x, y, z, t) dx dy. (4.8)

[a] = 〈a〉xyzt =
1

λx

1

Lz

1

T

1

N

∫ T

0

∫ Lz

0

∫ h

0

∫ λx

0

N−1∑
n=0

a(nλx + x, y, z, t) dx dy dz dt.

(4.9)

4.2 Flow configuration

We consider an incompressible fully developed turbulent flow between two

parallel flat plates, assumed infinitely long and wide, at a distance of 2h.

Geometry and coordinate system are shown in Fig. [1.1]. The flow is statis-

tically stationary and symmetric about mid-plane y = h. The mean flow is

in the streamwise x direction, it is driven by a streamwise pressure gradient,

calculated every time step in order to guarantee a constant flow rate. The

bulk velocity Ub is defined as

Ub =
[U ]

h
. (4.10)

In the reference case (x,z ) are both homogeneous directions, whereas when

the steady forcing

W = A sin

(
2π

λx
x

)
(4.11)

is applied the x -direction is not a homogeneous direction anymore. The

forcing parameters are chosen to facilitate comparison of the results with

those already available by DNS studies, thus a constant forcing amplitude

A+ = 12 and a constant wavelength λ+
x = 1250 are considered in this study.
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Reτ Lx/h L+
x Nx x Ny

200 6.25 1250 20 x 100

1000 6.25 1250 100 x 500

Table 4.1: Computational domain size and spatial resolution for two sets of simulations

carried out at different values of the friction Reynolds number Reτ

The computational domain size is reported in Table [4.1]: in particu-

lar the streamwise length of the computational domain coincides with the

wavelength λ+
x , eliminating all the quantities derived over x when they are

averaged in this direction.

The relevant equations of motion for the mean flow are the continuity

equation:

∂ 〈U〉zt
∂x

+
∂ 〈V 〉zt
∂y

= 0 (4.12)

and the mean-momentum equations:

∂(〈U〉zt 〈U〉zt)
∂x︸ ︷︷ ︸
Ax

+
∂(〈V 〉zt 〈U〉zt)

∂y︸ ︷︷ ︸
Bx

= − 1

ρ

∂ 〈p〉zt
∂x︸ ︷︷ ︸
Cx

+ ν
∂2 〈U〉zt
∂x2︸ ︷︷ ︸
Dx

+ ν
∂2 〈U〉zt
∂y2︸ ︷︷ ︸
Ex

− ∂ 〈uu〉zt
∂x︸ ︷︷ ︸
Fx

− ∂ 〈uv〉zt
∂y︸ ︷︷ ︸
Gx

;

(4.13)

∂(〈U〉zt 〈V 〉zt)
∂x︸ ︷︷ ︸
Ay

+
∂(〈V 〉zt 〈V 〉zt)

∂y︸ ︷︷ ︸
By

= − 1

ρ

∂ 〈p〉zt
∂y︸ ︷︷ ︸
Cy

+ ν
∂2 〈V 〉zt
∂x2︸ ︷︷ ︸
Dy

+ ν
∂2 〈V 〉zt
∂y2︸ ︷︷ ︸
Ey

− ∂ 〈uv〉zt
∂x︸ ︷︷ ︸
Fy

− ∂ 〈vv〉zt
∂y︸ ︷︷ ︸
Gy

;

(4.14)
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∂(〈U〉zt 〈W 〉zt)
∂x︸ ︷︷ ︸
Az

+
∂(〈V 〉zt 〈W 〉zt)

∂y︸ ︷︷ ︸
Bz

= − 1

ρ

∂ 〈p〉zt
∂z︸ ︷︷ ︸
Cz

+ ν
∂2 〈W 〉zt
∂x2︸ ︷︷ ︸
Dz

+ ν
∂2 〈W 〉zt
∂y2︸ ︷︷ ︸
Ez

− ∂ 〈uw〉zt
∂x︸ ︷︷ ︸
Fz

− ∂ 〈vw〉zt
∂y︸ ︷︷ ︸
Gz

.

(4.15)

where the terms that only arise when the forcing (4.11) is applied are high-

lighted in red.

Studying the axial and the wall-normal mean equations, emerges that

after averaging over x terms Ax, Ay, Dx, Dy, Fx and Fy are null because the

spatial periodicity imposes that 〈U〉zt 〈U〉zt|x=Lx
, ν

∂〈U〉zt
∂x

∣∣∣
x=Lx

, 〈uu〉zt|x=Lx
is

equal respectively to 〈U〉zt 〈U〉zt|x=, ν
∂〈U〉zt
∂x

∣∣∣
x=0

, 〈uu〉zt|x=0, and 〈U〉zt 〈V 〉zt|x=Lx
,

ν
∂〈V 〉zt
∂x

∣∣∣
x=Lx

, 〈uv〉zt|x=Lx
is equally respectively to 〈U〉zt 〈V 〉zt|x=0, ν

∂〈V 〉zt
∂x

∣∣∣
x=0

,

〈uv〉zt|x=0.

The equations become:〈
〈V 〉zt

∂ 〈U〉zt
∂y

〉
x

= −
〈

1

ρ

∂ 〈p〉zt
∂x

〉
x

+

〈
ν
∂2 〈U〉zt
∂y2

〉
x

−
〈
∂ 〈uv〉zt
∂y

〉
x

(4.16)

〈
〈V 〉zt

∂ 〈V 〉zt
∂y

〉
x

= −
〈

1

ρ

∂ 〈p〉zt
∂y

〉
x

+

〈
ν
∂2 〈V 〉zt
∂y2

〉
x

−
〈
∂ 〈vv〉zt
∂y

〉
x

. (4.17)

Since some terms are empirically found to be negligible1, the equations reduce

to their counterpart for the uncontrolled flow:〈
1

ρ

∂ 〈p〉zt
∂x

〉
x

−
〈
ν
∂2 〈U〉zt
∂y2

〉
x

+

〈
∂ 〈uv〉zt
∂y

〉
x

= 0 (4.18)

〈
1

ρ

∂ 〈p〉zt
∂y

〉
x

+

〈
∂ 〈vv〉zt
∂y

〉
x

= 0. (4.19)

Observing that
〈
∂〈vv〉zt
∂x

〉
x

= 0, the latter leads to:

〈
∂ 〈p〉zt
∂x

〉
x

=

〈
d 〈pw〉zt
dx

〉
x

(4.20)

1
〈
〈V 〉zt

∂〈U〉zt
∂y

〉
x
' 10−6;

〈
〈V 〉zt

∂〈V 〉zt
∂y

〉
x
' 10−8;

〈
ν
∂2〈V 〉zt
∂y2

〉
x
' 10−7
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where 〈pw〉zt = 〈p(x, 0, 0)〉zt is the mean pressure on the wall. The axial

mean-momentum equation leads to:

−
〈
d 〈pw〉zt
dx

〉
x

=
〈τw〉xzt
h

, (4.21)

where 〈τw〉xzt is the x -component of the averaged wall shear stress defined

as:

〈τw〉xzt = ρν

〈
d 〈U〉zt
dy

〉
x

∣∣∣∣
y=0

. (4.22)

The viscous stress is relevant only near the wall, therefore the appropriate

velocity scale in this region is the friction velocity:

uτ =

√
〈τw〉xzt
ρ

(4.23)

The friction Reynolds number is defined as:

Reτ =
uτh

ν
. (4.24)

The skin friction coefficient is:

〈Cf〉xzt =
〈τw〉xzt

1
2
ρU2

b

. (4.25)

This can be obtained, for the uncontrolled flow, by means of Dean’s correla-

tion:

〈Cf〉xzt = 0.073Re−0.25 (4.26)

if the Reynolds number is sufficiently high, otherwise a more correct valua-

tion of the 〈Cf〉xzt is achievable by DNS studies.

4.3 Numerical solution

The solution of the RANS equations is performed using the open source

software OpenFOAM (Open Field Operation and Manipulation). It is a

numerical simulation software package with large CFD and multi-physics

capabilities, widely employed by commercial and academic organisations.
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OpenFOAM is a C++ library, used to develop the applications, that are

solvers and utilities. The users are free to customise new applications, al-

though various of them are included in the OpenFOAM distribution. The

solver uses the finite volume method for the discretization of the govern-

ing flow equations over all the control volume of the solution domain. The

unknown flow variables are substituted by finite-difference-type approxima-

tions. This converts the integral equations in a system of algebraic equations,

solved by an iterative method. The solver used in this work is simpleFoam:

a steady-state solver for incompressible, turbulent flow.

4.3.1 Generation of the Mesh

The mesh is generated by means of the utilitiy blockMesh: a dictionary file

named blockMeshDict located in the constant/polyMesh directory that gen-

erates the mesh and writes out the mesh data to points, faces, cells and

boundary files in the same directory.

A typical structure of the blockMeshDict includes different kewywords.

The most important are:

• convertToMeters: scaling factor for the vertex coordinates.

• Vertices: a list of the vertex coordinates of the computational domain.

vertices

(

(0 0 0) //vertex number 0

(0.6147 0 0) //vertex number 1

(0 0.09825 0) //vertex number 2

...

)

);

• Blocks: a list of vertex labels, a vector giving the number of cells

required in each direction and the type and list of cell expansion ratio

in each direction.
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blocks

(

hex (0 1 3 2 4 5 7 6) // vertex numbers

(20 100 1) // numbers of cells

simpleGrading (1 4 1) // cell expansion ratios

);

The mesh consists of blocks of hexaedral cells, whose size is constant

in the two directions (x,z ). In the cross-stream direction y, a grading

(i.e a uniform expansion in a specified direction) is required in order

to guarantee a fitting resolution in the near wall area: since no wall

function are used, y+ has to be approximately 1 and at least the first

five cells have to lie below y+ = 10 to assure that the SSL is adequately

evaluated.

• Boundary: a list of surfaces corresponding to the boundary of the

physical domain, where boundary conditions have to be specified. The

cyclic boundary conditions are used in the directions (x,z ) in order to

practically implement the infinite computational domain. They require

the specification of the name of the related cyclic patch through the

neighbourPatch keyword.

boundary

(

bottomWall

{

type wall;

faces (0 1 5 4);

}

topWall

{

type symmetryPlane;

faces (2 6 7 3);

}

inflow
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{

type cyclic;

neighbourPatch outflow;

faces (1 3 7 5);

}

outflow

{

type cyclic;

neighbourPatch inflow;

faces (0 4 6 2);

}

...

);

The symmetryPlane boundary condition, imposed on the patch top-

Wall, allows the study only of half of the channel, halving the compu-

tational cost. In order to perform a 2D simulation only one cell in the

z direction is used.

4.3.2 Boundary conditions

The initial fields data are stored in the 0 subdirectory of the case directory.

Since both cyclic and symmetryPlane boundary conditions are physical

conditions, they do not require any values to be imposed, thus the wall

boundary conditions are the only crucial ones. In fact the cyclic boundary

conditions, also know as periodic boundary conditions, treat two boundary

regions as if they are physically connected, imposing that for each variable

the value at the nodes of the patch is equal to the value at the nodes of its

neighbour patch, while the symmetryPlane boundary condition implies that

the components of the velocity and of the gradient normal to the boundary

should be fixed zero.

At the wall the numerical boundary conditions of Dirichelet and Neumann

are used respectively for velocity and for pressure. The forcing (4.11) is

applied by means of the boundary condition on the velocity at the wall: a new

library of OpenFOAM, addressed in the next section is used in order to obtain

sinusoidal boundary conditions. In Chapter (3) the boundary conditions
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related to the turbulent variables have been discussed. In particular the

dissipation rate ε must be zero at the wall in the Launder Sharma k−ε model

and zeroGradient in the v2 − f model. The latter requires two additional

fields f :

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object f;

}

// * * * ** * * * * * * * * * * * * * * * * * * * * * * //

dimensions [ 0 0 -1 0 0 0 0 ];

internalField uniform 0.07;

boundaryField

{

bottomWall

{

type fixedValue;

value uniform 0;

}

and v2:

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object v2;

}

// * * * ** * * * * * * * * * * * * * * * * * * * * * * //

dimensions [ 0 2 -2 0 0 0 0 ];
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internalField uniform 4.12e-5;

boundaryField

{

bottomWall

{

type fixedValue;

value uniform 1e-20;

}

corresponding respectively to the two additional equations solved (i.e. Eq.(3.20)

and Eq. (3.21)).

swak4foam

Stands for SWiss Army Knife for Foam. It is a library that offers a large

number of utilities, such as groovyBC to specify arbitrary boundary condi-

tions based on expressions. It is used in this work in order to impose the

sinusoidal forcing (4.11) at the wall:

boundaryField

{

bottomWall

{

type groovyBC;

value uniform (0 0 1);

variables "A=0.336;xp=pos().x;lambdaX=0.6147;";

valueExpression "vector (0, 0, A*sin(xp*(2*pi)/lambdaX))";

}

...

}

The following libraries need to be added in the dictionary file controlDict

located in the system directory:

libs

(

"libsimpleSwakFunctionObjects.so"
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"libswakFunctionObjects.so"

"libgroovyBC.so"

...

);

4.3.3 Residuals

The convergence of the iterative solution is evaluated by means of the resid-

uals. The discretization of the Navier–Stokes equations through the finite

volume method over all the control volume of the solution domain, leads to

an algebraical linear system:

Ax = b, (4.27)

where A is a matrix of order n, x is the vector of the solution at a specific

cell and at a determined time-step and b ∈ <n. The residuals are calculated

as

R = Ax− b. (4.28)

In OpenFOAM a normalization of the residuals is made by means of the

definition of normalization factor F :

F =
∑

(‖wA − pA‖+ ‖b− pA‖) + 1020, (4.29)

where wA = Ax and pA = A 〈x〉xyzt. The normalised residuals are:

r =

∑
‖b−wA‖
F

. (4.30)

The error committed using the approximated solution x in place of the exact

solution xe depends on the normalized residuals r, therefore a reduction of

them involves a reduction of the error.
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Chapter 5

Results

Given the fundamental role played by the the skin friction coefficient 〈Cf〉xzt
in the assessment of the drag reduction performance, as follows from Eq.

(2.2), its value achieved via RANS is here discussed both in the reference

and in the forced case at different values of the Reynolds number. A quanti-

tative analysis of the results calculated is made, starting from the DNS data.

The of energy balance for the mean and turbulent kinetic energy is studied

in order to investigate the mechanism of the drag reduction prediction.

The percentage error made by the RANS simulations, for a quantity a, is

calculated as:

∆a =
〈a〉 − aDNS
aDNS

(5.1)

where 〈a〉 is the calculated value after suitable average and aDNS is the

computed via DNS one.

5.1 DNS

In order to make a quantitative analysis possible, the relevant quantities

are calculated by means of a parallel DNS solver [26], based on mixed dis-

cretization:Fourier expansion in the homogeneous directions and compact

fourth-order accurate explicit compact finite difference schemes in the wall-

normal direction. The computational domain has dimensions of L∗x = 6πh,

L∗y = 2h and L∗z = 3πh in the three directions. The employed number of
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modes/points is given by Nx = 320, Ny = 160 and Nz = 320.

The field of the spanwise velocity component achieved when the forcing

(4.11) is applied, is shown in Fig. [5.1].

5.1.1 Skin Friction Coefficient

The skin friction coefficients are already know from previous DNS studies,

thus are not calculated in the present work. In the reference case, the value of

the skin friction coefficient is found to be Cf,0DNS = 0.00793 when Reτ = 200,

as reported in the DNS study of Quadrio and Ricco [32], and Cf,0DNS =

0.00517 when Reτ = 1000 as computed by means of Dean’s correlation (4.26)

or starting from the DNS data of Hoyas et al. [18]. In the forced case, a

manipulation of Eq. (2.2) leads to:

CfDNS = Cf,0DNS(1−RDNS), (5.2)

where, since Cf,0DNS and RDNS are known (see (2.6)), the values of CfDNS =

0.00436 and CfDNS = 0.00362 are found, respectively at Reτ = 200 and

Reτ = 1000.

5.1.2 Mechanism of drag reduction

With the aim of understanding the mechanism of the drag reduction predic-

tion by means of the turbulence model, the energy balance for the mean and

fluctuating flow fields is studied. The two equations for mean and kinetic

energy are then summed together to obtain the global balance for the total

kinetic energy. The terms in red are those arising only when the forcing is

applied. Since a constant mass flow rate is imposed in the simulation, the

reduction of the skin friction coefficient 〈Cf〉xzt is attributed to a decrease of

〈τw〉xzt.

Balance equation for the MKE

The transport equation for MKE 〈K〉zt = 1
2

(
〈U〉2zt + 〈V 〉2zt + 〈W 〉2zt

)
is:

〈U〉zt
∂ 〈K〉zt
∂x︸ ︷︷ ︸

1

+ 〈V 〉zt
∂ 〈K〉zt
∂y︸ ︷︷ ︸

2

+
∂ 〈Tx〉zt
∂x︸ ︷︷ ︸
3

+
∂ 〈Ty〉zt
∂y︸ ︷︷ ︸
4

= −〈Pk〉zt︸ ︷︷ ︸
5

−〈E〉zt︸︷︷︸
6

(5.3)
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Figure 5.1: Field of the spanwise velocity component W calculated via DNS

where

〈Tx〉zt = 〈U〉zt 〈uu〉zt + 〈V 〉zt 〈uv〉zt + 〈W 〉zt 〈uw〉zt + 〈U〉zt
〈P 〉zt
ρ

−2ν 〈U〉zt
∂ 〈U〉zt
∂x

−ν 〈V 〉zt
(
∂ 〈U〉zt
∂y

+
∂ 〈V 〉zt
∂x

)
−ν 〈W 〉zt

∂ 〈W 〉zt
∂x

,

(5.4)

〈Ty〉zt = 〈U〉zt 〈uv〉zt + 〈V 〉zt 〈vv〉zt + 〈W 〉zt 〈vw〉zt+ 〈V 〉zt
〈P 〉zt
ρ

−ν 〈U〉zt
∂ 〈U〉zt
∂y

−ν 〈U〉zt
∂ 〈V 〉zt
∂x

−2ν 〈V 〉zt
∂ 〈V 〉zt
∂y

−ν 〈W 〉zt
∂ 〈W 〉zt
∂y

,

(5.5)

〈Pk〉zt = −〈uu〉zt
∂ 〈U〉zt
∂x

− 〈uv〉zt
∂ 〈U〉zt
∂y

−〈uv〉zt
∂ 〈V 〉zt
∂x

−〈vv〉zt
∂ 〈V 〉zt
∂y

− 〈uw〉zt
∂ 〈W 〉zt
∂x

− 〈vw〉zt
∂ 〈W 〉zt
∂y

,

(5.6)
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〈E〉zt = 2ν

(
∂ 〈U〉zt
∂x

)2

+ 2ν

(
∂ 〈V 〉zt
∂y

)2

+ 2ν
∂ 〈U〉zt
∂y

∂ 〈V 〉zt
∂x

+ ν

(
∂ 〈U〉zt
∂y

)2

+ν

(
∂ 〈V 〉zt
∂x

)2

+ ν

(
∂ 〈W 〉zt
∂x

)2

+ ν

(
∂ 〈W 〉zt
∂y

)2

.

(5.7)

The convection of MKE is expressed by terms 1 and 2, while term 3, as

well as term 4, consists of the sum of the transport work performed by the

Reynolds stresses, the pressure work and the transport work done by the

mean viscous stresses. Term 5 is the work of deformation carried out by the

Reynolds stresses through which energy is exchanged between the mean flow

and the fluctuating flow and term 6 is the mean flow viscous dissipation.

In order to make 〈τw〉xzt appear in the energy balance, the MKE is space

averaged along the x -direction and integrated along y. Once averaged along

x term 3 becomes null, except for the power used to drive the flow along x

that is:〈
∂

∂x

[
〈U〉zt

〈P 〉zt
ρ

]〉
x

=

〈
∂ 〈U〉zt
∂x

〈P 〉zt
ρ

〉
x

−
〈
〈U〉zt
ρ

∂ 〈P 〉zt
∂x

〉
x

. (5.8)

where the first term is negligible being its maximum' −10−8. The second

term can be rewritten observing that:

〈U〉zt (x, y) = 〈〈U〉zt〉x (y) + 〈̂U〉zt(x, y). (5.9)

This leads, by means of (4.21), to:〈
〈U〉zt
ρ

∂ 〈P 〉zt
∂x

〉
x

=

〈[
〈〈U〉zt〉x (y) + 〈̂U〉zt(x, y)

] ∂P
∂x

〉
x

= −
〈〈U〉zt〉x

ρ

〈τw〉xzt
h

(5.10)

because
〈
〈̂U〉zt

〉
x

is null. Upon y-integration the terms
〈〈

∂
∂y

[〈U〉zt 〈uv〉zt]
〉
x

〉
y
,〈〈

∂
∂y

[〈V 〉zt 〈vv〉zt]
〉
x

〉
y

and
〈〈

∂
∂y

[〈W 〉zt 〈vw〉zt]
〉
x

〉
y

become null because of

the Reynolds stresses 〈uv〉zt = 0, 〈vv〉zt = 0 and 〈vw〉zt = 0 both at y=0,

where no slip condition are imposed for the velocity, and at y=h for sym-

metry. The terms
〈〈

∂
∂y

[
ν 〈U〉zt

∂〈U〉zt
∂y

]〉
x

〉
y

and
〈〈

∂
∂y

[
ν 〈V 〉zt

∂〈V 〉zt
∂y

]〉
x

〉
y

are also null because 〈U〉zt = 0 and 〈V 〉zt = 0 at y=0 and
∂〈U〉zt
∂y

= 0 and
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∂〈V 〉zt
∂y

= 0 at y=h.

The global transport equation for MKE is:〈
〈U〉zt

∂ 〈K〉zt
∂x

〉
xy

+

〈
〈V 〉zt

∂ 〈K〉zt
∂y

〉
xy

+

〈
∂ 〈U〉zt
∂x

〈p〉zt
ρ

〉
xy

−Ub
〈τw〉xzt
ρ

+

〈
∂

∂y

[
〈V 〉zt

〈P 〉zt
ρ

]〉
xy

−
〈
∂

∂y

[
ν 〈U〉zt

∂ 〈V 〉zt
∂x

]〉
xy

−
〈
∂

∂y

[
ν 〈W 〉zt

∂ 〈W 〉zt
∂y

]〉
xy

= −〈Pk〉xyzt − 〈E〉xyzt

(5.11)

where

〈Pk〉xyzt = −
〈
〈uu〉zt

∂ 〈U〉zt
∂x

〉
xy

−
〈
〈uv〉zt

∂ 〈U〉zt
∂y

〉
xy

−
〈
〈uv〉zt

∂ 〈V 〉zt
∂x

〉
xy

−
〈
〈vv〉zt

∂ 〈V 〉zt
∂y

〉
xy

−
〈
〈uw〉zt

∂ 〈W 〉zt
∂x

〉
xy

−
〈
〈vw〉zt

∂ 〈W 〉zt
∂y

〉
xy

,

(5.12)

〈ε〉xyzt =

〈
2ν

(
∂ 〈U〉zt
∂x

)2
〉
xy

+

〈
2ν

(
∂ 〈V 〉zt
∂y

)2
〉
xy

+

〈
2ν
∂ 〈U〉zt
∂y

∂ 〈V 〉zt
∂x

〉
xy

+

〈
ν

(
∂ 〈U〉zt
∂y

)2
〉
xy

+

〈
ν

(
∂ 〈V 〉zt
∂x

)2
〉
xy

+

〈
ν

(
∂ 〈W 〉zt
∂x

)2
〉
xy

+

〈
ν

(
∂ 〈W 〉zt
∂y

)2
〉
xy

.

(5.13)

Since some terms are empirically found to be negligible1 the equation reduces

1
〈
〈U〉zt

∂〈K〉zt
∂x

〉
xy
' 10−6;

〈
〈V 〉zt

∂〈K〉zt
∂y

〉
xy
' −10−6;〈

∂
∂y

[
〈V 〉zt

〈P 〉zt
ρ

]〉
xy
' 10−14;

〈
∂
∂y

[
ν 〈U〉zt

∂〈V 〉zt
∂x

]〉
xy
' 10−6;

〈
〈uu〉zt

∂〈U〉zt
∂x

〉
xy
' 10−8;〈

〈uv〉zt
∂〈V 〉zt
∂x

〉
xy
' 10−5;

〈
〈vv〉zt

∂〈V 〉zt
∂y

〉
xy
' −10−8;

〈
〈uw〉zt

∂〈W 〉zt
∂x

〉
xy
' 10−7;〈

2ν
(
∂〈U〉zt
∂x

)2〉
xy

' 10−10;

〈
2ν
(
∂〈V 〉zt
∂y

)2〉
xy

' 10−10;〈
2ν

∂〈U〉zt
∂y

∂〈V 〉zt
∂x

〉
xy
' 10−10;

〈
ν
(
∂〈V 〉zt
∂x

)2〉
xy

' 10−12;

〈
ν
(
∂〈W 〉zt
∂x

)2〉
xy

' 10−6.
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to:

−Ub
ρ
〈τw〉xzt︸ ︷︷ ︸
P

+

〈
− ∂

∂y

(
ν 〈W 〉zt

∂ 〈W 〉zt
∂y

)〉
xy︸ ︷︷ ︸

Pin

=

〈
〈uv〉zt

∂ 〈U〉zt
∂y

〉
xy︸ ︷︷ ︸

Puv

+

〈
〈vw〉zt

∂ 〈W 〉zt
∂y

〉
xy︸ ︷︷ ︸

Pvw

−

〈
ν

(
∂ 〈W 〉zt
∂y

)2
〉
xy︸ ︷︷ ︸

DW

−

〈
ν

(
∂ 〈U〉zt
∂y

)2
〉
xy︸ ︷︷ ︸

DU

.

(5.14)

The terms on the left-hand side represent the energy inputs: the first term,

where τw explicitly appears, denotes the global energy pumped into the sys-

tem through the external pressure gradient whereas the second term is the

energy spent to realise the forcing against the frictional resistance of the fluid.

Terms Puv and Pvw are sinks for MKE and production terms in the global

TKE balance where they appear with opposite sign. The global viscous dis-

sipation, due to the gradient of the mean streamwise and spanwise velocity

components, corresponds to terms DU and DW . The balance in (5.14) states

that part of the energy inputs is transferred to the turbulence via Puv and

Pvw and the remaining part is dissipated into heat through DU and DW .

Balance equation for the TKE

The transport equation for TKE reads:

〈U〉zt
∂ 〈k〉zt
∂x︸ ︷︷ ︸

1

+ 〈V 〉zt
∂ 〈k〉zt
∂y︸ ︷︷ ︸

2

+
∂ 〈tx〉zt
∂x︸ ︷︷ ︸
3

+
∂ 〈ty〉zt
∂y︸ ︷︷ ︸
4

= 〈Pk〉zt︸ ︷︷ ︸
5

−〈ε〉zt︸︷︷︸
6

(5.15)

where

〈tx〉zt =
1

2
〈uuu〉zt +

1

2
〈uvv〉zt +

1

2
〈uww〉zt +

〈up〉zt
ρ

−2ν

〈
u
∂u

∂x

〉
zt

− ν
〈
v

(
∂u

∂y
+
∂v

∂x

)〉
zt

− ν
〈
w

(
∂u

∂z
+
∂w

∂x

)〉
zt

,

(5.16)

〈ty〉zt =
1

2
〈vuu〉zt +

1

2
〈vvv〉zt +

1

2
〈vww〉zt +

〈vp〉zt
ρ

−ν
〈
u

(
∂v

∂x
+
∂u

∂y

)〉
zt

− 2ν

〈
v
∂v

∂y

〉
zt

− ν
〈
w

(
∂w

∂y
+
∂v

∂z

)〉
zt

,

(5.17)

and 〈Pk〉zt is the turbulent kinetic production (5.6). Terms 1 and 2 denote

the convection of TKE, terms 3 and 4 the diffusion, term 5 is the production
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of TKE and also appears in MKE as sink. Term 6 is the viscous dissipation

of TKE. Analogously to the analysis of the MKE equation, the averag-

ing over x leads to
〈
∂〈tx〉zt
∂x

〉
x

= 0 for the spatial periodicity, whereas the

integration along y eliminates
〈

1
2

∂〈vuu〉zt
∂y

〉
xy
,
〈

1
2

∂〈vvv〉zt
∂y

〉
xy

+
〈

1
2

∂〈vww〉zt
∂y

〉
xy

and
〈

1
ρ

∂〈vp〉zt
∂y

〉
xy

because v = 0 both at y = h and y = 0, the term〈
∂
∂y

〈
νu∂u

∂y

〉
zt

〉
xy

is null because u = 0 at y = 0 and ∂u
∂y

= 0 at y = h,〈
∂
∂y

〈
2νv ∂v

∂y

〉
zt

〉
xy

is null because v = 0 at y = 0 and ∂v
∂y

= 0 at y=h, and〈
∂
∂y

〈
νw ∂w

∂y

〉
zt

〉
xy

is null because w = 0 at y = 0 and ∂w
∂y

= 0 at y = h.

The global transport equation for TKE is:〈
〈U〉zt

∂ 〈k〉zt
∂x

〉
xy

+

〈
〈V 〉zt

∂ 〈k〉zt
∂y

〉
xy

−
〈〈

νu
∂v

∂x

〉
zt

〉
x

∣∣∣∣
y=h

−
〈〈

νw
∂v

∂z

〉
zt

〉
x

∣∣∣∣
y=h

= 〈Pk〉xyzt − 〈ε〉xyzt
(5.18)

but, since some terms are found to be negligible2, it reduces to:〈
〈uv〉x

∂ 〈U〉x
∂y

〉
xy︸ ︷︷ ︸

Puv

+

〈
〈vw〉x

∂ 〈W 〉x
∂y

〉
xy︸ ︷︷ ︸

Pvw

= 〈ε〉xyzt︸ ︷︷ ︸
Dε

.
(5.19)

Eq. (5.19) states that the production terms, Puv and Pvw are dissipated

into heat by the turbulent viscous stresses.

Total kinetic energy balance

The sum of the global transport equations for MKE and TKE leads to the

global balance for total mechanic energy:

P + Pin = DU + DW + Dε (5.20)

The energy inputs P and Pin spent respectively to drive the flow along x

and to enforce the control action, are dissipated into heat through the vis-

cous action of the mean streamwise and spanwise flow gradients, represented

by DU and DW , and through the viscous dissipation Dε of the turbulent

fluctuations.
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1

PDNS
P,0DNS

DUDNS
P,0DNS

0.59

0.41

PuvDNS

P,0DNS

0.41

DεDNS
P,0DNS

MKE TKE

Figure 5.2: Energy Box: DNS at Reτ = 200. The two boxes represent MKE and

TKE. The quantities are scaled by the power P,0DNS spent to drive the flow in the

streamwise direction in the uncontrolled flow.

In Fig. [5.2] the global energy balance is summarized and quantified in

the reference case. The quantities are scaled by the power P,0
∗
DNS spent to

drive the flow in the streamwise direction in the uncontrolled flow equal to

0.0012. The two boxes represent MKE and TKE. The terms pertaining to

the streamwise and spanwise direction are decoupled in MKE and indicated

respectively with MKE-x and MKE-z .

In Fig. [5.3] the changes due to the forcing are represented. The terms in

the uncontrolled case are indicated by black portion of arrows, whereas the

energy transfers due to the forcing are represented by red arrows or portion

of arrows. It is clear from the schematic that the production terms Puv

and Pvw disappear from the total energy balance (5.28) because they only

transfer energy internally between MKE and TKE. The forcing reduces the

value of the not null terms in the reference case, whereas the terms in MKE-

z equation only arise if the forcing is applied. Since PvwDNS

P,0DNS
' 0, it states

that the energy input PDNS
P,0DNS

is dissipated into heat through DUDNS
P,0DNS

(43%) and
DεDNS
P,0DNS

(57%).

2
〈
〈U〉zt

∂〈k〉zt
∂x

〉
xy
' 10−7;

〈
〈V 〉zt

∂〈k〉zt
∂y

〉
xy
' 10−9;

ν
〈
w ∂w
∂z

〉
xzt

∣∣
y=h
' 10−9; ν

〈
u ∂v∂x

〉
xzt

∣∣
y=h
' 10−7
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PinDNS
P,0DNS

+0.39

1

PDNS
P,0DNS

-0.46

DUDNS
P,0DNS

0.59

-0.20

DWDNS

P,0DNS +0.39

0.41

PuvDNS

P,0DNS

-0.26

PvwDNS

P,0DNS

0

0.41

DεDNS
P,0DNS

-0.26

MKE-x

MKE-z

TKE

Figure 5.3: Energy Box: DNS at Reτ = 200. The two boxes represent MKE and

TKE. The portion of MKE-x and of MKE-z indicate the portion of the MKE balance

pertaining respectively to the streamwise and spanwise direction. The terms in the

uncontrolled case are indicated by black portion of arrows, whereas the energy transfers

due to the forcing are represented by red arrow or portion of arrows. The quantities

are scaled by the power P,0DNS spent to drive the flow in the streamwise direction in

the uncontrolled flow.

Turbulent viscous dissipation

The turbulent dissipation ε is:

ε = 2

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

+

(
∂v

∂x

)2

+2

(
∂v

∂y

)2

+

(
∂v

∂z

)2

+

(
∂w

∂x

)2

+

(
∂w

∂y

)2

+2

(
∂w

∂z

)2

+ 2
∂u

∂y

∂v

∂x
+ 2

∂u

∂z

∂w

∂x
+ 2

∂v

∂z

∂w

∂y
.

(5.21)

Once averaged by means of (4.6), it corresponds to term 6 in (5.22).In Fig.

[5.4] is shown the ε field of half channel, whereas in Fig. [5.5] a section of ε is
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Figure 5.4: Field of the turbulent dissipation ε∗ calculated via DNS

choose and it will be used to make a comparison with the RANS data. The

modulation along the x -direction of this quantity clearly appears.

Turbulent vortical structures

Jeorg and Hussain [19] have introduced the quantity λ2 in order to identify

turbulent vortical structures. In Fig. [5.6] the isosurfaces for λ2, when the

level is set at λ+
2 = 0.03 are visualized.

Figure 5.5: Section of the turbulent dissipation ε∗ field calculated via DNS
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Figure 5.6: Isosurfaces for the quantity λ+
2 = −0.03 with DNS in the forced case

coloured with the spanwise component of the velocity.
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5.2 v2 − f model

In Table [5.1] are reported the values of the skin friction coefficient 〈Cf〉xzt
calculated with the v2− f turbulence model with standard settings for func-

tions and constants. The value of 〈Cf,0〉xzt is underestimated with a error

smaller than 5%. When the forcing is applied the value of 〈Cf〉xzt decreases,

revealing the ability of the model to predict drag reduction. However the

error made in the assessment of 〈Cf,0〉xzt could positively influence the eval-

uation of 〈Cf〉xzt. The computed value of drag reduction rate R is 12.5%

when Reτ = 200 and 6% when Reτ = 1000, with a percentage error ∆R re-

spectively of −72.1% and of −80% with respect to DNS informations. When

the Reynolds number is increased, the error decreases both in reference and

in controlled case.

〈Cf,0〉xzt ∆Cf,0 〈Cf〉xzt ∆Cf

Reτ = 200 0.00759 -4.2 % 0.00644 +52.3%

Reτ = 1000 0.00509 -1.5 % 0.004752 +31.3%

Table 5.1: Values and errors of the skin friction coefficient 〈Cf 〉xzt, in the reference

and in the forced case, at Reτ = 200 and Reτ = 1000 achieved using the v2 − f
model.

5.2.1 Mechanism of drag reduction

When a RANS simulation is carried on with v2 − f turbulence model, the

only difference respect to (5.1.2) is that the TKE equation solved is modelled.

However the total kinetic energy balance is unchanged respect to (5.28).
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Balance equation for the TKE

The transport equation for TKE, in the v2 − f model, reads:

〈U〉zt
∂ 〈k〉zt
∂x︸ ︷︷ ︸

1

+ 〈V 〉zt
∂ 〈k〉zt
∂y︸ ︷︷ ︸

2

− ∂

∂x

[(
ν +
〈νT 〉zt
σK

)
∂ 〈k〉zt
∂x

]
︸ ︷︷ ︸

3

− ∂

∂y

[(
ν +
〈νT 〉zt
σK

)
∂ 〈k〉zt
∂y

]
︸ ︷︷ ︸

4

= 〈Pk〉zt︸ ︷︷ ︸
5

−〈ε〉zt︸︷︷︸
6

(5.22)

where 〈Pk〉zt is the turbulent kinetic production (5.6), σK = 1 is a constant

and

〈νT 〉zt = 0.22
〈
v2
〉
zt
max

(
〈k〉zt
〈ε〉zt

, 6

√
ν

〈ε〉zt

)
. (5.23)

The value of 〈v2〉zt is obtained by means of a transport equation (see 3.1.2).

Terms 1 and 2 denote the convection of TKE, terms 3 and 4 indicate the

diffusion, term 5 is the production of TKE and also appears in MKE as sink.

Term 6 is the viscous dissipation of TKE. Analogously to the analysis of the

MKE equation, the averaging over x leads to:〈
∂

∂x

[(
ν +
〈νT 〉zt
σK

)
∂ 〈k〉zt
∂x

]〉
x

= 0, (5.24)

and the integration along y to:〈
∂

∂y

[(
ν +
〈νT 〉zt
σK

)
∂ 〈k〉zt
∂y

]〉
xy

=

〈(
ν +
〈νT 〉zt
σK

)
∂ 〈k〉zt
∂y

〉
x

∣∣∣∣
y=h

−
〈(

ν +
〈νT 〉zt
σK

)
∂ 〈k〉x
∂y

〉
x

∣∣∣∣
y=0

= −
〈
ν
∂ 〈k〉zt
∂y

〉
x

∣∣∣∣
y=0

.

(5.25)

The global transport equation for TKE is:〈
〈U〉zt

∂ 〈k〉zt
∂x

〉
xy

+

〈
〈V 〉zt

∂ 〈k〉zt
∂y

〉
xy

+

〈
ν
∂ 〈k〉zt
∂y

〉
x

∣∣∣∣
y=0

= 〈Pk〉xyzt − 〈ε〉xyzt

(5.26)

but, since some terms are found to be negligible3, it reduces to:〈
〈uv〉x

∂ 〈U〉x
∂y

〉
xy︸ ︷︷ ︸

Puv

+

〈
〈vw〉x

∂ 〈W 〉x
∂y

〉
xy︸ ︷︷ ︸

Pvw

= 〈ε〉xy︸︷︷︸
Dε

,
(5.27)

3
〈
〈U〉zt

∂〈k〉zt
∂x

〉
xy
' 10−7;

〈
〈V 〉zt

∂〈k〉zt
∂y

〉
xy
' 10−9;

〈
ν
∂〈k〉zt
∂y

〉
x

∣∣∣
y=0
' 10−7
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that is the same equation found in (5.1.2).

Total kinetic energy balance

The sum of the global transport equations for MKE and TKE leads to the

global balance for total mechanic energy:

P + Pin = DU + DW + Dε (5.28)

In Fig. [5.7] the global energy balance is summarized and quantified. The

Pin
P,0DNS

+0.47

0.94

P
P,0DNS

-0.12

DU
P,0DNS

0.49

-0.03

DW
P,0DNS +0.41

0.45

Puv

P,0DNS

-0.09

Pvw

P,0DNS

+0.04

0.42

Dε
P,0DNS

-0.02

MKE-x

MKE-z

TKE

Figure 5.7: Energy Box: v2−f model at Reτ = 200. The quantities are scaled by the

power P,0DNS spent to drive the flow in the streamwise direction in the uncontrolled

flow calculated via DNS.

quantities are scaled by the power P,0DNS spent to drive the flow in the

streamwise direction in the uncontrolled flow calculated via DNS. The forcing

reduces the value of the not null terms in the reference case, whereas the terms

in MKE-z equation only arise if the forcing is applied.

To gain insight into the changes of 〈τw〉xzt we observe that the turbulence

model plays a fundamental role in the prediction of the turbulent viscous

dissipation 〈ε〉zt, therefore indirectly on the terms of MKE-x equation. This

leads to an analysis of how and why this modelled quantity is affected by the

forcing.

48



CHAPTER 5. Results

Turbulent viscous dissipation ε

The modelled equation for the turbulent dissipation 〈ε〉zt is:

〈U〉zt
∂ 〈ε〉zt
∂x︸ ︷︷ ︸

1

+ 〈V 〉zt
∂ 〈ε〉zt
∂y︸ ︷︷ ︸

2

− ∂

∂x

[(
ν +
〈νT 〉zt
σε

)
∂ 〈ε〉zt
∂x

]
︸ ︷︷ ︸

3

− ∂

∂y

[(
ν +
〈νT 〉zt
σε

)
∂ 〈ε〉zt
∂y

]
︸ ︷︷ ︸

4

=
〈Cε1〉zt
〈T 〉zt

〈Pk〉zt︸ ︷︷ ︸
5

− Cε2
〈T 〉zt

〈ε〉zt︸ ︷︷ ︸
6

(5.29)

where 〈νT 〉zt is the turbulent viscosity (5.23), 〈Pk〉zt is the turbulent kinetic

production (5.6), σε = 1.3 and Cε2 = 1.9 are constants,

〈T 〉zt = max

(
〈k〉zt
〈ε〉zt

, 6

√
ν

〈ε〉zt

)
, (5.30)

and

〈Cε1〉zt = 1.4

[
1 + 0.05 min

(√
〈k〉zt
〈v2〉zt

, 100

)]
. (5.31)

The value of 〈v2〉zt is obtained by means of a transport equation (see 3.1.2).

Analogously to (5.22), terms 1 and 2 denote the convection of turbulent

viscous dissipation 〈ε〉zt, terms 3 and 4 are indicate the diffusion, term 5 and

term 6 respectively the production and the viscous dissipation of 〈ε〉zt. The

control acts directly on the turbulent dissipation 〈ε〉zt, in fact the velocity

〈W 〉zt appears explicitly in the term 5 of the production. In Fig. [5.8] the

modelled quantity 〈ε〉zt in the reference case (top) is compared with the

one calculated in the forced case (bottom) and in Fig. [5.9] the differences

between them are shown in order to highlight the modifications due to the

forcing. This mainly acts next to the wall, in the SSL, where a modulation

of 〈ε〉zt in the x -direction, that is not any more an homogeneous direction

once the forcing is applied, is evident.

Fig. [5.10] shows the profiles of the terms in Eq. (5.29) averaged along

x -direction in the reference (thin lines) and in the controlled case (thick

lines). The term 3 is eliminated by the averaging along x -direction because

of space periodicity. The convective terms are null in the reference case and

calculated as negligible in the forced one. When the control is realized, the

kinetic energy production term is dominant and it is deeply affected by the

49



CHAPTER 5. Results

Figure 5.8: Turbulent viscous dissipation 〈ε〉∗zt with v2 − f model at Reτ = 200:

reference case (top) and forced case (below).

Figure 5.9: Turbulent viscous dissipation 〈ε〉∗zt with v2 − f model at Reτ = 200:

difference between the forced and the reference case.

forcing: the peak value, reached at y/h = 0.04 in both cases, is greater in

the forced case. Around this peak production exceeds dissipation and the

excess energy produced is transported away by term 4. This term is slightly

affected by the forcing and balances the viscous dissipation in a very thin

near-wall layer, y/h < 0.01, where term 5 is small.

The single components of the turbulent dissipation 〈ε〉zt production terms,
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Figure 5.10: Turbulent dissipation budget with v2 − f model at Reτ = 200: terms

in Eq. (5.29) averaged along x-direction. Reference case (thin lines) and forced case

(thick lines).

once averaged over x, are:〈
〈Cε1〉zt
〈T 〉zt

〈Pk〉zt
〉
x

= −
〈
〈Cε1〉zt
〈T 〉zt

〈uu〉zt
∂ 〈U〉zt
∂x

〉
x︸ ︷︷ ︸

Pε,uu

−
〈
〈Cε1〉zt
〈T 〉zt

〈uv〉zt
∂ 〈U〉zt
∂y

〉
x︸ ︷︷ ︸

Pε,uv

−
〈
〈Cε1〉zt
〈T 〉zt

〈uv〉zt
∂ 〈V 〉zt
∂x

〉
x︸ ︷︷ ︸

Pε,vu

−
〈
〈Cε1〉zt
〈T 〉zt

〈vv〉zt
∂ 〈V 〉zt
∂y

〉
x︸ ︷︷ ︸

Pε,vv

−
〈
〈Cε1〉zt
〈T 〉zt

〈uw〉zt
∂ 〈W 〉zt
∂x

〉
x︸ ︷︷ ︸

Pε,u

−
〈
〈Cε1〉zt
〈T 〉zt

〈vw〉zt
∂ 〈W 〉zt
∂y

〉
x︸ ︷︷ ︸

Pε,vw

,

(5.32)

Since some terms are found as empirically negligible4, the relevant terms are

Pε,vw and Pε,uv. They are shown in Fig. [5.11]. The first term, where

4
〈
〈Cε1〉zt
〈T 〉zt

〈uu〉zt
∂〈U〉zt
∂x

〉
x
' 10−4;

〈
〈Cε1〉zt
〈T 〉zt

〈uv〉zt
∂〈V 〉zt
∂x

〉
x
' 10−6;〈

〈Cε1〉zt
〈T 〉zt

〈vv〉zt
∂〈V 〉zt
∂y

〉
x
' 10−4;

〈
〈Cε1〉zt
〈T 〉zt

〈uw〉zt
∂〈W 〉zt
∂x

〉
x
' 10−3
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Figure 5.11: Production terms of 〈ε〉zt, calculated with v2 − f model at Reτ = 200,

averaged in x-direction in (5.32). Reference case (thin lines) and forced case (thick

lines).
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〈W 〉zt explicitly appears, is absent in the reference case because both 〈vw〉zt
and 〈W 〉zt are null. The second term corresponds to the 〈ε〉zt production

when the control is not applied, being the only one not null. It is indirectly

modified by the forcing: its peak decreases and moves upward.

It could be observed that:

〈Cε1〉zt
〈T 〉zt

Puv =
〈Cε1〉zt
〈T 〉zt

〈uv〉zt︸ ︷︷ ︸
A

∂ 〈U〉zt
∂y︸ ︷︷ ︸
B

(5.33)

where, since term A is slightly affected by the forcing, the modifications are

mainly linked to the change of term B5.

In conclusion the change of 〈ε〉zt is directly linked to
〈
〈Cε1〉zt
〈T 〉zt

Pvw

〉
x

and

indirectly linked to
〈
〈Cε1〉zt
〈T 〉zt

Puv

〉
x
, where in particular the quantity

∂〈U〉zt
∂y

is

affected by the forcing. This quantity plays a important rule in the MKE-x

equation leading to a change of 〈τw〉xzt since Ub and ρ are constant quantities.

−Ub
ρ
〈τw〉xzt︸ ︷︷ ︸
P

=

〈
〈uv〉zt

∂ 〈U〉zt
∂y

〉
xy︸ ︷︷ ︸

Puv

−

〈
ν

(
∂ 〈U〉zt
∂y

)2
〉
xy︸ ︷︷ ︸

DU

. (5.34)

Comparison with DNS data

The percentage errors made by the turbulence model are calculated by means

of Eq. (5.1) and they are reported in Fig. [5.12]. Because of PuwDNS

P,0DNS
is null

in the DNS data the percentage error made tends to infinity. In the refer-

ence case the errors are less than 20% whereas when the control is applied

the errors reach relevant values, especially the error committed in the 〈ε〉zt
valuation.

In Fig. [5.14] shows a section of the turbulent dissipation field calculated

via DNS (top) and the field 〈ε〉zt calculated via RANS (bottom). Although

the comparison is only qualitative clearly emerges that the error made by

the turbulence model v2− f in the assessment of 〈ε〉zt is relevant, confirming

the results in Fig. [5.12]. However by making a qualitative comparison

between the top figure in Fig. [5.14] and the bottom figure in Fig. [5.8],

where the 〈ε〉zt field with v2−f is shown with the appropriate scale, emerges

5A−A,0: max' 10−4, min' 10−7; B −B,0: max' 2.6; min=' −7.5
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Figure 5.12: Energy Box: Percentage error committed by v2 − f at Reτ = 200.

that the turbulent model includes the existing modulation in x direction,

although differences exist: the maximum value of 〈ε〉zt is reached at the wall

in the DNS whereas next to it in the RANS where the prolongations in the

streamwise directions are not visible.

In Fig. [5.23] is shown the SSL achieved via DNS and via RANS when the

spanwise velocity reaches its maximum value. A good accordance is found,

however the comparison is only qualitative because the SSL calculated with

DNS is not averaged along the homogeneous direction z and time t.

5.3 Launder Sharma k − ε model

The values of the skin friction coefficient 〈Cf〉xzt computed using the Launder

Sharma k − ε turbulence model are in Table [5.2]. The value of 〈Cf,0〉xzt is

understimated both at Reτ = 200 and Reτ = 1000, whereas the value of

〈Cf〉xzt is overestimate at Reτ = 1000. The calculated value of drag reduction

rate 〈R〉 is 30.5% when Reτ = 200 and 27.7% when Reτ = 1000, with a

percentage error ∆R respectively of −32.3% and of −7.5% with respect to

DNS data. When the Reynolds number is increased the error committed

both in the reference and in the controlled case decreases.
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Figure 5.13: Qualitative comparison between a section of the turbulent dissipation

field ε∗ calculated with DNS (top) and the averaged one 〈ε∗〉zt calculated with v2− f
model (bottom).
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Figure 5.14: Qualitative comparison between the SSL calculated with DNS and the

one calculated with v2 − f model.
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〈Cf,0〉xzt ∆Cf,0 〈Cf〉xzt ∆Cf

Reτ = 200 0.00705 -11.1% 0.0049 +13%

Reτ = 1000 0.00465 -10% 0.00336 -7.1%

Table 5.2: Values and errors of the skin friction coefficient 〈Cf 〉xzt in the reference

and in the forced case at Reτ = 200 and Reτ = 1000 with the Launder Sharma k− ε
model.

5.3.1 Prediction of drag reduction

The balances of MKE and TKE have been analysed in section (5.1.2) and

(5.2.1) and the same considerations as before are effective. In Fig. [5.15] the

global energy balance is summarized and quantified. The value of Puv is

really small thus the energy input P is mainly dissipated by ε and DU . All

the quantities not null in the reference case decrease because of the forcing.
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P
P,0DNS

-0.27
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Figure 5.15: Energy Box calculated with Launder Sharma k− ε model at Reτ = 200.
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Turbulent viscous dissipation ε

In the Launder Sharma k − ε turbulence model the turbulent viscous dissi-

pation is:

〈ε〉zt = 〈ε̃〉zt + 〈D〉zt , (5.35)

where 〈D〉zt = 2ν

(
∂
√
〈k〉zt
∂x

)2

+2ν

(
∂
√
〈k〉zt
∂y

)2

+2ν

(
∂
√
〈k〉zt
∂z

)2

. In Fig. [5.16]

the fields of 〈ε〉zt in the reference case (top) and in the forced one (bottom)

are compared, whereas in Fig. [5.17] the differences between them are shown

in order to highlight the modifications due to the control. The forcing, acting

mainly into the SSL, halve the maximum value of 〈ε〉zt and moves the peaks

upward.

With the aim of understanding how the quantity 〈ε〉zt is affected by the

Figure 5.16: Turbulent viscous dissipation 〈ε〉∗zt with Launder Sharma k− ε model at

Reτ = 200: comparison between reference case (top) and forced one (bottom)

forcing we first observe that the extra term 〈D〉zt is slightly influenced by the

forcing. The difference between the reference and the forced case is shown

in Fig. [5.18]. It is then clear that the quantity 〈ε̃〉zt is mainly accountable

for the change of 〈ε〉zt. The modelled equation for 〈ε̃〉zt in Launder Sharma
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Figure 5.17: Turbulent viscous dissipation 〈ε〉∗zt with Launder Sharma k− ε model at

Reτ = 200: difference between forced and reference case.

Figure 5.18: Turbulent dissipation with Launder Sharma k − ε model: difference of

term 〈D〉zt between the forced and the reference case.

k − ε is:

〈U〉zt
∂ 〈ε̃〉zt
∂x︸ ︷︷ ︸

1

+ 〈V 〉zt
∂ 〈ε̃〉zt
∂y︸ ︷︷ ︸

2

− ∂

∂x

[(
ν +
〈νT 〉zt
σε

)
∂ 〈ε̃〉zt
∂x

]
︸ ︷︷ ︸

3

− ∂

∂y

[(
ν +
〈νT 〉zt
σε

)
∂ 〈ε̃〉zt
∂y

]
︸ ︷︷ ︸

4

= 1.44 〈Pk〉zt
〈ε̃〉zt
〈k〉zt︸ ︷︷ ︸

5

−

1.92

(
1− 0.3e

〈k〉2zt
ν〈ε̃〉zt

2
)
〈ε̃〉zt
〈k〉zt︸ ︷︷ ︸

6

+ 2ν 〈νT 〉zt
[
∂2 〈U〉zt
∂x∂x

+
∂2 〈U〉zt
∂x∂y

+
∂2 〈V 〉zt
∂x∂y

+
∂2 〈V 〉zt
∂y∂y

]
︸ ︷︷ ︸

7

(5.36)

where analogously to (5.29) term 1 and 2 denote the convection of 〈ε̃〉zt, term

3 and 4 indicate diffusion, term 5 and term 6 respectively the production and

the of 〈ε̃〉zt. Here appears term 7 that has been introduced in this model in

order to improve prediction in the wall region. The velocity 〈W 〉zt appears
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Figure 5.19: Turbulent dissipation budget with Launder Sharma k − ε model: terms

of (5.36) averaged in x-direction. Reference case (thin lines) and forced case (thick

lines).

explicitly in the term 5 of the production, where 〈Pk〉zt is Eq. (5.6). This

indicates that the control acts directly on 〈ε̃〉zt.
In Fig. [5.19] are shown the profiles of the terms (5.36) averaged in x -

direction in the reference (thin lines) and the controlled case (thick lines).

The convection terms are null in the reference case and negligible in the

forced one, whereas term 3 is null once averaged along x -direction because

of space periodicity. When the control is actuated, peaks of each quantity

decrease and move upward. In particular the production term is a quantity

deeply affected by the forcing.

The single components of this term are shown in Fig. [5.20]. Since some

terms are found to be negligible6, the only relevant terms are 1.44
〈
〈uw〉zt

∂〈W 〉zt
∂x

〈ε̃〉zt
〈k〉zt

〉
x

and 1.44
〈
〈uv〉zt

∂〈U〉zt
∂y

〈ε̃〉zt
〈k〉zt

〉
x
. The first term, where 〈W 〉zt explicitly appears,

is absent in the reference case because both 〈vw〉zt and 〈W 〉zt are null. The

second term corresponds to the production when the control is not applied,

61.44
〈
〈uu〉zt

∂〈U〉zt
∂x

〈ε̃〉zt
〈k〉zt

〉
x
' −10−8; 1.44

〈
〈uv〉zt

∂〈V 〉zt
∂x

〈ε̃〉zt
〈k〉zt

〉
x
' −10−9;

1.44
〈
〈vv〉zt

∂〈V 〉zt
∂y

〈ε̃〉zt
〈k〉zt

〉
x
' 10−8; 1.44

〈
〈uw〉zt

∂〈W 〉zt
∂x

〈ε̃〉zt
〈k〉zt

〉
x
' −10−8;
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Figure 5.20: Launder Sharma k − ε model. Production terms of 〈ε̃〉zt averaged in

x-direction. Reference case (thin lines) and forced case (thick lines).

being the only not null one. It is indirectly modified by the forcing: its peak

decreases and moves upward. It could be observed that:

1.44

〈
〈uv〉zt

∂ 〈U〉zt
∂y

〈ε̃〉zt
〈k〉zt

〉
x

= 1.44
〈ε̃〉zt
〈T 〉zt

〈uv〉zt︸ ︷︷ ︸
A

∂ 〈U〉zt
∂y︸ ︷︷ ︸
B

(5.37)

where, since term A is slightly affected by the forcing, the modifications

are mainly linked to the change of term B7. In conclusion the change

of ε is directly linked to 1.44
〈
〈uw〉zt

∂〈W 〉zt
∂x

〈ε̃〉zt
〈k〉zt

〉
x

and indirectly linked to

1.44
〈
〈uv〉zt

∂〈U〉zt
∂y

〈ε̃〉zt
〈k〉zt

〉
x
, where in particular the quantity

∂〈U〉zt
∂y

is affected

by the forcing. This quantity plays an important rule in the MKE-x equation

leading to a change of 〈τw〉xzt since Ub and ρ are constant quantities.

−Ub
ρ
〈τw〉xzt︸ ︷︷ ︸
P

=

〈
〈uv〉zt

∂ 〈U〉zt
∂y

〉
xy︸ ︷︷ ︸

Puv

−

〈
ν

(
∂ 〈U〉zt
∂y

)2
〉
xy︸ ︷︷ ︸

DU

. (5.38)

7A−A,0: max' 10−3, min' 10−19; B −B,0: max' 11; min=' −17
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Comparison with DNS data

Starting from the DNS data in Fig. [5.5] the results given by the Launder

Sharma k − ε turbulence model are analysed. Because PuwDNS

P,0DNS
is null in the
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Figure 5.21: Energy Box: Percentage error committed by Launder Sharma k − ε at

Reτ = 200.

DNS data the percentage error made tends to infinity. In the reference case

the errors are about 20% whereas when the control is applied the errors reach

relevant values.

In Fig. [5.22] the turbulent disspation ε field calculated via DNS (top) is

qualitatively compared with the averaged one achieved via RANS (bottom)

when the control is realized. As known from the value in the energy box,

the Launder Sharma k − ε is unable to model correctly 〈ε〉zt so the results

are quantitatively wrong. Ever more so comparison between the top figure

in Fig. [5.22] and the bottom figure in Fig. [5.16], where the 〈ε〉zt field with

Launder Sharma k− ε is shown with the appropriate scale, emerges that the

turbulent model does not even include the existing modulation in x -direction.

In Fig. [5.23] is shown the SSL achieved via DNS and via RANS when the

spanwise velocity reaches its maximum value. A good accordance is found,
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Figure 5.22: Qualitative comparison between a section of the turbulent dissipation

field ε∗ calculated with DNS (top) and the averaged one 〈ε∗〉zt calculated with Launder

Sharma k − ε model (bottom).

however the comparison is only qualitative because the SSL calculated with

DNS is not averaged along the homogeneous direction z and time t.
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Figure 5.23: Qualitative comparison between the SSL calculated with DNS and the

one calculated with Launder Sharma k − ε model.
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Chapter 6

Conclusions and Future Works

This work investigates the ability of existing RANS turbulent models to de-

scribe skin-friction drag reduction effects generated by a wall based steady

forcing. RANS simulations of a channel flow are implemented with the soft-

ware OpenFOAM using two different turbulence models, i.e. the Launder

Sharma k − ε and v2 − f .

Both the turbulence models considered can predict drag reduction, in fact

notwithstanding the results are quantitatively inaccurate, the values of the

skin friction coefficient Cf achieved when the control is actuated are lower

than the ones calculated in the reference case.

The statistics of the energy balances of the mean and fluctuating flow

field are investigated with the aim to understand how the mechanism of drag

reduction is included by the turbulence models. In these equations most

of the terms are found to be null or negligible as direct consequence of the

simplicity of geometry and forcing. The sum of these balances, once averaged

over the homogeneous directions z, t and over the direction x and integrated

over the direction y, leads to the global balance for total kinetic energy where

the viscous dissipation ε is found to be an important quantity deeply involved

in the modelling and directly affected by the forcing. An analysis of how and

why the control acts on this modelled quantity is thus carried on, revealing

that the production of ε is the term of the equation that mainly changes

because of the forcing. It is composed by the sum of two terms: one of them

directly affected by the forcing, the other indirectly.

The results obtained with the RANS simulations are compared with the

ones achieved via DNS in order to make a quantitative analysis. In the refer-

ence case the percentage error made is restrained, whereas in the controlled
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case it is significant. The ε fields calculated with the turbulence models are

quantitatively inaccurate. However, the ε field calculated with the v2 − f ,

when represented on the proper scale, shows an evident modulation in the x

direction that is expected, even though some differences exist with reference

to the DNS data: the maximum value is not found on the wall but next to

it and the elongations in the streamwise flow direction observed in the DNS

do not appear.

In this work a constant mass flow rate is imposed, thus the drag reduction

manifest itself as a decrease of the wall shear stress. A different choice consists

of dictating a constant pressure gradient, so that drag reduction leads to a

increase of the bulk velocity Ub. The turbulence model parameters used, are

not adjusted for the specific problem, they are in fact the original ones. Most

importantly, the Boussinesq hypothesis could be not suitable for the study of

these phenomena, characterized by a complex physics. This work should be

regarded as preliminary. Indeed, our interest lies in the characterization of

Reynolds Stress Transport Model (RSTM)-type models when applied to the

present problem. The RSTM models, although more complex, should allow

to better describe the complex physics behind turbulent skin-friction drag

reduction. In particular the interaction between pressure and strain, which

is believed [35] to play a central role in the spanwise forcing, is explicitly

described by RSTM. The present work results, although still qualitatively

unsatisfactory, are promising this respect.
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[16] R. Garcia-Mayoral and J. Jiménez. Drag reduction by riblets. Phil.

Trans. R.Soc. A, 369(1940):1412–1427, 2011.

[17] D. Gatti and M. Quadrio. Performance losses of drag-reducing span-

wise forcing at moderate values of the reynolds number. Phys. Fluids,

25:125109–17, 2013.
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