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Sommario

In questa tesi ho analizzato come nei modelli ARCH e GARCH con leverage
gli ordinamenti stocastici si propagano dai parametri e dalle innovazioni ai
valori dei logreturns, alle loro somme e ai prezzi delle opzioni scritte sullo
stock modellizzato dal modello stesso.
Nel primo capitolo ho posto le basi teoriche per quanto riguarda gli ordi-
namenti stocastici, soffermandomi in particolare sull’ordinamento usuale, su
quello convesso e su quello crescente convesso. Dopo averli definiti, ho fornito
diverse interpretazioni sugli ordinamenti ed evidenziato condizioni necessarie
o sufficienti affinché questi valgano. Infine ho riportato legami intercorrenti
tra gli ordinamenti, mostrando se e quando uno implica l’altro.
Nel secondo capitolo, finalizzato all’introduzione del modello GARCH, ho
riportato le definizioni piú importanti sull’analisi delle serie storiche, i primi
modelli autoregressivi e a media mobile come quelli ARMA, ed infine ho in-
trodotto i modelli ARCH e GARCH con le loro generalizzazioni tra cui quella
del GARCH con leverage.
Nel terzo capitolo confluiscono i concetti principali dei due precedenti: in-
fatti, passo dopo passo, mostro, grazie alla teoria del primo capitolo, come
gli ordinamenti dei parametri e delle innovazioni si propaghino ai valori della
volatilitá, da questi ai logreturns e, nel caso di innovazioni simmetriche, per-
sino alle loro somme. Ho svolto le precedenti analisi inizialmente nel caso di
un generico modello GARCH, prendendo spunto dall’articolo “Comparison
Results for GARCH processes” di Bellini F., Pellerey F, Sgarra C. e Sekeh
S.Y. [3]. Successivamente, seguendo la metodologia esposta nel sopracitato
articolo, ho mostrato come gli stessi risultati si applichino anche al model-
lo ARCH a piú passi. Infine ho provato a dimostrare la propagazione degli
ordinamenti dei parametri in riferimento al GARCH con leverage. In questo
ultimo caso, nonostante gli ordinamenti si diffondano ancora ai logreturns,
non sono riuscito ad ottenere risultati significativi per quanto riguarda le
somme dei logreturns. Mostro quindi nel dettaglio come l’introduzione di
una non linearitá nel modello modifichi i risultati ottenuti nel caso generico.
Infine nel quarto capitolo verifico numericamente i risultati ottenuti in pre-
cedenza mostrando come l’ordinamento usuale stocastico su uno o tutti i
parametri induca un ordinamento stocastico usuale sui moduli e sui quadrati
dei logreturns, e un ordinamento convesso sui logreturns stessi e, in alcuni
casi con innovazioni simmetriche, sulle loro somme.
Inoltre é possibile ottenere il valore di un possibile sottostante di opzioni
finanziarie come il valore iniziale moltiplicato per l’esponenziale delle somme



dei logreturns. Chiaramente la funzione appena descritta é convessa e quindi
anche i sottostanti stessi saranno ordinati in modo convesso. Ne segue che
per payoff convessi otteniamo un ordinamento preciso sui prezzi delle opzioni
legato all’ordinamento dei parametri del modello GARCH.
Questa tesi si colloca nel sempre piú ampio e approfondito campo delle appli-
cazioni finanziarie degli ordinamenti stocastici. Nel mio caso specifico questi
ultimi mi permettono di avere delle informazioni su determinate proprietá
di ordinamento dei valori della serie simulata, sfruttando informazioni sui
parametri iniziali.
Il caso che ho trattato é chiaramente discreto e non markoviano. Esiste pa-
rallelamente un’ampia letteratura su argomenti simili ma relativi a modelli
continui e markoviani.
Ad esempio nell’articolo “Comparison of Option Prices in Semimartingale
Models” di Bergenthum J. e Rüschendorf L. [4], vengono mostrate condizio-
ni sufficienti sotto le quali sia possibile confrontare i prezzi di opzioni europee,
su sottostanti differenti, calcolate rispetto a misure di martingale equivalenti.
Un altro ampio campo di applicazione, sempre nell’ambito dei processi mar-
koviani, é quello relativo all’ordinamento di misure di martingala equivalente
in semimartingale market models sotto le quali calcolare i prezzi delle opzio-
ni.
Ad esempio nell’articolo “Bounds on Option Prices for Semimartingale Mar-
ket Models” di Gushchin A.A. e Mordecki E. [10], si mostra come ricavare dei
range sui prezzi delle opzioni con payoff convesso grazie ad un ordinamento
indotto sulle misure coerenti. Chiaramente da questi range sará poi possibile
individuare dei bounds sui prezzi al variare delle misure di martingala equi-
valenti.
Nell’articolo “Stochastic Orders and Risk Measures: Consistency and Bounds”
di Baüerle N. e Müller A. [1], é invece sottolineato come, sotto alcune ipote-
si, le misure di rischio siano consistenti con gli ordinamenti, in riferimento a
quello usuale e a quello convesso. Da questa osservazione viene poi mostrato
come ricavare dei bounds sulle misure di rischio relative ad un portafoglio.
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Abstract

In this thesis i analyze how, in the ARCH and GARCH with leverage models,
stochastic orders are propagated from parameters and innovations to logre-
turns, their sum and to the prices of options having as underlying the stock
described respectively by ARCH and GARCH models.
In the first chapter i give some fundamental tools concerning stochastic or-
der, giving particular attention to usual stochastic order, to the convex order
and to the increasing convex order. In addiction to their definition, i give
several interpretation of these orders and some necessary or sufficient con-
dition to verify them. Finally i underline how these orders are related each
other, showing if and when one imply another.
In the second chapter, aimed to introduce GARCH model, i report the most
important definitions about time series analysis, then i describe the first
”auto-regressive” and ”moving average” models such ARMA models, and
introduce ARCH and GARCH models, with their generalizations such as
GARCH with leverage.
In the third chapter we find the main concepts of the two previous chapter:
indeed, step by step, i show, thanks to the theory of the first chapter, how
orders of parameters and innovations do transfer to volatility’s values, from
here to logreturns and, with symmetric innovations, to their sums. In a first
place i did these analysis in the generic case of GARCH model taking the
cue from the article “Comparison Results for GARCH processes” by Bellini
F., Pellerey F, Sgarra C. and Sekeh S.Y. [3]. Subsequently, following the
methodology explained in the above article, i showed how the same results
can be applied in the ARCH(q) model, extending the results obtained in
the article to multistep models. Finally i tried to prove the propagation of
parameters’ orders in the the GARCH with leverage model. In this last case,
although the orders do propagate to the logreturns, i didn’t reached signifi-
cant results concerning the logreturs’ sums. Indeed, i show in detail how the
non linearity introduced in this model modifies the results obtained in the
generic case.
Finally, in the fourth chapter, i give a numerical proof of the previous results
showing how usual stochastic order transmits from one or from all param-
eters to the absolute value and to the square of logreturns and induces a
convex order on logreturns and, in some cases with symmetric innovations,
on their sums.
Moreover we can compute the value a possible options’ underlying as the
initial value multiplied by the exponential of logreturns’ sums. Clearly the



just described function is convex, then the underlying itself will be convexly
ordered. It then follow that for convex payoff we get a precise order for op-
tions’s price related to GARCH parameters.
This thesis take place in the wide and deepen field of stochastic orders fi-
nancial applications. In my specific case stochastic orders help in providing
some orders’s properties on the values of the simulated series, starting from
information on model’s parameters.
Clearly, the case i dealt with, is not Markovian. However exists an exten-
sive literature about similar subjects but related to continue and Markovian
models.
For example in the article “Comparison of Option Prices in Semimartingale
Models” by Bergenthum J. and Rüschendorf L. [4], the authors face the prob-
lem of comparing prices of European options, written on different underlying,
computed under martingale equivalent measure.
Another extensive scope, still concerning the Markov process, is the one re-
lated to the order of martingale equivalent measures in semimartingale mar-
ket models. Under these measure is possible to compute option prices that
should follow the same order of the measures. For example in the article
“Bounds on Option Prices for Semimartingale Market Models” by Gushchin
A.A. and Mordecki [10], is explained how to get a reliable range on option
prices having a convex payoff function thanks to an order induced by the
coherent measures. Clearly, from these ranges, it will be possible to identify
bounds on prices in a certain set of martingale equivalent measures.
In the article “Stochastic Orders and Risk Measures: Consistency and Bounds”
by Baüerle N. and Müller A. [1], is underlined how, under some hypothesis,
the risk measures are coherent with orders, especially with the usual stochas-
tic order and with the convex order. From this remark is then analyzed how
to get bounds on risk measures in relation to a portfolio-choice problem.
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Introduction

The importance of stochastic orders in finance and in the insurance mar-
ket is testified by an extensive literature of their applications. First of all
lets see a basic and intuitive definition of a stochastic order and how it result
useful in the portfolio selection.
We say that X ≤F Y if

E[f(X)] ≤ E[f(Y )]

for all the function f belonging to some function class F. Observe that this
definition provides an order between stochastic variables defined in relation
to a particular class of functions whenever the expected value exists.
Consider now two future prices of financial assets, for example the asset A
and the asset B. Their outcomes are usually represented by random variables,
respectively XA and XB. The situation in which an investor has to choose
between this two assets may be modeled with a Von Neumann-Morgenstern
utility function u, related to the risk aversion of the investor. According to
the expected utility principle, the investor prefers asset B to A if and only if

E[u(XA)] ≤ E[u(XB)].

If the inequality holds for all investors whose utility functions belongs to
some function class, then this is exactly the definition of some stochastic
order between XA and XB. This conclusion proves the importance of the
stochastic orders in risk management: having sufficient or necessary condi-
tion on the random variables to establish if and how they are ordered may
help to establish which one is more or less risky.
In option pricing we often take the expected value of payoff function, having
as arguments the option’s fixed parameters and the stochastic underlying as-
set. In simulating the underlying asset we usually use random variables. In
this thesis the main goal is to establish which orders are propagated from the
random variables to the asset’s dynamic that they generate. This will allow
us, with payoff functions belonging to particular function classes, to order
the option prices consequently to the stochastic order between the random
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variables that generated the underlying asset. We will investigate this kind
of problem in the specific case of ARCH, GARCH and GARCH with leverage
models.
Before focusing on the financial usage of stochastic order, we would like to
underline their several applications in insurance market.
Risks are generally modeled by random variables or distribution functions.
The diversity of insurance types, or simply of insured populations is repro-
duced by introducing individual or collective risk models with rare and ex-
treme events and, on the other hand, models with moderate or even bounded
risks. The possibility of order risks, in some way, may lead to the main the-
ories for risk measures. It helps also in estimating the ruin probability (see
“Asymptotic Ruin Probabilities for Risk Processes with dependent incre-
ments” by Müller A. and Pflug G. [15]) that is the evaluation of probabilities
of rare and extreme events.
A simple example is related to the insurance deductible. Let say for example
that a car insurance has a deductible, for a certain kind of accidents, fixed
at 500 euros per year. It means that the insurer, will have to refund all the
expense superior to that amount to the client. Let call X and Y the random
variables describing the year expense of two clients due to accidents of the
type considered. This variable may be related to the age of the insured, to
the place where he live, to the number of accident he had in the last few
years and to other similar factors. We clearly have that the sum payed to
the policyholder is defined by f(X) = (X − 500)+. This function clearly
belongs to the increasing and convex function (see chapter 2) so we do have
that, if X ≤icx Y

E[f(X)] ≤ E[f(Y )]

holds true. This means that the client represented by Y should have a higher
premium than the one represented by X.
Stochastic orders have many important applications in risk management.
For example in “Stochastic Orders and Risk Measures: Consistency and
Bounds” by Baüerle N. and Müller A. [1] the authors try to verify if and
when a monotone risk measure ρ has the property that X ≤st Y implies
ρ(X) ≤ ρ(Y ) and that a convex risk measure has the property that X ≤cx Y
implies ρ(X) ≤ ρ(Y ). They found out that the crucial point is the probabil-
ity space on which the risks are defined. These results are applied to bound
the risk of a portfolio, that is a joint financial position X1 + ..+Xn. Another
important subject faced in the article is the portfolio optimization bounds
consequently to the main results in the Coherent Risk Measure scope.
In “Stochastic orders and their applications in financial optimization” by Ki-
jima and Ohnishi [12] the attention is focused on how the stochastic orders
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are applied is the demand and shift effect problems in portfolio selection. In
this article are considered important order such as the likelihood ratio order
and the reversed hazard rate order that we are not going to consider in this
thesis.
We briefly describe how the option pricing techniques have developed through
the year and then we will focus on the subject dealt in this thesis.
First of all consider an European option price. The most famous model
for calculating its price is the Black-Merton-Scholes formula. It shows an
increasing dependence of the option price by the riskiness of the under-
lying asset that is completely driven by logreturns distribution variance.
We may describe the uncertainty through the dispersion around the means
and, consequently, the distribution function can be ordered according to
their“peakdness” (see chapter 1 for more details). The conclusion is that,
the larger is the dispersion, the higher the option prices. This conclusion
leads once again to stochastic orders as an important instrument to order
underlying assets in relation to their risk thanks to the peakdness order.
Clearly in more complex models in turns out to be fundamental a rigorous
approach to avoid wrong conclusions.
The Black-Merton-Scholes (BMS) has proven unable to handle and repro-
duce some empirical facts related to the logreturns.
First of all the so called“fat tails”: the BMS model is based on a normal
distribution that, often, underestimate some critical and extreme events,
under-pricing options that are far out of the money. In fact the extreme
events, that take an out of the money option to an at the money option are
empirically much more frequent then in the normal distribution.
Second of all, ”volatility clustering”: this volatility’s property underlines how
often periods of high volatility are followed by periods of high volatility as
periods of low volatility are followed by periods of low volatility. Clearly
this property is completely ignored by BMS model in which the volatility is
considered constant in the whole period.
Then we have “aggregation Gaussianity” and“leverage effect”. The first one
is the tendency of logreturns to variate their distribution depending from the
time scale. As one increases the time scale over which returns are calculated,
their distribution looks more and more like a normal distribution but this
is generally false with different time scales. The second one, point out an
empirical evidence of a negative correlation between the option prices and
the volatility. This is another market feature ignored by the BMS model.
Finally we have“volatility smile”. Fixed all the other parameters we may cal-
culate the implicit BMS volatility, and draw its dependence from the strike.
We found out that for equities is decreasing, higher for low strikes and lower
for higher strikes, and for the commodities, on the other hand, we have the
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opposite behavior. Even this fact is in contrast with the BMS assumption of
constant volatility.
In order to provide a more detailed and precise description of the faced prob-
lems, several different models were introduced.
A first generalization was made adding jumps to logprices dynamics, leading
to the Levy processes with finite or infinite variation and activities. This
choice was made in order to increase the probability of extreme events and,
possibly, to create an asymmetry between the higher and the lower tails of
the logprice distribution.
A second and maybe more important step was made introducing the stochas-
tic volatility models. There are several continuous models in this scope such
as the Heston model, the Hull and White model and the Sabr model (used
in particular for the interest rate derivatives). Moreover we also have impor-
tant discrete models such as the Autoregressive Conditioned Heteroschedastic
(ARCH) models introduced by Engle in “Autoregressive Conditional Het-
eroskedasticity with Estimates of the Variance of the UK Inflation” [8] and
their general extension (the GARCH model) proposed by Bollerslev in “Gen-
eral Autoregressive Conditional Heteroskedasticity” [6]. There is also a fur-
ther generalization of the GARCH model, made up introducing a leverage
effect (that is an other parameter) that keeps the volatility higher when the
magnitude of the previous logreturn is high and lower when it is low. These
models will be largely discussed in the following chapters.
The main goal of the stochastic volatility is to fix the shortcomings of BMS
model such as volatility clustering, volatility smile and the leverage effect.
The volatility clustering, for example, might be reproduced through mean re-
verting processes with slow velocity of mean reverting. The leverage effects
is simply handled using for stochastic volatility’s dynamics and for logprice’s
dynamics two different Brownian Motions negatively correlated. The same
strategy is applied to create empirical justifiable smiles or skews for the strike-
volatility graph.
Finally this two big categories were combined to exploit their different posi-
tive effects in modeling both the volatility, the logprice and their correlation.
The most famous model is the Bates one where logprice dynamic has jumps
and is negatively correlated with the stochastic volatility dynamic.
The literature on analysis concerning the propagation of stochastic orders in
these pricing models is wide. However the most important articles focus on
the continue case, especially in the Markovian case.
The first big class of problems is the one related to the comparison of same
model under different probability measures. In fact, for every equivalent
martingale measure we get a different option price. Dealing with a simi-
lar problem, El Karoui, Jeanblanc-Picqu and Shreve in “Robustness of the
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Black and Scholes formula” [7] studied how relations between two different
volatilities are propagated to the option’s prices. Subsequently Henderson
and Hobson in “Coupling and option price comparisons in a jump-diffusion
model” [11] gave a simple criterion for ordering of option prices under various
martingale measures. Starting from this article but in a different context,
Møller, in “Stochastic orders in dynamic reinsurance markets” [17] deter-
mined optimal martingale measures such as the minimal martingale measure
and the minimal entropy martingale measure, and some comparison results
for prices under different martingale measures, leading to a simple stochastic
ordering result for the optimal martingale measures.
Moreover it’s clear how important would be to fix bounds to the possible
price’s values under different probabilities.
In a first place this subject was faced by Bellamy and Jeanblanc in “Incom-
pleteness of markets driven by a mixed diffusion” [2] who concluded that
in incomplete markets driven by mixed diffusion, the range of prices is too
large. They pointed out as a lower bound the Black and Scholes function
evaluated at the underlying asset’s price while the upper bound was deter-
mined just under particular hypothesis. Consequently Gushchin A.A. and
Mordecki have deepened this subject in “Bounds on Option Prices for Semi-
martingale Market Models” [10]. In this article is proposed a methodology to
get the desired bounds in the case of general semimartingale market model.
This goal is reached thanks to a partial ordering in the set of distributions
of discounted stock prices at exercise time T, that is the law of a random
variable Zt = ST

BT
under an arbitrary equivalent martingale measure. This

order allow to find extreme distributions and, correspondingly, upper and
lower bounds for the range of option prices.
Moreover in “Comparison of Option Prices in Semimartingale Models” by
Bergenthum J. and Rüschendorf L. [4], is faced the problem of comparing
d-dimensional exponential semimartingales computed under different prob-
abilities. The main result of this article gives sufficient conditions for the
comparison for European options, with convex payoff function, with respect
to martingale pricing measures. Sufficient conditions for these orderings are
formulated in terms of the predictable characteristics of the stochastic log-
arithm of the stock price processes. These conditions are applied to the
following models: exponential semimartingale, stochastic volatility models,
Lévy processes and diffusion with jumps processes.
Another class of problems concerns the comparison of models under the same
probability measure but with different parametric specification. This one is
the kind of problem we are going to focus on.
Let now focus on the main models we are going to analyze in this thesis: the
ARCH and GARCH processes.
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The most general form of the ARCH(q) model is:

Xt = σtZt, σ2
t = α0 +

∑q
i=1 αiX

2
t−i

with positive parameters. This model subsequently evolved in the GARCH(p,q)
models where the dependence from the previous values of volatility is high-
lighted:

Xt = σtZt, σ2
t = α0 +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j

with positive parameters too. Observe that the GARCH(1,1) model is made
up by three parameters assuming a numerical value (possibly stochastic) and
the innovations, Zt, which are random IID variables with assigned density
function.
We will focus on the GARCH(1,1) with leverage model that is:

Xt = σtZt, σ2
t = α0 + α1(Xt−1 + δ|Xt−1|)2 + βσ2

t−1

In this model there is one more parameter, δ, modeling how the volatility
react to positive or negative values of logreturns. We usual consider negative
δ to underline that bad news usually have the greater effect.
The last formula may be written as:

σ2
t = α0 + (α̃1 + δ̃ I{Xt−1<0})X

2
t−1 + βσ2

t−1

where I is the indicator function, α̃1 = α1(1 + δ)2 and δ̃ = −2δα1. This one
is a particular form of the Threshold GARCH (TGARCH) in which the pa-
rameters values depend on the value (in this case on the sign) of the previous
logreturn (see “Threshold GARCH model: Theory and Applications” by Wu
J. [21] for further details).
First of all lets see an example to justify the further investigations. We con-
sider the density of the logreturn sums in GARCH(1,1) model as in (3.13).
We take the first two parameters α0 = 10−6 and α1 = 0.08 and we consider
the third parameter β initially equal to 0.8, then 0.85 and finally 0.9. We
consider iid standard Gaussian variables as innovations and an initial vari-
ance σ0 fixed to 0.1. We simulate 100000 trajectories of length N = 50 and
we show how the logreturns sum cumulative distribution functions develop
in respect to the considered values of β.
Let then consider the sequence of ”stock prices” defined by Pk+1 = P0e

Sk ,
k = 0, ...50. We take as the initial value of the underlying P0 = 10 euros and
a zero interest rate. We then compute the Monte Carlo prices C of the call
options with strike K = 10 euros given by

C = E[max(P51 −K, 0)] = E[max(P0exp(S50)− 10, 0)]

9
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Figure 1: Distribution function of the logreturns sum with β =0.8 ,0.85, 0.9

where the expected values is taken for every value of the parameter β over
the set of 1000000 simulated values of S50.
We obtain the following prices:

a) β = 0.8⇒ C = 1.3807

b) β = 0.85⇒ C = 1.8839

c) β = 0.9⇒ C = 3.4035

Observe figure 1: as β increases, the probability of having lower and higher
logreturns sum values increases. That means that the variance of the S50

variables increase. As a natural consequence the price of options with P51 as
underlying will increase too.
It’s then clear from the figure and from the option prices that the usual real
number order relation implies some ordering on logreturn sums and option
prices. Therefore it’s natural to ask if this property holds true for other type
of orders between the parameters and, possibly, between the innovations,
particularly in the stochastic case.
We will then investigate which kind of stochastic orders between parameters
and innovations are naturally propagated to the logreturns, to their sums, to
the stock price and to options having the stock as underlying asset, through
the ARCH, GARCH and GARCH with leverage models.
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We start with Chapter 1 to describe the most famous stochastic orders: the
so called usual stochastic order, the convex order, the increasing convex or-
der and the peakdness order. We give necessary and sufficient conditions
to verify that one or more that the above orders hold true. Moreover we
describe the relations between these stochastic orders. To main sources for
this chapter were “Stochastic Orders” by Shaked M. and Shanthikumar J. G.
[20] and “Comparison Methods for Stochastic Models and Risks” by Müller
and Stoyan.
In the second Chapter we recall some basic tools for Time Series Analy-
sis and the natural development of the ARMA model to the ARCH and
GARCH models. We also introduce the GARCH with leverage model and
the TGARCH models. In this Chapter we took the cue from the book writ-
ten by McNeil, Rüdiger, and Embrechts “Quantitative Risk Management”
[13].
Finally in the third chapter we apply the stochastic orders results to the
ARCH, GARCH and GARCH with leverage theory to conclude that with
symmetric innovations, the convex order is propagated from the innovations
to the logreturns, and to their sums just in the first two models. Besides the
usual stochastic order for the parameters, imply the usual stochastic order
on the absolute values of the logreturns and on their square, and the convex
order on the logreturns in the three models. Moreover, in the first two mod-
els with symmetric innovations, the usual stochastic order of the parameters
implies a convex order for the logreturn’s sum. In order to write this part of
the thesis the article “Comparison Results for GARCH processes” by Bellini
F., Pellerey F, Sgarra C. and Sekeh S.Y. [3] was fundamental. In particular
it really helped to understand how the proofs have to be build up.
In the last chapter we give some numerical proof of the Theorem of the pre-
vious chapter. We show how the stochastic orders are propagated in a first
place taking just one stochastic parameter then considering all three parame-
ters as stochastic. Finally we take the innovations ordered in the convex order
to verify the propagation of convex order to logreturns and total logreturns.
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Chapter 1

Stochastic Orders

1.1 The usual Stochastic Order

Consider two random variables X and Y such that:

P {X > x} ≤ P {Y > x} for all x ∈ (−∞,∞) (1.1)

then X is said to be smaller than Y in the usual stochastic order (denoted
by X ≤st Y ). Roughly speaking, (1.1) says that X is less likely than Y to
take on large values, where “large” means any value greater than x, and that
is the case for all x’s. We may say that this order compares random variables
according to their “magintude”. Note that (1.1) is the same as

P {X ≤ x} ≥ P {Y ≤ x} for all x ∈ (−∞,∞) (1.2)

It is easy to verify (by noting that every closed interval is an infinite inter-
section of open intervals) that X ≤st Y if, and only if

P {X ≥ x} ≤ P {Y ≥ x} for all x ∈ (−∞,∞) (1.3)

In fact, we can write (1.1) and (1.3) in an equivalent way, as follows

P {X ∈ U} ≤ P {Y ∈ U} for all upper sets U ⊆ (−∞,∞) (1.4)

Remember that in the univariate case, that is the real line, a set U is an
upper set if, and only if, it is an open or a closed right half line. Moreover
in (1.4) we can use the expected values instead of the probabilities to get:

E[IU(X)] ≤ E[IU(Y )] for all upper sets U ⊆ (−∞,∞) (1.5)
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where IU denotes the indicator function of U . From (1.5) it then follows that
if X ≤st Y , then

E[
m∑
i=1

aiIUi
(X)]− b ≤ E[

m∑
i=1

aiIUi
(Y )]− b (1.6)

for all ai ≥ 0, i = 1, 2, ...,m, b ∈ (−∞,∞), and m ≥ 0.
Thanks to the following theorem we will give the most important character-
ization of the usual stochastic order.

Theorem 1.1. Given an increasing function φ, it is possible, for each m,
to define a sequence of Ui’s, a sequence of ai’s, and a b (all of which may
depend on m), such that as m→∞ then (1.6) converges to

E[
m∑
i=1

aiIUi
(X)− b]→ E[φ(X)] (1.7)

provided the expectations exist.

It then follows that:

Definition 1.1. X ≤st Y if, and only if, (1.7) hold for all increasing function
φ for which the expectation exist.

We give another important characterization of the usual stochastic order
in the following Theorem (here =st denotes equality in law).

Theorem 1.2. Two random variables X and Y satisfy X ≤st Y if, and only
if, there exist two random variables X̂ and Ŷ , defined on the same probability
space , such that

X̂ =st X (1.8)

Ŷ =st Y (1.9)

and
P [X̂ ≤ Ŷ ] = 1. (1.10)

Proof. Obviously (1.8), (1.9) and (1.10) imply that X ≤st Y . In order to
prove the necessity part of this Theorem, let F and G be, respectively, the
distribution functions of X and Y , and let F−1 and G−1 be the corresponding
right continuous inverses. Define X̂ = F−1(U) and Ŷ = G−1(U) where U
is a uniform [0,1] random variable. Then it is seen that X̂ and Ŷ satisfy
(1.8) and (1.9). Remark that X ≤st Y ⇔ P [X ≤ x] ≥ P [Y ≤ x] for all
x ∈ (−∞,∞). It follows that (1.10) also holds.

13



Afterwards the following notation will be used: for any random variable
Z and an event, A, let [Z|A] denote any random variable that has as its
distribution the conditional distribution of Z given A.

Theorem 1.3. a) If X ≤st Y and g is an increasing [decreasing] function,
then g(X) ≤st [≥st]g(Y ).

b) Let X1, X2, ..., Xm be a set of independent random variables and let
Y1, Y2, ..., Ym be another set of independent random variables. If Xi ≤st
Yi for i = 1, 2, ...,m , then, for any increasing function ψ : Rm → R,
one has

ψ(X1, X2, ..., Xm) ≤st ψ(Y1, Y2, ..., Ym) (1.11)

in particular, ∑M
j=1Xj ≤

∑M
j=1 Yj

That is, the usual stochastic order is closed under convolutions.

c) Let {Xj j = 1, 2, ...} and {Yj j = 1, 2, ...} be two sequences of random
variables such that Xj →st X and Yj →st Y as j → ∞, where →st

denotes convergence in distribution. If Xj ≤st Yj, j = 1, 2... then
X ≤st Y .

d) Let X, Y and Θ be random variables such that [X|Θ = θ] ≤st [Y |Θ = θ]
for all θ in the support of Θ. Then X ≤st Y . That is, the usual
stochastic order is closed under mixtures.

Proof. To prove the statement (a) recall that the combination of two in-
creasing function is an increasing function. Then defined ψ = φ ◦ g for every
increasing function φ hold:

E[φ(g(X))] = E[ψ(X)] ≤ E[ψ(Y )] = E[φ(g(Y ))]

where the inequality follows from X ≤st Y . We get the thesis using Definition
1. Let now consider (b). Without loss of generality we can assume that all
the 2m random variables are independent because such an assumption does
not affect the distributions of ψ(X1, X2, ..., Xm) and ψ(Y1, Y2, ..., Ym). The
proof is by induction on m. We start considering m = 1 and using (a) we
get g(X) ≤st g(Y ). Assume that (1.11) holds true for vectors of size m− 1.
Let g and φ be increasing functions. Then

E[φ(ψ(X1, X2, ..., Xm))|X1 = x] = E[φ(ψ(x,X2, ..., Xm))] ≤
E[φ(ψ(x, Y2, ..., Ym))] = E[φ(ψ(X1, Y2, ..., Ym))|X1 = x]

14



where the equalities above follow from the independence assumption and the
inequality follows from the induction hypothesis. Taking expectations with
respect to X1, we obtain

E[φ(ψ(X1, X2, ..., Xm))] ≤ E[φ(ψ(X1, Y2, ..., Ym))]

Repeating the argument, but now considering on Y2, ..., Ym and using (1.11)
with m = 1, we see that

E[φ(ψ(X1, Y2, ..., Ym))] ≤ E[φ(ψ(Y1, Y2, ..., Ym))]

and this proves the result. The point (c) is a consequence of the convergence
of the density functions of the Xn and Yn to the distribution function of X
and Y . In fact for every n we have that for every increasing function φ:

Xn ≤st Yn ⇔
∫∞
−∞ φ(x)fXn(x)dx ≤

∫∞
−∞ φ(x)fYn(x)

that, thanks to the convergence of the density functions, leads to∫∞
−∞ φ(x)fX(x)dx ≤

∫∞
−∞ φ(x)fY (x)

that is equivalent to Definition (1.1).
To end the proof of the Theorem observe that for any increasing function ψ:

E[ψ(X)] = EΘE[ψ(X)|Θ = θ] ≤ EΘE[ψ(Y )|Θ = θ] = E[ψ(Y )]

that, with Definition 1, is (d).

Clearly, if X ≤st Y then E[X] ≤ E[Y ]. It’s easy to find counterexamples
which show that the converse is false.

Example 1.1. Let consider two discrete random variables X and Y such
that:

P (X = 1) = 1/3, P (X = 2) = 1/3, P (X = 9) = 1/3⇒ E[X] = 4

P (Y = 4.5) = 1⇒ E[Y ] = 4.5

then we have E[X] < E[Y ], but considering the increasing function ψ(x) = x3

we get E[X3] = 246 E[Y 3] = 91.125.

However, as the following result shows, if two random variables are or-
dered in the usual stochastic order and have the same expected values, they
must have the same distribution.

Theorem 1.4. If X ≤st Y and if E[h(X)] = E[h(Y )] for some strictly
increasing function h, then X =st Y .
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Proof. First we prove the result when h(x) = x. Let X̂ and Ŷ be as Theorem
1.2. If P (X̂ < Ŷ ) > 0, then E[X] = E[X̂] < E[Ŷ ] = E[Y ], a contradiction to
the assumption E[X] = E[Y ]. Therefore X =st= X̂ = Ŷ =st Y . Now let h
be some strictly increasing function. Observe that if X ≤st Y , then h(X) ≤st
h(Y ) and therefor from the above result we have that h(X) =st h(Y ). The
strict monotonicity of h yields X =st Y .

Moreover observe that X ≤st Y implies all the inequality related to the
odd moments (for example, E[X3] ≤ E[Y 3]).

A simple sufficient condition which implies the usual Stochastic Order is
described next. The following notation will be used. Let a(x) be defined on
I, where I is a subset of the real line. The number of sign changes of a in I
is defined by:

S−(a) = supS−[a(x1), a(x2), ..., a(xm)], (1.12)

where S−(y1, y2, ..., ym) is the number of sign changes of the indicated se-
quence, zero terms being discarded, and the supremum in (1.12) is extended
over all sets x1 < x2 < ... < xm such that xi ∈ I and m < ∞. We can then
state the following Theorem:

Theorem 1.5. Let X and Y be two random variables with (discrete or con-
tinuous) density functions of the form f and g, respectively. If

S−(g − f) = 1 and the sign sequence is −,+
then X ≤st Y .

Proof. Fix x such that f(x) = g(x). We then have by the hypothesis

g(x) < f(x) ∀x < x and g(x) > f(x) ∀x > x

We then have for x < x:

P (X ≥ x) = 1−
∫ x
−∞ f(x)dx < 1−

∫ x
−∞ g(x)dx = P (Y ≥ x)

and for x > x:

P (X ≥ x) =
∫∞
x
f(x)dx <

∫∞
x
g(x)dx = P (Y ≥ x)

That correspond to the characterization of the usual stochastic orders in
(1.3).

Obviously we can state a similar sufficient condition based on the distri-
bution functions.

Corollary 1.1. Let X and Y be two random variables with (discrete or
continuous) distribution functions of the form F and G, respectively. If

S−((G− F )′) = 1 and the sign sequence is −,+
then X ≤st Y .
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1.2 The Convex Order

Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )] for convex [concave] functions φ : R→ R (1.13)

provided the expectations exist. Then X is said to be smaller than Y in the
convex order, denoted as X ≤cx Y . Roughly speaking, convex functions are
functions that take their (relatively) larger values over regions of the form
(−∞, a) ∪ (b,∞) for a ≤ b. Therefore if (1.13) holds, then Y is more likely
to take“extreme” values than X. That is, Y is “more variable” than X. It
should be mentioned here that in (1.13) it is sufficient to consider only func-
tions φ that are convex on the union of the supports of X and Y rather than
over the whole real line.
One can also define a concave order by requiring (1.13) to hold for all con-
cave functions φ (denoted as X ≤cv Y ). However, X ≤cv Y if, and only if,
Y ≤cx X. Therefore, it is not necessary to have a separate discussion for the
concave order.
Note that the functions φ1(x) = x and φ2(x) = −x are both convex. There-
fore, from (1.13) it easily follows that:

X ≤cx Y ⇒ E[X] = E[Y ], (1.14)

provided the expectations exist. Later it will be helpful to observe that if
E[X] = E[Y ], then∫ ∞

−∞
[F (u)−G(u)]du =

∫ ∞
−∞

[F (u)−G(u)]du = 0 (1.15)

provided the integrals exist, where F [F ] and G[G] are the survival [distri-
bution] functions of X and Y , respectively. The function φ(x) = xn, with
n ≥ 2 even, is convex, therefore from (1.13):

X ≤cx Y ⇒ E[Xn] ≤ E[Y n] with n even

that is, all the even moments of X are lower then the Y ’s ones. In particular,
using the equality between the expected values of the stochastically convex
ordered variables:

X ≤cx Y ⇒ V ar[X] ≤ V ar[Y ] (1.16)

whenever Var[Y ] <∞.
For a fixed a, the function φa(x) = (x − a)+, and the function ϕa(x) =
(a− x)+, are both convex. Therefore, if X ≤cx Y , then

E[(X − a)+] ≤ E[(Y − a)+] for all a (1.17)
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and
E[(a−X)+] ≤ E[(a− Y )+] for all a (1.18)

provided the expectations exist. Alternatively, using a simple integration by
parts:

E[(a−X)+] =
∫
R(a− u)+f(u) du = aF (a)−

∫ a
−∞ uf(u) du =

aF (a)− (aF (a)−
∫ a
−∞ F (u) du) =

∫ a
−∞ F (u) du

similarly

E[(a− Y )+] =
∫ a
−∞G(u) du

E[(X − a)+] =
∫∞
a
F (u) du

E[(Y − a)+] =
∫∞
a
G(u) du

It than follow that (1.17) and (1.18) can be rewritten as∫ ∞
x

F (u)du ≤
∫ ∞
x

G(u)du (1.19)

and ∫ x

−∞
F (u)du ≤

∫ x

−∞
G(u)du (1.20)

provided the integrals exist. In fact, when E[X] = E[Y ], (1.19) is equivalent
to X ≤cx Y . To see this equivalence, note that every convex function can
be approximated by (that is, is a limit of) positive linear combinations of
the functions φa’s, for various choices of a’s, and of the function ψ(x) = −x.
By (1.19), E[φa(X)] ≤ E[φa(Y )] for all a’s, and this fact, together with the
equality of the means of X and Y (⇒ E[ψ(X)] ≤ E[ψ(Y )]), implies (1.13).
We thus have proved the first part of the following result. The other part is
proven similarly.

Theorem 1.6. Let X and Y be two random variables such that E[X] = E[Y ].
Then

(a) X ≤cx Y if, and only if, (1.19) holds.

(b) X ≤cx Y if, and only if, (1.20) holds.
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Corollary 1.2. Let X and Y be two random variables such that X ≤cx Y .
Then aX ≤cx aY for every a ∈ R.

Proof. Using the inequality in the definition of the convex order with ψ(x) =
x and φ(x) = −x we get E[X] = E[Y ] and consequently E[aX] = E[aY ] for
every a ∈ R. Using FaX(u) = FX(u/a) and GaY (u) = GY (u/a), 1.20 and a
change of variables:∫ x

−∞ FaX(u) du = a
∫ x/a
−∞ FX(v) dv ≤ a

∫ x/a
−∞ GY (v) dv =

∫ x
−∞GaY (u) du

that implies the thesis.

Moreover, when both the random variables X and Y of the previous
Corollary have expected values zero, we have a stronger result that is proved
using the same arguments of Theorem 1.6:

Corollary 1.3. Let X and Y be two random variables such that X ≤cx Y
and E[X] = E[Y ] = 0. Then aX ≤cx bY for every a ≤ b ∈ R+.

Proof. We have to prove that for every φα(x) = (x−α)+ and for the function
ψ(x) = −x

E[φα(aX)] ≤ E[φα(bX)] and E[ψ(aX)] ≤ E[ψ(bX)]

do hold. In fact it would then hold for every convex, function that is aX ≤cx
bY . Let start with φα: notice that f(x) = (cx − a)+ is convex for every
c, a ∈ R and that for d ≥ c > 0 we have E[(cx − a)+] ≤ E[(dx − a)+]. To
prove this last statement consider separately the case of a ≥ 0 and a < 0.

a ≥ 0 In this case we have that (cx − a)+ ≤ (dx − a)+∀x and the same
inequality hold for the expected values.

a < 0 In this case (cx− a)+ ≤ (dx− a)+ holds just for x ≥ 0. We then have
to prove E[(cx − a)+] ≤ E[(dx − a)+] directly. From now on we will
indicate as fx the density function of the variable x. First of all notice
that the thesis is equivalent to:

c
∫∞

a
c
xfx(x)dx− a

∫∞
a
c
fx(x)dx ≤ d

∫∞
a
d
xfx(x)dx− a

∫∞
a
d
fx(x)dx

Moreover we have

−
∫∞

a
c
fx(x)dx ≤ −

∫∞
a
d
fx(x)dx⇔

∫∞
a
c
fx(x)dx ≥

∫∞
a
d
fx(x)dx

that is true as we are integrating the same positive function on a bigger
interval on the left side.
Then we just have to prove
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c
∫∞

a
c
xfx(x)dx ≤ d

∫∞
a
d
xfx(x)dx

We have that
∫ a

d
a
c
xfx(x)dx ≤ 0 as the function is negative in the con-

sidered interval. Than is trivial to prove:

c
∫∞

a
c
xfx(x)dx ≤ c

∫∞
a
c
xfx(x)dx− c

∫ a
d
a
c
xfx(x)dx = c

∫∞
a
d
xfx(x)dx ≤

d
∫∞

a
d
xfx(x)dx

that is the desired statement.

We then have

E[ψα(aX)] = E[(aX − α)+] ≤ E[(aY − α)+] ≤ E[(bY − α)+] = E[ψα(bY )]

Consider now ψ(x):

E[−aX] = −aE[X] = 0 and E[−bY ] = −bE[Y ] = 0

that is

E[ψ(aX)] ≤ E[ψ(bY )]

that ends the proof.

Another way to describe the convex order can be deduced by adding a to
both sides of the inequality in (1.17), it is seen that (1.17) can be rewritten
as

E[max {X, a}] ≤ E[max {Y, a}] for all a (1.21)

Thus, when E[X] = E[Y ], then (1.21) is equivalent to X ≤cx Y . In a similar
manner (1.18) can be rewritten.
The following Theorem provides another characterization of the convex order.

Theorem 1.7. Let X and Y be two random variables such that E[X] = E[Y ].
Then X ≤cx Y if, and only if,

E[|X − a|] ≤ E[|Y − a|] for all a ∈ R (1.22)

Proof. Clearly, if X ≤cx Y , then (1.22) holds. So suppose that (1.22) holds.
Without loss of generality it can be assumed that E[X] = E[Y ] = 0. A
straightforward computation gives:

E[|X − a|] = a+ 2

∫ ∞
a

F (u)du = −a+ 2

∫ a

−∞
F (u)du (1.23)

The result now follows from (1.19) or (1.20).
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An immediate consequence of (1.17) is shown next. Denote the supports
of X and Y by supp(X) and supp(Y ). Let lX = inf {x : x ∈ supp(X)}
and uX = sup {x : x ∈ supp(X)}. Define lY and uY similarly. Then we
have that if X ≤cx Y , then lY ≤ lX and uY ≥ uX . As proof, suppose,
for example, that uY < uX . Let a be such that uY < a < uX . Then
E[(Y − a)+] = 0 < E[(X − a)+], in contradiction to (1.17). Therefore we
must have uY ≥ uX . Similarly using (1.18), it can be shown that lY ≤ lX . As
a consequence we have that if X and Y are random variables whose supports
are intervals, then:

X ≤cx Y ⇒ supp(X) ⊆ supp(Y ) (1.24)

An important characterization of the convex order by construction on the
same probability space is stated in the next Theorem.

Theorem 1.8. Two random variables X and Y satisfy X ≤cx Y if, and only
if, there exist two random variables X̂ and Ŷ , defined on the same probability
space , such that

X̂ =st X (1.25)

Ŷ =st Y (1.26)

and X̂, Ŷ is a martingale, that is,

E[Ŷ |X̂] = X̂ a.s. (1.27)

Furthermore, the random variables X̂ and Ŷ can be selected such that [Ŷ |X̂ =
x] is increasing function in x in the usual stochastic order ≤st.

Proof. It is not easy to proof the constructive part of Theorem 1.8. However,
it easy to prove that if random variables X̂ and Ŷ as described in the Theorem
exist, the X ≤cx Y . Just note that if φ is a convex function, then by Jensen’s
Inequality,

E[φ(X)] = E[φ(X̂)] = E[φ(E[Ŷ |X̂])] ≤ E[E[φ(Ŷ )|X̂]] = E[φ(Ŷ )] = E[φ(Y )]

which is (1.13).

Let consider now the properties of the convex order. Unfortunately it
turns out that this order is not close with respect to weak convergence, as
the following example shows.

Example 1.2. Let
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P (Xn = 1) = 1 for all n ∈ N+

and

P (Yn = n) = 1/n = 1− P (Yn = 0) for all n ∈ N+.

Then the sequences (Xn) and (Yn) converge in distribution to X and Y
respectively where

P (X = 1) = P (Y = 0) = 1

Moreover, notice that Xn ≤cx Yn in fact to prove it, is sufficient to prove that
(1.13) holds for φa(x) = (x − a)+ for every a and for ψ(x) = −x. In fact
every convex function can be approximated by positive linear combination
of this functions. We have:

E[ψ(Xn)] = −1 ≤ −1 = E[ψ(Yn)]

E[ψ(Xn)] = 1− a ≤ 1− a = E[ψ(Yn)] for a ≤ 0

E[ψ(Xn)] = 1− a ≤ 1− a
n

= E[ψ(Yn)] for 0 ≤ a ≤ 1

E[ψ(Xn)] = 0 ≤ 1
n

(n− a)+ = E[ψ(Yn)] for a ≥ 1

thus Xn ≤cx Yn for all n. However, taking the increasing and convex function
f(x) = x we have

E[f(X)] = E[X] = 1 > 0 = E[Y ] = E[f(Y )]

that contradicts X ≤cx Y .

Therefore a stronger definition of convergence is needed to obtain a pos-
itive result. Let see it with other important properties.

Theorem 1.9. (a) Let X and Y be two random variables. Then

X ≤cx Y ⇔ −X ≤cx −Y (1.28)

(b) Let X, Y , and Θ be random variables such that [X|Θ = θ] ≤cx [Y |Θ =
θ] for all θ in the support of Θ. Then X ≤cx Y . That is, the convex
order is closed under mixtures.

22



(c) Let {Xj, j = 1, 2, ...} and {Yj, j = 1, 2, ...} be two sequences of random
variables such that Xj →st X and Yj →st Y as j →∞. Assume that

E[|Xj|]→ E[|X|] and E[|Yj|]→ E[|Y |] as j →∞ (1.29)

If Xj ≤cx Yj, j =1,2,..., then X ≤cx Y .

(d) Let X1, X2, ..., Xm be a set of independent random variables and let
Y1, Y2, ..., Ym be another set of independent random variables. If Xi ≤cx
Yi, for i = 1,2,...m then

m∑
j=1

Xj ≤cx
m∑
j=1

Yj. (1.30)

That is, the convex order is closed under convolutions.

Proof. To prove the statement (a) observe that

ψ(x) is convex ⇔ ψ(−x) is convex

It follows that:

X ≤cx Y ⇔ E[ψ(X)] ≤ E[ψ(Y )] ∀ψ convex⇔ E[ψ(−X)] ≤
E[ψ(−Y )] ∀ψ convex⇔ −X ≤cx −Y

Moreover under the given assumption for any convex function ψ:

E[ψ(X)] = EΘE[ψ(X)|Θ = θ] ≤ EΘE[ψ(Y )|Θ = θ] = E[ψ(Y )]

that proves point (b). In order to prove part (c) of the Theorem we will use
the characterization of the convex order given in Theorem 1.7. Without loss
of generality it can be assumed that E[Xj] = E[Yj] = E[X] = E[Y ] = 0 for
all j. From (1.23) we have that

E[|Xj − a|] = −a+ 2
∫ a
−∞ Fj(u)du for all a

where Fj denotes the distribution function of Xj. In particular, when a = 0,
it is seen that

E[|Xj|] = 2
∫ 0

−∞ Fj(u)du.

Therefore

E[|Xj − a|] = E[|Xj|]− a+ 2
∫ a

0
Fj(u)du.

Using (1.29) it is seen that as j →∞, the latter expression converges to

E[|X − a|] = E[|X|]− a+ 2
∫ a

0
F (u)du.

where F is the distribution function of X. That is, for all a,
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E[|Xj − a|]→ E[|X − a|] as j →∞

Similarly

E[|Yj − a|]→ E[|Y − a|] as j →∞

The result now follows from Theorem 1.7. To prove part (d) of the Theo-
rem note that part (b) can be rephrased as follows: let Z1, Z2, and Θ be
independent random variables and let g be a bivariate function such that

g(Z1,Θ) ≤cx g(Z2,Θ) for all θ in the support of Θ (1.31)

Then

g(Z1,Θ) ≤cx g(Z2,Θ)

If Z1 and Z2 satisfy Z1 ≤cx Z2, then the function g defined by g(z, θ) = z+ θ
satisfies (1.31), since the order ≤cx is closed under shifts. Thus we have
shown that if Z1 ≤cx Z2 and Θ is any random variable independent of Z1

and Z2, then
Z1 + Θ ≤cx Z2 + Θ (1.32)

Repeated applications of (1.32) yield part (d) of Theorem 1.9.

We will need the following Corollary:

Corollary 1.4. Let X, Y and Z be three random variables such that X ≤cx
Y , with Z independent from both X and Y . Then XZ ≤cx Y Z.

Proof. For every realization of the variable Z = z we get Xz ≤cx Y z by
Corollary 1.1 (recall that the variables X and Y are not influenced from the
values of Z). The thesis follows then easily from point (b) of the previous
Theorem.

It should be pointed out, in contrast to part (a) of Theorem 1.9, that if
X and Y are such X ≤cx Y , it is not necessarily true that X ≤cx −Y also,
even when E[X] = E[Y ] = 0. This can be seen easily from (1.24).
Without condition (1.29) the conclusion of part (c) of Theorem 1.9, as shown
in the next example, need not to be true.

Example 1.3. Let the Xj’s be all uniformly distributed on [0.5,1.5]. And
let the Yj’s be such that

P {Yj = 0} = (j − 1)/j P {Yj = j} = 1/j, j ≥ 2

Note that the distributions of the Yj’s converge to a distribution that is de-
generate at 0. Here Xj ≤cx Yj, j = 2, 3, ..., but it is not true that X ≤cx Y .
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Observe that, given the two random variables and their distributions it is
sometimes not clear how to verify that X ≤cx Y . We now point out several
simple conditions that imply the convex order. Recall the notation S−(a)
(defined in (1.12)) for the number of sign change of the function a.

Theorem 1.10. Let X and Y be two random variables with equal means,
density function f and g, distribution functions F and G, and survival func-
tions F and G, respectively. Then X ≤cx Y if any of the following conditions
hold:

S−(g − f) = 2 and the sign sequences is +,−,+ (1.33)

S−(F −G) = 1 and the sign sequences is +,− (1.34)

S−(G− F ) = 1 and the sign sequences is +,− (1.35)

Proof. We will prove the result for the continuous case; the proof in the
discrete case is similar. Suppose that S−(g − f) = 2 and that the sign
sequence is +,−,+. Let a and b (a < b) be two of the crossing points.
Denote I1 = (−∞, a], I2 = (a, b], and I3 = (b,∞). Then g(x)− f(x) ≥ 0 on
I1, g(x)− f(x) ≤ 0 on I2 and g(x)− f(x) ≥ 0 on I3. Therefore

G(x)− F (x) =
∫ x
−∞[g(u)− f(u)]du

is increasing on I1, decreasing on I2 and increasing on I3. It is also clear that

limx→−∞[G(x)− F (x)] = limx→∞[G(x)− F (x)] = 0.

Combining all these observation shows that S−(G − F ) = 1 and that the
sign sequence is +,−. Now suppose that S−(G − F ) = 1 and that the sign
sequence is +,−. Let c be a crossing point. Denote J1 = (−∞, c] and
J2 = (c,∞). Then G(x) − F (x) ≥ 0 on J1 and G(x) − F (x) ≤ 0 on J2.
Clearly:

limx→−∞
∫ x
−∞[G(u)− F (u)]du = 0

and from the equality of the means (see (1.15)) it follows that

limx→∞
∫ x
−∞[G(u)− F (u)]du = 0

Combining this observations shows that (1.20) holds. This proves that (1.33)
and (1.35) imply X ≤cx Y . Note that S−(F − G) = S−(G − F ) with the
same sign sequence. This observation, together with (1.35), shows that (1.34)
implies X ≤cx Y .
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1.3 The Increasing Convex Order

The order we are going to define has the purpose to compare random vari-
ables according both to their “location” (or “magnitude”) and their “spread”.
Let X and Y be two random variables such that

E[φ(X)] ≤ E[φ(Y )]

for all increasing convex [concave] functions φ : R→ R (1.36)

provided the expectations exist. Then X is said to be smaller than Y in
the increasing convex [concave] order (denoted by X ≤icx Y [X ≤icv Y ]).
Roughly speaking, if X ≤icx Y , then X is both “smaller” and “less variable”
than Y in some stochastic sense.
One can also define a decreasing convex [concave] order (denoted by requir-
ing (1.36) to hold for all decreasing convex [concave] functions φ (denoted
by ≤dcx [≤dcv]). The terms “decreasing convex” and “decreasing concave”
are counter intuitive in the sense that if X is smaller than Y in the sense
of either of these two orders, then X is “larger” than Y in some stochastic
sense. These orders can be easily characterized using the orders ≤icx and
≤icv. Therefore, it is not necessary to have a separate discussion for these
orders.
In analogy with Theorem 1.9 (a), the orders ≤icx and ≤icv are related to each
other as follows.

Theorem 1.11. Let X and Y be two random variables. Then

X ≤icx [≤icv]Y ⇔ −X ≥icv [≥icx]− Y (1.37)

Proof. Observe that a function φ satisfies φ(x) is increasing and convex in x
if, and only if, ψ(x) = −φ(−x) is increasing and concave in x. That is, using
(1.28)

E[φ(X)] ≤ E[φ(Y )]⇔ E[φ(−X)] ≤ E[φ(−Y )]⇔ −E[φ(−X)] ≥
−E[φ(−Y )]⇔ E[ψ(X)] ≥ E[ψ(Y )]

for every increasing and convex φ and every increasing and concave ψ.

Note that the function φ, defined by φ(x) = x, is increasing and is both
convex and concave. Therefore, from (1.36) it follows that

X ≤icx Y ⇒ E[X] ≤ E[Y ]

and that
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X ≤icv Y ⇒ E[X] ≤ E[Y ]

provided the expectations exist.
Let F [F ] and G [G] be the survival [distribution] functions of X and Y ,
respectively. For a fixed a, the function φa, defined by φ(x) = (x − a)+, is
increasing and convex. Therefore if X ≤icx Y , then

E[(X − a)+] ≤ E[(Y − a)+] for all a, (1.38)

provided the expectations exist. Using a simple integration by part we can
rewrite (1.38) as (1.19), provided the integrals exist.
We may apply an analogous argument to the ≤icv. For any real number a let
a− denote the negative part of a, that is, a− = a if a ≤ 0 and a− = 0 if a > 0.
For a fixed a, the function ζa defined by ζa(x) = (x− a)−, is increasing and
concave. Therefore, if X ≤icv Y , then

E[(X − a)−] ≤ E[(Y − a)−] (1.39)

for all a, provided the expectation exist. Alternatively, again using a simple
integration by parts, it is seen that (1.39) can be rewritten as∫ x

−∞
F (u)du ≥

∫ x

−∞
G(u)du (1.40)

for all x, provided the integrals exist. Recall now that every increasing con-
vex [concave] function can be approximated (that is, is a limit of) positive
linear combinations of the functions φa’s [ζa’2], for various choice of a’s. By
(1.19), E[φa(X)] ≤ E[φa(Y )] for all a, and this fact implies (1.36) in the
convex case. Similarly, by (1.20), E[ζa(X)] ≤ E[ζa(Y )] for all a, and this fact
implies (1.36) in the concave case. We thus proved the following result.

Theorem 1.12. Let X and Y be two random variables. Then X ≤icx Y
[X ≤icv Y ] if, and only if, (1.19) [(1.40)] holds.

An important characterization of the increasing convex and the increas-
ing concave orders by construction on the same probability space is stated
next.

Theorem 1.13. Two random variables X and Y satisfy X ≤icx Y [X ≤icv
Y ] if, and only if, there exist two random variables X̂ and Ŷ , defined on the
same probability space , such that

X̂ =st X (1.41)
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Ŷ =st Y (1.42)

and X̂, Ŷ is a submartingale [Ŷ , X̂ is a supermartingale], that is,

E[Ŷ |X̂] ≥ X̂ E[X̂|Ŷ ] ≤ Ŷ a.s. (1.43)

Furthermore, the random variables X̂ and Ŷ can be selected such that [Ŷ |X̂ =
x] [[X̂|Ŷ = x]] is increasing function in x in the usual stochastic order ≤st.

Proof. It is not easy to proof the constructive part of Theorem 1.13. However,
it easy to prove that if random variables X̂ and Ŷ as described in the Theorem
exist, the X ≤icx Y . For example, if the first inequality in (1.43) holds and
if φ is a increasing convex function, then by Jensen’s Inequality,

E[φ(X)] = E[φ(X̂)] ≤ E[φ(E[Ŷ |X̂])] ≤ E[E[φ(Ŷ )|X̂]] = E[φ(Ŷ )] = E[φ(Y )]

which is (1.36).

Also in the ≤icx order we have a property similar to (1.11) that is

Theorem 1.14. Let X1, X2, ..., Xm be a set of independent random vari-
ables and let Y1, Y2, ..., Ym be another set of independent random variables. If
Xi ≤icx Yi for i = 1, 2, ...,m then

g(X1, X2, ..., Xm) ≤icx g(Y1, Y2, ..., Ym) (1.44)

for every increasing and componentwise convex function g.

Proof. Without loss of generality we can assume that all the 2m random
variables are independent because such an assumption does not affect the
distributions of g(X1, X2, ..., Xm) and g(Y1, Y2, ..., Ym). The proof is by in-
duction on m. We start considering m = 1 and observing that the compo-
sition of two increasing and convex functions is still increasing and convex.
It follows from the definition of ≤icx order that if g is increasing and convex
then E[φ(g(X))] ≤ E[φ(g(Y ))] for every increasing and convex function φ.
That means g(X) ≤icx g(Y ). Assume that 1.44 holds true for vectors of size
m−1. Let g and φ be increasing and componentwise convex functions. Then

E[φ(g(X1, X2, ..., Xm))|X1 = x] = E[φ(g(x,X2, ..., Xm))] ≤
E[φ(g(x, Y2, ..., Ym))] = E[φ(g(X1, Y2, ..., Ym))|X1 = x]

where the equalities above follow from the independence assumption and the
inequality follows from the induction hypothesis. Taking expectations with
respect to X1, we obtain
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E[φ(g(X1, X2, ..., Xm))] ≤ E[φ(g(X1, Y2, ..., Ym))]

Repeating the argument, but now considering on Y2, ..., Ym and using 1.44
with m = 1, we see that

E[φ(g(X1, Y2, ..., Ym))] ≤ E[φ(g(Y1, Y2, ..., Ym))]

and this proves the result.

1.4 Peakedness Order

In this section we discuss a variability order that applies to random vari-
ables with symmetric distribution functions. It stochastically compares ran-
dom variables according to their distance from their center of symmetry.
In the article written by Birnbaum “On random variable with comparable
peakedness” [5] we may find more detailed properties related to variables
with ordered peakedness. Let X be a random variable with a distribution
function that is symmetric about µ, and let Y be another random variable
with a distribution function that is symmetric about ν. Suppose that

|X − µ| ≤st |Y − ν|

Then X is said to be smaller than Y in the peakedness order (denoted by
X ≤peak Y ).
In the following result we state a characterization for this order when the
two variables have the same mean:

Theorem 1.15. Let X and Y be two random variables with different dis-
tribution functions, but with the same mean. Suppose that the distribution
functions F and G, of X and Y , respectively, are symmetric about the com-
mon mean. Then X ≤peak Y if, and only if,

S−(G− F ) = 1 and the sign sequence is +,−

where S− is defined as (1.12)

1.5 Relations between the different orders

The increasing and convex function’s set is a subset of both the increasing
functions and the convex functions. It than follows that

X ≤st Y ⇒ X ≤icx Y (1.45)
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and
X ≤cx Y ⇒ X ≤icx Y (1.46)

Generally the opposite implication is wrong. The next Theorem state an
equivalence between the ≤icx and the ≤cx in the particular case of E[X] =
E[Y ].

Theorem 1.16. The following statement are equivalent:

(i) X ≤cx Y

(ii) X ≤icx Y and E[X] = E[Y ].

Proof. Assume (i) holds. (ii) easily follows from (1.46) and from (1.14). Let
then (ii) hold. Let f be an arbitrary convex function. Assume for the moment
that there is some finite α such that

x 7→ f(x) + αx is increasing (1.47)

Then E[f(X)] +αE[X] ≤ E[f(Y )] +αE[Y ] and hence E[f(X)] ≤ E[f(Y )], as
E[X] = E[Y ]. If such an α does not exist, then approximate f monotonically
by

fn(x) =

{
f(x) for x ≥ −n
f(−n) + f ′+(−n)(x+ n) otherwise

where f ′+ denotes the right derivative that always exists because of convexity.
All these functions are convex and fulfill (1.47) with α = −f ′+(−n). Hence
the assertion follows from the monotone convergence Theorem.

Moreover a weaker implication from ≤icx order to ≤cx is stated in the
following Theorem:

Theorem 1.17. Let X and Y be two random variables such that X ≤icx Y .
Then we have that |X| ≤cx |Y |.

Proof. This Theorem is based on the fact that

φ(x) increasing and convex⇒ φ(|x|) convex

Let now see a further, useful relation between the three stochastic orders
we introduced.
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Theorem 1.18. (a) Two random variables X and Y satisfy X ≤icx Y if,
and only if, there exists a random variable Z such that

X ≤st Z ≤cx Y

(b) Two random variables X and Y satisfy X ≤icx Y if, and only if, there
exists a random variable Z such that

X ≤cx Z ≤st Y

(c) Two random variables X and Y satisfy X ≤icv Y if, and only if, there
exists a random variable Z such that

X ≤cv Z ≤st Y

(d) Two random variables X and Y satisfy X ≤icv Y if, and only if, there
exists a random variable Z such that

X ≤st Z ≤cv Y

Proof. First we prove the part (a). The convex order and the usual stochastic
order both imply the increasing convex order. It than follows from X ≤st
Z ≤cx Y that X ≤icx Y . So suppose that X ≤icx Y . Let X̂ and Ŷ be defined
on the same probability space, as in Theorem 1.13. Define Ẑ = E[Ŷ |X̂]. It
is seen that E[Ŷ |Ẑ] = E[Ŷ |X̂] = Ẑ. Thus by Theorem 1.8, Ẑ ≤cx Ŷ . Also,
by Theorem 1.13, X̂ ≤ Ẑ, and therefor by Theorem 1.2, X̂ ≤st Ẑ. Letting
Ẑ have the same distribution as Ẑ, we obtain the stated result.
Now prove part (b). Again it is obvious that X ≤cx Z ≤st Y ⇒ X ≤icx Y .
So suppose that X ≤icx Y . Let X̂ and Ŷ be defined on the same probability
space, as in Theorem 1.13. Define Ẑ = Ŷ + X̂ −E[Ŷ |X̂]. Then, by Theorem
1.13, Ẑ ≤ Ŷ , and therefore, by Theorem 1.2, Ẑ ≤st Ŷ . Also, E[Ẑ|X̂] = X̂,
and thus, by Theorem 1.8, X̂ ≤cx Ẑ. Letting Z have the same distribution
as Ẑ, we obtain the stated result.
Part (c) and (d) can be proven similarly. Alternatively, using Theorem 1.11,
part (c) can be obtained form part (a), and part (d) can be obtained form
part (b).
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Chapter 2

ARCH and GARCH Models
for Changing Volatility

2.1 Fundamentals of Time Series Analysis

This section provides a short summary of the essentials of classical uni-
variate time series analysis with focus on that which is relevant for modeling
risk-factor return series. The first three section are developed especially
from the book written by McNeil, Rüdiger, and Embrechts “Quantitative
Risk Management” [13] while in the GARCH section i considered also the
Nelson’s article “Stationarity and persistence in GARCH(1,1) models” [18].
A time series model for a single risk factor is a stochastic process (Xt)t∈Z i.e.
a family of random variables, indexed by the integers and defined on some
probability space (Ω,F, P ).
Assuming they exist, we define the mean function µ(t) and autocovariance
function γ(t, s) of (Xt)t∈Z by

µ(t) = E[Xt] t ∈ Z

γ(t, s) = E[(Xt − µ(t))(Xs − µ(s))] t, s ∈ Z

It follows that the autocovariance function satisfies γ(s, t) = γ(t, s) for all t,
s, and γ(t, t) = var(Xt).
Generally the processes we consider will be stationary in one or both of the
following two senses.

Definition 2.1 (strict stationarity). The time series (Xt)t∈Z is strictly sta-
tionary if
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(Xt1 , ..., Xtn) ≈ (Xt1+k, ..., Xtn+k), (i.e. the two vectors has the same
distribution) for all t1, ...tn, k ∈ Z and for all n ∈ N.

Definition 2.2 (covariance stationarity). The time series (Xt)t∈Z is covari-
ance stationary (or weakly or second-order stationary) if the first two mo-
ments exist and satisfy

µ(t) = µ t ∈ Z

γ(t, s) = γ(t+ k, s+ k) t, s, k ∈ Z

The aim of these two definitions is to underline the similarities of the
time series in any epoch in which we might observe it. Systematic changes
in mean, variance or the covariance between equally observations are incon-
sistent with stationarity.
It may be easily verified that a strictly stationary time series with finite vari-
ance is covariance stationary, but it is important to note that we may define
infinite-variance processes (including certain ARCH or GARCH processes)
which are strictly stationary but not covariance stationary.
From Definition (2.2) we have that for all s, t we have

γ(t− s, 0) = γ(t, s) = γ(s, t) = γ(s− t, 0)

so that the covariance between Xt and Xs only depends on their temporal
separation |s−t|, which is known as the lag. Thus, for a covariance-stationary
process we write the autocovariance function of one variable:

γ(h) := γ(h, 0) for all h ∈ Z

Noting that γ(0) = var(Xt), for all t, we can now define the autocorrelation
function of a covariance-stationary process.

Definition 2.3 (autocorrelation function). The autocorrelation function (ACF)
ρ(h) of a covariance-stationary process (Xt)t∈Z is

ρ(h) = ρ(Xh, X0) = γ(h)/γ(0) for all h ∈ Z

We speak of the autocorrelation or serial correlation ρ(h) at lag h. In
classical time series analysis the set of serial correlations and their empiri-
cal analogues estimated from data are the objects of principal interest. The
study of autocorrelations is known as analysis in the time domain.
The basic building blocks for creating useful time series models are station-
ary processes without serial correlation, known as white noise processes and
defined as follows.
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Definition 2.4 (white noise). (Xt)t∈Z is a white noise process if it is covari-
ance stationary with autocorrelation function

ρ(h) =

{
1, h = 0

0, h 6= 0

A white noise process centered to have mean zero with variance σ2=var(Xt)
will be denoted WN(0,σ2). A simple example of a white noise process is a
series of iid random variables with finite variance, and this is known as a
strict white noise process.

Definition 2.5 (strict white noise). (Xt)t∈Z is a strict white noise process if
it is a series of iid, finite-variance random variables.

A strict white noise (SWN) process centered to have mean zero and vari-
ance σ2 will be denoted SWN(0,σ2).
Although SWN is the easiest kind of noise process to understand, it is not the
only noise that we will present. We will later see that covariance-stationary
ARCH and GARCH process are in fact white noise processes.
Our further noise concept that we use, particularly when we come to discuss
volatility and GARCH processes, is that of a martingale difference sequence.
To discuss this concept we further assume that the time series (Xt)t∈Z is
adapted to some filtration (F)t∈Z which represents the accrual of informa-
tion over time. The sigma algebra Ft represents the available information
at time t and typically this will be the information contained in past and
present values of the time series (Xs)s≤t, which we refer to as the history up
to time t and denote by Ft = σ({Xs : s ≤ t}); the corresponding filtration is
known as the natural filtration.
In a martingale-difference sequence the expectation of the next value, given
current information, is always zero, and this property may be appropriate
for financial return data. A martingale difference is often said to model our
winnings in consecutive rounds of a fair game.

Definition 2.6 (martingale difference). The time series (Xt)t∈Z is known
as a martingale-difference sequence with respect to the filtration (F)t∈Z if
E[|X|] <∞, Xt is Ft-measurable (adapted) and

E[Xt|Ft−1] = 0 for all t ∈ Z

Obviously the unconditional mean of such a process is also zero:

E[Xt] = E[E[Xt|Ft−1]] = 0 for all t ∈ Z
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Moreover, if E[X2
t ] <∞ for all t, then autocovariance satisfy

γ(t, s) = E[XtXs] =

{
E[E[XtXs|Fs−1]] = E[XtE[Xs|Fs−1]] = 0, t ≤ s

E[E[XtXs|Ft−1]] = E[XsE[Xt|Ft−1]] = 0, t ≥ s

Thus a finite-variance martingale-difference sequence has zero mean and zero
covariance. If the variance is constant for all t, it is a white noise process.

2.2 ARMA process

The family of classical ARMA processes are widely used in many tra-
ditional applications of time series analysis. They are covariance-stationary
processes that are constructed using white noise as a basic building block. As
a general notation convention in this section we will denote noise by (εt)t∈Z.

Definition 2.7 (ARMA process). Let (εt)t∈Z be WN(0,σ2
ε). The process

(Xt)t∈Z is a zero-mean ARMA(p,q) process if it is a covariance-stationary
process satisfying difference equations of the form

Xt − φ1Xt−1 − ...− φpXt−p = εt + θ1εt− 1 + ...+ θqεt−q ∀t ∈ Z (2.1)

(Xt) is an ARMA process with mean µ if the centered series (Xt − µ)t∈Z is
a zero-mean ARMA(p,q) process.

Recalling Definition (2.2) we can observe that all ARMA processes are
covariance stationary. Whether the process is strictly stationary or not will
depend on the exact nature of the driving white noise, also known as the pro-
cess of innovations. If the innovations are iid, or themselves form a strictly
stationary process, then the ARMA process will also be strictly stationary.
We now restrict our study to processes satisfying (2.1) and having a repre-
sentation of the form:

Xt =
∞∑
i=0

ψiεt−i (2.2)

where the ψi are coefficients which must satisfy

∞∑
i=0

|ψi| <∞ (2.3)

We will call these kind of ARMA processes causal ARMA.

Observation 2.1. The so-called absolute summability condition (2.3) is a
technical condition which ensures that E[|Xt|] < ∞. This guarantees that
the infinite sum in (2.2) converges absolutely, almost surely, meaning that
both

∑∞
i=0 |ψi||εt−i| and

∑∞
i=0 ψiεt−i are finite with probability one.
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We now verify by direct calculation that casual ARMA processes are
indeed covariance stationary and calculate the form of their autocorrelation
function before going on to look at some simple standard examples.

Theorem 2.1. Any process satisfying (2.2) and (2.3) is covariance station-
ary with an autocorrelation function given by

ρ(h) =

∑∞
i=0 ψiψi+|h|∑∞

i=0 ψ
2
i

(2.4)

Proof. Obviously, for all t we have E[Xt] = 0 and var(Xt) = σ2
ε

∑∞
i=0 ψ

2
i <∞

due to (2.3). Moreover the autocovariances are given by

cov(Xt, Xt+h) = E(XtXt+h) = E[
∑∞

i=0 ψiεt−i
∑∞

j=0 ψjεt+h−j]

Since (εt) is white noise, it follows that E[εt−iεt+h−j 6= 0 ⇔ j = i + h, and
hence that

γ(h) = cov(Xt, Xt+h) = σ2
ε

∑∞
i=0 ψiψi+|h| h ∈ Z

which depends only on the lag h and not on t. The autocorrelation function
follows easily from γ(0) = σ2

ε

∑∞
i=0 ψ

2
i .

Example 2.1 (MA(q) process). It is clear that a pure moving-average pro-
cess

Xt =

q∑
i=1

θiεt−i + εt (2.5)

forms a simple example of a causal process of the form (2.2). It is easily
inferred from (2.3) that the autocorrelation function is given by

ρ(h) =
∑∞

i=0 θiθi+|h|∑∞
i=0 θ

2
i

where θ0 = 1. For |h| > q we have ρ(h) = 0 and the autocorrelation function
is said to cut off at lag q. If this feature is observed in the estimated autocor-
relations of empirical data, it is often taken as an indicator of moving-average
behavior.

Example 2.2 (AR(1) process). The first-order AR process satisfies the set
of difference equations

Xt = φXt−1 + εt ∀t (2.6)

This process is casual if and only if |φ| < 1, and this may be understood
intuitively by iterating the equation (2.6) to get

Xt = φ(φXt−2 + εt−1) + εt−2 = φk+1Xt−k−1 +
∑k

i=0 φ
iεt−i
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Using more careful probabilistic arguments it may be shown that the condi-
tion |φ| < 1 ensures that the first term disappears as k →∞ and the second
term converges. The process

Xt =
∞∑
i=0

φiεt−i (2.7)

turns out to be the unique solution of the defining equation (2.6). It may be
easily verified that this is a process of the form (2.2) and that

∑∞
i=0 |φ|i =

(1−|φ|)−1 so that (2.3) is satisfied. Looking at the form of the solution (2.7),
we see that the AR(1) process can be represented as an MA(∞) process: an
infinite-order moving average process.
The autocovariance and autocorrelation functions of the process may be cal-
culated from (2.4) and (2.2) to be

γ(h) = φ|h|σ2
ε

1−φ2 , ρ(h) = φ|h|, h ∈ Z

Thus the ACF is exponentially decaying with possibly alternating sign.
In the case of general ARMA process, the issue of whether this process has
a causal representation of the form (2.2) is resolved by the study of two
polynomials in the complex plane, which are given in terms of the ARMA
model parameters by

φ̃(z) = 1− φ1z − ...− φpzp

θ̃(z) = 1 + θ1z + ...+ θqz
q

Provided that φ̃(z) and θ̃(z) have no common roots, then the ARMA process
is a causal process satisfying (2.2) and (2.3) if and only if φ̃(z) has no roots
in the unit circle |z| ≤ 1. The coefficient ψi in the representation (2.2) are
determined by the equation ∑∞

i=0 ψiz
i = θ̃(z)

φ̃(z)

Example 2.3 (ARMA(1,1) process). For the process given by

Xt − φXt−1 = εt + θεt−1 ∀t ∈ Z

the complex polynomials are φ̃(z) = 1−φz and θ̃(z) = 1 + θz and these have
no common roots provided φ+ θ 6= 0. The solution of φ̃(z) = 0 is z = 1

φ
and

this is outside the unit circle provided |φ| < 1, so that this is the condition
for causality (as in the AR(1) model of the previous example).
The representation (2.2) can be obtained by considering
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∑∞
i=0 ψiz

i = 1+θz
1−φz = (1 + θz)(1 + φz + φ2z2 + ...), |z| < 1

and is easily calculated to be

Xt = εt + (φ+ θ)
∞∑
i=0

φi−1εt−i (2.8)

Using (2.4) we may calculate that for h 6= 0 the ACF is

ρ(h) = φ|h|−1(φ+θ)(1+φθ)
1+θ2+2φθ

Equation (2.8) shows how the ARMA(1,1) process may be thought of as an
MA(∞) process. In fact, if we impose the condition |θ| < 1, we can also
express (Xt) as the AR(∞) process given by

Xt = εt + (φ+ θ)
∞∑
i=0

(−θ)i−1Xt−i (2.9)

If we rearrange this to be an equation for εt, then we see that we can, in
a sense, reconstruct the latest innovation εt form the entire history of the
process (Xs)s≤t.
The condition |θ| < 1 is known as invertibility condition, and for the general
ARMA(p,q) process the invertibility condition is that θ̃(z) should have no
roots in the unit circle |z| ≤ 1. In practice, the models we fit to real data
will be both invertible and causal solution of the ARMA-defining equations.

Consider a general invertible ARMA model with non-zero mean. For
what comes later it will be useful to observe that we can write such models
as

Xt = µt + εt µt = µ+

p∑
i=1

φi(Xt−i − µ) +

q∑
j=1

θjεt−j (2.10)

Since we have assumed invertibility, the terms εt−j, and hence µt, can be
written in terms of the infinite past of the process up to time t− 1; µt is said
to be measurable with respect to Ft−1 = σ({Xs : s ≤ t− 1}).
If we make the assumption that the white noise (εt)t∈Z is a martingale-
difference sequence with respect to (Ft)t∈Z, then E[Xt|Ft−1] = µt. In other
words, such an ARMA process can be thought of as putting a particular
structure on the conditional mean µt of the process. ARCH and GARCH
processes will later be seen to put structure on the conditional variance
var(Xt−1|Ft − 1).
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2.3 ARCH processes

Definition 2.8. (ARCH process) Let (Zt)t∈Z be SWN(0,1). The process
(Xt)t∈Z is an ARCH(p) (Auto Regressive Conditionally Heteroscedastic) pro-
cess if it is a strictly stationary and if it satisfies, for all t ∈ Z and some strictly
positive-valued process (σt)t∈Z, the equations

Xt = σtZt (2.11)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i (2.12)

where α0 > 0 and αi ≥ 0, i = 1, ..., p.

Let Ft = σ({Xs : s ≤ t}) again denote the sigma algebra representing the
history of the process up to time t so that (Ft)t∈Z is the natural filtration
Clearly, the construction (2.12) ensures that σt is measurable with respect to
Ft−1. This allows us to calculate that, provided E[|Xt|] <∞,

E[Xt|Ft−1] = E[σtZt|Ft−1] = σtE[Zt|Ft−1] = σtE[Zt] = 0 (2.13)

so the ARCH process has the martingale-difference property with respect to
(Ft)t∈Z. If the process is covariance stationary, it is simply a white noise, as
discussed in the previous section.

Observation 2.2. The independence of Zt and Ft−1 that we have assumed
above follows from the fact that an ARCH process must be casual, i.e.
the equations (2.11) and (2.12) must have a solution of the form Xt =
f(Zt, Zt−1, ...) for some f so that Zt is independent of previous values of
the process.

If we simply assume that the process is a covariance-stationary white noise
(for which we will give a condition in the next Theorem), then E[X2

t ] < ∞
and

var(Xt|Ft−1) = E[σ2
tZ

2
t |Ft−1] = σ2

t var(Zt) = σ2
t

Thus the model has the interesting property that its conditional standard
deviation σt, or volatility, is a continually changing function of the previous
squared values of the process. If one or more of |Xt−1|, ..., |Xt−p| are par-
ticularly large, then Xt is effectively drawn from a distribution with large
variance, and may itself be large; in this way the model generates volatility
clusters.
The name ARCH refers to this structure: the model is autoregressive, since
Xt clearly depends on the previous Xt−i, and conditionally heteroscedastic,
since the conditional variance changes continually.
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2.3.1 ARCH(1)

We now analyze some of the properties of the ARCH(1) model. These
properties extend to the whole class of ARCH and GARCH (Generalized
ARCH) models, but are easier to introduce in the simplest case.
Using X2

t = σ2
tZ

2
t and (2.12) in the case of p = 1, we deduce that the squared

ARCH(1) process satisfies

X2
t = α0Z

2
t + α1Z

2
tX

2
t−1 (2.14)

A detailed mathematical analysis of the ARCH(1) model involves the study
of equation (2.14), which is a stochastic recurrence equation (SRE). We would
like to know when this equation has stationary solution expressed in terms
of the infinite history of the innovations, i.e. solutions of the form X2

t =
f(Zt, Zt−1, ...).
For ARCH models we have to distinguish carefully between solutions that
are covariance stationary and solutions that are only strictly stationary. It
is possible to have ARCH(1) models with infinite variance, which obviously
cannot be covariance stationary.
Equation (2.14) is a particular example of a class of recurrence equations of
the form

Yt = AtYt−1 +Bt (2.15)

where (At)t∈Z and (Bt)t∈Z are sequences of iid rvs. Sufficient conditions for
a solutions are

E[max {0, ln|Bt|}] <∞ and E[ln|At|] < 0 (2.16)

where ln+x = max(0,ln x). The unique solution is given by

Yt = Bt +
∞∑
i=1

Bt−i

i−1∏
j=0

At−j (2.17)

where the sum converges absolutely, almost surely.
We can develop some intuition for the condition (2.16) and the form of the
solution (2.17) by iterating equation (2.15) k times to obtain

Yt = At(At−1Yt−2 +Bt−1)+Bt = Bt+
∑k

i=1Bt−i
∏i−1

j=0At−j+Yt−k−1

∏k
i=0At−i

The conditions (2.16) ensure that the middle term on the right-hand side
converges absolutely and the final term disappears. In particular note that:

1
k+1

∑k
i=0 ln|At−i| → E[ln|At|] < 0 a.s.
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by the strong law of large numbers∏k
i=0 |At−i| = e(

∑k
i=0 ln|At−i|) → 0 a.s.

which shows the importance of the E[ln|At|] < 0 condition. The solution
(2.17) to the standard recurrence equation is a strictly positive process (be-
ing a function of iid variables (As, Bs)s≤t), and the E[ln|At|] < 0 condition
turns out to be the key to the strict stationary of ARCH and GARCH mod-
els.
The squared ARCH(1) model (2.14) is a stochastic recurrence relation of the
form (2.15) withAt = α1Z

2
t andBt = α0Z

2
t . Thus the conditions (2.16) trans-

late into the requirements that E[ln+|α0Z
2
t |] < ∞, which is automatically

true for the ARCH(1) process as we have defined it, and E[ln(α1Z
2
t )] < 0.

This is the condition for a strictly stationary solution of the ARCH(1) equa-
tions and it can be shown that it is in fact a necessary and sufficient condition
for strict stationary. From (2.17), the solution of the equation (2.14) takes
the form

X2
t = α0

∞∑
i=0

αi1

i∏
j=0

Z2
t−j (2.18)

If the (Zt) are standard normal innovations, then the condition for a strictly
stationary solution is approximately α1 < 3.562; perhaps somewhat surpris-
ingly, if the (Zt) are scaled t innovations with fur degrees of freedom and
variance 1, the condition is α1 < 5.437. Strict stationary depends on the
distribution of the innovations but covariance stationary does not; the nec-
essary and sufficient condition for covariance stationarity is always α1 < 1,
as we now prove.

Theorem 2.2. The ARCH(1) process is a covariance-stationary white noise
process if and only if α1 < 1. The variance of the covariance-stationary
process is given by α0

1−α1
.

Proof. Assuming covariance stationarity it follows from (2.14) and E[Z2
t ] = 1

that

σ2
x = E[X2

t ] = α0 + α1E[X2
t−1] = α0 + α1σ

2
x

Clearly, σx = α0

1−α1
and we must have α1 < 1.

Conversely, if α1 < 1, then by Jensen inequality,

E[ln(α1Z
2
t )] ≤ lnE[α1Z

2
t )] = ln(α1) < 0

and we can use (2.18) to calculate that

E[X2
t ] = α0

∑∞
i=0 α

i
1 = α0

1−α1
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The process (Xt)t∈Z is a martingale difference with a finite, non-time-dependent
second moment. Hence it is white noise process.

It is clear from (2.18) that the distribution of the (Xt) in an ARCH(1)
model bears a complicated relationship to the distribution of the innovations
(Zt). Even if the innovations are Gaussian, the stationary distribution of the
time series is not Gaussian, but rather leptokurtic distribution with more
slowly decaying tails.

Let know introduce some basic tool concerning the higher order moments
of an ARCH(1) process. These conditions will be useful in the next section
for the GARCH(1,1) model. More than the explicit formulas, we want to
evidence how important are innovations’ property in relation to the ARCH
process itself.
We will see in the next chapter that there is a strict relationship between the
≤icx order and the kurtosis of the ordered variables.

Theorem 2.3. For m ≥ 1, the strictly stationary ARCH(1) process has finite
moments of order 2m if and only if E[Z2m

t ] <∞ and α1 < (E[Z2m
t ])−1/m.

Proof. We rewrite (2.18) in the form X2
t = Z2

t

∑∞
i=0 Yt,i for positive random

variables Yt,i = α0α
i
1

∏i
j=1 Z

2
t−j, i ≥ 1, and Yt,0 = α0. For m ≥ 1 the following

inequalities hold (the latter being Minkowsky’s inequality):

E[Y m
t,1] + E[Y m

t,2] ≤ E[(Yt,1 + Yt,2)m] ≤ ((E[Y m
t,1])1/m + (E[Y m

t,2])1/m)m.

Since

E[X2m
t ] = E[Z2m

t ]E[(
∑∞

i=0 Yt,i)
m]

it follows that

E[Z2m
t ]

∑∞
i=0 E[Y m

t,i ] ≤ [X2m
t ] ≤ E[Z2m

t ](
∑∞

i=0(E[Y m
t,i ])

1/m)m

Since E[Y m
t,i ] = αm0 α

im
1 (E[]Z2m

t )i, it may be deduced that all three quantities
are finite if and only if E[Z2m

t ] <∞ and αm1 E[Z2m
t ] < 1

For example for a finite fourth moment (m=2) we require α1 < 1/
√

3 in
the case of Gaussian innovations and α1 < 1/

√
6 in the case of t innovations

with six degrees of freedom; for t innovations with four degrees of freedom
the fourth moment is undefined.
Assuming the existence of a finite fourth moment, it is easy to calculate its
value, and also that of the kurtosis of the process. We square both sides of
(2.14), take expectations of both sides and then solve for E[X4

t ] to obtain

E[X4
t ] =

α2
0E[Z4

t ](1−α2
1)

(1−α1)2(1−α2
1E[Z4

t ])
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The kurtosis of the stationary distribution κX can then calculated to be

κX =
E[X4

t ]

E[X2
t ]2

=
κZ(1−α2

1)

(1−α2
1κZ)

where κZ = E[Z4
t ] denotes the kurtosis of the innovations. Clearly when

κZ > 1, the kurtosis of the stationary distribution is inflated in comparison
with that of the innovation distribution; for the Gaussian or t innovations
κX > 3, so the stationary distribution is leptokurtic.

2.4 GARCH process

Definition 2.9 (GARCH(p,q)). Let (Zt)t∈Z be SWN(0,1). The process
(Xt)t∈Z is a GARCH(p,q) process if it is strictly stationary and if it sat-
isfies, for all t ∈ Z and some strictly positive-valued process (σt)t∈Z, the
equations

Xt = σtZt, σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j (2.19)

where α0 > 0, αi ≥ 0, i = 1, ..., p, and βj ≥ 0, j = 1, ...q.

the GARCH process are generalized ARCH processes in the sense that
the square volatility σ2

t is allowed to depend on previous squared volatilies,
as well as previous squared values of the process.
In practice, low order GARCH models are most widely used and we will con-
centrate on the GARCH(1,1) model. In this model periods of high volatility
tend to be persistent, since |Xt| has a chance of being large if either |Xt−1| is
large or σt−1 is large. It follows from (2.19) that for a GARCH(1,1) model
we have

σ2
t = α0 + (α1Z

2
t−1 + β)σ2

t−1 (2.20)

which is again a stochastic recurrence relation of the form Yt = AtYt−1 + Bt

as in (2.15). This time it is a stochastic recurrence relation for Yt = σ2
t rather

than X2
t , but its analysis follows easily form the ARCH(1) case.

The conditions E[ln|At|] < 0 for a strictly stationary solution of (2.15) trans-
lates to the condition E[ln(α1Z

2
t +β)] < 0 for (2.20) and the general solution

(2.17) becomes

σ2
t = α0 + α0

∞∑
i=1

i∏
j=1

(α1Z
2
t−j + β) (2.21)

If (σ2
t )t∈Z is a strictly stationary process, then so is (Xt)t∈Z, since Xt = σtZt

and (Zt)t∈Z is simply strict white noise. The solution of the GARCH(1,1)
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defining equations is then

Xt = Zt

√√√√α0(1 +
∞∑
i=1

i∏
j=1

(α1Z2
t−j + β)) (2.22)

and we can use this to derive the condition for covariance stationarity.

Theorem 2.4. The GARCH(1,1) process is a covariance-stationary white
noise process if and only if α1 + β < 1. The variance of the covariance-
stationary process is given by α0

(1−α1−β)

Proof. We use a similar argument to Theorem (2.2) and make use of (2.22)

Using a similar approach to Theorem (2.3) we can use (2.22) to derive
conditions for the existence of higher moments of a covariance-stationary
GARCH(1,1) process. For the existence of a fourth moment, a necessary and
sufficient condition is that E[(α1Z

2
t + β)2] < 1, or alternatively that

(α1 + β) < 1− (κZ − 1)α2
1

Assuming this to be true we calculate the fourth moment and kurtosis of Xt.
We square both sides of (2.20) and take expectations to obtain

E[σ4
t ] = α2

0 + (α2
1κZ + β2 + 2α1β)E[σ4

t ] + 2α0(α1 + β)E[σ2
t ]

Solving for E[σ4
t ], recalling that E[σ2

t ] = E[X2
t ] = α0

(1−α1−β)
, and setting

E[X4
t ] = κZE[σ4

t ], we obtain

E[X4
t ] =

α2
0κZ(1−(α1+β)2)

(1−α1−β)2(1−α2
1κZ−β2−2α1β)

from which it follows that

κX = κZ(1−(α1+β)2)

(1−(α1+β)2−(κZ−1)α2
1)

Again it is clear that the kurtosis of Xt is greater than that of Zt, whenever
κZ > 1, such as for Gaussian and scaled t innovations.
Higher-order ARCH and GARCH models have the same general behavior
as ARCH(1) and GARCH(1,1), but their mathematical analysis becomes
more tedious. The condition for a strictly stationary solution of the defining
stochastic recurrence equation has been derived, but it is complicated. The
necessary and sufficient condition that this solution is covariance stationary
is
∑p

i=1 αi +
∑q

j=1 βj < 1.
A squared GARCH(p,q) process has the structure
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X2
t = α0 +

∑max(p,q)
i=1 (αi + βi)X

2
t−i −

∑q
j=1 βjVt−j + Vt

where αi = 0 for i = p + 1, ...q if q > p, or βj = 0 for j = q + 1, ..., p if
q < p. This resembles the ARMA(max(p,q),q) process and is formally such
a process provided E[X4

t ] <∞.

2.4.1 GARCH with leverage

One of the main criticism of the standard ARCH and GARCH model is
the rigidly symmetric way in which the volatility reacts to recent returns,
regardless of their sign. Economic theory suggests that market information
should have an asymmetric effect on volatility, whereby bad news leading to
a fall in the equity value of a company tends to increase the volatility. This
phenomenon has been called a leverage effect, because a fall in equity value
causes an increase in the debt-to-equity ratio so-called leverage of company
and should consequently make the stoke more volatile. At a less theoretical
level it seems reasonable that falling stock values might lead to a higher level
of investor nervousness than rises in value of the same magnitude.
One method of adding a leverage effect to a GARCH(1,1) model is by intro-
ducing an additional parameter into the volatility equation (2.14) to get

σ2
t = α0 + α1(Xt−1 + δ|Xt−1|)2 + βσ2

t−1 (2.23)

We assume that δ ∈ [−1, 1] and α1 ≥ 0 as in the GARCH(1,1) model.
Observe that (2.23) may be written as

σ2
t =

{
α0 + α1(1 + δ)2X2

t−1 + βσ2
t−1 Xt−1 ≥ 0

α0 + α1(1− δ)2X2
t−1 + βσ2

t−1 Xt−1 < 0

and hence that

∂σ2
t

∂X2
t−1

=

{
α1(1 + δ)2σ2

t−1 Xt−1 ≥ 0

α1(1− δ)2σ2
t−1 Xt−1 < 0

The response of volatility to the magnitude of the most recent return depends
on the sign of that return, and we generally expect δ < 0, so bad news has
the greater effect.

2.4.2 Threshold GARCH

Observe that (2.23) may easily be rewritten in the form

σ2
t = α0 + α̃1X

2
t−1 + δ̃ I{Xt−1<0}X

2
t−1 + βσ2

t−1 (2.24)
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where I is the indicator function, α̃1 = α1(1 + δ)2 and δ̃ = −4δα1. Equation
(2.24) gives the most common version of a threshold GARCH (or TGARCH)
model. In effect, a threshold has been set at level zero, and at time t the
dynamics depend on whether the previous value of the process Xt−1 (or
innovation Zt−1) was below or above this threshold. However, it is also
possible to set non-zero thresholds in TGARCH models, so this represents a
more general class of model than GARCH with leverage.
In a less common version of threshold GARCH the coefficients of the GARCH
effects depend on the signs of previous values of the process; this gives a first-
order process of the form

σ2
t = α0 + α1X

2
t−1 + βσ2

t−1 + δ I{Xt−1<0}σ
2
t−1 (2.25)

or alternatively{
σ2
t = ω0 + α0X

2
t−1 + β0σ

2
t−1, if Xt−1 > 0

σ2
t = ω1 + α1X

2
t−1 + β1σ

2
t−1, if Xt−1 ≤ 0

(2.26)

As in the standard GARCH(1,1) model we impose the non-negative con-
straints on all parameters to ensure the volatility to be non-negative. How-
ever, the conventional stationary conditions for GARCH model may not ap-
ply here. Since the volatility can fall into two different regimes, it is possible
that conditional variance is not stationary in one regime but stationary in the
other. See [21] for further details concerning the conditions on this model’s
parameters to guarantee stationarity and other properties. We will consider
just GARCH with leverage with threshold set to zero that is easier to analyze
then the general model belonging to this family of processes.
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Chapter 3

Stochastic Comparison

Consider a stock price Pt at time t. We simulate its value at time t + 1
with the formula:

Pt+1 = Pte
Xt

where Xt is the logreturn simulated with the ARCH and GARCH models.
Observe that Pt+1 = P0e

∑t
i=0Xi = P0e

St . We then have that the stock price
is an increasing convex function of the total logreturns. Thanks to equation
(1.46) and Theorem (1.14):

St ≤cx S̃t ⇒ St ≤icx S̃t ⇒ Pt+1 ≤icx P̃t+1

We then have that for every option with increasing and convex payoff χ he
have that

Pt+1 ≤icx P̃t+1 ⇒ C = E[χ(Pt+1)] ≤ E[χ(P̃t+1)] = C̃

where C is the option price.
It’s then clear how important is to prove the propagation of convex order to
the total logreturns as it implies the order between some option prices.
In the first four section we analyze the propagation of stochastic orders from
the innovations to logreturns and total logreturns under some hypothesis.
From the fifth section on we consider a model at a time and see if the previous
results do apply and if there is a propagation of any order from the parameters
to the logreturns and total logreturns.

3.1 General GARCH models

We want now to analyze if the stochastic orders of the innovations is
propagated to the GARCH process itself and eventually how. We consider

47



model of two different very general forms; the first model (M1) is:
Xn = σnεn, n = 0, 1, ..

εn ⊥ σn, E[εn] = 0

σn+1 = f I(|εn|, σn)

(3.1)

with f I : R2
+ → R+, increasing and componentwise convex.

The second model (M2) is
Xn = σnεn, n = 0, 1, ..

εn ⊥ σn, E[εn] = 0

σ2
n+1 = f II(ε2

n, σ
2
n)

(3.2)

with f II : R2
+ → R+, increasing and componentwise convex. In both cases

the innovations εn are independent and identically distributed. Observe that
the recursive dynamics in (M1) is defined in terms of volatility σn, while in
(M2) in terms of variance, σ2

n .
As we discussed in the previous chapter the usual GARCH(1,1) model is a
particular case of both M1 and M2, and is defined as follows:{

Xn = σnεn, n = 0, 1, ..

σ2
n+1 = α0 + α1X

2
n + βσ2

n

(3.3)

With α0, α1, β > 0 and, possibly, α1 +β < 1, in order to guarantee covariance
stationarity as we saw in Theorem (2.4). Both models start with a possibly
random σ0 > 0, by drawing a random ε0.
In order to express the explicit solution of the recursive expressions of σn and
σ2
n, we introduce the following notations

σ1 = gI1(|ε0|, σ0) = f I(|ε0|, σ0)

σn+1 = gIn+1(|ε0|, |ε1|, ..., |εn|, σ0) = f I(gIn(|ε0|, |ε1|, ..., |εn−1|, σ0), |εn|) (3.4)

for n = 1, 2, 3, ..., and

σ2
1 = gII1 (ε2

0, σ
2
0) = f II(ε2

0, σ
2
0)

σ2
n+1 = gIIn+1(ε2

0, ε
2
1, ..., ε

2
n, σ

2
0) = f II(gIIn (ε2

0, ε2, ..., ε
2
n−1, σ

2
0), ε2

n) (3.5)

for n = 1, 2, 3, ....
We now want conditions to describe monotonicity and convexity properties
of σn or σ2

n in terms of the properties of f I and f II .
We then state the following general Theorem that we are going to apply

in a particular case:
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Theorem 3.1. Consider the recurrence equation:

Xn+1 = f(Zn, Xn)

Write zn = (Z0, Z1, .., Zn) and

X0 = g1(Z0, X0) = f(Z0, X0)

Xn+1 = gn+1(zn, X0) = f(gn(zn−1, X0), Zn) for n = 1, 2, 3, ... (3.6)

(a) If f is increasing in both variables, then all gn are increasing in (zn, X0).

(b) If f is increasing in the second variable X and convex in the vector
argument (z,X), then all gn are convex in (zn, x0)

(c) If f is increasing in the second variable X and componentwise convex
in X and Z, then all gn are componentwise convex in X0 and all Zi for
i = 0, ..., n.

Proof. (a) g0 is increasing in Z0 by the monotonicity of f in Z. Proceeding
with the induction step, since

gk+1(Z0, ..., Zk+1, X0) = f(gk(Z0, ...Zk, X0), Zk+1)

we get that gk+1 is increasing in all its argument because gk is increasing
in (zk, X0) for the induction hypothesis and f is increasing. We have
then established the monotonicity of gk for all k=0,1,2,...

(b) Again, g0 is convex in (Z0, X0) by the convexity of f in (Z,X). For
0 < λ < 1, assuming gk is convex in (zk, X0), it is

gk+1(λz′k+1 + (1− λ)z′′k+1 , λX
′
0 + (1− λ)X ′′0 )

= f(gk(λz′k + (1− λ)z′′k , λX
′
0 + (1− λ)X ′′0 ) , λZ ′k+1 + (1− λ)Z ′′k+1)

≤ f(λgk(z
′
k, X

′
0) + (1− λ)gk(z

′′
k, X

′′
0 ) , λZ ′k+1 + (1− λ)Z ′′k+1)

≤ λf(gk(z
′
k, X

′
0) , Z ′k+1) + (1− λ)f(gk(z

′′
k, X

′′
0 ) , Z ′′k+1)

= λgk+1(z′k+1, X
′
0) + (1− λ)gk+1(z′′k+1, X

′′
0 ) (3.7)

that is the convexity of gk+1 in (zn, X0).

(c) This point is proven similarly as (b).

From our hypothesis, using this Theorem we get the following:
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Lemma 3.1. Let gIn+1, g
II
n+1 : Rn+2

+ → R+ be defined as in (3.4) and (3.5).
Then gIn+1 and gIIn+1 are increasing and componentwise convex.

The Lemma’s thesis follows easily from the points (a) and (c) of Theorem
3.1.
The previous Lemma is particularly useful in the case of iterative models
or stochastic recurrence as it gives conditions that don’t request different
analysis for every iterative step.

3.2 Univariate Comparison of Xn

The aim of this section is to establish comparison results for Xn when the
distributions of the innovations are changed from εk to ε̃k. In order to get
these results, the assumption that the innovations are identically distributed
is not necessary, while the independence assumption is essential. In the
following statement only the distribution of a single innovation εk will be
changed, and the impact of this change on Xn will be investigated.
We will see that in the general context M1 and M2, the ordering that are
naturally propagated from the innovations εk to Xn are the ≤st and the ≤icx
ordering between absolute values or squared variables.
In order to better interpret these orders, in the next section we will see that
the ≤st ordering between absolute values of the logreturns or squares can be
seen as a variability ordering, while the ≤icx ordering between them can be
interpreted as a kurtosis ordering.
In order to establish these results, we proceed in two steps: first we consider
the volatilities σn and then the variables Xn. The first step is an immediate
consequence of Lemma 3.1:

Theorem 3.2 (Comparison of σn and σ2
n).

a) Let σn+1 be as in (3.1) and |εk| ≤st |ε̃k|; it follows that σn+1 ≤st σ̃n+1.

b) Let σn+1 be as in (3.1) and |εk| ≤icx |ε̃k|; it follows that σn+1 ≤icx σ̃n+1.

c) Let σ2
n+1 be as in (3.2) and ε2

k ≤st ε̃2
k; it follows that σ2

n+1 ≤st σ̃2
n+1.

d) Let σ2
n+1 be as in (3.2) and ε2

k ≤icx ε̃2
k; it follows that σ2

n+1 ≤icx σ̃2
n+1.

Proof. Since from Lemma 3.1 in model M1 we do have (3.4) with gIn+1 in-
creasing and convex, item a) and b) follow respectively from point (b) of
Theorem 1.3 and from Theorem 1.14. Similarly, since from Lemma 3.1 in
model M1 we do have (3.5) with gIIn+1 increasing and convex, from the same
Theorems we get c) and d).
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The comparison results for σn and σ2
n lead to the following comparisons

of the variables Xn:

Theorem 3.3 (Comparison of Xn and X2
n).

a) Let Xn be as in (3.1) and |εk| ≤st |ε̃k|; it follows that |Xn| ≤st |X̃n.

b) Let Xn be as in (3.1) and |εk| ≤icx |ε̃k|; it follows that |Xn| ≤icx |X̃n.

c) Let Xn be as in (3.2) and ε2
k ≤st ε̃2

k; it follows that X2 ≤st X̃2
n.

d) Let Xn be as in (3.2) and ε2
k ≤icx ε̃2

k; it follows that X2 ≤icx X̃2
n.

Proof. Observe that |Xn| = σn|εn| and X2
n = σ2

nε
2
n with σn independent from

εn. Then both |Xn| and X2
n are increasing functions of their arguments.

Using the hypothesis and the previous Theorem er have that the item a) and
c) follow from Theorem 1.3. Similarly item b) and d) follow from Theorem
1.14.

A natural question that arises at this point is if also the convex order is
propagated that is if εk ≤cx ε̃k ⇒ Xn ≤cx X̃n. This is indeed the case of
model M1 and M2 (we will prove this just for the M1 case). We start with
a simple lemma:

Lemma 3.2. Let σ and σ̃ be nonnegative, with σ ≤st σ̃. Let ε be indepen-
dent from σ and σ̃, with E[ε] = 0; then σε ≤cx σ̃ε.

Proof. Using Theorem 1.2 we construct two identically distributed copies of σ
and σ̃ on the same probability space (Ω,F, P ), such that σ ≤ σ̃ almost surely.
We then have, using Corollary 1.2 (with a = σ, b = σ̃ and X = Y = ε), that
for every realization of σ

E[ψ(σε)] ≤ E[ψ(σ̃ε)] for all convex functions ψ

We can now conclude using Theorem 1.9, point (b).

We can then state an important Theorem:

Theorem 3.4 (Propagation of Convex Order). Let Xn be as in (3.1) and
εk ≤cx ε̃k; it follows that Xn ≤cx X̃n.

Proof. First of all we remark that since εk ≤cx ε̃k, it follows using (1.46) that
εk ≤icx ε̃k. We then have by Theorem 1.17 that |εk| ≤cx |ε̃k| and, finally
(using again (1.46)), |εk| ≤icx |ε̃k|. We now get from Theorem 3.2 (point (b))
that σn+1 ≤icx σ̃n+1. From Theorem 1.18 (point (a)) there exist a random
variable σn+1 such that:
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σn+1 ≤st σn+1 ≤cx σ̃n+1

By Lemma 2.1, we have that σn+1 ≤st σn+1 implies σn+1εn+1 ≤cx σn+1εn+1

(with εn+1 ⊥ σn+1, εn+1 ⊥ σn+1 and E[εn+1] = 0). On the other hand
by Corollary 1.3 σn+1 ≤cx σ̃n+1 implies that σn+1εn+1 ≤cx σ̃n+1εn+1. By
transitivity:

Xn+1 = σn+1εn+1 ≤cx σ̃n+1εn+1 = X̃n+1

3.3 The relevant orderings

In the preceding section the orderings defined by |X| ≤st |Y |, X2 ≤st Y 2,
|X| ≤icx |Y | and X2 ≤icx Y 2 have arisen naturally.
In order to better understand their meaning, especially concerning the in-
novations, in the following lemmas we identify some necessary and sufficient
conditions in the continuous and symmetric case. We have the following:

Lemma 3.3. Let X and Y be symmetric with zero mean, continuous distri-
butions F and G. The following conditions are equivalent:

(a) X2 ≤st Y 2;

(b) |X| ≤st |Y |;

(c) X ≤peak Y , where ≤peak is the order introduced in the first Chapter;

(d) S−(G−F ) = 1 with sign sequence +,-, where S−(G−F ) is the number
of intersections between G and F as defined in (1.12)

Proof. The equivalence of (a) and (b) is an immediate consequence of The-
orem 1.3 (point (b)). The equivalence of (b) and (c) is the definition of the
peakedness ordering, while the equivalence between (c) and (d) follows from
Theorem 1.15 (recall that we have E[X] = E[Y ] = 0).

Lemma 3.4. Let X and Y be symmetric with continuous distribution F
and G. The following conditions are equivalent:

(a) X2 ≤icx Y 2;

(b)
∫∞
x
F (u)udu ≤

∫∞
x
G(u)udu for each x ≥ 0, where F (u) = 1 − F (u)

and G(u) = 1−G(u);
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(c) E[(X2 − k)+] ≤ E[(Y 2 − k)+] for each k ≥ 0.

Proof. (a)⇔ (b):
Observe that under our hypothesis:

FX2(t) = P (X2 < t) = P (|X| <
√
t) = F (

√
t)− F (−

√
t) =

F (
√
t)− (1− F (

√
t) = 2F (

√
t)− 1

and FX2(t) = 2−2F (
√
t), for t ≥ 0 (the same relations hold for GY 2 and G).

To prove the equivalence of (a) and (b) we show the equivalence between (b)
and (1.19):∫∞
t
FX2(x)dx ≤

∫∞
t
GY 2(x)dx⇔

∫∞
t

2(1−F (
√
x)dx ≤

∫∞
t

2(1−G(
√
x)dx⇔∫∞

t
F (
√
x)dx ≤

∫∞
t
G(
√
x)dx⇔

∫∞√
t
F (u) · u · du ≤

∫∞√
t
G(u) · u · du

where u =
√
x. We conclude using Theorem (1.12).

(a)⇔ (c):
The implication (a)⇒ (c) is trivial. Therefore assume that E[(X2 − k)+] ≤
E[(Y 2 − k)+] for all k ≥ 0, and let f be an arbitrary increasing convex
function. We have to consider three cases.

I Assume for he moment that limt→−∞ f(t) = 0. It is well known that f
then is the maximum of a countable set {l1, l2, ...} of increasing linear
functions; take, for example, the lines of support in all rational points.
Now define

fn(t) = max {0, l1(t), l2(t), ..., ln(t)} .

Then fn converges to f from below, and each fn is piecewise linear with
a finite number of kinks. Therefore fn can be written as

fn(x) =
∑n

i=1 ain(x− bin)+

for some constant ain ≥ 0 and bin ∈ R. Hence

E[fn(X2)] =
∑n

i=1 ain(X2 − bin)+ ≤
∑n

i=1 ain(Y 2 − bin)+ = E[fn(Y 2)].

Applying the monotone convergence Theorem implies E[f(X2)] ≤ E[f(Y 2)].

II If limt→−∞f(t) = α ∈ R, then the problem can be reduced to case I by
considering the function f − α.

III Let limt→−∞f(t) = −∞. Then fn(x) = max {f(x),−n} fulfills the
assumptions of case 2 for all n, and fn converges to f monotonically.
Hence the assertion follows from the monotone convergence Theorem.
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The first Lemma shows that for symmetric variables the orderings |X| ≤st
|Y | and X2 ≤st Y 2 are variability comparisons equivalent to the peakedness
ordering, that in this case boils down to item (d), that is the validity of
a single cut condition between the distribution functions. In the typical
econometric applications these orderings are however not very relevant since
the innovations satisfy E[ε2

k] = 1, and hence E[ε2
k] ≤st E[ε̃2

k] would imply
ε2
k =st ε̃

2
k (see Theorem 1.4).

In the normalized case the ordering X2 ≤icx Y 2 becomes equivalent to X2 ≤cx
Y 2; as stated in Theorem (1.16).
We now give a sufficient and a necessary condition on the increasing and
convex order:

Lemma 3.5. Let X and Y be symmetric with continuous distributions F
and G and with E[X2] = E[Y 2] = 1.

(a) If the densities of X and Y cross 4 times, with density of X being lower
in the tails and in the center, and higher in the intermediate region,
then X2 ≤icx Y 2.

(b) If X2 ≤icx Y 2 and X and Y have finite fourth moments, then β2(X) <
β2(Y ), where β2 is Pearson’s kurtosis coefficient.

Proof.

(a) Under our hypothesis we get fX2(t) = f(
√
t)√
t

for t > 0 deriving from

the FX2(t)’s formulas obtained in the previous Lemma. Since X and
Y are symmetrical, we have that the four intersection points between
the densities f and g are symmetrical with respect to the origin. Hence
the densities of X2 and Y 2 cross in two points and since E[X2] = E[Y 2]
from Theorem 1.10 we have that X2 ≤cx Y 2 (that implies the increasing
convex order).

(b) In our case β2(X) = E[X4] and hence the thesis follows from the defi-
nition of the convex order.

This Lemma shows that the comparison X2 ≤icx Y 2 can be interpreted as
a classical kurtosis ordering; the crossing condition is usually referred in
kurtosis ordering literature as a Dyson-Finucan condition. You can see the
article “A note on kurtosis” by Finucan [9] for further details.
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3.4 Convex Comparison for Total Logreturns

In financial applications the variables Xn typically represent logreturns,
that are additive quantities. The over-the-period total return is given by
Sn =

∑n
k=1 Xk. It is therefore natural to ask if some of the comparison re-

sults obtained in the second section of this chapter. We now consider the
case of convex order, that is, we wonder if εk ≤cx ε̃k ⇒ Sn ≤cx S̃n.
The problem is not trivial since Sn cannot be expressed as a sum of indepen-
dent variables, so the standard results about convex ordering of sums cannot
be applied; we are able to prove a positive result in the case of model M1
and for symmetric innovations. We start with a basic lemma:

Lemma 3.6. Let φ ∈ C2(R) be convex and gi ∈ C2(R) be convex and
nonnegative. Let a, b ∈ R and Pm := {−1, 1}m. It follows that

h(u) =
∑

p∈Pm
φ(a+ bu+

∑m
i=1 pigi(u))

is convex.

Proof. We can compute:

h′(u) =
∑

p∈Pm
φ′(a+ bu+

∑m
i=1 pigi(u)) · (b+

∑m
i=1 pig

′
i(u))

h′′(u) =
∑

p∈Pm
φ′′(a+ bu+

∑m
i=1 pigi(u)) · (b+

∑m
i=1 pig

′
i(u))2 +∑

p∈Pm
φ′(a+ bu+

∑m
i=1 pigi(u)) · (

∑m
i=1 pig

′′
i (u))

Let start considering the term before the plus. It’s surely positive in fact it
is composed by the second derivative of φ that is positive by hypothesis and
by a square. Let consider now the second term is given by

Am =
∑

p∈Pm
φ′(a+ bu+

∑m
i=1 pigi(u)) · (

∑m
i=1 pig

′′
i (u))

Let us denote with P a random vector with a discrete uniform distribution
on Pm; clearly E[P ] = 0 and the components of P are independent. Notice
that Am is the sum of all possible values of the function f(P ) = φ′(a+ bu+
g(u) ·P )(g′′(u) ·P ) with P ∈ Pm. We can then write it as the expected value
of f(P ) if we add to every coefficient of the summation its probability i.e.

1
2m

. We then get

Am = 2mE[φ′(a+ bu+ g(u) · P )(g′′(u) · P )]

Since the functions φ′(a + bu + g(u) · P ) and (g′′(u) · P ) are componentwise
increasing in P (that is their covariance is positive), from the covariance
inequality (0 ≤ Cov(X, Y ) = E[XY ]− E[X]E[Y ]) it follows that
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Am = 2mE[φ′(a+ bu+ g(u) · P )(g′′(u) · P )]
≥ 2mE[φ′(a+ bu+ g(u) · P )] E[(g′′(u) · P )] = 0

since E[P ] = 0.

We remark that in this Lemma the smoothness requirements on φ and
on the gi can be dropped; we preferred this formulation in order to simplify
the proof. Since in this section we consider only model M1, we define

gn(ε0, ε1, ..., εn−1, σ0) := gIn(|ε0|, |ε1|, ..., |εn−1|, σ0)

from Lemma 3.1, it is clear that gn is even and ccx. We have

Sn = X0 +X1 + ...+Xn = σ0ε0 + σ1ε1 + ...+ σnεn =

= σ0ε0 + g1(ε0, σ0)ε1 + ...+ gn(ε0, ..., εn−1, σ0)εn =

= Sn(ε0, ε1, ..., εn, σ0) (3.8)

The main problem is proving the propagation of convexity to the sums is that
Sn in sot a componentwise convex function of the innovations εk; indeed,
each gk in (3.8) is multiplied by a possibly negative innovation εk. This
prevents the applications of standard results and requires the development
of a specific technique based on Lemma 3.6. The basic idea is that in the case
of symmetric innovations it is possible to restore the convexity by averaging
over all the possible sign changes, as in Lemma 3.6. This will be done in a
recursive way; we start with the following:

Lemma 3.7. Let Xn and Sn be as in (3.1) and (3.8). Let φ be convex and
εi be symmetric. Then the function

h(ε0, ..., εk, σ0) := Eεk+1,..εn [φ(Sn(ε0, ..., εn, σ0))] (3.9)

is convex in εk for each fixed value of ε0, ...εk−1, σ0.

Proof. To avoid notional burdening we drop the arguments of the functions
gi. Since the innovations are symmetric and gi is even, we can write:

Eεk+1,...,εn [φ(Sn(ε0, ...εn, σ0))] = Eεk+1,...,εn [φ(σ0ε0 + ...+ gnεn)] =

Eεk+1,...,εn [
1

2n−k

∑
p∈Pn−k

φ(σ0ε0+...+p1gk+1εk+1+...+pn−kgnεn)1εk+1≥0,...,εn≥0]

(3.10)

the second equality is the key of the all proof. In fact we have completely
eliminated from the expected value the case of negative innovations. It might
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not be clear how we used the hypothesis on gi. Observe that if we take for
example pj = −1 (with k + 1 < j < n), that correspond to consider −εh
(that is negative), we should have as argument of the gk, k > j, −εh. Instead
in the previous formula we have εh. This is allowed just in our case, i.e. with
gi even.
Denoting by

h(ε0, ..., εk, ..., εn, σ0) =
1

2n−k

∑
p∈Pn−k

φ(σ0ε0 + g1ε1 + ...+ gkεk + p1gk+1εk+1 + ...+ pn−kgnεn)

we have that

h(ε0, ..., εk, σ0) = Eεk+1,...,εn [1εk+1≥0,...,εn≥0 h(ε0, ..., εk, ...εn, σ0)]

and h is convex in εk from Lemma 3.6 (u = εk, a = σ0ε0 + g1ε1..., b = gk and
with gi = gi+kεi+k). It follows that also h(ε0, ..εk, σ0) is convex in εk for each
value of σ0, ε0, ..., εk−1.

We can finally state the result on the propagation of the convex order to
Sn:

Theorem 3.5. Let Xn and Sn be as in (3.1) and (3.8). Let εi be symmetric.
If also ε̃k is symmetric and εk ≤cx ε̃k, then S̃n := Sn(ε0, ..., ε̃k, ..., εn, σ0) ≥cx
Sn(ε0, ..., εk, ..., εn, σ0).

Proof. Let φ be convex. From the independence of the εi we can write

E[φ(S̃n)] = Eε0,...,εk−1
Eε̃kEεk+1,...,εn [φ(Sn(ε0, ..., ε̃k, ..., εn, σ0))] =

= Eε0,...,εk−1
Eε̃k [h(ε0, ..., εk−1, ε̃k, σ0)]

where as in (3.9)

h(ε0, ..., ε̃k, σ0) := Eεk+1,..εn [φ(Sn(ε0, ..., εk−1, ε̃k, εk+1, ..., εn, σ0))]

is a convex function of ε̃k for each value of σ0, ε1, εk−1 from Lemma 3.7.
Since ε̃k ≥cx εk it follows that

Eε̃k [h(ε0, ..., εk−1, ε̃k, σ0)] ≥ Eεk [h(ε0, ..., εk−1, εk, σ0)]

that gives

E[φ(S̃n)] = Eε0,...,εk−1
Eε̃k [h(ε0, ..., εk−1, ε̃k, σ0)] ≥

≥ Eε0,...,εk−1
Eεk [h(ε0, ..., εk−1, εk, σ0)] = E[φ(Sn)]

that is S̃n ≥cx Sn.

57



3.5 ARCH(q) case

Before dealing with the more complicated GARCH and GARCH with
leverage case, let see the case of the ARCH(q) model:{

Xn = σnεn, n = 0, 1, ...

σ2
n = α0 +

∑q
i=1 αiX

2
t−i n = q, q + 1, ...

(3.11)

The main difference from this model and the M1 and M2 ones is that the so
called f function here don not depend directly just from the previous value
of the innovation but also from the previous p values. Despite this little
difference we can see this model as the M2 model but directly with the g
function:{

Xn = σnεn, n = 0, 1, ..

σ2
n = gARCHn (σ0, ..., σp−1, ε

2
p, ..., ε

2
n−1, α0, α1, ..., αp) n = q, q + 1, ..

(3.12)
The gARCH function has a complicated but explicit formulation and it is ob-
viously increasing and componentwise convex.
We can then apply the same arguments of the previous sections to prove that
Theorems (3.3), (3.4) and (3.5) do hold true also in the ARCH(q) case.
As we are going to do in the following section we now want to see if some
ordering of the parameters is propagated to the logreturns and total logre-
turns. Considering stochastic parameters we may then state the following
theorem:

Theorem 3.6. Let Xn be as in (3.11). If we consider random parameters
α0 ≤st α̃0, αi ≤st α̃i for i = 1...p, then |Xn| ≤st |X̃n|, X2

n ≤st X̃2
n and

Xn ≤cx X̃n.

Proof. Since σn and σ2
n are increasing functions of the parameters, if α0 ≤st

α̃0, αi ≤st α̃i for i = 1...p, it follows that σn ≤st σ̃n and σ2
n ≤st σ̃2

n. As in the
proof of Theorem 3.3 it follows that |Xn| ≤st |X̃n|, X2

n ≤st X̃2
n. From Lemma

3.2, σn ≤st σ̃n implies that Xn ≤cx X̃n.

We then want to see if some order is propagated to the logreturns sums.
We do that just in the case of symmetric innovations. The proof is quite
similar to the one we are going to apply in the GARCH case.

Theorem 3.7. Let Xn be as in (3.11) and Sn be as in (3.8). Let εi be
symmetric. If we consider random parameters α0 ≤st α̃0, αi ≤st α̃i for
i = 1...p, then Sn ≤cx S̃n.
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Proof. As before, we write

Sn = σ0ε0 + ...+ σq−1εq−1 + gARCHq (ε0, ..., εq−1, σ0, ..., σq−1, α0, α1, ...αq)εq +
...+ gARCHn (ε0, ..., εn−1, σ0, ..., σq−1, α0, α1, ...αq)εn

where the functions gi are nondecreasing in the parameters α0, αi for i = 1...q,
and even in respect to εi. Let φ be any convex function. We first want to
prove that E[φ(Sn)] is nondecreasing in the parameters. From the symmetry
of the innovations εi we can write:

E[φ(Sn)] = Eε0,...,εn [φ(σ0ε0 + ...+ gARCHn εn)] =
= Eε0,...,εn [ 1

2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ png
ARCH
n εn)1ε0≥0,...,εn≥0]

Denoting by

h(ε0, ...εn, σ0, α0, α1, β) =
1

2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ png
ARCH
n εn)1ε0≥0,...,εn≥0,

we see that h is nondecreasing in the parameters:

∂h
∂α0

= 1
2n+1

∑
p∈Pn+1

φ′(σ0p0ε0 + ...+ png
ARCH
n εn) · (pqεqg

′ARCH
q + ...+

pnεng
′ARCH
n ) 1ε0≥0,...,εn≥0 ≥ 0

from the multivariate covariance inequality, as in the proof of Lemma 3.6. In
fact we have that

∂φ′(..)
∂pi

= φ′′(...)(σiεi) 1εi≥0 ≥ 0 for i ≤ q − 1
∂φ′(..)
∂pi

= φ′′(...)(gARCHi εi) 1εi≥0 ≥ 0 for i ≥ q
∂(p1ε1g′ARCH

1 +...+pnεng′ARCH
n )

∂pi
= εig

′ARCH
i 1εi≥0 ≥ 0

Ep[p1ε1g
′ARCH
1 + ...+ pnεng

′ARCH
n ] = 0

where g′ARCH = ∂gARCH

∂α0
≥ 0.

The same reasoning shows that ∂h
∂αi
≥ 0.

It follows that E[φ(Sn)] is nondecreasing in α0, αi; but then if α0 ≤st α̃0,
αi ≤st α̃i for i = 1...q,

E[φ(Sn(α0, α1, ..., αq))] ≤ E[φ(Sn(α̃0, α̃1, ..., α̃q))]

that is Sn ≤cx S̃n.

59



3.6 The GARCH (1,1) case

We focus now on the GARCH (1,1) model specified by{
Xn = σnεn, n = 0, 1, ..

σ2
n+1 = α0 + α1X

2
n + βσ2

n

(3.13)

with α0, α1, β > 0. For this model the recursive dynamic of the volatility or
of the variance (3.5) can easily be explicated as follows:

σ2
n+1 = σ2

0

n+1∏
i=1

(β + α1ε
2
n−i+1) + α0[1 +

n∑
k=1

k∏
i=1

(β + α1ε
2
n−i+1)] (3.14)

From this expression it is immediate that σ2
n+1 and σn+1 are nondecreasing

functions of the parameters α0, α1 and β (for more detailed computations
consider the next section with δ = 0).
We already remarked that this model is a special case of both M1 and M2,
so all the comparison result for varying innovations of the preceding section
do hold. In this section we are interested in establishing comparison results
for different parameters α0, α1, β. As mentioned in the introduction, it is
natural that an increase in α0, α1, β should correspond to an increase in the
variability of Xn and Sn; in this section we prove it rigorously. Without any
additional effort, we can consider stochastic parameters α0, α1, β:

Theorem 3.8. Let Xn be as in (3.13). If we consider random parameters
α0 ≤st α̃0, α1 ≤st α̃1 and β ≤st β̃, then |Xn| ≤st |X̃n|, X2

n ≤st X̃2
n and

Xn ≤cx X̃n.

Proof. Since σn and σ2
n are increasing functions of the parameters, if α0 ≤st

α̃0, α1 ≤st α̃1 and β ≤st β̃, it follows that σn ≤st σ̃n and σ2
n ≤st σ̃2

n. As in
the proof of Theorem (3.3) it follows that |Xn| ≤st |X̃n|, X2

n ≤st X̃2
n. From

Lemma (3.2), σn ≤st σ̃n implies that Xn ≤cx X̃n.

The last point is to prove the convex comparison of the sums Sn; again,
this is nontrivial since the Xn are not independent; we provide a proof in the
case of symmetric innovations.

Theorem 3.9. Let Xn be as in (3.13) and Sn be as in (3.8). Let εi be
symmetric. If we consider random parameters α0 ≤st α̃0, α1 ≤st α̃1 and
β ≤st β̃, then Sn ≤cx S̃n.

Proof. As before, we write
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Sn = σ0ε0 + g1(ε0, σ0, α0, α1, β)ε1 + ...+ gn(ε0, ..., εn−1, α0, α1, β)εn

where the functions gi are nondecreasing in the parameters α0, α1, β and even
in respect to εi. Let φ be any convex function. We first want to prove that
E[φ(Sn)] is nondecreasing in the parameters α0, α1, β. From the symmetry
of the innovations εi we can write:

E[φ(Sn)] = Eε0,...,εn [φ(σ0ε0 + ...+ gnεn)] =
= Eε0,...,εn [ 1

2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ pngnεn)1ε0≥0,...,εn≥0]

Denoting by

h(ε0, ...εn, σ0, α0, α1, β) = 1
2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ pngnεn) 1ε0≥0,...,εn≥0

we see that h is nondecreasing in α0, α1, β; indeed we can compute:

∂h
∂α0

=
1

2n+1

∑
p∈Pn+1

φ′(σ0p0ε0 + ...+pngnεn) · (p1ε1g
′
1 + ...+pnεng

′
n) 1ε0≥0,...,εn≥0 ≥ 0

from the multivariate covariance inequality, as in the proof of Lemma 3.6. In
fact we have that

∂φ′(..)
∂pi

= φ′′(...)(giεi) 1εi≥0 ≥ 0
∂(p1ε1g′1+...+pnεng′n)

∂pi
= εig

′
i 1εi≥0 ≥ 0

Ep[p1ε1g
′
1 + ...+ pnεng

′
n] = 0

where g′ = ∂g
∂α0
≥ 0.

The same reasoning shows that ∂h
∂α1
≥ 0 and ∂h

∂β
≥ 0.

It follows that E[φ(Sn)] is nondecreasing in α0, α1, β; but then if α0 ≤st α̃0,
α1 ≤st α̃1 and β ≤st β̃,

E[φ(Sn(α0, α1, β))] ≤ E[φ(Sn(α̃0, α̃1, β̃))]

that is Sn ≤cx S̃n.

3.7 The GARCH with leverage case

As we saw in the previous chapter we may consider the leverage effect in
the GARCH model with a simple change in the formula (3.13):{

Xn = σnεn, n = 0, 1, ..

σ2
t = α0 + α1(Xt−1 + δ|Xt−1|)2 + βσ2

t−1

(3.15)
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We now rewrite this formula and the usual GARCH one, to better see their
common aspects

σ2
t = α0 + α1(Xt−1 + δ|Xt−1|)2 + βσ2

t−1 =

= α0 + α1(Xt−1 + δσt−1|εt−1|)2 + βσ2
t−1 =

= α0 + α1X
2
t−1 + α1δ

2σ2
t−1ε

2
t−1 + 2α1Xt−1δσt−1|εt−1|+ βσ2

t−1 =

= α0 + α1X
2
t−1 + α1δ

2σ2
t−1ε

2
t−1 + 2α1εt−1δσ

2
t−1|εt−1|+ βσ2

t−1 =

= α0 + α1X
2
t−1 + σ2

t−1(α1δ
2ε2
t−1 + 2α1εt−1δ|εt−1|+ β) =

= α0 + σ2
t−1(α1ε

2
t−1 + α1δ

2ε2
t−1 + 2α1εt−1δ|εt−1|+ β) (3.16)

Let now see the usual GARCH

σ2
t = α0 + α1X

2
t−1 + βσ2

t−1 =

= α0 + α1σ
2
t−1ε

2
t−1 + βσ2

t−1 =

= α0 + σ2
t−1(α1ε

2
t−1 + β) (3.17)

It’s now easier to see the analogies with (3.14). The leverage GARCH closed
formula is then:

σ2
n+1 = σ2

0

n+1∏
i=1

(α1ε
2
n−i+1 + α1δ

2ε2
n−i+1 + 2α1εn−i+1δ|εn−i+1|+ β)+

+ α0[1 +
n∑
k=1

k∏
i=1

(α1ε
2
n−i+1 + α1δ

2ε2
n−i+1 + 2α1εn−i+1δ|εn−i+1|+ β)] (3.18)

We now have to prove that σ2
n+1 is nondecreasing in α0, α1, β.

(α0) We just have to prove that

∂σ2
n+1

∂α0

= 1+
n∑
k=1

k∏
i=1

(α1ε
2
n−i+1+α1δ

2ε2
n−i+1+2α1εn−i+1δ|εn−i+1|+β) ≥ 0

(3.19)
We have β ≥ 0 by hypothesis so the previous inequality is equivalent
to

α1ε
2
i + α1δ

2ε2
i + 2α1εiδ|εi| ≥ 0 for i = 0, ...n

that is {
α1ε

2
i (δ − 1)2, if εi < 0

α1ε
2
i (δ + 1)2, if εi ≥ 0

≥ 0
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with α1 ≥ 0 and δ ∈ [−1, 1].

(α1) No simplify the notation let define:

ci = α1ε
2
n−i+1 + α1δ

2ε2
n−i+1 + 2α1εn−i+1δ|εn−i+1|+ β

Then we can write

∂σ2
n+1

∂α1

= σ2
0

n+1∑
i=1

∂ci
∂α1

n+1∏
k=1, k 6=i

ci +
n∑
k=1

k∑
i=1

∂ci
∂α1

k∏
j=1, j 6=i

ci (3.20)

We already proved that ci ≥ 0. We only need to verify that ∂ci
∂α1
≥ 0.

That is:

∂ci
∂α1

=

{
ε2
i (δ − 1)2, if εi < 0

ε2
i (δ + 1)2, if εi ≥ 0

≥ 0

(β) Clearly ∂ci
∂β

= 1. Then

∂σ2
n+1

∂β
= σ2

0

n+1∑
i=1

n+1∏
k=1, k 6=i

ci +
n∑
k=1

k∑
i=1

k∏
j=1, j 6=i

ci ≥ 0 (3.21)

once again from ci ≥ 0.

We now have proved that σn+1 is non decreasing in α0, α1, β also with the
leverage correction. It is then possible to apply the same arguments of The-
orems 3.8 to prove that with α0 ≤st α̃0, α1 ≤st α̃1 and β ≤st β̃ we have
|X lev

n | ≤st |X̃ lev
n |, X2 lev

n ≤st X̃2 lev
n and X lev

n ≤cx X̃ lev
n .

Theorem 3.10. Let Xn be as in (3.18). If we consider random parameters
α0 ≤st α̃0, α1 ≤st α̃1 and β1 ≤st β̃1, then |Xn| ≤st |X̃n|, X2

n ≤st X̃2
n and

Xn ≤cx X̃n.

To prove the convex comparison of the Slevn we tried to repeat the proof
of Theorem 3.9. The big difference from that proof is that here we have g
functions depending from the previous signs of innovations. We show in what
follows that this prevents us from proving the desired theorem.
Let Xn be as in (3.15) and Sn be as in (3.8). Let εi be symmetric. If we
consider random parameters α0 ≤st α̃0, α1 ≤st α̃1 and β ≤st β̃, we then
would like to have Slevn ≤cx S̃levn .
As before, we write
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Slevn = σ0ε0 + glev1 (ε0, σ0, α0, α1, β)ε1 + ...+ glevn (ε0, ..., εn−1, α0, α1, β)εn

where the functions glevi are nondecreasing in the parameters α0, α1, β. Let φ
be any convex function. The first thing we need to prove, is that E[φ(Slevn )]
is nondecreasing in the parameters α0, α1, β. But here is where the problems
arise.
To simplify the expressions define glevi (p) = glev(ε0p0, ..., εi−1pi−1, σ0, α0, α1, β).
From the symmetry of the innovations εi we can write:

E[φ(Slevn )] = Eε0,...,εn [φ(σ0ε0 + ...+ glevn εn)] =
= Eε0,...,εn [ 1

2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ png
lev
n (p)εn)1ε0≥0,...,εn≥0]

Denoting by

h(ε0, ...εn, σ0, α0, α1, β) =
1

2n+1

∑
p∈Pn+1

φ(σ0p0ε0 + ...+ png
lev
n (p)εn) 1ε0≥0,...,εn≥0,

we need to prove that h is nondecreasing in α0, α1 and β. To do that we use
the same argument of Lemma 3.6. We show why this is not necessary true
just in the case of α0, because for the other variables is very similar.
Let then compute:

∂h
∂α0

= 1
2n+1

∑
p∈Pn+1

φ′(σ0p0ε0 + ...+ png
lev
n (p)εn) · (p1ε1g

′lev
1 (p) + ...+

pnεng
′lev
n (p)) 1ε0≥0,...,εn≥0 =

Ep[φ′(σ0p0ε0 + ...+png
lev
n (p)εn) · (p1ε1g

′lev
1 (p)+ ...+pnεng

′lev
n (p)) 1ε0≥0,...,εn≥0]

We need to show three statement to use the covariance inequality an conclude
∂h
∂α0
≥ 0:

(a) X(p) = φ′(σ0p0ε0 + ... + png
lev
n (p)εn) 1ε0≥0,...,εn≥0 is componentwise in-

creasing in p.

(b) Y (p) = p1ε1g
′lev
1 (p) + ... + pnεng

′lev
n (p) 1ε0≥0,...,εn≥0 is componentwise

increasing in p, where with g′ we denote the partial derivative of g with
respect to α0.

(c) The expected value of Y (p) with respect to p is zero.

In what follows we use (3.18), (3.20) and

∂ci
∂pj

=

{
0 if i 6= j

2α1ε
2
i pi(1 + δ2 + 2δsign(pi)) if i = j

(3.22)

that is positive with pi positive and negative with pi negative.
However, if we consider strictly the domain of the pi variables, we see that:
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δ ≥ 0⇒ ci(pi = −1) ≤ ci(pi = 1)
δ < 0⇒ ci(pi = −1) > ci(pi = 1)

that means, with a fixed value of δ, we have a strictly monotone dependence
of ci from pi.
Let now show why the above statements are generally false:

(a) We have that

∂X(p)

∂pi
= φ′′(...) · (glevi (p)εi + pi+1

∂glevi+1

∂pi
(p)εi+1 + ...+ pn

∂glevn
∂pi

(p)εn)

1ε0≥0,...,εn≥0 (3.23)

and with j ≥ l and m = j − l + 1

∂glevj+1

∂pl
= σ2

0

∂cm
∂pl

j+1∏
i=1 i 6=m

ci +

j∑
k=m

∂cm
∂pl

k∏
i=1 i 6=m

ci (3.24)

The dependence of
∂X(p)

∂pi
from others pk’s means that the point (a) is

not true.

(b) We have

∂Y (p)

∂pi
= g′levi (p)εi + pi+1

∂g′levi+1

∂pi
(p)εi+1 + ...+ pn

∂g′levn

∂pi
(p)εn

1ε0≥0,...,εn≥0 (3.25)

and with j ≥ l and m = j − l + 1

∂g′levj+1

∂pl
=

j∑
k=m

∂cm
∂pl

k∏
i=1 i 6=m

ci (3.26)

The dependence of
∂Y (p)

∂pi
from others pk’s means that the point (b) is

not true.

(c) Using the linearity of the expected value and the independence of pi
from glevi we have the thesis.

It’s then clear that the GARCH with leverage case is not solvable in the same
way of the previous cases. Although we can’t prove it’s true, we can’t even
prove it’s false. Besides the numerical simulations show that with the given
hypothesis, Slevn ≤cx S̃levn do hold.
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Chapter 4

Numerical simulations

In order to avoid repetitions, we will focus just on the ARCH(3) and
GARCH with leverage models. In fact we have shown that in the ARCH
case we may get the same conclusion as in the classic GARCH model.
Essentially, there are three kind of stochastic order’s propagation we dealt
with in this thesis :

(I) from the innovations to logreturns and to total logreturns

(II) from the parameters to logreturns, their absolute values and square

(III) from the parameters to the total logreturns

As we proved that (I) and (III) hold in the cases of ARCH(q) and GARCH(1,1)
models while (II) holds in each of the three models examined, we now want
to give a numerical proof of it. On the other side we are interested in showing
how, in the GARCH with leverage model, (I) and (III) seem to hold true.
In this Chapter we will use the notation FX to indicate the distribution
function of the variable X. Consider the model in (3.11) with q = 3:{

XA
n = σnεn, n = 0, 1, ...

σ2 A
n = γ0 +

∑3
i=1 γiX

2 A
t−i n = q, q + 1, ...

and the model in (3.18):{
Xn = σnεn, n = 0, 1, ..

σ2
n+1 = α0 + α1(Xn + δ|Xn|)2 + βσ2

n

The choices to be done in the following numerical simulations, besides the
values of the parameters, are:
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• the initial values, i.e. σ0 in the GARCH with leverage case and σA0 , σA1
and σA2 in the ARCH case

• which parameters has to be ordered in ≤st order

• which probabilistic distribution assign to each stochastic parameter

• how many step of the simulation consider

• the distribution of the innovations

• the number N of simulations on which the distribution functions are
computed

We always choose N=100000 and a Gaussian(0,1) distribution for the inno-
vations εn.
As the initial values we consider σ0 = 0.002 for the GARCH with leverage
case and σA0 , σA1 and σA2 equal to 0.001 for the ARCH case.
For the parameters distribution we pick out the absolute value of a Normal
variable. In fact we need positive parameters to guarantee the positivity of
σ2
n.

For every simulation we show just the result related to 100 steps simulations
because there’s no significant difference in the graphs with the number of
steps varying. Finally, in order to deepen the roles of the three different pa-
rameters, we first analyze the case of just one stochastic parameter and, at
the end, we show that the same results hold true also taking three stochastic
parameters.
The main goal is to give a numerical proof of Theorems (3.6), (3.7) and of
(3.10).

4.1 GARCH(1,1) with leverage: stochastic

α1

We first want to analyze the role of each parameter. α0 can be interpreted
as the constant part of the volatility’s evolution. It’s then reasonable that
with higher values of this parameter we obtain higher values of the volatility
and consequently of the logreturns.
The α1 parameter represent the adjustment to past shocks. In fact the higher
is α1, the higher is the contribute to σn+1’s value due to Xn’s value.
Differently from the previous α0 case, here is not that evident that an order
between two different α1 should imply an order between the respective Xn.
Consider an high α1: if on one side it keeps the logreturns on high values when
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the previous logreturn is high, on the other side it prevents low logreturns to
come back to higher values.
Finally we have β: it obviously describes how the precedent value of the
volatility influences the following one. The numerical results we are going to
show on the case of stochastic α1 hold true also taking, as stochastic, one of
the other two parameters.
Consider the values:

• α0 = 10−7

• β = 0.8

• δ = −0.2

We then consider α1 ∼ |X| with X := N(0.25, 0.25) and α̃1 ∼ |Y | with
Y := N(0.15, 0.1).

We see from Figure 4.1 that the condition requested from Corollary (1.1)
is satisfied by the distribution functions of α̃1 and α1 but with sign sequence
+,-. It then follows that α̃1 ≤st α1.
We then compute the 100 steps 100000 simulations of the logreturns series
with the given parameters. Hence we calculate the difference between the
distribution function respectively of Xn and of X̃n, |Xn| and |X̃n|, X2

n and
X̃2
n.

From the graphs (b) and (c) of Figure 4.2 it’s clear (using Corollary (1.1))
that |X̃100| ≤st |X100| and X̃2

100 ≤st X2
100 hold. Moreover from graph (a) we

can observe that FX̃100
− FX100 changes its sign once with sign sequence -,+,

that means, using Theorem (1.10), X̃100 ≤cx X100 .

We take the total logreturns S100 and S̃100 to see if there’s some stochastic
order between them. You can see the result in Figure 4.2 (d), where it’s clear
that the condition of Theorem (1.10) is satisfied. Therefore, according to this
numerical example, with symmetric innovations we have that a stochastic
order on α1 implies a convex order between the total logreturns.

4.2 GARCH(1,1) with leverage: stochastic

α0, α1 and β

Consider as parameters:

• α0 ∼ |X| with X := N(2 · 10−7, 10 · −9) and α̃0 ∼ |Y | with Y :=
N(10−7, 10−8)
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• α1 ∼ |X| with X := N(0.25, 0.25) and α̃1 ∼ |Y | with Y := N(0.15, 0.1)

• β ∼ |X| with X := N(0.8, 0.6) and β̃1 ∼ |Y | with Y := N(0.6, 0.4)

We first show the graphs related to the distribution of the parameters to
verify their orders in Figure 4.3. It’s clear, using as in the previous section
Corollary (1.1), that α̃0 ≤st α0, α̃1 ≤st α1 and β̃ ≤st β. Then, as in the
previous section, we show the graphs with the distribution of the innovations,
of their absolute values, of their square and of their sums in Figure 4.4. Using
once again Corollary (1.1), all the desired results hold true. Moreover, as in
the previous section, the total logreturns are ordered in respect to the convex
order thanks to Theorem (1.10).

4.3 ARCH(3): stochastic γ0, γ1, γ2 and γ3

The role of each parameter is clearer in this model: as in the previous
case γ0 is the constant part of the volatility’s dynamic. The other parameters
describe the adjustment to the previous three shocks.
We consider as parameters:

• γ0 ∼ |X| with X := N(2 · 10−7, 2 · 10−6) and γ̃0 ∼ |Y | with Y :=
N(10−7, 10−6)

• γ1 ∼ |X| with X := N(0.65, 0.65) and γ̃1 ∼ |Y | with Y := N(0.5, 0.6)

• γ2 ∼ |X| with X := N(0.12, 0.6) and γ̃2 ∼ |Y | with Y := N(0.18, 0.2)

• γ3 ∼ |X| with X := N(0.05, 0.15) and γ̃3 ∼ |Y | with Y := N(0.07, 0.05)

From Figure 4.6 it’s clear, using as in the previous section Corollary (1.1),
that γ̃0 ≤st γ0, γ̃1 ≤st γ1, γ̃2 ≤st γ2 and γ̃3 ≤st γ3. Then we show the graphs
with the distribution of the innovations, of their absolute values, of their
square and of their sums in Figure 4.4. Using once again Corollary (1.1),
all the desired results hold true. In Figure 4.4 you can see that the total
logreturns are ordered in respect to the convex order thanks to Theorem
(1.10). We have then showed that Theorems (3.6) and (3.7) hold true.

4.4 Innovations ≤cx ordered

We now want to show a numerical proof of the results stated in Theorems
(3.4) and (3.5) for the ARCH case and see if, in this case, the same results
hold true also for the GARCH with leverage model.
Let start with the GARCH with leverage model:
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• α0 = 10−7

• α1 = 0.25

• β = 0.8

• δ = −0.2

and consider a 50 step GARCH with leverage series. As innovations we take
iid standard Gaussian. Then we simulate another GARCH series with the
same exact parameters of the first one but taking as tenth innovation (ε̃10),
a Gaussian variable with mean 0 and variance 3. Observe that all the inno-
vations considered are symmetric. We first show, using the same argument
as before, that ε̃10 ≥cx ε10 using Figure 4.7.

We then compute the logreturns and the total logreturns and their dis-
tribution function. In Figure 4.8 it’s clear, thanks the usual Theorem con-
cerning the sign change of the difference of the distribution functions, that
X50 ≤cx X̃50 and S50 ≤cx S̃50.

Let now consider an ARCH model with the following parameters:

• γ0 = 2 · 10−7

• γ1 = 0.65

• γ2 = 0.12

• γ3 = 0.05

the innovations ε10 and ε̃10 with the same values of the previous GARCH
case. We consider 50 step simulations. In Figure 4.9 you can see that the
hypothesis of Theorem (1.10) are respected, that is XARCH

50 ≤cx X̃ARCH
50 and

SARCH50 ≤cx S̃ARCH50 .
We have then shown that Theorems (3.4) and (3.5) do hold in the ARCH
case.
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Figure 4.1: Difference of the distribution functions of α̃1 and α1: Fα̃1 − Fα1
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Figure 4.2: Comparison on 100 steps GARCH with leverage time series
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Figure 4.3: Difference of the distribution functions of the GARCH with lever-
age parameters
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Figure 4.4: Comparison results on 100 steps GARCH with leverage time
series
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Figure 4.5: Comparison results on 100 steps ARCH time series
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Figure 4.6: Difference of the distribution functions of the ARCH parameters
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Figure 4.8: Comparison results on 50 steps GARCH with leverage time series
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Figure 4.9: Comparison results on 50 steps ARCH time series
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Conclusions

As underlined at the beginning of the last chapter, there are three kind
of stochastic order’s propagation we dealt with in this thesis :

(I) from the innovations to logreturns and to total logreturns

(II) from the parameters to logreturns, their absolute values and square

(III) from the parameters to the total logreturns

At the same time we considered three specific models: the ARCH, the
GARCH and the GARCH with leverage. Taking the cue from the argu-
ments developed in the article “Comparison Results for GARCH processes”
by Bellini, Pellerey , Sgarra and Sekeh [3] concerning the GARCH(1,1) model,
we tried to expand those results to the other models.
We can obtain the ARCH model from the GARCH one taking all the βi
parameters equal to zero. So it was obvious that the same results should also
apply in the ARCH(1) case. I then considered the general ARCH(q) model
and showed that the same proof of the above article is worthy also in this
case. Using the same arguments we may get the same results adding more
steps to the GARCH(1,1) that is considering a GARCH(p,q) model.
Finally i considered the GARCH with leverage case. The non linearity with
respect to the innovations introduced by this model is reflected in the no more
increasing dependence of the volatility from the innovations themselves. The
argument used in Theorems (3.3), (3.2) and (3.4) is therefore no more valid
and the point (I) can’t be proved. Moreover the dependence of the so called
gi functions from the previous signs of the innovations prevents from using
the argument of Theorem (3.9) and prove the point (III).
However the partial derivative of the volatilities computed by the GARCH
with leverage model is positive in respect to the parameters. This allows us
to state the Theorem (3.10) to prove point (II).
The numerical simulations of the last chapter show that the propagation (I)
and (III) for the GARCH with leverage model do hold , at least sometimes.
It might be subject of future studies the research of conditions maybe on the
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parameters or maybe on the distribution of the innovations that guarantee
the propagations (I) and (III).
At the same time the hypothesis of symmetrical innovations considered in
the ARCH and GARCH cases that is fundamental for proving the theorem
might be dropped. In fact there’s no numerical evidence concerning the im-
portance of this hypothesis.
Another subject that has to be deepen is the one related to multivariate
comparisons of logreturns. I did focused on scalar variables Xn and Sn but
there is a wide literature concerning the multivariate approach to orders’
propagation.
The basic tool for a such kind of studies is the definition of some multivariate
stochastic orders. You find a detailed description of these orders in “Stochas-
tic Orders” by Shaked M. and Shanthikumar J. G. [20].
Some theory related to the multivariate stochastic orders can be found in
“Stochastic convexity on general space” by Meester and Shanthikumar [14],
especially the convex one. They also give examples and applications from
queuing theory, coverage processes, reliability and branching processes.
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