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Introduction

The main goal of this thesis is to develop some new tools for and generating
and optimizing computational grids in various scientific research fields, with a
particular emphasis on surface grids.

The generation of the “best” mesh is not an easy task and, very often, it still
represents an open issue. Indeed, the concept of “best mesh” cannot be easily
generalized and it usually depends on the field of interest. For instance, in the nu-
merical solution of partial differential equations (PDEs), it can be considered as
“optimal” a mesh that minimizes the number of elements for a target accuracy, or,
vice-versa, the mesh that, for a given number of elements, provides the most accu-
rate approximations. In this context, mesh optimization is usually driven by either
a-priori or a-posteriori error estimators. When dealing with surface grids, which
may provide the boundary of a three-dimensional domain or the actual compu-
tational domain, we need also to preserve a sufficiently accurate representation
of the geometry. It means that the error estimator should take into account the
geometry of the surface itself. Thus, from the implementation point of view, we
have also to ensure that the grid modifications induced by the mesh optimization
procedure are consistent with the geometrical representation of the surface. For
instance, a node movement procedure is demanded to preserve the points on the
surface.

In the context of Computer Aided Drafting (CAD) softwares, a geometry is
often provided via parametric patches. This kind of representation introduces
other technical difficulties that we have tried to deal with. Moreover, in some
peculiar settings, the surfaces may also represent internal interfaces. For example,
in geological applications, surfaces represent the so-called horizons. They are
generally obtained from seismic imaging data and they may be present holes or
be only partially defined.

We have focused on surface meshes composed by triangular elements and
we have essentially considered the following applications: statistical analysis of
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large data set on complex geometries, mesh generation of CAD models and the
generation of domains associated with geological seismic data set. Since we tackle
different topics associated with surface triangular meshes, we devote the first two
chapters to provide the essential background to better understand the theoretical
results and the algorithms developed in the remaining part of the thesis. Then,
each of the next chapters focuses on a specific content of interest and provides
both the theory and a large variety of numerical examples.

All the proposed algorithms have been developed in a C++ library called
MESHDOCTOR, that is a proprietary code of ENI company, developed during
the project GeoMod. Now we detail the contents of each chapter.

Chapter 1 provides some basic concepts about mesh generation and adapta-
tion. More precisely, we give an overview on the main relations between mesh
and piecewise interpolation as well as between mesh and the solution of PDEs.
Moreover, we introduce the basic mesh operations required to modify a generic
triangular mesh, [22, 27], and some concepts about mesh metric [60, 62] for both
a planar and non-planar configuration.

Chapter 2 gives an overview of the theory of PDEs on surfaces embedded in
R3 and it introduces some error estimates,[31], and gradient recovery strategies
for both planar and non-planar grids, [114, 115, 110].

In Chapter 3, we provide the theory driving the anisotropic surface mesh
adaptation. We start from the proposal of an anisotropic interpolation error esti-
mator for functions defined on surfaces. Moving from this new error estimator,
we provide a novel anisotropic a-posteriori error estimator to control the energy
norm for both the Laplace-Beltrami problem and a convection-diffusion problem
defined on implicit surface. Finally, we extend the well-known Zienkiewicz and
Zhu error estimator [114, 115] to PDEs defined on surfaces. Via these error es-
timators, we define a metric based adaptation procedure. The reliability of this
mesh adaptation strategy is numerically checked on several test cases.

In Chapter 4, we propose a new method for re-meshing three-dimensional
surfaces based on the idea of a higher dimensional embedding proposed in [14,
71, 75] to get an accurate approximation of the actual surface. In [75], B. Lévy
and N. Bonneel propose a re-meshing procedure based on the computation of the
Voronoi diagram in the embedded space, but, unfortunately, this method does not
preserve sharp features. To overcome this drawback, we propose a new way to
exploit the higher dimensional embedding. In more details, we directly optimize
the triangular mesh in the embedded space in such a way that the triangles are as
uniform as possible in R6. As provided in [14, 71, 75] the image of the resulting
mesh uniform mesh in R6 will yield a curvature-adapted anisotropic surface mesh



in R3. The reliability and the robustness of the proposed re-meshing strategy is
investigated with several complex examples.

In the first part of Chapter 5, we introduce the issue of simplifying a mesh,
i.e., how to build a simpler mesh starting from an initial very complex one. In
the second part of this chapter, we introduce a new simplification strategy that re-
duces the number of triangular elements taking into account both the geometrical
approximation of the surface and the statistical properties associated with it. In
particular, we focus on a medical application by analysing the thickness data of
the brain cortex. The basic idea behind this method is to properly couple the pro-
posed mesh simplification algorithm with the spatial regression analysis provided
by B. Ettinger et al. in [35].

In the geological framework, quadrilateral and hexahedral meshes are basi-
cally exploited. In Chapter 6, we extend all the basic mesh operations tailored
on quadrilateral and hexahedral meshes to triangular and tetrahedral meshes, to
build a suitable geological domain moving from seismic imaging data. Since the
intersection of surface meshes represents one of the most recurrent operations to
get this computational domain, we present a new method to reduce the computa-
tional effort associated with such an operation. Moreover, we extend to surface
triangular meshes some specific geological operations, e.g., to fill the data lack
and we introduce the so-called “hard and soft” operation to deal with overlapping
horizons.
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Chapter 1

Mesh Generation and Adaptation

In this chapter we give an overview about mesh generation and adaptation. In
particular, we focus on the relations between the mesh and the piecewise linear
interpolation as well as the mesh and the solution of a Partial Differential Equa-
tion.

1.1 Mesh Classification
A mesh is a finite union of elements that covers an arbitrary computational do-
main. The elements may have different shapes: for instance quadrilaterals, trian-
gles for a two-dimensional domains. In the three-dimensional space the volume
domains are usually composed by hexahedra or tetrahedra.

We distinguish two different types of meshes: isotropic and anisotropic. In the
former case, each mesh element has a regular shape, i.e., we require that the ratio
of the element diameter and the diameter of the inscribed circle are bounded from
above, for instance, a triangular isotropic mesh is composed by equilateral trian-
gles. In the latter case, the elements may have an arbitrary shape and orientation
and they may be arbitrarily elongated.

In this thesis we are dealing with triangular meshes composed by simplices
that approximate a surface embedded in the three dimensional space.

Definition 1.1.1 Given a positive integer k, a k-simplex is a k-dimensional poly-
tope which is the convex hull of its (k + 1) vertices. Suppose the (k + 1) points
x0,x1, . . . ,xk ∈ Rk to be linearly independent, which means that the vectors
x1−x0, . . . ,xk−x0 are linearly independent. Then, the simplex associated with
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Chapter 1. Mesh Generation and Adaptation

the points x0,x1, . . . ,xk is determined by the set

C :=

{
θ0x0 + θ1x1 + . . . θkxk : θk ≥ 0 , 0 ≤ i ≤ k ,

k∑
i=0

θi = 1

}
. (1.1)

Remark 1.1.1 A simplex is a generalization of the notion of triangle or of tetra-
hedron to an arbitrary dimension.

We consider a 2-simplex, whose vertices x0, x1, x2 ∈ R3. In more in details,
we will consider triangular surface anisotropic meshes.

1.1.1 Isotropy vs Anisotropy
Creating “good quality” mesh is the main issue of mesh generation and mesh im-
provement algorithms. In fact, interpolation procedures and finite element meth-
ods rely on meshes whose elements have right shapes and sizes. The accuracy
or the speed of a numerical simulation may be corrupted by just a few “bad el-
ements”. In the last decades, understanding what “bad” and “good” elements
means and how to get a “good quality” mesh has become a crucial issue. However,
the knowledge of the actual relationship between mesh geometry and numerical
accuracy remains very often incomplete, even in the simplest cases.

It is important to say that the “quality” of the mesh is strictly related to the
application field. For instance, the interpolation accuracy is important in surface
fitting. While the condition number of the global stiffness matrix is really impor-
tant in a finite element analysis.

In both cases, moving from a mesh and from an unknown function f , we are
usually interested in finding a piecewise approximation fh of f . We define the
discretization error as the difference between f and fh, measured in an appro-
priate norm. This quantity will converge to zero as the discrete approximation fh
converges to the continuous function f . In [107], it is shown that the discretization
error is affected not only by the size of the triangles: the shape and, in particular,
the internal angles of the elements could drastically change the approximation of
fh.

When we interpolate a continuous function with a piecewise function fh, there
are two different types of interpolation error:

• f − fh, the difference between the interpolated function and the exact func-
tion;
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Chapter 1. Mesh Generation and Adaptation

• ∇(f − fh), the difference between the gradient of the interpolated function
and the gradient of the exact function.

There is a large variety of applications, such as rendering, map-making, that re-
quire a good approximation also of the gradient of the interpolation function. If f
is smooth enough, the interpolation error may be reduced by diminishing the size
of the triangles. On the other hand, if the elements are not properly aligned with
the gradient of the interpolating function f or if they have large angles, the error
on the gradient may drastically increase, see [107].

In a finite element analysis, we are interested in solving a Partial Differential
Equation (PDE) on a certain mesh. The discretization of the PDE leads to a linear
system; in particular, the condition number of the stiffness matrix plays a key role
in the reliability of the solution. Since the stiffness matrix depends on the dis-
cretization of the computational domain, the element shape has a strong influence
on the condition number. Unlike the interpolation framework, in this case small
angles should be avoided, while large angles represent a good choice.

In conclusion, we may state that:

• when we are dealing with interpolation, we should avoid large angles;

• the condition number of the stiffness matrix increases, when the mesh tri-
angles have small angles.

Starting from these two observations, we may infer that a triangular mesh with
not too big or too small angles could be the optimal for both the interpolation
and the finite element framework. This conjecture is numerically proved in [107]
and statistics based on experimental data show that meshes composed by nearly
equilateral triangles provide better results.

Triangle Quality

To evaluate the quality of a triangular mesh, it is necessary to define some precise
criteria. A mesh generation or a mesh optimization algorithm usually selects a
single and easy-computable index to evaluate the “goodness” of a single element,
i.e., to estimate how far is the triangle shape from the equilateral shape.

Definition 1.1.2 Consider a triangle T , and let R, r be the radius of the circum-
scribed and the inscribed circle, respectively. We define the aspect ratio, Q, as

Q(T ) :=
2r

R
. (1.2)
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Chapter 1. Mesh Generation and Adaptation

Remark 1.1.2 It is possible to compute the area of a triangle T moving from the
lengths of its sides, a, b and c, as:

A :=
√
p(p− a)(p− b)(p− c), (1.3)

where p is the semi-perimeter of the triangle T . This is a well-known result of
elementary geometry called Heron’s Formula.

Proof. A corresponding proof may be found in [83].

�

Remark 1.1.3 We may compute the radius of the circumscribed and of the in-
scribed circle by resorting to the measure of the triangle sides, of the semi-perimeter
p and of the area A as:

R :=
abc

4A
and r :=

A

p
, (1.4)

respectively.

Proof. This is a classical result of elementary geometry and the proof may be
found in [83].

�

Remark 1.1.4 The quantity Q can be computed via the lengths of the sides of the
triangle T and the semi-perimeter p, as:

Q =
8(p− a)(p− b)(p− c)

abc
. (1.5)

Proof. Via Remark 1.1.2 and 1.1.3 we have the following chain of equalities:

Q =
2r

R
=

8A2

pabc

=
8(p− a)(p− b)(p− c)

abc
.

�

For an equilateral triangle the index Q is equal to 1. Values of Q close to zero
correspond to very distorted triangle that leads to a not accurate approximation of
the interpolating function or to a very high condition number for the associated
stiffness matrix. The particular case of Q = 0, corresponds to a degenerate
triangle, i.e., a zero-area triangle.
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Chapter 1. Mesh Generation and Adaptation

Anisotropy

Despite the previous considerations, in some circumstances an anisotropic ele-
ment, i.e., an element stretched and oriented in an appropriate direction, may be
advantageous from the computational point of view. When the stretching and the
orientation of the triangles is determined by the function we are interpolating, or
by the solution of partial differential equation we are solving, it has been observed
that the results are astonishingly better than the ones provided by an isotropic
mesh.

This fact is well-established in finite element analysis and, in particular, it
becomes more evident in fluid dynamics applications, when the meshes employed
for practical computations are strongly anisotropic [103, 88].

Here we show an example to clarify this fact. Consider a function

f(x, y) = tanh (40y) , (1.6)

defined on the domain Ω = (−1, 1)× (−1, 1), see Figure 1.1. Consider ε > 0 and
the sub-domain Ω1 = {(x, y) ∈ Ω : |y| < ε}. In this region f presents a great
variation along the y−axis direction, while it is constant along the x−axis.

Figure 1.1: Function f , with the region Ω1 highlighted.

Thus, we need a very high detail along the y−axis and a low detail along the
x−axis to capture the jump of the function f in Ω1, i.e., we need a very small
mesh size along the y−axis, but on the x−direction it could be arbitrarily large.
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Chapter 1. Mesh Generation and Adaptation

When we are dealing with an isotropic mesh adaptation, if we need a small
mesh size along one particular direction, we are forced to have a mesh with very
small elements to recover equilateral triangles. So we have to fill Ω1 with a lot of
very small elements to capture the jump of f , see Figure 1.2(a).

(a) (b)

Figure 1.2: Interpolation of the function f with an isotropic mesh, (a) and with an
anisotropic mesh, (b).

However, if we consider an anisotropic mesh adaptation, i.e., if we allow the
triangles to stretch, we may set a very small size of the triangles in the y−direction
and we are allowed to stretch them along the x−direction, see Figure 1.2(b).

Stretched triangles cover more area than equilateral elements, see Figure 1.3.
This is the key concept about anisotropic mesh adaptation and this is the reason
why this kind of meshes offers a better error-vs-number of elements behaviour
than the isotropic one. In fact, if we fix about the same number of elements, we
get a lower error, when we consider an anisotropic mesh. On the contrary, an
anisotropic mesh provides about the same error of an isotropic mesh, but with less
triangles.

Now, we numerically show this behaviour. Consider the exact function defined
in Equation (1.6) and the piecewise linear approximation fh. Then, we consider
the L2-norm of the discretization error defined as:

eh := ||f − fh||L2(Ω) =

√∫
Ω

|f − fh|2 .

10



Chapter 1. Mesh Generation and Adaptation

In Table 1.1 and 1.2 we compare the numerical results associated with an isotropic
and an anisotropic mesh. Here, we appreciate that, if we fix about the same num-
ber of elements, we get a lower discretization error in the case of anisotropic
mesh, see Table 1.1. Likewise, we get a similar accuracy with less elements in the
anisotropic case, see Table 1.2.

number of Elements eh
anisotropic 204 2.541e-02
isotropic 264 2.978e-01

Table 1.1: Numerical result fixed the number of elements.

number of Elements eh
anisotropic 204 2.541e-02
isotropic 1574 2.784e-02

Table 1.2: Numerical result fixed the accuracy.

Figure 1.3: A couple of stretched triangles cover more area than a set of equilateral
triangles

The better performances of anisotropic meshes are shown in a lot of works,
see, e.g., [40, 41, 38, 36, 103, 88]
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Chapter 1. Mesh Generation and Adaptation

1.2 Operations on Triangular Meshes
The most well-known and commonly used local mesh operations for a triangular
mesh are: edge flipping, edge splitting, edge contraction and node smoothing.
These operations are widely discussed in the literature, see, e.g., [22, 27, 60, 62].

They modify the triangular elements to achieve a desired goal. For example,
in [34], an edge flip algorithm is presented to recover the Delaunay criteria for
a generic two dimensional planar mesh. In [47], the edge contraction operation
is used to reduce the number of nodes in a surface mesh, and in [43] all these
operations are applied to fit the geometry of a surface. Finally, in [38] the authors
use these local operations to improve the accuracy of the solution of a Navier-
Stokes equation.

1.2.1 Edge Flipping
Edge Flipping is the most efficient and effective local operation to modify a
generic triangular mesh. An edge-flip on the edge ab removes the triangles abc
and bad, and replace them with the triangles cdb and dca, see Figure 1.4. As a
result, the edge ab is replaced by the edge cd.

Figure 1.4: Flipping of the edge ab.

On a flat triangular mesh, it is not always possible to do an edge-flip. An edge
ab is flippable if both these two conditions are verified:

(i) the edge ab belongs to the mesh;

(ii) any of the angles adjacent to the edge ab has to be obtuse, see Figure 1.5.

Remark 1.2.1 Condition (i) will be clearer when we describe the Lawson’s flip
algorithm. This is a diffusive process. At the beginning, we put all the mesh edges
in a stack and, once we flip an edge, we put all the edges linked to this edge in the
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Chapter 1. Mesh Generation and Adaptation

same stack, i.e., if we flip the edge ab, we successively put in the stack the edges
ac, cb, bd and ad, see Figure 1.4. So, when we “pop” an edge from this stack, it
is not a priori guaranteed that it still exists in the mesh.

Figure 1.5: Example of an unflippable edge ab due to condition (ii).

On a triangular surface mesh the flipping operation becomes more complex
due to the curvature of the surface. In particular, in the zones where the mesh
presents ridges, the edge-flipping could bring to an incorrect approximation of
the surface, see Figure 1.6. To overcome this issue, we decide to add another
condition for the edge-flip validity:

(iii) the angle between the normals to triangles abc and bad has to be lower than
a threshold value θmin, in this work we set θmin = 15◦.

Figure 1.6: An example of edge-flip that creates an undesired approximation of a
crest.

After checking the validity of the flipping of the edge ab, we proceed with the
flip if the new edge cd matches a required criterion better than ab.

13



Chapter 1. Mesh Generation and Adaptation

Lawson’s Flip Algorithm

We have developed a novel edge-flip routine suited to deal with triangular surface
meshes. It is the generalization for surface triangular meshes of the well-known
Lawson’s flip algorithm [74] for the construction of planar two-dimensional De-
launay triangulations. This new flip algorithm is provided in Algorithm 1. It uses
two stacks S and S1:

• S keeps all the edges to be checked and eventually flipped;

• S1 is empty and it will keep edges which are not flippable.

Once a flip is done, the algorithm propagates to the neighbouring edges of the new
edge cd, lines 8-10. The edges in S1 are tried again if any flip has been done in
the inner loop, lines 3-16. A key issue for the termination of this algorithm is to
show that, once an edge is flipped, it will never be created again.

This routine is very efficient and it can be applied to all the edges of the surface
mesh or even to a small subset of edges.

1.2.2 Edge Splitting
Mesh refinement has a major importance in mesh adaptation, due to its key role
in increasing the resolution of the mesh in the zones of interest. In this kind of
process a criterion is defined to locate a too long edge; then, the splitting procedure
replaces the faces abc and bad with four faces avc,vbc,bvd and vad, where v is
the middle point of ab, see Figure 1.7.

Figure 1.7: Splitting of the edge ab.

When we are dealing with a flat triangular mesh, the location of the new point
v at the middle of the segment ab is always allowed. However, when we are
dealing with a surface triangular mesh, the middle point of ab is not necessarily a
good choice.

14
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Algorithm 1 The edge-flip algorithm
FLIPEDGES(S, S1)
Data: S is a stack of edges to be checked and flipped, S1 is the stack empty on
input.

1: while S is non-empty do
2: t = 0;
3: while S is non-empty do
4: pop ab from S;
5: if cd matches the criterion better than ab then
6: if ab meets conditions (i), (ii) and (iii) then
7: flip ab to cd;
8: for xy ∈ {ac, cb,bd,da} do
9: push xy on S;

10: end for
11: t = t+ 1;
12: else
13: push ab on S1;
14: end if
15: end if
16: end while
17: if S1 is non-empty and t > 0 then
18: swap S and S1;
19: end if
20: end while

Consider a discrete surface Γh, a triangular approximation of a surface Γ, and
suppose that we want to split the edge ab, see Figure 1.8 left. If we insert the point
v in the middle of the edge ab, the resulting mesh does not fit the actual surface
Γ, see Figure 1.8 middle. Thus, to improve the accuracy of the discretization of
the surface Γ, we have to project v on Γ, as shown in Figure 1.8 right.

1.2.3 Edge Contraction
Mesh coarsening is another important aspect of a mesh adaptation procedure,
aimed at decreasing the resolution of the triangular mesh in the zones where it
is not necessary. This is the inverse operation of the edge splitting.

Also in this procedure a criterion is defined to locate a too short edge, ab, then,
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Figure 1.8: Splitting of the edge ab via the point v and projection of the added
point on the surface Γ, point d.

the contraction of the edge ab removes ab together with the two triangles abx and
bay and it mends the hole by gluing xa to xb and ya to yb as shown in Figure 1.9.
Vertices a and b are made coincident to form a new vertex c. All the triangles that
share the vertex c are new, while the other triangles stay the same.

Figure 1.9: Collapsing of the edge ab.

This operation may lead to invalid topological configurations, such as over-
lapped triangles see the highlighted triangles in Figure 1.10 on the right. To avoid
such situations, we may control the nodes connected to the end-points of the seg-
ment ab, [34]. Consider the segment ab, the nodes connected to a and the ones
connected to b, separately. If these two sets have in common other points than the
nodes of the triangles that share the segment ab, the contraction of this segment
brings to a topological invalid configuration, see [34] for a rigorous demonstra-
tion. In Figure 1.10 we show an example: the sets of the nodes connected to a and
b have in common x, y and c; nevertheless only x and y are nodes of the triangles
that share the segment ab. So the contraction of the edge ab leads to an undesired
topological configuration of the mesh.

There are different locations for the vertex c. We could place it at one of
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Figure 1.10: Example of topological invalid configuration due to the contraction
of the edge ab. On the left we highlight two overlapped triangles.

the end-points of the segment ab, or at the middle point. When we are dealing
with a flat triangular mesh, all these locations are reasonable. However, when the
triangular mesh represents a surface embedded in the three-dimensional space, if
we contract the edge into the middle point, we need to project this new vertex onto
the real surface.

1.2.4 Node Smoothing
Smoothing is one of the classical methods to modify a mesh. This algorithm is in
contrast with the ones described before, in fact it does not modify the topology of
the grid, but it simply moves the nodes of the mesh in a new position.

Figure 1.11: Smoothing of the node v.

The new position of the point v may lead to invalid configurations such as
overlapped triangles, see Figure 1.12, so even in this case a check on the validity
of the new mesh has to be performed.

Indeed, when we are dealing with a surface triangular meshes, once we have
moved the point, we have to project it on the real surface, in order to fit the surface
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Figure 1.12: Example of a topological invalid configuration due to the smoothing
of the node v. On the right it is highlighted the inverted triangles.

as well as possible.

1.3 Mesh Generation
Mesh generation is the practice of generating a polygonal or polyhedral mesh to
approximate a domain.

In literature there are many algorithms to generate different kinds of meshes,
we refer the reader to [100] for a deep survey. Since we are interested in triangular
and tetrahedral meshes, we briefly give an overview of triangular and tetrahedral
mesh generators. These two types of mesh generators are usually classified into
two main categories:

• Delaunay mesh generators;

• advancing front mesh generators.

Delaunay Mesh Generators

This mesh generation technique produces a planar triangular or a volume tetrahe-
dral mesh that satisfies the so-called Delaunay Criterion: all the circumcises of
the triangular elements, or the circumsphere of the tetrahedral elements, do not
contain any node of the mesh, [34]. In Figure 1.13 we show an example of a
triangular planar mesh that satisfies such criterion.

There are different algorithms to get this kind of meshes and we refer the
reader to [100] for a detailed overview of them. Here we recall “Triangle”, [106],
and “Tetgen”, [108], that are the most popular triangular and tetrahedral Delaunay
mesh generator.
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Figure 1.13: Example of Delaunay triangular mesh, we highlight in gray the cir-
cumcircles of each triangles and we observe that they do not contain the mesh
nodes.

Advancing Front Mesh Generators

An advancing front mesh generation technique is quite different from a Delau-
nay mesh generation. In this case, the elements are constructed moving from the
boundary of the domain. In Figure 1.14 we highlight with a dashed line the ad-
vancing front and we provide some steps of this mesh generation technique. One
of the most popular advancing front mesh generation softwares is “Netgen” for
both triangular and tetrahedral meshes, [101].

Figure 1.14: Example advancing front mesh generation, the solid line represents
the boundary of the real domain, the dashed line is the advancing front.
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1.4 Mesh Adaptation

Let us consider an initial mesh Ωh. A mesh adaptation algorithm is a sequence
of procedures applied to Ωh to get a new mesh, Ω′h, that satisfies a precise cri-
terion. There are different ways to adapt a mesh. The difference among them
consists in the operations that are applied and the criteria chosen to proceed with
the adaptation.

In Section 1.2, we have already explained the main operations that could be
applied to a triangular mesh. Here we focus on the different criteria to proceed
with a generic mesh adaptation:

• adaptation driven by heuristic criteria;

• adaptation driven by a rigorous error estimator.

Adaptation driven by Heuristic Criteria

The idea behind these error estimators is to have a proper criterion to evaluate the
accuracy of the discretization. This kind of techniques has been devised in the past
in many papers, see, e.g., [15, 103, 55]. In the finite element framework, a typical
methodology consists in estimating the Hessian or the gradient of the numerical
solution and using this information to drive the mesh adaptation procedure.

A typical example of adaptation driven by heuristic criteria is the so-called
Zienkiewicz and Zhu adaptation procedure, see, e.g., [89, 113]. In this case, the
grid is adapted moving from the error associated with the finite element discretiza-
tion, i.e., theH1-semi-norm of the difference between the exact solution u and the
discrete solution uh. We refer to [113, 89, 114, 115] for an example of such error
estimators in the case of planar triangular meshes.

Adaptation driven by Error Estimators

In this case adaptation is strongly linked to the problem at hand, typically the dis-
cretization of a PDE. Consider the discretization error, eh. We aim at guaranteeing
that the adapted grid Ω′h is such that

eh < τ ,

where τ is a suitable tolerance.
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The basic idea behind this kind of adaptation is to find an estimate of eh, i.e.,
a computable quantity S such that

eh ≤ S . (1.7)

S is called global error estimator of the discretization error. To proceed with a
mesh adaptation, the global error estimator S should satisfy the following proper-
ties:

• computable: we need to evaluate this quantity in a fast and straightforward
way;

• locality: the estimate should be computable moving from quantities that
depend only on a single element T of the mesh, or on a limited number of
the elements around T , i.e,

ηT =
∑
Ti∈ωT

ηTi , (1.8)

where ωT is a set of triangular elements in the neighbourhood of T , ηT is
called local error estimator that estimates the discretization error of the
element T . Via Equation (1.8), we may define the the total error estimator
as:

S =
∑
T∈Ωh

ηT , (1.9)

where Ωh is the mesh.

• reliability: there exists a constant C1 ' 1, such that

C1eh ≤ S ,

this fact guarantees that, if S ≤ τ , then also eh ≤ τ ;

• efficiency: there exists a constant C2 ' 1, such that

S ≤ C2eh ,

this fact guarantees that, if S ' τ , then also eh ' τ .

Remark 1.4.1 The reliability and the efficiency are key properties of an error
estimator, because they ensure the equivalence between the error estimator and
the actual discretization error, i.e.,

C1eh ≤ S ≤ C2eh .
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Looking at the possible expression for the error estimator S, we may distin-
guish two different categories of error estimators:

• a-priori error estimators: in this case, S depends on the quantity we are
approximating; for instance, in a finite element framework, when we ap-
proximate an exact function u with a piecewise polynomial function uh, the
quantities S and, consequently, ηT depend on the unknown solution u.

• a-posteriori error estimators: in this case, the quantity S depends on the
discretization of the exact quantity we are approximating; for example, in
a finite element framework the quantities S and ηT depend on the finite
element approximation uh which discretizes the exact solution u.

Moving from these estimates or, more precisely, considering the value of the
local error estimator, Equation (1.8), it is possible to refine the mesh where ηT is
greater than a fixed threshold and vice-versa. This kind of procedure is widely
used in literature, and in [70, 4, 6, 79] we find examples of such error estimators.

In a finite element framework, these kinds of error estimators have received a
lot of interest and different types of a-posteriori error estimators have been devel-
oped. We distinguish the following classes:

• residual-based error estimators;

• goal-oriented error estimators.

Residual-based error estimators

This is a typical kind of error estimators related to the approximation of a partial
differential equation problem. Let us consider a standard Laplace problem defined
in a two-dimensional domain, Ω,{

−∆u = f in Ω ,
+ B.C. , (1.10)

In such error estimators, we may distinguish two different contributions:

• the internal residual: the error related to the internal of an element mesh;

• the jump residual: the error due to the jump of the normal derivative of the
discrete solution across a generic edge e of the mesh.

An example of this kind of error estimators may be found in [69, 7].

22



Chapter 1. Mesh Generation and Adaptation

Goal-Oriented error estimators

In some applications, we might be interested in some quantities related to the
physics of the problem at hand. For instance, one might be interested in quantities
such as the concentrations around critical areas of the computational domain, or
to control fluxes across sections of interest, etc.. In this case, the mesh is properly
refined in order to reduce only the approximation of this particular quantity of
interest and not to decrease the discretization error. In [91, 84], we have examples
of this kind of error estimators.

1.5 Metric Based Adaptation

If we consider the error estimators described in Section 1.4, we may only pro-
ceed with a mark-refine adaptation, i.e., we may find only the triangular elements
associated with a high discretization error and refine them. In general, the error es-
timator is often not enough to properly exploit all the mesh operations described in
Section 1.2. To achieve this goal, one of the possible strategies is to build a suit-
able metric field that rigorously employs the information provided by the error
estimator.

Before dealing with metric mesh adaptation, it can be useful to remind some
basic aspects about the concepts of metric, [44].

Definition 1.5.1 A metric on a set X is a function, called the distance function or
simply distance, d : X × X → R+ ∪ {0}. For all x, y and z in X , this function
has to satisfy the following properties:

• d(x, y) ≥ 0 ;

• d(x, y) = 0 ⇐⇒ x = y ;

• d(x, y) = d(y, x) ;

• d(x, y) ≤ d(x, z) + d(z, y) .

Definition 1.5.2 A metric space is an ordered pair (X, d), where X is a set and
d is a metric.
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Remark 1.5.1 In R2 the specification of a metric is equivalent to define two
strictly positive scalar functions σ1 = σ1(x), σ2 = σ2(x) and two orthogonal
unitary vector functions u1 = u1(x), u2 = u2(x). Then, we may define a metric
d via the following metric tensor

M(x) =
(
u1 u2

)( 1/σ2
1 0

0 1/σ2
2

)(
ut1
ut2

)
. (1.11)

The definition of such metric tensor may be extended to the generic space Rn.

Once we have defined a metric space, we can compute the length of a generic
segment. In R2, since the metric M(x) could vary in space, given two points
a,b ∈ R2, the length of the segment ab depends on the selected metric field
M(x). In particular, it can be expressed by the following integral form:

||ab||M :=
1

||ab||

∫ b

a

√
abtM(x)ab dx (1.12)

where
∫ b

a is the line integral along the segment ab and || · || denotes the standard
Euclidean norm.

Nevertheless, the length defined in Equation (1.12) is computationally expan-
sive, so not practical. To approximate this value, we use the following expression:

||ab||M := max

(√
abtM(a)ab,

√
abtM(b)ab

)
, (1.13)

where M(a) and M(b) are the metric matrices associated with the points a and
b, respectively. This hypothesis is conservative if the metric does not show great
variations on ab. This means that it tends to privilege the metric where the seg-
ment length is greater.

Remark 1.5.2 Via the metric M(x) that varies with the position, it is possible to
get an anisotropic mesh. In particular, consider a triangle T , whose vertexes are
the points a, b and c. If we have

||ab||M = ||bc||M = ||ca||M = l ,

the triangle is equilateral according to the metric, M(x), but since the metric field
M distorts the distance, it will result stretched in the standard Euclidean space.
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This remark explains one of the main ideas to get an anisotropic element.
However, the principal issue is how to create a metric field M(x) that provides the
appropriate orientation, shape and size of the triangles.

Once you get a metric field M(x), it is possible to proceed with two different
kinds of mesh adaptation:

• re-meshing;

• local mesh adaptation.

Re-meshing

In this procedure the mesh is completely reconstructed. More precisely, consider
a domain Ω and its discretization Ω1; suppose that, on Ω1, we are able to define a
metric field M1(x). Moving from this metric field, we can get a new discretization
of Ω, where the elements are equilateral according to M1(x), i.e., each element
has its sides of the same length.

This could be an iterative procedure, i.e., we can get a finite sequence of
adapted mesh Ω1, Ω2, Ω3 ... Ωn. In fact, once we get the new adapted mesh
Ω1, we may build a new metric field M2(x) and, consequently, a new mesh Ω2,
and so on. This iterative procedure usually ends when a suitable criterion on the
solution or on the number of elements of the mesh, is met.

In a finite element framework, this procedure is widely used to get an adapted
anisotropic mesh. We refer to [41, 38] for examples on the two-dimensional planar
domain meshes.

Local Mesh Adaptation

In this type of procedure, an initial mesh Ωh is modified with the local mesh
operations, introduced in Section 1.2, to get a new mesh Ω′h such that all the
elements are equilateral according to a metric field M(x).

There are many works in the literature that exploit this mesh adaptation pro-
cedure, for instance [76, 45] for the planar two-dimensional case.

Remark 1.5.3 In this thesis we are dealing with surface meshes, so we have to
consider a metric field M(x) defined on a surface. This metric is defined through
two strictly positive scalar functions σ1 = σ1(x), σ2 = σ2(x) and three vector
functions u1 = u1(x), u2 = u2(x) and n = n(x), where

u1 · u2 = u1 · n = u2 · n = 0
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and n is the outward unit normal to the surface Γ. Then, we define a metric tensor
M(x) at a generic point x ∈ Γ, as

M(x) =
(
u1 u2 n

) 1/σ2
1 0 0

0 1/σ2
2 0

0 0 0

 u1
t

u2
t

nt

 . (1.14)
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PDE on Surfaces

In this chapter we give a brief overview about Partial Differential Equations (PDEs)
defined on surfaces embedded in R3. We highlight the principal issues on the def-
inition of the domain. Then, we focus on the main partial differential operators
used to define such PDEs. Finally, we recall some error estimates and gradient
recovery strategies useful for the approximation of such PDEs.

2.1 Introduction on PDEs defined on Surfaces

The Partial Differential Equations defined on Surfaces have received a lot of inter-
est in the last decades. There is a large variety of methods to define and solve this
kind of PDEs. Among the first contributions, we cite the paper of G. Dziuik, [31].
In this work the author considers a piecewise polygonal surface and introduces a
finite element space defined on this triangular surface mesh. Then, in [32, 33], the
authors further analyse and extend this theory.

Moving from the idea in [9], another approach has been introduced by K. Deck-
elnick et al. in [23]. In this case, the surface is given by the zero level set of a
signed distance function and the basic idea is to solve the partial differential equa-
tion on a narrow band around the surface.

In [86], Olshanskii et al. provided a new method to discretize a PDE on a sur-
face based on an outer mesh. The main idea is to use the finite element space that
is induced by triangulation of an outer domain to discretize the partial differential
equation. In this case, the authors restrict the outer partial differential equation,
instead of extending the PDE out off the surface, as in [31, 9]. This theory has
been further studied and analysed in [85, 26] and it is particularly suitable for
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problems assigned on a surface implicitly defined, i.e., coinciding with the zero
level set of a signed distance function and when there exists a coupling between
the PDE defined on the surface and the PDE defined on a fixed outer domain.
In this framework, M. A. Olshanskii et al. use a finite element technique for the
discretization of the outer domain. This setting immediately gives an easy to im-
plement discretization method for the surface equation, so it does not require any
additional surface elements.

In this thesis we use the theory provided by G. Dziuk in [31].

2.2 Definition of a Surface
A surface is defined as follows, [11]:

Definition 2.2.1 A subset Γ ⊂ R3 is a differentiable surface if, for each point
x ∈ Γ there exists an open subset U ⊂ R3 and a differentiable function
F : U → R such that U ∩ Γ = F−1(0) and ∇F (x) 6= 0 , ∀x ∈ U .

Remark 2.2.1 The set Γ can be considered as the set of points such that F (x) =
0, where F is a differentiable function.

Remark 2.2.2 The condition on the gradient, ∇F (x) 6= 0 , ∀x ∈ U , guarantees
that the surface Γ is smooth at each point x ∈ Γ.

There are different ways to describe a surface Γ embedded in R3:

• as the graph of a function;

• in parametric form;

• via a global implicit form.

Graph of a Function

Consider an open set A ⊂ R2 and a differentiable function f : A → R. Via the
function f , we define the surface Γ as follows:

Γ = {(x, y, z) ∈ R3 : z = f(x, y)} . (2.1)

This way of representing a surface is very simple and straightforward, but it is
not so general. In fact, there are surfaces that cannot be represented as a graph of
a function f , for example a sphere or a torus.
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Parametric Form

A surface can be built as the image of a injective differentiable function of two
real variables in R2. Consider a function ϕ : A→ R3. Here A is a open set of R2,
called parametric space. Moving from the function ϕ, we can get the coordinates
(x, y, z) of a generic point on the surface Γ as

x = ϕ1(u, v) ,

y = ϕ2(u, v) , (2.2)
z = ϕ3(u, v) ,

where (u, v) ∈ A.
This is the most natural way to define a surface and it provides simple expres-

sion to evaluate the length of arc on the surface, or the area of particular regions
on the surface [93].

Unfortunately, given a generic surface Γ, it is not easy to find a function
ϕ(u, v) that satisfies Equation (2.2), [80]. To get a parametrization of a surface,
it is sometimes necessary to split the surface Γ in to a finite set of sub-surfaces
usually called patches, such that.

Γ =
n⋃
i=1

Γi and Γ̊i ∩ Γ̊j = ∅ ,

where Γ̊i denotes the internal part of the sub-surface Γi. Then, we parametrize
each of these patches, separately, [8].

Global Implicit Form

A differentiable surface Γ can be represented as the zero level set of a single
differentiable function F : R3 → R, i.e.,

Γ = {x ∈ R3 : F (x) = 0} . (2.3)

This representation is really general and it allows us to represent a large variety of
surfaces.

Moreover, suppose that we know only few points of an unknown surface Γ
together with the normals to the surface at these points. In such a case, one of
the possible ways to construct a function F , whose zero level set interpolates is to
employ the so-called radial basis functions, [12, 78, 29].
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In the framework of Partial Differential Equations defined on surfaces, the
domain is represented via a global implicit form, [31]. In fact, this representation
provides a unique and complete definition of the surface and offers a series of
advantages in terms of the geometrical and the mesh adaptation point of view.

2.2.1 Geometric Considerations
We assume that F is a function of class C2. Moving from F and its derivatives, it
is possible to compute some useful geometrical quantities related to the geometry
of the surface. In this subsection, we describe how to compute these geometrical
quantities via its global implicit form, [105].

Given a point x ∈ Γ, we are able to compute the outward unit normal as

n(x) :=
∇F (x)

||∇F (x)||
. (2.4)

Then, from the Hessian of F , H, we can also obtain the principal curvatures
of Γ. The problem of finding the principal curvatures at x can be formulated as
follows: find the maximum and the minimum of the quadratic form

Q(w) = wtKw , w ∈ S,

where
K := − H

||∇F ||
, (2.5)

and
S := {w : ||w|| = 1, wtn = 0} .

This problem can be reduced to find the eigenvalues of K. In fact, it is possible to
prove that the principal curvatures, kmax and kmin, are related to the maximum and
the minimum eigenvalues of K. Since the eigenvectors of K might not lie on the
tangent plane to the surface Γ at x, this result cannot be directly applied to find
the curvatures. To overcome this problem, we work with instead of the matrix K
with a matrix G ∈ R3×3, that has the following properties:

i) n is the eigenvector of G with null eigenvalue;

ii) wtKw = wtGw ∀w ∈ S.

In this way, the searching of the maximum of the quadratic form G permits to find
the maximum of K on the tangent plane to Γ at x.
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Proposition 2.2.1 A matrix G that satisfies the properties, i) and ii) is

G := PK , (2.6)

with
P := I− n⊗ n , (2.7)

K defined in Equation (2.5), I the identity matrix, n is the outward unit normal to
the surface Γ at x, and ⊗ the standard tensor product between vectors.

Proof. Before dealing with the proof, we recall that

n⊗ n = nnt and ntn = 1 .

Now we can proceed with the proof of property i):

ntGn = ntPKn

= nt(I− n⊗ n)Kn

= ntKn− ntnntKn

= ntKn− ntKn = 0 .

The proof of ii) can be obtained by the following chain of equalities. We consider
a vector w ∈ S, i.e. such that wtn = 0, then, we have

wtGw = wtPKw

= wt(I− n⊗ n)Kw

= wtKw −wtnntKw

= wtKw − 0 = wtKw .

�

Once we get the eigenvalues of G, we can compute the principal curvatures
of Γ at the point x. More precisely, let λ1, λ2 and 0 be the eigenvalues of G and
|λ1| > |λ2|; we have:

kmax = |λ1| and kmin = |λ2| .
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2.2.2 Considerations on Mesh Adaptation
As seen in the previous chapter, there are some mesh operations that move or
add points on the mesh. In such cases, it is crucial to locate the point on the
actual domain. On the contrary, we are dealing with mesh adaptation of flat two-
dimensional domains, this is not an issue. In fact, moving from the points of the
mesh, we can easily find a new point that lies on the same plane. However, when
the computational domain is not planar, we need a way to obtain a point that lies
on the actual curved domain.

Fortunately, the global implicit form offers robust algorithms able to project a
point onto the surface that the implicit form represents. One of the most popular
is the one proposed by E. Hartmann [58]. The basic idea of this algorithm is the
combination of calculating foot points on tangent planes and approximating foot
points on tangent parabolas. To achieve this goal, the algorithm requires only the
first order derivatives and the employment of the gradient method to move the
point onto the surface along the steepest direction.

2.3 Finite Elements on Surfaces
In the framework of Partial Differential Equations defined on surfaces, we have to
evaluate the derivatives of a function defined on a surface. As a consequence, to
get the gradient of such a function, we cannot directly apply the standard differ-
ential operators, see [31].

Here, we recall the theory provided by G. Dziuk in [31] to overcome this issue.
Let us consider a connected C2 compact two-dimensional surface Γ embedded in
R3. In particular, we assume that Γ coincides with the zero level set of a signed
distance function d : R3 → R, such that

|d(x)| = dist(x,Γ) , ∀x ∈ R3 .

Moreover, if Γ is a closed surface, we assume d < 0 inside Γ, while d > 0 outside
Γ. On the contrary, if Γ is an open surface, we assume ∂Γ to be piecewise regular.
Then, we consider a shell of width δ > 0 about Γ,

Uδ = {x ∈ R3 : |d(x)| < δ} .

The thickness δ has to be sufficiently small to guarantee the uniqueness of the
decomposition

x = a(x) + d(x)n(x) ∀x ∈ Uδ, (2.8)
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with a : Uδ → Γ the orthogonal projection operator onto Γ and n(x) = ∇d/||∇d||.
The admissible values for δ depend on the principal curvatures of the surface. In
particular, if we choose

δ ≤ 1

maxi=1,2 ||ki||L∞(Γ)

where ki are the principal curvatures of the surface Γ, the uniqueness of a is guar-
anteed, [25, 51].

The projection a is instrumental to extend the definition of a generic function
f assigned on Γ to the whole shell Uδ. In fact, we define the extended function
fE : Uδ → R as

fE(x) := f(a(x)) ∀x ∈ Uδ , (2.9)

see Figure 2.1.

Uδ Γ

R

-a

@
@
@@R

fE
?

f

Figure 2.1: Diagram of the function fE .

Remark 2.3.1 fE can be viewed as an extension along wires of the function f .

Remark 2.3.2 Since the function fE is defined in the shell Uδ, the classical dif-
ferential operators are well-defined on fE .

Moving from this projection operator, we can evaluate some useful quanti-
ties defined on surfaces parallel to Γ, i.e., Γ1, Γ2,. . .Γn, all included in Uδ, see
Figure 2.2.

Remark 2.3.3 For a generic point x ∈ Uδ, Equation (2.4) provides the outward
unit normal to any surfaces parallel to Γ.

Remark 2.3.4 For a generic point x ∈ Uδ, it is possible to compute the curvature
of the parallel surfaces, Γi, via the formula

ki(x) =
ki(a(x))

1 + d(x)ki(a(x))
, (2.10)
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Figure 2.2: Surfaces parallel to Γ included in Uδ.

where i = 1, 2, while k1 and k2 denote the maximum and minimum curvature,
respectively.

Proof. This is a well-known result and it is proved in [51].

Now, we show how we can recover the derivative of f : Γ→ R moving from
fE : Γh → R and the classical differential operators.

Definition 2.3.1 Given a function f : Γ → R, we define the tangential gradient
∇Γf as

∇Γf := P∇fE , (2.11)

with ∇ the standard gradient operator in R3,

P = I− n⊗ n , (2.12)

and where I is the identity matrix, n is the outward unit normal to the surface Γ at
x and ⊗ is the standard tensor product between vectors, as in Proposition 2.2.1.

Remark 2.3.5 Thanks to definition (2.9), the tangential gradient ∇Γf depends
only on the values of f on Γ even if Equation (2.11) involves the shell Uδ. In fact,
we evaluate the usual gradient operator on fE , but, via the matrix P, we lose the
component along the normal direction n.

Proof. We consider a function f : Γ → R and its extension fE defined by
Equation (2.9). We consider the component ∇Γf along the normal n via the
following scalar product

∇Γf
tn = (P∇fE)tn

= ((I− n⊗ n)∇fE)tn
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= (∇fE − nnt∇fE)tn

= (∇fE)tn− (∇fE)tntnn

= (∇fE)tn− (∇fE)tn = 0

�

Definition 2.3.2 Given a function Ψ : Γ → R3, we define the tangential diver-
gence as

∇Γ ·Ψ := P : ∇ΨE , (2.13)

where : is the classical scalar product between matrices.

Definition 2.3.3 Given a function u : Γ → R, we define the Laplace-Beltrami
operator as

∇Γu := ∇Γ · (∇Γu) . (2.14)

Remark 2.3.6 The Laplace-Beltrami operator is the extension to non-planar do-
mains of the classical Laplace operator defined for planar two-dimensional do-
main.

Remark 2.3.7 It is possible to generalize this theory by removing the assumption
that Γ coincides with the zero level set of a signed distance function d. In partic-
ular, we can replace d with a sufficiently regular function F , see Definition 2.2.1,
that represents the surface Γ as a zero level set, i.e.,

Γ = {x ∈ R3 : F (x) = 0} .

2.3.1 The Laplace-Beltrami Problem
Continuous Formulation

Moving from the previous definitions, we formulate the so-called Laplace-Beltrami
problem. Given a connected C2 compact two-dimensional surface Γ embedded in
R3, with |∂Γ| 6= ∅, and a function f : Γ → R, the Laplace-Beltrami problem is:
find u such that {

−∆Γu = f on Γ ,
u = 0 on ∂Γ .

(2.15)

Now we introduce the weak formulation of this problem. We consider these func-
tional spaces:

L1(Γ) :=

{
ψ :

∫
Γ

|ψ| dσ < +∞
}
,
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L2(Γ) :=

{
ψ :

∫
Γ

|ψ|2 dσ < +∞
}
,

H1(Γ) :=

{
ψ : ψ ∈ L2(Γ),∇Γψ ∈ [L2(Γ)]3

}
,

H1
0 (Γ) :=

{
ψ ∈ H1(Γ) : ψ|∂Γ = 0

}
.

In these spaces we define the following norms

||ψ||L1(Γ) :=

∫
Γ

|ψ|dσ ,

||ψ||2L2(Γ) :=

∫
Γ

|ψ|2dσ ,

||ψ||2H1(Γ) := ||ψ||2L2(Γ) + ||∇Γψ||2L2(Γ) .

Remark 2.3.8 For the functional Sobolev spaces defined before, the same embed-
ding rules of the classical Sobolev spaces hold.

Theorem 2.3.1 Given a n−dimensional surface Γ and a function v : Γ→ Rn+1,
the following equality holds∫

Γ

∇Γ · v dσ =

∫
∂Γ

v · n dγ −
∫

Γ

Kv · n dσ , (2.16)

where n is the outward unit normal to ∂Γ, tangent to Γ and K := ∇Γn, is the
mean curvature of Γ. This result is known as divergence theorem.

Then, a weak formulation of Problem (2.15) is formally obtained by multiply-
ing the first equation in Equation (2.15) by φ ∈ H1

0 (Γ) and by applying Theo-
rem 2.3.1.∫

Γ

f φ dσ = −
∫

Γ

∆Γuφ dσ

=

∫
Γ

∇Γu · ∇Γφ dσ −
∫
∂Γ

∇Γu · nφ dσ +

∫
Γ

K∇Γu · nφ dσ

=

∫
Γ

∇Γu · ∇Γφ dσ ,

to simplify the previous expression we have used both the condition, φ = 0 on
∂Γ, and ∇Γu · n = 0. So, the weak formulation of the problem defined by Equa-
tion (2.15) is
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Problem 2.3.1 Given a function f ∈ L2(Γ), find u ∈ H1
0 (Γ) such that:

A(u , φ) = B(φ) , ∀φ ∈ H1
0 (Γ) , (2.17)

where A : H1
0 (Γ) × H1

0 (Γ) → R and B : H1
0 (Γ) → R are a bilinear and linear

form, respectively, defined as

A(u , φ) :=

∫
Γ

∇Γu · ∇Γφ dσ and B(φ) :=

∫
Γ

fφ dσ . (2.18)

Now, we give an important result about the existence, uniqueness and stability
of Problem 2.3.1. The proof of this result can be found in [31].

Theorem 2.3.2 For each function f ∈ L2(Γ), there exists a unique weak solution
of Problem 2.3.1, with u ∈ H1

0 (Γ). Then, the following estimate holds

||u||H2(Γ) ≤ C||f ||L2(Γ) (2.19)

Remark 2.3.9 A similar result holds in the case of an open surface Γ without
boundary, i.e., for |∂Γ| = 0, but, in this particular case we have to consider only
the function f ∈ L2(Γ) such that ∫

Γ

f dσ = 0 . (2.20)

Discrete Formulation

The principal issue for the numerical approximation of this type of Partial Differ-
ential Equations is that the involved functions are defined on a continuous surface
Γ. Unlike the classical finite element framework for a planar domain, in this case
the computational domain Γh 6⊂ Γ, so the most common finite element property
are not verified, e.g., the well-known Galerkin orthogonality does not hold.

We follow the theory provided by G. Dziuk in [31] to discretize Problem 2.3.1.
We approximate the smooth surface Γ by a triangular mesh Γh whose vertices are
on Γ and such that Γh ⊂ Uδ, see Figure 2.3.
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Figure 2.3: Section view of the surface Γ (solid line), of the shell Uδ (dashed line)
and of the polyhedron surface Γh (line with markers).

We define the following finite element space over the domain Γh

Vh := {vh ∈ C0(Γh) : vh|T ∈ P1(T ) ∀T ∈ Γh} , (2.21)

where we have denoted by P1 the space of the polynomials less than or equal to
1. On this discrete domain we define the following functional spaces

L1(Γh) :=

{
ψh :

∫
Γh

|ψh| dσh < +∞
}
,

L2(Γh) :=

{
ψh :

∫
Γh

|ψh|2 dσh < +∞
}
,

H1(Γh) :=

{
ψh : ψ ∈ L2(Γh),∇Γh

ψ ∈ [L2(Γh)]
3

}
,

H1
0 (Γh) :=

{
ψh ∈ H1(Γh) : ψh|∂Γh

= 0

}
.

To discretize the function f , we use the function fh : Γh → R defined as

fh(x) := f(a(x)) ∀x ∈ Γh . (2.22)

Now we have all the ingredients to state the discrete formulation of Problem 2.3.1:

Problem 2.3.2 Given a function fh ∈ L2(Γh), find uh ∈ H1
0 (Γh) such that:

Ah(uh , φh) = Bh(φh) , ∀φ ∈ H1
0 (Γh) , (2.23)

where Ah : H1
0 (Γh) × H1

0 (Γh) → R and Bh : H1
0 (Γh) → R are a bilinear and

linear form, respectively, defined in such a way:

Ah(uh , φh) :=

∫
Γh

∇Γh
uh ·∇Γh

φh dσh and Bh(φh) :=

∫
Γh

fhφh dσh . (2.24)
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Remark 2.3.10 In the weak formulation of Problem 2.3.1, we have replaced the
linear and bilinear form, i.e. in Problem 2.3.1 we have A and B defined on the
actual domain Γ, see Equation (2.18), while in Problem 2.3.2 we haveAh and Bh
defined on the discrete domain Γh, see Equation (2.24).

Remark 2.3.11 The existence and uniqueness results of Problem 2.3.1 may be
extended to Problem 2.3.2. Even in the discrete problem, when we are dealing
with a surface Γ without boundary, we require∫

Γh

fh dσh = 0 , (2.25)

to guarantee the existence of the solution.

The finite element scheme defined in Equation (2.23), is similar to the one of
the classical finite element analysis. In fact, since a generic function vh ∈ Vh
is piecewise linear, it can be uniquely defined via the values that assumes at the
nodes of the mesh Γh. Thus, a basis for the discrete space Vh is provided by the
set of functions ϕj(x) for j = 1, 2, . . . , N , such that:

ϕj(xi) =

{
1 if j = i
0 if j 6= i

i, j = 1, 2, . . . N, (2.26)

whereN is the number of nodes of the mesh Γh and essential boundary conditions
are not assigned. Thus, a generic function uh ∈ Vh can be written as a linear
combination of the basis functions ϕj(x) as

uh(x) =
N∑
j=1

uj ϕj(x) , (2.27)

where uj ∀j = 1, 2, . . . , N , is the value of the function uh at the node xj . At this
level, we remark that the finite element scheme has exactly the same structure of a
classical finite element method for a planar problem. In fact, if we choose the test
function ϕi(x) in Equation (2.23) coinciding with the function ϕi(x), we have

N∑
j=1

uj

∫
Γh

∇Γh
ϕj(x) · ∇Γh

ϕi(x) dσh =

∫
Γh

fh ϕi(x) dσh i = 1, 2, . . . N.

Thus, we can write the previous set of equations in a matrix form, as

Au = f , (2.28)
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where we recognize the classical stiffness matrix A ∈ RN×N , whose elements are

Aij :=

∫
Γh

∇Γh
ϕj(x) · ∇Γh

ϕi(x) dσh ,

the vector of the unknown u and the right hand side f, defined as

uj := uh(xj) and fj :=

∫
Γh

fh ϕj(x) dσh ,

respectively.

2.4 Convergence Estimate
In this section we formalize the comparison between the solution of Problem 2.3.1,
u, with its finite element approximation, uh, i.e., the solution of Problem 2.3.2.
The principal issue of this comparison is that these two functions are defined on
a different domain, since u : Γ → R and uh : Γh → R. To compare these two
solutions, we use the projection operator a defined in Equation (2.8).

Consider a generic function vh defined on Γh, we define its projection on Γ,
ṽh : Γ→ R as

vh(x) =: ṽh(a(x)) ∀x ∈ Γh . (2.29)

Then we can define ṽEh (x) := ṽh(a(x)). The final result of this series of extension
is to have extended the function vh defined on Γh to the function ṽEh defined on
whole shell Uδ, see Figure 2.4.

Γh Uδ Γ

R R
?

vh

-a

@
@

@@R
ṽEh ?

ṽh

Figure 2.4: Diagram of the function vh and ṽEh .

To simplify the notations, we refer to ṽEh (x) as vEh (x). Now, we estimate the
convergence of the discrete solution for this kind of partial differential equations,
Lemma 2.4.5. Before dealing with the proof of such an estimate, we need some
useful properties of P and H, Proposition 2.4.1. Moreover, we also need a relation
between the operators∇Γ and∇Γh

, Proposition 2.4.2 and an equivalence between
the norm on Γ and Γh, Lemma 2.4.1.
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Proposition 2.4.1 We consider a signed distance function d : R3 → R, the nor-
mal n defined as in Equation (2.4), the Hessian H of d and the operator P defined
as Equation (2.12). Then, the following relations holds:

i) Hn = 0 ,

ii) PP = P ,

iii) HP = PH = H .

Proof. We recall that the Hessian, H, of the signed distance function d that define
the surface Γ is given by

H =


∂2d
∂2x

∂2d
∂y∂x

∂2d
∂z∂x

∂2d
∂x∂y

∂2d
∂2y

∂2d
∂z∂y

∂2d
∂x∂z

∂2d
∂y∂z

∂2d
∂2z

 .

The first component of the product between H and n is

∂2d

∂2x
nx +

∂2d

∂y∂x
ny +

∂2d

∂z∂x
nz ,

where nx, ny and nz are the components of n. We can rewrite this equation in
such a way

∂

∂x

(
∂d

∂x
nx

)
+

∂

∂x

(
∂d

∂y
ny

)
+

∂

∂x

(
∂d

∂z
nz

)
.

But if we use Equation (2.4), we have

∂

∂x
(c nxnx) +

∂

∂x
(c nyny) +

∂

∂x
(c nznz) ,

where c = ||∇d||. Finally, we get

∂

∂x
(c (nxnx + nyny + nznz)) =

∂

∂x
(c ) = 0 .

These computations can be repeated for each component of the vector Hn, so we
prove i).

Now, we consider ii). We recall that

P = I− n⊗ n
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= I− nnt .

Thus we have

PP = (I− n⊗ n)(I− n⊗ n)

= (I− nnt)(I− nnt)

= I− nnt − nnt + nntnnt

= I− nnt − nnt + nnt

= I− nnt

= P .

Finally, via i), we can prove the equalities iii) , i.e., we have

HP = H(I− n⊗ n)

= H(I− nnt)

= H−Hnnt

= H ,

and

PH = (I− n⊗ n)H
= (I− n · nt)H
= H− nntH
= H− n(Hn)t

= H ,

respectively.

�

Proposition 2.4.2 Consider a function vh : Γh → R and its projection on the
surface Γ, vEh : Γ→ R. Then, the following relation holds:

∇Γh
vh(x) = Ph(x)(I− dH)(x)∇Γv

E
h (a(x)) , (2.30)

where d is the signed distance function that defines the surface Γ, H is the Hessian
of the function d, a is the projection operator, I is the identity matrix and we have
defined

Ph := I− nh ⊗ nh , (2.31)

where nh is the unit outward normal to the surface Γh.
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Proof. If we resort to the chain rule of derivatives, we get

∇vEh (x) = (P− dH)(x)∇vEh (a(x)) , (2.32)

Then, via the Proposition 2.4.1, we have

(P− dH)(x)∇vEh (a(x)) = (P− dH)(x)∇vEh (a(x))

= (P− dHP)(x)∇vEh (a(x))

= (I− dH)(x)P(x)∇vEh (a(x))

= (I− dH)(x)∇Γv
E
h (a(x)) .

Then if we consider Ph defined in Equation (2.31), we have

∇Γh
vh(x) = Ph(x)∇vEh (x)

= Ph(x)(I− dH)(x)∇Γv
E
h (a(x)) ,

and this completes the proof.

�

Lemma 2.4.1 Given a function vh : Γh → R and its projection on Γ, vEh , there
exists a constant C such that, ∀x ∈ Γh, the following relations hold:

1

C
||vh||L2(T ) ≤ ||vEh ||L2(TE) ≤ C||vh||L2(T ) ,

1

C
||∇Γh

vh||L2(T ) ≤ ||∇Γv
E
h ||L2(TE) ≤ C||∇Γh

vh||L2(T ) ,

here T is a triangle of the mesh Γh and

TE =
{
a(x) : x ∈ T

}
. (2.33)

Proof. The proof of these relations can be found in [31].

�

Remark 2.4.1 The relations in Lemma 2.4.1 can be read as an equivalence rela-
tions between the norms defined on the actual surface Γ and its discrete approxi-
mation Γh.
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Lemma 2.4.2 Consider a surface Γ defined as the zero level set of a signed dis-
tance function d and its discretization Γh. Given a point x ∈ Γh, then the following
relation holds

µh :=
dσ

dσh
= (1− d(x))k1(x)(1− d(x))k2(x)(n(x))tnh(x) , (2.34)

where nh(x) is the outward unit normal to the surface Γh, k1 and k2 are the
principal curvatures defined in Remark 2.3.4, and dσ, dσh are the infinitesimal
portions of the surfaces Γ and Γh, respectively.

Proof. The proof of such relation can be found in [25].

�

Lemma 2.4.3 We consider a continuous surface Γ and its discretization Γh. We
suppose that Γ is the zero level set of a signed distance function d. Then, there
exists a constant C such that:

||d||L∞(Γh) ≤ Ch2 , (2.35)

where h is the discretization size. Moreover, we have

||1− µh||L∞(Γh) ≤ Ch2 , (2.36)
||(I− Ah)P||L∞(Γ) ≤ Ch2 , (2.37)

where
Ah :=

1

µh
P(I− dH)Ph(I− dH)P . (2.38)

Proof. The proof of such relations can be found in [31].

�

Lemma 2.4.4 Consider a function f : Γ → R and its piecewise polynomial
approximation fh : Γh → R. Then, the following estimates hold

||fh||L2(Γh) ≤ C||f ||L2(Γ) , (2.39)
||f − Fh||L2(Γ) ≤ Ch2||f ||L2(Γ) , (2.40)

where C is a constant, h is the discretization size and

Fh :=
1

µh
fh .
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Proof. The proof of such relations can be found in [31].

�

Definition 2.4.1 Consider a function u : Γ → R and its discrete approximation
uh : Γh → R, we define the discretization error as

eh := |u− uEh | . (2.41)

where uEh is the extension of the discrete approximation uh to Uδ, see Equa-
tion (2.9).

Now we have all the results needed to prove the energy estimate for the solu-
tion of Problem 2.3.2. We present the estimate introduced by G. Dziuk in [31],
that treats the case ∂Γ = ∅. This proof can be easily extended to an open surface.

Lemma 2.4.5 Let |∂Γ| = ∅ and let u be the solution of Problem 2.3.1, uh the
solution of Problem 2.3.2 and uEh its extension to Γ given by

uh(x) =: uEh (a(x)) x ∈ Γh .

Then, the following energy estimate holds

||∇Γ(u− uEh )||L2(Γ) ≤

(
inf
φ∈V
|u− φEh |H1(Γ) + h2||f ||L2(Γ)

)
. (2.42)

Proof. We consider a function uh ∈ Vh, f ∈ L2(Γ) and fh ∈ L2(Γh) such that∫
Γ

f dσ = 0 and
∫

Γh

fh dσh = 0 .

see Remark 2.3.9 and 2.3.11. From Equation (2.17) and (2.23), we have∫
Γ

∇Γu∇Γφ dσ =

∫
Γ

fφ dσ ∀φ ∈ H1(Γ) , (2.43)∫
Γh

∇Γh
uh∇Γh

φh dσh =

∫
Γh

fhφh dσh ∀φh ∈ H1(Γh) . (2.44)

Then, according to Equation (2.29), we define

uh(x) =: uEh (a(x)) x ∈ Γh ,
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φh(x) =: φEh (a(x)) x ∈ Γh .

These functions belong to the following functional space:

V E
h =

{
φh(x) = φEh (a(x)) ,x ∈ Γh , φh(x) ∈ Vh} .

Via these transformations, Proposition 2.4.2 and the definition of Ah, see Equa-
tion (2.38), we get, from Equation (2.44),∫

Γ

Ah∇Γu
E
h · ∇Γφ

E
h dσ =

∫
Γ

Fhφ
E
h dσ .

Then, we have∫
Γ

∇Γu
E
h · ∇Γφ

E
h dσ =

∫
Γ

Fhφ
E
h dσ +

∫
Γ

(Ah − I)∇Γu
E
h · ∇Γφ

E
h dσ

and, if we subtract this equation form Equation (2.43), where we choose φ = φEh ,
we obtain∫

Γ

∇Γ(u− uEh ) · ∇Γφ
E
h dσ =

∫
Γ

(I− Ah)∇Γu
E
h · ∇Γφ

E
h dσ +

∫
Γ

(f − Fh)φEh dσ .
(2.45)

This relation is valid ∀φEh ∈ H1(Γ). Now, we look for an estimate of an error with
respect to the H1(Γ)-semi norm,

|u− uEh |2H1(Γ) := ||∇Γ(u− uEh )||2L2(Γ) =

∫
Γ

∇Γ(u− uEh )∇Γ(u− uEh ) dσ .

We sum and subtract the quantity∫
Γ

∇Γ(u− uEh ) · ∇Γφ
E
h dσ ,

and we use Equation (2.45), to get

|u− uEh |2H1(Γ) =

∫
Γ

∇Γ(u− uEh ) · ∇Γ(u− φEh ) dσ

+

∫
Γ

(I− Ah)∇Γu
E
h · ∇Γ(uEh − φEh ) dσ

−
∫

Γ

(f − Fh)(uEh − φEh ) dσ .
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Since PP = P, see Proposition 2.4.1, we have∫
Γ

(I− Ah)∇Γu
E
h · ∇Γ(uEh − φEh ) dσ =

∫
Γ

(I− Ah)P∇Γu
E
h · ∇Γ(uEh − φEh ) dσ .

Then, via the Schwarz inequality, we have

|u− uEh |2H1(Γ) ≤ ||∇Γ(u− uEh )||L2(Γ)||∇Γ(u− φEh )||L2(Γ) +

+ ||(I− Ah)P||L∞(Γ)||∇Γu
E
h ||L2(Γ)||∇Γ(uEh − φEh )||L2(Γ) +

+ ||f − Fh||L2(Γ)||uEh − φEh ||L2(Γ) .

Using the estimates of Lemmas 2.4.3, 2.4.4, we get

||(I− Ah)P||L∞(Γ)||∇Γu
E
h ||L2(Γ) ≤ Ch2||f ||L2(Γ) .

Then, moving from the relations described in Lemma 2.4.4, we observe that

||f − Fh||L2(Γ)||uEh − φEh ||L2(Γ) ≤ Ch2||f ||L2(Γ)||uEh − φEh ||L2(Γ) .

Without loss of generality, we can suppose that∫
Γ

(uEh − φEh ) = 0 ,

and using the Poincaré inequality, we get the desired estimate, Equation (2.42),
see [31] for more details.

�

Now we analyse more in details the error estimator proposed in Lemma 2.4.5:

||∇Γ(u− uEh )||L2(Γ) ≤

(
inf

φh∈Vh
|u− φEh |H1(Γ)︸ ︷︷ ︸

(I)

+h2||f ||L2(Γ)︸ ︷︷ ︸
(II)

)
. (2.46)

We notice that the error is composed by two different parts.

(I) represents the classical error due to the finite element approximation, i.e.,
the “best approximation error”;

(II) represents the error due to the discretization of Γ with Γh.
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In this framework the last term plays an important role. In fact, if we increase
the order of the finite elements, i.e., if we increase the degree of the polynomial
space, we do not get a convergence rate greater than two in the semi norm H1.
To achieve a higher convergence rate, it is necessary to approximate the surface
Γ with curved elements, e.g., piecewise parabolic elements. In [24] it is proved
a convergence result for curved elements. In particular, if the discrete surface
is approximated by piecewise elements of order k, the error estimate defined in
Equation (2.42) becomes:

||∇Γ(u− uEh )||L2(Γ) ≤

(
inf

φh∈Vh
|u− φEh |H1(Γ) + hk+1||f ||L2(Γ)

)
. (2.47)

2.5 A Convection-Diffusion Problem Defined on a
Surface

There are a lot of mathematical models that involve the resolution of partial differ-
ential equations defined on surfaces. Sometimes these equations are coupled with
other equations that are formulated in a fixed domain which contains the surface.
This could happen in a multiphase fluids dynamics, see, e.g., [53]. The surface
transport of such surface is driven by a Convection-Diffusion problem defined on
a surface: {

−∆Γu+ v · ∇Γu = f on Γ ,
u = 0 on ∂Γ ,

(2.48)

where Γ is an arbitrary two-dimensional surface embedded in R3 and v is a vector
field defined on Γ.

In this section we analyse in more detail this kind of problems. In particular,
we focus on the corresponding discretization.

To get the weak form of (2.48), we introduce the same functional spaces used
for the Laplace-Beltrami problem, see Subsection 2.3.1. We multiply the first
equation of system defined in Equation (2.48) by φ ∈ H1

0 (Γ) and we integrate by
parts. Finally, we get the following problem.

Problem 2.5.1 Given a function f ∈ L2(Γ), find u ∈ H1
0 (Γ) such that:

ACV (u , φ) = B(φ) , ∀φ ∈ H1
0 (Γ) . (2.49)
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Here B is the same linear form as in Problem 2.3.1, while we define a new bilinear
form ACV : H1

0 (Γ)×H1
0 (Γ)→ R as

ACV (u , φ) :=

∫
Γ

(∇Γu · ∇Γφ+ v · ∇Γuφ) dσ . (2.50)

To discretize Equation (2.48), we follow the theory provided in [31]. We con-
sider a discretization Γh of Γ, as defined in Section 2.3, and fh, vh are suitable
extension of the function f and the vector field v, i.e., fh : Γh → R such that
fh|Γ = f and vh : Γh → R3 such that vh|Γ = v. The discrete version of the
system defined in Equation (2.48) becomes{

−∆Γh
uh + vh∇Γh

uh = fh on Γh
uh = 0 on ∂Γh

. (2.51)

As for the continuous formulation, we introduce proper functional spaces and then
we are able to state the weak form of (2.51).

Problem 2.5.2 Given a function fh ∈ L2(Γh), find uh ∈ H1
0 (Γh), such that

ACVh (uh , φh) = Bh(φh) , ∀φh ∈ H1
0 (Γh) , (2.52)

Here Bh is the same linear form as in Problem 2.3.2 and we define the bilinear
form ACVh : H1

0 (Γh)×H1
0 (Γh)→ R as

ACVh (uh , φh) :=

∫
Γ

∇Γh
uh · ∇Γh

φh + vh · ∇Γh
uφh dσh . (2.53)

Remark 2.5.1 For simplicity, we assume that the vector field v, defined on the
surface Γ, is extended to a vector field vE such that vE|Γ = v and vE|Γh

= vh.
Moreover, we are not taking into account the error due to the discretization of this
vector field.

2.6 Gradient Recovery Techniques
Consider a piecewise linear approximation, uh, of a function u. In a finite element
analysis, one could be interested in the gradient of uh. For instance, when we are
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dealing with an elasticity problem, we might be more interested in computing the
stresses and the strains rather than the displacements of the elastic body at hand.
Furthermore, the normal component of the gradient of a discrete function uh is
generally discontinuous across the edges of a mesh element and, consequently,
we obtain a discontinuous approximation of the quantity of interest. For this rea-
son, it could be useful a gradient recovery, i.e., a post-processing procedure that
smooths the gradient of a discrete function uh.

In [113, 114, 115], it is shown that, under certain mesh configurations, the
recovered gradient is more accurate than the exact gradient of the original finite
element function, uh.

In this section we show how to generalize the standard local gradient recovery
schemes in the case of non-planar meshes. Firstly, we recall the local averaging
schemes in the planar case, then we move to the non-planar framework.

2.6.1 The Planar Case
Consider a planar triangular mesh Ωh and a node z ∈ ωz, where ωz is the set of tri-
angles that share the node z, i.e., such that z ∈ Tj for at least one j, see Figure 2.5.
We consider a standard finite element space of piece-wise linear functions on Ωh,
Wh, and a finite element function wh ∈ Wh.

Figure 2.5: Patch ωz in the case of planar domain, Ωh.

Given the finite element approximation wh of a generic function w ∈ W ,
where W is a proper functional space defined in Ω, we may use one of the follow-
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ing local gradient recovery schemes, [112], to get a more accurate approximation
of the actual gradient:

1. simple averaging:

(Gh∇wh)(z) :=
1

m

m∑
j=1

∇wh|Tj(z) , (2.54)

here m = #ωz denotes the cardinality of the patch ωz, i.e., the number of
the triangles that share the node z;

2. weighted averaging:

(Gh∇wh)(z) :=
m∑
j=1

|Tj|
|ωz|
∇wh|Tj(z) , (2.55)

where |Tj| and |ωz| are the areas of the triangle Tj and of the patch ωz,
respectively.

Then, this super-convergence result holds.

Theorem 2.6.1 Consider a function u ∈ W 3
∞(ωz). Let uI be the nodal interpolant

of u and Gh∇uh(z) be the recovered gradient produced by either the simple aver-
aging, or by the weighted averaging. Then, there exists a constant C such that the
following inequality holds:

|(Gh∇uI)(z)−∇u(z)| < Ch2||u||3,∞,ωz . (2.56)

Here we have defined the functional space

W 3
∞(ωz) := {f ∈ L∞(ωz) : Dαf ∈ L∞(ωz)∀|α| ≤ 3} .

Proof. The proof of this result is provided in [112]. In particular, the authors
exploit the fact that the barycenter of a triangle is a point of super-convergence for
the derivative of the linear interpolant.
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2.6.2 The Non-Planar Case

In [110, 28], the superconvergence result of Theorem 2.6.1 is extended to non-
planar surface meshes. Consider a two-dimensional surface triangular mesh em-
bedded in the three-dimensional space Γh and a node z ∈ ωz.

Remark 2.6.1 In this case ωz, the patch of triangles Tj that share the node z, i.e.,
z ∈ Tj for at least one j, does not necessarily lies on a plane, see Figure 2.6.

Figure 2.6: Patch ωz in the case of a non-planar domain, Γh, we highlighted the
tangent plane π with normal n.

In [110, 28] the authors propose different ways of extend both the simple and
weighted averaging recovery schemes to the non-planar case. As before we con-
sider a finite element space of piecewise linear functions on Γh, Vh, a finite ele-
ment approximation vh ∈ Vh of a function v ∈ V , where V is a proper functional
space associated with Γ. A more accurate evaluation of the actual tangential gra-
dient∇Γv, can be obtained by one of the following gradient recovery schemes:

1. simple averaging:

(Gh∇Γh
vh)(z) :=

1

m

m∑
j=1

∇Γh
vh|Tj(z) , (2.57)

here m = #ωz is the cardinality of the patch ωz;
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2. weighted averaging:

(Gh∇Γh
vh)(z) :=

m∑
j=1

|Tj|
|ωz|
∇Γh

vh|Tj(z) , (2.58)

where |Tj| and |ωz| are the areas of the triangle Tj and of the patch ωz,
respectively.

3. tangential weighted averaging:

(GT h∇Γh
vh)(z) :=

m∑
j=1

|TEj |
|ωEz |
∇Γh

vh|Tj(z) , (2.59)

where |TEj | and |ωEz | are the areas of the triangles Tj and of the patch ωz,
respectively, projected on the tangent plane to Γ at the node z.

In [110, 28] it is proved a convergence result similar to the one provided in
Theorem 2.6.1 for the non-planar case.

Theorem 2.6.2 Let u ∈ W 3
∞(Γ), uE and uEI be the linear interpolant of uE on

Γh. Let R∇Γh
uEI (z) be the recovered gradient produced by one of the averaging

scheme defined in Equation (2.57), (2.58) or (2.59). If the patch ωz is O(h2)
symmetric, then there exists a constant C such that the following inequality holds

|R∇Γh
uEI (z)−∇Γu(z)| < Ch2||u||3,∞,Γ . (2.60)
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Chapter 3

Error Estimators for PDEs Defined
on Surfaces

In this chapter we introduce some new anisotropic error estimators for PDEs de-
fined on surfaces. Due to the novelty of the proposed approach, we limit our
analysis to simple scalar PDEs to assess the robustness of the proposed estima-
tors. In more details, we extend the theory provided in [40] to Partial Differential
Equations defined on surfaces. Moving from a new anisotropic interpolator error
estimator, we introduce two anisotropic a-posteriori error estimators for a stan-
dard Laplace-Beltrami problem and for a standard convection-diffusion problem
defined on a surface. In particular, we deal with both a residual-based and a goal-
oriented analysis. Finally, in the last section of this chapter, we extend the standard
Zienkiewicz-Zhu error estimator to an anisotropic setting, starting from the theory
provided in [114, 115].

Moving from these error estimators, we propose a metric-based anisotropic
mesh adaptation procedure that employs local operations, see Section 1.2, to mod-
ify the mesh according to the information provided by these estimators.

The reliability of the proposed mesh optimization procedure is numerically
investigated via several numerical examples.

3.1 Source of the Anisotropic Information

Since we are dealing with anisotropic mesh adaptation techniques, we are inter-
ested in identifying the size, the shape and the orientation of each element of the
mesh. To achieve this goal, we follow the theory provided in [40].
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We start from the affine transformation FT : T̂ → T , where T̂ is the reference
triangle in R2, whose vertices are the points

Â =

(
0

0

)
, B̂ =

(
1

0

)
, Ĉ =

(
0

1

)
,

where T is a generic non degenerate triangle embedded in R3, see Figure 3.1. This
transformation is defined as

x = MT x̂ + bT , ∀x̂ ∈ T̂ , (3.1)

where x ∈ T , MT ∈ R3×2 and bT ∈ R3.

Figure 3.1: Scheme of the transformation FT : T̂ ⊂ R2 → T ⊂ R3.

In particular, we recover size, shape and orientation for each element of the
grid by exploiting the singular value decomposition of MT . Unlike the theory
provided in [40], in this framework MT is a rectangular matrix, so we have to
consider the extension of the singular value decomposition to rectangular matri-
ces, see Theorem 3.1.1 and [52].

Theorem 3.1.1 Consider a matrix MT ∈ Rm×n, then there exists a factorization
of the form

MT = UTSTV
t
T , (3.2)

where UT ∈ Rm×m is an unitary matrix, ST ∈ Rm×n is a diagonal matrix with
non-negative real numbers on the diagonal, and VT ∈ Rn×n is an unitary matrix
and Vt denotes the conjugate transpose of VT . Such a factorization is called a
singular value decomposition of MT . The diagonal entries of ST are known as
the singular values of MT . The m columns of UT and the n columns of VT are
called the left-singular vectors and right-singular vectors of MT , respectively.
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3.2 An Anisotropic Interpolation Error Estimate
In the first part of this section we recall the results provided in [25, 24] to get an
isotropic a-priori error estimator for the Laplace-Beltrami equation. We introduce
a suitable interpolation operator.

Definition 3.2.1 Consider a surface Γ and a polyhedral approximation of this
surface, Γh. Given a function ψ : Γ→ R with ψ ∈ L1(Γ), let

ψEz :=
1∫

ωz
φz dσh

∫
ωz

φzψ
E dσh , (3.3)

where {φz}z∈N is a partition of the unity representing the finite element basis
defined on the surface mesh Γh, ωz is the set of triangles in Γh that share the
vertex z, ψE is an extension of the function ψ to Uδ such that ψE|Γ = ψ, see
Equation (2.9), and N is the set of the vertices of Γh. Then, we introduce the
interpolant operator

Ihψ
E :=

∑
z∈N

ψEz φz . (3.4)

Lemma 3.2.1 Consider a surface Γ and its polyhedral approximation, Γh. Let
ψ ∈ H1(Γ) and let mz be the number of elements sharing the node z. Let ωEz
be the lift of the patch ωz onto Γ. Then, for each vertex z of the mesh Γh, the
following relation holds:

||ψE − ψEz ||L2(ωz) ≤ C(ωz) max
T⊂ωz

√
|T |mz max

T⊂ωz

hT√
|T |
||∇Γψ||L2(ωE

z ) , (3.5)

where |T | and hT are the area and the diameter of a triangle T ∈ ωz, respectively,
while C(ωz) is a constant that depends on the patch ωz.

Proof. The proof of relation (3.5) can be found in [25].

�

Relation (3.5) takes into account only the size of the mesh elements via the
quantities

√
|T | and hT . Since we are interested in an estimate that includes

also the shape and the orientation of the mesh elements, we have generalized
estimate (3.5), i.e., we have properly included the anisotropic information of Sec-
tion 3.1. In particular, our goal is to obtain an anisotropic bound for the interpo-
lation error ψ − IhψE associated with the operator (3.4), for any ψ ∈ L1(Γ). For
this purpose, we prove the anisotropic counter part of Lemma 3.2.1.

57



Chapter 3. Error Estimators for PDEs Defined on Surfaces

Proposition 3.2.1 Let ψ ∈ H1(Γ). Then, for each node z ∈ N , there exists a
constant C such that

||ψE−ψEz ||L2(ωz) ≤ C
∑
T∈ωz

(
s2

1,T (r1,T )tGT (ψE) r1,T + s2
2,T (r2,T )tGT (ψE) r2,T

)1/2
,

(3.6)
with ψE : Uδ → R the extension of ψ to Uδ according to definition (2.9), ψEz
defined as in (3.3), GT the symmetric positive semi-definite matrix given by

GT (ψE) =



∫
T

(g1)2 dσh

∫
T

g1g2 dσh

∫
T

g1g3 dσh∫
T

g2g1 dσh

∫
T

(g2)2 dσh

∫
T

g2g3 dσh∫
T

g3g1 dσh

∫
T

g3g2 dσh

∫
T

(g3)2 dσh

 , (3.7)

where gi = (∇Γh
ψE)i for i = 1, 2, 3 denotes the i−th component of the tangential

gradient ∇Γh
ψE = ∇ψE − (nh · ∇ψE)nh with respect to the standard cartesian

coordinate system in R3 and ψE is the extension of ψ, such that ψE|Γ = ψ.

Proof. The first part of this proof follows Lemma 3.2.1 in [25]. Moving from
definition (3.3) and the Cauchy-Schwarz inequality, we get

||ψEz ||L2(ωz) = |ωz|1/2|ψEz | ≤ |ωz|1/2
||ϕz||L2(ωz)

||ϕz||L1(ωz)

||ψE||L2(ωz), (3.8)

with | · | we denote the measure of a generic set in Rd, with d = 1, 2, 3.
Now, by exploiting the map FT defined in Equation (3.1), for each T ∈ ωz,

we consider the piecewise affine map Fz : ω̂z → ωz, where ω̂z is the union of
the inverse image of all the triangles T that form the patch ωz. Analogously, we
denote by û the inverse image of a generic function u ∈ H1(Γh). The L2- and the
L1-norm in (3.8) can be easily computed coming back to the reference framework
as

‖ϕz‖pLp(ωz) =
∑
T∈ωz

∫
T

(
ϕz

)p
dσh =

∑
T∈ωz

|T |
|T̂ |

∫
T̂

(
ϕ̂z

)p
dσ̂ =

∣∣ωz

∣∣
|T̂ |

∫
T̂

(
ϕ̂z

)p
dσ̂ ,

(3.9)
where

‖ϕ̂z‖L1(T̂ ) = 1/6 , ‖ϕ̂z‖L2(T̂ ) = 1/
√

12 and |T̂ | = 1/2 .
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By properly substituting (3.9) in (3.8), we get

||ψEz ||L2(ωz) ≤
√

3

2
||ψE||L2(ωz) . (3.10)

In a similar way, picked a constant K ∈ R and moving from the definition (3.3)
and thanks to the Cauchy-Schwarz inequality, we have

‖ψEz −K‖L2(ωz) = |ωz|1/2|ψEz −K|

=
|ωz|1/2∣∣∣∫ωz
ϕz dσh

∣∣∣
∣∣∣∣∫
ωz

(
ψE −K

)
ϕz dσh

∣∣∣∣
≤ |ωz|1/2

‖ϕz‖L1(ωz)

‖ψE −K‖L2(ωz)‖ϕz‖L2(ωz)

≤
√

3

2
‖ψE −K‖L2(ωz). (3.11)

The triangle inequality yields

||ψE − ψEz ||L2(ωz) ≤

(
1 +

√
3

2

)
||ψE −K||L2(ωz) . (3.12)

Now, we properly choose the constant K in Equation (3.11) in order to exploit the
spectral decomposition of MT . Via this decomposition we obtain an anisotropic
bound for the right-hand side in (3.12). Indeed, we set

K =
1

|T̂ |

∫
T̂

η(x̂) dσ̂ , (3.13)

where η is a function defined on T̂ such that η(x̂) = ψE(FT (x̂)), for any x̂ ∈ T̂ .
Thus, thanks to the standard Poincaré inequality, we have

‖ψE − ψEz ‖2
L2(ωz) ≤ C

∑
T∈ωz

|T |
|T̂ |

∫
T̂

(η −K)2 dσ̂

≤ C
∑
T∈ωz

|T |
|T̂ |

∫
T̂

(
∇̂η
)2

dσ̂ ,
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with ∇̂ the gradient operator with respect to the coordinate system of the reference
plane x̂Oŷ. We notice that

∇̂η = Mt
T∇Γh

ψE ,

with∇Γh
ψE is the tangential gradient associated with Γh. Coming back to Γh, we

get this inequality,

‖ψE − ψEz ‖2
L2(ωz) ≤ C

∑
T∈ωz

∫
T

∣∣Mt
T∇Γh

ψE
∣∣2 dσh .

To introduce anisotropic information, we simply resort to the SVD of MT , to have

‖ψE − ψEz ‖2
L2(ωz) ≤ C

∑
T∈ωz

∫
T

((
∇Γh

ψE
)t
UTSTS

t
TU

t
T

(
∇Γh

ψE
))

dσh ,

(3.14)
where matrix VT does not contribute since Vt

TVT = I. Now, it can be easily
checked that the matrix product UTSTS

t
TU

t
T in Equation (3.14) can be expressed

in terms of the anisotropic lengths s1,T , s2,T and directions r1,T and r2,T , as

(
∇Γh

ψE
)t
UTSTS

t
TU

t
T

(
∇Γh

ψE
)

=
2∑
i=1

s2
i,T

(
∇Γh

ψE
)t
ri,T ⊗ ri,T

(
∇Γh

ψE) .

This leads to rewrite Equation (3.14) as

‖ψE − ψEz ‖2
L2(ωz) ≤ C

∑
T∈ωz

(
2∑
i=1

s2
i,T

∫
T

(
∇Γh

ψE
)t
ri,T ⊗ ri,T

(
∇Γh

ψE
)
dσh

)
,

where ⊗ denotes the standard outer product between vectors. Straightforward
algebraic manipulations show that, for i = 1, 2, it holds(
∇Γh

ψE
)t
ri,T ⊗ ri,T

(
∇Γh

ψE
)

= rti,T (∇Γh
ψE ⊗∇Γh

ψE) ri,T = rti,TGT (ψE)ri,T ,

where GT is the matrix defined in (3.7). This completes the proof.

�

A comparison between Equation (3.6) and the corresponding estimate defined
in Equation (3.5) for shape-regular meshes, highlights the richer and more com-
plex structure of the anisotropic result. Let us introduce the so-called stretching
factor

sT :=
s1,T

s2,T

≥ 1 , (3.15)
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we observe that the quantities s1,T and s2,T are related to the area of the physical
triangle T , s1,T s2,T = 2 |T | . Thus, we can rewrite Equation (3.6) as:

||ψE−ψEz ||2L2(ωz) ≤
∑
T∈ωz

2 |T |
(
sT (r1,T )tGT (ψE) r1,T +

1

sT
(r2,T )tGT (ψE) r2,T

)
,

(3.16)
This new version of Equation (3.6) highlights all the desired information about
the anisotropy of the triangle T , i.e.,

• size information: the area |T | of the triangle;

• shape information: the stretching factor sT ; high values of sT correspond
to highly stretched elements, while sT = 1 corresponds to the equilateral
triangle;

• directional information: the unitary vectors r1,T and r2,T give the orienta-
tion of the triangle.

Remark 3.2.1 The dependence of the term defined in Equation (3.16) on r2,T is
implicit, due to the orthogonality relation between the two singular vectors r1,T

and r2,T .

The next proposition represents the theoretical at the basis of the anisotropic
mesh adaptive procedure of Subsection 3.2.2.

Proposition 3.2.2 Let ψ ∈ H1(Γ) and let IEh denote the extension of the inter-
polant in (3.4) according to definition (2.9). Then, there exists a constant C such
that

‖ψ − IEh ψE‖L1(Γ) ≤ C
∑
T∈Th

αT |T |3/2νT (σT , r1,T , ψ
E) , (3.17)

where
αT =

1√
|T |

∑
z∈T

‖ϕzµh‖L2(ωz) ,

with µh defined as in Equation (2.34) and ϕz the basis function associated with
node z, while

νT (sT , r1,T , ψ
E) =

(
sT r

t
1,TGT (ψE)r1,T +

1

sT
rt2,TGT (ψE)r2,T

)1/2

, (3.18)

with GT = GT/|T |.
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Proof. We employ the Jacobian µh in (2.34), the definition (3.4) of the interpolant
operator and we exploit the fact that the set of functions {ϕz}z∈RN represents a
partition of unity. So we get

‖ψ − IEh ψE‖L1(Γ) =

∫
Γ

∣∣ψ(x)− IEh ψ(x)
∣∣ dσ

=

∫
Γh

∣∣ψE(x)− IhψE(x)
∣∣ ∣∣µh(x)

∣∣ dΓh

=

∫
Γh

∣∣∣ψE(x)−
∑
z∈N

ψEz ϕz(x)
∣∣∣ ∣∣µh(x)

∣∣ dσh
=

∫
Γh

∣∣∣∣∣∑
z∈N

(
ψE(x)− ψEz

)
ϕz(x)

∣∣∣∣∣ ∣∣µh(x)
∣∣ dσh

≤
∑
z∈N

∫
ωz

∣∣ψE(x)− ψEz
∣∣ ∣∣ϕz(x)µh(x)

∣∣ dσz,
where, since ωz is the compact support of ϕz, we have localized the integral on
Γh. Then, moving from the Cauchy-Schwarz inequality and thanks to estimate
(3.16), we obtain

‖ψ − IEh ψE‖L1(Γ) ≤
∑
z∈N

‖ψE − ψEz ‖L2(ωz)‖ϕzµh‖L2(ωz)

≤ C
∑
z∈N

‖ϕzµh‖L2(ωz)

(∑
T∈ωz

|T |
(
sT r

t
1,TGT (ψE)r1,T +

1

sT
rt2,TGT (ψE)r2,T

))1/2

≤ C
∑
z∈N

∑
T∈ωz

‖ϕzµh‖L2(ωz)

√
|T |
(
sT r

t
1,TGT (ψE)r1,T +

1

sT
rt2,TGT (ψE)r2,T

)1/2

.

A suitable reordering of the sums leads to the final result.

�

3.2.1 Geometric Error Estimate
Besides the interpolation error associated with the function ψ, in this context, we
are also interested in fitting the surface Γ “as well as possible”. Both the a-priori
error estimate (3.5) proposed in [25] and the anisotropic counterpart (3.6) give
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a prediction on the error due to the discretization of the function defined on the
surface, but they do not explicitly contain any geometric contribution.

For this reason, we propose an estimate for the geometrical error. This esti-
mate is essentially heuristic. In more details, since the surface Γ is defined via the
zero level set of a signed distance function d : R3 → R, see Section 2.3, we resort
to this function d in order to obtain an estimate of the geometrical error associated
with the discrete surface Γh.

In particular, we identify the geometric error with the quantity ‖d−IEh d‖L1(Γ).
Somehow, we are assuming that the discrete surface Γh coincides with the zero
level set of the function IEh d. This identification leads us to provide an anisotropic
estimate for the geometric error. Therefore, we can simply replace the function ψ
in Proposition 3.2.2 with the signed distance d.

Proposition 3.2.3 Let d : R3 → R be the signed distance function associated
with the implicit representation of the surface Γ and let IEh be the extension of the
interpolant Ih in (3.4) according to definition (2.9). Then, if the distance function
d is sufficiently regular, i.e., d ∈ H1(Uδ), where Uδ ⊂ R3 as defined in Section 2.3,
there exists a constant C such that

‖d− IEh d‖L1(Γ) ≤ C
∑
T∈Th

αT |T |3/2ξT (sT , r1,T , d) (3.19)

where

ξT (sT , r1,T , d) =
(
sT (r1,T )tGT (d)r1,T +

1

sT
(r2,T )tGT (d)r2,T

)1/2

,

and with αT and GT defined as in Proposition 3.2.2.

3.2.2 From the Estimator to an Anisotropic Metric
To drive a mesh adaptation procedure, on one hand we may fix a desired accuracy,
i.e., a maximum allowed error; on the other hand we may fix the maximum num-
ber of elements in the mesh. Fixed one of these two criteria, we may also decide
to “equidistribute the error”, i.e., each element contributes to the global error in
the same way. The two rules above, combined with an equidistribution criterion,
do not necessarily lead to the same adapted mesh.

We are interested in a strategy that minimizes the number of elements while
equidistributing the error. Given a positive tolerance τ , an equidistribution of the
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interpolation error is obtained by demanding:

αT |T |3/2νT (sT , r1,T , ψ) =
τ

#T
, (3.20)

where #T is the number of elements of the current mesh. After identifying the
values r1,T and sT that verify the Equation (3.20), we may derive a piecewise
constant distribution of sT , r1,T and |T |, and, consequently, a piecewise constant
metric to predict the new adapted mesh.

Clearly Equation (3.20) is not sufficient to uniquely determine sT , r1,T and
|T |. To achieve this goal we consequently add another requirement: the condi-
tion (3.20) has to be satisfied with the most economical adapted mesh, i.e., with
the maximum possible value for the area of the triangle T . This condition is
equivalent to demand that Equation (3.20) is satisfied under the constraint that νT
is minimal.

Proposition 3.2.4 Consider a fixed function ψ ∈ H1(Γ). Then, the minimum of
the function νT (sT , r1,T , ψ

E) is

νmin =

√
µ1

µ2

µ2 +
µ2

µ1

µ1 ,

and it is reached by choosing the following values for the variables, r1,T , r2,T and
sT ,

r1,T = w2 , r2,T = w1 , sT =

√
µ1

µ2

where w1, w2 and µ1, µ2 are the eigenvectors and eigenvalues of the matrix
GT (ψE), respectively, and µ1 > µ2.

Proof. Since we have fixed a function ψ ∈ H1(Γ), we adopt the simplified no-
tations GT and νT (s, r1,T ) instead of GT (ψE) and νT (s, r1,T , ψ

E). We compute
the minimum of the function

νT (s, r1,T ) =

(
sT (r1,T )tGT r1,T +

1

sT
(r2,T )tGT (r2,T )

)
, (3.21)

with the following constraints:

(i) the vectors r1,T and r2,T are normalized, i.e.,

r1,T · r1,T = r2,T · r2,T = 1 ;
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(ii) the vectors r1,T and r2,T are orthogonal, i.e.,

r1,T · r2,T = r1,T · r2,T = 0 ;

(iii) the vectors r1,T and r2,T are perpendicular to the normal n to the surface Γ,
i.e.,

r1,T · n = r2,T · n = 0 ,

So the Lagrangian has the following form:

L(sT , r1,T , r2,T ;λλλ) :=

(
sT (r1,T )tGT r1,T +

1

sT
(r2,T )tGT r2,T

)
+

+ λ4(r1,T r1,T − 1) + λ5(r2,T r2,T − 1)︸ ︷︷ ︸
(i)

+

+ λ1(r1,T r2,T − 0)︸ ︷︷ ︸
(ii)

+λ2(r1,Tn− 0) + λ3(r2,Tn− 0)︸ ︷︷ ︸
(iii)

,

(3.22)

where we have defined the following vector:

λλλ := (λ1 , λ2 , λ3 , λ4 , λ5 )t .

Now we proceed with the search of the minimum:

∂L

∂sT
= (r1,T )tGT r1,T −

1

s2
T

(r2,T )tGT r2,T = 0 , (3.23)

∂L

∂r1,T

= 2 sT GT r1,T + λ1r2,T + λ2n + 2λ4r1,T = 0 , (3.24)

∂L

∂r2,T

=
2

sT
GT r2,T + λ2r1,T + λ3n + 2λ5r2,T = 0 . (3.25)

If we multiply (3.24) by (r2,T )t we obtain:

0 = 2 sT (r2,T )tGT r1,T + λ1(r2,T )tr2,T + λ2(r2,T )tn + 2λ4(r2,T )tr1,T =

= 2 sT (r2,T )tGT r1,T + λ1 .

We recover a similar result when we multiply (3.25) by (r1,T )t, finally we have
the following equalities:

2 sT (r2,T )tGT r1,T + λ1 = 0 , (3.26)
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2

sT
(r1,T )tGT r2,T + λ1 = 0 . (3.27)

Then, we subtract these two equalities to get

sT (r2,T )tGT r1,T =
1

sT
(r1,T )tGT r2,T . (3.28)

This equation is verified when sT = 1 or when

(r2,T )tGT r1,T = (r1,T )tGT r2,T = 0 . (3.29)

If r1,T and r2,T are the eigenvectors of GT , Equation (3.29) is verified. Moving
from Equation (3.23), we are able to find sT :

(r1,T )tGT r1,T −
1

s2
T

(r2,T )tGT r2,T = 0

s2
T (r1,T )tGT r1,T = (r2,T )tGT r2,T

sT =

√
(r2,T )tGT r2,T

(r1,T )tGT r1,T

.

Since sT ≥ 1, we choose the eigenvectors associated to the minimum and the
maximum eigenvalues as r1,T and r2,T , i. e.,

w1 = r2,T , with GT w1 = µ1 w1 ,

w2 = r1,T , with GT w2 = µ2 w2 ,

where µ1 ≥ µ2, we obtain

sT =

√
(r2,T )tGT r2,T

(r1,T )tGT r1,T

=

√
µ1

µ2

. (3.30)

Finally, moving from Equation (3.30) and (3.29), we have found a stationary point
for the function νT satisfying the constraints (i), (ii) and (iii). This procedure leads
us to identify a stationary point for νT corresponding to the following choice of
the variables:

r1,T = w2 , r2,T = w1 and sT =

√
µ1

µ2

. (3.31)
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Figure 3.2: Vectors v1, v2 and eigenvectors w1, w2.

Now, we show that this stationary point is a minimum for the function νT . We
consider two unitary vectors v1 and v2 such that

v1 · v2 = 0 and v1 · n = v2 · n = 0 .

It is possible to decompose these vectors along the direction of the eigenvec-
tors of GT , w1 and w2. In particular, if we call θ the angle between v1 and w1, see
Figure 3.2, we have

v1 = w1 cos θ + w2 sin θ ,

and
v2 = w1 cos

(
θ − π

2

)
+ w2 sin

(
θ − π

2

)
= w1 sin θ − w2 cos θ .

Now, we fix

sT =

√
µ1

µ2

≥ 1 ,

and we analyse the behaviour of the function νT choosing

r1,T = v1 and r2,T = v2 .

so

νT (s, v1, v2) =

√
µ1

µ2

(v1)tGT v1 +

√
µ2

µ1

(v2)tGT (v2)
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=

√
µ1

µ2

(w1 cos θ + w2 sin θ)t GT (w1 cos θ + w2 sin θ) +

+

√
µ2

µ1

(w1 sin θ − w2 cos θ)t GT (w1 sin θ − w2 cos θ) =

=

√
µ1

µ2

(w1 GT w1 cos2 θ + w1 GT w22 cos θ sin θ + w2 GT w2 sin2 θ) +

+

√
µ2

µ1

(w1 GT w1 sin2 θ + w1 GT w22 cos θ sin θ + w2 GT w2 cos2 θ) =

=

√
µ1

µ2

(w1 GT w1 cos2 θ + w2 GT w2 sin2 θ) +

+

√
µ2

µ1

(w1 GT w1 sin2 θ + w2 GT w2 cos2 θ) =

=

√
µ1

µ2

(µ1 cos2 θ + µ2 sin2 θ) +

√
µ2

µ1

(µ1 sin2 θ + µ2 cos2 θ) .

At this level we observe that function νT depends only on the angle θ:

νT (θ) =

√
µ1

µ2

(µ1 cos2 θ + µ2 sin2 θ) +

√
µ2

µ1

(µ1 sin2 θ + µ2 cos2 θ) . (3.32)

We compute the first order derivative of νT with respect to θ:

dνT
dθ

=

√
µ1

µ2

(−2µ1 cos θ sin θ + 2µ2 sin θ cos θ) +

+

√
µ2

µ1

(2µ1 sin θ cos θ − 2µ2 cos θ sin θ)

=

√
µ1

µ2

(µ2 − µ1) sin (2θ) +

√
µ2

µ1

(µ1 − µ2) sin (2θ) =

= (µ1 − µ2)

(√
µ2

µ1

−
√
µ1

µ2

)
sin (2θ) ,

We compute the second order derivative

d2νT
dθ2

= (µ1 − µ2)

(√
µ2

µ1

−
√
µ1

µ2

)
2 cos (2θ) . (3.33)

If we take
θ =

π

2
,
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we have chosen the stationary point of Equation (3.31), and we have

d2νT
dθ2

(π
2

)
= (µ1 − µ2)︸ ︷︷ ︸

>0

(√
µ2

µ1

−
√
µ1

µ2

)
︸ ︷︷ ︸

<0

2 cos (π)︸ ︷︷ ︸
=−2

> 0 .

So the stationary point

r1,T = w2 , r2,T = w1 , s =

√
µ1

µ2

,

is a minimum for νT

�

Thanks to Proposition 3.2.4, we are able to obtain a piecewise constant metric,
i.e., to find the quantities σ1, σ2, u1, u2 and n in Equation (1.14). Based on this
result, we come back to the equidistribution requirement in Equation (3.20). Then
we find the pair s1,T and s2,T that verifies the following relations:

(s1,T s2,T

2

)3/2

αTνmin =
τ

#T
, (3.34)

s1,T

s2,T

=

√
µ1

µ2

, (3.35)

where we have exploited the result s1,T s2,T = 2|T |. After some simple algebraic
operations, we finally get:

s1,T = 6

√
τ 2

#T α2
T νmin

4

√
µ1

µ2

, s2,T = 6

√
τ 2

#T α2
T νmin

4

√
µ2

µ1

.

In this way we can define the piecewise constant metric, by setting

σ1 = s1,T , σ2 = s2,T , u1 = w2 and u2 = w1 , (3.36)

in Equation (1.14).
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From the metric to the edge length

For a fixed tolerance τ , we are able to predict metric piecewise constant on each
triangular element, see Equation (3.36), starting from the interpolation error esti-
mator in Equation (3.17). To predict the edge length according to the metric field,
we define the metric at each node of the mesh. In particular, if we consider a
node v of the mesh, we compute the metric at this node by averaging the metric
associated with the triangles sharing v. Once we have this metric, we can use
Equation (1.13) to easily predict the edge length.

After that a local modification is done, the metric of the nodes involved in
the operation is properly modified. For instance, when we halve an edge or we
contract an edge onto the corresponding middle-point, we define the metric at this
new point by averaging the metrics at the end-points of this edge.

Local Operations

The idea behind the metric adaptation procedure is that the length of each edge
measured in the new metric should be equal to 1, i.e., ||e||M ≈ 1 for any edge of
the new mesh.

In more details, to guarantee this condition, we accordingly modify all the
mesh operations described in Section 1.2.

Edge Flipping

Edge flipping considers the quadrilateral formed by two adjacent triangles and it
changes the shared edge with the other diagonal, see Figure 3.3. When we are
dealing with triangular meshes and especially when we are considering surface
triangular meshes, this kind of operation presents some drawbacks. In fact, it may
lead to undesired artefacts, see Subsection 1.2.1.

Figure 3.3: Flipping of the edge ab.
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After guaranteeing the consistency of this operation on an edge ab, we decide
to perform the flipping of this edge moving from its length computed in the pre-
dicted metric field, ||ab||M . More precisely, if the new edge cd is closer to the
optimal length with respect to the edge ab, i.e.,∣∣∣||ab||M − 1

∣∣∣ > ∣∣∣||cd||M − 1
∣∣∣ ,

we flip the edge ab.
In this way we build a new edge that has a length closer to the optimal value.

Moving from this criterion, we have properly modified the Lawson’s Flip Algo-
rithm described in Subsection 1.2.1 to improve the length of the edges.

Edge Splitting

Edge splitting is one of the principal mesh modification operations to improve the
surface approximation in localized areas of the domain. In this framework, the
metric M identifies too long edges. We compute the length of an edge according
to the predicted metric field, and, if ||e||M � 1, we halve the edge by inserting a
new vertex at the corresponding middle point.

Since we are dealing with a not flat surface triangular mesh, the middle point
of the edge e may not provide a good approximation of the surface itself. To
avoid this drawback, we move the new inserted point on the surface via a suitable
projection algorithm, see [58].

After this insertion is performed, we run the FLIPEDGES routine on the edges
connected to the new point to locally improve the length of the edges involved in
the splitting.

Edge Contraction

As described in Subsection 1.2.3, this can be considered as the inverse operation
with respect to the edge splitting. Moreover, since it reduces both the number
of elements and number of vertices of the mesh, edge contraction is a crucial
operation to reduce the computational effort of a numerical simulation.

The metric field M identifies too short edges, i.e., the edges of the mesh such
that ||e||M � 1. Then we contract the edge e into the projection of the middle
point of the edge e onto the actual surface. Unfortunately, we cannot always
apply this operation because it may lead to topological invalid configurations, see
Subsection 1.2.3.
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After a contraction is performed, we run the FLIPEDGES routine on the new
edges in order to improve their length.

Node Smoothing

Smoothing is one of the classical methods to modify a mesh. As we have seen in
Subsection 1.2.4, this operation is in contrast with the ones described above, since
it does not modify the topology of the mesh, but it simply moves the nodes in a
new position.

It has a physical interpretation. Given a point v, the edges connected to this
point may be seen as a system of springs: the smoothing procedure aims at finding
a new position of v, that minimizes the elastic energy of the system.

In the isotropic adaptation framework, the smoothing moves v in the barycen-
ter of the patch of the triangles sharing the vertex v, see Figure 3.4. But, since
we are dealing with a metric field, we have to take into account the effects of the
distance distortion due to the metric. This means that the new location does not
necessary coincide with the barycenter of the polygon.

Figure 3.4: Smoothing of the node v.

The new position of the point v could lead to an invalid topological configura-
tion, such as inverted triangles. As a consequence, we need to check the validity
of the new configuration, see Subsection 1.2.4.

Once we have moved the point v, we consider all the edges connected to v and
we run the FLIPEDGES algorithm to make the length of these new edges as close
as possible to the optimal value.
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The Adaptation Procedure

To get the adapted mesh that satisfies the constraint ||e||M ≈ 1, ∀e ∈ E , where
E is the skeleton of the starting mesh Γh, we propose the iterative procedure de-
scribed in Algorithm 2 that combines the previous local mesh operations. The
inputs of this algorithm are:

• the actual surface Γ, given via an implicit function d;

• an initial mesh Γh;

• the tolerance τ ;

• the function ψ defined on the surface Γ;

• the number of iterations, I and the number of smoothing iterations, K.

Algorithm 2 The mesh adaptation procedure
IMPROVEMETRICBASED(τ , Γ, Γh, ψ, I , K)

1: set Γ0
h = Γh;

2: compute associated the metric field M0 according to τ ;
3: i=0;
4: for i < I do
5: split all the edges such that ||e||M i > 1.5 + FLIPEDGES localized;
6: call the FLIPEDGES routine for all the edges;
7: contract all the edges such that ||e||M i < 0.5 + FLIPEDGES localized;
8: call the FLIPEDGES routine for all the edges;
9: k = 0;

10: for k < K do
11: smooth all the vertices of the mesh + FLIPEDGES localized;
12: call the FLIPEDGES routine for all the edges;
13: k = k + 1;
14: end for
15: compute M i+1 moving from the error estimator computed and the adapted

mesh Γih and τ ;
16: Γi+1

h = Γih;
17: i = i+ 1;
18: end for
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We realize that the FLIPEDGES algorithm plays a significant role in the adap-
tation procedure. More precisely, this algorithm is employed to locally improve
the mesh, lines 5,7 and 11, and to globally improve the edges length, line 6,8 and
12.

At the end of each iteration of the adaptation procedure, line 15, we have mod-
ified the triangular mesh Γih. Moving from this new adapted mesh, we compute the
new metric field M i+1, line 15, then we are ready for a new step of the adaptation
procedure, line 5-14.

Moreover, we may recognize two main phases:

- the first one, from line 5 to line 8, modifies the mesh via edge splitting, line
5, and edge contraction, line 7. This step can be understood as a sampling
phase where we increase or decrease the density of the mesh elements;

- the second phase, from line 10 to 14, can be identified as an optimization
phase, since we do not add or remove any point of mesh, but we simply
enhance the quality of the mesh via smoothing and flipping operations.

Merging the Discretization with the Geometric Estimators

Consider a function ψ ∈ H1(Γ) and a signed distance function d whose zero-level
set coincides with the surface Γ. Starting from Proposition 3.2.2 and 3.2.3, we
may associate with each triangle T two different quantities,

eT,int := αT |T |3/2νT (sT , r1,T , ψ
E) and eT,geo := αT |T |3/2ξT (sT , r1,T , d).

The former provides a prediction of the error due to the interpolation of the func-
tion ψ defined on the surface; the latter furnishes a prediction of the error due to
the approximation of the surface Γ with the mesh Γh. This means that we are able
to define two different metrics that, separately, may drive an adaptation procedure
to reduce the corresponding error. However, we are interested in reducing both
eT,int and eT,geo. So, the idea is to build a suitable unique metric that combines
these two informations.

In the following, we analyse these three different strategies:

a) intersection of metrics: build a new metric that merges the metric associated
with eT,int and eT,geo;

b) “maximum” metric: for each element T , we consider the metric associated
with the maximum value between eT,int and eT,geo;
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c) weighted sum: we build a new piecewise constant metric

Mglob = αMint + (1− α)Mgeo ,

by considering a convex combination of the metrics Mint and Mgeo defined by
the local estimator eT,int and eT,geo, respectively, with α ∈ (0, 1) balancing the
contribution of these two metrics on the global metric Mglob.

3.2.3 Numerical Results
Here we analyse reliability of the adaptive procedure introduced in the previous
sections. We consider an initial mesh and we build four different metrics to drive
the mesh adaptation:

- a metric derived only from the estimator in Equation (3.17) denoted by INT;

- intersection of metrics;

- the “maximum” metric;

- a weighted sum of metrics by choosing with α = 0.3.

We use the adaptation procedure described in Algorithm 2, where we fix I = 10
and K = 5. Then, for each example, we consider:

a) the number of the elements: we look for meshes with a reduced number of
elements to contain the computational effort.

b) the stretching factor: values of sT close to 1 mean that the triangle T has
a shape similar to the equilateral one, while high values of sT refer to very
stretched elements. To evaluate the level of anisotropy of Γh, we consider the
maximum value for the stretching factor

smax := max
T∈T

sT , (3.37)

where T is the set of the triangles in Γh.

c) the values of the error: since we are dealing with an a-priori error analysis, we
are able to compute the exact value of the quantity we are estimating on each
triangle, i.e., the norm

||ψE − IhψEh ||L1(T ) .
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In particular, we compute the errors

etot =
∑
T∈T

||ψE − ψEh ||L1(T ) and emax = max
T∈T
||ψE − ψEh ||L1(T ) . (3.38)

d) the isotropic case: we evaluate etot and emax also in the case of an isotropic
mesh adaptation to compare the performance of these two adaptation pro-
cesses;

e) the geometrical distance: to evaluate the mismatch between the polyhedral
surface Γh of the actual surface Γ, for each adapted mesh we compute the
quantity

dmax = max
T∈T
|pT − bT | , (3.39)

where bT is the barycenter of the triangle T , pT is the projection of bT on the
surface Γ and | · | is the standard Euclidean norm.

We numerically verify the better “error-vs-number of elements” behaviour of
the anisotropic meshes with respect to the corresponding isotropic case. In par-
ticular, if we fix about the same number of elements, we obtain a value for etot in
general lower on the anisotropic mesh than the one computed on the correspond-
ing isotropic grid. Vice-versa, we usually get about the same value of etot with a
lower number of elements in the anisotropic adapted mesh than in the isotropic
case.

The tolerances, τ , driving the adaptation procedure are specified in the tables
below.

Example 1

We consider the surface Γ1 defined by the following signed distance function

d1 : [0, 1]× [0, 1]× [−0.2, 0.2]→ R ,

such that
d1(x, y, z) := 0.2 cos (πx) cos (πy)− z ,

and the function f1 : Γ1 → R:

f1(x, y, z) := 4y(1− y)(1− e−ax − (1− e−ax)x) .

In this test case we set a = 1000.
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Figure 3.5: Surface Γ1 and the function f1, the boundary layer is highlighted by
the black rectangle.

Function f1 is characterized by a boundary layer along the y axes, see the
highlighted zone in Figure 3.5.

As it was expected, in the anisotropic adapted meshes the triangles are aligned
along the direction of the boundary layer, see Figure 3.6 and this behaviour be-
comes more evident from the details in Figure 3.7. In both these figures, we
provide the final adapted meshes yielded by the four different metrics itemized
above.

When we consider the mesh generated via the intersection of metrics, the di-
rectional features of the solution are not so clearly detected as with the other ap-
proaches, see Figure 3.6(d). In Table 3.3 we give a more quantitative evaluation
of the triangle distortion in the new adapted meshes. These data confirm that
the mesh obtained via the intersection of metrics is not so anisotropic. Since we
are interested in anisotropic mesh adaptation, we neglect hereafter the adaptation
strategy driven by the intersection of metric approach.

Moving from Table 3.1 and 3.2, we numerically verify the better “error-vs-
number of elements” behaviour characterizing the anisotropic meshes. More pre-
cisely, in Table 3.1, we fix about the same number of elements and we show that,
for each adapted mesh, we get a better accuracy in the anisotropic case. Vice-
versa, in Table 3.2, we consider about the same accuracy on the interpolation
error and we observe that fewer elements are enough in the anisotropic cases.

Finally, in Table 3.4 we collect the values of dmax. Moving from these data, we
may appreciate the effect due to the combination of the metrics associated with

77



Chapter 3. Error Estimators for PDEs Defined on Surfaces

eT,int and eT,geo. Indeed, the adaptations based on the “maximum metric” and the
weighted sum lead to a lower value for dmax with respect to the one provided by a
mesh adaptation based only on the control of the interpolation error.

(a) (b)

(c) (d)

Figure 3.6: Adapted mesh driven by the INT estimator, (a), the “maximum” met-
ric, (b), the weighted sum, (c) and intersection of metrics, (d).

INT “maximum” metric weighted sum
iso ani iso ani iso ani

Ele. 2664 2618 3483 3434 2952 2925
etot 3.654e-03 1.195e-03 3.648e-03 9.160e-04 4.334e-03 1.392e-03
emax 6.431e-05 3.135e-05 6.566e-05 1.669e-05 1.027e-04 5.424e-05
τ 2.000e-05 2.700e-05 2.000e-05 2.700e-05 2.000e-05 2.700e-05

Table 3.1: Comparison between isotropic and anisotropic meshes with about the
same number of elements.
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(a) (b)

(c) (d)

Figure 3.7: Details of the adapted mesh driven by the INT estimator, (a), the
“maximum” metric, (b), the weighted sum, (c) and intersection of metrics, (d).

INT “maximum” metric weighted sum
iso ani iso ani iso ani

Ele. 11479 2009 18201 2024 16548 2031
etot 3.168e-03 3.529e-03 3.159e-03 3.373e-03 3.049e-03 3.441e-03
emax 6.557e-05 1.814e-04 6.619e-05 2.089e-04 7.004e-05 1.651e-04
τ 0.500e-06 0.800e-03 0.500e-06 0.700e-06 0.500e-06 0.400e-06

Table 3.2: Comparison between isotropic and anisotropic meshes with about the
same accuracy.
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case smax

INT 2.268e+01
intersection 3.586e+00

“maximum” metric 2.805e+01
weighted sum 3.697e+01

Table 3.3: Maximum stretching factor for the different anisotropic adaptation
strategies.

case dmax

INT 2.078e-02
“maximum” metric 7.785e-03

weighted sum 8.537e-03

Table 3.4: Quantity defined in Equation (3.39) for three different strategies.

In Figure 3.8 left, we show the convergence rate of the estimate for both the
interpolation and the geometric errors. As expected according to the results in the
literature, see, e.g., [19], we have that the geometric error exhibits a convergence
rate higher with respect to the one characterizing the interpolation error. On the
other hand, in Figure 3.8 right, we compare the convergence trend of the error
associated with the three types of metric combination we have assessed. The
rate is very similar for the three approaches, with a slightly better trend for the
weighted sum of metrics.

Example 2

We consider the surface Γ2 defined by the signed distance function,

d2 : [−1.5, 1.5] × [−1.5, 1.5] × [−0.5, 0.5] → R ,

such that
d2(x, y, z) :=

(
r1 −

√
x2 + y2

)2

+ z2 − r0 ,

where r0 = 0.25, r1 = 1 and the function f2 : Γ2 → R given by

f2(x, y, z) := tanh (40x) ,
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Figure 3.8: Convergence rate of the estimate for the interpolation (INT) and the
geometric (GEO) errors, left. Convergence trend of the error associated with the
three types of metric combination: intersection (errINT), weighted sum (errSUM)
and “maximum” (errMAX) metric, right.

Figure 3.9: Surface Γ2 and the function f2.

see Figure 3.9.
In Figure 3.10, we appreciate the anisotropic nature of the adapted meshes

yielded by the four adaptive strategies introduced above: the elements are per-
fectly aligned to follow the boundary layers. This is confirmed by the values in
Table 3.5, where we collect the maximum stretching factor for each mesh. Even
for this example, we can state that the intersection strategy does not create a re-
ally anisotropic mesh. In fact, the value smax is lower compared with the other
approaches.
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case smax

INT 6.176e+01
intersection 9.967e+00

“maximum” metric 3.105e+01
weighted sum 2.601e+01

Table 3.5: Maximum stretching factor for the different anisotropic adaptation
strategies.

Table 3.6 and 3.7 numerically confirm the advantages lead by anisotropic
meshes with respect to the isotropic grids. In particular, if we consider about
the same number of elements, we have lower value for the total error etot in the
anisotropic case, see Table 3.6. On the contrary, we get about the same total error,
etot, with a fewer elements in the anisotropic case, see Table 3.7.

INT “maximum” metric weighted sum
isotropic anisotropic isotropic anisotropic isotropic anisotropic

Ele. 3376 3640 3672 3652 1548 1660
etot 1.901e-01 8.884e-02 1.864e-01 8.887e-02 5.820e-01 3.463e-01
emax 2.237e-03 1.646e-03 1.848e-02 1.641e-03 1.648e-02 8.074e-03
τ 0.500e-01 3.000e+00 0.400e-01 3.000e+00 1.000e+00 4.000e+00

Table 3.6: Comparison between isotropic and anisotropic meshes with about the
same number of elements.
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(a) (b)

(c) (d)

Figure 3.10: Adapted mesh driven by the INT estimator, (a), the “maximum”
metric, (b), the weighted sum, (c) and intersection of metrics, (d).

INT “maximum” metric weighted sum
isotropic anisotropic isotropic anisotropic isotropic anisotropic

Ele. 11030 4732 11030 4746 8162 4084
etot 6.327e-02 6.490e-02 6.327e-02 6.420e-02 8.656e-02 8.733e-02
emax 4.212e-04 1.019e-03 4.212e-04 1.019e-03 7.884e-04 1.775e-03
τ 0.500e-02 1.500e+00 0.500e-02 1.500e+00 0.650e-02 1.000e+00

Table 3.7: Comparison between isotropic and anisotropic meshes with about the
same accuracy.

The adapted mesh, that takes into account only the interpolation error, does
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not fit the surface as well as the other approaches that combine the interpola-
tion and geometric information do. This behaviour is evident from the details in
Figure 3.11, corresponding to a region where the function f2 is constant. The
adaptation driven only by the interpolation information does not refine this curved
region, Figure 3.11(a), while the other three approaches lead to a refinement of
the mesh, see Figure 3.11(b), 3.11(c) and 3.11(d). In Table 3.8 we numerically
verify this behaviour.

(a) (b)

(c) (d)

Figure 3.11: Details of the adapted mesh Γ2,h with only INT 3.11(a), “maximum”
metric 3.11(b), weighted sum 3.11(c) and intersection of metrics 3.11(d) strate-
gies.

case dmax

INT 1.168e-01
“maximum” metric 2.359e-02

weighted sum 2.259e-02

Table 3.8: Quantity defined in Equation (3.39) for three different strategies.

Concerning the convergence rate analysis, we can essentially repeat the con-
siderations done on the first test case.
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Figure 3.12: Convergence rate of the estimate for the interpolation (INT) and the
geometric (GEO) errors, left. Convergence trend of the error associated with the
three types of metric combination: intersection (errINT), weighted sum (errSUM)
and “maximum” (errMAX) metric, right.

3.3 An Anisotropic A-Posteriori Error Estimator for
the Energy Norm of the Laplace-Beltrami Prob-
lem

In this Section we deal with an anisotropic a-posteriori error analysis for the
Laplace-Beltrami problem:{

−∆Γu = f on Γ ,
u = 0 on ∂Γ ,

(3.40)

where Γ is an arbitrary two-dimensional surface embedded in R3, and −∆Γ de-
notes the Lapalce-Beltrami operator. In Subsection 2.3.1, we have provided the
weak formulation of Problem 2.3.1 and the corresponding discretization.

Before dealing with the anisotropic error analysis, we recall Lemma 3.3.1 in
[40], and two useful inequalities in [31]. Then, we prove two preliminary results
in Lemma 3.3.4 and Proposition 3.3.5, that play a key role in the proof of the
desired anisotropic error estimator.

Definition 3.3.1 Given a matrix A ∈ Rn×m, the matrix B ∈ Rm×n is the gener-
alized inverse of the matrix A, if it satisfies the conditions:

ABA = A ,
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BAB = B ,

(AB)t = AB ,

(BA)t = BA .

Definition 3.3.2 Given a matrix A ∈ Rn×m, the norm of A is defined as follow:

||A|| := max
{
||Av|| : v ∈ Rm ||v|| = 1

}
. (3.41)

Proposition 3.3.1 Consider a non degenerate triangle T ⊂ R3 and the reference
triangle T̂ ∈ R2. Let FT : T̂ → T be the affine transformation defined as:

x = MT x̂ + bT , (3.42)

with MT ∈ R3×2 and bT ∈ R3. Moving from the generalized inverse of the matrix
MT , it is possible to define the inverse transformation F−1

T : T → T̂ as:

x̂ = (Mt
T MT )−1Mt

Tx− (Mt
T MT )−1Mt

TbT . (3.43)

Proof. To get the transformation F−1
T : T → T̂ , we follow this chain of equali-

ties:

x = MT x̂ + bT

Mt
Tx = Mt

TMT x̂ + Mt
TbT

(Mt
TMT )−1Mt

Tx = (Mt
TMT )−1Mt

TMT x̂ + (Mt
TMT )−1Mt

TbT

(Mt
TMT )−1Mt

Tx = x̂ + (Mt
TMT )−1Mt

TbT .

We immediately get Equation (3.43).

�

Proposition 3.3.2 The singular values si,T 6= 0 for i = 1, 2 of the matrix
MT ∈ R3×2 and the singular values wi,T 6= 0 for i = 1, 2 associated with
the generalized inverse of MT satisfy the following relation:

wi,T =
1

si,T
, for i = 1, 2 . (3.44)
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Proof. Suppose that si,T 6= 0, for i = 1, 2 and vi and v̂ are the corresponding
singular left and right vectors, respectively. Then, we exploit the following chain
of equalities:

MT v̂i = sivi
(Mt

TMT )−1Mt
TMT v̂i = si,T (Mt

TMT )−1Mt
Tvi

v̂i = si,T (Mt
TMT )−1Mt

Tvi .

We can re-write the last equality as

(Mt
TMT )−1Mt

Tvi =
1

si,T
v̂i ,

and this completes the proof.

�

Proposition 3.3.3 Let s1,T and s2,T be the singular value associated with the ma-
trix MT such that s1,T ≥ s2,T and let w1,T and w2,T be the singular value as-
sociated with the generalized inverse of MT such that w1,T ≥ w2,T . Then, the
following relations hold:

w1,T =
1

s2,T

and w2,T =
1

s1,T

. (3.45)

Proof. This statement simply follows form Proposition 3.3.2.

�

Lemma 3.3.1 Given a triangle T ∈ R3 and the reference triangle T̂ ∈ R2, the
following relation holds:

s2,ThT̂ ≤ hT ≤ s1,ThT̂ , (3.46)

where s1,T and s2,T are the singular values of the matrix MT , defined in Equa-
tion (3.42), while hT̂ and hT are the diameters of the triangles T̂ and T , respec-
tively.
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Proof. Let us consider the map FT : T̂ → T and its inverse F−1
T defined as in

Equation (3.42) and (3.43), respectively. In a triangle, the diameter hT is an edge
of T . Let A and B be the end-points of this edge, and let Â and B̂ be the vertices
of T̂ satisfying the following relations:

xA = MT x̂Â + bT ,

xB = MT x̂B̂ + bT .

Now, we make the difference between these two equalities to get:

xA − xB = MT (x̂Â − x̂B̂) . (3.47)

Then, we have

hT = |xA − xB| = |MT (x̂Â − x̂B̂)|
≤ ||MT || |x̂Â − x̂B̂|
≤ s1,T |x̂Â − x̂B̂|
≤ s1,T hT̂ ,

here s1,T is the singular value of MT associated with the longest norm, | · | is the
Euclidean norm and ||MT || is the matrix norm defined in Definition 3.3.2. In this
way we have proved the second inequality in Equation (3.46).

Let us focus on the first one. Consider the transformation F−1
T defined in

Equation (3.43). Let Â and B̂ be the end-points of hT̂ , and A and B be the
corresponding vertices of T such that:

x̂A = (Mt
T MT )−1Mt

T x̂A − (Mt
T MT )−1Mt

TbT

x̂B = (Mt
T MT )−1Mt

T x̂B − (Mt
T MT )−1Mt

TbT .

As before, we make the difference between these two equalities and obtain:

x̂A − x̂B = (Mt
T MT )−1Mt

T (x̂A − x̂B) . (3.48)

So we have

hT̂ = |xÂ − xB̂| = |(Mt
T MT )−1Mt

T (x̂A − x̂B)|
≤ ||(Mt

T MT )−1Mt
T || |x̂A − x̂B|

≤ w1 |x̂A − x̂B|
≤ w1 hT ,
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where w1,T is the singular value of (Mt
T MT )−1Mt

T associated with the longest
norm. But, moving from Proposition 3.3.2 and Proposition 3.3.3, we could state
that

w1,T =
1

s2,T

,

where s2,T is the singular value of MT associated with the smallest norm. Then,
we have

hT̂ ≤
1

s2,T

hT ⇒ s2,ThT̂ ≤ hT .

�

Lemma 3.3.2 We consider a surface Γ and its discrete approximation Γh. Let
d be the implicit function that defines Γ, H its Hessian, P and Ph the operator
defined in Equation (2.12) for Γ and Γh, respectively, we define the quantity:

AE
h :=

1

µh
P(I− dH)Ph(I− dH)P .

Then, for each triangle T of Γh, the following estimate holds:

||AE
h −P||L∞(T ) < ch2

T , (3.49)

where c is a constant and hT is the diameter of the triangle T .

Proof. This result is provided in [31].

�

Lemma 3.3.3 Consider a triangle T in Γh and let Υ be its image on the surface
Γ. Let v ∈ H1(Υ) and let vh ∈ H1(T ) be the piecewise linear approximation of
v on Γh. Then the following equivalence relation holds:

1

c
||∇Γh

vh|| ≤ ||∇Γv|| ≤ c ||∇Γh
vh|| , (3.50)

where c is a positive constant.

Proof. This result is provided in [31].

�
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Lemma 3.3.4 For any function v : R3 → R, with v ∈ H1(T ), for any pair of
strictly positive constants α and β and for any pair of orthogonal unitary vectors
r1 and r2, that lies on the plane identified by T , it holds:

min(α , β) ≤ α(r1)tGT (v) r1 + β(r2)tGT (v) r2

|v|2H1(T )

≤ max(α , β) , (3.51)

where GT is the matrix defined in Equation (3.7).

Proof. Without loss of generality, let us assume that α ≥ β. We consider the
affine map PT : πT → π, defined as:

x̂ = NTx + bT , ∀x ∈ πT ,

with NT ∈ R2×3, bT ∈ R2, that transforms the plane πT identified by the triangle
T , into the plane xOy, see Figure 3.13. Moreover, we can build this transforma-
tion so that there is no area distortion and the following relation holds:

FT (ri) = qi , for i = 1, 2 ,

where qi − bT = ei, e1 = [1, 0]t and e2 = [0, 1]t.

Figure 3.13: Transformation PT .

Consider the function v̂ : R2 → R, with v̂ := v ◦ PT , so that we have the
following relation:

GT (v) = Nt
TGT (v̂)NT .
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Moving from this relation we obtain

α(r1)tGT (v) r1 + β(r2)tGT (v) r2 =

= α(r1)tNt
TGT (v̂)NT r1 + β(r2)tNt

TGT (v̂)NT r2

= α(NT r1)tGT (v̂)(NT r1) + β(NT r2)tGT (v̂)(NT r2)

= α(q1 − bT )tGT (v̂)(q1 − bT ) + β(q2 − bT )tGT (v̂)(q2 − bT )

= αet1 GT (v̂)e1 + βet2 GT (v̂)e2 .

(3.52)

Since α ≥ β > 0 and etiGT (v̂)ei ≥ 0 for i = 1, 2, we can bound the last term
in (3.52) as:

β(et1 GT (v̂)e1 + et2 GT (v̂)e2) ≤ αet1 GT (v̂)e1 + βet2 GT (v̂)e2

αet1 GT (v̂)e1 + βet2 GT (v̂)e2 ≤ α(et1 GT (v̂)e1 + et2 GT (v̂)e2) .

Moreover, we observe that

et1 GT (v̂)e1 + et2 GT (v̂)e2 =

∫
T ′

(
∂v̂

∂x̂

)2

dσ̂ +

∫
T ′

(
∂v̂

∂ŷ

)2

dσ̂

= |v̂|2H1(T ′)

= |v|2H1(T ) , (3.53)

where T ′ is the image of T through the transformation PT . Since there is no
area distortion in the transformation PT , the determinant of the Jacobian does not
appear in the last term of Equation (3.53). Simple algebraic operations lead to
Equation (3.51) and this completes the proof.

�

Proposition 3.3.4 It is always possible to find a transformation PT : πT → π as
demanded in Lemma 3.3.4.

Proof. We consider two vectors r1, r2 ∈ R3 such that

r1 ⊥ r2 and |r1| = |r2| = 1 .

The transformation PT has the generic form x̂ = NTx + bT and it satisfies the
properties

q1 = NT r1 + bT ⇒ q1 − bT =

(
1
0

)
, (3.54)
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q2 = NT r2 + bT ⇒ q2 − bT =

(
0
1

)
. (3.55)

We consider

NT =

(
a b c
d e f

)
, bT =

(
g
h

)
,

and the vectors ri = (xi , yi , zi)
t for i = 1, 2. To verify properties (3.54) and (3.55),

PT has to satisfy the following equations:

q1 =

(
ax1 + by1 + cz1 + g
dx1 + ey1 + fz1 + h

)
=

(
1 + g
0 + h

)
,

q2 =

(
ax2 + by2 + cz2 + g
dx2 + ey2 + fz2 + h

)
=

(
0 + g
1 + h

)
.

We have to solve the following overdetermined linear system, to find the desired
unknown coefficients for NT and bT .(

x1 y1 z1

x2 y2 z2

) a
b
c

 =

(
1
0

)
(
x1 y1 z1

x2 y2 z2

) d
e
f

 =

(
0
1

)

Since r1 ⊥ r2, the rows of the matrix are linearly independent, so that these two
systems have rank 2 and, for the theorem of Rouché-Capelli, we can always find
the solution.

�

Proposition 3.3.5 Consider a surface Γ and its discretization Γh. Let ψ ∈ H1(Γ),
then for each edge e of the mesh Γh holds:

||ψE − ψEz ||L2(e) ≤ c
∑
T∈ωz

√
|e|

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

, (3.56)

where c is a constant, |e| is the length of the edge, ωz is the patch of elements
associated with the node z, ψE : Uδ → R is the extension of ψ to Uδ as in
Equation (2.9), ψEz is defined in (3.3), r1,T , r2,T and s1, s2 are the singular vectors
and singular values of (MT )t.

92



Chapter 3. Error Estimators for PDEs Defined on Surfaces

Proof. We consider the affine transformation FT : T̂ → T defined in Section 3.1,
in such a way that the generic edge e is mapped into the reference edge ê. We
build the function η : T̂ → R, η := FT ◦ ψE , so that the left hand side of (3.56)
can be written as

||ψE − ψEz ||L2(e) ≤
√
|e|||η − ψEz ||L2(ê) .

We apply the standard trace inequality on the reference triangle to obtain:√
|e|||η − ψEz ||L2(ê) ≤ C

√
|e|(||η − ψEz ||L2(T̂ ) + ||∇̂η||L2(T̂ ))

≤ C
√
|e|


√
|T̂ |
|T |
||ψE − ψEz ||L2(T )︸ ︷︷ ︸

(I)

+ ||∇̂η||L2(T̂ )︸ ︷︷ ︸
(II)

 .

(3.57)

Now, we estimate separately the quantities (I) and (II) in Equation (3.57).
We consider one of the two triangles that share the edge e, say T , to get

(I) ≤ ||ψE − ψEz ||L2(ωz) , (3.58)

we can apply estimate (3.3). Now, we consider (II):

||∇̂η||2
L2(T̂ )

≤
ˆ|T |
|T |
||(MT )t∇Γh

ψE||2L2(T )

≤
∑
T∈ωz

ˆ|T |
|T |
||(MT )t∇Γh

ψE||2L2(T )

≤
∑
T∈ωz

ˆ|T |
|T |

∫
T

|(MT )t∇Γh
ψE|2 dσh .

Following the inequalities in the proof of Proposition 3.2.1, we get

∑
T∈ωz

ˆ|T |
|T |

∫
T

|(MT )t∇Γh
ψE|2 dσh ≤

∑
T∈ωz

ˆ|T |
|T |

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)
.

Then, we have

(II) ≤

(∑
T∈ωz

ˆ|T |
|T |
(
s2

1,T (r1,T )tGT (ψ) r1,T + s2
2,T (r2,T )tGT (ψ) r2,T

))1/2
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≤
∑
T∈ωz

√
ˆ|T |
|T |
(
s2

1,T (r1,T )tGT (ψ) r1,T + s2
2,T (r2,T )tGT (ψ) r2,T

)1/2
.

By properly combining the estimates for (I) and (II), we get the desired result
(3.56).

�

Proposition 3.3.6 Let u be the solution of problem (2.15) and let uh be the solu-
tion of the corresponding finite element approximation. Then, the following esti-
mate for the energy norm of the discretization error eh, defined in Equation (2.41),
holds:

|||eh||| ≤

(∑
T∈Γh

ρT (uh)(s
2
1,T (r1,T )tGT (eh) r1,T + s2

2,T (r2,T )tGT (eh) r2,T )1/2

)1/2

,

(3.59)
with |||eh||| =

√
ALB(eh, eh) the energy norm, where ALB(· , ·) is the bilinear

form associated with the weak formulation of Problem (2.15) and

ρT (uh) := rT + rT,e + gT + dT , (3.60)

with

rT :=
∑
z∈T

||fEµh + ∆Γh
uh||L2(ωz) , rT,e :=

∑
z∈T

∑
e∈ωz

√
|e| ||[[∇Γh

uh]]||L2(e) ,

(3.61)
the internal and the edge residual contributions,

gT :=
h2
T√
s2,T

||∇Γh
uh||L2(T ) ,

the geometrical contribution associated with the element T and

dT =
∑
z∈T

√
3

2
||fEµh − fh||L2(ωz) , (3.62)

the data contribution. Moreover, fE is a proper extension of the function f in (2.15),
according to Equation (2.9), fh is the piecewise linear approximation of f on Γh
defined via Equation (2.22), µh is defined as in Equation (2.34) and where we
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have defined the jump of the normal derivative across the generic edge e of the
mesh Γh as

[[∇Γh
uh]] =

{
0 e ∈ ∂Γh ,
∇Γh

uh|T1 ·w1 +∇Γh
uh|T2 ·w2 e 6∈ ∂Γh .

(3.63)

Here wi is an unitary vector, perpendicular to both the edge e and the outward
normal to the triangle Ti, see Figure 3.14.

Figure 3.14: Unitary vectors w1 and w2 associated with the edge e and with the
triangles T1 and T2, respectively.

Proof. Let ψ ∈ H1
0 (Γ) and let ψh ∈ H1

0 (Γh) be its piecewise linear approxima-
tion. Following [31], we have:∫

Γ

∇Γ(u− uEh ) · ∇Γψ dσ =

=

∫
Γh

fEµhψ
E dσh −

∫
Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ −

∫
Γh

∇Γh
uh · ∇Γh

ψE dσh ,

(3.64)

where fE and ψE are the extension of the function f and ψ, respectively, to the set
Uδ, such that fE|Γ = f and ψE|Γ = ψ, see Equation (2.9). In the framework of
partial differential equations defined on surfaces embedded in R3, the well-known
Galerkin orthogonality does not hold, so the additional term:

−
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ ,
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appears in Equation (3.64). We can write Equation (3.64) also for the piecewise
approximation ψh of ψ:∫

Γ

∇Γ(u− uEh ) · ∇Γψ
E
h dσ =

=

∫
Γh

fEµhψh dσh −
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ

E
h dσ −

∫
Γh

∇Γh
uh · ∇Γh

ψh dσh ,

(3.65)

where ψEh is the extension to the domain Uδ of the function ψh, such that ψEh |Γh
=

ψh, see Equation (2.9). Moving from the weak discrete formulation of Prob-
lem 2.3.1, we can re-write the last term of Equation (3.65) in such a way:∫

Γh

∇Γh
uh · ∇Γh

ψh dσh =

∫
Γh

fhψh dσh .

Exploiting Equation (3.64) and (3.65), we proceed as follows:∫
Γ

∇Γ(u− uEh ) · ∇Γψ dσ =

∫
Γ

∇Γ(u− uEh ) · ∇Γψ dσ +

+

∫
Γ

∇Γ(u− uEh ) · ∇Γψ
E
h dσ −

∫
Γ

∇Γ(u− uEh ) · ∇Γψ
E
h dσ =

=

∫
Γh

fEµhψ
E dσh −

∫
Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ +

−
∫

Γh

∇Γh
uh · ∇Γh

ψE dσh + +

∫
Γh

fEµhψh dσh +

−
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ

E
h dσ −

∫
Γh

fhψh dσh +

−
∫

Γh

fEµhψh dσh +

∫
Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ

E
h dσ +∫

Γh

∇Γh
uh · ∇Γh

ψh dσh =

=

∫
Γh

fEµh(ψ
E − ψh) dσh −

∫
Γh

∇Γh
uh · ∇Γh

(ψE − ψh) dσh +

−
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ +

∫
Γh

(fEµh − fh)ψh dσh

(3.66)
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We analyse separately each term at the right-hand side in Equation (3.66)

−
∫

Γh

∇Γh
uh · ∇Γh

(ψE − ψh) dσh =

=
∑
T∈Γh

∫
T

∇Γh
uh(ψ

E − ψh) dσh −
∑
e∈T

∫
e

∇Γh
uh ·we(ψ

E − ψh) dσh =

=

∫
Γh

∆Γh
uh(ψ

E − ψh) dσh −
1

2

∑
T∈Γh

∫
∂T

[[∇Γh
uh]](ψ

E − ψh) dσh =

=

∫
Γh

∆Γh
uh(ψ

E − ψh) dσh −
1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh ,

(3.67)

where we is unitary vector perpendicular to both the edge e and the outward point-
ing normal of the triangle T . Unlike the classical theory provided in [40], since
we are dealing with triangular meshes of non planar surfaces, in the jump term

[[∇Γh
uh]] =

{
0 e ∈ ∂Γh ,
∇Γh

uh|T1 ·w1 +∇Γh
uh|T2 ·w2 e 6∈ ∂Γh .

the equality, w2 = −w1, does not generally holds, see Figure 3.14.
Moving from Equation (3.67), we can combine the first two terms in Equa-

tion (3.66) as∫
Γh

fEµh(ψ
E − ψh) dσh −

∫
Γh

∇Γh
uh · ∇Γh

(ψE − ψh) dσh =

=

∫
Γh

(fEµh + ∆Γh
uh)(ψ

E − ψh) dσh −
1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh︸ ︷︷ ︸
(i)

,

since each internal edge of the mesh is taken into account two times in (i), we
multiply this term by 1/2, as in the planar two-dimensional framework. At this
level we decompose the right-hand side of Equation (3.66) as the sum of three
terms, i.e., ∫

Γ

∇Γ(u− uEh ) · ∇Γψ dσ = R +G+D , (3.68)

where

R =

∫
Γh

(fEµh+∆Γh
uh)(ψ

E−ψh) dσh−
1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E−ψh) dσh ,
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identifies the residual part,

G = −
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ ,

provides the geometric contribution, due to the absence of the Galerkin orthogo-
nality, and

D =

∫
Γh

(fEµh − fh)ψh dσh ,

is the data part, i.e., the term due to the approximation of the function f via the
discrete function fh. Now, we analyse each of these three terms separately.

Residual Part

Consider the internal residual in R:∫
Γh

(fEµh + ∆Γh
uh)(ψ

E − ψh) dσh =

=
∑
z∈Γh

∫
ωz

(fEµh + ∆Γh
uh)φz(ψ

E − ψEz ) dσh

≤
∑
z∈Γh

||φz(f
Eµh + ∆Γh

uh)||L2(ωz)||ψE − ψEz ||L2(ωz)

≤
∑
z∈Γh

||fEµh + ∆Γh
uh||L2(ωz)||ψE − ψEz ||L2(ωz) ,

where the functions φz constitute a partition of the unity and ωz represents the
corresponding support. Moving from Proposition 3.2.1, we have the following
anisotropic a-priori estimate:

||ψE − ψEz ||L2(ωz) ≤ C

(∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

))1/2

.

(3.69)

We proceed in the same way with the boundary residual:∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh =
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=
∑
z∈Γh

∑
e∈ωz

∫
e

[[∇Γh
uh]]φz(ψ

E − ψEz ) dσh

≤ C
∑
z∈Γh

∑
e∈ωz

||[[∇Γh
uh]]||L2(e)||ψE − ψEz ||L2(e) ,

and, via Proposition 3.3.5, we get the following anisotropic estimate for the global
residual contribution:

R ≤
∑
z∈Γh

||fEµh + ∆Γh
uh||L2(ωz)

∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

+

+
∑
e∈ωz

√
|e| ||[[∇Γh

uh]]||L2(e)

∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2


=
∑
T∈Γh

(rT + rT,e)

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

,

where we have exploited definitions (3.61).

Geometrical Part

We consider the term G:

−
∫

Γ

[P−AE
h ]∇Γu

E
h · ∇Γψ dσ =

∫
Γ

[AE
h −P]∇Γu

E
h · ∇Γψ dσ (3.70)

We decompose the domain Γ in a set of “curved” triangles Υ. Moving from
Lemma 3.3.2 and 3.3.3 and from the Cauchy Schwarz and the Holder inequality,
we have∫

Γ

[AE
h −P]∇Γu

E
h · ∇Γψ dσ =

=
∑
Υ∈Γ

∫
Υ

[AE
h −P]∇Γu

E
h · ∇Γψ dσ

≤ c
∑
T∈Γh

||AE
h h −P||L∞(T ) ||∇Γh

uh||L2(T )||∇Γh
ψE||L2(T )

≤ c
∑
T∈Γh

h2
T ||∇Γh

uh||L2(T )||∇Γh
ψE||L2(T ) ,
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where hT is the diameter of the triangle T . Lemma 3.3.4 gives the following
estimate:

||∇Γh
ψE||L2(T ) ≤

1
√
s2,T

(
s2

1,T (r1,T )tGT (ψE) r1,T + s2
2,T (r2,T )tGT (ψE) r2,T

)1/2
.

Then, thanks to Lemma 3.3.1, we get this estimate:∫
Γ

[AE
h −P]∇Γu

E
h · ∇Γψ dσ ≤

≤ c
∑
T∈Γh

gT
(
s2

1,T (r1,T )tGT (ψE) r1,T + s2
2,T (r2,T )tGT (ψE) r2,T

)1/2
.

Data Part

Consider the term D, we have:∫
Γh

(fEµh − fh)ψh dσh =
∑
z∈Γh

∫
ωz

φz(f
Eµh − fh)ψEz dσh

≤
∑
z∈Γh

||φz(f
Eµh − fh)||L2(ωz)||ψEz ||L2(ωz)

≤
∑
z∈Γh

||fEµh − fh||L2(ωz)||ψEz ||L2(ωz)

During the proof of Proposition 3.2.1, we have proved the following inequality

||ψEz ||L2(ωz) ≤
√

3

2
||ψE||L2(ωz) ,

then, by exploiting the same computation in the proof of Proposition 3.2.1, we get∑
z∈Γh

||fEµh − fh||L2(ωz)||ψEh ||L2(ωz) ≤
∑
z∈Γh

√
3

2
||fEµh − fh||L2(ωz)||ψE||L2(ωz)

≤
∑
z∈Γh

√
3

2
||fEµh − fh||L2(ωz)

(∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

))1/2

≤
∑
z∈Γh

√
3

2
||fEµh − fh||L2(ωz)

∑
T∈ωz

(
s2

1,T

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

))1/2
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≤
∑
T∈Γh

dT

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

,

where we have employed the definition in Equation (3.62). Then, if we choose
ψ = eh, we obtain the estimate (3.59).

�

Since estimate (3.59) depends on the exact solution u via the error eh, it is
directly not useful to drive an anisotropic adaptation procedure. On the other
hand, we expect that the right-hand side of this estimate goes to zero as the mesh
becomes finer and finer. To make computable the right-hand side of (3.59), we
exploit another standard approach, i.e., we resort to a suitable recovered solution,
[114, 115].

But, in this framework we are dealing with a function uh defined on a surface
Γh embedded in the three-dimensional space, so we consider the extension of the
gradient recovery procedure to an arbitrary surface proposed by H. Wei et al. in
[110], see Subsection 2.6.2.

Let uh be the discrete solution to Problem 2.3.2 and let∇Γh
uh be the tangential

gradient on the discrete surface. We denote the tangential recovered gradient by

∇WCY
Γh

uh =
[
(∇WCY

Γh
uh)i

]
, for i = 1, 2, 3 ,

so that the components of the matrix GT (eh) are:

[GT (e∗h)]i,j =

∫
T

∂e∗h
∂xi

∂e∗h
∂xj

=

∫
T

(
(∇WCY

Γh
uh)i − (∇Γh

uh)i

)(
(∇WCY

Γh
uh)j − (∇Γh

uh)j

)
,

(3.71)

with i, j = 1, 2, 3, and with x1 = x, x2 = y, x3 = z.

3.3.1 From the Estimator to an Anisotropic Metric
As in the a-priori adaptation procedure, we need to define a suitable metric. Be-
fore starting the adaptation process, we fix a tolerance on the error and then we
equidistribute the error by balancing the contribution given by each element. Thus,
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given a tolerance τ , we demand that the following relation holds for each triangle
T of the mesh:

ρT (uh)(s
2
1,T (r1,T )tGT (e∗h) r1,T + s2

2,T (r2,T )tGT (e∗h) r2,T )1/2 =
τ 2

#T
, (3.72)

where #T is the number of triangles in the initial mesh Γh. We recall that
2|T | = s1,T s2,T and we apply a suitable factor that leads us to consider the “adi-
mensionalized” quantities

GT (e∗h) = GT (e∗h)/|T | and ρT (uh) = ρT (uh)/
√
|T | .

Then, Equation (3.72) becomes:

√
2|T |3/2ρT (uh)

sT (r1T )tGT (e∗h) r1,T +
1

sT
(r2,T )tGT (e∗h) r2,T︸ ︷︷ ︸

(I)


1/2

=
τ 2

#T
,

(3.73)
where sT is the stretching factor defined in Equation (3.15).

We observe that the quantity (I) depends on:

- the stretching factor sT ;

- the vectors r1,T and r2,T that lie in the plane identified by the triangle T .

Since r1,T and r2,T are orthonormal, we introduce the quantity:

νT (sT , r1,T ) :=

(
sT (r1T )tGT (eh) r1,T +

1

sT
(r2,T )tGT (eh) r2,T

)1/2

,

Then, Equation (3.73) can be re-written in a more compact form as:

|T |3/2ρT (uh)νT (sT , r1,T ) =
τ 2

#T
. (3.74)

Equation (3.74) is not enough to uniquely determine sT , r1,T and |T |. We
proceed as in the a-priori case and we add another requirement: we demand that
the condition (3.74) is satisfied with the most economical adapted mesh, i.e., we
aim at minimizing the number of elements. This corresponds to the request that
condition (3.74) has to be verified with the maximum possible value of the area
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of T . So, Equation (3.74) has to be satisfied under the constraint that νT is mini-
mum. Following [40], we compute the solution to this constrained minimization
problem:

r1,T = w2 , r2,T = w1 , sT =

√
µ1

µ2

where w1, w2 and µ1, µ2 are the eigenvectors and eigenvalues of the matrix
GT (e∗h), with µ1 > µ2. At this point, we are able to fix the quantities σ1, σ2,
u1, u2 and n of Equation (1.14) for each triangle T ∈ T , i.e., we may define a
piecewise constant metric as

σ2
1 = qsT , σ2

2 =
q

sT
, u1 = w2 , u2 = w1 ,

with

q = 3

√
4τ 4

ρT (uh)νmin
and νmin :=

√
µ1

µ2

µ2 +

√
µ2

µ1

µ1 .

3.3.2 Numerical Results

The aim of this section is to numerically verify that the metric derived from the
anisotropic a-posteriori error estimate, proposed in Proposition 3.3.6, generates
an anisotropic mesh whose triangles are aligned according to the directions of the
solution to a Laplace-Beltrami problem.

In particular, for each example, we focus on the following quantities:

a) number of the elements: we look for meshes with a reduced number of ele-
ments to contain the computational costs;

b) stretching factor: to evaluate the distortion of the mesh elements. The stretch-
ing factor sT is defined in Equation (3.15). We recall that values of sT close
to 1 mean that the element T is similar to an equilateral triangle, while high
values of sT refer to very stretched elements. In particular, we compute the
maximum value for the stretching factor, i.e.,

smax := max
T∈T

sT ,

where T is the set of the triangles in Γh.
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c) evaluation of the error: to evaluate the error, we build a reference solution uref

on a really fine surface mesh and we compare it with the discrete solution uh
obtained by the adaptation process. Then, we compute:

etot =
∑
T∈T

||uEref − uh||L2(T ) ,

emax = max
T∈T
||uEref − uh||L2(T ) , (3.75)

emin = min
T∈T
||uEref − uh||L2(T ) ,

where T is the set of the triangles in Γh and uEref is the extension of the reference
solution to Uδ, see Equation (2.9).

d) isotropic case: we evaluate all the quantities defined in Equation (3.76) in
the case of an isotropic mesh adaptation to compare the performance of the
adaptive processes. In particular, we compare meshes with about the same
number of elements or about the same value of the total error, etot.

The tolerances, τ , driving the adaptation procedure are specified in the tables
below.

Example 3

We consider the following problem:{
−∆Γu = − 1

(x−1.01)2
on Γ3,

u = 0 on ∂Γ3.
(3.76)

The surface Γ3 is defined by the zero level set of the function

d3 : [0, 1] × [0, 1] × [−0.05, 0.05]→ R ,

defined as:
d3(x, y, z) := 0.05 sin (4πx) sin (4πy)− z . (3.77)

The solution uref computed on a very fine mesh shows a boundary layer along the
axes as highlighted in Figure 3.15.
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Figure 3.15: The reference solution uref of example 3 computed on a really fine
mesh, the iso-lines highlight the presence of the boundary layer.

In Figure 3.16 the isotropic and the anisotropic adapted meshes are compared
together with a corresponding detail shown in Figure 3.17. We may appreciate
that the triangles of the anisotropic mesh are properly aligned, in order to capture
the trend of the solution.

Figure 3.16: Isotropic adapted mesh on the left, the anisotropic adapted mesh on
the right.

In Table 3.9, we provide a more quantitative analysis for the resulting meshes.
In particular, we observe that the mesh yielded by the proposed adaptive procedure
are really anisotropic, as highlighted by the associated high values of smax. From
the data in Table 3.9, we may observe that the isotropic adapted meshes have a
value of smax, but it remains too limited to consider the mesh anisotropic.

Moreover, we numerically check the typical behaviour of the anisotropic mesh
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Figure 3.17: Detail of the isotropic adapted mesh, on the left, and of the
anisotropic adapted mesh, on the right.

adaptation: if we fix about the same number of elements, we get a higher accu-
racy on the anisotropic mesh, i.e., a lower error. Vice-versa, the anisotropic mesh
provides the same error as in the isotropic case but with a reduced number of
elements.

iso ani
Ele. 4787 4686
etot 4.644e-01 1.999e-01
emax 1.571e-02 4.952e-03
emin 1.774e-07 5.812e-08
smax 2.495e+00 8.433e+01
τ 2.000e-01 2.000e-01

iso ani
Ele. 2021 1144
etot 1.198e+00 9.958e-01
emax 4.847e-02 4.929e-02
emin 1.035e-07 2.147e-07
smax 2.593e+00 5.569e+01
τ 0.100e-01 0.600e-01

Table 3.9: Comparison between the isotropic and the anisotropic mesh adaptation
procedure for about the same number of elements, on the left, and for about the
same accuracy of the total error, on the right.

Example 4

We consider the following problem:{
−∆Γu = − 1

(x−1.01)2
+ 1

(y−1.01)2
on Γ4,

u = 0 on ∂Γ4.
(3.78)

The surface Γ4 is defined by the zero level set of the function

d4 : [0, 1] × [0, 1] × [0, 0.6]→ R ,
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defined as:
d4(x, y, z) := 0.6 sin (πx) sin (πy)− z . (3.79)

The solution uref is computed on a very fine mesh and it exhibits two boundary
layers along the axes as highlighted by the arrows in Figure 3.18.

Figure 3.18: The reference solution uref of example 4 computed on a really fine
mesh, the iso-lines highlight the presence of the boundary layer.

As in the previous example, we compare an isotropic with an anisotropic
adapted mesh, see Figure 3.19. From the details in Figure 3.20 and 3.21, we
recognize that the triangles are aligned according to the directions of the solution.

Figure 3.19: Isotropic adapted mesh on the left, the anisotropic adapted mesh on
the right.
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Figure 3.20: Detail of the isotropic adapted mesh, on the left, and of the
anisotropic adapted mesh, on the right.

Figure 3.21: On the left a detail of the isotropic adapted mesh, on the right the
same detail on the anisotropic adapted mesh.

Finally, in Table 3.10, we collect some quantitative results and, even in this
case, we numerically assert the expected better behaviour of the anisotropic adapted
meshes.

iso ani
Ele. 1249 1117
etot 4.770e+00 2.138e+00
emax 7.041e-02 3.258e-02
emin 4.993e-07 6.534e-08
smax 2.999e+00 6.782e+01
τ 2.000e-01 8.000e-01

iso ani
Ele. 1249 522
etot 4.770e+00 4.485e+00
emax 7.041e-02 7.606e-02
emin 4.993e-07 3.090e-07
smax 2.999e+00 4.387e+01
τ 8.000e-01 8.000e-01

Table 3.10: Comparison between the isotropic and the anisotropic mesh adapta-
tion procedure for about the same number of elements, on the left, and for about
the same accuracy of the total error, on the right.
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3.4 Anisotropic A-Posteriori Error Estimator for the
Energy Norm: Convection-Diffusion Problem

Let us focus on Problem 2.5.2. We first prove an analogous of Equation (3.64) in
the case of problem (2.51).

Proposition 3.4.1 Let u and uh be the solutions of Problem 2.5.1 and 2.5.2, re-
spectively. Then, the following relation holds:∫

Γ

[
∇Γ(u− uEh ) · ∇Γφ

E
h + vE · ∇Γ(u− uEh )φEh

]
dσ =

=

∫
Γh

fEφEh µh dσh +

+

∫
Γ

[
(AE

h − I)∇Γu
E
h · ∇Γφ

E
h + vE · (BE

h − I)∇Γu
E
h φ

E
h

]
dσ +

−
∫

Γh

[
∇Γh

uh · ∇Γh
φh + vE · ∇Γh

uhφh
]
dσh ,

(3.80)

with φh ∈ H1
0 (Γ) and where φEh is a proper extension of φh to Uδ such that

φEh |Γh
= φh, while vE and fE extend the vector field v and the function f to

Uδ, respectively.

Proof. Let us consider the functions u and uh that verify Equation (2.49)
and (2.52), respectively. Moving from Equation (2.8), we extend both the func-
tions uh and φh, i.e., we define uEh : Uδ → R such that uEh |Γh

= uh and
φEh : Uδ → R such that φEh |Γh

= φh. Via these transformations, we get∫
Γ

Ph(I− dH)∇Γu
E
h ·Ph(I− dH)∇Γφ

E
h

1

µh
dσ +

+

∫
Γ

vE ·Ph(I− dH)∇Γu
E
h φ

E
h

1

µh
dσ =

=

∫
Γ

fh
1

µh
φEh dσ , (3.81)

where µh = dσ/dσh, H is the Hessian of the signed distance function d that
defines the surface Γ and Ph is the operator on the surface Γh, see Equation (2.7).
Now, we define the quantities:

AE
h =

1

µh
P(I− dH)Ph(I− dH)P ,
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BE
h =

1

µh
Ph(I− dH)P ,

FE
h =

1

µh
fEh .

We observe that the matrices P, Ph and H are symmetric. Then, via Proposi-
tion 2.4.1, we can re-write Equation (3.81) as∫

Γ

[
AE
h∇Γu

E · ∇Γφ
E
h + vE ·BE

h∇Γu
E
h φ

E
h

]
dσ =

∫
Γ

FE
h φ

E
h dσ . (3.82)

Then, we have∫
Γ

∇Γu
E
h · ∇Γφ

E
h + vE · ∇Γu

E
h φ

E
h dσ =

∫
Γ

FE
h φ

E
h dσ +

+

∫
Γ

∇Γu
E
h · ∇Γφ

E
h + vE · ∇Γu

E
h φ

E
h dσ +

−
∫

Γ

[
AE
h∇Γu

E
h · ∇Γφ

E
h + vE ·BE

h∇Γu
E
h φ

E
h

]
dσ =

=

∫
Γ

FE
h φ

E
h dσ −

∫
Γ

[
(AE

h − I)∇Γu
E
h · ∇Γφ

E
h + vE · (BE

h − I)∇Γu
E
h φ

E
]
dσ .

(3.83)

Moreover, we have∫
Γ

FE
h φ

E
h dσ =

∫
Γh

fhφh dσh =

∫
Γh

[
∇Γh

uh · ∇Γh
φh + vE · ∇Γh

uhφh
]
dσh .

(3.84)
Then, if we subtract (3.83) properly combined with (3.84) from Equation (2.49),
we complete the proof.

�

We are now ready to derive the desired a-posteriori error estimator.

Proposition 3.4.2 Let u be the solution to Problem (2.49) and let uh be the cor-
responding finite element approximation, solution to Equation (2.52). Then, the
following estimate holds:

|||eh||| ≤

(∑
T∈Γh

ρT (uh)(s
2
1T

(r1T )tGT (eh) r1,T + s2
2,T (r2,T )tGT (eh) r2,T )1/2

)1/2

,

(3.85)
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with |||eh||| =
√
ACV (eh, eh), the energy norm, where ACV (· , ·) is the bilinear

form associated with the weak formulation of problem (2.48), and where

ρT (uh) := rT + rT,e + gT + dT , (3.86)

with

rT :=
∑
z∈T

||fEµh + ∆Γh
uh − vE · ∇Γh

uh||L2(ωz) ,

rT,e :=
∑
z∈T

∑
e∈ωz

√
|e| ||[[∇Γh

uh]]||L2(e) ,

(3.87)

are the internal and boundary residuals associated with the element T ,

gT :=
h2
T√
s2,T

||∇Γh
uh||L2(T ) +

∑
z∈T

hωz ||vE · ∇Γh
uh||L2(ωz) ,

is the geometrical contribution with

hωz := max
T∈ωz

hT ,

and

dT =
∑
z∈T

√
3

2
||fEµh − fh||L2(ωz) ,

is the data contribution.

Proof. Let ψ ∈ H1
0 (Γ) and let ψh ∈ H1

0 (Γh) be the associated linear approxima-
tion. Moving from Equation (3.80), we have∫

Γ

[
∇Γ(u− uEh ) · ∇Γψ + vE · ∇Γ(u− uEh )ψ

]
dσ =

∫
Γh

fEψEh µh dσh +

+

∫
Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ + vE · (BE

h −P)∇Γu
E
hψ
]
dσ +

−
∫

Γh

[
∇Γh

uh · ∇Γh
ψE + vE · ∇Γh

uhψ
E
]
dσh , (3.88)

where fE and ψE are the extension of the functions f and ψ, respectively, to
the set Uδ such that fE|Γ = f and ψE|Γ = ψ. Even in this case, the Galerkin
orthogonality does not hold so that we have the additional term:∫

Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ + vE · (BE

h −P)∇Γu
E
hψ
]
dσ .
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We can write Equation (3.88) for ψh:∫
Γ

[
∇Γ(u− uEh ) · ∇Γψ

E
h + vE · ∇Γ(u− uEh )ψEh

]
dσ =

∫
Γh

fEψhµh dσ +

+

∫
Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ

E
h + vE · (BE

h −P)∇Γu
E
hψ

E
h

]
dσ +

−
∫

Γh

[
∇Γh

uh · ∇Γh
ψh + vE · ∇Γh

uhψh
]
dσh . (3.89)

whereψEh is the extension to the domainUδ of the functionψh such thatψEh |Γh
= ψh.

Moving from Equation (2.52), we can re-write the last term in Equation (3.89) as∫
Γh

[
∇Γh

uh · ∇Γh
ψh + vE · ∇Γh

uhψh
]
dσh =

∫
Γh

fhψh dσh .

Exploiting Equations (3.88) and (3.89) and by mimicking the procedure followed
to get Equation (3.66), we have∫

Γ

[
∇Γ(u− uEh ) · ∇Γψ + vE · ∇Γ(u− uEh )ψ

]
dσ =

=

∫
Γ

[
∇Γ(u− uEh ) · ∇Γψ + vE · ∇Γ(u− uEh )ψ

]
dσ +

+

∫
Γ

[
∇Γ(u− uEh ) · ∇Γψ

E
h + vE · ∇Γ(u− uEh )ψEh

]
dσ +

−
∫

Γ

[
∇Γ(u− uEh ) · ∇Γψ

E
h + vE · ∇Γ(u− uEh )ψEh

]
dσ =

=

∫
Γh

fEµhψ
E dσh +

∫
Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ + vE · (BE

h −P)∇Γu
E
hψ
]
dσ +

−
∫

Γh

[
∇Γh

uh · ∇Γh
ψ + vE · ∇Γh

uhψ
]
dσh −

∫
Γh

fhψh dσh +

−
∫

Γh

fEµhψ
E
h dσh +

∫
Γh

[
∇Γh

uh · ∇Γh
ψh + vE · ∇Γh

uhψh
]
dσh

=

∫
Γh

fEµh(ψ
E − ψh) dσh +

∫
Γh

(fEµh − fh)ψh dσh +

+

∫
Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ + vE · [BE

h −P]∇Γu
E
hψ
]
dσ +

−
∫

Γh

[
∇Γh

uh · ∇Γh
(ψE − ψh) dσh + vE · ∇Γh

uh(ψ
E − ψh)

]
dσh . (3.90)
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Integrating by parts the last term at the right-hand side of Equation (3.90), we have

−
∫

Γh

∇Γh
uh · ∇Γh

(ψE − ψh) dσh =

=

∫
Γh

∆Γh
uh(ψ

E − ψh) dσh −
1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh.

where [[∇Γh
uh]] is the jump of the normal derivative across the generic edge e of

the mesh defined as in Equation (3.63). Thanks to this equation, we can combine
the first and the last term of the right-hand side of of Equation (3.90) and we obtain∫

Γh

fEµh(ψ
E − ψh) dσh +

−
∫

Γh

[
∇Γh

uh · ∇Γh
(ψE − ψh) + vE · ∇Γh

uh(ψ
E − ψh)

]
dσh =

=

∫
Γh

(fEµh + ∆Γh
uh − vE · ∇Γh

uh)(ψ
E − ψh) dσh +

−1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh .

(3.91)

Thus, the left-hand side in Equation (3.90) can be decomposed as∫
Γ

[
∇Γ(u− uEh ) · ∇Γψ + vE · ∇Γ(u− uEh )ψ

]
dσ = R +G+D , (3.92)

where

R =

∫
Γh

(fEµh + ∆Γh
uh − vE · ∇Γh

uh)(ψ
E − ψh) dσh +

−1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh ,

represents the residual,

G =

∫
Γ

[
(AE

h −P)∇Γu
E
h · ∇Γψ + vE · (BE

h −P)∇Γu
E
hψ
]
dσ,
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represents the geometrical contribution, due to the absence of the Galerkin orthog-
onality, while

D =

∫
Γh

(fEµh − fh)ψh dσh ,

is the data part, due to the approximation of the function f via fh. Now, we
analyse separately these three terms by following the proof of Proposition 3.3.6.

Residual Part

By properly exploiting the Cauchy-Schwarz inequality together with estimates (3.6)
and (3.56), we have

R =

∫
Γh

(fEµh + ∆Γh
uh − vE · ∇Γh

uh)(ψ
E − ψh) dσh +

−1

2

∑
T∈Γh

∑
e∈∂T

∫
e

[[∇Γh
uh]](ψ

E − ψh) dσh ≤

≤
∑
z∈Γh

(
||fEµh + ∆Γh

uh − vE · ∇Γh
uh||L2(ωz)||ψE − ψEz ||L2(ωz) +

+
1

2

∑
e∈ωz

||[[∇Γh
uh]]||L2(e)||ψE − ψEz ||L2(e)

)
=

≤ C
∑
z∈Γh

||fEµh + ∆Γh
uh − vE · ∇Γh

uh||L2(ωz)

∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

+

+
∑
e∈ωz

√
|e| ||[[∇Γh

uh]]||L2(e)

∑
T∈ωz

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2
 =

= C
∑
T∈Γh

(rT + rT,e)

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

,

where we have exploited the definition of rT and rT,e in Equation (3.87).
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Geometrical Part

The first part of the term G is similar to the one of the geometrical part of Propo-
sition 3.3.6, so we have∫

Γ

(AE
h −P)∇Γu

E
h · ∇Γψ dσ ≤

≤ C
∑
T∈Γh

h2
T√
s2,T

||∇Γh
uh||L2(T )

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

.

(3.93)

Then, the second contribution in the term G is more complex due to the presence
of the matrix (BE

h − P). First of all we have to find a bound for this term. Since
the discrete surface belongs to Uδ, the following relations hold:

|d| < ch2 and |1− µh| < ch2 ,

where c is a constant and h is the discretization step, see Lemma 2.4.3. Thus, we
have

BE
h −P =

(
1

µh
Ph(I− dH)P− I

)
P

= PhP− dPhHPP−P + o(h2)

= PhP− dPhHP−P + o(h2)

= PhP−P + o(h2) .

Let us focus on the term PhP − P. We recall that the tensor product between
vectors, n⊗n, can be written as the product nnt, when we identify n as a column
vector. We follow this chain of equalities

|PhP−P| = |(Ph − I)P|
= |(I− nh ⊗ nh − I)(I− n⊗ n)|
= |(I− nhn

t
h − I)(I− nnt)|

= | − nhn
t
h + nhn

t
hnn

t|
= |nh| |nth + nthnn

t|
= |nth + nthnn

t| .
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We orient the reference system to get nh = (0 , 0 ,−1)t and n = (nx , ny , nz)
t.

We consequently have

|nth + nthnn
t| =

√
(nznx)2 + (nzny)2 + (nznz)2

=
√

1− (nz)2

=
√
n2
x + n2

y

= |n ∧ nh| ,

where n ∧ nh is the vector product between n and nh. We have generated the
mesh Γh such that the angle between the normals n and nh is bounded and, in
particular, we have |n ∧ nh| < chT , see [31] and Chapter 2. Thus, it yields:

||BE
h −P||L∞(T ) ≤ ChT . (3.94)

Then, if we consider a patch ωz, we have

max
T∈ωz
||BE

h −P||L∞(T ) ≤ hωz .

Consider ωEz , i.e., the patch ωz lifted on the surface Γ, now we proceed with this
sequence of inequalities∫

Γ

vE · [BE
h −P]∇Γu

E
hψ dσ ≤

∑
z∈Γh

∫
ωE

z

vE · [BE
h −P]∇Γu

E
hψ dσ

≤ c
∑
z∈Γh

∫
ωE

z

vE · [BE
h −P]∇Γu

E
hψ dσ

≤ c
∑
z∈Γh

max
T∈ωz
||BE

h −P||L∞(T )

∫
ωE

z

vE · ∇Γu
E
hψ dσ

≤ c
∑
z∈Γh

hωz ||vE · ∇Γh
uh||L2(ωz)||ψE||L2(ωz) ,

Then, by exploiting the same computation of the Data Part in Proposition 3.3.6,
we get

||ψ||L2(ωE
z ) ≤ ||ψE||L2(ωz) ≤

(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

(3.95)
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Finally, we have∫
Γ

vE · [BE
h −P]∇Γu

E
hψ dσ ≤

≤ c
∑
T∈ωz

(∑
z∈T

hωz ||vE · ∇Γh
uh||L2(ωz)

)(
2∑
i=1

s2
i,T (ri,T )tGT (ψE) ri,T

)1/2

(3.96)

By combining Equations (3.93) and (3.96) we complete the estimate for the geo-
metric part.

Data Part

This part of the estimator is essentially the same as the Data Part in Proposi-
tion 3.3.6.

This completes the proof.

�

Remark 3.4.1 In estimate (3.85) we have neglected the error due to the dis-
cretization of the vector field vE .

Remark 3.4.2 The estimate (3.85) is not computable, since the error eh depends
on the exact solution. To overcome this issue, we proceed in the same way as
the anisotropic a-posteriori error estimator of the Laplace-Beltrami, i.e., we ex-
ploit a proper gradient recovery scheme to make this estimate computable, see
Section 3.3.

3.4.1 From the Estimator to an Anisotropic Metric

As in Section 3.3.1, we compute a metric starting from the estimator (3.85) that
will drive the adaptation procedure. To achieve this goal, we follow exactly the
same approach as in Subsection 3.3.1. Actually, we obtain exactly the same
element-wise metric as defined in Equation (3.75), but now the quantity ρT (uh) is
defined in Proposition 3.4.1.
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3.4.2 Numerical Results
In this subsection we numerically show the effectiveness of the mesh adaptation
procedure derived from the estimator described in Section 3.4. To achieve this
goal, we consider the same quantities taken into account in Subsection 3.3.2 and
the tolerances, τ , driving the adaptation procedure are specified in the tables be-
low.

Example 5

We consider the following problem:{
−∆Γu+ v · ∇Γu = 1

(x−1.2)2
− 1

(x+0.2)2
on Γ5 ,

u = 0 on ∂Γ5 ,
(3.97)

where v = (0., 50., 0.)t, while the surface Γ5 is defined as the zero level set of the
implicit function

d5 : [0, 1] × [0, 1] × [0, 0.2]→ R ,

defined as:
d5(x, y, z) := 0.2 sin (πx) sin (πy)− z . (3.98)

The solution uref is computed on a very fine mesh and it shows three boundary
layers along the axes highlighted in Figure 3.22.

Figure 3.22: Reference solution uref for example 5, the arrows highlight the
boundary layers.
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In Figure 3.23, the isotropic and anisotropic adapted meshes are compared.
Moreover, from the enlarged views in Figure 3.24 and 3.25, we recognize that the
triangles are properly aligned according to the directionality of the solution, i.e.,
they are stretched according to the direction of the gradient of the solution.

Figure 3.23: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.24: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Then, in Table 3.11, we provide the value of the errors defined in Equa-
tion (3.76) and the maximum value of the stretching factor. In particular, we
observe that, even in this case, the anisotropic adapted meshes provide better re-
sults, with respect to the isotropic grids, both in terms of elements and accuracy.
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Figure 3.25: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

iso ani
Ele. 12351 11128
etot 4.144e-02 1.171e-02
emax 1.093e-03 2.055e-04
emin 3.737e-09 7.675e-10
smax 2.660e+00 3.080e+01
τ 5.000e-04 3.000e-04

iso ani
Ele. 8111 4195
etot 2.710e-02 2.396e-02
emax 3.349e-04 2.711e-03
emin 1.987e-08 8.400e-09
smax 2.525e+00 2.925e+01
τ 2.000e-03 1.000e-03

Table 3.11: Comparison between the isotropic and anisotropic mesh adaptation
procedure for about the same number of elements, on the left, and for about the
same accuracy, on the right.

Example 6

We consider the following problem:{
−∆Γu+ v · ∇Γu = 1

(x−1.01)2
− 1

(x+0.01)2
on Γ6 ,

u = 0 on ∂Γ6 ,
(3.99)

where v = (30., 50., 0.)t. The surface Γ6 is defined by the zero level set of the
function

d6 : [0, 1] × [0, 1] × [−0.1, 0.1]→ R ,

defined as:
d6(x, y, z) := 0.1 sin (3πx) sin (3πy)− z . (3.100)
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The solution uref is computed on with a very fine mesh and it exhibits three bound-
ary layers along the axes highlighted in Figure 3.26.

As in the previous example we provide both the isotropic and the anisotropic
adapted meshes in Figure 3.27. From the details in Figure 3.28, 3.29 and 3.30, we
see that the triangles are aligned according to the behaviour of the solution and,
in Table 3.12, we numerically prove that the anisotropic adapted meshes offer as
expected better results than the isotropic grids.

Figure 3.26: Reference solution uref for example 6, the arrows highlight the
boundary layers.

iso ani
Ele. 5760 5375
etot 1.413e+00 5.768e-01
emax 2.125e-02 1.208e-02
emin 1.262e-07 1.639e-08
smax 4.281e+00 3.139e+01
τ 1.200e-01 2.500e-02

iso ani
Ele. 5407 2138
etot 1.518e+00 1.463e+00
emax 2.380e-02 2.638e-02
emin 9.558e-08 1.121e-08
smax 4.585e+00 5.392e+01
τ 1.300e-01 1.300e-01

Table 3.12: Comparison between the isotropic and anisotropic mesh adaptation
procedure for about the same number of elements, on the left, and for about the
same accuracy, on the right.
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Figure 3.27: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.28: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.29: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.
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Figure 3.30: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

3.5 Anisotropic Goal-Oriented A-Posteriori Error
Analysis

In many applications one may be interested in physically relevant quantity, for
instance the concentration of a certain substance in critical areas of the computa-
tional domain or localized or mean values, fluxes across sections of the domain. In
all these cases, the goal-oriented adaptation procedure is the most useful approach
to get a mesh which is suited to approximate a quantity of interest, [5].

There are two main ingredients behind this kind of analysis. The first one is
the introduction of a suitable goal functional J : H1

0 (Γ) → R, that mathemat-
ically represents the quantity of interest. So far we have considered only linear
functional. The second one is the definition of an auxiliary problem, the so-called
adjoin or dual problem, related in a proper way to the goal functional and the
primal problem

L(u) = f in Γ , (3.101)

completed with suitable boundary conditions on ∂Γ, where L is a generic differ-
ential operator, f is a sufficiently regular function, Γ is a surface and ∂Γ denotes
the corresponding boundary. Then, the dual problem is

Problem 3.5.1 Find z ∈ H1
0 (Γ), such that:

J(φ) = A∗(z, φ) , ∀φ ∈ H1
0 (Γ) , (3.102)

where A∗(·, ·) denotes the adjoin bilinear form associated with the primal one
A∗(·, ·), Problem 2.3.1 or 2.5.1.

Let us define the discrete version of Problem 3.5.1. We consider a counter-
part of the functional J , associated with the polyhedral surface, i.e., a functional
Jh : H1

0 (Γh)→ R, so that the discrete version of Problem (3.5.1) is:
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Problem 3.5.2 Find zh ∈ H1
0 (Γh) such that:

Jh(φh) = A∗h(zh, φh) , ∀φh ∈ H1
0 (Γh) , (3.103)

where now A∗h(·, ·) is the adjoin bilinear form associated with the discrete primal
problem, Problem 2.3.2 or 2.5.1.

Now, we can provide a goal-oriented anisotropic a-posteriori error estimator for
the functional error J(eh).

Proposition 3.5.1 Let u and z be the solutions to the primal and the dual prob-
lem and let uh and zh be the solutions of their corresponding finite element ap-
proximations. Then, the following estimate for the functional error eh defined in
Equation (2.41) holds:

|J(eh)| ≤
∑
T∈Γh

ρ∗T (uh)(s
2
1,T (r1,T )tGT (ezz) r1,T + s2

2,T (r2,T )tGT (ezz) r2,T )1/2 ,

(3.104)
where the quantity ρ∗T (uh) depends on the primal problem. More precisely, it
is defined in Equation (3.60) or Equation (3.86) for the Problem 2.3.2 or 2.5.2,
respectively, and ezz = zE − zh.

Proof. Let us choose the test function φ of the dual problem coinciding with eh.
This immediately yields:

J(eh) = A∗(z, eh) = A(eh, z) ,

thanks to the Lagrange identity. At this point we can follow exactly the proof
of Proposition 3.3.6 or of Proposition 3.4.2 if we are considering Problem 2.3.2
or 2.5.2, but ψ needs to be replaced by the dual solution z.

�

Even in this case, the right hand side of Equation (3.104) depends on the exact
solution of the adjoin problem defined in Equation (3.103). As in the previous
section, the idea is to replace z with a computable quantity obtained via a suit-
able recovered gradient procedure. In particular, we adopt the generalization of
the standard Zienkiewicz-Zhu error estimator to surface embedded in the three-
dimensional space proposed by [110]. Hence, starting from the discrete solution
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zh of Problem (3.5.2), we introduce the tangential recovered gradient∇WCY
Γh

zh, to
define the components of the recovered matrix GT (e∗zz) as

[GT (e∗zz)]i,j =

∫
T

∂e∗zz
∂xi

∂e∗zz
∂xj

=

∫
T

(
(∇WCY

Γh
zh)i − (∇Γh

zh)i

)(
(∇WCY

Γh
zh)j − (∇Γh

zh)j

)
,

(3.105)

where i, j = 1, 2, 3 run on the components of the discrete gradient ∇Γh
, while

x1 = x, x2 = y, x3 = z.

3.5.1 From the Estimator to an Anisotropic Metric
As in the a-posteriori analysis based on the control of the energy norm, starting
from the estimate in Equation (3.104), we have to derive a suitable metric to drive
the mesh adaptation procedure. Even in this case, we fix a priori a tolerance on
the total error and then we “equidistribute the error” by averaging the contribution
given by each element. We consider

ρ∗T (uh)(s
2
1,T (r1,T )tGT (ezz) r1,T + s2

2,T (r2,T )tGT (ezz) r2,T )1/2 =
τ

#T
, (3.106)

where #T are the number of triangles in the initial mesh Γh, and we follow the
same computations as in Subsection 3.3.1 to get the piecewise constant metric.
Finally, the desired metric is given by putting

σ2
1 = qsT , σ2

2 =
q

sT
, u1 = w2 , u2 = w1 ,

in Equation (1.14), where w1, w2 are the eigenvectors of GT (e∗zz) corresponding
to the eigenvalue µ1 and µ2, respectively, with µ1 ≥ µ2, sT =

√
µ1/µ2 and

q = 3

√
4τ 2

ρT (uh)νmin
and νmin :=

√
µ1

µ2

µ2 +

√
µ2

µ1

µ1 .

3.5.2 Numerical Results
In this section we numerically check the effectiveness of the proposed goal-oriented
mesh adaptation procedure. In particular, we focus on the following quantities:
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a) the number of the elements;

b) the stretching factor: defined as in Equation (3.37);

c) the value of the error: we consider a reference value J(uref ), where uref is a
discrete solution associated with a really fine surface mesh. Then, we compute
the relative error:

eJ :=
|J(uref )− Jh(uh)|
|J(uref )|

, (3.107)

where Jh is the functional computed on the adapted mesh.

d) the isotropic case: all the quantities in a) b) and c) are evaluated also in the case
of an isotropic mesh adaptation to investigate the performances of both these
two mesh adaptation processes. As in the previous section, the comparison is
performed in terms of number of elements and of accuracy.

The tolerances, τ , driving the adaptation procedure are specified in the tables
below.

Example 7

We consider the Laplace-Beltrami problem defined in Equation (3.78) and the
functional

J1(φ) =

∫
Γh

∇Γφ · ∇Γeh dσ , (3.108)

where Γh is the surface adapted mesh.
In Figure 3.31, we show the whole mesh while some details are furnished

in Figure 3.32 and 3.33. Table 3.13 shows that if we consider an isotropic and an
anisotropic mesh with about the same value for the relative error, Equation (3.107),
the anisotropic grid demands a lower number of elements.

126



Chapter 3. Error Estimators for PDEs Defined on Surfaces

Figure 3.31: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.32: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.33: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.
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Ele. eJ1 smax τ
iso 9394 5.225e-03 3.089e+00 4.000e-02
ani 4962 4.208e-03 3.115e+01 1.000e-02

Table 3.13: Comparison between the isotropic and anisotropic mesh adaptation
for about the same accuracy on eJ1 .

Example 8

We consider the same problem as in the previous example but for a different choice
of the goal functional, now we consider

J2(φ)=

∫
Ωh

∇Γφ · ∇Γeh dσ , (3.109)

where Ωh ⊂ Γh is the portion of the surface, as highlighted in Figure 3.34 on the
left.

Figure 3.34: Portion Ωh of the surface associated with the functional J2 is defined,
on the left; the reference solution uref , on the right.

In Figure 3.35, we show the resulting mesh for both the isotropic and the
anisotropic case. Since the functional involves only a portion of the domain, Ωh,
only this part of the surface Γh is properly adapted. The solution problem defined
in Equation (3.78) presents two boundary layers as it is highlighted in Figure 3.34
on the right. We notice that only the boundary layer inside Ωh is captured, see
Figure 3.36, while the other one is not detected since it lies outside Ωh, see Fig-
ure 3.37.
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Figure 3.35: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.36: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.37: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

From Table 3.14, we deduce that, if we fix about the same number of elements,
the anisotropic adapted mesh provides a better approximation of the functional J2

than the isotropic one.
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Ele. eJ2 smax τ
iso 3541 1.491e-02 2.492e+00 4.200e-01
ani 3202 7.805e-03 4.619e+01 4.000e-02

Table 3.14: Comparison between the isotropic and anisotropic mesh adaptation
for about the same number of elements.

Example 9

We consider the convection-diffusion problem defined in Equation (3.97) and the
functional

J3(φ)=

∫
Γh

∇Γφ · ∇Γeh dσh . (3.110)

where Γh is the surface adapted mesh.
In Figure 3.38 we show the whole mesh for both an isotropic and an anisotropic

mesh adaptation. Then, the details in Figure 3.39 and 3.40 on the right highlight
the anisotropic nature of the mesh. A more quantitative analysis on this test is
provided by Table 3.15: the high value of smax underlines the anisotropic nature
of the mesh. Moreover, if we fix about the same value for the error defined in
Equation (3.107), the anisotropic mesh guarantees the desired accuracy but with a
reduced number of elements than the isotropic grid.

Figure 3.38: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.
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Figure 3.39: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.40: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Ele. eJ3 smax τ
iso 6087 5.409e-03 2.841e+00 1.000e-06
ani 2283 6.183e-03 2.219e+01 1.000e-06

Table 3.15: Comparison between the isotropic and anisotropic mesh adaptation
for about the same accuracy on eJ3 .

Example 10

We consider the convection-diffusion problem defined in Equation (3.99) and the
functional

J4(φ)=
1

|Ωh|

∫
Ωh

φ dσ , (3.111)

where Ωh ⊂ Γh is the portion of the surface highlighted in Figure 3.41 on the left,
while |Ωh| denotes the corresponding area.

As before, the region Ωh involved in the definition of the functional includes
only one of the three boundary layers of the solution. Thus, we expect that in
the final adapted mesh the triangles will be not adapted and suitably oriented to
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Figure 3.41: Portion Ωh of the surface associated with the functional J2 is defined,
on the left; the reference solution uref , on the right.

follow the two layers outside Ωh, as shown in Figure 3.42 and by the details in
Figure 3.43 and 3.44.

In Table 3.16 we compare the performance of the isotropic with the anisotropic
mesh adaptation procedure. In particular, we fix about the same number of ele-
ments and we observe that the anisotropic adapted mesh provides an approxima-
tion for J4 more accurate than the one obtained by an isotropic mesh. Moreover,
the high value of smax confirms the strong anisotropic nature of the adapted mesh.

Figure 3.42: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.
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Figure 3.43: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.44: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Ele. eJ4 smax τ
iso 12400 4.465e-04 5.126e+00 1.800-03
ani 12007 7.621e-05 2.677e+02 7.000-03

Table 3.16: Comparison between the isotropic and anisotropic mesh adaptation
for about the same number of elements.

Example 11

Now we solve again problem defined in Equation (3.99) by picking functional

J5(φ)=

∫
Ωh

∇Γφ · ∇Γeh dσ , (3.112)

where Ωh is the portion of the surface highlighted in Figure 3.45 on the left.
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Figure 3.45: Portion Ωh of the surface associated with the functional J2 is defined,
on the left; the reference solution uref , on the right.

Now, the region Ωh contains two of the three boundary layers characterizing
the solution uref . From Figure 3.46 and from the details in Figure 3.47 and 3.48,
we see that these two boundary layers are properly refined by the proposed mesh
adaptation and, from Figure 3.48, we see that the triangles are aligned in the right
direction. Finally Figure 3.49 shows that the other boundary layer is not refined
in both adapted meshes.

Figure 3.46: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Then, Table 3.17 compare the performance of the isotropic with the anisotropic
mesh adaptation procedure. We fix about the accuracy on the functional J5, and
we notice that the anisotropic mesh guarantees the target accuracy with a reduced
number of elements than the isotropic grid.
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Figure 3.47: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.48: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.49: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.
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Ele. eJ5 smax τ
iso 47219 1.421e-03 3.821e+00 5.000e-03
ani 10495 1.314e-03 6.358e+01 7.500e-03

Table 3.17: Comparison between the isotropic and anisotropic mesh adaptation
for about the same accuracy on eJ5 .

3.6 An Anisotropic Recovery Based Error Analysis

3.6.1 Motivation
The error estimation technique introduced by O. C. Zienkiewicz and J. Z. Zhu in
[114, 115, 113] is one of the most popular strategy used in literature. The idea
behind this procedure is very simple. We consider the generic Partial Differential
Equation:

L(u) = f in Ω , (3.113)

completed with suitable boundary conditions on ∂Ω, where L is a generic differ-
ential operator, f is a sufficiently regular function, Ω is a generic two-dimensional
or three-dimensional domain and ∂Ω denotes the corresponding boundary.

Suppose that we have a finite element approximation uh of the exact solution
u. Moving from uh and the corresponding gradient ∇uh, we build an approxi-
mation ∇∗uh of the gradient of u, more accurate than the gradient ∇uh of the
finite element solution. Then, the Zienkiewicz-Zhu error estimator exploits the
discrepancy

||∇∗uh −∇uh||L2(Ω) , (3.114)

to estimate the H1-semi-norm of the discretization error, i.e.,

|u− uh|H1(Ω) ' ||∇∗uh −∇uh||L2(Ω) . (3.115)

One of the most interesting aspects of this kind of estimators concerns the
independence from the problem at hand, except for the selected finite element
space. In practice, we only need:

1. the finite element solution, uh, or just its gradient∇uh;

2. a gradient recovery technique to build ∇∗uh.
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In the next sections we will extend this technique with respect to two aspects:

i) we extend this approach to Partial Differential Equations defined on surfaces
[31] by resorting to the gradient recovery procedures detailed in Subsec-
tion 2.6.2;

ii) we enrich the standard Zienkiewicz-Zhu estimator with directional and ori-
entation information by generalizing what performed for the planar case in
[89, 36].

This new error estimator allows us to deal with an anisotropic a-posteriori
mesh adaptation procedure for Partial Differential Equation defined on surface
embedded in the three-dimensional space.

3.6.2 A Zienkiewicz-Zhu like Error Estimator
Driven by Proposition 3.2.1 we devise an anisotropic a-posteriori error estimator
for a function defined on a surface. Let

eTZZ := (GT h(∇Γh
uh)−∇Γh

uE)|T , (3.116)

be the so called recovered approximation error for the gradient over a generic
triangle T of the polyhedral surface Γh.

Remark 3.6.1 Since Γh is not necessary a subset of Γ, in Equation (3.116) we
have to consider the extension uE of the exact solution u.

Generalizing what done in [36], we define the anisotropic Zienkiewicz-Zhu
local error estimator for the H1-semi-norm of the discretization error as

[ηT,A]2 :=
3

s1,T s2,T

(
s2

1,T (r1,T )tGT (eTZZ) r1,T + s2
2,T (r2,T )tGT (eTZZ) r2,T

)
,

(3.117)
where GT is the matrix defined in Equation (3.7). Then, we obtain the global
associated error estimator as

[ηA]2 :=
∑
T∈Γh

[ηT,A]2 . (3.118)

We do not have a rigorous derivation of this estimator. It is essentially heuris-
tic even though it is inspired by the procedure followed in the proof of Proposi-
tion 3.2.2, where we choose ψ = u − uEh and we substitute the exact tangential
gradient,∇Γu, with the recovered one, GT h(∇Γh

uh).
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However some rationale can be provided. First of all the factor s1,T s2,T in
Equation (3.6) guarantees a sort of consistency with respect to the isotropic case.
In fact, if we consider s1,T = s2,T , the estimators defined in Equation (3.117)
and (3.118) become isotropic:

[ηT,I ]
2 := 3

∫
T

|eTZZ|dσh and [ηI ]
2 :=

∑
T∈Γh

[ηT,I ]
2 . (3.119)

Then, the factor 3 in Equation (3.117) can be justified in such a way: the recov-
ery procedure GT h(∇Γh

uh) involves three patches to get the recovered gradient
on T , see Figure 3.50.

Figure 3.50: Patches influencing triangle T , i.e., ωz1 , ωz2 and ωz3 .

Finally, Lemma 3.3.4 states a sort of equivalence between [ηA]2 and |uE −
uh|2H1(T ).

3.6.3 From the Estimator to an Anisotropic Metric

To define a piecewise constant metric field starting from estimator (3.117) and (3.118),
we first re-write the local estimator as follows:

[ηA,T ]2 =
3

s1,T s2,T

(
s2

1,T (r1,T )tGT (eTZZ) r1,T + s2
2,T (r2,T )tGT (eTZZ) r2,T

)
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= 3

(
sT (r1,T )tGT (eTZZ) r1,T +

1

sT
(r2,T )tGT (eTZZ) r2,T

)
︸ ︷︷ ︸

(I)

=
3

2
|T |
(
sT (r1,T )tGT (eTZZ) r1,T +

1

sT
(r2,T )tGT (eTZZ) r2,T

)
=

3

2
|T |νT (sT , r1) ,

where we have introduced the stretching factor sT = s1,T/s2,T together with the
scaled matrix GT to adimensionalize the quantity (I), and with

νT (sT , r1,T ) :=

(
sT (r1,T )tGT (eTZZ) r1,T +

1

sT
(r2,T )tGT (eTZZ) r2,T

)
,

Since r1,T and r2,T are orthonormal, the dependence of νT (sT , r1,T ) on r2,T is
implicit.

Then, given a positive tolerance τ , we impose an equidistribution criterion of
the predicted error:

ηA,T =
τ

#T
, (3.120)

where #T is the number of elements of the mesh. Equation (3.120) is not enough
to uniquely determine s1,T , s2,T and r1,T . To achieve this goal we proceed in
the same way as for the derivation of the anisotropic a-priori metric, see Subsec-
tion 3.2.2. We impose condition (3.120) by contemporary looking for the most
economical adapted mesh. This corresponds to satisfy condition (3.120) with the
maximum possible value of the area for the triangle T , i.e., under the constraint
that νT is minimal. Also in this case we may derive an explicit formula for the
optimal solution we are looking for, thus we have

r1,T = w2 , r2,T = w1 , sT =

√
µ1

µ2

where w1, w2 and µ1, µ2 are the eigenvectors and eigenvalues of the matrix
GT (eTZZ) with µ1 ≥ µ2.

Moving from these relations and imposing condition (3.120), we may identify
the piecewise constant metric with

σ2
1 =

4τ 2

3(#T )2νmin

√
µ1

µ2

, σ2
2 =

4τ 2

3(#T )2νmin

√
µ2

µ1

, u1 = w2 , u2 = w1 ,
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in Equation (1.14), where

νmin :=

√
µ1

µ2

µ2 +

√
µ2

µ1

µ1 .

3.6.4 Numerical Results
In this section we numerically check the reliability of the proposed Zienkiewicz-
Zhu error estimator and of the corresponding mesh adaptation procedure. In more
details, in Example 12 we compare the behaviour of both the estimators ηA,T and
ηI,T . Then, in Examples 13, 14 and 15, we perform a more quantitative analysis
following what we have done in Subsections 3.3.2 and 3.4.2. In particular, we
take into account the following quantities:

a) the number of the elements;

b) the stretching factor: the same quantity defined in Equation (3.37);

c) the evaluation of the error: since we proceed with an adaptation procedure
driven by an anisotropic estimate for the H1(Γh)-seminorm of the error and
we know the exact function u, we can compute the exact value

|uE − uh|H1(Γh) ,

where uE is the extension of u, see Equation (2.9);

d) the isotropic case: we evaluate the quantity above also in the case of an isotropic
mesh adaptation to compare the performances of these two mesh adaptation
processes.

The tolerances, τ , driving the adaptation procedure are specified in the tables
below.

Example 12

In this example we evaluate the reliability of both the estimator ηA and ηI . To per-
form this comparison we also compute the so-called effectivity index associated
with the error indicators ηA, and ηI , given by

E.I.∗ :=
η∗

|uE − uh|H1(Γh)

(3.121)
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where ∗ refers to A or I according to the desired estimator, while uE is the ex-
tension of u and uh is the discrete approximation for the exact function u. In this
example, we consider

u(x, y, z) = tanh (10x) , (3.122)

while the surface is given by the zero level set of the function d4 defined in Equa-
tion (3.79).

We recall that an error indicator is asymptotically exact if the corresponding
effectivity index converges to one as the mesh size goes to zero. This kind of
analysis is a standard practice in engineering applications [114, 79, 36]. The theo-
retical analysis has been carried out under the hypothesis of uniform triangulation,
[67, 68], or of fully-structured or globally-structured meshes, [30, 73, 112]. As
far as we know, a generalization of this analysis is currently not available in the
literature.

In Figure 3.51 we show the isotropic and the anisotropic meshes. Then, in
Table 3.18 and 3.19, we provide the values of η∗, |uE − uh|H1(Γh) and E.I.∗ for
both the isotropic and the anisotropic error estimator on a sequence of adapted
meshes with an increasing number of elements.

Figure 3.51: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.
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Ele. ηA |uE − uh|H1(Γh) E.I.A
271 5.318e-01 3.757e-01 1.431e+00
561 1.935e-01 1.687e-01 1.147e+00

1050 1.277e-01 1.356e-01 9.419e-01
2119 9.361e-02 9.991e-02 9.396e-01
4023 7.277e-02 7.451e-02 9.767e-01
9154 4.668e-02 5.521e-02 8.453e-01

Table 3.18: Behaviour of the anisotropic estimator (3.117).

Ele. ηI |uE − uh|H1(Γh) E.I.I
342 6.735e-01 3.983e-01 1.690e+00
799 2.317e-01 1.496e-01 1.548e+00

1601 1.474e-01 9.617e-02 1.533e+00
3765 9.164e-02 5.886e-02 1.577e+00
9041 5.876e-02 3.833e-02 1.533e+00

Table 3.19: Behaviour of the isotropic estimator (3.119).

Example 13

In this example we consider the exact function

u(x, y, z) = tanh (10y)− tanh (10(x− y)− 5) , (3.123)

defined on the surface Γ4 given by the zero level set of the function

d7 : [−2, 2] × [−2, 2] × [−0.2, 0.2]→ R ,

such as
d7(x, y, z) := 0.2 sin (0.5πx) sin (0.5πy)− z . (3.124)

From Figure 3.52, we detect that u exhibits two internal layers crossing each
other. We apply both an isotropic and anisotropic mesh adaptation driven by the
metric field associated with the Zienkiewicz-Zhuerror estimator, ηI and ηA. If
we consider the anisotropic adapted mesh, Figure 3.53 on the right together with
the details in Figure 3.54 and 3.55 on the right, we may appreciate that the trian-
gles are suitably aligned with the layers, while the isotropic adapted mesh simply
refines the regions where layers occur.

142



Chapter 3. Error Estimators for PDEs Defined on Surfaces

Figure 3.52: The exact function u of example 13, the iso-lines highlight the pres-
ence of the boundary layer.

Figure 3.53: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.54: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.
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Figure 3.55: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

In Table 3.20 and 3.21 we furnish a more quantitative analysis of the mesh
adaptation procedures. Via the coefficient smax, we realize that the triangles in
the anisotropic mesh are really distorted. Moreover, these tables confirm also the
better “error-vs-number of elements” behaviour of the anisotropic meshes.

Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 5057 1.402e+00 7.140e-01 6.187e+00 5.000e-01
ani 2206 9.467e-01 7.195e-01 1.780e+01 5.000e-01

Table 3.20: Comparison between the isotropic and anisotropic mesh adaptation
for about the same global accuracy.

Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 5057 1.402e+00 7.140e-01 6.187e+00 5.000e-01
ani 5035 4.147e-01 4.112e-01 2.439e+01 2.200e-01

Table 3.21: Comparison between the isotropic and anisotropic mesh adaptation
for about the same number of elements.
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Example 14

Let us consider the function

u(x, y, z) = tanh (5x)− tanh (5(x− y)− 2.5) , (3.125)

defined on the surface Γ5 given by the zero level set of the the function

d8 : [−2, 2] × [−2, 2] × [−0.4, 0.4]→ R ,

such as
d8(x, y, z) := 0.4 sin (0.25πx) sin (0.25πy)− z . (3.126)

Figure 3.56: The exact function u of example 14, the iso-lines highlight the pres-
ence of the boundary layer.

Figure 3.57: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.
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Figure 3.58: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Figure 3.59: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

In Figure 3.56 we provide the exact solution while Figure 3.57 shows the cor-
responding isotropic and anisotropic adapted mesh. From this figure and the de-
tails in Figure 3.58 and 3.59, we see that in the anisotropic mesh the triangles are
stretched in the correct direction, in order to capture the layers as well as possible.

Finally, from Table 3.22 and 3.23, we numerically verify that the anisotropic
adapted meshes offer better results than the isotropic ones. In fact, if we fix about
the same number of elements, we get lower error in the anisotropic case, Ta-
ble 3.23. Vice-versa, we get the same error with fewer elements when we resort
to the anisotropic adapted mesh, see Table 3.22.
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Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 4876 1.413e+00 7.157e-01 5.455e+00 1.200e+00
ani 2742 1.177e+00 7.578e-01 2.040e+01 1.300e+00

Table 3.22: Comparison between the isotropic and anisotropic mesh adaptation
for about the same global accuracy.

Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 4876 1.413e+00 7.157e-01 5.455e+00 1.200e+00
ani 4882 5.713e-01 4.387e-01 3.320e+01 7.100e-01

Table 3.23: Comparison between the isotropic and anisotropic mesh adaptation
for about the same number of elements.

Example 15

In this example we consider the function

u(x, y, z) = tanh (20x) + tanh (20(x− y)) + tanh (20y) + 2 , (3.127)

Figure 3.60: The exact function u of example 15.

defined on the surface Γ6. This surface does not have the boundary and it is defined
via the zero level set of the following function

d8 : [−0.8, 0.8] × [−0.8, 0.8] × [−2., 2.]→ R ,

such as

d8(x, y, z) :=
x2

0.82
+

y2

0.82
+

z2

2.02
. (3.128)
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As shown in Figure 3.60, u presents a series of internal layers. In Figure 3.60,
3.62 and 3.63 we furnish the whole adapted meshes and some details. In the
anisotropic adapted mesh the triangles are properly aligned with the internal lay-
ers. Their shape, size and orientation meet the trend of the function u. A more
quantitative analysis is given in Table 3.24 and 3.25, where we numerically show
the better “error-vs-number of elements” behaviour of the anisotropic meshes.

Figure 3.61: Isotropic adapted mesh, on the left, and anisotropic adapted mesh,
on the right.

Figure 3.62: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.
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Figure 3.63: Details of the isotropic adapted mesh, on the left, and the anisotropic
adapted mesh, on the right.

Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 13190 1.313e+01 6.161e+00 2.924e+00 3.000e+00
ani 4666 8.515e+00 6.041e+00 2.675e+01 2.700e+00

Table 3.24: Comparison between the isotropic and anisotropic mesh adaptation
for about the same global accuracy.

Ele. η∗ |uE − uh|H1(Γh) smax τ
iso 4834 2.105e+01 1.127e+01 2.281e+00 2.000e+00
ani 4666 8.515e+00 6.041e+00 2.675e+01 2.700e+00

Table 3.25: Comparison between the isotropic and anisotropic mesh adaptation
for about the same number of elements.
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Chapter 4

A Higher Dimensional Re-Meshing
Algorithm

Many computational applications involve triangulation of a complex surface ge-
ometry. The main challenge is to automatically generate a surface mesh which
satisfies various criteria with respect to the geometry approximation, such as the
mesh size and the mesh quality.

In this chapter we propose a novel method to generate a surface mesh which
well approximates a surface of interest and with a number of elements as small as
possible. For this purpose, we aim at modifying an initial mesh in order to get a
new mesh whose elements are adapted according to the curvature of the surface
at hand. Intuitively, the most curved regions of the surface will contain small
elements and a dense vertex sampling, while the almost flat regions will have
large elements with more sparse vertices. Using only isotropic elements may be
far from optimal.

However, an anisotropic mesh could offer a better “number of elements vs
geometry fitting” behaviour. Figure 4.1 shows an example of an anisotropic mesh.

We propose a new method for re-meshing 3d surfaces based on the idea of
an higher dimensional embedding [14, 71, 75]. The idea behind this method is
the following: an anisotropic mesh corresponds to an isotropic mesh in a higher
dimension. For instance, a surface in R3 will correspond to an anisotropic mesh
in the flat two-dimensional space, see Figure 4.2. In [75], B. Lévy and N. Bon-
neel proposed a mesh generation strategy based on the computation of the Voronoi
diagram in R6. The results provided in [75] are really impressive, but their algo-
rithm does not preserve sharp features. To overcome this issue, we propose a new
method that directly optimizes the triangular surface mesh in the embedded space
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Figure 4.1: The best approximation of a surface, shown in the middle, consists
of mesh elements of different size, shape and orientation, matching the principle
curvatures of the surface itself.

in such a way that the triangles are as uniform as possible in R6.

Figure 4.2: On the right the anisotropic mesh in R2, on the left the corresponding
mesh in R3.

This method has the following properties:

i) the core operation is a uniform re-meshing of a surface; it fits the well-
developed mesh adaptation strategies and it is possible to use any optimization-
based isotropic surface re-meshing method;

ii) it can handle arbitrary complex geometries and topologies, as well as a very
strong anisotropy;

iii) despite the theory proposed in [75], it automatically preserves sharp features,
corner and edge singularities;
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iv) it is robust; in fact, the initial mesh can provide a very coarse or crude ap-
proximation of the actual surface.

4.1 Surface Embedding in R6

The re-meshing method proposed in this chapter is inspired by the method of
B. Lévy and N. Bonneel [75]. The basic idea is pioneered by G. D. Cañas and
S. J. Gortler and Y. K. Lai et al. [14, 71] and it is originated in the application of
feature characterization [90] from image processing [65].

In the proposed method we get an anisotropic mesh by increasing the dimen-
sions such that we could consider the mesh isotropic in a higher dimensional
space, see Figure 4.2:

an isotropic mesh in a higher dimensional space will correspond to an anisotropic
mesh in the lower dimensional space.

This concept has been successfully applied in generating curvature-adapted sur-
face meshes [66, 75].

For a smooth surface, it is natural to consider the unit normals defined at the
surface points as the components of the co-dimension, i.e., to use the components
of the Gaussian map of the surface, [49].

Given a surface Γ in R3, one can embed it into R6 by using the one-to-one
embedding function: Φ : Γ→ R6 defined as

Φ(x) =


x
y
z
s nx
s ny
s nz

 , (4.1)

where (nx, ny, nz)
t denotes the unit outward normal to Γ at x, and s ∈ [0,+∞) is

a user-specified parameter.
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Remark 4.1.1 The embedding Φ allows us to approximate the geodesic edge
lengths in Γ by the Euclidean edge lengths in Φ(Γ). In fact, each edge length
in Φ(Γ) is determined by two parts:

• its Euclidean length in R3;

• the variation of the normals at its endpoints, scaled by the parameter s.

Remark 4.1.2 Via the embedding Φ, the length of the edges remains the same in
the embedded space on flat regions. While, in regions which have high curvatures,
the length of edges in Φ(Γ) is much larger than the corresponding length in R3,
see Figure 4.3.

Figure 4.3: Different 6d-lengths with different type of surfaces: on the left a plane
where the 6d and the 3d-lengths coincide, l6dAB = lAB; on the right a sphere where
the two lengths do not coincide, l6dCD > lCD.

As it is pointed out in [71], the R6 embedding Φ is mainly suited for a sim-
ple transfer from non-isotropic to isotropic configurations. As will be clear from
the developments below, we can still explain everything in R3 via an appropriate
combined processing of points and normals. Indeed, the use of the embedding in
R6 does not result in any computational overhead over working in 3d.

By embedding a surface in a higher dimensional space motivates the new prob-
lem: how to generate an isotropic good quality surface mesh in this embedding
space? In principle, a direct generalization of available methods in 3d is possible,
but this will be impractical due to the d! memory cost requirement.

B. Lévy and N. Bonneel [75] overcome this difficulty by using their Vor-
paline (Voronoi Parallel Linear Enumeration) technique to compute a restricted
centroidal Voronoi diagram (CVT) embedded in 6d. It directly computes the 6d
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Voronoi cells by iterative half-space clipping. It requires only the nearest neigh-
bour information for a point set in R6.

It is proved by B. Lévy and N. Bonneel [75] that this method may produce
flipped (self-intersected) triangles, in particular in regions where the anisotropy
varies too fast. This fact implies that, if the normals between the neighbour ver-
tices vary too quickly, this method may not work correctly. One possible way to
get end of this problem is to insert new vertices between neighbouring vertices.
However, the method by B. Lévy and N. Bonneel [75] does not support inserting
new vertices dynamically.

Another well-known problem in RVD- and CVT-based methods is that sharp
features or details of the surfaces may be smoothed or missed in the resulting
mesh, see the examples in [75]. Although a theoretical solution has been proposed
in [16], its efficiency is still a challenge in practice.

Due to these problems, we propose a new method in the next section. In
particular, we show that a common mesh optimization framework for isotropic
surface re-meshing may be applied in re-meshing surfaces embedded in a higher
dimensional space.

4.2 The Re-meshing Approach
Consider a surface Γ in R3. For simplicity, we assume that Γ is a smooth surface,
i.e., it contains no corner and edge singularities. Then, we will consider the non-
smooth case. In this section, we propose an optimization-based method for re-
meshing Γ.

4.2.1 Preliminaries
The proposed method assumes that the following two functions, η1 and η2, are
provided:

(1) given a point p ∈ Γ, η1 returns the normal to Γ at p;

(2) given a point p ∈ R3, η2 returns the closest point on Γ.

If Γ is represented by an implicit function or it is a parametrized surface, e.g., a
CAD model, the exact normals and the closest points of Γ are provided. In the case
that Γ is given as a polygonal mesh, these two functions must be approximated
from the input data, see, e.g., [46, 3, 13, 87].
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Figure 4.4: An example of inverted triangle.

Moreover, we assume to have an initial surface mesh of Γ, Γinit. It is required
that all triangles of this initial mesh Γinit are oriented consistently. In particular, if
ab is the common edge of two faces abc and bad, the normals to abc and bad
are pointing outwards to the surface.

Moreover, if a triangle is used to approximate a patch of a surface, the normal
of the triangle, nT , should not vary too much with respect to the normals of the
real surface, na, nb and nc, see Figure 4.4. We use a heuristic condition to justify
the geometric approximation.

Definition 4.2.1 Let T be a face in the surface mesh. We say that T is inverted if
the maximum angle between the normals to Γ at each triangle vertex, na, nb and
nc, and the normal to the triangle, nT , is greater than a given threshold.

An inverted face is considered a bad approximation of the geometry. Fig-
ure 4.4 shows an example of inverted triangle. Thus, it is crucial to use an appro-
priate threshold in order to achieve the best mesh quality. In our experiments we
fix the threshold equal to 90◦.

4.2.2 The parameter s

We found it is better to analyse more in the details the role of the parameter s in
Φ. We consider a surface Γ and two points A,B ∈ Γ, we apply the map Φ and we
have:

Φ(A) = (xA, yA, zA, snA, svA, swA)t ,

Φ(B) = (xB, yB, zB, snB, svB, swB)t ,
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Figure 4.5: Bounding box of the surface Γ.

where xA, yA, zA and xB, yB, zB are the R3 coordinates ofA andB and nA, vA, wA
and nB, vB, wB are the components of the normal vector to Γ at A and B. The
scalar product in R6 between these two points is

(A,B)6d = xAxB + yAyB + zAzB︸ ︷︷ ︸
I

+s2
(
nAnB + vAvB + wAwB︸ ︷︷ ︸

II

)
.

Since the coordinates of both A and B vary in the bounding box of the surface
Γ, we can say that I ∈ [−d2, d2] where d is the diagonal of the bounding box,
see Figure 4.5. Moreover, we can state that the quantity II ∈ [−1, 1], because the
normals atA andB are such that n2

A+v2
A+w2

A = 1 and n2
B+v2

B+w2
B = 1. Indeed,

the parameter s is introduced to give more or less importance to the normals, II ,
on the whole value of (A,B)6d. But, since I ∈ [−d2, d2] and II ∈ [−1, 1], the
contribution of I and II on (A,B)6d is unbalanced, because it depends on the
dimension of the bounding box.

To make the quantities I and II almost comparable, we modify the scalar
product in R6 in such a way:

(A,B)6d = xAxB + yAyB + zAzB + (hΓs)
2
(
nAnB + vAvB + wAwB

)
, (4.2)

where
hΓ =

dx + dy + dz
3

,

and dx, dy and dz are the dimensions of the bounding box of Γ, see Figure 4.5. In
this way, the quantity I and II are at most comparable and the parameter s has the
effect to give more or less importance to the normals. In the following part of the
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chapter, we use the scalar product defined in Equation (4.2) and we numerically
analyse the influence of s in the re-meshing procedure, see Subsection 4.3.1.

4.2.3 Overview of the Approach

The inputs of the algorithm are:

1. an initial triangular mesh Γinit of the surface Γ;

2. a user-specified edge length Ldes, in R6;

3. a user-specified minimum face angle ϑmin;

4. a parameter s that specifies the desired amount of anisotropy.

We initialize a mesh Γh := Γinit. Then, we use the map Φ to transform Γh into a
surface mesh Γh,Φ in R6.

The proposed method directly optimizes a two-dimensional triangular mesh
of the surface embedded in R6, so way that its triangles are as uniform as possible
in the embedded space R6. During this process, we still work in R3, but we
measure the edge length and the angle in R6. Consequently, once we map back
the triangular surface mesh in R3, we get an anisotropic mesh, where the triangular
elements are stretched according to the curvature of the surface Γ.

In the proposed re-meshing method we may distinguish two main phases:

i) sampling, we split the edges in Γh whose lengths, measured in R6, are too
long or we contract the edges that are too short with respect to the given
parameter Ldes, Subsection 4.2.5;

ii) optimizing, we maximize the smallest face angle such that they are not smaller
than ϑmin, measured in R6, Section 4.2.6.

The result of this adaptation procedure is a curvature-adapted anisotropic tri-
angular mesh of the surface Γ. The following subsections describe how we have
modified the standard local mesh operations, in Section 1.2 to tackle this new
framework.

A sketch of the whole embedding procedure is provided in Figure 4.6.
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φ(Γh) φ(Γ′h) φ(Γ′′h)
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Figure 4.6: Scheme of the re-meshing process.

4.2.4 Local Mesh Modifications
The proposed algorithm applies a series of local surface mesh modifications di-
rectly to the mesh Γh. The most well-known and commonly used local modifica-
tions are: edge-flip, edge-collapse, vertex insertion, and vertex smoothing.

An Edge-flip Algorithm

Given an edge ab in Γh, it needs to be flipped if one of the following two condi-
tions are met:

(a) (geometric approximation) either face abc or face bad is inverted;

(b) (mesh quality) both abc and bad are not inverted and the smallest 6d-angle
of the two new faces (cdb and dca) is larger than the smallest 6d-angle of
abc and bad.

If an edge ab satisfies either (a) or (b), it implies that either face abc or face
bad is bad, or both of them. In these cases, we have to locally improve the mesh.
However, as we have seen in Subsection 1.2.1, since we are dealing with surface
mesh, the edge ab is flippable if it meets the following conditions:

(i) the edge cd does not belong to the mesh;

(ii) any of the angles adjacent to the edge ab has to be obtuse;

(iii) the angle between the normals to triangles abc and bad has to be lower than
a threshold value, in this work we take 15◦.

Then the edge-flip algorithm we propose for this kind of re-meshing procedure
has a structure similar to the FLIPEDGES procedure shown in Algorithm 1.
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Edge Collapse

Edge collapse is a common operation for simplifying meshes. Consider an edge
ab, this operation unifies the two endpoints of the edge, a and b, so that two
adjacent faces vanish, abx and bay. The endpoints may be contracted in one of
them or in a new vertex inside the cavity of the faces adjacent to the edge ab.

Figure 4.7: Collapsing of the edge ab.

Since we are dealing with a surface re-meshing, if we decide to unify the
endpoints of the edge into a new vertex inside this cavity xayb, we have to project
the new point on the real surface Γ and evaluate its normal to the surface. We
avoid this time consuming computation, by contracting the edge ab into one of
its endpoints. More in details, we choose the endpoint that modifies the mesh in
order to have the smallest angle as large as possible.

After a contraction is performed, we push all the edges connected to this new
vertex into a stack, and then the routine FLIPEDGES runs, to locally improve the
mesh.

Vertex insertion

Let v be a new vertex in the surface, to be inserted on the edge ab. The splitting
of this edge replaces two faces abc,bad by four faces avc,vbc,bvd,vad, see
Figure 4.8.

Since the surface may be curved, the middle point of the edge ab is not nec-
essary on the surface; so the resulting mesh does not fit the real surface. We avoid
this problem by projecting this new inserted point onto the real surface.

After this insertion takes place, we put all the edges connected to v into a stack
and run the routine FLIPEDGES to locally improve the mesh.

However, the insertion of a new vertex on a 3d surface mesh may considerably
deform the surface itself. In fact, when the initial surface mesh is only a crude
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Figure 4.8: Vertex insertion.

approximation of the original geometry, the insertion of a new vertex may create
inverted elements, we show an example in Figure 4.9.

Figure 4.9: On the left the middle points of the edges that we want to add and the
real geometry is dashed. On the right the points, a and b, are projected on the real
geometry but this yields an undesired configuration.

To correct this undesired features, we use the FLIPEDGES routine. In fact, in
addition to improving the neighbourhood of the vertex v, the routine FLIPEDGES

can automatically fix this kind of problem. Numerical experiments show that this
edge flip algorithm is very effective to overcome this issue, but, unfortunately, its
convergence is not mathematically proved yet.

Figure 4.10: On the left the undesired configuration, on the right the configuration
is fixed.
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Vertex smoothing

For a given vertex v, the smoothing operation consists in finding a new location
for this vertex such that the local mesh quality is improved without changing the
mesh topology.

A generic smoothing method moves a point v in a new location v′ given by the
formula

v′ = v + α
∑

vi∈ωv

f(d(v , vi))ui , (4.3)

where α is a constant, f : R → R is a function, ωv is the set of vertices that are
connected to v and ui are the unit vectors that identify the direction from vi to
v, see Figure 4.11. Finally, d(v, vi) is the distance between v and vi, normalized
with respect to a desired edge length of the mesh, i.e.,

d(v, vi) = ||v− vi||/Ldes ,

where || · || is the standard Euclidean norm in R3 and Ldes is the desired edge
length.

Figure 4.11: Patch ωv, where we highlight the direction u1, identified by the cou-
ple of vectors v and v1.

Different smoothing methods are characterized by different choices of the pa-
rameter α and of the function f in Equation (4.3). For instance, the classical
Laplacian smoothing, [37], is defined by

α =
1

#ωv
and f(d) = −d .

where #ωv is the cardinality of the set ωv, i.e., the number of vertices connected
to v.
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Remark 4.2.1 According to the sign of the function f , the vertex v is attracted or
repelled by the vertex vi, i.e.,

• if f(d(v, vi)) > 0, v is repelled by vi;

• if f(d(v, vi)) < 0 it is attracted by vi.

A standard Laplacian smoothing does not use this feature on the function f ,
in fact f(d) = −d ≥ 0. However in [10], F. J. Bossen and P. S. Heckbert im-
plemented a vertex smoothing method that exploits this attraction/repulsion be-
haviour via the function

fBH(d) := (1− d4)e−d
4

.

Since their mesh generation procedure is metric-based, their desired edge length
is set to 1. Thus, if the vertex v is too close to vi, i.e., 0 < d < 1, it is repelled
by vi; vice-versa, if it is far from vi, i.e., 1 < d < 1.7, it is attracted. Finally, if
it is too far, d ≥ 1.7, or if it is exactly at the right distance, d = 1, vi does not
influence the new position of v. The trend of fBH(d) is shown in Figure 4.12.

Figure 4.12: Smoothing function fBH(d) = (1− d4)e−d
4 proposed by Bossen and

Heckbert.

In this re-meshing procedure we use a vertex smoothing method inspired by
the one proposed by F. J. Bossen and P. S. Heckbert in [10].
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Consider the set of vertices connected to v, ωv = {v1, v2, . . . vn}. Since we
are trying to make the mesh as uniform as possible in the embedded space, the
best location of the vertex verifies this property:

||v− vi||6d = Ldes ∀i = 1, 2, . . . n .

To move the point in this optimal location, we use the following normalized dis-
tance function

d6d(v, vi) =
||v− vi||6d

Lmean
,

where Lmean is the mean 6d-length of the edges vvi in the patch ωv. Finally, the
smoothing formula we propose is:

v′ = v + α
w
||w||

, (4.4)

where
w =

∑
vi∈ωv

fBH (d6d(v, vi)) ui ,

and the parameter α is chosen as

α := max
{
c1Lωv , c2Lmin

}
,

where Lmin is the minimum valid edge length of the mesh,

Lωv := min
vi∈ωv
||v− vi|| ,

while c1 and c2 are constants, in this work we have chosen c1 = 0.01 and c2 = 10.
After finding the location v′, we project the point on the surface Γ, we push

all the edges connected to v into a stack and we run the routine FLIPEDGES to
locally improve the quality of the mesh.

The vertex smoothing plays a key role in the proposed surface re-meshing
method. In fact, it is called in the most internal loop of the optimization algorithm,
line 4 in Algorithm 4. Due to this wide employment, it has to be sufficiently fast.
To increase the speed of this process, we decide to move not all the vertices of
the mesh, but only the ones that are more far away from their optimal position.
The magnitude of w suggests us which vertex has to be moved. In fact, we may
infer that vertices associated with high magnitude of w are far from their optimal
position, on the contrary, vertices with low values of ||w|| are close to their optimal
position.
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4.2.5 Sampling

The purpose of sampling is to achieve the desired mesh size with respect to the
given 6d-length parameter Ldes. Our strategy is straightforward, splitting and con-
tracting the edges that are too long or too short compared to the desired length.

Algorithm 3 The sampling algorithm
SAMPLING(Γ, T , Q, Ldes)
Data:Q is a queue of triangles in T .

1: while Q is non-empty do
2: pop a face f from Q;
3: Let e be the longest edge of f ;
4: if ‖e‖6d > 1.5 Ldes, then
5: split e by adding v ∈ Ω into T ;
6: update Q;
7: end if
8: end while
9: put all the triangles in Q;

10: while Q is non-empty do
11: pop a face f from Q;
12: Let e be the shortest edge of f ;
13: if ‖e‖6d < 0.5 Ldes, then
14: contract e;
15: update Q;
16: end if
17: end while

The sampling algorithm is shown in Algorithm 3. It initializes a stackQwhich
contains all the triangles in Γh. Then, it works in a loop until Q is empty. On each
face T popped from Q, it checks the longest edge e of T and split it if the 6d-
length of e is too long, lines 4 − 7. Once all the too long edges are splitted, the
stack Q is refilled with all the triangles in Γh, line 9. Then, it loops until Q is
empty; T is popped from Q, the algorithm look for the shortest edge e of T and
perform a contraction if the 6d-length of e is too short, lines 13 − 16. Then, Q is
updated by removing old faces and adding new faces, line 15.
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4.2.6 Optimizing

Since the sampling phase has removed too long and too short edges, the goal of
the optimizing phase is to maximize the smallest 6d-angle of the triangles in the
mesh Γh. We follow the sequence of operations reported in Figure 4.

Mesh optimization is performed by iteratively combining a series of local op-
erations:

• edge flipping;

• vertex smoothing that iteratively moves the positions of vertices on surface
so that we have a uniform edge length of the edges connected to v;

• edge collapsing that is used to remove small angles, i.e,. θ < θmin; this
operation iteratively removes the edges opposite to small angles;

• edge splitting that is used to remove large angles, i.e., θ > 180◦−2θmin; this
operation iteratively splits the edges opposite to large angles.

We call the routine FLIPEDGES within each on the last three operations to locally
improve the mesh quality.

Algorithm 4 The optimizing algorithm
OPTIMIZING(Ω, T , Ldes, θmin, I , J , K)
Data:I , J and K are integers that specify the number of iterations.

1: θmax := 180o − 2 ∗ θmin;
2: Collapse too short edges with respect to Ldes;
3: for i ∈ {1, ..., I} do
4: for j ∈ {1, ..., J} do
5: for k ∈ {1, ...,K} do
6: Smooth all vertices;
7: end for
8: Collapse edges to remove angles < θmin;
9: end for

10: Split edges to remove angles >= θmax;
11: end for
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4.2.7 Sharp Features
This method can be easily adapted to mesh non-smooth surfaces, i.e., surfaces
containing edges, corner singularities and sharp features. These features are com-
monly present in complex geometries, such as CAD geometries.

We consider a surface Γ, for example a geometry coming from a CAD model.
The whole geometry is the sum of a finite set of patches that are smoothly joint
together along their common boundaries, i.e.,

Γ =
n⋃
i=1

Γi , and Γi ∩ Γj =

{
∅
γij

, (4.5)

where γij is the common line between Γi and Γj , if it exists, see Figure 4.13.

Figure 4.13: Example of a domain with sharp features.

The proposed method re-meshes each sub-surface Γi, separately. Then, when
we operate on the common boundaries γij , the meshes that represent the surfaces
Γi and Γj will be suitably updated.

The presence of sharp features gives a further constraint on the flip algorithm.
In fact, if we decide to flip an edge that lies on the common line between two dif-
ferent patches Γi and Γj , we lose the exact shape of these patches, see Figure 4.14.
To preserve sharp features, we add this condition on the flipping of a generic edge
ab:

(iv) the edge ab does not belong to a sharp feature.
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Figure 4.14: Flipping of the edge ab, that belongs to a sharp features.

4.3 Examples

In this section, several examples are presented to demonstrate the reliability of the
proposed method and they have been done with a laptop with a 2.26 GHz pro-
cessor. Firstly, we re-mesh some very simple surfaces to ensure that this method
works. In particular, we consider surfaces such that we may predict where and
how the triangles will be stretched, and we experimentally verify the right be-
haviour of the proposed re-meshing method.

Finally, in Example 4, we consider a very simple geometry in order to verify
that the proposed re-meshing procedure does preserve sharp features.

We report the statistical information of these examples and the CPU times in
Table 4.1. To evaluate the level of anisotropy of the resulting mesh, we consider
the so-called aspect ratio, see Definition 1.1.2:

Q(T ) :=
2rT
RT

, (4.6)

here T is a generic triangle of the mesh, rT and RT are the radii of the inscribed
and circumscribed circles, respectively. If Q(T ) ≈ 0, the triangle T is stretched,
while, for triangles close to the equilateral one, we have Q(T ) ≈ 1.

From Table 4.1, we observe that the meshes present really stretched elements,
in fact the minimum value of the aspect ratio is close to 0. Moreover, we see that
in Example 1 and 2 the final anisotropic meshes have fewer elements and nodes
than the initial grid. This fact numerically proves the better “number of elements
vs geometry fitting” behaviour of anisotropic meshes. In Example 3 and 4, we do
not have the same gain, but in both these examples the initial mesh is a very rough
approximation of the real surface, so we need a more extensive sampling.
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Examples 1 2 3 4
1. Ldes 0.1 0.1 0.1 0.1
2. # vertices in Γh output 11518 49761 12985 2357
3. # triangles in Γh output 23032 98560 25543 4710
4. # vertices in Γh input 3697 20659 4937 5246
5. # triangles in Γh input 7390 40790 9582 10488
6. Sampling Time (sec.) 7 28 8 2
7. Optimizing Time (sec.) 20 141 85 49
8. Minimum Aspect Ratio 3.841e-02 2.383e-01 8.414e-04 3.249e-01

Table 4.1: Statistics of the Examples. The Optimizing time (in row 7) is the time
for one outer loop in the optimizing algorithm (Figure 4), i.e., for I = 1. The
number of inner loops are: J = K = 4.

Example 1

We consider the disk, defined by the zero level set of the following function

f1 : [−0.8, 0.8] × [−0.8, 0.8] × [−0.4, 0.4]→ R ,

such as

f1(x , y , z) :=
( x

0.8

)2

+
( y

0.8

)2

+
( z

0.4

)2

− 1 . (4.7)

Figure 4.15: The geometry of Example 1. The zero level set of the function f1;
some zones are highlighted to show some details of the adapted mesh.
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Since there is a very big change of curvature along one direction −→v , see zone
A in Figure 4.15, we expect that the triangles to be stretched along −→w , i.e., the
perpendicular direction that lies on the tangent plane to the surface. Vice-versa,
we expect equilateral triangles in the zone B, where the surface is smoother and
flat. The resulting mesh is shown in Figure 4.16: the shape of triangles behaves
as expected.

Figure 4.16: The optimized mesh for Example 1. The mesh quality (the smallest
6d-angles in triangles) histogram is shown bottom-right.

In the histogram of Figure 4.16 bottom-right, we provide the smallest 6d-
angles for each triangle of the mesh. We can appreciate that they are close to the
optimal one, 60◦, and that the smallest one is far from the 0◦, in fact the minimum
is 38◦.
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Example 2

We consider the sinusoidal surface, defined by the zero level set of the following
function

f2 : [−1., 1.] × [−1., 1.] × [−0.2, 0.2]→ R ,

such as
f2(x , y , z) := 0.2 sin (πx) sin (πy)− z . (4.8)

In Figure 4.17 we show the surface and some zones of interest. In particular, we
notice that there are a lot of regions where the mesh should be isotropic, see the
zones A and B in Figure 4.17. The resulting mesh is shown in Figure 4.18.

Even in this case we experimentally provide that the proposed re-meshing
method behaves as expected. Moreover, from the histogram in Figure 4.18 bottom-
right, we recognize that the smallest 6d-angle is close to 60◦.

Figure 4.17: The geometry of the Example 2. The zero level set of the function
f2; some zones are highlighted to show how the adapted mesh is expected to be.
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Figure 4.18: The resulting mesh for Example 2. The mesh quality (the smallest
6d-angles in triangles) histogram is shown bottom-right.

Example 3

In this example, we consider the function

f3 : [−1., 1.] × [−1., 1.] × [−2., 2.]→ R ,

such as

f3(x , y , z) := tanh (20x)− tanh (20(x− y)− 10)− z . (4.9)

The zero level set of such a function is a surface that exhibits a smart change of
curvature, see zones A and B in Figure 4.19, and it is flat in others, see zones C
and D in Figure 4.19. This behaviour allows the re-meshing procedure to create
very stretched elements in A and B, and isotropic triangles in C and D.

We start from a very rough mesh obtained by a marching cube procedure,
see Figure 4.20: the triangles are not oriented in the right way, there is an over
sampling, zones C and D, and the triangles are somewhere really far away form
the real geometry.

Figure 4.21 shows the resulting mesh of this example. The geometry is really
well fitted by the resulting mesh. In particular, the initial mesh has been entirely
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changed. Furthermore, we observe that both the shape and orientation of the
elements help to fit the geometry as well as possible.

Figure 4.19: The geometry of Example 3. The zero level set of the function f3;
some zones are highlighted to show how the adapted mesh will be.
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Figure 4.20: The initial mesh for Example 3.
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Figure 4.21: The resulting mesh for Example 3.
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Example 4

In this example, we construct a surface containing sharp features. The purpose is
to illustrate that the sharp features are well preserved by the proposed re-meshing
method. The input of this example consists in three different patches, i.e., three
different smooth surfaces, that are joined together along their common boundaries,
see Figure 4.22.

Figure 4.22: Example 4: the initial mesh on the left, the resulting one on the right.

From Figure 4.23, we observe that the proposed re-meshing method does pre-
serve the sharp features.

Figure 4.23: A detail of the mesh in Example 4.
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4.3.1 Choice of the parameter s
In all the previous examples we have considered the same factor s = 1 in the
re-meshing algorithm. Now, we change this value to understand the effect on the
resulting mesh.

We define the function

f4 : [−1., 1.] × [−1., 1.] × [−2., 2.]→ R ,

such as

f4(x , y , z) := tanh (20y)− tanh (20(x− y)− 10)− z , (4.10)

whose zero level set is the surface represented in Figure 4.24. This surface presents
some flat regions, like the zone A in Figure 4.24, and a series of very deep jumps,
see the arrows in Figure 4.24.

Figure 4.24: The geometry used for the Choice of the parameter s. The zero
level set of the function f4; some zones are highlighted to show how the adapted
mesh will correctly works.

We fix a desired 6d-length and we consider these values for the parameters:

s = [0.1, 1., 5., 25.] .

If we increase the factor s, the 6d-length of the edges of the mesh will increase,
but this fact it is not completely true. The actual effect of increasing the parameter
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s is to emphasize the variation of the normal, i.e., the variation of the curvature.
In fact, where the surface is flat, the size of the mesh elements is the same for
each values of s. On the contrary, where the surface exhibits a variation of the
curvature, it is more and more refined for higher values of s. When we are dealing
with big values of s, a small variation of the normals corresponds to large variation
of the edge length, so the sampling procedure may refine these edges. The meshes
obtained with different values of s, are shown in Figure 4.25 and we propose some
details in Figure 4.26. In Table 4.2 we provide the minimum value of the aspect
ratio for each mesh. From these data we observe that higher values of s increase
the stretching of triangles and the number of elements.

Remark 4.3.1 High values of s emphasize the variation of the normal in the
mesh. This fact is exploited in [71], where the authors use very small values
for s in order to find the most significant sharp features of the input surface Γ.

Figure 4.25: Resulting meshes for different values of the parameter s.
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s = 0.2 s = 1. s = 5. s = 25.
Minimum Aspect Ratio 1.472e-01 3.173e-04 8.414e-05 4.162e-07
# vertices in Toutput 2652 8583 54001 409444
# triangles in Toutput 5067 16696 107239 817605

Table 4.2: Minimum value of the aspect ratio with different value for s and the
number of vertices and elements.

Figure 4.26: Details of the optimized meshes in Figure 4.25.

4.3.2 CAD Models

We consider CAD models to show that the proposed method is able to preserve
sharp features of very complex geometries. We use Gmsh library [50] to get the
initial mesh and to get the functions η1 and η2, see Subsection 4.2.1 for more
details.
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Example 5

The method of B. Lévy and N. Bonneel [75] does not preserve the sharp fea-
tures, i.e., they are oversampled and smoothed. We consider one of the examples
provided in [75] and we apply the proposed re-meshing procedure to make a com-
parison between these two re-meshing algorithms.

In Figure 4.27 on the left, we show the initial rough mesh, then in Figure 4.27
on the right, we provide the final adapted mesh. Even in the case of complex CAD
geometries, the proposed re-meshing method is able to reconstruct the complex
geometries moving from a really rough initial mesh.

Figure 4.27: The initial mesh, on the left, and the optimized mesh, on the right.

In Figure 4.30, 4.29 and 4.28, we compare the mesh provided by B. Lévy
and N. Bonneel in [75] with the same detail obtained by the proposed re-meshing
method. We can see that sharp features are preserved and they are neither smooth-
ed nor oversampled.

180



Chapter 4. A Higher Dimensional Re-Meshing Algorithm

Figure 4.28: A detail of the mesh proposed in [75], top, and the same detail of the
mesh obtained by the proposed method, bottom.

Figure 4.29: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.
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Figure 4.30: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.

Example 6

This is another example in [75]. Also in this case, we observe that the proposed
method does not smooth the sharp features, but they are preserved. Even in this
case the geometry is complex and the initial surface mesh is a really rough approx-
imation of the actual geometry. Nevertheless, the proposed re-meshing method
gives a very good final mesh.

Figure 4.31: The initial mesh, top, and the optimized mesh, bottom.
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In Figure 4.32, 4.33, 4.34 and 4.35, we compare the mesh provided by B. Lévy
and N. Bonneel in [75] with the same detail obtained by this new re-meshing
method. Even in this case, we can see that the re-meshing algorithm does preserve
sharp features.

Figure 4.32: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.

Figure 4.33: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.
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Figure 4.34: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.

Figure 4.35: A detail of the mesh proposed in [75], on the left, and the same detail
of the mesh obtained by the proposed method, on the right.
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Surface Mesh Simplification

There is a large variety of computational applications that involve complex and
highly detailed meshes. To preserve this good level of realism, they may require
a huge number of nodes and elements, so they are computationally too expen-
sive. One of the possible strategies to overcome this issue is to consider simplified
models with a lower number of elements and nodes. This is a common issue in
computer graphics, [61, 48], and it is recurrent also in the finite element frame-
work, [39, 42, 81].

In the first part of this chapter we introduce a mesh simplification algorithm
that reduces the number of elements of a surface mesh simply moving from ge-
ometrical considerations. The proposal of this algorithm becomes clear in the
second part of the chapter where we provide a new mesh simplification algorithm
to deal with a statistical analysis of data distributed on complex geometries. The
geometric criterion is properly enriched to get a simplified mesh where data are
re-distributed without loosing the desired good inferential properties.

A challenging and important application, the analysis of brain cortex thickness
data, drives the proposal of this new contraction algorithm.

5.1 Mesh Simplification

Consider an initial surface mesh Γh with n nodes, that approximates a geometry
defined by a surface Γ. A general simplification process aims at building a new
mesh Γ′h with m nodes, where m � n, that preserves the surface as well as
possible.

Several different strategies have been presented in the literature to achieve this
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goal. They can be classified as follows:

• vertex decimation;

• vertex clustering;

• iterative edge contraction.

Vertex Decimation

In [102], W. J. Schroeder et al. introduce an algorithm that iteratively removes a
vertex from a polyhedral mesh, in order to get a simplified model. Once a vertex
v is removed, all the faces that share this node are removed and the resulting hole
is re-triangulated. In [109], M. Soucy et al. use this simplification strategy. They
improve the efficiency of this approach in [102] to get an higher fidelity to the
original model. Unfortunately, both these mesh simplification methods use vertex
classification and re-triangulation schemes that are limited to manifold surfaces.

Figure 5.1: Example of vertex decimation.

Iterative Edge Contraction

There is a large variety of algorithms that simplify a model via an iterative edge
contraction. The main difference among them is how an edge of the mesh is cho-
sen for the contraction, see Figure 5.2 and Subsection 1.2.3. The most common
and notable algorithm is provided by Hoppe [62], R. Ronfard and J. Rossignac
[94] and A. Guéziec [54]. All these algorithms have been designed for manifold
surfaces, but, since they use an iterative edge contraction, they may be generalized
to non-manifold surfaces.

In [47], M. Garland and P. S. Heckbet propose an extension of the iterative
edge contraction. They do not contract an edge, but generic pairs of vertices of
the mesh, i.e., a pair of vertices v1 and v2 that are the end-points of an edge or too
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Figure 5.2: Example of edge contraction.

close each other. Indeed, they fix a tolerance t. Then, a generic pair v1 and v2 can
be contracted if:

(a) v1v2, is an edge of the mesh, see Figure 5.2;

(b) ||v1 − v2|| < t, i.e., the vertices v1 and v2 are too close, see Figure 5.3,

where || · || is the standard Euclidean norm.
By contracting arbitrary vertex pairs, i.e., not only edges, this algorithm may

join unconnected regions. So, it could facilitate much better approximations, both
visually and with respect to geometric error. Moreover, since it allows topologi-
cal joining, the method proposed by Garland and Heckbet supports non-manifold
surface models.

Figure 5.3: Pair contraction of the type (b) proposed by Garland and Heckbert.

Vertex Clustering

One of the most well-known mesh simplification algorithms based on vertex clus-
tering is the one proposed by J. Rossignac and P. Borrel, [95]. Conversely to
edge contraction and vertex decimation, this simplification algorithm is not itera-
tive, but it creates the simplified mesh in a single step. A bounding box is placed
around the original mesh and it is divided into a grid. Then, in each cell of the grid
the vertices are clustered together into a single vertex and the faces of the mesh
are suitably updated, see Figure 5.4.
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Figure 5.4: Example of vertex clustering.

Despite its speed, this method presents some drawbacks. Firstly, the resulting
mesh may lose important features of the real geometry. Moreover, the number of
faces is indirectly determined by the specified grid dimension and it depends on
the position and orientation of the original model with respect to the surrounding
grid, so it may be difficult to construct a simplified mesh with a desired number
of elements. In [77], a generalization to a non uniform grid is proposed.

In this Chapter we present two simplification procedures based on the itera-
tive edge contraction. In particular, we will assume that the geometry consists in
triangles, i.e., we do not have an exact representation of the real geometry.

5.2 Geometric Mesh Simplification

In this section we explain in more details a mesh simplification strategy based on
an iterative edge contraction. The algorithms presented here are not new, but they
are functional to better understand the novel mesh simplification method based on
statistical considerations described in Section 5.3.

An iterative edge contraction procedure may be formalized in this way: given
an initial triangular mesh Γh, with n vertices, we contract the edges of the mesh
until we get a new mesh Γ′h with a desired number of vertices m, m � n. But,
this issue remains: how can we choose the edges to be contracted?

We overcome this problem via the notion of contraction cost: we associate a
positive real number c with each edge e of the mesh. This number represents the
loss of geometric accuracy due to the contraction of e. Then, if we iteratively con-
tract the edges associated with the lowest cost, the important geometric features
of the mesh should not be lost in the final mesh.
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5.2.1 Geometric Cost
Before dealing with the definition of the contraction cost, we need the following
results.

Remark 5.2.1 A generic plane in R3 π : ax+ by+ cz+d = 0 can be represented
by a vector in R4:

p = (a, b, c, d)t , (5.1)

where a, b, c and d are real numbers such that a2 + b2 + c2 = 1,

Proposition 5.2.1 Consider a generic point v ∈ R3 and a plane π in R3; the
signed distance of the point v to the plane π can be computed as the scalar product

wt p , (5.2)

where p ∈ R4 is the vector that represents the plane π, see Remark 5.2.1, and
w ∈ R4 is defined as

w = (vx, vy, vz, 1)t ,

with vx, vy and vz the components of v in R3.

Proof. Consider a generic point v = (vx, vy, vz)
t, a plane π and a generic point

u = (ux, uy, uz)
t that lies on the plane π. We choose the coefficients a, b and c

of the implicit form of the plane ax+ by+ cz+ d = 0, such that a2 + b2 + c2 = 1.
These three coefficients represent the components of the normal n to the plane π.
Then, via u, we can compute the last coefficient of the plane π, d = −utn.

We introduce the vectors w,p ∈ R4, with w = (vx, vy, vz, 1)t and p =
(a, b, c, d)t, see Remark 5.2.1. Thus, the scalar product in R4 could be written in
terms of the implicit form of the plane and we have

wt p = avx + bvy + cvz + d = (x− u)tn .

Since n is a unitary vector, from the chain of equalities below it is clear that we
get the signed distance of v from the plane π, see Figure 5.5,

(v− u)tn = ||v− u|| ||n|| cosϑ = ||v− u|| cosϑ = l ,

with || · || the standard Euclidean norm.

�

189



Chapter 5. Surface Mesh Simplification

Figure 5.5: The plane π, a generic point v; we highlight the signed distance l and
the angle ϑ between the vector uv and n.

Now we are ready to define the geometrical cost. More precisely we define
this cost via the error in the neighborhood of each vertex by a quadric form, see
[34, 94].

In the original geometry each vertex v of the triangular mesh is the intersection
of the planes defined by the triangles that share v. Consider a point v of the initial
mesh and the set of triangles sharing it. For each of these triangles, we can define
a plane and, consequently, a point p ∈ R4, see Remark 5.2.1 and we denote by
ωv the set of these vectors. Moving from these planes and Proposition 5.2.1, we
define the quadric error at a vertex v as the sum of the squared distances from the
point v to the planes identified by the triangles, [34, 94]:

∆(v) =
∑
T∈ωv

(wt p)2

=
∑
T∈ωv

(wt p)(ptw)

= wt

(∑
T∈ωv

ppt
)
w

= wtQvw ,

where w = (vx, vy, vz, 1)t and v = (vx, vy, vz)
t, see Proposition 5.2.1. We

associate the matrix Qv with each vertex v of the initial mesh. Then, we define the
contraction cost of a given edge e into the node v as:

cgeo(e, v) := wt Qw , (5.3)

190



Chapter 5. Surface Mesh Simplification

where
Q := Qv1 + Qv2 , (5.4)

with Qv1 and Qv2 are the matrices associated with the endpoints of the segment e.
In a standard edge contraction, the edge e is contracted into one of its end-

points, v1 and v2, or into the middle point of the segment v1v2. Since we are
dealing with a cost function cgeo, that represents the loss of geometric accuracy, if
we fix the edge to be contracted, it is possible to find the position vopt that mini-
mizes cgeo.

Proposition 5.2.2 Consider the edge e, whose endpoints are v1 and v2. The point
vopt that minimizes the cost function cgeo, defined in Equation (5.3), is given by:

vopt =

 q11 q12 q13

q21 q22 q23

q31 q32 q33

−1  −q14

−q24

−q34

 , (5.5)

where qij are the components of the matrix Q, Equation(5.4).

Proof. We recall that the matrix Q is symmetric, so qi,j = qj,i ∀i, j = 1, 2, 3. We
consider a generic vector v = (x, y, z)t in R3 and its corresponding vector in R4,
w = (x, y, z, 1)t and the edge e. The cost function cgeo is a quadratic form in the
variables x, y and z. In fact we have

∆(x, y, z) = wt Qw = q11 x
2 + q22 y

2 + q33 z
2 +

+ 2q12 xy + 2q13 xz + 2q23 yz +

+ q14 x+ q24 y + q34 z + q44 .

To find the minimum of this quadratic form, we compute the partial derivatives of
∆(x, y, z) and we look for (x, y, z)t such that

∂∆(x, y, z)

∂x
=
∂∆(x, y, z)

∂y
=
∂∆(x, y, z)

∂z
= 0 .

This is equivalent to solve the following linear system:
q11 x+ q12 y + q13 z = −q14

q12 x+ q22 y + q23 z = −q24

q13 x+ q23 y + q33 z = −q34

,

and this completes the proof.
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�

Remark 5.2.2 Since it is not guaranteed that the matrix q11 q12 q13

q21 q22 q23

q31 q32 q33


is invertible, we can not always find the optimal position vopt, see Equation (5.5).
When this occurs, the edge e is contracted into another point. We choose this new
point among the endpoints and the middle point of the segment, according to the
lowest value of cgeo.

Remark 5.2.3 In the initial mesh for each vertex, v, we can define the matrix Qv,
but once we contract an edge v1v2 into a vertex v∗, we have to create a matrix to
be associated with the new point v∗. We decide to associate with v∗ the matrix Q
in Equation (5.4).

5.2.2 Summary of the Algorithm
In Algorithm 5, we summarize the adopted mesh simplification algorithm. The
inputs for the algorithm are the initial mesh Γh with n vertices and a desired
number m of vertices, such that n� m.

We have implemented a dynamic data structure that, for each triangle of the
current mesh, stores a valid edge, i.e., the edge of the triangle that minimizes the
cost function defined in Equation (5.3), and whose contraction does not produce
an undesired topological configuration, see Subsection 1.2.3. Then, we iteratively
contract the edge with the lowest cost, until we reach the desired number of ver-
tices. This data structure is suitably updated after each edge contraction, line 6 in
Algorithm 5.

As we will show in the following subsection, the SIMPL routine gives very
good final meshes, i.e., meshes that, despite the lower number of vertices, offer a
good approximation of the initial geometry, but the computational time to get this
result is usually high.

To overcome this issue, we modify this algorithm. In particular, we propose
the procedure represented in Algorithm 6. It has the same inputs as SIMPL, but
we add the integer t. This new algorithm contracts all the first t edges in the list E
without updating the data structure, line 4 in Algorithm 6. Then, for each iteration
of the while cycle, it rebuilds the data structure with a lower number of elements,
line 5 in Algorithm 6.
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Algorithm 5 The simplification algorithm
SIMPL(Γh, m)
Data: E is the dynamic data structure for the triangles of Γh and n is the current
number of vertices in Γh.

1: initialize n with number of vertices in Γh;
2: initialize E with all the triangles in Γh;
3: while m <= n do
4: find the cheapest valid edge;
5: contract e;
6: update the data structure;
7: update n;
8: end while

Algorithm 6 New simplification algorithm with steps
SIMPLSTEP(Γh, m, t)
Data: E is the dynamic data structure for the triangles of Γh and n is the actual
number of vertices in Γh.

1: initialize n with number of vertices in Γh;
2: initialize E for all the triangles in Γh;
3: while m <= n do
4: do the first t contractions stored in E;
5: rebuild the data structure E;
6: update n;
7: end while

5.2.3 Numerical Examples

In this section, several examples are presented to demonstrate the reliability of the
proposed simplification methods, i.e., SIMPL and SIMPLSTEP. First, we simplify
the meshes with SIMPL. In Table 5.1 we provide the corresponding computational
time for each of these examples. Then, we compare the performance of SIMPL

and SIMPLSTEP when we consider a mesh with a huge number of vertices.
In all these examples we consider an initial triangular mesh Γh with n number

of vertices. Then, we reduce these meshes up to 80%, 60%, 40%, 20% and 5% of
the initial number of vertices.

All the geometries used in the following examples can be found in the Stanford
3D Scanning Repository, [1].
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Examples 1 2 3
# vertices in Γh input 2412 2903 35613
Time (sec.) 80% 5 6 82
Time (sec.) 60% 8 10 140
Time (sec.) 40% 13 14 195
Time (sec.) 20% 16 17 252
Time (sec.) 5% 19 20 290

Table 5.1: Statistics of on the first three geometries by using the routine SIMPL.

Example 1: the pawn geometry

In this case we consider a very simple geometry: a pawn. In Figure 5.6, we show
the initial mesh and the geometry at each level of the simplification.

Figure 5.6: Initial mesh for different levels of simplification.
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In this example we could appreciate that the simplification procedure starts to
remove the edges that lie on the same plane. In fact, the bottom of the pawn is
flat and the algorithm simplifies here as much as possible, see Figure 5.7. We see
that, after the first steps of simplification, 80%, the bottom of the pawn remains
unchanged.

Figure 5.7: Detail of the initial mesh for different levels of simplification.

Example 2: the cow geometry

In this example, we consider a more complex geometry and we proceed with
the simplification process SIMPL. From Figure 5.8, we see that the geometry is
preserved as much as possible, even if we are dealing with a very small number
of elements.

Since the cost function is essentially related to the curvature, the resulting
mesh does not contain equilateral triangles, but the size, shape and orientation of
the triangles depend on the curvature of the surface, see Figure 5.9.
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Figure 5.8: Initial mesh for different levels of simplification.

Figure 5.9: Detail of the initial mesh for different levels of simplification.
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Example 3: the Stanford bunny geometry

In Figure 5.10 we show the whole geometry for different levels step of simplifi-
cation. From the detail in Figure 5.11, we notice that the elements are oriented in
the right direction in order to get the best approximation of the surface.

Figure 5.10: Initial mesh for different levels of simplification.

From Figure 5.10, we appreciate that the geometry of the bunny in well pre-
served even if we reduce the number of vertices to the 5% of the total vertices.
This fact becomes more evident from the detail in Figure 5.11.

Figure 5.11: Detail of the initial mesh for different levels of simplification.
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Numerical examples with a huge number of vertices

Now we make a comparison between the proposed simplification algorithms,
SIMPL and SIMPLSTEP. The tests have been done with a laptop with a 2.26 GHz
processor and the corresponding timings are shown in Table 5.2.

Examples 4 5
Routine SIMPL SIMPLSTEP SIMPL SIMPLSTEP

# vertices in Γh input 165954 165954 514300 514300
Time (sec.) 80% 407 150 1354 808
Time (sec.) 60% 644 264 2246 1446
Time (sec.) 40% 925 267 3083 1885
Time (sec.) 20% 1211 314 3878 2023
Time (sec.) 5% 1349 319 4425 2158

Table 5.2: Statistics for examples 4 and 5 using both the routines SIMPL and
SIMPLSTEP.

These data show that the simplification routine SIMPLSTEP is clearly more ef-
ficient than SIMPL in terms of computational time: for each simplification process
the computational time for the SIMPLSTEP algorithm, is fewer than running-time
of the SIMPL routine.

From the geometric point of view, the meshes simplified by SIMPLSTEP still
offer a good approximation of the surface Γ, but the size, orientation and shape of
the triangles do not reflect the curvature. In particular, we notice that the algorithm
SIMPLSTEP contracts the edges in a specific region and then it moves to another
one. On the contrary, SIMPL does not focus on particular zones of the mesh, but it
contracts the edges over the whole geometry in order to reach the desired number
of vertices.

Example 4: the armadillo geometry

We compare the final meshes obtained with SIMPL and SIMPLSTEP. The simpli-
fication process SIMPL produces a more uniform distribution of the triangles on
the armadillo geometry. The sequence of meshes in Figure 5.12, 5.13, 5.14, 5.15
and 5.16 exemplifies this observation. Here, for each mesh vertex, vi, we provide
the maximum length of the edges connected to vi. Moving from these figures, we
easily understand that the algorithm SIMPLSTEP focuses the contraction in par-
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ticular zones, see e.g., the chest and the ears of the armadillo, while the SIMPL

produces a more uniform mesh.

Figure 5.12: Simplified mesh up to 80% of the initial number of vertices, on the
left the one obtained with SIMPL, on the right the one obtained with SIMPLSTEP,
for each node vi we provide the maximum length of the edges connected to vi.

Figure 5.13: Simplified mesh up to 60% of the initial number of vertices, on the
left the one obtained with SIMPL, on the right the one obtained with SIMPLSTEP,
for each node vi we provide the maximum length of the edges connected to vi.
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Figure 5.14: Simplified mesh up to 40% of the initial number of vertices, on the
left the one obtained with SIMPL, on the right the one obtained with SIMPLSTEP,
for each node vi we provide the maximum length of the edges connected to vi.

Figure 5.15: Simplified mesh up to 20% of the initial number of vertices, on the
left the one obtained with SIMPL, on the right the one obtained with SIMPLSTEP,
for each node vi we provide the maximum length of the edges connected to vi.
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Figure 5.16: Simplified mesh up to 5% of the initial number of vertices, on the
left the one obtained with SIMPL, on the right the one obtained with SIMPLSTEP,
for each node vi we provide the maximum length of the edges connected to vi.

Example 5: the filigree geometry

In this example we consider a very complex geometry with about half a million
vertices. As we can see from, e.g., Figure 5.17, both simplification algorithms
produce a mesh that matches the geometry of the surface.

From the detail on the left in Figure 5.18, 5.19 and 5.20, we observe that
SIMPL generates triangles whose shape, orientation and size reflect the geometry
of the input surface. On the contrary, in some regions of the mesh obtained by
SIMPLSTEP, the triangles do not reflect the actual curvature of the surface. We
can recognize this behavior from the details in Figure 5.18 and 5.19 on the right
and this trend becomes more evident in Figure 5.20 on the right. In this last
figure the mesh simplified with SIMPL has all the triangles oriented according
to the curvature of the surface while in the mesh obtained with SIMPLSTEP, see
Figure 5.19 on the right, we do not have the same well shaped triangles, even if
the geometry is fitted.
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Figure 5.17: Simplified mesh up to 5% of the initial vertices; on the left the one
obtained with SIMPL; on the right the one obtained with SIMPLSTEP.

Figure 5.18: Detail of the simplified mesh up to 5% of the initial vertices; on the
left the one obtained with SIMPL; on the right the one obtained with SIMPLSTEP.
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Figure 5.19: Detail of the simplified mesh up to 5% of the initial vertices; on the
left the one obtained with SIMPL; on the right the one obtained with SIMPLSTEP.

Figure 5.20: Detail of the simplified mesh up to 5% of the initial vertices; on the
left the one obtained with SIMPL; on the right the one obtained with SIMPLSTEP.
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5.3 Overview on the Statistical Analysis
In the literature there is a large variety of works related to model simplification.
In the previous sections, we have introduced a purely geometric simplification
process, i.e., a mesh simplification strategy that reduces the number of elements
of a polyhedral mesh and preserves the geometry as much as possible. In this
section we present a new method that combines a simplification strategy with a
statistical analysis. More precisely, we show an efficient technique to analyze a
large noisy data set represented by the thickness of the brain.

This data and the corresponding mesh are obtained via magnetic resonance
imaging, IMR. From these images, the brain tissue is classified into white matter,
gray matter and cerebrospinal fluid. Via this subdivision, it is possible to generate
the inner and the outer cortical surface meshes. In particular, the inner mesh is
built by finding the boundaries between white and gray matter and the outer one by
finding the boundaries between the gray matter and the cerebrospinal fluid, [21].
Then, the cortical thickness is defined to be the distance between the inner and
the outer meshes. From the medical point of view, these data are really important.
In fact, they are linked to the pathology of many neurological disorders such as
autism, Alzheimer’s disease and schizophrenia, [64].

Since the brain is twisted and presents a large number of sulci, the mesh of
this surface is really involved. As a consequence the mesh generation process is a
complex multi-step procedure that results in a very large data set, often more than
106 vertices, with a corresponding data observation.

There is a large variety of work in literature that treats this kind of data anal-
ysis, see, e.g., [17]. In [18], M. Chung et al. introduce a smoothing technique,
called Iterative Heat Kernel, IHK, for neuro-imaging applications. This geodesic-
distance-based-kernel smoothing method solves the Laplace-Beltrami eigenvalue
problem on the surface to construct a basis for the IHK directly on the cortical
surface. Then, only a finite number of these basis functions is used in the expan-
sion of the IHK. Finally, via an iterative algorithm, the number of terms in the
Fourier series expansion of the IHK is properly adjusted. Another approach is
the so-called Spatial Regression model for Non-Planar domain, SR-NP, proposed
by B. Ettinger et al. in [35]. This approach minimizes a sum of squared error
functionals with a roughness penalty term involved the Laplace-Beltrami operator
associated with the non-planar domain. The estimation problem on the surface is
appropriately re-casted over a planar domain via a conformal map. In the planar
domain, existing spatial smoothing techniques are suitably generalized by taking
into account the flattening of the domain, [98].
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All these statistical analyses have to deal with a large amount of data. In liter-
ature, there are different methods for containing the computational cost associated
with the analysis of the cortical surface data. In [56], D. J. Hangler et al. develop
a nearest neighbor averaging scheme to overcome the high computational cost.
This method smooths the variable of interest observed at each vertex of the mesh
by suitably averaging this value with the ones observed at the neighborhood.

In this section we present a new strategy to reduce the computational cost of
the analysis of the cortical thickness data. The basic idea behind is to reduce the
number of elements before applying the SR-NP approach resorting to a new mesh
simplification algorithm which merges geometric with statistical information.

In appendix A we briefly describe the SR-NP approach.

5.3.1 Spatial Regression and Simplification Strategy
Here we describe in more details the proposed statistical-simplification process,
see Figure 5.21. We consider a non planar surface Γ ∈ R3 and a measurement of
the thickness of the brain. We approximate the surface Γ with a triangular surface
mesh, Γh. On each vertex, xj of Γh we consider the thickness of the cortical
surface as a scalar value zj . We assume the following model for the data

zj = f(xj) + εj , ∀j = 1, 2, . . . n , (5.6)

where εj are independent observational errors with zero mean and constant vari-
ance, while f is a twice continuously differentiable real-valued function defined
on Γ. Since the data zj are affected by the measurement error, εj , we have to find
a proper approximation of the function f moving from the data zj . To achieve
this goal, we simplify the mesh Γh to a mesh Γ′h with a lower number of vertices.
During this process, we carefully track the data zj on the new mesh. Then we
flatten the simplified mesh via a conformal map, following the theory provided by
B. Ettinger et al. in [35]. Finally, we apply a standard spatial regression analysis
that properly takes into account this transformation to find a suitable approxima-
tion f̃ of f and we map back f̃ to the real three-dimensional domain. Figure 5.21
gives an outline of the whole process.

5.3.2 Mesh Point vs Data Point
Consider a triangulated surface Γh embedded in R3, where a scalar quantity has
been observed at each vertex of the mesh via the values zj , for j = 1, . . . , n. In
this framework, there are two different kinds of points:
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Figure 5.21: Scheme of the proposed statistical-simplification process, in the red
box it is highlighted the simplification step.

• mesh points, i.e., the vertices of the mesh triangles, blue circles in Fig-
ure 5.22;

• data points, i.e., the points on the polyhedral surface that are related to a
data, red squares in Figure 5.22.

Remark 5.3.1 At the beginning of the statistical simplification procedure, the
mesh points coincide with the data points.

One of the possible strategies is to simplify the whole mesh, using the routine
SIMPL and then to project all the data points on this new mesh. This operation
could be not so straightforward due to the curvature of the surface Γh.

In fact, the closest point to the original data is not necessary the one where
we have to project the data point. In Figure 5.23 we give an example of this
issue, we show a cross-section of an original mesh, solid lines, and the new mesh,
dashed line. Suppose that segment e1 replaces the segments e2 and e3. The correct
projection of the data point a is b and not in c even if c is the closest point to a.
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Figure 5.22: Example of surface with mesh points, blue circles, and data points,
red squares.

Figure 5.23: Cross-section of the original mesh, solid lines; the new mesh, dashed
line, replaces segments e2 and e3 with the segment e1.

The geometry of the brain is characterized by many sulci, see Figure 5.24.
So, we cannot simplify the mesh and then project all the data, because we may
have many configurations like the ones in Figure 5.23. To overcome this issue,
we decide to carefully track the data associated with the mesh. In particular, once
we have contracted an edge of the mesh, we properly project all the data points
associated with the triangles involved in the contraction.

5.4 Edge Contraction Issues

We have seen in Subsection 1.2.3, that the contraction of a generic edge emay lead
to topological undesired configurations. In this new simplification procedure, we
are dealing with a complex geometry and a statistical analysis, so we have to add
new constraints to the edge contraction.
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Figure 5.24: Example of sulci of the brain.

Geometry Considerations

In this mesh simplification procedure, we are dealing with the geometry of the
brain. Besides its huge number of elements, this kind of geometry is really com-
plex due to the high folded nature of the brain. As you can see from Figure 5.24,
the triangles are really close each other, so that a contraction of an edge e may
lead to an intersection between the new generated triangles with the neighboring
elements, see Figure 5.25.

Figure 5.25: Example of self-intersection due to the nature of the sulci. The
algorithm tries to contract the edge e into the node v∗, left, but this operation
yields a self-intersection, right.

We use the search data structure and the intersection test described in Chap-
ter 6, to overcome this problem. In particular, once we have decided to contract
an edge e, we check if the new configuration led by this contraction generates a
self-intersected mesh, and then we decide to allow or not the contraction of e.
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Statistical Considerations

To apply the flattening map, it is necessary to keep a triangle unchanged, the rea-
sons of this demand are detailed in [35]. We consider a triangle Tfix and its vertices
v1, v2 and v3. To maintain this triangle unchanged during the simplification pro-
cedure, we do not allow any contraction that involves an edge whose endpoints
coincide with v1, v2 or v3, see Figure 5.26.

Figure 5.26: Example of different levels of simplification that preserve an element
of the mesh, the orange triangle.

During the simplification process, it is not a priori guaranteed that, after any
contraction all the triangles involved still have at least one data point associated
with. An empty triangle, i.e., a triangle with no data point, is useless for the sub-
sequent spatial regression analysis, since it does not give any further information
about the function f we are estimating. For this reason, we do not allow any
contraction of an edge e that generates empty triangles.

Final Considerations about Edge Contraction

To clarify the constrains on the contraction of a generic edge e of the mesh, we
collect all the conditions that a contraction has not to verify:

(a) produce any topological undesired configuration, see Subsection 1.2.3;

(b) form any self mesh intersection;

(c) modify a fixed triangle Tfix;

(d) bring to empty triangles.
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To satisfy all these conditions, for each edge e of the mesh we consider several
locations for the new vertex v∗. In particular, we try to contract e onto: the optimal
location defined in Subsection 5.2.1, the middle point of e and one of its endpoints.

Remark 5.4.1 In this new framework a valid edge is an edge that does not verify
all the conditions (a), (b), (c) and (d).

5.5 A Mesh Simplification Strategy for Spatial Re-
gression Analysis

In this framework the simplification procedure is the same as the one proposed
in Section 5.2. We follow exactly the same routine shown in Algorithm 5, but
now we take into consideration a different edge cost function. In fact, since we
are interested both in the geometry of the surface and in the subsequent statistical
analysis, the cost function has to take into account both the geometric approxima-
tion of the mesh and the data associated with the mesh. Hence, for a generic edge
e of the mesh, we define this new contraction cost:

c(e, v∗) := αcgeo(e, v∗) + βcdata(e, v∗) , (5.7)

where v∗ is the vertex that replaces the edge e, while cgeo(e, v∗) and cdata(e, v∗) rep-
resents the geometric cost and the data cost, respectively. In particular, cgeo(e, v∗)
is the function defined in Equation (5.3). Similarly, cdata(e, v∗) is defined to rep-
resent the loss of good properties for the subsequent statistical analysis in terms
of the displacement and distribution of the data points over the new mesh. The
weights α, β ∈ R+ balance each function contribution to the overall contraction
cost.

5.5.1 The Data Cost
The actual novelty of the proposed algorithm lies in incorporating the data points
into the simplification process. Before dealing with this new feature of the mesh
simplification process, let us make some further considerations about the data
projection phase of the process. Each data point may be projected onto the new
mesh Γ′h in one of the following ways:

- on the face of a triangle of Γ′h, see data points 1 and 2 in Figure 5.27;
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- on an edge between two triangles of Γ′h, see data points 3 and 4 in Fig-
ure 5.27;

- on a vertex of Γ′h, see data points 5 and 6 in Figure 5.27.

Figure 5.27: Triangle with all the possible association.

After the projection procedure, the data points are associated with their pro-
jection on Γ′h. For the statistical analysis that follows the mesh simplification, it
is crucial to properly take into account the data association with the mesh. To
achieve this goal, we consider:

i) the displacement of the data points, i.e., the distance between the projected
data locations and their original locations;

ii) the equidistribution of the data points over the triangles of the new mesh Γ′h,
i.e., each triangle of Γ′h should be associated with about the same number of
data points.

To take care of both these aspects, we introduce two suitable cost functions,
one for each desired feature. Thus, the total data cost function is given by

cdata(e, v∗) := β1cdisp(e, v∗) + β2cequi(e, v∗), (5.8)

where β1 and β2 are positive real numbers that properly weight the contributions
of the data point displacement and of the data distribution.

Data displacement function

When the edge e is contracted into the point v∗, we define the corresponding
displacement cost function as

cdisp(e, v∗) := max
(p, q)∈Pnew×Porig

||p − q|| , (5.9)
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which essentially measures the maximum Euclidean distance between the pro-
jected locations of the data points, Pnew, and their original locations Porig. By
minimizing the displacement of the data associations during the contraction pro-
cess, we are able to reduce the error between the statistical estimates that use the
original data points on Γh and the statistical estimates based on the data points
associated with the simplified mesh Γ′h.

Data distribution function

Our goal is to obtain, at the end of the simplification process, a new mesh whose
elements contain about the same number of data points, i.e., to equidistribute the
data points over the new mesh. For this purpose, during the simplification process,
we define, for each triangle T , the quantity

NT := nf +
1

2
ne +

1

#ωv1
nv1 +

1

#ωv2
nv2 +

1

#ωv3
nv3 , (5.10)

where nf and ne denotes the number of data points associated with the face and
with the edges of the triangle T , respectively, nj is the number of data points
associated with the j−th vertex vj of T , for j = 1, 2, 3, ωvj is the patch of elements
associated with vj and #ωvj denotes its cardinality.

ViaNT , we compute the mean valueN ofNT over the entire mesh for the cur-
rent iteration of the simplification process. Then, when we contract the edge e into
v∗, we compute the quantity NT for all the triangles involved in the contraction of
e and we evaluate the equidistribution cost function

cequi(e, v∗) :=
1

#Te

(∑
T∈Te

(
NT −N

)2

)
, (5.11)

where Te is the set of triangles involved in the contraction of the edge e. This
quantity measures the variation with respect toN in the distribution of the number
of data points associated with the contraction of the edge e into the vertex v∗.

5.5.2 Combination of the Geometric and of the Data Costs
One way to combine the cost functions defined in Equation (5.3), (5.9) and (5.11)
is to consider the global cost

c(e, v∗) := αcgeo(e, v∗) + β1cdisp(e, v∗) + β2cequi(e, v∗) . (5.12)
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But, since these three functions may have different ranges, they have to be prop-
erly scaled. We decide to normalize these three cost functions with respect to
their corresponding maximum, in order to consider values for α, β1, β2 ∈ [0, 1]
such that α + β1 + β2 = 1. For simplicity, we do not change the notation of
these cost functions and from now on, we refer to the normalized quantities as
cgeo(e, v∗) cdisp(e, v∗), and cequi(e, v∗).

A low value of c(e, v∗) means that the contraction will yield a good geometric
approximation to the original geometry, where the data points are close to their
original locations and evenly distributed throughout the triangles of the new mesh.
On the contrary, a high value of c(e, v∗) means that the contraction will produce a
bad approximation of the original surface, or that the projected data points are too
far from their original locations or that there might be triangles with too many or
too few data points associated with.

As the mesh simplification algorithm described before, if we iteratively re-
move the edge of the mesh characterized by the lowest cost, we obtain a new
mesh that would satisfy all the desired properties.

5.5.3 Numerical results
In this subsection, we numerically check the performances of the spatial regres-
sion analysis, see Figure 5.21. In particular, the goal is to verify that the mesh
simplification described in this section produces good statistical estimates. For
this purpose, we compare the SR-NR combined with mesh simplification this ap-
proach with the Iterative Heat Kernel (IHK) smoothing proposed in [18] and the
Spatial Regression for Non-Planar domain (SR-NP) in [35]

We use two mesh simplification strategies with several levels of simplification.
In particular, we consider these different choices of the parameters α, β1 and β2:

• Data+Geo (D+G): the simplification is obtained by equally weighting the
geometric, the displacement and the distribution cost functions, i.e., we
choose α = β1 = β2 = 1/3, in Equation (5.12);

• OnlyGeo (O/G): the simplification is driven only by the geometric informa-
tion, this is equivalent to α = 1 and β1 = β2 = 0 in Equation (5.12).

For each example we generate simulated data on the starting mesh. We con-
sider fifty test functions of the form

fi(x, y, z) := ai sin (2πx) + bi sin (2πy) + ci sin (2πz) + 1 ∀i = 1, . . . 50 .
(5.13)
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with coefficients ai, bi and ci randomly generated from independent normal dis-
tribution with mean 1 and standard deviation 1, where the data point locations
coincide with the vertices of the original mesh. To get a noisy data, zi,j , we add
independent normally distributed errors with mean 0 and standard deviation 0.5
to each fi, i.e., we consider

zi,j = fi(xj, yj, zj) + εi,j , ∀j = 1, 2, . . . n , (5.14)

where n is the number of vertices of the initial mesh Γh and εi,j is a random
number generated by independent normal distribution with mean 0 and standard
deviation 0.5.

Moving from the data zi,j , the proposed strategy provides a smooth approxi-
mation of fi, i.e., it creates a new function f̃i which is not affected by noise. Since
we know each function fi, we may proceed with an a-priori error analysis, so we
evaluate the effectiveness of the proposed strategy looking at the mean squared
error between the exact functions, fi, and the corresponding estimates, f̃i.

Example 1: the pawn test case

In Figure 5.28 we show a simulation example. In particular, we show a function
fi, Figure 5.28 (a), the noisy function Figure 5.28 (b), the IHK estimate computed
on the original mesh, Figure 5.28 (c), the SR-NP estimate using the mesh with
1000 vertices yielded by the Data+Geo simplification, Figure 5.28 (d) and, finally,
the SR-NP estimate using the mesh with 1000 vertices with the simplification
OnlyGeo, in Figure 5.28 (e).

We observe that, despite using less than an half of the initial vertices, the
SR-NP method is able to detect the variation of the function; on the base of the
pawn this behavior is more evident. Furthermore, the Data+Geo simplification
maintains an even level of smoothing over the pawn more than the OnlyGeo sim-
plification does. In fact, the mesh yielded by the OnlyGeo simplification is able
to locate the high variation on the base of the pawn, but it over-smoothes on the
top left hand side of the pawn.

The superior performance of the SR-NP method combined with the Data+Geo
simplification is more evident in Table 5.3 and Figure 5.29, where more quantita-
tive information can be inferred. In particular, for each mesh simplification and
simulation replication, we compute the Mean Squared Error (MSE) of the esti-
mate which measures the mean square distance between the true function fi and
its estimate f̃i. A lower MSE means a more efficient estimate, characterized by
lower bias, i.e., lower systematic errors and lower variance.
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Figure 5.28: A simulation example on the pawn geometry: (a) example of one test
function, (b) the function with noise, (c) the IHK estimate using the original mesh,
(d) the SR-NP estimate using 1000 vertices with the Data+Geo simplification, (e)
the SR-NP estimate using 1000 vertices with the OnlyGeo simplification.

Method m Simplification MSE (IQRs) SR-NP vs IHK
SR-NP 1000 Data+Geo 0.0662 (0.0281) 0.0447

OnlyGeo 0.0903 (0.0494) 0.7316
SR-NP 1200 Data+Geo 0.0569 (0.0226) 0.0015

OnlyGeo 0.0839 (0.0489) 0.4386
SR-NP 1400 Data+Geo 0.0453 (0.0206) 2.207e-8

OnlyGeo 0.0698 (0.0483) 0.0963
SR-NP 1600 Data+Geo 0.0443 (0.0198) 3.100e-9

OnlyGeo 0.0528 (0.0285) 1.801e-5
SR-NP 1800 Data+Geo 0.0447 (0.0207) 2.762e-9

OnlyGeo 0.0467 (0.0190) 1.979e-8
SR-NP 2000 Data+Geo 0.0416 (0.0208) 4.139e-10

OnlyGeo 0.0378 (0.0163) 3.895e-10
SR-NP 2527 none 0.0351 (0.0148) 3.895e-10

IHK 2527 none 0.0717 (0.0978)

Table 5.3: Median MSEs, IQRs and p-values of pairwise Wilcoxon tests for differ-
ent simplified meshes and different cost functions, comparing SR-NP with IHK.

In Table 5.3, we provide the median MSE computed over the fifty simula-
tion replications and, within parentheses, the corresponding Inter Quartile Range
(IQRs) that gives an idea about the spread of the MSEs over the fifty replicates.
This information is also illustrated via box plots in Figure 5.29 which macro-
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scopically simplify the comparison among the different methods. Table 5.3 and
Figure 5.29 highlight that, as expected, the SR-NP method with the simplification
based on the global cost function produces better results than the SR-NP method
with the standard simplification driven by geometric information only.

Figure 5.29: Box-plots of the mean square errors of the simulation results for fifty
test functions.

In particular, for all levels of mesh simplification except for the case m =
2000, i.e., the most simplified mesh, both the median MSE and the corresponding
IQRs associated with the D+G approach are lower, corresponding to more accu-
rate and more reliable estimates. In the last row of Table 5.3 we compare the
SR-NP approach with the IHK method on the original mesh. The SR-NP method
combined with the simplification strategy driven by both data and geometry con-
trol produces better results in terms of estimates, with lower error, the MSE has
a lower median, and more robustness, the MSE has a smaller IQR. On the other
hand, we observe that if we combine the SR-NP method with the simplification
strategy driven only by the geometric information, we need a mesh with at least
1400 vertices to get an estimate with a median MSE lower than one associated
with the IHK method. This is a first confirmation of the importance to include
the data information in the mesh simplification procedure. Now, to quantitatively
verify these results, we use pairwise Wilcoxon tests, see [111]. The pairwise
Wilcoxon test is a non-parametric statistical hypothesis test that is used here to as-
sess whether the MSEs of SR-NP estimates are significantly lower than the MSEs
of the IHK estimates. The p-value for this hypothesis test is the probability that
the MSEs of the IHK estimates are lower than the MSEs of the SR-NP estimates.
Thus, the lower the p-values for this test the stronger the statistical evidence that
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the MSEs distribution for the SR-NP estimators are stochastically lower than the
corresponding distribution for the IHK estimate. In the last column of Table 5.3
we provide the p-values for pairwise Wilcoxon tests. These p-values verify that
the estimates obtained via the SR-NP method on the original mesh, consisting of
2527 vertices, and on all the simplified meshes generated via the Data+Geo sim-
plification have significantly lower MSEs than the estimates obtained via the IHK
method. Concerning the G/O simplified meshes, at least m ≥ 1600 vertices are
needed to produce significantly low MSEs.

Example 2: the brain test case

In this example, we apply the proposed approach to a cortical surface geometry. In
this case, we are dealing with a original mesh with 40962 nodes. First, we apply
the proposed method to a simulation study. Then, we apply the same approach to
real cortical surface thickness data studied in M. Chung et al. in [17] and [18].

Figure 5.30: A simulation example on the brain geometry: (a) example of one test
function, (b) the function with noise, (c) the IHK estimate using the original mesh,
(d) the SR-NP estimate using 10000 vertices with the Data+Geo simplification, (e)
the SR-NP estimate using 10000 vertices with the OnlyGeo simplification.

As in the previous example, we simulate noisy data on the cortical surface
mesh by generating fifty test functions of the form described in Equation (5.13)
and by adding independent normally distributed errors with mean zero and a stan-
dard deviation 0.5 to the function values at each of the data locations, see Equa-
tions (5.14). As before, we compare the SR-NP method based on the two mesh
simplification strategies for different levels of simplification to the IHK results on
the full mesh. For the SR-NP method, we consider three levels of mesh simplifica-
tion: m = 10000, 15000, 20000 vertices for both the Data+Geo and the OnlyGeo
simplifications. Here, we do not give the SR-NP estimate over the original cortical
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Method m Simplification MSE (IQRs) SR-NP vs IHK
SR-NP 10000 Data+Geo 0.0383 (0.0427) 4.399e-10

OnlyGeo 0.0501 (0.0614) 4.399e-10
SR-NP 15000 Data+Geo 0.0332 (0.0310) 5.275e-10

OnlyGeo 0.0473 (0.0540) 4.674e-10
SR-NP 20000 Data+Geo 0.0328 (0.0281) 5.951e-10

OnlyGeo 0.0432 (0.0476) 5.275e-10
IHK 40962 none 0.1349 (0.2662)

Table 5.4: Median MSEs, IQRs and p-values of pairwise Wilcoxon tests for dif-
ferent simplified meshes and different cost functions comparing SR-NP with IHK.

surface mesh because it is too computationally expensive.

Figure 5.31: Box-plots of the mean square errors of the cortical surface simulation
results of fifty test functions.

Table 5.4 collects the median MSEs and the corresponding IQRs over the fifty
simulation replicates. As expected, the SR-NP method produces better results
than the IHK method, while using less than half of the original nodes. Again,
the SR-NP estimates associated with the Data+Geo simplification are better than
the estimates given by the OnlyGeo simplification. The low p-values of pairwise
Wilcoxon tests verify that the distribution of MSEs for the SR-NP estimators are
stochastically lower than the corresponding distribution for the IHK estimate.

Figure 5.31 displays the box plots of the MSE values in Table 5.4. We recog-
nize the same trend as in Figure 5.29, where the Data+Geo simplification produces

218



Chapter 5. Surface Mesh Simplification

excellent results using fewer nodes. Figure 5.30 shows an example of a simula-
tion replicate: an example of a test function generated via Equation (5.13) in (a),
the corresponding level of noise in (b), the IHK estimate obtained on the original
mesh in (c), the SR-NP estimate computed on a mesh with 10000 nodes and via
the Data+Geo simplification in (d) and the SR-NP estimate on a mesh with 10000
nodes generated via the OnlyGeo simplification in (e). The SR-NP method is bet-
ter at picking up variation in the data. This is most evident in the right hemisphere
of the cortical surface.

In Figure 5.32 we show the initial mesh and the simplified grid up to a number
of nodes equal to 10000. From this figure and the details in Figure 5.33 and 5.34,
we can recognize that the involved geometry of the brain is well preserved even if
it is composed by only quarter of the initial nodes.

Figure 5.32: On the right the initial mesh, on the left the simplified mesh charac-
terized by 10000 nodes.

Example 3: the brain test case on real data

Now, let us consider real cortical surface thickness data. Notice that the SR-NP
method with the Data+Geo simplification is able to identify an additional area of
the low thickness, circled in Figure 5.35 (c), with respect to what is detected by
the IHK approach and by the same SR-NP method with the OnlyGeo simplifica-
tion. This low thickness area is recognizable in the original thickness data, see
Figure 5.35 (a).
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Figure 5.33: On the right a detail of the initial mesh, on the left the same detail
for the simplified mesh constructed by 10000 nodes.

Figure 5.34: On the right a detail of the initial mesh, on the left the same detail
for the simplified mesh constructed by 10000 nodes.

5.5.4 Sensitivity Analysis

In the previous examples we have considered two different choices of the param-
eters α, β1 and β2 in Equation (5.7). In particular, we have fixed α = β1 = β2 =
1/3 to get a simplification procedure that put the same emphasis on all the desired
aspects, i.e., the geometric approximation of the surface, the data displacement
and the data distribution. Then, we have considered the alternative choice α = 1
and β1 = β2 = 0, to obtain a simplification procedure that considers only the
geometric approximation of the surface.
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Figure 5.35: Thickness data on the original cortical surface mesh, in (a); the IHK
estimate computed on the original mesh, (b); the SR-NP estimate using the 10000
node Data+Geo simplification, (c); the SR-NP estimate using the 10000 node
OnlyGeo simplification, (d).

This preliminary study has numerically shown the importance of the data
terms in the cost function (5.7) to get a good approximation of function fi via
the observations zi,j . To improve this approximation, it could be interesting to
make a more rigorous analysis on the possible values for α, β1 and β2.

Figure 5.36: Mesh of the carotid artery with an aneurysm used for the sensitivity
analysis of α, β1 and β2.

First, we apply the proposed procedure on a more simple model with respect
to the brain test case: the carotid artery shown in Figure 5.36. As before we
consider a set of fifty noisy functions given by Equation (5.14), characterized by
the presence of a big aneurysm. The initial mesh is composed by 8303 vertices.
We simplify it up to 3800 vertices and then we proceed with the SR-NP spatial
regression analysis. To evaluate the best values for the coefficients α, β1 and β2,
we consider these quantities:
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• the maximum number of data points associated with a triangle T of the
simplified mesh, i.e.,

NT,max := max
T∈Γh

NT ; (5.15)

• the Mean Squared Error (MSE) of the functions taken into account and the
relative Inter Quartile Range (IQR).

In particular, we look for a simplification method that produces the lowest val-
ues for NT,max, MSE and IQR. In fact, low values of MSE and IQR mean that the
estimate function f̃ is a good approximation of the exact function f . Moreover, a
low value of NT,max means that the distribution for the data points is more uniform
in the simplified mesh.

In Table 5.5 we report the results of this sensitivity analysis and we numeri-
cally show that the best configuration is given by

α = 0.7 β1 = 0.15 and β2 = 0.15 .

Of course a more rigorous approach for the selection of these parameters is
advisable and will be investigated in the next future.

α β1 β2 MSE NT,max

0.9 0.05 0.05 0.2450 (0.0328) 29
0.8 0.1 0.1 0.2412 (0.0267) 22
0.7 0.15 0.15 0.2338 (0.0123) 19

0.65 0.175 0.175 0.2450 (0.0328) 24
0.33 0.33 0.33 0.2361 (0.0146) 28

0 0.5 0.5 0.2349 (0.0111) 78

Table 5.5: Median MSEs, IQRs and NT,max for different simplified meshes with
different values of α, β1 and β2.
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Chapter 6

Modelling of a Sedimentary Basin

Sedimentary basins are among the best places to find petroleum and natural gas
and to store nuclear waste material. In particular, salt basins that are characterized
by a low permeability of salt guarantee low water leakages that are the main con-
cern for the safety of nuclear waste storage. For this reason one of the best places
for a nuclear waste depository is a salt mine.

The history of the basin has a deep impact on the characteristics of the oil
generated. More in the details, the evolution and the temperature experienced by
the sediments determine localization, quantity and quality of the oil. For instance,
the temperature is a crucial aspect that controls the formation of oil. Moreover, oil
usually floats and collects near the cap-Rock, i.e., the sealing layer that triggers
the formation of oil-fields. In other terms, we need informations about the past
history of the basin to have detailed information about the oil-fields.

Nowadays sedimentary basin studies have been based on the geological in-
terpretation of experienced specialists. Geologists can outline several evolution
scenarios of the basin, but we have to choose among them the one which is coher-
ent from a physical viewpoint. Numerical simulations could provide the tool for
choosing the right scenario. Moreover, it can even provide quantitative informa-
tion, e.g. the stress field, that will be difficult to estimate by other means.

Moreover, a numerical simulation does not have the same technical difficul-
ties and the large economic impact that is carried out when we are dealing with
analogical experiments. Actually, it is difficult to scale correctly all the physical
quantities in a relative small model. Sand-box experiments provide useful infor-
mation regarding the brittle behaviour of grains, but they cannot represent all the
viscous creeping mechanisms which require several million of years to produce
a measurable effect. The experiments devoted to investigate the sediment rheol-
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ogy are difficult to carry out, too. At the same time, it is also required to reach
extreme displacements which cannot be precisely done by means of analogical
experiments.

6.1 Issues on Basin Mesh Generation

Data from seismic imaging provide a description of the horizons, i.e., a set of
three-dimensional surfaces that represent the deposition of different kinds of sed-
iments, see Figure 6.1 on the left. Moving from these discrete surfaces, we are
often demanded to furnish a volume discretization representing the whole sedi-
mentary basin to proceed with a numerical simulation, Figure 6.1 on the right.

Figure 6.1: Surfaces that represent the horizons on the left and the bounding box,
the black line represents the volume of interest; the computational domain on the
right.

To get a proper computational domain for a numerical simulation, a lot of
operations are required. In this chapter we will focus on the following ones:

a) identification of surface intersection;

b) detection of regions enclosed by this intersection and generation of a confor-
mal mesh which includes such details;

c) mesh quality improvement.
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In the geological framework, quadrilateral and hexahedral meshes are basi-
cally exploited. In the following sections we tackled the issues a), b) and c) in
the case of triangular and tetrahedral meshes. In particular, we propose a new
method to reduce the computational effort associated with the detection of trian-
gular surface mesh intersection. Finally, in the last part of the chapter, we extend
some recurrent geological operations to triangular surface meshes.and we prop-
erly modify them for the triangular and tetrahedral meshes.

6.2 Identification of Surface Intersection
We formalize the detection of an intersection via the simple geometric configura-
tion illustrated in Figure 6.2. Since we are dealing with two triangulated surfaces,
we are led to identify the yellow piecewise linear curve Γ as the intersection of the
surfaces, see Figure 6.2 right. This curve is composed by the intersection between
couples of non-coplanar triangles.

Figure 6.2: Non-coplanar surfaces, left, and corresponding intersection, the yel-
low line on the right.

To get an efficient procedure, we need a fast algorithm to identify the pairs of
triangles intersecting each other. In fact, if we consider the surface in Figure 6.2,
the most straightforward approach, which consists in checking the intersection
of each triangle of SB with each triangle of SR, is unavoidably ineffective when
dealing with large data sets.

A more efficient criterion consists in finding a fast procedure to select, for each
triangle T ∈ SB, a subset DT ⊂ SR of triangles surrounding T and containing
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the possible intersecting triangle(s), see Figure 6.3. In this way, we check the
intersection with fewer elements and not with all the triangles of SR.

Figure 6.3: Set DT , the yellow area, associated with the triangle T ∈ SB.

The availability of a proper search data structure becomes crucial for a quick
detection of DT . To increase the efficiency and the speed of this procedure, the
set DT should have these properties:

i) to contain the intersection T ∩ SR;

ii) to be as small as possible;

iii) to be found rapidly.

In Subsections 6.2.1 and 6.2.2 we describe two intersection procedures based
on well-established data structures. Then, in Subsection 6.2.3, we propose a new
intersection algorithm that essentially merges these two approaches.

6.2.1 Structured data search

We refer to the approach proposed, e.g., in [96]. We associate the data structure
with one of the triangulated surfaces, e.g., SR. For this purpose, we denote byNR

and T R the set of the nodes and of the elements of the triangulated surface SR,
respectively, and we indicate the generic three-dimensional coordinate system by
(0, x, y, z).

We build the bounding box B(SR) associated with SR, i.e., the smallest box
containing the whole surface SR. This box is identified by the two points

WR = (xsw, ysw, zsw)t and NER = (xne, yne, zne)
t
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whose coordinates are

xsw = min
P∈NR

xp, ysw = min
P∈NR

yp, zsw = min
P∈NR

zp,

xne = max
P∈NR

xp, yne = max
P∈NR

yp, zne = max
P∈NR

zp,

where P = (xp, yp, zp)
t is the generic node of SR, see Figure 6.4.

Figure 6.4: Bounding box of the surface SR.

We successively subdivide B(SR) into fixed-size sub-boxes, of dimensions

Lx = max
K∈T R

dxK ,

Ly = max
K∈T R

dyK , (6.1)

Lz = max
K∈T R

dzK ,

where

dxK = max
Q,R∈NK

|xq − xr|,

dyK = max
Q,R∈NK

|yq − yr|, (6.2)

dzK = max
Q,R∈NK

|zq − zr|,

are the dimensions of the bounding box B(K) associated with the generic triangle
K ∈ T R, see Figure 6.7 on the left, while Q = (xq, yq, zq)

t and R = (xr, yr, zr)
t

are chosen in the set NK of the nodes of K.
The three-dimensional space is consequently organized into a structured carte-

sian hexahedral mesh, see Figure 6.5.
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Figure 6.5: Corresponding hexahedral mesh for the surface SR.

Remark 6.2.1 This spatial search structure is very flexible. In fact, it can be em-
ployed to organize any n-dimensional space after properly redefining the involved
geometrical elements.

Remark 6.2.2 It is suited to parallelization since the hexahedral mesh can be
subdivided into sub-blocks distributed among processors.

Remark 6.2.3 It allows us to identify the cell containing a certain point P ∈ Rn

in a fast way.

Let us exemplify the property in Remark 6.2.3. We consider a two-dimensional
setting, as shown in Figure 6.6. The bounding box now coincides with the rect-
angle defined by the points SWR = (xsw, ysw)t and NER = (xne, yne)

t, and it is
subdivided, for instance, intoNx andNy cells of length Lx and Ly along the x-axis
and y-axis, respectively, in this particular case, we have Nx = 5 and Ny = 4.

The numbering of the cells follows a lexicographic order. This allows us to
immediately find the identificator IdP of the cell containing the point P = (xp, yp),
via the formula

IdP = XId + YIdNx,

where
XId =

⌊xp − xsw
Lx

⌋
, YId =

⌊yp − ysw
Ly

⌋
,

and where b·c denotes the standard floor function.

228



Chapter 6. Modelling of a Sedimentary Basin

Figure 6.6: Example of direct addressing associated with structured data in a two
dimensional setting.

When we are dealing with the intersection between two triangulated surfaces,
we consider the space R3, so we can get the identifier of the hexahedral cell con-
taining P by the formula:

IdP = XId + YIdNx + ZIdNxNy , (6.3)

where

XId =

⌊
xp − xsw
Lx

⌋
, YId =

⌊
yp − ysw
Ly

⌋
, ZId =

⌊
zp − zsw
Lz

⌋
,

P = (xp, yp, zp)
t and Lz is the size along the z-axis of the sub-boxes of B(SR).

We now store all the triangles in T R into the hexahedral mesh defined by
the spacing defined in Equations (6.2) and (6.3). A priori, each sub-box may
contain any number of elements, including none, see Figure 6.7, right for an ex-
ample, where different elements share the same hexahedral box. For any triangle
T ∈ T R, we introduce the center CT = (xCT

, yCT
, zCT

)t of the bounding box
B(T ) as representative of T , where

xCT
=
xTsw + xTne

2
, yCT

=
yTsw + yTne

2
, zCT

=
zTsw + zTne

2
,
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where SW T = (xTsw, y
T
sw, z

T
sw)t and NET = (xTne, y

T
ne, z

T
ne)

t are the two points
identifying B(T ). Then, the triangle T is stored in the hexahedral cell where its
representative CT falls, according to criterion (6.3). At this point it is rather easy
to detect all the triangles close to a certain point P , since they are stored in the
hexahedral cell containing P , whose identificator is obtained by (6.3).

Figure 6.7: Bounding box B(T ) with the representativeCT , left; surface SR stored
in the corresponding hexahedral mesh, right.

At this level, by exploiting this data structure, it is possible to construct, for
each element T ∈ SB, the set DT ⊂ SR of the triangles in SR close to T . To find
this set, we proceed with this work-flow:

1. we consider the bounding box B(T );

2. we build the set HT of the hexahedral cells of SR intersecting B(T ) mov-
ing from the identificators IdSWT and IdNET of the hexahedral cells of SR
containing SW T and NET ;

3. the set DT is thus defined by the union of all the triangles contained inHT .

Remark 6.2.4 The set DT does not satisfy the requirement of minimal possible
extension since it may include triangles that do not actually intersect the bounding
box B(T ). We refer to Figure 6.8 for an example of non optimal detection of DT .
So useless triangle-triangle intersection tests are performed. The algorithm may
be improved by performing a bounding-box intersection test before checking the
actual triangle-triangle intersection.

230



Chapter 6. Modelling of a Sedimentary Basin

Figure 6.8: Detection of the set DT , the orange area, via the structured-data ap-
proach.

6.2.2 AB search

We present here an alternative data structure for a generic triangular mesh SR,
based on a binary tree. More precisely, we resort to an alternate binary (AB)
search tree, [96], see Figure 6.9 for an example.

Figure 6.9: Example of AB search tree.

Let us explain how an element T ∈ SR is stored in an AB data structure. At
the beginning of the storage procedure, the tree data structure is empty, so that the
triangle first considered is stored in the root À, see Figure 6.9. Afterwards, each
element T is stored, starting from the root, in the first available node identified via
the algorithm PUTINTREE described in Algorithm 7.
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Namely, we consider the vector ~vT = (xTsw, x
T
ne, y

T
sw, y

T
ne, z

T
sw, z

T
ne)

t ∈ R6 as-
sociated with the bounding box B(T ) of the element T , i.e., collecting the coor-
dinates of the points SW T = (xTsw, y

T
sw, z

T
sw)t and NET = (xTne, y

T
ne, z

T
ne)

t, see
Figure 6.7 on the left, as well as the vector ~vτ = (xτsw, x

τ
ne, y

τ
sw, y

τ
ne, z

τ
sw, z

τ
ne)

t

associated with the triangle stored at the generic node τ of the tree.
A triangle T finds a location in the tree by properly comparing vectors ~vT and

~vτ . In particular, let jτ denote the depth of the node τ and let vT,i be the i-th
component of the vector ~vT , to choose the right coordinate we use the modulus 6,
see line 7 in Algorithm 7.

Algorithm 7 Algorithm to put an element in the tree data structure
PUTINTREE (~vT )

1: τ ← root;
2: jτ = 0;
3: if τ is empty then
4: τ ← K
5: return
6: end if
7: α = jτ (mod 6);
8: if vT,α < vτ,α then
9: τ ← τ .left;

10: else
11: τ ← τ .right;
12: end if
13: jτ=jτ+1;

Here τ .left and τ .right, line 8 and 9 in Algorithm 7, denote the child on the
left and on the right of τ , respectively, while vT,α and vτ,α denote the α-th com-
ponent of vectors ~vT and ~vτ , respectively. The comparison test in the algorithm
depends on the depth of the tree. The inequalities alternate both the extremes
of the bounding boxes and the coordinates, x, y and z, this justifies the name
of the algorithm as well as it makes this approach suited to organize data in any
dimension.

Once an AB data structure is built for the mesh SR, we proceed with the
intersection with the other mesh SB. For any element T ∈ SB, we find the
set DT of the triangles in SR near T . In particular, we build the bounding box
B(T ) associated with T , we go through the binary tree of SR, moving from the
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root. The triangle associated with the node τ of the tree is included in DT if the
corresponding bounding box B(τ) intersects B(T ).

This procedure is summarized in Algorithm 8. The algorithm INTINTREE()
takes as input the vector ~vT associated with the bounding box of the element T of
SB, B(T ). It returns a stack Q that contains all the triangles in SR that intersect
the bounding box of T .

Algorithm 8 Algorithm to find the elements stored in the tree that intersect the
bounding box of an element T
INTINTREE (~vT )

1: S.push(root);
2: while S is empty do
3: τ = S.pop;
4: jτ = depth(τ );
5: α = jτ (mod 6);
6: if α is even then
7: k = α + 1;
8: if vT,k < vτ,α then
9: S.push(τ .left);

10: else
11: Q.push(τ );
12: S.push(τ .left); S.push(τ .right);
13: end if
14: else
15: k = α - 1;
16: if vT,k ≥ vτ,α then
17: S.push(τ .right);
18: else
19: Q.push(τ );
20: S.push(τ .left); S.push(τ .right);
21: end if
22: end if
23: end while
24: return Q

The stack S is a temporary stack and it is initially empty, while Q will contain
the list of the triangles constituting DT . The region DT identified via an AB
data structure is, in general, different from the one obtained via a structured data
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search. In particular, the AB approach allows us to build a really confined set DT ,
where only the triangles of SR whose bounding box actually intersects B(T ) are
included. This property is not a priori guaranteed by the structured-data based
approach, as shown in Figure 6.8.

Moreover, at each step of the procedure, one of the two children of τ is ex-
cluded from the search, see line 9 and 17 in Algorithm 8. To maximize the benefits
due to this “cutting of branches”, we should have a tree as balanced as possible.
In fact, if we randomly choose the root and the triangles to be inserted, we risk to
build an unbalanced tree. For instance, let us consider the mesh in Figure 6.10.
If we choose element 5 as a root and then we iteratively insert elements 6, 9 and
10 following the procedure INTINTREE, we get a completely unbalanced tree, see
Figure 6.11 left. On the other hand, if we choose element 9 as a root and then we
insert elements 3, 15, 1, 5, 17 and 13, the resulting tree is completely balanced,
see Figure 6.11 on the right. So if we are able to identify the right sequence of
elements to be inserted in the tree, we automatically get a balanced tree.

Figure 6.10: A two dimensional planar surface S: two possible choices for the
root, leading to a completely unbalanced (triangle 5) and to a balanced (triangle
9) binary tree data structure.

We propose the following approach to decide the insertion order. For a certain
surface S, we first define the six vectors SWx, SWy, SWz, NEx, NEy, NEz that
collect, for each element T ∈ S, the coordinates x, y, z of the points SWK and
NEK defining the bounding box B(T ). We sort the elements in each vector into
the ascending order. Then, we build the binary tree data structure following a di-
chotomy principle. At depth 0, as root of the tree, we select the triangle coinciding
with the median of the vector SWx; the two nodes at depth 1 are represented by
the two 4-quantiles of the vector SWy of order 1/4 and 3/4; the four nodes at
depth 2 are provided by the four 8-quantiles of the vector SWz of order 1/8, 3/8,
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Figure 6.11: Example of unbalanced, on the left, and balanced, on the right, binary
search tree associated with the two choices for the root highlighted in Figure 6.10.

5/8, 7/8, and so on. The idea is to take level by level the following quantities:

It =

{
2j + 1

t
< 1, j ∈ N

}
,

with t = 2i+1 and i the considered the depth of the tree. Of course, the triangle T
is removed from the six vectors as soon as it is stored in the binary tree.

6.2.3 Coupling structured and AB data search
The two algorithms described in Sections 6.2.1 and 6.2.2 have complementary
characteristics with respect to the properties i)-iii) itemized at the beginning of
this section.

Both the approaches guarantee the first property. The algorithm based on a
structured data search detects the set DT very rapidly, in practice each search has
O(1) complexity, but this set can be rather large, thus violating requirement ii).

On the contrary, the algorithm based on the AB search builds a set DT with a
rather small number of elements. However, this procedure is, in general, less effi-
cient: the complexity of a single search is, for a balanced tree, of order O(logN),
with N the number of elements in the tree.

Our actual goal is to combine these two procedures into a new algorithm able
to merge the respective advantages. The basic idea consists of reducing the size
of the problem SR ∩ SB, by confining the intersection to suitable subsets SRs and
SBs of SR and SB, respectively, see Figure 6.12 for a sketch of the procedure.

In more detail, the reduction step, that is the generation of the sub-meshes SRs
and SBs , is performed via the quick, but rough, algorithm; the intersection phase
is assigned to the sharp AB-algorithm. In this way the slower speed of the AB
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approach is balanced by the reduced number of mesh elements now involved in
the intersection. We can think about a sort of predictor-corrector approach, where
the structured data search is the predictor and the AB-algorithm is the corrector.

Figure 6.12: Reduction of the intersection SR ∩ SB to the problem SRs ∩ SBs .

To itemize the main steps of the proposed procedure, we refer to the geometric
configuration in Figure 6.12.

1. we associate a unique data structure to the union SR ∪ SB of the two inter-
secting surfaces, following the approach in Section 6.2.1: the hexahedral mesh
now contains both the surfaces SR and SB, Figure 6.12 on the left;

2. starting from this data structure, we extract the two sub-meshes SBs and SRs .
We first build the set Cs of the hexahedral cells where both the red and the blue
triangles are stored together, Figure 6.12 in the middle; then we define SBs and
SRs as the union of the triangles T ∈ Cs ∩ SB and K ∈ Cs ∩ SR, respectively;

3. we apply the intersection algorithm in Section 6.2.2 to the reduced configura-
tion SRs ∩ SBs to detect the intersection line Γ, see in Figure 6.12 on the right.
Thus, the binary tree data structure is built for the sub-mesh SRs only.

We assess the performances of this algorithm on the setting in Figure 6.13. The
mesh SR is characterized by a non uniform sizing, i.e., we distinguish a portion,
the one on the left, where the mesh is rather coarse, in contrast to the part on
the right where the triangles are rather refined. Formulas (6.2)-(6.3) lead to a
hexahedral mesh with huge cells, containing a large number of elements where
SR is fine. Nevertheless, the reduction step yields the sub-meshes SRs and SBs
consisting of 1415 and 2614 triangles in contrast with 4368 and 15519 elements
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for SR and SB, respectively. As a consequence, the intersection SRs ∩ SBs based
on the AB algorithm turns out to be faster, since it considers fewer elements. In
Subsection 6.5.1, we numerically show the better performance of this algorithm.

Figure 6.13: Intersecting non-uniform meshes.

6.2.4 Find Intersection Line
Here we recall the theory provided by T. Möller in [82], to find the intersection
segment between two non co-planar triangles. We consider two generic triangles
T1 and T2, whose vertices are v1, v2 and v3 and w1, w2 and w3, respectively.

Via the vertices, we can compute the planes π1 and π2 identified by these
triangles. Consider the triangle T1, whose normal is given by

n1 = (v2 − v1) ∧ (v3 − v1) ,

where the ∧ denotes the standard vector product. Then, the equation of plane π1

has the following form
π1 : n1 · x + c1 = 0 , (6.4)

where x denotes a generic point of the plane π1 and

c1 = −n1 · v1 .

The signed distance of wi the vertices of T2 to π1 is simply computed by substi-
tuting the vertices in the plane Equation (6.4) of the plane, namely

dwi
= n1 ·wi + c1 i = 1, 2, 3.

If dwi
6= 0 ∀i = 1, 2, 3 or if all the dwi

have the same sign, the triangle T2 lies on
one side of the plane π1, so there is no intersection between T1 and T2. If dwi

= 0
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Figure 6.14: Examples of triangles that lie on the same plane: they do not identify
any intersection line.

∀i = 1, 2, 3, the triangles are co-planar, i.e., π1 ≡ π2. In this case there is no
intersection line between the triangles, since they only share a common area, see
Figure 6.14.

In all the other cases the intersection between the planes π1 and π2 is a straight
line, L, and, consequently, the intersection between T1 and T2 is a subset of L. In
particular L could be represented as:

x = o + td , (6.5)

where o is a point on the line L, d = n1∧n2 and t ∈ R is the parameter describing
the line L.

To find the intersection line, we consider the triangles T1 and T2, and then we
compute the intersection line L between the planes that these triangles identify.
Then, we find the pairs of t−parameters that identify the segments on the line L
that belongs to the triangles T1 and T2, respectively.

The triangles T1 and T2 intersect if and only if these two segments overlap.
So, the problem of finding the intersection line between T1 and T2 is reduced to
find the intersection between these one dimensional intervals, [72].

In Figure 6.15 on the left, we show an example of two intersecting triangles,
while, in Figure 6.15 on the right, we have two non intersecting triangles.

6.3 Region Detection
At this stage, the triangulated surface and the output of the intersection procedure
are still separated entities, i.e., the intersection curve does not necessarily follow
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Figure 6.15: On the left we highlight the intersection line between T1 and T2, in
orange, on the right there is no intersection between the two triangles.

the edges of the triangulation, but it may cross the mesh elements. Furthermore,
the intersection curve identifies distinct regions on the mesh at hand, for instance
in Figure 6.16, right we recognize nine distinct areas.

Figure 6.16: Example of composite intersection I, the yellow line on the left;
inclusion of I into the mesh, in the middle, and region detection, on the right.

Our actual goal is to detect such regions automatically. In particular, let I
denote the intersection curve on a surface S, ∂S being the boundary of S . We aim
at finding a partition P = {ω1, ω2, . . . ωn} of S such that:

•
⋃n
i=1 ωi = S;

• ω̊i ∩ ω̊j = ∅ , ∀i 6= j, i, j = 1, . . . , n;

•
⋃n
i=1 ∂ωi = (I ∪ ∂S).

The sub-domains ωi are assumed to be closed set and ω̊i stands for the internal
part of ωi. The proposed approach consists of two distinct phases:
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a) we include the intersection curve I into the surface mesh via a suitable re-
meshing procedure. Hence, the information of these two distinct geometric
entities is properly linked;

b) we subdivide the triangulated surface into regions ωi in order to define a parti-
tion P of S matching the properties above.

In the two next sections we deal with these two phases, separately.

6.3.1 Inclusion of the intersection curve

This step is quite complex since we cannot make any a-priori assumption on the
shape of the intersection curve I. We only know that the segments constituting
the intersection line lie in some triangle of the surface.

The proposed method aims at properly re-meshing each triangle crossed by I
with the constraint of including the intersection segments in the new mesh. For
this purpose, as first step, we have to find the elements crossed by I. Succes-
sively, we have to properly re-mesh each crossed element, to guarantee the global
conformity of the new mesh. We could detect the crossed triangles via the data
structure search algorithms of Subsection 6.2.1 or 6.2.2.

Figure 6.17: Example of inclusion of an intersection curve.

To illustrate the procedure which creates a new triangulation conforming with
the intersections, let us consider the four elements in Figure 6.17, a). We aim at
adding the dashed segments to the existing mesh to get a new mesh that includes
them. As sketched in Figure 6.17, we process separately each of the four elements.
We re-mesh each triangular element including the edges inside it, Figure 6.17, d).
The conformity is inherited by the global mesh, Figure 6.17, s).

In Figure 6.16, middle we show the final result of the inclusion of the inter-
section curve procedure applied to the configuration on the left.
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Remark 6.3.1 The quality of the generated elements is not necessarily good.
Really thin triangles might be generated after the re-meshing as shown in Fig-
ure 6.18. So, a process to recover equilateral triangles can be used to improve the
quality of the mesh. We discuss this issue in Subsection 6.5.2.

Figure 6.18: A zoom of the step s) of Figure 6.17.

6.3.2 Subdivision of a Mesh into Regions
The inclusion of the intersection curve I into the mesh S makes the detection of
the different regions a straightforward task.

We apply a sort of diffusive procedure. We assign a source to a certain triangle
of the mesh. Then, we exploit the diffusion of this source in the adjacent elements,
driven by the triangle connectivity and by these simple rules:

1) each triangle T spreads the source into the adjacent triangles, i.e., the triangles
that shares an edge with T ;

2) the diffusion cannot cross the intersection segments.

At the end of the procedure, all the triangles of the mesh have to be assigned
to a certain region ωi. The proposed method identifies one region for time, lines
8-17 in Algorithm 9. So it has to be restarted until it has partitioned the whole
surface, line 3 in Algorithm 9.

We formalize the subdivision into region procedure via the algorithm REGDET().
It takes as input the intersection line I and it provides as output a partition of the
surface mesh.

Relation (∂Ti ∩ ∂T 6∈ I), line 13 in Algorithm 9, essentially checks if the
triangle Ti is on the correct part of I.
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Algorithm 9 Algorithm to identify different regions
REGDET ( I )
Data: T be the set of the triangles mesh, D be the subset of T formed by the
triangles already processed, S a temporary stack and i an integer that counts the
regions.

1: i = 0;
2: D = ∅;
3: repeat
4: i = i+ 1;
5: ωi = ∅;
6: randomly take a triangle T such that T ∈ T && T 6∈ D;
7: S.push(T );
8: repeat
9: T = S.pop();

10: insert T in ωi;
11: QT is the star of T ;
12: for all Ti ∈ Q do
13: if Ti 6∈ D && ∂Ti ∩ ∂T 6∈ I then
14: S1.push(Ti);
15: end if
16: end for
17: until S is empty
18: until #T 6= #D

Notice that the stack S follows the diffusive process. Consider the region ωi, at
the beginning S contains a single randomly selected triangle T ∈ ωi. Then, via the
for cycle, the triangles adjacent to T are gradually inserted in S and, successively,
in ωi.

In Figure 6.19, we exemplify such a procedure on the simple mesh reported
in Figure 6.17 s). This configuration of the intersection line I requires that three
different diffusive processes are developed.

Remark 6.3.2 The procedures described in Sections 6.2 and 6.3 can be extended,
in a straightforward way, to more general frameworks, e.g., to quadrilateral meshes.
Moreover, these approaches can be generalized to a higher and to a lower dimen-
sion, for instance to detect volumes identified by a set of surfaces in a tetrahedral
mesh, see Figure 6.20, or to detect the set of piecewise linear curves identified by
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Figure 6.19: Example of region subdivision, the yellow curve marks I.

a set of points, see Figure 6.21.

Figure 6.20: Example of volume detection moving from a set of surfaces.

6.4 Mesh Quality Improvement
The inclusion of the intersection curve, see Subsection 6.3.1, often yields really
thin and stretched triangles. As we have already show in Chapter 1, the shape of
the triangles influences the numerical simulations. In particular, we recall that the
accuracy of the solution may improve if the elements are oriented according to a
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Figure 6.21: Example of line detection moving from a set of points. On the left
the initial mesh where we highlight the set of point, the orange bullet; on the right
the three part of the piecewise linear curve that these points identify.

precise criterion, for instance the solution of the partial differential equations we
are interested in, see Section 1.1.1.

When we include the intersection curve, the mesh presents stretched and skinny
triangles along the piecewise line we have inserted. But these triangles do not
have a specific orientation and shape, so a priori they could lead to a high numeri-
cal error, and it could be necessary a mesh optimization strategy to get equilateral
triangles.

To quantify the shape of a generic triangle T , we consider the so-called aspect
ratio, introduced in Definition 1.1.2:

Q(T ) :=
2r

R
,

where R, r are the radii of the circumscribed and of the inscribed circles, respec-
tively. If T is an equilateral triangle, Q(T ) = 1, viceversa if Q(T ) � 1, T is a
very stretched element. We resort the classical mesh optimization procedure, see
Section 1.2, to improve the quality of the mesh, i.e., to make the aspect ratio of all
the triangles of the mesh as close as possible to the optimal value.

In the following paragraphs we describe how the standard mesh operation de-
scribed in Section 1.2 are applied, in order to get a good quality mesh.

Remark 6.4.1 Even in this framework all the topological constraints described
in Section 1.2 related to these mesh modification procedures have to be applied.

Node Smoothing

We have implemented the trapezium drawing approach proposed in [104] to im-
prove the aspect ratio of the mesh triangles without changing the connectivity of
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the mesh node.
This kind of smoothing technique is particularly suited when we do not have

any information about the real geometry, but we have only the triangulated sur-
face. In fact, it does not require any information about the surface, but it finds the
new location of a point v via the coordinates of the nodes connected to v.

Edge Flipping

We consider two adjacent triangles, T1 and T2, i.e., two triangles that share one
edge ab and the quadrilateral T1∪T2 formed by them. We choose the best diagonal
for this quadrilateral, in order to maximize the minimum aspect ratio of these
triangles.

In this framework, the presence of different sub-domains gives a further con-
straint on this operation. In fact, if we decide to flip an edge that lies on the com-
mon line between two different regions, we lose the boundary of the domains, see
Figure 6.22. To preserve these lines, we add this condition on the flipping of a
generic edge ab:

(iv) the edge ab does not belong to the boundary between two different subdo-
mains.

Figure 6.22: Flipping of the edges that belongs to the boundary between two
subdomains.
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Edge Contraction

Since the low quality triangles are characterized by too small angles, if we contract
the small edges, i.e., the edges opposite to small angles, we improve the quality
of the whole mesh.

Once we decide to contract an edge ab, we have to decide the location of the
new point c where the edge is contracted to. As we said in Section 1.2, there are
different alternatives for the location of this point: one of the end-points or in the
middle point of the segment.

When we consider a mesh subdivided in different domains like the ones shown
in Figure 6.23 on the left, the location of the point c has to be carefully chosen. In
fact, if we always contract the edge onto the middle point of a segment, we could
have a wrong representation of the intersection line, see Figure 6.23 on the right.

Figure 6.23: Contraction of the edge ab into the middle point c; this creates a
wrong approximation of the intersection line.

To overcome this issue, when we contract an edge ab, we decide the new point
c following these criteria:

(i) if ab is an interface edge or if both its end-points are inside the same sub-
domain, we contract ab into the middle point;

(ii) if a is on the interface and b is inside one of the sub-domains, we contract
the edge ab into a;

(iii) if b is on the interface and a is inside one of the sub-domains, we contract
the edge ab into b;
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(iv) if a and b are on the interface, but ab is not a boundary edge we do not
contract the edge.

Condition (iv) avoids the possibility to get a bad approximation of a sub-
domain. In fact, if we decide to contract this kind of edges, we get a wrong ap-
proximation of the subdomains independently of the choice for c, see Figure 6.24.

Figure 6.24: Contraction of the edge ab that does not satisfy condition (iv), if we
contract the edge into one of its endpoints, (b) and (d), or into the middle point,
(c), we do not get a good approximation of the sub-domain.

Edge Splitting

We apply this operation on too long edges in order to get a uniform edge length.
Since we do not have any information about the real geometry represented by the
mesh, we always halve the edge via its middle point.

Mesh Improvement Scheme

To improve the quality of the mesh, we follow the scheme in Algorithm 10. This
algorithm receives the surface mesh, Γh and the number of iteration, Nmax, as
inputs and it applies the following sequence of operations.

As anticipated, the edge contraction is used to increase the minimal angle in
the mesh Γh, but we use this operation combined with the edge splitting to make
the mesh as uniform as possible. After these operations the quality of the triangles
is further improved by the swapping and the smoothing operations, lines 11 - 19.
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Algorithm 10 The mesh improvement scheme
IMPROVE(Γh, Nmax)
Data: i is a counter.

1: i = 0;
2: for i < Nmax do
3: compute all the edge length of the mesh in a set L;
4: Lmin and Lmax be the minimum and maximum of L;
5: for all the triangles of Γh do
6: contract the edges of length < 0.3Lmin;
7: end for
8: for all the triangles of Γh do
9: split the edges of length > 0.7Lmax;

10: end for
11: for all the triangles of Γh do
12: swap all the edges to improve the quality;
13: end for
14: for all the vertices of Γh do
15: find the new location of the node with the smoothing;
16: end for
17: for all the triangles of Γh do
18: swap all the edges to improve the quality;
19: end for
20: i = i+ 1;
21: end for

6.5 Numerical Tests
In this section we give a more quantitative analysis on the proposed algorithms.
Firstly, in Subsection 6.5.1, we analyse in more details the procedures related
to the surface intersection and the region detection. Then, in Subsection 6.5.2,
we show the reliability of the mesh improvement algorithm described in Algo-
rithm 10. These tests are made by a laptop with a 2.26 GHz processor.

6.5.1 Surface Intersection and Region Detection Test

We consider two pairs of intersecting surfaces with the aim of detecting the corre-
sponding intersection curves SRi ∩SBi , for i = 1, 2, as well as the regions bounded
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by these, see Figure 6.25.

Figure 6.25: Intersecting surfaces: SR1 ∩ SB1 , left, SR2 ∩ SB2 , right.

To approximate the four surfaces, we resort to different families of meshes.
We compare in terms of CPU time the performances of the surface intersection
procedures addressed in Section 6.2. Finally, we apply the region detection strat-
egy proposed in Section 6.3.

Tables 6.1 and 6.2 gather the results of such a comparison for uniform meshes
of about 6800, 68000 and 680000 triangles, respectively. In particular, for the
different surface triangulations, we collect the CPU time, in seconds, required by
the intersection algorithm based on a structured data search (second column), the
intersection procedure exploiting an unbalanced (third column) and a balanced
(fourth column) AB search tree, the mixed structured-AB data search approach
(fifth column) and, finally, the region detection phase (sixth column).

T STRUCT. AB-UNBAL. AB-BAL. MIXED REG. DETECT.
' 6800 2 3 2 2 1
' 68000 8 121 45 13 2
' 680000 30 35148 10114 67 19

Table 6.1: SR1 ∩ SB1 : CPU time for the different surface intersection algorithms
and for the region detection on uniform meshes.

The values in Table 6.1 and 6.2 confirm, first of all, the importance of creating
a balanced binary tree: by comparing the values in the third and in the fourth
column, we recognize that the CPU time approximately triplicates in the case
of an unbalanced binary tree, it becomes almost 30 times greater for the second
configuration approximated via the finest mesh.
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T STRUCT. AB-UNBAL. AB-BAL. MIXED REG. DETECT.
' 6800 2 5 3 2 1
' 68000 20 142 49 50 3
' 680000 62 22753 791 172 23

Table 6.2: SR2 ∩ SB2 : CPU time for the different surface intersection algorithms
and for the region detection on uniform meshes.

Then, we remark that the approach proposed in Subsection 6.2.3 improves the
performances of the intersection algorithm based on an AB tree, even though the
tree is balanced.

The gain becomes particularly evident for increasingly finer meshes and in the
case of the first geometric configuration where the surface intersection is more
localized. The selected sub-meshes SB1,s and SR1,s are small enough to speed up the
AB tree search procedure. On the contrary, a more widespread surface intersec-
tion, as in the case SR2 ∩ SB2 , does not necessarily lead to small sub-meshes, SB2,s
and SR2,s, with a consequent less significant reduction of the corresponding CPU
times.

Moreover, both the Tables 6.1 and 6.2 suggest us that the best intersection
algorithm is the one based on a structured data search for both the geometric
configurations and for this kind of meshes. Finally, the region detection is a really
cheap operation in terms of computational costs for both the configurations and
for each of the meshes to be selected.

In Tables 6.3 and 6.4 we show the peak of memory characterizing each pro-
cess. We observe that, for a fixed number of elements, the values associated with
the different search algorithms are roughly comparable. Thus, for the two consid-
ered configurations, the memory usage does not represent a relevant criterion to
select the search algorithm.

T STRUCT. AB-UNBAL. AB-BAL. MIXED REG. DETECT.
' 6800 14.0MB 15.0MB 15.0MB 15.0MB 24.4MB
' 68000 42.9MB 34.0MB 34.0MB 46.5MB 60.7MB
' 680000 408.6MB 254.0MB 254.0MB 437.1MB 444.5MB

Table 6.3: SR1 ∩ SB1 : peak of memory during the different surface intersection
algorithms and for the region detection on uniform meshes.
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T STRUCT. AB-UNBAL. AB-BAL. MIXED REG. DETECT.
' 6800 14.7MB 15.8MB 15.8MB 15.8MB 25.4MB
' 68000 27.6MB 33.9MB 33.9MB 33.6MB 60.2MB
' 680000 232.2MB 254.0MB 254.0MB 275.1MB 456.2MB

Table 6.4: SR2 ∩ SB2 : peak of memory during the different surface intersection
algorithms and for the region detection on uniform meshes.

The conclusion drawn above about the better performances of the structured
data search algorithm is no longer the same when considering non-uniform meshes,
as already anticipated in Subsection 6.2.3 on a simpler configuration. The columns
in Table 6.5 provide the CPU time demanded by the structured data search algo-
rithm, by the balanced AB tree approach and by the procedure proposed in Sub-
section 6.2.3, respectively when dealing with non-uniform meshes. The surfaces
SBi and SRi , with i = 1, 2, are approximated via meshes consisting of about 20000
and 65000 elements, respectively. Figure 6.26 shows the corresponding surfaces
of intersection where the non-uniform structure of the meshes is evident.

STRUCT. AB-BAL. MIXED

SR1 ∩ SB1 593 27 14
SR2 ∩ SB2 624 30 18

Table 6.5: CPU time for the different surface intersection algorithms on non-
uniform meshes.

STRUCT. AB-BAL. MIXED REG. DETECT.
SR1 ∩ SB1 15.6MB 18.4MB 18.4MB 27.6MB
SR2 ∩ SB2 15.9MB 18.1MB 18.8MB 28.8MB

Table 6.6: Peak of memory during the different surface intersection algorithms
and for the region detection on non-uniform meshes.

In the presence of non-uniform meshes, the mixed structured-AB data search
approach turns out to be the most effective: a significant saving in terms of CPU
time is guaranteed with respect to the balanced AB tree procedure and, as ex-
pected, it becomes even more remarkable with respect to the structured data search
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Figure 6.26: Intersecting surfaces and corresponding meshes: SR1 ∩SB1 , top, SR2 ∩
SB2 , bottom.

algorithm. As shown in Table 6.6, also in the presence of non-uniform meshes,
the different data search algorithms exhibit analogous values for the correspond-
ing peak of memory.

We conclude this subsection by comparing the proposed mixed structured-AB
search approach with one search algorithm available in the CGAL library [2]. This
library provides a fast intersection detection algorithm based on the Axis Aligned
Bounding Box (AABB) Tree method, [96]. Nevertheless, this procedure identifies
only the triangles which intersect each other and not the entire intersection line.
To obtain a fair comparison, we have accordingly modified our code by adding
the option to identify only the intersecting triangles.

The Table 6.7, 6.8 and 6.9 collect the results of this comparison, in terms of
CPU time. We remark that the CPU time of the proposed algorithm shows a
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T STRUCT. AB-UNBAL. AB-BAL. MIXED CGAL
' 6800 1 9 3 2 1
' 68000 4 130 40 5 5
' 680000 10 15321 510 69 65

Table 6.7: SR1 ∩SB1 : CPU time for the different surface intersection algorithms on
uniform meshes.

T STRUCT. AB-UNBAL. AB-BAL. MIXED CGAL
' 6800 1 4 2 1 1
' 68000 2 112 39 14 4
' 680000 18 17412 542 121 58

Table 6.8: SR2 ∩SB2 : CPU time for the different surface intersection algorithms on
uniform meshes.

STRUCT. AB-BAL. MIXED CGAL
SR1 ∩ SB1 17 3 1 1
SR2 ∩ SB2 16 4 2 1

Table 6.9: CPU time during the different surface intersection algorithms on non-
uniform meshes.

scalability with respect to the number of elements which is very similar to the one
characterizing the CGAL algorithm. We highlight that, while the CGAL library is
strongly optimized, no special optimization has been performed on the code that
implements the mixed structured-AB search algorithm.

6.5.2 Mesh Quality Test
Example 1

In this example we consider the surface in Figure 6.27 on the left. In Figure 6.27
right, we show the output of the mesh quality improvement procedure in Algo-
rithm 10. The number of the mesh elements is significantly increased; the original
mesh has 1136 elements while the regularized mesh consists of 2726 triangles.
But, now all the triangles are close to an equilateral element.
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Figure 6.27: Instance of mesh quality improvement: original mesh, left, and im-
proved mesh, right.

This effect becomes more evident from the histograms in Figure 6.28, that
represent the distribution of the quality index Q(T ) on the mesh elements before
and after the mesh regularization. In fact, the values of the quality index of the
final mesh, Figure 6.28 on the right, are more concentrated around the optimal
value than the ones of the initial mesh, Figure 6.28 on the left.

Figure 6.28: Distribution of Q(T ) before, left, and after, right, the mesh quality
improvement.

Example 2

Now we consider the surface of the Stanford bunny, in Figure 6.29 on the left. In
this case we are dealing with a surface divided into five subdomains. From the
details in Figure 6.30 on the left, we appreciate the presence of distorted triangles,
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especially close to the interfaces.

Figure 6.29: Instance of mesh quality improvement: original mesh, left, and im-
proved mesh, right.

From Figure 6.29 and 6.30 on the right, we notice that the triangles have a
shape closer to the equilateral one and that the intersection lines are preserved in
the final mesh.

In Figure 6.31, we give a more quantitative analysis on this mesh improvement
scheme. Even in this case the quality indexes of the triangles move to the optimal
value, i.e. 1, when we consider the improved mesh.

6.6 Application to the Geometrical Modelling of a
Geological Basin

This section covers some other fundamental aspects that may be relevant when
dealing with the geometrical modelling of geological basins. Namely, the possi-
bility of dealing with missing data, the treatment of the so-called hard and soft
horizons and the construction of a volume of interest.
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Figure 6.30: Some details of the mesh in Figure 6.29: original mesh, left, and
improved mesh, right.

Figure 6.31: Distribution of q(T ) before, left, and after, right, the mesh quality
improvement.

6.6.1 Lack of data

The seismic data used for the simulations are often incomplete or non reliable due
to either a lack of existing coverage or inadequate and old measurements. Thus,
moving from the available information, it is sometimes necessary to reconstruct
the horizons in the geological basin of interest before generating a corresponding
tetrahedral mesh.
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In particular, we investigate two different techniques to deal with a possible
lack of data:

• kriging;

• radial basis function.

Kriging

As first approach, we resort to a well-known geo-statistical technique, i.e., the
kriging [20]. It is a regression method to recover the value of a certain field at
unobserved locations starting from observations of the same field in nearby sites.
In this case, the field of interest is the location of a horizon characterized by a lack
of information, for instance, a hole. To apply this technique, we need to assume
that the surface is described via the graph of a function f , i.e., z = f(x, y), we
refer to Figure 6.32 for a possible example.

Figure 6.32: Example of a hole suitable for the Kriging recovery approach.

In more detail, moving from the z-coordinates associated with a set NP of
points on the horizon, we recover the z-coordinate, zP , of a point P located inside
a hole as

zP =
∑
Q∈NP

λQ zQ , (6.6)

with λQ a suitable weight associated with the point Q ∈ NP .
The type of kriging determines the choice for the weights. We resort to a stan-

dard ordinary kriging where the weights essentially depend on the variogram as-
sociated with the starting data [20]. Moreover, the points inNP are not necessarily
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spread on the whole horizon, but they might be located only in a neighbourhood
of the point P . The computation of the weights λQ is not always an easy task. In
fact, it resorts to several searching processes, that lead to the solution of several
linear systems. Details on kriging may be found in [20].

Radial Basis Function

As an alternative approach we employ an implicit representation of the horizons
based on radial basis functions, [63]. An horizon S could be identified as the
zero-level iso-surface of a suitable function f : R3 → R, i.e.,

S = {P ∈ R3 : f(P ) = 0}

with
f(P ) =

∑
Q∈N

cQ φ(rP ), (6.7)

where rP = ||P −Q|| is the standard Euclidean distance between P and Q, φ the
so called radial basis function and cQ are proper coefficients.

There are different choices for the radial basis function φ, see Table 6.10. In
this framework we use φ(r) = r3.

function parameters usage
φ(r) =

√
c2 + r2 c > 0 topography

φ(r) = rβ β = 1 β = 3 data in R3

φ(r) = r2 log r data in R3

Table 6.10: Most common radial basis functions

The coefficients cQ in Equation (6.7) are determined by imposing interpola-
tion constraints. Since this condition usually leads to solve a full hill-conditioned
system, we use an iterative solver with a proper pre-conditioner [59].

Thanks to the numerical validation, we believe that the approach based on an
implicit representation of the non-complete horizon is more suited to deal with
any kind of surfaces. This method allows us to treat in a more straightforward
way a large variety of surfaces, even the ones that cannot be expressed via the
graph of a function.

Independently of the technique adopted to recover the missing data, we prop-
erly close the hole via an advancing front mesh generator. The initial front will
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Figure 6.33: The first step of the advancing front technique. We highlight the
front, orange line, the edge ab, in blue, where the advancing front method starts
and the direction vw, where we look for the correct position of p, left; we get the
position of p such that the triangle abp is equilateral, middle, then we move p on
the closest point of the surface, q and we generate a triangle abq, right.

coincide with the boundary of the hole. Then, we iteratively add new triangles
until we reconstruct the whole surface.

Given an edge e of the front, we consider the normal direction vw, i.e., the
direction perpendicular to the triangle and to the edge e that points inside the
hole, see Figure 6.33 on the left. Then, we find the location of a point p such that
the triangle abp is equilateral, Figure 6.33 in the middle.

Then we move this point p on the closest point of the surface, q, reconstructed
via one of the missing data recovering techniques, see Figure 6.33 on the right.
We proceed iteratively for each front edge until we cover the entire hole, see
Figure 6.34.

Figure 6.34: A sequence of steps for an advancing front mesh generator.
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6.6.2 Hard and soft rocks
Different kinds of rock do exist in nature. As a possible classification, we may
distinguish them in hard and soft rocks. The hardness of a rock essentially de-
pends on the nature of the grains constituting the rock as well as on what kind of
natural glue holds them together. Rocks baked in the deep underground are usu-
ally very hard, marble for instance, while mudstones and shales are examples of
soft rocks. The different nature of the geological layers overlapping in the basin
of interest has to be properly taken into account when generating the correspond-
ing geometry. For instance, if a layer of marble stands above a layer of clay, we
expect that the layer below is compressed by the layer above. Of course, direct
measurements, such as core drillings, can be helpful in recovering these scenarios.

To deal with this possible interplay among horizons, we have set up an ad hoc
procedure. Let us focus on the geological configuration in Figure 6.35, left: a hard
horizon, Sh, is compressing a soft horizon, Ss. In the geometry of interest, a new
surface, Sr, replaces both the horizons Sh and Ss. In more detail, we assume that
Sr coincides with Ss in the regions where Sh lays over Ss; viceversa, Sr coincides
with Sh where Sh lays under Ss, see Figure 6.35, right.

From an operative point of view, all the operations described in this chapter
play a key role in the “hard and soft” procedure. In particular, we compute the
intersection curve Sh ∩ Ss and we detect on both Sh and Ss the regions bounded
by this curve.

Figure 6.35: Starting geological configuration, on the left, a hard horizon, the
green surface, intersects a soft horizon the red one; the horizon Sr replaces Sh and
Ss, on the right.

6.6.3 Selection of Sub-volumes
Very often we are interested in recovering geological information related to a cer-
tain sub-volume of interest rather than to the whole sedimentary basin, see Fig-
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ure 6.36. This volume becomes the representative of the basin at hand. In par-
ticular, we aim at generating a tetrahedral mesh of this geological volume which
takes into account the presence of any horizons and faults. Before proceeding
with the volume mesh generation, suitable preprocessing procedures are some-
times demanded on the involved horizons and faults.

Figure 6.36: Example of volume of interest in a geological configuration.

Figure 6.37: In red a portion of the blue horizon in Figure 6.36 cut by the volume
of interest, on the left; zoom in on the corner leftmost, on the right.

Purpose of this section is to show how the geometric operations introduced
Sections 6.2, 6.3 and 6.4 can be useful in this preprocessing phase. First of all, we
are able, via the surface intersection and the region detection procedures, to iden-
tify, for each horizon, the corresponding portion cut by the volume of interest, see
for an example Figure 6.37. Starting from these cutouts on the different horizons,
we can build the boundary of the geological volume.

Nevertheless, as highlighted in Section 6.4, the involved operations among
surfaces often corrupt the quality of the mesh elements, this is evident in Fig-
ure 6.37 right, as well as in Figure 6.38 right, where a lot of stretched triangles
appear. Thus, before dealing with the tetrahedral mesh generation, it is crucial to
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Figure 6.38: Example of a geological volume of interest on the left; a correspond-
ing vertical cutoff in the middle; two zooms in on poor quality triangles, on the
right.

improve the mesh quality of horizons and faults. We pursue this task essentially
by exploiting the four geometric operations in Section 6.4. Finally, the three di-
mensional mesh is built using a generalized Delaunay procedure implemented in
the “TetGen” library, [108].

This whole procedure allows us to obtain a detailed representation of the ge-
ological volume of interest via a tetrahedral mesh of good quality, which is con-
strained to the horizons and faults inside the volume. Figure 6.39 shows an in-
stance of the outcome of the procedure, when applied to a rather complex geolog-
ical configuration.

Figure 6.39: Example of tetrahedral mesh generation for the geological volume
of interest on the left; two vertical cutoffs of the resulting volumetric mesh on the
right.
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In this chapter we collect the main conclusions arising from the new results and
techniques developed in this thesis. More precisely, we focus on the last four
chapters, since the first two are devoted to introduce the basic concepts related
to mesh generation and adaptation and to the discretization of Partial Differential
Equations defined on Surfaces via a finite element approach.

Anisotropic Error Estimators for PDEs Defined on Surfaces

In Chapter 3 we extend the theory provided in [40] to Partial Differential Equa-
tions defined on surfaces. We derive a novel anisotropic interpolation error esti-
mator for a function defined a surface. The results provided by this new approach
have lead us to employ the anisotropic interpolation estimate into a-posteriori
analysis context, for approximating the standard Laplace-Beltrami problem and
a generic convection-diffusion problem defined on a surface. Finally, in the last
part of this chapter, we propose a generalization of the well-known Zienkiewicz-
Zhu error estimator to functions defined on surfaces and to an anisotropic setting.

The preliminary and good quality numerical results suggest a possible gen-
eralization of this theory to more complex differential problems or different dis-
cretization schemes. A framework of undoubted interest is represented by un-
steady problems, where the surface itself evolves.

Higher Dimensional Re-Meshing

In Chapter 4, we have focused on a curvature-adapted anisotropic surface re-
meshing method, based on a high-dimensional embedding. This new method
directly optimizes a triangular mesh in the embedded via the classical mesh modi-
fication operations in such a way that the triangles are as uniform as possible in the
this embedded space. It has several advantages, for instances, sharp features are
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always correctly captured; it is robust in handling strong anisotropy, and it is easy
to implement. The numerical results show that this novel method correctly works
for a large variety of surfaces characterized by an arbitrarily complex geometry.

There are many still issues. A very important theoretical question refers to
the map Φ involved in Equation (4.1): How well may the map Φ approximate
the geodesic distances for 3d surfaces? Do upper or lower bounds on distance
variations exist for this map? A theoretical study of these issues could lead to
more efficient methods, and meshes with fewer elements.

The new edge-flip algorithm used in this chapter seems very useful in improv-
ing both the geometry approximation and the mesh quality. However, its actual
termination is not yet rigorously proved. We found that the selection of the thresh-
old angle for checking inverted faces is very crucial, see Definition 4.2.1, but a
more rigorous choice of the threshold could produce highly stretched triangles in
the adapted mesh.

Moreover, in practice, many surfaces are provided as a polygonal mesh, i.e.,
the original geometry is not available. A good recovery and estimation of the
surface normals are necessary in such a case to achieve good results.

Since this is a preliminary study of this new method and we have essentially
focused on the robustness of the algorithm in order to mesh very complex geome-
tries, the running time of this implementation is far from being optimal and there
are many possibilities to improve it.

Surface Mesh Simplification
In the first part of Chapter 5, we have introduced a surface mesh simplification
algorithm that produces a simplified surface mesh that maintains a high fidelity in
approximating polygonal models. This algorithm uses iterative edge contraction
to get a surface mesh with a reduced number of elements. Moreover, in Sec-
tion 5.2.2 we have proposed an alternative procedure to increase the speed of this
process, when we are dealing with a mesh with a huge number of elements. Via
this new method, we get better results in terms of computational time, but the
shape, size and dimension of triangles are not always optimal to fit the surface as
well as possible. So, a sensitivity analysis on the parameter t used in Algorithm 6
is one of the issue to be investigated in the future.

Then, in the second part of the chapter, we introduce a new mesh simplifica-
tion process. The novelty of this new method is that the simplification is driven by
both geometrical and data information, so that the final simplified mesh leads to
qualitatively good statistical estimates. In particular, the proposed simplification
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method generates a suitable mesh that approximates the original geometry and
properly associates the original data with the new geometry allowing good infer-
ential properties in terms of data displacement and distribution. This represents a
crucial property when dealing with data related to real-life applications, such as
the medical setting we have investigated.

We have performed a preliminary study on the weights of the cost functional
involved in this geometric-statistic approach. Among future goals, we aim at pro-
viding a more rigorous approach to select the weights, for instance, by applying
some proper optimization procedure strictly related to the application and/or the
geometry at hand.

Furthermore, certain computational improvements of the simplification proce-
dure are planned, such as, the employment of a greedy strategy during the edge
contraction step.

Modelling a Sedimentary Basin
In Chapter 6 we illustrate various mesh generation techniques applied to the geo-
metric reconstruction of complex geological structures. Besides the specific target
application, they are of rather general use.

We have implemented and compared different data structures, also in com-
bination, to conclude that the best data structure strictly depends on the kind of
involved meshes. If the surface meshes are structured or uniform, the structured
data search turns out to be the most effective algorithm. Vice-versa, the CPU times
demanded by this straightforward approach can be large on non-uniform meshes.
The mixed structured-AB data search approach proposed in Section 6.2.3 shows
performances less sensitive with respect to the type of the mesh. On structured
and uniform meshes, the CPU times are comparable with the ones guaranteed by
the structured data algorithm; on the contrary, we have shown that the compu-
tational gain led by the mixed procedure can become extremely relevant when
dealing with non-uniform meshes. To take advantage of this remark, it could be
useful to have a computable measure of the “uniformity” of a mesh in order to au-
tomatically choose the best algorithm, or to properly alternate the two procedures.

The use of this new data structure allowed us to analyse very complex geolog-
ical situations at an affordable cost. In particular, we have combined algorithms
specialized to identify the intersection of horizons and faults with a simple, but
effective, algorithm to automatically detect the different regions forming the ge-
ological basin, completed with suitable mesh enhancing algorithms. This has al-
lowed us to obtain good and conforming surface meshes for the different portions
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of the external and internal boundary of the basin of interest. The resulting surface
are ready to be the input to a three-dimensional mesh generator for the production
of meshes suitable for numerical simulations.

Moreover, the “mixed” technique suits well with parallel implementation, where
each box is associated with a different processor or thread. Porting to GPU archi-
tectures is also one of the foreseen further development of this work.
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Appendix A

Spatial Spline Regression Models

In this appendix we describe the theory provided by B. Ettinger et al. in [35].
More precisely, we deal with the regression analysis of data observed over non-
planar bi-dimensional domains. This type of data structure occurs in different
applications, for instance the cortical thickness of the brain and the shear stress
generated by the blood flow over the wall of an internal carotid artery.

The method proposed by B. Ettinger et al. in [35] adopts a functional data
analysis approach, and it uses a regression method that efficiently handles these
data. It consists of two phases:

1. the mapping of the original surface domain to a flat domain;

2. the employment spatial regression methods suited to deal with data on planar
domains, [97].

More precisely, they use a conformal map to flatten the original surface domain.
The main advantage of using of a conformal map, with respect to any other map,
is that it preserves the angles of the original surface domain in the planar domain.
Then, they use the penalized least square estimation technique proposed in [92,
97] is used.

A.1 Flattering Map
In [35], the authors deal with data associated with points over a surface embedded
in a three-dimensional space. For instance, the hemodynamic data are referred to
points (x1, x2, x3) on the artery wall that is a bi-dimensional non-planar domain.
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In [97] some first analyses of these data were performed, by flattening a sim-
plified version of the carotid domain. In particular, a new coordinate system is
defined as (s, r, θ), where s is the curvilinear abscissa along the artery centerline,
r the artery radius, and θ the angle of the surface point with respect to the artery
centerline. The domain is then reduced to the plane (s, θ, r̄), where r̄ is the aver-
age carotid radius on the carotid tract considered. This planar rectangular domain
is essentially obtained by cutting the artery wall along the axial direction given by
s and then opening and flattening the artery wall. In particular, this planar domain
is equivalent to a simplified three-dimensional artery geometry, where the radius
is kept fixed to a constant value and the curvature of the artery is not taken into
account. The map just described will be referred to in the following as the angular
map.

Notice that, by flattening the domain with the angular map and then applying
a spatial regression method for planar domains, any information related to the
vessel radius and curvature is lost; even though, these two geometrical quantities
greatly influence the hemodynamics in the artery and statistically discriminate
aneurysm presence and location, [99]. Moreover, to have a bijective angular map,
it is necessary to exclude the aneurysmal sac, otherwise, different points on the
carotid wall would be mapped to the same point on the plane.

A.2 Spatial Spline Regression Models
In this section we recall the spatial regression methods defined in [92], then we
explain the approach proposed in [35].

A.2.1 Spatial Spline Regression Model for planar domains
In this section, we present the Spatial Spline Regression models for planar do-
mains introduced in [92] and then generalized in [97].

Let {ui = (ui, vi); i = 1, . . . , n} be a set of n fixed data locations on a
bounded regular domain Ω ⊂ R2. Let zi be the real-valued variable of interest
observed at point ui. Assume the model

zi = f(ui) + εi ∀i = 1, . . . , n , (A.1)

where εi are independent observational errors with null mean and constant vari-
ance, and f is a twice continuously differentiable real-valued function to be es-
timated. According to the Spatial Spline Regression model, the estimate of f is
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found by minimizing the following functional

n∑
i=1

(zi − f(ui))
2 + λ

∫
Ω

(∆f)2dΩ ,︸ ︷︷ ︸
(I)

(A.2)

i.e., a sum of squared errors regularized via the L2-norm of the Laplacian of f

∆f =
∂2f

∂u2
+
∂2f

∂v2
.

In Equation (A.2), the Laplacian of f measures the local curvature of f . Via the
penalty, i.e., the term (I) in Equation (A.2), we are essentially controlling the
roughness of the solution. Moreover, since the Laplacian operator is invariant
with respect to Euclidean transformations of the domain, the smoothness of the
estimate does not depend on the arbitrarily chosen coordinate system.

The estimation problem (A.2) cannot be solved analytically. As a conse-
quence, an approximate solution is found by resorting to a finite element approach.
Thanks to the intrinsic construction of the finite element space, in [97] the authors
reduce the estimation problem (A.2) to a linear system.

A.3 Spatial Spline Regression Model for non-planar
domains

Now, we move to the theory provided by B. Ettinger et al. in [35]. Consider
a surface Γ embedded in the three-dimensional space and n fixed data locations
{xi = (x1i, x2i, x3i), ∀i = 1, . . . , n} that lie over Γ. For each location xi, a
real-valued random variable of interest, zi, is observed. As in the planar case, we
assume the model

zi = f(xi) + εi ∀i = 1, . . . , n , (A.3)

where εi are independent observational errors with mean 0 and constant variance,
and f is a twice continuously differentiable real-valued function defined on the
surface domain Γ. As above, the aim pursued before is to estimate this function.

In this case the manifold is just the support of the data, in the sense that the
data are referred to locations lying on the manifold. We do not have any interest
in analysing the properties of the manifold itself, but rather we use its geometrical
properties when dealing with data occurring over it.

269



Chapter A. Spatial Spline Regression Models

Generalizing (A.2), in [35] the authors propose to estimate f in (A.3) by min-
imizing the following penalized sum of squared error functional

Jλ(f(x)) =
n∑
i=1

(zi − f(xi))
2 + λ

∫
Γ

(∆Γf(x))2 dΓ ,

(A.4)

where ∆Γ is the Laplace-Beltrami operator for functions defined over the surface
Γ, see Chapter 2. Here we recall that the Laplace-Beltrami operator is the gener-
alization of the common Laplacian and it is used to operate on functions defined
on surfaces in Euclidean space.

In [35], B. Ettinger et al. show that it is possible to solve the estimation prob-
lem (A.4) by exploiting existing techniques for planar domains. In particular, the
authors propose to reduce (A.4) to a problem over a planar domain. To achieve
this goal, the idea is to flatten Γ by means of a conformal map. Specifically, for
the surface domain Γ, they define a map

X : Ω→ Γ ,

u = (u, v) 7→ x = (x1, x2, x3) .
(A.5)

where Ω is an open, convex and bounded set in R2. Denote by Xu(u) and Xv(u)
the column vectors of first order partial derivatives of X with respect to u and v,
respectively.

For the map X to be conformal, it is required that

‖Xu(u)‖ = ‖Xv(u)‖ , 〈Xu(u), Xv(u)〉 = 0 , ∀u ∈ Ω ,

where 〈·, ·〉 denotes the standard Euclidean scalar product and ‖ · ‖ is the corre-
sponding norm.

Let us also define the space-dependent metric tensor as the following symmet-
ric positive definite matrix

G(u) :=

(
‖Xu(u)‖2 〈Xu(u), Xv(u)〉

〈Xv(u), Xu(u)〉 ‖Xv(u)‖2

)
=

(
g11(u) g12(u)
g21(u) g22(u)

)
.

where
W(u) :=

√
det(G(u)) ,

and G−1(u) = {gij(u)}i,j=1,2 is the inverse of the matrix G(u).
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Using this notation, for a function f ◦X ∈ C2(Ω), the Laplace-Beltrami oper-
ator associated with the surface Γ can be expressed as

∆Γf(x) =
1

W(u)

2∑
i,j=1

∂i(g
ij(u)W(u)∂jf(X(u))

where u = X−1(x). In [35], B. Ettinger et al. show that (A.4) can be equivalently
expressed as the following problem over the planar domain Ω:

Jλ(f(X(u))) =
n∑
i=1

(zi − f(X(ui)))
2 +

+λ

∫
Ω

[
1

W(u)

2∑
i,j=1

∂i(g
ij(u)W(u)∂jf(X(u))

]2

W(u)dΩ ,

(A.6)

where X(ui) = xi. Moreover, for conformal coordinates, the functional Jλ re-
duces to

Jλ(f(X(u))) =
n∑
i=1

(
zi − f(X(ui))

)2
+ λ

∫
Ω

[
1√
W(u)

∆f(X(u))

]2

dΩ ,

(A.7)

where ∆f is the standard Laplacian over the planar domain Ω. Therefore, this
problem turns out to be a modification of the estimation problem presented in
Section A.2.1.

From a computational viewpoint, the conformal map in Equation (A.5) may
be approximated via finite elements. The planar finite elements mentioned in
Section A.2.1, can be adapted to a three-dimensional triangular mesh. In [57] a
technique based on finite elements is specifically developed for flattening tubular
surfaces. In [35], B. Ettinger et al. resort to a similar approach. This approach to
estimate the conformal map uses a three-dimensional triangular mesh that approx-
imates the original surface domain Γ. The three-dimensional mesh is flattened into
a planar triangular mesh that discretizes Ω via the finite element approximation to
the conformal map. One benefit of using a conformal map is that it preserves
angles and thus shapes, i.e., compare Figure A.1 and A.2.

After the conformal flattening, we are ready to apply the estimation method of
Section A.2.1 with the variant provided in Equation (A.7), to accommodate for the
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domain deformation implied by the flattening phase. Note also that the estimates
along the two “cut” sides have to coincide; this is in fact an artificial cut. To
prevent a seam, we have to take care of maintaining the periodicity of the estimate
along the “cut” edges, see [35, 97]. Similarly to SSR over planar domains, the
estimator of f is linear with respect to the observed data values, so that classical
inferential tools may be derived. In fact, many of the properties of SSR over planar
domains hold for SSR over non-planar domains as provided in [35].

A.4 Simulations Studies
In this section, we provide the results on a first simulation study. We illustrate
the performance of the smoothing technique over non-planar domains proposed
by B. Ettinger et al.. In particular, we compare the results obtained via their SSR
model for non-planar domains with those yielded by the SSR model for planar
domains combined with a simple angular flattening.

Notice that the methods differ in two ways. The first is the flattening map. For
the SSR model over non-planar domains, since it is generated by a conformal map,
the triangulation preserves the shapes of the triangles in the original mesh. On the
other hand, the triangulation generated by the angular map does not preserve the
shape of the triangles in the original mesh.

The second difference is the penalty. The SSR models over non-planar do-
mains use information from the conformal flattening map to adjust for the domain
deformation implied by the map, hence considering the full three-dimensional
domain.

Figure A.1, A.2 and A.3 illustrate the flattening of a test surface domain. Fig-
ure A.1 shows the original non-planar domain approximated by a three-dimensio-
nal triangular mesh, while Figure A.2 displays the conformally equivalent planar
triangulated domain. Then, Figure A.3 shows the planar domain obtained with the
angular map described in Section A.1.

The sides of the planar triangulations are labelled to have a correspondence
with respect to the surface in Figure A.1. In particular, the sides of the planar
triangulation labelled with “bottom” and “top” correspond to the bottom and to
the top open boundaries of the original three-dimensional domain. The two sides
indicated by “cut” correspond to a cut along the three-dimensional domain, con-
necting the two open boundaries of the surface, that is introduced when calculating
the flattening map, see [57].

For these simulations, three domains are considered, see Figure A.4 and they
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Figure A.1: Three-dimensional triangular mesh approximating a non-planar test
domain.

Figure A.2: The planar triangulation obtained by conformally flattening the do-
main in Figure A.1.

Figure A.3: The planar triangulated domain obtained by the angular flattening of
the domain in Figure A.1.
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are approximated by three-dimensional triangular meshes. Each geometry is topo-
logically equivalent to a cylinder. Over each of these non-planar domains, we
consider 50 test functions, having the form

f(x1, x2, x3) = a1 sin(2πx1) + a2 sin(2πx2) + a3 sin(2πx3) + 1

with coefficients ai, for i = 1, 2, 3, randomly generated from independent normal
distributions with mean 1 and standard deviation 1. The data locations xi coincide
with the nodes of the three-dimensional meshes.

Figure A.4: Three test surface domains. On each surface, the colour map indicates
one of the selected test functions f(x1, x2, x3) = a1 sin(2πx1) + a2 sin(2πx2) +
a3 sin(2πx3) + 1, with coefficients a1, a2 and a3 randomly generated from inde-
pendent normal distributions with mean 1 and standard deviation 1.

The noisy observations zi in correspondence with the locations xi, for i =
1, . . . , n, are obtained by adding independent normally distributed errors, with
mean 0 and a standard deviation 0.5, to the test function, in accordance with model
(A.3). An example of a test function and the corresponding level of noise is illus-
trated on each geometry in Figure A.4 and A.5, respectively.

For each simulation replicate, optimal values of the smoothing parameter λ in
Equation (A.2) and (A.4) are selected by generalized cross validation for both the
models on planar and non-planar domains, as described in [97] and [35], respec-
tively.

Table A.1 shows the median and inter-quantile ranges of the Mean Square
Errors (MSE) of f estimators over the 50 simulations. The table also reports the
results of pairwise Wilcoxon tests verifying if the distribution of MSE for the
estimates provided by SSR over non-planar domains (SSRNP) is stochastically
lower than the distribution of the MSE for the estimates provided by SSR method
over planar domains (SSRP), [111]. The p-values of these tests show that the MSE
of SSR over non-planar domains estimates are significantly lower than the ones of
SSR over planar domains, uniformly over the three surface domains considered.
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Figure A.5: On each test surface, at each of the data location xi, coinciding with
the nodes of the three-dimensional meshes approximating the surface domains,
independent normally distributed errors with mean 0 and a standard deviation 0.5
are added to the test function; the colour maps are obtained by linear interpolation
of the resulting noisy observations.

MSE Geometry 1 Geometry 2 Geometry 3
angular map + SSRP 0.027 (0.018) 0.127 (0.130) 0.111 (0.153)

SSRNP domains 0.025 (0.017) 0.104 (0.095) 0.068 (0.055)
SSRNP vs. SSRP 0.016e+ 00 5.300e− 10 3.700e− 09

Table A.1: Median (inter-quantile ranges) of MSE of f estimators over the 50
simulations; p-values of pairwise Wilcoxon tests verifying if the distribution of
MSE for the estimates provided by SSR over non-planar domains is stochastically
lower than the distribution of the MSE for the estimates provided by SSR method
over planar domains.

Figure A.6: The estimates provided by SSR over non-planar domains, with values
of λ selected by generalized cross-validation.
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[82] T. Möller. A fast triangle-triangle intersection test. J. Graph. Tools,
2(2):25–30, 1997. (Cited in page 237).

[83] R. Nicosia and A. Codova. Geometria. Sei, 1984. (Cited in page 8).

[84] J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adap-
tivity for the finite element method. Comput. Math. Appl., 41(5):735–756,
2001. (Cited in page 23).

[85] M. A. Olshanskii and A. Reusken. A finite element method for surface
pdes: matrix properties. Numer. Math., 114(3):491–520, 2010. (Cited in
page 27).

[86] M. A. Olshanskii, A. Reusken, and J. Grande. A finite element method
for elliptic equations on surfaces. SIAM J. Numer. Anal., 47(5):3339–3358,
2009. (Cited in page 27).

[87] S. J. Owen, D. R. White, and T. J. Tautges. Facet-based surfaces
for 3d mesh generation. In In Proceedings 11th International Meshing
Roundtable, pages 297–311, 2002. (Cited in page 155).

[88] J. Peraire, M. Vahdati, K. Morgan, and O. Zienkiewicz. Adaptive remesh-
ing for compressible flow computations. J. Comput. Phys., 72(2):449 –
466, 198. (Cited in pages 9, 11).

[89] M. Picasso. Numerical study of the effectivity index for an anisotropic error
indicator based on zienkiewicz–zhu error estimator. Comm. Numer. Meth.
Engng., 19(1):13–23, 2003. (Cited in pages 20, 137).

285



BIBLIOGRAPHY BIBLIOGRAPHY

[90] H. Pottmann, T. Steiner, M. Hofer, C. Haider, and A. Hanbury. The
isophotic metric and its application to feature sensitive morphology on sur-
faces. Springer, 2004. (Cited in page 153).

[91] S. Prudhomme and J. T. Oden. On goal-oriented error estimation for elliptic
problems: application to the control of pointwise errors. Comput. Meth.
Appl. Mech. Engng., 176(1):313–331, 1999. (Cited in page 23).

[92] T. Ramsay. Spline smoothing over difficult regions. J. R. Stat. Soc. Ser. B
Stat. Methodol. (Cited in pages 267, 268).

[93] J. F. Remacle, C. Geuzaine, G. Compre, and E. Marchandise. High-quality
surface remeshing using harmonic maps. Int. J. Numer. Meth. Eng., 2010.
(Cited in page 29).

[94] R. Ronfard and J. Rossignac. Full-range approximation of triangulated
polyhedra. Comput. Graph. Forum, 15(3):67–76, 1996. (Cited in pages
186, 190).

[95] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for render-
ing complex scenes. In B. Falcidieno and T. Kunii, editors, Modeling in
Computer Graphics, IFIP Series on Computer Graphics, pages 455–465.
Springer Berlin Heidelberg, 1993. (Cited in page 187).

[96] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006. (Cited in pages 226, 231, 252).

[97] L. Sangalli, J. Ramsay, and T. Ramsay. Spatial spline regression models.
Technical report, Tech. rep. N. 08/2012, MOX, Dipartimento di Matematica
“F.Brioschi”, Politecnico di Milano, 2012. (Cited in pages 267, 268, 269,
272, 274).

[98] L. M. Sangalli, J. O. Ramsay, and T. O. Ramsay. Spatial spline regression
models. J. Ro. Stat. Soc. B Stat. Meth., 75(4):681–703, 2013. (Cited in
page 204).

[99] L. M. Sangalli, P. Secchi, S. Vantini, and A. Veneziani. A case study in
exploratory functional data analysis: geometrical features of the internal
carotid artery. J. Amer. Statist. Assoc. (Cited in page 268).

286



BIBLIOGRAPHY BIBLIOGRAPHY

[100] R. Schneiders. Mesh generation & grid generation on the web.
http://www.robertschneiders.de/meshgeneration//meshgeneration.html.
(Cited in page 18).
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