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Abstract

One of the most dynamically evolving areas in Telecommunications is the In-

ternet of Things. This concept describes “a world-wide network of uniquely

addressable and interconnected objects, based on standard communication”

(ETP-EPOSS). The Internet of Things can find application practically ev-

erywhere starting from a wearable device monitoring steps to a space shuttle

coffee machine.

This thesis research considers visual sensor networks (VSN), one of applica-

tions of the Internet of Things. VSNs enable a smart surveillance system that

can improve areas of early emergency alarming, safety and health-state mon-

itoring. Taking into consideration battery-limited lifetime of sensor network

the topic of energy saving is of actual importance. This thesis work defines

an outline, where a visual sensor network is densely populated with camera

nodes, in case of surveillance of public areas application. In this reference

scenario some of the cameras have an overlapped field of view. Furthermore

each camera performs visual analysis task: acquire image, extract features,

transmit compressed features over the network. Therefore camera nodes ac-

quire, process and spend limited energy resources on the same (or partially

the same) image. This work proposes cooperative framework in which cam-

era nodes with (partially) overlapped field of view collaborate to reduce the

overall energy consumption. Camera nodes collaborate upon a portion of

image they have to process, playing a bargaining game. The optimal so-

lution to this game is offered by the Nash bargaining solution (NBS). NBS

implementation allows to obtain “efficient” image processing sharing policies.
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Chapter 1

Introduction

In recent years extensive attention worldwide has been given to the Internet

of Things. The key technologies include sensor networks, RFID technology,

thread detection and nano-technology [1]. These technologies certainly im-

pact industrial development, scientific and technological progress and the

Internet of Things also helps facilitate human life.

Sensor networks, as a bright example of the Internet of Things concept, are

dense wireless networks of small, low-cost sensors which collect and dissemi-

nate environmental data. Wireless sensor networks facilitate monitoring and

controlling of physical environments from remote locations. They have appli-

cations in a variety of fields such as environmental monitoring and military

purposes, gathering and sensing information in hostile locations. Visual wire-

less sensor networks include visual sensor nodes called camera nodes, which

integrate the image sensor, the embedded processor and wireless transceiver.

Visual sensor networks also find application in health and medicine, for exam-

ple, for remote monitoring, diagnostics and additional support for disabled or

monitoring movements and internal processes of small animals. Surveillance

is a primary area for camera-based networks. They monitor large public

areas using hundreds or thousands of camera nodes. Environmental appli-

cation includes monitoring of remote areas over a long period of time, such

as flood or fire detection. Also visual wireless sensor networks provide the

scientists with tools for large scale earth monitoring and planetary explo-
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Chapter 1. Introduction

ration. Whereas telepresence systems enable a remote user to “visit” some

location that is monitored by collection of cameras, such as a virtual museum

or gallery.

Every sensor network consists of a number of nodes. Each node has various

energy and computational constraints due to its limited cost and size. If sen-

sor networks include also camera nodes, then image-related operations imply

larger energy consumption due to local visual analysis and data transmis-

sion. Each visual wireless sensor network can be characterized by a number

of parameters: real-time performance; location and orientation information;

local processing, that may include simple image subtraction or more complex

object classification or scene reasoning. A visual sensor network is also char-

acterized by autonomous node collaboration, implying information exchange

and autonomous decision making.

The reference scenario of this thesis addresses a visual sensor network for

surveillance of public areas, where camera nodes are densely located. In

such a setting, some of the camera nodes most likely have an overlapped

field of view among them, implicating that camera nodes in fact observe the

same area and process the same (or partially the same) images. The refer-

ence surveillance application is based on visual analysis task such as object

recognition or image retrieval in which camera nodes are required to acquire

images, extract local features from the acquired images, and send a com-

pressed version of such features across the network for a further processing.

Keeping in mind that any sensor network is energy constrained, every time

camera nodes process the same image it leads to unnecessary energy con-

sumption and consequently shorter network lifetime.

To this extent, this work proposes cooperative framework in which camera

nodes with (partially) overlapped field of view collaborate to reduce the over-

all energy consumption. In a nutshell, the collaborating cameras agree on

which part of acquired image they have to process, thus reducing per-camera

energy consumption, and, as a consequence, extending the network lifetime.

The image sharing problem is represented as a bargaining game in which

the players (camera nodes) bargain upon a portion of image they have to

process. The solution to this game, that is Nash bargaining solution is then
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Chapter 1. Introduction

used to obtain “efficient” image processing sharing policies. Research and

analysis is conducted to understand the feasibility of the suggested solution,

comparing it with alternative data sharing approaches. And finally a com-

munication protocol is offered with the purpose of enabling NBS-based image

sharing collaboration among nodes. This thesis has been developed within

the framework of The GreenEyes European project, which has the final goal

of empowering wireless sensor networks with vision capabilities [2].

First of all in Chapter 2 reviews visual wireless sensor networks, their appli-

cation and characteristics description. Visual analysis is also discussed. It is

an important component of NBS implementation. In Chapter 3 theoretical

principles of the Nash bargaining solution concept are described, as well as

a detailed account of its plausible interpretations, parameters and applica-

tions. Chapter 4 is dedicated to the problem statement, reference scenario

and utility function experimental evaluation. The following Chapter 5 con-

tains main components required for performance evaluation of NBS-driven

algorithm, structure of analysis and obtained outcomes also take place in

Chapter 5. Chapter 6 describes the communication protocol, its components

and required energy budget. Chapter 7 concludes the thesis and proposes

possible directions of future inquiry and development.
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Chapter 2

Visual Sensor Networks

2.1 Introduction

This chapter reviews wireless visual sensor network’s essential properties,

functionalities, along with feature extraction algorithms that enable image

analysis.

A concept of sensor network is usually interpreted as a network of spatially

distributed autonomous sensors with a communications infrastructure al-

lowed to monitor and record conditions, such as temperature, sound, pres-

sure. Whereas visual sensor networks consist of tiny visual sensor nodes

called camera nodes, which integrate the image sensor, embedded processor,

and wireless transceiver [3]. Following the trends in low-power processing,

wireless networking, and distributed sensing, visual sensor networks have

been developed as a new technology with a number of potential applica-

tions, ranging from security and surveillance to environmental monitoring

and telepresence. For example, the physiological data (heart rate, pulse or

physical activity) about a patient can be monitored remotely by a doctor. It

brings more convenience to a patient meanwhile remote management of the

data becomes more opportune for a doctor. It is envisioned that in a future

sensor networks will become an integral part of everyday life. Consisting

of a large number of low-power camera nodes, visual sensor networks sup-
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Chapter 2. Visual Sensor Networks

port a great number of novel vision-based applications. The camera nodes

provide information from a monitored site and may perform distributed and

collaborative processing of the collected data. On one hand the large amount

of image data produced by the cameras leads to elevated process reliability,

on the other hand the network’s energy and transmission resources are con-

strained. Therefore a visual sensor network implementation requires explor-

ing new means for data processing, communication and sensor management.

Meeting these challenges of visual sensor networks an interdisciplinary ap-

proach, such as Nash bargaining solution concept is required. NBS enables

more intelligent way of image processing.

2.1.1 Visual sensor networks applications

Sensor networks coupled with different types of sensors (such as magnetic,

infrared, visual, radar etc.) performs monitoring of a great variety of envi-

ronmental conditions, including the following [4]:

• vehicle movement

• lightning condition

• soil makeup

• presence or absence of certain type of objects

• object characterizations, such as speed or size

The alliance of micro-sensing, visual component and wireless connection of

those nodes introduces new application areas.

Surveillance Surveillance is a primary area for camera-based network.

Monitoring of large public areas (such as airports, subways, etc.) is per-

formed by hundreds or thousands of security camera nodes [3]. Current

efforts in visual sensor networking are concentrated toward advancing the ex-

isting surveillance technology by utilizing intelligent methods for extracting
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Chapter 2. Visual Sensor Networks

information from image data locally on the camera node, thereby reducing

the amount of data traffic. Visual sensor networks can be seen as a next

generation of surveillance systems that are not limited by the absence of

infrastructure, nor do they require large processing resources at one central

server.

Interactive surveillance using multiple cameras Cameras could

be used for social security and cooperative surveillance to ensure the security

of entire community, for example, by tracking suspects over a wide area,

using the cooperation of multiple cameras. Using interactive surveillance the

traffic police can discover, track and catch vehicles involved in traffic offences

[5].

Anomaly detection and analysis In some cases it is necessary to

determine normal or abnormal behaviour of people or vehicles. For example,

interactive surveillance placed in parking lots and supermarkets could analyse

abnormal behaviour indicating theft. And automatic notification may follow

either directly to police department or as a recorded public announcement.

Crowd flux statistics and congestion analysis Visual surveillance

systems can automatically compute the flux of people at important public

areas such as stores and travel sites, and analyse congestion in the area and

accordingly assist with more flexible management of people flow.

Environmental application Can be used for monitoring remote and in-

accessible areas over a long period of time. It is usually combined with other

types of sensor networks, in that way camera activity can be triggered only

when a certain event is detected. Some environmental applications of sen-

sor networks include tracking of small animals, birds; macro-instruments for

large-scale earth monitoring and planetary exploration; environmental mon-

itoring in marine, soil and atmospheric context; forest fire or flood detection

and studies of pollution.
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Forest fire detection Sensor network nodes can be densely deployed

in a forest, such that it is possible to locate exact origin of the fire and notify

the end user and to prevent damaging fire spreading. They can be equipped

with effective energy saving mechanisms and technologies (such as solar cells)

considering that they can be left unattended for months or years.

Flood detection An example of a flood detection is the ALERT system

deployed in the United States [6]. The sensors that measure water level

and weather conditions supply information to the centralized database in a

predefined way.

Health applications Some sensor networks find use as an interface for

integrated patient monitoring, drug administration in hospitals, monitoring

movements and internal processes of small animals, tracking doctors inside

the hospital.

Telepresence systems Telepresence systems enable a remote user to “visit”

some location that is monitored by a collection of cameras, for example, mu-

seums, galleries or exhibition rooms. The system is able to provide the user

with any current view from any viewing point, and thus it provides the sense

of being physically present at a remote location through interaction with the

system’s interface.

Commercial applications Some of commercial applications are monitor-

ing of product quality, constructing smart office spaces, environmental control

in office buildings, robot control and guidance in automatic manufacturing

environments, factory process control and automation, monitoring disaster

area, smart structures with sensor nodes embedded inside, detecting and

monitoring of car thefts.

Detecting and monitoring car thefts Sensor nodes are being de-

ployed to detect and identify threats within a geographical region and report

these threats to remote end user via Internet for analysis.
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Chapter 2. Visual Sensor Networks

2.1.2 Characteristics of Visual Sensor Networks

One of the main differences between visual sensor networks and other types

of sensor networks lies in the nature of how the image sensors perceive in-

formation from the environment. Most sensors provide measurements as 1D

data signals. In addition, a camera’s sensing model is inherently different

from the sensing model of any other type of sensor. Typically, a sensor col-

lects data from its vicinity, as determined by its sensing range. Cameras, on

the other hand, are characterized by a directional sensing model - cameras

capture images of distant objects/scenes from a certain direction. The 2D

sensing range of traditional sensor nodes is, in the case of cameras, replaced

by a 3D viewing volume (called field of view, or FoV). Visual sensor networks

are in many ways unique and more challenging compared to other types of

wireless sensor networks.

Resource Requirements

The lifetime of battery-operated camera nodes is limited by their energy

consumption, which is proportional to the energy required for sensing, pro-

cessing, and transmitting the data. Given the large amount of data generated

by the camera nodes, both processing and transmitting image data are quite

costly in terms of energy, much more than for other types of sensor networks.

Furthermore, visual sensor networks require large bandwidth for transmitting

image data. Nash bargaining solution suggests a way of reducing image data

processing cost, therefore meet intended reduction of energy consumption.

Real-Time Performance

Most applications of visual sensor networks require real-time data from the

camera nodes, which imposes strict boundaries on maximum allowable delays

of data from the cameras. The real-time performance of a visual sensor

network is affected by the time required for image data processing and for

the transmission of the processed data throughout the network.
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Chapter 2. Visual Sensor Networks

Location and Orientation Information

In visual sensor networks, most of the image processing algorithms require

information about the locations of the camera nodes as well as information

about the cameras’ orientations. This information can be obtained through

a camera calibration process, which retrieves information on the cameras’

intrinsic description, such as angle of view, focus length and SSD chip size

and extrinsic parameters, such as geometrical location.

Local Processing

Local (on-board) processing of the image data reduces the total amount of

data that needs to be communicated through the network, followed by a

trade-off between cost to pay for local image data processing and cost to pay

for data transmission.

Local processing can involve simple image processing algorithms (such as

background subtraction for motion/object detection, and edge detection) as

well as more complex image/vision processing algorithms (such as feature

extraction, object classification, scene reasoning). In order to extract neces-

sary information from different images, a camera node must employ different

image processing algorithms. The aforementioned vision processing tasks

require extracting features about an event, which in the case of energy con-

strained camera nodes can be hard or even impossible to achieve. Thus,

although it is desirable to have high-resolution data features, costly feature

extractions actually should be avoided.

Autonomous Camera Collaboration

Visual sensor networks are envisioned as distributed and autonomous sys-

tems, where cameras collaborate and, based on exchanged information, rea-

son autonomously about the captured event and decide how to proceed.

Through collaboration, the cameras relate the events captured in the images,

and they enhance their understanding of the environment. This particular

feature of visual sensor networks is exploited by Nash bargaining solution
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Chapter 2. Visual Sensor Networks

framework. The collaborative capabilities employ the bargaining process,

make it possible to implement the framework.

2.2 Reference visual analysis lineup

The aforementioned visual processing tasks require extracting features about

an event. Visual analysis is performed by feature detection algorithms re-

sulting in visual features description that can be used according to a user

application. Primarily visual analysis is implemented enabling processing

and evaluation of human or object movement/motion and behaviours.

In computer vision and image processing, visual features are used to encode

the image structure in a spatial neighbourhood (the way image patch looks

like) around each interest point of the image. Local image structure around

interest points simplifies further processing in the vision system. In addi-

tion, the features are highly distinctive and, at the same time, robust to

noise, detection errors, and geometric and photometric deformations. Those

characteristics allow a single feature to be correctly matched with high prob-

ability against a large database of features [7].

Features are the result of an operation applied to generic neighbourhood.

Such type of operation is called feature detection and feature description.

Feature extraction involves simplifying the amount of resources required to

describe a large set of data accurately. Fewer resources means also less com-

putation power, less energy and less memory consumed. This operation is

used to detect and isolate various desired number or shapes (features) of a

digital image.

Feature detection makes decisions locally regarding presence of a feature of

a given type at a given image point or not, seeking for image points with

special characteristics, such as saliency or high contrast, which depends on

the specific type of detector. Main basic known detectors are edge, corner

and blob detectors. The result of the feature detection is often represented

in terms of coordinate sets of the image points where a feature is detected.

Once a feature is detected, a local image patch can be extracted from the

feature vicinity to characterize its surroundings region, known as feature de-
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Chapter 2. Visual Sensor Networks

scription process. The result is known as a feature descriptor or feature

vector, which is usually a high dimensional vector.

Cost of extracting these features is minimized by taking a cascade filtering

approach, in which the more expensive operations are applied only at loca-

tions that has passed the first phase.

Visual feature vector, defined in terms of a specific structure in the image

data, can be often represented in this way:

• Keypoint position: coordinates of the pixel location

• Scale: the scale of an interest point

• Orientation: one or more orientations are assigned to every keypoint

location based on local image gradient directions

• Keypoint descriptor: is a descriptor vector (64 elements for SURF) for

each keypoint such that the descriptor is highly distinctive and partially

invariant to illumination

• Fast Hessian response: response of ‘fast Hessian’ detector, which relies

on integral images to reduce computation time

Usually feature extraction algorithms belong to one of two types:

• Blob feature extraction algorithms

• Binary feature extraction algorithms

Vision processing tasks require extracting features about an event taking into

account energy and memory constraints of the camera node.

A light-weighted algorithm that is widely used in computer vision to perform

feature extraction and detection is called SURF. In the following Sections

2.2.1 and 2.2.2 we briefly review main characteristic of two detection/de-

scription algorithms, which are featured in this thesis work.
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Chapter 2. Visual Sensor Networks

2.2.1 SURF - Speeded Up Robust Features

SURF is scale- and rotation invariant interest point detector and descriptor

[8]. It is fast and robust algorithm for local, similarity and invariant image

representation and comparison. SURF selects interest points of an image

from silent features of its linear scale-space, and then builds local features

based on the image gradient distribution.

The search for discrete image correspondences can be divided into three main

steps. First interest points are selected at distinctive locations in the image,

such as corners, blobs and T-junctions. Next, the neighbourhood of every

interest point is represented by a feature vector. This descriptor has to be

distinctive and, at the same time, robust to noise,detection errors, geometric

and photometric deformations. Finally, the descriptors are matched between

different images.

The detector is based on the Hessian matrix because of its good perfor-

mance in computation time and accuracy. Gaussian filters are replaced by

a simpler alternative - LoG approximation, that approximates second order

Gaussian derivatives, and can be evaluated very fast using integral images

independently of size. The performance is comparable to the one using the

discretised and cropped Gaussian.

Scale spaces are usually implemented as image pyramids. The images are re-

peatedly smoothed with a Gaussian and subsequently sub-sampled in order

to achieve a higher level of the pyramid.

In order to localize interest points in the image and over scales, a nonmax-

imum suppression in a 3 x 3 x 3 neighbourhood is applied. The maxima

of the determinant of the Hessian matrix are then interpolated in scale and

image space with the Brown’s method. Scale space interpolation is especially

important in our case, as the difference in scale between the first layers of

every octave is relatively large.

The SURF descriptor is implemented by a set of steps. The first step consists

of fixing a reproducible orientation based on information from circular region

around the interest point. For that purpose, we first calculate Haar-wavelet

responses in x and y direction and this in a circular neighbourhood. In keep-

12



Chapter 2. Visual Sensor Networks

Figure 2.1: The (discretised and cropped) Gaussian second order partial derivatives

ing with the rest also the wavelet responses are computed at that current

scale s. The wavelet responses should also be weighted with Gaussian and

centred at interest point. The responses are represented as vectors in a space

with horizontal response strength along the abscissa and the vertical response

along the ordinate. The horizontal and vertical responses are summed and

then yield to a new vector.

To determine the SURF descriptor, the first step is to construct a square

region, see Figure 2.1 centred around the interest point, and oriented along

the orientation selected previously. The region is split up into smaller square

sub-regions. For each subregion we compute few simple features, and hence

first set of entries for the feature vector is formed. Each sub-region has a

four-dimensional descriptor vector v. The wavelet responses are invariant

to a bias in illumination (offset). Invariance of contrast (a scale factor) is

achieved by turning the descriptor into a unit vector.

The important difference between SURF and some other scale and rotation-

invariant interest point detector and descriptor, is its fast computation of ap-

proximate differential operators in the scale-space, based on integral image

representation and box filters, which enabling real-time application such as

tracking and object recognition.

2.2.2 BRISK - Binary Robust Invariant Scalable Key-

points

Usually feature extraction algorithms need to determine a trade-off between

description quality and computational requirement. BRISK feature descrip-

tion algorithm sets new milestone in determining the point of balance.

BRISK method represents different approach to extraction features, referring
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Chapter 2. Visual Sensor Networks

to binary feature extraction algorithms. It is also fast and its speed lies in the

application of a novel scale-space FAST-based detector in combination with

the assembly of a bit-string descriptor from intensity comparisons retrieved

by dedicated sampling of each keypoint neighbourhood [9].

Points of interest are generated from an image, structured as follows:

• Scale-space point detection Points of interest are identified across

both image and scale dimensions using a saliency criterion. Keypoints

are detected in octave layers of the image pyramid as well as in layers in-

between that boosts efficiency. The location and scale of each keypoint

are obtained in the continuous domain via quadratic function fitting.

• Keypoint description A sampling pattern consisting of points lying

on appropriately scaled concentric circles is applied at the neighbour-

hood of each keypoint to retrieve gray values, processing local intensity

gradients, the feature characteristic direction is determined.

BRISK keypoints can be matched more efficiently thanks to binary nature

of the descriptor.

With the aim of achieving invariance to scale which is crucial for high-quality

keypoints, enhanced by searching for maxima not only in the image plane,

but also in scale-space using the FAST scores as a measure for saliency. The

BRISK detection algorithm estimates the true scale of each keypoint in the

continuous scale-space.

In the BRISK framework, the scale-space pyramid layers consist of n octaves

ci and n intra-octaves di, typically n = 4. The octaves are formed by pro-

gressively half-sampling the original image. Each intra-octave di is located

in-between layers ci and ci+1, see Figure 2.2. The first intra-octave is ob-

tained by downsampling the original image by a factor of 1.5, while the the

rest of intra-octave are derived by successive halfsampling. There are several

ways to choose a mask shape for keypoints. In BRISK is usually used the

9-16 mask, which essentially requires at least 9 consecutive pixels in the 16-

pixel circle to either be sufficiently brighter or darker then the central pixel

for the FAST criterion to be fulfilled.
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Figure 2.2: Scale space interest point detection

The FAST 9-16 detector is applied on each octave using the same thresh-

old T to identify potential regions of interest. Next, the points belonging

to these regions are subjected to a non-maxima suppression in scale-space.

Firstly the point in question needs to fulfil the condition of maximum with

respect to its 8 neighbouring FAST scores s in the same layer. The score s is

considered as maximum threshold still considering an image point a corner.

Secondly, the scores in the layer above and below need to be lower as well.

Considering the image saliency as a continuous quantity not only across the

image but also along the scale dimension, we perform a sub-pixel and contin-

uous scale refinement for each detected maximum. Next these refined scores

are used to fit a 1D parabola along the scale axis yielding the final score es-

timate and scale estimate at its maximum. As a final step we re-interpolate

the image coordinates and between the patches in the layers next to the de-

termined scale.

Given a set of keypoints (consisting of sub-pixel refined image locations and

associated floating-point scale values), the BRISK descriptor is composed as
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a binary string by concatenating the results of simple brightness comparison

tests. First we need to identify the characteristic direction of each keypoint to

allow use of orientation-normalized descriptors and hence to achieve rotation

invariance which is the key to general robustness. Also we carefully select

the brightness comparisons with the focus on maximizing descriptiveness.

The pattern used for sampling the neighbourhood of the key is illustrated in

Figure 2.3. It defines N location equally spaced on circles concentric with

the keypoint. In order to avoid aliasing effect when sampling the image in-

tensity of a point a Gaussian smoothing is applied. Positioning and scaling

the pattern accordingly for a particular keypoint k in the image.

For the formation of the rotation- and scale-normalized descriptor BRISK

applies rotation on the sampling pattern. BRISK uses significantly fewer

sampling points than pairwise comparisons, limiting the complexity of look-

ing up intensity values. The comparisons here are restricted spatially such

that the brightness variations are only required to be locally consistent. With

the sampling pattern and the distance threshold as shown above, we obtain

a bit-string of length 512. Matching of BRISK descriptors is a simple com-

putation of their Hamming distance.

BRISK and SURF algorithms are established leaders in the field of com-

puter vision, which exhibit feasible performance along with computationally

efficiency, therefore are used in this research work to evaluate the Nash bar-

gaining solution performance.

In the next chapter a review on game theory, bargaining games and Nash

bargaining solution concept are given. Knowing all the necessary bargain-

ing game components and parameters it is comprehensible to implement the

NBS concept within the framework of visual sensor networks.
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Figure 2.3: The BRISK sampling pattern, N = 60
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Chapter 3

Game theory and Nash

bargaining solution

Nash bargaining solution is a fundamental concept that has applications in

different areas of technology and economy. It is also widely exploited for

sensor networks. NBS is usually applied to overcome the energy constrains

in a visual sensor network and provide longer network lifetime. This chapter

describes in detail theoretical basis of Nash bargaining solution, in partic-

ular its characteristics, relation to game theory and cooperative games and

continues with review of NBS applications.

3.1 Game Theory

Game theory is the name given to the methodology of using mathematical

tools to model and analyze situations of interactive decision making [10].

These are situations involving several decision makers (called players) with

different goals, in which the decision of each affects the outcome for all the

decision makers. This interactivity distinguishes game theory from standard

decision theory, which involves a single decision maker, and it is its main fo-

cus. Game theory tries to predict the behaviour of the players and sometimes

also provides decision makers with suggestions regarding ways in which they

can achieve their goals.
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The foundations of game theory were laid down in the book The Theory of

Games and Economic Behaviour published in 1944 by the mathematician

John von Neumann and the economist Oskar Morgenstern. The theory has

been developed extensively since then and today it has applications in a wide

range of fields. The applicability of game theory is due to the fact that it

is a context-free mathematical toolbox that can be used in any situation of

interactive decision making. A partial list of fields where theory is applied,

along with examples of some questions that are studied within each field

using game theory, includes:

• Theoretical economics

• Networks

• Political Science

• Military applications

• Inspection

• Biology

Traditionally, game theory is divided into two major subfields: strategic

games, also called noncooperative games, and coalitional games, also called

cooperative games. Broadly speaking, in strategic games the players act

independently of each other, with each player trying to obtain the most

desirable outcome given his or her preferences, while in coalitional games

the same holds true with the stipulation that the players can agree on and

sign binding contracts that enforce coordinated actions. Game theory does

not deal with the quality of justification of these enforcement mechanisms;

the cooperative game model simply assume that such mechanisms exist and

studies their consequences for the outcome of the game.

3.2 Bargaining Games

Bargaining games is a part of coalitional games subfield. A bargaining game

model situation in which two or more players bargain towards an agreed-
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upon outcome. The set of all possible outcomes is called a feasible set and

each outcome can be attained only by unanimous agreement of all players.

Different players typically prefer different outcomes, which explains bargain-

ing aspect of the model. A default outcome called the disagreement point, is

released if the players fail to reach an agreement.

A solution concept for bargaining games is a function that assigns to every

bargaining game an outcome that can be looked at as the outcome that would

be recommended to the players by an arbitrator or a judge. Solution concept

could satisfy a list of desirable properties. There also exists a unique solution

concept that satisfies all the properties, namely Nash solution for bargaining

games. The model can be extended to bargaining games with more than two

players.

Frequent case includes two or more players that need to conduct negotiations

over an issue, with a pay-off to each player dependent on the outcome of the

negotiation process. Influenced by variety of factors there is a range of out-

comes available, if only the players can come to an agreement and cooperate.

Sometimes negotiations do not lead to an agreement. Bargaining games for

two players is modelled by using a set S⊂R2 and a vector d∈R2. A point

x = (x1 , x2 )∈S represents a potential bargaining outcome expressed in units

of utility, where xi is player i ’s utility from the bargaining outcome. The

set S thus represents the collection of possible bargaining outcomes and the

vector d represents the outcomes in the case where no agreement emerges

from the bargaining process. The model was first introduced and studied by

Nash.

In case players fail to reach compromise, it is necessary to turn to an arbi-

trator, to determine fair agreement. Arbitrator in order to be called reliable

needs to base his methods of choosing the agreement on principles agreeable

to both players, and show how his proposed agreement follows from those

principles. It is also desirable for the principles to determine an agreement

in such a way that any other suggested agreement would fail to satisfy one

or more principles.
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3.2.1 Theoretical model

A bargaining game is an ordered pair (S,d) in which:

• S⊂R2 is non-empty, compact, and convex set, called the set of alter-

natives.

• d = (d1 , d2 ) ∈S is called disagreement point (or conflict point).

• There exist an alternative x = (x1 , x2 ) ∈S satisfying x� d.

For example, Larry and Sam can, by cooperating, attain a potential profit

of $100. They need to agree on dividing this sum between them. If they

cannot come to an agreement, they will not cooperate, there will be no profit,

and neither will receive any pay-off. If they come to an agreement, they

will cooperate, and divide the money according to the agreement. However,

Larry will be required to pay tax at a rate of 50% of his share of the profit,

whereas Sam will be taxed at a rate of only 30% of his share. In this case the

disagreement point d=(0,0)and the set of possible agreements is the interval

S between (50,0) and (0,70), see Figure 3.1.

Denote the collection of all the bargaining games by F.

If two players agreed on an alternative x = (x1 , x2 ) ∈S , then Player 1’s

pay-off is x1 , and Player 2’s pay-off is x2 . If the players cannot come to an

agreement, the outcome of the game is d ; Player 1’s pay-off is d1 and Player

2’s pay-off is d2 .

The assumption appearing in the definition of bargaining games are justified

as follows:

• The set of alternatives S is bounded; maximal and minimal outcomes

of each player are bounded
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Figure 3.1: Graphic presentation of the bargaining game

• The set of alternatives S is closed, and therefore, the boundary of every

sequence of possible outcomes in S is also in S. Without this assump-

tion, it may be the case that there is no optimal solution

• The set of alternatives S is a convex

• We assume that there exists an alternative

x∈S such that x� d, to avoid dealing with degenerate cases in which

there is no possibility that both players can profit from an agreement

A solution concept is a function ϕ associating every bargaining game (S, d)∈F
with an alternative ϕ(S, d)∈S.

The point ϕ(S, d)∈S is the one that the arbitrator will propose and the play-

ers accept as an agreement.

3.2.2 Properties of Nash solution

The properties were proposed by John Nash in 1953, and they are mathe-

matical expressions of principles that could guide an arbitrator who is called
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upon to propose bargaining agreement. There exists a unique solution con-

cept satisfying these properties.

Symmetry A bargaining game (S, d)∈F is symmetric if the following two

properties are satisfied:

• d1 = d2 the disagreement point is symmetric

• x = (x1 , x2 ) ∈ S , then (x2 , x1 ) ∈ S

Geometrically, symmetry implies that S is symmetric with respect to the

main diagonal in R2, where the disagreement point is located.

A solution concept ϕ is symmetric if for every symmetric bargaining game

(S, d)∈F the vector ϕ(S, d) = (ϕ1(S, d), ϕ2(S, d)) satisfies ϕ1(S, d) = ϕ2(S, d).

Efficiency An alternative x ∈ S is called an efficient point of S if there

does not exist an alternative y∈S , y 6= x such that y≥x .

A solution concept ϕ is efficient if ϕ(S , d) ∈ PO(S ) for each bargaining game

(S, d)∈F . Where PO(S) the set of efficient points of S.

Covariance under positive affine transformations It is reasonable to

require the solution concept be independent of the units of measurement.

Another possible property to adopt is covariance under translation. The

property implies that if we add a constant to each one of a certain player’s

pay-offs, the solution will change by the same constant.

A solution concept ϕ is covariant under positive affine transformations if for

every bargaining game (S, d)∈F , for every vector a∈R2 such that a ≥ 0, and

for

ϕ(aS + b, ad + b) = aϕ(S , d) + b. (3.1)

Independence of irrelevant alternatives (IIA) A solution concept ϕ

satisfies the property of IIA if for every bargaining game (T, d)∈F and every
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Figure 3.2: The Nash solution (the darkened rectangle is the rectangle of maximal
area)

subset S ⊆ T ,

ϕ(T, d)∈ S ⇒ ϕ(S , d) = ϕ(T , d). (3.2)

There exist a unique Nash solution concept N that satisfies properties of

symmetry, efficiency, covariance under positive affine transformations and

independence of irrelevant alternatives.

The solution N(S,d) of the bargaining game (S,d) is the individually

rational alternative x in S that maximizes the area of the rectangle whose

bottom left vertex is d, and whose top right vertex is x. See Figure 3.2

N(S, d) := argmax{x∈S ,x≥d}(x1 − d1 )(x2 − d2 ). (3.3)

The point N(S,d) is called Nash agreement point (or the Nash solution) of

the bargaining game (S,d). There are three theorems that support Nash so-

lution concept feasibility:

• For every bargaining game (S, d)∈F there exist a unique point in the set

argmax{x∈S ,x≥d}(x1 − d1 )(x2 − d2 ). (3.4)

• The solution concept N satisfies the properties of symmetry, efficiency,

covariance under positive affine transformations, and independence of
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irrelevant alternatives

• Every solution concept ϕ satisfying symmetry, efficiency, covariance

under positive affine transformations, and independence of irrelevant

alternatives is identical to the solution concept N defined by Formula

(3.3)

Consequently if one of the properties described above is left out, uniqueness

is lost.

Figure 3.3: Nash solution to Sam and Larry problem

Recalling the example introduced earlier about Larry and Sam, who are

trying to split 100$ between each other with the constraint that both need to

pay different denomination taxes afterwards. We have defined a range where

the solution is placed, according to Figure 3.3. The disagreement point is

said to be 0$, meaning neither of the players get a pay-off in case they do

not come to an agreement. The solution values are lied within the range

described by the linear equation

y = −7

5
∗ x+ 70 (3.5)

where x is pay-off range that is available for Larry, which is 0 ≤ x ≤ 50 and
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y accordingly the pay-off that is available to Sam, that is 0 ≤ y ≤ 70. Then

according to Nash bargaining solution concept we need to find such (x,y)

that maximize the area under the line, see Figure 3.5.

max(x ∗ y)

s.t.

0 ≤ x ≤ 50

y = −7

5
∗ x+ 70

(3.6)

That leads to the solution

x = 25$

y = 35$
(3.7)

Implying that according to Nash bargaining solution concept Larry receives

a pay-off equal to 25$ after paying all the taxes, and Sam receives pay-off of

35$. And this solution is optimal.

3.3 Application of Nash bargaining solution

in visual sensor networks

The use of tools and techniques suggested by cooperative game theory and

NBS in particular helps to address the challenges appointed by visual sensor

networks and has a great improvement potential.

Resource management - Spectrum allocation and bandwidth allo-

cation Resource management is an important consideration while design-

ing a wireless sensor network. Impulse Radio-Ultra WideBand communica-

tion is a strong candidate for short-range biomedical wireless sensor networks.

The problem of finding the fair sub-band schedule into a multi-objective in-

teger programming problem is planed to be solved using NBS [11], [12].
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Energy saving and power control Currently, the energy problem re-

mains one of the major obstacles somehow preventing the complete exploita-

tion of WSN technology. Energy saving and power control strategies should

be devised at sensor nodes as well as in the network. For instance, the

Game-theoretical Total Link algorithm a MAC scheme based on p-persistence

slotted ALOHA is considered. In order to determine the value of the at-

tempt probability p the authors constructed the p-persistence as a simple

non-cooperative game which involves generalized pay-offs reflecting energy

saving and throughput. They modelled the power allocation problem as a

two-person bargaining game, and used Nash bargaining solution to achieve

win-win strategy [13].

Topology optimization Game theory has played an active role in the

aspect of routing algorithm and topology control. One of application sce-

narios considers a locally computable heuristic “recommendation algorithm”

referring to as LocalHeur for convenience of incentive compatible topology

control for selfish all-to-one routing which is modelled by a locally minimum

cost forwarding game in the absence of complete global information for real-

istic scenarios [14].

As a following step I introduce an explanation and main functioning princi-

ples of game theory and Nash bargaining solution.

In the next chapter there will be explicitly explained how Nash bargaining

solution can be used in Visual sensor networks framework, in particular, its

application in local image processing performed by a camera node, the way

to reduce energy consumption via collaboration of camera nodes in case they

have overlapped field of view. Also the following chapter introduces all the

components that are necessary to be preliminary determined, such as utility

function, or camera calibration that defines overlapped field of view.
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Problem statement

At this point there have been given detailed reviews of visual sensor networks

and NBS. In this chapter there will be introduced an outline that makes it

possible for a visual sensor network to exploit NBS formula with the scope

of energy saving. It is followed by the definition of utility function and its

experimental evaluation for the established reference scenario.

4.1 Reference scenario

Consider one of the most widely used applications of visual sensor networks

for smart surveillance of public areas. We can make an assumption that such

a visual sensor network is densely populated with camera nodes, see Figure

4.1. Each of them carries out functions that are assigned to it and processes

the acquired images. In a standard case image processing is performed by

each camera independently and as if it is the only camera node in the area.

However those camera nodes are most likely to have overlapped field of views

among them, implicating that some of camera nodes in fact observe the same

area and process the same (or partially the same) images, which leads to re-

evaluation of relevancy of operations performed by each camera node and

visual sensor network in general as well as it is most certainly undesirable

energy consumption. This scenario is indicative for this thesis work.
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As it was mentioned before energy saving remains priority for any sensor net-

work because it is usually battery-charged. Hence any redundant operations

that a sensor network performs lead to a shorter lifetime and inconvenience

of usage. A solution for the aforementioned outline is provided by NBS.

Figure 4.1: Public area, camera nodes, overlapped field of view

NBS-based strategy can be exploit in such a way to reduce the portion of

image each of the camera nodes with overlapped field of view have to process

and as a consequence of processing less - more energy saved for longer network

lifetime.

For the reference scenario we fix number of camera nodes N=2,3, con-

sidering both completely and partially overlapped field of view. We give to

each camera node only two feature description/detection algorithms: SURF,

BRISK and consider that all the camera nodes are able to communicate pa-

rameters to one another. Parameter exchange include exchange of residual

energy budget, power consumption, utility function coefficients as well as

intrinsic camera parameters. Communicating the parameters is essential for

performing bargaining game and implementing NBS. We feature every node

with NBS-based strategy making it a collaborator that bargains with other

camera nodes for a portion of image (image visible to all of the collaborators)

to process. Each camera-collaborator can decide what portion it is ready to

process based on its real-time parameters and parameters of neighbouring

collaborators. Once the outcome of the bargaining game is obtained each

camera establishes its portion of image to process (to apply BRISK or SURF
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algorithms) while the remaining image portion is shared and processed by

neighbouring bargaining participants. NBS is a distributed method meaning

that each node calculates the share autonomously but the solution remains

unique and coherent for all collaborating cameras. Therefore not only we

gain longer network lifetime but we also do not require any topology changes

to the existing sensor network.

The components needed to implement NBS-based strategy are described in

Chapter 3, Section 3.2.1, utility function is among them. In our case it is

obtained experimentally.

4.2 Utility function

First of all it is important to define the “currency” that every player prefers

to bargain for. Referring to the example of Larry and Sam, they performed

bargaining over 100$. In case of visual sensor network, the unit every camera

node bargains for is unit of saved energy, amount of energy each camera saves,

if it agrees to collaborate, the utility function is accordingly defined in units

of energy. Initially I define a function that represents amount energy that

is required for every camera node to process a portion of the image. Then

the utility function for every camera node involved in bargaining equals to

amount of energy that it does not need to process, meaning, summation of

energies spent by other cameras to process their fraction of the image. The

fraction of image that a camera does not need to process translates into a

quantity of saved energy, and every bargaining game is played exactly over

this quantity.

Sensor network characteristic component that requires the largest amount

of energy is local processing of the image. Taking this into account, It is

relevant firstly to determine the time it takes to apply one of the feature

extraction algorithms (BRISK, SURF) described in Chapter 2. And from

time it takes to process the image, the energy spent can be easily obtained

by multiplying it by power consumption of the particular camera node under

consideration.

Elapsed time - time it takes to apply feature extraction algorithm. It is de-
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scribed by a curve, function of time from image size. The order and the shape

of the curve is defined experimentally, setting up the proper environment and

structure.

4.2.1 Development environment

Function curve describes time needed for a given feature extraction algorithm

to process image of a fixed size. Curve order and coefficients are obtained

experimentally. Series of tests are launched on two types of hardware, using

OpenCV library that enables computer vision and feature extraction algo-

rithms and the test images are part of dataset provided by IEEE surveillance

evaluation workshop.

Software implementation of feature extraction/detection algorithms is done

by OpenCV library, that has C/C++, Python and Java interfaces. It sup-

ports Windows, Linux, Mac OS, iOS and Android operating systems. The

library provides set of tools for computer vision and it is free for academic

use. Its main focus comprises real-time application use. The library finds its

implementation in variety of areas from mines inspection and map stitching

to advanced robotics.

Feature extraction/detection algorithms SURF and BRISK, that are intro-

duced in Chapter 2 find their realization in OpenCV library. To be able

to explore BRISK and SURF performance from different prospective and to

define elapsed time function coefficients in different environments there were

chosen two types of hardware:

• BeagleBone, minicomputer, running Unix-based OS

• Mobile device with Android operating system

The script implementation differs depending on hardware. In case of Bea-

gleBone platform it is slightly easier to set up the script. BeagleBone runs

Linux-based operation system and compiles C/C++ scripts, advantageously

agrees with OpenCV library natively written in C++.

First, it is necessary to make sure the following libraries and tools are in-

stalled prior to OpenCV library installation:
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• GCC 4.4.x or later

• CMake 2.6 or higher

• Git

• GTK+2.x or higher, including headers (libgtk2.0-dev)

• ffmpeg or libav development packages: libavcodec-dev, libavformat-

dev, libswscale-dev

The latest stable OpenCV library version can be downloaded from Source-

Forge webpage.

In case when one performs script implementation working with Android OS

it is recommended to install Android Developer Tool (ADT) Bundle, that in-

cludes Eclipse Integrated Development Environment and an Android Virtual

Device Manager. An Android Virtual Device is an emulator configuration

that permits modelling an actual device by defining hardware and software

options to be emulated by the Android Emulator. Aside from ADT bundle

it is a requirement to install JDK which is Java development kit provided

by Sun Corporation as it is necessary condition because of Java program-

ming language used for Android applications development. Finally consider-

ing that OpenCV library is natively written in C++ programming language

while providing Java interface, one requires NDK (Native development kit)

to be able to link OpenCV to current IDE and latest available OpenCV

adopted for Android from Sourceforge webpage. In my case it is

OpenCV-2.4.9-android-sdk.zip

Linking OpenCV library

For BeagleBone platform OpenCV installation is conducted through follow-

ing steps:

1. Create a temporary directory, where generated Makefiles will be lo-

cated. Makefiles include project files as well the object files and output

binaries.
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2. Enter a created temporary directory where set of steps is the following:

cd ˜/opencv

mkdir r e l e a s e

cd r e l e a s e

cmake −D CMAKE BUILD TYPE=RELEASE −D
CMAKE INSTALL PREFIX=/usr / local . .

make

sudo make i n s t a l l

This concludes the implementation stage and makes it possible to use OpenCV

tools in the script testing elapsed time function on BeagleBone platform.

Implementation process of OpenCV for Android, taking into account all the

prerequisites that were listed earlier are satisfied keeps the following order of

steps described below:

1. Create a new folder for Android with OpenCV development. I un-

packed OpenCV SDK to the

dariab/Documents/workspace/

2. Unpack the SDK archive into the chosen directory.

unzip ˜/Downloads/OpenCV−2.4.9− android−sdk . z ip

C: / dar iab /Documents/workspace/

3. Open Eclipse and choose your workspace location, it is recommended

to create a new location for Android + OpencCV projects.

4. Import OpenCV library through Package Explorer and Import func-

tion. OpenCV library is packed as a ready-for-use Android Library

Project. Eclipse should automatically locate OpenCV library and sam-

ples.
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Once Eclipse complete library initialization we are able to start with the ap-

plication that tests Android and its elapsed time function.

4.2.2 Structure of the implemented function

A programming script that executes the experiment with the scope to obtain

utility function parameters computes and collects image size values and cor-

responding elapsed time executing given feature detection algorithm (SUR-

F/BRISK), then data is output to a file. Each file contains 2-column array

with image size and elapsed time values for all the images from the dataset

and has following structure:

| image s i z e [ p i x e l ] | e lapsed time [ s ec ] |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| . . . | . . . |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The test images (taken from the dataset) all have a same fixed size. Hence to

obtain values of elapsed time for greater variety of image sizes the script per-

forms slicing of the input image, defining a Region of Interest which further

feature extraction algorithms is applied for. Each stripe is set to a certain

starting dimensions and gradually increasing the width with every cycle iter-

ation until the stripe equals to initial size of the input image, see Figure 4.2.

Slicing is performed both vertically and horizontally. In case C++-based

script, I am able to work with stripes with starting minimal width of 20

pixels and increase iteratively the stripe width by 20 pixels. For Java-based

script the stripes has width of 155 pixels (considering vertical slicing) and

of 200 pixels (considering horizontal slicing). The stripe width in this case

is limited due to exceptional combination of Java application, Android OS

architecture and OpenCV library.
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Figure 4.2: Image slicing, defining a RoI

After all the data is collected elapsed time values get averaged according

to the size of the image. Considering the array and its first column that con-

tains the different image sizes, find identical entries of image size and mean

value is found for corresponding elapsed time values. This operation results

into an array of smaller dimensions that contains several image size instances

and their averaged elapsed times. The mean elapsed time values are input

for a function that defines the curve that fits best the input values.

While part of the experiment that executes data collection is done either

in C++ programming language (for BeagleBone platform) or in Java pro-

gramming language (for Android OS), averaging of collected data and curve

approximation is done using Matlab.

Data collection script has the following structure

load the image

d e f i n e f e a tu r e ex t r a c t i on a lgor i thm

de f i n e the s t r i p e width

i n i t i a l i z e an array

for every s t r i p e o f the image

∗ de f i n e Region o f I n t e r e s t (RoI ) accord ing to s t r i p e width

∗ c a l c u l a t e s i z e o f RoI in p i x e l s ,

save i t in an array in the f i r s t column

∗ s t a r t a countdown

∗ execute f e a tu r e ex t r a c t i on a lgor i thm on RoI

∗ stop a countdown

∗ save countdown value in the array in the second column
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∗ i n c r e a s e the s t r i p e width

until s t r i p e c o i n c i d e s with the s i z e o f the input image

output the array to a f i l e

The set of images that is used in the data collection stage is provided taken

IEEE Performance Evaluation of Tracking and Surveillance workshop data,

year 2009. It contains 3120 image samples. A simple code written in bash

feeds all the dataset to the the script. Hereafter I arrive to a point when

there are 14 data files containing arrays with collected data. Each of the files

is processed by Matlab script in order to obtain coefficients of the curve.

Matlab processing is performed according to the following scheme

∗ open the f i l e

∗ load array in the working space

∗ f i nd a l l the e n t r i e s that correspond to

the same image s i z e ( the f i r s t column )

∗ take corre spond ing va lue s o f the e lapsed time

( the second column )

∗ f i nd an average for e lapsed time samples

∗ use Matlab function p o l y f i t ( ) to d e f i n e the curve

that matches the averaged value

∗ d i sp l ay a chart with image s i z e as x−ax i s
and e lapsed time as y−ax i s

As an outcome of Matlab script there are coefficients that describes a linear

function, as linear function happens to be the best fit based on data pro-

vided by conducted experiment. Hence the function that describes elapsed

time from image size is linear and consequently utility function that is one

of the components of Nash bargaining solution concept is linear and there-

fore the coefficients defined by the experiment can be applied to accomplish

NBS-based algorithm implementation for visual sensor network.

It is worth commenting that I was only able to implement BRISK feature

detection algorithm for Android platform because it is the only one avail-

able free-of-charge for academic purposes. Hence there are only two curves

defined for Android-based hardware (considering Vertical and Horizontal slic-

ing). Four curves are defined while script testing via workstation (Intel(R)

Core(TM) i5 CPU 660 @ 3.3GHz, 4 GB RAM), four curves are defined for
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BeagleBone working on 275 MHz CPU frequency and four curves are defined

for BeagleBone working on 500MHz CPU frequency.

I mentioned before that elapsed time function, expressed by Formula (4.1)

is needed to obtain amount of energy needed to locally process the image of

a given size. As function is defined to be linear:

Tel = A ∗ x+B (4.1)

Hence the equation, describing the energy spent on image processing:

Econs = Tel ∗ Pcons (4.2)

Where Pcons is a value of power consumption that depends on what what

hardware is in use and can be found in technical specifications.

The Diagrams 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 demonstrate sampled and averaged

linear function based on collected data.

Figure 4.3: Linear function, sampling several generic images (Android OS,
BRISK, horizontal slicing)

37



Chapter 4. Problem statement

Figure 4.4: Linear function, obtained from averaged values (Android OS, BRISK,
horizontal slicing)

Figure 4.5: Linear function, sampling several generic images (BeagleBone
275MHz, BRISK, vertical slicing)

BRISK algorithm, Android vs. BeagleBone

I made two critical observation during testing stage of BRISK feature ex-

traction algorithm on Android platform:
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Figure 4.6: Linear function, obtained from averaged values (BeagleBone 275MHz,
BRISK, horizontal slicing)

Figure 4.7: Linear function, sampling several generic images (BeagleBone
500MHz, SURF, vertical slicing)

• Parameters that control BRISK sensitivity cannot be customized or set

by a user, they remain constant
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Figure 4.8: Linear function, obtained from averaged values (BeagleBone 500MHz,
SURF, vertical slicing)

• Extraction/detection process elapses noticeably slower

An explanation for the latter can be found at official OpenCV library page

and refers to Complex CV logic (that conducts many calls to OpenCV) and

therefore will work slowly because of additional cost of Java Native Interface

(JNI) calls.

An additional test should be made basing on these two critical observation.

This test adjusts parameters of BRISK feature extraction algorithm used

at BeagleBone platform. It customizes the parameters in such a way that

BRISK at Android and BRISK at BeagleBone platform treats images equally.

Subsequently using new values of elapsed time for BeagleBone we find the

ratio that discloses the extent BRISK for Android slows down to.

Android elapsed time

BeagleBone elapsed time
(4.3)

BRISK algorithm is described by three parameters:

• Threshold level

• Octaves
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• Pattern Scale

Firstly we need to locate the OpenCV library, that was installed beforehand

at the previous stage of the research, see Section 4.2.1. Then look into the

open source file, found at

OpenCV−2.4.9− android−sdk . z ip \OpenCV−2.4.9− android−sdk\ sdk\ nat ive
\ j n i \ i n c lude \opencv2\ f e a tu r e s 2d \ f e a tu r e s 2d . hpp

And here we see how the parameters were fixed for BRISK algorithm:

CVWRAP e x p l i c i t BRISK( i n t thresh=30,

i n t octaves=3,

f l o a t pa t t e rnSca l e =1.0 f ) ;

The next step is to assign these values to parameters of BRISK algorithm

we used in the script that tests BeagleBone platform and run the test again.

We also need to adjust the stripe width that was used in Android platform

test:

• Horizontal slicing - 155 [pixels]

• Vertical slicing - 200 [pixels]

The values are forced by exceptional features of combined performance of

Android platform and OpenCV library, that is adopted for it.

Accounting for all the parameters’ updates the tests are run on BeagleBone

platform both for 275 MHz and 500 MHz CPU frequencies resulting into four

data files with new adopted elapsed time values. Using this data it is trivial

task to find a performance ration of Android and BeagleBone platforms. The

script that calculates the ratio can be expressed in pseudocode as follows:

for every pa i r o f e l apsed time va lue s ( one from Android data f i l e ,

another − from BeagleBone f i l e )

that corresponds to c e r t a i n image s i z e :

∗ f i nd the r a t i o : Android e lapsed time/BeagleBone e lapsed time

∗ f i nd mean value

∗ at t h i s po int we obta in r a t i o s found for c e r t a i n image s i z e

f i nd mean value over these r a t i o s
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As a result we obtain following correspondence of platforms’ performances:

Android elapsed time

Divider*
(4.4)

Horizontal striping

* Ratio Value

BeagleBone elapsed time, 275 MHz 14

BeagleBone elapsed time, 500 MHz 14

Vertical striping

* Ratio Value

BeagleBone elapsed time, 275 MHz 12

BeagleBone elapsed time, 500 MHz 12

That leads us to a conclusion that consequence of OpenCV library being

natively C++-based library and once adopted for Java and Android platform

shows 12-14 times slower performance.

In the next chapter there will be described what components define NBS

formula in the context of visual sensor network, followed by the performance

evaluation of the camera nodes, indicating lifespan of the sensor network

according to different scenarios.
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NBS-driven visual analysis

In the Chapter 4 we introduced reference framework, described problem

statement and suggested the way it may be resolved and furthermore ex-

perimentally characterized the utility function. Disagreement point is the

next component that is needed to be defined before the NBS-driven visual

analysis can be implemented.

5.1 Disagreement point

If I refer to a case with Larry and Sam, it is decided that no player receives

the pay-off if they refuse to collaborate and this was their disagreement point

in that case.

In case of visual sensor network when saved energy is a unit of measure the

disagreement point should be forced to be such a state where no energy can

be saved, meaning that each camera node simply process the entire image.

For this research I observed a case of 2 and 3 camera nodes involved in

cooperation, having completely overlapped field of view, and having partially

overlapped field of view.
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5.2 Nash Bargaining Solution Implementation

For this thesis work it is decided to feature the performance evaluation with

number of camera nodes N=2,3. However the NBS-driven framework can be

easily extended to an arbitrary number of camera nodes.

Once all the components for Nash bargaining solution formula are defined,

We may recall the concept that was introduced in Chapter 3. It is possible

to redefine the Formula (3.3), tailoring it for visual sensor network.

I define the parameter of residual energy budget that each camera node pos-

sesses. The idea is to get two motes to exchange their current states regarding

residual energy budget, field of view and power consumption and let Nash

bargaining solution concept decide on image share assignment accordingly.

One of the advantages of Nash bargaining solution is that the decision is made

separately by every mote involved in collaboration but remains unique, hence

there is no need to introduce a cooperator node that performs centralized as-

signment, the solution is calculated locally at each camera.

The concepts that were used in Chapter 3 can be efficiently adjusted for the

case of visual sensor network and image processing.

Pay-off for each player that was described in theoretical part of Chapter 3

maps into energy that a camera has the means to save in case it participates

in bargaining and reach an agreement. Feasible utility function and how to

calculate it is described in Section 4.2 by Formula (4.2). Disagreement point

that was introduced in theory of bargaining games is defined as penalty that

will be applied in case when camera nodes involved in bargaining are not able

to come to an agreement, implying that each camera will need to process the

entire image by itself and utility function that indicates the amount of saved

energy will be clearly equal to zero. Recalling Nash bargaining solution,

expressed with Formula (3.3).

argmax{x∈S ,x≥d}(x1 − d1 )(x2 − d2 ). (5.1)
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And following Nash bargaining solution formula for the case with two camera

nodes that collaborate to split image processing.

argmax{x∈S ,x≥d}[((A(1 − x1 ) + B)Pc1 − d1 )((C (1 − x2 ) + D)Pc2 − d2 )].

(5.2)

Where Pc1 ,Pc2 are power consumption values for mote 1 and mote 2 accord-

ingly. Approximate values of power consumption are given in Chapter 4,

Section 5.3.1.

Values of d1 , d2 define disagreement point, which in our case is penalty each

mote pays if it does not collaborate. Penalty is expressed in units of saved

energy and in case of disagreement saved energy equals 0.

Coefficients A, B, C, D are the coefficients of the curves that is described

by the linear function of elapsed time, that is introduced in Section 4.2. The

function multiplied by the power consumption parameter produces the value

of energy spent processing the image of a given size. Consequently energy

saved by the camera under consideration is summation of energy spent by

other camera nodes to process their share of the image.

While x1 , x2 are fraction of an image that each of the motes processes in case

they reach an agreement. Therefore we enforce the following assumption

x1 + x2 = 1 to be able to make further simplification:

x2 = 1 − x1 (5.3)

And denoting

x1 = x

x2 = 1 − x
(5.4)

We redefine Nash bargaining solution formula for 2 motes as follows:

argmax{x∈S ,x≥d}[((A(1 − x ) + B)Pc1 )((C (x ) + D)Pc2 )]. (5.5)

From this point as the formula is quite trivial, it is possible to demonstrate

step by step a solution for x-share. We can notice that the product is a
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polynomial of second order and also it has a parabolic shape and if we neglect

coefficients B and D because they represent a simple offset and expand the

product we obtain the following polynomial

y = −AC ∗ x 2 + AC ∗ x . (5.6)

For this equation maximum can be calculated with formula xmax = −b/2a
and hence

xmax = − (AC )

−2 ∗ AC

xmax =
1

2

(5.7)

Arriving to a conclusion that the result of sharing is always half for each of

the collaborating motes despite values of coefficients.

5.2.1 Nash bargaining solution, generalized version

At this point Nash bargaining solution may loose its essential importance

because we simply assign a share of 0.5 to each of the motes. The current

formula also has one more essential omission: it does not account for residual

energy budget which is crucial factor for the image sharing process to be

fair and flexible. Thereupon exists an extended version of Nash bargaining

solution that is denoted generalized Nash bargaining solution and expressed

by following formula

argmax{x∈S ,x≥d}(x1 − d1 )α1 (x2 − d2 )α2 . (5.8)

As it can be noticed the formula includes exponents α1, α2. From theoretical

point of view the exponents have quite intuitive explanation [15].

In a given N -player bargaining problem (S,d) with N≥2, it is useful to give

some additional weight, power to the players. In our case some of the motes

have larger residual energy budget at the time of bargaining and for such

motes saving energy might be not as vital as for a mote with small residual

46



Chapter 5. NBS-driven visual analysis

energy budget. In order to account for this fact, one can assign for every

mote i a value αi ∈ [0, 1] which represents the bargaining power of i. The

bargaining-power values are chosen such that

N∑
i=1

αi = 1 (5.9)

The idea of bargaining power allows us to give some weight to the negotiation

capabilities of every player. A player having higher bargaining power would

thus be a candidate to obtain an advantage in the final outcome of the

bargaining process. In such a bargaining problem, if we drop the symmetry

axiom of Nash, we can define generalized Nash bargaining solution. The

use of the bargaining power allows the maximization to become more biased

towards the mote having higher bargaining power αi. Furthermore, one can

see that, whenever the weights αi are equal for all αi = 1, .., N then reduces

back to standard Nash bargaining solution concept. When we adopt Formula

(5.5) to (5.8), we obtain an expression below:

argmax{x∈S ,x≥d}[((A(1 − x ) + B)Pc1 )α1 ((C (x ) + D)Pc2 )α2 ]. (5.10)

Careful attention should be paid when one assigns bargaining powers to

motes in the sensor network. In this case the reason for α-exponent should

be based on residual energy budget that is main bargaining ‘currency’ for

the motes. Taking into account the fact the utility function is defined in

units of saved energy, hence the larger the bargaining power of the mote the

greater its interest in collaboration and sharing image processing, meaning

expression of the bargaining power is always inversely proportional to the

residual energy budget.

For further consideration there were defined 3 possible ways to calculate α-

component.
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1.

α1 =
1
Er1

(A + B)Pc1

α2 =
1
Er2

(C + D)Pc2

(5.11)

2.

α1 =
1
Er1

(Ax + B)Pc1

α2 =
1
Er2

(C (1 − x ) + D)Pc2

(5.12)

3.

α1 =
1

Er1

α2 =
1

Er2

(5.13)

Where Er1 ,Er2 denote residual energy budget of a camera node and Pc1 ,Pc2

denote power consumption of a camera node accordingly.

It is also needed to normalize α-component formulas to stay coherent with

the Constraint (5.9).

α1,norm =
α1

α1 + α2

α2,norm =
α2

α1 + α2

(5.14)

Once the concept of bargaining power is introduced and defined in terms of

residual energy budget, Nash bargaining solution formula is in its complete

and final form. This form is used in the next stage of the research work and

incorporates performance analysis of Nash bargaining solution comparing it
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with alternative approaches to perform image sharing with respect to variable

initial conditions.

5.2.2 Minimize the summation principle

It is important to see not only the performance of NBS-based cooperation but

also to see its advantages or disadvantages regarding other methods of image

processing assignment or no cooperation case where every mote processes all

the images by itself and does not communicate with neighbouring motes.

Analysis of NBS performance is compared against another feasible strategy

that also allows to perform image sharing, that is denoted as minimize the

summation principle. The main idea is to assign image shares following the

rule to minimize the summation (for all the nodes involved in collaboration)

of spent energy. The formula will be referred as min-sum formula or approach

in the future.

min(
∑

(Ax1 +B)(Cx2 +D)) (5.15)

5.2.3 Minimize the maximum principle

Another strategy that dictates the share of image that should be assigned to

each of the camera nodes is according to the rule to minimize the maximum

value of spent energy among nodes-collaborators. This approach will be

referred as min-max in the future.

min(max(Ax1 +B,Cx2 +D)) (5.16)

An another important assumption that is made for this analysis stage is that

the image that motes are trying to share, shared without overlapping, hence

instead of using notation x1 , x2 that each defines a fraction of the image that

is assigned to mote 1 and mote 2 accordingly in such a way that x1 + x2 = 1 .

it is possible with the following notation

x1 → x

x2 → 1 − x
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5.3 Performance analysis

For the purpose of the analysis it is necessary to identify performance evalu-

ation criteria. This criteria describe relative success of implemented strategy.

In my case I measure NBS performance in terms of lifespan: number of times

a camera node with implemented image sharing strategy is capable of par-

ticipating in cooperation, and perform bargaining games before it runs out

of energy.

5.3.1 Complete view overlap

The analysis evolves in two potential scenarios: the first scenario describes

the case where motes have a complete overlap of view. The second scenario

describes performance of the motes in case field of view is only partially

overlapped.

Two motes collaboration

First of all it is fundamental to define factors that steer the analysis, starting

with number of motes that participate in bargaining/image division.

The starting point is the easiest case of two motes. It is also necessary to

define what type of hardware and software (feature extraction algorithms)

they run.

In the chapter 4 we defined 14 possible variants of the utility function that

can be assigned to a camera node. Each one of those 14 variants is charac-

terized by 2 coefficients, that are coefficients of a linear function from image

size (measured in pixels) to elapsed time (time it takes to extract features

from a camera shot). For analysis stage there were chosen number 12 and

number 14, that correspond to BeagleBone at CPU frequency 500MHz as

hardware type and both running BRISK feature extraction algorithm, but

the coefficients were obtained applying vertical and horizontal slicing accord-

ingly. A crucial requirement that allows them to proceed with image sharing

and collaboration is using the same type of feature extraction algorithm.

Also let’s introduce value of initial energy budget for each of the motes. The
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budget can be calculated using data from technical specification for AA type

battery that is used as standard power supply for BeagleBone. From the

specification it follows that the initial budget:

2100 [mAh] ∗ 1 .5 [V ] = 3100 [mWh] ∗ 3600 [sec] = 11340 [J ] (5.17)

On the other hand device power consumption can be obtained by looking at

BeagleBone specification. Worst case scenario is when a devices operates at

the highest CPU frequency hence requesting larger power:

350 [mA] ∗ 5 [V ] = 1750 [mW ] (5.18)

Once the value of power consumption is determined the last missing compo-

nent is time it takes to process the image. Thereupon the product of time

and power consumption is consumed energy. Heretofore driving factors for

the forthcoming NBS analysis are as follows:

• Coefficients to define utility function

• Initial energy budget of a mote

• Power consumption of a mote

Those factors enables 8 possible cases to study, 8 different development sce-

narios to evaluate. The cases are described in the Table 5.1. The columns

2-5 contain coefficients of the function that describes amount of energy each

camera node spend to process the image of a given size, the column 6 and

7 contain the parameter of power consumption for each of the nodes, and

lastly column 8 and 9 contain initial energy budget of each camera.

For example, if we observe the case number 3 (take a look at the third row),

we can say that both camera nodes have equal energy consumption parame-

ter as both utility functions are described by the same coefficients, but also

each of them has different power consumption, and equal initial energy bud-

get.

The following step is to take a closer look at the formula of generalized NBS

we have suggested and possible interpretations of αi-exponent, see Formula
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Figure 5.1: Parameter combination for the case of 2 cameras collaboration

(5.10). That leaves us with 3 feasible forms of Nash bargaining solution for-

mula to analyse.

The Figures 5.2, 5.3, 5.4 show lifespan value for 3 approaches that evaluate

load share among 2 motes in each one of 8 cases, bases on initial energy

budget, individual power consumption and time it takes to extract features

from the image. Different αi-exponent is used each time:

Figure 5.2: Lifespan, αi-exponent, type 1

The Figure 5.5 provides us with knowledge about different ways of cal-

culating αi -exponent. And from the test it should be clear that all three
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Figure 5.3: Lifespan, αi-exponent, type 2

Figure 5.4: Lifespan, αi-exponent, type 3

versions have similar response and to determine which one should be used in

the generalized NBS formula it is necessary to refer to its complexity recall-

ing one of the main focuses to minimize amounts of used energy, the decision
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leans towards the most simple way to calculate αi -exponent. And just from

looking at the Formulas (5.11),(5.12),(5.13) that calculate αi -exponent it is

clear that the third type requires the least amount of computation and the

fewest number of parameters, hence is accepted as the best fit for NBS for-

mula.

Figure 5.5: 3 αi-exponent similarity

Regarding the Figure 5.6 that demonstrates quite clearly convenience of col-

laboration and load sharing when it comes to energy consumption issues

and ways to encounter them. We may notice obvious advantage of using

generalized NBS formula and that it brings the highest gain.

Min-sum and min-max formulas, extended versions The next stage

is to go through the same analysis considering the same factors but adding

one important update. In the previous stage min-sum and min-max formulas

of image sharing approach have not taken into account residual energy while

calculating a share, whereas generalized NBS always considers amount of

residual energy by including it into αi -exponent estimation, that makes it

more responsive in terms of share assignment. Extended formula for min-
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Figure 5.6: Gain in lifespan with respect to no collaboration

sum approach looks as following

max
∑
x

[(Er1 − (Ax + B)Pc1 ) + (Er2 − (C (1 − x ) + D)Pc1 ] (5.19)

The idea behind the formula is to share image between the motes in a way

that maximizes residual energy for entire system (summation of 2 motes’

residual energies).

The same logic is used to extend min-max formula, that now is converted into

maximization of minimal value of residual energy among motes participating

in image sharing.

max [min((Eres1 − (Ax + B)Pc1 ), (Eres2 − (C (1 − x ) + D)Pc2 )] (5.20)

The Figures 5.7, 5.8, 5.9 give an idea about performance of all the three

image sharing approaches, considering extended formulas of max-sum and

max-min. As before we consider 8 possible cases and regarding 3 different

versions of αi-exponent.

The Figure 5.10 displays gain in terms of lifespan we obtain, using ex-
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Figure 5.7: Lifespan, αi-exponent, type 1

tended formulas of min-sum and min-max approaches:

And finally Figure 5.11 displays how lifespan gain has changed once we

start using enhanced formulas max-sum and max-min for image sharing.

Concurrently we also can take a closer look at how shares are assigned in the

most unlucky case (that is the one that leads to the smallest lifespan value)

and the most fortunate case, when sensor network lifespan value is the largest.

As example there was taken a case where we have 2 motes with the same

hardware and software characteristics, same power consumption parameter

but different starting energy budget (case 2), see Figure 5.12, 5.13.

Three motes collaboration

In this section performance analysis continues and we include into observa-

tion the third mote and assume all three cameras have a complete overlap of

view.

It is important to notice that that performance of Nash bargaining solution

is always better when simple (initially assumed) formulas if min-max and
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Figure 5.8: Lifespan, αi-exponent, type 2

Figure 5.9: Lifespan, αi-exponent, type 3

min-sum are described. It is true also for the case with three cameras, and

the same tendency as for 2 motes case is valid in terms of performance of

max-sum and max-min formulas. Max-min approach improves its perfor-
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Figure 5.10: Lifespan improvement adopting max-sum and max-min

mance significantly.

For three motes there are more factors we can combine together, therefore

52 distinct performance cases are adopted and explored. But for the sake of

visibility and legibility the diagrams and figures only include 8 cases out of

52, according to the Table 5.14.

For instance, if we take a look at case number 19, we see that in this perfor-

mance evaluation case all three nodes have the same initial energy budget,

but one of the nodes has different power consumption, and different time it

takes to process the image.

There can be found standard performance Figures 5.15, 5.16, 5.17, that

demonstrate realization of three processing sharing algorithms regarding two

αi-exponent. Comparison of Nash bargaining solution and max-sum and

max-min formulas are displayed. One of the versions of αi-exponent was

overlooked due to its poor performance contribution as well as its complex-

ity.

The Figure 5.18 gives an idea what improvement takes place when instead
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Figure 5.11: Gain in lifespan with respect to no collaboration

Figure 5.12: Image share of Mote 1, max-sum approach, poor performance

of plain extended versions of max-min and max-sum are used.

Taking a closer look at how image shares are assigned in the most unlucky

case (that is the one that leads to the smallest lifespan value) and the most

fortunate case, when lifespan value is the largest.
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Figure 5.13: Image share of Mote 1, NBS approach, fortunate performance

Figure 5.14: Selected combinations of parameters, 3 camera nodes collaborating

To demonstrate poor performance we observe case 4, where 3 motes has

the same hardware and software characteristics and just one of the motes

has different starting energy budget, higher than 2 other motes, see Fig-

ures 5.19, 5.20, 5.21, 5.22.

The case 34, where all 3 motes has same initial energy budget, but one of

the modes uses different type of software and has higher power consump-

tion parameter. Max-min approach shows excellent performance, see Fig-

ures 5.23, 5.24.

Important notice The decision to update the existing Formulas (5.15)

and (5.16), and change the concept of the approach from minimizing spent

energy to maximizing residual energy triggered performance improvement

and make the approaches more sensitive in terms of image share assignment.
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Figure 5.15: Lifespan, αi-exponent, type 1

Referring to the diagrams we can observe that the performance max-min now

reaches the same lifespan value as NBS, and in some cases even larger value.

The lifespan for max-sum has improved as well but not as noticeably.

I now can establish that both NBS and max-min algorithms are feasible to

implement as a strategy for visual sensor network. However max-min algo-

rithm is a centralized method, meaning that a node is not able to make the

decision on the image share to process locally, and a coordinator instance is

required to calculate and assign the shares. The prerequisite to implement

the coordinator node implies extra cost in terms of energy consumption and

also require extra monetary resources. Whereas NBS is a distributed type of

the algorithm, implicating that once all the needed parameters are obtained

each node is capable of calculating its share locally, and the value will be

coherent with the values of the camera nodes that are involved in coopera-

tion. Hence the strategy that implements NBS does not require any topology

changes or hardware upgrade, which is an important property, that leads to

vital for visual sensor network resource preservation. Hence considering two

image share approaches with analogous performance, NBS prevails max-min

approach by being distributed and less resource-consuming.
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Figure 5.16: Lifespan, αi-exponent, type 3

Figure 5.17: Gain in lifespan with respect to no collaboration
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Figure 5.18: Lifespan improvement adopting max-sum and max-min

Figure 5.19: Image share of mote 1 through lifespan iterations, max-sum, poor
performance
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Figure 5.20: Image share of mote 2 through lifespan iterations, max-sum, poor
performance

Figure 5.21: Image share of mote 1 through lifespan iterations, NBS, fortunate
performance
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Figure 5.22: Image share of Mote 2 through lifespan iterations, NBS, fortunate
performance

Figure 5.23: Image share of mote 1 through lifespan iterations, max-min, excellent
performance
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Figure 5.24: Image share of mote 2 through lifespan iterations, max-min, excellent
performance
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5.3.2 Partial view overlap

This part of analysis provides results regarding scenario where motes that are

involved into the collaboration only have partial field of view overlap. This

fact leads to an offset that should be embedded into the algorithm. This

offset denotes a portion of the image that each mote is required to process

alone and a portion that it can bargain on.

Field of view detection techniques

Prior to NBS-driven node collaboration an overlapped field of view should

be calculated for all camera nodes in the sensor network. There are two main

approaches that describe how motes define overlapped field of view.

Approach 1 Defining an overlapped field of view for 2 cameras is based

on computational geometry technique called Voronoi tessellation [16]. In

two dimensions a Voronoi tessellation of a set of points is the partition of

the plane into convex polygons such that all the polygons contain a single

generating point and all points within a polygon are the closest to the corre-

sponding generating point. Each reference point in the camera is contained

within a cell, with all points in a cell closest to the corresponding reference

point. Given a skewed distribution of reference points, it follows that densely

situated points will be contained within smaller polygons, and sparsely sit-

uated points in larger polygons. Since the size of each polygon is related to

the density of the points in the neighborhood, it can be used as an approx-

imation of the area represented by each point. Voronoi tessellations can be

extended to points in three dimensions, with each point contained with a 3D

cell instead of a polygon. Using Voronoi tessellation, each reference point is

assigned a weight that is approximately equal to volume of the cell that it

lies in. Note that Voronoi tessellation requires the coordinates of reference

points in order to partition the viewable region into cells or polygons.

To be able to determine the region of overlap for each camera, we first assume
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Figure 5.25: k-overlap estimation with distribution of reference points, weighted
approximation

Figure 5.26: Object and image relation in 3D

a reference object placed at randomly chosen locations. Using this points:

first Voronoi tessellation of the viewing area is obtained for each camera. A

Voronoi tessellation of a set of points is the partitioning of the plane into

convex polygons such that all polygons contain a single generating point

and all points within a polygon are closest to the corresponding generating

point. Figure 5.25 shows a skewed distribution of reference points in the 2D

viewing area of a camera and the corresponding Voronoi tessellation. Each

Figure 5.27: Estimation of reference point location
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Figure 5.28: Region of overlap using Voronoi tessellation

reference point in the camera is contained within a cell, with all points in a

cell closest to the corresponding reference point. The region of overlap for

any two cameras Ci and Cj is simply the union of cells containing all refer-

ence points simultaneously visible to the both cameras. Figure 5.28 shows

the Voronoi tessellation of the 2D viewing region of camera 1, the reference

points viewable by cameras 1 and 2, and the approximate region of overlap

(shaded region) for (C1, C2). Thus, our approximate tessellation is used to

determine region of overlap.

Estimating reference point locations. The tessellation process that lies

in the core of region of overlap detection, requires the location of reference

points. Since no infrastructure is available, there still exists a technique to

estimate this location using principles of optics. A key insight is that if each

camera can determine the coordinates of visible reference points relative to

itself, then tessellation is feasible and absolute coordinates are not required.

Assuming the origin lies within the center of the lens, the relative coordinates

of a point are defined as (dr, vr) where dr is its distance from the origin, and

vr is a vector from the origin in the direction of the reference point that

defines its orientation in 3D space.

It is assumed that the size of the reference object is known a priori and it is

s. The focal length f is also known. Then the camera first estimates the size

of the image projected by the object - this can be done by computing the

bounding box around image, determining the size in pixels and using the size

of the CMOS sensor to determine the size of those many pixels. If s’ denotes
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the size of the image projected by the reference object on the camera, then

from Figure 5.26 the following condition holds

tan(θ) =
s

dr
=
s′

f
(5.21)

Since s,s’,f are known dr can be computed.

Next to determine the orientation of the reference point relative to the cam-

era, assume that the reference object projects an image at pixel coordinates

(x,y) on the image plane of the camera. Then the vector vr has the same

orientation as the vector that joins the centroid of the image to center of

the lens (i.e. origin). As shown in Figure 5.27, the vector PO=(x,y,f) has

the same orientation as vr, where O is the origin and P is the centroid of

the image with coordinates (-x,-y,-f). Since (x,y) can be determined by

processing the image and f is known the relative orientation of the reference

point can be determined.

Figure 5.29: Field of view

Approach 2 The field-of-view of a camera is described by a triangle as

shown in Figure 5.29. The parameters of this triangle are calculated given

the (intrinsic) camera parameters, such as CCD sensor size, lens focus and

angle-of-view using well known geometric relations. Once a the field-of-view

70



Chapter 5. NBS-driven visual analysis

is determined by a triangle it is possible to define the area covered by a

camera at position (cx,cy) and with pose ϕ by three linear constraints. In

order to obtain the area visible to both camera nodes the first step is to

translate location coordinates in such a way that directional sensor (mote)

are placed along the x-axis of the coordinate system:

y′ = y − cy (5.22)

Field of view of a directional sensor can be calculated according to the for-

mula:

FOVi = d ∗ 2 ∗ arctan(
AOVi

2
) [m] (5.23)

Where d is a distance a sensor is able to reach with FOV and AOV (denoted

α) is the angle of view, provided by technical specification of the directional

sensor.

To be able to visualize the case and understand basic working principles the

following assumptions are made:

1. Rectangular room. A room where directional sensors are placed

2. Sides of the room are known

3. 2 directional sensors, that are placed along the same side of the room

4. x-coordinates (placement along the side) are known

5. ϕ1, ϕ2, pose of mote 1 and 2 respectively

The area that a mote captures is projected on the opposite side, con-

sidering we have acceptable critical direction angle. Critical direction angle

permits two motes FOVs have an observed area in common. We need to de-

termine the area each mote captures, in particular the borders of this area.

To find those borders observe another triangle defined by bisection line, per-

pendicular line to the opposite side (where we expect the projection), see

Figure 5.30. We obtain right-angled triangle. Knowing the x-coordinates of

the sensor the perpendicular line intersecting with opposite side would give
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Figure 5.30: Detecting overlapped field of view

us the same x-coordinate value and cathetus would represent the offset from

that point and the exact location where the bisection line is pointing out,

meaning from this point FOV/2, see Formula (5.23) to the right and FOV/2

to the left the borders can be found. Then we find the intersecting part and

calculate the percentage from the entire image size that is located in the in-

tersection and include this parameter to calculate Nash bargaining solution

in case of partial overlap.

At this point in the analysis the fraction of image where an overlap takes

place is represented by a number between zero and one. This number or its

complement is the offset that is introduces in all the NBS-related formulas

and has an essential influence on further bargaining concerning image share

among camera nodes in collaboration. Every note that is involved in bar-

gaining sets a portion of image that it is inevitably forced to process, this

the part that is not included in the overlapped FOV. Every mote has its own

image capturing characteristics, the most relevant in this case is angle of

view, that basically describes how wide is the acquired image. Starting from

an image portion that a note needs to process by itself it may be interested

in smaller or larger portion of the image to bargain for. In the Figure 5.31
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Figure 5.31: Overlapped field of view, 2 motes

it is shown what portion each mote has to process by itself and what part is

a subject for further bargaining. Keeping in mind the performance analysis

and its scope to save maximum amount of energy the offset changes future

bargaining outcome.

Two motes collaboration

The Figures 5.32, 5.33 display the usual case of performance analysis of three

image sharing approaches with the first type of the αi-exponent and extended

max-min and max-sum formulas used.

Three motes collaboration

The very same logic is applied for the case of partial overlap of views for

three motes.

The Figures 5.35, 5.36 display the usual case of performance of three process-

ing offload approaches with the third type of the αi-exponent and extended

max-min and max-sum formulas used. And the performance is consequently

observed in eight chosen cases that are produced by combining steering pa-

rameters.

Once the NBS strategy is defined within visual sensor network the next step
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Figure 5.32: Lifespan, αi-exponent, type 1

is to implement a communication protocol that ensures the stable parameter

exchange and communication that completes the NBS implementation and

allows to fully exploit the NBS concept with the scope of energy saving. The

next chapter contains suggested description of the communication protocol.
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Figure 5.33: Gain in lifespan with respect to no collaboration

Figure 5.34: Overlapped field of view, 3 motes
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Figure 5.35: Lifespan, αi-exponent, type 3

Figure 5.36: Gain in lifespan with respect to no collaboration

76



Chapter 6

Communication protocol

6.1 Components

A communication protocol is a system of digital rules for data exchange

within or between nodes of the network. The protocol described in this

Chapter empowers NBS-based strategy to share image for local processing

in visual sensor network.

The protocol is executed by two processes that are conducted in parallel.

The first one is exchange of the parameters (including residual energy budget

update). Beacon frame in broadcast is used for parameter exchange process.

Based on the received beacon frames from neighbour nodes, each camera

creates a table. The table contains information relevant for establishing

nodes collaboration.

The beacon frame has structure, that is shown in Figure 6.1.

Parameters in the payload of the beacon frame allow to calculate overlapped

field of view for each node and add to the table accordingly.

Only the addresses of the nodes whose overlapped field of view (with the

node under current consideration) is determined to be greater than 0 is placed

in the table. Beacon frames also keep all the parameters that are needed to

calculate NBS. It is crucial for the expected saved energy estimation. The

value of expected saved energy is the value that is obtained in case the nodes
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Figure 6.1: Frame structure, camera and NBS parameters in payload

Figure 6.2: Flowchart, continuous exchange of beacon frames

decide to collaborate, and this value is also part of the table.

The table has following columns:

| camera address | over lapped FOV % | expected energy sav ing |

Another process that can occur simultaneously with the continuous exchange
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of beacon frames is the one triggered by image acquisition request sent to a

camera. In this case the following set of rules is activated.

The first step is to determine the number of entries in the table:

• If 0 - camera processes the image by itself

• If 1 - send a collaboration request to the camera address, contained in

the entry

• If more than 1 - more elaborated scenario with several branches should

be applied

The second step is to check the most promising collaboration possibility, the

one that might bring us the biggest energy saving, we check the column of

the table that contains the values of expected energy savings and choose the

maximum. We take the address of the corresponding camera and send a

collaboration request.

In such a way each camera potentially feasible for collaboration expresses

Figure 6.3: Frame with collaboration requests in payload

its preferences to the neighbouring cameras. In case we receive in response
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a preference frame from camera address we chose, then a notification about

establishing collaboration is broadcasted, NBS is calculated using current

values of residual energy budget, the solution of NBS is share of the image

that the node need to process locally.

In case when there is more than 1 entry in the table, and furthermore

Figure 6.4: Frame structure, established collaboration notification

there is an overlap of 3 cameras then this case should be stated in the table

precisely - a union of 2 camera addresses should be placed there, this can

be done with a pointer, such that when the entry with the pointer is chosen

the collaboration request packet will be send to both nodes’ addresses and

hence the preference reply should be received from both camera addresses,

otherwise a mismatch is called. In such a way when no preference is received,

then its the case where other 2 pair of nodes will continue collaboration and

image sharing (and they exchange notification frames), or we have complete

mismatch of preferences and in this case a feasible solution is to choose the

second maximum value of expected energy saving from the table and start

the process of establishing collaboration from the step where the packets with
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preferences are broadcasted.

The Flowchart 6.5 expresses the sequence of steps taken.
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Figure 6.5: Flowchart, steps towards establishing collaboration
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Communication protocol timeline is represented by the Sequence
Diagram 6.6.

Figure 6.6: Timeline, communication protocol
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6.2 Protocol energy consumption

At this point it is necessary to determine the amount of energy required

by the communication protocol to operate properly. The values of energy

consumption are defined experimentally, assuming the framework based on

2 wireless communication standards IEEE 802.11g and IEEE 802.15.4. Each

of the standards is characterized by a power consumption, voltage parameter

and typical transmission rate. The value of energy spent on communication

protocol depends on the frame size that is in transmission. In this case we

have 3 types of frames the protocol exploits:

• Beacon frame, size = 69 octets

• Collaboration request frame, size = 18 octets

• Collaboration notification frame, size = 18 octets

The parameters are taken from the datasheets of the chipsets:

Parameter IEEE 802.11g IEEE 802.15.4
Power consumption in Tx (mA) 80 17.4
Power consumption in Rx (mA) 110 18.8

Voltage (V) 1.8 3.3
Transmission rate 1 Mb/s 250 Kb/s

Table 6.1: Protocol energy consumption parameters

We also assume that number of nodes k in the network equals 10. Then

using the formula to calculate transmission time:

Ttx =
N

Rate
(6.1)

Where N is the number of bits to transmit/receive, that is the frame size

expressed in bits, and Rate is the transmission rate, typical for each of the

communication standards. Then the energy required for the beacon exchange

stage is calculated according to the equation:

Ebeacon = Ttx ∗ (Ptx + (k − 1) ∗ Prx) (6.2)
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And energy required for actual collaboration request/response stage:

Ecollab = Ttx ∗ (2 ∗ Ptx + Prx) (6.3)

Total amount energy is a summation of energies required at both stages:

Etotal = Ecollab + Ebeacon (6.4)

And as a result spent energy values are in the range:

• for IEEE 802.11g: Etotal = 0.0011[J ]

• for IEEE 802.15.4: Etotal = 0.0014[J ]

Whereas the amount of energy required to locally process the image is on

average 0.4793 [J] that implicates the difference order of approximately 400,

meaning that energy required to support the protocol is negligible with re-

spect to energy needed to process the image. That permits us to perform

the analysis, disregarding the value of protocol energy consumption.
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Conclusions and future

developments

Energy saving and longer network lifetime are key issues in visual wireless

sensor networks. The solution that was proposed in this thesis work is based

on Nash bargaining solution and allows to save overall energy of the network

and increase its lifetime. Camera nodes with overlapped field of view collab-

orate and decide on a portion of image each one processes.

First I described a framework that is provided by visual sensor network, its

components, parameters and constraints. Then I introduced basic principles

of Nash bargaining solution, identifying parameters that were required for

the implementation in the framework of visual sensor network.

One of the crucial parameters was utility function, that was defined experi-

mentally. Experiment involved studying of visual analysis, in particular time

it took to process the image at each camera node with respect to given pa-

rameters. The function that described the time from image size was linear

and consequently the utility function of NBS was linear.

Once the framework was defined series of tests were performed, analysing be-

haviour of NBS-based algorithm to share the image to process. The analysis

included two subcases: one considered a case where cameras have a com-

pletely overlapped field of view, and the second one considered a case where

cameras only had a partially overlapped field of view. Each of subcases
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involved either two or three camera nodes in collaboration. The obtained

outcome showed that the lifetime increased by 350% in case of complete

overlap and two collaborating cameras and 2300% in case of three camera

nodes collaboration. In case of partial overlap - up to 250% for both two and

three cameras collaborating.

During analysis stage NBS solution was compared to a case of no collabora-

tion, alternative approach where it was required to maximize the summation

of energy spent on image processing by the cameras involved in bargaining

and maximize the minimum energy spent on image processing accordingly.

And the latter algorithm demonstrated the outcomes in terms of lifespan

being very close or in certain cases even better than suggested NBS-based

algorithm. This can be commented as follows: throughout the research the

standard min-max approach was enhanced by including the parameter of

residual energy of each camera node. This component ensured more flexi-

ble algorithm and as a consequence longer lifetime of the network. But de-

spite great performance results, the min-max algorithm remaines centralized,

meaning requiring a cooperator node to assign and manage the participant

nodes in collaboration. Whereas NBS-based algorithm is distributed and in

this case each node makes a decision to collaborate or not autonomously and

this is its great advantage.

Analysis followed by the communication protocol that enabled parameter

exchange and collaboration process. I presented types of frames that used

for each stage of collaboration, as well as energy consumption estimation,

needed to understand the protocol was light-weighted and the main energy

consumed through local processing. And also flowcharts describing order of

the requests and according frames.

As a possible next step it could be useful to construct a test-bed, that emu-

lates the behaviour of suggested NBS-solution and communication protocol

in a framework where there are more than three nodes or the number and

location of nodes is periodically changing. The algorithm may also be ex-

plored for more feature extraction algorithms, when for this research there

were explored only two examples of such. As well as for more types of hard-

ware and camera models, that would make the research comprehensive. And
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ultimately the suggested NBS-based algorithm should find implementation in

a real life sensor network, followed by an extensive performance evaluation.

In such a way the thesis may continue its development in several directions.
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