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ABSTRACT 
 

    The development of communications network and mobile computing, and the 

increasing demand for location-based services inside buildings, have made indoor 

positioning a very popular research topic in recent years. Indoor Human Localization 

(IHL) systems are based on several different technologies, surely the most diffused are 

based on Radio-Frequencies.  

    The localization technology exploited in this thesis is based on 2.4 GHz. In order to 

obtain the physical position of the target-of-interest, the process of localization is 

divided in two phases: signal measurement and position estimation. In this study in 

first phase we use received signal strength (RSS) parameter, and in the second phase 

we used a grid-based lateration method. In order to obtain the distance estimation in 

the first phase of localization, two different signal propagation models (LAURA and 

MWM) are exploited, the two methods are evaluated and their performances are 

presented. Furthermore, based on the complementary performances of the two 

implemented models, we developed several methods to compose the two algorithms, 

to provide an improvement of position estimation. The developed methods are divided 

in two parts: basic methods using a static mixture policy, or using dynamic mixture 

policy based on estimation accuracy indicators. 

    The proposed method, based on a policy involving two confidence indicators, 

provides a combination of LAURA and MWM methods. The policy enables to choose 

the model at each time instant, which is probable to give better estimations. 

Experimental data prove the validity of the approach, reporting an improvement in the 

localization results. 



 

SOMMARIO 
 

    Lo sviluppo di reti di comunicazione e mobile computing, e la crescente 

domanda per servizi basati su localizzazione in ambienti coperti, hanno reso la 

localizzazione indoor un importante argomento di ricerca negli ultimi anni. Sistemi 

di localizzazione di persone indoor (Indoor Human Localization - IHL) sono basati 

sulle tecnologie più disparate, sebbene i più diffusi si affidino alle Radio 

Frequenze. 

    La tecnologia di localizzazione utilizzata in questa tesi è basata su segnali a 

2.4GHz. Per ottenere la posizione della persona-target, il processo di 

localizzazione può essere diviso in due fasi: la raccolta di segnali e la stima della 

posizione.  In questo studio per la prima fase sono stati utilizzati i dati di potenza 

del segnale ricevuta (Received Signal Strength - RSS), mentre nella seconda un 

metodo di laterazione basato su una griglia. Per ottenere la stima della distanza 

nella prima parte del processo di localizzazione, sono stati utilizzati due diversi 

modelli (LAURA e MWM) di propagazione del segnale; questi modelli sono stati 

valutati e le loro prestazioni confrontate. Inoltre, partendo dalla complementarietà 

delle prestazioni di questi due modelli, sono stati sviluppati diversi metodi per 

combinarne i procedimenti, al fine di raggiungere un miglioramento della 

posizione stimata. I metodi sviluppati sono stati classificati in due tipologie: basati 

su strategie di composizione statiche, o dinamiche, basate su indicatori di 

accuratezza. 



 

    Il metodo proposto, basato su una strategia che coinvolge due indicatori di 

confidenza, fornisce una combinazione dei metodi Laura e MWM. Questa 

permette ad ogni istante di tempo, di scegliere il modello che ci si aspetta dia una 

stima migliore. I dati sperimentali confermano la validità dell'approccio, e 

riportano un miglioramento nei risultati di localizzazione. 
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Chapter 1 

Introduction 

 

Introduction 

    The development of communications network and mobile computing, and the 

increasing demand for location-based services inside buildings, have made indoor 

positioning a very popular research topic in recent years. Location-based services 

refer to applications that rely on the user’s location to provide services, such as 

advertising, street navigation, public transportation, etc. There are many applications 

of indoor positioning, for instance, navigation for people or robots, locating patients 

in a hospital, guiding blind people, tracking elderly people or small children, 

location based services and etc. 

    The Global Positioning System (GPS) is the most popular outdoor positioning 

system, although it cannot provide good accuracy in indoor environments, since its 

signals are easily blocked by most construction materials. This rises the need for 

alternative technologies. An example of a possible alternative, is the system 

exploited in this study, which is based on a 2.4GHz Wireless Sensor Network 

(WSN). The localization technology relies on Received Signal Strength Indication 
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(RSSI) between a mobile node worn by a person and some location-known fixed 

devices installed inside the building. The signals transmitted travel in the 

environment, and their attenuation can be exploited to estimate distances. This 

estimation process can rely on different signal propagation models. In this thesis two 

different models and their related algorithms are compared, providing experimental 

evaluation of their performances. Due to the limited accuracy of the analyzed 

technology, the aim of this work was the development of a novel model, here by 

presented, enabling the composition of distances estimation obtained through 

different algorithms, to obtain a better position estimation. 

 

Structure of the Thesis 

    This thesis is divided into five main chapters. After this introductive chapter, in 

Chapter 2, we review the state of the art. First we briefly introduce problem 

formulation, and the localization methods are introduced. Moreover, we describe a 

classification of indoor localization technologies by measured physical quantity and 

hardware technology. A classification of Radio Frequency technologies in indoor 

localization is reported and, the last part, RF signal propagation models are 

discussed. 

    In Chapter 3, a detailed description of the localization methods evaluation is 

provided, along with experiments results about their performances. 

    In Chapter 4, different mixture methods are introduced in order to improve the 

localization methods. The results are presented and a full analysis with comparison 

is included in this chapter. 
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    Chapter 5 summarizes the conclusion drawn from this thesis, proposing some 

topics for future work.  
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Chapter 2 

Indoor Human Localization (IHL): 

Radio-Frequency Based Technologies 

and Methods 
 

Problem Formulation 

    An Indoor localization system is a system that can determine the position of 

something or someone, continuously and in real time [4]. In order to obtain the 

physical position of the target-of-interest, two steps are usually needed [5, 6]: first, 

some position-related quantities are measured; and then, the physical position of the 

target is calculated based on the obtained information. 

    As shown in Figure 1, we can thus divide the whole localization process into two 

phases: signal measurement and position calculation. In the first phase, some 

properties of these signals, such as arrival time (Time of Arrival –ToA– , Time 

difference of Arrival –TDoA–), signal strength (Received Signal Strength –RSS–), 

and direction (Angle of Arrival –AOA–), are collected by the receivers.  
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    Figure 1: Two phases in localization [3]. 

 

    In the second phase, the physical position of the target is determined based on the 

parameters obtained. The most common technique used is based on ranging, 

whereby distance or angle approximations are obtained. In this context, geometric 

approaches are employed, as further described to calculate the position of the target 

node from the position-related parameters at reference nodes. Trilateration and 

triangulation are two most popular geometric approaches. In addition, since signal 

measurements in real systems are only accurate to some extent (especially in indoor 

environments), optimization-based statistical techniques are often used to filter 

measurement noise and improve accuracy of the result. 

 

Distance Estimation Methods 

    In this section we will explain the most common methods for distance/direction 

estimation which are involved in the first phase of localization. 

    The three main categories of methods can be identified: time-based methods; the 

angle-based methods (AoA); and the third is the received signal strength based 

methods (RSS). 
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A. Time-based Methods 

1. Time of Arrival (ToA) 

    With ToA, the distance between the a node, transmitting a signal, and 

the receiving node is deduced from the transmission time delay and the 

corresponding speed of signal as follows: 

    ! = !"#$  ×  !"##$     (1) 

where speed denotes the traveling speed of the signal, time the amount of 

time spent by the signal travelling from the transmitting to the receiving 

node, and R the distance between the transmitting node and the receiving 

node. Since speed can be regarded as a known constant, R can be 

computed by observing time. This implies the necessity to synchronize 

devices, which often rises technological issues. 

    The ToA localization suffers from two sources of errors: multipath 

effects and Undetected Direct Path (UDP) conditions. Multipath effect is 

caused by obstacles and it results in reflected and transmitted paths, 

received along with the direct one, hence causing ranging errors. These 

errors can be reduced by increasing the transmission bandwidth of the 

system; as the bandwidth increases, the pulses get narrower and the ToA 

estimate gets closer to the expected ToA of the direct path. The UDP 

condition occurs when the direct path falls below the detection threshold 

of the receiver. This condition usually happens at the edges of the 

coverage area or when the direct path between the transmitter and the 

receiver is blocked. The UDP condition results in very large ranging 

errors and cannot be minimized by increasing the bandwidth of the 
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transmission system [3]. 

2. Time Difference-of-Arrival (TDOA) 

    This technology uses two different transmitted signals. The time 

difference between these two is used to reconstruct the transmitting 

node's position. The calculation is based on the following equation:   

!
!!
−
!
!!
= !! − !!                                                                              (2) 

where, c1 denotes the speed of the first signal, c2 the speed of the second, 

t1 and t2 the time for these two signals travelling from one node to the 

other respectively, and R the distance between the transmitting node and 

the receiving node. 

3. Round Trip Time (RTT) 

    This measurement method emerges with the goal of solving the 

problem of synchronization incurred by ToA. Instead of using two 

synchronized nodes to calculate the delay (as ToA technology does), it 

requires timing on one node only, to record the transmitting and arrival 

time.  With RTT, the distance is calculated as follows: 

! =   
!!" −   ∆! ×  !"##$

2                                                               (3) 

where !!" denotes the amount of time needed for a signal to travel from 

one node to the other and back again, Δt the predetermined time delay 

required by the hardware device to echo the signal back to the receiving 

node, and speed the speed of the transmitting signal.  
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B. Angle-of-Arrival (AoA) 

    With respect to AoA-based techniques, the reference nodes or the target 

node have the capability of measuring the angle of arrival of the signal. For 

this purpose, techniques like angle diversity [9] may be utilized in order to 

exploit the directionality of the receiver. Usually, direction finding can be 

accomplished by either with directional antennas or with an array of 

antennas. The main principle behind the AoA measurement via antenna 

arrays consists in the angle information included in differences of arrival 

times of the incoming signal at different antenna elements. With AoA, no 

time synchronization between nodes is required. 

    AoA-based techniques have anyway their limitations. Since AoA-based 

methods are highly sensitive to multi-path and NLOS (Non-Line-Of-Sight), 

they are not always suitable for indoor localization. As the distance 

increases, the localization precision will decrease. In addition, technologies 

based on AoA require antennas with the capacity to measure the angles, 

which increases the cost of the whole system. 

C. Received Signal Strength (RSS) 

    For the RSS based techniques, the distance is measured based on the 

attenuation due to the propagation of the signal from the transmitting node to 

the receiving node. A mathematical model to calculate the distance 

according to signal propagation is as follows: 

! ! = ! !! −   10! log
!
!!

−    !"  ×  !"#              !" < !
!  ×  !"#                      !" ≥ !                       (4) 
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where R denotes the distance between the transmitter and the receiver, R0 a 

reference distance, p(R) and p(R0) the signal strength received at R and R0 

respectively, nW the number of obstacles between the transmitter and the 

receiver, WAF the attenuation factor of the wall, C the maximum number of 

obstacles between the transmitter and the receiver, and n the routing 

attenuation factor which could be determined by both theoretical and 

empirical calculations. 

 

    Based on the RSS technology, several methods have been proposed to 

estimate the position of the target-of-interest. For example, the fingerprint-

based solution for target positioning is one of the most typical application of 

RSS technology. In general, we can divide the fingerprint methodology into 

two steps: sampling (offline) and matching (online). In the sampling step, a 

database is created offline to store the radio signal map consisting of the 

geographical positions and the corresponding signal strengths. These signals 

may be e.g. sound, light, color, and human movement, among others. In the 

matching step, the relevant signals collected for the target (node) are 

compared against the pre-stored records of the geographic-signal map. By 

doing so, it will be able to determine where the target is, as long as any 

record in the database is matched. 
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Localization Methods 

    Based on the quantities estimated in the first phase and the known coordinates of 

reference nodes, in the second phase of localization it is possible to calculate the 

physical position of the target. To do this, trilateration and triangulation techniques 

are commonly used. In addition, statistical techniques could be employed to improve 

the solution accuracy by coping with measurement noise. In this regard, we will 

introduce a very popular parametric approach: maximum likelihood estimation, 

though there are many other approaches in the literature. 

A. Triangulation 

    When AoA measurements are available, triangulation can be used to 

determine the position of the target node. Triangulation-based positioning is 

based on the measurement of angles. In most situations, triangulation can be 

transformed to trilateration since the distance between nodes can be 

reconstructed from the bearings between them. However, compared to 

trilateration, only two reference nodes are needed for triangulation (in 2D), 

instead of three [3]. 

 
Figure 2: Triangulation-based positioning 
 

    With triangulation, the position of the target node can be determined by 
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the intersection of several pairs of angle direction lines. As shown in Figure 

2 where A and B represent reference nodes, after obtaining the angles θ1 , and 

θ2 , the physical position of T (representing the target to be located) can be 

calculated based on the predetermined coordinates of the reference nodes. 

B.  Maximum Likelihood Estimation (MLE) 

    MLE is a method of estimating the parameters of a statistical model. 

When applied to a data set and given a statistical model, maximum-

likelihood estimation provides estimates for the model's parameters. 

    The method of maximum likelihood corresponds to many well-known 

estimation methods in statistics. For example, one may be interested in the 

heights of adult female penguins, but be unable to measure the height of 

every single penguin in a population due to cost or time constraints. 

Assuming that the heights are normally (Gaussian) distributed with some 

unknown mean and variance, the mean and variance can be estimated with 

MLE while only knowing the heights of some sample of the overall 

population. MLE would accomplish this by taking the mean and variance as 

parameters and finding particular parametric values that make the observed 

results the most probable (given the model). 

    In general, for a fixed set of data and underlying statistical model, the 

method of maximum likelihood selects the set of values of the model 

parameters that maximizes the likelihood function. Intuitively, this 

maximizes the "agreement" of the selected model with the observed data, 

and for discrete random variables it indeed maximizes the probability of the 

observed data under the resulting distribution. Maximum-likelihood 



12	
  
	
  

estimation gives a unified approach to estimation, which is well-defined in 

the case of the normal distribution and many other problems.  

C. Trilateration 

    As illustrated in Figure 3, the trilateration based positioning algorithm 

uses three fixed non-collinear reference nodes to calculate the physical 

position of a target node (in 2D) [3]. 

 
Figure 3: Trilateration-based positioning 

 
    Based on the coordinates of three reference nodes: A(x1, y1), B(x2, y2), and 

C(x3, y3), and the corresponding distances from each reference node to the 

target node: R1 , R2 , and R3 , we can obtain the following equations: 

!! − ! ! + !! − ! ! = !!!

!! − ! ! + !! − ! ! = !!!

!! − ! ! + !! − ! ! = !!!
                                                                  (5) 

where (x, y) denotes the (unknown) coordinates of the target T. 

    We can see that the trilateration algorithm can best demonstrate its 

advantages when the three reference nodes are deployed in the vertices of 

equilateral triangles. Also some other studies consider the effect of noisy 

environments, and use different confidence coefficients for three nodes to 
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guarantee the quality of trilateration. In case more than three measurements 

can be exploited, a variant of trilateration is raised which is multilateration.  

D. Lateration (Grid Based)  

    This method relies on a grid of points, defined selecting the dimension of 

its atomic unit [1]. We leverage the known distance between each point of 

the grid and each anchor node, selecting the target location as the grid point 

that minimizes the discrepancy. The best point of the grid is computed as: 

! = argmin
!"#

!! − !! ! − !!
!

!"#

                                                          (6) 

where ! is the set of grid nodes, ! the set of fixed devices, !! the estimated 

distance from the l-th anchor, !! and !! the coordinates of the i-th node of 

the grid and the l-th anchor. 

  

Physical Quantity Classification 

     Modern indoor localization systems use many different and various techniques. 

The location of an object in space is determined by measuring a physical quantity 

that changes proportionally with the position of the object of interest. We can report 

a classification for localization technologies on the basis of that measured quantity.  

In particular, we can identify the following classes: Radio frequency waves, 

photonics energy, sonic waves, mechanical energy (inertial or contact), magnetic 

fields, and atmospheric pressure. Each one can be further subdivided according to 

the underlying hardware technology. Figure 4 summarizes this classification [12]: 
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Figure 4: Classification of indoor localization technologies by measured physical quantity and 

hardware technology 

 
    Moreover it is possible to highlight the distribution of research over these 

technologies by considering the number of articles for each physical quantity 

measured [12] in Figure 5: 

 
 Figure 5: Distribution of articles by physical quantity measured. 
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    This work mostly focuses on Radio Frequency waves field and its subcategories. 

Next sections will explain each of these sub-categories briefly, focusing then on the 

known localization methods. 

 

Technology and Frequency Classification 

     An electromagnetic wave is the energy generated by an oscillating, electrically 

charged particle in space. The generation of electromagnetic waves is known as a 

radio frequency emission.  

    Radio Frequency travels in the space at a known speed, and their power decays as 

they get further from their space. The location of a mobile target in this category is 

estimated and calculated by measuring one or more properties of a wave radiated by 

a transmitter and received by a mobile station.   

    We can divide radio frequency category in different subcategories according to 

the underlying technology and frequency: 

1. IEEE 802.11(WLAN), 802.15.4(ZigBee): The localization technique used 

for positioning with wireless access points is based on measuring the 

received signal strength (RSS). Furthermore, 2.4 GHz technologies can be 

used with other distance estimation metrics such as time-based methods 

(ToA, TDoA) and Angle-of-Arrival (AoA) method. Typical parameters 

useful to geolocate the WiFi hotspot or wireless access point include 

the SSID and the MAC address of the access point. The accuracy depends on 

the number of positions that have been entered into the database. The 
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possible signal fluctuations that may occur can increase errors and 

inaccuracies in the path of the user. WLAN is used where GPS is inadequate. 

2.   Bluetooth: Bluetooth in often employed for indoor proximity rather than 

indoor positioning. A Bluetooth device inquires about neighboring Bluetooth 

stations [13]. This inquiry process consists of scanning for devices in the 

vicinity, using a sequence of different power levels. Low power levels will 

detect devices in close proximity while high power levels will include 

devices that are located farther away, providing coarse distance estimates in 

this fashion. This approach requires a fixed or anchor node which establishes 

the position of nearby mobile nodes. Subsequently, the localized nodes can 

establish the position of other undetected mobiles nodes in their vicinity, 

creating an ad-hoc localization network 
3. Ultra Wide Band (UWB): UWB has very high precision, approximately 15 

cm for 95% of the readings thanks to the active tags signal triangulation [14]. 

Usually the main components of an UWB system are: the sensors, the tags to 

be tracked and the software platform. The tags use RF Radio to coordinate 

the UWB (6–8 GHz) pulse transmission time. An UWB system uses 

different signal measurement methods in order to estimate the location of a 

specific tag using at least two receivers. These systems do not require Line-

of-Sight thanks to the UWB technology. The signal can be filtered and the 

multipath effect minimized, which is huge advantage because the multipath 

effect represents the main cause for low accuracy indoors. UWB systems can 

cover large areas and offers the possibility of tracking a large number of user 

in real-time. The spatial coverage is ensured using cluster methods running a 
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large number of services with a fair usage of bandwidth. A drawback of 

UWB systems is the timing cable required for every tag which can become 

challenging in some environments.  

4.   Radio Frequency Identification (RFID) tags: An RFID system is 

commonly composed of one or more reading devices that can wirelessly 

obtain the ID of tags present in the environment [15]. The reader transmits a 

RF signal. The standard RFID frequency bands are listed as: 120-150 kHz 

(LF), 13.56 MHz (HF), 433 MHz (UHF), 865-866 MHz in Europe (UHF), 

902-928 MHz in North America (UHF). The tags present in the environment 

reflect the signal, modulating it by adding a unique identification code. The 

tags can be active (powered by a battery), or passive, drawing energy from 

the incoming radio signal. The detection range of passive tags is therefore 

more limited. 

5.    Radar: An example of Radar-based localization is presented by Roehr [16]. 

He presented an extension to the conventional frequency-modulated 

continuous-wave radar. The particular characteristic of this system is that it 

uses two-way radio communication. Both fixed and mobile units are capable 

of transmitting and receiving a frequency modulated signal with a 5.8 GHz 

carrier. The fixed and mobile clocks are synchronized before distance and 

velocity estimations could be calculated. Once the units are synchronized, 

the fixed unit emits a signal, which arrives at the mobile station. 

Subsequently, the mobile station send a reply to the fixed station, which is 

synchronized using the signal just receives from the fixed station. The round 

trip time of the signal is used to calculate the distance between the fixed and 
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the mobile stations, while the frequency deviation is used to estimate the 

velocity of the mobile unit. The experimental setup include one experiment 

within an office building, where distances ranging from 5 to 25 metres are 

measured with the radar system.  
 

Signal Propagation Models  

    The ability to accurately predict radio-propagation behavior for wireless personal 

communication systems, such as cellular mobile radio, is becoming crucial to 

system design. Indeed, the prediction of RF signal propagation is necessary to 

estimate the network coverage. Furthermore, this kind of analysis can provide the 

information necessary for RSS-based localization methods. Since site measurements 

are costly, propagation models have been developed as a suitable, low-cost, and 

convenient alternative, used in the network planning and deployment process. 

Over the years, a number of models have been developed for the prediction of radio 

wave propagation. They can be categorized into two main approaches: empirical and 

deterministic.  

    Empirical models are based on vast amounts of actual measurements and they are 

primarily based on statistically processed representing measurements. Empirical 

models are very easy and fast to apply because the prediction is usually obtained 

from simple closed expressions. Also requirements on the input environment 

description are not so restrictive. At the same time, the propagation loss, with a 

limited site-specific accuracy, can be predicted. Total path loss LTOT (dB) can be 

expressed [26]: 
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!!"! = ! ! + !                                                                                                          (7) 

where L(P) (dB) is the average loss based on the position P only, and χ (dB) is 

random fading with a zero-mean statistical distribution. The empirical models are 

able to predict the average path loss L(P).  

    On the other side, deterministic models utilize the laws of electromagnetic waves 

to determine a number of parameters, including the phase and signal strength of the 

wave at a particular domain of interest or area. Deterministic models (e.g. Ray 

Tracing) often require extensive knowledge about the terrain in the form of three 

dimensional maps, aerial photography or satellite pictures.  

    In the following, first we explain Ray Tracing as an example of deterministic 

models and then two wide-spread empirical models: One-Slope and Multi-Wall.  

Ray Tracing 

    Ray tracing model is based on Geometrical Optics (GO). Rays are radio 

signals. Rays are followed until they hit an object, where a 

reflected/transmitted ray is initiated in the next reflection/transmission depth 

[27, 28]. The direction of the new ray is determined by Snellius' law. Losses 

due to reflections and transmissions take into account the thickness of the hit 

walls/floors and the material characteristics at the respective frequency. 

Furthermore, diffracted rays can be considered by means of the Uniform 

Theory of Diffraction (UTD). In the frequency range of 5 GHz diffracted rays 

are neglected since they only have a minor contribution. 

    A computational efficient solution, especially for a high number of 

reflections and transmissions, is provided by the launching method. Rays are 

homogeneously emitted from a unit sphere centered on the transmitter location 
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and all regions are covered uniformly by rays. Rays that intersect an imaginary 

detection area (reception sphere) around the receiver after a number of 

reflections, transmissions, and diffractions will account to the received signal. 

Increasing the number of rays reduces the probability for a detection error, but 

as long as the detection area is a sphere, rays will miss the receiver owing to 

detection gaps (sphere is too small) or a ray hits the area that normally will not 

reach the antenna (sphere is too large), resulting in an inflated count of 

received power. 

    A new twofold detection algorithm by M. Lott [27] first checks whether a 

circular detection area around the emitted ray hits the receiver, which 

increases with traveling distance and therefore defines a cone. In case of 

success, in the second step a triangular detection area is used to check whether 

a ray hits the receiver. Triangular detection areas result from subdividing the 

sides of an icosahedron. Owing to the twofold recursion, the quick and 

computational optimal circular detection area is used to select a small subset 

of potential rays that hit the receiver. The circular detection areas are 

dimensioned to preclude detection gaps. In the second step, double counts are 

eliminated due to the triangular detection area that is covered by the circular 

detection area. 

 

One-Slope Model:  

    The One-Slope Model (1SM) [26] is the easiest way to compute the average 

signal level within a building without detailed knowledge of the building 

layout. The path loss in dB is a function of just a distance between transmitter 
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and receiver antennas: 

! ! = !! + 10  ! log !                                                                             (8) 

where L0 (dB) is a reference loss value for the distance of 1m, n is a power 

decay factor (path loss exponent) defining slope, and d(m) is a distance. L0 and 

n are empirical parameters for a given environment, which fully control the 

prediction. It can be clearly seen that the value of the power decay factor n is 

highly dependent on the type of building or structure of the indoor 

environment and so it has the major influence on the resulting determination 

of the signal level coverage. 1SM prediction considers only the change of the 

signal level with distance between transmitter and receiver regardless of the 

actual structure of the indoor environment which is shown in the Figure 6. The 

1SM provide only a rough estimate (standard deviation usually greater than 10 

dB) and the selection of proper power decay factor n is crucial [25]. 

 
    Figure 6: One-Slope Model coverage prediction [25] 

 
    The values of the power decay factor n vary depending on the type of 

building and indoor environment. The value n = 2 corresponds to the 

propagation in free space. Values smaller then 2 are utilized for prediction of 
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the signal propagation in corridors, where the decrease of the power decay 

factor is caused by a wave-guiding effect. In an office environment with walls 

and furniture n is usually between 3 and 6. The 1SM gives the best results for 

environment with more or less uniformly distributed walls and obstacles. 

 

Multi-Wall Model 

    A semi-empirical Multi-Wall Model (MWM) provides much better 

accuracy than 1SM. The results are site-specific but at the same time floor 

plan description is needed as an input [27]. 

The Multi-Wall Model is based on an elaborate mathematical formula 

provided by: 

!!" = !!"# ! + !!"!!" + !!!!

!

!!!

                                                      (9) 

where: 

i is the number of types of walls  

Lwi   is attenuation factor for i-th wall type  

Lf is the floor attenuation factor 

kwi is a number of walls of i-th type between transmitter and receiver 

antennas  

kf is a number of floors between transmitter and receiver. 

LFSL(d) is the free space loss for the distance d (m) between transmitter and 

receiver antennas, which is in fact 1SM prediction with power decay factor n = 

2.0 
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    As it can be easily seen, the complex mathematical expression takes into 

account all the various types of walls and floor that may come into the path of 

the traversing signal as it strives to find its way to the receiving antenna. In 

addition, the Multi-Wall-Floor model considers different losses for different 

types of materials, at a given frequency of transmission. 

    The MWM can be marked as site-specific since particular walls are 

considered during the prediction. But still, it must be understood that the 

MWM introduces only an estimate of the real wave propagation. In MWM 

only walls and obstacles located directly between transmitter and receiver are 

considered with their attenuation factors. Particular reflections and diffractions 

are not taken into account so the accuracy is limited in certain cases. Figure 7 

presents an example of a coverage prediction using MWM. 

 
    Figure 7: Multi-Wall Model coverage prediction [25] 
 

 
    For good prediction accuracy the proper wall attenuation factors Lw - 

empirical parameters for MWM - must be used. The attenuation factors do not 

represent actual physical attenuations of the walls but statistical values 

obtained from representative measurement campaigns. 
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Although there are a lot of building materials, due to the statistical nature of 

the wall attenuation factors in MWM only a very few wall types are necessary 

to define for MWM. Usually only two wall types are considered: Light wall 

(L1) - a light wall or partition, and Heavy wall (L2) - a structural thick wall. Of 

course more wall types can be introduced for a specific application or software 

tool (metal walls, glass, etc.). 

 

LAURA Propagation Model 

    LAURA (LocAlization and Ubiquitous monitoRing of pAtients for health 

care support) is a localization system designed for humans tracking in indoor 

environments. It is based on a 2.4GHz Wireless Sensor Network, with a 

specifically designed addressing protocol. Localization relies on RSSI between 

a mobile node and some location-known fixed anchors. It takes advantage of a 

dynamic and adaptive calibration by considering the RSSI also among fixed 

anchors [1, 2]. 

    The physical principle on which the LAURA system is based is the decay 

and absorption of RF signal as it travels away from its source. Usually this 

phenomenon is described with the following equation: 

! = !! − 10! log
!
!!
+ !           (10) 

where S0 is the received signal measured between each couple of nodes at 

distance d0. The parameter ! represents the power decay index (also known as 

path loss exponent) and is in the range [2, 4] for indoor environments. The 

noise term ! is typically modeled as a Gaussian random variable !(0,!!) 
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representing shadow-fading effects in complex multipath environments, 

whereas the value of standard deviation !! depends on the characteristics of 

the specific environment. 

    When having such a setting with emitters and receivers, instead of 

considering Eq.(1) it is possible to approach the problem from another 

point of view. The signal dumping can be described by the equation:  

ℱ ! =   !"      (11) 

which directly relates the matrix of the distances D (symmetric, with zeros 

diagonal) with the matrix of the received signals S (signal emitted by 

the i-th device, received by the l-th) through a constant matrix T. This is 

equivalent to formulate the localization problem in an N-dimensional 

Leipschitz embedding space, choosing ℱ .  as linearizing function. In this 

setting each rows of the matrix T can be obtained solving a minimum 

squares problem, when D is fully known: 

!! = argmin
!

ℱ !!" − !. !! !

!

!!!

                                                          (12) 

or in matrix notation: 

! = ℱ !   !!    !!!!       (13) 

    Having an estimate of the matrix T and the array of the signals received 

by an unknown j-th device !!, it is possible to compute its distance from 

the others with the following: 

!! = ℱ!!(!!!)      (14) 
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    Thus to obtain an estimation of the receiver position x it is necessary to 

implement lateration. The one employed can be expressed through the 

formula: 

x = argmin
!

1
2 !!"

!

!!!

( ! − !! ! −   !!")!;                     !!" =
!!"

!!

!!"
!!!

!!!

                            (15) 

in which !!   acts as a weight, tuning the contribution of the i-th emitter 

depending on its estimated distance from the receiver, while N is the 

number of devices. 
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Chapter 3 

Localization Methods Evaluation 

 

 

    In this chapter a detailed description of the localization methods evaluation is 

provided. First, the experiments in order to estimate MWM and LAURA parameters 

are reported; then the two methods are evaluated and compared. The last part of the 

chapter is focused on the results of the experiments and presents the performances of 

the two mentioned methods. 

MWM Quantities Estimation 

    In order to use MWM method, based on the MWM formula that was explained in 

previous section (Equation 9) we need to define power decay factor, and also wall 

attenuation factor. To find these values two experiments were carried out:  

• The first experiment was done in outdoor environment in order to find ! 

value (power decay factor) in outdoor environment. To compute this value, a 

fixed anchor and a mobile device was used and they were placed at different 

distances from each other (10cm, 20cm, 50cm, 1m, 2m, 4m) in Line-Of-
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Sight (LOS) conditions. For each condition the RSSI recording lasted for 

200 seconds to have a reliable sample. After gathering the data to estimate 

the exponent we computed an exponential fitting, with the model: 

!"#$%(!) = !! − 10! log
!
!!

   (16) 

The resulting value was ! = 1.865 as visible from Figure 8.  

 
Figure 8: Fitted Curve based on outdoor experiment 

 

• The second experiment aim was finding the wall attenuation factor in our 

environment. To test the contribution of walls a couple of devices, emitting 

at -15dBm, was placed at 1m distance, in Line-Of-Sight (LOS) conditions or 

separated by a wall. In any condition the alignment of devices was the same, 

in order to maintain the same antenna coupling. Given the wall thickness of 

0.1m, a LOS and six different NLOS (Not LOS) conditions (see Table 1) 

trials were recorded [1], with 1Hz sampling frequency, each lasting 

approximately 1 minute. 



	
   29	
  
	
  

 

Trial ID Place Device A Device B 

1 A 0m 0.9m 

2 A 0.3m 0.6m 

3 A 0.45m 0.45m 

4 B 0m 0.9m 

5 B 0.3m 0.60m 

6 B 0.45m 0.45m 
Table 1: Distances between Wall and devices for NLOS tests 

    As expected results depicted in Figure 9, show a significant reduction of 

RSSI, due to wall absorption. To compute the wall absorption we considered 

the shift of the median value: the LOS condition has a median of -78dBm, 

while the NLOS has a median of -81dBm. This means the Wall attenuation 

factor in our environment is 3dBm. As visible, the results show that there is a 

high variability in the received signal strength due to environment. 

 
Figure 9: Histograms for LOS-NLOS comparison. As visible, the RSSI in NLOS conditions have a 

median shifted by -3dBm. 
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LAURA Quantities Estimation 

    The only quantities which are necessary to compute, for using LAURA method 

are the minimum distance between two devices (Self Distance) and the received 

power at minimum distance (Self Power). In order to find these values we carried 

out a simple experiment by putting two devices on top of each other and recording 

the data for three minutes [1]. The results: 

Self Power -30mdB 
Self Distance 0.04m 

   Table 2: Self Power and Self Distance values 

 

Experiments 

    In this section the experiment procedure and materials for localization evaluating 

of LAURA and MWM methods are presented. The LAURA system relies on a 

sensor network based on the IEEE 802.15.4 standard, composed of: 

1. anchor nodes, which are part of the infrastructure and are statically 

deployed in the areas to be monitored, built on MicaZ devices; 

2. client nodes, attached to patients in order to support localization, 

tracking, and patient supervision services, built on Shimmer devices. 

    We carried out two acquisitions in two different days. We will call the stored 

result of these two acquisitions as Dataset A and Dataset B. The acquisitions have 

been carried on by deploying 18 fixed anchors on second floor of department 

building. The map of the building and the fixed anchor locations are shown in 

Figure 10.  
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Figure 10: Map of the building, fixed devices are shown with blue circles. 

 
    Not all the anchors were reachable along the whole acquisition, due to normal 

signal changes and dynamic network reshaping. The system parameters adopted [1] 

are listed in the Table 3: 

Parameter Value 
ZigBee Channel 26 
Transmission Pw -3mdB 
F. Sampling 1Hz 
Beaconing period 200ms 
Self Power -30mdB 
Self Distance 0.04m 

Table 3: System Parameters 

    The mobile device was worn by a tester, walking inside the building, following a 

predefined path for each acquisition. The subject was moving in a real world 

environment, with other people in the building normally doing their activities. The 

recordings comprises the following: 
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RSSI: The RSSI values received from each fixed or mobile device, coupled with the 

timestamp related; 

D: The sub-matrix of the distances between the anchors; 

S: The sub-matrix of the RSSI values among the anchors which reach the mobile 

device; 

pos: The real position of the mobile device at each timestamp; 

Having gathered all these data, it was possible to run LAURA, and Multi Wall 

Model (MWM) methods offline separately, obtaining:  

!: The estimated distances to the reachable anchors; 

!"#$: The estimated position of the mobile target after the multilateration; 

The multilateration method used in this study is grid-based lateration.  

 

Results 

    In this section the results obtaining by running offline both Methods (LAURA 

and MWM) for both Datasets are presented separately. 

    To evaluate the methods performances we used two couples of indicators: the 

mean error (me) and mean square error (mse) over distance estimation; localization 

mean error (lme) and localization mean square error (lmse). 

    If  ! shows the number of samples and ! shows the number of fixed anchors; and  

! is the estimated distance of mobile node from each anchor node, ! is the real 

distance of mobile node from each anchor node, ! is the estimated position, ! is the 

real position; then we can define the formula for calculating these errors as: 
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!" =
1
!.! (!!(!) −   !(!)

!

!!!

!

!!!

)                                                          (17) 

!"# =
1
!.! (!!(!) −   !(!))!

!

!!!

!

!!!

                                                      (18) 

!"# =
1
! ! ! − !(!)                                                                           (19)

!

!=1

 

!"#$ =
1
! ! ! − !(!) 2

!

!=1

                                                                      (20) 

The squared version always penalizes larger errors more. 

Table 4 presents the errors for LAURA and MWM separately in Dataset A: 

 me mse lme lmse 
LAURA 0.5916 2.1580 1.6418 3.5400 
MWM 0.4785 1.4092 1.9571 4.5914 

         Table 4: Errors of LAURA and MWM methods for Dataset A 

And the errors for Dataset B are shown in Table 5: 

 me mse lme lmse 
LAURA 0.5412 1.9701 1.7050 3.9550 
MWM 0.5310 1.7113 2.1734 6.5804 

         Table 5: Errors of LAURA and MWM methods for Dataset B 

    As we can see from the two tables the mean and mean square error for MWM is 

smaller than LAURA method, but localization mean error and localization mean 

square error for LAURA is better than MWM. This means that the MWM method 

works better in estimation distance between mobile node and each anchor node, but 

after multilateration, the final estimated position in LAURA is more accurate. 

    In order to compare the performance of methods before and after lateration, 

empirical cumulative distribution function (ecdf) graphs for both datasets before 
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lateration and after lateration are presented. Figure 11 depicts ecdf graphs of error 

before lateration for Dataset A and Dataset B respectively. 

 
(a) 

 

 
(b) 

Figure 11: ecdf graphs of estimated distance error before lateration. (a) Dataset A, (b) Dataset B  
 

As we can see in the graphs, in both datasets the LAURA line shifted toward the 

negative side of the x-axis, which means that LAURA algorithm underestimate the 
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distance position. MWM line is almost symmetric around zero, meaning the distance 

estimation is less biased. A further prove with respect to the me and mse for MWM 

method in both datasets.     

Figure 12 depicts ecdf graphs of error after lateration for Dataset A and Dataset B 

respectively. 

 
(a) 

 
(b) 

Figure 12: ecdf graphs of localization error after lateration. (a) Dataset A, (b) Dataset B  
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    As we can see in the graphs, in both datasets the LAURA line is over the MWM 

line and it is closer to the value 1 of y-axis. This means LAURA has a better 

estimation position after lateration. The same conclusion can be drawn based on the 

results of lme and lmse for LAURA method, as reported in Table 4, 5. Since one 

method has a lower error before lateration and the other one has lower error after 

lateration, by mixing them we might achieve better results. 

    In next section we define mixture methods in order to exploit the different 

behavior of the methods and improve position estimation. 
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Chapter 4 

Accuracy-driven Mixture Method for 

IHL Systems 
 

 

Introduction 

    Based on the fact that MWM has a better estimation before lateration and 

LAURA method has better performance after lateration, it can be advantageous to 

mix these two algorithms to find an improvement of position estimation. 

First of all, before explaining the methods, let us to define variables that are used in 

this section: 

    As already mentioned S is a vector of size n (n is the number anchor nodes) that 

shows the strength of received signal at the mobile node, emitted by each anchor 

node: 

! = [!!,   !!,… , !!]    (21) 

    The next variable is ! which is a vector of size n that shows the estimated 

distance of mobile node from each anchor node: 

! = [!!,!!,… ,!!]     (22) 
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    The other quantity would be ! which is again a vector of size n that shows the 

distance between estimated position after lateration and each anchor node. 

!   = [!  !,!  !,… ,!  !]     (23) 

!  ! =    !"#$%&#!'()"$#$)* −  !"#!    (24) 

    The last variable defined in this part is diff which is a vector computed by 

subtraction of ! and !, actually showing the shift between the distances to each 

anchors as estimated on signals and after lateration. 

    !"## =   !−   !    (25) 

Figure 13 illustrates a graphical definition of variables. The blue x sign is estimated 

position of mobile node. 

	
  

	
  
	
  

Figure 13. Graphical definition of variables 
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Basic Methods 

    In order to improve the precision of position estimation, we implemented three 

methods, using a static mixture policy. The recorded signals were employed to 

compute the target position, comparing the results in order to identify 

improvements. 

    In the first approach we used all the distances estimation together (merging ! 

from LAURA and MWM) and minimized the overall error to perform 

multilateration. Employing also the more precise estimations by MWM, we possibly 

improve the overall results. 

Table 6 shows the error result we get from Dataset A, B after multilateration: 

 lme lmse 
Dataset A 1.6113 3.3842 
Dataset B 1.7006 3.9156 

Table 6: Localization Error of the first basic mixture method. 

 

 
(a) 
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(b) 

Figure 14: ecdf of localization error for the first basic mixture method. (a) Dataset A, (b) Dataset B 
 

    If we compare this result with the Tables 4, 5 we can notice a very slight 

improvement for both datasets. The localization error of the merged method is 

giving us a better result than LAURA, but this improvement is so limited it might 

not be significant. Figure 14 depicts the ecdf of localization estimation error for 

Dataset A and B.   

  The second approach we implemented was exploiting the average of the estimated 

distances of LAURA and MWM algorithms. After computing the position after 

multilateration, new estimated positions were obtained and the estimation error was 

calculated for this approach.   

Table 7 shows the error result we get from Dataset A, B after multilateration: 

 lme lmse 
Dataset A 2.5032 7.6402 
Dataset B 2.5460 8.0187 

Table 7: Localization Error of the second basic mixture method. 
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    By comparing the error of this approach with raw MWM and LAURA errors, we 

can see there is no improvement, while the error is worse than both MWM and 

LAURA methods for both datasets. 

Figure 15 depicts the ecdf of localization estimation error for Dataset A and B. 
 

 
(a) 

 
(b) 

Figure 15: ecdf of localization error for the second basic mixture method. (a) Dataset A, (b) Dataset 
B 
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    The last approach is to compute the average of the position estimated after 

lateration for MWM and LAURA separately. As before we calculate the error for 

new estimated position. 

Table 8 shows the error result we get from Dataset A, B after multilateration: 

 lme lmse 
Dataset A 1.6930 3.4474 
Dataset B 1.8788 4.6154 

Table 8: Localization Error of the third basic mixture method. 

    By analyzing the result we see that localization error for the average estimation is 

better than MWM only, while LAURA has still a better estimation. 

Figure 16 depicts the ecdf of localization estimation error for Dataset A and B. 

 

 
(a) 
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(b) 

Figure 16: ecdf of localization error for the third basic mixture method. (a) Dataset A, (b) Dataset B 

 

Estimation Confidence Indicators 

    In previous part the basic mixture methods of LAURA and MWM were 

presented, yet we did not obtain a considerable improvement. 

    Since we have the estimation position for both LAURA and MWM, the idea is if 

in each time instant we can select the estimation position of the method with lower 

error then we can reduce the localization error. Having no information about 

estimation error at runtime means it is not possible to know which algorithm has a 

better position estimation; we thus introduce some indictors to improve the mixture 

policy by predicting which is the best method at each time instant.  

Focusing on confidence indicators, this work identified four possible candidates: 
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1. Shift Root Mean Square (RMS): also known as the quadratic mean, is 

a statistical measure of the magnitude of a varying quantity. In our study 

RMS is defined as: 

!"# =   
1
!    diff  ! !

!

!!!

                                                                                (26) 

Bigger RMS means that a bigger overall shift is introduced while lateration. 

The fact that summation terms are squared contributes to penalize situations 

with greater shifts. In ideal conditions this shift is null since ! is equal to  ! is 

affected by errors. 

2. Shift Variance: Variance measures how far a set of numbers is spread out. 

In our study Shift Variance is defined as below: 

!"# =   
1
!    diff  ! −!"#$ diff  ! !

!

!!!

                                                  (27) 

Variance is always non-negative: small values indicates that the shifts diff 

tends to be very close to their mean (expected value) and hence to each 

other, while a high variance indicates that the shifts are very spread out 

around the mean and far from each other. In particular this indicator neglects 

shifts shared by all the anchors distances, highlighting inhomogeneities only. 

Again in ideal conditions diff is null, but in this case the indicator remains 

null as long as the error on ! is the same for all the anchors. 

3. Sum of Variances (SumVar): It represents how much the last 5 estimated 

positions are spread out. At each time instant we make a window of the 
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estimated positions for the last 5 time instants. The formula for SumVar is as 

below: 

estPos = [x, y] 

w(t) = [x(t-4), x(t-3), x(t-2), x(t-1), x(t) ; y(t-4), y(t-3), y(t-2), y(t-1), y(t)] 

!"#$%&(!)   = !"#(!!(!))− !"#(!!(!))                                         
!

!!!

(28) 

As it is shown in the formula SumVar at time t is computed by the sum of 

variance of x values and y values in window w(t). If SumVar is a small value 

it means that the mobile node estimated position has not changed 

considerably in the last 5 seconds; In ideal conditions this has a not-null 

value only when the target is moving. Nonetheless even in that situation the 

confidence is lower, due to delays and computation times. 

4. Minimum Estimated Distance (MED): This indicator is defined as below: 

!"# = min!!!…! d  !                                                                           (29) 

MED shows the minimum distance estimated between the mobile node and 

the available anchor nodes. Indeed if the target is closer to an anchor it is less 

probable that walls or obstacles affect the signal, resulting in a more 

confident estimation. 

 

    After defining 4 indicators, the next section identifies the correlation between 

defined indicators and positioning estimation error by carrying on experiments 

and computing their correlations on these experiments. 
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Experimental Data 

    Since we carried out two acquisitions and we simulated two methods 

(LAURA and MWM) on each dataset, at the end we had 4 different results 

separately. We analyze these results and compute the correlation between our 

defined indicators in previous section and positioning estimation error (error). 

We calculated all the indicators for datasets A and B with both LAURA and 

MWM methods. The following graphs in figures 17, 18, 19, 20 show indicators 

behavior. 

The Figure 17 is the result of LAURA method for Dataset A: 
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Figure 17: The error value and each indicator value for LAURA method in Dataset A are shown 

separately. The red line in all the graphs shows error value. 
 

    After providing all the graphs, in order to understand the relation between 

error and indicators, the correlation between error and each indicator were 

calculated. The result is shown in Table 9: 

 RMS Variance SumVar MED 

Error 0.0237 0.0396 0.3399 0.4232 

Table 9: Correlation value between error and indicators in dataset A in LAURA method 
 

For LAURA method in Dataset A the correlation for RMS and Variance is very 

low and it shows there is no significant relation for these indicators and error. 

For two other indicators (SumVar and MED) and especially for SumVar the 

correlation is considerable. 

Figure 18 illustrates the result of MWM method for Dataset A: 
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Figure 18: The error value and each indicator value for MWM method in Dataset A are 

shown separately. The red line in all the graphs shows error value. 
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    After providing all the graphs, in order to understand the relation between error 

and indicators, the correlation between error and each indicator were calculated. The 

result is shown in Table 10: 

 RMS Variance SumVar MED 

Error -0.1336 -0.241 0.2850 0.5351 

Table 10: Correlation value between error and indicators in dataset A in MWM method 
 

    By Analyzing the data in Table 10 for MWM method in Dataset A it is visible 

that the correlation for RMS and Variance are negative numbers, it means that the 

error is introduced as the estimated position is limited avoiding wall-crossing. 

Correlation value for SumVar is 0.2850, it is not good enough but works better that 

the other two indicators, and the best indicator is MED which has a good correlation 

value of 0.5351. 

 

The third set of graphs that are shown in Figure 19 are the result of LAURA method 

for Dataset B: 
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Figure 19: The error value and each indicator value for LAURA method in Dataset B are 

shown separately. The red line in all the graphs shows error value. 
 

    The correlation between error and each indicator showed the results in Table 11: 

 RMS Variance SumVar MED 

Error -0.1624 -0.2376 0.2354 0.4220 

Table 11: Correlation value between error and indicators in dataset B in LAURA method 
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    By analyzing the table it is visible that correlation value for RMS and 

Variance are negative again as it was in the previous case. We can notice that 

SumVar is second best indicator with value of 0.2354, and MED indicator has 

best correlation value among 4 indicators by value of 0.4220. 

The last set of graphs that are shown in Figure 20 are the result of MWM 

method for Dataset B: 
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Figure 20: The error value and each indicator value for MWM method in Dataset B are 

shown separately. The red line in all the graphs shows error value. 
 

    The correlation between error and each indicator showed the results in Table 12: 

 RMS Variance SumVar MED 

Error -0.0707 -0.1052 0.4948 0.6660 

Table 12: Correlation value between error and indicators in dataset B in MWM method 
 
 

    By analyzing the table it is visible that correlation value for RMS and 

Variance are negative again as it was in the previous cases. We can notice an 

improvement of correlation value for SumVar and MED in MWM method of 

Dataset B. SumVar is second best indicator with value of 0.4948 and is almost 

0.5 which is a good correlation value, and MED indicator has the best 

correlation value among 4 indicators by value of 0.6660 and has a significant 

value. 

    By calculating the four indicators in four different samples and algorithms we 

could conclude that RMS and Variance didn’t have expected impact to 

estimation error and we cannot use these two indicators. Nonetheless SumVar 

and MED indicators had a significant result and correlation with estimation 

error, so we decided to choose these two indicators to keep on our analyses. 
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Mixture Methods based on Estimation Confidence Indicators 

    As it was explained before, based on correlation value, SumVar and MED had 

significant correlation with estimation error and we choose these two indicators to 

use for mixture methods. The chosen policy relies on the indicators as follow: 

!: !"  !"# !,!"#1 < !"# !,!"#2 → !""#" !,!"#1 < !""#"(!,!"#2)  

    This means that for better estimations of algorithm 1 the indicator for algorithm 1 

has to be lower than the algorithm 2. 

    To check if this hypothesis is correct we need to compute Accuracy and Precision 

of this relation for each indicator, and also build ROC space for each indicator. 

 The Accuracy of a measurement system is the degree of closeness of measurements 

of a quantity to that quantity's actual (true) value. The precision of a measurement 

system, related to reproducibility and repeatability, is the degree to which repeated 

measurements under unchanged conditions show the same results. 

    To obtain the Accuracy and Precision values, first we need to define following 

four variables in our study: 

True Positive (TP):  

!"# !, !"#$" < !"# !,!"!   &&  !""#" !, !"#$" < !""#"(!,!"!) 

True Negative (TN):  

!"# !,!"! < !"# !, !"#$"   &&  !""#" !,!"! < !""#"(!, !"#$") 

False Positive (FP):  

!"# !, !"#$" < !"# !,!"!   &&  !""#" !, !"#$" > !""#"(!,!"!) 

False Negative (FN): 

 !"# !,!"! < !"# !, !"#$"   &&  !""#" !,!"! > !""#"(!, !"#$") 

Having these definitions, Accuracy and Precision are computed as: 
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!""#$%"& =   
!" + !"

!" + !" + !" + !"                                                                     (30) 

!"#$%&%'( =   
!"

!" + !"                                                                                                                   (31) 

    We need to define two other variables, True Positive Rate (TPR) and False 

Positive Rate (FPR) in order to define ROC space: 

!"# =
!"

!" + !"                                                                                                             (32) 

!"# =
!"

!" + !"                                                                                                             (33) 

    A ROC space is defined by FPR and TPR as x and y axes respectively, which 

depicts relative trade-offs between true positive (benefits) and false positives (costs). 

If the TPR over FPR is greater than 1 it means our prediction is significant. 

Having all these information, we computed Accuracy, Precision, TPR (Sensitivity) 

and FPR (1 – Specificity) for each indicator in each Dataset. Table 13 shows the 

results: 

 Accuracy Precision TPR FPR 

SumVar in A 0.6519 0.7727 0.6602 0.3636 

SumVar in B 0.6319 0.7742 0.6486 0.4038 

MED in A 0.7267 0.7921 0.7767 0.3621 

MED in B 0.6433 0.7083 0.7658 0.5833 
Table13: ROC space analysis results of hypothesis 

    By analyzing the table, we can notice how Accuracy and Precision are acceptable, 

while the false positive rate is quite high. Based on the defined hypothesis, different 

approaches implemented: 

1. The first approach is using SumVar indicator. It means we check in each 

time instant if the SumVar for LAURA is lower than MWM, in such case we 



	
   55	
  
	
  

select the estimated position through LAURA, otherwise we select the 

MWM estimated position. 

2. The second approach uses MED indicator. Similarly to the previous mixture 

method if the MED for LAURA is lower than MWM, we select LAURA 

estimated position, otherwise we select MWM estimated position. 

    Two other approaches are introduced in order to try obtaining more improvement 

using both SumVar and MED at the same time. The novel policy relies on the 

indicators as follow: 

!: !"  !"# !, !"#1 < !"# !, !"#2   &&  !"#2 !, !"#1 < !"#2 !, !"#2

→ !""#" !, !"#1 < !""#" !, !"#2  

    This means that for better estimations of algorithm 1 both indicators for algorithm 

1 has to be lower than the algorithm 2. 

    To check if this hypothesis is correct we again need to compute Accuracy and 

Precision. We need to redefine four variables as below: 

True Positive (TP):  

!"# !, !"#$" < !"# !,!"!   &&  !"#2 !, !"#$" < !"#2 !,!"!    

&&  !""#" !, !"#$" < !""#"(!,!"!) 

True Negative (TN):  

!"# !,!"! < !"# !, !"#$"   &&  !"#2 !,!"! < !"#2 !, !"#$"    

&&  !""#" !,!"! < !""#"(!, !"#$") 

False Positive (FP):  

!"# !, !"#$! < !"# !,!"!   &&  !"#2 !, !"#$" < !"#2 !,!"!    

&&  !""#" !, !"#$" > !""#"(!,!"!) 
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False Negative (FN): 

!"# !,!"! < !"# !, !"#$"   &&  !"#2 !,!"! < !"#2 !, !"#$"    

&&  !""#" !,!"! > !""#"(!, !"#$") 

Table 14 shows Accuracy, Precision, TPR (Sensitivity) and FPR (1 – Specificity) 

with new policy: 

 Accuracy Precision TPR FPR 

Dataset A 0.8554 0.8596 0.9245 0.2667 

Dataset B 0.7100 0.7867 0.8194 0.5714 
Table 14: ROC space analysis results of novel hypothesis 

    By analyzing the table, we can notice the Accuracy and Precision improved for 

both datasets. Based on the results of the Table 16 two new approach are introduced: 

3. The third approach uses SumVar and MED indicators at the same time. In 

this method if the MED and SumVar for LAURA is lower than MWM, we 

select LAURA estimated position; if the MED and SumVar for MWM is 

lower than LAURA, we select MWM estimated position, otherwise we use 

the average estimated position of LAURA and MWM. 

4. The last approach also uses SumVar and MED indicators at the same time. 

Similarly to the previous one, if the MED and SumVar for LAURA is lower 

than MWM, we select LAURA estimated position; if the MED and SumVar 

for MWM is lower than LAURA, we select MWM estimated position, 

otherwise we use the estimated position of the approach with extended !  set 

(both MWM and LAURA estimations). 

    In next section the result for each approach is presented with ecdf graph. 
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Results  

    In this section the results of implementing defined methods in previous section 

are presented. As already mentioned the ideal case is to choose better method in 

exactly each time instant, to compare the results of our approaches, the ideal case is 

also shown in the ecdf graphs. 

1. Approach 1: Table 15 shows the error result we get from Dataset A, B after 

applying mixture method based on SumVar indicator: 

 lme lmse 
Dataset A 1.6050 3.1508 
Dataset B 1.7399 3.9905 
Table 15: Localization Error of the mixture method  

based on SumVar indicator. 
 

    By comparing the error of this approach with raw MWM and LAURA 

errors, we can notice a slight improvement for Dataset A, while the error is 

worse than LAURA method for Dataset B. To analyze the result better the 

ecdf graph of localization estimation error for both Dataset A and B are 

presented in Figure 21: 

 
(a) 
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(b) 

Figure 21: ecdf of localization error for the mixture method based on SumVar. (a) Dataset 
A, (b) Dataset B 

 

    As we can see in the graphs the green line for the mixture method is most 

of the times under the LAURA line and it shows that this approach does not 

give us a proper improvement. 

 

2. Approach 2: Table 16 shows the error result we get from Dataset A, B after 

applying mixture method based on MED indicator: 

 

 lme lmse 
Dataset A 1.6249 3.4676 
Dataset B 1.7007 3.8867 
Table 16: Localization Error of the mixture method  

based on MED indicator. 
 

    By comparing the error of this approach with raw MWM and LAURA 

errors, we can notice a slight improvement for both datasets. To analyze the 

result better the ecdf graph of localization estimation error for both Dataset 

A and B are presented in Figure 22: 
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(a) 

 
(b) 

Figure 22: ecdf of localization error for the mixture method based on MED. (a) Dataset A, 
(b) Dataset B 

 

    As it is visible from ecdf graphs the mixture method in some parts are 

over the LAURA and gives an improvement in position estimation, but this 

improvement is so limited, it might not be significant. 
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3. Approach 3: Table 17 shows the error result we get from Dataset A, B after 

applying mixture method based on both SumVar and MED indicators at the 

same time: 

 lme lmse 
Dataset A 1.5565 3.0106 
Dataset B 1.6959 3.8086 
Table 17: Localization Error of the mixture method  

based on both indicators. 
 

    By comparing the error of this approach with raw MWM and LAURA 

errors, we can notice a considerable improvement for Dataset A, while 

Dataset B has a slight improvement. To analyze the result better the ecdf 

graph of localization estimation error for both Dataset A and B are presented 

in Figure 23: 

 
(a) 
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(b) 

Figure 23: ecdf of localization error for the mixture method based on both indicators. (a) 
Dataset A, (b) Dataset B 

 

    By analyzing ecdf graphs we can notice this mixture method is working 

good for Dataset A, since most of the parts the green line is over LAURA 

and it means we have a considerable improvement for Dataset A, while for 

Dataset B it gives again a limited improvement. 

 

4. Approach 4: Table 18 shows the error result we get from Dataset A, B after 

applying the other mixture method based on both SumVar and MED 

indicators at the same time: 

 lme lmse 
Dataset A 1.5614 3.1488 
Dataset B 1.6811 3.8315 

Table 18: Localization Error of the second mixture method  
based on both indicators. 

 
    By comparing the error of this approach with raw MWM and LAURA 

errors, we can notice a considerable improvement for Dataset A, while 
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Dataset B has a slight improvement. To analyze the result better the ecdf 

graph of localization estimation error for both Dataset A and B are presented 

in Figure 24: 

 
(a) 

 
(b) 

Figure 24: ecdf of localization error for the second mixture method based on both indicators. 
(a) Dataset A, (b) Dataset B 
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    By analyzing ecdf graphs we can notice although the localization mean 

error had the improvement similar to previous method, but it has better result 

than LAURA since for both datasets especially the green line is over 

LAURA line most of the times and it is closer to ideal case.   
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Chapter 5 

Conclusions and Future Works 

 

 

Conclusions    

    In this Thesis we introduced accuracy-driven hybrid localization methods, 

pursuing a possible improvement in position estimation with respect of two different 

propagation models. The results of the comparison of two RF signal propagation 

models, obtained through experimental data, showed the two propagation models 

had complementary characteristics. Their combined use might thus have provided 

improvement. Nonetheless, after implementing simple mixture methods, based on a-

priori assumption, no significant improvement was achieved. For this reason, in the 

further phases, some indicators of the estimation accuracy were researched. Their 

performances were compared, and, by exploiting the two that gave best results, we 

defined a policy for advanced mixture methods. The final results proved that the 

performances of the hybrid approach are always better when compared to those 

obtained with the two different propagation models separately. Even if the 

improvement was limited, it is important to notice that the ideal case performances 

are not much better. Furthermore, the proposed models are not limited to the two 
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propagation models considered in this study. It is possible to exploit these methods 

for other propagation models and possibly achieve significant improvements.  

 

Future Works 

   This study is limited to a single 2.4 GHz technologies due to limitations in the 

available experimental setup. In the future, we can apply and exploit the methods for 

other technologies or methodologies. Furthermore a possible extension of the study 

may consider confidence indicators, in order to improve their correlation with the 

error. Environment has a huge impact on received signal strength. This can be 

noticed in the experiments that we carried out measuring signal strength between 

two devices in LOS condition and with the same distance but in different position in 

one room, and there was a considerable change in RSS (as reported in previous 

sections). An exploration of the other RF bandwidths might suggest possible 

changes in the technology, although WiFi is often used due to its availability 

(wireless internet) rather than precision. 
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