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Preface

Finally, as all the adventures a man undertakes, this one has also come to an end.
But more than for having reached the end, I am happy for everything that such
an adventure has offered me. I went through many emotions, from happiness and
satisfaction to sadness and demoralisation, being put to the test several times, most of
them by myself and by my ambition, and I learnt to face unforeseen and undeserved
defeats. I worked as never before but I was able to, at least partially, satisfy my deep
curiosity. I met many people in my same situation and I am glad I could spend some
of my time with them, establishing long-lasting relationships. There are then many
people I would like to thank for having reached the end of this adventure.

Thank you Marta, for being there to celebrate my successes with me, but also
to support and sustain me in all the dire situations I went through. Thank you for
being always at my side in these years, even when we were both wishing not to be so
far apart. Lastly, thank you for the real and tangible love you offer me everyday.

I also would like to thank my mentors and promoters, who helped me during these
months of hard work, and other people of the CIT department who were ready to
give me their assistance when needed. Thank you Mattia for being so willing to offer
me your hand every time I was bound to fall and for being such an open person also
outside the office hours. Thank you Dries for your kindness and your capability of
always making people feel at ease. Thank you Prof. Filip Logist for your professional
enthusiasm concerning our research and Prof. Jan Van Impe for having allowed me
to work on the topic I desired. Thank you Prof. Flavio Manenti for your willingness
to support me in this thesis at any time, even from Milan. Thanks also to those who
shared their office with me in these months, Joost and Dominique, the latter also for
his support with Pomodoro. Thanks also to the head of the CIT department, Prof.
Peter Van Puyvelde, for being so kind in welcoming me in KULeuven and so willing
to help me with all the international exchange related problems.

However, I should not forget the support I got from people I already knew before
leaving. Thus, I would like to thank my family for its continuous support. Thanks to
my father Luciano and my mother Paola for having always been ready to listen to
my doubts and to advise me in the hard choices I had to take. Thank you Leonardo
for your immeasurable strength and for being always willing to ask or give advice
to me, irrespectively of the physical distance. I am really glad you could make it to
my proclamation. Thanks also to the rest of my family, to my grandparents, aunts,
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uncles and cousins, because in our meetings, despite their rarity, I always feel at
home.

A special thanks should also go to my good old friends. Thank you Michele for
being such a good friend when drinking and playing, but also when a deep reflection
is needed. Thank you Dario for all the support you gave me at the beginning of
this thesis and for being a good friend I can always count on. Thank you Elena,
Francesco, Giacomo, Giovanni and Matteo. Although we only meet few times a
year, those are always good moments that I look for. Thanks also to my friends
Alberto, Cristina, Federica, Laura, Luca, Marco, Michelangelo, Valentina for the good
times we spend together. Thanks to my staff colleagues Carlo, Giulio, Marianna,
Giulia, Francesca, Francesco for having shared so many thoughts and unforgettable
adventures with me. Thank you to the rest of my Scout community Alberto, Andrea,
Anna, Antonella, Camilla, Camilla, Federica, Francesca, Guelfo, Marco, Matteo,
Michele, Mimmo, Sergio, Tommaso, Valeria for having been part of my life outside
the University. Thank you to my Milanese friends Andrea, Bruno, Edoardo, Giovanna,
Marco, Mattia, Paola, Rafaella, Stefano, Stefano for all the days we spent smiling in
Politecnico and for all the exams we faced together.

There are many more people I would like to thank. Old friends, as Prof. Roberto
Masiero, my high school class-mates and my Scout companions, as well as new ones,
who I only met in Leuven. That will take too much time, space and effort, but do
not worry, I did not forget you.

Thanks to all of you again, because, although in different moments, you have
all shared a part of my University adventure. However, now that this is over I am
looking forward to set out for a new challenging one. I do not know what the future
has in store for me, but I really hope that many of you could still share with me even
just a fraction of this new journey.

Lorenzo Cabianca
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Come tutte le avventure che un uomo intraprende, anche questa è giunta alla sua fine.
Ma più che per l’aver raggiunto la fine, sono felice per tutto ciò che quest’avventura
ha avuto da offrirmi. Ho provato molte emozioni, da felicità e soddisfazione a tristezza
e demoralizzazione, essendo stato messo alla prova molte volte, la maggior parte
delle quali da me stesso e dalla mia ambizione, e ho imparato ad affrontare sconfitte
impreviste e immeritate. Ho lavorato come non mai ma sono stato in grado, almeno
in parte, di soddisfare la mia sterminata curiosità. Ho incontrato molte persone nella
mia stessa situazione e sono davvero contento di aver potuto spendere un po’ del mio
tempo con loro, creando relazioni durevoli e profonde. Ci sono quindi molte persone
che desidero ringraziare per essere riuscito a terminare questa avventura.

Grazie Marta per esserci sempre stata per celebrare i miei successi con me, ma
anche per sostenermi in tutti i momenti bui che ho attraversato. Grazie per essere
sempre stata al mio fianco questi anni, anche quando entrambi desideravamo non
essere così lontani. Grazie, infine, per l’amore concreto ed autentico che mi doni ogni
giorno.

Desidero anche ringraziare i miei mentori e relatori, che mi hanno aiutato in questi
mesi di duro lavoro, e altre persone del dipartimento di ingegneria chimica (CIT)
della KULeuven, sempre pronte ad assistermi quando ne avessi avuto bisogno. Grazie
Mattia per essere stato così disponibile a tendermi la mano ogniqualvolta stessi per
cadere e per essere una persona così disponibile e aperta anche al di fuori dell’orario
di lavoro. Grazie Dries, per la tua gentilezza e la tua capacità di mettere sempre
chiunque a suo agio. Grazie Prof. Filip Logist per il suo entusiasmo professionale per
la nostra ricerca e grazie Prof. Jan Van Impe per avermi permesso di lavorare sul tema
che desideravo. Grazie Prof. Falvio Manenti per la sua disponibilità a supportarmi
in questa tesi in ogni momento, anche da Milano. Ringrazio anche coloro che hanno
condiviso il loro ufficio con me in questi mesi, Joost e Dominique, quest’ultimo anche
per la sua assistenza con Pomodoro. Grazie anche al Prof. Peter Van Puyvelde, per
avermi così gentilmente accolto nella KULeuven e per essere sempre stato disposto
ad aiutarmi con con tutti i problemi relativi allo scambio internazionale.

Non posso però dimenticare il supporto ricevuto da tutte le persone che conoscevo
prima di partire. Per questa ragione, vorrei ringraziare la mia famiglia, per il suo
supporto continuo. Grazie a mio papà Luciano e a mia mamma Paola per essere
sempre stati pronti ad ascoltare i miei dubbi e consigliami nelle scelte difficili che ho
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dovuto fare. Grazie Leonardo per la tua forza incommensurabile e per essere sempre
disponibile a chiedere o dare consigli, indipendentemente dalla nostra distanza fisica.
Sono davvero felice che tu sia riuscito ad esserci alla mia proclamazione. Grazie anche
a tutto il resto della mia famiglia, ai miei nonni, zie, zii e cugini perché durante i
nostri incontri, anche se rari, mi sento sempre a casa.

Un grazie speciale anche ai miei vecchi amici. Grazie Michele, per essere un così
buon amico, quando si gioca o si beve, ma anche quando c’è bisogno di fare riflessioni
importanti. Grazie Dario per l’aiuto che mi hai dato all’inizio di questa tesi e per
essere un amico su cui posso sempre contare. Grazie Elena, Francesco, Giacomo,
Giovanni e Matteo. Anche se riusciamo a vederci poche volte all’anno, sono sempre
momenti che apprezzo e che cerco. Grazie anche ai miei amici Alberto, Cristina,
Federica, Laura, Luca, Marco, Michelangelo, Valentina per tutti i bei momenti
che passiamo insieme. Grazie alle miei compagni di staff Carlo, Giulio, Marianna,
Giulia, Francesca, Francesco per aver condiviso con me così tante idee e avventure
indimenticabili. Grazie a tutto il resto della mia Comunità Capi Alberto, Andrea,
Anna, Antonella, Camilla, Camilla, Federica, Francesca, Guelfo, Marco, Matteo,
Michele, Mimmo, Sergio, Tommaso, Valeria per essere stati parte della mia vita
extra-universitaria. Grazie ai miei amici milanesi Andrea, Bruno, Edoardo, Giovanna,
Marco, Mattia, Paola, Rafaella, Stefano, Stefano per tutti i giorni passati sorridendo
al Politecnico e per tutti gli esami che abbiamo affrontato insieme.

Ci sono molte altre persone che vorrei ringraziare. Vecchi amici, come il Prof.
Roberto Masiero, i miei compagni del liceo e i miei compagni Scout, ma anche nuovi
amici, che ho incontrato a Leuven. Questo prenderebbe parecchio tempo, spazio ed
energie, ma non preoccupatevi, non vi ho dimenticato.

Grazie a tutti voi ancora perché, anche se in momenti diversi, avete tutti condiviso
con me una parte della mia avventura universitaria. Ma ora che questa avventura è
finita, sono già pronto a partire per una nuova. Non so cosa il futuro abbia in serbo
per me, ma spero davvero che molti di voi possano condividere con me anche solo
una frazione di questo nuovo viaggio.

Lorenzo Cabianca
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Abstract

This thesis will focus on the application of optimal control theory to (bio-)chemical
processes, where it can be applied to shift towards more sustainable production routes.
It should be stressed, however, that the solution of highly non-linear systems, as
those involved in (bio-)chemical processes, is not always easy to obtain and that it
can lead to computational problems.

Two variations of optimal control will also be analised, namely robust optimal
control and multi-objective optimal control, which deal respectively with uncertain
parameters and multiple objectives. These two features can be combined in a robust
multi-objective optimal control problem, which will also be investigated.

Two mathematical formulations to solve robust optimal control problems, the
linear and sigma points approximations, will be exploited for the solution of different
case studies for a number of uncertain parameters varying from one to four. The
obtained results are compared and the sigma points will prove itself to be more
effective than the linear approximation when dealing with highly non-linear systems.
Generally, the sigma points approximation will also require lower computational time.
The application of such approximations introduces an additional safety margin to
account for uncertainties. Nevertheless, a loss in terms of performances is to be
expected for both approaches.

The multi-objective optimisation of a Siemens reactor will be faced. The results
will present a clear trade-off between the production and the energy consumption
and multiple optimal solutions will be found. This last problem is also solved when
two uncertain parameters are present in the model equations. Despite the higher
complexity of the system treated, and the high amount of solutions demanded, the
sigma points will prove once more its efficiency in terms of computational time.

All the results shown suggest that optimal control should be regarded at as an
interesting field for additional research in the frame-works of sustainable development
and sustainable production models for the (bio-)chemical industry.

viii



Estratto

Sebbene la teoria del controllo ottimale e dell’ottimizzazione dinamica siano stati stu-
diati da secoli, oggigiorno stanno acquisendo interesse crescente anche in applicazioni
industriali. In particolare, questa tesi si focalizzerà sulla loro applicazione in processi
(bio)chimici, dove possono essere un ottimo strumento per procedere verso modelli
di produzione più sostenibili. Sono infatti strumenti per operare diversi processi al
più elevato livello di efficienza. È comunque importante sottolineare che ottenere la
soluzione di problemi che presentano equazioni ad alto grado di non linearità, quali
i sistemi coinvolti in applicazioni (bio)chimiche, non è sempre facile, con il rischio
concreto di incorrere in problemi di calcolo.

In questa tesi, la teoria del controllo ottimale verrà analizzata considerando
due variazioni: controllo ottimale robusto e controllo ottimale multiobiettivo. La
prima delle due variazioni permette la soluzione di problemi di ottimizzazione anche
in presenza di parametri incerti nelle equazioni del modello. Spesso infatti, nelle
equazioni che descrivono i sistemi considerati, ci sono parametri che non possono
essere identificati correttamente o che sono stimati con un certo grado di incertezza.
Il controllo ottimale robusto permette di ottenere una soluzione ottimale nonostante
questa difficoltà, grazie all’introduzione di un margine di sicurezza aggiuntivo, a costo
di una perdita di prestazioni del sistema.

La seconda variazione, invece, permette di considerare più di una singola funzione
obiettivo nel problema di ottimizzazione. Un chiaro esempio potrebbe essere il
desiderio di massimizzare la produzione ed allo stesso tempo minimizzare i consumi
energetici. In aggiunta, queste due caratteristiche possono essere combinate in un
problema di controllo ottimale multiobiettivo e robusto, il quale verrà a sua volta
studiato in questa tesi.

Due formulazioni matematiche per la soluzione di problemi di controllo ottimale
con parametri incerti verranno utilizzate per la soluzione di due diversi esempi con
un numero di parametri incerti compreso tra uno e quattro. I due approcci utilizzati
possono essere definiti approssimazione lineare e approssimazione sigma points. I
risultati ottenuti con i due approcci saranno poi confrontati e il metodo sigma points
si dimosterà più efficace dell’approssimazione lineare, quando il problema coinvolge
equazioni altamente non lineari. Verrà anche dimostrato che il metodo sigma points
richiede meno tempo per la risoluzione dei casi analizzati.
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Successivamente verrà affrontata l’ottimizzazione multiobiettivo di un reattore
Siemens per la produzione di silicio policristallino. I risultati ottenuti, mostreranno
un chiaro compromesso tra la produzione e il consumo energetico, portando a diverse
soluzioni ottimali. Sebbene matematicalmente equivalenti, queste soluzioni presente-
ranno diversi valori per le funzioni obiettivo. In casi reali, il decision-maker è dunque
chiamato a scegliere una di queste soluzioni equivalenti ed a metterla in pratica.

Infine, due parametri verranno considerati come incerti nell’ottimizzazione multio-
biettivo del reattore Siemens. Il metodo sigma points verrà utilizzato, e le conseguenze
sulle soluzioni ottimali precedentemente ottenute verranno discusse. Nonostante il
caso trattato sia più complesso dei precedenti, il metodo sigma points dimostrerà
nuovamente la sua efficienza in termini di tempo di calcolo, necessitando di solamente
un’ora per la soluzione di un problema di controllo ottimale multiobiettivo e robusto,
che modella il comportamento del reattore per tre giorni.

Attraverso tutti i casi teorici e pratici trattati, il controllo ottimale si è dimostrato
altamente efficace nell’ottimizzazione di reattori (bio)chimici, anche se le sue applica-
zioni non si limitano a questo unico campo. Inoltre, l’utilizzo di algoritmi numerici
efficienti e formulazioni matematiche adeguate porta ad ottenere risultati in tempi
rapidi, anche quando sono coinvolti sistemi di equazioni altamente non lineari. Tutti
questi risultati suggeriscono che la teoria del controllo ottimale può essere ritenuta
un campo di ricerca interessante nell’ambito dello sviluppo sostenibile e di modelli di
produzione sostenibili per l’industria (bio)chimica.
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Chapter 1

Introduction

This thesis will focus on the theory of optimal control problems (OCPs) applied to
(bio)chemical processes. Although with different names, OCP has been of interest also
in the past. In fact, famous past scientists as Galileo Galilei and Johann Bernouilli
already approached the problem in the 17th century. Galilei dealt with finding the
shape of a heavy chain hanged at the extremes, called the catenary problem, while
Bernouilli challenged his contemporary colleagues with the brachystochrone problem
(Sussmann and Willems, 1997) (Sargent, 2000). This last problem involved the
investigation of the trajectory that minimises the time a ball needs to fall from a
point A to a point B under the influence of its own weight (Sussmann and Willems,
1997) (Sargent, 2000). Nevertheless, the widely accepted start of the modern OCP
theory is the development of Pontryagin’s maximum principle (1958), which has been
widely exploited in the aerospace industry and during the space missions of the 1960s
(Sussmann and Willems, 1997) (Diehl, 2011).

In more recent years, optimal control (OC) has become a very useful tool in
industry. It is mainly exploited to facilitate decision-making, either when planning
and taking strategic future decisions, or during real-time optimisation (Logist and
Van Impe, 2013) (Manenti et al., 2013). OCP involves the optimisation of a single
objective function, usually chosen depending on the market situation. This gives
rise to a function that determines the inputs to the system, to make it as efficient as
possible. By doing that, the chosen objective is minimised or maximised, depending
on its formulation.

OCP in industry can be applied to single unit operations but also to complete
processes. Examples can be maximising the productivity or the yield of a reactor,
as in Logist et al. (2009), but also minimising energy consumption of a whole plant
or the raw materials cost. Many other examples can be thought of, depending on
the individual process considered. Although this work will focus mainly on chemical
engineering applications, this does not restrict the field of application of optimal
control. Different examples can be found in Diehl et al. (2006) and Houska and Diehl
(2009), where OC theory is applied to a robot arm and a crane.
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1. Introduction

In the chemical industry, the need for this tool arises from different problems that
have to be faced by European companies in order to be competitive on the global
scale. Raw materials often have to be imported and many of them are depleting in
the world, leading to increase in their price. Together with that, energy prices in
Europe are higher than they were few decades ago, but also higher with respect to
other parts of the world. A clear example of this point are the Middle-East countries,
that can exploit oil at very low prices, or the USA that can do the same with methane,
by using unconventional natural gas sources, as shale-gas. Thus the need of operating
processes in the most efficient ways is evident, although the definition of efficient is
not univocal since it highly depends on what should be optimised.

Nowadays, though, interest has been developed in trying to optimise more than one
objective function. For instance, a decision-maker might be interested in maximising
the productivity of a reactor and minimising energy consumption at the same time,
being faced with a so-called multi-objective optimal control problem (MOOCP). This
is due to several factors of global concern:

1. increase in energy prices, following the oil crisis of the past century;

2. increase in raw materials and resource prices, due to progressive depletion and
political choices of the producing countries;

3. social and political awareness of environmental issues, as global warming or
waste emissions, which brought to stricter regulations and attempts to decrease
emissions, like the European Union tradable permits system.

All these factors, together with those described in the previous paragraph, are putting
pressure on the (bio)chemical industry. Optimal control and multi-objective optimal
control (MOOC) can be a suitable tool for sustainable development. Indeed, the
objective functions can be based on economic considerations, as the maximisation
of the productivity, but also on environmental or social basis. Examples can be the
minimisation of the raw material consumption or of the waste production. MOOCP
deals with the simultaneous optimisation of more than one objective, giving a set of
possible and mathematically equivalent solutions, called Pareto set. From all these
possible solutions, the decision-maker can pick the best one according to her or his
choice criteria. Several examples are already available in the literature, e.g. (Logist
et al., 2009) (Logist et al., 2012). MOOCP will also be treated in this master thesis.

The solution of OCPs and MOOCPs is nowadays obtained through the exploitation
of numeric computation. Several algorithms are present in the literature, e.g. in
Houska et al. (2011). For this thesis, those of Pomodoro, a package developed within
the BioTeC division of KULeuven to solve optimal control problems, will be employed.

OCP and MOOCP usually rely on the system dynamics of the process, which have
to be carefully modelled. This implies a perfect knowledge of all parameters involved
in the system equations. However, this is not always guaranteed. In fact, very often,
parameters are introduced in model equations to simplify them and avoid taking
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care of quantities that can only be estimated, or that are difficult to measure with
good precision. Examples can be the scaling factor on a heat exchanger wall (Logist
et al., 2011) (Houska et al., 2012) or the inlet substrate concentration of a fed-batch
bio-reactor (Logist et al., 2011). Usually, the presence of uncertain parameters leads
to lower performances of the system, as it will be more clearly explained in the
text. In order to deal with these uncertainties, robust OCP has been developed. In
particular, two approaches will be considered in this thesis: the linear approximation
(Srinivasan et al., 2003) and the sigma points approximation (Julier and Uhlmann,
1996) (Recker et al., 2012).

Finally, uncertainties on parameters will be considered also when dealing with
multiple objectives. This problem, that can be renamed robust MOOCP, will combine
the robustification approach together with the concept of Pareto set. Again a set of
equivalent solutions is obtained, but they will not be as performing as they were in
the original MOOCP (Logist et al., 2011).

Although whole plants can also be optimised, only (bio-)chemical reactors are
considered in this work. In particular, four models of different complexity will be
used. The two simplest cases will be a fed-batch bio-reactor for the lysine production
(Logist et al., 2009) and a jacketed tubular reactor (Logist et al., 2011) (Houska
et al., 2012). The Williams-Otto (WO) reactor (Williams and Otto, 1960) (Forbes,
1994) and, in particular, the chemical vapour deposition (CVD) reactor (Viganò et al.,
2010) will, instead, present higher complexity. This last reactor, in particular, will
present a highly complex model, being a real industrial reactor for the production of
polycrystalline silicon rods (Viganò et al., 2010).

The objectives of this thesis are the followings:

1. assess the reliability and efficiency of the newly developed computational
algorithms implemented in Pomodoro;

2. evaluate the performances on small and medium-scale models of two different
approaches for robust OC, namely the linear and sigma points approximations;

3. solve the multi-objective and robust multi-objective optimal control problem of
a real industrial case, the chemical vapour deposition reactor.

The thesis structure can be summarised as follows. In Chapter 2, a literature study
about optimal control is made. This will be comprehensive of the most important
theoretical background needed to deal with the practical cases of this thesis. The
methods available for the solution of OCPs will also be presented and briefly described.

Afterwards, Chapter 3 will present the materials and methods. The software
adopted for the solution of OCPs are described. Additionally, the model equations
of three of the reactors introduced before are given. These will be the fed-batch
bio-reactor, the jacketed tubular reactor and the WO reactor. These examples will be
useful to assess the algorithms and the methodologies exploited during the thesis. This
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will be done in Chapters 4 and 5. In particular, Chapter 4 deals with the simultaneous
maximisation of the productivity and the yield of the fed-batch bio-reactor. Thus a
multi-objective optimisation problem will be solved. The results obtained are then
compared with the literature (Logist et al., 2009), in order to assess the algorithms
exploited in this thesis. In Chapter 5 the conversion in the jacketed tubular reactor
and the productivity of the WO reactor are maximised. These OCPs, however, will
also take into consideration several uncertain parameters. Thus Chapter 5 will deal
with robust OC. As in Chapter 4, the results obtained for the jacketed tubular reactor
case will be compared with the literature (Logist et al., 2011).

Finally, a real industrial problem will be treated in Chapter 6. Indeed, this will be
the CVD reactor, often referred to as Siemens reactor (Viganò et al., 2010), for the
production of polycrystalline silicon rods (Viganò et al., 2010). The rods obtained are
mostly required for their semi-conductive properties and are of vital importance for
the photo-voltaic and micro-electronics industries (del Coso et al., 2011). The aim of
the Chapter will be to maximise the production of the reactor, while minimising its
energy consumption. While doing so, uncertainties on two different model parameters
will also be taken in consideration. In Chapter 6, then, a robust multi-objective
optimal control problem will be solved for a real industrial case.

Lastly, Chapter 7 will conclude the thesis, finalising and summarising the results
attained.
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Chapter 2

Literature Study

2.1 Introduction

The definition of an optimal control problem together with its general formulation
and the explanation of the involved terms will be given in Section 2.2. Due to the
high complexity of the systems treated, nowadays the solution of optimal control
problems is exploited by efficient numerical algorithms. The basic approaches to
numerically solve an OCP will be treated in Section 2.3. In particular, already
mentioned Pontryagin’s maximum principle will be explained in Section 2.3.2, while
the approach exploited throughout all this thesis will be explained in Section 2.3.3.

Moreover, in recent years, two particular variations of OC are gaining more
importance, namely multi-objective optimal control (MOOC) and robust OC. The
first one handles the simultaneous optimisation of more than one objective function.
The second one deals with optimal control of systems where uncertainties over some
parameters are present. Again, the solution methodology and algorithms will be a
relevant matter. They will also be discussed in this Chapter.

Section 2.4 introduces the MOOCP formulation, while its solution methodologies
are addressed in Section 2.5. Section 2.6 instead explains the theory behind robust
OC and its solution approaches.

Section 2.7 will then conclude and summarise this first review Chapter.

2.2 Optimal control problem formulation

Optimal control is an optimisation strategy that allows to evaluate the control
trajectories needed to exploit a process at its optimum. A control trajectory, can
be defined as a function that regulates the behaviour of the control inputs of the
analysed system. The control inputs depend on the objective that has to be optimised.
For the purpose of this thesis, the general formulation of an optimal control problem
is the following (Logist et al., 2009) (Logist et al., 2012):

7



2. Literature Study

minimise
x(ξ),u(ξ),p,ξf

J(x(ξ),u(ξ),p, ξf) (2.1a)

subject to
dx
dξ

= f (x(ξ),u(ξ),p, ξ) ξ ∈ [0, ξf] (2.1b)

0 = bi(x(0),p) (2.1c)
0 = bt(x(ξf),p) (2.1d)
0 ≥ cp(x(ξ),u(ξ),p, ξ) (2.1e)
0 ≥ ct(x(ξf),u(ξf),p, ξf) (2.1f)

In these equations, ξ is the independent variable, usually the time, x(ξ) are the
differential states of the system such that x(ξ) : < −→ <nx , u(ξ) are the control
variables of the system u(ξ) : < −→ <nu , p are the parameters of the system of
dynamic equations and they are usually considered as constant p : < −→ <np (Houska
et al., 2011). The inputs u(ξ) are those variables that can be manipulated in order
to achieve the optimal trajectory required. J represents the objective function, f
the system dynamics equations, bi and bt the boundary conditions at respectively
the initial and final time, cp and ct the path and terminal inequality constraints to
which the system is subjected. Equations 2.1b-f represent the constraints to which
the system is subjected. It is important to highlight that the model equation itself is
a very important constraint for the OCP 2.1, since it is the only constraint that must
always be present.

The general Formulation 2.1 can be extended by considering the dependency of
the system not only on the differential states x(ξ), but also on some algebraic states
a(ξ) (Houska et al., 2011).

2.2.1 Objective function

It is important to know that, although J is called objective function, it is not a
function, but a functional. A functional is defined as a function from a vector space
to a scalar space. In fact, it is possible to see that the inputs of J are functions of
several vectors, but the output is only a scalar value. From here on, as it is done in
most of the literature, the functional J will be called objective function, although
this feature should always be kept in mind. For standard OCPs, the functional J is
expressed in the formulation (Logist et al., 2009) (Logist et al., 2012):

J(x(ξ),u(ξ),p, ξf) = h(x(ξf),p, ξf) +

∫ ξf

t0

g(x(ξ),u(ξ),p, ξ)dξ (2.2)

The first term in Equation 2.2 is called the Mayer term, or terminal cost, and it
only considers conditions at the end of the time horizon ξf, while the second term
in Equation 2.2 is called the Lagrange term, or integral cost, and it considers the
path followed ∀ξ ∈ [0, ξf]. As stated in Logist et al. (2011), a Lagrange term can
always be rewritten in a Mayer form. This is done by including a new cost state
dxc
dξ = g(x(ξ),u(ξ),p, ξ) with initial condition xc(0) = 0.
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2.2.2 Constraints

Usually, in real processes, it is not allowed to change the inputs without taking into
account several constraints on both states and inputs themselves. Examples can be
that the feeding rate to a certain reactor cannot exceed the pump capacity, or that
the liquid level in that same reactor has to remain between a lower and an upper
bound. A general formulation for the constraints has been presented in Equations
2.1b-f. Important to notice is that the indipendent variable ξ has been limited to
a lower and upper bound [0, ξf], in Problem 2.1. Usually, the lower bound for this
variable is known also in practical cases, but its upper bound is not known for all
OCPs and there are frequent cases when this value is free and has to be determined.
In this formulation, the dynamic model that the system is following is represented in
Constraint 2.1b. The boundary conditions to the model equation, for ξ = 0 and ξ = ξf
are given in Constraints 2.1c and 2.1d, while the Lagrange and Mayer constraints on
both states and inputs are assessed in Equations 2.1e and 2.1f, respectively.

In conclusion, it is important to define the feasible set Ω as the set containing
all the points that satisfy the dynamic Equation 2.1b, together with all the other
Constraints 2.1c-f (Logist et al., 2012) (Diehl, 2013).

Definition 1. Ω = {y = (x(ξ),u(ξ),p, ξf)|({bi, bt} = 0), cp ≤ 0, ct ≤ 0}.

2.3 Optimal control problem solution

All the previous formulations of OCP have been posed in a continuous-time form.
For simple OCPs, often the exploitation of an analytical solution is possible, as it
was for Galilei’s catenary problem (Sussmann and Willems, 1997). Anyway, chemical
industry is often dealing with dynamic systems of high complexity. For this reason,
most of the times solutions are found by using computer programmes and numerical
techniques. The general Problem 2.1 can then be rewritten in a discrete-time form,
of which good example is provided by Diehl (2011):

minimise
x0,u0,x1,u1,...,xN−1,uN−1,xN,p

N−1∑
k=0

L(xk,uk,p) + E(xN,p) (2.3a)

subject to xk+1 − fk(xk,uk,p) = 0 ∀k = 0, . . . ,N− 1
(2.3b)

N−1∑
k=0

rk(xk,uk,p) + rN(xN,p) = 0 (2.3c)

hk(xk,uk,p) ≤ 0 ∀k = 0, . . . ,N− 1
(2.3d)

hN(xN,p) ≤ 0 (2.3e)

In this formulation, the independent variable ξ has disappeared. The time horizon
[0, ξf] has been discretised in N intervals with index k. Although different from
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Equation 2.2, in Equation 2.3a it is still possible to identify the Mayer and Lagrange
term of the objective function. The latter has no more an integral form, but it has
become a sum. Also the constraints have been rearranged. The model constraint
Equation 2.1b has been replaced with the discretised form 2.3b. The same happened
to the path and terminal inequality Constraints 2.1e and 2.1f that have been replaced
with 2.3d and 2.3e. The boundary Conditions 2.1c and 2.1d, instead have been
rearranged in a less intuitive formulation. In the discretised form, in principle,
every interval k has its own initial and terminal boundary conditions. In practical
applications, this does not happen and usually only r0(x0,u0,p) and rN(xN,uN,p)
are given, but the expression in Equation 2.3c is the most general formulation (Diehl,
2011).

The solution to this problem must satisfy the so-called Karush-Kuhn-Tucker
(KKT) condition, which in the discretised-time formulation can be expressed as (Diehl,
2011)

∇xL(x, λ, µ) = 0 (2.4a)
G(x) = 0 (2.4b)
H(x) ≤ 0 (2.4c)

where

L(x, λ, µ) = J(x) + λ>G(x) + µ>H(x) (2.5a)

G(x) =


f0(x0,u0,p)− x1

f1(x1,u1,p)− x2
...

fN−1(xN−1,uN−1,p)− xN∑N−1
k=0 rk(xk,uk,p) + rN(xN,p) = 0

 (2.5b)

H(x) =

(
hk(xk,uk,p)
hN(xN,p)

)
(2.5c)

These necessary first-order conditions will be taken into account also by the software
used for this work. Problem 2.3 can be classified as a non-linear programming (NLP)
problem. In the literature, several NLP solvers are available. Throughout all this
work, the interior point method will be the one adopted to solve the NLPs within
the optimisation problems. Not being the general aim and topic of this thesis, the
interior point method will not be explained here. Interested readers can find further
informations in Wächter and Biegler (2006).

According to Diehl et al. (2006) and Diehl (2011), there exist three main families
of methods to solve and discretise OCPs, which are: (i) state space approaches, (ii)
indirect methods, (iii) direct methods. An explanation of all of them will be given in
the following Sections.

Finally, it is worth to remark that, although the problem has now been posed in
a discrete-time form and all the presented methods deal with discretisation of states
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and controls, real processes follow continuous-time laws. The discretisation itself will
then cause the solution to be approximated.

2.3.1 State space approaches

The state space approaches are based on the principle of optimality : each sub-
trajectory of an optimal trajectory is an optimal trajectory (Bertsekas, 2005) (Diehl
et al., 2006) (Diehl, 2011). There are two methods based on this principle, dynamic
programming and the Hamilton-Jacobi-Bellman (HJB) equation.

In dynamic programming, a cost-to-go function is defined as the optimal cost
obtained if at any time k = 0, . . . ,N− 1 the following OCP is solved (Diehl, 2011):

Jk(x̄k) = minimise
xk,uk,...,xN−1,uN−1,xN,p

N−1∑
i=k

L(xi,ui,p) + E(xN,p) (2.6a)

subject to xi+1 − fi(xi,ui,p) = 0 ∀i = k, . . . ,N− 1
(2.6b)

x̄k − xk = 0 (2.6c)

x̄k is the initial value for the kth shortened OCP. This OCP is said to be shortened
since the time horizon investigated is no more ξ ∈ [0, ξf] but ξ ∈ [ξk, ξf]. Otherwise
said, not all intervals are considered when solving this problem, but the firsts k− 1
are excluded. Of course this will lead to the solution of only a fraction of the initial
problem, the sub-optimal trajectory introduced with the principle of optimality. For
this reason, the solution of the initial problem is obtained by the so-called dynamic
programming recursion (Diehl, 2011). This means that first the cost-to-go function
for k = N is found, as (Diehl, 2011)

JN(x) = E(x) (2.7)

and then all cost-to-go functions are calculated backwards following the law

Jk(x̄k) = min
u

L(x̄k,u,p) + Jk+1(f(x̄k,u,p)) (2.8)

which is a direct consequence of the principle of optimality (Diehl, 2011). From
this both the optimal control values and the optimal trajectory can be calculated
∀k ∈ [0,N− 1]:

u∗k(xk) = arg min
u

L(xk,u,p) + Jk+1(f(xk,u,p)) (2.9)

xk+1 = f(xk,u∗k(xk),p) (2.10)

By choosing infinitely small time steps in dynamic programming for ξ ∈ [0, ξf], and
thus approaching the continuous time case, the HJB equation is obtained (Diehl,
2011) (Diehl, 2012):

− ∂J

∂ξ
(x, ξ) = min

u
L(x,u) +∇xJ(x, ξ)>f(x,u) (2.11)

11
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and
J(x, ξf) = E(x) (2.12)

In the HJB equation, the cost-to-go function J(x, ξ) is assumed to be continuous
and differentiable with respect to x, which might not be always the case and which is
often not known a priori. Nevertheless, if it is possible to solve the HJB equation,
as it is for example in a linear-quadratic programming (LQP), the optimal control
trajectory can be obtained from Equation 2.11 (Bertsekas, 2005).

It is important to stress that both dynamic programming and the HJB equation
suffer of the Bellman curse of dimensionality. In fact, the continuous state space
of the real process needs to be discretised and put in a grid in state space. If the
number of states is large, the computational effort to obtain the numerical solution
might be expensive (Diehl, 2011) (Diehl, 2012). For this reason the state approaches
are considered as possible methods only for problems with low state dimensionality.

2.3.2 Indirect methods

Indirect methods are developed from the HJB equation and are mainly due to the
work of Pontryagin. In 1958 he developed the Pontryagin’s maximum principle,
which states the necessary conditions that an optimal trajectory must satisfy. These
methods are often referred to as first optimise, then discretise (Diehl et al., 2006)
(Diehl, 2011).

Equation 2.11, can be rewritten in terms of the hamiltonian as (Diehl, 2011):

− ∂J

∂ξ
(x, ξ) = min

u
H(x,∇xJ(x, ξ)) (2.13a)

H(x,∇xJ(x, ξ),u) = L(x,u) +∇xJ(x, ξ)>f(x,u) (2.13b)

where usually ∇xJ(x, ξ) is substituted by the ad-joint variables λ(ξ) = ∇xJ(x, ξ).
The idea of the indirect approach is to find explicitly the optimal controls by assuming
that the states x∗(ξ) and the co-states λ∗(ξ) are known and then differentiate the
HJB equation along the optimal trajectory (Diehl, 2011). Once the explicit optimal
controls are known, they can be eliminated. The problem results then in a boundary
value problem (BVP) in ordinary differential equations (ODE) in the states x and
the co-states λ and needs to be solved numerically. This method is also referred to
as two point boundary problem method (Bertsekas, 2005).

The explicit formulation of the optimal controls u∗explicit(x, λ) is obtained from
(Bertsekas, 2005) (Diehl, 2011)

u∗explicit (x∗, λ∗) = arg min
u

H(x, λ,u) (2.14a)

subject to h(x, u) ≤ 0 (2.14b)

by putting the derivative ∂H
∂u (x∗, λ∗,u∗) = 0. The boundary conditions depend on

the kind of problem. If the terminal value of the states x are fixed, the values of
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2.3. Optimal control problem solution

x(0) and x(ξf) should be taken as boundary conditions. If x(ξf) are not available,
conditions on the ad-joints λ are to be taken in consideration. (Bertsekas, 2005).

If the dependence of the hamiltonian on the optimal control is explicit, the
expression of u∗explicit(x

∗, λ∗) is easily obtained. If this is not the case, there is the
presence of a singular arc. This happens when the minimum of the hamiltonian is
not unique. In this case, the derivative d

dξ
∂H
∂u (x, λ,u) = 0 is taken and it is looked for

explicit dependence on u. If it is not the case, higher order derivatives with respect
to ξ are calculated, until an explicit dependence on u is found for the relation (Diehl,
2011): (

d

dξ

)n ∂H

∂u
(x, λ,u) = 0 (2.15)

Solution of the BVP is obtained numerically and three possible methods are used:
single shooting, collocation, multiple shooting (Diehl et al., 2006) (Diehl, 2011). All
three of them will be explained in Section 2.3.3.

2.3.3 Direct methods

Direct methods are often described as first discretise, then optimise (Diehl et al.,
2006) (Diehl, 2011), in contrast with indirect methods. They are the most widely
used and, in particular, the orthogonal collocation method will also be applied in the
simulations presented in the next Chapters of this work. Direct methods are direct
single shooting, direct multiple shooting and direct orthogonal collocation. All three
of them will be described in this Section.

2.3.3.1 Direct single shooting

In direct single shooting (Sargent and Sullivan, 1978) (Vassiliadis et al., 1994a)
(Vassiliadis et al., 1994b), a time grid is chosen and the controls u(t) are parameterised
as piecewise constant functions in each interval of the grid. These constant values
ui can be gathered in a vector which is the variable manipulated by the NLP solver
to reach the optimal solution. Only the intial value of the states x is given and the
states profiles are considered implicitly depending on the controls vector u(t) (Diehl
et al., 2006). Once a vector of controls ui is obtained, the ODE system is solved
and the objective function is computed. After that, the NLP solver updates the
control parmeterisation and the objective function is computed again. The simulation
and optimisation recur at each iteration. For this reason, direct single shooting is
considered a sequential approach (Diehl et al., 2006) (Logist and Van Impe, 2013).
From Figure 2.1a it is possible to have an idea of the control parameterisation, ui.

Drawbacks of direct single shooting are the impossibility to use background
knowledge to initialize the states x (Diehl et al., 2006) and being a time consuming
method, due to the sequential integrations (Logist and Van Impe, 2013). Moreover,
the constraints on the states x cannot be directly enforced in an easy and efficient
manner, due to the fact that the states are not discretised (Logist and Van Impe,
2013).
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(a) Direct single shooting: discretised controls
and continuous states.

(b) Direct multiple shooting: discretised controls
and states.

(c) Direct orthogonal collocation: discretised con-
trols and states, with intermediate points.

Figure 2.1: Direct single shooting, direct multiple shooting and direct orthogonal collocation.
Gentle courtesy of Logist and Van Impe (2013)

2.3.3.2 Direct multiple shooting

In direct multiple shooting (Bock and Plitt, 1984) (Leineweber et al., 2003a) (Leinewe-
ber et al., 2003b), the controls u(t) are again parameterised in piecewise constant
functions, as it was in direct single shooting. In this case, though, the initial values
of the states x(t) at the beginning of each interval are given to the solver as degrees
of freedom. Figure 2.1b shows this feature. Through this peculiarity it is possible to
exploit initialisation of the states x when previous knowledge is present (Diehl et al.,
2006) (Diehl, 2011). Additional continuity conditions are added, such that, for the
states x(t) of the optimal trajectory, the final value of each interval xi,e coincides with
the initial value of the following one xi+1,e (Diehl et al., 2006) (Logist and Van Impe,
2013). In multiple shooting, the simulation and optimisation problems are not treated
sequentially as it was in direct single shooting, but simultaneously (Leineweber et al.,
2003b) (Diehl et al., 2006). This allows to save computational time, while avoiding
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repeated integrations (Logist and Van Impe, 2013).

2.3.3.3 Direct orthogonal collocation

Direct orthogonal collocation (Biegler, 1984) is also considered a simultaneous ap-
proach as direct multiple shooting (Diehl et al., 2006). The controls u(t) are param-
eterised and states x(t) are given as degrees of freedom as it was in the multiple
shooting case. The continuity of the states x(t) is also assured as it was in the multiple
shooting case. Anyway, additional conditions are that in each interval [ti, ti+1], n
collocation points are placed and the trajectory is approximated by a polynomial
passing through those points (Biegler, 1984) (Diehl, 2011) (Logist and Van Impe,
2013). For each of the collocation points, the Constraints 2.1b-f must be satisfied.
This allows to solve an optimal control problem as if more discretisation points were
chosen (Biegler, 1984).

Direct orthogonal collocation will be the method exploited in this master thesis in
order to solve OCPs. For each interval, the number of interpolating points is n = 3.
Thus, a 4th degree polynomial is chosen to interpolate the states profiles between the
initial, collocation and final points of each discretised interval. The main advantages
of this approach are that background knowledge on the states x can be exploited as
initialisation, it can easily deal with unstable systems, constraints on the states x are
directly imposed and it shows fast local convergence (Diehl et al., 2006).

2.4 Multi-objective optimal control problem
formulation

Historically in the chemical industry only one objective function, usually the produc-
tivity, was to be optimised through optimal control. However, as already anticipated,
a decision-maker can be interested in optimising more than a single objective. More
and more often, production processes can then be faced with a multi-objective optimal
control problem. A simple bi-objective example can be the maximisation of the top
purity in a distillation column, together with the minimisation of the energy con-
sumption. Nevertheless, also more than two objectives can be chosen, depending on
the decision-maker preferences. For the purpose of this thesis, the general formulation
for a MOOCP is (Logist et al., 2009) (Logist et al., 2012):

minimise
x(ξ),u(ξ),p,ξf

{J1, J2, . . . , Jm} (2.16a)

subject to
dx
dξ

= f(x(ξ),u(ξ),p, ξ) ξ ∈ [0, ξf] (2.16b)

0 = bi(x(0),p) (2.16c)
0 = bt(x(ξf),p) (2.16d)
0 ≥ cp(x(ξ),u(ξ),p, ξ) (2.16e)
0 ≥ ct(x(ξf),u(ξf),p, ξf) (2.16f)
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Often, in a multi-objective optimal control problem the objectives [J1, . . . , Jm]
are in contrast with each other, as it is the case of maximising the top purity in
a distillation column, while minimising energy consumption. For this reason, it is
not possible to find a single optimal solution for such a problem. A set of optimal
solutions is instead obtained, which is called Pareto set. Before explaining what a
Pareto set is, it is better to recall the definition of feasible set, from Section 2.2.2:

Definition 1. Ω = {y = (x(ξ),u(ξ),p, ξf)|({bi, bt} = 0), cp ≤ 0, ct ≤ 0}.

The Pareto set comprehends all the possible solutions of the MOOCP 2.16. These
points are often called Pareto optimal points or Pareto optimals and are defined as
follows (Logist et al., 2012):

Definition 2. A point ya ∈ Ω is Pareto optimal if and only if there is no other point
yb ∈ Ω with Ji(yb) ≤ Ji(ya), ∀i ∈ {1 . . .m} and Ji(yb) < Ji(ya) for at least one
i ∈ {1, . . . ,m}

This definition can be explained as follows: for each Pareto optimal, it is not
possible to improve one of the objective functions without worsening at least one of
the others. Definition 2 can be additionally expanded in two additional definitions of
global and local Pareto optimal points.

Definition 3. A point ya ∈ Ω is global Pareto optimal if there is no other point
yb ∈ Ω with Ji(yb) ≤ Ji(ya), ∀i ∈ {1 . . .m} and Ji(yb) < Ji(ya) for at least one
i ∈ {1, . . . ,m} in all the feasible design space.

Definition 4. A point ya ∈ Ω is local Pareto optimal if there is no other point
yb ∈ Ω with Ji(yb) ≤ Ji(ya), ∀i ∈ {1 . . .m} and Ji(yb) < Ji(ya) for at least one
i ∈ {1, . . . ,m} in a neighbourhood of ya.

Different algorithms exist to exploit a multi-objective optimisation problem. In
the following Section they will be introduced.

2.5 Multi-objective optimal control problem solution

According to Logist et al. (2009), the solution methodologies for a multi-objective
problem are divided in two classes: scalarisation and stochastic methods. The first
class involves the partition of the original problem into several parametric single
objective problems (Logist et al., 2012). The Pareto set is then obtained by solving
all these problems with different parameter values each time. The parameters, as
will be seen in the following sections, are often referred to as weights. The second
class, instead, allows to obtain the Pareto set without changing the formulation
of the problem. This is done by repeatedly calculating the cost functions and
updating the solutions (Logist et al., 2009). Stochastic methods are considered as
global optimisation methods, although a rigorous proof has not been developed yet
(Logist et al., 2009). Unfortunately several drawbacks are present, mainly their
time-consuming feature, due to the repeated simulations that have to be performed,
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their difficulty in handling constraints exactly and their limitation to low dimensional
search spaces (Logist et al., 2009) (Logist et al., 2012).

In this work only scalarisation methods will be exploited. For this reason the
stochastic techniques will not be explained further. In the following sections a deeper
elucidation of the most used scalarisation techniques will be given.

2.5.1 Weighted sum

This section presents the oldest and more intuitive method for solving a MOOCP,
the weighted sum (WS).

A very practical method for solving Problem 2.16 is to minimise a combination of
all the objectives Ji, which can be expressed as follows:

minimise
x(ξ),u(ξ),p,ξf

{
m∑

i=1

wiJi

}
(2.17a)

subject to
dx
dξ

= f(x(ξ),u(ξ),p, ξ) ξ ∈ [0, ξf] (2.17b)

0 = bi(x(0),p) (2.17c)
0 = bt(x(ξf),p) (2.17d)
0 ≥ cp(x(ξ),u(ξ),p, ξ) (2.17e)
0 ≥ ct(x(ξf),u(ξf),p, ξf) (2.17f)

m∑
i=1

wi = 1 (2.17g)

wi ≥ 0 (2.17h)

where the vector w = [w1, w2, . . . , wm]> ∈ <m is the so-called weight vector.

Despite its intuitive and practical formulation, the WS method is subjected to
important drawbacks (Das and Dennis, 1997) (Logist et al., 2012):

1. It fails to obtain Pareto optimal points in the non-convex region of the Pareto
set;

2. A uniform spread of the weights wi does not guarantee a uniform spread of
optimal points on the Pareto curve;

3. The solutions obtained through the optimisation routines are highly dependent
on the scaling of the objective functions themselves.

These important drawbacks will be better explained in Section 4.2. In order to
overcome these features of the WS method, other scalarisation methods have been
developed and they will be explained in the two following Sections.
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2.5.2 Normal boundary intersection

Normal boundary intersection (NBI) method arises from the need of overcoming
the drawbacks of the WS. It was first described in Das and Dennis (1998) and it is
based on the concepts of utopia point and convex hull of individual minima (CHIM).
The utopia point J∗ for Problem 2.16 is defined as the vector containing the global
minima of all the objective functions Ji. Usually a transformation is applied, in order
to define J∗ as coincident with the origin of the system. The CHIM is the set of
points with all possible convex combinations of the individual minima. From this,
the m×m pay off matrix Φ, whose ith column is J∗i − J∗, is constructed (Das and
Dennis, 1998) (Logist et al., 2009).

Considering the feasible set Ω, the NBI is a technique which basically comes
down to find the portion of the boundary of the feasible set itself that contains
the Pareto optimal points (Das and Dennis, 1998). This is done by considering the
intersection between the part of the boundary of Ω closest to the origin and the
quasi-normal of any point on the CHIM (Logist et al., 2009). Figure 2.2 shows a
geometric representation of this method (Logist et al., 2009). There, the CHIM is
the line connecting the minima of the normalised objective functions J̄1 = 1 J̄2 = 1.
Problem 2.16 can then be rewritten as (Logist et al., 2009):

maximise
u(ξ),ξf,λ

λ (2.18a)

subject to
dx
dξ

= f(x(ξ),u(ξ),p, ξ) ξ ∈ [0, ξf] (2.18b)

0 = bi(x(0),p) (2.18c)
0 = bt(x(ξf),p) (2.18d)
0 ≥ cp(x(ξ),u(ξ),p, ξ) (2.18e)
0 ≥ ct(x(ξf),u(ξf),p, ξf) (2.18f)
Φw− λΦe = J − J∗ (2.18g)

Problem 2.16 has been reformulated in a maximisation problem, that looks for the
maximum distance from any point J̄p in the CHIM along the quasi-normal towards
the utopia point (Logist et al., 2009) (Logist et al., 2012). In Figure 2.2, these
quasi-normal lines to the CHIM are clearly visible and the their intersections with
the CHIM itself are the equally spread points J̄p (Logist et al., 2009).

With respect to the MOOCP 2.16, the additional Constraint 2.18g has been
added: the vector w contains weights such that

∑m
i=1wi = 1 and wi ≥ 0. This last

condition only holds for bi-objective optimisation problems, while for m ≥ 3, there
is the possibility to have some wi ≤ 0 (Das and Dennis, 1998). However, this will
not be the case for this work, so from now on, it can be assumed that wi ≥ 0,∀i.
The vector e is a column vector of all one. Being negative, it is used to let all the
quasi-normals, obtained by an equally weighted linear combination of the columns of
Φ, pointing towards the origin (Das and Dennis, 1998).
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Figure 2.2: Normal boundary intersection: geometric interpretation of the method. Gentle
courtesy of Logist et al. (2009).

The NBI method allows to find Pareto optimal points also in the concave part
of the Pareto set and an even spread of weights w returns an even spread of Pareto
points (Das and Dennis, 1998). A drawback anyway is still present: with the NBI
method some non-Pareto optimal points might be found (Das and Dennis, 1998).

2.5.3 (Enhanced) Normalised normal constraint

Normalised normal constraint (NNC) (Messac et al., 2003) is the third and last
scalarisation method for multi-objective opitmisation that will be discussed. Together
with that, also its variant enhanced NNC (ENNC) (Sanchis et al., 2008) will be
explained in this Section.

As for NBI, it is based on the definition of utopia point and utopia hyperplane,
that can be assimilated to the CHIM. Anyway procedure and rationale for finding
Pareto points, are different. The main idea, is to normalise each objective function Ji
into a normalised form J̄i. This normalisation for the ENNC case is explained later in
this Section, in Equation 2.20. Important to know is that the main difference between
ENNC and NNC is how the normalised objective functions J̄i are obtained (Logist
et al., 2012). Since NNC will not be exploited for the practical work of this master
thesis, only the ENNC normalised objective functions will be explained. The global
minima of J̄i, called anchor points, are all connected together forming the utopia
hyperplane (Messac et al., 2003). This plane contains the evenly distributed points
J̄p, from which the Pareto optimals are obtained through successive optimisations
(Messac et al., 2003) (Logist et al., 2009).

These optimisation problems can be rewritten as an optimal control problem
where the goal is optimising only one of the multiple objectives, usually the most
important one, while all other objective functions are considered by the addition of
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m− 1 inequality constraints (Logist et al., 2009):

minimise
u(ξ),ξf

J̄k (2.19a)

subject to
dx
dξ

= f(x(ξ),u(ξ),p, ξ) ξ ∈ [0, ξf] (2.19b)

0 = bi(x(0),p) (2.19c)
0 = bt(x(ξf), ,p) (2.19d)
0 ≥ cp(x(ξ),u(ξ),p, ξ) (2.19e)
0 ≥ ct(x(ξf),u(ξf),p, ξf) (2.19f)

(J̄(u∗k, ξ
∗
f,k)− J̄(u∗i , ξ

∗
f,i))
>(J̄(u, ξf)− J̄p) ≤ 0 i = 1 . . .m, i 6= k

(2.19g)

where the general term J̄k refers to the normalised objective function. Equation 2.19g
represents the m− 1 additional inequality constraints, which are hyperplanes chosen
through the beforehand selected points J̄p, and orthogonal to the vectors connecting
the anchor point of J̄k with all other anchor points.

In general, the normalisation of the objective functions is obtained by shifting
the utopia point J∗ in the origin of the system and multiply the shifted objectives
with a matrix T (Logist et al., 2012):

J̄(u, ξf) = T(J(u, ξf)− J∗) (2.20)

The matrix T is defined in different ways in NNC and ENNC. Throughout this work
only the ENNC method will be exploited. It defines T as:

T = E(J(u∗i , ξ
∗
i )− J∗) (2.21)

with E a squared matrix having all zeros on the diagonal and all ones on the off-
diagonal elements (Logist et al., 2009) (Logist et al., 2012).

In Figure 2.3 the geometric representation of the ENNC method is provided
(Logist et al., 2009). The utopia hyperplane is represented by a single line, called
utopia line, since only two normalised objective functions J̄1 and J̄2 are present. The
additional inequality constraint is depicted as the line normal to the utopia line
passing through the point J̄p, while the restricted feasible set is depicted with the
lighter colour.

As NBI, also the ENNC method is able to overcome the disadvantages of the WS.
Unfortunately, also the same drawback of NBI, the possibility to return non-Pareto
optimal points, is present. In order to overcome this drawback, a Pareto filter is often
applied (Messac et al., 2003). This will be explained in the following Section.

2.5.4 Pareto filter

In order to remove non-Pareto optimal points from the Pareto set, a Pareto filter
is applied (Messac et al., 2003). This is an algorithm based on Definition 3 and
Definition 4 of global and local Pareto optimal points, respectively.
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Figure 2.3: (Enhanced) Normalized normal constraint: geometric interpretation of the
method. Gentle courtesy of Logist et al. (2009).

The Pareto filter algorithm compares each point generated by Problem 2.19 with
all the others, discarding the non-global Pareto optimal. By doing this, the drawback
of NBI and ENNC is circumvented (Messac et al., 2003). Interested readers can find
more informations in Messac et al. (2003).

2.6 Robust optimal control formulation and solution

In the previous sections, it has been seen that, for both an OCP and a MOOCP, it is
important to know the model equations describing the system. This is clear when
looking at Equations 2.1b for an OCP and 2.16b for a MOOCP. In those equations,
the dependence on the vector of parameters p is evident. Unfortunately, in some
cases, these parameters are known with a degree of uncertainty. In real situations,
this can be a problem when the calculated optimal trajectory for the OCP is close to
one of the constraints of the system. In fact, even a small uncertainty over one of the
parameters present in the model equation can cause the violation of that constraint,
leading to problems in the real application.

Several examples can be found in the literature. In Houska et al. (2012) the
maximisation of the conversion in a jacketed tubular reactor with an uncertainty on
the heat transfer coefficient due to fouling was discussed. In Logist et al. (2011),
a fed-batch bio-reactor is considered. In this last example, a MOOCP was solved,
maximising the conflicting objectives yield and productivity, when considering an
uncertainty over the substrate concentration in the feed.

In this work, three different solution methodologies for robust OCPs will be
presented. It is, nevertheless, worth highlighting that all of them are approximations.
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2.6.1 Worst-case approach

The general formulation of a robust OCP can be derived from Equation 2.1. From
that, Equation 2.1b can be rewritten as (Logist et al., 2011) (Houska et al., 2012):

dx
dξ

= f(x(ξ),u(ξ),p, ξ,w(ξ)) (2.22)

where an additional dependency w(ξ) is added. This represents the vector of uncer-
tainties on the parameters of the model (Logist et al., 2011) (Houska et al., 2012).
For the explanation of all other variables and terms in the equation, the reader is
invited to go back to Section 2.2 and Equation 2.1. Moreover in order to simplify the
following explanation, also the boundary conditions and the inequality constraints
will be rearranged. Equation 2.1c, representing the boundary condition at ξ = 0 will
be simply rewritten in the form (Houska et al., 2012) (Logist et al., 2011):

x(0) = x0 (2.23)

Equations 2.1e and 2.1f, instead are merged in a single inequality constraint defined
as (Logist et al., 2011):

0 ≥ hi(x(ξ),u(ξ),p, ξ) ∀ξ ∈ Ξi(ξf) (2.24)

Here the inequality constraints hi are considered as path or terminal constraints
depending on the definition of Ξi(ξf) ⊆ [0, ξf] (Logist et al., 2011).

Often, as it was in Logist et al. (2011), uncertainties can be present also on the
initial values x0. For this reason, usually all possible uncertainties are described by
the set (x0,w) ∈W. This set is usually considered bounded and given (Logist et al.,
2011).

Assuming that the solution of Equation 2.22 has a unique solution, the state x(ξ)
can be rewritten as

x(ξ) = ζ[ξ,x0,u(ξ),p,w(ξ)] ∀ξ ∈ [0, ξf] (2.25)

The robust OCP can then be written with a min-max or worst-case formulation
(Logist et al., 2011):

minimise
x(ξ),u(ξ),p,ξf

J(x(ξ),u(ξ),p, ξf) (2.26a)

subject to max
(x0,w)∈W

hi(u(ξ),p, ξ, ζ[ξ,x0,u(ξ),p,w(ξ)]) (2.26b)

where all constraints in Equation 2.26b are called robust counterpart functions. For
this reason, Equation 2.26 is also called the robust counterpart problem. Note that
all constraints of Problem 2.26 are not dependent from the differential states x.

This problem can be solved with different methodologies, but only linearisation
strategies will be explained here. In this approach, a higher order Taylor expansion of
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the model functions is computed with respect to the uncertainties. Of this expansion,
only the first term is taken in consideration, while all the higher order terms are
neglected. This approximation is legitimate in the case of small uncertainties with
respect to the model curvature (Ma and Braatz, 2001) (Logist et al., 2011). Other
solution methods for the robust counterpart Problem 2.26 are presented in Houska
and Diehl (2009) and will not be discussed here.

Following the linearisation strategy, Equation 2.22 can be split in a reference and
a deviation model equation as follows (Logist et al., 2011):

d

dξ
xref(ξ) = f(xref(ξ),u(ξ),p, ξ,wref) xref(0) = xref

0 (2.27a)

d

dξ
δx(ξ) = A(ξ)δx(ξ) + B(ξ)δw(ξ) δx(0) = B0δw0 (2.27b)

where xref and δx are respectively the reference trajectory and deviation defined such
that x = xref + δx. It is important to be aware that the linear Approximation 2.27
is valid only for small uncertainties w(ξ) (Logist et al., 2011). The terms A(ξ) and
B(ξ) are introduced, together with two other short notations used in Logist et al.
(2011), Ci(ξ) and di(ξ) as follows:

A(ξ) =
∂

∂x
f(xref(ξ),u(ξ),p, ξ,wref) (2.28a)

B(ξ) =
∂

∂w
f(xref(ξ),u(ξ),p, ξ,wref) (2.28b)

Ci(ξ) =
∂

∂x
hi(xref(ξ),u(ξ),p, ξ,wref) (2.28c)

di(ξ) = hi(xref(ξ),u(ξ),p, ξ) (2.28d)

These terms will be used in the linear approximation of the robust counterpart
problem. This approximation can be obtained through the use of Lyapunov function
(Kalman, 1963) when the uncertainty set W is modelled as a ball of size Γ ∈ <+

(Houska et al., 2012). This is proven in Houska and Diehl (2009). What is important
is that, through this approximation, the robust counterpart Problem 2.26 can be
approximated as follows:

minimise
xref(ξ),u(ξ),p,ξf,P(ξ)

J(x(ξ),u(ξ),p, ξf) (2.29a)

subject to
d

dξ
f(xref(ξ),u(ξ),p, ξ,wref) ∀ξ ∈ [0, ξf]

(2.29b)

xref(0) = x0 (2.29c)
d

dξ
P(ξ) = A(ξ)P(ξ) + P(ξ)A(ξ)> + B(ξ)B(ξ)> (2.29d)

P(0) = B(0)B(0)> (2.29e)

0 ≥ di(ξ) + Γ
√
Ci(ξ)P(ξ)Ci(ξ)> ∀ξ ∈ Ξi(ξf)

(2.29f)
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In Problem 2.29, P is a matrix valued function that satisfies a Lyapunov differential
Equation 2.29d with initial Conditions 2.29e for all ξ ∈ [0, ξf] (Logist et al., 2011). This
matrix, introduces a significant amount of additional differential states to the system.
In fact, the number of total states in Problem 2.29 increases quadratically with the
number of original states, due to the matrix P. Being the matrix P symmetric, the
total amount of additional states is Nx(Nx+1)

2 with Nx the number of states present in
the original OCP. This will also lead to much higher computational efforts in order
to solve the robust OCP, with respect to the non-robustified original OCP.

A last important thing to notice is that Equation 2.29f describes inequality
constraints for the linear approximated problem. With respect to the original ones of
Equations 2.24 and 2.28d, the new constraints are stricter, due to the presence of
an additional term. This term introduces a supplementary back-off value or safety
margin, related to the size Γ of the set W, which is needed to meet the constraints
without exceeding them (Logist et al., 2011).

2.6.2 Sigma points approximation

As already said, also other methods for taking into account uncertainties on the
system parameters exist. In this Section, a second approach will be investigated.
From here on, it will be referred to this method as the sigma points approach (Julier
and Uhlmann, 1996) (Recker et al., 2012). Before applying the sigma points approach,
it is necessary to know the distribution of the uncertain parameters (Julier and
Uhlmann, 1996). In this work, these parameters will be considered to have a gaussian
distribution with mean values equal to the nominal values p, used for the non-
robustified Problem 2.1. The variance-covariance matrix V of those distributions
will be assumed and decided by the user. In this thesis, the matrix V will always be
assumed as diagonal.

The method can be easily implemented and the explanation given will be based
on Julier and Uhlmann (1996). At first, the sigma points have to be established.
For each uncertain parameter j, two sigma points are identified through (Julier and
Uhlmann, 1996):

σj,i = ±
√

(np + k)Vpp ∀i = 1, 2 ∀j ∈ [1, np] (2.30)

where np is the number of uncertain parameters and k = 3−np. This factor allows the
exploitation of the knowledge on higher order moments of the parameters distributions
(Julier and Uhlmann, 1996). However, for the purpose of this work only the first two
moments, namely the mean and the variance-covariance matrix will be of relevance.
Any further explanation can be found in Julier and Uhlmann (1996).

From Equation 2.30, 2np + 1 sets of parameters are constructed:

p0 = p (2.31a)

pj,i =
[
p1, p2, . . . , pj + σj,i, . . . , pnp

]
∀i = 1, 2 ∀j ∈ [1, np] (2.31b)
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2.6. Robust optimal control formulation and solution

where Equation 2.31b represents 2np parameters set where, in turn, each parameter j
is modified by adding the terms σj,i of Equation 2.30. The factor 2 is present because
on each parameter there can be either a positive or negative uncertainty, as shown
by the values of sigma in Equation 2.30. Equation 2.31a represents the nominal
case, when no manipulation are made on the parameters values. After this, 2np + 1
dynamic systems are solved. Each of the 2np systems is referring to a system where
the uncertainty over one single parameter is taken, according to Equation 2.31b.
These problems will give raise to 2np solutions, that will be called Yi, with i ∈ [1, 2np]
(Julier and Uhlmann, 1996). The remaining dynamic system is the nominal one,
where all parameters are assumed to be known and correct, as in Equation 2.31a,
and its solution will be called Y0 (Julier and Uhlmann, 1996).

Next is the evaluation of the expected values of the states, based on the results of
the previous systems. They can be calculated as

ȳ =
1

np + κ

κY0 +
1

2

2np∑
i=1

Yi

 (2.32)

Once the expected values are calculated, their own variance-covariance matrix needs
to be found. This is computed through the following relation (Julier and Uhlmann,
1996):

P =
1

np + κ

κ[Y0 − ȳ][Y0 − ȳ]> +
1

2

2np∑
i=1

[Yi − ȳ][Yi − ȳ]>

 (2.33)

P is a squared matrix with dimension equal to the number of states involved in the
system. From the squared matrix P, new constraints are built for the expected values
ȳ. For each expected state, ȳi, it is asked for the quantity

ȳi ± q
√

Pii (2.34)

to be, at every time, within the upper and lower bounds given for the state i. The
factor q depends on the confidence required and, in turn, on the decision of the user.

In this case, the estimated objective function J̄(ȳ(ξ),u(ξ),p, ξf) will be a function
of the expected values ȳ. However, an alternative formulation to this one is present
in the literature (Logist et al., 2011). The problem, in fact, might also account for
the uncertainty over the objective itself, which can be reformulated as

J̄(ȳ(ξ),u(ξ),p, ξf) + τ
√

PJJ (2.35)

where τ depends on the confidence required from the user, as it is for q. The roles of
the factors q and τ will be better explained in the course of this text.

Finally, it is important to highlight that, although the methodology for the sigma
points approach has been presented in a sequential way, the steps presented must be
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done together in the optimisation problem. This means that the solution of the 2np+1
dynamic systems, the computation of the estimate and of the variance-covariance
matrix and the addition of the new constraints are all implemented in the same
optimisation problem.

This simultaneous implementation will increase the computational effort with
respect to the non-robustified problem. The totality of states involved in such
approximation is in fact (2np + 1)Nx. However, it should be highlighted that the
amount of additional states is linear with respect to the original number of states in
the sigma points approach and quadratic in the linearisation approach. The direct
consequence is that, in the case of a single uncertain parameter, the sigma points
approximation leads to a final robust OCP smaller than the linear approximation.
Nevertheless, due to the fact that several uncertainties can be dealt with, the overall
amount of states for the sigma points approximation is also linearly depending on
np. At this stage, however, the linear approximation with respect to more than one
uncertain parameter is rather complicated. For this reason, a revision of the linear
approximation, where also more than one uncertain parameter can be dealt with in a
clear procedure, will be given in Section 2.6.3.

2.6.3 A new linear approximation

In Sections 2.6.1 and 2.6.2, two robustification approaches were introduced. Unfortu-
nately, at this stage, it is not yet possible to make a fair comparison between them.
In this Section, a new formulation for the linearisation approach, based on Srinivasan
et al. (2003), Houska and Diehl (2009) and Logist et al. (2011) is presented. The de-
velopment of this new linearisation method is given in Srinivasan et al. (2003). What
is important to remark is that this new formulation allows a comparison between the
sigma points and the linearisation approaches for robust OC.

The main difference with the approach described in Section 2.6.1 is that, with
this new approximation approach, the variance-covariance matrix V of the uncertain
parameters is directly entering the robust OCP. With the old approach, this was
not possible and the user had to introduce a robustification parameter Γ , which
was related to the size of the uncertainty set W (Houska and Diehl, 2009) (Houska
et al., 2012). Equations 2.29d and 2.29e are rewritten in the following formulation
(Srinivasan et al., 2003):

d

dξ
P(ξ) = A(ξ)P(ξ) + P(ξ)A(ξ)> + B(ξ)VB(ξ)> (2.36a)

P(0) = B(0)VB(0)> (2.36b)

By changing the formulation of the Lyapunov states, also the additional Constraint
2.29f has to be rewritten. The new formulation is similar to Equation 2.34:

0 ≥ di(ξ) + q
√
Ci(ξ)P(ξ)Ci(ξ)> (2.37)
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2.6. Robust optimal control formulation and solution

The matrices A, B, Ci and the vector di are expressed as in Equation 2.28 where
the term p now represents the row vector with the mean values of all the uncertain
parameters considered.

The new OCP can then be rewritten as

minimise
xref(ξ),u(ξ),p,ξf,P(ξ)

J(x(ξ),u(ξ),p, ξf) (2.38a)

subject to
d

dξ
f(xref(ξ),u(ξ),p, ξ,wref) ∀ξ ∈ [0, ξf]

(2.38b)

xref(0) = x0 (2.38c)
d

dξ
P(ξ) = A(ξ)P(ξ) + P(ξ)A(ξ)> + B(ξ)VB(ξ)> (2.38d)

P(0) = B(0)VB(0)> (2.38e)

0 ≥ di(ξ) + q
√
Ci(ξ)P(ξ)Ci(ξ)> ∀ξ ∈ Ξi(ξf)

(2.38f)

It is important to notice the improvements of the linear approximation introduced
in this Section with respect to that one given in Section 2.6.1.

First of all, a comparison between the linear approximation and the sigma points
approximation is now possible. This can be done by choosing the same factor q, which
depends on the confidence required from the user, for the additional Constraints 2.34
and 2.37.

Moreover, the mean values and the variance-covariance matrix of the uncertain
parameters are now directly entering the problem, making it possible to exploit
knowledge available from parameter estimation.

Lastly, with the old linear approximation given in Section 2.6.1, handling more
than one uncertain parameter was not straight-forward. With the introduction of the
variance-covariance matrix V into the OCP 2.38, the investigation of more than one
uncertain parameter is made definitely easier.

This last point also allows to make an additional observation. In fact, the size
of the robust OCP for the linear approximation does not depend on the number
of uncertain parameters. Once the Lyapunov expansion and the additional states
have entered the OCP, the amount of uncertain parameters will only influence the
size of the matrices V and B, but the additional Lyapunov states remain Nx(Nx+1)

2 ,
as in Section 2.6.1. However, this is not true for the sigma points approximation
where, as explained in Section 2.6.2, 2np + 1 dynamic systems have to be solved,
leading to (2np + 1)Nx states. Thus, it can be concluded that the sizes of the OCPs
solved through the sigma points approach grow linearly with the number of uncertain
parameters, while they are fixed for the linearisation approach. This is of course
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expected to influence heavily the computational time and effort for the solution of
the robust OCPs.

2.7 Conclusion

Optimal control was presented in this Chapter. Together with that, the theory
background necessary to handle and solve optimal control problems was presented.

Due to the high dimensionality of the systems that will be handled throughout
this work, direct approaches will be preferred over state space and indirect ones in
order to solve OCPs. In particular the orthogonal collocation method is adopted.

Moreover, two recent variations of OC were addressed. These are multi-objective
optimal control problem and robust OCP. MOOCP in particular arises from the need
of chemical industries to still achieve high productivities while trying to minimise costs
related to energy or raw material consumption, or pollutant emissions. All methods
presented for solving MOOCP, namely WS, NBI and ENNC, will be exploited for
generating the Pareto sets of the case studies that will be investigated. Robust
optimal control, instead, comes from the necessity to cope with uncertainties in the
process model equations, to still ensure safe operations. As anticipated, this will lead
to lower performances of the investigated system and higher computational effort,
due to the increased number of differential states. In this work, both the linearisation
approach and the sigma points approach will be exploited and a comparison between
the two will be made.
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Chapter 3

Materials and Methods

3.1 Introduction

The aim of this chapter is three-fold. First of all, in Section 3.2, the software exploited
in all this thesis will be introduced and described.

Afterwards, in Section 3.3, the model equations and the OCPs of three investigated
case studies will be presented. These are a fed-batch bio-reactor (Logist et al., 2009),
a jacketed tubular reactor (Logist et al., 2011) (Houska et al., 2012) and the Williams-
Otto reactor (Williams and Otto, 1960) (Forbes, 1994). In this Chapter only the
systems dynamics of these problems will be given, with the aim to introduce them to
the reader. The results of the optimisation problems and the conclusions that can be
drawn based on them will be reported in Chapters 4 and 5. Moreover, the results
presented in Chapter 5, will deal with the comparison between the linear and the
sigma points approximations for robust OC. Before that, however, it is necessary to
explain in detail the procedure that will be followed. This will be given and explained
in Section 3.4.

Section 3.5 will then conclude this Chapter, highlighting the main issues that will
arise in the following sections.

3.2 Software

In order to solve the optimisation problems encountered during this thesis, the
exploitation of numeric computation is fundamental. In fact, all the models of the
systems considered in this master thesis work involve highly non-linear expressions.
For this reason specific programmes and algorithms for optimisation are used together,
exploiting their features at best.

The first and most important tool-kit used is Pomodoro. This new software
tool has been developed within the BioTeC division of KULeuven, in order to solve
optimal control problems. It allows the solution of numerical optimisation problems
by exploiting the orthogonal collocation method. Together with that, also MOOCP
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can be solved. The WS, NBI and ENNC method are available as a choice for the
user. As it was seen in the previous Chapter, all these methods imply a partition of
MOOCPs into parametric single objective problems. Thus, the same algorithm for
single optimisation can be exploited for the solution of both OCPs and MOOCPs. The
major difference is that for MOOCPs, the problem is solved several times, depending
on the number of Pareto optimals required from the user. This of course means,
in general, that higher computational times are needed for solving MOOCPs than
OCPs.

However, Pomodoro is not meant to calculate also gradients of the functions
involved in the problem. These functions are the objectives and the equality and
inequality constraints. In order to calculate the Jacobians and Hessians, CasADi is
called (Andersson et al., 2012). The gradients of the functions are then calculated
through automatic differentiation.

As anticipated in Section 2.3 the NLP within the optimisation problems are
solved using the interior point method. This is done through IPOPT (Interior Point
OPTimizer) (Wächter and Biegler, 2006). This package is already implemented in
CasADi. The interior point method is not explained in this work, but interested
readers can find more information in Wächter and Biegler (2006).

Finally, ACADO Toolkit is employed. This tool for optimisation and optimal
control does not come into play when solving OCPs with Pomodoro. However, being
a tool-kit which has already been assessed in the literature, it can be used as a
bench-mark to verify the solutions obtained with Pomodoro. It is important to
highlight that this tool-kit allows to solve OCPs by exploiting direct single shooting
and direct multiple shooting, while, as already stated, Pomodoro is exploiting direct
orthogonal collocation.

Lastly, information about the computational power available should be provided.
All the optimisation problems presented in this thesis have been solved exploiting a
8× 3.40 GHz processor and 15.6 GiB RAM computer.

3.3 Case Studies

In this section, the systems dynamics of three case studies taken from the literature
are presented. These examples are only introduced in this Chapter, but will be
deeply investigated in Chapters 4 and 5. Together with the equation models, also
the optimal control problems that need to be solved will be given, in their nominal
formulation.

3.3.1 Fed-batch bio-reactor

The first case presented is the multi-objective optimal control problem of a fed-batch
bio-reactor for lysine production (Logist et al., 2009) which is already present in the
ACADO Toolkit database. The system dynamics which are optimised are slightly
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different from the ones present in the original reference (Logist et al., 2009). In fact,
they are taken from the ACADO Toolkit library, where an additional state is present.
This choice has been taken due to the fact that, as already anticipated in Section 3.2,
the results obtained with Pomodoro need to be validated through a comparison with
those obtained with ACADO Toolkit. This can be done, of course, only if the system
dynamics are the same for both implementations.

Problem 3.1 shows the differential equations governing this system:

dx1
dt

= +µx1 (3.1a)

dx2
dt

= −σx1 + uCs,f (3.1b)

dx3
dt

= +πx1 (3.1c)

dx4
dt

= +u (3.1d)

dx5
dt

= 0.001
(
u2 + 0.01tf

)2 (3.1e)

where x1[g] represents the amount of biomass in the bio-reactor, x2[g] the amount
of substrate available for the biomass growth, x3[g], the amount of product lysine,
x4[L] the liquid volume in the bio-reactor. x5 is an artificial state which has been
introduced to reduce control fluctuations. The control of the system is in fact the
inlet feed u

[L
s

]
and too many rapid fluctuations can cause damages to the feed pump.

tf[s] is the time needed for the reaction. It is kept as an additional degree of freedom
to the system, although it can only vary between two fixed values, as seen from
Equations 3.3f and 3.4g. Cs,f

[mol
L

]
is the substrate concentration at the inlet feed u

and its value is taken constant and equal to 2.8
[mol

L

]
.

Some intermediate states are present and defined as follows

µ =
0.125x1
x3

(3.2a)

σ =
µ

0.135
(3.2b)

π = −384µ2 + 134µ (3.2c)

These states represent the biomass growth rate µ
[
1
h

]
, the substrate consump-

tion for both growth and maintenance of the biomass σ
[

gsubstrate
gbiomass h

]
and the lysine

production rate π
[

glysine
gbiomass h

]
(Logist et al., 2009).

The problem requires an investigation of the Pareto set for the two conflicting
objectives of maximising productivity and maximising yield. This is done in two
separate cases, each of them with a different definition of the two objective functions.
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3.3.1.1 Fed-batch bio-reactor 1

In the first case, no regularisation term is considered in the objective functions and,
following the general formulation for a multi-objective optimal control Problem 2.16,
the problem is implemented as

minimise
x(t),u(t),p,tf

{
J1 = −x3 (tf)

tf
, J2 = − x3 (tf)

(Cs,fx4 (tf)− x2 (tf))

}
(3.3a)

subject to
dx
dt

= f(x(t), u(t),p, tf) (3.3b)

x(0) = [0.1, 14, 5, 0, 0] (3.3c)
[0, 0, 0, 5] ≤ [x1(t), x2(t), x3(t), x4(t)] ≤ [15, 30, 1000, 20] (3.3d)
0 ≤ u(t) ≤ 2 (3.3e)
20h ≤ tf ≤ 40h (3.3f)

with J1 the productivity and J2 the yield. Equation 3.3b accounts for the model
constraints described in Equations 3.1 and 3.2.

It is important to notice that, although the objective functions are both max-
imisations, in the OCP formulation, they are presented as minimisations, by adding
a minus sign in front of both expressions. This is done due to the fact that only
minimisation problems can be treated with Pomodoro and ACADO Toolkit.

3.3.1.2 Fed-batch bio-reactor 2

In the second case, a small regularisation term is taken into account and an additional
constraint on the liquid volume in the reactor at the final time, x4(tf), is imposed:

minimise
x(t),u(t),p,tf

{
J1 = −x3 (tf)

tf
+ 0.01x5 (tf) , J2 = − x3 (tf)

(Cs,f(x4 (tf)− 5))
+ 0.01x5 (tf)

}
(3.4a)

subject to
dx
dt

= f(x(t), u(t),p, tf) (3.4b)

x(0) = [0.1, 14, 5, 0, 0] (3.4c)
[0, 0, 0, 5] ≤ [x1(t), x2(t), x3(t), x4(t)] ≤ [15, 30, 1000, 20] (3.4d)

x4(tf) ≥ 5 +
20

Cs,f
(3.4e)

0 ≤ u(t) ≤ 2 (3.4f)
20h ≤ tf ≤ 40h (3.4g)

Again J1 and J2 are respectively the productivity and the yield, although they are
defined differently from the case fed-batch 1. As for the case fed-batch 1, Equation
3.4b is a short-cut notation representing the model Constraints 3.1 and 3.2.
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3.3.2 Jacketed tubular reactor

In this section, a second case study is presented. The system investigated is a jacketed
tubular reactor (Logist et al., 2011) (Houska et al., 2012) where an irreversible and
exothermic reaction A −→ B is taking place. The reactor is working in steady state
conditions and heat removal or supply are possible by controlling the temperature of
the jacket fluid (Logist et al., 2011) (Houska et al., 2012).

The system dynamics consist of 3 differential equations in the spatial coordinate
z, which are represented in Problem 3.5. These are dimensionless equations. Readers
further interested in the original differential system and how the dimensionless
parameters α, β, γ and δ are calculated are referred to Logist et al. (2011) and
Houska et al. (2012).

dx1(z)

dz
=
α

v
(1− x1 (z)) e

γx2(z)
1+x2(z) (3.5a)

dx2(z)

dz
=
αδ

v
(1− x1 (z)) e

γx2(z)
1+x2(z) +

β

v
(u(z)− x2(z)) (3.5b)

dx3(z)

dz
=
β

zf
(u(z)− x2(z)) (3.5c)

x1(z), x2(z) and x3(z) respectively represent the product molar fraction, the dimen-
sionless reactor temperature and the scaled heat exchanged with the jacket. The
manipulated variable u(z), is the dimensionless jacket fluid temperature. For the
sake of completeness, the values of CA,in, Tin and of the fluid velocity v are given as
0.02

[mol
L

]
, 340 [K] and 0.1

[m
s

]
respectively.

Equations 3.5 will enter as model constraints for the optimal control Problem 3.6.

minimise
x(z),u(z),p,zf

100 · CA,in (1− x1(zf)) (3.6a)

subject to
dx
dz

= f(x(z), u(z),p, zf) (3.6b)

x(0) = [0, 0, 0] (3.6c)[
0,

280− Tin

Tin

]
≤ [x1(z), x2(z)] ≤

[
1,

400− Tin

Tin

]
(3.6d)

280− Tin

Tin
≤ u(z) ≤ 400− Tin

Tin
(3.6e)

CA,in (1− x1(zf)) ≤ 0.002 (3.6f)
0.5 ≤ zf ≤ 1 (3.6g)

The objective function of Problem 3.6 is the minimisation of the concentration of
reactant A at the end of the reactor. This objective can be interpreted as the
maximisation of the reactant conversion. Some constraints are present both on the
states and on the control. Equation 3.6d gives the upper and lower bounds for the
states x1(z) and x2(z). The state x3(z) is unbounded. Equations 3.6e and 3.6f
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respectively demand the control action to be always within an upper and lower
boundaries and a final conversion of at least 90%. Equation 3.6g gives boundaries for
the total length of the reactor, which is taken as additional degree of freedom.

3.3.3 Williams-Otto reactor

The third and last case study that is described in this Chapter, is the Williams-
Otto fed-batch reactor, originally introduced by Williams and Otto (1960) and then
modified by, e.g. Forbes (1994), Hannemann and Marquardt (2010) and Logist et al.
(2012). The formulation considered for this master thesis is taken from Hannemann
and Marquardt (2010) and Logist et al. (2012).

The system dynamics are more complicated than those of the previous cases. As
a matter of fact, more than one reaction are taking place inside the reactor, with the
following reaction scheme:

A+B → C (3.7a)
C +B → P + E (3.7b)
P + C → G (3.7c)

A and B are the reagents of the system, C is an intermediate in the formation of the
products P and E, while G is a side product. The reagent A is initially present in the
reactor, while B is continuously added through the control action u1(t) = FB,in(t),
which represents the feed rate of B. Together with FB,in(t), another control action is
present, u2(t) = TW(t), where TW is the dimensionless cooling water temperature
(Hannemann and Marquardt, 2010) (Logist et al., 2012).

The dynamic model describing the system is shown in Equation 3.8:

dxA
dt

=
xAu1

1000VR
− k1η1xAxB (3.8a)

dxB
dt

=
(1− xB)u1

1000VR
+ k1η1xAxB − k2η2xBxC (3.8b)

dxC
dt

=
−xCu1
1000VR

+ k7η1xAxB − k3η2xBxC − k6η3xCxP (3.8c)

dxP
dt

=
−xPu1
1000VR

+ k2η2xBxC − k4η3xCxP (3.8d)

dxE
dt

=
−xEu1
1000VR

+ k3η2xBxC (3.8e)

dxG
dt

=
−xGu1
1000VR

+ k5η3xCxP (3.8f)

dT

dt
=

(TF − T )u1
1000VR

+ k8η1xAxB + k9η2xBxC + k10η3xCxP − l1(T − 1000u2) (3.8g)

dVR
dt

=
u1

1000
(3.8h)

where all the time-dependencies are removed, not to overload the equations. The
states xi(t), ∀i = A, B, C, E, G, P represent the molar fraction of each components
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Table 3.1: Williams-Otto reactor: ki and ηj values, after Hannemann and Marquardt
(2010).

Constant Value Constant Value

k1 1.6599 · 106 s−1 k9 2.728518427 · 1010

k2 7.2117 · 108 s−1 k10 1.446556764 · 1014

k3 1.44234 · 109 k11 1.816050294 · 1011

k4 1.33725 · 1012 η1 exp( −6666.7T+273.15)

k5 4.01175 · 1012 η2 exp( −8333.3T+273.15)

k6 2.6745 · 1012 s−1 η3 exp( −11111T+273.15)

k7 3.3198 · 106 TF 35◦C
k8 1.046562189 · 108 l1 2.434546857 · 10−4

i present in the reaction Scheme 3.7, T (t) is the reactor temperature and VR(t) is
the volume of liquid present in the reactor itself. TF represents the temperature
at which the reagent B is added and l1 is a heat exchange coefficient. The terms
kiηj(t) represent the kinetics constants for the three reactions in the Scheme 3.7a-c.
In particular, ki are the pre-exponential factors related to the collision frequency, and
ηj(t) the Arrhenius terms accounting for the temperature-dependencies of the kinetics
constants. For the sake of completeness, they are all given in Table 3.1 (Forbes, 1994)
(Hannemann and Marquardt, 2010).

As in Sections 3.3.2 and 3.3.1 an OCP is formulated, where Equation 3.8 is the
model constraint.

minimise
x(t),u(t),p,tf

− 5554.1xP(tf)VR(tf)− 125.9xE(tf)VR(tf) (3.9a)

subject to
dx
dt

= f(x(t),u(t),p, tf) (3.9b)

x(0) = [1, 0, 0, 0, 0, 0, 65, 2] (3.9c)
[0, 0, 0, 0, 0, 0, 60, 2] ≤ x(t) ≤ [1, 1, 1, 1, 1, 1, 90, 5] (3.9d)
[0, 0.02] ≤ u(t) ≤ [5.784, 0.1] (3.9e)

The objective function of Equation 3.9a is representing the maximisation of the
productivity of the two products P and E. Again, as in the previous cases, it is
introduced as a minimisation objective function.

The solutions of all the case studies presented in this section will be reported in the
following Chapters. However, as already stated, the jacketed tubular reactor and the
Williams-Otto reactor will serve to assess the two robustification approximations. For
this reason, the methodology which will be performed to accomplish this comparison
will be explained in the following Section.
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3.4 Comparison of the two robustification approaches

In this Section, the methodology used to assess and compare the sigma points and
linear approximations, respectively explained in Sections 2.6.2 and 2.6.3, will be given.
In Chapter 5, the following procedure will be applied to two case studies, the jacketed
tubular reactor (Logist et al., 2011) (Houska et al., 2012) and the Williams-Otto
reactor (Williams and Otto, 1960) (Forbes, 1994) (Hannemann and Marquardt, 2010):

1. the nominal OCP is solved with all parameters considered to be certainly
known;

2. one or more parameters are then considered as uncertain, with mean values
equal to those used in the nominal OCP, and variance-covariance matrix defined
by the user and diagonal;

3. the optimal control profile obtained at Point 1 is then fixed and integrated over
time for 600 Monte-Carlo realisations. For each of these realisations, the values
of the uncertain parameters are randomly drawn, following the parameters
distributions defined at Point 2;

4. for each of the realisations executed at Point 3, it is checked if they still satisfy
the constraints of the original problem or they violate them;

5. the robust OCP is solved with both robustification approaches and uncertain
parameters as given at Point 2;

6. Points 3 and 4 are repeated for both the optimal control profiles obtained at
Point 5.

The number of violations is counted for two main reasons. From Point 4, it is
possible to have an idea about the sensitivity of the nominal OCP with respect to
the uncertain parameters. From Point 6, the reliability of the two robustification
approaches can be assessed, by checking whether the number of violations is effectively
lower than the predicted ones. The predicted violations are determined by the factor
q in Equations 2.34 and 2.37, as it was already explained in Sections 2.6.2 and 2.6.3.

3.5 Conclusion

In this chapter, the tools exploited in all the thesis are introduced, together with the
procedure that will be followed in the next Chapters. In Section 3.2, the numerical
tool-kits were presented and briefly described.

In Section 3.3, three case studies were presented. Each of them was given with
its dynamic equations and the OCP or the MOOCP that has to be solved.

Lastly, in Section 3.4, the procedure that will be followed in Chapter 5 was
described. This will be used in order to assess the reliability of the two robustification
approximations and to compare them.
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Chapter 4

Multi-objective optimal control of
a literature case study

4.1 Introduction

In this chapter, the algorithms implemented in Pomodoro are verified through the
solution of the MOOCP presented in Section 3.3.1. The fed-batch bio-reactor multi-
objective optimisation is in fact solved with both Pomodoro and ACADO Toolkit.
The results obtained with the two software tools are then compared, in Section 4.2,
in order to verify that the same solution is attained.

4.2 Fed-batch bio-reactor results

In this Section, the results obtained for the problem presented in Section 3.3.1 are
depicted and discussed. In order to reach these results, both Pomodoro and ACADO
Toolkit were adopted.

From Figure 4.1 it can be seen that for both cases fed-batch 1 and fed-batch
2, the Pareto optimals obtained with Pomodoro are perfectly overlapping those of
ACADO Toolkit. These are fundamental results, since they give a first indication of
the reliability of the Pomodoro software. An additional comparison between the two
software will be made in Chapter 5, based on the jacketed tubular reactor case study.

Moreover, also the time required to solve the MOOCPs described in Sections
3.3.1.1 and 3.3.1.2 is discussed. For all the problems, 21 Pareto points were calculated.
In order to do that, the tolerances required for the solution of the NLP problems
involved were set equal for each solver and case. Unfortunately, Pomodoro and
ACADO Toolkit are exploiting different NLP solvers, making it difficult to compare
precisely the tolerances. However, for the purpose of this comparison the tolerances of
both solvers were set equal to 10−8, which is the default tolerance value for Pomodoro.
The MOOCPs fed-batch 1 and fed-batch 2 were solved with the WS, NBI and ENNC
methods with Pomodoro and ACADO Toolkit. Unfortunately each of these problems
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(a) Fed-batch bio-reactor 1.
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(b) Fed-batch bio-reactor 2.

Figure 4.1: Fed-Batch bio-reactor 1 and 2: Pareto sets obtained with the NBI method with
Pomodoro and ACADO Toolkit, after Logist et al. (2009)

was only solved once. However, not being a statistically valid analysis, the results
obtained can only be used for a qualitative description. Nevertheless, for all cases,
Pomodoro proved to be faster than ACADO Toolkit, even if the differences were just
fractions of second.

This case study can also be useful to show the main drawbacks of the WS method
for multi-objective optimisation. These can be seen in Figure 4.2. It is clear from
Figure 4.2a that the WS method fails to identify the Pareto optimals where the
Pareto set becomes non-convex. Moreover, although the weights for the 21 points
were chosen as equally spaced between 0 and 1, it is possible to see that the optimal
points are definitely not equally spaced for the WS method. In fact, they tend to
accumulate in the proximity of the yield optimum. These drawbacks, as it was already
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(b) NBI and ENNC.

Figure 4.2: Fed-bacth bio-reactor 2: Pareto sets obtained with WS, NBI and ENNC methods.
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anticipated in Section 2.5.2, are not present when the NBI method is applied.

Additionally, a comparison between the methods NBI and ENNC is done in Figure
4.2b, leading to exactly the same results for the problem fed-batch bio-reactor 2.

4.3 Conclusion

In Section 4.2 the multi-objective optimisation of a fed-batch bio-reactor was accom-
plished. Four different formulations of the objective functions were investigated in
couples, leading to two bi-objective optimisation problems. For both Problems 3.3.1.1
and 3.3.1.2, the results obtained with Pomodoro were found to be equal to those
obtained with ACADO Toolkit in Logist et al. (2009).

Additionally, the drawbacks of the WS method, which were already presented
in Section 2.5.1, were shown on a practical case study. It was also shown that the
NBI and ENNC methods are instead able to overcome these drawbacks, as it was
anticipated in Sections 2.5.2 and 2.5.3.
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Chapter 5

Robust optimal control of
literature case studies

5.1 Introduction

In this chapter, the solutions of robust OCPs for two case studies are reported.
Firstly, the jacketed tubular reactor problem (Logist et al., 2011) (Houska et al.,
2012) is solved with the linear approach reported in Section 2.6.1. As this case
study was already solved in the literature (Logist et al., 2011), it can be used as a
second bench-mark example, after the fed-batch bio-reactor, to assess the algorithms
implemented in Pomodoro. This is accomplished in Section 5.2.1.

After that, a comparison is made between the linear and sigma points approxi-
mations for robust optimal control. As already mentioned, the linear approximation
can be compared with the sigma points only if it is considered in the formulation
given in Section 2.6.3. Results for the comparison of the two robust approximations
are provided for the jacketed tubular reactor in Sections 5.2.2 and 5.2.3 and for the
Williams-Otto reactor (Williams and Otto, 1960) (Forbes, 1994) (Hannemann and
Marquardt, 2010) (Logist et al., 2012) in Sections 5.3.1 and 5.3.2. The number of
uncertain parameters investigated is varying between one and four and the procedure
which will be carried out was provided in Section 3.4.

The comparison between the two robustification approaches will focus on the
reliability of the methods themselves and the loss in terms of performance of the
considered objective function. Additionally, the size of the problems and the time
required to solve them will also be considered when comparing and assessing the two
approximations.

The Chapter is then concluded in Section 5.4, where the main results are high-
lighted and summarised.
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5.2 Jacketed tubular reactor results

A complete description of the model is reported in Section 3.3.2. Additionally, two
uncertain parameters are assumed. These are α and β, respectively representing a
kinetics-related factor and the dimensionless heat exchange factor at the wall of the
reactor. Their nominal values are α = 0.0581 and β = 0.2.

It is also necessary to highlight that, for this case study, the most critical state is
the internal reactor temperature. In fact, while it is desirable to keep it as high as
possible in order to enhance the kinetics of the reaction, for safety issues it is necessary
to always keep it below its upper bound, meaning x2(z) ≤ 400−Tin

Tin
. However, for

the solution of the robust OCP, an additional constraint needs to be introduced in
Problem 3.6, as explained in Section 2.6. The formulation of this additional constraint
depends on the robust approximation that is considered and will be presented in
Sections 5.2.1 and 5.2.2.

5.2.1 Comparison with ACADO Toolkit

In order to allow a fair comparison with the literature (Logist et al., 2011), only the
uncertainty over the parameter β is considered in this section. Moreover, as already
anticipated, an additional constraint needs to be included in the OCP of Section
3.3.2:

x2(z) + γβ
√
P22(z) ≤

400− Tin

Tin
(5.1)

where γβ = Γ (Logist et al., 2011).

The problem is then solved for different values of the robustification factor γ and
the results obtained with 20 discretisation points are shown in Figures 5.1 and 5.2.
The results obtained with the two optimisation programmes show some differences,
especially when looking at the control profiles, in Figure 5.1. In particular, the most
striking differences are found in the control actions for the case γ = 0.2. While in
Figure 5.1a the control profile for γ = 0.2 is monotonically decreasing for 0 ≤ z ≤ 0.5,
in Figure 5.1b a minimum and a maximum are encountered at z = 0.2 and z = 0.25.
Some additional but less evident differences are also present in the control profiles
calculated for γ = 0 and γ = 0.1.

However, it is surely more interesting to look at the consequences that these
slightly different control profiles have on the states behaviours and on the objective
function. The states profiles depicted in Figure 5.2 show that no excessive deviation
are present, especially in the conversion profiles. The temperature profiles of Figure
5.2c and 5.2d still show some differences for the case with γ = 0.2, as a direct
consequence of the different control profiles.

Nevertheless, in Table 5.1 it can be seen that the objective function values
obtained with ACADO Toolkit and Pomodoro are really close one to each other, for
all the investigated cases. This allows to state that the results obtained with the two
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(a) Pomodoro.
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(b) ACADO Toolkit after Logist et al. (2011).

Figure 5.1: Jacketed tubular reactor: control profiles obtained with different dynamic
optimisation programmes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless Spatial Coordinate z (-)

C
on

ve
rs

io
n 

x 1 (-
)

 

 

γ = 0.0
γ = 0.1
γ = 0.2

(a) Pomodoro.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

ve
rs

io
n 

x 1 (-
)

Dimensionless Spatial Coordinate z (-)

 

 

γ = 0.0
γ = 0.1
γ = 0.2

(b) ACADO Toolkit after Logist et al. (2011).
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(d) ACADO Toolkit after Logist et al. (2011).

Figure 5.2: Jacketed tubular reactor: conversion and reactor temperature profiles obtained
with different dynamic optimisation programmes.
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Table 5.1: Jacketed tubular reactor: conversion attained with different dynamic optimisation
programmes.

ACADO Toolkit Pomodoro

Final conversion, γ = 0.0 0.996915 0.996852
Final conversion, γ = 0.1 0.991018 0.990978
Final conversion, γ = 0.2 0.979212 0.979479

optimisation programmes are surely comparable and, as in Section 4.2, this can serve
as a good indication for the reliability of Pomodoro.

5.2.2 Jacketed tubular reactor with uncertainty on β

In this section, the jacketed tubular reactor case study is used to assess and compare
the linear and sigma points approximation for robust OC. As already said, to allow a
fair comparison between the two methods, the linear approximation that needs to be
used is the one given in Section 2.6.3. From here on, unless explicitly said otherwise,
when referring to the linearisation approach or linear approximation it will always be
referred to the formulation developed in that Section.

Again, one single parameter, β is taken as uncertainty. With respect to Section
5.2.1, it is important to notice that for this comparison the parameter β is assumed as
normally distributed around its mean value β = 0.2 with a variance of 0.0004. This
means that a standard deviation of 10% over the parameter β is taken into account.

In order to consider the uncertainty, in each of the robustified approaches, some
additional constraints are imposed, as in Equation 5.1. However, the formulation
of these additional constraints is different than that of Section 5.2.1. For the linear
approximation, they are in fact built following the formulation presented in Equation
2.37. They can be seen in Equation 5.2, where P22(z) is the variance on the reactor
temperature x2(z) and q is a factor depending on the confidence level required from
the user. For Problem 3.3.2, this required confidence level is 95%, thus, on the
assumption that the states profiles are normally distributed, a factor q = 1.96 is
taken. This value is taken according to the two-sided normal distribution function,
since the variation in x2(z) can be in both directions. Such a confidence level requires
that no more than 30 violations occur out of the 600 Monte-Carlo simulations that
will be performed.

x2(z) + q
√

P22(z) ≤
400− Tin

Tin
(5.2a)

x2(z)− q
√

P22(z) ≥
280− Tin

Tin
(5.2b)

The sigma points approximation also requires two additional constraints which

48



5.2. Jacketed tubular reactor results

are built following the formulation of Equation 2.34:

ȳ2(z) + q
√

P22(z) ≤
400− Tin

Tin
(5.3a)

ȳ2(z)− q
√

P22(z) ≥
280− Tin

Tin
(5.3b)

where ȳ2(z) is the expected value of the reactor temperature, calculated as in Equation
2.32 and q = 1.96 as in Equation 5.2. The two approaches differ in the way the
term P22(z) is calculated. The linear approximation, in fact, calculates it following
Equation 2.36, while the sigma points approximation calculates it based on Equation
2.33.

Figure 5.3 shows the profiles of the manipulated variable for the nominal and the
two robustified OCPs, solved with 100 discretisation points. Figure 5.4 shows the
temperature profiles for the nominal and the two robustified OCPs together with
their predicted 95% confidence regions. From here on, unless explicitly said otherwise,
the states profiles calculated with the sigma points approach will be identified with
their related estimates ȳi, which are calculated by means of Equation 2.32.

From Figure 5.4 it is possible to see that the confidence regions predicted by the
different robustification methods have similar size for z = 1, but that they differ
substantially for lower values of z, in particular at the point z = 0.4. At this point,
in fact, while the linearisation approach predicts a considerable confidence region,
the sigma points approach predicts a pinch, where the confidence region is so small
that the reactor temperature equals the upper bound.

For a better comprehension, the original sigma points temperature profiles are
depicted in Figure 5.5. These actually represent the temperature profiles of the
terms Y0 and Yi from which the mean temperature ȳ2 is calculated, according to
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Figure 5.3: Jacketed tubular reactor: optimal control profiles with β as uncertain parameter.
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Figure 5.4: Jacketed tubular reactor: temperature profiles and their predicted 95% confidence
regions with β as uncertain parameter.

Equation 2.32. Looking at their actual profiles it is possible to understand the origin
of the pinch: at z = 0.4, all the profiles are crossing each other, leading then to a
very small predicted confidence region. It is also important to notice that at least
one of the sigma points profiles is approaching the upper bound for each z ≥ 0.3,
forcing the others, and consequently the estimate ȳ2, to be pushed below the nominal
temperature profile, as depicted in Figure 5.4.

The Monte-Carlo realisations are accomplished for the nominal OCP as described
in Section 3.4 and are depicted in Figure 5.6. Figure 5.6a presents the β sample used
for the Monte-Carlo realisations, while Figure 5.6b shows the reactor temperature
profiles for each Monte-Carlo realisation. These profiles were calculated by applying
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Figure 5.5: Jacketed tubular reactor: sigma points with β as uncertain parameter.
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Figure 5.6: Jacketed tubular reactor: Monte-Carlo realisations for the nominal OCP.

the already known nominal optimal control to the system and considering a randomly
sampled β.

It can be seen that many of the realisations are exceeding the upper temperature
bound. In particular, as it can be seen from Table 5.2, 589 violations out of 600
Monte-Carlo simulations occur. The system is thus extremely unsafe and also values
of β lying close to the mean value β = 0.2 cause violation of the temperature upper
bound. In particular, the threshold values that mark the separation between the safe
and unsafe process for the depicted β sample are β1 = 0.199533 and β2 = 0.200458.
All randomly drawn βi ≤ β1 or βi ≥ β2 lead to violations. The crossings of the upper
bound happen either around the point z = 0.3 when βi ≥ β2, either at z ≥ 0.4, when
βi ≤ β1. High values of β, in fact, imply better heat transfer coefficients. When this is
the case, more heat is provided by the control in order to initiate the reaction, leading
to violation of the bound at the beginning of the process. Low values of β, instead,
mean worse heat transfer coefficients. In this case, once the reaction has started, the
reaction heat is not removed fast enough and the inner reactor temperature rises
above its upper bound.

The problem is also solved with the two robustification approximations, with the
aim of reducing the number of violations, thus improving the safety of the system.
The same β sample is used to assess the reliability of the two robust optimal controls.
The results obtained are shown in Figures 5.7 and 5.8. For both approximations, the
number of realisations which exceed the temperature bound are shown in Table 5.2.
From Figures 5.7b and 5.8b, it is possible to calculate the empirical 95% confidence
regions for the two approaches and then draw a comparison with the predicted ones
of Figure 5.4. In Figure 5.9 it is possible to see that the linearisation approach clearly
overestimates the empirical confidence region. However, due to this fact, the linear
approach has proven to satisfy the additional Constraints 5.2 of the system for more
than 99% of the realisations, while the sigma points satisfy its additional Constraints
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Figure 5.7: Jacketed tubular reactor: Monte-Carlo realisations for the linearisation approach
robust OCP.
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(b) Temperature profiles for each Monte-Carlo
realisation.

Figure 5.8: Jacketed tubular reactor: Monte-Carlo realisations for the sigma points robust
OCP.

Table 5.2: Jacketed tubular reactor: exceeding temperature profiles with β as uncertain
parameter.

OCP # Violations # Realisations % Violations

Nominal 589 600 98.17%
Linearisation 5 600 0.83%
Sigma points 42 600 7.00%
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(a) Predicted 95% confidence regions.
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(b) Empirical 95% confidence regions.

Figure 5.9: Jacketed tubular reactor: temperature profiles and their predicted and empirical
95% confidence regions with β as uncertain parameter.

5.3 only in 93% of the simulations. This means that the sigma points approach, in
this case does not meet the required confidence level of 95%.

A comparison of the losses induced by the robustification approaches on the
obective function is also interesting to investigate and it will be done at the end of
Section 5.2.3, in Table 5.4.

5.2.3 Jacketed tubular reactor with uncertainties on α and β

In this section, similar results to those of Section 5.2.2 are reported and discussed.
However, now the robust OCP is solved in order to account for more than one single
uncertain parameter. Together with the already considered β, also the parameter
α is now assumed to be uncertain. Again, they are both assumed to be normally
distributed, with mean values α = 0.0581 and β = 0.2 and variance-covariance matrix

V =

(
0.005812 0

0 0.022

)
(5.4)

from which it can be seen that a standard deviation of 10% on each parameter
is considered. Additionally, matrix V is diagonal, meaning that no correlation is
assumed between the two parameters.

Once again, the results are obtained by adhering to the general guidelines reported
in Section 3.4. As in the previous case, 100 discretisation points are used in order to
solve the optimal control problems.

The optimal controls for the three OCPs are depicted in Figure 5.10b. In order to
facilitate the comparison between the two cases, the profiles for both the robustification
with respect to one and two uncertain parameters are shown in Figure 5.10. From
this Figure, it can be seen that, by introducing a degree of uncertainty on a second
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(a) One uncertain parameter, β.
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(b) Two uncertain parameters, α and β.

Figure 5.10: Jacketed tubular reactor: comparison of the optimal control profiles.
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(a) Predicted 95% confidence regions.
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(b) Empirical 95% confidence regions.

Figure 5.11: Jacketed tubular reactor: temperature profiles and their predicted and empirical
95% confidence regions with α and β as uncertain parameters.

parameter, the robust optimal control profiles undergo some important changes. In
particular, concerning the linearisation approach, a maximum and a minimum are
encountered at z = 0.7 and z = 0.8 of Figure 5.10b. For the sigma points approach,
instead, the maximum and minimum that were formerly present around z = 0.4
disappear, leading to a monotonically increasing profile, from z = 0.3 to z = 1.

The optimal temperature profiles, together with their expected and predicted
confidence regions are depicted in Figure 5.11. From Figure 5.11b it can be seen that,
as it was in Figure 5.9, the linearisation approach, when predicting the confidence
region is clearly overestimating it. The sigma points approach, instead, predicts the
confidence region more accurately, except for the points z = 0.3 and z ≥ 0.7, where
violations are present.
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(a) β as uncertain parameter.
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(b) α and β as uncertain parameters.

Figure 5.12: Jacketed tubular reactor: comparison of the sigma points profiles.

Table 5.3: Jacketed tubular reactor: exceeding temperature profiles with α and β as uncertain
parameters.

OCP # Violations # Realisations % Violations

Nominal 580 600 96.67%
Linearisation 1 600 0.17%
Sigma points 69 600 11.50%

Moreover, it can be seen that, for the two uncertain parameters case, no pinch
is present. There is, in fact no point where the empirical 95% confidence region is
close to 0. This is true for both the predicted and empirical 95% confidence regions
and it can be better understood from Figure 5.12b, where the five sigma points
are depicted. In order to facilitate the comparison, the sigma points calculated in
Section 5.2.2 are also reported in Figure 5.12a. From Figure 5.12b, it is evident that
two of the sigma points are not crossing nor touching the others around the point
z = 0.4. In particular, these sigma points are SP χ4 and SP χ5, those representing
the temperature profiles of the terms Yi of Equation 2.32 when the uncertainty on
the second parameter α is taken into account.

It can then be concluded that, for both the approximations, the introduction of a
second uncertain parameter leads to a significant increase in the size of both predicted
and empirical confidence regions. Nevertheless, this increase is more evident in the
sigma points approximation results, due to the disappearance of the pinch at z = 0.4.

From Figure 5.11b, it can also be seen that the 95% empirical confidence region
of the linearised OCP is completely between the two given bounds, while the same
confidence region of the sigma points robust OCP is exceeding around the point
z = 0.3 and for z ≥ 0.7. This means that the additional Constraints 5.2 are satisfied
in at least 95% of the realisations for the linearisation approach, while, as for the
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(a) Linear approximation.
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(b) Sigma points approximation.

Figure 5.13: Jacketed tubular reactor: α and β distribution, comparison between the two
robustification approaches.

Table 5.4: Jacketed tubular reactor: objective function values for the solution of the optimal
control problems.

Objective function
[mol

L

]
Nominal 6.16 · 10−3

Linearisation, β 3.97 · 10−2

Linearisation, α and β 6.16 · 10−2

Sigma points, β 1.26 · 10−2

Sigma points, α and β 2.38 · 10−2

case treated in Section 5.2.2, the sigma points approach fails to satisfy the additional
Constraints 5.3 for the required confidence level. The exact number of exceeding
realisations for each OCP are enlisted in Table 5.3.

In Figure 5.13, the sample of normally distributed parameters used for all the
Monte-Carlo realisations of this Section is shown. The values have ben normalised,
by dividing each sample [αi, βi] by the mean values of α and β, respectively. Depicted
in red and green, there can be seen the couples [αi, βi] which, for each robustified
OCPs, lead or lead not to violation.

As anticipated in Section 5.2.2, the values of the objective function are reported in
Table 5.4. It is important to highlight that, as predicted in Sections 2.6.1 and 2.6.2, by
applying the robustification approaches to the nominal system the objective function
increases. This has a clear physical meaning if someone keeps in mind that the
objective J represents the concentration of the reactant A at the end of the reactor.
In fact, as it can be seen from Figures 5.4 and 5.11 the robust temperature profiles
are not approaching the upper bound as in the nominal case, leading to less favoured
reaction kinetics. The same explanation is valid to understand why the sigma points
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Table 5.5: Jacketed tubular reactor: number of states, variables and constraints involved
and the time required for the solution of the optimal control problems.

# States # Variables # Constraints Time required [s]

Nominal 3 1301 2903 1.46
Linearisation, β 9 3701 8706 12.94
Linearisation, α and β 9 3701 8706 29.87
Sigma Points, β 9 3701 8503 7.84
Sigma Points, α and β 15 6101 14108 9.76

approximation has a lower objective function than the linear approximation. As
expected, the values of the objective function are worsening when two uncertain
parameters are present in the system.

Moreover, what is also investigated is the time required to solve the OCPs
presented in this section. In Table 5.5, the sizes of the problems and the time required
for their solutions is provided. As expected, the nominal case is the faster, requiring
one order of magnitude less than the two robustification approaches. However, it is
much more interesting to look at the time necessary for the robustified solutions. It
is evident that the linear approximations are more time demanding than the related
sigma points ones, in spite of their smaller or equal sizes. This observation is rather
counter-intuitive. As a matter of fact, the sigma points approaches should have been
expected to necessitate higher computational time, due to the bigger sizes of the
problems.

Nevertheless, this expectation is not respected and this can be regarded as a
consequence of the construction of the two robustified problems. In fact, in the linear
approximation the additional states are calculated from Taylor expansions of the
original states, leading, in this case, to 9 states strongly interconnected. In the sigma
points approach, instead, the additional states are calculated by creating 2np system
dynamics which are, in essence, a copy of the original one. These 2np additional
systems are then solved together with the original one, leading to 9, or even 15,
states which are not directly influencing each other and that only experience the
same control action.

This last consideration becomes rather important, especially when higher scale
problems and more complicated systems dynamics are considered. In fact, it was
already pointed out that the sigma points approach is not able to achieve the pre-
defined confidence level for this case study. This is a direct consequence of the fact
that the assumption of normally distributed states, made in Section 5.2.2 is not
satisfied. However, it must be remembered that the achievement of the required
confidence level is case-sensitive, thus this result can not be extrapolated to more
general cases.

However, this method could still be exploited to achieve the required confidence
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Table 5.6: Jacketed tubular reactor: exceeding temperature profiles and objective function
for different values of q and with α and β as uncertain parameters, after Telen et al. (July
2014).

# Violations # Realisations % Violations Objective function
[mol

L

]
q = 1.96 69 600 11.50 % 2.38 · 10−2

q = 2.17 44 600 7.33 % 2.69 · 10−2

q = 2.81 7 600 1.17 % 3.72 · 10−2

q = 2.43 23 600 3.83 % 3.06 · 10−2

level (Telen et al., July 2014). By changing the value of the factor q in Equation 5.3,
and thus changing the optimal control profile, the requested 95% confidence level
could be reached. However, the new control profile obtained by changing the value of
q must be verified again through the procedure explained in Section 3.4. Depending
whether the 95% confidence level is satisfied or not, q can be adapted once more,
until only 5% of the Monte-Carlo realisations violates the system boundaries.

This iterative loop was accomplished on the two uncertain parameter case and the
values of q with their related number of violations are provided in Table 5.6. When
performing these iterations, q is first changed to the value 2.17. Unfortunately, the
percentage of violations is still higher than the required one, so q is increased again
and set to 2.81. In this case, the percentage of violations is much lower than the
desired one. This over-conservative result is of course not an issue in terms of safety,
but, as it can be seen from Table 5.6 the objective function is increased. This means
that it is still possible to tune the factor q in order to reach the desired confidence
level while also allowing a lower loss in terms of the objective function. The factor q
is then set to 2.43 and it can be seen that violations now occur only in 3.83% of the
cases (Telen et al., July 2014).

It is also worth remarking that the value of the objective function is still lower than
the one obtained with the linear approximation, shown in Table 5.4. Unfortunately,
these iterations required some time to be performed. In particular, performing 600
Monte-Carlo realisations takes around 15 minutes, while the time required for each
robust optimal control problem is comparable to that reported in Table 5.5. At
this stage, this iterative loop might seem useless, since the linear approximation
already gave satisfactory results for the first value of q. However, when solving robust
optimal control for real industrial case problems it is not straight-forward to obtain
appropriate solutions with the linear approximation, thus this iterative loop can
help in reaching good results and saving computational time and effort during the
optimisation procedure.

All the values of q were chosen according to the assumption that the parameters
uncertainties follow a two-sided normal distribution, following the explanation already
given in Section 5.2.2. In particular, if the assumption of normally distributed states
had been satisfied, the chosen q values would have resulted in confidence regions of
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(a) Predicted 95% confidence regions.
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(b) Empirical 95% confidence regions.

Figure 5.14: Jacketed tubular reactor: temperature profiles and their predicted and empir-
ical 95% confidence regions for different values of the factor q and α and β as uncertain
parameters.

97%, 99.5% and 98.5%, respectively. Figure 5.14 shows the temperature profiles and
their predicted and empirical confidence regions for all investigated values of q.

5.3 Williams-Otto reactor results

In this Section, the results for the robust OC of the Williams-Otto reactor (Williams
and Otto, 1960) (Forbes, 1994) (Hannemann and Marquardt, 2010) will be presented.
The aim of this Section is to compare and assess the two robustification approaches
on a different case study than the one already presented. Thus, no comparison with
ACADO Toolkit will be performed.

The system dynamics were already given in Section 3.3.3, together with the
formulation of the OCP. The parameters assumed to be uncertain are the collision
factors k1, k2 and k3 and the heat exchange-related factor l1. They are again assumed
to be normally distributed with mean values k1 = 1.6599 · 106, k2 = 7.2117 · 108,
k3 = 1.44234 · 109 and l1 = 2.434546857 · 10−4 and variance-covariance matrix

V =


(
1.6599 · 105

)2
0 0 0

0
(
7.2117 · 107

)2
0 0

0 0
(
1.4423 · 108

)2
0

0 0 0
(
2.435 · 10−5

)2
 (5.5)

from which it is possible to see that, on each parameter, a standard deviation of 10%
is assumed. Again, as in Section 5.2.3, the variance covariance matrix V is diagonal,
meaning that no correlation between the parameters is considered. The physical
meanings of all these parameters were already explained in Section 3.3.3.
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As in Section 5.2.2, additional constraints must be added, due to the uncertainties
present on the system. The most critical state for the WO reactor is, again, the
reactor temperature T . In order to meet the boundaries given in Equation 3.9d while
also accounting for the uncertain parameters, two additional constraints must be
imposed, according to the formulations already given in Equations 2.34 and 2.37.
This will lead to the additional constraints for the linear approximation

T (t) + q
√

PTT(t) ≤ 90◦C (5.6a)

T (t)− q
√

PTT(t) ≥ 60◦C (5.6b)

and for the sigma points approximation

ȳTT(t) + q
√

PTT(t) ≤ 90◦C (5.7a)

ȳTT(t)− q
√

PTT(t) ≥ 60◦C (5.7b)

These additional constraints must be added to the OCP of Equation 3.9. Again, a
value of 1.96 is assigned to the factor q, due to the fact that a 95% confidence level
for a two-sided normal distrbution is required.

The results for the Williams-Otto reactor are given in two sections. In Section
5.3.1, only two uncertain parameters, k1 and l1 are considered, while the results of
the four-parameters case will be given in Section 5.3.2. All the OCPs in the following
Sections were solved with a discretisation of 50 intervals.

5.3.1 Williams-Otto reactor with uncertainties on k1 and l1

In this section the results obtained with linear and sigma points approximations for
the WO reactor with two uncertain parameters will be given. These parameters are
k1 and l1. Their variance-covariance matrix is adapted from the one given in Section
5.3:

V =

( (
1.6599 · 105

)2
0

0
(
2.435 · 10−5

)2
)

(5.8)

Figure 5.15 shows the optimal control actions for the solution of the OCP described
in Section 3.3.3 for the nominal and the two robustification cases. It can be clearly
seen that the only control action which is influenced by the robustifications is TW(t),
the dimensionless cooling water temperature. Moreover, it is interesting to note that
the TW(t) profile obtained with the linearisation approach is overlapping the nominal
control action at almost every time interval. This observation can already lead to the
conclusion that, for these two cases, the reactor temperature profiles will not differ
substantially.

This is proven in Figure 5.16, where the reactor temperature profiles are showed
together with the confidence regions predicted by the two robustification approaches.
As it was expected, the temperature profile obtained with the linear approximation is
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(a) Inlet feed rate FB,in(t).
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(b) Dimensionless cooling water temperature
TW(t).

Figure 5.15: Williams-Otto reactor: control actions with k1 and l1 as uncertain parameters.
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Figure 5.16: Williams-Otto reactor: temperature profiles and their related 95% confidence
regions with k1 and l1 as uncertain parameters.

almost identical to the nominal one. What is more interesting to notice, however, is
that the 95% confidence region predicted by the linear approximation is also essentially
lying on the same curve, leading to a collapsing uncertainty region. The sigma points
approximation, instead predicts a larger 95% confidence region, with a temperature
profile which differs from the nominal one especially at 200[s] ≤ t ≤ 500[s].

The most evident consequence of these temperature profiles are shown in Table
5.7, where the number of boundary violations is reported for each solved OCP. It is
possible to see that the amount of violations for the linear approximation is close to
that of the nominal case, with only a 5% difference. Thus, it can be concluded that
the linear approximation, for the Williams-Otto reactor is completely ineffective. In
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Table 5.7: Williams-Otto reactor: exceeding temperature profiles with k1 and l1 as uncertain
parameters.

OCP # Violations # Realisations % Violations

Nominal 284 600 47.33%
Linearisation 256 600 42.67%
Sigma points 8 600 1.33%
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(a) Predicted 95% confidence region.
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(b) Empirical 95% confidence region.

Figure 5.17: Williams-Otto reactor: temperature profiles and their predicted and empirical
95% confidence regions with k1 and l1 as uncertain parameters.

fact, while the 95% confidence region predicted with the linear approximation is rather
small, from Figure 5.17b it can be seen that the empirical one has approximately the
same size of the one calculated with the sigma points approximation. This leads to
violations in the range 200[s] ≤ t ≤ 400[s]. The sigma points approximation, instead,
respects the required number of violations. It results in fact in 8 exceedings out of
600 Monte-Carlo realisations, meaning only 1.33%, a value significantly lower than
the required 5%.

Readers should not be surprised by such a difference with the jacketed tubular
reactor example. There, in fact, the linearisation approach led to very good results
because non-linearity entered the model Equations 3.5 only in the Arrhenius form. In
the system dynamics of the WO reactor, instead, the non-linearity is more pronounced,
thus the linear approximation is less suitable for treating such a problem than the
sigma points.

The sample of normally distributed k1 and l1 leading to the results presented in
this Section is depicted in Figure 5.18, where in red and green there can be seen the
couples [k1,i, l1,i] leading or not to violation. The values represented are the samples
[k1,i, l1,i] scaled by the mean values of k1 and l1, respectively. It is relevant to see
that the parameter which plays the biggest role in the violations is k1. As a matter
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(a) Linear approximation.
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(b) Sigma points approximation.

Figure 5.18: Williams-Otto reactor: k1 and l1 distribution, comparison between the two
robustification approaches.

of fact, for both robustification approaches high values of k1 lead to violations, while
the influence of l1 is rather small.

A discussion concerning the loss in terms of objective function, size of the problems
and time needed to solve the OCPs will be given in Section 5.3.2, in Tables 5.9 and
5.10.

5.3.2 Williams-Otto reactor with uncertainties on k1, k2, k3 and l1

In this Section, four uncertain parameters, k1, k2, k3 and l1 will be considered during
the optimisation of the WO reactor. Their mean values and variance-covariance matrix
were provided in Section 5.3. However, in Section 5.3.1, it was already demonstrated
that the linearisation approach is ineffective for this case study. For this reason, when
considering the four uncertain parameters case, only results obtained through the
sigma points approximation will be shown.

In Figure 5.19, the optimal control profiles for the sigma points approach are
presented. In order to compare with the previous case, both the four-parameters and
the two-parameters profiles are depicted.

The empirical and predicted 95% confidence regions are given in Figure 5.20. It
is clear that the introduction of two additional uncertain parameters leads to only a
modest increase in the confidence region, when compared to the one shown in Section
5.3.1. This holds for both the predicted and empirical confidence regions.

Moreover, in Figure 5.20b it is evident that the empirical 95% confidence region
is kept within the boundaries of the states, for each time interval. Thus, again, less
than 30 violations have occurred. The exact values of violations for each of the solved
OCPs are given in Table 5.8. Even with four uncertain parameters, the sigma points
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(b) Dimensionless cooling water temperature
TW(t).

Figure 5.19: Williams-Otto reactor: control actions with k1, k2, k3 and l1 as uncertain
parameters.
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Figure 5.20: Williams-Otto reactor: temperature profiles and their predicted and empirical
95% confidence regions with k1, k2, k3 and l1 as uncertain parameters.

Table 5.8: Williams-Otto reactor: exceeding temperature profiles with k1, k2, k3 and l1 as
uncertain parameters.

OCP # Violations # Realisations % Violations

Nominal 296 600 49.33%
Linearisation 260 600 43.33%
Sigma points 12 600 2.00%
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approach is able to meet the required confidence level.

The representation of the parameters sample used for the four-parameters case
is not as straight-forward as it was in the previous Sections, since a normal Carte-
sian plane is no more sufficient. Nevertheless, it could be interesting to see which
parameters values are leading to boundary violations. In order to provide a better
understanding, the Euclidean distance from the vector of mean values pmean =
[k1,mean k2,mean k3,mean l1,mean] is used. For each sample vector pi = [k1,i k2,i k3,i l1,i]
the distance is calculated according to Equation 5.9.

di =

√
(k1,mean − k1,i)2 + (k2,mean − k2,i)2 + (k3,mean − k3,i)2 + (l1,mean − l1,i)2

(5.9)
For all parameters k1, k2, k3 and l1 a plot is created, where the single coordinates
k1,i, k2,i, k3,i and l1,i are plotted on the x-axis and their related distance di from the
vector of mean values pmean on the y-axis. These plots can be seen in Figure 5.21.

The coloured crosses and the green circles respectively represent the vectors pi
which are leading or not to violations. The crosses are of different colours, in order
to make it easier to identify the sample [k1,i k2,i k3,i l1,i]. For example, the magenta
and red crosses with distance di approximately 2.5 · 108 in Figure 5.21a can be found
at the same distance in all the other figures, allowing to match the values of the four
parameters. However, what is most important to highlight is that violations occur
irrespectively of the values of k2 and k3. In fact, in Figures 5.21b and 5.21c, the
crosses are found throughout all the depicted ranges of k2 and k3. On the other hand,
from Figures 5.21a and 5.21d it is evident that violations occur only for k1,i ≥ k1,mean
and l1,i ≤ l1,mean. It can thus be concluded that the most critical parameters are k1
and l1.

The losses in terms of performance of the objective function, for all the OCPs
solved in this Section and in Section 5.3.1, are reported in Table 5.9. Bigger losses are
present for the sigma points approximation. This was expected due to the similarity
of the nominal and linearised control actions. Nevertheless, since the sigma points
is over-satisfying, the iterative loop that was introduced in Section 5.2.3 can be
applied once more, to slightly relax Constraints 5.7. By doing this, the number

Table 5.9: Williams-Otto reactor: objective function values for the solution of the optimal
control problems.

Objective function
[mol

m3

]
Nominal −4768.24
Linearisation, k1 and l1 −4768.04
Linearisation, k1, k2, k3, and l1 −4768.04
Sigma points, k1 and l1 −4765.32
Sigma points, k1, k2, k3, and l1 −4747.96
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Figure 5.21: Williams-Otto reactor: [k1 k2 k3 l1] samples for the Monte-Carlo realisations,
sigma points approach.

Table 5.10: Williams-Otto reactor: number of states, variables and constraints involved
and the time required for the solution of the optimal control problems.

# States # Variables # Constraints Time [s]

Nominal 8 1700 3800 2.43
Linearisation, k1 and l1 44 8900 20200 299.77
Linearisation, k1, k2, k3, and l1 44 8900 20200 371.30
Sigma points, k1 and l1 40 8100 18400 12.04
Sigma points, k1, k2, k3, and l1 72 14500 32800 35.52
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5.4. Conclusion

of violations can be increased up to the required 5% and the loss in the objective
function moderately reduced.

Lastly, Table 5.10 gives an overview of the sizes of the problems solved in this
Section and Section 5.3.1 and of the time required to reach the optimal solutions.
Again, the sigma points approximations proves to be less time-demanding than the
related linear ones. Additionally, a comparison could be made with the time required
for the solution of the jacketed tubular reactor of Section 5.2. Considering in both
cases the biggest problem, the number of variables and constraints is more than
doubled for the WO, which presents 14, 500 variables and 32, 800 constraints to be
handled. Readers should not be misleaded by the time required to reach the optimal
solution. Although the time is certainly affordable, this is a rather complicated
problem, involving 72 differential equations, which can not be solved such easily by
all the solution methodologies presented in Section 2.3.

Nevertheless, it is important to highlight that this difference in computing time
has increased with respect to the jacketed tubular reactor example. As a matter of
fact, for the WO reactor, the time required by the linear approximation is, respectively,
one and two orders of magnitude higher than those required by the sigma points
approximation and the nominal case.

5.4 Conclusion

In this Chapter, robust optimal control was investigated. The jacketed tubular
reactor example was solved both with ACADO Toolkit and Pomodoro, with the aim
of assessing the algorithms implemented in the latter. It was seen that the results are
close enough to be comparable and, after the one of Chapter 4, this is an additional
indication of the reliability of Pomodoro.

All the successive Sections of this Chapter were then devoted to the computation-
ally efficient solution of robust OCPs. This was done for two case studies, a jacketed
tubular reactor (Logist et al., 2011) (Houska et al., 2012) and the Williams-Otto
reactor (Williams and Otto, 1960) (Forbes, 1994) (Hannemann and Marquardt, 2010).

The linearisation led to better results in the first example but, when dealing
with higher degrees of non-linearity, as in the WO case study, it has proven to be
completely ineffective. It was also shown that the sigma points approximation brings
to solutions faster than the linear approach, even if, aiming at the highest degree of
generalisation, four uncertain parameters were considered, as in Section 5.3.2.

However, the required confidence level is not always satisfied. In order to deal
with this feature, an iterative loop was introduced in Section 5.2.3, with the aim of
reaching the desired confidence level.

Based on this, the sigma points approach should be the natural choice also for
practical industrial problems, when highly non-linear systems are involved. This
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will be done in the following Chapter, when the optimisation of a chemical vapour
deposition reactor will be accomplished.
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Chapter 6

Robust multi-objective optimal
control of a CVD reactor

6.1 Introduction

In this Chapter, the optimisation of a real industrial process is investigated with the
techniques presented in the previous Chapters. The process considered is the chemical
vapour deposition for the production of polysilicon rods. Polysilicon consists of high
purity silicon crystals, according to del Coso et al. (2011) up to 99.9999999% purity,
and is mainly produced for the micro-electronics and photo-voltaic (PV) markets
(del Coso et al., 2011). In particular, until 1997, the polysilicon demand for the
production of solar cells was entirely covered by micro-electronics waste or excess of
industrial capacity (del Coso et al., 2007) (Braga et al., 2008). However, in the early
2000’s a rapid change in the market has taken place, mainly due to the fast growth
of the PV industry. While in 2000 PV demanded just 10% of the overall polysilicon
production, in 2005 it’s share was comparable to that of the micro-electronics industry,
ranging around 15, 000

[
ton
year

]
(Rogol, 2006 as cited in del Coso et al. (2007)). In

2009, the total amount of polysilicon produced was 100, 000
[

ton
year

]
, with the PV

industry consuming approximately 80, 000
[

ton
year

]
(Rogol, 2010 as cited in del Coso

et al. (2011)).

Moreover, it is important to highlight that, in spite of the global crisis, the
photo-voltaic industry is expected to be expanding also in the next future (Masson
et al., 2013). The amount of PV capacity installed worldwide in 2013 has been
24% higher than that of 2012 (Market report 2013. EPIA - European Photovoltaic
Industry Association, 2014) and by 2017 it is expected to be between 55% and 170%
higher than that of 2012, depending whether a business-as-usual or policy-driven
scenario will develop (Masson et al., 2013). However, care should be taken when
handling these data, since polysilicon is not the only technology applied in the PV
industry (Masson et al., 2013). Nevertheless, together with mono-crystalline silicon,
it accounts for a market share ranging between 80% and 90% and the manufacturing
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6. Robust multi-objective optimal control of a CVD reactor

is shifting more and more towards polycrystalline silicon technology (solarbuzz, 2014).
For all these reasons, polysilicon production through CVD is a relevant industrial
process to be investigated in this thesis.

The reactor where the deposition takes place is often called Siemes reactor, due
to its first application (Viganò et al., 2010). This reactor operates in semi-batch
mode. At start, depending on the reactor configuration, 36, 48 or 60 seed bars of pure
silicon with radius r0 = 0.5[cm] and length L = 2[m] are placed inside the reactor
(del Coso et al., 2011). The deposition reaction takes then place over these seed bars,
which are connected two-by-two with a U-turn at their top and are usually placed
in concentric circles in the bell-shaped reactor (Viganò et al., 2010) (del Coso et al.,
2011). For this reason, they are usually referred to as U-rods. The bars are kept
inside the reactor until their radius has increased to a certain extent, then the reactor
is stopped and the bars are replaced with new seeds. Silanes are continuously fed to
the reactor chamber and, due to the high temperatures, silicon reduces and deposits
on the seed bars, according to the reaction Scheme 6.1. The hydrogen produced is
continuously removed.

In practice, due to the low vapour pressure of silanes, the Siemens reactor is
operated at low pressure (Viganò et al., 2010). In this thesis, P = 1[atm] is chosen.
The reactor temperature is always kept at values T ≥ 750[K] (Viganò et al., 2010).
High temperatures are needed due to the endothermicity of the reaction. For this
reason, energy must be provided to the system. This is done through the Joule effect,
meaning that electric current is sent through the seed bars of silicon, increasing their
temperatures (Viganò et al., 2010). In this thesis, the current intensity sent through
the bars is the control variable of the system. However, this heating system has one
important drawback. The continuous flow of electric current through the silicon bars
leads to high energy consumptions for a CVD reactor, in the range 45− 50

[
kWh
kg

]
(Ramos et al., 2013). This accounts for around 65% of the overall energy consumption
of a polysilicon production plant (Keck, 2012 as cited in Ramos et al. (2013)) making
the feedstock material impacting for 28% on the energy payback time of a PV module
(Alsema and de Wild-scholten, 2007 as cited in Ramos et al. (2013)). The necessity
to minimise energy consumption is thus evident.

The aim of this Chapter is to optimise the CVD reactor with respect to the
maximisation of the production and the minimisation of the energy consumption.
These are clearly conflicting objectives since, as said, high temperature is needed
because of the endothermicity of the reaction. Additionally, high temperature
enhances the kinetics of the reaction, leading to faster radius growth.

The system dynamics describing the reactor will be introduced and explained in
Section 6.2, together with the reaction scheme. Afterwards, Section 6.3 will present
all the results obtained for the optimisation of the CVD reactor. These will be
subdivided in several subsections.

Firstly, in Sections 6.3.1 and 6.3.2, the start-up of the reactor will be accomplished
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and the OCPs for the solution of the single objectives reported, together with the
multi-objective optimal control problem.

Secondly, in Section 6.3.3, the OCPs for the anchor points will be solved by
accounting for one and two uncertain parameters. This will be done by exploiting
the sigma points approximation.

Thirdly, in Section 6.3.4, the concept of robustification will be applied to the
multi-objective optimal control problem of Section 6.3.2.

Finally, Section 6.4 will conclude the Chapter, summarising and highlighting the
most important results.

6.2 The problem

In this thesis, a lab-scale reactor with a single seed bar is investigated. A schematic
representation of the reactor is given in Figure 6.1. The dimensions of the system
are also different from those of the industrial process, since the length of the bar is
just L = 30[cm]. The radius of the seed bar is not given directly but calculated from
the initial external surface area, which is A0 = 120

[
cm2

]
. Moreover, the reactor is

not cilindrical, but it has the shape of a parallelepipedon. More information on the
geometrical and operating parameters of the reactor are given in Appendix A.

The reactions taking place in the CVD reactor are shown in Equation 6.1. The
presented scheme was firstly introduced by Weerts et al. (1998) and then adapted

Figure 6.1: Chemical vapour deposition reactor: schematic representation. Gentle courtesy
of Viganò et al. (2010).
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and lumped by Masi et al. (2000).

SiH4 → SiH2 + H2 (6.1a)

SiH2
surface−−−−→ Si(s) + H2 (6.1b)

SiH4
surface−−−−→ Si(s) + 2H2 (6.1c)

The product of interest is the surface silicon Si(s). This can be obtained either from
direct deposition of the silane feed, according to Reaction 6.1c or from the deposition
of the intermediate product, sylilene, conforming to Reaction 6.1b. The deposition
reactions of silane and sylilene take place after their adsorption on the surface of the
rod, which can be seen as a catalyst (Viganò et al., 2010). The silane is fed to the
reactor together with hydrogen as a carrier fluid (Viganò et al., 2010).

The system dynamics is composed of 10 differential states and one manipulated
variable, which is the current intensity I(t)

[ A
m2

]
. It has been proposed by Viganò

et al. (2010) and adapted subsequently in Claessens (2013), Vallerio et al. (2014) and
Vallerio et al. (July 2014), to which interested readers are referred to for additional
information on the model development.

The terms CV
i
[mol

cm3

]
and CS

i
[mol

cm3

]
, with i = SiH4, SiH2, H2, Si represent the

concentrations of all the species in the vapour phase inside the reactor and on
the surface of the bar. ḞIN

[mol
s

]
and ḞOUT

[mol
s

]
stand for the molar flow rate of

the inlet and outlet stream, respectively. The mass and heat transfer coefficients
are represented by the terms hm,i

[ cm
s

]
and hT

[ W
m2 K

]
. The latter is calculated as

hT = NuTkT
H . A

[
cm2

]
and V

[
cm3

]
are emboding the surface of the rods and the

vapour-phase reactor volume. R [cm] and VR
[
cm3

]
are instead the bar radius and

volume. The factors k1
[
1
s

]
, k2

[ cm
s

]
, k3

[ cm
s

]
, represent the kinetic constants for

the three reactions already introduced in Equation 6.1. NC = 3 is the number of
vapour-phase components, NRS = 2 and NRV = 1 those of surface and vapour-phase
reactions. The molar reaction enthalpies are embodied in ∆H̃R,j

[ kJ
mol

]
. H̃f,i

[ kJ
mol

]
and Cp,i

[ J
mol K

]
are the formation enthalpies and specific heats for all components i,

while ρSi
[mol

cm3

]
is the silicon molar density.

The thermal and electrical conductivities of the silicon rod are respectively
represented by λT

[ W
m K

]
and λe

[ S
m

]
. σ
[

W
m2 K4

]
is the Stefan-Boltzmann constant,

while the factor F accounts for the absorptivity of the bulk. This dimensionless factor
is defined as the fraction of radiation absorbed by the vapour bulk with respect to
the original amount of radiation emitted by the rod (Claessens, 2013) (Vallerio et al.,
July 2014). Consequently, (1− F ) is the fraction of radiation absorbed by the wall.
ε is instead the reflectivity factor of the wall, identifying how much of the radiation
heat which is absorbed by the wall itself is sent back on the surface road. Lastly, T ,
TW, TS and TC stand for the temperatures of the vapour-phase, that of the reactor
wall and those of the rod surface and core. They are all measured in [K].

Most of the values of the constants introduced in these paragraphs are provided
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in Appendix A, together with the dimensions of the reactor and with the feed stream
concentration.

dCV
SiH4

dt
=

ḞIN

V
CIN
SiH4 −

ḞOUT

V
CV
SiH4 − hm,SiH4

A

V

(
CV
SiH4 − CS

SiH4

)
− k1C

V
SiH4 (6.2a)

dCS
SiH4

dt
= hm,SiH4

A

V

(
CV
SiH4 − CS

SiH4

)
− k3C

S
SiH4

A

V
, (6.2b)

dCV
SiH2

dt
=

ḞIN

V
CIN
SiH2 −

ḞOUT

V
CV
SiH2 − hm,SiH2

A

V

(
CV
SiH2 − CS

SiH2

)
+ k1C

V
SiH4 (6.2c)

dCS
SiH2

dt
= hm,SiH2

A

V

(
CV
SiH2 − CS

SiH2

)
− k2C

S
SiH2

A

V
(6.2d)

dCV
H2

dt
=

ḞIN

V
CIN
H2 −

ḞOUT

V
CV
H2 − hm,H2

A

V

(
CV
H2 − CS

H2

)
+ k1C

V
SiH4 (6.2e)

dCS
H2

dt
= hm,H2

A

V

(
CV
H2 − CS

H2

)
+ k2C

S
SiH2

A

V
+ 2k3C

S
SiH4

A

V
(6.2f)

dCS
Si

dt
= k2C

S
SiH2

A

V
+ k3C

S
SiH4

A

V
(6.2g)

NC∑
i=1

CiVC̃pi
dT

dt
= ḞIN

NC∑
i=1

CIN
i

(
H̃f,i(Trif) +

∫ TIN

Trif

C̃pidt

)

− ḞOUT

NC∑
i=1

CV
i

(
H̃f,i(Trif) +

∫ T

Trif

C̃pidt

)
+

NRV∑
j=1

riV
(
−∆H̃R,j(T)

)
+ hTA (TS − T) + hTAR (TW − T) + ε (F)σA

(
T4
S − T4

W

)
(6.2h)

(ρSiVRCpSi)
dTS

dt
= −hTA (TS − T)− ε (1− F)σA

(
T4
S − T4

W

)
+
λT
R

A (TC − TS) +
NRS∑
k=1

riA
(
−∆H̃R,k(TS)

) (6.2i)

TC = TS +

(
I2

λe

)
R2

4λT
(6.2j)

As anticipated, two objective functions will be considered in this work. The first
one is the maximisation of the production, which is expressed as the maximisation of
the external surface area A(tf). This objective, however, can directly be associated
to the maximisation of CS

Si(tf). The higher the silicon surface concentration, in fact,
the bigger will be the final external surface area of the bar. This objective will be
posed in the Mayer form, according to the definition given in Section 2.2.

The second one is the minimisation of the energy consumption. This is of course
an objective in the Lagrange form, since it is important to minimise the sum of the
energy consumed at all time. However, as explained in Section 2.2, by introducing an
additional state equation in the system this objective function is re-written in the
Mayer formulation.
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6. Robust multi-objective optimal control of a CVD reactor

The energy E is calculated by integrating over time the instantaneous power P
required by the electric current. For the formulation of the second objective function,
a three-phase alternate current is assumed to be used. Such a system is composed
of three sinusoidal voltages, with same magnitude, but out of phase of a value 2π

3
(Schavemaker and van der Sluis, 2008). The power consumed by such a system can
be expressed as (Weedy and Cory, 2004)

P =
√

3∆V
(
2IπR2

)
pf (6.3)

where P [W] is the power and ∆V [V] is the voltage of the current which will be
assumed to be ∆V = 220[V], as the standard load in Belgium (VREMCO, 2014).
2IπR2[A] is the current intensity. The power factor pf , instead, is accounting for the
phase angle between the three voltages. It is usually expressed as a cosine (Weedy
and Cory, 2004) (Schavemaker and van der Sluis, 2008), thus, aiming at the most
conservative case, in this thesis it will be assumed pf = 1.

The final MOOCP is given in Equation 6.4

minimise
x(t),u(t),p,tf

{
J1 = −CS

Si(tf), J2 = E(tf)
}

(6.4a)

subject to
dx
dt

= f(x(t), u(t),p, t) (6.4b)

dE

dt
=

∫ t=tf

t=0
P dt (6.4c)

x(0) = x0 (6.4d)

CS
i ≥ 0 ∀i = SiH4, SiH2, H2, Si (6.4e)

CV
i ≥ 0 ∀i = SiH4, SiH2, H2 (6.4f)

[373.15, 1065.15, 1065.15] ≤ [T (t), TS(t), TC(t)] ≤ [2000, 1687, 1687]
(6.4g)

[0] ≤ u(t) ≤ [150] (6.4h)

which is created according to the formulation given in Section 2.4. The two objective
functions have already been explained. The only remark is that the production
maximisation is transformed in a minimisation problem, by adding a minus sign in
front of it. The dynamic system enters the OCP in Constraints 6.4b and 6.4c. It is
known that a concentration can not be negative. Thus, in Equations 6.4e and 6.4f,
the concentrations CS

i and CV
i , are asked to always be higher than 0.

The most important bounds, however are those referred to TS and TC, in Equation
6.4g. In fact, the former must always be kept at TS ≥ 1065.15[K] to allow the
deposition to occur. The latter, instead, must always be TC ≤ 1687[K] which is the
melting temperature of polysilicon. The initial conditions x(0) are not given explicitly
in this Section, since before operating the reactor, the necessary start-up operation
must be accomplished.
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6.3 Chemical vapour deposition results

In this Section, the results for the multi-objective and robust optimal control problem
of the CVD reactor are reported. Firstly, in Section 6.3.1 the start-up operation
is accomplished. Afterwards, in Sections 6.3.2 and 6.3.3 the results of the multi-
objective optimisation and the robust OCPs are reported. Lastly in Section 6.3.4,
the robustification concept is applied to the multi-objective optimal control problem
and the effects on the Pareto set are observed.

All the simulations except the one presented in Section 6.3.1 have been accom-
plished for a batch time of 3 days and a discretisation of 432 equally spaced points,
meaning one point every 10 minutes. The time-span, instead has been chosen as
comparable to that of an industrial-scale batch, which is typically 80 − 100 hours
(Ramos et al., 2013). Concerning the MOOCPs, all the Pareto sets which will be
shown are composed of 21 Pareto optimals. Furthermore, according to Equation 6.4a,
the production objective is expressed in a negative form, to allow its maximisation.
As a consequence, all Pareto sets presented in this Chapter will depict a negative
external surface.

Additionally, as it is possible to see in the initial Conditions 6.5, the gaseous bulk
is composed for a fraction of 99.9% of hydrogen gas. Thus, the bulk absorptivity
coefficient of Equations 6.2h and 6.2i is assumed to be F = 0 (Claessens, 2013).

6.3.1 Start-up

At first, the reactor is assumed to be shut down. Thus in order to bring it at the
correct temperature, start-up must be executed. This is done by solving an OCP with
the aim of minimising the time required to reach a surface temperature of 1070[K].
To the purpose of this thesis, this optimisation does not lead to fundamental results,
but it is a necessary step to find the correct initial conditions to fill in Equation 6.4d,
which can then be rewritten as:(

CV
SiH4, CS

SiH4, CV
SiH2, CS

SiH2, CV
H2, CS

H2, CS
Si, T, TS, E

)
(0) =

[3.176 · 10−2, 5.686 · 10−4, 5.370 · 10−3, 4.759 · 10−8, 30.76, 2.023,

5.081 · 10−4, 435, 1070, 13.17]

(6.5)

The units were already given in the model description in Section 6.2.

In Equation 6.5, no initial condition on TC is given. As a matter of fact, from the
system dynamics in Equations 6.2, it is possible to see that the core temperature TC is
influencing only the dynamic equation of the surface temperature TS. Thus, in order to
decrease the number of states and to make the problem less computationally intensive
its formulation is directly replaced in Equation 6.2i eliminating the differential state
Equation 6.2j from the system. TC, when needed, will then be calculated outside the
optimisation problem.
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6. Robust multi-objective optimal control of a CVD reactor

With the initial conditions assessed, it is possible to present the results of the
optimisations accomplished in this Chapter.

6.3.2 Multi-objective optimal control problem

In this section, the results for the multi-objective optimisation of the chemical vapour
deposition reactor are provided. As a first step, the two anchor points are solved
individually.

The control profiles can be seen in Figure 6.2. Important to notice is that the
current intensity necessary for the maximisation of the radius is decreasing with time.
This is a direct consequence of the increasing size of the bar. In fact, careful readers,
could have already anticipated that, for this objective function, the temperature
profile would have been very close to its upper bound, to enhance reaction kinetics
and thermodynamics. However, as the radius grows, the current intensity has to
decrease or the bar core would melt.

This feature can be better understood by looking at Figure 6.3a, where it is clear
how the TC is always kept at its upper bound, while TS is slightly decreasing, due
to the bar growth. Figure 6.3b, instead, shows the profiles of TC and TS when the
objective J2 is minimised. It is evident that the surface temperature is kept at its
lower bound, in order to avoid excessive heating. Moreover, a behaviour opposite to
that of Figure 6.3a is observed. Here, in fact, TC is increasing, to keep TS constant.

Additionally, it is interesting to look at the behaviour of the two objective functions.
From Figure 6.4a, it is possible to see that, after three days of operation, the external
surface of the bar is either 136.89

[
cm2

]
or 136.20

[
cm2

]
depending on the objective

function considered. On the other hand, the related energy consumptions are 1395[kJ]
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Figure 6.2: Chemical vapour deposition reactor: optimal control profiles for the two anchor
points.
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Figure 6.3: Chemical vapour deposition reactor: core and surface temperatures for the two
anchor points.
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(a) External surface area, A.
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(b) Energy consumption, E.

Figure 6.4: Chemical vapour deposition reactor: external surface area of the bar and energy
consumption for the two anchor points.

and 380 [kJ]. This implies that, a decrease in the production of only 0.5% can lead
to energy saving in the order of 70%. This can be a really valuable information for
the plant-manager or the decision-maker in general. Nevertheless, in some particular
circumstances, pushing the production to its maximum might still be worthwhile.
This can be done, for instance, at night, when energy prices are generally lower, or
when the world-wide polysilicon demand is raising, leading to higher prices at which
the product can be sold.

Up to this point, only the extreme points have been discussed. However, there
can be the case when the decision-maker is interested in none of the two, preferring
some intermediate points. Thus a multi-objective optimal control problem needs to
be solved, exploiting the techniques presented in Section 2.5.
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Figure 6.5: Chemical vapour deposition reactor: Pareto sets calculated with the WS and
ENNC methods.

In particular, in Figure 6.5a, the Pareto sets obtained with the WS and ENNC
methods are presented. It is possible to see how, due to the highly non-linear
behaviour of the system dynamics, the WS method is not even able to depict a Pareto
set. Although 21 points were required, only 3 of them were detected. All others are
perfectly overlying to the energy anchor point, in the rigth bottom corner. Instead,
as it was expected from the previous experience of Chapter 4, the ENNC method
returns 21 equally spread Pareto optimals.

In Figure 6.5b, the same Pareto set is reported. However three Pareto optimals
are stressed, with the aim of showing the behaviour of some intermediate points which
the decision-maker might be interested in. The decision-maker can benefit from them
and can use them to pick the solution which is considered to be the best, according
to her or his preferences. Several algorithm and methodologies are available to help
the decision-maker expressing his or her preferences and to help him or her making a
sound choice, but they are not treated in this master thesis. Interested readers can
find several examples in Miettinen (1999) and references therein.

In this work, instead, three intermediate points are selected and depicted with
illustrative purposes. Their related control profiles are reported in Figure 6.6. The
weighing system should be read as follows: the weights are varying in the range [0 1]
and [1 0]. The former is focusing only on the production objective function, while the
latter only on the energy one. Thus, the weight [0.50 0.50] implies equal importance
for both objectives. Concerning the point [0.60 0.40], limited more importance is
given to the energy objective function, while the point [0.15 0.85] gives significant
more importance to the production objective function.

The depicted controls will give raise to different states profiles and objective
functions values. In particular, the profiles of TS and TC are reported in Figure 6.7.
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Figure 6.6: Chemical vapour deposition reactor: optimal control profiles for three interme-
diate points of the Pareto set.
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Figure 6.7: Chemical vapour deposition reactor: temperature profiles for three intermediate
points.

Figure 6.8, instead, shows the objective functions obtained for the three interme-
diate points. The external surface area has been zoomed in, to make the difference
visible. However, these values are also reported in Table 6.3, when a comparison with
the robust MOOCP is made.

So far, the results presented in this Section, assumed complete knowledge of
the system dynamics and, in particular, of all the parameters involved. In the next
Sections, the robust OCP and robust MOOCP of the CVD reactor will be addressed.
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Figure 6.8: Chemical vapour deposition reactor: external surface area of the bar and energy
consumption for three intermediate points.

6.3.3 Robust optimal control problem

In this Section, uncertainties on two parameters will be considered when solving
the anchor points of the MOOCP presented in Equation 6.4. In Chapter 5, it
was already demonstrated that, for highly non-linear system dynamics, the sigma
points approximation works better than the linear one, when handling parameter
uncertainties. Thus, due to the high complexity of the model presented in this
Chapter, the sigma points will be the approach exploited.

The uncertain parameters considered are ε, the emissivity constant of the reactor
wall, and λe, the electrical conductivity of the silicon rod. As it has been done in
Chapter 5, both parameters are assumed to be normally distributed. In particular,
their mean values are ε = 0.7 and λe = 2.52 · 10−4

[ S
m

]
. Two variance-covariance

matrices will be considered, respectively with standard deviation of 10% and 20% on
both parameters.

V1 =

(
0.072 0

0
(
2.52 · 10−5

)2 ) (6.6)

and

V2 =

(
0.142 0

0
(
5.04 · 10−5

)2 ) (6.7)

One last remark needs to be done before presenting the results. In Chapter 5,
results for the robust OCPs were always presented in accordance to the number of
uncertain parameters. However, in all the examples treated in that Chapter, only
one objective function was considered. On the other hand, in this Section, two
different objective functions are examined. Thus, according to the author, it is more
meaningful to structure the following Sections depending on the objective function
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considered, rather than on the number of uncertain parameters involved. For this
reason, Sections 6.3.3.1 and 6.3.3.2 respectively present the results of the robust
OC for the production maximisation and for the energy minimisation problem. In
both Sections, results for both one and two uncertain parameters cases are provided
together.

6.3.3.1 Robust optimal control of the production maximisation problem

In this Section, the effects of one and two uncertain parameters on the production
maximisation problem is considered. As it was done in Section 5.2.2, additional
constraints must be introduced to the system, in order to account for the uncertain
parameters.

ȳTC(t) + q
√

PTC,TC(t) ≤ 1687[K] (6.8a)

ȳTC(t)− q
√

PTC,TC(t) ≥ 1065.15[K] (6.8b)

The assumption of normally distributed profiles which was taken in the previous
Chapter is accepted also for this problem. q = 1.96 is then chosen, implying a 95%
confidence region, as in Chapter 5. This implies that local melting of the silicon rod
is accepted for no more than 5% of the batches.

Additionally, the formulation of the objective function is rewritten, according to
Equation 2.35, as

J1 = −
(
ȳCS

Si
(tf)− τ

√
PCS

Si,C
S
Si

(tf)
)

(6.9)

Again, a confidence region of 95% is taken. However, τ = 1.645 since, for the objective
function manipulation, only a one-sided normal distribution must be considered. In
fact the variance-covariance matrix can only influence the objective function in one
direction, increasing it.

The control actions for one and two uncertain parameters are shown in Figure
6.9. The blue and straight line is the control already described in Section 6.3.2 and it
is used as bench-mark. As expected, the current intensity is decreased, in order to
account for the additional Constraints 6.8. Moreover, accounting for two uncertain
parameters leads to more extensive decreases in the control actions.

From Figure 6.10 it is possible to understand what is causing this decrease in the
current intensity. The predicted 95% confidence regions of the core temperature, for
all cases, are hitting the upper bound for almost all the batch duration. Thus the
control action can not push the core temperature profile to its upper bound. The
greater predicted 95% confidence regions of Figure 6.10b force the core temperature
profiles to be lower than those of Figure 6.10a. This holds when the standard
deviations taken on the parameters are either 10% or 20%.

The loss in terms of production can be seen from Table 6.1, together with the
decrease in energy consumption. From Table 6.1, it is clear that the introduction of
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(b) Two uncertain parameters, ε and λe.

Figure 6.9: Chemical vapour deposition reactor: control profiles for the production maximi-
sation problem with different uncertain parameters.
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(a) One uncertain parameter, ε.
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(b) Two uncertain parameters, ε and λe.

Figure 6.10: Chemical vapour deposition reactor: TC profiles and their predicted 95% con-
fidence regions for the production maximisation problem with different uncertain parameters.

Table 6.1: Chemical vapour deposition reactor: external surface area and energy consumption
for the production maximisation problem.

A (tf)
[
cm2

]
E (tf) [kJ]

Nominal 136.89 1395
1 uncertainty, 10% 136.77 1288
1 uncertainty, 20% 136.66 1178
2 uncertainties, 10% 136.72 1240
2 uncertainties, 20% 136.56 1087
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one or two uncertainties leads, in the worst case, at a loss of around 0.25% in terms
of production. This is a negligible value. The main issue when dealing with these
uncertainties, is in fact the core temperature profile, which has to be decreased up to
200[K] in order to avoid melting of the rod.

6.3.3.2 Robust optimal control of the energy minimisation problem

In this Section, the influence of one or two uncertain parameters on the second
anchor point, namely the energy minimisation problem, will be considered. The two
uncertain parameters considered were already described in Section 6.3.3. Both results
for one and two uncertain parameters will be given in this Section, as in the previous
one.

Additional constraints are again introduced, to account for the parameters uncer-
tainties.

ȳTS(t) + q
√

PTS,TS(t) ≤ 1687[K] (6.10a)

ȳTS(t)− q
√

PTS,TS(t) ≥ 1065.15[K] (6.10b)

In this case, the most critical state is the surface temperature TS, as it could be seen
from Figure 6.3b.

The objective function is also manipulated, to take into account for the uncertainty
over the estimated value ȳTS(t). Following the formulation given in Equation 2.35, it
can be rewritten as

J2 =

(
ȳE(tf) + τ

√
PE,E(tf)

)
(6.11)

Again, the states are assumed to be normally distributed. Thus q = 1.96 and
τ = 1.645, requiring a confidence region of 95% as in the previous Section. Such a
value for the confidence region means that only 5% of the batches are allowed and
accepted to stop the production due to their possibly too low surface temperature TS.

The control profiles are depicted in Figure 6.11. In order to account for the
uncertainties, the current intensity is kept higher than in the nominal case, irrespec-
tively of the number and the standard deviation of the uncertain parameters. As
in Section 6.3.3.1, this is a consequence of the introduction of the predicted 95%
confidence region in the OCP. From Figure 6.12, it is clear that the predicted 95%
confidence regions are hitting the lower boundary of the surface temperature, forcing
the estimated profile ȳTS to be higher than in the nominal case. Again, it is clear
that the two-parameters cases of Figure 6.12b predict greater confidence regions than
the one-parameter cases of Figure 6.12a.

However, it is interesting to look at Table 6.2 to understand the increase of the
energy objective function and the related changes in the production.

Differently from the previous Section, the objective function increases, in the
worst case, of about 36%. Despite this relatively great increase, the production change
is negligible, such that notable changes are recorded only at the 6th significant digit.
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(a) One uncertain parameter, ε.
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(b) Two uncertain parameters, ε and λe.

Figure 6.11: Chemical vapour deposition reactor: control profiles for the energy minimisa-
tion problem with different uncertain parameters.
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(a) One uncertain parameter, ε.
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(b) Two uncertain parameters, ε and λe.

Figure 6.12: Chemical vapour deposition reactor: TC profiles and their predicted 95%
confidence regions for the energy minimisation problem with different uncertain parameters.

Table 6.2: Chemical vapour deposition reactor: external surface area and energy consumption
for the energy minimisation problem.

A (tf)
[
cm2

]
E (tf) [kJ]

Nominal 136.1991 380
1 uncertainty, 10% 136.2034 412
1 uncertainty, 20% 136.2108 458
2 uncertainties, 10% 136.2066 434
2 uncertainties, 20% 136.2218 517
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Additionally, it is interesting to notice that considering one uncertain parameter
with 20% standard deviation leads to worse results, in terms of the objective function
E(tf), than considering two uncertain parameters with 10% standard deviation each.
The same could have been said by looking at Table 6.1, where the objective to be
considered is A(tf). Thus from an economic point of view, it can be stated that it
is more meaningful to work with two uncertain parameters with a given standard
deviation than to have perfect knowledge on one of them but a two-fold standard
deviation on the other.

In the next Section, the sigma points approach is applied to the multi-objective
optimal control problem, considering the objective functions described both in this
Section and in the previous one.

6.3.4 Robust multi-objective optimal control problem

In this Section, the concept of robustification is applied to a multi-objective optimal
control problem. Some examples are already present in the literature. Logist et al.
(2011), for instance, applied the robustification approach presented in Section 2.6.1 to
the MOOCPs of the fed-batch bio-reactor and the jacketed tubular reactor respectively
discussed in Chapters 4 and 5. However, as in the previous Sections, the sigma points
approximation method is applied for the CVD reactor.

With respect to the MOOCP presented in Section 6.3.2, two specific changes
to the Problem formulation 6.4 are made. Firstly, both constraints presented in
Equations 6.8 and 6.10 need to be considered. Secondly, the objective functions are
adapted, according to Equations 6.9 and 6.11.

Figure 6.13 presents the Pareto sets obtained with one or two uncertain parameters.
The standard deviations used are again 10% and 20%. The effects of the uncertainties
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(a) One uncertain parameter.
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Figure 6.13: Chemical vapour deposition reactor: Pareto sets calculated with one or two
uncertain parameters.
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on the Pareto set are evident. In fact, the nominal Pareto front is shifted towards
the right, which means that a fraction of the original feasible set, as it was defined in
Definition 1, has now become un-feasible region. Moreover, it is also possible to see
that the higher the uncertainty, the more the Pareto sets are shrinking towards the
middle, drifting away from the original anchor points.

Three intermediate points are highlighted as it was in Figure 6.5b. These points
are obtained with the same weights as in Section 6.3.2. In particular, the weights
are [0.15 0.85], [0.50 0.50] and [0.60 0.40] for the diamond, the square and the
downward-pointing triangle respectively. They are depicted in all of the Pareto
sets represented, to make clearly visible the shift to which the nominal Pareto set
undergoes. Their control profiles are depicted in Figure 6.14. Both the profiles for the
one and two-parameters cases are reported, in Figures 6.14a and 6.14b, respectively.
In Figure 6.14, only the 20% cases are depicted. The nominal profiles are not reported
here, but interested readers can find them in Figure 6.6.

Figure 6.15 depicts the temperature profiles of the core and surface of the rod for
one and two uncertain parameters with 20% standard deviation. The predicted 95%
confidence regions are not represented, not to overcrowd the Figures. However, the
TC profile for the Pareto optimal [0.15 0.85] has been clearly influenced. In fact, in
Figures 6.15a and 6.15b, it flattens before reaching the upper temperature bound.
On the other hand, when the nominal MOOCP is solved, the same TC profile meets
its upper bound, as seen in Figure 6.7a.

A similar consideration can be made looking at Figure 6.15c, where the TS profiles
of the Pareto optimals [0.50 0.50] and [0.60 0.40] are flattening at a value higher than
the lower bound.

Although with different final values, the external surface area and the energy
consumption profiles for the robust MOOCP are not different from those depicted in
Figure 6.8. Thus, only the final values of the objective functions for the intermediate
points are reported in Table 6.3. These have been calculated according to Equations
6.9 and 6.11. Readers interested in the actual profiles are referred to Appendix
B.1, Figures B.1 and B.2. For the nominal case, the values reported are calculated
according to Equation 6.4a.

In Figures 6.13a and 6.13b, where the Pareto sets are presented, the number of
uncertain parameters was kept constant, while their standard deviation was varied.
An additional comparison could be made considering the Pareto sets obtained for
different number of uncertain parameters whose standard deviations are fixed. This
is done choosing a 20% standard deviation for all uncertain parameters. Nevertheless,
results are found not to be different from those already presented. Thus they are
not shown in this Chapter, but interested readers can find them in Appendix B.1,
Figures B.3, B.4, B.5 and B.6.

A last consideration should be made analysing the sizes of the problems solved.
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6.3. Chemical vapour deposition results
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(a) One uncertain parameter, 20%.
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(b) Two uncertain parameters, 20%.

Figure 6.14: Chemical vapour deposition reactor: optimal control profiles for three inter-
mediate points of the robustified Pareto sets.
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(a) TC, one uncertain parameter, 20%.
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(b) TC, two uncertain parameters, 20%.
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(c) TS, one uncertain parameter, 20%.
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(d) TS„ two uncertain parameters, 20%.

Figure 6.15: Chemical vapour deposition reactor: temperature profiles for three intermediate
points of the robustified Pareto sets.
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6. Robust multi-objective optimal control of a CVD reactor

Table 6.3: Chemical vapour deposition reactor: external surface area and energy consumption
for three intermediate points.

Weight A (tf)
[
cm2

]
E (tf) [kJ]

Nominal [0.60 0.40] 136.49 761
Robust, 1 uncertainty, 10% [0.60 0.40] 136.44 746
Robust, 1 uncertainties, 20% [0.60 0.40] 136.40 734
Robust, 2 uncertainty, 10% [0.60 0.40] 136.42 742
Robust, 2 uncertainties, 20% [0.60 0.40] 136.36 738

Nominal [0.50 0.50] 136.56 860
Robust, 1 uncertainty, 10% [0.50 0.50] 136.50 832
Robust, 1 uncertainties, 20% [0.50 0.50] 136.44 806
Robust, 2 uncertainty, 10% [0.50 0.50] 136.47 822
Robust, 2 uncertainties, 20% [0.50 0.50] 136.40 795

Nominal [0.15 0.85] 136.79 1226
Robust, 1 uncertainty, 10% [0.15 0.85] 136.69 1146
Robust, 1 uncertainties, 20% [0.15 0.85] 136.60 1063
Robust, 2 uncertainty, 10% [0.15 0.85] 136.65 1110
Robust, 2 uncertainties, 20% [0.15 0.85] 136.52 997

Table 6.4: Chemical vapour deposition reactor: number of states, variables and constraints
involved and time required for the solution of the OCPs and MOOCPs.

# States # Variables # Constraints Time [s]

Nominal OCP 10 17712 40608 20
Nominal MOOCP 10 17712 40608 304
Robust OCP, 1 uncertainty 30 52272 123552 260
Robust OCP, 2 uncertainties 50 86832 203040 927
Robust MOOCP, 1 uncertainty 30 52272 123552 1163
Robust MOOCP, 2 uncertainties 50 86832 203040 3985

The number of states, variables and constraints involved are reported in Table 6.4,
together with the time required for the solution of each problem. All the OCPs
presented in Table 6.4 are referring to the energy minimisation problems. However,
when considering the production maximisation, the amount of states, variables and
constraints are the same and the computational times closely comparable to those
reported.

The system dynamics are highly non-linear and the problems sizes greater than
those presented in Chapter 5, in Tables 5.5 and 5.10. Again, these are non-trivial
problems that can not be easily handled by all solution methodologies of Section
2.3. Nevertheless, although longer than in Chapter 5, the time necessary to reach
the optimal solution is still affordable, requiring around 15 minutes for the largest
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6.4. Conclusion

OCP problem. The most complicated MOOCP, instead required around one hour,
meaning just three minutes for each Pareto optimal.

6.4 Conclusion

In this Chapter, a bi-objective optimisation of a chemical vapour deposition reactor
was accomplished. The considered objectives were the production maximisation
and the energy consumption. These are conflicting objectives and it was seen that
focusing only on one of the two can not be satisfactory for a decision-maker. Thus,
intermediate points, taken from the Pareto sets, were also described, to make the
readers aware of the power of multi-objective optimisation. Decision-makers are then
able to make a sound decision, since also the intermediate objective functions values
can be investigated.

Additionally, the same study was performed when uncertain parameters were
present in the system dynamics. It was seen that the feasible set is influenced by
the presence of uncertain parameters and that the Pareto set shifts towards higher
values of the objective functions. Moreover, a drift of the anchor points towards less
performing results was noticed, when uncertainties were introduced.

Lastly, the computational times required to solve the OCPs and MOOCPs for
the CVD were compared in Section 6.3.4. It was seen that, despite the highly
non-linearity of the system dynamics and the considerable sizes of the problems,
reasonable computational times were necessary for this industrial case. In particular,
this holds also for the robust multi-objective optimisation problem, enforcing the
conclusion given already in Chapter 5, where the sigma points was presented as a
good candidate for real industrial robust optimal control problems.
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Chapter 7

Conclusion

After the start of OCP theory, several solution methodologies have been developed,
in order to deal with non-linear system dynamics. Some of them have been presented
in this work, although only one has been exploited. As a matter of fact, direct
orthogonal collocation, as implemented in Pomodoro, proved its ability in handling
and solving optimal control problems also when highly non-linear system dynamics
and considerable problem sizes were involved. The importance of a good insight of
the process was stressed, since model equations highly influence the solution of any
optimal control problem.

However, next to the classical view of OC, two variations are gaining importance
in the (bio-)chemical industrial world, namely robust OC and multi-objective optimal
control. Both of them were investigated in this thesis work, on some small-scale
examples as well as on a real industrial case problem.

The relevance of robust OC comes from the possible presence of uncertainties
in the model equations of the considered process. In particular, it is required the
compliance of the states boundaries even if uncertainties are present. Thus, a safety
margin is usually introduced, although this implies a worse value for the objective
function.

In this work, two methods were investigated, to assess their reliability when
dealing with uncertain parameters. These were the linear approximation as proposed
by Srinivasan et al. (2003) and the sigma points approach (Julier and Uhlmann,
1996) (Recker et al., 2012). The optimisation of a jacketed tubular reactor and of
the Williams-Otto reactor were accomplished exploiting both methods. It was found
that, while the first works good for barely linear system dynamics, it fails in dealing
with highly non-linear systems. The sigma points approximation, instead, not only
was able to deal with complex dynamic systems, but also required less computational
time, although still longer than in the nominal case. This makes it a good candidate
also for dealing with industrial-scale problems.

The industrial importance of multi-objective optimal control is instead a direct
consequence of its capability to deal with more than a single objective. It allows in fact
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7. Conclusion

to focus on more than just one aspect of the unit operation or the plant considered.
In this thesis, multi-objective optimal control was applied to a chemical vapour
deposition reactor, where the maximisation of the production and the minimisation
of the energy consumption were treated simultaneously. Several mathematically
equivalent solutions were obtained, gathered in the so-called Pareto set. However,
the control actions and the results attained are different for each of these points.
As a consequence the decision-maker is called to pick the solution which has to be
implemented in practice. Nevertheless, the possibility to analise all or some of the
Pareto optimals can be really helpful in this choice.

Although just a combination of the two variations, also robust MOOCP was
applied to the CVD reactor. The most relevant results are that the Pareto set is forced
to shift towards less performing objective functions values and that the feasible set is
reduced in size. This is due to the safety margin introduced by the robustification.
This term introduces an additional trade-off between performance and safe operation.
The safety margin itself can then be seen as an additional objective function. As
before, even in this case the decision-maker is called to choose the control profile to
be implemented.

As anticipated, optimal control in all its variations can be seen as a useful tool
towards sustainable development. Although usually the economical aspect is still
the most relevant, it might in fact be a good answer to social and environmental
pressure to which industries are nowadays exposed. This was demonstrated in the
multi-objective optimisation of the CVD reactor, where it was proven that reducing
the production of a factor 0.5% could lead to an overall energy saving of about 70%.

Finally, some suggestions for further research are made. In particular, the robust
optimal solution of the CVD reactor could be assessed through a Monte-Carlo
simulation, in order to evaluate whether the required confidence level is satisfied or
not by the sigma points approximation.

Moreover, the system dynamics of the chemical vapour deposition reactor should
be adapted to the size of the silicon rods in a real Siemens reactor. In this thesis,
in fact, a lab-scale reactor was investigated. In addition, the same model should
be adapted to account for more than a single bar. As a matter of fact, industrial
Siemens reactors are composed of 36 or more bars, each controlled in an independent
way. The radiation heat exchanged between the bars should then be included in the
system dynamics, in order to allow a fine control for each of the silicon rods.
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Appendix A

CVD reactor

A.1 Model parameters
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A. CVD reactor

Table A.1: CVD reactor: geometrical and operating parameters.

Constant Value Units

V 480 cm3

A0 120 cm2

H 40 cm
v 10 cm/s
xIN
H2 99.8 %

xIN
SiH4 0.1 %

xIN
SiH2 0.1 %

TIN 373.15 K
P 1 atm
NuM = NuT 3.66 -
H̃f,H2 0 kJ/mol
H̃f,SiH4 33.91 kJ/mol
H̃f,SiH2 270.42 kJ/mol
H̃f,Si 0 kJ/mol
ρSi 0.19 mol/cm3

DH2 1.28× (T[K]/300)1.68 cm2/s
DSiH4 0.58× (T[K]/300)1.8 cm2/s
DSiH2 0.59× (T[K]/300)1.8 cm2/s
C̃p,H2 27.21 + 66.98 · 10−4 × T[K] J/mol·K
C̃p,SiH4 20, 51 + 75, 35 · 10−3 × T[K] J/mol·K
C̃p,SiH2 25.12 + 41.86 · 10−4 × T[K] J/mol·K
C̃p,Si 22.60 J/mol·K
k1 2.7× 1014 × exp(−57000/R/T[K]) 1/s
k2 1.9× 104 cm/s
k3 5.4 cm/s
kT 5.44× 10−2 + 14.44× 10−2 × T[K]/300 W/m·K

−12.14× 10−3 × (T[K]/300)2

λT 30 W/m·K
λe 2.52 · 10−4 S/m
ε 0.7 −
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Appendix B

CVD reactor

B.1 Additional figures
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(a) One uncertain parameter, 20%.
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(b) Two uncertain parameters, 20%.

Figure B.1: Chemical vapour deposition reactor: external surface area of the bar for three
intermediate points of the robust Pareto sets.
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B. CVD reactor
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(a) One uncertain parameter, 20%.
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(b) Two uncertain parameters, 20%.

Figure B.2: Chemical vapour deposition reactor: energy consumption for three intermediate
points of the robust Pareto sets.
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Figure B.3: Chemical vapour deposition reactor: Pareto sets calculated with one and two
uncertain parameters with same standard deviations.
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Figure B.4: Chemical vapour deposition reactor: optimal control profiles for the correspond-
ing intermediate point of the nominal and robust Pareto sets, calculated with one and two
uncertain parameters with same standard deviations.
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B.1. Additional figures
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(a) TC.

0 0.5 1 1.5 2 2.5 3
1000

1100

1200

1300

1400

1500

1600

1700

Time (d)

S
ur

fa
ce

 T
em

pe
ra

tu
re

 (K
)

 

 

[0.15  0.85], Nominal
[0.15  0.85], SP 1 Uncertain Par., 20%
[0.15  0.85], SP 2 Uncertain Par., 20%
Bound

(b) TS.

Figure B.5: Chemical vapour deposition reactor: temperature profiles for the corresponding
intermediate point of the nominal and robust Pareto sets, calculated with one and two
uncertain parameters with same standard deviations.
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(a) External surface area, A.
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(b) Energy consumption, E.

Figure B.6: Chemical vapour deposition reactor: external surface area and energy con-
sumption for the corresponding intermediate point of the nominal and robust Pareto sets,
calculated with one and two uncertain parameters with same standard deviations.
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Appendix C

CVD reactor programming code

C.1 Robust MOOCP with 2 uncertain parameters

""" Created on Sat May 3 15:56:27 2014 author: Lorenzo """

import time
import numpy as NP
from pomodoro.problem.moproblem import MOproblem
from pomodoro.solver.multiobjective import Multiobjective
from pomodoro.discs.expression import Expression
from pomodoro.graphgenerator.paretobrowser import ParetoBrowser
from casadi import *

t = time.time()
prob=MOproblem(21,’ENNC’)

# geometrical parameters
L = 30.0e-2
H = 4.0e-2
B = 4.0e-2
A = L*H
V = L*H*B
v = 10.0e-2
W = H*B*v
Ar = (B*H)*2.0 + (L*H)*4.0
A0_b = 120.0e-4
r0_b = A0_b /(2.0*L*pi)
V0_b = (r0_b**2.0)*pi*L

# T and P
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C. CVD reactor programming code

Tp = 1100.0
Trif = 298.15
Tin = 373.15
Tw = 973.15
P = 1.0
Pt = 3.1e6

# gas constant
R_cal = 1.98
R_atm = 82.0575e-6

# Inlet mole fractions
x0_H2 = 0.998
x0_Si4 = 0.001
x0_Si2 = 0.001

# Inlet concentrations
C_H2 = x0_H2 * P/(R_atm*Tin)
C_Si4 = x0_Si4 * P/(R_atm*Tin)
C_Si2 = x0_Si2 * P/(R_atm*Tin)

# Molecular weights
PM_H2 = 2.0
PM_Si4 = 32.0
PM_Si2 = 30.0
PM_Sis = 28.0

# densities of the silicon
roMol_Sis = 0.19e6
roMas_Sis = roMol_Sis *PM_Sis
MolIN = P*W/(R_atm *Tin)
i0 = 0.005
Nu = 3.66

# Specific heat # ACP_i + BCp_i * x[7]
ACp_H2 = 6.5
BCp_H2 = 0.0016
ACp_Si4 = 4.9
BCp_Si4 = 0.018
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C.1. Robust MOOCP with 2 uncertain parameters

ACp_Si2 = 6.0
BCp_Si2 = 0.001
ACp_Sis = 5.4
BCp_Sis = 0.0

# formation enthalpy
DHf_H2 = 0.0
DHf_Si4 = 8100.0
DHf_Si2 = 64590.0
DHf_Sis = 0.0

# formation entropy
DSf_H2 = 31.2
DSf_Si4 = 48.8
DSf_Si2 = 49.5
DSf_Sis = 4.5

# radiation constants
irr_J = 5.67e-8 # boltzmann constant in W/(m*K)
irr = irr_J / 4.186 # boltzmann constant in cal/(m*K)
emiss = 0.7 # emissivity constant
# sigma points calculation
n=2.0
k=3.0-n
pEmiss = 0.0049 # 10%
sigmaEmiss = sqrt((n+k)*pEmiss)

# kinetic constants
k_sup1 = 1.9e2 # = k_2
k_sup2 = 5.4e-2 # = k_3

# conduction constants
kT_Sis_J = 30.0 # thermal conductivity in W/(m*K)
kT_Sis = 30.0 / 4.186 # thermal conductivity in cal/(m*K)
kE_Sis = 2.52e-4 # electrical conductivity in 1/(ohm*m)
# sigma points calculation
pElec = (kE_Sis*0.10)**2.0
sigmaElec = sqrt((n+k)*pElec)
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C. CVD reactor programming code

# time constants
t_start = 0.0
t_end = 60.0 * 60.0*24.0*3.0

t1 = prob.setTimeRange(t_start,t_end)

xlower = [
0.0,0.0,0.0,0.0,0.0,0.0,0.0,373.15,1065.15,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,373.15,1065.15,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,373.15,1065.15,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,373.15,1065.15,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,373.15,1065.15,0.0]

xupper =[
1e7,1e7,1e7,1e7,1e7,1e7,1e7,2000.0,1687.0,1e7,
1e7,1e7,1e7,1e7,1e7,1e7,1e7,2000.0,1687.0,1e7,
1e7,1e7,1e7,1e7,1e7,1e7,1e7,2000.0,1687.0,1e7,
1e7,1e7,1e7,1e7,1e7,1e7,1e7,2000.0,1687.0,1e7,
1e7,1e7,1e7,1e7,1e7,1e7,1e7,2000.0,1687.0,1e7]

x = prob.addStates(50,xlower,xupper,method=[’LagrangeColl’,432])
x.load("2par/states_sigma2par_energy_10%_Volt2_1.645.txt")

u = prob.addControls(1,[0.0],[150.0], method=[’PiecewiseConstant’,432])
u.load("2par/control_sigma2par_energy_10%_Volt2_1.645.txt")

""" Solving Nominal Problem"""
rhs = Expression(SXMatrix.zeros(50))

D_H2 = 1.276e-4 *((x[7]/300.0)**1.68)# diffusion coefficient
D_Si4 = 0.58e-4 *((x[7]/300.0)**1.8)# diffusion coefficient
D_Si2 = 0.59e-4 *((x[7]/300.0)**1.8) # diffusion coefficient

kc_H2 = Nu*D_H2/H
kc_Si4 = Nu*D_Si4/H
kc_Si2 = Nu*D_Si2/H

kt = 1.3e-2 + 3.45e-2 * x[7] / 300.0 - 2.9e-3*((x[7]/300.0)**2.0)
hlim = Nu * kt / H
hlim_J = hlim * 4.186
k_gas = 2.7e14*exp(-57000.0/(R_cal*x[7])) # = k_1
rhs[0] = MolIN * x0_Si4 / V - W * x[0] / V - kc_Si4 * (2.0 * L * pi * (((V0_b +
x[6] * V / roMol_Sis)/(L * pi))**0.5)) * (x[0] - x[1]) / V - k_gas * x[0]
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C.1. Robust MOOCP with 2 uncertain parameters

rhs[1] = kc_Si4 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5))*
(x[0] - x[1]) / V - k_sup2 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L *
pi))**0.5)) * x[1] / V

rhs[2] = MolIN * x0_Si2 / V - W * x[2] / V - kc_Si2 * (2.0 * L * pi * (((V0_b +
x[6] * V / roMol_Sis)/(L * pi))**0.5)) * (x[2] - x[3]) / V + k_gas * x[0]

rhs[3] = kc_Si2 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5))
* (x[2] - x[3]) / V - k_sup1 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L *
pi))**0.5)) * x[3] / V

rhs[4] = MolIN * x0_H2 / V - W * x[4] / V - kc_H2* (2.0 * L * pi * (((V0_b +
x[6] * V / roMol_Sis)/(L * pi))**0.5)) * (x[4] - x[5]) / V + k_gas * x[0]

rhs[5] = kc_H2* (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5)) *
(x[4] - x[5]) / V + k_sup1 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L
* pi))**0.5)) * x[3] / V + 2.0 * k_sup2 * (2.0 * L * pi * (((V0_b + x[6] * V /
roMol_Sis)/(L * pi))**0.5)) * x[1] / V

rhs[6] = k_sup1 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5)) *
x[3] / V + k_sup2 * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5))
* x[1] / V

rhs[7] = (MolIN *(x0_Si4 * (DHf_Si4 + ACp_Si4 * (Tin - Trif)+ BCp_Si4 /2.0*
((Tin**2.0) - (Trif**2.0)))+ x0_Si2 * (DHf_Si2 + ACp_Si2 * (Tin - Trif)+ BCp_Si2
/2.0* ((Tin**2.0) - (Trif**2.0)))+ x0_H2 * (DHf_H2 + ACp_H2* (Tin - Trif) +
BCp_H2 /2.0* ((Tin**2.0) - (Trif**2.0))))- W * (x[0] * (DHf_Si4+ ACp_Si4 * (x[7] -
Trif)+ BCp_Si4 /2.0* ((x[7]**2.0) - (Trif**2.0)))+ x[2] * (DHf_Si2 + ACp_Si2 * (x[7]
- Trif)+ BCp_Si2 /2.0* ((x[7]**2.0) - (Trif**2.0))) + x[4] * (DHf_H2+ ACp_H2*
(x[7] - Trif) + BCp_H2/2.0* ((x[7]**2.0) - (Trif**2.0))))+ k_gas *x[0] * V *(-
(DHf_Si4+ ACp_Si4 * (x[7] - Trif) + BCp_Si4 /2.0* ((x[7]**2.0) - (Trif**2.0)))+
(DHf_Si2 + ACp_Si2 * (x[7] - Trif) + BCp_Si2 /2.0* ((x[7]**2.0) - (Trif**2.0)))+
(DHf_H2+ ACp_H2* (x[7] - Trif) + BCp_H2/2.0* ((x[7]**2.0) - (Trif**2.0))))+
hlim * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5)) * (x[8] -x[7])
+ hlim * Ar * (Tw - x[7]))/( x[0] * V * (ACp_Si4 + 2.0*BCp_Si4 * x[7]) + x[2]
* V * (ACp_Si2 + 2.0*BCp_Si2 * x[7])+ x[4] * V * (ACp_H2 + 2.0*BCp_H2 * x[7]))

rhs[8] = (- hlim * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5))
* (x[8] - x[7])- emiss * irr * (2.0 * L * pi * (((V0_b + x[6] * V / roMol_Sis)/(L *
pi))**0.5)) * ((x[8]**4.0) - Tw**4.0)+ kT_Sis * (2.0 * L * pi * (((V0_b + x[6] *
V / roMol_Sis)/(L * pi))**0.5)) * ((x[8] + ((u[0]**2.0) * ((((V0_b + x[6] * V /
roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * kT_Sis))) - x[8]) / (((V0_b +
x[6] * V / roMol_Sis)/(L * pi))**0.5)+ k_sup1 *x[3] * (2.0 * L * pi * (((V0_b +
x[6] * V / roMol_Sis)/(L * pi))**0.5)) * ( - (DHf_Si2 + ACp_Si2 * (x[8] - Trif)+
BCp_Si2 /2.0* ((x[8]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis * (x[8] - Trif) +
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BCp_Sis /2.0* ((x[8]**2.0) - (Trif**2.0)))+ (DHf_H2 + ACp_H2* (x[8] - Trif)+
BCp_H2/2.0* ((x[8]**2.0) - (Trif**2.0))))+ k_sup2 *x[1] * (2.0 * L * pi * (((V0_b
+ x[6] * V / roMol_Sis)/(L * pi))**0.5)) * ( -(DHf_Si4 + ACp_Si4 * (x[8] - Trif)+
BCp_Si4 /2.0* ((x[8]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis * (x[8] - Trif) +
BCp_Sis /2.0* ((x[8]**2.0) - (Trif**2.0))) + 2.0*(DHf_H2+ ACp_H2* (x[8] - Trif)+
BCp_H2/2.0* ((x[8]**2.0) - (Trif**2.0)))))/(roMol_Sis * pi * L * ((((V0_b + x[6] *
V / roMol_Sis)/(L * pi))**0.5)**2.0))

rhs[9] = sqrt(3.0)*u[0]*((pi*(((V0_b + x[6] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

""" Solving Problem with +sigma on the parameter emiss"""
emiss1 = emiss+sigmaEmiss

D_H2_1 = 1.276e-4 *((x[17]/300.0)**1.68)
D_Si4_1 = 0.58e-4 *((x[17]/300.0)**1.8)
D_Si2_1 = 0.59e-4 *((x[17]/300.0)**1.8)

kc_H2_1 = Nu*D_H2_1/H
kc_Si4_1 = Nu*D_Si4_1/H
kc_Si2_1 = Nu*D_Si2_1/H

kt_1 = 1.3e-2 + 3.45e-2 * x[17] / 300.0 - 2.9e-3*((x[17]/300.0)**2.0)
hlim_1 = Nu * kt_1 / H
hlim_J_1 = hlim_1 * 4.186
k_gas_1 = 2.7e14*exp(-57000.0/(R_cal*x[17]))

rhs[10] = MolIN * x0_Si4 / V - W * x[10] / V - kc_Si4_1 * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * (x[10] - x[11]) / V - k_gas_1 *
x[10]

rhs[11] = kc_Si4_1 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L *
pi))**0.5))* (x[10] - x[11]) / V - k_sup2 * (2.0 * L * pi * (((V0_b + x[16] * V /
roMol_Sis)/(L * pi))**0.5)) * x[11] / V

rhs[12] = MolIN * x0_Si2 / V - W * x[12] / V - kc_Si2_1 * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * (x[12] - x[13]) / V + k_gas_1
* x[10]

rhs[13] = kc_Si2_1 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[12] - x[13]) / V - k_sup1 * (2.0 * L * pi * (((V0_b + x[16] * V /
roMol_Sis)/(L * pi))**0.5)) * x[13] / V

rhs[14] = MolIN * x0_H2 / V - W * x[14] / V - kc_H2_1 * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * (x[14] - x[15]) / V + k_gas_1
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* x[10]

rhs[15] = kc_H2_1 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[14] - x[15]) / V + k_sup1* (2.0 * L * pi * (((V0_b + x[16] * V /
roMol_Sis)/(L * pi))**0.5)) * x[13] / V + 2.0 * k_sup2 * (2.0 * L * pi * (((V0_b +
x[16] * V / roMol_Sis)/(L * pi))**0.5)) * x[11] / V

rhs[16] = k_sup1 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5))
* x[13] / V + k_sup2 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L *
pi))**0.5)) * x[11] / V

rhs[17] = (MolIN * (x0_Si4 * (DHf_Si4 + ACp_Si4 * (Tin - Trif)+ BCp_Si4
/2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_Si2 * (DHf_Si2 + ACp_Si2 * (Tin - Trif)+
BCp_Si2 /2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_H2 * (DHf_H2 + ACp_H2 * (Tin
- Trif) + BCp_H2 /2.0 * ((Tin**2.0) - (Trif**2.0))))- W * (x[11] * (DHf_Si4 +
ACp_Si4 * (x[17] - Trif)+ BCp_Si4 /2.0 * ((x[18]**2.0) - (Trif**2.0)))+ x[12] *
(DHf_Si2 + ACp_Si2 * (x[17] - Trif)+ BCp_Si2 /2 * ((x[17]**2.0) - (Trif**2.0)))
+ x[14] * (DHf_H2 + ACp_H2 * (x[17] - Trif) + BCp_H2 /2.0 * ((x[17]**2.0) -
(Trif**2.0))))+ k_gas_1 *x[10] * V *(- (DHf_Si4 + ACp_Si4 * (x[17] - Trif) +
BCp_Si4 /2.0 * ((x[17]**2.0) - (Trif**2.0)))+ (DHf_Si2 + ACp_Si2 * (x[17] - Trif)
+ BCp_Si2 /2.0 * ((x[17]**2.0) - (Trif**2.0)))+ (DHf_H2 + ACp_H2 * (x[17] -
Trif) + BCp_H2 /2.0 * ((x[17]**2.0) - (Trif**2.0))))+ hlim_1 * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * (x[18] -x[17]) + hlim_1 *
Ar * (Tw - x[17]))/( x[10] * V * (ACp_Si4 + 2.0*BCp_Si4 * x[17]) + x[12] * V
* (ACp_Si2 + 2.0*BCp_Si2 * x[17])+ x[14] * V * (ACp_H2 + 2.0*BCp_H2 * x[17]))

rhs[18] = (- hlim_1 * (2.0 * L * pi * (((V0_b + x[16] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[18] - x[17])- emiss1* irr * (2.0 * L * pi * (((V0_b + x[16] * V /
roMol_Sis)/(L * pi))**0.5)) * ((x[18]**4.0) - Tw**4.0)+ kT_Sis * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * ((x[18] + ((u[0]**2.0) * ((((V0_b
+ x[16] * V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * kT_Sis))) - x[18]) /
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)+ k_sup1 *x[13] * (2.0 * L * pi *
(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * ( - (DHf_Si2 + ACp_Si2 *
(x[18] - Trif)+ BCp_Si2 /2.0 * ((x[18]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis *
(x[18] - Trif) + BCp_Sis /2.0 * ((x[18]**2.0) - (Trif**2.0))) + (DHf_H2 + ACp_H2 *
(x[18] - Trif)+ BCp_H2 /2.0 * ((x[18]**2.0) - (Trif**2.0))))+ k_sup2 *x[11] * (2.0 * L
* pi * (((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)) * ( -(DHf_Si4 + ACp_Si4
* (x[18] - Trif)+ BCp_Si4 /2.0 * ((x[18]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis
* (x[18] - Trif) + BCp_Sis /2 * ((x[18]**2.0) - (Trif**2.0))) + 2.0*(DHf_H2 +
ACp_H2 * (x[18] - Trif)+ BCp_H2 /2.0 * ((x[18]**2.0) - (Trif**2.0)))))/(roMol_Sis
* pi * L * ((((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

rhs[19] = sqrt(3.0)*u[0]*((pi*(((V0_b + x[16] * V / roMol_Sis)/(L * pi))**0.5)**2.0))
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""" Solving Problem with -sigma on the parameter emiss"""
emiss2 = emiss-sigmaEmiss

D_H2_2 = 1.276e-4 *((x[27]/300.0)**1.68)
D_Si4_2 = 0.58e-4 *((x[27]/300.0)**1.8)
D_Si2_2 = 0.59e-4 *((x[27]/300.0)**1.8)

kc_H2_2 = Nu*D_H2_2/H
kc_Si4_2 = Nu*D_Si4_2/H
kc_Si2_2 = Nu*D_Si2_2/H

kt_2 = 1.3e-2 + 3.45e-2 * x[27] / 300.0 - 2.9e-3*((x[27]/300.0)**2.0)
hlim_2 = Nu * kt_2 / H
hlim_J_2 = hlim_2 * 4.186
k_gas_2 = 2.7e14*exp(-57000.0/(R_cal*x[27]))

rhs[20] = MolIN * x0_Si4 / V - W * x[20] / V - kc_Si4_2 * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * (x[20] - x[21]) / V - k_gas_2 *
x[20]

rhs[21] = kc_Si4_2 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L *
pi))**0.5))* (x[20] - x[21]) / V - k_sup2 * (2.0 * L * pi * (((V0_b + x[26] * V /
roMol_Sis)/(L * pi))**0.5)) * x[21] / V

rhs[22] = MolIN * x0_Si2 / V - W * x[22] / V - kc_Si2_2 * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * (x[22] - x[23]) / V + k_gas_2
* x[20]

rhs[23] = kc_Si2_2 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[22] - x[23]) / V - k_sup1 * (2.0 * L * pi * (((V0_b + x[26] * V /
roMol_Sis)/(L * pi))**0.5)) * x[23] / V

rhs[24] = MolIN * x0_H2 / V - W * x[24] / V - kc_H2_2 * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * (x[24] - x[25]) / V + k_gas_2
* x[20]

rhs[25] = kc_H2_2 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[24] - x[25]) / V + k_sup1 * (2.0 * L * pi * (((V0_b + x[26] * V /
roMol_Sis)/(L * pi))**0.5)) * x[23] / V + 2.0 * k_sup2 * (2.0 * L * pi * (((V0_b +
x[26] * V / roMol_Sis)/(L * pi))**0.5)) * x[21] / V

rhs[26] = k_sup1 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5))
* x[23] / V + k_sup2 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L *
pi))**0.5)) * x[21] / V
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rhs[27] = (MolIN * (x0_Si4 * (DHf_Si4 + ACp_Si4 * (Tin - Trif)+ BCp_Si4
/2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_Si2 * (DHf_Si2 + ACp_Si2 * (Tin - Trif)+
BCp_Si2 /2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_H2 * (DHf_H2 + ACp_H2 * (Tin
- Trif) + BCp_H2 /2.0 * ((Tin**2.0) - (Trif**2.0))))- W * (x[20] * (DHf_Si4 +
ACp_Si4 * (x[27] - Trif)+ BCp_Si4 /2.0 * ((x[27]**2.0) - (Trif**2.0)))+ x[22] *
(DHf_Si2 + ACp_Si2 * (x[27] - Trif)+ BCp_Si2 /2.0 * ((x[27]**2.0) - (Trif**2.0)))
+ x[24] * (DHf_H2 + ACp_H2 * (x[27] - Trif) + BCp_H2 /2 * ((x[27]**2.0) -
(Trif**2.0))))+ k_gas_2 *x[20] * V * (- (DHf_Si4 + ACp_Si4 * (x[27] - Trif) +
BCp_Si4 /2.0 * ((x[27]**2.0) - (Trif**2.0)))+ (DHf_Si2 + ACp_Si2 * (x[27] - Trif)
+ BCp_Si2 /2.0 * ((x[27]**2.0) - (Trif**2.0)))+ (DHf_H2 + ACp_H2 * (x[27] -
Trif) + BCp_H2 /2.0 * ((x[27]**2.0) - (Trif**2.0))))+ hlim_2 * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * (x[28] -x[27]) + hlim_2 *
Ar * (Tw - x[27]))/( x[20] * V * (ACp_Si4 + 2.0*BCp_Si4 * x[27]) + x[22] * V
* (ACp_Si2 + 2.0*BCp_Si2 * x[27])+ x[24] * V * (ACp_H2 + 2.0*BCp_H2 * x[27]))

rhs[28] = (- hlim_2 * (2.0 * L * pi * (((V0_b + x[26] * V / roMol_Sis)/(L *
pi))**0.5)) * (x[28] - x[27])- emiss2 * irr * (2.0 * L * pi * (((V0_b + x[26] * V /
roMol_Sis)/(L * pi))**0.5)) * ((x[28]**4.0) - Tw**4.0)+ kT_Sis * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * ((x[28] + ((u[0]**2.0) * ((((V0_b
+ x[26] * V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * kT_Sis))) - x[28]) /
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)+ k_sup1 *x[23] * (2.0 * L * pi *
(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * ( - (DHf_Si2 + ACp_Si2 *
(x[28] - Trif)+ BCp_Si2 /2.0 * ((x[28]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis *
(x[28] - Trif) + BCp_Sis /2.0 * ((x[28]**2.0) - (Trif**2.0))) + (DHf_H2 + ACp_H2 *
(x[28] - Trif)+ BCp_H2 /2.0 * ((x[28]**2.0) - (Trif**2.0))))+ k_sup2 *x[21] * (2.0 * L
* pi * (((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)) * ( -(DHf_Si4 + ACp_Si4
* (x[28] - Trif)+ BCp_Si4 /2.0 * ((x[28]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis
* (x[28] - Trif) + BCp_Sis /2.0 * ((x[28]**2.0) - (Trif**2.0))) + 2.0*(DHf_H2 +
ACp_H2 * (x[28] - Trif)+ BCp_H2 /2.0 * ((x[28]**2.0) - (Trif**2.0)))))/(roMol_Sis
* pi * L * ((((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

rhs[29] = sqrt(3.0)*u[0]*((pi*(((V0_b + x[26] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

""" Solving Problem with +sigma on the parameter KE_Sis1"""
kE_Sis1 = kE_Sis + sigmaElec

D_H2 = 1.276e-4 *((x[37]/300.0)**1.68)
D_Si4 = 0.58e-4 *((x[37]/300.0)**1.8)
D_Si2 = 0.59e-4 *((x[37]/300.0)**1.8)

kc_H2 = Nu*D_H2/H
kc_Si4 = Nu*D_Si4/H
kc_Si2 = Nu*D_Si2/H
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kt = 1.3e-2 + 3.45e-2 * x[37] / 300.0 - 2.9e-3*((x[37]/300.0)**2.0)
hlim = Nu * kt / H
hlim_J = hlim * 4.186
k_gas = 2.7e14*exp(-57000.0/(R_cal*x[37]))

rhs[30] = MolIN * x0_Si4 / V - W * x[30] / V - kc_Si4 * (2.0 * L * pi * (((V0_b +
x[36] * V / roMol_Sis)/(L * pi))**0.5)) * (x[30] - x[31]) / V - k_gas * x[30]

rhs[31] = kc_Si4 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5))*
(x[30] - x[31]) / V - k_sup2 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L *
pi))**0.5)) * x[31] / V

rhs[32] = MolIN * x0_Si2 / V - W * x[32] / V - kc_Si2 * (2.0 * L * pi * (((V0_b +
x[36] * V / roMol_Sis)/(L * pi))**0.5)) * (x[32] - x[33]) / V + k_gas * x[30]

rhs[33] = kc_Si2 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5))
* (x[32] - x[33]) / V - k_sup1 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L
* pi))**0.5)) * x[33] / V

rhs[34] = MolIN * x0_H2 / V - W * x[34] / V - kc_H2 * (2.0 * L * pi * (((V0_b +
x[36] * V / roMol_Sis)/(L * pi))**0.5)) * (x[34] - x[35]) / V + k_gas * x[30]

rhs[35] = kc_H2 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5))
* (x[34] - x[35]) / V + k_sup1 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L
* pi))**0.5)) * x[33] / V + 2.0 * k_sup2 * (2.0 * L * pi * (((V0_b + x[36] * V /
roMol_Sis)/(L * pi))**0.5)) * x[31] / V

rhs[36] = k_sup1 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5))
* x[33] / V + k_sup2 * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L *
pi))**0.5)) * x[31] / V

rhs[37] = (MolIN * (x0_Si4 * (DHf_Si4 + ACp_Si4 * (Tin - Trif)+ BCp_Si4
/2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_Si2 * (DHf_Si2 + ACp_Si2 * (Tin - Trif)+
BCp_Si2 /2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_H2 * (DHf_H2 + ACp_H2 *
(Tin - Trif) + BCp_H2 /2 * ((Tin**2.0) - (Trif**2.0))))- W * (x[30] * (DHf_Si4
+ ACp_Si4 * (x[37] - Trif)+ BCp_Si4 /2.0 * ((x[37]**2.0) - (Trif**2.0)))+ x[32] *
(DHf_Si2 + ACp_Si2 * (x[37] - Trif)+ BCp_Si2 /2.0 * ((x[37]**2.0) - (Trif**2.0)))
+ x[34] * (DHf_H2 + ACp_H2 * (x[37] - Trif) + BCp_H2 /2.0 * ((x[37]**2.0)
- (Trif**2.0))))+ k_gas *x[30] * V * (- (DHf_Si4 + ACp_Si4 * (x[37] - Trif) +
BCp_Si4 /2.0 * ((x[37]**2.0) - (Trif**2.0)))+ (DHf_Si2 + ACp_Si2 * (x[37] -
Trif) + BCp_Si2 /2.0 * ((x[37]**2.0) - (Trif**2.0)))+ (DHf_H2 + ACp_H2 *
(x[37] - Trif) + BCp_H2 /2.0 * ((x[37]**2.0) - (Trif**2.0))))+ hlim * (2.0 * L *
pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5)) * (x[38] -x[37]) + hlim *
Ar * (Tw - x[37]))/( x[30] * V * (ACp_Si4 + 2.0*BCp_Si4 * x[37]) + x[32] * V
* (ACp_Si2 + 2.0*BCp_Si2 * x[37])+ x[34] * V * (ACp_H2 + 2.0*BCp_H2 * x[37]))
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rhs[38] = (- hlim * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5))
* (x[38] - x[37])- emiss * irr * (2.0 * L * pi * (((V0_b + x[36] * V / roMol_Sis)/(L *
pi))**0.5)) * ((x[38]**4.0) - Tw**4.0)+ kT_Sis * (2.0 * L * pi * (((V0_b + x[36] *
V / roMol_Sis)/(L * pi))**0.5)) * ((x[38] + ((u[0]**2.0) * ((((V0_b + x[36] * V /
roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis1 * 4.0 * kT_Sis))) - x[38]) / (((V0_b +
x[36] * V / roMol_Sis)/(L * pi))**0.5)+ k_sup1 *x[33] * (2.0 * L * pi * (((V0_b +
x[36] * V / roMol_Sis)/(L * pi))**0.5)) * ( - (DHf_Si2 + ACp_Si2 * (x[38] - Trif)+
BCp_Si2 /2.0 * ((x[38]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis * (x[38] - Trif)
+ BCp_Sis /2.0 * ((x[38]**2.0) - (Trif**2.0))) + (DHf_H2 + ACp_H2 * (x[38] -
Trif)+ BCp_H2 /2.0 * ((x[38]**2.0) - (Trif**2.0))))+ k_sup2 *x[31] * (2.0 * L * pi
* (((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5)) * ( -(DHf_Si4 + ACp_Si4 *
(x[38] - Trif)+ BCp_Si4 /2.0 * ((x[38]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis
* (x[38] - Trif) + BCp_Sis /2.0 * ((x[38]**2.0) - (Trif**2.0))) + 2.0*(DHf_H2 +
ACp_H2 * (x[38] - Trif)+ BCp_H2 /2.0 * ((x[38]**2.0) - (Trif**2.0)))))/(roMol_Sis
* pi * L * ((((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

rhs[39] = sqrt(3.0)*u[0]*((pi*(((V0_b + x[36] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

""" Solving Problem with -sigma on the parameter kE_Sis1"""
kE_Sis2 = kE_Sis - sigmaElec

D_H2 = 1.276e-4 *((x[47]/300.0)**1.68)
D_Si4 = 0.58e-4 *((x[47]/300.0)**1.8)
D_Si2 = 0.59e-4 *((x[47]/300.0)**1.8)

kc_H2 = Nu*D_H2/H
kc_Si4 = Nu*D_Si4/H
kc_Si2 = Nu*D_Si2/H

kt = 1.3e-2 + 3.45e-2 * x[47] / 300.0 - 2.9e-3*((x[47]/300.0)**2.0)
hlim = Nu * kt / H
hlim_J = hlim * 4.186
k_gas = 2.7e14*exp(-57000.0/(R_cal*x[47]))

rhs[40] = MolIN * x0_Si4 / V - W * x[40] / V - kc_Si4 * (2.0 * L * pi * (((V0_b +
x[46] * V / roMol_Sis)/(L * pi))**0.5)) * (x[40] - x[41]) / V - k_gas * x[40]

rhs[41] = kc_Si4 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5))*
(x[40] - x[41]) / V - k_sup2 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L *
pi))**0.5)) * x[41] / V

rhs[42] = MolIN * x0_Si2 / V - W * x[42] / V - kc_Si2 * (2.0 * L * pi * (((V0_b +
x[46] * V / roMol_Sis)/(L * pi))**0.5)) * (x[42] - x[43]) / V + k_gas * x[40]
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rhs[43] = kc_Si2 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5))
* (x[42] - x[43]) / V - k_sup1 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L
* pi))**0.5)) * x[43] / V

rhs[44] = MolIN * x0_H2 / V - W * x[44] / V - kc_H2 * (2.0 * L * pi * (((V0_b +
x[46] * V / roMol_Sis)/(L * pi))**0.5)) * (x[44] - x[45]) / V + k_gas * x[40]

rhs[45] = kc_H2 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5))
* (x[44] - x[45]) / V + k_sup1 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L
* pi))**0.5)) * x[43] / V + 2.0 * k_sup2 * (2.0 * L * pi * (((V0_b + x[46] * V /
roMol_Sis)/(L * pi))**0.5)) * x[41] / V

rhs[46] = k_sup1 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5))
* x[43] / V + k_sup2 * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L *
pi))**0.5)) * x[41] / V

rhs[47] = (MolIN * (x0_Si4 * (DHf_Si4 + ACp_Si4 * (Tin - Trif)+ BCp_Si4
/2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_Si2 * (DHf_Si2 + ACp_Si2 * (Tin - Trif)+
BCp_Si2 /2.0 * ((Tin**2.0) - (Trif**2.0))) + x0_H2 * (DHf_H2 + ACp_H2 *
(Tin - Trif) + BCp_H2 /2 * ((Tin**2.0) - (Trif**2.0))))- W * (x[40] * (DHf_Si4
+ ACp_Si4 * (x[47] - Trif)+ BCp_Si4 /2.0 * ((x[47]**2.0) - (Trif**2.0)))+ x[42] *
(DHf_Si2 + ACp_Si2 * (x[47] - Trif)+ BCp_Si2 /2.0 * ((x[47]**2.0) - (Trif**2.0)))
+ x[44] * (DHf_H2 + ACp_H2 * (x[47] - Trif) + BCp_H2 /2.0 * ((x[47]**2.0)
- (Trif**2.0))))+ k_gas *x[40] * V * (- (DHf_Si4 + ACp_Si4 * (x[47] - Trif) +
BCp_Si4 /2.0 * ((x[47]**2.0) - (Trif**2.0)))+ (DHf_Si2 + ACp_Si2 * (x[47] -
Trif) + BCp_Si2 /2.0 * ((x[47]**2.0) - (Trif**2.0)))+ (DHf_H2 + ACp_H2 *
(x[47] - Trif) + BCp_H2 /2.0 * ((x[47]**2.0) - (Trif**2.0))))+ hlim * (2.0 * L *
pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5)) * (x[48] -x[47]) + hlim *
Ar * (Tw - x[47]))/( x[40] * V * (ACp_Si4 + 2.0*BCp_Si4 * x[47]) + x[42] * V
* (ACp_Si2 + 2.0*BCp_Si2 * x[47])+ x[44] * V * (ACp_H2 + 2.0*BCp_H2 * x[47]))

rhs[48] = (- hlim * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5))
* (x[48] - x[47])- emiss * irr * (2.0 * L * pi * (((V0_b + x[46] * V / roMol_Sis)/(L *
pi))**0.5)) * ((x[48]**4.0) - Tw**4.0)+ kT_Sis * (2.0 * L * pi * (((V0_b + x[46] *
V / roMol_Sis)/(L * pi))**0.5)) * ((x[48] + ((u[0]**2.0) * ((((V0_b + x[46] * V /
roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis2 * 4.0 * kT_Sis))) - x[48]) / (((V0_b +
x[46] * V / roMol_Sis)/(L * pi))**0.5)+ k_sup1 *x[43] * (2.0 * L * pi * (((V0_b +
x[46] * V / roMol_Sis)/(L * pi))**0.5)) * ( - (DHf_Si2 + ACp_Si2 * (x[48] - Trif)+
BCp_Si2 /2.0 * ((x[48]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis * (x[48] - Trif)
+ BCp_Sis /2.0 * ((x[48]**2.0) - (Trif**2.0))) + (DHf_H2 + ACp_H2 * (x[48] -
Trif)+ BCp_H2 /2.0 * ((x[48]**2.0) - (Trif**2.0))))+ k_sup2 *x[41] * (2.0 * L * pi
* (((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5)) * ( -(DHf_Si4 + ACp_Si4 *
(x[48] - Trif)+ BCp_Si4 /2.0 * ((x[48]**2.0) - (Trif**2.0)))+ (DHf_Sis + ACp_Sis
* (x[48] - Trif) + BCp_Sis /2.0 * ((x[48]**2.0) - (Trif**2.0))) + 2.0*(DHf_H2 +
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ACp_H2 * (x[48] - Trif)+ BCp_H2 /2.0 * ((x[48]**2.0) - (Trif**2.0)))))/(roMol_Sis
* pi * L * ((((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

rhs[49] = sqrt(3.0)*u[0]*((pi*(((V0_b + x[46] * V / roMol_Sis)/(L * pi))**0.5)**2.0))

prob.addOde(x,rhs)

""" Estimates and Objective Functions"""
y=SXMatrix.zeros(10)
for i in range(10):

y[i] = 1/(n+k) * (k*x[i]+0.5*(x[i+10]+x[i+20]+x[i+30]+x[i+40]))
y = prob.makeExpression(y)

"""VARIANCE-COVARIANCE MATRIX"""

b=SXMatrix.zeros(10)
for i in range(10):

b[i]= 1/(n+k) * (k*(x[i] - y[i])**2.0 + 0.5*((x[i+10] - y[i])**2.0 + (x[i+20] -
y[i])**2.0 + (x[i+30] - y[i])**2.0 + (x[i+40] - y[i])**2.0))

b= prob.makeExpression(b)

conf = 1.96
conf1=1.645
f1 = -(y[6](-1) -conf1*(b[6](-1)+1e-10)**0.5)
f2 = (y[9](-1) + conf1*(b[9](-1)+1e-14)**0.5)
prob.addMultipleObjectives([f2,f1])

""" BOUNDARY CONDITIONS, use initial conditions calculated from startup.py
file for getting x8=1070.0"""

prob.addConstraints(x(0),[
5.016209291550912308e-04, 5.698245086236564550e-04, 1.723672586852724800e-02,
3.946413278058101502e-06, 2.291656795666951751e+01, 2.208317211283525339e+01,
6.106553667907978905e-02, 9.563879759246448202e+02, 1.070000000000000000e+03,
1.039253327996013943e-01, # Energy cost

5.016209291550912308e-04, 5.698245086236564550e-04, 1.723672586852724800e-02,
3.946413278058101502e-06, 2.291656795666951751e+01, 2.208317211283525339e+01,
6.106553667907978905e-02, 9.563879759246448202e+02, 1.070000000000000000e+03,
1.039253327996013943e-01, # Energy cost

5.016209291550912308e-04, 5.698245086236564550e-04, 1.723672586852724800e-02,
3.946413278058101502e-06, 2.291656795666951751e+01, 2.208317211283525339e+01,
6.106553667907978905e-02, 9.563879759246448202e+02, 1.070000000000000000e+03,
1.039253327996013943e-01, # Energy cost
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5.016209291550912308e-04, 5.698245086236564550e-04,1.723672586852724800e-02,
3.946413278058101502e-06, 2.291656795666951751e+01, 2.208317211283525339e+01,
6.106553667907978905e-02, 9.563879759246448202e+02, 1.070000000000000000e+03,
1.039253327996013943e-01, # Energy cost

5.016209291550912308e-04, 5.698245086236564550e-04, 1.723672586852724800e-02,
3.946413278058101502e-06, 2.291656795666951751e+01, 2.208317211283525339e+01,
6.106553667907978905e-02, 9.563879759246448202e+02, 1.070000000000000000e+03,
1.039253327996013943e-01]) # Energy cost

prob.addConstraints(x[8](’coll’) + ((u[0](’coll’)**2.0) * ((((V0_b + x[6](’coll’) *
V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

prob.addConstraints(x[18](’coll’) + ((u[0](’coll’)**2.0) * ((((V0_b + x[16](’coll’)
* V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

prob.addConstraints(x[28](’coll’) + ((u[0](’coll’)**2.0) * ((((V0_b + x[26](’coll’)
* V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

prob.addConstraints(x[38](’coll’) + ((u[0](’coll’)**2.0) * ((((V0_b + x[36](’coll’)
* V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

prob.addConstraints(x[48](’coll’) + ((u[0](’coll’)**2.0) * ((((V0_b + x[46](’coll’)
* V / roMol_Sis)/(L * pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

"""ADDITIONAL CONSTRAINTS (only with Variance-Covariance Matrix) """

"""Contraints on Tcore"""

prob.addConstraints((y[8](’coll’)+conf*((b[8](’coll’)+1e-10)**0.5)) + ((u[0](’coll’)**2.0)
* ((((V0_b + (y[6](’coll’)+conf*((b[6](’coll’)+1e-10)**0.5)) * V / roMol_Sis)/(L *
pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

prob.addConstraints((y[8](’coll’)-conf*((b[8](’coll’)+1e-10)**0.5)) + ((u[0](’coll’)**2.0)
* ((((V0_b + (y[6](’coll’)-conf*((b[6](’coll’)+1e-10)**0.5)) * V / roMol_Sis)/(L *
pi))**0.5)**2.0) /(kE_Sis * 4.0 * (kT_Sis))),298.15,1687.0)

""" Constraints on Tsurface"""

prob.addConstraints((y[8](’coll’)+conf*((b[8](’coll’)+1e-10)**0.5)),1065.15,1687.0)

prob.addConstraints((y[8](’coll’)-conf*((b[8](’coll’)+1e-10)**0.5)),1065.15,1687.0)

"""SOLVER"""
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solver = Multiobjective(prob,printlevel=0, max_iter= 100000, warm=True,plotting=False)
xs1 = NP.loadtxt(’2par/states_sigma2par_energy_10%_Volt2_1.645.txt’)
us1 = NP.loadtxt(’2par/control_sigma2par_energy_10%_Volt2_1.645.txt’)
xs2 = NP.loadtxt(’2par/states_sigma2par_radius_10%_Volt2_1.645.txt’)
us2 = NP.loadtxt(’2par/control_sigma2par_radius_10%_Volt2_1.645.txt’)
solver.initializeAnchors([x,u],[[xs1,xs2],[us1,us2]])

print time.time()-t
solver.solve()
print time.time()-t
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