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A B S T R A C T

Cognitive radios constitute a very interesting application, even though still at a conceptual
stage, they have the potential of making a difference in how the radio spectrum is accessed
and are therefore been defined as a destructive, but not obtrusive technology [29]. They rep-
resent a unique combination of multi-disciplinary and complex competences from fields
such as communications, statistics, optimization, game theory, electronics and robotics

In this thesis state of the art technology and the effects it will cause once commercialized
are presented, even though most of the work is focused on Spatial Statistics. The aim is
to study techniques for interpolation, prediction and classification that could be useful in
this peculiar field, that results to be determinant because of the computational limitations.
These are mostly caused by the constraints on the implementation area and on batteries
life due to a fully distributed sensing approach.

In the present work theoretical models of signal propagation are introduced and tech-
niques for spectrum analysis are outlined, mostly focusing on the cyclostationary sensor
that has been used in our measurement campaign around Helsinki (Finland). This allows
to make distributional hypotheses on the measured signal, that are afterwards verified.

Numerous are the interpolation and prediction techniques used in this work, from the
most classical ones (Voronoi, Thiessen, Natural Neighbour, Inverse Weighted Distance,
Trend Surfaces, Splines), until Kriging, always paying particular attention to computa-
tional costs and algorithmic robustness.
Last but not least a Bayesian model has been fit not just for prediction itself, but to verify
the correctness of theoretical models for signal transmission and consequently validate
their usefulness in environments where not enough sample points are available to con-
struct reliable prediction maps.
A brief parenthesis has been dedicated to sampling optimization and its benefit to the
quality of obtained data.
Supervised classification techniques are developed, with very encouraging results, ideal in
a completely decentralized approach to decisions.

The aim of acquiring occupation data from multiple bands almost in real time and con-
sequently building a dynamic network cartography, predicting and revealing anomalies,
granting quality and stability of transmissions without overloading the network is a fun-
damental issue for technological development; for this reason parsimonious, but effective
and robust algorithms are needed.
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S O M M A R I O

Le radio cognitive costituiscono un campo applicativo molto interessante sebbene ancora
ad uno stato concettuale, in quanto portano in sé il potenziale di fare la differenza nei meto-
di di accesso dello spettro radio e sono pertanto state definite una tecnologia distruttiva, ma
non invasiva [29]. Esse rappresentano una combinazione unica di competenze davvero mul-
tidisciplinari e complesse da campi quali le comunicazioni, la statistica, l’ottimizzazione,
la teoria dei giochi, l’elettronica e la robotica.

In questa tesi è presentato uno scorcio sullo stato dell’arte della tecnologia e sugli ef-
fetti che questa comporterà una volta commercializzata, anche se la maggior parte del
lavoro si concentra nell’ambito della Statistica Spaziale. L’obiettivo è studiare tecniche di
interpolazione, predizione e classificazione utili in questo particolare campo applicativo.
L’applicazione comporta infatti notevoli limitazioni computazionali dovute ad una ridotta
area di implementazione e alla durata delle batterie, soprattutto in un’ottica di analisi del
campo completamente distribuita.

Nel presente lavoro vengono trattati i modelli teorici di propagazione del segnale e ci
si sofferma sulle tecniche di analisi dello spettro, sui vari tipi di sensori a disposizione, in
particolare su quello ciclostazionario utilizzato nelle campagne di misurazione nell’area di
Helsinki (Finlandia). Questo permette di fare ipotesi distribuzionali sul segnale misurato
che vengono puntualmente verificate.

Numerose sono le tecniche di interpolazione e predizione utilizzate, dalle più classiche
(Voronoi, Thiessen, Natural Neighbours, Distance Weighted Interpolation, Trend Surfa-
ces, Splines), fino al Kriging, sempre prestando attenzione al costo computazionale e alla
robustezza algoritmica.

In ultimo un Modello Bayesiano è stato fittato, non a semplice fine predittivo, ma per ve-
rificare la correttezza di modelli teorici per la trasmissione e validarne l’utilizzo in ambienti
in cui il numero di campionamenti non è sufficiente alla costruzione di mappe predittive.

Una breve parentesi è dedicata all’ottimizzazione del campionamento e ai suoi benefici
in termini di qualità dei dati raccolti.

In ultimo sono sviluppate delle tecniche di classificazione supervisionata, con risul-
tati decisamente incoraggianti, ideali nell’ipotesi di un approccio alle decisioni di tipo
puramente decentralizzato.

L’obiettivo di acquisire dati di occupazione delle varie bande quasi in tempo reale e con-
seguentemente costruire una cartografia dinamica, che riveli eventuali anomalie, permetta
di fare previsioni, garantendo la qualità e la stabilità delle trasmissioni senza oberare
la rete è di fondamentale importanza per lo sviluppo tecnologico; per questo algoritmi
parsimoniosi, ma al contempo efficaci e robusti sono necessari allo sviluppo tecnologico.
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1 A N I N T R O D U C T I O N TO C O G N I T I V E
R A D I O S

The electromagnetic radio spectrum is a highly valued natural resource, the use of which,
by transmitters and receivers, is licensed by governments [29].
Due to the huge growth of wireless technologies (in devices such as cellphones, TVs,
garage door openers . . . ), a phenomenon known as wastage of spectrum [63] is becoming
an important issue: some bands have become more and more crowded, even though some
of the licensed ones are heavily underutilized, according to [29] only ten percent of the
assigned electromagnetic radio spectrum is effectively in use.
Two main historical reasons can be identified: government policies and state of the art
radio technology.

1.1 new policies

Since the first regulations about Radio Frequency (RF) transmissions in the 20
th century a

static allotment policy, granting exclusive use to licensees, was introduced. Artificial limits
have caused massive inefficiency, instead of promoting harmony of the airwaves. Spec-
trum utilization is time and place dependant and fixed allocation prevents rarely used
frequencies (those assigned to specific services, such as military and amateur radio) from
being used by unlicensed users.
This extract is taken from a report prepared by the Spectrum-Policy Task Force, part of the
Federal Communications Commission (FCC), as early as November 2002:

There is some evidence indicating that the shortage of spectrum is often a spec-
trum access problem. That is, the spectrum resource is available, but its use is
compartmented by traditional policies based on traditional technologies. New
radio technologies may enable new techniques for access of spectrum and shar-
ing of the spectrum resources that may create quantum increases in achievable
utilization [20].

Regulatory bodies in the world have finally started considering allowing unlicensed users
to transmit in licensed bands if no interference is caused; according to numerous experts,
between whom Staple and Werbach in [63], spectrum normative reform should:

• reallocate spectrum from government and long standing users to new services,

• introduce the possibility of spectrum leases, granting the licensees the right to hire
their spectrum share to third parties,

• allocate an amount of spectrum for unlicensed and shared services,

• allow the national authorities for spectrum usage to impose power limits with the
aim of avoiding a cacophony of unlicensed devices.
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1.2 advances in technology

1.2 advances in technology
Technology is evolving, nowadays technical limits that made guard bands1 necessary have
been overtaken and this has made regulations clearly outdated. Numerous are the im-
provements in technology that will or already make a difference, between these some are:

shift from analogical to digital transmissions, for example TV transmissions have
already switched both in Finland and in Italy, improving spectrum availability, since
at least five TV shows can be broadcast on the same frequencies occupied by a single
analogical channel and similarly digital cellular systems carry three times as many
phone calls as their analogical predecessors, see e.g. [63].

new wireless devices to share the spectrum between multiple systems, high-
power, undifferentiated narrow band transmissions are going to be substituted with
modern, low power, coded wideband signals. Ultra-Wide Band (UWB) technology
brings this idea to the acme, since transmissions are so low power that licensed ser-
vices almost do not notice an increase in interference. In this type of technology
safeguards policy is of course of major importance.

switch from static to dynamic protocol, that will allow cooperative systems, ac-
cording to numerous experts, between whom Staple in [63], to cause the greatest
technological gain in wireless capacity. The traditional Static Spectrum Access (SSA)
will be substituted by the Dynamic Spectrum Access (DSA) protocol, therefore en-
abling every device to use some of the network capacity, but also to add capacity
back, so that devices could be added to the network almost without an impact on
interference. Cognitive Radio (CR) is the (theorical) implementation of this new gen-
eration of devices in the field of radio technology: the idea is to analyze nearby
transmissions in order to identify currently unemployed bands and assign them on
the fly to unserviced users.

Regulatory and technical developments suggest that an era of spectrum abundance is just
behind the corner and the market of communication services will be reshaped.

1.3 spectrum access models
The typologies of spectrum access devised so far in literature can be classified into:

dynamic exclusive model, in which frequency bands are reserved for the exclusive use
of a particular service, but providers can share the spectrum.

open sharing model, that allows all users to access the spectrum equally, given some
constraints on the transmit signal. This approach is already in use in Industrial
Scientific and Medical (ISM) radio bands2.

hierarchical access model, that establishes a priority structure between a primary
system and all the unlicensed systems, which are bound to access the spectrum
without causing harmful interference to the license owner, whose Quality of Service

1 Unused frequency range between bands, intended to ensure transmission without interference.
2 Portion of the spectrum reserved for purposes other than telecommunications, such as microwave ovens and

short-range low power communications systems like cordless phones, garage openers, Bluetooth devices and
wireless computer networks.
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1.4 hierarchical access model

(QOS) is granted. In the following part of this work, if not differently stated, the
hierarchical model will be the intended spectrum access model.

1.4 hierarchical access model
This type of access can be further declined into different protocols, determining the pair-
wise behaviour of Primary User (PU) and Secondary User (SU):

spectrum underlay, in which the SU keeps its transmit power at such a low level that
the primary receiver sees only a slight increase in of its effective noise level, even
though the transmit spectrum might overlap. A typical example is UWB commu-
nications: this technique has strict constraints on the transmitted power of the SUs,
therefore being the most conservative approach.

spectrum interweave, in which the SU tries to identify and transmit at times, locations
and frequencies where PUs are not active, the secondary system thus has to perform
first spectrum sensing. It is noteworthy that, as well evidenced in [46], a secondary
system can usually only sense the presence of a primary transmitter, not that of a
receiver, possibly causing unwanted interference. For an insight refer to [25].

spectrum overlay, a rather different approach: the secondary system identifies the
propagation channel from both primary and secondary transmitters to the primary
receiver, assuring that an eventual secondary transmission would not reduce the
quality of the primary one, even when they both occur in the same frequency band.
There is no need of artificial limit to the power of the SU, but knowledge of the com-
plex impulse response over the relevant transmit-receive paths (e.g. between primary
and secondary transceivers) is required, thus the need for more computation power.

Please refer to [76] for a finer classification of spectrum accesses.
The last two approaches have in common the necessity to make reliable channel predictions
and to understand what is the achievable accuracy, this will be further analysed in this
thesis work.

1.5 software defined radios
Let’s face the actors that will be fundamental in the new DSA environment.
A PU is the licence holder of the spectrum band, while the SU is one of the agents that
are allowed to transmit, provided they do not cause any type of interference to the PU;
the contract between the two types of agents will depend on regulation and on the chosen
spectrum access model.
A Software Defined Radio (SDR), proposed by Mitola in 1991, is a

Multiband radio that supports multiple air interfaces3 and protocols and is re-
configurable through software run on Digital Signal Processor (DSP) or general
purpose microprocessors[44].

A CR is considered as a goal towards which a SDR platform should evolve: a fully recon-
figurable wireless transceiver which automatically adapts its communication parameters

3 Radio-based communication links between the mobile station and the active base station.
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1.6 cognitive radios

to network and user demands, exchanging information about the environment with the
networks and other CRs. See, between others [76].

1.6 cognitive radios
The concept of CR has been described as:

An intelligent wireless communication system that is aware of its environment
and uses the methodology of understanding-by-building to learn from the en-
vironment and adapt to statistical variations in the input stimuli, with two pri-
mary objectives in mind:

• highly reliable communication whenever and wherever needed,

• efficient utilization of the radio spectrum, see for example [29].

Cognitive radios can be divided into two important categories, according to the quantity
of parameters that can be adapted to the current environment:

fully cr (mitola radio), the very first idea of CR, it would allow the setting of numer-
ous parameters on the fly: the modulation format, the access method and the coding;
it is still mostly a theoretical model, see the original work: [45].

spectrum-sensing or spectrum-agile cr, only allows fine-tuning of center frequency,
bandwidth and transmission time. Most of the research is now focusing in this cate-
gory of CR, particularly in the TV bands, see [46].

Numerous are the tasks to be implemented to obtain the features needed for a cognitive
radio, between these:

efficient spectrum sensing techniques, to provide continuously reliable spectrum
monitoring and detect unused spectrum with a short sensing time. The identification
of ideal moments for transmission is performed in a passive manner at the receiving
end of a cognitive radio link by listening to incoming electromagnetic waves in the
local neighborhood of the receiver, determining whether the observed signal can be
explained by noise alone or whether it indicates the presence of a primary signal.

power control, to manage different QOS requirements, setting the cut-off level in Sig-
nal Noise Ratio (SNR) for the protection of the PUs and sculpting the spectrum
adaptively, satisfying a variety of technical and legal constraints,

feedback channel, connecting SUreceiver and transmitter and thereby allowing for the
transmitter to adapt itself to the environment, it operates at a low bit rate compared
to the forward link from the transmitter to the receiver.

These tasks form what Mitola in [45] has defined a cognitive circle, a closed-loop wire-
less system aiming at maintaining harmony between transmitters and receivers through a
dynamic spectrum management. First the radio-scene analyzer detects moments for trans-
mission in time and space, then the transmit power controller selects a modulation strategy
that adapts to the radio environment, trying to assure reliable communication across the
channel.
A theoretical multi-user communication problem is therefore outlined; two are the strin-
gent limitations on network resources: constraints on maximum interference imposed by
regulatory agencies and the availability of spectrum to communicate. This difficult prob-
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1.7 spectrum holes

lem has been tackled in literature in two ways:

• as a non-cooperative stochastic game involving multiple players, a similar problem
as path-planning in robotics, for an introduction see [26], [54] presents an adaptation
of the potential field method for CRs purposes, based on a routing cost metric.
The convergence to the Nash equilibrium is quite fast, however, once this is reached,
no user is permitted to change its power level in a unilateral manner. Unfortunately,
because of noncooperativity and therefore “selfishness”, the algorithm performance
could be seriously compromised in certain situations, for this reason expansion of
the algorithm structure to include a form of cognitive immunity against exploitation
have been proposed.

• as an iterative water-filling algorithm, with the object of jointly maximizing data
transmission rates, with the same constraints in produced interference. This algo-
rithm is particularly well suited for the context, because a sub-optimal solution is
reached in an autonomous manner, thereby avoiding explicit communication links
among the multiple users and therefore simplifying the network design.

It has been shown in [30] that the solution of the iterative water-filling, although sub-
optimal and of local nature, is equivalent to a Nash equilibrium.

1.7 spectrum holes
One of the major aims of CRs is promoting an efficient use of the electromagnetic spectrum,
this is achieved through an optimal management of spectrum holes in space and time in
which a frequency resource results not in use. If the position of the PUs and the time of
transmission were known a priori, spectrum holes would be known, unfortunately this is
not always the case.
Every spectral hole is slotted in time, the cycle is visualized in Figure 1: when the PU
stops transmitting and the channel becomes idle, the SU needs a period of time, called
sensing time, to detect the spectrum hole; when this is found a new transmission is in act
until the SU notices that the PU has started transmitting again and is creating interference.
When the primary transmission is sensed the secondary one is not on the air until the PU
leaves the channel empty once again and the cycle restarts. The necessity of minimizing
the sensing times points to the importance of accurate sensing algorithms.

Figure 1: Main stages of the circular process that a spectrum hole faces in time.

Various typologies of spectrum holes exist, these are classified in [29] as:

temporal spectrum holes, no signal is emitted in the band of interest for a fixed pe-
riod of time.

frequency spectrum holes, frequency bands in which a SU can transmit without in-
terfering with any PUs across all frequencies. Problem is that transmissions could
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1.7 spectrum holes

potentially interfere with primary receivers without noticing. These holes, as tempo-
ral ones, are mostly researched for in an overlay approach.

spatial spectrum holes, created when the Primary Transmitter (PT) uses the frequency
band only in a restricted space inside the coverage area, these holes are mostly taken
advantage of in an underlay approach. They can be further divided into: black, grey,
white spaces, depending on the severity of the perceived interference. Unlicensed
users can transmit only if white and grey holes are detected and provided they do
not interfere with PUs in the coverage area, for an insight see [64].

To minimize the harmful interference caused to PUs, the area of transmission can be di-
vided in sub-areas, exemplified in Figure 2 with circles around the PU. Primary receivers
are guaranteed an error free reception and a specific QOS, within the protection range
denoted by rprot, that defines the innermost circle, the ptotection circle. The radius rpcov
delimits the maximum distance from which a signal emitted by the PU can be properly
decoded. rn, non talk radius, defines the circle where SUs are not allowed to transmit, to
assure an adequate quality of transmission inside the protection area. The circular crown,
in red in the figure, is called sacrificial zone: inside it users can experience some interference
when the secondary system is switched on. Together with the protection zone it forms he
coverage area.

𝑟𝑝𝑐𝑜𝑣 

𝑟𝑝𝑟𝑜𝑡 

𝑟𝑛 

Figure 2: Exemplification of a transmission area.
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2 P R O PA G AT I O N M O D E L S O F W I R E L E S S
S I G N A L

A transmission strategy for the secondary system consists of important decisions such as:
Which secondary user can transmit? On which frequency band? For how long? What
is the maximum allowed power? What kind of data modulation is to be used? How
much power the intended receiver gets and to how much interference is a "victim receiver"
subject to? How often potential interference levels have to be estimated and, consequently,
transmission strategies have to be updated?
A key ingredient in the answers to these questions is the use of a realistic propagation
model.
A propagation model simplifies the physics behind electromagnetic propagation into a set
of practical equations that can be then used to describe the spatial occupancy of a band,
practically taking care of the channel estimation and of its time variations a priori from any
eventual measurement data.

2.1 path loss
The field strength varies as a function of location, due to a wide number of factors: trans-
mitter distance, refraction, diffraction, reflection and absorption, but also terrain contours,
environment (urban or rural, vegetation and foliage), propagation medium (dry or moist
air), height and location of antennas. All these are summarized in the concept of path loss:
the ratio between a local spatial average of the received power averaged in time (hence the
<> symbol) and the transmitted one:

pl = Path Loss =
< Received Power >
Transmitted Power

=
< pr >

pt
. (2.1)

The expression can be rewritten in decibels as:

PL = −10 log10(pl) = −10 log10

(
< pr >

pt

)
= Pt − Pr (2.2)

where the acronyms in capital letters stand for the decibel transformation of the lowercase
ones.
Given the path loss, the transmitted power and antenna gains at both transmitter and
receiver end (Gt and Gr), it should be possible to know how much power is received on
average from a particular user:

Pr = Pt + Gt + Gr − PL. (2.3)

These are some of the simplest path loss models.
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2.2 median path loss model

2.1.1 LOS Model

Used to model free space propagation, when there is a direct line of sight (LOS) from
Transmitter (TX) to Receiver (RX) without obstructions, reflections or scatterings. It can be
expressed as:

pl =
(

4πd
λ

)α

=

(
4πd f

c

)α

(2.4)

where α is an attenuation constant, also known as path loss exponent, whose values typically
range from 2 to 4, depending on the application, even though α = 2 is the most used value,
d is the path length in kilometres, f is the frequency in Megahertz, c is the speed of light
in vacuum in km/s and λ is the wavelength in km.

2.1.2 NLOS Model

Unfortunately radio paths do not always (or almost never) meet the LOS hypothesis, so it
is necessary to introduce another model consequently called Non Line Of Sight (NLOS)

pr

pt
=

[
a
(

d
do

)−α

ζs
]

(2.5)

where a is a constant that depends on frequency and on antennas characteristics, d is the
path length and d0 is a reference distance, e.g. the a priori correlation distance, in consistent
units, α is, as in (2.4), the path-loss exponent, ζ and s represent small and large scale fading
respectively.
Let’s assume that both antennas are omnidirectional and, as typical in literature, that the
spatial average of ζ, < ζ > is unitary, according to (2.2) and (2.5):

PL = −10 log10

(
< pr >

pt

)
= −10 log10

[
a
(

d
do

)−α

s
]
=

= −10 log10 a + 10α log10

(
d
d0

)
− 10 log10 s =

= A + 10α log10

(
d
d0

)
︸ ︷︷ ︸

Median Path Loss

+S.

(2.6)

Where A and S are the negative dB values of a and s. Path loss is consequently decom-
posed into Median Path Loss and Shadow Fading (S).
Small-scale and large-scale fading play an important role in the design of CRs by introduc-
ing randomness into the received power: if fading did not exist the received signal could
be computed deterministically from the geographical locations of the transceivers.

2.2 median path loss model
The median path is defined by pieces

Median PL =


20 log10 4πd0λ︸ ︷︷ ︸

A

+10α log d
d0

if d < d0,

µα + fα otherwise
(2.7)
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2.3 large scale, slow fading, shadowing

where d0 is the reference distance mentioned beforehand, α is typically assumed to be
equal to 2 in the first equation, µα depends on transmitter antenna height (h) through
some constants a, b, c, that vary according on terrain type, so that µα = a− bh + c

h and fα

is a truncated Gaussian to prevent the path loss from being negative fα ∼ truncN (0, σα),
with σα that depends on the terrain type.

2.3 large scale, slow fading, shadowing
The factor s, known as shadowing or slow fading, reflects the existence of obstacles on the
path, such as hills and buildings, that, because of reflection and refraction, cause many
replicas of the same signal to come from different paths, adding one another in a construc-
tive or destructive way, depending on the relative phase shift, that, in turn, depends on
motion speed, frequency and relative path length.
Shadowing varies spatially over much longer distances (tens or hundreds of meters), than
the small-scale fading, hence the name, it is typically normalized, so that its median value
is one.
It has been shown in [28] that s has a log-normal distribution over space, consequently S
can be modelled as a two-dimensional process over space, whose mean is the path loss in
decibels; models for its second order statistics (i.e. the autocorrelation function over space)
are far less documented, according to [46], a widely used model is Gudmundson’s:

< S(x), S(x + ∆x) >= σ2 exp
(
−|∆x|

Xc

)
(2.8)

where Xc is the correlation distance of shadow fading, that, according to the same paper,
typically varies from 10 m in the urban area to 500 m in the countryside, σ has been given
values between 3 dB in indoor environment to 12 dB in outdoor areas, but is mostly fixed
to 8 dB.

2.4 small scale, fast, multipath fading
ζ, also known as multipath or fast fading, is experienced as fast changes within symbol
duration, all the channels which have a coherence time1 shorter than the symbol time are
subject to this type of fading. The signal experiences frequency dispersion, because of
these fast temporal changes and time selective fading because of Doppler effect.
The value of ζ varies spatially, i.e. if the receiver moves slightly, since the amplitude of the
received signal is the sum of multiple vectors whose relative phases change with receiver
position. Multipath fading causes therefore rapid fluctuations in signal level over distances
comparable to a radio wavelength.
It is usually normalized so that the spatial average has a unitary value.

2.4.1 Rayleigh Fading

Considered as the "worst" type of fading because of its complexity, it is present when there
is no direct LOS. The field is a sum of several components, each with a proper magnitude

1 In communications systems, a coherence time is the time duration over which a communication channel impulse
response is considered to be not varying, e.g. in wireless communications systems, due to Doppler effects.
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2.5 quantile model

and phase, if all the components have a similar magnitude, the Central Limit Theorem asserts
that their sum will resemble a complex Gaussian random variable over space, with a phase
uniformly varying in (−π, π] and a magnitude distributed as a Rayleigh.

2.4.2 Ricean Fading

If, on the other side, a dominant component exists, e.g. if there is a LOS path from TX
to RX, the sum of magnitudes will have a Ricean probability density function, which is
characterized by two components: the power of the main ray and the average of all the
weak scattered signals. The ratio between these two quantities has been considered to
be a lognormal random variable, whose mean is a linear function of distance from the
transmitter, with coefficients that depend on the environment (indoor, rural, urban . . . ).

2.4.3 Other Distributions

Other distributions have been presented to describe channel fading, such as Nagakami
and Weibull, they will not be described in detail in this work, see, for example [47].

2.4.4 Temporal and Angular Fading

Fading can also be a temporal process, if the receiver or the transmitter are moving or if
external objects are moving, such as windblown leaves, limbs of trees, cars and people.
Multipath components, coming from different angles, have different Doppler shifts, so
the composite received signal has a distribution of power over frequency, called Doppler
Spectrum.

2.4.5 Flat Fading

This type of fading, which is not frequency selective, only depends on the bandwidth of
the transmitted signal and is characterized by the same interference both in gain and phase
for the whole transmitted signal.

2.5 quantile model
This model uses a quantised version of the fading distribution, trying to model the fact
that the primary transmitter does not trust completely the nominal model, this increases
the model realism and allows to compute interesting quantities, such as the fear of harmful
interference.

2.6 standardized propagation models

2.6.1 Okumura-Hata Model

This is one of the most used models in large coverage cells with distances up to 100

km, it presents a logarithmic dependance on distance, antenna height and frequency and
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2.7 standardized double direction models

includes different approaches and propagation losses depending on the area (urban, sub-
urban or open).
Extensions of the Okamura-Hata model have been presented for various reasons, e.g. to
adapt it to European cities, which present buildings way shorter and in lower density than
Tokio, between these two famous ones are the COST-231 Hata model and the ECC-33 Path
Loss Model, that can be adapted even for suburban and open areas.

2.6.2 Stanford University Interim Model

Other famous model, divided in sub-models according to the terrain type (hilly or flat)
and on the tree density (heavy to light), a further insight can be found in [23].

2.7 standardized double direction models
Channel characterizations exist that take into account which specific antenna is present at
each ending. To separate the effect of the antennas in the estimation of the propagation
model, this has been divided into the estimation of the radio channel, that takes the antennas
into account and the propagation channel, that does not. A list of the most famous models
can be found in [23], while further details and other, more complex models can be found
in [46].

2.8 propagation model used in this thesis work
In this thesis work the propagation model used in the Bayesian part is taken from the
recommendation by the International Telecommunication Union, see [33].
The model is developed for frequencies from 30 MHz to 3 GHz and is a combination of
several propagation models. A major benefit of the ITU-R P1546-4 model is that it allows
for taking into account terrain elevation data (when available) in predicting the pathloss.
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3 S E N S I N G

Sensing algorithms can be coarsely divided into two types: Single User Spectrum Sensing
and Collaborative Spectrum Sensing, the reason to introduce the second technique is that
assuming the primary receivers to be totally passive, it is fundamental to know where
they are located to avoid harmful interference. It has been shown e.g. in [23] that the
easiest way of proceeding is not detecting the presence of primary signal individually in
each secondary user, that is computationally a demanding task, but cooperatively detect
the presence of the protection region, where the presence of primary users is probable,
therefore avoiding the hidden node problem.

3.1 single user spectrum sensing as an hypothesis
test

In the following the presence of primary signal is presented as a binary hypothesis test
performed by every secondary transmitter through local observations.
The main purpose of spectrum sensing is to reliably and quickly identify whether the
primary signal is present or not. It is possible to formulate this problem as a binary
hypothesis test.
The SU has to decide whether to accept the null hypothesisH0 (received signal is only noise)
or reject it and choose the alternative hypothesis H1 (received signal contains a contribute
from the PU, alongside with noise). Under hypothesisH0 andH1 respectively, the received
signal at the SU is:

x(t) =

n(t) H0

s(t) + n(t) H1
t = 1 . . . N (3.1)

where t is the discrete index time, N is the number of observations, x(t) is the received sig-
nal at the SU, s(t) is the signal received by the PU, that agglomerates the effects of the chan-
nel, n(t) is Addictive White Gaussian Noise (AWGN). The usual way to perform a hypoth-
esis test, is to formulate a test statistics Λ from the observation vector x = [x(1), . . . , x(N)]
and choose a threshold µ, above which H0 is rejected:

Λ(x)
H1
≷
H0

µ. (3.2)

The choice of the test statistics and the threshold depend on the decision making strategy
and on the desired performance parameters. If the assumption of conditional indepen-
dence can be made, the optimal simple hypothesis test statistics is the Likelihood Ratio
Test (LRT):

Λ =
P(x | H1)

P(x | H0)
i.i.d.
=

∏N
t=1 P(x(t) | H1)

∏N
t=1 P(x(t) | H0)

H1
≷
H0

µ. (3.3)
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3.1 single user spectrum sensing as an hypothesis test

A hypothesis test is said simple if the distributions do not depend on hidden parameters
and the the hypotheses specify the population distribution completely, otherwise is said
to be composite. If the study case enters the first category then the test statistics can be
transformed into:

Λ =
∏N

t=1
∫

Θ1
P(x(t) | θ1; H1)P(θ1) dθ1

∏N
t=1
∫

Θ0
P(x(t) | θ0; H0)P(θ0) dθ0

H1
≷
H0

µ (3.4)

where θi, i = 0, 1 are unknown parameters. If the distributions have some unknown, but
deterministic parameters that differ under the two hypotheses, an option consists in using
the Maximum Likelihood (ML) estimator and substituting the results inside the LRT, the
resulting detector is known as Generalized Likelihood Ratio Test (GLRT), that in the sub-
case of equal probability of the null and alternative hypothesis can be written as:

Λ =
∏N

t=1 max
θ1∈Θ1

P(x(t) | θ̂1;H1)

∏N
t=1 max

θ0∈Θ0
P(x(t) | θ̂0;H0)

H1
≷
H0

µ. (3.5)

Test statistics can be computationally complicated to evaluate and require a perfect knowl-
edge of the distribution of x under both alternative and null hypotheses, alongside with
information about parameters, such as noise and signal variance and channel coefficients.
For these reasons, sometimes, simpler test statistics, even though suboptimal could be a
better option, together with non-parametric techniques. For a deeper insight in test statis-
tics please refer to [11].

3.1.1 Neyman - Pearson Detector

It is used to perform a hypothesis test between two point hypotheses H0 : θ = θ0 and
H1 : θ = θ1, that are deterministically true. It maximizes the probability of detection for a
given constraint on the false alarm probability

Probability of False Alarm (PFA) = P(Λ ≥ µ | H0) = ᾱ (3.6)

where the statistics Λ is written in the aforementioned LRT form:

Λ =
P(x | H1)

P(x | H0)
. (3.7)

3.1.2 Bayesian Detector

If θ is an unknown parameter, with a prior distribution π, θ̂ = δ(x) is an estimator of θ,
L(θ, δ) is a loss function1, then the Bayesian risk of δ is defined as:

Eπ{L(θ, δ | x)}. (3.8)

The idea is to minimize the Bayesian risk, that depends on the cost assignments and on
the prior probability of the two hypotheses, which, unfortunately, may not be completely
known. Interestingly, although the deterministic and the Bayesian approaches are sub-
stantially different, the Bayesian test results to be a LRT. For more details please refer
to [34].

1 Function that maps an event onto a real number, representing some "cost" associated with the event, an example
can be the squared error.
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3.1 single user spectrum sensing as an hypothesis test

3.1.3 Min - Max Detector

Robust detector that seems to be the better choice for heavy-tailed noise models and if
some uncertainties are present in the observations, see e.g. [42].

3.1.4 Locally Optimum Detector

Optimal detector for weak signals, since it maximizes the slope of the detection probability
where the signal strength tends to zero. For computation details see [12].

3.1.5 Performance Criteria

Sensing algorithms have to be compared and evaluated according to some performance
criteria, that have to be carefully chosen between the following, according to the scenario.

type i and ii error (Also known as PFA and Probability of Miss Detection (PMD)). The
first is defined as the probability that the PU is declared to transmit, even if this is not
the case P(Λ(x) > µ | H0), controlling it is crucial for an efficient spectrum usage.
The latter is the probability that the presence of a transmitting PU is not recognized
P(Λ(x) < µ | H1). Minimizing it is analogous to maximizing the Probability of
Detection (PD), defined as the probability of the complementary event P(Λ(x) >
µ | H1). The PMD depends from the propagation environment through the SNR.
Controlling the PMD is essential to keep the interference under a predetermined
threshold.
The relationship between the two error types is contained in the Receiver Operating
Characteristics (ROC) curve, that illustrates the performance of a binary classifier
system while varying its discrimination threshold. The fraction of true positives out
of the positives (True Positive Rate (TPR)), also known as sensitivity is plotted versus
the fraction of false positives out of the negatives (False Positive Rate (FPR)), that
corresponds to 1 - specificity, at various threshold settings.
For an insight refer to [35].

detection time The time variations of the channel response determine how often the
potential interference levels have to be estimated and, thus, how often transmission
strategies may have to be updated. Consequently, depending on the application, the
detection time could be a concern, (e.g. if the signal is liable to very sudden bursts,
as it has been shown experimentally in [38] with a Wireless Local Area Network
(WLAN)). In this thesis this is fortunately not an issue, since the Digital Video
Broadcasting - Terrestrial (DVB-T) signal is quite stable.

detection range Maximum distance from which the PU can be detected reliably, is an
interesting index, once the many factors on which it depends (e.g. SNR, sensing time,
propagation environment) are fixed. It has to be carefully fine-tuned because if it is
too wide the detector will perceive also the PUs outside its interference range, and
this will prevent it from transmitting on bands that could be considered idle.

prior knowledge of primary signal and noise distribution Specific statistical in-
formation about the noise and knowledge about the receiver or the transmitter (loca-
tion, mobility, sensitivity . . . ) reflect on a better detector performance, but this type
of information is not always available and will be determinant on the choice of the
algorithm to implement.
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3.2 detector types and sensing algorithms

ability to detect different waveforms Some detectors are targeted for a specific
type of waveform, while others are not. This can be particularly valuable because
it could allow to discriminate PU signals from SU ones and interference, once the
waveform of the PU is known. As usually the context helps choosing the best detec-
tor.

bandwidth Depending on the situation it could be needed to sense a very wide band-
width or a particularly narrow one, this could lead to very different choices of detec-
tors.

robustness against non - idealities Channel effects, loss of synchronization, hard-
ware issues and impractical hypotheses comport the degradation of received signal,
compared to the theoretical one, robustness is a very valuable property in a detector.

complexity Simple algorithms are energy efficient, if power consumption is an issue (e.g.
in mobile detectors) the implemented complexity is important.

area of the implementation Mobile detectors have to physically fit in very small spaces,
if this is the case, the area that is needed for the implementation of the algorithms
can become a criterion (an example is offered in [38], where the detector has to fit in
a mobile phone case).

3.2 detector types and sensing algorithms
The choice of a detection criterion depends on which objective function has to be maxi-
mized and which characteristics, between the ones listed above are considered significant.
This is a short review of the most common ones.

3.2.1 Energy Detector

This detector measures the energy received in a predefined time interval and compares it
to a threshold.
Following [68] and [14] let’s consider a deterministic signal x(t), the statistic used in the
conventional test, in the usual form is given by:

Λ =
2

N0

N

∑
t=1
|x(t)|2 (3.9)

where N0 is the noise spectral density.
The test statistics behaves differently under the two testing hypotheses:

Λ ∼

χ2
2N H0

χ2
2N(2γ) H1

(3.10)

where γ = ∑N
t=1 |s(t)|2

N0
, the ratio between the signal energy and the noise spectral density.

Under the hypothesis of zero mean Gaussian noise of known power2 the energy detector
is the optimal detector, in reality it works well in more general cases, even though it might

2 In practice the noise power is not known and has to be estimated as well.
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3.2 detector types and sensing algorithms

be suboptimal.
Flexibility is the biggest advantage of energy detectors, since they can be used for any
type of signal, there is no need of assumptions, they are simple to implement and robust
to changes in the PU signal, consequently when little is known about the signal form,
and the designer is reluctant to make unwarranted assumptions, choosing this kind of
technique is the standard decision.
On the other hand, they make it impossible to distinguish among different signals (PU,
SU or interferences) and some information, which could be known about the signal and
could improve detector performance and robustness, would remain unexploited.
CRs must be able to detect very weak PU signal, but accurate detection is impossible under
a certain level of SNR, known as SNR wall, even with infinite measurement duration, the
reason is that the noise statistics is not accurately known in low SNR environments. Since
the threshold for the test statistics to distinguish between the central and not-central χ2

depends directly on the noise estimation, it can be hard to maintain a low false alarm rate
and there could be severe performance limitations, for a demonstration see [1].
For all these reasons energy detectors are best suited for coarse scanning of the spectrum,
even though are by far the most used in practice [67].

3.2.2 CFAR detectors

The aim of these detectors is to set the threshold µ in an adaptive way, trying to maintain
a predetermined PFA, without knowing the noise power. Since decision threshold is set
independently from unknown signals, CFAR detectors do not suffer for the SNR wall
phenomenon. The test statistics of a CFAR detector Λ(x) is unaffected by scaling, this is of
course a very useful property in practice, since commonly the noise power is not known.

3.2.3 Matched Filter Detectors

If the transmitted signal is known and if the noise is AWGN, matched filter detectors are
CFAR detectors and consequently, in this particular case, are the optimal filter for PU de-
tection. They are obtained correlating a known transmitted signal with the received signal,
to attain the desired false alarm probability the magnitude of the filter output is compared
with a threshold.
The relatively short sensing time and the easy implementation, straight consequence of the
linearity, are the main advantages.
The main drawback is that only one type of PU signal can be detected at a time, leading to
the need of a bank of matched filters and dedicated receivers in every SU receiver for all
signal types. The needed a priori information (e.g. pilot function, modulation, pulse shape,
packet format), is usually inferred from characteristics of the wireless signals, such as the
pilot function, the preambles and the synchronization words.
Compared to energy detection, the hardware requests are more demanding and it is dif-
ficult to modify the detector if the system evolves and new waveforms are introduced,
moreover perfect synchronization is required.

3.2.4 Feature Detectors

Feature detectors are characterized by a very little need of theoretical assumptions, by the
possibility to operate reliably at very low SNR levels and to differentiate certain signal
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types from others. This is due to the fact that signals used in practical communication sys-
tems contain distinctive statistical properties that can be exploited to estimate unknown
parameters, such as the noise power, to circumvent the problem of the SNR wall and
achieve a better performance.
Modern modulation and coding techniques have aided in the design of efficient spectrum
sensing algorithms. For example pilot signals and the use of cyclic prefix in OFDM cause
very distinctive signal features that can be exploited in the detector design. In CR prior
information about the primary user waveforms typically exists e.g. some of the cyclic fre-
quencies of the primary user signals, since regulatory bodies require the transmitted signal
parameters to be disclosed and from this it is possible to calculate the cyclic frequencies of
interest.
In the following, focus will be on the detection of primary user signal and the cyclic fre-
quencies will be assumed to be known.

3.2.5 Detector based on Second Order Statistics

The easier way to check if a signal is only composed of noise or if some information is
contained is to look at the second order statistics.
If enough samples are collected, knowing first and second moment should be enough, at
least for standard practical accuracy. Moreover, since base-band communication signals
are almost always zero-mean to minimize the emitted power, only looking at the second
order statistics is typically sufficient, see e.g.[1].
These detectors can be used for any kind of signal with a Cyclic Prefix (CP), let’s consider
an OFDM signal, let Nd be the block size of the data and Nc the length of the CP, that
is typically a repetition of the last transmitted samples and N = K(Nc + Nd) + Nd be the
total number of samples as in Figure 3.

Figure 3: N samples of a received OFDM signal.

The Autocorrelation Function (ACF):

rx[t, τ] = E[x[t]x∗[t + τ]] (3.11)

where t is the time index and τ the autocorrelation lag, is time-varying and non-zero
because of the insertion of the CP that makes the signal non stationary.
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Let’s consider for simplicity n(t) to be AWGN, thanks to this hypothesis for any τ 6= 0
rn[t, τ] = 0, hence the received signal

x(t) =

n(t) H0

s(t) + n(t) H1
t = 1 . . . N (3.12)

has an ACF rx[t, τ] = rs[t, τ] for any τ 6= 0, s(t) = hz(t) + i(t), where z(t) is the original
transmitted signal, h takes into account the medium and i(t) is the interference.
A possible estimate of rx[t, τ] is

r̂x[t] = x[t]x∗[t + Nd] t = 1, . . . , K(Nc + Nd) (3.13)

Tests for making decisions on the signal presence versus absence based on r̂x[t] are various,
they all start from the basic affirmation that the mean of r̂x[t] is non-zero only for some t.
Chaudhari in [14] cites between the first statistical tests proposed:

max
θ

∣∣∣∣ θ+Nc

∑
t=θ+1

r̂x[t]
∣∣∣∣ H1
≷
H0

µ (3.14)

where θ has to be interpreted as a synchronization mismatch, the drawback of this test is
that both Nc and Nd need to be known, together with the fact that the threshold µ depends
on the power of the noise and consequently this detector is susceptible to the SNR wall
phenomenon and thus the test is not CFAR.
In [15] the test presented is:

∑N−Nd
t=1 Re(r̂x[t])

∑N
t=1 |x[t]|2

H1
≷
H0

µ. (3.15)

The advantage of this test is that only Nd has to be known, this is useful if Nc is unknown
or if CPs of different lengths are in use at the same time; in addiction it is a CFAR test,
hence no knowledge of the noise power is required.

3.2.6 Detector based on Cyclostationarity

A subclass of feature detectors exploits cyclostationarity, characteristic of almost all artifi-
cial signals, due to modulation and the use of CPs, that cause the ACF to be periodic.
In the already introduced OFDM the ACF is periodic, with a fundamental period equal to
the length of the OFDM symbol Nc + Nd.
Second order periodic signals can be modeled with second-order cyclostationary random
processes.

Definition 1 (Cyclostationarity) A signal x[t] is second-order cyclo-stationary if its mean and
autocorrelation are periodic in time.

Hence it is possible to express the ACF as its Fourier series:

rx[t, τ] = ∑
α

Rx(α, τ)e2π jαt (3.16)

where α are cyclic frequencies, which depend on type of modulation and on the length of
the symbol Tb since α = k

Tb
or α = k

Tb
+ 2 fc, where fc is the carrier frequency.

The Fourier coefficients Rx(α, τ) depend on the time lag τ as:

Rx(α, τ) =
1
N

N−1

∑
t=0

rx[t, τ]e−2π jαt. (3.17)
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An alternative definition is therefore possible:

Definition 2 (Cyclostationarity II) A process x[t] is second-order cyclostationary when α 6= 0
exists such that Rx(α, τ) > 0.

Detection of cyclostationarity can be performed both in time and in frequency domain.
Cyclic autocorrelation Rα

x at cyclic frequencies α can be estimated as:

R̂x(α, τ) =
1
N

N−1

∑
t=0

x[t]x∗[t− τ]e−2π jαt (3.18)

R̂x(α, τ) is an estimation of Rx(α, τ), consequently it can be written as:

R̂x(α, τ) = Rα
x + ε(α). (3.19)

where ε(α) is the estimation error.
Usually, in real datasets, R̂x(α, τ) is rarely exactly null, therefore decisions have to be made
about the existence of a cyclostationarity.
Let’s formulate this problem as a classical binary hypothesis test, that has cyclostationarity
in the alternative hypothesis, while the null hypothesis is that the signal is not cyclosta-
tionary. H0 R̂α

x = ε(α) ∀ α ∈ A
H1 ∃ α ∈ A : Rα

x 6= 0
(3.20)

where the set A contains all the cyclic frequencies for a fixed value of τ, which are assumed
to be known a priori:

A = {α ∈ [0, 2π) : Rx(α, τ) 6= 0}. (3.21)

It is possible to assume explicit knowledge of PUs cyclic frequencies, since regulatory
bodies monitoring spectrum allocation require the transmitted signal parameters to be
disclosed and from this it is possible to calculate the cyclic frequencies of interest.
Under H0 Rα

x = 0 and thereforeR̂α
x = ε(α), which is an asymptotically normal zero mean

complex random variable: ε(α) = X(α) + jY(α), where X(α) and Y(α) are real normal
random variables, the covariance matrix is therefore:

Σ =

[
E[X2] E[XY]
E[XY] E[Y2]

]
(3.22)

whose estimate is:

Σ̂ =

[
1
N ∑N−1

k=0 Re{R̂αk
x }2 1

N ∑N−1
k=0 Re{R̂αk

x }Im{R̂αk
x }

1
N ∑N−1

k=0 Re{R̂αk
x }Im{R̂αk

x } 1
N ∑N−1

k=0 Im{R̂αk
x }2

]
. (3.23)

The distribution of R̂x differs only in mean under the two hypotheses.
Testing for the presence of a particular α in A is equivalent to a binary classification prob-
lem and requires knowledge of the distribution of ε(α), since the data distribution is
unknown, the asymptotic properties of the cyclic covariance estimators are made use of to
estimate its asymptotic distribution.
Under the assumption of samples of x(t) being well separated in time and approximately
independent, it is possible to prove that the estimator R̂x(α, τ) is mean square consistent,
i.e.:

lim
N→∞

R̂x(α, τ) = Rx(α, τ) (3.24)
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and, additionally,
√

N[R̂x(α, τ)− Rx(α, τ)] is asymptotycally complex normal, for demon-
stration see [17].
It is therefore possible to show that

lim
N→∞

√
Nε(α)

D
= N (0, Σ). (3.25)

From now on Test Statistics will indicate

T = R̂α
xΣ̂−1(R̂α

x)
T . (3.26)

Under the null hypothesis (H0) it is asymptotically χ2
2 distributed, once a value for τ is

chosen:
lim

N→∞
T D= χ2

2. (3.27)

It is therefore possible to derive a CFAR test for the presence of cyclostationary:

Fχ2
2
(µ) = 1− p (3.28)

where Fχ2
2

is the cumulative distribution of a χ2
2 distribution and p is the desired false

alarm rate, that implies the choice of the threshold µ, so that p = P(T > µ|H0). Finally α
is declared a cyclic frequency if T > µ.
The test is consistent, asymptotically optimal in the generalized likelihood sense and does
not require knowledge of data distribution, the normalization via the inverse of the covari-
ance matrix, makes thresholding easier and standard because it is enough to look up the
central χ2 distribution.
It has to be noted that if a couple (α, τ) exists for which Rx(α, τ) 6= 0 then there is presence
of second order ciclostationary, this does not imply, however, that x(t) is cyclostationary.
Under the alternative hypothesis it results:

lim
N→∞

√
N(R̂x(α, τ)Σ̂−1R̂x(α, τ)T)− Rx(α, τ)Σ−1Rx(α, τ)T)

D
=

N (0, 4Rx(α, τ)Σ−1Rx(α, τ)T).
(3.29)

For large enough N it is possible to write the approximate distribution of T under H1 as:

T ∼ N (Rx(α, τ)Σ−1Rx(α, τ)T ,
4
N

Rx(α, τ)Σ−1Rx(α, τ)T). (3.30)

Once the threshold µ has been set it is possible to evaluate the probability of detection
pD = P(T > µ|H1), using the distribution of T under H1, that can be approximated by
substituting Rx(α, τ) and Σ with their relative estimations.
The test can be modified to include multiple lag values or multiple cyclic frequencies, that,
even though way more expensive, can be useful in the case of an exhaustive search for
absence of cyclostationary, e.g. to validate that a channel is idle.
In the multiple lags case, let τ1, . . . , τN be a fixed set of lags, defining

R̂x(α) =
[
Re{R̂x(α, τ1)}, . . . , Re{R̂x(α, τN)}, Im{R̂x(α, τ1)}, . . . , Im{R̂x(α, τN)}

]
. (3.31)

Under the null hypothesis, the test statistic T, defined as before, that is now a 2N× 1 vector,
is asymptotically χ2

2N distributed:

lim
N→∞

T D= χ2
2N . (3.32)
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The CFAR test therefore becomes:

Fχ2
2N
(µ) = 1− p. (3.33)

Finally α is declared a cyclic frequency if ∃τk, k ∈ 1, 2, . . . , N : T(α, τk) > µ.
It is possible to derive the same test in a frequency domain using the asymptotic normality
of the spectrum, instead than the one of the cyclic covariance, without requiring knowl-
edge of the data distribution, for a deeper insight see [17].
Much of the work in developing a detector has been done in the framework of the standard
IEEE 802.22, the first that takes into account CR technology. The authors of [67] find the
standard a bit poor because it simplifies the sensing phase choosing to rule only the case in
which detectors and Fusion Center (FC) (whose work is to fuse information from different
detectors) are fixed in space and the only estimated signal is DVB-T, that is known for
being particularly stable and is addressed also in the experimental part of this thesis.
Cyclostationary detection has attracted interest for robustness to noise uncertainty and for
the capability of distinguishing systems with different cyclostationary features.
The first characteristic is particularly useful in interference limited communication chan-
nels, where it is hard to estimate the noise power reliably. As reported in [40], when this is
known perfectly, the energy detector outperforms the cyclic one, but raising the noise un-
certainty augments the performance gap in favor of the cyclostationary detector, since even
augmenting the number of samples could not improve the energy detector performance
because of the SNR wall. The latter characteristic, or the ability to disinguish systems with
different cyclostationary features, allows to distinguish between signals emitted by PU, SU,
interference or random noise, which usually does not have cyclostationarity properties.
Nevertheless some important issues arise.
First of all the theory has been developed in the case of samples of x(t) well separated in
time, so that they can be considered approximately independent, this is not true in real
detectors, that need to estimate the field as fast as possible, to allow the starting of a new
transmission. The violation of an hypothesis is translated in a degrade of detection perfor-
mance.
An issue, presented both in [61] and [74] is sensibility to clock and frequency offsets.
According to the authors, the detector could suffer from a cyclic frequency mismatch and
consequently be unable to properly estimate the frequency where the signal has the cy-
clostationary feature. Even a very small mismatch error can cause a dramatic reduction
of the detector performance and increasing the sample size does not directly imply an
improvement of the detector performance.
Another problem presented in [61] is that, after a reconfiguration of the hardware, e.g.
changing the carrier frequency or the decimation rate some transient peaks occur, so that
additional quiet periods become necessary.
Numerous and very different are the proposals for improving cyclostationary detection.
The proposal of [74] and [40] to attenuate the problem of the frequency mismatch is to eval-
uate the cyclostationary auto correlation at multiple frequencies in an interval centered in
α0, to increase the robustness of the whole procedure. This technique can only be used
if the primary signal has multiple strong cyclic frequencies, otherwise the performance
could deteriorate because of the increased number of degrees of freedom.
A new approach based on cyclostationary signatures seems to improve the identification of a
particular network embedding additional information concerning the bandwidth and the
modulation scheme in the signal and therefore altering the characteristics of the signal to
make it unique; an overview, together with some interesting results can be seen in [61].
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3.2.7 Other Detectors

A wide range of detectors exist, which is not listed here, between these the most present
in literature are wavelet detectors and covariance detectors, see eg [1].

3.3 collaborative sensing
Non cooperative spectrum sensing techniques experience issues when the primary signal
is under heavy shadowing or multipath fading, that could lead to avoid problems such as
the hidden terminal problem, due to unsensed primary receivers.
The consequent technique is cooperative sensing, where information from secondary cog-
nitive users is shared, so to have a better primary users detection, without excessively long
detection times. In practice the shadowing process may be correlated between secondary
users, thus reducing the gain from collaboration and consequently emphasizing the im-
portance of spatial diversity between them.
Users collaboration can be realized in different ways e.g. all users can monitor the band
of interest or they can sense a portion of it and then share the information with the other
users or with a central calculating center, called FC in literature.
Collaborative sensing can be divided into two major types: centralized and decentralized
sensing.

3.3.1 Centralized Cooperative Sensing

All cognitive users send the gathered information to a FC, a cognitive radio user, that
"fuses" the information and takes the final decision about the presence of primary signal.
Two are the techniques that are at the moment the most researched about: decision fusion
and data fusion.

Decision Fusion (Hard Combination)

In this type of cooperative sensing, all the single secondary users take a 1-0 decision about
the presence of transmitting primary users. These decisions are conveyed to the FC that
has the final word on the matter. The final decision can be taken with multiple rules, such
as the OR rule, also known as 1-out-of-M rule, that is very conservative and assumes the
primary user is transmitting if at least a SU is saying so, another option is the Majority
Rule, also known as K-out-of-M rule, and the AND rule, which is the M-out-of-M rule.

Data Fusion (Soft Combination)

The FC takes its decision by averaging the estimates of the primary signal coming from
all the secondary users. This approach requires a higher bandwidth and overhead for
data transmission to the FC, because of the higher complexity of the conveyed informa-
tion. In a centralized radio-environment with fusion information a centralized database
stores all what is known about the state of the radio environment. The information can
include transmitters and receivers location, field strength estimates, results from field mea-
surement campaigns, etc. This information is combined and processed to give a realistic
estimate of the radio environment, whose accuracy ensures the protection of the primary
network operation, while allowing the maximization of the secondary system throughput.
A censoring scheme, as the one presented in [40], in which only informative test statistics
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are transmitted, seems to be the way to go to improve the technique feasibility.
This technique is the one which is the mostly thought about while developing algorithms
in this thesis work.

3.3.2 Decentralized Cooperative Sensing

In this type of cooperation all users exchange information with each other to decide
whether the PU is transmitting or not. In this case there is no need for a backbone in-
frastructure, because there is no FC, since each SU is operating as an independent FC by
collecting sensing information shared by its neighbors.
For this reason in this framework a lot of theoretical effort has to be put into transmit
power control, that is operated each SU; the solutions presented so far seem to focus on
etiquette, protocol and cooperative, ad-hoc networks, whose form of collaborations can be
variegated, e.g. only between directly connected nodes.
For a deeper insight into Cooperative Sensing, please refer to [14].
Numerous are the advantages presented by a fully decentralized control situation, e.g.Haykin
in [29], under some reasonable assumptions, shows that the network can scale to almost
arbitrary number of nodes; in the same paper some simulations results are also presented.

3.4 future of spectrum sensing
At the moment database-centric collaborative approaches are still the core solutions in
primary signal detection because of a multitude of still unresolved issues encountered by
the decentralized collaborative approach, it still is not clear which will be the dominant
path in the near future, but surely the need of a new standard is very present.

3.5 implementation of the detector used in this the-
sis work

The software and hardware used in the measurement campaigns present a cyclostationary
detector, especially modified for these measurement campaigns, they have already been
described in two papers [38] and [67], here a brief introduction is presented, please refer
to these for further insights.

3.5.1 Measurement Setup and Hardware

The hardware used in the measurements consists of the detector connected via USB to a
notebook equipped with a commercial external UHF antenna for the DVB-T signal, a GPS
receiver to track the position of the measurements and a supplementary external battery,
see in Figure 4. A Matlab Graphical User Interface was used to illustrate the results per
every channel, for both the test statistics and the RSSI, allowing the operator to coarsely
check the correctness of the measurement in almost real time, see Figure 5. The detection
algorithm has been implemented in a field-programmable integrated circuit, see Figure 6

so that the measurement device is a mobile-scale implementation.
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Figure 4: Measurement setup in the Helsinki campaigns, consisting of a waterproof case containing
a portable computer connected to the detector via USB.

Figure 5: Screenshot of the Matlab GUI, on the left it is possible to see if the GPS has or not been
locked, or enter the location manually, on the right it is possible to manually select which
channels to scan. In the bottom graphic the histograms show the test statistics, while the
line pictures the RSSI in the measurement location, varying the channel.
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Figure 6: Detector board equipped with the UHF antenna.

3.5.2 The implementation

The implemented detector is a cyclostationary feature detector, that takes advantage of the
cyclostationarity inhered from modulation and cyclic prefixes.
The detector algorithm is based on Fast Fourier Transform (FFT), for very pragmatical
reasons: as clearly stated in [67] the device was built to support a later incorporation of
an energy detector, that requires to work in the frequency domain. Less hardware would
have been sufficient for an estimation of the covariance matrix in time domain.
The implementation consists of a single lag, single frequency detector, since it has been
illustrated, see e.g. [75], that using only one or few cyclic frequencies is sufficient to get a
satisfying performance, since it already outperforms the feature detector based on second
order statistics.
The implementation is shown in Figure 7.

Figure 7: Block diagram of the detector, as reported in [67].
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First step is a multiplication of the complex input with a delayed version of itself, this re-
quires the four multipliers and a dual port Random Access Memory (RAM) to implement
the lag, the size of which was determined by the expected maximum lag value.
At this point a resampling is operated by a Finite Impulse Response (FIR) filter, that sup-
ports multiple decimation ratios. Decimation is a technique used to improve the detector
performance, since usually the information of the cyclic spectrum resides in the low cyclic
frequencies, the hight-frequency part of the spectrum is of no importance, consequently
the low frequencies can be resampled before applying the FFT. This increases the allowed
detection time by a factor corresponding to the decimation ratio and consequently the prob-
ability of detection augments, as experimentally shown in [67]. Maximum detection ratio
can be limited by both the cyclic frequencies of the signal in exam and by detection time
constraints. Decimation allows to dynamically balance the detection time and therefore
improve the performance, with a fixed size FFT. This is particularly useful in mobile de-
tectors where the power consumption is certainly critical.
The decimator is followed by the FFT unit, chosen because of the low complexity that
allows an implementation in a small area, with a low power consumption, important in a
device that was built to be cheap and portable. The FFT is the unit with the major area
and the most power consuming and it determines the minimum detection time as:

Td =
M · NFFT

fs,in
(3.34)

where M is the decimation ratio, NFFT is 2048, the default array size for the computation
of the FFT and fs,in is the input sampling frequency. Therefore if, for example, the input is
sampled at 20 MHz, varying M from 1 to 16 makes Td range from 100 µs to 1.6 ms.
The elements of the covariance matrix are calculated by three multiply and accumulate
blocks and an external microprocessor is added at the end of the process to operate the
matrix inversion needed for the calculation of the test statistics.

3.5.3 Pros of the detector

Mobile detectors, like the one that was used in the experimental part, have two big ad-
vantages: being extremely cheap, compared to commercial spectrum analyzers and being
easily transportable. In the not so far future, they could be implemented in mobile SUs,
that could collaborate, sense local spectrum and provide a fast response to dynamic signal
conditions.

3.5.4 Issues of the detector

As stated in [38] a miniaturized device encounters strong physical challenges:

battery capacity, that becomes more important when the number of channels to be
monitored frequently increases,

total implementation area, since as a constructive challenge the detector had to fit in
the case of a N900 Nokia phone, and miniaturization is not straightforward in this
kind of devices,

losses in the antenna, that is cheap and very portable, but whose gain is clearly not
constant in a wide bandwidth, as it should,
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front end filter, known to cause increase unintentional false alarm rate, because of
intermodulation, when there is a strong primary signal in the vicinity, see [38].

Others are causes of non ideality which are not strictly connected to miniaturization, but
are still present in the dataset, such as:

narrowband interference, as reported in [38] in few locations in Helsinki downtown
a signal is detected from Estonia on channel 45, that is sometimes not perceived by
the detector, because of the stronger signals on channel 44 and 46, that are transmit-
ted by the much closer transmitter in Espoo.

distance between simulated and sampled detection curves, issue that has already
been presented in [67]: the probability of detection versus the SNR, while varying
the decimation ratio at low levels of input signal does not match the theoretical curve,
since the probability of detection tends to zero instead than to the theoretical false
alarm rate. In the above cited paper this is explained by the fact that noise in practice
is not AWGN and especially at low levels of signal it is dominated by interference
coupled with the analog baseband. This issue does not translate into any real prob-
lems, because this happens at SNR values well below the noise floor.

As it is the device does not meet the sensing requirements imposed by the FCC, which are
actually under questioning, because the current ruling does not include the possibility of
using multiple small devices and such strict requirements could cause a lot of false alarms
due to intermodulation.
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4 M E A S U R E M E N T S

As clearly stated in [46] channel models cannot completely describe the reality of propa-
gation: typical or standardized values of channel parameters are helpful, but need to be
compared with reality. They come without any form of metric to measure performance
and are therefore inadequate for statistical prediction, therefore the aim of this thesis work
is to adapt them to our aims.
The datasets that have been faced in this work are multiple, but they are all multi-channel
measurements of the DVB-T signal, performed with similar set-ups, which have already
been described in detail in chapter 3.

4.1 measurement campaigns
Locations where to sample depend on the particular wireless system, because of the cover-
age area of the single transmitter. In each location the number of samples depends mainly
on the desired confidence level, that can be considered to be coarsely proportional to the
standard deviation of the measurements.

4.1.1 First and Second Measurement Campaigns (MC1 and MC2)

The data of the first and second campaigns have been gathered in a moving car, equipped
with the experimental set-up that has been described. On July 9

th
2013 the way from

Helsinki to Porvoo and back has been covered, mostly to check the measurement set-up
stability. These measurements are not included in the present analysis, since only one
sensor was available and improvements in the detector had still to be implemented.
Doppler effect, caused by the relative motion of transmitter and receiver, had not been
taken into account, even though it affects the performance of cyclic detectors because of
the carrier frequency shifts and the subsequent changes in cyclic frequencies. For further
details see [40], where the DVB-T signal is said to suffer more from this issue compared
to other signal types, because of its longer symbol length. Another issue is caused by the
possible coupling of the electromagnetic field between the field produced by the car engine
and the received signal, that is not anyhow quantifiable.
In MC2 the route between Helsinki and Espoo and back has been covered. This time two
sensors were used for measurements in order to validate the results. The results were
noticeably more consistent compared to MC1. This was achieved by fixing some imple-
mentation bugs and by keeping speed under 90 km/h all the time, not to have a significant
Doppler effect, that is known to be important only at high mobile speed, unrealistic in prac-
tical CR applications. Because of some issue related to ambiguity between time stamp and
positioning registered by the GPS device, this campaign has not be used in the present
work.
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4.1 measurement campaigns

Figure 8: Sampled locations in MC3.

4.1.2 Third Measurement Campaign (MC3)

These measurements have been gathered in two different days: July, 30
th and August, 23

rd

2013 in Helsinki metropolitan area, locations an be seen in Figure 8. These data are differ-
ent from the previous ones, even though the experimental set-up is the same, because they
have been collected "statically". In this case six people, equipped with one sensor each,
have moved in the city by foot and with public transportation, standing in each of the
planned locations for a time sufficient to collect approximately 200 samples per location,
and turning the sensor off while moving, to obtain results which are more statistically
relevant.
Sensors were divided into few clusters about 100 m apart from each other, each of which
composed by three sensors, separated about 10-20 meters. A map of the measurement
locations can be visualized in Figure 8.
Table 1 keeps track of the sampled channels, their central frequency and their real occu-
pational state (idle or occupied). Let us go a little more in detail about what is to be
considered an idle band or an occupied band in a CR context. The idea is that SUs in
Helsinki downtown area could transmit in an idle channel with a low power without in-
terfering faraway TV transmission. However, if the SU would transmit with an extremely
high power (e.g. hundreds of kilowatts) essentially all the TV channels would need to
be considered as occupied, therefore channel occupancy is not a concept by itself, but a
function of transmit power.

4.1.3 Fourth Measurement Campaign (MC4 and TSM1)

For this campaign a better experimental set - up was available thanks to the collaboration
with Juha Kalliovaara from the University of Turku, for technical details refer to the man-
ual [60]. In every location two sets of measurements have been collected, one per type of
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4.1 measurement campaigns

sensor, in order to compare the results.
Per every location 200 samples were gathered with the Time Scale Modification (TSM) de-
tector and 50 with the cyclostationary one; the difference is due to the fact that the sensing
time is much shorter with the TSM detector, consequently in the same time interval it was
possible to collect only a smaller number of samples with the cyclostationary detector.
The idea was to get as close as possible to the old measurements, in order to offer a refer-
ential measure to attest the validity of the previous campaign.

Channel
Number

Frequency
(MHz)

Occupied
Channel

Transmitter
Location

21 474 N -
22 482 N -
23 490 N -
42 642 N -
43 650 N -
44 658 Y Espoo
45 666 Y/N Tallinn (Estonia)
46 674 Y Espoo
47 682 N -
48 690 N -
49 698 N -
50 706 N -
51 714 N -
52 722 N -
53 730 Y Espoo
54 738 N -
55 746 N -
56 754 N -
57 762 N -

Table 1: List of the sensed channels in MC3 and MC4. Channel 45 is somehow unique because it is
received in some areas of Helsinki, but the signal comes from Tallinn (Estonia). The main
transmitter that is considered in the work is visible in Figure 9.

For details about the first four measurement campaigns please refer to [41].

4.1.4 Fifth Measurement Campaign (MC5)

These measurements have been gathered in Turku, Finland, on the test DVB-T channel 38

with a dipole antenna and the TSM detector. The measurement set-up was put in a chart
attached to a bicycle and a minimum of 1000 samples per location were collected. Together
with these static measurements, moving measures between locations have been performed
as well, since the sensor was not shut off during movements. In this campaign only the
Received Signal Strength Indicator (RSSI) is available, not the test statistics. For further
details on the fifth measurement campaign, please refer to: [51], [52] and [53].
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4.2 mapping

Figure 9: The red dot indicates the transmitter position for channel 44, Helsinki peninsula is clearly
visible in the South-East.

4.2 mapping
Shapefiles to allow the plotting (and cropping) of spatial interpolation and predictions
maps through ggmap in R, were obtained by the the National Land Survey of Finland (NLS)
and are freely and openly available online, see [50].

4.3 data description
Data are composed of N (varying between the campaigns) observations of the following
vector:

coordinates sampling locations. Data have been received in an unprojected format,
projection is necessary to perform the variogram using a plane distance, instead
than the Great Circle one. See the Appendix for clarification.

rssi (Received Signal Strength Indicator), a measurement of the power level of the relative
received signal strength in a wireless environment; the higher the RSSI, the stronger
the signal. It is expressed in decibels [dB]. There are at least 50 (typically 200 or
more) recordings per location in time.

test statistics Test Statistics value from the cyclostationary detector. There are at least
50 (typically 200 or more) recordings per location in time.

time Time elapsed since the measurement started. The value is taken directly from the
operating system.

detector Integer ranging from 1 to 6 that identifies which measurement set-up between
those used in the campaign got that particular entry.
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4.4 visual analysis

elevation altitude of the measurement location from sea level, data have been extracted
from Google Maps through Google Maps API V3 and Google Maps API Elevation
Service through an interface available online 1. It is expressed in meters.

sea distance has been calculated through a minimum distance query between single
points and a polyline interpolation of the seashore using GRASS GIS2, a free and
open source Geographic Information System (GIS) software suite used for geospatial
data management and analysis. It is expressed in meters. The idea was to use this
distance in the prediction of Chapter 45, see Table 1.

transmitter distance distance between the transmitter and the measurement points,
calculated as a geodesic distance, along the surface. The method involves the solu-
tion of the geodetic inverse problem, using T. Vincenty’s modification of Rainsford’s
method with Helmert’s elliptical terms. To calculate this the function geodDist in the
oce package has been used. The transmitter location (60◦10′40.0”N 24◦38′24.0”E) has
been found on the DVB-T-map website3, it is expressed in kilometers. As a double
check this distance has been calculated using the Euclidean distance in the projected
Universal Transverse Mercator (UTM) surface, giving an error of 3.5 meters in aver-
age, with a standard deviation of approximately 3.5 meters, that has been considered
a very good approximation.

4.4 visual analysis
Both test statistics and RSSI are good indexes to discern a channel occupancy, this can
be coarsely visualized in Figure 10, 11 and 12. It will be shown that an extremely well
performing classifier can be built on these two quantities.

1 http://www.daftlogic.com/sandbox-google-maps-find-altitude.htm
2 http://grass.osgeo.org/
3 http://www.dvbtmap.eu/mapglobal.html?tid=8228
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4.4 visual analysis

Figure 10: Comparison of test statistics in unoccupied (22,42) and occupied (44,46) channels in a
random, but fixed location. The difference in signal amplitude is noteworthy between
the two cases.
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Figure 11: Comparison of test RSSIs in unoccupied (22,42) and occupied (44,46) channels in the same
random, but fixed location. Even if smaller in percentage a clear difference than in the
test statistics case, a clear difference is still present between the two channel occupations.
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4.5 data distribution

Figure 12: Boxplots for the comparison of an idle channel (22, left) and an occupied one (44, right).
In the top plots the Test Statistics is used, in the bottom ones the RSSI is the chosen index.

4.5 data distribution
Let us start validating the results presented in the theoretical part for what concerns the
distribution of the test statistic in the case of a cyclostationary detector.

4.5.1 Unoccupied Channel

We had foreseen that the distribution of the test statistic in an unoccupied channel, there-
fore under H0, had to be asymptotically χ2

2 distributed, since there is only one fixed value
for the lag. This can be easily verified, as can be seen in Figure 13, where a graphical
analysis is performed comparing the empirical histogram with the theoretical one and
drawing the quantile-quantile plot, that allows to compare the theoretical quantiles with
the sampled ones. The result is quite satisfying, therefore the distributional assumption is
validated.
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4.5 data distribution
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Figure 13: Histogram (left) and quantile quantile plot (right) comparing theoretical (blue line) and
empirical (red) distribution of Test Statistics of idle channel 21 in a single random location.

4.5.2 Occupied Channel

The distribution of the Test Statistics in an occupied channel is theoretically asymptotically
normal, in reality, the distribution does not result to be symmetric in every location, see
Figure 14.
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Figure 14: Histogram (left) and quantile quantile plot (right) comparing theoretical (blue) and em-
pirical (red) distribution of Test Statistics of occupied channel 44 in a single random
location.

Even if the qualitative analysis of the local distribution in the occupied channel in some
locations does not exactly match the theoretical distribution and the Shapiro Test refuses
the hypothesis of normality, the choice is to consider it valid in every location, for simplic-
ity and because in the vast majority of cases it results to be verified.
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5 D E T E R M I N I S T I C I N T E R P O L AT I O N

Spatial spectrum models have as objects the generation of scenarios for evaluation of algo-
rithms and protocols concerning the DSA.
Object of spectrum models is the generation of scenarios for evaluation of algorithms and
protocols concerning the DSA.
As already suggested in [72], deterministic models do not fully consider the characteristics
of a real network and therefore they are mostly useful in areas where no sampling data
are available, while interpolation and prediction modeling are otherwise preferred.
The aim of this section is to briefly introduce the available interpolation techniques for
geo-referentiated data. These are mostly historic models, but they will be shortly listed for
the role they have played and still play in famous applications.
Let’s start looking at those interpolators that are called exact, meaning that in the sampled
points they exactly assume the sampled value.

5.1 thiessen or voronoi interpolation
The method, named after the Ukranian mathematician Georgy F. Voronoy, who defined
and studied the general n-dimensional case in 1908, is tipically referred to as Thiessen
tassellation in Geostatistics, in honour of the American meteorologist Alfred H. Thiessen.
The idea is straightforward: once the points where the variable of interest has been sam-
pled are known, the measurement region is divided into subregions, each consisting of
all the locations which are closer, in a pre-specified metric, to a particular sampled point.
These are called Voronoi cells or Thiessen polygons and define the area of influence of a par-
ticular sampled point, see e.g. Figure 15.
More formally let (D, d) be a metric space, endowed with the distance function d and let
~si, i = 1, . . . , N be the the measurement locations; the Voronoi cell Vi, associated with the
site~si, is the set of all points in D whose distance from~si is not greater than their distance
to any of the other sites~sj, j 6= i. In other words, if d(~s, D) = inf{d(~s, ~a) |~a ∈ A} denotes
the distance between the point~s and the full set D, then

Vi = {~s ∈ D : d(~s,~si) ≤ d(~s,~sj) ∀j = 1, . . . , N, j 6= i}. (5.1)

The Voronoi diagram is simply the tuple of cells Vi, i ∈ 1, . . . , N. In principle some of
the sites can intersect and even coincide, but usually they are assumed to be disjoint. In
addition, infinitely many sites are allowed in the definition, but again, usually only finitely
many sites are considered.
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5.1 thiessen or voronoi interpolation

V1
V2

Figure 15: Example of Voronoi cells.

In applications the space is usually finite-dimensional Euclidean and all the measure-
ment points differ, and therefore the Voronoi cells are convex polytopes, however, in gen-
eral, they may not be convex or even connected.
The idea is to use this partition of the area for interpolation, setting the value of the field
Z(~s) in an unsampled location~s to be the value of the field in the only location in the area
where a measurement has been done:

∀~s ∈ Vi Ẑ(~s) := Z(~si). (5.2)

5.1.1 Implementation

The implementation takes use of the R [58] package deldir to build the tassellation, then
a value is associated to any tile, depending on the closest sampled value.
For details refer to the Listing chapter.

5.1.2 Results

From MC3, for an occupied channel (44) and an unoccupied one (22), for both RSSI and
Test Statistics an interpolation has been conducted, taking for every sampling location the
temporal median and from these the idea is to produce a interpolation map of all the
Helsinki area.
In Figure 16 the tiles geometry is presented: it is clear that not all the polygons have the
same area; polygons are smaller in the center compared to the docks because the sampled
locations are closer. The decision has been to limit the polygons in a rectangular frame, to
limit the external ones.
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5.1 thiessen or voronoi interpolation

Figure 16: Tiles using a standard Thiessen interpolation.

Let us start comparing the results for the RSSI, between an idle (22) and occupied (44)
channel in Figure 17: it is clear that there are a lot of discontinuities between the tiles
and, even for two channels, whose occupancy is really different (see Figure 10), it happens
that differences between tiles are bigger in absolute value compared to those between the
channels themselves.
In Figure 18, instead, where the same operation has been conducted for the Test Statistics,
instead than the RSSI, differences between tiles are still noticeable, but, since, as it has
already been noticed, the test statistics presents a lot more difference in absolute value
between channels that are occupied and those that are not, compared to RSSI, the inter-
polation looks more homogeneous between the tiles, and therefore, in a cognitive radio
prospective, more useful.

Figure 17: Results of the Thiessen interpolation of the RSSIs in an unoccupied channel (22, left) and
occupied one (44, right). The transmitter for channel 44 is out of the drawn area, it is
visible in Figure 9.
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5.2 weighted thiessen interpolation

Figure 18: Results of the Thiessen interpolation of the Test Statistics in an unoccupied channel (22,
left) and occupied one (44, right). The transmitter for channel 44 is out of the drawn area,
it is visible in Figure 9.

5.1.3 Notes

Even though the technique is easy to use and implement, making it perfect in a static
CR environment, it is not optimal by any means from the point of view of mobile users,
since in that case the polygons would have to be re-computed continuously, making this
approach, that already furnishes a coarse approximation, also computationally unfeasible.
Let us make a brief summary of the technique characteristics, considering a CR prospec-
tive:

• All the predictions are based on the measurements in a single location, making the
estimate very easily subject to errors and local bias, if the sensors are not all perfectly
fine-tuned.

• The estimation is raw and "stepwise", since there is no continuity on the borders of
the cells.

• There is no local error estimation, the only index is the local standard deviation, but
that is valid only in the measurement location, not in the rest of the tile.

Consequently the technique could be a good choice in a static setting for its very low
computational cost, but is really inadequate in the mobile environment.

5.2 weighted thiessen interpolation
This technique is the natural response to some of the critics moved to Thiessen’s tassella-
tion: it is still a simple and local interpolation, but the interpolated value depends now on
three measurements, instead than only one.
Let ~s0 be the location where the prediction is to be calculated and ~si, i = 1, . . . N be the
sampling locations, then

Ẑ(~s0) = ∑ λiZ(~si). (5.3)
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5.2 weighted thiessen interpolation

Where λi = 0 for all the vertices except the three closest ones and the non-zero λi are
arbitrary and can depend, as an example, on the normalized distance from the new point.

~s0

Figure 19: Example of triangulation.

5.2.1 Implementation

In this case the weights chosen for every~s0 are the following:

λk :=

 1
d(~s0,~sk)

if~sk is one of the 3 closest neighbours of~s0,

0 otherwise.
(5.4)

In our implementation the interpolation is done point per point in a regular 400× 400 grid,
in the rectangular area that can be seen in Figure 16. The implementation is similar to the
standard Thiessen, apart for the weighting, see the Listing chapter.

5.2.2 Results

These are two estimations from the measurements coming from MC3, for an unoccupied
(22) and an occupied (44) channel, using the Test Statistics.

Figure 20: Results of the Weighted Thiessen interpolation of the Test Statistics in an unoccupied
channel (22, left) and occupied one (44, right). The transmitter for channel 44 is out of
the drawn area, it is visible in Figure 9.
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5.2 weighted thiessen interpolation

Figure 21: Results of the RSSI interpolation of the Test Statistics in an unoccupied channel (22, left)
and occupied one (44, right). The transmitter for channel 44 is out of the drawn area, it
is visible in Figure 9.

Qualitatively the results presented in Figures 20 and 21 seem correct, since values for
idle channels are way lower than the ones for occupied ones and in these last it is possible
to see how the strength of the signal diminishes from south-west radially (the transmitter
is located in Espoo, see Figure 9). It is natural to compare the two previous interpolation
techniques: to have a qualitative idea the effective difference between interpolation tech-
niques we proceed first with boxplots, which probably make it easier for the comparison
to take place.
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Figure 22: Boxplots of the differences in Test Statistics units between weighted and standard
Thiessen interpolation in an unoccupied channel (22, left) and an occupied one (44, right).

To see if effectively, as the boxplots in Figure 22 seem to suggest, the differences are zero-
mean distributed, therefore asserting that it is useless to utilize a more complicated and
therefore computationally intensive interpolation technique, we proceed with a paired t-
hypotheses test. This test is used because interpolation techniques are applied to the same
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5.2 weighted thiessen interpolation

samples and consequently the results can be considered to be paired per location, more-
over the true deviation is unknown, but the sample size is quite high.
Defining d̄ the sample mean of the difference between the interpolated values of the test
statistics across time in each grid point using the two techniques and sd the standard devi-
ation of d, it is possible to build a test statistics that behaves as a t of Student distribution
with n− 1 degrees of freedom:

T =
d̄
sd√

n

∼ tn−1. (5.5)

The test can be stated as:

• If H0 cannot be refused the interpolation techniques are in average the same and
therefore there is no need to complicate the interpolation technique.

• If, on the other side, H1 is selected, the interpolation techniques show a difference
in mean and further reasoning is needed to decide which technique is to be chosen
and why.

The results are the following:

• Unoccupied Channel 22

T = 0.7985, p− value = 0.4263. (5.6)

The sample mean of the difference is d̄ = 0.89 therefore 0 clearly belongs to the 95

percent confidence interval IC0.95 = [−1.32, 3.10] and we cannot refuse the H0, for
which the true difference has zero mean.

• Occupied Channel 44

T = 0.3583, p− value = 0.7208. (5.7)

The sample mean of the difference: isd̄ = 2.20 therefore 0 clearly belongs to the 95

percent confidence interval IC0.95 = [−9.96, 14.36] and we cannot refuse the H0, for
which the true difference in mean is zero-mean.

All this applies to the interpolation using the RSSI, for brevity only the test results are
reported here:

• Unoccupied Channel 22 This is the only case in which H0 should be refused, since

T = 3.9775, p− value = 0.0001263. (5.8)

The sample mean of the difference is d̄ = 1.25 and therefore 0 does not belong to
the 95 percent confidence interval IC0.95 = [0.63, 1.88]. In this case there is statistical
significance to assert that the true difference has not zero mean, but been the interval
so close to the origin, it does not seem to make sense to use a much more complex
technique.

• Occupied Channel 44

T = −1.4469, p− value = 0.1508. (5.9)

The sample mean of the difference is d̄ = −1.14 therefore 0 clearly belongs to the 95

percent confidence interval IC0.95 = [−2.71, 0.42] and we cannot refuse the H0, for
which the true difference has zero mean.
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5.3 natural neighbour interpolation

5.2.3 Notes

Unfortunately the technique still suffers of some of the issues that characterized "pure"
Thiessen’s technique:

• There is no error estimate.

• The prediction surface is now continuous, but the gradient changes abruptly on the
border of the area.

• No weighting is a priori better than another, but the results that can be obtained are
quite different, depending on the chosen weights.

• In our implementation the interpolation is done point per point in a regular 400× 400
grid, the computational cost is way higher than in the standard Thiessen interpola-
tion because for any location the distance from all the sampling location has to be
built, while before just one Voronoi tessellation was enough before.

A higher computational cost, together with a non existing improvement in mean, as shown
by the t-tests, make this weighted interpolation not a better candidate as a future interpo-
lation model in a cognitive radio environment, mostly from a mobile technology point of
view, where battery life is a concern.

5.3 natural neighbour interpolation
This technique due to Sibson is built on top of the Thiessen interpolation technique, with
the intent of having a smoother interpolation.
For every unsampled~s0, the Thiessen tile to which it belongs is built, see Figure 24; Sibson
refers to the vertices as natural neighbours, hence the technique denomination. Let us define
Ai as the area of the original tile corresponding to the ith vertex that now belongs to the
new tile, in Figure 23 they are visualized for i = 1, . . . , 4.
For every location in which to interpolate a full set of N weights is calculated, one for
every sampled location, proportional to the percentage of the original tile incorporated in
the new one:

λ0,i :=


Ai

∑N
k=1 Ak

if~si is a neighbouring location,

0 otherwise.
(5.10)

The interpolated field in the new location is therefore

Ẑ(~s0) = ∑ λiZ(~si). (5.11)
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5.3 natural neighbour interpolation

~s0

Figure 23: Example of natural neighbour interpolation. The area with the ticker border is the new
tile, this intersects four pre-existing tiles. The intersecting Ai, i = 1, . . . , 4 are colored
differently.

Figure 24: Evolution of the Thiessen tassellation, while adding the evidenced location.

5.3.1 Implementation and Results

Unfortunately the technique has been proven by Laslett to be unacceptable with noisy
data, see [71] and another big issue is that it is not possible to extrapolate with it, we opt
for a linear extrapolation outside the convex hull, with disastrous results, see Figure 25.
The listing can be visualized in the Listing chapter, but the idea is to build a new tassella-
tion for every location in the 400× 400 grid, calculate the intersections with the pre-existing
grid and consequently calculate the weights as aforementioned.
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5.4 inverse distance weighting

Figure 25: Natural Neighbours interpolation of Test Statistics, it is clear that outside the sampling
locations hull the result is absolutely meaningless, since the one considered is an idle
channel and interpolated values are very low or very high, considering test statistics
varies typically in [0, 40] in these situations, however always remains positive.

5.4 inverse distance weighting
This technique is still quite in use between soil scientists; the idea is to weight the mea-
surement samples depending on the distance between the desired point and the sampling
locations, so that:

Ẑ(~s0) =
N

∑
i=1

λiZ(~si) (5.12)

where the weights λi, i = 1 . . . N are proportional to the power of the distance between
the measurement point and the unsampled location: λi =

1
d(~s,~si)

β . A value for β needs to
be chosen, the most popular one is β = 2, because it allows a local prediction, since the
distance goes to zero quite fast. This interpolation technique has the advantage of been
continuous and a lot smoother than the preceding ones, on the other side the weighting
function is arbitrary and there is no account for the directional configuration of the sam-
pling design, that in cases where anisotropy is strong, can be a big issue.
In case β = 1 it is very similar to the Thiessen interpolation shown beforehand, with the
difference that here all samples are used, not only the three closest ones.

5.4.1 Implementation

The implementation takes advantage of the gstat package for R, the chosen grid is the
same 400× 400 points, β = 2 is the chosen power for a theoretically smoother result.
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5.4 inverse distance weighting

5.4.2 Results

The results, shown in Figure 26 and 27 seem to confirm the quality of the implemented
interpolation for β = 1.

Figure 26: RSSIs in unoccupied (22, left) and occupied (44, right) channels, using β = 2. The trans-
mitter for channel 44 is out of the drawn area, it is visible in Figure 9.

Figure 27: Test Statistics in unoccupied (22, left) and occupied (44, right) channels, using β = 1. The
transmitter for channel 44 is out of the drawn area, it is visible in Figure 9.

In Figure 28 the interpolation is presented in the case of β = 2, the one that is considered
to be almost the standard for IDW technique. It is to be noticed how much the only degree
of freedom impacts the result.

46



5.4 inverse distance weighting

Figure 28: RSSI in unoccupied (22, left) and occupied (44, right) channels, using β = 2.

5.4.3 Notes

Excluding the natural neighbors interpolation, that has been proven to be not adapt for
our aims, we opt for comparing IDW interpolation with the weighted Thiessen tessellation.
Boxplots of the differences can be seen in Figures 29 and 30.

Figure 29: Boxplots of the difference of Test Statistics using IDW and Thiessen weghted tessellation
in unoccupied (22, left) and occupied (44, right) channels. The transmitter for channel 44

is out of the drawn area, it is visible in Figure 9.
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5.5 trend surfaces

Figure 30: Boxplots of the difference of RSSI using IDW and Thiessen weghted tessellation in unoc-
cupied (22, left) and occupied (44, right) channels.

Paired t-test have been effectuated and in all the cases the null hypothesis has been
refused, the interpolation using the IDW is negatively biased, since it tends to smooth the
values while interpolating them.

5.5 trend surfaces
This is an old technique that is basically a multiple regression, where the only allowed
predictors are the coordinates,

Z(~s) = f (~s) + ε (5.13)

where the predictor can be a plane:

f (~s) = b0 + b1~s1 + b2~s2 (5.14)

or a higher order polynomial, such as a quadratic

f (~s) = b0 + b1s1 + b2s2 + b3s2
1 + b4s2

2 + b5s1s2 (5.15)

where~s = (s1, s2).
The interpolation is therefore transformed in the solution of a linear system:

~b = (XTX)−1XT~c (5.16)

where, in the case of a planar interpolation, given the sampled location ~si = (si,1, si,2),
∀i = 1, . . . , N and a location where to sample ~s0 = (s0,1, s0,2), the system can be written
as:

X =


1 s1,1 s1,2
...

...
...

1 sN,1 sN,2

 (5.17)

~c =
[
1 s0,1 s0,2

]
(5.18)

and finally
Ẑ(~s0) =~sT

0
~b. (5.19)

If the interpolating polynomial has a higher degree, the eventual columns are easily added
to the X matrix.
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The technique in not optimal in any sense, but is for sure way computationally more con-
venient than kriging and is therefore to be considered in settings such as mobile cognitive
radios.
Even though it has been shown by Mofflat et al. that trend surfaces can interpolate well
long range trend, and could therefore be ideal in our situation, they present some issues,
such as:

• The necessity for high order polynomials to properly fit the surface that comports
matrix instability and over-fitting problems.

• A global and non-local fitting, that does not guarantee a high quality of the interpo-
lation locally, but could be enough to determine if a channel is or not idle.

• The technique leaves autocorrelated residuals, somehow not using all the informa-
tion available in the sample.

5.5.1 Implementation

We have taken advantage of the spatial package in R, but an implementation "by
hand" is surely possible and not time consuming, even though, potentially, maybe
not optimal from a computing power point of view.

5.5.2 Results

First, we start comparing the interpolation of the Test Statistics using two widely
different degrees of the interpolating polynomials.

Figure 31: Interpolation of the Test Statistics in unoccupied channel (22) with a 2 (left) and a 5 degree
polynomial interpolant (right). We preferred not to report the map in the background,
because we thought the contour lines were more revealing in the case and they were more
clearly visualized in the present fashion.

The difference between the two interpolations shown in Figure 31 is very wide, the prob-
lem is that in our case the sampling locations are very numerous, but we cannot assume
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5.5 trend surfaces

that in a real case, as many as a hundred sampling locations will be available. For this rea-
son a high-degree polynomial interpolant would be troublesome if not in a computational
point of view surely for a robustness of the whole algorithm. An option could be to set
the interpolant degree and therefore the quality of the results iteratively depending on the
number of sampled locations, but being the results so far apart, we are not sure this is the
way to go.
It can be seen in Figure 31 in the higher order polynomial interpolation (right), that far
from the sampling locations, e.g. in the South-Eastern corner values are already growing
uncontrollably because of the non-robustness of the method, on the other side, the shape
of the level-line is way more similar to other more computationally intensive techniques,
therefore, once again, this technique does not suit extrapolating and can therefore be prob-
lematic in a cognitive radio environment.
Nonetheless, because of the simplicity and the low computational cost, we proceed in Fig-
ure 32 in plotting Test Statistics and RSSI with a quadratic interpolant; the graphs show
another clear issue of trend surfaces: outliers cause a high impact on them. This is clear
if comparing the two pictures, because they show a complete different pattern in the data:
it is clear that this technique, which is not suitable for numerous static measurements will
surely fail in a much less controlled system.

Figure 32: Interpolation of the RSSI (left) and of the Test Statistics (right) in an occupied channel (44)
with a 2 degree polynomial interpolant. In the left plot the level curves are ellipsoidal as
in the right one, they are simply bigger, the reason is that the decision has been to keep
constant the colour palette between figures, to ease the comprehension, even if in few
cases, as in this the image is maybe not optimal for the intent from other points of view.

The interpolation of the Test Statistics looks incorrect in Figure 32, since as it has been
said the power should decrease radially from South-West, see Figure 9. To validate this
thought quantitatively we compare the trend surface estimation with the interpolation that
had been obtained with the IDW, to see if the interpolated field can be considered to have
the same mean. As usual, we proceed with a paired t-test, that, non surprisingly, refuses
the hypothesis of same mean for the two interpolations:

T = 218.4159, p− value < 2.2× 10−16. (5.20)
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5.6 splines

The sample mean of the difference is d̄ = 0.89 and clearly 0 does not belong to the 95

percent confidence interval IC0.95 = [17.33, 17.65], and therefore H0 must be refused. This
is not surprising since the IDW is known to smooth the interpolation results, while the
trend statistics has been shown to emphasize the outlier behaviour.

5.6 splines
Splines are local polynomials, that allow continuous interpolation, derivable up to p− 1
order, where p is the degree of the polynomials, which is usually p = 3.
The locations where the different polynomials join are called knots.
Splines are subdivided into two main groups: Interpolating Splines which are forced to pass
for the sampled data values, and Smoothing Splines fitted by Least Squares (LS), on which
we will focus on.

5.6.1 Implementation and Results

We have taken advantage of the fields package for R. In Figure 33 some of these prediction
maps are shown, they result to be more realistic and more robust than trend surfaces.

Figure 33: Prediction of Test Statistics (left) and the RSSI (right) in an occupied field (44). The strong
area in the North-Eastern corner is difficult to explain, since it is not present using the
RSSI. A cluster of sensor is strongly influencing the interpolation, as was happening with
the Trend Surfaces in the occupied case.

As a first comment we state that this method is way less sensible to outliers presence,
even though still being of relatively easy implementation . To quantify this a simple leave-
one-out crossvalidation has been implemented to compare the result to trend surfaces,
which have been said to be particularly sensible to outliers, see Table 2.
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5.7 comparison between different non-statistical techniques

Interpolation
Technique

Mean Squared
Deviation

Relative
Error

Trend Surfaces 56.99 15%
Thin Plate Splines 7.46 < 2%

Table 2: Comparison between trend surfaces and thin plate splines for the interpolation of Test
Statistic in occupied channel 44.

Splines really seem to be the way to go, they give a prediction, not just an interpolation
of the field and have been shown to perform quite well. But, since the signal is spatially
correlated, this can be exploited for interpolation and prediction, at the cost of much
heavier computations, but with numerous vantages, as we will show.

5.7 comparison between different non-statistical
techniques

In Table 3 a comparison between different interpolation techniques is performed, the num-
ber of star is accounted to each method for how well it performs. Results are of course
valid only referring to this specific data-set, but we still consider it interesting and highly
informative.

Interpolation
Technique

Computational
Complexity

Ability to
Extrapolate

Robustness
MSE (1CV)

Thiessen * **
Weighted Thiessen ** **
Natural Neighbor *** *
Inverse Distance ** ** ***
Trend Surfaces * **
Splines ** *** ***

Table 3: Comparison between deterministic interpolation techniques according to different factors,
stars are assigned in a number (0 to 4) that varies depending on the aforementioned quan-
titative results.
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6 G E O S TAT I S T I C S

Extracting patterns from spatial data is a complicated matter because of the high complex-
ity of spatial data types, spatial relationships and spatial autocorrelations.
According to Shekhar in [62], modeling can be done in three possible ways:

point process model for the spatial distribution of points in a point pattern, where the
location of the next random process is not known (e.g. crime spots),

lattice model for gridded space in a spatial framework, where a countable collection of
spatial sites relates to itself via neighborhood relationships, often modeled through
a contiguity matrix, based on distance and different forms of connectivity, once a
definition of spatial neighbourhood has been agreed upon, on which the robustness
of the methods depends,

geostatistics deals with analysis of spatial continuity and weak stationarity, it provides
a set of statistic tools, such as Kriging, to the interpolation of attributes at unsampled
locations.

One of the fundamental assumptions in traditional statistics is that data samples are inde-
pendently generated; this is generally false when talking about spatial data, see Tobler’s
first law of geography: Everything is related to everything else, but near things are more related
than distant things[65]; this basically states that spatial correlation is typically strong and
positive between data at nearby spatial locations. Spatial hetereogeneity, spatial nonsta-
tionarity, or the variability of observed processes over space, are another important issues.
The aim of Geostatistics is to find appropriate models for the description of the spatial
reality of a phenomenon, to estimate the relative parameters and to infer the values of the
random field at unobserved locations.
The theory was developed by the French mathematician Georges François Paul Marie
Matheron (1930, 2000) based on the Master Thesis of the South African mining engineer
Danie Gerhadus Krige (1919, 2013), after whom Kriging is named. The original problem
was that

Mining leases for deep gold mines were [granted] on the basis of very few
boreholes and without proper scientific analysis of the scant data. This sit-
uation posed very hight risks to profitability but there seemed to be no real
alternative.[70]

The strength of Geostatistics, compared to more classical statistical tools is that it models
trend (large scale) and spatial variability (small scale) at the same time.

6.1 the model
The aims of a stochastic model are multiple, at the very least it should be used to sum-
marize data and predict unobserved field values, it may (or may not) have a causative
dynamic that explains the phenomenon itself.
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6.2 stationarity conditions

The first step is to create the random process that best describes the set of experimental
observed data.
Let ~s, the location vector, vary continuously in D, fixed subset of Rd, d ≥ 2, so that for
every measurement at least longitude and latitude are recorded and let ~Z(~s) : ~s ∈ D be a
random field, a spatial process of which ~z(~s) :~s ∈ D is a realization.
In the space there are N realizations of the correlated random variables
~Z(~s1), ~Z(~s2), · · · , ~Z(~sN), but only one realization per location could be available, conse-
quently it is impossible to determine any statistical parameter of the individual variable
~Z(~si). In our case more measurements per location are available, but we opt for using the
temporal median, for which robustness and local distributional hypotheses have already
been verified. It is possible to consider spatio-temporal data ~Z(~s, t) but in this work the
focus will be on data aggregated over time, that can be considered to be gathered in a
single time instant.
In the mono-dimensional case ~Z is not a vector, but a scalar and the model for the random
field is:

Z(~s) = m(~s) + δ(~s) ~s ∈ D. (6.1)

The drift or trend m(~s) is supposed to be deterministic, eventually dependent on external
factors (external drift), while δ(~s) is a stochastic term that defines the characteristics of the
random field Z(~s), which is defined by the joint probability function, also known as finite
- dimensional law:

F(z1, . . . , zN) = P(Z(~s1) ≤ z1, . . . , Z(~sN) ≤ zN) z1, . . . zN ∈ R. (6.2)

6.2 stationarity conditions
Because only one measurement per location is available, assuming various degrees of
stationarity is necessary to infer some statistic properties.

Definition 3 (Strictly Stationarity) ~Z(~s),~s ∈ D is said Strictly or Strongly Stationary if
∀~h ∈ D, ∀{~sk}N

k=1 ∈ D, ~Z(~s) =
(

Z(~s1), . . . , Z(~sN)
)

and ~Z(~s+~h) =
(

Z(~s1 +~h), . . . , Z(~sN +~h)
)

have the same joint distribution.

This assumption is very strong and difficult to verify, other weaker and more practical
conditions follow.

Definition 4 (Weakly or Second Order Stationarity) Z(~s),~s ∈ D is said Weakly or Second
Order Stationary if

• ∀~s ∈ D E[Z(~s)] = m

• ∀~si,~sj ∈ D Cov(Z(~si), Z(~sj)) = E[(Z(~si)−m)(Z(~sj)−m)]

The first equation in the definition implies that the first moment of Z is stationary and
consequently all random variables have the same mean m, that can be estimated e.g. by
the arithmetic average of the sampled values.
At the same time the second equation implies that the covariance function between two
random locations solely depends on the vectorial distance that separates them.
Strong stationarity implies the weak one, the reverse holds true only for Gaussian pro-
cesses.
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6.2 stationarity conditions

Definition 5 (Intrinsic Stationarity) Z(~s),~s ∈ D is said Intrinsic Stationary if, given that
E[Z(~s +~h)− Z(~s)] = 0 it results that

E[Z(~s +~h)− Z(~s)]2 = Var(Z(~s +~h)− Z(~s)). (6.3)

The definition of Intrinsic Stationarity defines the moments of the difference Z(~s +~h) −
Z(~s), but says nothing about the joint distribution of Z(~s) and thus provides no likelihood.

Definition 6 (Ergodicity) Z(~s),~s ∈ D is said to be Ergodic if the covariance vanishes when the
distance between sampling points increases lim‖h‖→+∞ Cov(Z(~s)− Z(~s−~h)) = 0.

Let’s introduce two functions to describe the degree of spatial dependence of a stochastic
field Z(~s).

Definition 7 (Covariance Function or Covariogram) The Covariance Function or Covari-
ogram is defined as:

C(~si,~sj) = Cov(Z(~si), Z(~sj)) ∀ (~si, ~sj) ∈ D. (6.4)

The property of validity asserts that the covariogram is positive definite:

∀λi, λj ∈ R, ∀~si,~sj ∈ D ∑
i

∑
j

λiλjC(~si,~sj) ≥ 0. (6.5)

Definition 8 (Variogram and Semivariogram) The Variogram is defined as the variance of the
difference between field values at two locations, under hypotheses of intrinsic stationarity.

γ(~si,~sj) = Var(Z(~si)− Z(~sj)) = E
[
| (Z(~si)− µ(~si))− (Z(~si)− µ(~sj)) |2

]
. (6.6)

The prefix Semi comes from the fact that the semivariogram is defined as half of the variogram, in
this work these two terms will be treated as synonyms.

The variogram has a series of interesting properties:

• It is non-negative: γ(z(~si), z(~sj)) ≥ 0,

• γ(z(~si), z(~si)) = 0,

• It is an even function γ(z(~si), z(~sj)) = γ(z(~sj), z(~si)),

• It might be non continuous only at the origin,

• It is conditionally negative (property of validity):

∀wi :
N

∑
i=1

wi = 0
N

∑
i=1

N

∑
j=1

wiγ(~si,~sj)wj ≤ 0. (6.7)

It has to be noted that luckily the property of validity is invariant for scalar products and
summation, so that, if γ(h) is valid then cγ(h) is valid as well for every c ∈ R. Moreover
if both γ1(h) and γ2(h) are valid so is γ1(h) + γ2(h).
The choice of using the variogram instead than the covariogram is due to theorical results
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6.3 isotropy and anisotropy

that can be found in Cressie’s work [16]. Basically if the process is second order stationary
the simple relationship that links covariogram and variogram is:

γ(~h) = C(~0)− C(~h). (6.8)

Weak stationarity implies the intrinsic one, for this reason spatial data structure is typically
analyzed through the variogram and not the covariogram, since in cases where C is not
defined Ĉ is de facto estimating a non existent parameter (see Cressie for a much deeper
and exemplified dissertation).

6.3 isotropy and anisotropy
If the process is isotropic, the phenomenon does not change in space depending on the
direction, but only on the distance between the samplings. Covariogram and variogram
can consequently be represented as a function only of the scalar distance h =| z(~si)− z(~sj) |
it results:

γ(Z(~si), Z(~sj)) = γ(Z(~si), Z(~si +~h)) = γ(~h) = γ(h) (6.9)

same applies to the covariogram:

C(Z(~si), Z(~sj)) = C(Z(~si), Z(~si +~h)) = C(~h) = C(h). (6.10)

Anisotropy, on the other side, is a property of phenomenona that vary in magnitude dif-
ferently in different directions. Assessing anisotropy involves the use of directional vari-
ograms, numerous authors state that, if no preferential direction is apparent a priori, the
choice of these directions is absolutely arbitrary, typical in literature is the use of four an-
gle classes (0, 45◦, 90◦, 135◦, 180◦), with a tolerance in each class of 22.5◦, even though for
what concerns the tolerance, the choice depends on the expected anisotropy and on the
data density. For us a favourite direction exists, but being the transmitter-Helsinki direc-
tion almost in one of the coordinate direction (see Figure 9), the typical choice has been
maintained, see Figure 34.
More types of anisotropy exist from a theoretical point of view, whether the sill, the range
and/or the nugget vary depending on direction. A caveat is present in much literature
(Cressie [16], Banerjee [2], Dauphin [18]) warning against reading too much from direc-
tional variograms, especially if very few samples are available.
Famous examples of anisotropy are:

geometric anisotropy, characterized by the fact that the covariate space can be trans-
formed (through rotation and stretching) into an isotropic space.

zonal anisotropy, characterized by a different asymptote of the variogram depending
on binning direction, in this case the variogram has to be treated as γ(~h), no sim-
plifications are available and this, of course, complicates the problem from both a
theoretic and a pragmatic point of view. Typically in practice it is treated with a
nested variogram model, together with a change of coordinates.

After analyzing numerous empirical variograms, not noticing a clear different pattern in
any of the directions, see Figure 34, the option has been to maintain the hypothesis of
isotropy that we know does not have a strong theoretical basis but allows to simplify
the calculations and it is the almost only one that has been widely researched about in
literature.
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6.4 estimation of the variogram

Figure 34: Example of directional variograms, to be read clockwise from bottom left. The sampled
angles are (0, 45◦, 90◦, 135◦, 180◦), with a tolerance in each class of 22.5◦. The image, as
previously stated, does not show any clear preferential direction.

6.4 estimation of the variogram
The estimation of the variogram is done in two phases:

• First an empirical estimator is calculated, for which, there are no a priori reasons for
which regularity conditions should hold and the empirical variogram has to be valid.

• A fit of the empirical variogram is then performed, a theoretical model is chosen,
whose parameters are optimal according to some criteria (e.g. LS, Weighted Least
Squares (WLS), or, if a distributional model for the data is available, ML or Residual
Maximum Likelihood (REML), . . . ). This been said, traditionally the model choice
has been done by "eye fitting", mostly because the difference between models is never
very neat and the questions "how can we choose?" and "can data really distinguish between
models?" have never had a real answer, see Banerjee [2].

This fit is typically parametric, so that the model has already been proven to be valid,
meaning that the property of conditional negativity is known to hold.

Let us go through the principal estimators of the variogram:
The classical estimator of the variogram is the Method of Moments (MOM) estimator, used
by Matheron at first, it is unbiased but has very poor statistical properties, for example it
is sensitive to outliers, see [24] between the others.
It is calculated at every couple of points (~si,~sj) as:

2γ̂(~si,~sj) = {Z(~si)− Z(~sj)}2. (6.11)

This estimator is sufficient if the data are on a grid, but since this is not usually the case
and not for every distance a couple of points exist, other estimators have been proposed.
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The Variogram cloud is obtained considering all the points at the same time; since all the
points are plotted together it is difficult to interpret and is difficult to determine if the
skewness is due to atypical information or is derived from the natural skewness in the
data. Even though it has been suggested by some authorities (e.g. Cressie) it usually does
not reveal any clear pattern, Baneree refers to the idea of fitting a curve to it as a "folly"
since we have a weak signal and a great deal of noise. Delfiner suggests to use the cloud mostly
to know how many couples exist per every distance, saying clearly that a distribution
resembling a triangle is typically of a stationary variogram.
The binned variogram is an aleatory vector defined for a limited number of distance classes(

γ̂(t1), . . . , γ̂(tN)
)

in each of those an average is calculated:

γ̂(tk) =
1

2
∣∣N(tk)

∣∣ ∑
(~si ,~sj)∈N(tk)

[Y(~si)−Y(~sj)]
2, k = 1, . . . , K (6.12)

where N(tk) = {(i, j) :
∥∥∥~si −~sj

∥∥∥ ≤ tk,≥ tk−1} and
∣∣N(tk)

∣∣ indicates its cardinality. The
choice of the right number of bins and samples for each bin is clearly reminiscent of the
choice of the number of classes in a histogram and is, as in that case, fundamental. A
trade-off between overfitting and underfitting has to be found, since the result does not have
to be too noisy, but needs to show all the peculiarities of the process. Two options are
therefore envisioned:

• Semivariogram can be applied to the residuals after fitting a linear model,

• Semivariogram can be applied to the data itself. This is possible if theoretically a con-
stant mean seems appropriate and therefore the hypothesis of intrinsic stationarity
of the data, necessary for drawing a variogram is met.

A more robust estimator, called consequently robustified variogram is presented in Cressie [16].

6.4.1 Parameters for Empirical Variogram Estimation

As previously stated, the usual models are parametric, for this reason it is important to
know which are the characteristics of a variogram. Numerous are the available models,
each with different characteristics of stationarity and regularity: Linear, Spherical, Expo-
nential, Power Exponential, Matèrn et cetera.
Once the class of the semivariogram has been chosen, parameters have to be fine-tuned
according to the dataset.

nugget Typically indicated with τ2 it is defined as limh→0 γ(h), while, by definition
γ(0) = 0, since the variogram is a pair function, null in the origin, it does not have
to be continuous there, when this happens it is typically said that there is no nugget
effect. The nugget can be extrapolated a posteriori, after the fit, it is fixed to zero only
if there are strong theoretical reasons to do it. A discontinuity in the origin means
that the process is not continuous in quadratic mean and therefore is considered to
be highly irregular, due to microscale variations or measurement errors. If, on the
other side, the variogram is linear in the origin (e.g. like in linear or spheric models
without nugget effect), the process is continuous, but not differentiable, while differ-
entiability occurs if the model is parabolic in the origin, and therefore very regular
and unlikely to be seen in practice.
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6.4 estimation of the variogram

sill If the random field is stationary and ergodic, the limit corresponds to the variance
of the field limh→∞ γ(~h) = Var(Z(~s)), if it is finite the process is weakly stationary.
This has brought to the idea of estimating the sill with the sample variance, but this
has been questioned by numerous authors, between whom Barnes in [3].

partial sill Indicated with σ2. It is calculated as the difference between the sill and the
nugget, as a result limh→∞ γ(h) = σ2 + τ2.

range If the range exists it indicates the distance from the origin at which the semivari-
ogram levels and the asymptote is reached: γ(R) = τ2 + σ2.

effective (or practical) range This is used when the range is not finite. It identifies
the radius of influence of the process, the distance until which samples are spatially
correlated. It is conventionally defined as the distance when the semivariance first
reaches 95% of the sill:

R = min {h | γ(h) = 0.95(σ2 + τ2)}. (6.13)

decay parameter Inverse of the range parameter, indicated with φ.

6.4.2 Theorical Models for Semivariogram Fitting

Under the hypothesis of stationarity it is possible to divide the variograms in two major
classes:

• Variograms that reach an asymptote, that exemplify a correlation that ceases at some
maximum distance.

• Variograms without an asymptote, that exemplify a correlation that has no limit in
distance, typically unrealistic.

Many models for variogram fitting are available, all underlying different hypotheses and
different meanings. In the following definitions τ2 is the nugget, R is the range, σ2 the
partial sill and h the lag distance.
In the following the indicator function 1

(h)
(a,b) should be read as:

1
(h)
(a,b) : =

0 h ≤ a, or h ≥ b,
1 otherwise.

. (6.14)

linear model γ(h) = {τ2 + σ2h}1(h)
(0,∞)

. For σ2 = 0 the result is pure nugget, white noise.
A non-continuity point is admitted in the origin.

spherical model γ(h) = (τ2 + σ2[ 3
2R h − 1

2 (
h
R )

3])1
(h)
(0,R) + (τ2 + σ2)1

(h)
[R,∞)

, spatial depen-
dence levels at a certain distance.

exponential model γ(h) = {τ2 +σ2(1− exp{− h
R})}1

(h)
(0,∞)

, spatial dependence decreases
exponentially, therefore only a practical range is defined.

gaussian model γ(h) = {τ2 + σ2(1− exp{− h2

R2 })}1
(h)
(0,∞)

, a very regular model, difficult
to see in reality.
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The choice between these models depends greatly on the assumed hypotheses, mostly for
what concerns the behaviour of the variogram in the origin. This is usually chosen as
linear, a quadratic trend would mean assuming very strong hypotheses on the regularity
and smoothness of the data.

6.5 kriging
The difference between Kriging and the aforementioned interpolation methods is that be-
fore the attention was mostly focusing on the interpolating functions, for which a model
had been fixed, Kriging, instead, focuses on modeling the phenomenon starting from
the data, their covariance structure and from this build a Best Linear Unbiased Predic-
tor (BLUP), as linear combination of the data.
Prevision is a common problem in Geostatistics: given N observations Z(~s1), . . . , Z(~sN) in
a domain D how should the field be estimated at a site~s0 where it has not been observed?
What is the best predictor of Z(~s0) given ~z = [Z(~s1), . . . , Z(~sN)]

T?

Ẑ(~s0)|~z = m(~s0) + ∑ λi[Z(~si)−m(~si)] (6.15)

where the optimal weights ~λ are so that

~λ = argmin~λ∈RN : E[(Ẑ(~s0)]=Z(~s0)
Var

[
∑ λiZ(~si)− Z(~s0)

]
. (6.16)

This constrained optimization problem can be solved using Lagrange multipliers and the
resulting ~λ is a function of γ(h). With this approach there is no need for distributional
hypotheses, but to have an estimate of γ(h) it is necessary to assume intrinsic stationarity
of the phenomenon. Unfortunately, not always this hypothesis holds true, e.g. if the mean
cannot be considered to be constant. In that case the idea is to consider the signal as a sum
of a drift (e.g.modelled wih first or second order polynomials) and a stationary residual
δ(~s) formed by two terms: a random autocorrelated component, that has to be captured
with Kriging and the real error term, which should not be correlated. A more general
theory has been suggested, that of Intrinsic Random Function of kth order (IRF-k), this will
not be further analyzed here.
We will go through the most important classes of Kriging, for a clear and easy introduction
please refer to [13].

6.5.1 Simple Kriging

Simple Kriging assumes that the first moment is known and constant, .i.e., there is no
trend: µ(~s) = m = E[Z(~s)], known and constant.
Once the model parameters have been estimated it is possible to evaluate the field in any
point with a Best Linear Unbiased Estimator (BLUE) by solving a set of simultaneous
equations. The unknown value of the field in the new point is proportional through some
weights λi, i = 1 . . . N to the value of the field in the neighboring measurement points
~si, i = 1 . . . N. The unknown weights λi, i = 1 . . . N are found after calculating the known
vector whose term is γi,0 = γ(~si,~s0) ∀i = 1, . . . , N.
Unbiasdness is not imposed since it is granted by the fact that the mean of the field is
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6.5 kriging

supposed to be known.
This brings to the following system of equations:

γ11 . . . γ1N
...

. . .
...

...
γN1 . . . γNN




λ1
...

λN

 =


γ10

...
γN0

. (6.17)

The calculation of the weights is quite demanding because it requires a matrix inversion,
whose size depends on the number of sampled locations, for every point in which a pre-
diction is needed, therefore building a prediction map is becomes complicated in an envi-
ronment where battery life is a issue. On the other side Kriging allows to easily compute
of a measure of reliability, namely:

s2 =
N

∑
i=1

λiγi,0. (6.18)

This is very useful and gives a clear representation of the errors that have been committed.
Maps of Kriging variance are a very useful tool and very used in practice.

6.5.2 Ordinary Kriging

Ordinary Kriging is very similar to Simple Kriging with the exception that in Ordinary
Kriging the first moment is assumed to be an unknown constant µ(~s) = m. Ordinary
Kriging considers a model with no covariates (with the exception of the location ones, it
is basically a pure spatial model). Once the model parameters have been estimated it is
possible to evaluate the field in any point with a BLUE by solving a set of simultaneous
equations very similar to the one presented in the case of Simple Kriging, with the only
difference that in this case a Lagrange multiplier µ is added to grant the unbiasness of the
BLUE estimator. This can be seen in the following system:

γ11 . . . γ1N 1
...

. . .
...

...
γN1 . . . γNN 1

1 . . . 1 0




λ1
...

λN
µ

 =


γ10

...
γN0

1

 (6.19)

where the last line corresponds to a normalization of the weights:

N

∑
i=1

λi = 1. (6.20)

It is still possible to calculate a Kriging variance punctually as an index of the local relia-
bility of the estimate:

s2 =
N

∑
i=1

λiγi,0 + µ. (6.21)

6.5.3 Universal Kriging

Universal Kriging is used to model non stationary phenomena, or to account for a lack of
homogeneity in the data, see e.g. [16].
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The drift functional form has to be modeled and sometimes it is the mere result of a
trade-off between model fit and parsimony, as well stated in [43], consequently typically
polynomials models (e.g. first or second order) are chosen.
In formulas the trend is modeled as a weighted sum of known functions fl :

E[Z(~s)] = m(~s) =
L

∑
l=0

βl fl(~s) (6.22)

unless the physics of the phenomenon indicates the shape of the function fl , their expres-
sion is arbitrary, most often polynomials are retained almost only for the computational
complexity and analytical convenience, with the convention that f0(~s) = 0, ∀~s, βl are the
relative coefficients. It has to be noted that the choice of the functions fl(~s) determines
completely the value of the estimate beyond the data range, where no data exist, this
makes extrapolating a hazardous endeavor. In this case Kriging is performed on the resid-
uals after the trend has been removed.
The unknown value of the field in the new point is proportional through some weights
λi, i = 1 . . . N to the value of the field in the neighboring measurement points~si, i = 1 . . . N,
in this case the Lagrange multiplier µ is added to grant the unbiasness of the BLUE esti-
mator.
The estimation consists in solving the following system of equations for every~s0 in which
the author is interested.

γ11 . . . γ1N f1(~s1) . . . fL(~s1)
...

. . .
...

...
. . .

...
γN1 . . . γNN f1(~sN) . . . fL(~sN)

1 . . . 1 0
. . . 0

f1(~s1) . . . f1(~sN) 0
. . . 0

...
. . .

...
...

. . .
...

fL(~s1) . . . fL(~sN) 0
. . . 0





λ1
...

λN
µ0
...

µL


=



γ10
...

γN0
1

f1(~s0)
...

fL(~s0)


(6.23)

Where the last lines correspond to a normalization of the weights:

N

∑
i=1

λi fl(~si) = fl(~s0) ∀l = 1 . . . L. (6.24)

The calculation of the weights is quite demanding, but on the other side it allows to easily
compute of a measure of reliability:

s2 =
N

∑
i=1

λiγi,0 +
L

∑
l=0

µl fl(~s0), f0(~s) = 0 ∀~s ∈ D. (6.25)

It is easy to see that Ordinary Kriging is a very special case of Kriging, with ~µ = ~β and the
matrix being simply an identity matrix.
The prediction problem therefore becomes

min
f (~z)

E[(Z(~s0)− f (~s))2|~z]. (6.26)

After some calculation the optimal predictor, that minimizes the error in the conditional
expectation of Z(~s0), is the posterior mean of Z(~s0), that is known to be the minimizer of
the squared error loss function.
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Suppose that spatial data in different locations ~s1, . . . ,~sN are modeled as if they were
generated by the random process

Z(~s) =
L

∑
i=1
{βl xl(~s)}+ δ(~s) ~s ∈ D ⊂ Rd (6.27)

where xl , l = 1 . . . L is a collection of non random explanatory variables that may or may
not depend on spatial location and can be collected in the matrix X, while δ is a zero-mean,
finite variance error process that may or may not be spatially correlated.
The model can be written in matrix notation as:

~Z = X~β +~δ (6.28)

where ~Z = (Z(~s1), . . . Z(~sN))
T , ~β = (β1, . . . βL)

T , parameters that account for large scale
variations and ~δ = (δ(~s1), . . . δ(~sN))

T .
If Σ = var(~δ) was known the BLUE for ~β would be the Generalized Least Squares (GLS)
estimator:

~̂βBLUE = ~̂βGLS = (XTΣ−1X)−1XTΣ−1~Z (6.29)

since it minimizes
(~Z− X~β)TΣ−1(~Z− X~β) (6.30)

E[Z(~s0)|~z]. (6.31)

In the wildly unrealistic hypothesis that the population parameters
(

β, σ2, φ, τ2
)

were
known the estimator would be:

E[Z(~s0)|~z] = ~xT
0
~β + ~γTΣ−1(~z− X~β)

Var[Z(~s0)|~z] = σ2 + τ2 − γTΣ−1~γ.
(6.32)

Unfortunately parameters need to be estimated from the data, therefore

f̂ (~z) = ~xT
0
~̂β + ~̂γTΣ̂−1(~y− X~̂β) (6.33)

where γ̂ is an estimate of the variogram, ~̂β = (XTΣ̂−1X)−1XTΣ̂−1~z and Σ̂ is the sample
variance. We can consider ~x0 = x(~s0) to be always observable, because in our case, being
the transmitter distance it can always be calculated, if it is not the case, an estimate for it
will have to be computed as well.
Predicting not in a new location, but in an already sampled one, would give the sampled
value if there is no nugget effect, but this will not be true in general. If we want to predict
the field not in very few locations, but over a finite grid of sites, a prediction surface has to
be built, it will be smoother than the interpolation surface.
In reality Σ is unknown, consequently a procedure is needed for the joint estimation of ~β
and Σ. A possibility is to use a Ordinary Least Squares (OLS) estimator:

~̂βOLS = (XTX)−1(XT~Z) (6.34)

which is highly inefficient when Σ is not diagonal, that is a typical situation in a spatial
context. Cressie in [16] suggests the use of Extended Generalized Least Squares (EGLS),
when a parametric estimation of Σ is at hand.
A surface plot of the standard error is useful, standard errors are supposed to be higher
where there are less data. Once the model parameters have been estimated it is possible to
evaluate the field in any point with a BLUE by solving a set of simultaneous equations.

63



6.5 kriging

6.5.4 Other Kriging Models

Indicator Kriging is used when data are binary, e.g. a point is a forest or not, it assumes
µ(~s) = m(~s), unknown and constant.
Disjunctive Kriging is a nonlinear generalization of Kriging, lognormal Kriging interpolates
positive data by means of logarithms, cokriging is performed when other variables, corre-
lated with the primary one are available and are believed to improve the prediction of the
primary variable.

6.5.5 Crossvalidation in Kriging

Choosing the best model for interpolation is not easy, one classic method is computing
Residual Sum of Squares (RSS) via 1-fold cross-validation: for every point in the dataset
and for every interpolation model considered:

• Remove 1 points from the data set.

• Use the remaining points to estimate the value of the removed point.

• Finally, per every interpolation model calculate:

RSS =

√√√√ 1
N − 1

N−1

∑
i=1

(zi − ẑi)2. (6.35)

At the end choose the model that minimizes the RSS (Residual Sum of Squares), or the
one that offers the better trade-off between complexity and performance.
Variations of this method include choosing more than one point at once, n-fold crossval-
idation or, if the number of collected data is hight, dividing the dataset in two groups,
using one for identification and the other for validation of the model. See [5] for details.

6.5.6 Kriging in Cognitive Radios

Kriging has already been used in a CR context to obtain a Spectrum Cartography, a local
spectrum map with the exchange of information between terminals, to locally optimize
the communications, bypassing or cooperating with the Base Station (BS).

In [59] Kriging has been used to model the average Power Spectral Density (PSD)
from simulated Universal Mobile Telecommunications System (UMTS) downlink data, that
present numerous BSs, whose position can be seen in the krigged estimation. To fit the
semivariogram a Matèrn model has been used.
In [51] Kriging is used as a geostatistical approach to minimize the errors due to limited
geographical information in available propagation model, whose resolution is typically
around hundreds of square meters, insufficient from a CR point of view. According to the
authors field measurements are resource consuming and systematic sampling does not
capture all the characteristics of the field. For these reasons they make use of Kriging not
just for interpolating and predicting in an optic of transmission, but, instead, as a way
to optimize the location where to sample, so to minimize the Universal Kriging variance,
which is to be considered a more significant index than the simple minimum distance
between sampling locations, that would lead to a homogeneous sampling in space, while,
instead more samples are needed where the gradient of the field is bigger. Using Universal
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Kriging Variance as an index is the same as using different metric, that takes care of the
field covariance matrix.
In [72] the main aim of using Kriging is producing spatial spectrum models useful to gen-
erate simulation scenarios for evaluation of DSA protocols. The authors also state that it
could be useful to create runtime models of occupancy to be used where few or none data
are available and this is the use we mostly look forward to meet in this thesis work.
In [31] and [9] Ordinary Kriging has been chosen as prediction technique, even though
assumptions of constant mean are not fulfilled, and it is found to outperform classical
interpolation techniques. Classical interpolation methods have the heavy drawback of not
granting the possibility to interpolate points outside the convex hull, while, paying partic-
ular attention, with Kriging it is possible to extrapolate. In the same paper two different
implementations have been carried out:

• Centralized Kriging (CK), where all the nodes communicate the data to a central
unit,

• Distributed Kriging (DK), where the domain is divided in a fixed number of clusters
(of fixed size that depends on sensor capability to exchange information) or adapting
to improve field estimation.

In each of these implementations an estimation of the variogram and a Kriging prediction
are performed.
DK option is to be preferred to ensure robustness to node fails and scalability to network
size and it is ideal if the user is only interested in local prediction, it verifies the hypotheses
of constant mean better because the only variation is in shadowing which has zero mean.
On the other side a distributed implementation is based on a reduced number of samples,
this bring to loss of information both about spatial dependencies at long distance and
about some classes while constructing the empirical variogram. The last problem can be
tackled with an additional regression to be performed in each node.

6.6 results
We proceed with the prediction modelling that have been introduced, measurements of the
RSSI from channel 44 in MC3 will be our reference, because of its clear pattern in space,
see Figure 35.
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Figure 35: Maps of the Test Statistics (left) and RSSI (right) versus the distance in kilometers from
the transmitter. In both images the points indicate the temporal median in a specific
location and refer to channel 44. While the RSSI map clearly indicates the existence of a
trend, this is not true for the Test Statistics. This could be a good reason for assuming a
constant mean in space for the Test Statistics but not for the RSSI.

At first we have to check that the process is really spatially correlated, to see this, we
compare the actual sample variogram, still non-fitted, and therefore non regular, with a
random reassembling of the measurements to spatial locations in the dataset, see Figure 36.

Figure 36: Comparison between the experimental variogram (blue line) and other variograms, cal-
culated randomly reassigning the RSSI field to the sampling locations (grey lines).

As it can be seen in Figure 36, the hypothesis of absence of spatial correlation seems
unlikely, since the blue line is quite apart from the sheaf of grey lines, basically stating
that that the particular configuration of couples (location, RSSI) that is verified in reality
is apart from all the other possible reassemblings. Theoretically, this makes perfect sense,
being the signal all from the same transmitter, it is normal to assume a spatial correlation
between the samples. We can therefore proceed with Kriging.

6.6.1 Variogram Fitting

As it has been said in the theoretical part of this work the RSSI should follow the path loss
in average while fluctuations are mostly due to shadowing.
The extent of the radius of spatial coherence, that is to say, the distance until which obser-
vations appear to be correlated is clearly visible looking at empirical semivariograms, see
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e.g. Figure 37. It typically is between 500 meters and 1 kilometer. This distance range is
typical of the DVB-T signal in the far field, as can be seen in [52], and this is our case since
a channel is considered to be busy if it is occupied by a signal that comes from 15 to 18

kilometers far away, see Figure 35.

6.6.2 Simple Kriging

As it has been said in the theoretical part simple Kriging is the easiest form of Kriging:
the mean of the field is considered to be constant and known, in the implementation we
assume it to coincide with the sample mean of the field.
The variogram of the absolute value of the logarithm of the RSSI has been approximated
with a Spherical variogram, which is a quite regular one and linear in the origin, with a
low nugget. The fit can be visualized in Figure 37. The choice of the family is due to
multiple reasons: we needed a variogram with a low number of parameters, so that it
could be fit even with a small number of samples, that presented a finite range, because of
the physics of the phenomenon.

Figure 37: Result of the experimental variogram fit (blue circles) with the theoretical, spherical one
(blue line).

This fit allows to produce the Kriging estimation visible in Figure 38.
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Figure 38: Map of prediction of the RSSI in occupied channel 44, using Simple Kriging.

To check if this method is already improving the estimation, we operate a 1-fold cross-
validation, whose result can be seen in Figure 39.

Figure 39: 1-fold crossvalidation using Simple Kriging. The bubbles indicate the difference in ab-
solute value between the local prediction in a sampling location if the dataset had not
contained that measurement. It is possible to visualize that most of the errors are concen-
trated on the borders of the sampling area, where fewer samples are available.

The total squared error is of approximately 5, 64 dB, that compared with a sample mean
of approximately −64.38 dB implies a relative error, approximately of 8.6%. The accuracy
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level is definitely sufficient for this type of application, because, luckily, as we have seen
difference in RSSI between unoccupied and occupied channel is way above this quantity.

6.6.3 Ordinary Kriging

Ordinary Kriging has the same theoretical hypotheses than simple one, except that an
equation is added to the system, to insure unbiaseness, because the real field mean is
supposed to be unknown.
The map of the krigged surface is visible in Figure 40.

Figure 40: Map of prediction of the RSSI in occupied channel 44, using Ordinary Kriging.

It results very alike the simple implementation, as the crossvalidation error will show,
basically this means that the mean of the field can be considered to be constant and equal
to the sample mean.
To check if this method is improving the estimation, we operate a 1-fold crossvalidation,
whose result can be seen in Figure 41.
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Figure 41: 1-fold crossvalidation using Ordinary Kriging. It has to be noted that the error is larger
at the boundaries of the sampled area, wherre less samples are available, see Figure 8.

The total squared error is of approximately 5, 54 dB, that compared with a sample mean
of approximately −64.38 dB implies a relative error approximately of 8.6%. The situation
is very similar to the previous case, but in this case no false hypotheses have been assumed,
since we are not stating that the real mean of the field is known.

6.6.4 Universal Kriging

It has been shown that the mean of the RSSI field cannot be considered to be constant in
space, at least from a first graphical analysis, see Figure 35. For this reason we opt for a
universal Kriging, hoping that the use of geographical coordinates and the distance from
the transmitter as a covariate will help the prediction.
We opt for adding the covariates one at a time, to see if there are any improvements in the
prediction, as in the previous cases we consider crossvalidation as a metric to evaluate the
performance.

Universal Kriging, only coordinates

At first we use location coordinates as the only covariate, the results are not much better in
term of crossvalidation error compared to what was obtained with ordinary Kriging. The
variogram fit can be visualized in Figure 42, the consequent estimation map in Figure 43.
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Figure 42: Result of the experimental variogram fit (blue circles) with the theoretical, spherical one
(blue line).

Figure 43: Map of prediction of the RSSI field in occupied channel 44, using Universal Kriging, with
only location as covariates.

To check if this method is already improving the estimation, we operate a 1-fold cross-
validation, whose result can be seen in Figure 44.
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Figure 44: 1-fold crossvalidation using Universal Kriging, with only coordinates as covariates.

The solution is not very different from the preceding ones, with the difference in the
South - Eastern area. This is the reason why the Kriging maps have not been put on
a map, otherwise the prediction out of the window, that is basically pure extrapolation
would have been cut.
In [36] Journel and Rossi show why the prediction is not strongly influenced by the exis-
tence of a trend in the model, they demonstrate that trend matters only in extrapolation
situations and simpler Ordinary Kriging is the preferred option. They advocate that the
choice of a particular trend model is most often arbitrary and for this reason it does not
affect the final estimation of the total variability. They show that if the location where the
prediction is desired is surrounded by samples in all the directions at a shorter distance
than the range of the fitted variogram the estimates are virtually identical, however, at
locations outside the sampling window this does not hold true and the estimations could
be sensibly different and this is clearly visible from our Kriging map predictions.
Quantitatively the relative error is still approximately 8% of the sampled field if we make
an average of the estimations through crossvalidation.

Universal Kriging, considering the distance from the transmitter

We use the distance from the transmitter as a covariate, alternative to the couple of longi-
tude and latitude, basically changing the "origin of the geographical plane", to see if this
impacts anyhow the estimation, this of course should not be the case. This option would
be chosen only if a very notable benefit would emerge from the crossvalidation results,
in terms of standard error, because calculating all the distances could be a non negligible
computational cost if not only a very local prediction is looked for, but a prediction map,
as the one in Figure 46 is desired and we hope this will not be the case otherwise the moel
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would not be robust to a change of coordinates.
The variogram fit can be visualized in Figure 45 and the prediction map in Figure 46.

Figure 45: Result of the experimental variogram fit (blue circles) with the theoretical, spherical one
(blue line).

Figure 46: Map of prediction of the RSSI field in occupied channel 44, using Universal Kriging, with
only distance from the transmitter as covariate.

To check if this method is already improving the estimation, we operate a 1-fold cross-
validation, whose result can be seen in Figure 47.
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Figure 47: 1-fold crossvalidation using Universal Kriging with only distance from the transmitter
distance as covariate.

6.6.5 Comparisons between Kriging Techniques

Since the performance of the two Universal Kriging is comparable the option is to choose
the one with the coordinates as predictors, since it is much less requiring computationally,
because no distances from the transmitter need to be calculated. Let us focus on the
comparison between the various techniques, to do so and to verify Journel and Rossi
statement, we plot the boxplots to compare the crossvalidation error, so to choose one of
the techniques, see Figure 48.
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Figure 48: Boxplots to compare the 1-fold crossvalidation errors using different Kriging techniques,
with or without the existence of a trend. From top to bottom Universal Kriging with dis-
tance as a caovariate, Universal Kriging with geographical coordinates, Ordinary Kriging
and Simple Kriging. As in the usual boxplots, the thicker lines indicates the median of the
distribution, that results to be approximately 4 dB, a very good result for our objectives.

Looking at Figure 48 our option is to choose Ordinary Kriging, proved that no extrap-
olation is needed, otherwise the more complex Universal Kriging with the coordinates as
covariates will be the way to go.

6.6.6 Conclusions

Kriging is theoretically more complex than the preceding options and way more computa-
tionally expensive, but on the other side, it offers notorious and visible improvement in the
results. Question is if such an expensive tool (in computational terms) could be an option
in this type of implementation or if worse performing, but easier to implement algorithms
are sufficient. In scenarios, such as in DVB-T, where the field is typically almost constant
in occupation for long periods of time, we think the use Kriging is justified, because the
computation can be effectuated at long intervals in time one from the other, for the low
risk of interference.

A major benefit of Kriging in addition to better accuracy and ability to extrapolate is
that it also provides variance estimates for the interpolated values that indicate the level
of confidence in the prediction. These can be extremely useful to guide the sensing in the
CR network: SUs in areas where there is a large interpolation variance may be asked to
sense the spectrum more often than those where the confidence of a correct prediction is
high. Similarly the variance estimates could be also used in scheduling the SUs when they
want to access the spectrum. In a highly dynamic radio environment Kriging might be
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an overkill, since the field would need to be updated all the time. In those scenarios the
non-statistical methods may be more feasible. Also in a highly dense SU network the non-
statistical methods are probably giving a low enough relative error in the interpolation
with much lower computational cost than Kriging, however, without any insight into the
interpolation variance, therefore the only way to check the correctnes of the prediction is
to look at crossvalidation errors.
Another important factor that has not been taken into account yet is the fact that we still
do not know which path CR technology will take, whether SUs will be able to share
information with their closest neighbors or whether a FCwill collect every SUs data. It is
clear that the information sharing will definitely affect the choice of the best technique to
use.
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7 B AY E S I A N E S T I M AT I O N

In this section we provide a Bayesian estimation and a prediction of the RSSI measurements
of Channel 44 from MC3 in the Helsinki area, in two main ways:

• An empirical Bayes approach is followed: a linear model is fit to measurements of
channel 44 in MC3 data. A variogram is subsequently built on the residual of the
model. The parameters of this (nugget, partial sill, range) are subsequently used to
compute the prior distribution of the Bayesian method.

• The second model uses a "truly Bayesian" prior, whose parameters are initialized by
a physical model addressed in the ITU-R (International Telecommunication Union)
document "Method for point-to-area predictions for terrestrial services in the fre-
quency range 30 MHz to 3 000 MHz". A simulation from this model has been built
in Matlab and the output has been analyzed in the same fashion as in the empirical
Bayes approach.

Before adventuring in the estimation part, a remark of the spatial process theory is neces-
sary, we limit to a uni-dimensional response function, as in the data.

7.1 gaussian processes
When we write Z(~s :~s ∈ D) we are envisioning a spatial process indexed by~s. The process
of interest Z(~s) can be modeled as a Gaussian process:

~Z|(~µ,~θ) = N (~µ, Σ(~θ)). (7.1)

Where ~θ = (τ2, σ2, R), respectively are the already introduced nugget, sill and range. The
sampled values of Z correspond to Z(~si), i = 1 . . . N. As a matter of fact, we do this
through specification of arbitrary finite dimensional distributions, i.e. for an arbitrary
number and choice of locations. Consistency of such specifications in terms of ensuring a
unique joint distribution will rarely hold and will be difficult to establish. Therefore we
avoid such technical concerns by confining ourselves to Gaussian processes or the mix-
tures of such processes, so that the only required theoretical element is a valid correlation
function. In practice to clarify the inference setting we will only observe Z(~s) at a finite
set of locations: ~s1,~s2, . . . ,~sN . Based upon Z(~si), i = 1, , . . . , N we seek to infer mean, vari-
ability and association structure of the process and predict Z(~s) at arbitrary unobserved
locations.
Restriction to Gaussian processes leads to several advantages:

• Very convenient distribution theory: joint marginal and conditional distributions
are all immediately obtained from standard theory once the mean and covariance
structure have been specified.

• A Gaussian process assumption for spatial random effects introduced in the second
stage of the hierarchical Bayesian model is very natural.
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• Strong stationarity is equivalent to weak stationarity.

• It is difficult to criticize Gaussian assumption: in the absence of replication
~Z = (Z(~s1), Z(~s2), . . . , Z(~sN)) is a single realization of an N-dimensional distri-
bution, with a sample size of one, no multivariate distributional specifications (such
as the Gaussian one) can be criticized.

Even in the small class of isotropic processes very numerous famous models do exist.
Some examples are the Exponential, the Power Exponential, the Gaussian, the Matérn
model, etcetera. The choice between those should depend on the expected regularity of
the signal (is it strictly stationary, weakly stationary, intrinsicly stationary or only ergodic?).
In this work we opt for an easy scheme for the theoretical variogram, where easy stands for
a variogram model with a low number of parameters that needs to be fitted, for computa-
tional reasons, for the low number of available data and for consistency with the previous
frequentist analysis.

7.2 bayesian models

7.2.1 First Bayesian Model

The result of the the assumption of the process to be Gaussian is:

~Z(~s) = ~µ(~s) +~ε(~s) = X(~s)~β +~ε(~s)

~ε(~s) ∼ N (~0, Σ)

Σ = σ2H(R) + (τ2 I)

H(R)i,j = ρ(R; di,j).

(7.2)

Where the nugget effect τ2 I is not mandatory, but has the positive results of making the
model more stable, see Banerjee in [2] for a reference. Moreover it allows the residuals
to be not spatially continuous (ε(~s +~h) − ε(~s) 9 0 as ~h → 0), not because the spatial
process is not smooth, but because some additional variability, associated with Z(~s), is
envisioned. This can be viewed as measurement noise or replication noise due to repetition
of measurements at the same location ~s but also to a microscale variability, at distances
smaller than the smallest interlocation distance between samples (di,j = d(~si,~sj)).
A stationary model is yield while specifying a correlation function dependent only on the
separation between samples.
As in the frequentist part in every location we scorporate the signal as:

Z(~s) = µ(~s) + ε(~s) = µ(~s) + w(~s) + n(~s) (7.3)

where the mean structure is the result of a linear model

µ(~s) = X(~s)~β. (7.4)

The residual is partitioned into two pieces: one, w(~s), assumed to be a realization of a zero
centered, stationary, Gaussian, spatial process, capturing residual spatial association, that
has to be taken into account while modeling the partial sill and the range parameters and
n(~s), n the other side, the uncorrelated pure error term, a non-spatial residual, used to
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model the nugget effect.
Following this thought, n(~s) could be seen as a spatial process as well, with very rapid
decay and a very small range. Cressie suggests to partition n(~s) itself in two pieces, one
for taking care of spatial variability, the other for pure error; Banerjee states that very little
is typically known about microscale variation, so that, even though been perfectly mean-
ingful in theory it becomes difficult to put this idea into practice, in this work Banerjee’s
option has been selected.
Since the basic Gaussian isotropic models are a special case of the general linear model,
the problem boils down to the definition of the Σ(θ), an option is to choose

Σ = σ2H(R) + τ2 I (7.5)

where H is the correlation matrix

Hi,j = ρ(~si −~sj) = ρ(R, di,j) (7.6)

where ρ is a valid correlation function indexed by R.
The Bayesian Model can then be stated as:

Z|~θ ∼ N (X~β, σ2H(R) + τ2 I)

π(~θ) = π(~β)π(σ2)π(τ2)π(R)

π(~β) ∼ Normal

π(σ2) ∼ Inverse Gamma

π(τ2) ∼ Inverse Gamma

(7.7)

where π(·) denotes the prior distribution. π(R) depends on the choice of the correlation
function.
Unfortunately proper but vague priors lead to improper posteriors or to proper ones, that
could be computationally indistinguishable.
According to Banerjee independent priors are typically chosen for the different parameters,
so that the joint prior distribution appropriate prior distribution π(~θ) may be simply ex-
pressed as the product of the single priors: π(~θ) = π(~β)π(σ2)π(τ2)π(R). Typical choices
have already been listed.

Since inference a posteriori will be on each parameter independently from the others,
one of the objectives will be marginal posterior distributions, that will not typically be in
closed form, so in general we can only say:

π(~β|~z) =
∫ ∫ ∫

π(~β, σ2, τ2, R|~z) dσ2 dτ2 dR

∝ π(~β)
∫ ∫ ∫

f (~z|~θ)π(σ2)π(τ2)π(R) dσ2 dτ2 dR.
(7.8)
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7.2.2 Hierarchical Model

It is possible to build a hierarchical model augmenting the parameter space from ~θ to

(~θ, ~W), where ~W =
(

w(~s1, . . . ,~sN)
T
)

de facto increasing the parameter’s space dimension
by N values.

Z|(~θ, ~W) ∼ N (X~β + ~W, τ2 I)
~W|(σ2, R) ∼ N (~0, σ2H(R))

π(~θ) = π(~β)π(σ2)π(τ2)π(R)

π(~β) ∼ Normal

π(σ2) ∼ Inverse Gamma

π(τ2) ∼ Inverse Gamma

π(R) ∼ Uniform.

(7.9)

Fitting the model as f (~z|~θ)π(~θ) or as f (~z|~θ, ~W)π(~W|~θ)π(θ) holds the same posterior
π(~θ|~z). Of course it makes sense to do as much marginalization as possible before imple-
menting an MCMC algorithm, that can consequently be in the smallest possible dimension
and therefore faster to explore. Notwithstanding this Banerjee affirms that determinant
and inversion calculation will be better behaved in the marginal, than in the conditional
model form, in this optic, the nugget has also the effect of facilitating the inversion pro-
cess since σ2H(R) + τ2 I is further from been singular than σ2H(R) when sample locations
draw closer.

7.3 empirical bayes
We opt for treating the data in a pure spatial model, forgetting about the time dimension.
As it had already been shown in Figure 35 the RSSI is a function of the distance from the
transmitter, even though the pattern is less clear than expected. This attempt is here called
empirical Bayes because the prior parameters are chosen according to the measurements,
that are also used to fit the parameters of the likelihood, therefore they are used twice and
this typically is a deprecated behavior in Bayesian analysis, even though quite common.

7.3.1 Linear Model

As a first step we fit the linear model, using all the available data as input variables, it
has to be noted that in reality the response variable is the negative logarithm of the RSSI.
In Table 4 it is possible to see the output of the fitting; it is clear that al the variables are
significant except for the Elevation. This was not expected, because elevation typically has
a major role in propagation models, but this is not the case. Possible reasons are:

• A non sufficient accuracy of the elevation data due to a too large pace of the altitude
grid,

• The change in altitude in the area is not so relevant when compared to the height
of the nearby building in the Helsinki downtown where the measurements where
conducted: an average 3-4 floors construction can be about 12 meters and the 75%
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percentile of the terrain elevation is about 11 meters, therefore it can be that the
shadowing due to the buildings, that is not considered in the model fit is actually
stronger than the elevation difference.

Estimate 1 Std. Error2 t-value 3 p-value 4

Intercept -497 127 -3.9 0.000164

Elevation 0.5 0.5 1.024 0.3
Transmiter Distance -0.57 0.176 -3.26 0.0015

Longitude 33.43 9.70 3.4 0.0008

Latitude -5.39 1.98 -2.718 0.0077

Table 4: Complete linear model fit.

Figure 49: Bubble plot of the residuals, after they have been back transformed to the original units,
as usual, these are bigger where less samples have been taken.

Residuals are shown in their geographic location in Figure 49, before going any further
we check their distribution; the result is noteworthy, since they appear to be normal, as
can be seen in Figure 50.

1 Value of β̂i , the punctual estimate of the linear coefficient.
2 Measure of the variability in the estimate for the coefficient.
3 Value of the Test Statistics to be compared with the quantile of the t of Student.
4 p-value of the t test.
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Figure 50: Histogram of the residuals, after they have been back transformed to the original units, a
normal density lin has been added for a qualitative comparison.

To prove the graphical fit we use a Shapiro Test, that does not refuse the hypothesis of
normality:

W = 0.9855, p− value = 0.2897. (7.10)

Empirical Variogram

After looking at Table 4 we opt for a smaller model, a subset of the present one, that does
not have the Elevation as a covariate. Fitting parameters and residuals are almost identical
to the previous model and therefore are not reported.
At this point the variogram of the residuals is drawn. As it has been anticipated in the
theoretical part, a binned estimation of the variogram is done, two options have been
considered: the traditional binning and the Cressie’s regularized version, see [16], that
is supposed to be more robust. As it can be seen in Figure 51, the fit is not so different,
therefore the classical estimation is used. The fact that different techniques produce similar
results is good news a validation of the goodness and robustness of the chosen path.

Figure 51: Comparison of Cressie’s (left) and classical (right) Empirical Variogram.

As it has been announced what is left to do is estimate the easiest model that fits the
variogram. The parameters estimation is done through the option optim in variofit in the
gstat library using the R statistical environment. There is not a lot of difference between
the various models, the choice is for the spherical model, since it is easy, with a low number
of parameters, presents a finite range, that has theoretical reasons to exist and shows a nice
regularity, but not an excessive one, since it is only linear in the origin. It has to be noted

82



7.3 empirical bayes

that various techniques for optimization have been used (WLS, OLS, optim, nlm), but they
all return similar results. These techniques are very different e.g., while wls furnishes a
point estimate, the optimization routine optim is able to infer which one is the model in
the determined class (in this case the spherical one), that best fits the data, given a value
for τ2 and σ2 which are estimated "by eye" from the empirical variogram at the beginning
of the process.

Gaussian Model

Until now we have fit a model without specifying any type of distributional hypothesis.
Now we use the linkfit command to estimate the coefficients of the quota and the covari-
ate relative to the transmitter distance. The resulting fit is:

β̂0 = −0.7638 β̂1 = −5.277. (7.11)

7.3.2 Fixed Effects Model

We first plot the traceplots for the chains of the variogram parameters: it looks like the
chains have reached convergence.
To decide whether the Markov chain has reached its stationary and the desired posterior
distribution, to set the burn-in and the total number of iterations, we look at traceplots.
These are diagnostic tools designed to verify a necessary but not sufficient condition for
convergence but there are no conclusive tests that can tell whether and when the Markov
chain has converged to its stationary distribution.
It is important to check the convergence of all parameters, and not just those of interest,
before proceeding to make any inference because certain parameters can appear to have
very good convergence behavior, but that could be misleading due to the slow convergence
of other parameters.
Trace plots of samples versus the simulation index can be very useful in assessing conver-
gence. The trace can tell if the chain has not yet converged to its stationary distribution
(are a longer burn in or more iterations needed?), but a trace can also tell you whether
the chain is mixing well. A chain might have reached stationarity if the distribution of
points is not changing as the chain progresses. The aspects of stationarity that are most
recognizable from a trace plot are a relatively constant mean and variance. A chain that
mixes well traverses its posterior space rapidly, and it can jump from one remote region
of the posterior to another in relatively few steps. In Figure 52 it is possible to see the
results of the trace plots, which are very thick, meaning that the chain has likely reached
stationarity, the densities on the right look like normal distribution and this means that the
space is well explored, there are no holes nor locations which are visited too many times.
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Figure 52: Traceplots and densities of the variables explored by the chains. From top to bottom the
analyzed variables are σ2, τ2 and φ, which is the inverse ratio of the range R.
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Figure 53: Traceplot and density estimator of the covariates coefficients.

As seen before, the covariate results significant, since its estimation is very far from
0 and the errors (both the naive and the time series one) are small in proportion. The
difference between the two error types is that Naive Std. Error is the real standard error
of the simulations, while the Time Series Std. Error is an estimation of the real Std. Error,
keeping into account that realizations are not really i.i.d.. In this case the errors almost
coincide, an index that the chains are mixing very well.

Estimate Std. Error Naive Std. Error Time-Series Std. Error
Intercept -0.27 36.9 0.107 0.107

Transmiter Distance -5.27 2.226 0.006 0.006

Table 5: Fitting Summaries.

2.5% 25% 50% 75% 97.5%
Intercept -96.3 -17.442 -0.27 27.749 79.329

Transmiter Distance -7.7 -6.6 -5.27 -4.09 -0.13

Table 6: Percentiles of each variable. The transmitter Distance 95% interval does not contain the 0,
therefore is considered a significant variable.
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7.3.3 Prediction

Prediction therefore can be comparable with universal kriging one for the type of covari-
ates.

Figure 54: Prediction with Empirical Bayes approach.

7.4 truly bayesian prior
A "truly Bayesian prior" can be obtained fitting the parameters from a physical model. The
idea is not to just obtain another estimation of the field, but mostly to validate what has
been done so far with what the typical models used in literature.
The decision to use simulated data to fit the prior

This does not have any corresponding in literature to the best of our knowledge.
We proceeded simulating the field using the ITU-R recommendation [33] for predicting
the path loss taking into account the terrain elevation, from the Espoo TV transmitter to
the Helsinki downtown area where the measurements were made; the result can be seen
in Figure 55.

86



7.4 truly bayesian prior

Figure 55: RSSI of thesimulated field according to the ITU Recommendation, see [33].

7.4.1 Variogram Estimation

The estimation of the variogram leads to a Spherical Variogram can be visualized in Fig-
ure 56.

Figure 56: Fitting of the variogram.

Using similar priors as the ones that have already been used for the empirical Bayesian
approach, choosing all the parameters interpolating from the variogram presented in Fig-
ure 56 and using reasonable variances (considering the sample mean) the estimation visible
in Figure 57, which is surely encouraging, since it is perfectly in line with the results of
the prediction models.
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Figure 57: Prediction using the purely Bayesian approach.

Improvements could be done, between these:

• The physical model, that performs a good estimation in average, does not fit any
type of covariance function, therefore it is probably not idyllic for our purposes.

• We have chosen to undersample the simulated field for computational reasons,. Other
models could be used to get better results, here the point was to validate the model
and the results, not just the prediction.

7.5 vantages and drawbacks of bayesian modeling

7.5.1 Vantages of Bayesian Modelling

• There is a critical difference between the one-dimensional time series data and the
two-dimensional spatial data: full-order versus partial order. In one dimension only
one "type" of asymptotics theory exists: for time that goes to infinite, in a multi-
dimensional setting, though, spatial process data presents a multi-faceted situation:

infill asymptotics envisions a fixed region with more points filling the domain,
that leads to a more accurate knowledge of the spatial field as the sample dis-
tance goes to zero. Being fixed the maximum distance between samples in the
measurement field in a frequentist approach it is impossible to learn from as-
sociation at an increasing distance. In this example of experimental design, the
classical results, e.g. the Law of Great Numbers is not easily applicable.

increasing domain asymptotics The sampled points get further from each other
as the sampling number increases, with a minimum relative distance.

nearly infill asymptotics The domain in infinite, but the number of sampled
points increases in every sub-region of the domain.

In the application we are envisioning the asymptotics we will focus on, at least at the
beginning, will surely be of infill type, since a control area will be of interest, while
of course, it will increase, when more devices will move in an outer area.
The complicated definition of asymptotics in a frequentist domain is clearly encour-
aging for using a Bayesian framework for interference, since we do not need to rely
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on any asymptotic theory, but rather obtain exact interference given whatever data
have been observed.

• The fit of the valid variogram can be done in multiple ways: typical ways include
LS, WLS, if a distributional model for the data is available, ML or REML techniques
are available. In the classical, frequentist framework a lot of energy is devoted to the
determination of the optimal estimates, however in the Bayesian setting, according
to Banerjee, the estimation of the prior parameters is not such a big issue because the
choice of the hyperparameters of the prior only weakly influence the point or interval
estimate calculated on the posterior distributions. In this optic the parameters of the
model (nugget, sill, range) are fitted, once the covariance model has been chosen,
with a function like variofit, as in the frequentist approach, that allows to choose
between different function for the optimization process, the results of which are then
the end compared, but are far less influential than in the previous case.

7.5.2 Cons of Bayesian Modelling

Likelihood evaluation requires a computation of a quadratic form involving Σ−1 and its
determinant. With spatial random effects this evaluation is deferred to the second stage
of the model, but it is still present. With an increasing number of locations, such com-
putation becomes very expensive and the result can also be unstable, therefore repeated
computation, e.g. for simulation-based model fitting, can be very slow, perhaps unfeasible.
It is a typical "big n" problem.
Approaches for treating this problem exist and are very different:

subsampling, though it may be unattractive to ignore some of the available data, being
the data interdependent could mean that an increment in sample size does not imply
a direct increase in precision, on the contrary, adding a location very close to one that
already exists, will probably increase the knowledge about the noise or measurement
error component, but will not add much to the inference.

local kriging Making kriging "more local", the radius of the neighbourhood from which
extracting samples for prediction can be modulated and made smaller when the sam-
ple density increases, this looks to me as the most natural solution to the problem.

proximity matrix More common for points in a lattice a proximity matrix can also be
used for non lattice geo-referentiated data. The idea is to use a threshold and group
all the data that are closer than that distance. This eases the problem computationally
but of course there is a loss of information that depends on the size of the matrix
cell.

spectral methods Working in the frequency domain implies building a periodogram
and using Whittle approximation of the likelihood in the spectral domain to approx-
imate the likelihood in the original domain, this implies no need for matrix inver-
sion and therefore a faster computation, considering that going back to the original
domain should be straightforward. The needed computational step include a dis-
cretization to implement an FFT and a certain arbitrariness for the choice of the low
frequencies to be discarded before calculating the periodogram. Experience suggests
that Whittle technique works well in the center, but it is not satisfactory in the tails,
therefore variance estimation is rather poor.
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So far we have talked about propagation models, but numerous are the variables to be
considered, even before a measurement is actually planned. An important one is where
to localize the measurement. Field measurements are resource consuming, therefore op-
timizing the sampling scheme could bring noteworthy economy in measurement costs.
Moreover systematic sampling can sometimes not capture all the large-scale fading char-
acteristics e.g. due to irregular terrain and therefore a cheaper sampling campaign could
also mean an improvement in the precision of local field strength estimation.
The idea is to choose the optimal sampling pattern, so to minimize the average Kriging
prediction error variance.
As clearly stated by Groenigen in [27], the only factors influencing Kriging variance are the
variogram itself, the number of observations and the location where to predict. For this
reason if it was possible to assume the variogram to be known in the first place, it would
be possible to calculate the Kriging variance before the sampling actually takes place.
In a context like CR this is a very powerful assertion, and Spatial Simulated Annealing can
be quite a powerful tool.
Unfortunately there is a problem: as suggested by [10], Kriging variance is optimum only
for Kriging without covariates, if some sort of Universal Kriging is implemented the au-
thors suggest an optimization of the sampling both in the feature and in the geographic
space.
A compromise between spreading in the two spaces (geographical and feature) has to be
found.
This is possible if prior knowledge of trend and covariance function is available, in the
case of CR, after the calibration of a propagation model through a first sampling phase we
can assume the covariance matrix is maintained.
Spatial Simulated Annealing is an iterative search algorithm for finding the global mini-
mum of an objective function. In this case the object is to optimize the spatial sampling,
with a constraint on the maximum number of samples and locations in which to sample.
Starting with a random sampling scheme S0 the following one is obtained randomly per-
turbing the previous one. At this point the new scheme S1 is accepted with probability
one if the objective function Φ evaluated on the scheme improves, while it is accepted
occasionally in the opposite case, to avoid local minima.
Let us see this in formulas:{

P(Si → Si+1) = 1 Φ(Si+1) ≤ Φ(Si)

P(Si → Si+1) = exp{Φ(Si)−Φ(Si+1)
T } Φ(Si+1) > Φ(Si)

(8.1)

T is a control parameter known as system temperature.
In [51] two objective functions have been considered:

• the Mean Shortest Distance (MMSD), whose idea is to minimize the distance between
a random chosen point and the closest sampling location. This criterion aims at even
spreading the sampling points on the sampling grid, see the original paper [69].
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• the Mean Universal Kriging Variance (MUKV) that can be written as:

ΦMUKV =
1
N

N

∑
i=1

σ2 (8.2)

where σ2, the Kriging variance, depends both on kriging error variance and the
prediction error variance of the trend.

Spatial Simulated Annealing is useful for designing field measurement campaigns and
for applications in sensing that require real-time knowledge of radio environment. It is
unfortunately very power consuming and therefore in CR field it will probably be an
interesting technique at the moment, while the environments are being setting up and not
in a long time optic. We think that better and cheaper solutions, have to be found, mostly
in a distributed environment, that will have to be able to change with very short notice.
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So far we have provided techniques for estimation of Test Statistics and RSSI, but what
clearly matters to the final cognitive radio user is if the channel is or not idle.

9.1 supervised classification
The aim of clustering is to label some measurements, so to group them, in a number, g of
groups. Let us assume to group all the samples in a matrix X ∈ RN×p, where N is the
number of samples and p is the dimension of the predictors space. In the present work
p will always be equal to 2, since the space we are analyzing is the one defined by Test
Statistics and RSSI. Given the label L ∈ {1, 2, . . . g} we assume that X|L = i ∼ Fi, and we
define pi = P(L = i), so that ∑

g
i=1 pi = 1. Finally let us define the misclassification costs

c(i, j) ≥ 0, ∀(i, j) ∈ {1, 2, . . . g} × {1, 2, . . . g} and correct classification induces no cost, so
that c(i, i) = 0 ∀i ∈ {1, 2, . . . g}.
In this thesis work the classifiers are dichotomic, meaning that g = 2 and L ∈ {0, 1}, the
channel can be idle or occupied, in the following the 0 label will refer to the idle channel,
while 1 to the occupied one. The classifier can be identified by the partition of Rg=2 in
{R0, R1}, so that R0 ∩ R1 = ∅ and R0 ∪ R1 = R2.
It is therefore possible to define the Expected Cost of Misclassification (ECM) as the prod-
uct between the probability a posteriori of wrongly labeling and therefore classifying,
weighted by the misclassification cost:

ECM = c(1|0)p0

∫
R1

f0(x)dx + c(0|1)p1

∫
R0

f1(x)dx (9.1)

where fi(~x) is the probability density function of XL=i, ∀i ∈ 0, 1.
De facto we are integrating in the two existing regions of the space ((R0, R1) has already
been said to be a partition of R2) the a posteriori probability of misclassifying, weighting
by the cost vector.
It is possible to define the optimal classifier the one that minimizes the expected misclassi-
fication cost.
From this it is possible to define the optimal partition as

R∗0 = {x ∈ Rp : c(0|1)p1 f1(x)} = min{c(0|1)p1 f1(x); c(1|0)p0 f0(x)} (9.2)

and equivalently

R∗1 = {x ∈ Rp : c(1|0)p0 f0(x)} = min{c(1|0)p0 f0(x); c(0|1)p1 f1(x)}. (9.3)

This is a meaningful result, since it states that for every single sample x ∈ Rp, the optimal
region is the one that minimizes its expected misclassification cost.
Misclassification costs here will be considered to be symmetric (c(0|1) = c(1|0)), but in a
real cognitive radio environment the choice will be to protect the PUs as much as possible,
therefore c(1|0)� c(0|1), it will be more costly to consider an occupied channel to be idle
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than viceversa. Costs will be thought from a conservative viewpoint but transmission will
have to be granted once in a while, for this reason an apposite study is needed to properly
define the ratio between the costs.

9.2 quadratic classifier
A closed form of the ECM is needed for pragmatical reasons, let’s therefore add two
hypotheses that are not necessarily satisfied by the sample, but can help to tackle the
problem more efficiently.
Let us assume that:

• X|L = i ∼ Np(µi, Σi)

• c(i, k) is constant ∀i 6= k.

Then the optimal classifier is quadratic, see [35], meaning that the line that divides the two
tiles, also known as discriminant function, is quadratic. For this reason this technique is also
known as Quadratic Discriminant Analysis (QDA).

9.3 linear classifier
Let us assume moreover that

• Prior probabilities are the same for every label: p = pi, ∀i, in our case a priori it
would mean that the probability of a channel of being idle or occupied is the same.

• Covariances are all the same: Σ = Σi, ∀i. This hypothesis, for what stated in the
theoretic part concerning cyclostationary detectors is surely not valid in our setting,
since we know that Σ1 � Σ0.

In this very specific setting the optimal classifier is linear, basically the Ri are single tiles
in a Voronoi tassellation of the predictor space, using Mahalanobis distance and the classi-
fication technique is consequently called Linear Discriminant Analysis (LDA).
In a dichotomic setting if the discrimination function is linear it is also the direction of
maximum discrimination, along which difference between groups is maximum compared
to within groups one.
Fischer has shown that this classifier is robust for non normal distribution.

9.4 application
The number of parameters introduced so far is quite high, densities f0 and f1 are unknown
and priori probabilities p0 and p1 need to be estimated as well. To do this a training set is
used, that is made up of already labeled samples. In the following all Σi will be considered
equal, even though, as we have said this is not realistic. Since the single Σi would be es-
timated with sample deviations Si, Σ̂ = Spooled = 1

n−g ∑
g−1
i=0 Si(ni − 1) = N−1

2(N−1) ∑1
i=0 Si =

S0+S1
2 , the "arithmetic mean" of the sample variances in the two cases of occupancy, that in

our case have the same numerosity since the number of locations is constant through the
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channels. pi is estimated by p̂i =
ni
n , where ni is the number of occupied (n1)(or not (n0))

channels out of the total number of samples. Since our test sample has only two channels
and both have the same numerosity ni = n0 = n1 = N, the total number of samples for
each channel and therefore p̂i = 0.5i = 0, 1. This assumptions is equivalent to state that
there is no have previous information on the occupancy of a new channel, somehow mak-
ing the model valid in all settings and not for a singular sampling campaign.
To estimate a classifier the Actual Error Rate (AER), should be used:

AER = p0

∫
R1

f0(x)dx + p1

∫
R0

f1(x)dx. (9.4)

This is not possible to calculate because of the numerous unknowns (p0, p1, f0, f1, R0, R1).
A "dangerous" option is to use the Apparent Error Rate (APER): defining ni = ni,c + ni,m,
basically dividing the number of samples in the training set that can are correctly classified
(c) and those that are not (n) per label, so that for example n0,m is the number of samples
that are misclassified as idle, therefore:

APER =
n0,m + n1,m

n0 + n1
=

n0

n0 + n1

n1,m

n0
+

n1

n0 + n1

n0,m

n1
=

= p̂0
̂∫

R1

f0(x)dx + p̂1
̂∫

R0

f1(x)dx.
(9.5)

The technique is dangerous because the idea is to build a classifier on already labeled data
and then predict the same data through the classifier. Inevitably the classifier is adapted to
the training set, therefore the estimation error would probably go underestimated and the
risk of overfitting is quite present. This brings to a tradeoff problem: how to size training
and test set, so to have a good classifier, but also a good estimation of the classification
error?
A valid alternative to the division of the samples in training and test set is to operate
crossvalidation, therefore computing the classifier on N − x samples and use it to predict
the occupancy in the remaining x locations. In this work only 1-fold (x = 1) crossvalidation
has been computed, so that there was no need of checking if a classifier obtained using a
subset of the training test was very different from the others, since the cardinality of the
"changing test set" was varying.

9.5 results
We use the measurements from MC3. All the samples from channels 22 and 44, that are
known to be respectively an idle and an occupied channel, will be our training set, while
the test set in the following will be composed of channels 42, 44 and 46.
For both classifiers (linear and quadratic) we will calculate the classifier and use it to re-
predict the channel occupancy on the training set, therefore calculating APER to estimate
AER and then we will compare this result with the AER calculated through crossvalidation
both on the training and on the test set.

9.5.1 Linear Classifier

The first technique we use is a linear classifier, with Test Statistics and RSSI as the only
covariates, even though the hypotheses are not to be considered satisfied, since the covari-
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ance matrices are very different in the two cases: in the idle channel the sample covariance
matrix is

S0 =

[
94.38 3.56
3.57 9.90

]
(9.6)

while in the occupied channel it amounts to:

S1 =

[
2048.75 −43.69
−43.68 43.16

]
. (9.7)

Difference between sample variance is easy to see even in Figure 58, since the occupied
channel has a much wider cluster in this space, but is especially visible in Figure 12.

Figure 58: Visualisation of channels 22, 44, 45 in the plane (Test Statistics, RSSI). Channels 22 and
44 are respectively unoccupied and occupied in all locations and they form two clear
clusters, while channel 45, whose occupancy is not constant through the locations, since
the signal comes from Estonia and is therefore more easily perceived along the coast, is
somehow between the two clusters, showing even very high values of Test Statistics and
is reported here as a comparison.

Fortunately, though, the Mahalanobis distance between the clusters will be shown to be
high enough to differentiate the clusters.
Using p = (p0, p1) = (0.5, 0.5), the linear discriminant is visible in Figure 59.
This gives origin to a very good confusion matrix, that shows the number of misclassified
samples per label:

L̂ = 0 L̂ = 1
L = 0 109 0

L = 1 2 107

it is therefore possible to calculate the APER as the percentage of misclassified channel
locations out of the total.
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The obtained APER is approximately 0.00917, less than 1% of the total locations is misclassi-
fied. To be sure of the result, we opt for calculating the AER through 1-fold crossvalidation,
that results into exactly the same confusion matrix. This is because in the measurement
data that has been used the two groups have exactly the same number of samples, there-
fore p̂i is a good estimation for pi, i = 0, 1. The AER for 1-fold misclassification coincides
with APER.

Figure 59: Linear classifier visualized on the test set. It is possible to see the two locations that are
incorrectly labeled.

9.5.2 Quadratic Classifier

This classifier is adopted here, even if, as before, the hypothesis are not completely satis-
fied, since none of the tested X|L = i has returned a p-value of the Shapiro Test that could
have made us convinced not to refuse the Null Hypothesis of Normality. Notwithstanding
this a confusion matrix is built and the result is even better than before, as a matter of fact
no samples are misclassified:

L̂ = 0 L̂ = 1
L = 0 109 0

L = 1 0 109

The APER is therefore exactly null, as the AER built with 1-fold crossvalidation. The
classifier can be seen in Figure 60.
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9.5 results

Figure 60: Quadratic classifier on the test set. No samples are misclassified.

9.5.3 Comparison between Linear and Quadratic Classifiers

It is natural to ask ourselves which of the two classifiers does a better job, since the com-
putational cost is almost the same. To make this comparison we use other three channels:
42, 45, 46, the first is known to be idle, the last to be occupied and the middle one is the
one that is perceived from Tallinn only in some locations, mostly close to the seashore, see
Table 1.
We use the classifier that has been built on the channels 22 and 44, without adding any
information, the result is to be seen in Figure 61: it is clear that the quadratic classifier is
more conservative than the linear one, since it asserts the channel is occupied in more lo-
cations, de facto protecting primary receivers. While the two channels which have a strong
character (idle or occupied) are almost everywhere correctly classified, the differences in
channel 45 amounts to 25% of the total sampled locations.
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9.5 results

Figure 61: Comparison between linear and quadratic classifiers in three new channel, one busy
(blue, 46), one idle (red, 42) and one that is location dependant (green, 45).

We proceed by visualizing in Figure 62 the positions that are considered to be idle or
occupied for channel 45 by the two different classifiers. It is clear that, as already said,
the quadratic classifier is more conservative, the choice between the two depends on the
situation, in this case the Estonian channel does not have to be protected, but this certainly
depends on location, time etc., that have to be implemented in the classifier.
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9.5 results

Figure 62: Comparison between linear classifier (left) and quadratic one (right). In red are locations
where the channel 45 is considered to be busy by the classifier, blue where it is not.

9.5.4 Univariate Classifier

Noticing that the discriminating functions divide the space "almost vertically" the question
is if a univariate classifier, with only the Test Statistics as predictor. This idea is looked
after in Figure 63.
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9.6 conclusions

Figure 63: In the top figure the density a priori is multiplied by p. These are not densities, therefore
they do not integrate to 1, but to p, they are a mixture of densities. In the bottom. All
densities fi, i = 0, 1 are represented as normal, centered in the sampled mean, with a
variance equal to the sample one. The lines represent the theoretic curves, the dots the
actual sampled points, which colour is the real label, not the colour of the classification.
In the bottom plot the threshold is clearly individuated by the intersection between the
curves.

A univariate classifier requires even less computational power, since it boils down to
the comparison of the Test Statistics with a threshold, that is visible in the bottom graph
in Figure 63. An option could be to use a sequential classifier, that takes care of classify-
ing as idle the samples where the Test Statistics is way below the threshold and declare
busy those where the value is way above it, while in the grey band around it a bivariate
classifier (linear or quadratic) could be implemented. This would be a cheaper option in
computational terms, however to decide how to shape the grey zone we think that some
labeled samples from Channel 45 are needed before taking any decision in this regard.

9.6 conclusions
Classifiers have been shown to perform extremely well and are very easy to implement,
they surely will have an impact in real time decisions about transmission, where maps
of channels occupancy are not needed, but fast decisions have to be taken, caring mostly
about consumption of the mobile decision unit.
More complex, maybe Bayesian classifiers could be built, as an example adding the chan-
nel name as a factor, so that channels which are usually occupied would be more likely to
be signaled as busy and viceversa, but we really do not see the reason to do so, because of
the extremely good performance of lower power consuming classifiers.
It must be remembered that this type of analysis does is not optimal under any type of
condition, they are simply geometrical tools to divide the space. Their utility is mostly
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9.6 conclusions

due to the fact that no assumptions have to be made in general more than the ones that
we have made, this of course, implies that they have very few optimality properties, as
already stated. Nonetheless we believe that very low computational power and very good
classifications are the required characteristics of a classifier and therefore we strongly push
towards adopting these easier tools.
The option of using only the Test Statistics as a classifier is intriguing, since it would half
the state space and classification would simply translate in the comparison with a thresh-
old and almost vertical lines in Figure 61 strongly point towards this decision. Nonetheless,
we think that labeled samples from Channel 45 are needed before taking any decision in
this regard.
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10 C O N C L U S I O N S

Cognitive radios have a huge potential in shaping the future of wireless communications:
they hold the promise of a new frontier with dynamic coordination for spectrum-sharing
process for an improved spectrum utilization under constantly changing conditions.
In this thesis work applications of Spatial Statistics in the area of wireless communications
have shown how to get a detailed understanding of the surrounding radio environment
with low complexity models to guarantee a manageable overhead.
After implementing numerous interpolation techniques, whose vantages and drawbacks
have been evidenced, and suggesting prediction models optimized for a context where
computational cost is an issue, spatial classification models have been provided, and have
been shown to perform extremely well.
The purpose has been to obtain full yet succinct representation and prediction of network
state metrics and accurate identification of anomalies from possibly partial and corrupted
measurement data.
As it has already been evidenced the aim of the work has been to compare a high number
of existing techniques while looking for one that performs well enough for our scopes and
is not too heavy computationally. In the case of primary signals that are almost static for
long periods, such as the DVB-T that has been taken into account in this work, the best
option in terms of correctness is to use the Ordinary Kriging if there is no need of extrap-
olation out of the measurements hull, otherwise the more expensive Universal Kriging is
the only option to take care of the spatial trend. In the case of signals which, on the other
side, are not to be considered constant in time and therefore cause the maps to have to be
recomputed more often, Kriging is probably not an option, or at least, has to be computed
only once in a while, keeping the best performing technique, splines interpolation, as the
main option. Interpolation is clearly not a synonym for prediction, there is no account for
the variance of the punctual value, but it can be used as a threshold for deciding whether
or not transmitting, until a prediction is computed.
The Bayesian part of this work is to be intended from another point of view, mostly as a
way to check whether the model presented in the standard [33] could be used in locations
where no measurements are present. Another purpose of this model is using the poste-
rior to predict few observations if these are needed since the computation of the posterior
is a long process, but can be done almost automatically once the prior parameters have
been fixed and mostly it does not need to be performed every time an interpolation is
performed but much more rarely; how rarely clearly depends on the environment and the
signal characteristics.
Looking forward in time there is an unceasing demand for continuous, innovative and
large-scale distributed algorithms, complemented by collaborative and adaptive monitor-
ing platforms to accomplish the objectives of network management and control.
This will have enormous impact on the design of critical cognition infrastructure to sense,
learn, and adapt to the environment where networks operate, with a minimum need for
human intervention and a high resilience, robustness to missing and corrupted network
data and to possibly malicious attacks.
Dynamic network cartography and statistical modeling will allow to
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conclusions

• unveil, map and manage anomalies that could cause congestion and limit the quality
of service,

• predict channel occupancy to build a transmission plan eventually in a fully dis-
tributed fashion

A fully distributed approach is of course to be preferred for scalability and robustness
considerations, even if it is way more expensive to build and more difficult to manage.
The huge quantity of challenging problems gives an idea of why CRs are such an interest-
ing object of study, the evolution of which is probably to be cognitive networking between
clusters of cognitive radios.
According to [59] until now most cooperative sensing approaches have used a rather sim-
ple one-dimensional correlation models, with only one PU. No model is available that
considers dependence on frequency in the case of multiple PUs. This shows how the path
to walk is still long and full of difficulties, mostly because of the lack of theoretical frame-
work for realistic scenarios that would allow to generate credible simulations. There is a
strong need of efficient statistics to allow synthesis, sharing and comparison of results and
a huge necessity to develop models to capture spatial correlation and shadowing, together
with spectrum occupancy; we hope to have done a small contribution in this direction.
Robust statistical models are not only of theoretical importance but will have a practical
impact since they can be used to plan spectrum utilization strategies and algorithms and
to dimension distributed spectrum sensing networks.
Numerous are the possible enhancements in the near future: cooperative sensing could
be improved by selecting the less correlated sensors and spatial models could be used as
basis for further discussion and development of spectrum regulations.
The time-aspect has not been researched about extensively enough, investigations have to
be made on how to optimize the update rate for the parameters computations and to fuse
only differential information, not to augment uselessly the communication overhead.
The future will see extensive measurement campaigns, with appropriate measurement
grids and improved theoretical models, together with investigations of primary users be-
havior in a long time span, to finally reach a full time-space model for spectrum use.
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11 L I S T I N G S

11.1 thiessen polygons

1 voronoipolygons <- function(x) {
2
3 if (.hasSlot(x, ’coords’)) {
4 crds <- x@coords
5 } else crds <- x
6 z <- deldir(crds[,1], crds[,2])
7 w <- tile.list(z)
8 polys <- vector(mode=’list’, length=length(w))
9 for (i in seq(along=polys)) {
10 pcrds <- cbind(w[[i]]$x, w[[i]]$y)
11 pcrds <- rbind(pcrds, pcrds[1,])
12 polys[[i]] <- Polygons(list(Polygon(pcrds)), ID=as.character(i))
13 }
14 SP <- SpatialPolygons(polys)
15 voronoi <- SpatialPolygonsDataFrame(SP, data=data.frame(x=crds[,1], y=crds[,2], row.names=sapply(slot(SP,’

polygons’),function(x) slot(x, ’ID’))))
16 }

11.2 triangolation

1 #read data and find unique locations, build grid in which to estimate
2 bbox<-c(24.90, 60.14, 24.97, 60.18)
3 predgrid <- expand.grid(lon=seq(from=bbox[1], to=bbox[3], length.out=400),
4 lat=seq(from=bbox[2], to=bbox[4], length.out=400))
5 N=400*400
6 for(i in 1:N){
7 for (j in 1:109){#calculate distances
8 temp[i,j]=geodDist(locations[j,1], locations[j,2], as.numeric(locdf[i,1]), as.numeric(locdf[i,2]), alongPath

=FALSE)}
9 stima[i]<-which.min(temp[i,])
10 stima2[i]<-which.min(temp[i,-stima[i]])
11 if (stima[i]<=stima2[i]) {stima2[i]=stima2[i]+1}
12 stima3[i]<-which.min(temp[i,c(-stima[i], -stima2[i])])
13 if (stima[i]<=stima3[i])
14 {stima3[i]=stima3[i]+1}
15 if (stima2[i]<=stima3[i])
16 {stima3[i]=stima3[i]+1}
17 #calculate and normalize weights
18 lam1[i]<-1/temp[i, stima[i]]
19 lam2[i]<-1/temp[i, stima2[i]]
20 lam3[i]<-1/temp[i, stima3[i]]
21 lamdef1[i]<-lam1[i]/(lam1[i]+lam2[i]+lam3[i])
22 lamdef2[i]<-lam2[i]/(lam1[i]+lam2[i]+lam3[i])
23 lamdef3[i]<-lam3[i]/(lam1[i]+lam2[i]+lam3[i])
24 #save output
25 locdf[i,3]<-lamdef1[i]*media.stat[stima[i]]+lamdef2[i]*media.stat[stima2[i]]+lamdef3[i]*media.stat[stima3[i]]
26 }
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11.3 natural neighbors interpolation

11.3 natural neighbors interpolation

1 locations<- #unique sampling locations
2 v2 <- voronoipolygons(locations)
3 proj4string(v2) <- CRS("+proj=longlat +ellps=WGS84 +no_defs+ellps=WGS84 +towgs84=0,0,0 ")
4 N=100
5 loc<-as.matrix(cbind(predgrid[,1:2]))
6 int<-matrix(nrow=N, ncol=109)
7 for (i in 1:N){#add one location of the grid to the dataframe and calculate the new tessellation
8 loc.temp<-rbind(locations, loc[i,])
9 vor.temp<-voronoipolygons(loc.temp)
10 proj4string(vor.temp) <- CRS("+proj=longlat +ellps=WGS84 +no_defs+ellps=WGS84 +towgs84=0,0,0 ")
11 for (j in 1:109){
12 #calculate the interceptions
13 s<-gIntersection(SpatialPolygons(vor.temp@polygons[110]), SpatialPolygons(vor.temp@polygons[i]))
14 if(is.null(s)) {
15 int[i,j]=0
16 } else {
17 #calculate the interception areas
18 gArea(gIntersection(SpatialPolygons(vor.temp@polygons[i]), SpatialPolygons(vor.temp@polygons[overlaid.poly])))

}}}

11.4 trend surfaces

1 data22 <- surf.ls(2, locations[,1], locations[,2],data22[,3])
2 trsurf2 <- trmat(obj=data22, 24.90, 24.97, 60.14, 60.18, n=400)
3 eqscplot(trsurf2, type = "n")
4 contour(trsurf2, add = TRUE)
5 points(data22)

11.5 kriging

1 tr<-c(60+10/60+40/3600,24+38/60+24/3600)#transmitter position
2 dist[1:109]<-geodDist(tr[2], tr[1], data[1:109,1], data[1:109,2])
3 data$rssi = log10(data$rssi*-1)#*-1 to change the sign
4 #transform data, build a grid, for every node calculate distance from the transmitter
5 vt <- variogram(rssi ~ (dist+ lon +lat), data)
6 mr_dist = vgm(psill=0.0007, "Sph", range = 0.7, nugget=0.0007)
7 plot(vt, mr_dist)
8 vrfit_dist = fit.variogram(vt,mr_dist)
9 y_dist <- krige(rssi~dist+lon+lat, data, predgrid, vrfit_dist)
10 y_dist$var1.pred=-1*10^y_dist$var1.pred
11 y_dist.pred.ras<-as.data.frame(y_dist["var1.pred"])
12 coordinates(y_dist.pred.ras) <- ~ x + y
13 gridded(y_dist.pred.ras) <- TRUE
14 y_dist.pred.ras <- raster(y_dist.pred.ras)
15 #cv
16 x <- krige.cv(rssi~(dist+lon+lat), data)
17 x$var1.pred=-1*10^x$var1.pred
18 x$observed=-1*10^x$observed
19 x$residual=(+x$observed-x$var1.pred)
20 bubble(x, "residual", main = "")
21 mean(x$residual)
22 round(sqrt(mean(x$residual^2)), 2)
23 round(sqrt(mean(x$residual^2)), 2)/mean(x$observed)
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11.6 bayesian estimator

11.6 bayesian estimator

1 n.samples <- 120000
2 n.burn <- 2000
3 thin <- 2
4 starting <- list("phi"=3/effective.range,
5 "sigma.sq"=partial.sill,
6 "tau.sq"=nugget)
7
8 tuning <- list("phi"=1/effective.range,
9 "sigma.sq"=sig,
10 "tau.sq"=tau)
11
12 prior <- list("phi.Unif"=c(a,b),
13 "sigma.sq.IG"=c(c,d),
14 "tau.sq.IG"=c(e,f), "beta.Flat")
15
16 fit.test.3 <- spLM( rssi ~ dist , data=data, coords=coords,
17 starting = starting ,
18 tuning=tuning,
19 priors=prior,
20 cov.model="exponential",
21 n.samples=n.samples,
22 verbose=TRUE, n.report=10)
23
24 fit.test.3$p.theta.samples
25 str(fit.test.3)
26 m.1 <- spRecover(fit.test.3, start=n.burn, verbose=FALSE)
27 round(summary(m.1$p.theta.recover.samples)$quantiles[,c(3,1,5)],2)
28 round(summary(m.1$p.beta.recover.samples)$quantiles[,c(3,1,5)],2)
29 m.1.w.summary <- summary(mcmc(t(m.1$p.w.recover.samples)))$quantiles[,c(3,1,5)]

11.7 plotting spatial data

1 #inport the shapefile from kartat.kapsi.fi
2 Finland<-readOGR(".","KorkeusAlue")
3 #project it
4 Finland<-spTransform(Finland, CRS("+proj=longlat +ellps=WGS84 +no_defs+ellps=WGS84 +towgs84=0,0,0 "))
5 #choose an area
6 ext <- extent(24.9, 24.97, 60.14, 60.18)
7 #clip the shapefile to the extent of interest
8 clipe <- as(ext, "SpatialPolygons")
9 proj4string(clipe) <- CRS(proj4string(Finland))
10 cropd <- SpatialPolygonsDataFrame(clipe, data.frame(x = 1), match.ID = FALSE)
11 int_shp <- gIntersection(Finland, cropd)
12 loc.vec <- c(left = 24.90, bottom = 60.14, right = 24.97, top = 60.18)
13 #get the background map from GoogleMaps through Stamen
14 peninsula <- get_map(location = loc.vec, zoom = 13, maptype = "toner", source = "stamen")
15 #crop the estimation to the extent of interest
16 stat.sub <- crop(stat.ras, extent(int_shp))
17 stat.sub <- mask(stat.sub, int_shp)
18 #plot
19 ggmap(peninsula, extent="device")+
20 inset_raster(stat.sub, 24.90, 24.97, 60.14, 60.18)

106



A P P E N D I X A : P R O J E C T I O N S

A map projection is a systematic representation of all or part of the Earth surface on a
plane. The existence of a totally distortion-free flat map is precluded by Gauss’ Theorema
Eggregium in differential geometry, therefore the cartographer has to choose which are the
characteristics that must be shown more accurately on the map, since there is not a best
projection, but for each application there are likely to be several appropriate projections.
Since the Earth cannot be flattened onto a plane without distortion, the general strategy for
map projection is to use an intermediate surface that can be flattened, known as developable
surface, on which the sphere is first projected and only later is laid out on a plane. The two
most common developable surfaces are the cone and the cylinder; different orientation of
these surfaces lead to different classes of map projections.
Let’s therefore consider the geographical coordinate system (λ, φ) for longitude and lati-
tude and construct a polar or Cartesian coordinate system (x, y) according to the needs,
frequently referred to as eastings and northings so that:

x = f (λ, φ), y = g(λ, φ).

The infinitesimal patches on the sphere (or ellipsoid, or geoid) will be approximated by the
wrapping or tangential plane, a set of partial differential equations will be derived, whose
solution will yield f and g, once appropriate initial conditions are set.
Let’s therefore consider a patch formed by the infinitesimal quadrilater ABCD, given by
the vertices

A = (λ, φ), B = (λ, φ + dφ), C = (λ + dλ, φ), D = (λ + dλ, φ + dφ).

This will be projected into the new patch A′B′C′D′.
Mainly two types of maps will be analyzed: equal area and conformal (locally shape-preserving)
maps.

equal area projections
Given R, the average Earth radius, as stated in the projection name, it is necessary to equate
the area of the patches ABCD and A′B′C′D′, after some calculation an undetermined
system in the form of

(
∂ f
∂λ

∂g
∂φ
− ∂ f

∂φ

∂g
∂λ

) = R2 cos(φ)

is obtained and further conditions need to be imposed, de facto choosing one of the many
possible projections. Examples are the sinusoidal projection, characterized by ∂g

∂φ = R, or the
Lambert cylindrical projection given by f (λ, φ) = R and g(λ, φ) = R sin(φ).
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appendix a: projections

conformal projections
Conformal projections are angle preserving: ∠(AC, AB) = ∠(A′C′, A′B′), this leads to:

∂ f
∂λ

∂ f
∂φ

+
∂g
∂λ

∂g
∂φ

= 0.

Numerous are the projections that belong to this class, a classical example is Mercator
Projection, a cylindrical projection, that exists in both spherical and ellipsoidal versions, in
which case non linear anisotropic scaling is employed to ensure that the map is conformal.
Mathematically it is obtained letting

∂g
∂φ

= R sec(φ).

The Transverse Mercator is a widely used adaptation of this standard projection, known for
delivering high accuracy in zones with an extension of few degrees in longitude, since the
central meridian can be chosen at will.
The UTM uses a 2-dimensional Cartesian projected coordinate system to identify locations
on the surface of the Earth, but is itself not a single map projection; the system instead
divides the Earth into sixty zones, each a six-degree band of longitude, and uses a secant
transverse Mercator projection in each zone. The World Geodesic System (WGS84) ellip-
soid is now generally used to model the Earth in the UTM coordinate system, even though,
for different geographic regions, other datum systems can be used.

distance calculation on the earth surface
The most common approach in Spatial Statistics is to model spatial dependence between
variables as a function of distance; for data sets covering relatively small spatial domains,
ordinary Euclidean distance is enough, however for larger domain, the Earth curvature
must be accounted for. A fundamental concept is that of geodesic distance, the shortest dis-
tance between two points on the surface, also known as great circle distance when referred
to the Earth surface.
In this work data have been conveyed in an unprojected format, a subsequent projection
has been operated, so that Euclidean distance and not the Great Circle one could be used
in the computations. This decision has been taken because empirical variograms are highly
dependent on the definition of distance, see e.g. [19], especially the fifth chapter, where
this issue is treated in detail. The choice of a Cartesian-based UTM system is due to prac-
ticality, to the popularity of this standard and to the ease of interpretation of the results.
The projection has been obtained through the use of the rgdal package in R.
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L I B R A R I E S

List of the R libraries used in this thesis work and reference to publications:

deldir For Delauney tassellation, see [66]

fields To plot objects of type MBAsurf and perform splines interpolation, see [49]

geor To calculate and plot the empirical variogram, see [57]

ggmap For spatial visualization with Google Maps and Open Street Maps, see [37]

gstat To calculate and plot the empirical variogram, see [55]

maptools For reading and handling spatial objects, see [7]

mba To create a surface approximation from scattered data using B-splines, see [21]

oce To calculate the geodetic distance, see [39]

plyr To split-apply-combine patterns, see [73]

raster For raster type objects and plotting, see [32]

rcolorbrewer For the colour palettes, see [48]

rgdal To project the data, see [6]

rgeos To project the data, see [8]

r.matlab To read MAT files, see [4]

sp For manipulating spatial data, see [56]

spbayes To fit a Bayesian spatial model, see [22]

Please give a look to the reference section for better specification.
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A B B R E V I AT I O N S

ACF Autocorrelation Function

AER Actual Error Rate

APER Apparent Error Rate

AWGN Addictive White Gaussian Noise

BLUE Best Linear Unbiased Estimator

BLUP Best Linear Unbiased Predictor

BS Base Station

CFAR Constant False Alarm Rate

CK Centralized Kriging

CP Cyclic Prefix

CR Cognitive Radio

DK Distributed Kriging

DSA Dynamic Spectrum Access

DSP Digital Signal Processor

DVB-T Digital Video Broadcasting -
Terrestrial

ECM Expected Cost of Misclassification

EGLS Extended Generalized Least
Squares

FC Fusion Center

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPR False Positive Rate

GLRT Generalized Likelihood Ratio Test

GLS Generalized Least Squares

GPS Global Positioning System

IDW Inverse distance weighting

IRF-k Intrinsic Random Function of kth

order

ISM Industrial Scientific and Medical

LDA Linear Discriminant Analysis

LOS Line-Of-Sight

LRT Likelihood Ratio Test

LS Least Squares

ML Maximum Likelihood

MMSD Mean Shortest Distance

MOM Method of Moments

MUKV Mean Universal Kriging Variance

NLOS Non Line-Of-Sight

NLS National Land Survey of Finland

OFDM Orthogonal Frequency Division
Multiplexing

OLS Ordinary Least Squares

PD Probability of Detection

PFA Probability of False Alarm

PMD Probability of Miss Detection

PSD Power Spectral Density

PT Primary Transmitter

PU Primary User

QDA Quadratic Discriminant Analysis

QOS Quality of Service

RAM Random Access Memory

REML Residual Maximum Likelihood

RF Radio Frequency

ROC Receiver Operating Characteristics

RSS Residual Sum of Squares
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abbreviations

RSSI Received Signal Strength Indicator

RX Receiver

SDR Software Defined Radio

SNR Signal Noise Ratio

SSA Static Spectrum Access

SU Secondary User

TPR True Positive Rate

TSM Time Scale Modification

TX Transmitter

UHF Ultra Hight Frequency

UMTS Universal Mobile
Telecommunications System

UTM Universal Transverse Mercator

UWB Ultra-Wide Band

WLAN Wireless Local Area Network

WLS Weighted Least Squares

WGS84 World Geodesic System
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