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ABSTRACT 

OBJECTIVES 

In the last years, an increasing interest about drowsiness detection is emerging. This is due 

to the fact that drowsiness causes a reduction of vigilance, which can affect everybody’s 

normal daily activities. 

Drowsiness is defined as the passage from wakefulness to sleep, which leads to a decrease 

of alertness. The main causes of sleepiness are the duration of sustained activities, sleep 

deprivation, circadian rhythm, the environment and individual’s personal characteristics. In 

particular, sleep deprivation or elongated nocturnal sleep reduction, implies a strong 

cognitive impairment. Indeed, a sleep-deprived subject tends to take longer to react to 

stimuli. Besides, behavioral and physiological consequences are emerged too: reduced 

processing speed and information storage, weak performances for normal tasks. 

This work has aimed at detecting drowsiness through the spectral analysis of 

electroencephalographic (EEG) signals. These signals have been acquired from volunteers 

while performing reaction time tests. During each test, the participant was supposed to 

react to stimuli, randomly presented on the screen of a computer as little circles, by 

clicking on the mouse, as soon as possible.  

As regards spectral analysis employed for features extraction, it has been implemented by 

three different approaches: non-parametric, parametric and according to singular spectrum 

analysis (“SSA”).  

Secondly, performances of the three developed methods have been compared, in order to 

individuate which one is able to provide the best features, in terms of class’s 

discrimination.  

Finally, it was verified if the protocol is appropriate for drowsiness detection and, more 

specifically, if collected data mirror the purposes of this work.  
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MATERIALS AND METHODS 

Experimental protocol 

All the experimental data used in this work have been collected in the laboratory 

“INTELSIG” of the Department of Electrical Engineering and Computer Science 

(Montefiore Institute), of the Faculty of Applied Science of the University of Liège, in 

Belgium.  

Experiments have been performed on 21 subjects, 9 males and 12 females, in an age range 

between 19-32 years (mean age 23.9) and in good health. The participants were selected 

according to the following exclusion criteria: alcohol or drugs addicted; regular smokers; 

recently medicated people or medical drugs consumers during the 2 weeks before the test; 

changing schedule workers; people with sleep disorders; people with jet lag in the 2 weeks 

before the test; people with the requirement of wearing glasses for driving (wearing contact 

lenses was allowed) or with skin allergies related to cosmetics or lotions. 

Finally, it was asked to participants not to assume any stimulants (coffee or tea) between 

6,00 pm on the first day until the end of the last test. 

Subjects were supposed to perform three visual reaction-time (RT) tests, each lasting 15 

minutes, over two days. 

After a normal night of sleep, each subject realized the first reaction time test (RT1) 

between 8,00 am and 10,00 am on the first day. 

Then, the subject wore an actimetry sensor, in order to monitor her/his sleep/awake cycle 

but was free to carry out daily activities, until 11,00 pm when the subject came back to the 

laboratory. During that night, the subject was not allowed to sleep and she/he no longer 

wore the actimeter. On the second day, the subject performed the second RT test (RT2) 

between 2,00 and 4,00 am and, after having breakfast, she/he performed the third and last 

RT test (RT3) between 11,00 am and 1,00 pm. 

As regards the execution of each test, the participant sat in front of a computer. Throughout 

the whole test, a large number of stimuli was randomly presented to the volunteer on the 

screen of the computer. Each stimulus lasted 400 msec and the subject was supposed to 

react to each stimulus by clicking on the mouse of the computer as quickly as possible after 

having detected the onset of the stimulus. During each test, electroencephalogram (EEG), 

electrooculogram (EOG), electromyogram (EMG) and electrocardiogram (ECG) have been 
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recorded. In particular, EEG signals have been acquired with a sampling frequency of 512 

Hz through electrodes Ag/AgCl disposed on central, frontal and parietal regions, C3, C4, 

Cz, Fz, Pz respectively, plus an electrode at the earlobe as reference and a ground 

electrode, placed according to the standard traditional 10/20 system. Data related to the 

tester’s performance during each session, have been computed with respect to a minute 

scale and some of them, like mean reaction time and number of lapses (500 msec≤reaction 

time≤2 sec) have been employed in order to label each minute of test as “drowsy”, 

“transition”, “alert”. The so-defined dataset resulted to be composed of 812 epochs, 

divided into 60 “drowsy” cases, 404 “transition” cases and 348 “alert” cases. 

Signal pre-processing 

The original signal has been firstly pre-processed as follows: 

- mean value removal; 

- band-pass filtering in the range [0.5, 35] Hz in order to eliminate more suitably the 

DC contribute (already drastically reduced through mean value removal) and very 

low frequency contribute not of interest for this work, noise due to network 

interference. It has been performed through a band-pass Butterworth filter of 5
th

 

order so that it is possible to get the flattest frequency response amplitude in the 

passing band and monotonicity in the passing and stopping bands; 

- zero-phase filtering obtained by processing data in both the forward and reverse 

directions, in order to eliminate problems related to the phase distortion (caused by 

the Butterworth filter): after filtering the signal in the forward direction, this filter 

reverses the filtered sequence and runs it back through the filter, leading to zero-

phase distortion and a filter order that is double the order of the previous filter; 

- signal resampling from the original sampling frequency of 512 Hz to a more 

appropriate frequency of 80 Hz. 

Spectral analysis 

Spectral analysis has been performed in three different ways: non-parametric, parametric, 

singular spectrum analysis (SSA).  
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Non-parametric analysis 

The most traditional way of getting the spectrum of a signal is the periodogram, defined as 

the squared module of the Discrete Fourier Transform (DFT) of the signal, normalized to 

the number of data points employed for the computation of the DFT.  

In this work, the signal has been divided into K=4 smaller segments, each of whom is long 

M=1200 samples, with an overlapping of 50% among adjacent segments. Then, 4 

periodograms, mutually independent, have been obtained and a triangular Bartlett window 

has been applied in order to get the correspondent modified periodograms.  

Finally, the spectral estimator has been calculated by averaging on the K modified 

periodograms. 

Once the spectral estimator of the entire frequency range has been computed, the spectrum 

for each frequency band of the EEG signal has been gained as well. Since the bands of 

interest for this work are θ band (4-8 Hz), α band (8-13 Hz), β band (13-30 Hz), 3 

additional spectra have been used in order to extract later the correspondent features. Δ 

band has been excluded because it is generally associated to the deep sleep. 

The algorithm just described has been applied on 14 epochs of signal, test per test and 

subject per subject, for all the 5 acquisition channels of the EEG (C3, C4, Cz, Fz, Pz).  

Parametric analysis 

Parametric analysis is based on the concept that the spectrum of a signal can be computed 

as the spectrum of the output signal of a LTI (linear time-invariant) system receiving a 

white noise in input.  

AR model has been preferred as model family in order to correctly represent EEG signals. 

According to the AR model, the amplitude of a signal at a given instant can be obtained by 

summing up the different amplitudes of previous samples, plus an additional noise taking 

into account all the sources of error.  

The optimum order p of the AR model has been individuated according to the Akaike 

information criterion (AIC). Then, the Anderson’s whiteness test was also realized on the 

prediction error. This test involves to check if the prediction error results to be white and 

so if its autocorrelation function (ACF) is maximum at lag=0 and around zero elsewhere. If 

the order suggested by AIC does not satisfy the condition of the Anderson’s test, the order 
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needs to be incremented until the residual error becomes white, paying attention in order to 

avoid problems of over-fitting.  

Finally, by summing up all the squared values of the prediction errors on the N samples of 

the signal, a “cost function”, called J, can be obtained. This figure of merit is a function of 

the coefficients of the model so that the coefficients are determined through Yule Walker’s  

equations that are based on the minimization of the function J using Levinson-Durbin 

recursion. 

Once the estimated coefficients  ̂  of the model have been determined, that are as many as 

the order of the model, it is possible to compute the power spectrum of the signal. All the 

operations described until now have been run for all the 14 epochs of the signal considered, 

subject per subject and test per test, including all the signals coming from the 5 acquisition 

channels of the EEG (C3, C4, Cz, Fz, Pz). 

Singular spectrum analysis 

Singular spectrum analysis exploits the advantages of both singular value decomposition 

(SVD) and principal component analysis (PCA)in order to decompose the original series 

into a sum of a few components that represent the main content of the signal, such as a 

slowly varying trend, oscillatory components and the background noise. SSA is 

characterized by the fact that neither a parametric model or stationarity hypothesis are 

assumed for the time series so it is a model-free technique. 

In this work, it has been employed in order to extract “monocomponent” signals, related to 

a certain frequency band, and a filtered version of the original signal. 

The algorithm has been implemented through two main steps: decomposition and 

reconstruction. 

The first step includes two additional substeps: 

1. “Embedding step”: the time series is embedded into multidimensional series, long 

L that is the window length. This is the important parameter to determine in this 

step because it influences the frequency resolution of the method. It was chosen to 

have a frequency resolution of 4Hz because this is the minimum width of each 

frequency band, resulting in L=20. It is possible to obtain K L-lagged vectors, 

where K = N-L+1, in order to compute the so-said trajectory matrix, which is a 

Hankel matrix. Then, the correspondent covariance matrix can be gained. 
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2. SVD: eigenvalues and eigenvectors of the covariance matrix have been obtained. 

Starting from them, the number of principal components (k=6), that are able to 

explain well (less than 5%) the variance of the signal, are individuated in order to 

eliminate most of the background noise. 

The second step includes two substeps through which it is possible to reconstruct the final 

signals. 

1. Grouping: principal components are computed and for each of them a non-

parametric spectrum has been computed, by using the same devices as already 

described for non-parametric analysis. Through the spectral content, some indices 

are defined in order to obtain after the final signals: filtered original signal and 

monocomponent signals for θ, α, β bands. 

2. Reconstruction: it consists in bringing back the new signals to the original time-

scale.    

For each new signal, the correspondent spectrum has been computed in order to extract 

features. The algorithm has been repeated for 14 epochs of signal, test per test and subject 

per subject, including all the signals from the 5 acquisition channels (C3, C4, Cz, Fz, Pz). 

Features extraction 

The EEG features selected for drowsiness detection are the percentage power in each 

frequency band,      
  

    
 , the ratio between α band activity and β band activity, the ratio 

between the sum of the activities in θ and α bands and the activity in β band (meaning the 

ratio between LF and HF), dominant peak and dominant frequency for each frequency 

band. As regards these last two features, the way of computing them has varied according 

to which method was considered.  

The set of such features has been gained for 14 epochs of signal, test per test and subject 

per subject, for all the 5 acquisition channels (C3, C4, Cz, Fz, Pz). 

Statistical analysis 

The content of the 80 features (16x5 channels) has been preliminarily analyzed through 

ROC (receiver operating characteristic) curves. Features have been firstly normalized in 

order to belong to the range [0,1], by subtracting their minimum value and dividing to their 
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maximum value. The cut-off step has been defined according to the size of each feature 

while a significance value of 95% has been chosen. The parameter that has been used is the 

AUC (area under curve): an AUC > 0.7 indicates a good performance of the feature.  

The second and decisive statistical test that has been employed is the non-parametric 

Kruskal-Wallis test: non-parametric because no specific probability distribution has been 

assumed a-priori, by Kruskal-Wallis because it allows to easily managing groups with 

different sizes as in this case. 

In both tests, two different cases have been considered: the ability of a certain feature to 

discriminate between two classes, excluding the remaining one, and to distinguish a class 

with respect to the combination of the other two ones.  

Classifier  

As regards the classifier, a feed-forward neural network has been preferred, with a hidden 

layer and sigmoid activation function, because this work aims at identifying three distinct 

classes. The number of neurons for the input and the hidden layers has been fixed the same 

as the number of features selected through the previous statistical tests; the output layer 

instead is always composed of three neurons, as much as the number of classes to identify.  

Data have been firstly processed so that the targets matrix contains three binary vectors 

where 1 indicates epochs related to the current class and 0 in the other cases, for each 

vector. The features matrix has been created time after time in order to contain only the 

selected features for the current method. The neural network has been trained according to 

Levenberg-Marquardt algorithm. Besides, it was thought to repeat 10 times a 5-fold cross-

validation in order to moderate the effects due to the random initialization of the classifier 

and the random distribution of the dataset into 5 subsets. Therefore the 80% of the dataset 

has been employed for training the network and the remaining 20% to test it, varying 5 

times the distribution of data into training set and testing set and this operation has been 

repeated 10 times. For each iteration, a k-Cohen coefficient has been computed and at the 

end 50 k-Cohen coefficients were available. In order to compare the three developed 

methods, the mean value and standard deviation of the k-Cohen coefficient have been 

considered, for each method. 
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RESULTS 

Statistical tests, which have been used in order to select the features providing the best 

separation among classes, have led to the following results. 

For non-parametric analysis, 11 features with a significance level of 95% have been 

individuated: 

1. dominant peak in θ band, parietal area 

2. percentage power in θ band, frontal area  

3.      
  

    
 , frontal area 

4. dominant frequency in the whole range, frontal area 

5. dominant peak in the whole range, frontal area 

6. dominant frequency in the whole range, central area 

7. dominant peak in θ band, central area 

8. percentage power in θ band, left central area 

9.      
  

    
 , left central area 

10. dominant frequency in the whole range, left central area 

11. dominant peak in the whole range, left central area. 

For the parametric analysis, the following 4 features have resulted to be statistically 

significant at 95%:  

1. percentage power in θ band, frontal area 

2.      
  

    
 , frontal area 

3. percentage power in θ band, left central area  

4.      
  

    
 , left central area. 

For singular spectrum analysis (SSA), only 3 features have showed a significance level of 

95%: 

1. dominant peak in the whole range, frontal area  

2. domain peak in the whole range, central area 

3. dominant peak in θ band, left central area. 
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From k-Cohen coefficients it emerged that the first non-parametric method results to be the 

one which is associated the greatest accuracy for classes identification, because a mean 

value of the k-Cohen coefficient of 0.5087 with a standard deviation of 0.0194 has been 

obtained. 

Finally, from the analysis of all the subjects through the non-parametric method, resulted 

to be the best one, it emerged that, from a physiological point of view, dominant peak and 

dominant frequency in θ band and in the whole range are optimal features, together with 

     
  

    
  ,as regards frontal and central (both C3, Cz) EEG derivations, and only for 

dominant peak in θ, also the parietal area.  

 

DISCUSSION AND CONCLUSION 

According to results of the statistical tests, it is possible to state that this work has allowed 

individuating a subset of features that are able to distinguish, with a significance level of 

95%, among the desired classes: alertness, “transition”, drowsiness. 

In particular, the unbalanced number of features obtained for each method (11,4,3) has 

absolutely favored an appropriate training of the neural network in the case of non-

parametric analysis but not in the other cases. 

In addition, the dataset has not provided a high number of drowsy cases so that this aspect 

has surely influenced the performance of both the methods and the classifier to correctly 

discriminate drowsiness with respect to the other two ones.  

It must be observed that the SSA method has however provided optimal performance in 

individuating the energy distribution for each frequency band. 

As future proposals, it could be interesting to possibly repeat such analysis with richer and 

more varied datasets, in terms of classes, in order to verify if the performances of the 

methods stay the same or they improve. 

In addition, since during reaction time tests subjects reacted by clicking on the mouse, that 

movement causes the sensorimotor cortex activation. Therefore, it could be interesting to 

take into account the event-related synchronization/ desynchronization (ERS, ERD), by 

exploiting data regarding the time of stimulus presentation and of reaction to it, which 

were not available for this work.   
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Finally, a last suggestion for the future could be to try to develop an automatic data 

labelling of the minutes of test (i.e. through unsupervised machine learning), instead of the 

manual approach implemented in this research.  
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SOMMARIO 

OBIETTIVI 

Negli ultimi anni, sta emergendo un sempre più acuto interesse verso la rilevazione della 

sonnolenza. Tale fenomeno è responsabile della diminuzione della vigilanza che può 

influenzare la capacità di ognuno di effettuare normalmente le attività quotidiane.  

La sonnolenza è definita come quello stato di passaggio dalla veglia al sonno che comporta 

un abbassamento del livello di vigilanza. Tra le principali cause che conducono alla 

sonnolenza si annoverano la durata di attività continuative, la privazione di sonno, il ritmo 

circadiano, l’ambiente e le caratteristiche personali di ciascun individuo. In particolare, la 

privazione o eccessiva e prolungata riduzione della quantità del sonno notturno comporta 

un elevato deficit cognitivo con gravi conseguenze. Di fatto, una persona privata del sonno 

impiega mediamente più tempo a reagire agli stimoli. Inoltre anche delle conseguenze di 

tipo comportamentale e fisiologico sono emerse: una ridotta velocità di elaborazione e 

immagazzinamento di informazioni, riduzione della vigilanza e scarse prestazioni nello 

svolgere abituali attività.   

Questo studio è stato finalizzato alla rilevazione della sonnolenza attraverso l’analisi 

spettrale di segnali elettroencefalografici (EEG). Tali segnali sono stati acquisiti da 

soggetti volontari che si sono offerti di effettuare dei test di tempi di reazione. Ogni test 

prevedeva che il partecipante reagisse agli stimoli, presentati in modo casuale sullo 

schermo di un computer come dei piccoli cerchi, cliccando sul mouse il più velocemente 

possibile. 

Per quanto riguarda l’analisi spettrale adoperata per l’estrazione delle caratteristiche, essa è 

stata implementata secondo tre differenti approcci: non parametrico, parametrico, secondo 

l’analisi degli spettri singolari (“SSA”).  

Secondariamente, sono state confrontate le perfomances dei tre metodi sviluppati, con lo 

scopo di individuare quello in grado di fornire i descrittori caratterizzati da prestazioni e 

potere discriminatorio migliori. 

Per concludere, si è voluto valutare se il protocollo proposto è adatto o meno a rilevare la 

sonnolenza e in particolare, se i dati raccolti rispecchiano le intenzioni di questa ricerca.  
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MATERIALI E METODI 

Protocollo sperimentale 

Tutti i dati sperimentali utilizzati nel presente lavoro sono stati raccolti presso il laboratorio 

“INTELSIG” del Dipartimento di Ingegneria Elettrica e Computer Science (Istituto 

Montefiore), della Facoltà di Scienze Applicate dell’Università di Liège, in Belgio.  

Gli esperimenti sono stati effettuati su 21 soggetti, di cui 9 maschi e 12 femmine, in un 

intervallo di età tra i 19-32 anni (età media 23.9) e in buona salute. Per la selezione dei 

partecipanti, si è tenuto conto dei seguenti criteri di esclusione: dipendenti da alcool e 

droghe, fumatori abituali, persone con medicazioni o che hanno assunto medicine nelle due 

settimane precedenti al test, lavoratori con scheduling variabile, persone con disordini del 

sonno, jet lag nelle due settimane precedenti al test, con prescrizione ad indossare occhiali 

da vista (le lenti a contatto erano ammesse), con allergie cutanee legate a cosmesi e lozioni 

varie. Infine, veniva richiesto ai volontari di non assumere alcuno stimolante (caffè o tè) tra 

le 6 pm del primo giorno di test fino alla fine dell’ultimo giorno di test. 

Ogni partecipante ha svolto tre test visivi di tempi di reazione (RT), ciascuno della durata 

di 15 minuti, nell’arco di due giorni. Il primo test (RT1) è stato effettuato tra le 8,00 e le 

10,00 del mattino del primo dei due giorni previsti per l’esperimento, dopo una normale 

notte di sonno. A partire dalla fine del test, veniva richiesto al soggetto di indossare un 

sensore di actimetria in modo da poter monitorare il proprio ciclo di sonno/veglia, senza 

però condizionare il normale svolgimento delle attività quotidiane. Alle 11 di sera, il tester 

ritornava in laboratorio e si interrompeva il monitoraggio tramite actimetro. Durante la 

notte che seguiva, al soggetto veniva richiesto di non dormire. Quindi, tra le 2,00 e le 4,00 

di mattina (inizio del secondo giorno), egli eseguiva il secondo test (RT2). Infine, dopo 

aver fatto colazione, svolgeva il terzo e ultimo test (RT3), tra le 11,00 di mattina e l’1 di 

pomeriggio. 

Il test prevedeva che il soggetto stesse seduto di fronte un computer e che una certa 

quantità random di stimoli, della durata di 400 msec, fosse inviata. Durante ogni test, 

venivano acquisiti i segnali elettroencefalografici (EEG), elettromiografici (EMG), 

elettrooculografici (EOC), elettrocardiografici (ECG). In particolare l’EEG è stato 

acquisito con una frequenza di campionamento di 512 Hz e tramite 5 canali (C3, C4, Cz, 

Fz, Pz per le regioni centrale, frontale e parietale dello scalpo), secondo il sistema standard 
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10-20. I dati riferiti alle prestazioni del tester per ogni sessione sono stati calcolati sulla 

scala del minuto e alcuni di questi, come il tempo di reazione medio e il numero di “sbagli”  

(500 msec ≤tempo di reazione ≤2 sec), sono stati utilizzati per definire le etichette di ogni 

minuto di test (“assonnato”, “in transizione”, “sveglio”).  Il dataset, così etichettato, risulta 

composto di 812 epoche divise in 60 casi di “assonnato”, 404 di “in transizione” e 348 di 

“sveglio”. 

Pre-elaborazione dei segnali 

Il segnale originale è stato innanzitutto pre-elaborato nel seguente modo: 

- rimozione del valore medio;  

- filtraggio passa-banda nell’intervallo [0.5, 35] Hz per eliminare più adeguatamente 

il contributo in continua (già drasticamente ridotto con la rimozione del valor 

medio) e quello in bassissima frequenza. Si è usato un filtro passa-banda di 

Butterworth di quinto ordine, in modo da ottenere una risposta in frequenza il più 

piatta possibile in modulo nella banda passante e monotonicità in banda passante e 

arrestata; 

- filtraggio a fase zero, ottenuto filtrando prima il segnale in una direzione e poi 

applicando lo stesso filtro ma a coefficienti invertiti. Questa tecnica consente di 

eliminare i problemi causati dalla distorsione di fase introdotta dal filtro di 

Butterworth e conduce a un filtro con ordine doppio rispetto al precedente;  

- ricampionamento del segnale da 512 Hz a 80 Hz.  

Analisi spettrale 

L’analisi spettrale è stata effettuata in tre differenti modi: non parametrico, parametrico, 

secondo il metodo dell’SSA. 

Analisi non parametrica 

Il modo più tradizionale per ottenere lo spettro del segnale è il calcolo del periodogramma, 

definito come il modulo quadrato della trasformata del segnale diviso per il numero di 

punti utilizzati per il calcolo della trasformata stessa. In questo lavoro, si è scelto di 

suddividere il segnale in K=4 segmenti più piccoli, ognuno di M=1200 campioni ciascuno, 

con una sovrapposizione del 50% tra segmenti adiacenti. Quindi 4 periodogrammi, 
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reciprocamente indipendenti, vengono ottenuti applicando una finestra triangolare di 

Bartlett per ricavare i corrispondenti periodogrammi modificati. Infine lo stimatore 

spettrale si ottiene mediando sui K periodogrammi modificati. 

Una volta ottenuto lo stimatore spettrale sull’intero intervallo di frequenze [0.5, 35]Hz, si è 

voluto calcolare lo spettro su ogni banda di frequenza del segnale EEG. Ricordando che le 

bande considerate in questo lavoro sono la banda θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), si 

ottengono 3 spettri aggiuntivi da cui verranno successivamente estratte le corrispondenti 

caratteristiche. La banda δ è stata esclusa perché generalmente associata al sonno 

profondo. L’algoritmo appena descritto è applicato a tutte e 14 le epoche di segnale, test 

per test e soggetto per soggetto, in riferimento ai 5 canali di acquisizione dell’EEG (C3, 

C4, Cz, Fz, Pz). 

Analisi parametrica 

L’analisi parametrica si basa sul concetto che lo spettro di un segnale può essere calcolato 

come lo spettro dell’uscita di un sistema lineare tempo-invariante (LTI) che riceva in 

ingresso un rumore bianco.  

Come famiglia di modelli per rappresentare un segnale EEG si è preferito usare il modello 

AR, secondo il quale l’ampiezza di un segnale ad un dato istante è esprimibile come la 

somma dello stesso agli istanti precedenti, più l’aggiunta di un rumore che tenga conto 

dell’imperfezione della stima e di ogni fonte di disturbo. 

Per quanto riguarda l’ordine ottimo, esso è stato individuato utilizzando il criterio di 

ottimalità di Akaike (AIC= Akaike information criterion), in combinazione con il test di 

Anderson di bianchezza dell’errore di predizione. Con il test di Anderson, si è andato a 

controllare che l’errore di predizione commesso dallo stimatore sia bianco, ovvero che il 

modello sia stato in grado di spiegare il processo in modo esaustivo. Se però il test di 

Anderson non risultava verificato, l’ordine del modello veniva incrementato fintantoché il 

rumore non diventasse bianco, evitando però di incrementarlo eccessivamente e rischiare il 

problema di overfitting. Infine si è calcolata la funzione di costo come la somma dei 

quadrati degli errori di predizione commessi sugli N campioni. Minimizzando tale cifra di 

merito, che è una funzione dei coefficienti del modello, questi possono essere ricavati 

attraverso le equazioni di Yule Walker, utilizzando il metodo ricorsivo di Levinson Durbin. 

Una volta stimati i coefficienti  ̂  del modello (tanti quanto l’ordine ottimo p), si ricava lo 
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stimatore spettrale del segnale. Anche in questo caso, una volta calcolato lo spettro 

nell’intero intervallo, è stato calcolato anche lo spettro per ogni banda di frequenza. Tale 

algoritmo è stato applicato a tutte le 14 epoche di segnale, test per test e soggetto e per 

soggetto, in riferimento ai 5 canali di acquisizione dell’EEG (C3, C4, Cz, Fz, Pz). 

Singular spectrum analysis 

L’analisi degli spettri singolari si propone di sfruttare i vantaggi della scomposizione ai 

valori singolari (SVD) e l’analisi delle componenti principali (PCA) per scomporre la serie 

temporale originale nella somma di poche componenti che racchiudono le informazioni 

principali: componente lentamente variabile, componente oscillatoria e rumore di 

sottofondo. Il grande vantaggio nell’impiego di tale metodo è il fatto che si tratta di una 

tecnica “model-free”, a fronte però di un costo computazionale elevato. In questo lavoro, 

essa è stata impiegata con l’obiettivo di estrarre dei segnali “monocomponente” che 

fossero legati, ciascuno, ad una certa banda di frequenza di interesse e inoltre per ottenere 

un segnale EEG ripulito dal rumore. L’algoritmo è stato implementato secondo i seguenti 

due passaggi: la scomposizione e la ricostruzione del segnale. 

Il primo può essere ulteriormente scomposto in due step secondari:  

1. “Embedding step”: la serie temporale è incorporata in serie multidimensionali di 

dimensione L. Tale dimensione rappresenta il parametro critico da definire a questo 

livello in quanto influenza la risoluzione in frequenza del metodo. Si è scelto di 

avere una risoluzione in frequenza di 4Hz, che è l’ampiezza minima di ogni banda 

di frequenza, imponendo L=20. Si ottengono quindi K vettori ritardati di L, con 

K=N-L+1, dai quali si ricava la cosiddetta matrice traiettoria, che è un matrice di 

Hankel. Da quest’ultima si può ottenere la corrispondente matrice di covarianza. 

2. SVD: si ottengono gli autovalori e gli autovettori della matrice di covarianza, a 

partire dai quali è stato ricavato il numero di componenti principali (k=6) che 

spiegano adeguatamente (a meno del 5%) la varianza del segnale e permettono di 

eliminarne gran parte del rumore di sottofondo.   

Il secondo passaggio riguarda i due momenti tramite i quali è possibile ricostruire i segnali 

finali.  
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1. Raggruppamento: si ricavano le componenti principali e per ognuna si calcola uno 

spettro non-parametrico secondo le stesse modalità precedentemente spiegate. In 

base ad esso si definiscono degli indici che sono stati in seguito usati per ricavare i 

segnali finali: segnale originale filtrato e segnali monocomponente relativi a θ, α, β. 

2.  Ricostruzione: consiste nel riportare il segnale scomposto e rielaborato nella scala 

temporale originale.  

Su ogni segnale è stato infine calcolato il corrispondente spettro per ricavarne dei 

descrittori. L’algoritmo è stato ripetuto per 14 epoche di segnale, test per test e soggetto 

per soggetto, in riferimento ai 5 canali di acquisizione dell’EEG (C3, C4, Cz, Fz, Pz). 

Estrazione di descrittori 

Le caratteristiche individuate per la rilevazione della sonnolenza sui segnali EEG sono 

state la potenza percentuale in banda,      
  

    
 , il rapporto tra l’attività in banda α e in 

banda β, il rapporto tra la somma delle attività in banda α e θ e l’attività in banda β (inteso 

come rapporto tra LF e HF), picco dominante e frequenza dominante per ogni banda di 

frequenza e su tutto l’intervallo considerato. Per quanto riguarda queste ultime due 

caratteristiche, la modalità con cui sono state ottenute è variata a seconda del metodo di 

analisi spettrale considerato. L’insieme di descrittori appena elencato è stato ricavato per 

14 epoche di segnale, test per test e soggetto per soggetto, per tutti e 5 i canali di 

acquisizione dell’EEG (C3, C4, Cz, Fz, Pz). 

Analisi statistica 

Il contenuto degli 80 descrittori (16x5canali) è stato preliminarmente analizzato tramite 

curve ROC (receiver operating characteristic). Essi sono stati innanzitutto normalizzati in 

modo da rientrare nell’intervallo [0,1], con sottrazione del valore minimo e divisione per il 

valore massimo. Il passo di cut-off invece è stato definito in base alla taglia di ciascun 

descrittore mentre si è scelto un livello di significatività del 95%. Il parametro utilizzato è 

stato l’AUC (area under curve): un AUC > 0.7 indicava una buona prestazione del 

descrittore. 

Il secondo e decisivo test statistico impiegato è stato il test non parametrico di Kruskal-

Wallis: non parametrico perché non si è assunta alcuna distribuzione di probabilità a priori, 

di Kruskal-Wallis in quanto esso permette di gestire facilmente gruppi di taglie differenti, 
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come in questo caso. In entrambi i test, sono state valutate due situazioni differenti: 

capacità delle caratteristiche di discriminare tra due classi con esclusione della restante e di 

distinguere una classe rispetto alla combinazione delle altre due.  

Classificatore 

Per il classificatore, la scelta è caduta su una rete neurale feed-forward, con uno strato 

nascosto e funzione di attivazione la funzione sigmoide, in quanto si vuole distinguere tra 

tre differenti classi. Il numero di neuroni per lo strato di ingresso e nascosto è stato fissato 

pari al numero di descrittori selezionati tramite i precedenti test statistici; lo strato di uscita 

invece contiene sempre 3 neuroni tanto quanto il numero di classi che si vuole identificare. 

Innanzitutto i dati sono stati rielaborati in modo che la matrice dei target contenesse tre 

vettori binari in cui 1 indicasse le epoche relative alla classe corrente e 0 negli altri casi, 

per ciascun vettore. La matrice delle caratteristiche è stata creata di volta in volta per 

contenere le sole caratteristiche selezionate per ogni metodo.  La rete è stata addestrata 

secondo il metodo di Levenberg-Marquardt. Inoltre si è scelto di ripetere una cross-

validazione 5-fold per dieci volte in modo da lenire ogni effetto legato all’inizializzazione 

casuale della rete e alla ripartizione casuale del dataset in 5 basi. Quindi si è utilizzato 

l’80% del dataset per addestrare la rete e il restante 20% per testarla, variando per cinque 

volte la ridistribuzione dei dati in training set e testing set e poi ripetendo il tutto per 10 

volte. Ad ogni iterazione inoltre è stato calcolato un coefficiente k di Cohen per un totale 

di 50 coefficienti. Per confrontare quindi i tre metodi si è utilizzati il valore medio e la 

deviazione standard del coefficiente k di Cohen, relativo ad ogni metodo.   

 

RISULTATI 

I test statistici adoperati per selezionare i descrittori in grado di fornire il migliore potere 

discriminante tra classi hanno condotto ai seguenti risultati. 

Per l’analisi non parametrica sono state individuati 11 descrittori con un livello di 

significatività del 95%: 

1. picco dominante in banda θ, area parietale 

2. potenza percentuale in banda θ, area frontale 
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3.      
  

    
 , area frontale  

4. frequenza dominante nell’intero range, area frontale 

5. picco dominante nell’intero range, area frontale 

6. frequenza dominante nell’intero range, area centrale 

7. picco dominante in banda θ, area centrale 

8. potenza percentuale in banda θ, area centrale sinistra 

9.      
  

    
 , area centrale sinistra 

10. frequenza dominante nell’intero range, area centrale sinistra 

11. picco dominante nell’intero range, area centrale sinistra. 

Per l’analisi parametrica sono risultate statisticamente significative al 95% le seguenti 4 

caratteristiche: 

1. potenza percentuale in banda θ, area frontale 

2.      
  

    
 , area frontale 

3. potenza percentuale in banda θ, area centrale sinistra 

4.      
  

    
 , area centrale sinistra. 

Per l’analisi degli spettri singolari, solo 3 descrittori hanno mostrato un livello di 

significatività del 95%:  

1. picco dominante nell’intero range, area frontale 

2. picco dominante nell’intero range, area centrale 

3. picco dominante in banda θ, area centrale sinistra. 

Dai valori dei coefficienti k di Cohen è emerso che il primo metodo non parametrico 

risulta quello a cui è associata la maggiore accuratezza nell’identificazione delle tre classi, 

avendo ottenuto un valore medio del k di Cohen pari a 0.5087 con una deviazione standard 

di 0.0194.  

Infine dall’analisi di tutti i soggetti tramite metodo non parametrico, risultata la più 

prestante, e le caratteristiche corrispondenti selezionate, è emerso che, da un punto di vista 

fisiologico, picco dominante e frequenza dominante sia in banda θ che nell’intero range 

sono degli ottimi descrittori, insieme con il      
  

    
  , relativamente alle derivazioni 
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EEG frontale e centrale (Cz, C3) e solo per il picco dominante in banda θ anche dall’area 

parietale.  

 

DISCUSSIONE E CONCLUSIONI 

Secondo i risultati ottenuti dai test statistici si può concludere che questo lavoro ha 

consentito di individuare un sottoinsieme di descrittori in grado di distinguere, con una 

significatività del 95%, tra le classi desiderate: allerta, “transizione”, sonnolenza. In 

particolare il fatto di aver ottenuto un numero sbilanciato di descrittori tra i vari metodi 

(11, 4, 3) ha decisamente favorito un buon addestramento della rete neurale nel caso del 

metodo di analisi non parametrica, a discapito degli altri due.  

A questo bisogna aggiungere il fatto che il dataset utilizzato non ha fornito un elevato 

numero di casi di sonnolenza per cui anche questo aspetto ha sicuramente influenzato le 

prestazioni e dei metodi e del classificatore a discriminare correttamente tale classe rispetto 

alle altre.  

Va detto però che per quanto riguarda la capacità di individuare la distribuzione di energia 

per ogni banda di frequenza, il metodo SSA ha comunque fornito ottime prestazioni.  

Come sviluppo futuro, sarebbe interessante ripetere eventualmente tale analisi nel caso di 

dataset più ricchi e diversificati in termini delle tre casistiche, al fine di verificare se le 

prestazioni dei vari metodi vengano confermate o presentino dei miglioramenti.  

Inoltre, dal momento che durante i test di reazione, i soggetti reagiscono con un click sul 

mouse, tale movimento comporta una certa attivazione della corteccia sensorimotoria. 

Sarebbe pertanto interessante tenere conto della sincronizzazione/desincronizzazione 

evento-correlata, conseguenziale al movimento, sfruttando i dati riguardanti l’istante di 

presentazione dello stimolo e di reazione ad esso, che in questo studio non erano purtroppo 

consultabili. 

Infine, un ultimo suggerimento per il futuro potrebbe essere quello di tentare di sviluppare 

in modo automatico l’etichettatura dei minuti di test (ad esempio mediante tecniche di 

machine learning non supervisionato), sostituendola all’approccio manuale implementato 

in tale lavoro. 
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Glossary 

AIC = Akaike Information Criterion 

ACF = AutoCorrelation Function 

ANN = Artificial Neural Network 

ANOVA = Analysis Of Variance 

AUC = Area Under Curve 

AR = Auto Regressive 

ARMA = Auto Regressive Moving Average 

C3 = Left central area of the brain 

C4 = Right central area of the brain 

Cz = Median central area of the brain 

DC = Direct Current 

DFT = Discrete Fourier Transform 

ECG = ElectroCardioGraphic/ElectroCardioGram 

EEG = ElectroEncephaloGraphic/ElectroEncephaloGram 

EMG = ElectroMyioGraphic/ElectroMyoGram 

EOG = ElectroOculoGraphic/ElectroOculoGram 

EOF = Empirical Orthogonal Function 

ERD = Event-Related Desynchronization 

ERS = Event-Related Synchronization 

Fz = Median frontal area of the brain  

FPE = Final Prediction Error 

FFT = Fast Fourier Transform 

FWHM = Full Width Half Maximum 

HF = High Frequency 

Hz = Hertz 

KSS = Karolinska Sleepiness Scale 

LF = Low Frequency 

LCD = Liquid Crystal Display 

LTI = Linear Time Invariant 

No = number 
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MA = Moving Average 

MDL = Minimum Description Length 

Msec = milliseconds 

NaN = Not a Number 

NREM = Non REM sleep (see REM meaning) 

N1 = 1
st 

NREM sleep stage 

N2 = 2
nd

 NREM sleep stage 

N3 = 3
rd

 NREM sleep stage 

OSS = Objective Sleepiness Scale 

PC = Principal Component 

PSD = Power Spectral Density 

Pz = Median parietal area of the brain 

P% = Percentage Power 

PCA = Principal Component Analysis 

PSG = PolySomnoGraphic/ PolySomnoGraphy 

REM = Rapid Eye Movement 

ROC = Receiver Operating Characteristic 

RT = Reaction-time Test 

RT1 = Reaction-time Test no. 1 

RT2 = Reaction-time Test no.2 

RT3 = Reaction-time Test no.3 

R&K = Rechtschaffen and Kales sleep scale 

SSA = Singular Spectrum Analysis 

SCN = SupraChiasmatic Nuclei 

Sec = seconds 

SVM = Support Vector Machine 

SWA = Slow Wave Activity 

VPE = Variance Prediction Error 

W = Wakefulness sleep stage 

WN = White Noise 
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1. State of art 

In the recent years, an increasing interest for drowsiness detection is emerging. This 

phenomenon, that is not yet the sleep but something that anticipates the real and proper 

sleep, is responsible of a decreased vigilance, which can influence the normal capability of 

individuals to carry out everyday tasks [1]. 

This study focuses on drowsiness detection through EEG signals spectral analysis, 

acquired from volunteers that have performed reaction time tests. These tests involve 

subjects to react to stimuli, randomly presented on the screen of a computer in the form of 

little circles, by clicking on the mouse of the computer, as soon as possible.  

In order to better understand what drowsiness is, it is worthy to introduce a brief review on 

sleep, its macrostructure and the physiological meaning of each frequency band.  

In addition, it is appropriate to mention the correlation between motor acts and their 

evidences on EEG signals because subjects’ reactions consist of movements of clicks on 

the mouse of the computer. 

Lastly, as drowsiness detection is realized through EEG spectral analysis, a panorama of 

results of several methods of spectral analysis, applied to EEG in order to study 

drowsiness, is provided. 

1.1 Sleep physiology and EEG 

Sleep is a primary need that assumes a central role in everybody’s life therefore a 

quantitative and qualitative evaluation of it can be very useful. It is defined as a nervous, 

rhythmic and active process, regulated by the so-called “circadian pacemaker”. A correct 

balance sleep/wakefulness contributes to the following functions: energetic recovery, 

temperature decrease, immune defense, memory and learning enhancement.  

The polysomnography (PSG) represents the classical approach in order to monitor several 

physiological parameters and signals (EEG, EOG, EMG, ECG), related to sleep. It is 

normally performed in specialized sleep centers or by home: throughout a night of sleep, 

the above-mentioned signals are recorded and then analyzed. More specifically, the PSG 

involves experienced physicians to visually distinguish the several stages of sleep. 
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The possibility of continuous recordings of the brain electrical activity, through 

electroencephalographic signals (EEG), during sleep and wakefulness, has revealed 

specific activity patterns for each vigilance state.  As emerged from literature, wakefulness 

is characterized by low voltage and fast frequency activities, also referred as beta band 

(13,30 Hz). When eyes close in preparation for sleep, alpha activity (8-13 Hz) becomes 

prominent, mainly in the occipital area of the scalp. Just after the so-called stage W, 

NREM sleep starts. It is subdivided into different stages: a transitional state, stage 1 (N1), 

characterized by an alpha disappearing activity, gradually substituted by a low-voltage 

mixed-frequency EEG pattern with prominent theta activity (4-8 Hz). Stage 1 moves to 

NREM sleep stage 2 (N2), where the EEG is characterized by sleep spindles (12-15 Hz). 

Finally, NREM sleep stage 3 (N3) follows, where the EEG shows high voltage and slow 

frequency waves at around 1-2 Hz, so that it is also known as slow wave sleep [49, 50]. 

The several sleep stages are tightly regulated and a correct alternation is heavily influenced 

by humoral factors, previous wakefulness, psychological and environmental aspects. For 

further details, it is suggested to read Appendix A.  

Once a fast panoramic of sleep is introduced, it is possible to understand why somnolence 

can be located in between the so-called stage W, related to wakefulness, and the early 

instants of NREM sleep. 

1.2 Somnolence characterization 

Drowsiness is the transition state between awakening and sleep during which vigilance 

level generally decreases. One of the main factor that can lead to drowsiness is the fatigue. 

This is the reason why the terms ‘sleepiness’ and ‘fatigue’ are often used as synonymous to 

indicate the result of neurobiological processes regulating circadian rhythms and the sleep 

[5]. It emerged from several studies that there are various causes that lead to drowsiness 

such as duration of continuous tasks, sleep deprivation, circadian rhythm, the environment 

and personal characteristics of each individual. The main effect of total sleep deprivation, 

and even of the prolonged reduction in sleep, causes cognitive impairment, with strong 

practical consequences [49]. A sleep-deprived person tends to take longer to react to 

stimuli, especially when tasks are monotonous and require weak emotional involvement. In 

addition, it leads to behavioral and physiological modifications (Figure 1.1) such as 

decreased processing speed and memory capacity, drastic changes in task performance, 
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reduction in vigilance, slower reaction time [1]. Therefore, since sleep deprivation 

produces more than just decreased alertness, drowsiness occurring can represent a serious 

problem when a sustained attention is needed to perform some tasks.  

 

Figure 1.1: Effects of sleep deprivation.  

As regards physiological modifications in cerebral activity, they can be detected through 

the electroencephalography (EEG). As already said, the EEG signal is a measure of 

electrical brain activity and it is acquired by means of electrodes placed on the scalp, 

according to the 10-20 standard traditional system. The number of EEG channels, used to 

monitor drowsiness, depends on the researchers’ choice. On one hand, using a large 

number of EEG channels allows to get a high spatial resolution [44, 45]. On the other 

hand, since the employment of many electrodes is time-consuming, using only a few EEG 

channels allows to less computational costs. 

Drowsiness can be observed in the EEG spectrum as an increase of activity in the 

frequency bands (8-13 Hz) (alpha band) and (4-8 Hz) (theta band) occurs, mainly in the 

parietal and central regions of the brain. Simultaneously, a diminution of activity in the 

beta band (13-26 Hz) is generally present, because beta activity is related to vigilance and 

alertness. This has been shown in several studies [46, 47, 48].  
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 Thanking to an increasing interest in drowsiness, mainly due to the emerged relationship 

between car accidents on the highways and drowsiness manifestations, many scales of 

drowsiness classification exist but none of them is standardized. Moreover, there are no 

standardized rules to differentiate the levels of drowsiness as the Rechtschaffen and Kales 

rules (Rechtschaffen & Kales, 1968) for the study of sleep. This may be due to the quite 

recent interest on drowsiness compared to the sleep analysis and the difficulty to collect 

drowsiness data. There are two kinds of scales: subjective sleepiness scales like the 

Karolinska Sleepiness Scale (KSS) [47], which allows subjects to directly evaluate their 

own drowsiness and Objective Sleepiness Scales (OSS) which is used by expert doctors to 

evaluate drowsiness level (after driving). 

 

Table 1.1: OSS Criteria 

In this study, we employ none of these scales because we exploit data coming from 

reaction time tests. Decisions are made every 60s of test and depend on the mean reaction 

times and number of lapses [57].  

Several researches have focused on other physiological indicators such as the 

electrocardiogram (ECG) to monitor heart rate [54, 53] or the temperature [52] or the 

combination of electrooculogram EOG and images of eye.  

This study focuses on the drowsiness detection caused by sleep deprivation, by analyzing 

EEG signals collected from subjects that have participated to reaction time tests, under 

different conditions of vigilance. According to what has been said so far, drowsiness is 

strictly linked to reduced reaction times so the passage from a well-awake condition to a 

transitional state to drowsy state is investigated.  
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Finally, in order to perform an automatic drowsiness analysis, it is convenient to compute 

the EEG power spectrum, from which it is possible to obtain some features. Drowsiness 

decision can be made using EEG features, subsequently employed as inputs to a classifier.  

1.3 Movement physiology and EEG 

Motor acts result from neuronal pulses coming from the sensorimotor cortical area that is 

located, more or less, in correspondence of the central zone of the cortex. 

Since electrodes from these areas have been employed also to acquire EEG signals for 

drowsiness detection, it is appropriate to clarify the relationship between EEG spectrum 

amplitude and motor tasks.  

Since several years, the activity of cortical regions for the control of movement has been 

investigated. Cortical activation related to movement preparation and execution leads to a 

phenomenon called event-related desynchronization (ERD) which consists of a 

desynchronization of the mu rhythm. ERD in hand movement predominates in the 

contralateral sensorimotor areas during motor preparation and spreads bilaterally after the 

movement has started. In addition, a second phenomenon can be detected: it is called 

“event-related synchronization” (ERS)  and it occurs in the 10 Hz band over areas not 

involved in the task, during movement preparation and execution, or over the same areas 

that previously displayed in ERD, after movement execution [42, 62]. 

Similar results have been obtained by Leocani et all. (1996) [43]. They  have studied the 

event-related desynchronization/synchronization (ERD/ERS) when performing self-paced 

movements of the right index finger. Results have permitted to state that movement 

preparation and execution produce ERD over the sensorimotor areas at 10 Hz (in alpha 

band) and 20 Hz (in beta band), followed by ERS. ERD corresponded spatiotemporally to 

the frontocentral areas recruitment. For both frequency bands, ERD began over the 

contralateral sensorimotor areas and became bilateral with the onset of movement.  

Another important issue that has been investigated is the difference between the case of 

motor preparation, that implies planned movements, and the absent of intentionality for 

motor tasks performance. In addition, another parameter can influence results and it is the 

required force level to keep an object. In order to discriminate among these different 

situations, Zaepffel et all. [42] used a pre-cueing paradigm in which a GO signal is 

preceded by a cue providing partial, complete or no information about these two above-
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mentioned parameters for grasping tasks: the grip type to grasp an object and the overall 

strength required for pulling it. Results reflected a beta modulation according to different 

conditions of movements. 

It is actually possible to state that, if there is motor preparation, the spectrum in alpha and 

beta bands decreases just before the movement and increases after the movement because 

of a desyncronization and a synchronization in each frequency band, respectively.  If no 

planned movement are supposed, it can be observed a reduction in alpha and beta spectra 

only after that the stimulus is presented. 

This last phenomenon is related to the so-called “beta-rebound”. Beta rebound indicates 

the short-lasting burst of activity in beta band (13–35 Hz) that is present after movement or 

in response to somatosensory stimulation. It is typically found in Rolando areas over the 

motor and somatosensory cortex, but also around the supplementary motor area and the 

prefrontal cortex. Therefore, the beta rebound should actually reflect the active neurons 

inhibition once that a motor program is concluded, that can be motor planning, motor 

execution, or motor imagery. 

In this study, the tasks were performed without any movement planning since the subjects 

were supposed to click on the mouse after detecting a stimulus, that was randomly 

presented. Therefore, it was expected to find a diminution of the alpha and beta spectrum 

amplitude when the motor task was going on, followed by an increase. Unfortunately, 

either information about the instant when the subject reacted by clicking on the mouse, nor 

the time when the stimulus was presented, are available therefore this information couldn’t 

be taken into account for further evaluations.     
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1.4 Spectral analysis of EEG signals 

As mentioned in paragraph 1.2, it is convenient to compute the EEG power spectrum in 

order to study drowsiness. Physiological events generally cause changes into the EEG 

spectrum.  

Among several analysis methods, spectral analysis methods are, without doubts, really 

important because they highlight changes in frequencies and in characteristics of brain 

waveform, depending on the cerebral function. Over the years, several methods of spectral 

analysis have been experienced in order to individuate the best possible performance to 

produce powerful and meaningful features, with an appropriate frequency resolution.  

In this work, some of the existing methods are considered in order to firstly extract features 

and then compare their performances. 

One of the considered method is the traditional approach of EEG spectral analysis: the 

Fourier Transform-based method also referred as “non-parametric” analysis. It involves the 

employment of the periodogram, which is the squared module of the Fourier transform of 

the signal (divided to the number of data points). Several researchers preferred to use this 

classical method to easily get features and then they implemented more robust classifiers to 

obtain a classification as good as possible. An interesting study was published by Mervyn 

et all. [37]: they extracted features after computing EEG spectrum by using a Fast Fourier 

Transform (FFT) and a Hann window, with an overlapping of 50% and the features 

extracted have been used as inputs for a Support Vector Machine (SVM) classifier. 

Instead, in our case, a FFT with a Bartlett window and an overlapping of 50% has been 

chosen in order to extract features to give in input to an Artificial Neural Network (ANN) 

classifier. 

In addition, some of the features computed by Mervyn et all. have been used in this work 

in order to extract information from EEG signals. In particular, dominant peak and the 

related dominant frequency have been considered. For more details about the way of 

computing them, see [37] and reference therein.  

Another approach that has been included in this study is the parametric analysis: it consists 

in expressing the spectrum of the signal as the spectrum of the output of an LTI system that 

receives in input a white noise process. In this case, problems related to spectral leakage 

and statistical consistence are overcome. In reverse, a higher computational cost is 

required, due to the individuation of the right order of the model, the choice of the right 
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model family and the computation of the coefficients of the model, from which the real and 

proper spectrum is computed. Normally, for EEG analysis, AR or eventually ARMA 

models are preferred.  

Historically, the first application of the parametric approach to EEG signals is associated to 

Isaakson, who investigated most of the factors that can cause EEG spectral variations (age, 

mental state, region of the brain, influences on the brain, disturbances), by employing 

multi-variable parametric analysis. In particular, he firstly discriminated changes in the 

EEG, according to several conditions of vigilance such as wakefulness, drowsiness, sleep 

[68,69]. 

Thereafter, Cerutti et all. employed multi-variable AR approach for the computation and 

coherence analysis in order to study synergy between locally active cortical areas in the 

brain, after applying a combination of visual and somatosensory stimulation [72]. In 

particular, they analyzed electrical potentials from four experimental conditions: closed 

eyes without stimulus through (EEG), visual stimulus (VEP), somatosensory stimulus 

(SEP), visual and somatosensory stimulus (mix). The use of multi-variable AR approach 

resulted to be really useful because of its ability to process short-length data series, 

especially for stimulus-related potentials [72].  

Some studies have been realized in order to compare results coming from both the non-

parametric and parametric methods. Akin et all. [17] realized a research similar to the one 

developed in this work of thesis. Indeed, they tried to apply periodogram and AR spectral 

analysis to EEG signals, in order to compare their performances, concluding that AR 

models allow gaining clearer spectra, useful for clinical purposes as well. Another study of 

the Indian Institute of Science [55] has proposed a different way of employing AR spectra-

based concepts. Starting from the observation that the energy in the EEG data segment is 

concentrated somewhere in between the initial and the final positions, they exploited least 

squares waveshaping filter in order to identify the position where the energy is 

concentrated. The knowledge of this position can be used in making a better spectral 

estimation of short segments of EEG data. In addition, they showed that the performance 

of such method and conventional AR method become comparable as the length of data 

segment increases.  

More recently, new methods of EEG analysis have been experienced, aiming to get better 

and better performances, such as the “singular spectrum analysis” approach. It has been 
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originally employed for climatic, meteorological, geophysical time series analysis. 

Thereafter, it has been successfully applied to medicine and engineering as well. 

According to such promising characteristics, also SSA has been developed for features 

extraction in this work.  

The debut of SSA is usually associated with Broomhead and King’s work [19]. The 

fascinating aspect of this method is the fact that neither hypothesis for a parametric model 

or stationarity conditions have to be assumed so it can be considered as a model-free 

technique. SSA proposes to decompose the original series into a sum of a few components: 

a slowly varying trend, oscillatory components and the background noise. It is based on the 

singular-value decomposition (SVD) of the matrix constructed upon time series and it 

finally leads to reconstructed signal that can be considered as filtered version of the 

original one. This method applies a sort of adaptive filter to the time series. Since there are 

several papers published on methodological aspects and applications of SSA, it is 

suggested to see [19-27] and references therein for more information.  

Many researchers have employed SSA for EEG analysis. Aydın  et all. [23] have applied 

SSA on EEG signals in order to analyze sleep in patients with insomnia or paradoxical 

insomnia. The resulting singular spectra computed for both C3 and C4 recordings were 

given as input features to an Artificial Neural Network (ANN) for EEG classification. The 

sleep stages that the classifier had to distinguish were “awake”, “REM”, “stage1” and 

“stage2”. Three clinical groups have been successfully classified by using the 

corresponding singular spectra. The results confirmed that the SSA can be applied to sleep 

EEG series for researching about insomnia, if ten trials are available for the specific sleep 

stages. In addition, another interesting study has regarded the field of readiness potentials 

identification, by applying SSA [27].  They used an approach similar to the one developed 

in this work of thesis, with interesting results. Differentially from the previous article, 

where singular spectra have been directly assigned as features to use as input for a 

classifier, in this case singular spectra were employed in order to individuate the principal 

components more able to explain the most variance of the signal. Instead, the remaining 

ones were associated to noise and therefore excluded. Starting from principal components, 

signals for each frequency band were obtained and in addition a filtered new signal was 

computed as well. It aimed at individuating the different stages during a motor program: 
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preparation, execution and post-movement. The results of this work were promising so that 

we developed a similar strategy, as regards this method.   

From the results of previous studies in drowsiness detection, it emerged that there are 

particularly powerful features to employ in order to extract meaningful information from 

EEG signals. Several studies proposed to monitor some ratios between different EEG 

power bands. Hong J. Eoh et all. [5] studied  drowsiness resulting from sleep deprivation, 

in simulated driving. They suggested to monitor the following ratios: the ratio between the 

alpha activity (8-13 Hz) and the theta activity (4-8 Hz) on the beta activity (13-22 Hz), that 

is [(alpha+theta)/beta]; the ratio of beta activity on alpha activity. EEG α, β, β/α and 

(α+θ)/β indices resulted significantly different for the several tasks. In addition, they 

analyzed EEG variations before and after car accidents, showing that β and (α+θ)/β were 

related to alertness. Finally, θ burst activity, which did not result significant in the mean 

power analysis, was instead significantly different between driving sessions. 

According to what learnt from the literature, the following features have been considered 

in this work: 

 the ratio of alpha on beta activity, 

 the ratio between alpha and theta activity on beta activity [2, 5, 7 ], 

 the percentage power in each frequency band [1, 7, 8, 38], 

      
  

    
 , for each frequency band [38],  

 dominant peak and dominant frequency [37] . 

In this work the capacity of each extracted feature to distinguish different vigilance states, 

method by method, has been investigated by means of non-parametric statistical tests 

(Kruskal-Wallis test). It emerged from literature that when there is no assumption of any 

probability distributions, it is opportune to use a non-parametric statistical test. In addition, 

since in the current dataset the size of the groups to classify was different, a Kruskal-Wallis 

test has been chosen, according to the literature.  

Differently from Mervyn et all. [37] that have employed an SVM, this work aims at 

classifying three different classes therefore it is more appropriate to use an Artificial 

Neural Network (ANN) that is able to classify more than two classes. k-Cohen coefficient 

is usually known to provide a measurement of the degree of accuracy and reliability of a 

classification [56]. Therefore, it is employed to compare performances of each method.   
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In conclusion, this work combines features from other studies that resulted to be 

significant, with new ones here developed. In particular, these new ones will regard 

smoother AR spectra: features conceptually similar to dominant peak and frequency 

(above-commented) but more suitable for AR spectra are computed, as it will be discussed 

in the next chapters. A statistics-based features selection follows. Then a comparison 

among different spectral approaches is performed in order to state which one can lead to a 

suitable set of features to classify wakefulness, transitional state and drowsiness, in 

reaction time tests.  
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2. Objectives of the work 

This thesis aims to detect drowsiness in subjects that have performed three reaction time 

tests, by extracting appropriate features from electroencephalographic (EEG) signals 

through three different approaches.  

The second purpose is to compare performances of the three developed methods in order to 

state which one is more able to provide good features.  

Finally, the third goal is to evaluate if the employed protocol is suitable or not to detect 

drowsiness and, in particular, if the collected data are adherent to the aim of this work.  

 As regards the first objective, it was thought to investigate the response of a tester to a 

stimulus appearing on the screen of a computer and lasting 400 msec. During these tests, 

some data (per minute of test) like mean reaction time, number of lapses, number of no 

reactions and others have been recorded in order to label each minute of test. In the 

meanwhile, polysomnographic signals (EEG, ECG, EOG, EMG) have been acquired and 

among them electroencephalographic signals (EEG) have been considered to perform 

drowsiness detection. 

In order to detect drowsiness, it was thought to develop more methods and then to compare 

their performance in terms of features discriminant capability. More specifically, three 

methods have been implemented: non parametric analysis (Fourier Transform-based), 

parametric analysis (AutoRegressive modelling) and singular spectrum analysis (SSA), 

characterized by different advantages and disadvantages, and from each of them some 

features have been extracted. 

We then used a statistical test to evaluate how each extracted feature allowed to correctly 

classify a minute of test among the three considered classes. This test has been employed 

for all the features extracted by each method. 

Once the best features have been individuated, they were pre-processed in order to make 

them suitable as inputs to a classifier, which should automatically recognize to which class 

each minute belongs.  

Then, according to the second aim declared, K-Cohen coefficient has been used to 

compare performances and select one method.  

Finally, the features, identified as the best ones and belonging to the best resulted method, 

have been evaluated from a physiological point of view in order to verify if they explained 
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a certain behavior of the current tester, in a coherent way with the associated labels. This 

evaluation, carried out for all the subjects, has allowed to answer to some questions about 

the goodness of the chosen and employed protocol: did the idea of performing three 

different reaction time tests, under different wakefulness/drowsiness conditions, lead to a 

real discrimination among these different states?  Did all the subjects answer in a way that 

allows to correctly distinguish among the three different conditions of test or the 

distribution of labels, according to reaction time data, and the features are not so coherent 

with what expected? 

Results from this last survey made possible to individuate which subjects have well mirror 

the aim of the protocol and so the aim of the work.    
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3. Materials and methods 

In this chapter the protocol through which it has been possible to collect data, the 

processing chain of the available data and finally all the employed, chosen and 

implemented methods are described. For any details, it is suggested to consult the 

correspondent appendix section, if it is present. 

3.1 Experimental protocol 

All the experimental data used in this work have been collected in the Laboratory 

“INTELSIG” of the Department of Electrical Engineering and Computer Science (Institute 

Montefiore), of the Faculty of Applied Science of the University of Liège, in Belgium. 

Experiments have been performed on 21 subjects, 9 males and 12 females, in an age range 

between 19-32 years (mean age 23.9) and in good health. For the selection of the 

participants, the following exclusion criteria have been fixed: alcohol or drugs addicted, 

regular smokers, recently medicated people or medical drugs consumers during the 2 

weeks before the test, changing schedule workers, people with sleep disorders, with jet lag 

in the 2 weeks before the test, with the requirement of wearing glasses for driving  

(wearing contact lenses was allowed), with skin allergies related to cosmetics or lotions.  

Before describing the protocol, it must be said that it was asked to participants to not take 

any stimulants (coffee and tea) from 6:00 pm of the first day until the end of the last 

reaction-time test on the second day. 

Subjects were supposed to perform three visual reaction-time (RT) tests, each lasting 15 

minutes, over two days. 

After a normal night of sleep, each subject realized the first reaction time test (RT1) 

between 8,00 am and 10,00 am on the first day. 

Then, the subject wore an actimetry sensor, in order to monitor her/his sleep/awake cycle 

but was free to carry out daily activities, until 11,00 pm when the subject came back to the 

laboratory. During that night, the subject was not allowed to sleep and she/he no longer 

wore the actimeter. On the second day, the subject performed the second RT test (RT2) 

between 2,00 and 4,00 am and, after having breakfast, she/he performed the third and last 

RT test (RT3) between 11,00 am and 1,00 pm. 
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As regards the execution of each test, the participant sat in front of a computer. Throughout 

the whole test, a large number of stimuli was randomly presented to the volunteer on the 

screen of the computer. Each stimulus lasted 400 msec and the subject was supposed to 

react to each stimulus by clicking on the mouse of the computer as quickly as possible after 

having detected the onset of the stimulus.  

During each test, images of the eye, reaction time data and polysomnographic signals 

(ECG, EEG, EOG, EMG) have been recorded. These last ones have been collected through 

EMBLA titanium™ (Figure 3.1), a wireless PSG diagnostic amplifier with an integrated 

LCD screen for signal display, impedance checking and patient data entry.  

 

 

Figure 3.1: EMBLA titanium™ device allows to get signals (EOG, EMG, ECG, EEG) from 9 different 

channels. 

The electroencephalographic (EEG) signals have been acquired with a sampling frequency 

of 512 Hz through electrodes Ag/AgCl disposed on central, frontal and parietal regions, 

C3, C4, Cz, Fz, Pz respectively, plus an electrode at the earlobe as reference and a ground 

electrode, placed according to the standard traditional 10/20 system as it is indicated in the 

Figure 3.2 below. 
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Figure 3.2: standard traditional 10-20 system scheme. The red circular frames indicate which channels 

(C3,C4,Cz,Fz,Pz)  have been considered in this work and red arrows specify the point of view of the piece of 

the image. The letter “z” is referred to electrodes on the midline, odd numbers to left side of the scalp and 

even numbers to right side of the scalp. 

According to the number of stimuli per minute, reaction time data were computed:  

- Mean reaction time =  
∑                  

                 
⁄  

- Number of “lapses”  (lapse: 500 msec ≤reaction in a time ≤ 2 sec or totally absent) 

- Mean number of “lapses”  =  
∑                  

                 
⁄  

- Number of “no reactions” (no reaction: reaction totally absent) 

- Mean “no reaction” =  
∑                      

                 
⁄  

Finally, each minute of test has been labeled as “DROWSY”, “TRANSITION” or 

“ALERT”, exploiting information coming from reaction time data. In particular, the 

number of lapses and the mean reaction time have been used to assign one of the three 

labels to each minute of test as follows: 

  if a lapse was detected in a minute of test, that minute was labeled as “drowsy”; 

 if no lapse occurred, two cases were possible: 

o the mean reaction time was greater than 400 msec and smaller than 500 msec 

then the minute of test was considered “transition”; 

o otherwise, if the mean reaction time was equal or smaller than 400 msec, the 

minute was fixed as “alert”. 
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The whole dataset, got by merging all the data from the three reaction time tests of the 21 

subjects, is composed of 812 examples (that is [(21subjects *3 RTs)-5excluded tests]*14 

minutes of tests). Five tests, indeed, have been excluded because there were some 

problems to access to their contents while working in MATLAB
®
.   

According to the above-mentioned way of data labeling, the following repartition of 

dataset into the three categories has come up: 60 cases of “drowsy”, 404 cases of 

“transition” and 348 cases of “alert”.   

 

3.2 Signal processing chain 

A block scheme of the general strategy developed to extract information from the EEG 

signals is represented in Figure 3.3. It aims to discriminate drowsiness from the other two 

states of mind (alertness and transition) through features extraction and to verify if the 

protocol employed is suitable or not for this purpose. 

The below-mentioned “raw” electroencephalographic signals, that are the signals acquired 

during a single reaction time test, have been loaded in MATLAB
®
 using the SPM toolbox, 

well suited to manage multichannel acquisition. Each box that appears in the scheme will 

be more detailed in the next paragraphs. For each channel (C3, C4, Cz, Fz, Pz), the 

following processing chain has been run. 

 

 

Figure 3.3: signal processing chain of the work 

3.2.1 Signal pre-processing 

The original signal has been firstly pre-processed before starting with the true and proper 

analysis in the frequency domain. The pre-processing phase includes the following 

operations: 

- signal mean value removal 

- signal pass-band filtering in the range of [0.5,35] Hz in order to eliminate the DC 

contribute (already drastically reduced through mean value removal) and very low 
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frequency contribute not of interest for this work, noise due network interference. It 

has been performed through a band-pass Butterworth filter of 5
th

 order so that it is 

possible to get the flattest frequency response amplitude in the passing band and 

monotonicity in the passing and stopping bands as showed in Figure 3.4. 

 

Figure 3.4: an example of frequency response amplitude in passing and stopping band 

 

- zero-phase filter obtained by processing data in both the forward and reverse 

directions, in order to eliminate problems related to the phase distortion (caused by 

Butterworth filter): after filtering the signal in the forward direction, this filter 

reverses the filtered sequence and runs it back through the filter, leading to zero-

phase distortion and a filter order that is double the order of the previous filter  

- signal resampling from the original sampling frequency of 512 Hz to a more 

appropriate frequency of 80 Hz because, according to Shannon’s theorem, this is a 

little greater value than the double value of the maximum frequency content of the 

signal. 

The Figures 3.5 and 3.6 show results from the above-said pre-processing operations. In 

particular, since it is more difficult to individuate the frequency components by looking at 

the signal in the time domain,  it is better to focus on the Figure 3.6. It shows, at the top of 

the image, the spectrum of the original signal and its filtered version and the bottom 

graphic contains the resampled signal. One can easily see, on the top, a resetting in the 
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power value outside the range of interest and, at the bottom, how the frequency content 

changes after resampling with respect to the over standing graphic.  

 

 

Figure 3.5: a piece of an EEG signal (channel Fz) in frequency domain, for a duration of 60 sec. The plot on 

the top of the figure represents the original signal in blue and the filtered one in red; at the bottom of the 

figure, the green trace is the resampled signal. The signal belongs to subject 14 in RT3.  
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Figure 3.6: a piece of an EEG signal (channel Fz) in time domain, for a duration of 60 sec. The plot on the 

top of the figure represents the original signal in blue and the filtered one in red; at the bottom of the figure, 

the green traces is the resampled signal. The signal belongs to subject 14 in RT3. 

3.2.2 Spectral analysis 

The spectral analysis (Appendix B) is used to estimate the power spectral density (PSD). It 

can be executed using several approaches and different methods per approach.  

The spectral analysis provides a trustable estimation if the property of stationarity of the 

signal itself is guaranteed. Consequently, once the pre-processing phase has been 

completed, the signal has been divided into 14 epochs of 1 minute in order to favor the 

stationarity, to make the signal more suitable for the subsequent processing steps and to 

have a correspondence between labels per minute of test and epochs of signal. 

Three different approaches have been considered and developed to perform the analysis in 

the frequency domain and to compute power spectral density (PSD) of the EEG signals: 

non parametric, parametric and singular spectrum analysis. 
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Non parametric spectral analysis  

The non-parametric analysis is based on the usage of the Fourier Transform. It leads to an 

estimation of the Covariance of the process under analysis, or equivalently  its spectrum, 

according to the theorem of Wiener-Khinchin. 

First of all the signal has been converted from the time domain into the frequency domain 

using the Fast Fourier Transform (FFT) algorithm. 

In order to determine the number of points to use to compute FFT, the next power of 2 

greater than the length of the signal (80Hz * 900 sec) has been selected. The traditional 

way of computing the spectrum estimator is the periodogram, that is the squared module of 

the FFT of the signal normalized for the number of points, as below: 

 ̂     
 

  
|    |  

As well-known, the big limits of the periodogram are due to the large variance of the 

estimator: it is not statistically consistent, that is it doesn’t converge to the real spectrum 

for growing N to infinity. 

The Welch method has been chosen to perform non parametric spectral analysis. It is an 

improvement of the traditional periodogram spectral estimation because it overcomes 

problems due to imperfect and finite data. It consists in dividing the signal into K smaller 

segments of M samples per segment. K periodograms (one per segment), mutually 

independent, are computed and a triangular Bartlett window is applied to each subsequence 

so as K modified periodograms are obtained as follows: 

  
       

 

  
  |∑                (

     
 

)

   

   

|

 

        

where         is the signal, w(n) is the window and U is a normalization factor so that the 

final spectrum estimator     , that is then defined, results asymptotically unbiased. The 

factor U is so defined: 

   
 

 
 ∑      

   

   

 

 

Finally, the spectrum estimator is obtained by averaging on the K modified periodograms 

as below-indicated:  
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 ∑  

    

 

   

  

The problems related to spectral leakage, because of lateral lobs in the spectrum that 

modify the frequency content, and frequency resolution, limited by the number of point 

used for the FFT, are partially overcome applying a triangular Bartlett window long 1/4 of 

the length of the signal. In addition, an overlapping percentage of 50% between adjacent 

sections of signal has been set. Finally, the Power spectral density (PSD) of the signal and 

a vector of frequencies as long as the PSD were available.  

As emerged from literature, the frequency content of interest in the EEG, in order to 

discriminate alert-transition-drowsy from a physiological point of view, goes from 0.5 Hz 

to 35 Hz. The range 4-30 Hz has been preferred and it corresponds to three different 

frequency bands that are respectively theta (4-8) Hz, alpha (8-13) Hz and beta bands (13-

30) Hz. This last band can be further divided into two sub-bands called slow beta (13-18.5) 

Hz  and fast beta band (18.5-30) Hz.  

Delta band (frequency < 4Hz), that is the rhythm of 3
rd

 stage of sleep and is characterized 

by a tension voltage of 150 μV, has been excluded from this analysis. We observed that the 

voltage value, much larger than the ones related to the other frequency bands, could risk to 

mask the information from the other three bands, more interesting for the aim of this work.   

Coherently with the literature, it has been assumed that the beta band is associated to 

alertness and vigilance because the beta rhythm is generally predominant when a subject is 

performing whatever cerebral activity with wide open eyes. This state of mind is normally 

referred as “arousal” as well. From the point of view of the signal frequency content, it 

means a faster rhythm in the trend of the signal that corresponds to a frequency range of 

[13-30] Hz and a mean value, in terms of voltage, around 8-19 μV.  

As regards alpha and theta bands, they are supposed to be related respectively to 

wakefulness but with closed eyes and to the first minutes of falling asleep, deep relaxation, 

problem solving. Both of them are characterized by a greater mean voltage tension (30 and 

75 μV respectively) than in beta band,  due to the synchronization level of neurons. 

Consequently, these two frequency bands are assumed to be related to drowsiness.  

So said, the PSD related to each frequency band (theta, alpha, beta) has been extracted 

from the total PSD as it is visible in Figure 3.8. They will be used then for features 

extraction that will be explained in next paragraph. 
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Figure 3.7: non parametric PSD belonging to subject 14 in RT3, at the 7
th

 minute of test, from Fz channel. 
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Figure 3.8: PSD related to theta, alpha, beta bands respectively from the top towards the bottom. The signal 

belongs to subject 14 in RT3 at the 7
th

 minute of test, from Fz channel. 

The whole algorithm just explained has been applied to the 14 epochs of signal, subject per 

subject and test per test. At the end, the non-parametric spectral analysis on the whole 

dataset has been run.  

Parametric spectral analysis 

The parametric analysis has been considered as a second alternative approach, in order to 

be able to compare the performance of different methods, in terms of extracted features, 

and to verify which one leads to the best features for a good discrimination among 

alertness, transition and drowsiness. 

It differs from the non-parametric one because it solves the above-mentioned limits but 

with a heavier computational cost. Parametric approach comes from the concept that a 

certain process generates the time series under analysis. More specifically, its power 

spectrum can be computed as the power spectrum of the output signal of a LTI system that 

receives in input a white noise process (Figure 3.9). That is because the power spectrum of 
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a white noise (the variance of the process) is unitary and so the power spectrum of the 

output is the squared module of the frequency answer of a system that should be able to 

represent the signal of interest, if correctly implemented. 

 

 

Figure 3.9: model of a signal generated by a system receiving in input a stationary white noise WN(0,σ2), 

with null mean value and standard deviation σ2. The system is completely described by its transfer function. 

It is preferable to take into account the properties of the signal when the family model is 

chosen. For instance, an Auto-Regressive (AR) model is appropriate for a signal containing 

sudden peaks in frequency spectrum. On the contrary, Moving Average (MA) model is 

used for signals that have no sharp peaks. If the information about the signal is not 

available to take a decision, the Autoregressive Moving Average (ARMA) model can be 

used for both cases.  

As regards EEG signals, AR and ARMA models are preferred because their structure 

consists of peaks at discrete frequency intervals. In this study, AR model has been 

employed because it has more advantages than ARMA in terms of computational costs.  

According to the AR model, the amplitude of a signal at a given instant can be obtained by 

summing up the different amplitudes of previous samples. The relationship between the 

input and the output of the above-mentioned system, shown in Figure 3.9, can be written 

with the formula below: 

      ∑             

 

   

 

where w(n) is a white noise of variance σ
2
 and null mean value. The optimum order p of 

the AR model has been individuated according to the Akaike information criterion (AIC): 

             
      

Then, the Anderson’s whiteness test was also realized on prediction error. This test 

involves to check if the prediction error results to be white and so if its autocorrelation 

function (ACF) is maximum at lag=0 and around zero elsewhere. If the order suggested by 
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AIC does not satisfy the condition of the Anderson’s test, the order needs to be 

incremented until the residual error becomes white.  

It is necessary to pay attention not to increment too much the order to avoid the problem of 

overfitting. In this case, indeed, even if the model seems to replicate perfectly the signal, it 

risks to lose its capacity of generalization and the model comes up to be inadequate. 

By summing up all the squared values of the prediction errors on the N samples of the 

signal, a “cost function” called J can be obtained: 

   ∑      
 

   

 

This figure of merit is a function of the coefficients of the model so that the coefficients are 

determined through Yule Walker’s equations that are based on the minimization of the 

function J using Levinson-Durbin recursion. 

Once the estimated coefficients  ̂  of the model have been determined, that are as many as 

the order of the model, it is possible to compute the power spectrum (Figure 3.10) of the 

signal, as in the following formula: 

 ̂ ( 
   )       | (    )|

 
  

   

|   ∑          
   |

 
 
 

where    must be substituted with J and    with the above-mentioned estimated 

coefficients  ̂ ; T is the sampling period of the signal.  
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Figure 3.10: AR parametric power spectrum belonging to subject 14 in RT3, at the 7
th
 minute of test, from Fz 

channel. 

It is also possible to perform a so-said “spectral decomposition” of the spectrum of the 

process by exploiting the poles of the model and their phases.  

In particular, the module and the phase of each pole of the spectrum of the process 

represent the information of the spectrum at a certain frequency. Therefore, it is possible to 

exploit the phases associated to poles in order to individuate the frequency range related to 

each frequency band and the module in order to get the amplitude of the spectrum at that 

frequency. This strategy has been used, as explained later, for features extraction. 
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Figure 3.11: an example of z-plane with poles represented in the circle with unitary ray from the power 

spectrum of subject 14 in RT3 at the 7
th

 minute (EEG from channel Fz).  

After the complete identification of the model (involving the choice of the model family, 

its order and the computation of its coefficients), the spectrum of each frequency band 

(Figure 3.12) has been defined just as for the non-parametric analysis. 

All the operations described until now have been run for all the 14 epochs of the signal 

considered, subject per subject and test per test, with the final goal of analyzing the whole 

signal and better detecting its dynamics. 
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Figure 3.12: power spectrum related to theta, alpha, beta band respectively from the top to the bottom. The 

signal belongs to subject 14 in RT3 at the 7
th

 minute of test, from Fz channel. 

Singular spectrum analysis 

The third method implemented to perform spectral analysis is called “Singular spectrum 

analysis” (SSA). This is a technique used for time series analysis and forecasting and it 

results from a combination of classical time series analysis, multivariate statistics, 

multivariate geometry, dynamical systems and signal processing.  

It aims at decomposing the original series into a sum of a few components that represent 

the main content of the signal such as a slowly varying trend, oscillatory components and 

the background noise. It exploits the advantages of both singular value decomposition 

(SVD) and principal component analysis (PCA). SSA is characterized by the fact that 

neither a parametric model or stationarity hypothesis are assumed for the time series so it is 

a model-free technique. 

The reason why SSA has been employed is to extract monocomponent signals, each of 

whom should be related to a certain frequency band according to the frequency content of 

the several epochs of signal. In this way, it is possible to detect changes in the power 
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spectrum for each frequency band more easily. For example, for a subject that was really 

drowsy during a certain minute of test, a decrease or even null value of the amplitude of 

the power spectrum in beta band is expected; on the other side, power spectrum in alpha or 

theta band should have increased.  

The SSA algorithm can be summarized in 2 principal operations that are the 

“decomposition stage” and the “reconstruction stage”, each of whom consists of other two 

sub-steps for a total of 4 main passages: 

1) Decomposition stage 

1.1 Embedding step 

The one-dimensional series is embedded into a multidimensional series (lagged vectors) 

whose dimension is called “window length” L. The multidimensional time series, which 

has become a sequence of vectors as long as the window length, forms the so-called 

“trajectory matrix” D. The only parameter to determine at this step is the window length L 

which is really important for the frequency resolution. In fact, L is linked to the frequency 

by the relationship: 

   
  
 

 

Since the sampling frequency    is 80Hz, L has been chosen equal to 20 in order to have a 

frequency resolution of 4Hz. 

If 1 < L < N, where N is the length of the signal, the embedding step creates K=N – L+1 

lagged vectors: 

                  
        

where    have dimension equal to L and it is L-lagged. The trajectory matrix is obtained 

from the sequence of the    vectors:  
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The trajectory matrix is characterized by having equal elements on the diagonals i+j = 

const. and so it is a Hankel matrix. 

Then, the real and proper trajectory matrix has been computed and the corresponding 

covariance matrix C has been obtained as: C = D * D
T
.
  

1.2 Singular value decomposition (SVD) 

The result of this step is the SVD of the trajectory matrix D, but as we have fixed C as the 

covariance matrix, it is easier to compute its eigenvalues and eigenvectors.           is 

the notation of the eigenvalues considered in a decreasing order of magnitude so as 

             and           the notation of the orthonormal system of the 

eigenvectors corresponding to the eigenvalues of the matrix C.     

By computing the percentage of the norm of the trajectory matrix retained as the ratio  

  

∑  
     , it is possible to visualize the number of eigenvalues that are able to explain the 

variance of the process for less than 5%, or more. 

The graphic in Figure 3.13 shows the plots of the singular spectra as a function of k =1..L, 

computed for L = 20 at C3 for subject no. 14. The end of the step decay has been 

considered as “statistical dimension” S and it could be seen that the flat floor part is 

reached for k ≤ 6 and varies with the window length L [27]. After the step decay, it is 

assumed there is the background noise so, by considering just the first 6 components, the 

significant part of the signal can be distinguished by the noise [27].  
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Figure 3.13: percentage of the norm of the retained trajectory matrix (y axes) in function of the number of 

eigenvalues k (x axes). For k = 6 (signalized by the dotted red line), it can be possible to explain a 

variance≥5%. 

2) Reconstruction stage 

2.1 Grouping step 

Once the number of eigenvalues, k, is determined and starting from the eigenvectors, it is 

possible to compute the principal components of the signal by projecting the signal on the 

eigenvectors system as         , with 1 ≤ i ≤ k. 

The power spectrum of each principal component has been computed by using a non-

parametric approach (Welch method). Initially a parametric AR spectrum had been also 

considered but it was actually excluded as it was a redundant approach: both SSA and AR 

analysis allow to perform a sort of spectral decomposition with the final goal of extracting 

single components from the spectrum of the process.  

Also in this case, a Bartlett window and a percentage of 50% have been applied to compare 

methods performances under the same conditions and choices. 

 



56 

 

 

Figure 3.14: example of PSD with Welch method on the top of the image and time domain signal on the 

bottom for a principal component (PC). Both the two signal are related to an EEG signal from subject nb. 14, 

in RT3. 

Then, the indexes of the principal components related to each frequency band have been 

searched by checking if the dominant frequency in the spectrum of each principal 

component belonged to one of the frequency ranges (4,8)Hz or (8,13) Hz or (13,30)Hz 

respectively for θ,α, β band. 

2.2 Reconstruction step 

According to the indexes found with this method, a new signal composed of all 6 principal 

components and a signal for each frequency band, which is the sum of the k components 

individuated, have been computed (Figure 3.15) as follows: 
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Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. A. (2010). Analysis of time series 

structure: SSA and related techniques. CRC Press. [20] 

 

The procedure above is necessary in order to bring back the neo-computed signals (Figure 

3.15 and 3.16) to the real time-scale. Indeed, before that, the signals are not of the length of 

the original signal but as K (=N-L+1). As regards the new signal, it represents a filtered 

version of the original one that should be cleaned of the noise as much as possible. 

 

 

 

Figure 3.15: reconstructed time series and monocomponent signals respectively for θ, α, β band in a 

particularly drowsy epoch for the subject no. 14, RT3. It is clearly visible how the signal in the alpha band is 

detectable while it is absent in beta band. 
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Figure 3.16: PSD of the reconstructed signals (the new filtered signal, and θ, α, β band signals) for a 

particularly drowsy epoch for the subject nbr. 14, RT3. It is even more visible how the frequency content in 

the alpha band is detectable while it is absent in beta band. 

3.2.3 Features extraction 

The features chosen to be extracted from EEG to detect drowsiness are:  

- percentage power (P%) in each frequency band computed as: 

     
    

      
             θ         

-      
   

     
  

- the ratio between alpha PSD and beta PSD:  
  

  
 

- the ratio between PSD in low frequency (LF) band and high frequency (HF) band: 

      

  
 

- dominant frequency and dominant peak for each frequency band and for the 

whole range. 

0

100

200
u

V
2
/H

z
Spectra vs Freq

 

 

Reconstructed signal

-1

0

1

u
V

2
/H

z

 

 

Theta Spectrum

0

10

20

u
V

2
/H

z

 

 

Alpha Spectrum

0 5 10 15 20 25 30 35 40
-1

0

1

u
V

2
/H

z

Frequency [Hz]

 

 

Beta Spectrum



59 

 

All those features, above defined, have been extracted for all the five EEG electrodes, so a 

total of 80 features (16 features per channel) are available. 

While the features related to the PSD in the band have been computed in the same way for 

all the methods, the last two ones (dominant frequency and dominant peak) have been 

extracted essentially in two different ways depending on whether a non-parametric method 

or a parametric approach was used. 

As regards the non-parametric approach, the following reasoning has been developed:  

1. peaks have been searched in the PSD of the whole range and of each band and 

their PSD is referred as “     ” 

2. full width half maximum (FWHM) band of the peak have been defined by a 

minimum and a maximum value, found through the two frequencies associated to 

the corresponding value    on the ordinate axes according to the following 

disequation:               on the rising slope and the falling slope 

3. the average among all the    included in the so-individuated FWHM has been 

computed for each peak 

4. among all the peaks, the peak with the largest average power in its FWHM band is 

the dominant peak 

5. the corresponding frequency is the dominant frequency 

Some observations must be done: at the beginning (the end) of the spectrum, this algorithm 

is not able to find a peak, as usually defined, so the peak has been forced to be the first (the 

last) value of the spectrum. 

In addition, it can happen that no peak is detected:  

 in this case, if the signal was flat, that is the minimum and the maximum value of the 

spectrum coincided, no dominant peak and dominant frequency have been defined 

(signed as NaN); 

 otherwise, the dominant peak has been forced to be the maximum value of the 

spectrum and the corresponding frequency is the dominant frequency. 

The algorithm described until now has been used for both the non-parametric analysis and 

the SSA with non-parametric spectra. In particular, for this last case, another check must 
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be done because it can happen that no signal, in a certain frequency band, was detected and 

so it was consequently impossible to define dominant peak and frequency. 

For what concerns the AR spectra, dominant peak and dominant frequency have been 

extracted exploiting poles and their phases as said before, in the previous paragraph. For 

the sake of simplicity, the following dotted list summarizes what has been done: 

1. poles and the corresponding phases (the angles) have been computed starting from 

the AR model identified from time to time    

2. each frequency band has been defined using the angles associated to the poles, 

like small slices on the unitary circle 

3. the pole with the largest module has been defined as the dominant peak 

4. the corresponding frequency has been fixed as the dominant frequency  

Also in this case, an observation must be done: if no poles were detected, no dominant 

peak and dominant frequency have been defined (signed as NaN). 

Generally, the case when dominant peak and dominant frequency could not be defined is 

really delicate, especially for the dominant frequency. Indeed, if you think to indicate with 

a zero value, for example, the absence of dominant frequency for a certain epoch, that is 

not possible and the reason is clear: in the frequency domain, the null value has a precious 

sense, it is indeed related to the DC (direct current) contribute.  

As concerns the next statistical analysis, the features values exactly as they are (included 

the NaN values) have been used while for the employment of those features in a classifier, 

the absent values have been substituted with the median value of the feature for each set of 

14 epochs of signal, as it will be explained then. 

3.2.4 Statistical analysis  

A preliminary analysis of the content of the 80 features has been run through ROC curves. 

Features have been normalized by subtracting their minimum value and dividing by the 

maximum value in order to make each feature belonging to a more manageable range [0,1]. 

In addition, ROC curves have been constructed by defining cut-off step according to the 

size of each feature per class, because it strongly depended on which feature was being 

analyzed. Finally the significance level has been set to 95%. 
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The test has been run in two ways depending on whether it is used to compare one class 

against another one or one class against the combination of the remaining two classes. 

When a class was compared to another one, the three following combinations have been 

obtained: 

1. class 0 = transition epochs, class 1 = alert epochs 

2. class 0 = transition epochs, class 1 = drowsy epochs 

3. class 0 = alert epochs, class 1 = drowsy epochs. 

Obviously, for this case, the part of values in the dataset related to the excluded class has 

been eliminated. 

In the second case, these are these other three possible combinations:  

1. class 0 = transition epochs, class 1 = (alert epochs) + (drowsy epochs) 

2. class 0 = alert epochs, class 1 = (transition epochs) + (drowsy epochs) 

3. class 0 = drowsy epochs, class 1 = (transition epochs) + (alert epochs).  

For each combination tested and for each feature, the AUC (area under curve) has been 

used as parameter; more precisely, an AUC greater than 0.7 has been chosen as threshold 

to evaluate if a feature was good or not.  

A second statistic test has been run in order to check the capacity of classes discrimination 

of each feature. For this purpose, Kruskal-Wallis test, that allows to check if different 

groups come from the same probability distribution, has been employed. It has been 

chosen because it is a non-parametric statistic test and so it allows not to assume any 

specific probability distribution like for example the correspondent parametric test 

ANOVA. In addition, it is also able to manage groups with different sizes like in this case 

where the number of drowsy, transition and alert cases are totally different.   

The test has been run on the following six combinations. In particular firstly the test has 

been performed  in order to verify if features discriminated a class from another one like in 

the following list:  

- class 0 = transition epochs , class 1 = alert epochs 

- class 0 = transition epochs, class 1 = drowsy epochs 

- class 0 = alert epochs, class 1 =  drowsy epochs 
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Secondly, the test has been carried out in order to verify the capability of each feature to 

discriminate a class from the combination of the other two ones, like below: 

- class 0 = transition epochs, class 1 = (alert epochs) + (drowsy epochs) 

- class 0 = alert epochs, class 1 = (transition epochs) + (drowsy epochs) 

- class 0 = drowsy epochs, class 1 = (alert epochs) + (transition epochs) 

This second approach has been thought because it could happen that a class could be not 

able to discriminate two different states because of the numerosity of that class, but if 

combined with another one, its behavior could change. This strategy has been considered 

in particular in favor of drowsy cases that are less than the other two classes. 

As significance value, p-values of 1%, 5% and 10% have been firstly considered. Thanks 

to these two tests, with a particular attention for the last one, decisive for the individuation 

of the best features, it has been possible to individuate the features that are efficient to 

discriminate both the first and the second set of combinations. The selected features have 

been used for the subsequent classifier.  

3.2.5 The classifier 

The last step implies the use of a classifier in order to classify data according to the three 

classes. The classifier chosen is a feed-forward neural network, which will be more 

detailed then.  

Generally, in order to perform a good classification, three steps are necessary: pre-process, 

main process and post-process.  

In the pre-processing phase, data are prepared in a suitable way to be managed for the main 

process. A matrix of labels has been created putting in order alert, transition and drowsy 

cases: each column will contain binary decoding, assigning 1 to the current class and 0 to 

the others. Instead, for the matrix of features, it was created by putting aside the vectors 

associated to each feature, selected through the before-said statistical analysis, column by 

column.  

As concerns the main process, it consists of running the classifier itself. A feed-forward 

neural network, with a number of input neurons as long as the number of selected features, 

has been chosen. In addition, it was decided to employ one hidden layer composed of the 

same number of neurons as in the input layer. As activation function in this layer, a 
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sigmoid function was used and the algorithm for the training is the Levenberg-Marquardt 

method. Finally, the output layer consisted of three neurons, one for each class. 

The whole structure of the so-defined neural network can be seen in Figure 3.17. 

 

 

Figure 3.17: structure of the neural network with 11 neurons for the input layer and the hidden layer, 3 

neurons in the output layer, sigmoid function in hidden layer as activation function. 

Besides, it was thought to perform a 5-fold cross-validation in order to avoid problems due 

to the random initial conditions.   

This technique consists in dividing the dataset into a base of 5 subsets that are exchanged 

five times just as the number of times that the neural network is run.  

The whole dataset has been rearranged for a 5-fold cross-validation in order to have, more 

or less, the same distribution of drowsy, transition and alert cases in each subset. Going 

into more details, at each time that the neural network has been run, 80% of the dataset was 

employed for training and the resting 20% for testing. Each times, the repartition of subsets 

that contribute to the training set and the testing set changed until each 20% of the dataset 

is used one time in the training set and the other times in the testing set.  As evaluation 

parameter, the mean squared error, committed by the classifier, was chosen.  

Finally, the entire algorithm has been run 10 times more in order to moderate the effect of 

the random distribution of the dataset. 

Since the outputs of the neural network represent the probability of the value of each 

feature to fall into a class, they have been managed in order to express these values in 

terms of “0, 1, 2” (coding transition, alert, drowsy respectively) and compare them with the 

real labels. This procedure is necessary to produce a confusion matrix. 

The confusion matrix investigates the capability of the classifier in terms of specificity, 

sensitivity and accuracy; these parameters are obtained by computing the number of true 

positives rate and false positives rate. 
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True positives are data belonging to a certain class and correctly classified for that class; 

false positives are data belonging to a certain class but classified as belonging to another 

class. 

In addition, it is possible to get the misclassification rate of the classifier and plot the 

confusion matrix, for a faster panorama (Figure 3.18).  

 

 

Figure 3.18: an example of confusion matrix obtained through the so-explained procedure; numbers 1, 2, 3 

which appear on the matrix are associated in order to alert, transition and drowsy targets. 

It can be read in the following way: 

- each square represents the relationship between an output class and a target class: 

1 stands for alert, 2 for transition, 3 for drowsy  

- the numbers that appear inside each green frame on the main diagonal are the 

percentage of having correctly classified a class and the number itself of data for 

each class 

- outside the main diagonal there are the misclassified cases 

- the grey boxes are the precision and the recall: the precision is the percentage of 

data to belong to a certain class and correctly classified for that class; the recall is 
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essentially the TP (true positives) rate and that is the percentage of correctly 

classified; 

- the blue box is the whole accuracy computed as the sum of true positives and true 

negatives out of the total number N of cases. 

Once the confusion matrix was available, the K-Cohen coefficient has been used in order 

to compare features coming from the three developed methods (non-parametric, parametric 

and singular spectrum analysis).  

The K-Cohen coefficient is a statistic coefficient that evaluates the degree of accuracy and 

reliability of the classifier employed in this work. It exploits the confusion matrix because 

it is so defined:  

   
            

        
 

where Pr(a) represents the proportion of agreement and it is obtained by the ratio between 

the sum of the elements on the first diagonal and the total number of cases; Pr(e) is the 

“agreement expected just by chance” and it results from product between the sum of all the 

positive cases and the sum of the negative cases.  

Doing a 5-fold cross-validation repeated for 10 times, a vectors of 50 K-Cohen has been 

obtained; the mean value of such vector has been computed for each method (features for 

non-parametric, parametric, singular spectrum analysis) and this has been the final 

parameter used to realize a comparison among their performances. 

According to what k-Cohen has stated, a further analysis about which of the selected 

features has been run, subject per subject. In particular, 3 subjects have been taken into 

account because they were the most significant ones, inside the available dataset: they well 

adhere to the thought protocol and the aims of this work. However, all these aspects will be 

better commented in the next chapters.     
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4. Results 

In this chapter, results coming from the methods just explained in the previous chapter are 

presented. In particular, as declared in the section about the objectives of the work, this 

thesis aims to three specific goals: extracting features from EEG signals, comparing 

methods performances, validating the employed protocol and the physiological correlation 

of the selected features. 

4.1 Results from features extraction 

In this paragraph, results regarding features extracted through the three above-described 

different methods are presented. In particular, for each method, results obtained from 

spectral analysis will be firstly reported in order to make clear how features have been 

extracted. Secondly, results from statistical tests, performed in order to select the best 

features, will be shown and, consequently, the features chosen for each method will be 

declared. 

4.1.1 Spectral analysis 

Non-parametric spectral analysis 

The results reported in this paragraph have been obtained using Welch method. Taking into 

account that the sampling frequency is 80Hz, one epoch of signal lasts one minute, or 

equivalently it consists of 4800 samples. The signal, related to each of the 14 epochs,  has 

been divided into 4 segments and each segment has been multiplied with a Bartlett window 

as long as such segment (1200 samples), in order to moderate the effects of spectral 

leakage due to the rectangular windowing with the FFT computation.  For each epoch a 

PSD of the whole range of frequency [0.5,35]Hz and a PSD for each frequency band (θ, α, 

β) have been computed and the following features have been extracted from them: 

- percentage power (P%) in each frequency band computed as:  

     
    

      
             θ         

-      
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- the ratio between alpha PSD and beta PSD:  
  

  
 

- the ratio between PSD in low frequency (LF) band and high frequency (HF) band: 

      

  
 

- dominant frequency and dominant peak for each frequency band and for the 

whole range. 

These features in the dotted list are related to a single acquisition channel. Therefore, since 

EEG has been acquired though 5 different electrodes, overall 80 (16 x 5) features are 

available. 

The Kruskal-Wallis test allowed to examine all these features and to individuate which 

features better discriminated drowsiness, transition and alertness (Table 4.1). Indeed, as 

already said in the previous chapter, this is a non-parametric test that enables to compare 

the median value of different groups and to verify if they belong to the same probability 

distribution or to a probability distribution with the same median value.  
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LEGEND

p-value = 1% 

p-value = 5%

p-value = 10%

other

Nr. Features

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

1 PZ_(Pa/Pb) 0.170497 0.944885 0.399331 0.230851 0.148235 0.656334

2 PZ_(Pa+Pt)/Pb 0.808986 0.711840 0.808919 0.747463 0.876503 0.747879

3 PZ_Pt% 0.023134 0.014183 0.148126 0.006333 0.094774 0.039656

4 PZ_transf(Pt%) 0.031262 0.016817 0.148126 0.009118 0.117532 0.043073

5 PZ_Pa% 0.145451 0.527737 0.100146 0.266658 0.084227 0.252899

6 PZ_transf(Pa%) 0.094703 0.656158 0.115714 0.175045 0.057188 0.314521

7 PZ_Pb% 0.908598 0.351481 0.355786 0.709700 0.894648 0.336037

8 PZ_transf(Pb%) 0.737884 0.533824 0.394047 0.906857 0.604521 0.449576

9 PZ_freq_dominant 0.069169 0.106051 0.009766 0.251428 0.021955 0.032178

10 PZ_APDP 0.000018 0.235395 0.209357 0.000033 0.000030 0.958491

11 PZ_freq_dominantTHETA 0.288069 0.948161 0.531316 0.354757 0.265412 0.735306

12 PZ_APDP_THETA 0.000000 0.047932 0.000000 0.000000 0.000000 0.000123

13 PZ_freq_dominantALPHA 0.002222 0.260246 0.002373 0.016747 0.000428 0.036583

14 PZ_APDP_ALPHA 0.000025 0.611700 0.004076 0.000322 0.000006 0.095466

15 PZ_freq_dominantBETA 0.799509 0.321037 0.375195 0.607538 0.998180 0.328406

16 PZ_APDP_BETA 0.000009 0.130374 0.310249 0.000012 0.000022 0.727171

17 FZ_(Pa/Pb) 0.348947 0.369912 0.619414 0.274597 0.474961 0.461319

18 FZ_(Pa+Pt)/Pb 0.024513 0.542680 0.542330 0.029593 0.029627 0.965328

19 FZ_Pt% 0.000000 0.000013 0.000000 0.000647 0.000000 0.000000

20 FZ_transf(Pt%) 0.000000 0.000013 0.000000 0.000647 0.000000 0.000000

21 FZ_Pa% 0.156758 0.000135 0.000003 0.879411 0.013461 0.000012

22 FZ_transf(Pa%) 0.147275 0.000136 0.000002 0.855982 0.012129 0.000011

23 FZ_Pb% 0.088270 0.000021 0.000001 0.778489 0.005159 0.000002

24 FZ_transf(Pb%) 0.087831 0.000139 0.000007 0.680297 0.007343 0.000018

25 FZ_freq_dominant 0.000587 0.000694 0.000000 0.038175 0.000012 0.000015

26 FZ_APDP 0.000000 0.000295 0.000000 0.000008 0.000000 0.000000

27 FZ_freq_dominantTHETA 0.661823 0.493534 0.619775 0.556977 0.790051 0.535962

28 FZ_APDP_THETA 0.000019 0.663256 0.006684 0.000241 0.000006 0.121143

29 FZ_freq_dominantALPHA 0.555684 0.841326 0.642957 0.641442 0.517375 0.737899

30 FZ_APDP_ALPHA 0.000000 0.826850 0.000815 0.000002 0.000000 0.082484

31 FZ_freq_dominantBETA 0.709883 0.716898 0.934249 0.662970 0.754260 0.809695

32 FZ_APDP_BETA 0.000000 0.815615 0.002915 0.000000 0.000000 0.117480

33 CZ_(Pa/Pb) 0.450756 0.094415 0.024083 0.853047 0.210352 0.043846

34 CZ_(Pa+Pt)/Pb 0.162250 0.040044 0.214565 0.066113 0.348005 0.082383

35 CZ_Pt% 0.000000 0.148301 0.000057 0.000028 0.000000 0.006076

36 CZ_transf(Pt%) 0.000000 0.148301 0.000057 0.000028 0.000000 0.006076

37 CZ_Pa% 0.768820 0.098761 0.068462 0.827780 0.466221 0.072778

38 CZ_transf(Pa%) 0.667120 0.098761 0.058347 0.923119 0.384804 0.067469

39 CZ_Pb% 0.101929 0.016675 0.001034 0.447566 0.021130 0.003613

40 CZ_transf(Pb%) 0.126888 0.011240 0.000791 0.534252 0.025965 0.002491

41 CZ_freq_dominant 0.001725 0.038938 0.000285 0.028725 0.000184 0.003789

42 CZ_APDP 0.000000 0.089441 0.000003 0.000000 0.000000 0.001407
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Table 4.1: results from Kruskal-Wallis test for all the 80 features from a non-parametric spectral estimation; 

as the legend suggests, green boxes indicate Kruskal-Wallis results less than a p-value of 1%, the yellow 

boxes for a p-value ≤ 5% and the red ones are related to p-value ≤ 10%. 

 

As it could be seen in the Table 4.1, results have been differentiated based on whether they 

were able to discriminate with a p-value of 1%, 5% or 10%. 

Nr. Features

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

43 CZ_freq_dominantTHETA 0.865769 0.367367 0.376135 0.680585 0.941064 0.354087

44 CZ_APDP_THETA 0.000000 0.019437 0.000000 0.000018 0.000000 0.000144

45 CZ_freq_dominantALPHA 0.008970 0.688116 0.062864 0.027367 0.004786 0.262716

46 CZ_APDP_ALPHA 0.000000 0.699574 0.001105 0.000012 0.000000 0.073788

47 CZ_freq_dominantBETA 0.222118 0.786793 0.683510 0.244546 0.229967 0.962732

48 CZ_APDP_BETA 0.000000 0.214890 0.097482 0.000000 0.000000 0.910742

49 C3_(Pa/Pb) 0.912869 0.034237 0.021333 0.605300 0.493087 0.022349

50 C3_(Pa+Pt)/Pb 0.017251 0.012562 0.328685 0.004505 0.058848 0.063618

51 C3_Pt% 0.000000 0.002042 0.000000 0.000089 0.000000 0.000004

52 C3_transf(Pt%) 0.000000 0.002042 0.000000 0.000089 0.000000 0.000004

53 C3_Pa% 0.270633 0.001145 0.000098 0.971355 0.047395 0.000231

54 C3_transf(Pa%) 0.215918 0.001147 0.000073 0.875400 0.033763 0.000202

55 C3_Pb% 0.160036 0.000038 0.000002 0.957521 0.012848 0.000004

56 C3_transf(Pb%) 0.156314 0.000020 0.000001 0.981498 0.010920 0.000002

57 C3_freq_dominant 0.000562 0.025504 0.000042 0.015595 0.000034 0.001310

58 C3_APDP 0.000000 0.003409 0.000000 0.000006 0.000000 0.000007

59 C3_freq_dominantTHETA 0.897384 0.565759 0.487956 0.958587 0.769744 0.513767

60 C3_APDP_THETA 0.000000 0.196062 0.000001 0.000001 0.000000 0.001774

61 C3_freq_dominantALPHA 0.058048 0.346132 0.029771 0.158138 0.024054 0.116246

62 C3_APDP_ALPHA 0.000000 0.919458 0.001124 0.000000 0.000000 0.129601

63 C3_freq_dominantBETA 0.623850 0.091547 0.105093 0.354343 0.976690 0.086346

64 C3_APDP_BETA 0.000000 0.577408 0.000027 0.000000 0.000000 0.085978

65 C4_(Pa/Pb) 0.059060 0.307512 0.024532 0.167001 0.023283 0.098808

66 C4_(Pa+Pt)/Pb 0.875065 0.284627 0.313653 0.652666 0.907814 0.280465

67 C4_Pt% 0.002858 0.852660 0.135280 0.006833 0.002218 0.536767

68 C4_transf(Pt%) 0.002861 0.852660 0.135280 0.006839 0.002220 0.536767

69 C4_Pa% 0.600838 0.802024 0.983922 0.590756 0.634803 0.897151

70 C4_transf(Pa%) 0.693895 0.802024 0.959348 0.672637 0.733528 0.870063

71 C4_Pb% 0.298343 0.437189 0.170958 0.484532 0.199445 0.275146

72 C4_transf(Pb%) 0.388840 0.323934 0.138408 0.631343 0.249417 0.207046

73 C4_freq_dominant 0.009295 0.295234 0.014614 0.044561 0.003087 0.078724

74 C4_APDP 0.000000 0.598018 0.000235 0.000000 0.000000 0.038730

75 C4_freq_dominantTHETA 0.038793 0.430440 0.786001 0.038897 0.054245 0.759569

76 C4_APDP_THETA 0.000000 0.209597 0.000000 0.000000 0.000000 0.000717

77 C4_freq_dominantALPHA 0.084810 0.989297 0.309065 0.126532 0.070747 0.618332

78 C4_APDP_ALPHA 0.000000 0.527737 0.000300 0.000002 0.000000 0.036216

79 C4_freq_dominantBETA 0.590204 0.018010 0.034763 0.244182 0.956299 0.019827

80 C4_APDP_BETA 0.000000 0.007439 0.637925 0.000000 0.000000 0.208905
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Generally, results that have p-values ≤ 1% are considered the best ones because it means 

that features can discriminate almost perfectly the classes; if they have a p-value ≤ 5% , 

they discriminate average well and finally for p-value ≤ 10%, features are weakly 

separated and so their discriminant power is poor. 

In this case, enough features resulted with a p-value of 5% so that significance value has 

been chosen as threshold to select good features. It came up that 11 features, extracted with 

a non-parametric spectral estimation, were able to correctly distinguish drowsy cases, 

transition cases and alert cases. They are listed below and their name (as in Table 4.1) is 

reported in brackets: 

1. dominant peak in θ band (“Pz_APDP_theta”), from parietal area (Pz channel) 

2. percentage power in θ band (“Fz_Pt%”), from frontal area (Fz channel) 

3. a transformed version of percentage power (“Fz_transf(Pt%)”), just to remember 

it is      
   

     
 , in θ band, from frontal area (Fz channel) 

4. dominant frequency in the whole range (“Fz_freq_dominant”), from frontal area 

(Fz channel) 

5. dominant peak in the whole range (“Fz_APDP”), from frontal area (Fz channel) 

6. dominant frequency in the whole range (“Cz_freq_dominant”), from central area 

(Cz channel) 

7. dominant peak in θ band (“Cz_APDP_theta”), from central area (Cz channel) 

8. percentage power in θ band (“C3_Pt%”), from left central area (C3 channel) 

9.      
   

     
 , in θ band (“C3_transf(Pt%)”), from left central area (C3 channel) 

10. dominant frequency in the whole range (“C3_freq_dominant”), from left central 

area (C3 channel) 

11. dominant peak in the whole range (“C3_APDP”), from left central area (C3 

channel) 

Once features have been selected, for each of them a “box plot” has been evaluated in 

order to visualize their statistical distribution and how much the distribution of the feature 

for a class was separated from the distribution of another one. The rectangular frame in the 

boxplot represents the 25
th

 and the 75
th

 percentiles, the line inside is the median value, 
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some whiskers spread until the most distant value not considered as outlier (5
th

 and 95
th

) 

and the red crosses are the outliers.   

In the figures below the boxplots of the eleven selected features are presented. 

 

 

Figure 4.1: dominant peak in θ band, parietal area (Pz). It is characterized by many outliers but not so large 

variance; alert and drowsy cases are well-separated while transition and drowsy cases not so well. 

 

 

Figure 4.2: percentage power in θ band, frontal area. The statistical distributions for the three classes are 

almost well-separated. 

 

Figure 4.3: a transformed version of percentage power in θ band, frontal area. Alert and drowsy are really 

well-separated and the statistical distribution is generally good thanks to a not so large variance. 
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Figure 4.4: dominant frequency in the whole range, frontal area. The statistical distribution is in this case not 

so interesting, even if its p-value was good. 

 

 

Figure 4.5: dominant peak in the whole range, frontal area. The three classes are really well-separated. 

 

 

Figure 4.6: dominant frequency in the whole range, central area. Alert and drowsy classes are almost 

discriminated and alert and transition classes as well; it is not the same for the distinction between transition 

and drowsy cases. 
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Figure 4.7: dominant peak in θ band, central area. Alert class is well-distinguished from transition class and 

from drowsy class but transition and drowsy classes have almost the same distribution.  

 

 

Figure 4.8: percentage power in θ band, left central area. Alert and drowsy classes are really well-separated 

as well as transition class from drowsy class; a less distinction emerges instead between transition and alert 

classes.   

 

 

Figure 4.9: a transformed version of percentage power in θ band, left central area. The three classes are well-

separated. 
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Figure 4.10: dominant frequency in the whole range, left central area. Transition and drowsy classes have 

almost the same distribution while alert class is well-separated from the other two ones. 

 

 

Figure 4.11: dominant peak in the whole range, left central area. All the three cases are well-discriminated. 

Even if it was said that some selected features don’t result so meaningful by boxplot, they 

weren’t excluded because a classifier, that receives a combination of almost good features, 

can still provide good results, in terms of classification.  

So said, all the eleven features have been given as input to the classifier who has run a 5-

fold cross-validation for 10 times. Since there are eleven features, the neural network had, 

in this case, eleven neurons in the input layer and in the hidden layer; the output layer was 

always composed of 3 neurons because it aimed to distinguish data into three classes. 

The choice of performing a 5-fold cross-validation is motivated by the fact that, each time, 

the neural network is randomly initialized so outputs would be strongly related to initial 

conditions. The cross-validation tempers this aspect. In addition, repeating ten times the 

algorithm allows to mitigate the effect due the random distribution of examples into 5 

subsets. However, for more details, like how data were distributed in order to keep a 

certain balance among classes and so on, it is suggested to come back to the chapter 3, 

paragraph 3.2.5.    
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Parametric spectral analysis 

Parametric spectral analysis has been performed by developing an auto-regressive model 

of the spectrum of the signal. The order of the model has been fixed by combining Akaike 

information criterion (AIC) and whiteness Anderson’s test. Such a model has been created 

for each epoch of signal. Therefore, epoch by epoch, the order of the model and the 

correspondent set of coefficients have been computed. 

 In addition, poles, angles of the poles and the variance of the prediction error of the model 

have been computed. This last parameter, the variance of the prediction error (VPE), is 

included in the formula to compute the power spectrum, as already detailed in the previous 

chapter, where    must be substituted by VPE and the coefficients by the estimated 

coefficients:  

 ̂ ( 
   )       | (    )|

 
  

   

|   ∑          
   |

 
 
 

For each epoch, a power spectrum of the whole range of frequency [0.5,35]Hz and for each 

frequency band ( θ, α, β ) have been computed. 

Poles with maximum module and their corresponding angles have been used in order to 

extract dominant peak and dominant frequency.  

In conclusion, sixteen features per channel have been computed with this method and 

therefore 80 features were globally available, as for the non-parametric method, and they 

are listed as follows: 

- percentage power (P%) in each frequency band computed as:   

     
    

      
             θ         

-      
   

     
  

- the ratio between alpha power spectrum and beta power spectrum:  
  

  
 

- the ratio between power spectrum in low frequency (LF) band and high frequency 

(HF) band : 
      

  
 

- dominant frequency and dominant peak for each frequency band and for the 

whole range. 



76 

 

They have been tested by using Kruskal-Wallis test in order to evaluate the degree of 

separation among the three classes. The following table (Table 4.2) shows results from 

each features against one among the six possible combinations. 
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LEGEND

p-value = 1% 

p-value = 5%

p-value = 10%

other

NaN

Nr. FEATURES Nr.

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

1 PZ_(Pa/Pb) 1 0.056835 0.939138 0.271311 0.094786 0.046490 0.566579

2 PZ_(Pa+Pt)/Pb 2 0.745007 0.742825 0.650677 0.846247 0.683600 0.688886

3 PZ_Pt% 3 0.113717 0.034677 0.227535 0.043550 0.265874 0.079596

4 PZ_transf(Pt%) 4 0.112263 0.034501 0.226623 0.042900 0.263672 0.079204

5 PZ_Pa% 5 0.036309 0.901460 0.147793 0.068033 0.024505 0.443088

6 PZ_transf(Pa%) 6 0.014912 0.777396 0.088490 0.037357 0.008775 0.327771

7 PZ_Pb% 7 0.880640 0.480983 0.517485 0.735479 0.975880 0.482099

8 PZ_transf(Pb%) 8 0.878781 0.481625 0.519021 0.734127 0.978051 0.483169

9 PZ_freq_dominant 9 0.000333 0.000517 0.167648 0.000027 0.004099 0.009587

10 PZ_peak_dominant 10 0.014272 0.000202 0.005000 0.001131 0.137678 0.000639

11 PZ_freq_dominantTHETA 11 0.036548 0.467599 0.642979 0.038557 0.045976 0.857291

12 PZ_peak_dominantTHETA 12 0.000107 0.184030 0.335384 0.000129 0.000195 0.784721

13 PZ_freq_dominantALPHA 13 0.022490 0.834897 0.250701 0.036733 0.019169 0.660887

14 PZ_peak_dominantALPHA 14 0.160437 0.977775 0.572182 0.215173 0.160163 0.773363

15 PZ_freq_dominantBETA 15 0.888083 0.669257 0.673890 0.803384 0.984803 0.660059

16 PZ_peak_dominantBETA 16 0.978244 0.675280 0.583116 0.922525 0.869358 0.619170

17 FZ_(Pa/Pb) 17 0.275940 0.643163 0.933869 0.270152 0.338461 0.766586

18 FZ_(Pa+Pt)/Pb 18 0.019393 0.843769 0.272345 0.032753 0.017340 0.674204

19 FZ_Pt% 19 0.000000 0.000009 0.000000 0.000044 0.000000 0.000000

20 FZ_transf(Pt%) 20 0.000000 0.000009 0.000000 0.000048 0.000000 0.000000

21 FZ_Pa% 21 0.214858 0.000660 0.000046 0.908635 0.031286 0.000116

22 FZ_transf(Pa%) 22 0.215357 0.000662 0.000046 0.909466 0.031392 0.000116

23 FZ_Pb% 23 0.265686 0.000173 0.000045 0.920505 0.041361 0.000051

24 FZ_transf(Pb%) 24 0.265541 0.000174 0.000045 0.920861 0.041331 0.000051

25 FZ_freq_dominant 25 0.000000 0.622598 0.000742 0.000000 0.000000 0.057354

26 FZ_peak_dominant 26 0.000000 0.603043 0.022919 0.000007 0.000000 0.165795

27 FZ_freq_dominantTHETA 27 0.064163 0.272711 0.937038 0.049535 0.099949 0.518400

28 FZ_peak_dominantTHETA 28 0.243787 0.744401 0.330528 0.345141 0.195424 0.515786

29 FZ_freq_dominantALPHA 29 0.155872 0.121196 0.605273 0.087123 0.253227 0.267669

30 FZ_peak_dominantALPHA 30 0.560150 0.216804 0.454827 0.381011 0.739455 0.295910

31 FZ_freq_dominantBETA 31 0.451767 0.079950 0.211949 0.239345 0.720817 0.115748

32 FZ_peak_dominantBETA 32 0.460313 0.077320 0.180409 0.242587 0.747916 0.104058

33 CZ_(Pa/Pb) 33 0.189283 0.130112 0.015802 0.466761 0.072751 0.045118

34 CZ_(Pa+Pt)/Pb 34 0.295070 0.033201 0.181181 0.121554 0.549013 0.067899

35 CZ_Pt% 35 0.000003 0.315902 0.000595 0.000105 0.000000 0.026905

36 CZ_transf(Pt%) 36 0.000003 0.316899 0.000618 0.000109 0.000000 0.027342

37 CZ_Pa% 37 0.700869 0.182163 0.283900 0.466394 0.942877 0.208905

38 CZ_transf(Pa%) 38 0.579463 0.174837 0.293598 0.375585 0.818264 0.208077

39 CZ_Pb% 39 0.274607 0.026599 0.004927 0.742934 0.089461 0.009715

40 CZ_transf(Pb%) 40 0.274755 0.026599 0.004927 0.743160 0.089518 0.009715

41 CZ_freq_dominant 41 0.000009 0.761623 0.070280 0.000054 0.000008 0.480674

42 CZ_peak_dominant 42 0.000314 0.894112 0.231671 0.001189 0.000398 0.614740
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Table 4.2: results from Kruskal-Wallis test for all the 80 features from an AR spectral estimation; the 

meaning of the colors is written in the legend upon the table.  

As previously explained, according to results from Kruskal-Wallis, just the following four 

features resulted to be the best ones:  

1. percentage power in θ band (Fz_Pt%), from frontal area (Fz channel) 

Nr. FEATURES Nr.

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

43 CZ_freq_dominantTHETA 43 0.028723 0.003599 0.134687 0.005326 0.112026 0.019518

44 CZ_peak_dominantTHETA 44 0.001573 0.639259 0.019811 0.007392 0.000598 0.166975

45 CZ_freq_dominantALPHA 45 0.350682 0.232961 0.694788 0.239823 0.460506 0.395050

46 CZ_peak_dominantALPHA 46 0.951676 0.245521 0.310249 0.777227 0.754110 0.257077

47 CZ_freq_dominantBETA 47 0.274311 0.135431 0.400658 0.160126 0.442879 0.217527

48 CZ_peak_dominantBETA 48 0.423256 0.147146 0.299080 0.257556 0.649637 0.192020

49 C3_(Pa/Pb) 49 0.815515 0.022166 0.008150 0.648356 0.376509 0.010940

50 C3_(Pa+Pt)/Pb 50 0.028010 0.004402 0.137464 0.005456 0.110882 0.021719

51 C3_Pt% 51 0.000000 0.020706 0.000000 0.000052 0.000000 0.000155

52 C3_transf(Pt%) 52 0.000000 0.020706 0.000000 0.000049 0.000000 0.000155

53 C3_Pa% 53 0.577391 0.006951 0.002871 0.773674 0.207395 0.003339

54 C3_transf(Pa%) 54 0.638595 0.007485 0.003348 0.720198 0.241977 0.003754

55 C3_Pb% 55 0.384316 0.000050 0.000007 0.686669 0.053495 0.000010

56 C3_transf(Pb%) 56 0.385052 0.000050 0.000007 0.685788 0.053664 0.000010

57 C3_freq_dominant 57 0.000717 0.968724 0.086079 0.002741 0.000510 0.395368

58 C3_peak_dominant 58 0.017016 0.661011 0.819039 0.024562 0.027712 0.894436

59 C3_freq_dominantTHETA 59 0.171330 0.492618 0.864681 0.157085 0.203471 0.764691

60 C3_peak_dominantTHETA 60 0.023414 0.141474 0.002314 0.112843 0.004933 0.022426

61 C3_freq_dominantALPHA 61 0.568911 0.311935 0.591278 0.423955 0.707958 0.412439

62 C3_peak_dominantALPHA 62 0.783137 0.206614 0.184296 0.903182 0.558020 0.180031

63 C3_freq_dominantBETA 63 0.213245 0.834897 0.376531 0.295628 0.179175 0.587672

64 C3_peak_dominantBETA 64 0.265830 0.903095 0.509083 0.340241 0.242952 0.699446

65 C4_(Pa/Pb) 65 0.026784 0.294019 0.018622 0.096094 0.009627 0.085978

66 C4_(Pa+Pt)/Pb 66 0.992478 0.294019 0.269251 0.754501 0.784610 0.264963

67 C4_Pt% 67 0.000973 0.877002 0.048553 0.003894 0.000530 0.299492

68 C4_transf(Pt%) 68 0.000994 0.877816 0.049096 0.003955 0.000543 0.300826

69 C4_Pa% 69 0.547413 0.618956 0.943299 0.497148 0.601571 0.756562

70 C4_transf(Pa%) 70 0.476004 0.615323 0.964071 0.435844 0.529633 0.763967

71 C4_Pb% 71 0.259305 0.299032 0.111654 0.483037 0.155977 0.179197

72 C4_transf(Pb%) 72 0.259376 0.299512 0.112189 0.482944 0.156197 0.179753

73 C4_freq_dominant 73 0.001222 0.439017 0.264654 0.001944 0.001430 0.913010

74 C4_peak_dominant 74 0.003472 0.194283 0.808000 0.002939 0.010392 0.402723

75 C4_freq_dominantTHETA 75 0.002821 0.007745 0.447561 0.000612 0.012935 0.065648

76 C4_peak_dominantTHETA 76 0.000015 0.645313 0.023489 0.000071 0.000008 0.400306

77 C4_freq_dominantALPHA 77 0.508247 0.089831 0.270795 0.280156 0.754110 0.141119

78 C4_peak_dominantALPHA 78 0.870689 0.100245 0.170958 0.534350 0.839118 0.116014

79 C4_freq_dominantBETA 79 0.771394 0.018492 0.012713 0.670891 0.370018 0.012141

80 C4_peak_dominantBETA 80 0.718161 0.015582 0.007178 0.703472 0.312582 0.008343
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2. a transformed version of the percentage power in θ band (Fz_transf(Pt%)), from 

frontal area (Fz channel) 

3. percentage power in θ band (C3_Pt%), from left central area (C3 channel) 

4. a transformed version of the percentage power in θ band (C3_transf(Pt%)), from 

left central area (C3 channel). 

For each feature, a boxplot (see Figures below) has been evaluated in order to quickly 

visualize the statistical distribution. 

 

 

Figure 4.12: percentage power in θ band, frontal area. All the three classes are well separated.  

 

 

Figure 4.13: a transformed version of the percentage power in θ band, frontal area. The three classes are 

better and better separated than by the previous feature, as clearly visible. 
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Figure 4.14: percentage power in θ band, left central area. Alert and drowsy cases are better distinguished 

than  the other two combinations. 

 

 

Figure 4.15: a transformed version of the percentage power in θ band, left central area. Alert and drowsy 

cases are better and better separated than the previous feature. The distinction between transition and drowsy 

classes is improved. 

It must be observed that in this case just four features resulted to well behave with respect 

to the distinction into three classes. This could represent a problem for the employment of 

a neural network because there are not as many significant parameters as the previous 

method.  

Generally, if a neural network is well trained, it should correctly classify data into desired 

classes and it should have high accuracy. When the dataset is too small, it risks to not 

allow the neural network to appropriately learn and so to not correctly classify. 

By the way, these four features have been given as input to the classifier that gave in 

output the probability that each value of each feature was related to a certain class. 

As regards the classifier, in this case, since the number of significant features changed, the 

number of neurons in the input layer and in the hidden layer changed as well. Indeed, 4 

neurons for both the input layer and the hidden layer are present; as regards the output 

layer, three neurons have been always used. 
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Starting from the outputs of the classifier, a confusion matrix has been obtained and used 

in order to compute k-Cohen coefficients. Since a 5-fold cross-validation, repeated 10 

times, has been performed, overall 50 values of k-Cohen coefficients have been computed. 

Singular spectrum analysis 

The algorithm of the SSA, already explained in the previous chapter, has been applied on 

each epoch of signal. As regards the embedding dimension, also previously referred as 

“window length”, several values have been tested and it has been actually preferred to use 

L=20 because the frequency resolution obtained was 4Hz. Such a value was considered 

appropriate because each frequency band is wide 4Hz, at least.  

In addition, it was observed that the “statistical dimension S” improved as decreasing the 

window length and this choice resulted to be the best one, as visible in figures below. 

 

 

Figure 4.16: L = 20 for an EEG coming from parietal area, subject 12 at 9
th

 minute of RT3. 
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Figure 4.17: L=30, for an EEG coming from parietal area, subject 12 at 9
th

 minute of RT3. 

 

 

Figure 4.18: L =40, for an EEG coming from parietal area, subject 12 at 9
th

 minute of RT3. 
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As it can be observed by the figures from 4.16 to 4.18, as L increases the maximum 

percentage of variance explained by the first k components decreases and also the number 

k of significant eigenvalues decreases.  

In conclusion, L=20 is thus the most suitable choice as it allows to obtain a greater 

explained maximum variance, a better frequency resolution and a more appropriate number 

of significant eigenvalues. This last parameter has been fixed equal to 6, observing that for 

L=20 and k ≥ 6 the trajectory matrix retained was above 5%. 

In fact, since the aim of this method is to produce some new filtered signals, for each 

frequency band, and a cleaned version of the original signal (4 new signals overall), it is 

better to get a number of eigenvalues ≥4, in order to individuate at least a principal 

component per researched signal.  

Once the window length L was fixed, it is possible to compute six principal components by 

projecting the signal on the six eigenvectors, related to the first six selected eigenvalues. In 

the figures below from 4.19 to 4.24, non-parametric power spectra of each principal 

component are reported. 

 

 

Figure 4.19: PSD of the first principal component of the subject 12 in RT3, parietal area.   
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Figure 4.20: PSD of the second principal component of the subject 12 in RT3, parietal area.   

 

 

Figure 4.21: PSD of the third principal component of the subject 12 in RT3, parietal area.   
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Figure 4.22: PSD of the fourth principal component of the subject 12 in RT3, parietal area.   
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Figure 4.23: PSD of the fifth principal component of the subject 12 in RT3, parietal area.   

 

 

Figure 4.24: PSD of the sixth principal component of the subject 12 in RT3, parietal area.   
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As explained in the paragraph about the protocol, the third reaction time test was the one 

when the tester was more tired so it was expected to have a dominant frequency content in 

theta and alpha bands. From the figures above, it is possible to well-appreciate this fact. 

Indeed in all the six principal components the most dominant frequencies are in the ranges 

corresponding to θ and α bands. 

Once principal components were computed, it has been possible to reconstruct the signals 

for the whole range and for each frequency band. Firstly, the relation between the principal 

components and each frequency band has been investigated. Then, according to these 

indexes, the signals have been computed and the results are visible in the next Figure 4.25

 

Figure 4.25: power spectral density (PSD) of the whole range and θ, α, β bands signals, subject no. 12 in 

RT3. 

It is easily observable that the signal in beta band is absent: this is exactly what was 

expected for a really drowsy case.  

Also in this case, the same set of features as before has been computed and then tested 

through a Kruskal-Wallis test. The results from this test are reported below in Table 4.3. 
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LEGEND

p-value = 1% 

p-value = 5%

p-value = 10%

other

NaN

Nr. FEATURES

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

1 PZ_(Pa/Pb) 0.795126 0.259640 0.234764 0.710397 0.971422 0.235236

2 PZ_(Pa+Pt)/Pb 0.035006 0.827259 0.275234 0.064078 0.027891 0.487453

3 PZ_Pt% 0.406684 0.095968 0.037011 0.825791 0.200880 0.053782

4 PZ_transf(Pt%) 0.406897 0.096075 0.037011 0.825919 0.200998 0.053820

5 PZ_Pa% 0.092268 0.765089 0.201798 0.161953 0.066369 0.435837

6 PZ_transf(Pa%) 0.092268 0.765089 0.201560 0.161953 0.066343 0.435647

7 PZ_Pb% 0.345847 0.192103 0.268614 0.267452 0.504269 0.223900

8 PZ_transf(Pb%) 0.345847 0.192103 0.268614 0.267452 0.504269 0.223900

9 PZ_freq_dominant 0.655127 0.003449 0.001036 0.651871 0.215797 0.001356

10 PZ_peak_dominant 0.000002 0.133017 0.241530 0.000003 0.000005 0.788950

11 PZ_freq_dominantTHETA 0.553306 0.823118 0.570441 0.650391 0.499230 0.693480

12 PZ_peak_dominantTHETA 0.001622 0.347763 0.014306 0.012952 0.000569 0.091394

13 PZ_freq_dominantALPHA 0.038425 0.220245 0.997314 0.028175 0.064278 0.492354

14 PZ_peak_dominantALPHA 0.002718 0.756285 0.113782 0.006114 0.002001 0.558441

15 PZ_freq_dominantBETA 0.768280 0.088379 0.030959 0.580157 0.872075 0.045671

16 PZ_peak_dominantBETA 0.774893 0.324015 0.219005 0.907284 0.601545 0.251997

17 FZ_(Pa/Pb) 0.310635 0.884836 0.709815 0.352028 0.301387 0.781511

18 FZ_(Pa+Pt)/Pb 0.807541 0.769698 0.275234 0.769698 0.567709 0.592980

19 FZ_Pt% 0.021312 0.282498 0.026238 0.078161 0.008490 0.095546

20 FZ_transf(Pt%) 0.021312 0.282498 0.026238 0.078161 0.008490 0.095546

21 FZ_Pa% 0.275155 0.807957 0.794912 0.295432 0.293031 0.994067

22 FZ_transf(Pa%) 0.275239 0.807957 0.795988 0.295511 0.293269 0.993527

23 FZ_Pb% 0.552245 0.852644 0.735424 0.573453 0.540627 0.948208

24 FZ_transf(Pb%) 0.548968 0.852644 0.735424 0.570659 0.537878 0.948208

25 FZ_freq_dominant 0.066961 0.040312 0.002742 0.301336 0.015993 0.009827

26 FZ_peak_dominant 0.000000 0.000618 0.000000 0.000009 0.000000 0.000001

27 FZ_freq_dominantTHETA 0.022718 0.007489 0.176596 0.005289 0.084734 0.033345

28 FZ_peak_dominantTHETA 0.019797 0.876925 0.147925 0.040968 0.013707 0.432585

29 FZ_freq_dominantALPHA 0.438955 0.348976 0.636573 0.339917 0.559724 0.457093

30 FZ_peak_dominantALPHA 0.000000 0.444344 0.000734 0.000012 0.000000 0.039606

31 FZ_freq_dominantBETA 0.342672 0.209814 0.103675 0.726714 0.185363 0.129921

32 FZ_peak_dominantBETA 0.127801 0.019025 0.002796 0.657186 0.024598 0.005014

33 CZ_(Pa/Pb) 0.000551 0.801059 0.281466 0.001366 0.000686 0.541542

34 CZ_(Pa+Pt)/Pb 0.368261 0.512691 0.223494 0.522817 0.161429 0.235333

35 CZ_Pt% 0.091412 0.464003 0.093208 0.198228 0.051971 0.224446

36 CZ_transf(Pt%) 0.091342 0.464343 0.093208 0.198058 0.051931 0.224564

37 CZ_Pa% 0.169275 0.989042 0.420527 0.224032 0.150750 0.705162

38 CZ_transf(Pa%) 0.169032 0.989042 0.420913 0.223770 0.150601 0.705400
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Table 4.3: results from Kruskal-Wallis test for all the 80 features from SSA; the legend upon the table 

explains what the meaning of the colored features is . 

Nr. FEATURES

TRANS vs. 

ALERT

TRANS vs. 

DROWSY

ALERT vs. 

DROWSY

TRANS vs. 

(ALERT+

DROWSY)

ALERT vs. 

(TRANS+

DROWSY)

DROWSY vs. 

(ALERT+

TRANS)

39 CZ_Pb% 0.673963 0.093190 0.054829 0.476249 0.943392 0.062521

40 CZ_transf(Pb%) 0.673963 0.093190 0.054829 0.476249 0.943392 0.062521

41 CZ_freq_dominant 0.045469 0.126806 0.010659 0.181844 0.014380 0.037666

42 CZ_peak_dominant 0.000000 0.145712 0.000005 0.000000 0.000000 0.002567

43 CZ_freq_dominantTHETA 0.905983 0.601393 0.532172 0.962502 0.790842 0.554588

44 CZ_peak_dominantTHETA 0.015707 0.632802 0.442302 0.022303 0.018035 0.916951

45 CZ_freq_dominantALPHA 0.004159 0.142899 0.935532 0.003002 0.009919 0.434566

46 CZ_peak_dominantALPHA 0.000087 0.982650 0.016889 0.000529 0.000037 0.257280

47 CZ_freq_dominantBETA 0.282354 0.505844 0.374841 0.376895 0.225891 0.417332

48 CZ_peak_dominantBETA 0.059181 0.703866 0.675573 0.065223 0.064011 0.943325

49 C3_(Pa/Pb) 0.235842 0.165684 0.102470 0.390231 0.187003 0.135017

50 C3_(Pa+Pt)/Pb 0.709131 0.105193 0.126630 0.412770 0.915792 0.097918

51 C3_Pt% 0.602148 0.416866 0.301761 0.830845 0.456521 0.340006

52 C3_transf(Pt%) 0.602148 0.416866 0.301761 0.830845 0.456521 0.340006

53 C3_Pa% 0.556946 0.196848 0.538143 0.367904 0.708671 0.308862

54 C3_transf(Pa%) 0.556946 0.196848 0.538773 0.367904 0.708493 0.309078

55 C3_Pb% 0.271973 0.001763 0.008891 0.065362 0.696949 0.002811

56 C3_transf(Pb%) 0.271974 0.001763 0.009087 0.065362 0.695658 0.002843

57 C3_freq_dominant 0.053850 0.013240 0.000616 0.319612 0.009192 0.002483

58 C3_peak_dominant 0.000000 0.018441 0.000000 0.000002 0.000000 0.000080

59 C3_freq_dominantTHETA 0.286990 0.107718 0.036195 0.648543 0.128959 0.056294

60 C3_peak_dominantTHETA 0.000712 0.002353 0.000001 0.039619 0.000015 0.000046

61 C3_freq_dominantALPHA 0.162075 0.709398 0.242311 0.257470 0.120922 0.444453

62 C3_peak_dominantALPHA 0.008514 0.279758 0.566866 0.007957 0.012080 0.737303

63 C3_freq_dominantBETA 0.000073 0.485969 0.461943 0.000161 0.000149 0.968859

64 C3_peak_dominantBETA 0.000202 0.158180 0.994053 0.000183 0.000700 0.429324

65 C4_(Pa/Pb) 0.003616 0.198033 0.607066 0.002621 0.007878 0.342940

66 C4_(Pa+Pt)/Pb 1.000.000 0.310635 0.354539 0.855858 0.836996 0.317311

67 C4_Pt% 0.741392 0.932043 0.891304 0.751994 0.741587 0.986120

68 C4_transf(Pt%) 0.741699 0.932043 0.890761 0.752265 0.741724 0.985858

69 C4_Pa% 0.602300 0.450547 0.300895 0.809754 0.463858 0.358866

70 C4_transf(Pa%) 0.602450 0.450547 0.300895 0.809902 0.463976 0.358866

71 C4_Pb% 0.723720 0.044609 0.034532 0.906366 0.430096 0.034465

72 C4_transf(Pb%) 0.722631 0.044610 0.034532 0.907437 0.429306 0.034465

73 C4_freq_dominant 0.082175 0.056430 0.006893 0.321338 0.024443 0.018219

74 C4_peak_dominant 0.000000 0.989298 0.001344 0.000000 0.000000 0.120049

75 C4_freq_dominantTHETA 0.061246 0.125648 0.567203 0.034753 0.129706 0.257422

76 C4_peak_dominantTHETA 0.000004 0.656273 0.001075 0.000089 0.000001 0.069800

77 C4_freq_dominantALPHA 0.312066 0.316279 0.664793 0.233882 0.426500 0.443641

78 C4_peak_dominantALPHA 0.001195 0.645358 0.024611 0.006179 0.000499 0.181111

79 C4_freq_dominantBETA 0.110554 0.297724 0.601143 0.086457 0.170450 0.420549

80 C4_peak_dominantBETA 0.090960 0.157977 0.433422 0.059473 0.160882 0.258526
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From the table above, it could be seen that just three features resulted to have a p-

value≤5% and, as for the other two methods, this p-value has been chosen as threshold to 

select features. The selected features are: 

1. dominant peak in the whole range (“Fz_peak_dominant”), from frontal area (Fz 

channel) 

2. dominant peak in the whole range (“C3_peak_dominant”), from left central area 

(C3 channel) 

3. dominant peak in θ band (“C3_peak_dominantTHETA”), from left central area 

(C3 channel)  

Then, exactly as already done for the previous two approaches, boxplots of the selected 

features (see figures below) have been considered in order to visualize their statistical 

properties. 

 

 

Figure 4.26: dominant peak in the whole range, frontal area. The three classes are well distinguished; drowsy 

class presents a major variance than the other two ones. 

 

 

0

500

1000

1500

2000

0 1 2

SSA+Welch: Fz dominant peak

TRANSITION ALERT DROWSY



91 

 

Figure 4.27: dominant peak in the whole range, left central area. The three classes result to be correctly 

separated one from each other. 

 

 

Figure 4.28: dominant peak in θ band, left central area. Drowsy class is better discriminated from alert class 

and transition class; the separation between transition and alert class is instead less strong.  

Since three features resulted to be significant, the input layer and the hidden layer were 

composed of three neurons and the output layer always consisted of three neurons as well, 

one per class of interest. The outputs of the neural network have been used to compute the 

confusion matrix used for the k-Cohen coefficients.  

As already said for the parametric case, the fact that only three features presented a good p-

value could be a problem to make the classifier to correctly learn. 

4.2 Results from methods comparison 

As regards the non-parametric method, 11 features resulted to be good and they have been 

given in input to the classifier. 

Starting from the outputs of the neural network, a confusion matrix has been computed as 

reported in the previous chapter. It contains the correct classification rate on the main 

diagonal and the misclassification rate outside the main diagonal. The confusion matrix is 

then employed to compute k-Cohen coefficients. All the 50 values are reported in the 

0

200

400

600

800

1000

1200

0 1 2

SSA+Welch: C3 dominant peak

TRANSITION ALERT DROWSY

0

10

20

30

40

50

60

70

80

0 1 2

SSA+Welch: C3 dominant peak theta

TRANSITION ALERT DROWSY



92 

 

graphic below (Figure 4.29) with a mean value of 0.5087 and a standard deviation of 

0.0194. 

 

Figure 4.29: plot of the 50 k-coefficients for non-parametric method; they were derived from a 5-fold cross-

validation repeated 10 times in order to moderate the effect of the random division of the dataset in training 

set and testing set, and the division in subsets. 

As regards AR method, only four features resulted to be appropriate to correctly 

discriminate among the three classes so they have been used to construct the neural 

network. Also in this case, starting from the outputs of the classifier, a confusion matrix 

has been created and employed to compute k-Cohen coefficients.  

The 50 values of the k-Cohen coefficients, the mean value of  0.2227 (Figure 4.30) and a 

standard deviation of 0.0053 have been computed.  
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Figure 4.30: plot of the 50 k-coefficients related to AR method; they were derived from a 5-fold cross-

validation repeated 10 times in order to moderate the effect of the random division of the dataset in training 

set and testing set, and the division in subsets. 

Finally, for SSA, only three features came up as statistically significant for a correct 

separation among classes. They have been used as inputs for the neural network, composed 

this time, of three neurons in the input and hidden layer, as wide as the number of features 

in input. The outputs of such classifier have been exploited to compute the confusion 

matrix for k-Cohen coefficients. 

50 values of k-Cohen coefficients have been computed also in this case and a mean value 

of 0.1659 and a standard deviation of 0.0027 resulted. They are shown in the Figure below. 
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Figure 4.31: plot of the 50 k-coefficients related to SSA method; they were derived from a 5-fold cross-

validation repeated 10 times in order to moderate the effect of the random division of the dataset in training 

set and testing set, and the division in subsets. 

k-Cohen is a parameter used to evaluate if and how much a certain classification has been 

accurate: if  k = 1, the statistics has been optimal because -1 ≤ k ≤ +1 and generally the 

following range of k-Cohen values are considered: 

- if k is smaller than 0, there is no agreement 

- if k belongs to the range [0, 0.4], there is a weak concordance 

- if k is in the range [0.4, 0.6], the accordance is reasonable 

- if k assumes values in the range [0.6, 0.8], the agreement is good 

- if k takes values in the range [0.8, 1], the statistics is optimal.  

As it is observable in the graphic in Figure 4.12, k-Cohen for non-parametric method 

resulted to be in the range [0.4, 0.6] so it is possible to state that this is a statistically 

consistent method of extracting features and it well-discriminates among the three 

considered classes. It is not possible to conclude the same for the other two methods: using 

the features that resulted significant from Kruskal-Wallis test and statistical boxplots, the 
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number of features is really less than the number of selected features for the first method 

and this is certainly a factor to take into account because maybe the classifier could not 

learn enough with just three or four parameters. 

In conclusion, from the comparison among methods, it is possible to state that the features, 

emerged as good and significant from the statistical analysis, have allowed the classifier to 

correctly classify the classes of interest and non-parametric method has presented 

consequently the best performance.  

Standing on the results obtained until this point, just non-parametric method has been 

considered for the next step: the validation of the protocol, that will be more detailed in the 

next paragraph.  

4.3 Results from protocol validation  

The protocol, more detailed in chapter 3 at paragraph 3.1, aims to detect changes in 

reaction times and in related EEG signals, passing through a first test when a subject 

should be normally well-awake, a second test when the participant is more or less awake 

and finally in the third test the volunteer should be drowsy, after a sleep deprivation night. 

According to this goal, labels were assigned to each minute of test in order to detect 

variations in the signals, by using reaction time data. 

In this section, an examination has been performed in order to verify if the protocol, so as 

it is set for this work, results to be really respected in the reality by the response of the 

participants. 

In addition, once a method has been selected, it has been possible to consider the 

performance of the selected features, subject per subject, and so to verify the 

correspondence between what the features suggest and what the labels indicate, so as they 

have been set. Practically, in this last part, a physiological correlation among signals, more 

precisely features of signals, and labels that should estimate the state of 

alertness/drowsiness of each volunteer, test by test , have been also investigated. 

Through such analysis, subject per subject and test per test, it resulted that just a few 

people have mirrored the idea of the protocol, that is a noticeable difference in terms of 

alertness/transition/drowsiness among the three performed reaction time tests. 

So for the analysis that will follow, only the results from the three best subjects will be 

reported. In particular, an additional reason has been considered: in these three following 
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cases, a considerable numbers of drowsy epochs is present so it is possible to run a 

complete evaluation for all the three targets. 

 

Subject nr. 2:  

It is possible to appreciate that the distribution of alert, transition and drowsy epochs 

mirrors well the idea of the protocol.  

The first reaction time test was performed when the subject was normally awake and in 

fact in the first frame, delimitated by 0 and the first red vertical line, there are enough 

labels for alert or transition; it is visible that as the person gets used to the test, the 

transition epochs decrease.  

The second section between the first and the second red vertical line is dominated by 

“transition” labels, exactly as it is planned for the second reaction time test, with an 

exception for the first minutes of test: the subject has passed a sleepless night and in the 

early morning he/she has been running this test.  

The third test occurred after a sleep deprivation night and the subject has just had 

breakfast: here the most of drowsy labels is concentrated and, as it is expected, at the 

beginning some transition epochs appear. 

In the following figures, all the eleven selected features are reported in comparison with 

the labeling placed on the top of each image; they have been appropriately distributed in 

several graphics just for a better visualization. 

 

 



97 

 

 

Figure 4.32: starting from the top there are labels per minutes  of test, dominant peak in θ band from parietal 

area, percentage power in θ band and a transformed version of percentage power in θ band.  

The most interesting feature among these three ones in the figure above is the last one. 

Indeed as drowsiness increases, the transformed version of percentage power in θ band 

increases as well and in addition one can observe a clear difference in the amplitude among 

the three reaction time tests. Therefore, the last feature is more coherent with the 

expectations than the simple percentage power. 

As regards the first feature in the parietal area, dominant peak in θ band, at the third test, is 

instead slightly minor than in the previous tests; the interesting thing is that there is a 

remarkable difference among the various sections, in this case as well. 



98 

 

 

Figure 4.33: starting from the top there are labels per minutes of test, dominant frequency in the whole range 

from frontal area, dominant peak in the whole range from frontal area. 

The features in figure 4.33 perfectly mirror the expectations: a diminution of the dominant 

frequency in the whole range as drowsiness occurred and a general decreasing trend from 

the first test to the last one. 

A good performance is noticeable for dominant peak as well: a general variation 

throughout the three tests can be seen. 
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Figure 4.34: starting from the top there are labels per minutes of test, dominant frequency in the whole range 

from central area, dominant peak in θ band from central area.  

The first feature appearing in the figure correctly suits the expectations, dominant 

frequency is assumed to decrease as drowsiness occurs. In addition, it is possible to detect 

differences as passing from a test to another.  

A slight increase in dominant peak of that band is remarkable in the graphic at the bottom: 

it is coherent with the meaning of theta band that is generally related to falling asleep so it 

is normal to detect a little increase of theta dominant peak at the end of the last test. 
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Figure 4.35: starting from the top, there are labels per minutes of test, percentage power in θ band and a 

transformed version of the percentage power in θ band from left central region. 

Once again, comparing the performance of percentage power and a transformed version of 

it, this last one results to be coherent with expectations: it increases with drowsiness. In 

both cases, a remarkable difference in the trend can be seen. 
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Figure 4.36: starting from the top, there are labels per minutes of test, dominant frequency and dominant peak 

in the whole range from left central area. 

Especially from the mean value, it is clearly visible that dominant frequency decreases 

from the first test to the last one while dominant peak increases. This fact perfectly confirm 

what it is believed. 

 

Subject nr. 12: 

As regards this subject, the distribution of the epochs results particularly coherent with the 

protocol for the second and the third reaction time test; in the first one, in fact, the presence 

of alert cases is less than transition epochs.  

Besides, it is interesting to observe that this volunteer results a little drowsy even at the end 

of the first reaction time test therefore he(she) is maybe particularly drowsy him(her)self. 

This observation is confirmed if one looks at the concentration of drowsy labels in the last 

section that is greater than the previous subject, for example.  
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Figure 4.37: : starting from the top, there are labels per minutes of test, dominant peak in θ band from parietal 

area, percentage power in θ band and the transformed version of percentage power in the band from frontal 

area. 

 

Here dominant peak in theta band correctly presents the same trend as usual: an increment 

as drowsiness occurred. 

Besides, exactly as emerged from the last two features in the previous figures of the other 

participant, the third feature is more coherent with expectation than the simple percentage 

power. 

In this case, however, there is no particular distinction in the trend of the two last reaction 

time tests but the difference is noticeable with the first one. 
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Figure 4.38: starting from the top, there are labels per minutes of test, dominant frequency and dominant peak 

in the whole range from frontal area. 

Observing in particular the mean value, it is possible to detect a decrease of dominant 

frequency in correspondence of the last test, especially when labels indicate drowsy 

epochs. The trend for the first two tests is almost similar. This fact is interesting if one 

combines these trends with what emerged from the previous two features: these last ones 

showed a similarity between the second and the third test and the features in Figure 4.38 a 

similarity between the last two tests. Combining all the information, a classifier can detect 

all the shades contained in a signal. 
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Figure 4.39: starting from the top, there are labels per minutes of test, dominant frequency in the whole range 

and dominant peak in θ band, both from central area. 

In this case a slight increase of dominant frequency in the middle section is visible, 

especially observing the mean value. This fact is a little bizarre but it is easily explained by 

observing that there is a peak at the end of the second test that influences that value. 

Generally a decreasing trend of the dominant frequency is observable here as well. 

Dominant peak in theta band is still perfectly suitable with expectations. 
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Figure 4.40: starting from the top, there are labels per minutes of test, percentage power in θ band and its 

transformed version from left central area. 

Nothing is remarkable for these two features. Indeed, unlike the other cases where they 

appeared, here they present a trend that is not interesting. 
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Figure 4.41: starting from the top, there are labels per minutes of test, dominant frequency and dominant peak 

in the whole range from left central area. 

No particular differences between the first two reaction time tests are present, as regard 

dominant frequency; instead it decreases, coherently, as drowsiness occurs in the third test. 

Dominant peak shows a strange increment just in the middle section. 

 

Subject nr. 14: 

This participant resulted to be the one who perfectly adhered to the protocol: all the 

minutes in the first test are signed as alert, all drowsy epochs are present in the last test and 

in the second test a mix of all the three possible states (alert, transition, drowsy) appears, in 

particular it is interesting to observe transition epochs towards the end of the second test 

and just one drowsy epoch at the beginning as if the subject had to get used to the test.   
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Figure 4.42: starting from the top, there are labels per minutes of test, dominant peak in θ band from parietal 

area, percentage power in θ band and its transformed version, from frontal area. 

Again for this subject, the feature    (
   

     
) results to be very coherent with expectations 

when drowsiness occurred. 

 



108 

 

 

Figure 4.43: starting from the top, there are labels per minutes of test, dominant frequency and dominant peak 

of the whole range, from the frontal area. 

In this figure, the dominant frequency slightly decreases, confirming what was assumed 

about its meaning, and the dominant peak increases with a not so remarkable difference 

between the second and the last test. This fact is however justified because, this time, in the 

second test, there is a mix of states of alertness, according to the labels. 
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Figure 4.44: starting from the top, there are labels per minutes of test, dominant frequency in the whole range 

and dominant peak in θ band, from central area. 

The trend of a diminution of the dominant frequency in the third test is clearly visible as 

well as an increment of dominant peak for theta band is still observable in these graphics 

above. They perfectly mirror what expected for drowsiness and confirm what emerged 

before, for other subjects. 
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Figure 4.45: starting from the top, there are labels per minutes of test, percentage power and a transformed 

version of it in θ band, from left central area. 

Once again, the second feature results to be more coherent with expectations than the 

simple percentage power. Indeed, one can observe a slight increment in the third test and 

generally an increasing trend throughout the three tests, from the first one to the last one.   
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Figure 4.46:  starting from the top, there are labels per minutes of test, dominant frequency and dominant 

peak in the whole range from left central area. 

Finally, the last two features confirm what has been already said so far: the dominant 

frequency decreases as drowsiness occurred and this is what happens in the last test. 

Concerning dominant peak, it presents an increment in the last test with respect to the first 

one but here it could be seen a characteristic increase in the middle section, probably 

related to such peaks towards the end the second test. 
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5. Discussion and conclusions 

This work has firstly aimed at extracting significant spectral features from 

electroencephalographic signals in order to discriminate three different states of mind: 

alertness, transition, drowsiness.  

The EEG signals have been recorded from volunteers that have performed reaction time 

tests. In particular, each subject had to carry out three reaction time tests under different 

conditions of vigilance: the first one was conducted after a normal night of sleep, the 

second one in the very early morning, without having slept, and the last one after a 

deprivation sleep night in the later morning/early afternoon. During each test, reaction time 

data per minute and EEG signals were recorded.   

The goal of such a protocol was to detect drowsiness through changes caused by passing 

from a well-awake condition to less vigilant physiological states. In fact, as emerged from 

literature, drowsiness is defined as the transition state between awakening and sleep during 

which a decrease of vigilance is generally observed [1]. It is assumed that, if a subject is 

going to be drowsy, its vigilance decreases and consequently its capability of detecting a 

stimulus decreases as well, causing elongated reaction times. Starting from these 

hypothesis, reaction time data have been utilized to label each minute of test, as it is well-

explained in chapter 3, paragraph 3.1. Consequently, epochs of EEG lasting 1 minute have 

been considered in order to get a perfect correspondence between labels and epochs of 

signal.  

The features have been obtained by implementing three distinct methods of spectral 

analysis: non-parametric, parametric, singular spectrum analysis, characterized by different 

advantages and disadvantages. Therefore, the second goal has been to compare 

performances of each spectral approach. Firstly, a statistical analysis has been realized in 

order to select the best features to discriminate three classes. Secondly, the comparison 

involved the employment of a classifier with the purpose of individuating the best method. 

Finally, once a method has been identified, a further analysis, subject per subject and test 

per test, has been performed in order to verify if the protocol has been respected and 

eventually which subjects have well adhered to it. In addition, a correlation between what 

labels suggested and what features meant has been investigated. 
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It must be said that, according to the way of data labeling and other considerations, a few 

cases of drowsiness emerged: the whole dataset consisted of 812 minutes of tests and only 

60 cases resulted drowsy, versus a greater and greater number of alert and transition 

epochs.  

Besides, through an analysis subject per subject, only three participants resulted to adhere 

to the protocol and drowsy epochs were mainly concentrated in those tests performed by 

these three subjects (no. 2, no. 12, no. 14). Therefore, whoever will read, must be aware 

that all the following considerations about the behavior of selected features are mainly 

based on those subjects that correctly adhered to the protocol. 

The fact that only 60 drowsy epochs have been collected has inevitably influenced the 

performance of each method to recognize drowsiness with respect to the other two classes. 

Indeed, it is difficult to detect a certain physiological state if it rarely happens during an 

EEG recording because it risks to be masked by the other spectral contributes, that are 

more dominant in the signal. It is easy to verify what has been said so far if one thinks to 

what happens in spectral decomposition: each component brings a contribute in terms of 

amplitude for a certain frequency and the components related to drowsiness are likely 

shadowed by the other more dominant ones. Vice versa, if drowsiness lasted more or there 

were more cases of drowsiness per subject, above all in the third test, it should be easier to 

detect it, with an appropriate frequency resolution that is able to capture the dynamics of 

the signals.  

In addition, since information about reaction time tests were referred to a minute scale, it 

was appropriate to divide signals into epochs lasting 1 minute. Initially, we also thought to 

divide signals into epochs lasting 20 seconds and to extract features with three methods, in 

order to better detect the dynamics of the EEGs. In this case, averaging operations on three 

epochs of 20 seconds were necessary in order to finally have only one value of each 

feature, per minute. By averaging features values in groups of three epochs, we observed 

that this technique did not lead to further improvements in the results. Therefore, the 

choice of dividing signals into 1 minute epochs was preferred, with the awareness of a 

small loss of frequency resolution. 

Before commenting results, it is convenient to remember below which features have been 

computed and why: 

- percentage power (P%) in each frequency band computed as: 
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- the ratio between alpha band PSD and beta band PSD:  
  

  
 

- the ratio between PSD in low frequency (LF) band and in high frequency (HF) 

band : 
      

  
 

- dominant frequency and dominant peak for each frequency band and for the 

whole range. 

From literature, it emerged that physiological events, related to drowsiness or generally to 

sleep, are better detectable, inside EEG signals, in the frequency domain. This is the reason 

why we focused on spectral features. In particular, each stage of the sleep is related to a 

certain frequency band: β band indicates alertness and vigilance, α band is associated to  

wakefulness but with closed eyes, θ band corresponds to falling asleep and deep relaxation, 

finally δ band is the rhythm of deep sleep. We decided to exclude delta band from the 

analysis because it is characteristic of the deep sleep and not drowsiness, as already said. 

The first two features were considered because it is interesting to know how much the 

power spectrum in each band is. In particular, the second feature has been considered 

according to results from a study of the University of Ostrawa [38]  about drowsiness 

detection through EEG processing. The percentage power (referred in the previous study as 

“relative power”) is computed by normalizing the power in a band to the whole PSD.  

The third and the forth features were computed because, as explained about physiological 

meaning of each frequency band, the ratio between bands is a way of knowing how the 

balance between bands changes as vigilance conditions vary. In particular, the second of 

the two features was included in order to evaluate if, adding theta band, drowsiness was 

better detected. These features are typically employed in studies about drowsiness 

detection through EEG processing. More details about them can be found in  [1], [2], [7], 

[39]. 

Finally, dominant peak and dominant frequency were used in order to better individuate 

the contribute in each band and in the whole range. They are useful because they more 

weight those contributes that “lasted” more in the signal and so those ones that dominate a 

certain band or the whole range, more than considering the simple amplitude value. A 



116 

 

detailed computation of them can be found in chapter 3, paragraph 3.2.3 and they have 

been previously used in a study from the University of Singapore [37]. 

As regards non-parametric method, eleven features resulted to be significant from  

Kruskal-Wallis test with a significance value of 95%. Even if the number of drowsy 

epochs is exiguous, this method has however allowed to extract a sufficient number of 

features to discriminate drowsiness, transition and alertness. This quantity of features is 

adequate in order to train a classifier. Since non-parametric method resulted to be the most 

capable to distinguish the three classes, from k-Cohen coefficient, it was possible to 

evaluate selected features from this method, subject per subject and test per test, and to 

verify a correlation between labels and features. This analysis, together with the statistical 

test, stated that the following ones are meaningful: 

1. dominant peak in θ band, from parietal area, is adapt to recognize drowsiness 

indeed it generally increases when drowsiness occurs. Normally when a subject is 

going to be “drowsy”, alpha rhythm trends to disappear and theta power starts to 

increase; dually, in a vigilant condition, theta contribute should not be present in 

the spectrum; 

2. percentage power in θ band, from frontal area, presented an opposite trend to what 

expected for drowsiness because it increases during alertness and decreases when 

a subject is in a “drowsy” state; 

3. a transformed version of percentage power, that is the logarithm of the ratio 

between P% and (1-P%),  in θ band, from frontal area, derives from the previous 

feature. In contrast with the feature no. 2, it becomes greater and greater as 

passing from the RT1 to RT3, indicating that power spectrum in θ band increases 

when drowsiness occurs; 

4. dominant frequency in the whole range, from frontal area, is greater in RT1 than 

in the next ones, as going towards conditions of less and less vigilance. As one 

can observe from figures throughout the chapter of results, it always assumes very 

small values, more or less from 0.5 to 1.5. It is supposed that this range, belonging 

to delta band, results to be dominant, when considering the whole range, because 

the PSD amplitude is greater than in the other bands and so it shadows the 

contribute of the other frequencies. When PSD increases, it is assumed that it 

happens because of an increment of amplitude in the other adjacent bands as well 
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(in particular θ and α are characterized by voltage tensions greater than in β). 

Consequently, a certain frequency results to be dominant also because of its 

amplitude: it is expected that if the amplitude increases, the corresponding 

frequency is dominant. Under these hypothesis, we considered dominant 

frequency behavior to be coherent with expectations: it increases with alertness 

because β band should be dominant, and decreases with drowsiness because lower 

frequencies should predominate, such as θ and α;     

5. dominant peak in the whole range, from frontal area, confirms what have been 

said for the previous feature: when drowsiness occurs, low frequencies  

contributes should predominate and, since they are characterized by high average 

voltage tensions, dominant peak increases with respect to vigilant cases; 

6. dominant frequency in the whole range, from central area, has the same trend of 

feature no. 4; 

7. dominant peak in θ band, from central area, well explains what happens when 

drowsiness occurs because it increases when a subject is going to be or is being 

“drowsy”; 

8. percentage power in θ band, from left central area, presents an opposite trend with 

respect to what expected in each condition: it is greater when a subject is “alert”, 

it decreases when the subject is “in transition” and finally it reaches minimum 

values when the subject is “drowsy”;  

9. a transformed version of percentage power in θ band, from left central area, 

correctly explains what happens in alertness, “transition” and drowsiness, 

respectively;  

10. dominant frequency in the whole range, from left central area, confirms what 

already explained for features no. 4 and 6; 

11. dominant peak in the whole range, from left central area, has the same behavior 

of features no. 5.  

As regards parametric method, smoother spectra have been obtained. We tried to keep the 

same number and the same kind of features, as much as possible, in order to perform a 

comparison under the same conditions. In this case, only the following four features 

resulted to be meaningful: 
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1. percentage power in θ band, from frontal area 

2. a transformed version of the percentage power in θ band, from frontal area 

3. percentage power in θ band, from left central area 

4. a transformed version of the percentage power in θ band, from left central area. 

 As one can imagine, four features could not be sufficient to train a classifier indeed k-

Cohen coefficient was really low for this method and this result has led to not use this 

approach for the successive step: protocol verification and features evaluation. 

The same problem has been encountered with the last approach, singular spectrum 

analysis. In this case, only three features –listed below- emerged to be statistically 

significant to discriminate classes: 

1. dominant peak in the whole range, from frontal area 

2. dominant peak in the whole range, from left central area 

3. dominant peak in θ band, from left central area. 

These features, that are still less than the previous approach, have been employed as inputs 

of the classifier. Also in this case, k-Cohen coefficients suggested a weak capability of 

discrimination for this method that has been consequently excluded for later evaluation. 

In conclusion, it is possible to state that the traditional non-parametric method resulted to 

be robust with respect to the other two ones. This results has demonstrated that it is 

possible to employ such a simple approach to get features for drowsiness detection, even if 

only a few cases of drowsiness are available. It could be interesting to repeat this kind of 

analysis with richer datasets that include more cases of drowsiness in order to verify if the 

same results are reached by the three above-mentioned methods.  

Another tip for future research in this field could be to perform an automatic data labelling 

at the place of a manual one, as developed in this work. Maybe it could be appropriate to 

employ for example an unsupervised learning technique in order to individuate 

automatically  the number of classes and which class each minute test belongs, still using a 

combination of mean reaction times and number of lapses as rules. It could happen that a 

greater number of classes or a different distribution of the epochs will come up and 

consequently the performance of each method could change as well. 

Finally, since this analysis exploited data from reaction time tests, once the instant of the 

onset of the stimulus is known, it could be interesting to study the correlation between the 
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instant when a subject reacts to the stimulus and the related desynchronization into the 

bands α and β. It emerged from Pfurtsheller’s studies [40],[41] that when a stimulus, that 

causes motor acts, occurs, a decrement of PSD in such bands is noticeable. Therefore, it is 

interesting to investigate if this desyncronization happens as soon as the stimulus is 

presented or not. Through this information, some speculations about drowsiness can be 

developed as well as we have done in this analysis.  
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APPENDIX A – SLEEP PHYSIOLOGY 

 

The AASM Manual for the scoring of sleep and associated events: rules, terminology and technical 

specifications, Westchester, 2007 [58] 

 

Sleep is considered as a primary need which takes one third of a person’s lifespan. It 

implies decreased motor activity, reduced sensorial sensibility, altered consciousness and it 

can be interrupted by appropriate stimulation.  

For a long time, it was believed that sleep was a passive process and that brain would shut 

down its activity and fall asleep when the absence of any sensory inputs occurred, because 

it caused the inactivation of a brain area called “reticular activating system”. This area, if 

appropriately exited, produces the typical vigilant state waveform. Nowadays instead, it is 

universally known that brain does not shut down at all while sleeping, rather it shows 

remarkable and well defined characteristic patterns of activity. Indeed, it was discovered 

that there are some specific cerebral areas that are responsible for sleep. Anterior 

hypothalamus stimulation causes sleep, posterior hypothalamus stimulation determines 

EEG activation and the thalamus influences sleep spindles. Therefore, it is possible to state 

that brainstem (and neighborhood) contains the so-said “sleep system”, which actively 

provokes sleep by inhibiting the reticular activating system, and that sleep is an active 

process which involves many parts of the CNS (central nervous system) and PNS 

(peripheral nervous system), in particular the autonomic nervous system.  

Thanks to the possibility of continuous recordings of brain electrical activity by means of 

the electroencephalogram (EEG), during wakefulness and sleep, it was actually possible to 

go deeper into the knowledge of sleep. In addition, this fact has allowed to better 

distinguish wakefulness from sleep and to discover the difference between rapid-eye 

movement (REM) sleep and non-REM (NREM) sleep [49].   

As regards the classification of sleep, there were many efforts of characterizing such 

patterns of sleep but the rather poor reliability of such methods led to the necessity of a 

more standardized classification manual of sleep. Since the publication of Rechtschaffen 

and Kales’s scoring sleep manual 38 years ago, the understanding of sleep has been really 
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accelerated. However, over the years, the science of sleep has evolved a lot therefore 

newer and newer scoring manuals were needed. In addition, effects of sleep related to 

arousal, cardiac dysrhythmias, respiratory patterns, movements and behavior increased the 

interest around this discipline and led to the development of more updated versions of 

scoring manuals (i.e. AASM manual for scoring sleep, 2007 [58]).  

Entering more specifically into the thematic of sleep, when a subject sleeps there is an 

alternation between a soft sleep and a deep sleep that are typically referred as NREM and 

REM sleep. The NREM sleep is the resting sleep that occurs after falling asleep and its 

amount depends on the previous wakefulness. Through EEG, it corresponds to detect 

synchronous cerebral high-voltage and low frequency rhythms, meaning the co-activation 

of many neurons. In young people’s sleep, it takes the 75% of the night sleep while only 

the 25% is represented by REM periodic episodes, lasting 5-30 minutes and happening 

each 90 minutes. The first REM event usually appears 80-100 minutes after falling asleep, 

when the EEG shows a desynchronized activity characterized by low-voltage and fast 

frequency waveform. Since REM waveforms are really closed to wakefulness patterns, this 

phase is also known as “paradoxical sleep”, firstly so-defined by Jouvet in 1958.   

Sleep stages  

As already said, EEG signals allow to detect specific patterns for each vigilance state, 

which can be observed in Figure A.1. Wakefulness appears as a low voltage and high 

frequency activity in the EEG, because of the desynchronization of neurons, also known as 

beta band (13-30)Hz. Subsequently, EEG alpha activity (8-13)Hz becomes dominant, 

mainly in the occipital areas, when one is going to close eyes for sleeping. When falling 

asleep and disconnecting from the surrounding, NREM sleep follows. It can be subdivided 

into three stages. A transitional stage (stage 1 or simply N1), characterized by a gradually 

disappearing alpha activity and more dominant theta activity (4-8) Hz, that appears with 

low voltage mixed-frequency EEG pattern. Immediately after, sleep stage 2 (N2) starts, 

when sleep spindles, that are short-lasting waves at around 12-15 Hz, predominate. Finally, 

there is the third stage of sleep (N3), where EEG assumes high voltage tensions but with 

low frequency (1-2 Hz), so that it is also known as “slow wave sleep”.  
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Figure A.1: vigilance states. Starting from the top, the first two signals are related to stage W: track no. 1 

indicates EEG associated to wakefulness and it is characterized by low voltage high frequency and irregular 

rhythm; track no. 2 is related to closed-eyes wakefulness with dominant α activity. The red signals are related 

to NREM sleep: track no. 3 is typical of stage N1 with dominant θ band; track no. 4 shows K complexes (*) 

and sleep spindles (**); track no. 5 and no. 6 are related to stage N3. The green one stands for REM sleep. 

The transition from low-voltage fast activity, during wakefulness, to NREM sleep is 

caused by the fact that every cortical neuron is slowly oscillating synchronously across 

most of the mantle by cortical connections, determining high voltage tensions and low 

frequencies [49]. During the night, NREM sleep and REM sleep are alternated and when 

REM sleep occurs, it is possible to observe a fast activity EEG, as it happens in the stage 

W: for this reason, REM sleep is also called “paradoxical sleep”. 

Sleep regulation model 

The principle of working of the system that regulates sleep events is based on the correct 

interaction of two endogenous processes, mutually independent: homeostatic process (S) 

and circadian process (C). The process S increases when one is awake and decreases while 

sleeping and corresponds to the amount of low frequencies activity belonging to the range 

[0.5,4.5]Hz, the delta band, in the NREM sleep EEG. The level of the process S is strictly 

linked to the duration of the previous wakefulness. Reversely, the process C depends on 

the so-said “circadian pacemaker”, located in the suprachiasmatic nuclei (SCN) of the 
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hypothalamus, and more generally it is also related to the ocular retina and the epiphysis 

(by melatonin influence).  

Sleep and wakefulness alternate in fact with a period of 24 hours, from which the term 

“circadian” derives so that it is influenced by natural stimuli as the light and environmental 

temperature (Figure A.2). The sleep districts inhibit the reticular activating system, 

resulting in the transition from sleep to wakefulness. Thereafter, once wakefulness is 

activated, it naturally endures. After many hours of brain activity, fatigue occurs and leads 

to sleep.  

 

Figure A.2: circadian rhythm diagram of 24 hours. 

The function of the process C is then to modulate sleep by controlling a lower and an upper 

threshold so that if one of these thresholds is reached by process S, one will tend to sleep 

or wake up. In addition, it must be said that not only the quantity of sleep is important, but 

also its quality, in fact when a lack of NREM sleep occurs, it can be retrieved by a more 

intense NREM sleep. Moreover, from some studies it emerged that process S and C act 

independently indeed sleep-deprived rats, with injured SCN, showed slow-wave activity as 

well, even if process C no longer existed [49].    
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Physiological aspects of sleep 

Sleep influences so many aspects of human beings’ life that its deprivation causes heavy 

cognitive and physiological impairment. In particular, it allows energetic recovery, 

temperature regulation, memory and learning enhancement, synaptic homeostasis, and 

humoral equilibrium.  

Several studies have showed that sleep can enhance performance of tasks learned during 

previous wakefulness. Indeed, the enhancement is not simply a question of time needed to 

memorize new things, but it is actually linked to sleep [49,50]. Besides, it emerged that the 

consolidation of new concepts happens during the NREM sleep, while the assimilation and 

generalization tasks are developed during REM sleep [49].  

Another important function of the sleep is the capacity of recovering our organism from 

fatigue, by restoring physiological levels of activity and metabolic rate and by recharging 

our forces, lost during wakefulness. For this reason, an elongated awake condition can lead 

to mental impairment. In fact, while human metabolic savings allow to perform physical 

tasks despite a sleepless night, brain is the one who mostly suffers sleep deprivation [49]. 

Indeed, memory consolidation and brain restoration are not conceptually independent 

according to a new and more complete theory, “the synaptic homeostasis hypothesis” [59]. 

That theory suggests that plastic processes, occurring during wakefulness, strengthen 

synaptic connections. What sleep does is then to decrease synaptic strength to a baseline 

level, being energetically more sustainable, that favors memory and performances. During 

wakefulness, neuro-modulation intervenes for example by increasing the level of NA 

(noradrenaline), which enables the storage of information. This fact is due to stronger 

synapses which mean that a presynaptic neuron fires and thereafter the depolarization of a 

postsynaptic neuron occurs to indicate remarkable events [49]. During sleep instead, mind 

is disconnected from the environment and the speed of passing from depolarized to 

hyperpolarized phases is slower: this fact influences cortical neurons and it appears in the 

EEG by SWA [60]. These events are caused by changes in neuro-modulation that makes 

the brain not to interact with environment because no synaptic enhancement occurs.  

The reason why the early sleep is still characterized by high amplitude is that, at the end of 

the wakefulness, synaptic connections are still strong; therefore, neurons can synchronize 

their firing rate [61]. On the other hand, when synaptic strength decreases, as a 

consequence of the repetition of depolarization/hyperpolarization phases, the neurons 
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synchronization decreases as well and a reduced amplitude in slow oscillations results. 

This fact appears in the EEG as a reduction of SWA [49]. Such cyclic changes of the 

neural activation influence both the sympathetic activity, during wakefulness, and the 

parasympathetic one, during sleep. If sympathetic system is over-exited, both because of 

endogenous or exogenous factors (anxious state or stimulants assumption respectively), 

this negatively affects the sleep quality because it leads to an excessive increasing 

vigilance and to an inhibited NREM sleep recovery [14].  

Remarkable physiological variations, during sleep, regard also cardiovascular system and 

respiratory system. In the first case, during NREM sleep, vasodilatation and corresponding 

reduced heart rate and blood pressure can be detected, while in REM sleep there is 

vasoconstriction, respectively caused by a reduced and reinforced sympathetic activity. A 

similar trend regards blood flow to brain during NREM and REM sleep: it decreases 

during NREM sleep while REM level reaches the same values as in the awake stage [14].   

As regards the respiratory system, respiratory rate is constant but there is a slight 

hypoventilation which leads to increased pCO2 and decreased pO2, as a consequence of the 

muscle relaxation, during NREM sleep. The respiratory rate increases, instead, with REM 

sleep and here the complete relaxation of the muscle tone causes an increasing resistance to 

the airflow [14].  

Finally, other physiological variations can be observed for kidneys, thermoregulation and 

important hormones release (like melatonin, present during daylight and absent during 

darkness).  

Sleep quality evaluation 

Since sleep plays a very important role from both a physiological and mental point of view, 

it is clearly useful to evaluate sleep quality, especially in case of pathologies. In addition, it 

has been proved that bad sleep quality can lead to hypertension and less efficient defense 

system [14].  

Traditionally, sleep is evaluated according to some classification scales: the first one was 

the R&K scale which involved to divide sleep recordings into 30-seconds epochs and to 

visually distinguish among AWAKE, NREM (stages 1, 2, 3, 4) and REM sleep, according 

to polysomnographic signals (ECG, EEG, EMG, EOG). In addition, other parameters can 

be registered if necessary: thoracic and abdominal movement in order to evaluate 
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respiratory effort, oxygen saturation (pO2) and pCO2 for detecting eventual hypoventilation 

or sleep apnea, position sensor because some cases of severe upper airway obstruction can 

affect the body position, pH when gastro-esophageal reflux symptoms are evident. For 

more information, see “AASM Manual for scoring sleep, 2007” [58], that is the new scale 

which is recently considered, at the place of the previous R&K scale. 

Polysomnographic analysis results in the creation of a characteristic graphic that is known 

as “hypnogram”, where each epoch is labeled by the related sleep stage. Finally, in order to 

evaluate sleep quality the following parameters are employed: duration of the sleep stage 3, 

REM latency and duration, frequency and duration of nighttime awakenings and sleep 

latency, defined as the ratio between time to sleep and time lying on the bed. 
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APPENDIX B – SPECTRAL ANALYSIS 

Non-parametric analysis 

The non-parametric analysis is based on the usage of the Discrete Fourier Transform 

(DFT). It leads to an estimation of the covariance of the process under analysis, or 

equivalently its spectrum, according to the theorem of Wiener-Khinchin. In particular, non-

parametric analysis can be direct or indirect.  

The first one employs the periodogram as spectral estimator, which is the squared module 

of the FFT of the signal normalized to the number of points, defined as below:  

 ̂     
 

  
|    |   

where N is the number of data points constituting the signal of interest, T the sampling 

period. Generally, it is preferred to use the faster algorithm of FFT (Fast Fourier 

Transform) to compute the Fourier Transform. The only constraint is that it is warmly 

suggested to use a number of points equal to the next power of 2 greater than the length of 

the signal, because such a choice makes more manageable the computation.  

The length of the analyzed signal is generally finite and the signal is not always ergodic, 

therefore, in order to respect the conditions required to apply DFT, the portion of signal (as 

if it was windowed) is usually assumed to have an infinite period. In addition, the 

stationarity is required too. As well known, the big limits of the periodogram are 

essentially the spectral leakage, the frequency resolution and the large variance of the 

estimator. The first one is caused by the presence of lateral lobs inside the power spectrum 

of the signal, resulting in an altered frequency content. The frequency resolution is heavily 

limited by the number of data points employed for DFT computation. The problems related 

to spectral leakage and frequency resolution can be partially overcome by applying an 

appropriate window function to each segment of signal. The third problem derives by the 

fact that the periodogram is a not statistically consistent spectral estimator, which does not 

converge to the real spectrum for growing N to infinity.  

In order to improve the performance of the traditional periodogram spectral estimation, 

some devices can be operated, as suggested by Bartlett and Welch method.  

This method consists in dividing the signal into K smaller segments of M samples per 

segment. K periodograms (one per segment), mutually independent, are computed and a 
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triangular Bartlett window (or eventually other window functions) is applied to each 

subsequence, so as K modified periodograms are obtained as follows: 
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)
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where         is the signal, w(n) is the window and U is a normalization factor so that the 

final spectrum estimator    , that is then defined, results asymptotically unbiased. The 

factor U is so defined: 
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Finally, the spectrum estimator is obtained by averaging on the K modified periodograms 

as below-indicated:  
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The indirect method employs the DFT of the autocorrelation function (ACF) of the signal 

as spectral estimator, according to Wiener-Khinchin theorem, as previously mentioned. 

The spectral estimation is obtained by applying Blackman-Tuckey method, as follows:  

 ̂         ∑                  

 

     

  

where r(k) is the ACF of the signal, w(k) is the window function, T the sampling period 

(the inverse of the sampling frequency FS).  

If on one hand non-parametric analysis presents the above-mentioned limits due to the 

DFT computation, on the other hand this approach allows to get a simple and fast spectral 

estimator. 

Parametric analysis 

The parametric analysis differs from the non-parametric one because it solves the above-

mentioned limits about spectral leakage and spectral variance but it requires a heavier 

computational cost. The parametric approach comes from the concept that a certain process 

generates the time series under analysis. More specifically, its power spectrum can be 

computed as the power spectrum of the output signal of a linear time-invariant (LTI) 

system that receives in input a white noise process (Figure B.1). This is because the power 
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spectrum of a white noise (WN, the variance of the process) is unitary and so the power 

spectrum of the output is the squared module of the frequency answer of a system that 

should be able to represent the signal of interest, if correctly implemented. 

 

 

Figure B.1: model of a signal generated by a system receiving in input a stationary white noise WN(0,σ2), 

with null mean value and standard deviation σ2. The system is completely described by its transfer function. 

In particular, implementing a parametric model implies the following three steps: 

1. individuation of the appropriate model family of the time series of interest 

2. model parameters identification which involves optimum order and coefficients 

computation 

3. PSD estimation by using model coefficients 

As regards the first point, it is preferable to take into account the properties of the signal.  

For instance, an Auto-Regressive (AR) model is appropriate for a signal containing sudden 

peaks in frequency spectrum. On the contrary, Moving Average (MA) model is used for 

signals that have no sharp peaks. If the information about the signal is not available to take 

a decision, the Autoregressive Moving Average (ARMA) model can be used for both 

cases. As regards EEG signals, AR and ARMA models are preferred because their 

structure consists of peaks at discrete frequency intervals. In particular, AR model is 

usually employed because it has more advantages than ARMA in terms of computational 

costs.  

According to the AR model, the amplitude of a signal at a given instant can be obtained by 

summing up the different amplitudes of previous samples. The relationship between the 

input and the output of the above-mentioned system, shown in Figure B.1, can be written 

as in the formula below: 

      ∑             
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where w(n) is a white noise of variance σ
2
 and null mean value.  

As regards the second point about the parameters of the model, an important issue is the 

identification of the optimum order of the AR model. It can be individuated by employing 

one of the three most famous criteria known as Akaike Information Criterion (AIC), Final 

Prediction Error (FPE) and Minimum Description Length (MDL), defined respectively as 

in the formula below: 

             
      

          
  

     

     
 

             
           

where N is the total number of samples as well as the length of the signal, p is the optimum 

order,   
  is the variance of the prediction error as well as an estimator of input noise 

variance. In particular, each criterion is composed of a term related to the variance of the 

prediction error and another term linked to the order and so to the number of coefficient. 

The first term suggests that if the variance of the prediction error decreases the figure of 

merit decreases as well because it means that the model is well mirroring the signal of 

interest. However, this fact likely happens when increasing the order of the model so, in 

order to not risk the problem of overfitting (an excessive adherence of the model to a 

specific signal, which causes loss of generalization power), the second term balances the 

behavior of the figure of merit. Indeed, as can be observed in Figure B.2, if the order 

increases too much, the trend of the figure of merit worsens. The point of intersection 

between the dotted curve, representing the variance of the prediction error (still going 

down), and the point where the blue curve of figure of merit starts to grow, indicates the 

optimum order. 
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Figure B.2: p is the order of the model,   ( ̂    )       θ      are respectively the variance of the 

prediction error in the “identification phase” and in the “validation phase”. The yellow-circled point indicates 

the optimum order.  

In addition, the Anderson’s whiteness test on the prediction error is realized, in order to 

evaluate the performance of the so-defined model. This test involves to check if the 

prediction error results to be white and so if its autocorrelation function (ACF), defined 

below, is maximum at lag=0 and around zero elsewhere. 

  
      

 

 
 ∑          

 

   

  

where N is the number of samples, e(t) is the prediction error and e(t+τ) is the error lagged 

of a certain shift τ , to evaluate the correlation level among samples at such shift.  

The whiteness of the prediction error implies that the model well represented and 

explained the signal. Therefore, if the order suggested by AIC/FPE/MDL does not satisfy 

the condition of the Anderson’s test, it needs to be incremented until the residual error 

becomes white. However, also in this case it is necessary to pay attention not to increment 

too much the order to avoid the problem of overfitting. Indeed, even if the model seems to 
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replicate perfectly the signal, it risks losing its capacity of generalization and the model 

comes up to be inadequate. 

As regards the computation of the coefficient, by summing up all the squared values of the 

prediction errors on the N samples of the signal, a “cost function” called J can be obtained: 

   ∑      
 

   

 

This figure of merit is a function of the coefficients of the model so that the coefficients are 

determined through Yule Walker’s equations that are based on the minimization of the 

function J using Levinson-Durbin recursion. 

Once the estimated coefficients  ̂  of the model have been determined, that are as many as 

the order of the model, it is possible to move to the third point, the computation of the PSD 

of the signal, as in the following formula: 
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where    must be substituted with J and    with the above-mentioned estimated 

coefficients  ̂ ; T is the sampling period of the signal.  

Singular spectrum analysis 

The “Singular spectrum analysis” (SSA) is a technique used for time series analysis and 

forecasting and it results from a combination of classical time series analysis, multivariate 

statistics, multivariate geometry, dynamical systems and signal processing.  

It aims at decomposing the original series into a sum of a few components that represent 

the main content of the signal such as a slowly varying trend, oscillatory components and 

the background noise. It exploits the advantages of both singular value decomposition 

(SVD) and principal component analysis (PCA). SSA is characterized by the fact that 

neither a parametric model or stationarity hypothesis are assumed for the time series so it is 

a model-free technique. 

The algorithm can be summarized in 2 principal operations that are the “decomposition 

stage” and the “reconstruction stage”, each of whom consists of other two sub-steps for a 

total of 4 main passages: 
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1) Decomposition stage 

1.1 Embedding step 

The one-dimensional series is embedded into a multidimensional series (lagged vectors) 

whose dimension is called “window length” L. The multidimensional time series, which 

has become a sequence of vectors as long as the window length, forms the so-called 

“trajectory matrix” X. The only parameter to determine at this step is the window length L, 

which is really important for the frequency resolution. In fact, L is linked to the frequency 

by the relationship: 

   
  
 

 

Where    is the sampling frequency and L should be chosen according to the desired 

frequency resolution. 

If 1 < L < N, where N is the length of the signal, the embedding step creates K=N – L+1 

lagged vectors: 

                  
        

where    has dimension equal to L and it is L-lagged. The trajectory matrix is obtained 

from the sequence of the    vectors:  
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The trajectory matrix is characterized by having equal elements on the diagonals i+j = 

const. and so it is a Hankel matrix. 

Then, the real and proper trajectory matrix has been computed and the corresponding 

covariance matrix C has been obtained as: C = X * X
T
, of size LxL.

  

1.2 Singular value decomposition (SVD) 

The result of this step is the SVD of the trajectory matrix X, but after computing C as the 

covariance matrix, it is easier to compute its eigenvalues and eigenvectors.           is 

the notation of the eigenvalues, considered in a decreasing order of magnitude so as 

            , which represent the squared singular values of X,  and           

the notation of the orthonormal system of the related eigenvectors, corresponding to the 
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left singular vectors of X. These last ones are usually known in literature as “empirical 

orthogonal functions” (EOFs). The right singular vectors can be interpreted instead as the 

eigenvectors of the matrix X
T
X.  

Subsequently, it is possible to describe X as a sum of rank-one biorthogonal matrices Xi 
 
, 

where i = 1…..d and d ≤ L is the number of nonzero singular values of X, that is d=max{I, 

such that λi >0}. 

Then, let’s indicate with          √  ⁄   and X can be now written as X = X1+……..+Xd, 

where Xi are defined as √      
  and they are rank-one matrices, therefore they can be 

considered as elementary matrices. Generally √         are referred as the i-th 

“eigentriple” of the SVD of X.     

2) Reconstruction stage 

2.1 Grouping step 

At this step, the set of indices I = {1, . . . , d} is split  into m several groups I1, . . . , Im and 

some matrices Xi are obtained by summing up within each group. The result of the step is 

contained into the following statements: 

  ∑    

 

   
                  ∑  

    

 

Once d is determined, starting from the EOFs, it is possible to compute the principal 

components (PCs) of the signal, by projecting the signal on the EOFs as         , with 

1 ≤ i ≤ d. 

2.2 Reconstruction step 

This step brings back each matrix X, previously constructed in the grouping step, to the 

original length N. 

Let’s denote by Y an L × K matrix, whose elements are yij , 1 ≤ i ≤ L, 1 ≤ j ≤ K .  Then let’s 

define by L* = min(L,K) and by K* = max(L,K) so that N = L + K − 1. Therefore y
*
ij=yij if 

L<K  and y
*
ij ≠ yij otherwise. Thereafter, it is necessary to average on diagonals in order to 

transfer the matrix Y to the new series go,……., gN-1 by using the following formula in 

Figure B.1:  
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“Analysis of Time Series structure: SSA and related techniques”, Nina Golyandina, Vladimir Nekrutkin, 

Anatoly A. Zhigljavsky, 2001 [20] 
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