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Abstract

The launch of the TerraSAR-X satellite marked the beginning of the availability
of radar systems with spatial resolutions up to one meter and a revisit time of 11
days. These two fundamental features have allowed, in the last six-seven years, the
growth of new perspectives in the monitoring of urban environments. Traditional
classification algorithms based on image segmentation can now be surpassed by the
exploitation of the frequent multi-temporal SAR images, which lead to a pixel-by-
pixel analysis. Such improvement could be exploited in order to integrate ISPRA’s
land use monitoring techniques that, up until now, have been mainly based on op-
tical data, ground monitoring nets and inventories.

This thesis therefore focuses on the implementation of a classification and change
detection algorithm characterized by three classes of targets (buildings, vegetation,
roads and squares) aimed at urban monitoring applications.

In order to classify the pixels, some mathematical tools such as mean, kurtosis,
entropy and the correlation to a seasonal sinusoidal trend have been implemented
on the time series of the pixel’s amplitude. Buildings time series are character-
ized by high amplitudes and relatively low entropy; roads and squares time series
by low amplitudes, high entropy and high kurtosis; vegetation time series by low
amplitudes, high entropy and high correlation to the seasonal trends subjected to a
positive phase-shift. Additionally, the estimation of the interferometric coherence of
the phase allowed a first rough distinction between the metropolitan area and the
surrounding countryside.

During a later stage, the classification algorithm was integrated with a Bayesian
change detector. Thanks to this further analysis, it became feasible to classify the
targets before and after the change occurred, monitor the growth of new buildings
and identify known events.

Finally, two peculiarities that appeared during the development of the thesis be-
came object of investigation. The first one is the presence of buildings that scatter
with a sinusoidal trend in time whereas the second one regards the stealth nature of
some skyscrapers.



Sommario

Il lancio del satellite tedesco TerraSAR-X ha segnato l’inizio della disponibilità di
sistemi radar aventi tempo di rivisitazione di undici giorni ed in grado di produrre
immagini caratterizzate da risoluzioni spaziali di un metro. Queste due fondamen-
tali caratteristiche hanno permesso, negli ultimi sei-sette anni, la nascita di nuove
prospettive per il monitoraggio urbano. I tradizionali algoritmi di classificazione,
basati sulla segmentazione della singola immagine, possono adesso essere superati
grazie all’utilizzo delle frequenti immagini SAR che hanno portato ad una analisi
pixel-per-pixel. Tale miglioria può essere utilizzata per integrare le tecniche di mo-
nitoraggio dell’ISPRA che, ad oggi, sono principalmente basate su dati ottici, reti
di monitoraggio a terra ed inventari.

Lo scopo di questa tesi è quindi quello di implementare un algoritmo di classifi-
cazione e change detection indirizzato ad applicazioni di monitoraggio urbano.

Per poter classificare i pixel sono state effettuate delle analisi statistiche quali me-
dia, kurtosi ed entropia ed è stata stimata la correlazione tra la serie temporale
dell’ampiezza del pixel ed un andamento stagionale sinusoidale. È stato rilevato
come le serie temporali di pixel di edifici siano caratterizzate da ampiezze alte ed
entropia relativamente bassa; quelle relative ai pixel di strade e piazze da ampiezze
basse, entropia e kurtosi alte; quelle relative ai pixel di vegetazione da ampiezze
basse, entropia alta e correlazione con andamento sinusoidale avente sfasamento po-
sitivo alta. Inoltre la stima della coerenza interferometrica ha permesso una prima,
grossolana distinzione tra area metropolitana e campagna circostante.

Durante una fase successiva, l’algoritmo di classificazione è stato integrato con uno
step detector baiesiano. Questa ulteriore analisi ha reso possibile la classificazio-
ne dei target prima e dopo lo step, il monitoraggio della crescita di nuovi edifici e
l’identificazione di eventi noti.

Infine, due caratteristiche che hanno attirato l’attenzione durante lo sviluppo della
tesi sono state oggetto di ulteriori analisi: la prima è il fatto che alcuni edifici scatte-
rano in modo sinusoidale nel tempo; la seconda riguarda la natura stealth di alcuni
grattacieli.
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Chapter 1

Introduction

Remote sensing from space has been available for civilian applications since the
launch of NASA’s Seasat in 1978. The former imaging system allowed a 25m× 25m
ground resolution cell and was operational for three productive months. Despite
the success of the mission, it was not until 1991 that the European Space Agency
launched ERS-1, followed by Canada’s RADARSAT in 1995 and by ESA’s EN-
VISAT in 2002. All of the latter systems were characterized by a resolution in the
order of tenths of meters and a revisit time that allowed averagely an image per
month. It was therefore not until 2007 and the launch of Germany’s TerraSAR-X
that frequent (one every eleven days) images with resolutions up to 1.5m× 1m were
available for research and commercial applications.

This significant improvement in spatial and temporal resolution provided new pos-
sibilities for detailed analysis of urban areas: traditional algorithms, based on image
segmentation, can be surpassed by the exploitation of the multi-temporal SAR im-
ages that lead to a pixel-by-pixel classification.

Applications are various and range from urban and regional economic development,
to census data for undeveloped countries, to the detection of infringement of local
building regulations.

Another present application, that has been strongly supported by European en-
vironmental programmes and, more specifically, by ISPRA -the Italian Institute for
Environmental Protection and Research-, is the monitoring of land use. The in-
creasing demand for living space per person and the increased mobility and growth
of transport infrastructure, led to urban sprawl and consequent soli sealing. This
important issue has been addressed by various public institutions and land use plan-
ning and monitoring is now subjected to European policies and regulations.
The aim of this thesis is therefore to propose a new pixel classification analysis
that could integrate ISPRA’s monitoring techniques based on the exploitation of
the newly available high resolution image time-series.

1



1.1. The land use problem

1.1 The land use problem
Land is a finite resource and it is subjected to competing demands from urbaniz-
ation, infrastructure, agriculture and the necessity of maintaining vital ecosystem
cycles. As a consequence, it needs to be monitored and regulated.

Governmental authorities as the European Commission or, on a local scale, the
Italian ISPRA, are therefore undertaking environmental projects aimed at a stra-
tegic land use and protection.

In 2006 the European Commission defined soil as an extremely complex living me-
dium that is formed by mineral particles, organic matter, water, air, and living
organisms.

Soil is responsible for many vital environmental, economic, social, and cultural func-
tions that include the production of food as well as filtration and transformation of
water, carbon, and nitrogen.

Soil degradation, caused by sealing, contamination, erosion, loss of organic mat-
ter, salinization, desertification and other threats, has serious and long-term con-
sequences for human health, natural ecosystems, and the economy.

The two main consequences of unregulated land use are urban sprawl and soil seal-
ing. Urban sprawl is an unplanned urban development, characterized by a low
density mix of land uses on the urban fringe. Formerly identified as a US-localized
phenomenon associated with the low-density outward expansion of US cities, it has
more recently been developing around European cities as well. This expansion of
urban areas led to a marked acceleration in soil sealing, which is the main cause
of land degradation. In fact, the land water-proofing that results from the use of
cement and other construction materials, may cause serious issues such as increased
flood probability, the so called heat islands and an inhibition of the natural biological
cycles.

In 2011 the European Commission set as a 2050 goal a 0% increment in land use.
In order to achieve this ambitious purpose politics have been oriented towards the
limitation, mitigation and compensation of soil sealing. Additionally, monitoring
sources have been established.

At European level, land use monitoring systems are:

• CORINE Land Cover (satellite optical images);

• Copernicus (both satellite and in-situ data. The system provides optical,
radar, altimetric, meteorological, radiometric and spectrometer information);

• LUCAS (survey originated statistics).

Additionally, at Italian level:

• ISPRA’s land use monitoring net;

2



1.2. Outline

• Refresh (aerial photos);

• POPOLUS (the Permanent Observed Points for Land Use inventory);

• IUTI (the textitInventario dell’Uso delle Terre in Italia inventory);

• ISTAT (statistical data);

• Data from the Regioni (the regional authorities).

Despite this apparently vast amount of data, relevant, detailed information is not
available with a uniform coverage and not all of the databases use the same reference
units. Furthermore, classification errors are estimated at around 15% [1].

For all of the above considerations, it is of primary importance to integrate the
present monitoring net with a high-resolution, homogeneous data-acquiring system
and a reliable, automatic classification algorithm.

1.2 Outline
The current chapter is of an introductory nature. The main objectives addressed by
this thesis and the tools and work methodologies are presented and the applications
listed.

In the second chapter, the grounds for understanding radars and the concepts be-
hind SAR imaging are illustrated. Initially, a comparison between optical and radar
images is outlined, followed by a description of the general principles of Synthetic
Aperture Radar and TerraSAR-X; the specific platform used to acquire the images
that were analyzed within the scope of this thesis. Subsequently, all the required
practical knowledge of targets and reflectivity are presented. Finally, a brief intro-
duction to interferometry is provided.

In the third chapter, the theoretical background needed for time series analysis
aimed at classification is illustrated. In the first section the instruments needed for
the identification of the statistical properties of the time series are described. In the
second section a brief outline on the correlation with known meteorological events
is provided. In the last section, single and multiple step detectors are discussed.

In the fourth chapter, the results achieved with the classification and change de-
tection algorithms are illustrated. Firstly, an introduction of the area under invest-
igation and related data-set is provided, followed by the description of time series
analysis implementation. In the third, main section three types of classification are
described: one obtained with interferometric coherence, one with the standard clas-
sification algorithm proposed in this thesis and finally one resulting from change
detection results. In the conclusive paragraph two peculiarities that had been ob-
served during the implementation of the work, are discussed.

3



Chapter 2

Basics on radars and SAR
imaging

In the following chapter, the basis for understanding radars and the concepts behind
SAR imaging will be presented.

Initially, a comparison between optical and radar images will be outlined in order
for the specificities of the two systems to be fully appreciated and the advantages
that distinguish SAR images identified.

Secondly, the general principles of Synthetic Aperture Radar will be discussed, fol-
lowed by a description of TerraSAR-X; the specific platform used to acquire the
images that were analyzed within the scope of this thesis.

Subsequently, since any interpretation of radar imagery requires a thorough under-
standing of the phenomenology of the interactions between electromagnetic waves
and the texture and composition of the environment, all the required practical know-
ledge of targets and reflectivity will be presented.

Finally, a brief introduction in interferometry will be provided.

2.1 Comparison between optical and radar images
Optical and radar images differ for a series of factors that originate in the very
nature of their systems.

1. Optical systems operate in the visible wavelength range: 380nm ≤ λoptical ≤
760nm. As a result, optical sensors cannot see through clouds and fog. Radar
sensors, on the other hand, operate in the microwave domain and have wavelengths
in the order of centimeters. In the X-band 2.5cm ≤ λXband ≤ 3.75cm. Due
to the fact that the wavelength is much longer than the single drop of water
or fog particle, radar systems are able to create images under any weather
condition;

2. Optical systems are passive devices whereas radar systems are active ones:
radar images are created by illuminating the area of interest with electro-
magnetic pulses. For this reason they are completely independent from sun
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2.2. Synthetic aperature radar

illumination and are able to generate images both during the day and the night
[2];

3. Radars are coherent sensors and can therefore record both amplitude and phase
information for every target (as opposed to optical images that acquire only
amplitude data). Resulting from this additional information, sensor-target
distances can be computed very precisely;

4. SAR is a side-looking sensor whereas optical systems are also able to look
straight down towards nadir.

Due to all of the above features, the selection of radar rather than optical systems
strongly depends on the application. For instance, radars are to be preferred from
their optical counterparts in the event that their reliability in providing images at a
specific point in time is required.

2.2 Synthetic aperature radar
The term radar finds its roots in the acronym of the English expression Radio Detec-
tion And Ranging. These systems work by exploiting the information contained in
electromagnetic waves that propagate and reflect in a targeted environment. Radars
can be used to evaluate distances, detect and track moving targets and create images.

Synthetic Aperture Radar is a side-looking microwave radar whose main purpose
is to make high-resolution, coherent images of the Earth. They were developed as
a means of overcoming the limitations of real aperture radars by using the orbital
path of the satellite as a virtual antennae array and consequently combining the
various low-resolution images made by its sensor along the flight path into one high-
resolution image.

The use of microwaves enables the SAR to penetrate clouds and be independent
from sun illumination, sensible to surface roughness, penetrate through foliage and
canopy (in case of sufficiently long wavelengths) and allow accurate localization.

2.2.1 SAR acquisition geometry and operational modes

The geometry of a typical spaceborne SAR is as is depicted in Figure 2.1: the satel-
lite, moving along its orbital path, carries a SAR sensor which points perpendicularly
to the flight direction and down towards Earth with a specific look angle that defines
the slant range direction. The angle between the slant range and the zenith is the
incidence angle. The projection of the orbit on Earth is called the ground track and
the area imaged by the radar beam is called radar swath [3].
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Figure 2.1: Geometry of a spaceborne SAR

In the SAR image, the direction of the satellite’s movement corresponds to the
azimuth direction, while the imaging direction corresponds to the range direction.

All modern SAR satellites orbit the Earth on a near-polar orbit. Given the fact
that by default they are right-looking sensors, their look direction is either east or
west according on whether they have an ascending or descending orbit. This fact is
depicted in Figure 2.2.
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Figure 2.2: Ascending and descending orbits

The basic SAR acquisition geometry can be modified in order to acquire better
resolutions or an increased observation area. These system’s variations are called
operational modes and fall under four main categories:

• Stripmap: this is the standard operational mode to which the geometry depic-
ted in Figure 2.1 corresponds to;

• Spotlight: this is an operational mode characterized by increased azimuth res-
olution. In order to achieve this while still maintaining the same system’s
specifications, the target needs to be followed by the antenna for a longer time
with respect to the standard mode. This can be done at the cost of a reduction
of the area under investigation;

• Scansar : this is an operational mode characterized by increased swath width
(e.g. higher coverage along the range direction). Such an advantage can be
achieved by processing several sub-swaths with simultaneous beams, each with
a different incidence angle. This can be implemented at the cost of reduced
azimuth resolution;

• Tops: this is a more efficient and flexible wide-swath mode. It constitutes an
alternative to scansar.
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Figure 2.3: SAR operational modes. The mentioned parameters are specific to the
TerraSAR-X platform

2.2.2 SAR resolution

The resolution of the radar depends both on the system’s bandwidth and on the
acquisition geometry.

The range resolution depends on the system’s bandwidth and it can be calculated
with Formula 2.1:

ρr = c

2B (2.1)

Whereas, as it can be seen in Formula 2.2, the ground cell is characterized by a
range resolution that also depends on the look angle and the terrain slope:

ρr,groundrange = ρr
sin (θIncidences)

= c

2B sin (θ − α) (2.2)

In a SAR system, the azimuth resolution depends on its synthetic aperture, e.g.
on the coherent summation of the echoes obtained by the radar along its synthetic
length. It can be calculated as:

ρaz = λ

2Ls
r0 (2.3)

Where Ls is the length of the synthetic aperture and r0 is the distance between
the satellite and the target along the range direction [4].

2.2.3 The radar equation

The radar equation quantifies the process that connects the transmitted wave, the
free space propagation, the incidence with the target and the received wave.

The scattering geometry is depicted Figure 2.4:
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Figure 2.4: Radar equation geometry

A transmitter characterized by transmission gain Gt, sends a signal with trans-
mission power Pt towards a target at distance Rt. The target, whose properties can
be summarized by the Radar Cross Section (the RCS amplitude has the dimensions
of a surface), reflects the signal towards a receiver at distance Rr that is character-
ized by and effective area Aeff,r.

The received power can be therefore calculated with Formula 2.4:

Pr = PtGt
4πR2

t

× σ × Aeff,r
4πR2

r

(2.4)

Where:

• Pt and Pr are the transmitted and received power;

• Gt is the transmitted antenna gain. The antenna gain relates the intensity of
an antenna in a given direction to the intensity that would be produced by a
lossless, isotropic antenna;

• 4πR2 is the free space attenuation. For the SAR case, Rt ∼= Rr;

• σ is the Radar Cross Section, which is a parameter that characterizes the
target (for additional information refer to section 2.4.2);

• Aeff is the effective area of the antenna, a parameter which is proportional to
the gain: Aeff = Gλ2

4π .

Taking thus into account the abovementioned considerations, the radar equation
can be re-written as:

Pr = PtGtGrλ
2

(4π)3R4 σ (2.5)

The received power is therefore defined by three main features:
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1. The characteristics of the system (transmitted power, antenna features and
wavelength);

2. Distance between satellite and target;

3. Target properties.

2.3 TerraSAR-X and other SAR systems
The history of spaceborne Synthetic Aperture Radars began on the 27th of June
1978 with the launch of NASA’s Seasat with the aim of demonstrating the feasib-
ility of orbital remote sensing for ocean observation applications. Although Seasat
suffered a power failure that caused the end of the mission, just three months later,
the satellite had already collected more synthetic aperture radar information regard-
ing the surface of the ocean than had been acquired in the previous 100 years of
shipboard research [5].

Seasat was characterized by the following system’s specifications:

Seasat Specifications (NASA, 1978)
Radar Frequency 1.275GHz (L-band)
Wavelength 23.5cm
Resolution 25m× 25m
Revisit 17 days
Incidence Angle 23°
Polarization HH

Table 2.1: Seatsat specifications

Thirteen years later, in 1991, the European Space Agency launched the ERS-1
satellite. From this point onwards, SAR sensors began acquiring data in a constant
manner. ERS-1 and the most important satellites that followed were, and in some
cases still are, characterized by the specifications listed in the following tables.

ERS-1 Specifications (European Space Agency, 1991)
Radar Frequency 5.3GHz (C-band)
Wavelength 5.6cm
Resolution 30m
Revisit 35 days
Incidence Angle 23°
Polarization VV

Table 2.2: ERS-1 specifications
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RADARSAT-I Specifications (Canadian Space Agency, 1995)
Radar Frequency 5.3GHz (C-band)
Wavelength 5.6cm

Resolution 8m fine, 30m standard,
50− 100m scanSAR

Revisit 24 days

Incidence Angle 34° - 47°fine, 20° - 49°standard and
scanSAR

Polarization HH

Table 2.3: RADARSAT-1 specifications

ERS-2 Specifications (European Space Agency, 1995)
Radar Frequency 5.3GHz (C-band)
Wavelength 5.6cm
Resolution 30m
Revisit 35 days
Incidence Angle 23°
Polarization VV

Table 2.4: ERS-2 specifictations

ENVISAT’s ASAR Specifications (European Space Agency, 2002)
Radar Frequency C-band
Wavelength 4− 5cm
Resolution 30m stripmap, 150− 1000m scanSAR
Revisit 35 days
Incidence Angle 15° - 45°
Polarization VV, HH, HV, VH

Table 2.5: ENVISAT’s ASAR specifictations

RADARSAT-II Specifications (European Space Agency, 2007)
Radar Frequency 5.4GHz (C-band)
Wavelength 5.5cm

Resolution 3m spotlight, 10m fine, 25m standard,
300m scan

Revisit 24 days
Incidence Angle 20° - 49°
Polarization HH, VV, VH, HV

Table 2.6: RADARSAT-II Specifications
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Cosmo-SkyMed Specifications (European Space Agency, 2007)
Radar Frequency X-band
Wavelength 3.1cm

Resolution 1m spotlight, 3− 5m stripmap, 30− 100m
scan

Revisit 16days
Incidence Angle 25° - 50°
Polarization HH, VV, HV, VH

Table 2.7: Cosmo-SkyMed Specifications

SENTINEL-1A Specifications (European Space Agency, 2014)
Radar Frequency 5.405GHz (C-band)
Wavelength 5.5cm
Resolution 5m× 5m in Strip Map mode
Revisit 12days
Incidence Angle 20° - 47°
Polarization HH+HV, VV+VH

Table 2.8: SENTINEL-1A Specifications

Finally, specific emphasis needs to be placed on TerraSAR-X, the German Earth
observation satellite whose images have been analyzed is this study. Its mission
began on the 15th June 2007, with the aim of providing SAR data in the X-band for
research and development purposes as well as scientific and commercial applications.

TerraSAR-X was the first civilian radar system able to provide spatial resolutions
up to one meter and a revisit time of eleven days. These two fundamental features
allowed, in the last six-seven years, the growth of new perspectives in the monitoring
of urban environments.

TerraSAR-X Specifications
Length 4.88cm
Diameter 2.4m
Radar Frequency 9.65GHz
Wavelength 3.1cm

Resolution
1m (High Resolution SpotLight mode)

3m (StripMap mode)
16m (ScanSAR mode)

Orbital Altitude 514km
Pulse Repetition Frequency 3kHz− 6.5kHz
Revisit 11days
Inclination Angle 97.44◦

Incidence Angle 20° - 55°
Polarization HH, VH, HV, VV

Table 2.9: TerraSAR-X Specifications
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2.4 Understanding SAR images
In order to decipher SAR images, it is of primary importance to acquire a thor-
ough understanding of targets, their interaction with electromagnetic waves and the
parameters that influence the resulting amplitude at the receiver.

2.4.1 Parameters affecting reflectivity

The factors affecting the final amplitude of the pixels in the SAR image are many and
related to complex interactions. The three main factors are radar system parameters,
target properties (where a target is a ground object that reflects the electromagnetic
wave back to the radar) and environmental variables.

• The frequency of the radar: this parameter determines both the penetration
depth of the electromagnetic waves in the target, both the perceived roughness
of the surface under investigation. This parameter is of particular interest
towards the application discussed in this study as, in case a platform with a
longer wavelength were to be considered for future developments, buildings
hidden under the canopy could be detected.

• The polarization of the wave emitted by the radar: polarization describes the
orientation of the electric field component of the emitted electromagnetic wave
and can therefore provide information on contingent layers of the target or on
the form and orientation of distributed scatterers. It has been empirically
demonstrated that, by modifying the used polarization, specific ground fea-
tures become more or less visible, according to the system’s variation and
that HV-polarized images appeared to be the best for detecting urban areas,
followed by HH and VH polarized images [6].

• The radar’s look direction: the look direction strongly influences the radar
signature in relation to the orientation of ground objects. Due to the fact that
many cities and towns have features with a northern-southern or easterly-
westerly orientation, the effect of look direction on the orientation of urban
settlements has been referred to as the cardinal effect. Clear examples in
the city of Milan are viale Monza and the Naviglio Pavese: all the dihedral
reflectors between the roads and the houses backscatter all the energy towards
the radar which faces them perfectly, thus resulting in higher amplitudes with
respect to average.
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Figure 2.5: SAR image of Milan and representation of the orbital path from which
TerraSAR-X acquired the data. Due to their optimal geometry viale Monza (on the
top-left) and the Naviglio Pavese (bottom-Right) can be immediately identified.

• The incidence angle of the electromagnetic wave: incidence (depression) angles
have control over the range resolution and affect shadow lengths. In 1990
Henderson concluded that angles of less than 20° were of minimal utility for
settlement detection in northern-boreal forest environments;

• The dielectric constant of the target: the electrical properties of a surface,
critically affect radar returns as they determine the transmission/reflection
coefficients of the electromagnetic waves;

• The geometric characteristics of the target: the geometry of the target de-
termines whether a deterministic or a random scattering occurs and the dir-
ection along which it is being forwarded;

• Environmental factors: environmental factors such as humidity in the air and
temperature also contribute to the radar’s response.

2.4.2 Target parameters affecting reflectivity: dielectric constant
and geometry

Provided that the images within the data-set that has been analyzed in this study
all originate from the same radar system (e.g. TerraSAR-X), the parameters that
cause diversity in the backscatter are the ones related to the targets. These are the
dielectric constant and the target’s geometry within the resolution cell.

The target’s dielectric constant is a key contributor due to the fact that electro-
magnetic wave reflections are caused by the impact of the signal against a medium
characterized by a relative permittivity differing from the one that characterizes air
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(the previous medium). The greater the difference (that is maximized for perfect
conductors), the bigger the amount of reflected wave.

As for geometry, if there is only one predominant scatterer (such as a parabolic
dish), the ground object is called a point target. If, on the other hand, there are
several independent scatterers (such as the leaves and branches of a tree) the ground
object is called a distributed target. A perfectly smooth flat surface will reflect all of
the signal away from the target resulting in zero amplitude (effect of a lake) whereas
a properly oriented parabolic dish will send all of the energy back towards the radar.
A distributed target, on the other hand, needs to be modeled as a stochastic ran-
dom process that leads to constructive and destructive summations. Due to all of
the above examples, it appears clear that the geometry of the targets within the
resolution cell is another key contributor.

The target’s contribution is accounted for in the radar equation by the Radar Cross
Section. This is a complex coefficient that defines the scattering behavior of the
target. It is defined as a measure of the power that a target scatters in a given
direction when illuminated by an incident wave, normalized to the power density of
the incident wave at the target. The normalization is necessary in order to remove
the effects of the distance radar-target and the effects of the transmitter power level
[7].

2.4.2.1 Dielectric constant

In case of an ideal smooth surface, the characteristics of reflection and transmission
can be calculated through the Fresnel equations (assuming to work in the far field
with respect to the wavelength, it is correct to use geometric optics to compute
reflections and refraction).

Under these conditions, the SAR won’t receive any signal back as all of the trans-
mitted power will be reflected away from the radar. As it will be seen in section
2.4.2.2, in real case scenarios the roughness of the surface and the presence of mul-
tiple bounces will provide backscatter. These interactions, though, are not objective
of this section that analyses an over-simplified model in order to clarify the influence
of the dielectric component on the received signal.

The Fresnel Equations for perpendicularly polarized light are:

• Reflection coefficient: r⊥ = ni cos θi − nt cos θt
ni cos θi + nt cos θt

;

• Transmission coefficient: t⊥ = 2ni cos θi
ni cos θi + nt cos θt

.
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Figure 2.6: Depiction of Fresnel’s reflection and transmission interactions for per-
pendicularly polarized light

The Fresnel Equations for parallel polarized light are:

• Reflection coefficient: r‖ = ni cos θt − nt cos θi
ni cos θt + nt cos θi

;

• Transmission coefficient: t‖ = 2ni cos θi
ni cos θt + nt cos θi

.

Figure 2.7: Depiction of Fresnel’s reflection and transmission interactions for parallel
polarized light

For the case under investigation, the upper medium is air, hence ni = 1. As-
suming also for simplification normal incidence (e.g. θi = 0), the reflection and
transmission coefficients are independent to polarization and reduce to Equations
2.6 and 2.7:

r = ni − nt
ni + nt

= 1− nt
1 + nt

(2.6)

t = 2ni
ni + nt

= 2
1 + nt

(2.7)

By means of these formulas it can be easily appreciated that, if the second medium
is a perfect conductor (nt → ∞) there is total reflection (r → −1) and obviously
zero transmission (t → 0). The more similar nt gets to ni, the stronger will get
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the transmitted component with respect to the reflected one (as if there were no
interface).

This is the reason why the dielectric constant has such a strong influence on the
backscattered signal strength.

2.4.2.2 Geometry

The geometry of the target can be divided into two main sub-categories according
to whether the target is deterministic or random (or, in other words, whether it is
a point scatterer or a distributed one).

2.4.2.2.1 Geometry of point scatterers

• Reflection from a smooth flat surface: when the surface is perfectly smooth
compared to the wavelength of the system, the electromagnetic wave reflects
as described by the law of reflection. Being the incidence angle equal to the
reflection angle, either all of the energy is backscattered away from the radar
(as it happens for wave-less water basins, as shown in Figure 2.9) or, in the
event of normal incidence, the total energy returns towards the radar.

Figure 2.8: Reflection from a smooth flat surface model.
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Figure 2.9: SAR image of a lake in the Parco Agrucolo Sud Milano. The water basin
distinguishes itself because of its zero amplitude.

• Reflection from a Dihedral corner: a dihedral corner (as sketched in Figure
2.10) is the combination of two flat surfaces oriented at 90° from one another.
Although perfect dihedral reflectors are rare, this is a very common shape
within urban environments (an example is the angle between every pavement
and building’s facade -although this is not ideal since the two sides are charac-
terized by different dielectric constants and sometimes roughness parameters).
As previously mentioned and depicted in Figure 2.5, if the wall of the building
is almost parallel to the SAR azimuth direction, this double bounce effect will
provide a particularly strong backscatter.
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Figure 2.10: Dihedral corner reflector model.

• Reflection from a Trihedral corner: a trihedral corner (as sketched on the left-
hand side of Figure 2.11) is the combination of three flat surfaces, all mutually
perpendicular. Due to the fact that the reflection is characterized by a triple
bounce in a 3D space, trihedral corners provide a very strong backscatter even
if not perfectly oriented. As a consequence, artificial trihedral corner reflectors
are often used to calibrate SAR images (an example is depicted on the right-
hand side of Figure 2.11).

Figure 2.11: Trihedral corner reflector model (on the left) and SAR image calibration
devise (on the right).

• Reflection from a Sphere: due to the fact that a sphere reflects the signal
isotropically (refer to Figure 2.12), it provides a very low backscatter. It is for
this same reason that the B-2 stealth bomber has such a round and smooth
fuselage.

19



2.4. Understanding SAR images

Figure 2.12: Spherical reflector model and radiation pattern.

2.4.2.2.2 Geometry of distributed scatterers
• Scattering from a rough flat surface: when the surface is rough compared to

the wavelength of the system, the scattering mechanism is no longer determ-
inistic and the reflectivity function becomes random. Roughness is typically
measured as the root mean square height of the micro-relief in the terrain and
in order to estimate the minimum roughness height after which the roughness
is detected by the radar, the Rayleigh Criterion can be evaluated. As depicted
in Figure 2.13, the bigger the roughness, the bigger the diffuse field component
becomes with respect to the coherently reflected one.

Figure 2.13: Models for rough surfaces. The diffused electromagnetic component
increases as the root mean square height of the roughness increases.

• Bragg scattering: when the scatterers are positioned with a regular pattern
that repeats itself at distances that are proportional to the projection of the
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radar’s wavelength on the ground, they will create a strong constructive in-
terference effect that goes under the name of Bragg scattering. This target’s
characteristic is typical of the wavelets produced by the wind on water surfaces
(refer to Figure 2.14).

Figure 2.14: Bragg scattering model for sea wavelets.

• Volume scattering: when elementary scatterers are randomly distributed through-
out a supporting layer, the radar receives a signal that can be modeled by a
stochastic random process. Assuming for simplification a linear behavior of the
composite target, the backscattered signal results thus in a superposition of the
N returns from the N targets within the resolution cell, each delayed accord-
ing to their specific travel path. The noise related to the random fluctuations
of this constructive/destructive summation is called speckle. As depicted in
Figure 2.15, this model is particularly accurate for vegetation pixels. Also,
in Figure 2.16 a real-data example has been provided: the single SAR image
of a green area is strongly affected by speckle noise (on the left-hand side)
whereas the average between 126 images in time compensates for the random
fluctuations (on the right-hand side).
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Figure 2.15: Model for vegetation volume scattering.

Figure 2.16: Volume scattering example. The single SAR image of a green area
it strongly affected by speckle noise (on the left) whereas the average between 126
images in time compensates for the random fluctuations (on the right).

2.4.3 Geometry related deformations: shadowing, layover and fore-
shortening

The combination of geometry and sampling grid may cause a series of artefacts that
distort the image. These effects, that are depicted in Figure 2.17, fall under three
main categories:

• Shadowing occurs when a target’s “back” (e.g. the side that is not directly
facing the radar) is steeper than the sensor’s depression angle. This causes the
presence of a black area (zero signal) behind the aforementioned object;

• Layover occurs when a target is so steep that:
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◦ It’s base is at the same distance from the radar as its top, therefore
causing ambiguity;
◦ It’s base is further away from the radar with respect to the top, therefore
causing an inversion in the order of the surface elements;

• Foreshortening is conceptually quite similar to layover, as they both originate
from the fact that radars work by measuring signal travel time and not angles
as optical systems do. It occurs when, being the distance between the target’s
top and the SAR quite similar to the distance between the target’s base and
the SAR, the radar does not recognize them as respectively afar. This reflects
in the image as the “leaning” of the summit of the body towards the observer
[8].

Figure 2.17: Depiction of the different types of radar geometric distortion.

2.5 Interferometry basics
Given the aim of this thesis, minimal attention has been so far allotted to the phase
received by the radar along with the amplitude.

The phase of the received signal carries the information of the distance between
the radar and target along the range direction.

The techniques that exploit the information contained on the phase go under the
name of Interferometry.

In the event that two or more acquisitions are provided, two major interferometry
applications can be obtained:
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• Availability of two acquisitions displaced in space (but acquired at the same
time): the target can be localized in the 3D space leading thus to the estimation
of a Digital Elevation Model;

• Availability of two acquisitions displaced in time (but ideally acquired from
the same place): the line of sight variations can be detected leading thus to
the identification of deformations or along-track motions.

The first acquisition is called master and the ones that are used as a comparison
are called slave observations.

The geometry that characterizes interferometric systems is as depicted in Figure
2.18.

The distance between acquiring sensors is called baseline.

The spatial baseline is a vector in the 3D space that goes from the master satellite
to the slave satellite. It can be given in terms of its normal and parallel components
(with respect to the range direction).

The temporal baseline carries the information of time separation between master
and slave acquisitions.

Figure 2.18: Interferometric SAR geometry
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Chapter 3

Mathematical tools for the
analysis of the time series

In the following chapter, the theoretical background needed in order to understand
the basis of time series analysis aimed at classification, will be described.

In the first section all of the mathematical tools needed for the identification of
the statistical properties of the time series will be provided.
In the second section a brief outline on the correlation between the time series and
know meteorological events will be found.
Finally, in the last section, single and multiple step detectors will be discussed.

3.1 Mathematical tools for statistical properties identi-
fication

In order to assign a specific class to a pixel, the shape and statistical properties of
its time series need to be thoroughly investigated. Different estimations are required
to evaluate different characteristics.
Each mathematical tool description will be associated with its application on the
time series related to the area of Castello Sforzesco depicted in the SAR image in
Figure 3.1.
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Figure 3.1: SAR image of Castello Sforzeso

3.1.1 Interferometric coherence

Coherence is a tool used in interferometry in order to measure the interferometric
phase noise or as a means for image classification (stable scatterers such as build-
ings exhibit low phase noise, thus showing high coherence even between long time
intervals).

The coherence γ between the two variables y1 and y2 is defined as:

γ = E[y1y
∗
2]√

E[|y1|2]E[|y2|2]
(3.1)

Ideally the expected values are obtained using a set of observations for every
pixel. Unfortunately, this is not feasible as often only two images are available.

In practical situations the accuracy of phase observations in a uniform region is
assumed to be stationary. Under the assumption of ergodicity it is possible to ex-
change the ensemble averages with spatial averages obtained over a limited area.
This assumption is used to calculate the maximum likelihood estimator of the co-
herence magnitude |γ̂| over an estimation window of N pixels [9]:

|γ̂| = |
∑N
n=1 y

(n)
1 y

∗(n)
2 |√∑N

n=1|y
(n)
1 |2

∑N
n=1|y

(n)
2 |2

(3.2)
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3.1. Mathematical tools for statistical properties identification

Coherence is subjected to a decorrelation that may originate from different noise
sources. The main causes are geometric and temporal decorrelation:

• Geometric decorrelation. This is the result of the different angles of incidence
between two different acquisitions;

• Temporal decorrelation. It occurs when a scatterer changes its electrical char-
acteristics or its distribution between temporally spaced acquisitions.

In order to make these factors less influencing, coherence can be calculated by
considering both time and space samples.
Using images that differ by a normal baseline of maximum 100m and a spatial
average on a 5 × 5 pixel area, the interferometric coherence on a central area of
Milan results as depicted in Figure 3.2:

Figure 3.2: Interferometric coherence analysis on the Castello Sforzeso.

Referring to Figure 3.2, it can be easily confirmed that buildings exhibit high
coherence values whereas vegetation pixels exhibit low coherence values.
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3.1.2 Mean

The arithmetic mean of the amplitude of the time series of the k-th pixel can be
calculated as:

µk = 1
N

N∑
n=1

pkn (3.3)

Where pkn is the k-th pixel from the n-th image in the data-set.

Calculating now the temporal mean for the time series of every amplitude pixel
in the Castello Sforzesco area, the results in Figure 3.3 can be obtained:

Figure 3.3: Temporal mean of Castello Sforzeso. The logarithmic scale is needed in
order to properly visualize the data.

As it can be easily appreciated from Figure 3.3, by averaging the time series
speckle disappeares, making the image become clearer. Also, buildings are charac-
terized by higher averages with respect to vegetation and -obviously- shadow areas.

Furthermore, a logarithmic scale is absolutely necessary in order to properly visual-
ize the data. This is a consequence of the fact that the mean amplitudes range from
0.091 to 32.2 and that the 90.6% of these values are included between 0.091 and 1.
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3.1.3 Kurtosis

Kurtosis is a non-gaussianity test. Positive kurtosis indicates heavy tails and peaked-
ness of the distribution (see Figure 3.5 on the left-hand side), whereas negative
kurtosis indicates light tails and flatness of the distribution (see Figure 3.5 on the
right-hand side) [10]. It is defined as:

K = µ4
σ4 (3.4)

Where µ4 is the fourth moment about the mean and σ is the standard deviation.
Since the normal distribution has a kurtosis of 3, K − 3 is often used, so that the
reference normal distribution has zero kurtosis.

Figure 3.4: Normal distributions for different variances.

Figure 3.5: An illustration of different peaked and flat kurtosis. The dotted lines
are the reference normal distribution.

Applying kurtosis on the same area previously evaluated, the results in Figure
3.6 can be obtained.
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Figure 3.6: Kurtosis on Castello Sforzeso. The logarithmic scale is needed in order
to properly visualize the data.

Again, a logarithmic scale is needed. Kurtosis values range from a minimum of
1.07 to a maximum of 123.5 and the 91.7% of its values are within the 1.07 - 10 range.

As it can be seen, kurtosis makes roads and pavements stand out. This peculi-
arity will be further discussed in section 4.2.1.2

3.1.4 Entropy

In information theory, entropy is a measure of the uncertainty associated to a random
variable and it is defined as:

H(x) = −
∑
x∈X

p(x) log2 p(x) (3.5)

Where x is the random variable or, in our case, the time series. When applied
to a SAR image, p(x) is the probability of grayscale level. High entropy corresponds
to high pixel variability and low entropy indicates stable pixels.

Estimating the entropy on the Castello Sforzesco, Figure 3.7 can be obtained.
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Figure 3.7: Normalized entropy on Castello Sforzeso.

Predictably, buildings are characterized by low entropy whereas vegetation has
very high values.

3.1.5 Seasonal sinusoidal trend

Another statistical parameter that needs to be detected is the seasonal pattern. This
can be modeled by a sinusoidal wave characterized by a 365-day period.

The received amplitude, which also depends on the scatterer’s characteristics, can
be therefore modeled by the following equation:

a = α sin
( 2π

365 t+ ϕ

)
+ β (3.6)

Where α and β are parameters that mainly depend on the shape and on the
dielectric constant of the scatterer and the phase shift ϕ accounts for the fact that
not every ground element with a seasonal component has seasonality peak in the
same day/year period.

Once the model has been established, in order to evaluate the three unknown para-
meters, a Maximum Likelihood estimation has been implemented.

Aiming now at a linear model, the amplitude can be re-written as in equation 3.7:

a = α sin
( 2π

365 t
)

cos (ϕ) + α cos
( 2π

365 t
)

sin (ϕ) + β (3.7)
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Assigning now:

α1 = α cos (ϕ) (3.8)
α2 = α sin (ϕ) (3.9)

We obtain:

a = α1 sin
( 2π

365 t
)

+ α2 cos
( 2π

365 t
)

+ β (3.10)

Which in matrix form, can be written as:

A =
[
sin
(

2π
365 t

)
cos

(
2π
365 t

)
1
] α1
α2
β

 = Hθ (3.11)

The Maximum Likelihood estimates the parameters with:

θ̂ML =
(
HTH

)−1
HTx (3.12)

Where the matrix x is the amplitude’s time series.

The results of the ML estimation are represented in Figure 3.8.

Figure 3.8: Correlation function between time series and seasonal trend.
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As it can be seen, the highest values of correlation correspond to vegetated areas
and tree-lined roads.

In order to validate the previous calculations and confirm that an actual sinus-
oidal trend has been fitted and not just random noise, the ratio between the sine’s
amplitude and the error’s standard deviation (e.g. the standard deviation of the dif-
ference between the seasonal sine function and the real data) needs to be evaluated.

Figure 3.9: Ratio between the seasonal sine wave’s amplitude and the error’s stand-
ard deviation.

As it can be seen in Figure 3.9, this ratio maintains very low values, even for
pixels that are known to have a real sinusoidal trend (such as vegetation pixels).

In order to justify this fact, the abovementioned ratio versus the correlation function
has been plotted in Figure 3.10:
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3.1. Mathematical tools for statistical properties identification

Figure 3.10: A/σ versus correlation function.

According to this plot, to high values of correlation correspond high values of
A/σ.

This validates the results in Figure 3.8 and leads to a very careful consideration
about the reasons why Figure 3.9 is characterized by such a low average: due to the
fact that A is the amplitude that best fits all of the six available years and not the
actual signal strength, A/σ is not a signal-to-noise ratio.

This distinction can be easily understood with the aid of the Figure 3.11 that rep-
resents both the seasonal trend characterized by amplitude A and the actual time
series of the pixel.
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3.2. Correlation to known meteorological events

Figure 3.11: Comparison between seasonal trend and time series.

As it can be seen in the example in Figure 3.11, the standard deviation of the
difference between seasonal trend and pixel’s time series will be therefore averaged
between the very low values corresponding to the first years and the very high values
corresponding to the last years.

Due to these discrepancies between years, the ratio A/σ is not going to be very high.

Keeping in mind all of the above considerations, it can be seen that Figure 3.10
also provides the means to establish a threshold to separate valid and invalid pixels:
correlation functions higher or equal to 0.8 grant a A/σ ratio higher than 1.

3.2 Correlation to known meteorological events
In order to establish a connection between the amplitude of the pixel and registered
meteorological events such as temperature, humidity or rain, a correlation function
-very similar to the one implemented for the seasonal case- can be evaluated.

As part of this study, the correlation between the time series and temperature data
has been estimated.

Firstly, in order to calculate the parameters α and β, the meteorological data has
been modelled:

A =
[
m(t) 1

] [α
β

]
= Hθ (3.13)
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Wherem(t) is the day-by-day average of a specific meteorological event registered
by a certain weather station. Finally, the Maximum Likelihood estimation has been
implemented:

θ̂ML =
(
HTH

)−1
HTx (3.14)

A time-shift of the temperature data has been considered. However, most of the
estimations requested a negative time-shift, showing therefore a stronger correlation
to a general sinusoidal trend rather than a specific temperature trend (this fact can
be also confirmed in the comparison in Figure 3.12). Due to this reason, no time-
shift has been ultimately implemented.

Analyzing now the temperature data originated in the weather station Milano Lin-
ate and selecting the region within the available data-set closest to such station, the
results in Figure 3.12 can be obtained.

Figure 3.12: Temperature and seasonal correlation in the south-east area of Milan.
Circled in red are the areas where the two estimations differ the most.
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3.3. Change detection

For comparison, both the temperature and the seasonal correlations have been
implemented on the same area. The importance of this juxtaposition lies on the
fact that the temperature varies according to the season and it could be therefore
hypothesized that no additional information could be drawn by such correlation.

As it can be observed, this is not true. Circled in red are areas where an important
difference between temperature and seasonal correlations can be acknowledged.

This fact, though, has not been additionally analyzed and therefore no conclusions
have been drawn on the reasons that led to such variations. This could constitute a
very interesting further development.

3.3 Change detection
Change detection is an image processing technique that allows the detection of
changes that occur in a given monitored area between successive acquisitions. Each
ground modification will be seen by the radar as a transition step in the time series.
A step is an abrupt variation in the amplitude that lasts for more than one neighbor-
ing samples. Steps can be single or multiple according to the number of transitions
that occur in the time series.

Change detection varies greatly according to the selected literature. It differs in:

• Used data type:

◦ Coherent change detection - uses the phase info contained in the SAR
image;
◦ Incoherent change detection - uses the amplitude info in the SAR image;

• Threshold selection:

◦ Supervised;
◦ Automatic - aimed at discriminating between classes without any prior
knowledge about the scene.

• Estimator: in case of automatic threshold selection, many different estimators
can be found.

The step detector that has been hereby considered uses the information contained
in amplitude time series has an automatic threshold selection and uses a Bayesian
estimator.

3.3.1 Single step detection

The single step within a time series can be modeled as follows (see Figure 3.13):

di =
{
µ1 + n1(i) if x ≤ m
µ2 + n2(i) if m+ 1 ≤ k ≤ N (3.15)

Where di is the data under analysis (e.g. the time series of the amplitude),
µ1 and µ2 are the two constant amplitudes, n1(i) and n2(i) is the additive noise
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3.3. Change detection

(modelled as white Gaussian noise), N is the length of the time series and m the
position of the step.

Figure 3.13: Time series model for single step detection.

Bayes’s Theorem is a statistical formula that states that the conditional prob-
ability of x given y, equals to the joint probability of x and y, divided by the prior
probability of y:

p(x|y) = p(x,y)
p(y) = p(x)p(x|y)

p(y) (3.16)

This theorem, applied to inverse problems, is a very important tool that enables
the estimation of the statistical model described by Equation 3.17:

p(m|d) = p(m)p(d|m)
p(d) (3.17)

The probability of the model given the data (e.g. the posterior distribution),
equals to the prior distribution of the model, multiplied by the probability of the
data given the model (e.g. the likelihood which refers to past events that provided
known results and is the direct problem), divided by the prior distribution of the
data.

It also needs to be observed that p(d) does not depend on the model and can there-
fore be considered constant. Hence, the likelihood-based inversion can be finally
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re-written as [11]:

p(m|d) ∝ p(d|m)p(m) (3.18)

Applying the single step model to the Bayesian estimator, the following result
can be obtained [12]:

p({m}|d,I) ∝ 1√
m(N −m)

×

 m∑
i=1

d2
i −

1
m

(
m∑
i=1

di

)2
−

m−2
2

×

 N∑
k=m+1

d2
k −

1
N −m

 N∑
k=m+1

dk

2

−N−m−2

2

(3.19)

Evaluating with the above estimation an area characterized by newly constructed
buildings (specifically, the area of piazza Gae Aulenti and Porta Nuova), the result
in Figure 3.14 can be obtained:

Figure 3.14: Single step probability function on an area characterized by newly
constructed buildings.

As it can be seen, the pixels corresponding to the areas where new buildings
have been constructed are characterized by very high step probability.
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3.3.2 Multiple step detection

The single step model can be extended to multiple steps. In case of double step, the
model is as follows (see Figure 3.15):

di =


µ1 + n1(i) if i ≤ m
µ2 + n2(i) if m+ 1 ≤ k ≤ l
µ3 + n3(i) if l + 1 ≤ k ≤ N

(3.20)

Where di is the data under analysis, µ1, µ2 and µ3 are the constant amplitudes,
n1(i), n2(i) and n3(i) is the additive noise (modelled as white Gaussian noise), N is
the length of the time series and m and l are the positions of the two steps.

Figure 3.15: Time series model for double step detection.

With the additional step the Bayesian estimator becomes:

p({m}|d,I) ∝ 1√
m(l −m)(N − l)

×

 m∑
i=1

d2
i −

1
m

(
m∑
i=1

di

)2
−

m−2
2

×

 l∑
k=m+1

d2
k −

1
l −m

 l∑
k=m+1

dk

2

− l−m−2

2

×

 N∑
p=l+1

d2
p −

1
N − l

 N∑
p=l+1

dp

2

−N−l−2

2

(3.21)
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Analyzing now with the double step detector the same area previously considered,
the Figure 3.16 can be obtained:

Figure 3.16: Double step probability function on an area characterized by newly
constructed buildings.

Given the fact that the number of pixels that exhibit a double step is smaller
than the number of pixels that present a single step (e.g. all of the pixels that have
a double step also have a single step), the average probability for the double step
detection in Figure 3.16 is considerably smaller than the one for the single step de-
tection depicted in Figure 3.14.

Triple and quadruple step detectors have also been taken into account and imple-
mented. However, due to the fact that they provided only marginal information at
the price of extremely time and memory-consuming algorithms, they will be hereby
discarded.
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Chapter 4

Classification results

All of the results achieved with the classification and change detection algorithms
will be described in this chapter.

Firstly, an introduction of the area under investigation and related data-set has
been outlined, followed by the description of how the time series analysis has been
implemented.
In the third paragraph three types of classification have been described: one obtained
with interferometric coherence, another with the standard classification algorithm
hereafter proposed and finally one related to change detection considerations.
In the conclusive paragraph two peculiarities that might cause issues if not carefully
evaluated have been discussed.

4.1 The data-set and the area under investigation
In order to select an area that enclosed all of the characteristics under investigation,
images of the entire city of Milan have been analyzed.

The study region, that covers approximately 76km2, comprises old stable buildings,
newly constructed buildings, parks gardens and fields, sport centers and arenas,
roads and squares and a 500m long lake. For encompassing all of these characterist-
ics, this area was identified as ideal for testing new classification and step detection
algorithms.

The equivalent SAR satellite image is composed of 5100 pixel with a ground resol-
ution of 1.5m in the range direction and of 5000 pixel with a ground resolution of
2m in the azimuth direction.

In order to check the effectiveness of the various compilers, specific emphasis has
been placed on distinctive neighborhoods around the city.

Initially, during the stage of detection and tracking of newly constructed buildings,
piazza Gae Aulenti and the area of Porta Nuova were analyzed. The aforementioned
quarter has been subject to an urban redevelopment project that began in 2005 and
is partially ongoing and comprises the public square piazza Gae Aulenti, a part of
the business district, public offices from the Regione Lombardia, private residences
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and green areas.

During a later stage, as the effectiveness of the algorithm in extra-urban areas had
been tested, the Parco Agricolo Sud Milano has been observed. This is a green re-
serve, protected by the Regione Lombardia, which is characterized by crops, woods
as well as water streams and ponds.

Finally, a classification of the entire city was undertaken.

For the purpose of time-series analysis, 126 images acquired by the TerraSAR-X
satellite between the 17th of February 2008 and the 20th of July 2013 have been
considered. These images were not evenly spaced however, without considering the
initial and final acquisition years, were characterized by an average of 27 images per
year.

Furthermore, the images of the data-set, which were all acquired along a descend-
ing orbit and are HH-polarized, were subjected to power calibration during a later
processing stage.

4.2 Time series analysis
As mentioned in the introductory chapter, the key innovation on which this thesis
is based is the exploitation of the pixel’s time series, aimed at a high resolution
classification.

A variety of forms of time series analysis have been performed depending on whether
the algorithm was classification-oriented or change detection-oriented.

Naturally, the time series is an effective approach only with the provision of a suffi-
cient number of samples. As the time samples decrease, the classification algorithm
is likely to encounter problems, especially with road and vegetation identification.
Further details will be provided in the specific paragraphs.

4.2.1 Classification oriented

The time series analysis aimed at classification, assigns to the single pixel, one of
four possible categories: building, road, vegetation and un-classified. The estimation
is based on statistical parameters.

4.2.1.1 Time series of buildings pixels

Urban areas are characterized by a very strong backscatter. This is a consequence
of the fact that, to the radar, buildings are an ensemble of flat plates and, most
importantly, corner reflectors which, due to their shape, convey a vast amount of
energy back towards the satellite. Also, within an urban environment, numerous
metallic objects such as antennas, balustrades, lamp poles and vent gratings can be
found.

Due to these factors, building pixels can be identified by an amplitude that stands
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out with respect to the other pixels.

In the following study the threshold has been set to the 45% of the amplitude
dynamics on a logarithmic scale of the whole area.

This value, as all of the other values that will be later discussed (with the exception
of the threshold of the correlation between time series and sinusoidal trend which has
been discussed in section 3.1.5), has been selected by supervising the experimental
results. Following the considerations previously made, it may seem low. However,
it must be taken into account that in some specific areas the pixel amplitude can
rise to extremely high values due to optimal geometry. These spikes result in the
average building amplitude being inevitably lower.

In order to produce a more robust estimation, a second parameter has been con-
sidered. This further criteria is marked by low entropy. This is a consequence of the
fact that the fixed geometry of the building does not allow a highly random behavior.

The threshold of entropy has been set to 80% of the entropy’s dynamic in order
to account for speckle and other elements that may introduce randomness into the
time series. This inevitable component can be appreciated in Figure 4.1 which de-
picts the time series of a building pixel:

Figure 4.1: Time series of a building pixel.
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4.2.1.2 Time series of road and square pixels

Roads and squares are characterized by a very low backscatter that can, at times,
be disturbed by a very high spike. This is a consequence of the fact that these
are usually flat areas with a relatively low dielectric constant (asphalt’s constant is
averagely εasphalt ∼= 6) that nevertheless hold a large amount of randomness due to
cars, road works, public events etc.

In the following study, in order to identify road and square pixels three thresholds
have been considered:

• The mean of the time series must be lower than 45% of the mean amplitude
dynamics on a logarithmic scale;

• The entropy of the time series must be higher than 80% of the entropy dy-
namics;

• The kurtosis of the time series must be higher than 62% of the kurtosis dy-
namics on a logarithmic scale.

Figure 4.2: Time series of a road pixel.

As it appears clear from Figure 4.2, the greater the length of the time series, the
higher the probability of detecting the spike(s) that will allow a correct classification.
As the time series shrinks, roads are likely to disappear from classification.
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4.2.1.3 Time series of vegetation pixels

Vegetation pixels can be characterized by different types of backscatter according to
the type of crop.

4.2.1.3.1 Times series of grassland pixels Grassland and fields are difficult
to identify based on the abovementioned statistics because they tend to have a
very low backscatter that does not distinguish itself from the one originated by
other elements such as sand or unused pavements. To overcome this limitation, a
rough pre-processing of the area has been implemented based on an interferometric
coherence algorithm, aimed at deleting all of those pixels from the area under in-
vestigation.

This simplification does not in any way diminish the validity of the classification
algorithm, since fields are not considered an item of interest towards the purpose of
urban sprawl monitoring. In the event that a building should be constructed in an
area that had been assigned to a field, this would be identified by the step detector
and subsequently placed again in the urban area under investigation.

4.2.1.3.2 Time series of tree pixels Given the fact that TerraSAR-X op-
erates in the X-band, trees and bushes are particularly easy to recognize, with a
combination of the statistical properties already considered and the correlation with
a seasonal sinusoidal trend. This is due to the fact that a wavelength of 3.1cm can-
not penetrate the canopy and the difference between a leaved tree and a bare one
will be detected.

It needs to be highlighted that the peak of the seasonal trend will be in winter (as
in the example in Figure 4.3), in some rare cases during spring and almost never in
summer or autumn since leaves have a lower backscatter than the terrain and corner
reflectors that will appear to the radar after the leaves have fallen from the branches.

In the following work, in order to identify vegetation pixels, three thresholds have
been considered:

• The mean of the time series must be lower than 45% of the mean amplitude
dynamics on a logarithmic scale;

• The entropy of the time series must be higher than 80% of the entropy dy-
namics;

• The correlation of the time series with a seasonal sinusoidal function must be
higher than 80%;

• The phase-shift of the seasonal sinusoidal function must be positive (so that
its peak will be during colder seasons).
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Figure 4.3: Time series of a vegetation pixel.

Naturally, the fewer the samples, the more imprecise the estimation will be. Un-
like the road statistics, it is not just a matter of overall length but also of samples
per year. In the event that an insufficient number of images were to be available, the
ML estimation would still try to fit the pixel’s time series into a sub-sampled sea-
sonal trend, resulting in a rising number of false positives (e.g. there will be no real
high correlation to compare with, leading to buildings misinterpreted as vegetation).

During the stage of vegetation identification, it is interesting to notice how specific
trees and crops are characterized by a specific phase shift in the seasonal sinusoid.
Despite the fact that this phenomenon is easier to identify with crops than with
trees (since field growth, harvesting and tilling tend to be very specific according to
the type of plant), an outstanding case has been found within the Milanese area.

As depicted in the Figure 4.4, the tree-lined road via Marco de Marchi can be noticed
by the naked-eye because of its lower phase shift (approximately φMdM = 0.53rad)
compared to the average of the trees in the Giardini Pubblici Indro Montanelli (ap-
proximately φGPIM = 1.3rad) that can be seen just higher up in the image.
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Figure 4.4: The tree-lined via Marco de Marchi. As it can be seen by the naked-eye,
it is characterized by a lower phase-shift than the trees in the park above.

Comparing this result with images from Google Earth it can be confirmed that
the trees that have been planted in via Marco de Marchi (Figure 4.5 on the left-hand
side), differ from the ones in the Giardini Pubblici Indro Montanelli (Figure 4.5 on
the righ-hand side).

Figure 4.5: Visual confirmation of the differences between the tree-lined road and
the park.

Another interesting comparison can be made considering to which seasonal peak
corresponds the phase shift. As it can be seen in Figure 4.6, via Marco de Marchi
distinguishes itself as one of the unique points displaying a spring peak.
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Figure 4.6: Season with reflectivity peak.

All of the points with a summer peak are not to be identified with trees or any
sort of vegetation but with buildings or with the counter-phase of the tree. This
matter will be further discussed in section 4.4.1.

4.2.2 Change detection-oriented

Time series analysis grounded on change detection results does not evaluate the
pixel’s statistics on the totality of the available time samples but distinguishes stat-
istics before the step, the time laps when the step occurred and the statistics after
the step.

The same algorithm used for standard classification has been applied to both sec-
tions, provided that the partial time series is at least 30 samples long. If this is not
the case, the pixel will be labeled as not classified in order to avoid misinterpreta-
tions due to insufficient series length.

In order to highlight the importance of the length of the partial time series, a
comparison of classification results based on available samples has been provided
in Figure 4.7:
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Figure 4.7: Pixel classification for various time series lengths.

As it can be seen, with 30 samples the estimation is still sufficiently accurate,
especially for building classification purposes. Nevertheless, as mentioned in the
specific sections of section 4.2.1, as the samples further diminish, the classification
of vegetation and road pixels becomes erroneous.

A further evaluation of sample reduction has also been implemented. This second
comparison (depicted in Figure 4.8) does not consider adjacent samples but sparse,
sampled ones, so that remote sensing satellite conditions before TerraSAR-X could
be recreated. Of course, this experiment is of academic yet not practical interest
and this possibility has not been implemented in the code.
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Figure 4.8: Pixel classification for various time series sampling. The case one every
three (e.g. an image every 33 days) represents the results that would have been
obtained by canonical remote sensing sensors before TerraSAR-X.

Predictably, a sample per month (case scenario in the top-right sub-image in
Figure 4.8) is not enough for seasonal sine wave fitting.

4.3 Classification
Classification algorithms are aimed at distinguishing between classes of targets.
These sets can be of a general nature (and distinguish between permanent scatter-
ers such as buildings and incoherent distributed scatteres such as fields and forests)
or identify more specific categories (buildings, trees, transportation infrastructure,
etc.). These algorithms can be supervised, automatic or a combination of the two
depending on whether there is a human supervision or not.

As previously mentioned, until the advent of frequent multi-temporal images, auto-
matic algorithms worked by dividing the image into clusters (according to criteria
of proximity and similarity) and subsequently assigning a class to each cluster (ac-
cording to a set of parameters).

This thesis is, on the other hand, focused on pixel-by-pixel classification.

51



4.3. Classification

4.3.1 Interferometric coherence classification

In order to provide a first rough estimation that enables the separation of the met-
ropolitan area from the surrounding rural area, an interferometric coherence classi-
fication has been implemented.

Since a finer classification will be performed during a later stage, the priority of
this algorithm lies in velocity and not precision. Using therefore a 20 × 20 pixel
cell resolution and images characterized by normal baseline smaller than 50m (cor-
responding to a time series of 51 samples), the coherence map of the whole city of
Milan can be obtained and it is depicted in Figure 4.9.

Figure 4.9: Interferometric coherence map of Milan.

Taking now all the pixel blocks with coherence higher than 0.3, a coherence mask
of Milan that discerns between urban and non-urban blocks can be estimated. The
value 0.3 is low; however this is the consequence of two facts:

1. 20 × 20 pixels correspond to a 40m × 30m ground resolution. In such a big
area, both buildings and vegetation could be present, and the coherence be an
average of the ensemble;

2. A false positive is not a problem due to the subsequent finer resolution.
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Figure 4.10: Coherence mask of Milan. On the left pixels characterized by a coher-
ence function higher than 0.3, on the right the same mask, filled in order to separate
the metropolitan area from the countryside.

As it can be noted by the results in Figure 4.10, interferometric coherence
provides the means for a first rough estimation that enables the separation of the
metropolitan area of interest from the surrounding countryside.

4.3.2 Standard classification

In the metropolitan area, that has been previously identified by the coherence al-
gorithms, a finer pixel-by-pixel classification based on the amplitude’s time series
can be applied.

The result of this classification code on the entire city of Milan is shown in Fig-
ure 4.11:

Figure 4.11: Pixel classification of the whole Milanese area. In green are vegetation
pixels, in orange building pixels and in red road pixels. The preponderance of green
is an optical illusion caused by the thickness of the colored dots. The results can
therefore be better appreciated in zoomed sections.
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The preponderance of green is an optical illusion resultant of the thickness of the
colored dots drawn by the imaging algorithm. The effectiveness of the classification
can be therefore better appreciated in the following Figure 4.12, which zooms into
the inner area of the city delimited by the Cerchia dei Bastioni:

Figure 4.12: Pixel classification of the inner area of Milan delimited by the Cerchia
dei Bastioni. In green are vegetation pixels, in orange building pixels and in red
road and square pixels.

Additionally, in order to better appreciate the achievable resolution, the pixel
classification for the innermost Cerchia dei Navigli is as depicted in Figure 4.13:

Figure 4.13: Pixel classification of the innermost area of Milan delimited by the
Cerchia dei Navigli. In green are vegetation pixels, in orange building pixels and in
red road and square pixels.

The percentage of classified pixels changes according to the area under investig-
ation. For densely constructed areas it is around 35% whereas for parks it lowers to
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15%.

These values are a consequence of two different factors:

• Shadow areas between buildings cannot be classified;

• Since the estimator only has three categories, the pixels that do not belong to
either result unclassified. Typical examples are grass and bare soil.

4.3.3 Classification of pixels with a high probability step

In order to monitor urban growth it is not only important to be able to classify
pixels but also to detect when changes occur, so that a new classification can be
implemented, thus enabling always-current databases.

By adding step detection algorithms to the previous classification, the result in
Figure 4.14 can be obtained:

Figure 4.14: Pixel classification and step detection on the whole area of Milan. In
blue are the pixels characterized by step detection.In green are vegetation pixels, in
orange building pixels and in red road and square pixels.

As with the previous example, the quality is not ideal for visualizing the city in
its entirety, however it still allows an immediate visualization of all the major areas
that undertook requalification or modernization programmes:

1. Construction of a new wing at the Niguarda Hospital;

2. Piazza Gae Aulenti and the Porta Nuova Project;

3. Parco Vittoria residences;

4. City Life requalification program;

5. Porta Vittoria requalification program;

6. Construction of Le Corti all’Alzaia residences.
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Zooming on piazza Gae Aulenti and the Porta Nuova area which, as mentioned
in the introductory paragraph, is the area where the investigation has been focused,
Figure 4.15 can be obtained. For an immediate comparison between change-detected
pixels and ground-reality refer to Figure 4.18 and Figure 4.19.

Figure 4.15: Pixel classification and step detection on piazza Gae Aulenti and the
Porta Nuova area. In blue are the pixels characterized by step detection.In green
are vegetation pixels, in orange building pixels and in red road and square pixels.

4.3.3.1 Classification before and after the step

Once a step is detected, it is of primary importance with respect to urban sprawl
monitoring to classify what the pixel was before the step and what it became after-
wards.

Applying this methodology on piazza Gae Aulenti and considering only the most
common pixel variations so that the image is of immediate interpretation, the result
in Figure 4.16 can be obtained:
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Figure 4.16: Pixel classification before and after the step - most common variations.

As it can be observed, the majority of pixels have half of their time series marked
as unclassified. This is due to two reasons:

• Some partial time series are not sufficiently long in order to make an estimation;

• In order to make the foundations of the buildings, the area has been leveled
and covered with dry soil. This particular type of terrain, which scatters in a
very similar way to fields, was not subjected to classification.

Despite the fact that these were the most common results, other less ambiguous
classifications can be obtained under the condition that more samples are available
(steps in the middle of the time series). The classification before and after the step
for less common variations is shown in Figure 4.17.
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Figure 4.17: Pixel classification before and after the step - less common variations.

4.3.3.2 Growth monitoring of buildings

Another application for change detection in urban monitoring is the tracking of
buildings as they grow. This is particularly important for skyscrapers as, being
glass their primary covering material, they tend to have a significantly lower backs-
catter with respect to other buildings. This fact may lead to wrongful classification
and will be further discussed in section 4.4.2.

An interesting preliminary example can be found by monitoring piazza Gae Aulenti
and Porta Nuova. Taking into consideration the map and Google Earth rendering
of the area (that are depicted in Figure 4.18) as means of comparison and plotting
the position in time of the single steps in order to visualize the time table by which
the buildings have been constructed, Figure 4.19 can be obtained.
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Figure 4.18: Map and Google Earth rendering of the area under analysis.

Figure 4.19: The position in time of the single steps makes it possible to monitor
the growth of the skyscrapers.

As it can be seen in Figure 4.19, the newly constructed buildings are clearly
identified by the change-detection algorithm which, additionally, keeps track of the
time when that change occurred (blue marks the oldest and red the newest).

Taking into consideration Figure 4.19 and going from left to right and from top
to bottom, interesting examples are:

• Palazzo Regione Lombardia: constructed between 2007 and 2010, was the first
new building in the area. In the picture is correctly marked by a blue color;

• Bosco Verticale: constructed between 2009 and 2014, it encountered various
problems since the company that was first contracted to build it went bank-
rupt. These delays are depicted in Figure 4.19 by a non uniform ensemble of
different time positions;
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• Palazzo UniCredit: constructed between 2009 and 2011, it is marked by a light
blue color;

• Torre Solaria, Torre Solea, Torre Aria: constructed between 2010 and 2013.
Their foundations are characterized by a light blue color whereas the top of
the skyscraper assumes warmer colors. Particularly evident is the red-colored
roof of Torre Solaria;

• Torre Diamante: constructed between 2010 and 2012, also assumes warmer
colors going towards the top. Due to the fact that it was terminated a year
before the other three towers in the Varesine, it does not show any red pixels;

• La Corte Verde di Corso Como: constructed between 2011 and 2013, it’s the
last building to have been constructed and therefore correctly characterized
by a red color. As a matter of fact, these residences are not even present in
the Google Earth rendering.

4.3.3.3 Identification of known events

Step detection algorithms can also be implemented in order to identify known events.
Keeping the analysis linked to piazza Gae Aulenti, the two publicized construction
occurrences can be detected:

• 15th October 2011, positioning of an antenna on the roof of Palazzo UniCredit
(depicted in Figure 4.20 on the left-hand side);

• 3rd of May 2013, positioning of a cycle-pedestrian metal gangway on via Mel-
chiorre Gioia (depicted in Figure 4.20 on the right-hand side).

Figure 4.20: Positioning of the antenna on the Palazzo UniCredit (on the left) and
cycle-pedestrian on via Melchiorre Gioia (on the right).

Looking for steps in the before-written dates, the following Figure 4.21 can be
obtained:
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Figure 4.21: Identification of known events. In red the events corresponding to the
15/10/2011 and in blue the events corresponding to the 03/05/2013.

As it can be noted, both the events have been found although only a tiny part
of the cycle-pedestrian gangway can be seen due to unfortunate geometry.

4.4 Issues and case examples
During the development of this thesis two peculiarities, originated by current con-
ditions, appeared causing errors in the classification algorithm.

The first is the fact that some buildings or sections of building scatter with a sea-
sonal trend and the second is the fact that glass or ceramic-covered skyscrapers are
completely or partially invisible to radars.

4.4.1 Buildings characterized by seasonal trend

As it can be seen by the examples in Figure 4.22, some buildings, or parts of them,
scatter with a seasonal trend characterized by a summer peak and an excursion of
200%:
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Figure 4.22: Examples of building pixels scattering with a seasonal trend.

This fact is not known: Chitar et al. in 1992 noted how urban areas were not
subject to snow cover or sinusoidal fluctuations to the degree that other natural
cover types were [13]. It is not however surprising that this phenomenon passed
undetected throughout the years as it is only due to TerraSAR-X’s revisit time that
a good quality fitting of the seasonal sine wave has been possible.

A first partial mention to this problem (e.g. summer thermal dilatation and the
influence of reduced temporal revisit time on interferometry under those conditions)
has been discussed by Duro et al. in 2010 but as the majority of papers on the topic,
this focuses on data contained in the phase and not in the amplitude.

This thesis cannot provide a conclusive answer to the reasons that cause this phe-
nomenon, as this would require a thorough investigation which would include chem-
ical and mechanical considerations for a great amount of materials and geometries.
Nevertheless, a series of considerations and hypotheses are hereafter proposed.

4.4.1.1 Quantification of the phenomenon

This phenomenon is not easy to quantify as the majority of pixels characterized by
a seasonal trend with a summer peak result unclassified.

As discussed in section 4.2.1.3, this thesis relies on the assumption that vegeta-
tion pixels are identified as such only in case of positive phase-shift of the sinusoidal
seasonal trend. This fact, that is absolutely erroneous when considering crops, works
in an urban environment.

Analyzing the entire data-set, 30% of pixels scattering with a sinusoidal trend and
summer peak are classified as buildings. This percentage decreases when considering
vegetation areas (as the Parco Agricolo Sud Milano and the city parks) and increases
to 50% in some urban areas.

Considering a central area and a correlation between time series and seasonal trend
higher than 0.8, the results in Figure 4.23 can be obtained:
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Figure 4.23: Reflective peaks in a central area of Milan. In yellow are the summer
peaks whereas in blue are the winter ones. Two particularly evident examples of
buildings scattering with a seasonal trend are circled in red and correspond to the
Palazzo Reale and Palazzo Arcivescovile (on the left) and to the Università statale
(on the right).

As it can be seen in Figure 4.23, in Milan’s city center there are three particularly
evident examples of buildings scattering with a seasonal trend. They are circled in
red and correspond to the neighboring Palazzo Reale and Palazzo Arcivescovile (on
the left) and to the Univeristà statale (on the right).

In this section the percentages are as follows:

• buildings: 38.7% of scatterers with a sinusoidal summer peak;

• vegetation: 0% of scatterers with a sinusoidal summer peak;

• roads and squares: 0.12% of scatterers with a sinusoidal summer peak;

• unclassified: 61.2% of scatterers with a sinusoidal summer peak.

Also, out of all of the pixels classified as building, 5% scatters in a seasonal
summer-peaked fashion.

Vegetation pixels are an absolute 0% as a consequence that positive phase-shift has
been imposed but under no circumstance it should be believed that the unclassified
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pixels all correspond to vegetation pixels and for this same reason the building’s
percentage might also probably a bit higher.

In order to prove this, a second estimation without the positive phase-shift limita-
tion has been implemented. Under these conditions vegetation pixels resulted being
the 54% and the unclassified 7%, leading though to the erroneous classification in
Figure 4.24:

Figure 4.24: Comparison between classification results imposing vegetation pixels
to have a positive phase-shift of the sinusoidal trend and with no restrictions. As
predicted the second condition results erroneous .

As it appears immediately clear, it is not possible for the center-most area of
Milan to have a preponderance of vegetation with respect to buildings.

4.4.1.2 Identification of the scattering position

Once determined that a certain percentage of buildings returns such an amplitude
trend, an estimation of the position of the scatterers has been implemented.

In order to put this into practice, the interferometric height of permanent scatteres
with respect to Milan’s Digital Elevation Model has been considered.

Taking now all of the permanent scatterers that have a sinusoidal component and
plotting their interferometric height versus the amplitude of their seasonal sine wave,
the results in the following Figure 4.25 can be obtained:
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Figure 4.25: Interferometric height of the sinusoidal scatterer versus amplitude of
the seasonal trend.

As it can be seen, the sinusoidal scattering origins both from the corner reflectors
between pavement and building’s facade and from roofs and other architectural
components along its elevation. Predictably, the ground corner reflectors are the
ones that enable the highest amplitudes.

4.4.1.3 First hypothesis/contribution: variation of the dielectric con-
stant with temperature

As a first hypothesis, the variation of the dielectric constant with temperature has
been considered. This chemical alteration varies according to the single material so
it could not be univocally determined.

First of all, the radar cross section for dielectric constant variations has been calcu-
lated:

σ = lim
R→∞
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Thereafter, the amplitude’s variation with the RCS has been computed:
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a = |a0| ×
∣∣∣∣∣1−

√
εtarget

1 +√εtarget

∣∣∣∣∣ (4.6)

Where a0 is the generic amplitude of any target at a certain distance from the
radar.

In the case of asphalt, its dielectric variations with temperature have been found in
a paper from the Council for Scientific and Industrial Research of South Africa [14].
They are shown in Figure 4.26.

Figure 4.26: Asphalt’s dielectric constant variations with temperature.
Source:Council for Scientific and Industrial Research of South Africa.

Utilizing these values, the amplitude changes result in:

• εasphalt,5◦ = 5 and therefore aasphalt,5◦ = |a0| × 0.382;

• εasphalt,21◦ = 6.5 and therefore aasphalt,21◦ = |a0| × 0.436;

• εasphalt,38◦ = 8 and therefore aasphalt,38◦ = |a0| × 0.477.

Corresponding to an increase of 25% in the received amplitude when passing
from 5 °C to 38 °C. Considering that in Milan the temperature easily drops under
5 °C, it’s likely that the actual percentage is higher. Unfortunately, data for less
than 40 °F (equal to 5 °C) was not available.

As mentioned, though, this percentage varies according to the single material, so
it’s not of a general validity and percentages in other cases could be a lot higher or
close to zero. Unfortunately, not many studies have been found on the variation of
dielectric constant with temperature; none with other construction materials that
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could have been of interest towards this inquiry.

Nevertheless this result shows how some chemical variations might occur as the
temperature rises and account for a part of the amplitude’s fluctuations.

4.4.1.4 Second hypothesis/contribution: variations in surface roughness

Another hypothesis that has been considered is the variation of surface roughness
with temperature: frequently during summer the pavements tend to partially melt,
becoming therefore smoother.

Before even beginning with this calculation, the estimation of the Rayleigh and
Frauenhofer criterions for rough surfaces has been implemented. Thanks to these
tools, the minimum height after which the coarseness can be neglected can be de-
termined.

According to the Rayleigh criterion:

hr ≤
λ

8 cos (θinc)
(4.7)

That, with the Milan’s TerraSAR-X settings corresponds to:

hr ≤
3.1

8 cos (37◦) = 0.49cm (4.8)

And, according to the more stringent Frauenhofer criterion:

hf ≤
λ

32 cos (θinc)
(4.9)

Leads to:

hf ≤
3.1

32 cos (37◦) = 0.12cm (4.10)

Since variations of tenths of millimeters are plausible, the Dubois empirical model
for rough surface scattering has been calculated.
According to this model, the normalized radar cross section for HH polarization is
as follows:

σ0
HH = 10−2.75 cos (θ)1.5

sin (θ)5 100.028ε tan (θinc) (ks sin (θinc))1.4 λ0.7 (4.11)

where s is a statistical roughness parameter defined as the root mean square
height of the surface and is measured in centimeters and k is the wavenumber.

Substituting the theoretical parameters with those of our system, the linear trend
depicted in Figure 4.27 can be obtained.
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Figure 4.27: RCS Evolution with roughness Accirding to the Dubois model.

Considering now the case of perfectly smooth pavement that allows full reflection
on the building’s facade and subsequent full reflection towards the radar, the received
amplitude is:

asmooth = a0 × (1−RCS) = a0 (4.12)

When the pavement is rough, though, not all of the energy is scattered towards
the building and some is lost. Considering a 2cm maximum roughness:

arough = a0 × (1−RCS) = a0 × 0.9 (4.13)

Therefore from a completely rough to a completely smooth pavement and incre-
ment of 11.11 % in the received amplitude can be detected.

4.4.1.5 Third hypothesis/contribution: thermal dilatation

Thermal dilatation of buildings is a known, documented fact that has been mon-
itored with interferometry by numerous authors. Elevation-speaking it is in the
order of tenths of millimeters [15] but what is unclear is the effect that such dilata-
tions may introduce in the response of the amplitude.

A hypothesis that could not be numerically confirmed is the possibility that some
buildings may expand in a convex fashion, making therefore the corner reflectors
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between the pavement and the facade become acute. This geometric modification
would thus increase the backscattering towards the radar.

4.4.2 Stealth buildings

Another problem for the algorithm is the fact that nowadays more and more build-
ings are glass-covered skyscrapers and therefore cannot be properly seen by the
radar.
Some exemplifying cases are presented in the following sections.

4.4.2.1 The Pirelli skyscraper

Completed in 1958 under request of Alberto Pirelli, the president of the Pirelli
Company, with its 127 meters it has been Italy’s tallest building for almost forty
years.
As designed by the architect Gio Ponti, (and depicted in the front elevation depicted
in Figure 4.28 on the right-hand side) the high-rise edifice is completely covered by
glass, ceramic and terracotta mosaic tiles and litho-ceramic components. On the
roof there is a metallic structure.

Figure 4.28: The Pirelli skyscraper. On the left its SAR image, in the center its
Google Earth rendering and on the right its front elevation.

As a consequence of construction materials, it can be seen in the left-hand side
of Figure 4.28 that the Grattacielo Pirelli is almost invisible to the radar with the
exception of its roof.

4.4.2.2 The Torre Diamante

The Torre Diamante is one of the skyscrapers in the business district within the
Porta Nuova area. It has been constructed between 2010 and 2012 and its growth
has therefore been monitored by the available data-set.
Its curtain wall facade with floor to floor ceiling glass enables all of the load-bearing
metal components to be hidden to the radar. Brise-soleil components for protection
against direct sun light are visible to the radar on the eastern side of the building.

This combination of factors leads to the SAR image on the left-hand side of Figure
4.29:
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Figure 4.29: Detection of the Torre Diamante. On the left the SAR image and on
the right the combination of the SAR image with step detection aimed at growth
monitoring. As it can be seen only the right-hand side of the building (corresponding
to the eastern side) is partially visible thanks to the brise-soleil elements.

As it can be seen, only the right-hand side of the building (corresponding to
the eastern side) is partially visible thanks to the brise-soleil elements that act like
corner reflectors. The presence and orientation of these components can be better
comprehended with the Torre Diamante’s height elevation depicted in Figure 4.30.

Figure 4.30: Height elevation of the Torre Diamante (top). Zoom on the brise-soleil
elements (bottom left) and line-of-sight geometry explanation (bottom right). The
radar sees the north side of the building (which is completely stealth and is on the
left side in the SAR image) and the east side of the building (which is partially
visible thanks to the brise-soleil elements and is on the right side in the SAR image)
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Despite the invisibility of the skyscraper naked-eyed, due to change detection it
is still possible to detect its growth, as confirmed by the results on the right-hand
side of Figure 4.29. This very strong tool should be used in classification algorithms
in combination to geo-referencing in order to avoid missed classifications.
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Chapter 5

Conclusions

The exploitation of the newly-available TerraSAR-X images acquired with a revisit
time of 11 days, allowed the implementation of a classification algorithm character-
ized by three classes of targets: buildings, vegetation, roads and squares.

Such algorithm, integrated by change detection, is enabled to monitor topographic
changes. Due to this reason, it has been identified as a means for integrating IS-
PRA’s land use monitoring techniques.

More specifically, it has been shown that every pixel assumes a certain trend in
time that depends on the type of scatterer it corresponds to. For three classes of
targets this trend is particularly distinctive and can be therefore exerted for classi-
fication purposes.

In order to identify this characterizing trend, some mathematical tools such as
mean, kurtosis and entropy need to be implemented. Furthermore, the correlation
to a seasonal sinusoidal trend has been deemed of primary importance in order to
identify vegetation pixels and the estimation of the interferometric coherence of the
phase allowed a first rough distinction between the metropolitan area (by means of
the identification of coherent stable scatteres such as buildings) and the surrounding
countryside (by means of the identification of incoherent targets such as vegetation).

Buildings time series proved to be characterized by high amplitudes (at least 45%
of the amplitude dynamics on a logarithmic scale) and relatively low entropy (lower
than 80% of the dynamics).

Roads and squares time series proved to be characterized by low amplitudes (lower
than 45% of the amplitude dynamics on a logarithmic scale), high entropy (at least
80% of the dynamics) and high kurtosis (at least 62% of the kurtosis dynamics on
a logarithmic scale).

Vegetation time series proved to be characterized by low amplitudes (lower than
45% of the amplitude dynamics on a logarithmic scale), high entropy (at least 80%
of the dynamics) and high correlation (at least 80%) with a seasonal sinusoidal trend
that was subjected to a positive phase-shift.
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During a later stage, the classification algorithm was integrated with change de-
tection. Thanks to this further analysis, it became feasible to classify the targets
before and after the change occurred (provided that a sufficient amount of samples
is available), monitor the growth of new buildings and identify known events (by
exploiting the knowledge in the time position of the step).

Finally, two peculiarities that appeared during the development of the thesis became
object of investigation. The first one is the presence of buildings that scatter with a
sinusoidal trend in time. A definitive answer could not be provided for this matter
that has been so far attributed to a variation of the dielectric constant of some ma-
terials with temperature, a variation in surface roughness and thermal dilatation.
The second one regards the stealth nature of some skyscrapers. In this case the
source is well known (e.g. glass used as covering material is highly dielectric) but a
means of overcoming the consequent classification errors has been proposed.

As a result of this work, the following recommendations can be made:

• The number of classes could be increased by analyzing other pixel’s time series.
Examples are water basins and bare lands (such as grasslands and dry terrains);

• Further analyses could be implemented by comparing different polarizations;

• The correlation to known meteorological events could be further investigated:

◦ Conclusions should be drawn on the additional information provided by
the temperature correlation and be consequently exploited;
◦ Data from local weather stations, evenly spaced throughout the territory,
should be acquired;
◦ Other meteorological data such as humidity and rain should also be in-
vestigated.

• A satellite using longer wavelengths could be considered in order to enable the
detection of buildings covered by canopy;

• Interferometry could be implemented in order to calculate the height (or mon-
itor the incremental height) of buildings;

• The images could be geocoded in order to provide the data in a geographical
reference unit that could be easily implemented by ISPRA;

• Further research could be done on the scattering mechanisms and construction
materials of buildings in order to provide a final conclusion on the reasons why
some scatter with a sinusoidal trend;

• A code that detects the growth of a building and automatically assigns it to
its class could be implemented in order to avoid erroneous classification in case
of skyscrapers.
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