

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in
Ingegneria Meccanica

AUTONOMOUS DRIVING OF MINIATURE RACE CARS

Relatore: Prof. Francesco BRAGHIN

Correlatore: Dr. Stijn DE BRUYNE

Tesi di Laurea di:

Giorgio FONTANA Matr. 784125

Anno Accademico 2012 - 2013

Giorgio Fontana: Autonomous Driving of Miniature Race Cars | Tesi di Laurea
Magistrale in Ingegneria Meccanica, Politecnico di Milano.
c© Copyright Ottobre 2014.

Politecnico di Milano:
www.polimi.it

Scuola di Ingegneria Industriale e dell’Informazione:
www.ingindinf.polimi.it

http://www.polimi.it
http://www.ingindinf.polimi.it

Ringraziamenti

Se questa pagina fosse vuota significherebbe che ho ringraziato tutti per tempo.
Al contrario la lista è lunga, e ognuno mi ha aiutato a suo modo a completare questo
lavoro di tesi. Persone che hanno contribuito a livello professionale quanto umano.
Vorrei cominciare per ordine, e quindi ringraziare la mia famiglia. A mia mamma
per essere stata presente in questi periodi all’estero quando ho avuto bisogno, e
per esserci sempre. A mio papà per tutto ciò che mi ha trasmesso, se questa tesi
vale qualcosa è anche merito dei suoi insegnamenti. E poi ovviamente alla mia
sorellina, che con grande pazienza continua a sopportarmi. Grazie al mio supervisor
Stijn De Bruyne per il supporto e la disponibilità mostratami in tutto questo lungo
periodo. Con la sua perseveranza nei momenti più ostici è stato un’esempio di
professionalità e determinazione. Grazie alle persone che hanno condiviso con me
questo periodo, Ale, Grottoli, Giabo, Marchino e tutti gli altri di Bierbek. Quel
posto è una topaia ma rimarrà sempre una seconda casa. Grazie a Maria, Luca
e Elena. Ai ragazzi dell’erasmus, a Leuven e ai suoi studenti. Grazie ai colleghi
e alle persone che ho conosciuto in azienda, per i momenti di svago al caffè, le
partite a calcetto, il basket. Un sincero ringraziamento anche a Luca, che ha messo
disponibile il modello LATEX da cui sono partito per la stesura. Ad Ivan, sempre
pronto con suggerimenti, ed a Ugo, che ha dato una sferzata al mio lavoro con
critiche costruttive. Voglio ringraziare i miei zii Alberto, Rosanna, Laura e Alberto e
alla mia cuginetta Giula per aver sempre cercato di mantenere i contatti. Un grazie
sincero anche ai miei più cari amici Polly, Yuri, Vero, Arrigo e Elisa. Dovunque me
ne vada so che loro ci saranno quando torno. Più ci penso e più me ne convinco, se
sono arrivato a combinare qualcosa è grazie alle persone che continuo ad incontrare
lungo il percorso, spero di essere sempre così fortunato come lo sono stato fin’ora.

Milano, Ottobre 2014 Giorgio Fontana

iii

Contents

Introduction 1

1 Detection System 7
1.1 Hardware and Software . 7
1.2 Vision System . 8

1.2.1 Camera Setup . 9
1.2.2 Image Acquisition and Conversion 9
1.2.3 Object Tracking . 11
1.2.4 Image Display and Closure 15

1.3 Computation Time . 15

2 Mathematical Model 17
2.1 Vehicle Model . 17

2.1.1 Bicycle Model . 18
2.2 Tire Model . 19

2.2.1 Slip-free Model . 20
2.2.2 Slip Models . 21

2.3 Model Parameters Identification . 23

3 Model Predictive Control 25
3.1 Introduction of Model Predictive Control 25

3.1.1 Optimal Control Problem 26
3.1.2 Linear MPC . 27
3.1.3 QP solution . 27
3.1.4 Nonlinear MPC . 28
3.1.5 Single Shooting approach . 29
3.1.6 Sequential Quadratic Programming solution 29

3.2 Trajectory Definition . 31
3.2.1 Geometric Trajectory Optimization 32
3.2.2 Velocity Profile . 33

3.3 Nonlinear MPC Tracking . 34

4 Results 37
4.1 Computation Time . 37
4.2 Optimal Speed and Short Horizon 40

4.2.1 Low Speed . 40
4.2.2 Intermediate Speed . 43

v

vi CONTENTS

4.3 Constant Speed and Short Horizon 46
4.4 Constant Speed and Long Horizon 48

4.4.1 Low Speed . 48
4.4.2 Intermediate Speed . 51
4.4.3 High Speed . 54
4.4.4 Best Time Lap . 57

5 Obstacle Avoidance 59
5.1 Algorithm . 59

5.1.1 Assumption for obstacle motion 59
5.1.2 Possible Threat . 60
5.1.3 Grid Generation and Grid Population 61
5.1.4 Optimal Path Definition . 63
5.1.5 New Borders Definition . 65

5.2 Dynamic Programming Solution . 65
5.3 Results . 69

Conclusions 75

A Setup technical details 77

B List of main xiAPI parameters 79

Abbreviations 81

Bibliography 83

List of Figures

1 ADAS area of competence overview 2
2 Details of the RaceCars system . 3
3 Feedback loop . 3

1.1 Algorithm overview . 8
1.2 Acquired image . 10
1.3 Filtering action . 11
1.4 Image acquired with mask . 12
1.5 Car shape filtered . 12
1.6 Car detection . 13
1.7 Car state displayed . 14
1.8 Computational time . 16

2.1 Model Coordinate Systems . 17
2.2 Four wheels vehicle model . 18
2.3 Bicycle model . 19
2.4 Examples of Pacejka magic formula 21
2.5 Steady-state identification: stationary force and fitted magic formula 24

3.1 One-step MPC algorithm . 26
3.2 Modeling track and vehicle trajectory 31
3.3 Geometry trajectory optimization strategies 32
3.4 Comparison between (δ, D) and (∆δ, ∆D) as inputs 35

4.1 Control application computation time 38
4.2 Control application computation time, enhanced time 39
4.3 Low optimal speed case, sim. trajectory profile 41
4.4 Low optimal speed case, sim. velocity profile 41
4.5 Low optimal speed case, exp. trajectory profile 42
4.6 Low optimal speed case, exp. velocity profile 42
4.7 Intermediate optimal speed case, simulation velocity 43
4.8 Intermediate optimal speed case, sim. trajectory profile 44
4.9 Intermediate optimal speed case, sim. velocity profile 44
4.10 Intermediate optimal speed case, exp. trajectory profile 45
4.11 Intermediate optimal speed case, exp. velocity profile 45
4.12 Short horizon and constant speed case, sim. trajectory profile . . . 47
4.13 Short horizon and constant speed case, sim. velocity profile 47
4.14 Low constant speed case, sim. trajectory profile 49
4.15 Low constant speed case, sim. velocity profile 49

vii

viii LIST OF FIGURES

4.16 Low constant speed case, exp. trajectory profile 50
4.17 Low constant speed case, exp. velocity profile 50
4.18 Intermediate constant speed case, sim. trajectory profile 52
4.19 Intermediate constant speed case, detail simulation velocity profile . 52
4.20 Intermediate constant speed case, exp. trajectory profile 53
4.21 High constant speed case, sim. trajectory profile 55
4.22 High constant speed case, sim. velocity profile 55
4.23 High constant speed case, exp. trajectory profile 56
4.24 High constant speed case, exp. velocity profile 56
4.25 Fastest lap, exp. trajectory profile 57

5.1 Complete system overview . 60
5.2 Initial conditions . 61
5.3 Grid generation . 62
5.4 Grid population . 63
5.5 Path definition, different choice of weights 67
5.6 New borders definition, different choice of weights 68
5.7 Example of obstacle avoidance at at 0, 5m

s
. 70

5.8 Example of obstacle avoidance at 1, 0m
s

. 70
5.9 Example of obstacle avoidance at 1, 5m

s
. 71

5.10 Example of obstacle avoidance at 1, 7m
s

. 71
5.11 Example at 1, 0m

s
with obstacle in motion 72

5.12 Example at 1, 0m
s
with obstacle in motion, speed profile 72

5.13 Second example at 1, 0m
s
with obstacle in motion 73

5.14 Second example at 1, 0m
s
with obstacle in motion, speed profile . . . 73

List of Tables

2.1 Bicycle model parameters . 21
2.2 Mechanical model parameters . 24
2.3 Tire model parameters . 24

4.1 Solver time-trend . 39
4.2 Low optimal speed case, parameters 40
4.3 Low optimal speed case, weights . 40
4.4 Low optimal speed case, sim. results 41
4.5 Low optimal speed case, exp. results 42
4.6 Intermediate optimal speed case, parameters 43
4.7 Intermediate optimal speed case, weights 43
4.8 Intermediate optimal speed case, sim. results 44
4.9 Intermediate optimal speed case, exp. results 45
4.10 Short horizon and constant speed case, parameters 46
4.11 Short horizon and constant speed case, weights 46
4.12 Short horizon and constant speed case, sim. results 47
4.13 Low constant speed case, parameters 48
4.14 Low constant speed case, weights 48
4.15 Low constant speed case, sim. results 49
4.16 Low constant speed case, exp. results 50
4.17 Intermediate constant speed case, parameters 51
4.18 Intermediate constant speed case, weights 51
4.19 Intermediate constant speed case, sim. results 52
4.20 Intermediate constant speed case, exp. results 53
4.21 High constant speed case, parameters 54
4.22 High constant speed case, weights 54
4.23 High constant speed case, sim. results 55
4.24 High constant speed case, exp. results 56
4.25 Fastest lap, exp. results . 57

ix

Sommario

Nella seguente tesi magistrale l’oggetto di studio è stato il sistema SIEMENS
RaceCars e le diverse parti che lo compongono. Con l’introduzione di migliorie il
dimostratore è ora un esempio di sistema di guida autonoma per macchine da corsa
in scala. La scelta di adottare questa strategia, ovvero macchine da competizione
per lo studio della guida senza guidatore, è dovuta essenzialmente alla condizione
limite di guida che si raggiunge solo quando si vuole abbassare il tempo sul giro.
In questo senso studiare la guida autonoma per macchine da corsa mette in luce
elementi cruciali di sicurezza, che vengono infatti ripresi da ogni progetto in questo
campo di ricerca. Fra i punti affrontati il primo è stata la visione, con l’introduzione
di una telecamera capace di riconoscere la macchina dal colore di riferimento. In
seguito si è passati al controllo: fra le tipologie possibli la scelta è ricaduta su un
controllo che avesse un approccio predittivo. Quindi un nonlinear MPC è risultata
la scelta più adatta. Dopo una panoramica generale dei diversi modelli disponibili
in letteratura, si è optato per un modello che consideri la dinamica laterale della
macchina. Parte dell’identificazione riguarda anche i parametri delle ruote. Cruciale
è la corretta determinazione delle costanti da adottare nelle formule di Pacejka.
Essendo un sistema real-time, altro aspetto essenziale è che i tempi computazionali
restino contenuti entro un ben definito limite. Tutta l’architettura software è scritta
in linguaggio C, e questo unito all’uso di un kernel Linux con Preempt RT Patch
assicura pieno controllo sulle priorità di calcolo del computer. I risultati mostrati
sono sia numerici in Matlab/Simulink che sperimentali. Particolare attenzione è
dedicata al tempo sul giro, essendo il setup dedicato a macchine da competizione.
Viene presentato un miglioramento nelle performance e una netta riduzione nel
tempo sul giro rispetto a un controllore nonlineare MPC semplificato. In ultimo
la possiblità di evitare ostacoli sul tracciato, che fa di questo un sistema di guida
indipendente. Tutti questi componenti implementati lo rendono anche adatto per
successivi test con altri e sempre nuovi algoritmi di guida autonoma.

xi

Abstract

In this master thesis the experimental RaceCars setup of SIEMENS laboratories
is upgraded in all the different components. With the introduction of several
innovations and improvements, the setup is now a full autonomous driving example
for miniature race cars. Scaled vehicles drives autonomously around a race track
in a time-optimal strategy. As in the classic control loop, the work here presented
concerns all aspects of a mechatronic system. The main points discussed are the
acquisition system, the design of a proper controller and the formulation of an
obstacle avoidance algorithm. Results are evaluated in simulation as well as with
the system. Working in the range of milliseconds and posing the attention on
nonlinear control methods, to calculate the next control action in the time available
is a computation challenge. All the applications and the framework is written in
C-code. In particular, the controller is defined with auto-generated tailored C-code
from the ACADO Code Generation tool. This software implements a Real-Time
Iteration scheme. Final results show the advantages of the improvements adopted,
specially a clear reduction in the lap time.

Keywords: Autonomous Driving, Driverless Race Cars, Time-optimal strategy,
Model Predictive Control, Trajectory Planner and Tracker, ACADO Toolkit, RTI
Scheme.

xii

Introduction

Autonomous Driving State of the Art

From decades Advanced Driver Assistance Systems (ADAS) provide essential
information, automate difficult or repetitive tasks, and lead to an overall increase
in drive conditions. Some of these technologies have shown to result in an improved
driving experience and better road safety. The development of ADAS systems
is governed by international safety standards, in particular the ISO-26262 [21]
for road vehicles. Examples of well-known assistant technologies are the anti-
lock brake system (ABS), the traction control system (TCS) and the electronic
stability control (ECS). More recent ADAS are adaptive cruise control, automatic
braking and lane-departure warning. They are designed to prevent accidents
by taking partial control of the car’s movement. Figure 1 shows the different
area of competence of some assistant systems and the embedded sensors. These
automated safe systems are paving the way for tomorrow’s fully autonomous cars.
The industry now appears close to a substantial change, engendered by self-driving
vehicle technologies. Although autonomous driving carries a radical innovation, the
first studies date back to 1977 with the Tsukuba Mechanical Engineering Lab in
Japan. From there more and more projects were launched, such as the EUREKA
Prometheus Project on autonomous vehicles [12] and the ARGO Project [2]. More
recently, the DARPA Grand Challenge in 2005 and the DARPA Urban Challenge
in 2007 [8] together with VisLab [32], the today unique case of intercontinental
autonomous challenge, are considered milestones in this field of research. In the
last years most of the car manufacturers are developing self-driving vehicles for
real world traffic, often in cooperation with universities. Brands as Volvo, Toyota,
Google, Mercedes are only some example of high-tech companies working on this
subject.

Purposes of the Thesis

Autonomous driving is a field of active research in full growth and exploration.
Ceaselessly new ideas and approaches are presented and debated at the most
important vehicle conferences and symposiums. In parallel, intense testing activities
investigate feasibility and key strength. In this scenario have the use of reliable
test-bed it is an essential requirement. In particular, for a first validation of new
self-driving solutions a small-scale setups can represent a suitable choice. They are
to all intents and purposes valid test drive environments where the low complexity
of the whole system gives an immediate feedback of the logic or component under
study. In addition, the low budget required and the easy realizable measurement

1

2 Introduction

Figure 1: ADAS area of competence overview

campaign define them as a interesting alternative. All the bricks which compose
the autonomous driving architecture can be studied, individually or in conjunction
each others. Sensors for car position and obstacle detection, trajectory planning
strategies, control techniques and collision avoidance algorithms can all be tested.
In this sense a pioneering group adopting this strategy is the Automatic Control
Laboratory at ETH in Zürich with the ORCA Project [4]. Following the same
approach, in collaboration with SIEMENS and starting from the already fully
operative RaceCars setup, in this thesis the main software components or bricks
are developed and upgraded. Particularly attention will be posed on the controller,
being probably the most challenging component and the core of an autonomous
driving system.

System Setup

To conduct the real-world experiments, SIEMENS laboratories have available an
experimental setup, shown in Figure 2a. Details are reported in Appendix A. The
race track features a double chicane, two U-turns and a long straight section. The
race car driven is a 1:43 scale Kyosho dNano car, Figure 2b. The existing testbed
uses a camera mounted above the track as sensor. The interface to communicate
with the vehicle is a custom communication module, such that the control signal can
be sent over an Asynchronous Connection-Less Bluetooth (ACL) communication
link. The software architecture runs on a real-time computer where soft real-time
properties are guaranteed. In other words process priority can be assigned, but no
hard timing constraint can be imposed. All the software is written in C++ code
and designed in a modular way. It is possible to identify a vision processing unit
(VPU) and a vehicle control unit (VCU), completely independents. Mainly, the
VPU acquires a camera image and extracts the car state while the VCU receives

Introduction 3

(a) SIEMENS experimental setup (b) Kyosho dNano Ferrari FXX

Figure 2: Details of the RaceCars system

data and calculates the next control action. The two processes communicate via
UDP. For the VPU highest priority is provided in order to ensure as fixed sampling
rate as possible. Improvements introduced in this thesis are implemented as part of
these platforms. The complete feedback loop is depicted in Figure 3.

y

y

u

State%Es(ma(on% Sensor%

Controller% System%

x̂

%VPU%

%VCU%

Figure 3: Feedback loop

Vision Detection Technology

Today the direction followed for the choice of the right location sensors is clear.
The use of cameras as detection system is always more unavoidable, often co-working
with other type of sensors. As for human beings the vision represent the first sense
to rely on in order to get information from the environment, car vision allows for a
broad multiple-detection and a flexible post processing. In the RaceCars setup the

4 Introduction

camera is mounted on the top of the track and it has the task to provides at the
same time the current state of the controlled car and the position of the obstacles.
Among the difference possible solutions, color camera is embedded for the current
setup. Therefore, in this thesis a color-based detection and tracking algorithm is
developed.

Time-Optimal Driving Strategy

Always in the field of autonomous driving, specific targets modify the design of
the control system in order to fulfill the requirements. Optimization based on vehicle
consumption, comfort of the passengers or simply time are all possible variants.
With the premise that must be in any case guaranteed, even the degree of safety
can arise or come closer to an hypothetical border line depending from the goal.
Particularly attractive is the case of autonomous driving in a high speed situation,
where the extreme performances requested for the car push the controller at own
limits. In literature several examples of minimum-time driving are available. Based
on a projection operator nonlinear optimal control technique, in [29] is proposed
a strategy to find the trajectory for the car subject to tire and steering limits
minimizing the lap time. Nevertheless the solution is computed offline. For the
purpose of RaceCars instead a real time optimization is required because the car
has to overpass obstacles in random positions. In addition, high speeds can lead
the car to be far from the expected position even with a proper controller, so the
planner should consider the actual car state as starting point. Therefore in this
thesis a time-optimal real-time trajectory planning is used.

Feasible Real Time Controller

Among the different modern control techniques, model predictive control attracts
the attention for important advantages which well suit the case of study in this
thesis. Developed within the chemical industry as a process control, in recent
years it has also made its way into control applications with fast dynamics. Recent
contributions to theory and algorithms have enlarged the application spectrum.
Several characteristics set the MPC as particularly valuable for the autonomous
driving, as described in [7]. One key feature is the natural way of handling system
constrains, explicitly included in the control problem formulation. While preserving
vehicle stability, the MPC is able to drive the vehicle near its handling limits. The
inherent predictive nature then allows the MPC to anticipate changes in the system
and to act gradually over time. Therefore, in this thesis a model-based predictive
control is implemented.

Introduction 5

Outline

The thesis is structured as follow:

First chapter describes the steps and the choice made in order to develop a
reliable color-based object detection and tracking algorithm. Because the
logic behind and the written code are strictly related, C++ code for the main
functions are progressively added.

Second chapter investigates the mathematical model to be implemented in the
controller. Different possibilities for both vehicle and tire model are analyzed.
At the end the choice is based on a trade-off between computational effort
and dynamic description of the car behavior.

Third chapter introduces the model predictive control and the solver. Then,
one section is dedicated at the mathematical formulation for the trajectory
planning and the optimal control problem.

Fourth chapter reserves large space for a comparison between simulation and ex-
perimental results. Particularly attention is posed for the trajectory deviation
and the lap time.

Fifth chapter illustrates the main points of the obstacle avoidance algorithm as
essential step in the driver assistant design. Towards the end results from
both simulations and experiments are proposed.

Chapter 1

Detection System

Object detection is the most important and challenging fundamental task in
computer vision. It is widely used in machine vision industry for inspection,
registration and manipulation. In robotics solutions based on specific approaches
are usually implemented due of the complexity of the problem. Particularly in this
sector there are not projects where the algorithm is able to recognize objects based
only on vision [3]. It is a critical part in many applications and an open problem
for the variety of object classes and backgrounds. The scope of this paper is to
describe the main points of a color based tracking algorithm for a finite number of
objects and with an environment somewhat controlled.

Among different possibilities, a more and more used way to detect objects is
through a color camera. Depending on the case of study, different approaches can
be followed. Descriptor algorithms are able to recognize specific objects regardless
of scale or rotation through features or descriptors. Obviously they must be
highly repeatable and robust to noise, to displacement detection and to geometric
deformations. Alternatively a contour extraction algorithm is very well suited when
the object shape is clearly recognizable. It is generally also a not computationally
heavy technique. Nevertheless, problems arise if the shape does not discriminate
enough the object. As will be clear, for our purpose the second technique will
represent a better choice.

1.1 Hardware and Software

The previous vision system is an infrared camera: using markers on the cars,
reflection of infrared light coming from an infrared lamp results in bright blobs on
the camera image. The frequency chosen for the camera is 100 Hz and the image
proceeded in gray scale. In this case a descriptor algorithm is implemented as image
processing. Even if it is possible to regulate the amount of infrared light in order
to clearly detect only cars blobs, the influence of external light as well as the small
dimension of reflective markers make this a low robust solution.

Moving to a color camera, if illumination level changes the image processing
is still able to recognize specific colors, In addition, the entire car profile is used
for the detection obtaining a more robust tracking. The color camera in use is a
Ximea xiQ model MQ013CG-ON with a resolution of 1280x1024 pixels and a USB

7

8 Chapter 1. Detection System

3.0 connection. More details are available on the website [34]. The frequency is set
to 40 Hz following the system necessity. With a that high frame acquisition even a
simple filter will be sufficient. The camera is supported by API, a software interface
between the camera system driver and the application. Different APIs are available
for different programming environments: xiAPI stands for XIMEA application
programming interface and it is for C/C++ developments. On Linux xiAPI is
compiled into /usr/lib/libm3api. The camera is also compatible with many vision
and image processing libraries. Among them, OpenCV code library [26] is used in
conjunction with xiAPI to write the image processing code. OpenCV is designed for
computational efficiency and has a strong focus on real-time applications. Developed
by Intel and now supported by Willow Garage, it is free for academic and commercial
use under BSD license.

1.2 Vision System

The flow chart in Figure 5.1 illustrates with a general overview the main steps
of the object tracking algorithm and how it merges with the complete vision code.
Before to start setting camera parameters the following statements are required:

CAMERA SETUP

IMAGE
ACQUISITION

FILTERING ACTION

OBJECTS DETECTION

KALMAN FILTER

IMAGE DISPLAY

CLOSURE

MAIN LOOP

Figure 1.1: Algorithm overview

1.2. Vision System 9

#include cv.h //OpenCV
#include highgui.h //OpenCV
#include xiApi.h //Ximea API

XI_RETURN stat = XI_OK; //camera handle
HANDLE xiH = NULL; //status object

In addition images headers for later calculations are created with the function

IplImage* cvCreateImage(CvSize size, int depth, int channels);
//size, image width and height
//depth, bit depth of image elements
//channels, number of channels per pixel

1.2.1 Camera Setup

As for every device some routines are included before to start the acquisition
process. Among them camera initialization and setting,

//check if the camera is connected
xiGetNumberDevices(&dwNumberOfDevices);
//open the connection to the camera
xiOpenDevice(0, &xiH);
//set the camera,
// with prm parameter name string
// and val pointer to parameter set value
xiSetParam(xiH, IN CHAR * prm, IN VOID * val);
//start acquiring images
xiStartAcquisition(xiH)

Complete list of parameters can be found in Appendix B. In particular for our
purpose,

XI_PRM_IMAGE_DATA_FORMAT = XI_RGB32;
//with NUMBEROFCHANNELS = 4, [Blue][Green][Red][0]

1.2.2 Image Acquisition and Conversion

A single camera image in Figure 1.2 can be acquired using the xiAPI function,

xiGetImage(xiH, IN DWORD TimeOut, INOUT XI_IMG * img);
//TimeOut, time interval required to wait for the image
//img, pointer to image info structure

The image is then converted to an OpenCV image inside a self defined function,

memcpy(outImg->imageData, image->bp, data_size);

Therefore from now OpenCV libraries will be used for the image post processing.
The image needs now to be re-sized to reduce computational effort for further
conversion. In this way the frequency decided for the image transmission can be
achieved. Consequently the image conversion is done with the following string line:

10 Chapter 1. Detection System

Figure 1.2: Acquired image

cvCvtColor(const CvArr* src, CvArr* dst, int code);
//src, input image
//dst, output image
//code, color space conversion code

The function converts an input image from one color space to another. Different
color space conversion codes are available, in this case RGBA2RGB removes the
unused Alpha channel. Now through a dedicated function it is possible to filter the
colors of interest between a minimum and maximum threshold, as in Figure (1.3).
In the own defined function the string below is required:

cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst);
//src, first input array
//lower, lower boundary array
//upper, upper boundary array
//dst, output array of the same size as src

Selecting the correct values the output is a binary image where the white pixels
delimit the colors desired, in this case the shape of the car. In addition, to increase
the quality of the filtered image obtained OpenCV implements morphological
operations. In particular for this project Erode and Dilate functions are used.
As the names suggest, erode works into white space making it smaller or not
existent removing image noise, while dilate does exactly the opposite. Below a
short description of them.

cvErode(const CvArr* src, CvArr* dst, int iterations=1);
//src, input image
//dst, output image of the same size and type as src
//iterations, number of times erosion is applied

cvDilate(const CvArr* src, CvArr* dst, int iterations=1);

1.2. Vision System 11

Figure 1.3: Filtering action

//src, input image
//dst, output image of the same size and type as src
//iterations, number of times dilation is applied

Visual representation shows that even if the combination of them could lead to
satisfying filter action, an excess use introduces a certain level of uncertainty in
the image profile. Because borders represent a key element for the definition of
car orientation, it is highly recommended to use them a low number of times.
Furthermore, to simplify all this procedure a black mask of the track contours can
be applied to exclude everything is outside the circuit.

cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst);
//src1, input image
//src2, binary mask image
//dst, output image of the same size and number of channels

The orange contour in Figure 1.4 represent the mask applied. All the conversion pro-
cessed until now results in a binary image where the white pixels should accurately
reproduce the contours of the car, as shown in Figure 1.5.

1.2.3 Object Tracking

Position and Orientation

First step is to compute object position using borders in the binary image. In
OpenCV a function to retrieve contours is available,

nc = cvFindContours(CvArr* image, CvSeq** contour);
//nc, number of contours
//image, source
//contours, each contour is stored as a vector of points

12 Chapter 1. Detection System

Figure 1.4: Image acquired with mask

Figure 1.5: Car shape filtered

Points are defined using OpenCV opportune structure,

cvPoint2D32f(double x, double y);
//x, floating-point x-coordinate of the point
//y, floating-point y-coordinate of the point

The contours saved are now used in an another function able to calculate the
minimum-area bounding rectangle for the specified point set. Through the definition
of a range of values for both width and height, a selection based on rectangle size
can be used to compute only the position of desired objects. Therefore at the end
only the searched car should be detected and every other object with the same
color but different size will be omitted.

1.2. Vision System 13

CvBox2D = cvMinAreaRect2(const CvArr* points);
//CvBox2D, structure containing rectangle information
//points, set of contours

The structure in output contains several information about the rectangle found.
Among them the center point and the orientation. These information represent the
state of the car, but before to be used they still need to be manipulated. In particular
the center point is converted in world coordinates using matrices defined during
calibration step while the car angle requires to be eventually corrected. Because just
from the rectangle shape it is not possible to understand its orientation, or better
always two possibility are feasible (α, α+ 180◦), the idea is to compare previous
and actual orientation. Car angle at the first step is known so every previous step
value. If the difference between current and previous angle is bigger than 90◦ the
orientation given from the function is now incorrect and 180◦ are added. The

Figure 1.6: Car detection

bonding box around the car is plotted In Figure 1.6 with the values calculated to
check that they match with the real car position and orientation, while in Figure
1.7 an image with the car state is created.

Kalman Filter

Implementing the code discussed until now should lead to good detection results.
However, because the regulation of the image filter is manually done it is always
good practice to implement a Kalman filter [23] for missing measurements and
filtering noise action. The high frequency of the camera acquisition and object
detection means an high rate of information updated. For this reason a Kalman
filter based on a simple linear model can be adopted. For example a point mass
moving at a constant speed where accelerations and deceleration are considered
as noise can be used. The algorithm framework is the following and is taken from [18].

14 Chapter 1. Detection System

Figure 1.7: Car state displayed

Predicted state estimate, where the state vector is ẑ, the noise vector wk, the
state matrix A and the input matrix B

ẑk|k−1 = Aẑk−1|k−1 +Bwk (1.1)

ẑ =

x̂
v̂x
ŷ
v̂y
ϑ̂
ω̂

 w =

axay
ω̇

 (1.2)

A =

0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 B =

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 (1.3)

Predicted covariance estimate, with the process noise covariance matrix Q

Pk|k−1 = APk−1|k−1A
T +Qk−1 (1.4)

Q = B

[
var(ax) 1

0 var(ay)

]
BT (1.5)

Optimal Kalman matrix, with the measurement noise covariance R and the output
C matrices

Gk = Pk|k−1C
TR−1

k (1.6)

R =

var(xmes) 1 0
0 var(ymes) 0
0 0 var(ϑmes)

 C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (1.7)

1.3. Computation Time 15

Update state estimate

ẑk|k = ẑk|k−1 +GkC(zk − ẑk|k−1) (1.8)

To realize a better state estimation a non linear model can be used. The algorithm
of an extended Kalman filter or EKF uses Jacobians around previous prediction.
In that case the predicted state estimate has the following form,

ẑk|k−1 = f(ẑk−1|k−1, 0, k) (1.9)

and the linearization with the Jacobian,

Ak−1 =
∂f(zk−1)

∂zk−1

∣∣∣∣
k−1

(1.10)

OpenCV provides a usefull constructor for Kalman filter,

cvCreateKalman(int dynam_params, int measure_params);
//dynamParams, dimensionality of the state
//measureParams, dimensionality of the measurement

1.2.4 Image Display and Closure

Every image during processing steps can be easily displayed calling a specific
function here described:

cvShowImage(const char* name, const CvArr* image);
//name, name of the window
//image, image to be shown

Outside the main loop xAPI functions together with OpenCV statements close the
camera works.

//stops data acquisition and deallocates internal image buffers
xiStopAcquisition(IN HANDLE hDevice);
//un-initialize the device, closes its handle and releases resources
xiCloseDevice(IN HANDLE hDevice);

cvReleaseImage(IplImage** image);
//image, double pointer to the image header

1.3 Computation Time

The plot in Figure 1.8 shows the time required for the CPU to manipulate the
images. With an average between 5 and 10 ms, it is widely low the 25 ms chosen
as reference. In a first implementation the time was three times higher producing
a non constant information transmission. This problem was solved reducing the
resolution of the images processed.

16 Chapter 1. Detection System

0 50 100 150 200 250 300 350 400 450
Index

0

10

20

30

40

50

Sa
m

pl
in

g
tim

e
[m

s]

RT Performance - Sampling Time

Frame time
Total Time
Step 1
Step 2
Step 3
Step 4
Step 5

Figure 1.8: Computational time

Looking at the plot, Step 1 (red) and Step 2 (green) represent respectively image
acquisition and filtering action. They are the most demanding functions. Step 3
(black) contains the function responsible to find contours while Step 4 (light blue)
mainly the Kalman filter. Together they are less than the millisecond. Finally in
the step 5 (yellow) the images are shown.

Chapter 2

Mathematical Model

In order to execute a proper control action, different models representative of the
system behavior can be formulated. Generally a trade-off among detailed dynamics
and computational effort, model complexity should be a direct consequence of
the purpose. Because the goal is to successfully control the car even performing
high speed maneuvers, a mathematical model which includes both vehicle and tire
model is defined. Therefore, a parameter identification experiment to model the
road-tire interaction allows to characterize general formulations from literature
for the system under study. Finally a validation of the complete model through
comparison between simulation and experiment results is provided. The steps
explained in this chapter replicates a procedure already executed in [24].

Every model discussed is a rear-wheel driven car with front-wheel steering, as
well as the car in the experimental setup. Global coordinate system is identified
as (X, Y,Ψ), with Ψ the orientation of the car from positive X-axis, while car
coordinate system (x, y) has x-axis aligned with the longitudinal axis of the car.

2.1 Vehicle Model

Vehicle models formulation represent a wide area of study and only the cases
of possible interest are discussed in this section. First simplification required is to

(a) Global coordinate system (X,Y,Ψ) (b) Local coordinate system (x, y)

Figure 2.1: Model Coordinate Systems

17

18 Chapter 2. Mathematical Model

Fryl(αrl,κl
)

Ffl(αfl)

 .
φ

vxαrl

αf

δ
l

Frxl(αrl,κl
)

lf

lr
Fryr(αrr,κr

)

Ffl(αfl)

vy

αrr

αfr

δ
r

Frxr(αr,κr
)

Figure 2.2: Four wheels vehicle model

consider the car as a rigid body. Most of the dynamic of the real car can still be
captured while the torsion is neglected. This assumption is possible because the
chassis of the car is stiff enough. The dynamics of the rigid body can be split into
in-plane and out-of-plane motion. The first describes the movement of the car on a
flat surface (x, y and and yaw angle), while the second the movement in z as well
as pitch and roll angle. The out-of-plane motion can be neglected when as in this
case the center of gravity is low and the suspensions stiff. Focusing on the in-plane
motion, the forces acting on the wheels of the car have generally longitudinal and
lateral components. Since the car is rear wheel driven there is not longitudinal
component on the front wheels, they are assumed to roll freely. On the other hand,
the front wheels can change their orientation while the rear wheels are always as
the car. The model resulting is shown in Figure 2.2 and discussed in [11], [35].

A further simplification is to group together left and right side obtaining the well
known bicycle model or single track model of Figure 2.3. To adopt this assumption
the velocity of inside and outside wheel should be the same, and the roll dynamics
of the car negligible. The assumption is valid because the car is symmetric, it has
standard geometric relations and as already discussed low center of gravity and firm
suspensions which allow to forget the out-of-plane motion and so the roll dynamics.

2.1.1 Bicycle Model

Equations of motion

To derive the equations representative of the car dynamics as first the acceleration
of the CG in the fixed body frame is defined as follow

aCG,x = v̇x − ϕ̇vy (2.1)
aCG,y = v̇y + ϕ̇vx (2.2)

2.2. Tire Model 19

Fry(αr)

Ffy(αf)

vy
.
φ

vx

αr

αf

δ

Frx(D)

lf

lr

Figure 2.3: Bicycle model

leading to the equations of motion

v̇x =
1

m
(Fr,x − Ff,ysinδ +mvyϕ̇) (2.3)

v̇y =
1

m
(Fr,y + Ff,ycosδ −mvxϕ̇) (2.4)

ϕ̈ =
1

Iz
(Ff,ylfcosδ − Fr,ylr) (2.5)

where Fr,x and Fr,y are the forces on rear wheel, Ff,x and Ff,y are the forces on front
wheel, lr and lf the distances from the CG to the rear and front wheel respectively,
m is the mass of the car, Iz the moment of inertia around the z axis and δ the
steering angle.

Kinematic model

The position and the orientation of the car can be obtained integrating the
equations of motion and transforming them to the world coordinate system using
the rotation matrix. The yaw rate ϕ̇ is the same in both frames.

Ẋ = vxcosϕ− vysinϕ (2.6)

Ẏ = vxsinϕ+ vycosϕ (2.7)
ϕ̇ = ϕ̇ (2.8)

2.2 Tire Model
In parallel with the vehicle modeling, the formulation of a wheel-ground contact

law able to describe the forces generated in a real drive situation is essential if

20 Chapter 2. Mathematical Model

the purpose is to capture the tire force saturation and to avoid drift situation.
Therefore, starting from this consideration different models are investigated and
joined together with the bicycle model described above.

2.2.1 Slip-free Model

The model assumes ideal point contact and so no slip behavior. This assumption
leads to zero lateral speed at the rear wheel vr,y. It is a reasonable simplification if
the tire force limit is not exceeded, or in other way in case of slow drive situation. A
second hypothesis is to consider δ ≈ 0 because of small turn action. The complete
model results heavily simplified and in a pure kinematic formulation, as widely
discussed also in [30]. Applying the assumptions discussed for the bicycle model
leads to a new definition for the angular speed

vr,y = vy − ϕ̇lr = 0 =⇒ ϕ̇ =
vy
lr

(2.9)

vy
vx

=
lr
L

tan δ ≈ lr
L
δ =⇒ vy =

lr
L
δvx =⇒ ϕ̇ =

vxδ

L
(2.10)

If the origin of the fixed body frame is positioned at the rear wheel of the car,
because lateral speed is zero the position resulting is the following

Ẋr = vx cosϕ (2.11)

Ẏr = vx sinϕ (2.12)

The speed of the CG is modeled separately taking into account several contributes.
The force generated from motor torque and transmitted on the ground can be
supposed direct function of the duty cycle and proportional with the speed

Fdc = −Cm1D + Cm2vxD (2.13)

The contribution of drag and roll resistances is also included as reported in [17]

Fd,r = Cr0 + Cr2v
2
x (2.14)

Finally even the steering action means a reduction in speed

Fs =
vxlrδ

l2
(2.15)

All the model parameters are listed in Table 2.1. The complete set of equations
representative of the no-slip bicycle model is here summarized

Ẋ = vx cos(ϕ+ C1δ) (2.16)

Ẏ = vx sin(ϕ+ C1δ) (2.17)
ϕ̇ = vxδC2 (2.18)

v̇x =
1

m
(Cm1 − Cm2vx)D − Cr2v2

x − Cr0 − (vxδ)
2C2C1 (2.19)

2.2. Tire Model 21

Parameter Unit Physical meaning Value

C1 - geometrical (lr/l) 0,5
C2 m−1 geometrical (1/l) 17,06
Cm1 m/s2 motor parameter 12,0
Cm2 1/s motor parameter 2,17
Cr0 1/m zero order friction parameter 0,1
Cr2 m/s2 second order friction parameter 0,6

Table 2.1: Bicycle model parameters

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

α

F
y

(a) Magic formula

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

α

F
y

(b) Magic formula with E = 0

Figure 2.4: Examples of Pacejka magic formula

2.2.2 Slip Models

A more accurate and realistic definition of the system exploits nonlinear functions
to describe the wheel-ground interaction. Among all the tire models, a very well
known is Pacejka’s so-called Magic formula. It was first published in [25] and
then discussed more in detail in [27]. Well suited for a large range of tires and
operating conditions, it is essentially a semi-empirical steady state tire friction law.
It is valuable to calculate the lateral and the longitudinal forces acting as a function
respectively of the lateral slip angle α and the normalized longitudinal relative
velocity k. How can be seen in Figure 2.3, α is the angle between the lateral and
the longitudinal speed at each wheel

αr = arctan

(
ϕ̇lr − vy
ωrrr

)
(2.20)

αf = −arctan
(
ϕ̇lf + vy

vx

)
+δ (2.21)

where ωr is the rear wheel angular speed and rr the wheel radius. Thus, the magic
formula is a combination of trigonometric functions which describes the shape of
the tire friction curves

22 Chapter 2. Mathematical Model

Fi,y = D sin(C arctan(Bαi − E(Bαi − arctan(Bαi)))) (2.22)
with i = f, r (2.23)
D, peak factor: maximum of Fx (2.24)
C, shape factor: function shape (2.25)
B, stiffness factor: function slope degree in the origin area (2.26)
E, curvature factor: peak curvature and asymptote (2.27)

The longitudinal force can be calculated replacing α with k. Example of possible
trend is shown in Figure 2.4a. For a low slip angle the force has a close to linear
dependency, saturating at a maximum side force and tending asymptotically to a
maximum sliding force. As shown in Figure 2.4b, considering a zero E value the
main difference is in the steepness of the slope. However, it still leads to a good
representation but at the same time part of the non linearities are removed.

To conclude, the effect of spinning has still to be investigated. It is the tire-
ground relative velocity and it influences the lateral force. To include the effects of
spinning necessarily a combined slip model is required. There are several combined
slip model which exploits the magic formula. Every formulation in any case models
how lateral and longitudinal slips influence each others. For example, a very well
known is based on friction ellipse. Because the contact patch can induce a maximum
force, if a certain force is applied in longitudinal direction the maximum possible
force in lateral direction is reduced. Therefore, as explained in [33] the tire forces
always lie inside the following ellipse(

Fx
Fx,max

)2

+

(
Fy

Fy,max

)2

≤ 1 (2.28)

Lateral slip model

The Pacejka model described can be used to achieve different degree of accuracy.
In particular, the lateral slip model simplifies the coupled model assuming pure
cornering conditions in order to neglect the spinning of the wheels. In other terms
Fr,x and Fr,y do not influence each others. Therefore, vy and ϕ̇ are not affected by
the spinning and the wheel speed sensor is not required. The rear slip angle results
simplified

αr = arctan

(
ϕ̇lr − vy
vx

)
(2.29)

The lateral tire forces with E = 0 are

Ff,y = Df sin(Cf arctan(Bfαi)) (2.30)
Fr,y = Dr sin(Cr arctan(Brαi)) (2.31)

The longitudinal rear force is still modeled as already seen for the longitudinal
acceleration in the slip-free model, with the only difference that the steering action
has not influence

Fr,x = (Cm1 − Cm2vx)D − Cr2v2
x − Cr0 (2.32)

Concluding, with the purpose to include the lateral slip model in the whole complete
model the combined slip is an important effect during drift maneuver here completely

2.3. Model Parameters Identification 23

neglected. As suggested in [20], to capture as much as possible of the combined slip
with the lateral slip model, during identification maneuvers significant combined
slip are performed. Combining vehicle and tire models the complete mathematical
model

ż = f(z) (2.33)
with the state vector

z =

X
Y
ϕ
vx
vy
ω

(2.34)

leads to a set of first order ordinary differential equations

Ẋ = vxcosϕ− vysinϕ (2.35)

Ẏ = vxsinϕ+ vycosϕ (2.36)
ϕ̇ = ω (2.37)

v̇x =
1

m
(Fr,x − Ff,ysinδ +mvyϕ̇) (2.38)

v̇y =
1

m
(Fr,y − Ff,xcosδ −mvxϕ̇) (2.39)

ω̇ =
1

Iz
(Ff,llfcosδ − Fr,ylr) (2.40)

where tire forces and lateral slip angles are

Ff,y = Df sin(Cf arctan(Bfαi)) (2.41)
Fr,y = Dr sin(Cr arctan(Brαi)) (2.42)

Fr,x = (Cm1 − Cm2vx)D − Cr2v2
x − Cr0 (2.43)

αr = arctan

(
ϕ̇lr − vy
vx

)
(2.44)

αf = −arctan
(
ϕ̇lf + vy

vx

)
+δ (2.45)

2.3 Model Parameters Identification
Even for the model identification vehicle and tire are handled separated. Initially

mechanical parameters are determined, as reported in Table 2.2. Then, following a
systematic procedure explained in [20] the six tire parameters can also be identified
with a steady state experiment. Because of the assumption of steady-state condition
the equations of motion 2.3 and 2.5 are equal to zero obtaining the forces as function
of the velocities

Ff,y = Ff,y(αf) =
mvxϕ̇lr

(lr + lf) cos δ
(2.46)

Fr,y = Fr,y(αr) =
mvxϕ̇lf
lr + lf

(2.47)

24 Chapter 2. Mathematical Model

(a) Front wheel (b) Rear wheel

Figure 2.5: Steady-state identification: stationary force and fitted magic formula

As precised in equations 2.46 and 2.47, and as already reported in equations 3.35 and
3.36, the lateral tire forces are also function of the lateral slip angle. The experiment
is conducted with a constant longitudinal speed and a ramp steering maneuver of
0, 1 rad/s as input, particularly slow in order to avoid the influence of dynamic
effects. Furthermore, for the forward velocity a proportional feedback is added in
order to guarantee a constant value. Therefore, in Figure 2.5 a specific number of
10 experiments are conducted with different speeds and turning directions.

Considering the results, due to an under steering characteristic the tire of the rear
wheel for negative slip angles has not reached the saturation. As already observed
from [24] during own experiments, the most probably cause for this behavior is
a different maximal steering angle for the two directions. In Table 2.3 the magic
formula coefficients resulted from fitting are reported.

Par. Unit Value

Iz kgm2 5, 6919e−5

m g 0,0467
lf m 0,0308
lr m 0,0305

Table 2.2: Mechanical model parameters

Par. Value

Bf 3,47
Br 3,173
Cf 0,1021
Cr 0,01921
Df 5,003
Dr 19,01

Table 2.3: Tire model parameters

Chapter 3

Model Predictive Control

In the area of autonomous vehicle control, MPC has become an attractive
method for the reliable tracking of feasible trajectories by ground vehicles. Among
the advantages of MPC when compared to other feedback control techniques are the
flexibility provided in formulating the control objective, the capability to directly
handle equality and inequality constraints, and the possibility to treat unforeseen
disturbances fast. Most important, MPC allows to make use of reliable models. It
is this last point that makes it particularly appealing for the purpose of RaceCars
system. In the panorama of possible implementations, linearized and oversimplified
models often ignore important nonlinear dynamics that play a major role when the
vehicle is driven close to its handling limit. On the other hand, the computational
demand of nonlinear optimization methods makes them generally not applicable.

As [15] suggests, a simplification frequently chosen in order to reduce computa-
tional effort is the decomposition of the problem in two level, featuring a high level
path planner utilizing a simple model on a long prediction horizon, and a low level
path follower with a more detailed model on a short prediction horizon. The same
approach has been adopted for the RaceCars system, where a simple car model
anyway able to reproduce vehicle physical limitations is used for the trajectory
generation, while the controller can rely on a detailed model to follow that path.

3.1 Introduction of Model Predictive Control

The MPC is a modern, optimization based control strategy and a paradigm
for control design. It builds on the different problem formulations and algorithms
available in the field of optimal control and numerical optimization. Its predictive
nature is due to the use of a open-loop dynamic model of the controlled system.
From the current state, the system response is predicted over a specified time
horizon solving an optimization problem. In Figure 3.1 a schematic representation
is provided. The optimization is solved taking into consideration constraints. The
prediction and control horizon are then shifted ahead by one step and a new
optimization problem is solved using updated measurements. Thus, by repeatedly
solve an open-loop optimization problem with every initial conditions updated
at each time step, the model predictive control strategy results in a closed-loop
constrained optimal control technique.

25

26 Chapter 3. Model Predictive Control

t0 t0 +Hc

FuturePast

Predicted states x(t)

Control action u(t)

Control horizon

Prediction horizon

t0 +Hp

state
constraint

input
constraint

x0

u0

t1

Figure 3.1: One-step MPC algorithm

3.1.1 Optimal Control Problem

The first basic component is the dynamics model, described here by ordinary
differential equations (ODE)

ẋ = f(t, x(t), u(t))

with
x(t0) = x0

x(t) ∈ Rn

u(t) ∈ Rm

t ∈ R

(3.1)

where x is the state, u is the control input, and (t0, x0) are the initial time and
state. The second component is the cost functional. It associates a cost with each
possible behavior. For a given initial state the behaviors are parameterized by
control functions u and the cost functional assigns a cost value to each admissible
control. The cost functional is denoted by J and is in the form

J(x(t), u(t)) =

∫ tf

t0

L(t, x(t), u(t))dt+K(tf , x(tf)), t ∈ [t0, tf] (3.2)

where L and K are respectively running and terminal cost functions, tf is the
terminal time which is either free or fixed, and xf = x(tf) is the final state which is
either free or fixed or belongs to some given target set. Note that because u itself is
a function of time, J is a real-valued function on a space of functions and so called
functional. The OCP to be solved at each sample time can then be posed as to
find a control u over all admissible controls that minimizes J

minimize
x(·),u(·)

J(x(·), u(·))

subject to ẋ = f(x(t), u(t), t), t ∈ [t0, tf]

x(t0) = x0

(3.3)

3.1. Introduction of Model Predictive Control 27

3.1.2 Linear MPC

A linear MPC problem formulation consists of a prediction model with linear
system dynamics, affine constraints and a convex quadratic objective function.
Under these condition, the corresponding OCP can be transformed into a static,
convex quadratic programming problem, [7]. The complete problem formulation is
the following

minimize
x(·),y(·),u(·)

J =

∫ tf

t0

(
‖y(t)− r(t)‖2

Q + ‖u(t)− ur(t)‖2
R

)
dt+ ‖x(tf)− xr(tf)‖2

W

subject to
x(t0) = x0

ẋ(t) = Ax(t) +Bu(t) System dynamics
y(t) = Cx(t) +Du(t) Output equation
Fxx ≤ fx State constraints
Fuu ≤ fu Input constraints

(3.4)
where the weighted norm is equivalent to [y(t)− r(t)]TQ[y(t)− r(t)], using positive
semidefinite matrices Q,R, P ; (A, B) represent the continuous-time state space
matrices. Constrains can be also written more explicitly in the so-called box form.
The original OCP formulation in 3.4 of a linear MPC controller can be easily
transformed into a discretized equivalent.

3.1.3 QP solution

Optimization problem with a quadratic cost function and linear constraints
leads to a static QP problem, expressed as follow

minimize
w

1

2
wTHw + gTw

subject to Gw ≤ b

Geqw = beq

(3.5)

where w ∈ Rnw is the optimization variable or so called decision variable, H ∈
Rnw×nw is the symmetric and positive semidefinite Hessian matrix and g ∈ Rnw is
the gradient vector. G ∈ Rnin×nw and b ∈ Rnin denote the inequality constraint,
while Geq ∈ Rneq×nw and beq ∈ Rneq the equality constraints.

There are different approaches and many algorithms to solve QPs online. Along
this thesis the qpOASES solver is used to solve QP problems in the nonlinear field,
as is restated in section 3.1.6. qpOASES is an open-source C++ implementation of
the online active set strategy and several theoretical features make it particularly
suited for MPC applications. Material is available at the website [28]. A main
category division of QP solvers is between interior point methods (IPM) and active
set methods (ASM). The online ASM solves the QP problem following an iterative
procedure and by reducing the full set of constraints to an active subset. These
constraints are added/removed from the active set at every iteration. Detailed
description of the algorithm is available in [13]. Other QP solver are for instance

28 Chapter 3. Model Predictive Control

FORCES and qpDUNES. In particular FORCES is a numerical optimization code
generation framework for convex multistage problems. Taking use also of the
predicted intermediate states, FORCES leads to a structured problem and a sparse
solving approach. This translates in higher speed while it sacrifices accuracy if
compared with qpOASES. Material is available at the website [14].

3.1.4 Nonlinear MPC

The theory described in the next chapters in mainly extracted from [9]. In case
of NMPC both the cost function and the constraints are nonlinear functions. What
it blocks the NMPC techniques to become widely applicable is the computational
burden associated with the requirement to solve a set of nonlinear differential
equations and a nonlinear dynamic optimization problem in real-time. The complete
problem formulation is the following

minimize
x(·),u(·)

J =

∫ tf

t0

L(t, x(t), u(t))dt+K(tf , x(tf))

subject to
x(t0) = x0

ẋ = f(t, x(t), u(t)) System dynamics
0 ≥ h(x(t), u(t)) Path constraints
0 ≥ r(x(tf)) Terminal constraints

(3.6)

where L is the integral cost term and K the terminal cost term and they are
arbitrary nonlinear functions.

There are three basic approaches to address optimal control problems. The
direct methods transform the infinite-dimensional optimization problem into a
finite-dimensional static nonlinear programming problem (NLP) of the form

minimize
w

V (w)

subject to a(w) = 0

c(w) ≥ 0

(3.7)

with a finite dimensional vector w representing the optimization degrees of freedom.
This NLP is solved by variants of state-of-the-art numerical optimization techniques.
All the direct methods have in common that first discretize the original problem
and then optimize. Because they can easily treat inequality constraints and be
implemented very efficiently, they are chosen for this project. Different approach is
the dynamic programming, based on Bellman’s principle of optimality. It leads at
the well known Hamilton-Jacobi-Bellman equation, a partial differential equation
(PDE) in state space. Finally, the class of indirect methods encompasses the calculus
of variations and the Euler-Lagrange differential equations and the approach is
often sketched as first optimize and then discretize.

3.1. Introduction of Model Predictive Control 29

3.1.5 Single Shooting approach

All direct methods parameterize the input with a finite number of parameters
q ∈ Rnq , but they differ in the way the state trajectory is handled. They are
divided into sequential approaches and simultaneous approaches. Because each
one has own advantages and disadvantages the choice is problem oriented. In
sequential approaches the state trajectory is regarded as an implicit function of
the controls and the initial value. Thus, simulation and optimization iterations
proceed sequentially, and the NLP has only the discretized control as optimization
degrees of freedom. Also the path constraints are discretized to avoid a semi-infinite
problem. The single shooting is an example of sequential approach, and is used for
the NMPC designed in this thesis. The result is the following finite dimensional
NLP

minimize
q

J =

∫ tf

t0

L(t, x(t, x0, q), ũ(t, q))dt+K(tf , x(tf , x0, q))

subject to
x(t0) = x0

0 ≥ h(x(t, x0, q), ũ(t, q))

0 ≥ r(x(tf , x0, q))

(3.8)

This problem is solved by a finite dimensional optimization solver, e.g. sequential
quadratic programming (SQP). In contrast to this, simultaneous approaches keep
a parameterization of the state trajectory as optimization variables within the
NLP, and add suitable equality constraints representing the ODE model. Here
simulation and optimization proceed simultaneously, and only at the solution of
the NLP do the states actually represent a valid ODE solution corresponding to
the control trajectory. Simultaneous approach are the direct collocation and the
multiple shooting.

3.1.6 Sequential Quadratic Programming solution

To solve NLP of the form 3.7, the idea is to work within an iterative SQP. For
any optimization problem the so-called Lagrangian function is defined as

L(w, λ, µ) = V (w)− λTa(w)− µT c(w) (3.9)

where λ ∈ Rneq and µ ∈ Rnin are the Lagrange multipliers. The necessary conditions
for a point w∗ to be a local optimum of the NLP is to satisfy the KTT optimal
conditions, i.e. there exist multipliers λ∗ and µ∗, such that

∇xL(w∗, λ∗, µ∗) = 0

a(w∗) = 0

c(w∗) ≤ 0

λ∗ ≥ 0

c(w∗)Tµ∗ = 0

(3.10)

30 Chapter 3. Model Predictive Control

One common approach for solving the KKT system is performing the successive
linearization on all equations. In order to approximately find such a triple (w∗, λ∗, µ∗)
the SQP algorithm proceed iteratively. Starting with an initial guess (w0, λ0, µ0), a
standard full step SQP iteration for the NLP is

wk+1 = wk + ∆wk (3.11)
{λ, µ}k+1 = {λ, µ}QP

where (∆wk, λQP , µQP) is the solution of a QP. In the classical Newton-type or SQP
approaches, this QP has the form

min
∆w∈Rnw

1

2
∆wTAk∆w +∇wV (wk)

T∆w

subject to
a(wk) +∇wa(wk)

T∆w = 0

c(wk) +∇wc(wk)
T∆w ≥ 0

(3.12)

where Ak is an approximation of the Hessian of the Lagrangian

Ak ≈ ∇2
wL(wk, λk, µk) (3.13)

and ∇wa(wk)
T and ∇wc(wk)

T are the constraint Jacobians. Depending on the
quality of the Hessian approximation there is linear, super-linear or even quadratic
convergence. Practical SQP methods differ in the type of globalization strategy, in
the type of QP solver used, or in the way the Hessian is approximated.

Real-Time Iteration scheme

The real-time iteration (RTI) scheme for NMPC has been proposed first in
[10]. The idea is that dividing the computational time of each cycle into a a short
feedback phase (FP) and a possibly much longer preparation phase (PP), the FP is
only used to evaluate the approximation ũ∗0(x̄(tk)) by solving a QP and to apply
it to the system. The following PP is exploited to prepare the next feedback,
mainly to compute ũ∗0(x̄(tk+1)) as much as possible without knowledge of x̄(tk+1).
Therefore, the computations for the first iteration can be largely performed before
the initial value x̄(tk+1) is known. In the RTI, the result of the first SQP iteration
is used directly for the approximation u∗0(x̄(tk)). Taking into account that the
algorithm already use an approximated solution of the optimal control problem
it is not necessary to iterate the SQP until convergence. Instead, it is possible to
reduce the PP by performing just one iteration per sampling interval.

ACADO toolkit

To solve the NLP formulated in this thesis, the ACADO package has been used
for both simulation and real-time testing. ACADO Toolkit is a software environment
and algorithm collection for automatic control and dynamic optimization, [1]. It
provides a general framework for using a variety of algorithms for direct optimal
control, including state and parameter estimation, robust optimization and MPC.
In particular, the code generation tools ACADO CGT produces a self-contained
C++ code which implements the RTI scheme and is able to solve NMPC problems.

3.2. Trajectory Definition 31

Figure 3.2: Modeling track and vehicle trajectory

3.2 Trajectory Definition
To compute the reference trajectory along the track, the only target is the lap

time: the car drives autonomously in the given circuit trying to achieve the shortest
possible time. The algorithm adopted for the generation of the trajectory has been
described first in [6]. Mainly, the optimal trajectory {x(t), y(t)} for the vehicle’s
center of gravity is computed over a specified prediction horizon with information
on track geometry.

About the speed profile, simulations and tests are conducted with two different
time trends. First, a time-parameterized speed v(t) is optimized with the use of a
simplified vehicle dynamic model which allows to introduce constraints in vehicle
speed. Latter a constant speed value is chosen. Rising the velocity in this second
case there are not external constraints and the controller is completely responsible
to decide how to deal with the curves.

Track and trajectory model

The track centerline is described by a plane curve r0(s) = [x0(s), y0(s)]T ∈ R2

and parameterized in the path coordinate s ∈ R. Formulate the problem in the
spatial domain allows a natural definition of road bounds and obstacles under
varying vehicle speed. Denoting the unit normal vector to r0 as n0(s) ∈ R2 and the
track width as w(s) ∈ R, the left and right track borders are respectively given
by r0,l = r0(s) − w(s)n0(s)/2 and r0,r = r0(s) + w(s)n0(s)/2. Every trajectory
inside the track boundaries can be defined as r(s) = r0,r(s) + α(s)∆(s), where
∆(s) = r0,l(s) − r0,r(s) = w(s)n0(s) is the vector normal to the track centerline,
pointing from the right towards the left track border. Note that α(s) completely
defines the geometry of the trajectory, while the time dependency is expressed by
s(t). Description of track and vehicle trajectory is illustrated in Figure 3.2.

r0(s) = [x0(s), y0(s)]T ∈ R2 track centerline (3.14)
n0(s) ∈ R2 normal vector (3.15)
w(s) ∈ R track width (3.16)
r0,r = r0(s) + w(s)n0(s)/2 right hand border (3.17)
r0,l = r0(s)− w(s)n0(s)/2 left hand border (3.18)
∆(s) = r0,l(s)− r0,r(s) = w(s)n0(s) lateral deviation (3.19)
r(s) = r0,r(s) + α(s)∆(s), α(s) ∈ [0, 1] vehicle trajectory (3.20)

32 Chapter 3. Model Predictive Control

x

y

Minimizing Curvature

Minimizing Length

Figure 3.3: Geometry trajectory optimization strategies

Vehicle model

The vehicle is here considered as a simple point mass thus the movement
completely determined by the acceleration a(s) = r̈(s) = d2r(s)

dt2
∈ R2 as in [19],[31].

Because the vehicle is driven at its limit performances, although simplified, the model
has to correctly reproduce physical limitation of the vehicle. The maximum possible
acceleration is function of the traction force, the maximum lateral acceleration
depends of both vehicle speed and steering angle while the speed is upper bounded.

ax,min(s) ≤ ax(s) ≤ ax,max(s) (3.21)
ay,min(s) ≤ ay(s) ≤ ay,max(s) (3.22)

v(s) ≤ vmax(s) (3.23)

3.2.1 Geometric Trajectory Optimization

Two different strategies can be followed to achieve time optimality: the path
length can be minimized or the velocity along the trajectory maximized. These
possibilities are generally in conflict, because as shown in Figure 3.3 the shortest
path often introduces higher curvature, which reduce the limit in the speed, as from
equation 3.24.

ay,max =
v2
max

ρ
(3.24)

As already discussed in [6], the optimal geometric trajectory will clearly be a
compromise between both objectives.

Minimum length trajectory

The problem of finding the minimum length trajectory can be formulated in
continuous space as follows:

minimize
α(·),x(·),y(·)

∫ L

0

dl =

∫ 1

0

√
x′(s)2 + y′(s)2ds

subject to 0 ≤ α(s) ≤ 1, ∀s ∈ [0, L]

r(s) = r0,r(s) + α(s)∆(s)

(3.25)

where x′(s) = ∂x(s)
∂s

and y′(s) = ∂y(s)
∂s

.

3.2. Trajectory Definition 33

Minimum curvature trajectory

The local curvature of a smooth trajectory is defined as

k(s) =
||r′′(s)× r′(s)||
||r′(s)||3

(3.26)

Accordingly, the problem of minimizing the aggregate trajectory curvature ca be
formulated as follow

minimize
α(·),x(·),y(·)

C =

∫ 1

0

k(s)ds

subject to 0 ≤ α(s) ≤ 1, ∀s ∈ [0, L]

r(s) = r0,r(s) + α(s)∆(s)

(3.27)

Because the problem is not convex due to the non-convexity of its objective function,
two simplifications are made. First the expression of the curvature is reduced
assuming arc length parametrization of the trajectory.

k(s) =
||r′′(s)× r′(s)||
||r′(s)||3

=
||r′′(s)|| · ||r′(s)|| · |sinϕ|

||r′(s)||3
≈ ||r′′(s)|| (3.28)

This is possible because any plane curve γ(s) has unit curve velocity ||γ′(s)|| = 1, and
its curve velocity and curve acceleration vectors are perpendicular, γ′(s) ⊥ γ′′(s).
Second, the minimization for the sum of squared curvatures samples allows to
disproportionately penalize large curvature values that may cause the vehicle to
slow down considerably. These assumptions lead necessarily to a distorted sub-
optimal curvature minimization solution. After discretization both the problems
formulated can be expressed as convex QPs. In addition if the matrices are combined
only one QP is solved, where a weighting factor enables to balance between minimum
curvature and minimum length trajectory.

3.2.2 Velocity Profile

Constant velocity profile

The behavior of the controller is investigated providing a constant longitudinal
speed profile V̄x as target. Synthetically, until V̄x < Vx,lim the car should drive
around the track at the chosen speed. Increasing the speed, for V̄x ≥ Vx,lim the
saturation of the tires is reached performing the most challenging curves of the track.
Here the stability of the car is compromised with consequently over/under-steering.
Because the controller is able to capture lateral dynamics, it will decrease the car
speed at the allowed V̄x.

Velocity profile optimization

In order to evaluate NMPC decisions, also results with constrained speed profile
are obtained. Therefore the speed is calculated taking into account the maximum
centripetal force the car can maintain. The objective function is formulated as

J = ||∆V ||2W∆V
+ ||V − Vss,opt||2WV

(3.29)

34 Chapter 3. Model Predictive Control

where ∆V is the sequence of speed increments over the prediction horizon and are
constrained by the vehicle’s ability to accelerate. V is the sequence of vehicle speeds
over the prediction horizon and is constrained by an upper limit Vmax,i

Vmax,i =

{√
ay,max

ki
if
√

ay,max

ki
≤ Vlimit

Vlimit otherwise
(3.30)

The optimal steady-state speed Vss,opt set as Vlimit would lead to a time-optimal
lap. W∆V and WV are the weighting parameters. The optimization problem can be
reformulated in the standard QP-form.

3.3 Nonlinear MPC Tracking

Among the control solutions presented in chapter 3.1, a NMPC is chosen for
the purpose to design a controller able to properly drive the miniature car in the
RaceCars circuit. This choice should leads to a more accurate solution while it
pose a computational challenge. The combined vehicle and tire model to adopt for
the NMPC is widely described in section 2.2.2. After this section dedicated at the
controller design, simulation results are discussed with particular attention at the
time required to solve the OCP at each simple time. State and input vectors are

ξ =

X
Y
ϕ
vx
vy
ω
δ
D

u =

{
∆δ
∆D

}
(3.31)

Here the vehicle model with input rates is recalled

Ẋ = vxcosϕ− vysinϕ (3.32)

Ẏ = vxsinϕ+ vycosϕ (3.33)
ϕ̇ = ω (3.34)

v̇x =
1

m
(Fr,x − Ff,ysinδ +mvyϕ̇) (3.35)

v̇y =
1

m
(Fr,y − Ff,xcosδ −mvxϕ̇) (3.36)

ω̇ =
1

Iz
(Ff,llfcosδ − Fr,ylr) (3.37)

δ̇ = ∆δ (3.38)

Ḋ = ∆D (3.39)

3.3. Nonlinear MPC Tracking 35

0 100 200 300 400 500 600 700 800 900 1000

−0.4

−0.2

0

0.2

0.4

Steering Agle

iteration sample

δ
 (

ra
d

)

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

Duty Cycle

iteration sample

D
 (

−
)

model with car inputs

model with car input rates

Figure 3.4: Comparison between (δ, D) and (∆δ, ∆D) as inputs

where the tire lateral slip model highlight the actual inputs (δ, D)

Ff,y = Df sin(Cf arctan(Bfαi)) (3.40)
Fr,y = Dr sin(Cr arctan(Brαi)) (3.41)

Fr,x = (Cm1 − Cm2vx)D − Cr2v2
x − Cr0 (3.42)

αr = arctan

(
ϕ̇lr − vy
vx

)
(3.43)

αf = −arctan
(
ϕ̇lf + vy

vx

)
+δ (3.44)

For the purpose of this design large control actions should be avoided. Therefore a
zero reference is chosen for both the steering angle δ and the duty cycle D. Another
possibility would be to use values from one lap simulation as reference. This is
an offline solution and it is in contrast with the main idea for the RaceCars to
compute everything online. It could lead for example to wrong decisions in case of
obstacles, introduced in chapter 5. Because it is more profitable to penalize changes
in inputs instead to directly act on δ and D, as reported in state space 3.31 these
are included in the state vector while the variations (∆δ, ∆D) identify the input
rates vector. Figure 3.4 shows the result of a single lap simulation. As appear, this
choice leads to a smoother control action. The steering angle and the duty cycle
ranges are respectively

[δL, δU] = [−0.4, 0, 4] (3.45)
[DL, DU] = [0, 1] (3.46)

Even if the dNano cars used are able to brake, tests conducted show an unstable
behavior when the car tries to take advantages from the brake action. For this
reason has been decided to limit the duty cycle for positive values.

36 Chapter 3. Model Predictive Control

The distance from state and input reference in the objective function should be
penalized. Because efficient methods can be used, lets writing it as least-squares
penalty function

minimize
ξ(·),u(·)

J =

∫ tf

t0

(
‖ξ(t)− ξr(t)‖2

Q + ‖[∆δ(t),∆D(t)]T‖2
R

)
dt+ ‖ξ(tf)− ξr(tf)‖2

W

subject to
ξ(t0) = ξ0

ξ̇ = f(t, ξ(t), u(t))

[δ,D]T ∈ [δL, δU]× [DL, DU]
(3.47)

Chapter 4

Results

In this section results from both simulations in Matlab/Simulink and experiments
with the RaceCars system are performed for different target speeds. Because the
system has been developed to study the autonomous driving in a race context,
attention is posed also at the time lap. Anyway, the error committed during
the path tracking remains the most important element to evaluate the controller
behavior. This is simply the geometric distance between the trajectory planned and
the one described from the car at every single step. Information on the difference
in speed is included, which would be not possible with other errors as for example
the maximum perpendicular distance. The trajectory generated is time-optimal, as
already explained in section 3.2. Therefore, if the car is able to correctly follows
the trajectory this is translated in a low lap time.

The choice of the weights for the Q and R matrices is delicate and more tests
are required. In most of the cases to correctly track the trajectory higher values
are set for (x, y) and for Vx. The states Vy and ω should follow a zero reference but
a low weight is decided for theme, leaving the controller to focus on the trajectory.
Depending from the target speed some little changes in the weights are required
in order to have the best results. This is mainly due to the battery charge level,
which changes significantly motor torque and car behavior. However, simulations
and experiments are shown with the same set of weights.

Several tests are performed at both optimal and constant velocities. The first
group of results is obtained with the optimal velocity profile described in 3.2. Then,
data from constant speed profile are plotted to show the predictive behavior of
the controller. The same scheme is repeated changing the horizon of prediction.
Finally, the chapter concludes with results for the best time-lap performed.

4.1 Computation Time

Before to start with experiments, all the steps are evaluated to verify that
performances cannot be limited from possible over timing of some phases. The
frequency of the camera was set at 40 Hz in Chapter 1. The estimation of the car
state takes less than 10 ms (Figure 1.3) and the remaining time can be dedicated to
the planner and the tracker. Figure 4.1 shows the time distributed among the steps
in the control application. Precisely, Step 1 (red) is the listening function where

37

38 Chapter 4. Results

Figure 4.1: Control application computation time

the application waits for the states from the vision system. In Step 2 (green) the
trajectory is generated, and finally in the Step 3 (light blue) the control actions are
computed and sent to the car. While it is expected that the total time is always at
least 25 ms, as appear it is also sometimes over passed. The consequence is a skip
for a next undefined number of cycles of all the calculations, leaving the car with
the previous inputs. Introducing obstacles on the track this phenomenon became
even worst, requiring necessarily to decrease the camera frequency. Changing the
frequency to 30 Hz the result is plotted in Figure 4.2. Now the time is enough to
compute all the phases so at every iteration the car receives the correct input set.
The remaining time increases the listening step (Step 1, red).

Always about computation time, it is also interesting to understand how much
time ACADO solver takes to calculates the car inputs and what happen if the
horizon of prediction is extended. Certainly the time required increases parallel
with the number of prediction steps, but in which way and if represents a reasonable
cost it is to investigate. After several tests conducted on the RaceCars setup,
results are presented in Table 4.1. In particular the third column describes the
number of cases the time is more than 20 ms. In these iterations an over time is
experienced and probably for the related consecutive iterations no input refresh is
provided. While the average time T̄ grows quite linearly, the percentage of failures
has an unexpected jump after 30 steps. This represent a good index of the close
saturation of the available time. Effectively, increasing N to 50 steps a decline of
performances due to this reason is tangible and bigger than the improvement a

4.1. Computation Time 39

Figure 4.2: Control application computation time, enhanced time

higher horizon can provide.

N T̄ NT > 20
(−) (ms) (%)

20 0, 0065 0, 61
25 0, 0079 1, 27
30 0, 0096 1, 35
35 0, 0115 4, 02
40 0, 0128 5, 26

Table 4.1: Solver time-trend

40 Chapter 4. Results

4.2 Optimal Speed and Short Horizon

4.2.1 Low Speed

The car here drives one lap starting from zero speed at the start line. At
low speed it should easily follows even in curve the optimal speed profile, holding
almost a constant 0, 5 m

s
. The simulation shows the expected behavior, with a

deviation under the 3 cm. Instead in the experiment the car drives away from the
planned path to maintain the speed as closest as possible to the target. In every
test conducted a trade-off must be chosen between good trajectory tracking and a
speed as request.

Par. Unit Value State Unit Value

T s 20,0 x0 m 0,0
Ts s 0,01 y0 m 0,0
N - 20 ϕ0 rad 0,0
Vopt m/s 0,5 Vx0 m/s 0,0

Table 4.2: Low optimal speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

7, 25 7, 25 1, 0e−5 2, 0 1, 0e−6 1, 0e−5 8, 0e−2 1, 0e−3 1, 0e−5 6, 0e−5

Table 4.3: Low optimal speed case, weights

4.2. Optimal Speed and Short Horizon 41

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.3: Low optimal speed case, sim. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Figure 4.4: Low optimal speed case, sim. velocity profile

Par. Unit Value

Vopt m/s 0,50
Err cm 2,9
Tlap s 15,890

Table 4.4: Low optimal speed case, sim. results

42 Chapter 4. Results

Experiment

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [

m
]

TRAJECTORY PLANNED

CAR LAP

Figure 4.5: Low optimal speed case, exp. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 4.6: Low optimal speed case, exp. velocity profile

Par. Unit Value

Vopt m/s 0,50
Err cm 7,9
Tlap s 18,921

Table 4.5: Low optimal speed case, exp. results

4.2. Optimal Speed and Short Horizon 43

4.2.2 Intermediate Speed

Setting target velocity of 1, 45m
s
, the track becomes more challenging. To avoid

lateral slip and consequent possible under/oversteering condition, it is expected
from the controller to predict high steering action and to reduce the speed even
more than how much the optimal speed requires. Figure 4.7 shows this behavior.
The car slow down more than how request from the constrain driving the second
chicane. This is due to the higher dynamics complexity of the controller model, if
compared with the one used for the optimal speed profile. Looking at Figure 4.9
and 4.11, the car brakes and accelerates at the same points. The difference is in
the position, and this error forces the controller to partially change the speed. The
highest deviation is leaving the third curve, and is the sum of the error accumulated
performing the double chicane. In the truck straight line for the car is difficult
to follow the trajectory and it slows down. A better choice of weights can easily
remove this behavior, mainly increasing the δ term.

Par. Unit Value State Unit Value

T s 10,0 x0 m -0,002
Ts s 0,01 y0 m 0,106
N - 20 ϕ0 rad 0,101
Vopt m/s 1,45 Vx0 m/s 1,5

Table 4.6: Intermediate optimal speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

10, 0 9, 2 1, 0e−5 0, 4e−2 1, 0e−6 1, 0e−5 3, 5e−1 1, 0e−3 1, 0e−5 1, 0e−6

Table 4.7: Intermediate optimal speed case, weights

0 100 200 300 400 500 600

0.5

1

1.5

RaceCars
Longitudinal Speed Profile

iteration sample

v
x
 (

m
/s

)

optimal steady−state speed

car speed

first point optimal speed planned

constraint in maximum speed

Figure 4.7: Intermediate optimal speed case, simulation velocity

44 Chapter 4. Results

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.8: Intermediate optimal speed case, sim. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [

m
]

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Figure 4.9: Intermediate optimal speed case, sim. velocity profile

Par. Unit Value

Vopt m/s 1,45
Err cm 3,1
Tlap s 5,917

Table 4.8: Intermediate optimal speed case, sim. results

4.2. Optimal Speed and Short Horizon 45

Experiment

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.10: Intermediate optimal speed case, exp. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 4.11: Intermediate optimal speed case, exp. velocity profile

Par. Unit Value

Vopt m/s 1,45
Err cm 10,3
Tlap s 7,998

Table 4.9: Intermediate optimal speed case, exp. results

46 Chapter 4. Results

4.3 Constant Speed and Short Horizon
Particularly interesting is to evaluate simulations and experiments at high

constant speeds, in order to see how the NMPC reacts. Assuming constant speed
reference, only the spatial trajectory is still computed externally. Therefore the
controller becomes responsible to decide how to follow the trajectory using all
the information from the lateral-slip model and considering the weights decided.
Simulations conducted as reported in Figure 4.12 and 4.13 show a worst behavior
if compared with the result at the same target speed but adopting optimal speed
profile. The same results are obtained from experiments. Furthermore, it seems
that the car is not able to predict far enough and it is always constrained to badly
adjust the speed. Previously this was not the case because the controller could use
data coming from the speed planner. With 20 horizon steps and a simple time of
0,01 the car is able to look ahead for 0,2 s. Higher predictive horizon will be tested
in the next section.

Par. Unit Value State Unit Value

T s 15,0 x0 m -0,021
Ts s 0,01 y0 m 0,121
N - 20 ϕ0 rad -0,019

Vconst m/s 1,0 Vx0 m/s 1,0
Table 4.10: Short horizon and constant speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

7, 8 7, 8 1, 0e−5 1, 0e−5 1, 0e−6 1, 0e−5 7, 0e−1 1, 0e−3 1, 0e−5 5, 0e−5

Table 4.11: Short horizon and constant speed case, weights

4.3. Constant Speed and Short Horizon 47

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.12: Short horizon and constant speed case, sim. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.85

0.9

0.95

1

1.05

1.1

Figure 4.13: Short horizon and constant speed case, sim. velocity profile

Par. Unit Value

Vconst m/s 1,00
Err cm 12,4
Tlap s 7,837

Table 4.12: Short horizon and constant speed case, sim. results

48 Chapter 4. Results

4.4 Constant Speed and Long Horizon

4.4.1 Low Speed

Increasing the prediction horizon to 40 steps (almost half second) both deviation
from planned trajectory and the time lap decrease, as appears from the results.
Furthemore, even in the experiment now the car drives around the track with a
deviation of 3 cm.

Par. Unit Value State Unit Value

T s 20,0 x0 m 0,0
Ts s 0,01 y0 m 0,0
N - 40 ϕ0 rad 0,0

Vconst m/s 0,5 Vx0 m/s 0,0
Table 4.13: Low constant speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

9, 0 9, 0 1, 0e−5 4, 0 1, 0e−6 1, 0e−5 1, 5e−1 1, 0e−3 1, 0e−5 1, 0e−4

Table 4.14: Low constant speed case, weights

4.4. Constant Speed and Long Horizon 49

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.14: Low constant speed case, sim. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Figure 4.15: Low constant speed case, sim. velocity profile

Par. Unit Value

Vconst m/s 0,50
Err cm 1,27
Tlap s 15,861

Table 4.15: Low constant speed case, sim. results

50 Chapter 4. Results

Experiment

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.16: Low constant speed case, exp. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 4.17: Low constant speed case, exp. velocity profile

Par. Unit Value

Vconst m/s 0,50
Err cm 3,0
Tlap s 17,200

Table 4.16: Low constant speed case, exp. results

4.4. Constant Speed and Long Horizon 51

4.4.2 Intermediate Speed

Even in this case time lap and the error from deviation indicate a generally
better behavior. At 1, 0 m

s
the car can look almost half meter ahead. Figure 4.19

in detail show how the car now reacts in a more realistic way driving in curve. In
particular, the controller slow down starting the curve and then rapidly accelerate
from the second half until it leaves that. Focus on the experiment x and y are
mostly close to the reference. In the car orientation is possible to see a sinusoidal
wave over the state signal. That is due of the vision system, which most of time
has an uncertainty of a few degree in the angle. Some of the difference between
simulations and practical results come with the error introduced from the vision
system, and particularly in the car orientation estimation.

Par. Unit Value State Unit Value

T s 15,0 x0 m -0,761
Ts s 0,01 y0 m -0,257
N - 40 ϕ0 rad 1,030

Vconst m/s 1,0 Vx0 m/s 1,0
Table 4.17: Intermediate constant speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

9, 5 9, 5 1, 0e−5 1, 0e−5 1, 0e−6 1, 0e−5 5, 5e−1 1, 0e−3 1, 0e−5 1, 0e−5

Table 4.18: Intermediate constant speed case, weights

52 Chapter 4. Results

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.18: Intermediate constant speed case, sim. trajectory profile

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−1.5

−1

−0.5

0

RaceCars
Single Lap

x [m]

y
 [
m

]

0.85

0.9

0.95

1

1.05

1.1

Figure 4.19: Intermediate constant speed case, detail simulation velocity profile

Par. Unit Value

Vconst m/s 1,00
Err cm 4,1
Tlap s 8,038

Table 4.19: Intermediate constant speed case, sim. results

4.4. Constant Speed and Long Horizon 53

Experiment

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5

time (s)

x
 [

m
]

states

reference

0 50 100 150 200 250
−2

−1.5

−1

−0.5

0

0.5

time (s)

y
 [

m
]

states

reference

0 50 100 150 200 250
−4

−2

0

2

4

time (s)

o
ri
e

n
ta

ti
o

n
 [

ra
d

]

states

reference

0 50 100 150 200 250

0.4

0.6

0.8

1

1.2

time (s)

v
e

lo
c
it
y
 [

m
/s

]

states

reference

Figure 4.20: Intermediate constant speed case, exp. trajectory profile

Par. Unit Value

Vconst m/s 1,00
Err cm 9,0
Tlap s 8,666

Table 4.20: Intermediate constant speed case, exp. results

54 Chapter 4. Results

4.4.3 High Speed

High speed target asks the controller to decide if to focus into follow the
trajectory or the velocity. This set of weights is a trade-off, as seen from Figure 4.21
and 4.22. To be under slip condition the controller needs to partially correct the
trajectory reducing the steering action. In that way it is not necessary to excessively
slow down, improving the lap time. To define how the car is driving around the
track a good indicator is the following

P =
Fy
Fx

(4.1)

Because the model of the car does not consider body transmission and so mass
partition among wheels, let’s consider Fx the whole car weight. Therefore, it is
possible to simplify the equation as

P =
ay
g

(4.2)

For P > 0.8 the drive can be considered challenging. Because RacCars setup is
an autonomous driving system for race cars, it is essential that the vehicle drives
exploiting the maximum of the tire friction and close to the slipping condition. In
Figure 4.24 the lateral acceleration of the car is often higher than 10 m

s2
, confirming

that the car is driving close to the limit. The highest ay is leaving the double
chicane, the most challenging section of the track.

Par. Unit Value State Unit Value

T s 10,0 x0 m 0,001
Ts s 0,01 y0 m 0,109
N - 40 ϕ0 rad 0,055

Vconst m/s 1,65 Vx0 m/s 1,65
Table 4.21: High constant speed case, parameters

Qx Qy Qϕ QVx QVy Qω Qδ QD R∆δ R∆D

14, 0 14, 0 1, 0e−5 1, 0e−5 1, 0e−6 1, 0e−5 6, 0e−1 1, 0e−3 8, 0e−3 1, 0e−5

Table 4.22: High constant speed case, weights

4.4. Constant Speed and Long Horizon 55

Simulation

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

TRAJECTORY PLANNED

CAR LAP

Figure 4.21: High constant speed case, sim. trajectory profile

−1 −0.5 0 0.5 1 1.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

1.1

1.2

1.3

1.4

1.5

1.6

Figure 4.22: High constant speed case, sim. velocity profile

Par. Unit Value

Vconst m/s 1,65
Err cm 9,4
Tlap s 5,361

Table 4.23: High constant speed case, sim. results

56 Chapter 4. Results

Experiment

0 50 100 150
−1

−0.5

0

0.5

1

1.5

time (s)

x
 [

m
]

states

reference

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

time (s)

y
 [

m
]

states

reference

0 50 100 150
−4

−2

0

2

4

time (s)

o
ri
e

n
ta

ti
o

n
 [

ra
d

]

states

reference

0 50 100 150

0.4

0.6

0.8

1

1.2

1.4

1.6

time (s)
v
e

lo
c
it
y
 [

m
/s

]

states

reference

Figure 4.23: High constant speed case, exp. trajectory profile

0 20 40 60 80 100 120 140 160 180
−30

−20

−10

0

10

20

30

RaceCars
Lateral Acceleration Profile

iteration sample

a
y
 (

m
/s

2
)

Figure 4.24: High constant speed case, exp. velocity profile

Par. Unit Value

Vconst m/s 1,65
Err cm 10,4
Tlap s 5,965

Table 4.24: High constant speed case, exp. results

4.4. Constant Speed and Long Horizon 57

4.4.4 Best Time Lap

Reducing as much as possible the error in estimation and with a target speed of
1, 7 m

s
, the best lap time is achieved. The target velocity is reached only in a few

points of the track, as appear in Figure 4.25. However, it is the way to tell at the
controller to drive the car as fast as possible. The same car with a NMPC of four
states drives in 8,0 s as best. This means a reduction of 2,2 s in the lap time.

0 50 100 150
−1

−0.5

0

0.5

1

1.5

time (s)

x
 [
m

]

states

reference

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

time (s)

y
 [
m

]

states

reference

0 50 100 150
−4

−2

0

2

4

time (s)

o
ri
e
n
ta

ti
o
n
 [
ra

d
]

states

reference

0 50 100 150

0.4

0.6

0.8

1

1.2

1.4

1.6

time (s)

v
e
lo

c
it
y
 [
m

/s
]

states

reference

Figure 4.25: Fastest lap, exp. trajectory profile

Par. Unit Value

Vconst m/s 1,7
Err cm 10,4
Tlap s 5,800

Table 4.25: Fastest lap, exp. results

Chapter 5

Obstacle Avoidance

In every context a self-driving car must always be able to drive in safety condi-
tions. The degree of uncertainty in a crowded street introduced from other vehicles
maneuvers leads to consider avoidance the most crucial step in an autonomous
driving system design. It is essential that the car can avoid obstacles on the way and
overpass other slower cars without any problem. Therefore the real-time trajectory
generation in presence of obstacles remains very challenging.

In [16] a spatial reformulation of the vehicle dynamics for the planner allows
a formulation of obstacles and road boundary constraints as bounds on the state
vector. A similar approach is followed in this thesis, where as already described
in chapter 3.2 the vehicle trajectory is defined in the path coordinates. In this
way obstacles can be considered in the optimization problem correcting the track
borders. The algorithm here discussed is originally created and described in [22]

5.1 Algorithm

To realize obstacle avoidance the required step is to adapt online the path
planned. Obstacles must be somehow left out from the feasible set that is used in
the trajectory optimization problem. A really simple idea for that is to process
track borders. In that way the feasible set is a free corridor with no obstacles. If
this was the case before, the optimization can still be formulated as a QP because
only borders are changed. The new inequality constraints can be used as inputs,
it simply look like the track is narrowed. In this approach, the OAA has the
responsibility to identify obstacles and to decide on which side to overpass them,
while the planner has still the purpose to compute the optimal path. The flow chart
in Figure 5.1 illustrates with a general overview the main steps of the algorithm
and how it merges with the complete system.

5.1.1 Assumption for obstacle motion

To work properly, the algorithm needs the current position of other cars as well
as of every object on the track. Furthermore, for the only obstacles in movement
the position over the horizon is also required. This appears to be an issue since
it is not the case most of the time to have other cars predicted behavior. At the

59

60 Chapter 5. Obstacle Avoidance

DIGITALpMAPpAND
OBSTACLESpPOSITION

OBSTACLEpDISTANCEp<p
THRESHOLD

GRIDpGENERATIONp
ANDpPOPULATION

CALCULATIONpOFpAp
NEWpOPTIMALpPATH

DEFINITIONpOFpNEWp
BORDERS

USEpOFpINITIALp
BORDERS

TRAJECTORYp
PLANNING

TRAJECTORYp
TRACKING

CAR
carpstate

optimalp
trajectory

optimalp
steerpandptorque

OAA

YES NO

Figure 5.1: Complete system overview

same time, the act to overpass a car suggests a difference in velocity. If this gap
is enough, to make the assumption of static obstacles would not be that far from
true. Therefore, along the dissertation other cars are considered as static objects
and their current position measure is repeated over the entire horizon.

5.1.2 Possible Threat

Once that information about car reference trajectory and obstacles position are
acquired, first of all the algorithm has to check if there is any threat. The decision
is based on the plane distance between obstacle and controlled car as defined in
equation 5.1, where (x0, y0) is the current position of the car and (xn, yn) is the
position of the nth obstacle.

dn =
√

(x0 − xn)2 + (y0 − yn)2 (5.1)

If dn is less than a threshold d̄, borders are processed and a new updated version
is sent for the next problem of trajectory planning and tracking. Otherwise the

5.1. Algorithm 61

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e
a
d
 [
m

]

Figure 5.2: Initial conditions

algorithm terminates and the track retains the same shape. Figure 5.2 illustrates
a situation where the usage of obstacle avoidance is required. This example will
be used through the whole chapter as reference. The controlled car is the red one,
and the algorithm has to decide on which side cars should be overpassed. Choosing
a threshold d̄ equal to 3 meters, from the current car a circle of that radius is
generated: at this step only the first two cars are recognized as possible threat.
Setting opportunely this value a trade-off between computational time required
and enough forward information for predictive purpose is possible.

5.1.3 Grid Generation and Grid Population

In order to generate new borders a discretization of the forthcoming track
through a grid of nodes (N, n) is required. The number of grid lines N can be
arbitrarily chosen up to the horizon length Hp set for the MPC (minus one, state
zero has no corresponding on the grid) when computational cost is not a priority, as
well as something lower. Afterwards, every line is divided in equidistant intervals.
The number of nodes per line n should be enough to create a dense grid and to
detect cars whatever the orientation. To define the grid the discretized track can be
used as a reference, as in equation 5.2. Track center points close to the trajectory
planned define the grid position. Therefore, it will be possible to have the reference
trajectory translated in grid terms or old path (to distinguish from new optimal

62 Chapter 5. Obstacle Avoidance

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

et
ch

 a
he

ad
 [m

]

initially trajectory planned

n

N

Figure 5.3: Grid generation

path that is instead the new way calculated in presence of obstacles).

min
(xc,yc)

√
(xi − xc)2 + (yi − yc)2 (5.2)

where (xi, yi) is the ith point of the predicted trajectory and (xc, yc) is the center
point of the track that minimize the distance.

In Figure 5.3 a grid of n = 14 nodes per line is used, with horizon of N = 50
steps. Increasing the number of nodes per line a more accurate definition of new
borders obtained, but the computationally cost required increases. The next step is
the population of the generated grid. Using information about obstacle position
and orientation, a surrounding box is created, with its coordinates as defined in
5.3. Every node inside that contour is marked as occupied with the identification
number of the car.

Pxy = R(ϕ)C +

[
xobs
yobs

]
(5.3)

The resulting Pxy matrix is the following

Pxy =

[
xfl xfr xrl xrr
yfl yfr yrl yrr

]
(5.4)

where, with l half of car length and w half of car width

R =

[
cosϕ − sinϕ
sinϕ cosϕ

]
C =

[
l l −l −l
w −w w −w

]
(5.5)

5.1. Algorithm 63

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e

a
d

 [
m

]

occupied nodes

Figure 5.4: Grid population

In Figure 5.4 the grid generated is populated using obstacles dimensions and
position.

5.1.4 Optimal Path Definition

General strategy

To calculate new borders with the property to exclude obstacles from the feasible
set for the optimization problem, the key point is to decide on which side the car
should execute the overtaking maneuver. A new optimal path is calculated in order
to take this decision. How will be clear, this path represent the reference to search
for occupied nodes and to define the new shape of borders. The function responsible
for new optimal path generation requires as input the planned trajectory discretized
called old path, as well as the populated grid. In order to obtain the new path an
optimization is defined. The objective function V (·) has the following shape

V (q(0)) =
N∑
k=2

T (k) + T (1) (5.6)

where T (k) is the cost for the (kth) line and q(0) is the initial node. As will be
described widely after, T should take into account more aspects: for example strong
maneuvers must be avoided, the shortest path should be preferred and when it
is possible a solution close to the previous optimal trajectory chosen. T for the

64 Chapter 5. Obstacle Avoidance

first step required obviously a different definition. The solution consists to find the
vector of nodes q which minimize the cost function

min
q
V (q(0)) (5.7)

Objective function description

The total cost T (k) is defined as sum of 3 elements.

• Angle Change: Abrupt maneuvers in order to overtake an obstacles should
be avoided. Usually a simple and smooth trajectory ensures a better control
of the car, resulting in a harmonious behavior. Even if the optimal path is
not going to be used as next reference trajectory, its definition has to be
consistent to get reliable borders. To calculate angle change three consecutive
lines are required (to have 3 consecutive nodes), explaining because a 3 steps
problem for every stage.

∆ψ(k) = arccos (r(k)) (5.8)

The ratio r at the kth line has the following expression

r(k) =
∆qx(k)∆qx(k − 1) + ∆qy(k)∆qy(k − 1)√

(∆qx(k)2 + ∆qy(k)2) + (∆qx(k − 1)2 + ∆qy(k − 1)2)
(5.9)

where

∆qx(k) ≡ q(k − 1)|x − q(k)|x (5.10)
∆qy(k) ≡ q(k − 1)|y − q(k)|y (5.11)

∆qx(k − 1) ≡ q(k − 2)|x − q(k − 1)|x (5.12)
∆qy(k − 1) ≡ q(k − 2)|y − q(k − 1)|y (5.13)

with q(k)|x and q(k)|y the coordinates of the node evaluated at the kth line.

• Distance: The choice of the side to overtake obstacle has to take into account
also the path length: needles travel distances should be penalized.

∆p(k) =
√

∆qx(k)2 + ∆qy(k)2 (5.14)

• Deviation: The goal would be also to get a solution close to the predicted
path. Always following the approach to reduce as much as possible changing
in the forward planned path, every deviation from the previous step optimal
trajectory is penalized. Called v, it can be expressed as simple difference
between indexes q(k) and q(k)old.

∆v(k) = q(k)− q(k)old (5.15)

5.2. Dynamic Programming Solution 65

Total Cost

The total cost (5.16) is the resulting sum: weights (α,β,γ) can be used to change
the relative influence of every term to make good overtaking decisions.

T (k) = α∆ψ(k) + β∆p(k) + γ∆v(k) (5.16)

As already introduced, expanding the grid increasing n it means a better definition
of obstacles occupied area as well as increasing N there is more time for the planner
to change trajectory, with a more natural behavior of the car. At the same time
the computational cost increase rapidly, with the following order:

Noperations = (N − 1)3n +N (5.17)

5.1.5 New Borders Definition

Finally, with information about obstacle dimensions new borders can be gen-
erated. Starting from the first and for every line, the algorithm looks at the left
side of the new optimal path and it stops when an occupied node is found. Then a
function to calculate closest intersect point to right track border is called. The step
is repeated on the right side. The algorithm move on at the next line and the same
procedure is repeated.

5.2 Dynamic Programming Solution

The solving method implemented for multistage optimization problem is intro-
duced briefly. A key aspect is that decisions cannot be viewed in isolation since
must balanced the desire for low present cost with the undesirability of high future
costs. As extensively described in [5], the dynamic programming technique captures
this trade-off. At each stage, it ranks decision based on the sum of present and
expected future cost, assuming optimal decision making for subsequent stages. The
DP rests on a very simple idea, the principle of optimality. Let’s define a discrete
system in the following form

xk+1 = fk(xk, uk) k = 0, 1, ..., N − 1 (5.18)

where

k indexes discrete time
xk state of the system
uk decision variable
N horizon
fk describes the system

The cost function is

gN(xN) +
N−1∑
k=0

gk(xk, uk) (5.19)

where gN(xN) is the terminal cost incurred at the end of the process.
Let be π∗{µ∗0, µ∗1, ..., µ∗N−1} an optimal policy for the basic problem and assume

66 Chapter 5. Obstacle Avoidance

that when using π∗ a given state xi occurs at time i. Consider the subproblem
whereby xi at time i and is desired to minimize the cost to go from time i to
time N : then the truncated policy {µ∗i , µ∗1, ..., µ∗N−1} is optimal for this subproblem.
The intuitive justification is if the truncated policy were not optimal as stated, it
would be possible to reduce the cost further by switching to an optimal policy for
the subproblem once xi is reached. The principle of optimality suggests that an
optimal policy can be constructed in piecemeal fashion, first for the tail subproblem
involving the last stage, then extending the optimal policy to the tail subproblem
involving the last two stages, and continuing in this manner until an optimal policy
for the entire problem is constructed.

Since q(0) is known, backward DP is the convenient method to solve 5.7. This
means to start from the terminal line, or line N , and to iterate backward until the
first line is reached. In each stage (kth) it’s calculated the cost to go two steps back
(kth− 2 line). Except for paths where an occupied node is met, all possible ways
with their costs are defined and calculated. Then, looking at the 3 stage path with
the minimum cost, its node (q(k) at the kth line) is stored. This node correspond
at the optimal solution for the sub path. As already seen, because the principle
of optimality asserts that all sub solutions of an optimal solution are also optimal,
it is possible to obtain the optimal solution assembling all sub optimal solutions.
Therefore, joining all these points the optimal path with obstacles (in terms of
grid) is the result. Finally, the formulation of 5.7 through dynamic programming
algorithm for the (kth) step results

J(k) = min
q(k)

q(k−1)

q(k−2)

T (k) + J(k + 1) (5.20)

5.2. Dynamic Programming Solution 67

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e
a
d
 [
m

]

old path

new path

(a) weights (1; 1; 1)

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e
a
d
 [
m

]

old path

new path

(b) weights (1; 1e3; 1e-3)

Figure 5.5: Path definition, different choice of weights

Figure 5.5 shows the new path definition using diverse weights. Therefore
different overpass decision can be extracted changing these values. In Figure 5.5a
a vector of ones is provided and the optimal path draws has s shape. In Figure
5.5b the new path resulting passes at the right side of the second obstacle. This
translates in a right side over passing maneuver (instead on the left as before). To
obtain that low cost is given at the deviation from the old trajectory while high
cost for the distance traveled: the algorithm in this case doesn’t care if the path
described is far away from the original.

68 Chapter 5. Obstacle Avoidance

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e
a
d
 [
m

]

(a) weights (1; 1; 1)

−0.2 −0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Road width [m]

S
tr

e
tc

h
 a

h
e
a
d
 [
m

]

(b) weights (1; 1e3; 1e-3)

Figure 5.6: New borders definition, different choice of weights

Figure 5.6 shows the two cases analyzed in the previous section. The change of
weights has brought through different overpass decision, with a new free corridor
and likewise new inequality constraints for the next planning problem.

5.3. Results 69

5.3 Results
Simulation

Figure 5.7a shows the trajectory planned with and without obstacles on the
track. Changing the vector of weights different borders are generated, and the car
overtake the second obstacle differently. Figure 5.7b explicates the behavior of the
algorithm. In this case the size of the grid is 30 steps of length and 8 steps of width.
Increasing the influence of path length as well as of orientation change, the car
keeps going with the same direction and overpasses even the second obstacle on the
right. It could be a good rule to hold a high value for the deviation from original
path in order to stay close to the optimal path. The simulation shows how that is
not always the case. The second tuning allows the car to pass through with a more
natural behavior and the direct consequence is a lower lap time. Therefore the best
combination of weights depends from the target, but a generic good setting to use
for experiments has been found.

(a) Trajectories planned with
weights (1; 1; 1)

(b) Trajectories planned with
weights (1e-2; 1e2; 1e2)

(c) Grid with weights (1; 1; 1) (d) Grid with weights (1e-2;
1e2; 1e2)

70 Chapter 5. Obstacle Avoidance

Experiments

Some results after the setup upgrade with the obstacle avoidance algorithm are
plotted. The location of the obstacle on the track, as well as its orientation, can
make the overpassing maneuver more or less challenging, especially at high speed.
all the results are obtained with a set of weights of (0, 5; 0, 5; 20), which represent a
good standard for every situation. Looking at the figures the side taken from the
car is the more natural, which probably a driver of race cars would chose in the
same situation.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.8

−0.6

−0.4

−0.2

0

0.2

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.7: Example of obstacle avoidance at at 0, 5ms

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.8: Example of obstacle avoidance at 1, 0ms

5.3. Results 71

When target speed arise it is essential for the car to overpass the obstacle on the
faster side, where can slow down less. In both the cases of Figure 5.9 and Figure
5.10 the car pass on the left side leading for a longer path, but at the same time
the higher speed means a lower lap time. Several tests conducted have proven this
trend.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−1.6

−1.4

−1.2

−1

−0.8

−0.6

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.9: Example of obstacle avoidance at 1, 5ms

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.10: Example of obstacle avoidance at 1, 7ms

72 Chapter 5. Obstacle Avoidance

The avoidance algorithm has been designed for almost fixed obstacles, because
generally it is impossible to know further state of other cars. This assumption is
acceptable iwhen the two vehicles are at difference velocity. Now test with the
obstacle driving at 0, 25m

s
in the direction of the car is conducted. The result is

shown in Figure 5.11. The car correctly steers on the right to avoid the other
car. In Figure 5.12 the speed profile shows two interesting behavior. First, before
the curve the controller accelerate and suddenly slow down. This is because the
obstacle is now in the horizon of prediction. Secondly, when the obstacle came
closer the car accelerates leaving behind that dangerous situation.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.11: Example at 1, 0ms with obstacle in motion

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

RaceCars
Single Lap

x [m]

y
 [

m
]

0.6

0.7

0.8

0.9

1

1.1

Figure 5.12: Example at 1, 0ms with obstacle in motion, speed profile

5.3. Results 73

The obstacle is here driving in the same direction of the car. In the race contest
this situation can be viewed as a opposing race car that is leaving the pit lane to
reach the center of the circuit. The controlled car first slow down to avoid the crash
and simultaneously starts to correct the trajectory.

−0.5 0 0.5 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

RaceCars
Single Lap

x [m]

y
 [
m

]

Figure 5.13: Second example at 1, 0ms with obstacle in motion

−0.5 0 0.5 1

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

RaceCars
Single Lap

x [m]

y
 [

m
]

0.6

0.7

0.8

0.9

1

1.1

Figure 5.14: Second example at 1, 0ms with obstacle in motion, speed profile

Conclusions

In this master thesis the main elements of the scaled autonomous driving
experimental RaceCars setup are developed and integrated. After every extension
tests are conducted in order to prove the benefits of the new improvement. Therefore,
along the dissertation results are provided. First of all the work conducted on the
vision system is presented. The color camera mounted above the track allows for
a precise detection where the measurement is not influenced from external light.
Thanks to the high frequency acquisition, a simple KF has been chosen. However,
the camera frequency can not be set over 50 Hz because of the time required
from the post-processing functions. Then, possible mathematical car models are
investigated. Because the system is racing and part of the study is to control the
car under challenging drive conditions, a detailed model must take into account
also the vehicle lateral slip. Therefore, the tire parameters necessary to formulate a
nonlinear tire friction law are obtained. This model is adopted in a model predictive
control formulation of the tracking problem. The real-time feasibility of the resulting
algorithm is confirmed. Comparing simulations and experiments, differences can
be noted in both the trajectory and the lap time. This difference is mainly due to
the battery level, which affects considerably the car performances. Also dust and
small particles on the track surface can partially change the tire-ground interaction.
Looking at the lap time, the best is 5,8 s. There is a reduction higher than 2 s
if compared with the best obtained from a four states NMPC also pushed at the
maximum speed. This means an improvement around 25%. The thesis concludes
with the formulation of an obstacle avoidance algorithm. After an opportune tuning
of weights the car shows to overpass obstacles with a natural behavior. Even the lap
time seems to be not really affected from the presence of obstacles, if the position of
theme is not too demanding. The computation time of the dynamic programming
makes the algorithm feasible only if the number of predictive steps is not excessively
increased.

Concluding, the innovations in the scaled experimental setup of SIEMENS labs
represent the contribution of this master thesis in the mechatronic sector and in
the automation of ground vehicles specifically. Now the system is effectively a full
autonomous driving testbed. Furthermore, the NMPC formulated and tested with
ACADO represent a new result of this kind.

Outlook

Further research should start with the develop of a nonlinear Kalman filter or
EKF. The actual filter takes use of a really simple model thanks to the combination

75

76 Conclusions

of a high camera frequency and precise measurements. Decreasing the frequency
of the camera in order to be closer at technologies as GPS, a more sophisticated
estimator must be chosen.

The physical model for the NMPC can be upgraded to a combined slip model.
In this case the wheel speed is required and can be measured using a encoder
mounted on the rear wheel of the car.

Using a camera mounted over the track information after the curve are available
for the car. Instead in a real case the vehicle is partially blind because able to see
as a human driver can do. Once that the camera is moved in the car, the MPC
should change the predictive horizon for the different situations. Reducing in curve
the time length of the horizon but carrying the same number of steps, the sample
time decrease with a more precise behavior prediction from the controller and so a
better inputs choice.

Appendix A

Setup technical details

RGB camera: xiQ MQ013CG-ON Camera
Imaging: 1280x1024 (1.3 MPixel) at 30 FPS
Connection: USB 3.0

Computer: Real-time Debian system
Intel Core i3-3220 @ 3.3 GHz
SO: Debian 7.0 ’Wheezy’
Kernel: Linux 3.8.13 with Preempt RT Patch

Bluetooth link: ACL communication link

Race Car: Kyosho dNano FX-101 ASF 2.4 GHz System

77

Appendix B

List of main xiAPI parameters

//DEVICE ACQUISITION PARAMETERS
XI_PRM_IMAGE_DATA_FORMAT //output data format
XI_PRM_FRAMERATE //frames per second of sensor
XI_PRM_WIDTH //width of the image in pixels
XI_PRM_HEIGHT //eight of the image in pixels
XI_PRM_OFFSET_X //horizontal offset from the origin in pixels
XI_PRM_OFFSET_Y //vertical offset from the origin in pixels
XI_PRM_EXPOSURE //exposure time in microseconds
XI_PRM_GAIN //gain in dB
XI_PRM_ACQ_TIMING_MODE //acquisition timing mode

//COLOR MANAGEMENT SETTINGS
XI_PRM_AUTO_WB //automatic white balance
XI_PRM_WB_KR //white balance red coefficient
XI_PRM_WB_KG //white balance green coefficient
XI_PRM_WB_KB //white balance blue coefficient

79

Abbreviations

ADAS Advanced Driver Assistance System

CG Center of Gravity

CGT ACADO Code Generation Tool

EKF Extended Kalman Filter

MPC Model Predictive Control

NLP Nonlinear Program

NMPC Nonlinear Model Predictive Control

OAA Obstacle Avoidance Algorithm

ODE Ordinary Differential Equation

PDE Partial Differential Equations

QP Quadratic Program

RGB Red Green Blue

RT Real-Time

RTI Real-Time Iteration

SQP Sequential Quadratic Program

UDP User Datagram Protocol

VCU Vehicle Control Unit

VPU Vision Process Unit

81

Bibliography

[1] ACADO. url: http://www.acadotoolkit.org (cit. on p. 30).

[2] ARGO. url: http://www.argo.ce.unipr.it/ARGO/english/ (cit. on p. 1).

[3] C. Astua et al. “Object Detection Technique Applied on Mobile Robot Se-
mantic Navigation”. In: Sensors (2014), p. 6735 (cit. on p. 7).

[4] ETH Zürich Automatic Control Laboratory. ORCA Racing. url: https:
//sites.google.com/site/orcaracer/home (visited on 2014) (cit. on p. 2).

[5] D. P. Bertsekas. Dynamic Programming and Optimal Control. Vol. 1. Athena
Scientific, 2005 (cit. on p. 65).

[6] F. Braghin et al. “Race driver model”. In: Computers and Structures 86 (2008),
pp. 1503–1516 (cit. on pp. 31, 32).

[7] Stijn De Bruyne. “Model-based control of mechatronics systems - Bridging
between advanced methods and industrial application”. PhD thesis. KU
Leuven, 2013 (cit. on pp. 4, 27).

[8] DARPA. url: http://en.wikipedia.org/wiki/DARPA_Grand_Challenge
(cit. on p. 1).

[9] M. Diehl et al. “Fast Direct Multiple Shooting Algorithms for Optimal Robot
Control”. In: Fast Motions in Biomechanics and Robotics (2005) (cit. on
p. 28).

[10] M. Diehl et al. “Real-time optimization and Nonlinear Model Predictive
Control of Processes governed by differential-algebric equations”. In: Process
Control (2002) (cit. on p. 30).

[11] J. Edelmann and M. Plöchl. “Handling characteristics and stability of the
steady-state powerslide motion of an automobile”. In: Regular and Chaotic
Dynamics (2009), pp. 682–692 (cit. on p. 18).

[12] EUREKA. url: http://www.eurekanetwork.org/project/-/id/45 (cit.
on p. 1).

[13] H. J. Ferreau, H. G. Bock, and M. Diehl. “An Online Active Set Strategy
for Fast Parametric Quadratic Progamming in MPC Applications”. In: IFAC
Workshop on Nonlinear Model Predctive Control for Fast Systems. 2006, pp. 21
–30 (cit. on p. 27).

[14] FORCES. url: http://forces.ethz.ch (cit. on p. 28).

83

http://www.acadotoolkit.org
http://www.argo.ce.unipr.it/ARGO/english/
https://sites.google.com/site/orcaracer/home
https://sites.google.com/site/orcaracer/home
http://en.wikipedia.org/wiki/DARPA_Grand_Challenge
http://www.eurekanetwork.org/project/-/id/45
http://forces.ethz.ch

84 Bibliography

[15] J. V. Frasch et al. “An Auto-generated Nonlinear MPC Algorithm for Real-
Time Obstacle Avoidance of Ground Vehicles”. In: European Control Confer-
ence. 2013 (cit. on p. 25).

[16] Y. Gao et al. “Spatial predictive control for agile semi-auonomous ground
vehicles”. In: 11th International Symposium on Advanced Vehicle Control.
2012 (cit. on p. 59).

[17] G. Genta. Motor vehicle dynamics: modeling and simulation. World Scientific,
1997 (cit. on p. 20).

[18] F. Gustafsson. Statical Sensor Fusion. First. Studentlitteratur AB, 2010 (cit.
on p. 13).

[19] J. Hauser and A. Saccon. “A barrier function method for the optimization of
trajectory functionals with constraints”. In: 2006, pp. 864–869 (cit. on p. 32).

[20] R. Y. Hindiyeh, C. Voser, and J. C. Gerdes. “Analysis and control of high
sideslip maneuvers”. In: Intl Association for Vehicle System Dynamics Stock-
holm (2009) (cit. on p. 23).

[21] ISO. url: http://www.iso.org/iso/catalogue_detail?csnumber=54591
(cit. on p. 1).

[22] M. Janser. “Optimal stochastic Filtering and Path Generation for Race Cars
in a competitive Environment”. MA thesis. ETH Zürich, Automatic Control
Laboratory, 2013 (cit. on p. 59).

[23] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.
In: ASME - Journal of Basic Engineering 82 (1960), 35:45 (cit. on p. 13).

[24] A. Liniger. “Autonomous Drift Control”. MA thesis. ETH Zürich, 2012 (cit. on
pp. 17, 24).

[25] L. Nyborg, E. Bakker, and H.B. Pacejka. “Tyre modelling for use in vehicle
dynamics studies”. In: Society of Automotive Engineers (1987) (cit. on p. 21).

[26] OpenCV. url: http://opencv.org (cit. on p. 8).

[27] H.B. Pacejka. “Tire and Vehicle Dynamics”. In: Elsevier (2006) (cit. on p. 21).

[28] qpOASES. url: https://projects.coin-or.org/qpOASES (cit. on p. 27).

[29] A. Rucco, G. Notarstefano, and J. Hauser. “Computing minimum lap-time
trajectories for a single-track car with load transfer”. In: 51st IEEE Conference
on Decision and Control (2012), pp. 6321 –6326 (cit. on p. 4).

[30] P. Spengler and C. Gammeter. “Modeling of 1:43 scale race cars”. MA thesis.
ETH Zürich, 2010 (cit. on p. 20).

[31] D. Q. Tran and M. Diehl. “An application of sequential convex programming
to time optimal trajectory planning for a car motion”. In: 2009, pp. 4366–4371
(cit. on p. 32).

[32] VisLab. url: http://en.wikipedia.org/wiki/VisLab_Intercontinental_
Autonomous_Challenge (cit. on p. 1).

[33] J. Y. Wong. Theory of Ground Vehicles. John Wiley and Sons, 2001 (cit. on
p. 22).

http://www.iso.org/iso/catalogue_detail?csnumber=54591
http://opencv.org
https://projects.coin-or.org/qpOASES
http://en.wikipedia.org/wiki/VisLab_Intercontinental_Autonomous_Challenge
http://en.wikipedia.org/wiki/VisLab_Intercontinental_Autonomous_Challenge

Bibliography 85

[34] Ximea. url: http://www.ximea.com/usb3-vision-camera (cit. on p. 8).

[35] M. Zanon, J. Frasch, and M. Diehl. “Nonlinear Moving Horizon Estimation for
Combined State and Friction Coefficient Estimation in Autonomous Driving”.
In: 2013 (cit. on p. 18).

http://www.ximea.com/usb3-vision-camera

	Colophon
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Sommario
	Abstract
	Introduction
	Detection System
	Hardware and Software
	Vision System
	Camera Setup
	Image Acquisition and Conversion
	Object Tracking
	Image Display and Closure

	Computation Time

	Mathematical Model
	Vehicle Model
	Bicycle Model

	Tire Model
	Slip-free Model
	Slip Models

	Model Parameters Identification

	Model Predictive Control
	Introduction of Model Predictive Control
	Optimal Control Problem
	Linear MPC
	QP solution
	Nonlinear MPC
	Single Shooting approach
	Sequential Quadratic Programming solution

	Trajectory Definition
	Geometric Trajectory Optimization
	Velocity Profile

	Nonlinear MPC Tracking

	Results
	Computation Time
	Optimal Speed and Short Horizon
	Low Speed
	Intermediate Speed

	Constant Speed and Short Horizon
	Constant Speed and Long Horizon
	Low Speed
	Intermediate Speed
	High Speed
	Best Time Lap

	Obstacle Avoidance
	Algorithm
	Assumption for obstacle motion
	Possible Threat
	Grid Generation and Grid Population
	Optimal Path Definition
	New Borders Definition

	Dynamic Programming Solution
	Results

	Conclusions
	Setup technical details
	List of main xiAPI parameters
	Abbreviations
	Bibliography

