
POLITECNICO DI MILANO

Scuola di Ingegneria dell'Informazione

POLO TERRITORIALE DI COMO

Master of Science in Computer Engineering

A Context-Independent Algorithm
for Annotation Aggregation
in a Crowdsourcing Environment

Supervisor: Prof. Marco Tagliasacchi

Assistant Supervisor: Dr. Luca Galli

Master Graduation Thesis by:

Carlo Bernaschina

id. 798478

Academic Year 2013-2014

POLITECNICO DI MILANO
Scuola di Ingegneria dell'Informazione

POLO TERRITORIALE DI COMO
Corso di Laura Specialistica in Ingegneria Informatica

A Context-Independent Algorithm
for Annotation Aggregation
in a Crowdsourcing Environment

Relatore: Prof. Marco Tagliasacchi
Correlatore: Dr. Luca Galli

Tesi di laurea di:

Carlo Bernaschina
matr. 798478

Anno Accademico 2013-2014

Abstract

In this work we present an abstract, reusable and context-independent al-
gorithm for annotation aggregation. This algorithm can be instantiated by
de�ning context-dependent operations on the speci�c annotation type.
We analyze the state of the art in annotation aggregation and identify the
main problems and propose solutions in order to deal with them.
We analyze common annotation types an propose instantiations of the algo-
rithm in this cases.
Tests performed on both synthetic and real datasets revealed a reduction
up to 70%, with respect to standard approaches, in the number of required
annotations given a prede�ned accuracy level.

5

Sommario

In questo lavoro proponiamo un algoritmo astratto, riusabile e indipendente
dal contesto per e�ettuare l'aggregazione di annotazioni, il quale può essere
istanziato de�nendo delle operazioni dipendenti dal contesto e in particolare
dal tipo di annotazione in esame.
Viene e�ettuata un'analisi dello stato dell'arte per quanto riguarda l'aggregazione
di annotazioni e un identi�cazione dei principali problemi legati a questa,
proponendo delle soluzione in grado di gestirli.
Verranno analizzate le tipologie di annotazione più comuni e verranno pro-
poste istanze dell'algoritmo relative a questi particolari casi.
I test svolti sia su dataset sintetici che reali hanno rilevato una riduzione
�no al 70%, rispetto ad approcci standard, per quanto riguarda il numero di
annotazioni necessarie per raggiungere un livello di accuratezza pre�ssato.

7

Acknowledgements

First of all, I would like to thank Prof. Marco Tagliasacchi, Prof. Piero
Fraternali and Dr. Luca Galli for the opportunity to work with them on this
interesting topic.
I would like to thank also:

• Roman Fedorov and Elena Donegani for helping me with the prepara-
tion of this document.

• All my friends and colleagues (who are too many to be listed) who
have helped and contributed to this work.

• My parents (Luisa and Mario), sister (Cristina) and uncles (Angela e
Stefano) for the great support and motivation they have given me, and
for their enormous patience.

9

Contents

1 Introduction 17

1.1 Human Computation . 17

1.2 Crowdsourcing . 21

1.2.1 Active vs. Passive Crowdsourcing 21

1.2.2 Adversarial Behavior 22

1.3 Problem Statement . 22

1.4 Document Structure . 23

1.5 Contributions of the thesis . 23

2 Related Work and State of the Art 25

2.1 Majority Voting . 26

2.2 A priori quality check . 28

2.3 Expectation Maximization . 30

2.4 Iterative Learning . 31

3 Proposed Approach 33

3.1 Preliminaries . 33

3.2 General Algorithm . 34

3.2.1 Aggregation Function 36

3.2.2 Coherence Function 37

3.3 Example Cases . 37

3.3.1 Binary . 38

3.3.2 Binary Vector . 39

3.3.3 Real Vector . 40

3.3.4 Ranking . 43

3.4 Convergence . 44

4 Implementation Details 45

4.1 Computational Complexity 45

4.1.1 Aggregation Step . 46

4.1.2 Coherence Step . 47

4.1.3 Iteration Complexity 48

4.1.4 Algorithm Complexity 48

11

4.2 Scalability . 49
4.2.1 Aggregation . 49
4.2.2 Coherence Estimation 50
4.2.3 Final Considerations 50

4.3 The Library . 50
4.3.1 Asynchronicity . 50
4.3.2 Data Containers . 50
4.3.3 Step Abstraction . 51
4.3.4 Algorithm Abstraction 51

4.4 Akka . 52
4.4.1 Actors . 52

5 Experimental Study 53

5.1 Image Segmentation . 53
5.1.1 Synthetic Case . 53
5.1.2 Sketchness . 61

5.2 Bounding Box - Real Vector 62
5.2.1 Synthetic Case . 62

5.3 Ranking . 68
5.3.1 Synthetic Case . 68

5.4 Final Considerations . 73

6 Conclusions and Future Work 75

6.1 Future Studies . 75
6.2 Future Enhancements . 76

List of Figures

1.1 Taxonomy of human computation 20

3.1 Aggregation Step . 35
3.2 Coherence Estimation Step 35
3.3 Regular Median vs. Weighted Median 42

5.1 Image Segmentation - TP@1% vs. number of games per image n 55
5.2 Image Segmentation - TP@1% vs. number of players M . . . 56
5.3 Image Segmentation - TP@1% vs. number of images N . . . 57
5.4 Image Segmentation - TP@1% vs. probability of cheating q . 58
5.5 Image Segmentation - TP@1% vs. ground-truth q 59
5.6 Image Segmentation - TP Rate vs. FP Rate in user goodness

identi�cation . 60
5.7 Image Segmentation - ROC of pixel identi�cation in the real

dataset . 61
5.8 Bounding Box - Average Error vs. Number of annotations per

image n . 63
5.9 Bounding Box - Average Error vs. Number of images N . . . 64
5.10 Bounding Box - Average Error vs. Number of annotators M . 65
5.11 Bounding Box - Average Error vs. Probability of cheating q . 66
5.12 Bounding Box - Average Error vs. Noise σ 67
5.13 Ranking - Coherence vs. Number of annotations per ranking n 69
5.14 Ranking - Coherence vs. Number of rankings N 70
5.15 Ranking - Coherence vs. Number of annotators M 71
5.16 Ranking - Coherence vs. Probability of cheating q 72
5.17 Ranking - Coherence vs. Noise σ 73

13

List of Tables

5.1 Image Segmentation - Parameters of synthetic dataset 54
5.2 Bounding Box - Parameters of synthetic dataset 62
5.3 Ranking - Parameters of synthetic dataset 68

15

Chapter 1

Introduction

This work is mainly related to two topics, human computation and data
mining. The border between the two disciplines is becoming more and more
blurred. This is due to the fact that more and more data mining works
on data sets coming from the human computation �eld and more and more
human computation requires data mining techniques in order to �lter and
extract knowledge from the growing amount of data collected directly or
indirectly from users.

The aim of this Chapter is to introduce and to de�ne these concepts, and to
state the problem that the presented work tries to solve.

1.1 Human Computation

The discipline of Human Computation, as stated by Denning at al. in Jan-
uary 1989, is:

� The discipline of computing is the systematic study of algo-
rithmic processes that describe and transform information: their
theory, analysis, design, e�ciency, implementation, and appli-
cation. The fundamental question underlying all computing is
`What can be (e�ciently) automated?' �

Denning at al. [10]

In my opinion the emphasis should be on the word e�ciently.

Here is were human computation comes in, there are many problems for
which there is not an e�cient automated solution, or worse there is not an
e�ective automated solution. Nowadays in many of these situations human
beings are really e�ective and e�cient in solving the problem.

Classical examples are visual features-related problems.

17

In the past years a great focus was on improving algorithms in order to
reduce the gap between computers and human beings.
Human computation though rely on:

� a novel approach: constructively channel human brainpower �

Luis von Ahn [40]

Many di�erent approaches can be addressed by this de�nition. In the fol-
lowing Chapters we will follow the taxonomy proposed in [16] that is a com-
bination of the ones proposed by Quinn et al. [32] and Fraternali et al.
[19].

• Crowdsourcing [Active Crowdsourcing]: this approach man-
ages the distributed assignment of tasks to an open, unde-
�ned and generally large group of executors. The task to
be performed by the executors is split into a large number
of microtasks (by the work provider or the crowdsourcing
system itself) and each microtask is assigned by the sys-
tem to a work performer, who executes it (usually for a
reward of a small amount of money). The crowdsourcing
application (de�ned usually by two interfaces: for the work
providers and the work performers) manages the work life
cycle: performer assignment, time and price negotiation, re-
sult submission and veri�cation, and payment. In addition
to the web interface, some platforms o�er Application Pro-
gramming Interfaces (APIs),whereby third parties can in-
tegrate the distributed work management functionality into
their custom applications. Examples of crowdsourcing solu-
tions are Amazon Mechanical Turk and Microtask.com [19].

• Games with a Purpose (GWAPs): these are a sort of crow-
sourcing application but with a fundamental di�erence in
user incentive technique: the process of resolving a task
is implemented as a game with an enjoyable user experi-
ence. Instead of monetary earning, the user motivation
in this approach is the grati�cation of the playing process.
GWAPs, and more generally useful applications where the
user solves perceptive or cognitive problems without know-
ing, address task such as adding descriptive tags and recog-
nising objects in images and checking the output of Optical
Character Recognition (OCR) for correctness. [19].

• Social Computing: a broad scope concept that includes ap-
plications and services that facilitate collective action and

18

social interaction online with rich exchange of multimedia
information and evolution of aggregate knowledge [31]. In-
stead of crowdsourcing, the purpose is usually not to perform
a task. The key distinction between human computation and
social computing is that social computing facilitates rela-
tively natural human behavior that happens to be mediated
by technology, whereas participation in a human computa-
tion is directed primarily by the human computation system
[32].

• Collective Intelligence: if seen as a process, the term can
be de�ned as groups of individuals doing things collectively
that seem intelligent [30]. If it is seen instead as the process
result, means the knowledge of any kind that is generated
(even non consciously and not in explicit form) by the col-
lective intelligence process. Quinn et al. [32] classi�es it as
the superset of social computing and crowdsourcing, because
both are de�ned in terms of social behavior. The key distinc-
tions between collective intelligence and human computation
are the same as with crowdsourcing, but with the additional
distinction that collective intelligence applies only when the
process depends on a group of participants. It is conceivable
that there could be a human computation system with com-
putations performed by a single worker in isolation. This is
why part of human computation protrudes outside collective
intelligence [32].

• Data Mining: this can be de�ned broadly as the application
of speci�c algorithms for extracting patterns from data [15].
Speaking about human-created data the approach can be seen
as extracting the knowledge from a certain result of a col-
lective intelligence process. Creating this knowledge usually
is not the goal of the persons that generate it, in fact often
they are completely unaware of it (just think that almost ev-
erybody contributes to the knowledge of what are the most
popular web sites just by visiting them: they open a web
site because they need it, not to add a vote to its popular-
ity). Though it is a very important concept in the �eld of
collective intelligence, machine intelligence applied to social
science and passive crowdsourcing [...] is a fully automated
process by de�nition, so it is excluded from the area of hu-
man computation.

• Social Mobilization: this approach deals with social compu-
tation problems where the timing and the e�ciency is cru-
cial. Examples of this area are safety critical sectors like

19

civil protection and disease control.

• Human Sensors: exploiting the fact that the mobile devices
tend to incorporate more and more sensors, this approach
deals with a real-time collection of data (of various natures)
treating persons with mobile devices as sensors for the data.
Examples of these applications are earthquake and other nat-
ural disaster monitoring, tra�c condition control and pollu-
tion monitoring.

Roman Fedorov [16]

Figure 1.1: Taxonomy of human computation

20

1.2 Crowdsourcing

Crowdsourcing is one of the methods used to exploit the ability of human
beings to solve problems.
In this section we will analyze the main di�erences between active and
passive crowdsourcing, their similarities and one of the main problems in
both of them: the adversarial behavior.

1.2.1 Active vs. Passive Crowdsourcing

The main di�erences between active and passive crowdsourcing systems are
related to the engagement of the user.

• Awareness
In active systems the user knows what is happening, knows that the
tasks that he or she is carrying on are part of a greater problem to
solve, even though may or may not be aware of which is the greater
problem. An example of this is presented in [12].

In passive systems this information may or may not be known. Passive
systems can be hidden inside games (like in the GWAP methodology)
or inside other applications or be completely passive and do not require
a direct interaction with the user at all. An example of this is presented
in [17] [18].

• Rewarding
In active systems the user is generally rewarded. In payed systems
the reward is a certain amount of money related to the completion of
a task (like in Amazon Mechanical Turk [1]), in voluntary systems the
user o�ers its time and knowledge for the bene�t of a community (like
in Launchpad Translations [2]).

In passive systems the reward depends on the speci�c case. In GWAP
systems the reward is related to gaining points and notoriety in the
game community. In systems embedded inside other applications the
reward is the possibility to use the application. In other situations
there is no reward at all, like in passive systems where the user shares
information without knowing that those information will be used by
the systems.

• Controllability
Active systems are generally controllable, the task assignment can be
scheduled in such a way to obtain better results or exploit users with
speci�c abilities.

Passive systems are not generally controllable. While in GWAPs it is
possible to manage task assignment, even though you cannot force the

21

user to complete the task, in all the other situations it is not the system
to feed the users with tasks but are the users to feed the systems with
data. In this situations the �ow of information is not controllable and
so delays or unavailability of data has to be taken into account.

1.2.2 Adversarial Behavior

As described by Wang et al. [42] one of the great problems related to human
computation is the adversarial behavior of some users. In this situations
users do not execute the required tasks or feed the system with malicious
data. This can be due to many reasons.

• Maximize Rewards

Users of active systems are payed at the completion of the task, while
passive systems ones gain points and reputation. In this situation
malicious users try to complete the largest number of tasks in the least
amount of time, simply by randomly answering or trying to fool the
system and complete the task in a fast way.

• Real Life Advantages
In even worse situations users try to poison data in order to gain advan-
tages in the real life. An example are false reviews in recommendation
systems.

• Just For Fun
In Sketchness [20] (a GWAP designed to assign labels to localized
regions in an image), users write obscene phrases, instead of ful�lling
the task.

1.3 Problem Statement

The problem addressed in this thesis is the estimation of the accuracy of
annotations provided by a set of workers in a crowdsourcing application.
Given a) a set of objects with a speci�c feature that we require to estimate,
b) a set of users called annotators that interact with the system, c) a set of
annotations each one of them coming from a known annotator and related
to a speci�c object, our objective is to aggregate the annotations to estimate
the real feature of the objects and reduce the impact given by adversarial
annotators.
This situation is common to all the systems dealing with users that can not
be trusted a priori or users with di�erent accuracy levels.
Some examples are:

• Human assisted object classi�cation (see Section 3.3.1)

22

• Identi�cation of the regions of interest inside images allowing further
analysis in a speci�c area (see Section 3.3.2)

• Estimation of the bounding box of objects or persons inside and image
allowing further investigations e.g. logo detection or person tracking
(see Section 3.3.3)

• Ranking of hotel or restaurant in rating systems (see Section 3.3.4)

The proposed algorithm can be also used in the identi�cation of malicious
users, by analyzing the consensus between them.

1.4 Document Structure

• In Chapter 2 we will analyze the state of the art in solving the stated
problem.

• In Chapter 3 we will �rst present and analyze a general algorithm for
aggregation of annotations regardless to their kind and than we will
present instantiations of the algorithm in common situations (annota-
tion types).

• In Chapter 4 we will discuss the algorithm from a practical point of view
analyzing its complexity and presenting a reference implementation.

• In Chapter 5 we will discuss experimental results and compare the
performance of the algorithm with respect to other approaches.

• Finally in the Chapter 6 we will present many of the interesting re-
search topics still open.

1.5 Contributions of the thesis

The main contribution of this work is a solution for the problem of estimating
object features trough the aggregation of crowdsourcing annotations, even
with the presence of a high number of malicious users.
Such solution is based on the generalization of the algorithm proposed by
Karger et al. [27]. We will analyze in detail the algorithm from both the
theoretical and the practical point of view, explaining how it can be used to
solve aggregation problems from di�erent domains.
We will show how it allows to reduce up to 70% the number of annotations
required to reach a given accuracy level and how it gives acceptable results
even with up to 75% of malicious users.

23

24

Chapter 2

Related Work and State of the

Art

In this Chapter we will analyze various techniques used to solve the adver-
sarial behavior by redundant annotations. This techniques aggregate the
annotations in di�erent ways in order to obtain better results.

Many of this techniques are tailored to binary annotations, labeling or clas-
si�cation. The algorithm we will propose in Section 3.2 is not tailored to a
speci�c kind of annotation and though some of the techniques we are going
to present in this Chapter can be seen as a particular instantiation of it. In
literature we can identify two main classes of methodologies:

1. Non-iterative

uses heuristics to compute a single aggregated value of each question
separately [33]. Example of this techniques are majority voting (see
Section 2.1) and a priori quality checking (see Section 2.2).

2. Iterative

performs a series of iterations, each consisting of two updating steps:
(i) updates the aggregated value of each question based on the expertise
of workers who answer that question, and (ii) adjusts the expertise
of each worker based on the answers given by him [33]. Example of
this techniques are expectation maximization (see Section 2.3) and
iterative learning (see Section 2.4).

25

2.1 Majority Voting

One of the most simple techniques used to solve the problem is majority
voting. It is also known as majority decision.

� Majority Decision (MD) is a straightforward method that ag-
gregates each object independently. Given an object oi, among k
received answers for oi, we count the number of answers for each
possible label lz. The probability P (Xi = lz) of a label lz is the per-
centage of its count over k; i.e. P (Xi = lz) = 1

k

∑k
kj=1 1ai,j=lz .

However, MD does not take into account the fact that workers
might have di�erent levels of expertise and it is especially prob-
lematic if most of them are spammers. �

Hung at al. [33]

This method is based on mainly two assumptions:

1. The number of cheaters is less than the number of good annotators.

2. A great number of annotations per object is available.

The two assumptions are required to have such a high probability that the
consensus of the users is the right one.

Pros

• If the assumptions are respected it generally gives good results.

• Does not require complex aggregation algorithms.

• Does not require any knowledge about the user related to the annota-
tion.

• Does not require any knowledge about the dataset.

Cons

• It requires a strong assumption with respect to the number of good
users.

As describe by Sheng at al. [36] this technique is mainly used in binary or
classi�cation tasks.

The binary task consists in choosing between two possible answers YES or
NO, once gathered the annotations from the users it is just required to choose
the answer that has the greatest consensus among them.

26

The classi�cation task consists in choosing one class from a set of possible
classes, once gathered the annotations from the users it is just required to
choose the class that has the greatest consensus among them.

As explained in [36], majority voting does perform well when the probability
p of obtaining the right answer from a single users is greater that 50%. In
this situation the probability of obtaining the right answer using majority
voting increases with the number of users, the higher is p the faster it tends
to 100%. On the contrary when p is less than 50% majority voting fails. In
this situation the probability of obtaining the right answer decreases when
the number of users increases, the lower is p the faster it tends to 0.

This was under assumption that all the users has the same quality (proba-
bility to give a good answer), in [36] it is even analyzed the situation of users
with di�erent quality, reaching more or less the same results.

In [36] it is still presented an extension of the method when used in classi-
�cation called �soft� labeling that obtains better results due to the multiset
nature of the annotation.

Okubo at al. [45] present a small variation of majority voting that exploits
information coming from previous answers in order to assign tasks to more
thrustfull users. After the assignment the annotations are aggregated in the
exact same way as normal majority voting. Even though this version of the
algorithm obtains better results it requires more knowledge related to users
and the dataset, knowledge that is not always available.

Tsai at al. [43] present a variation of majority voting that requires the
users to communicate in order to reach a consensus before assigning the
�nal annotation. It obtains good result when the users engage a pro�table
debate.

Honeypot

The technique proposed by Lee at al. [28] and extended to the aggregation
case by Hung at al [33] is in between majority voting and a priory quality
checking.

It uses a technique coming from the computer security �eld that is commonly
used to identify malicious agents and avoid attacks.

� In principle, Honeypot (HP) operates as MD, except that un-
trustworthy workers are �ltered in a preprocessing step. In this
step, HP merges a set of trapping questions Ω (whose true an-
swer is already known) into original questions randomly. Work-
ers who fail to answer a speci�ed number of trapping questions
are neglected as spammers and removed. Then, the probability
of a possible label assigned for each object oi is computed by MD
among remaining workers. However, this approach has some dis-
advantages: Ω is not always available or is often constructed sub-

27

jectively; i.e truthful workers might be misidenti�ed as spammers
if trapping questions are too di�cult. �

Hung at al. [33]

2.2 A priori quality check

Another technique used to solve the problem is to do an a priori quality
check. Also known as majority voting with gold standard or expert label
injected crowd estimation.

� Expert Label Injected Crowd Estimation (ELICE) is an exten-
sion of HP. Similarly, ELICE also uses trapping questions Ω, but
to estimate the expertise level of each worker by measuring the
ratio of his answers which are identical to true answers of Ω. �

Quoc Viet Hung at al. [33]

Given the expertise level of each worker it is possible to weight di�erently
the di�erent workers. It allows to �lter out random annotators (not reliable)
and even exploit spammers (always give the wrong answer) by negatively
weighting them.

This approach generally gives better results than majority voting as demon-
strated by Vuurens at al. [37].

An example can be found in [38] where NLP tasks has been assigned to a
crowd of non-experts. In this paper it has been used a gold standard coming
from experts in order to evaluate the quality of the crowd.

28

This method allows to obtains even better result by further analysis.

� It estimates the di�culty level of each question by the expected
number of workers who correctly answer a speci�ed number of
the trapping questions. Finally it computes the object probability
P (Xi = lz) by logistic regression that is widely applied in machine
learning. In brief, ELICE considers not only the worker expertise
(α ∈ [1, 1]) but also the question di�culty (β ∈ [0, 1]). The bene�t
is that each answer is weighted by the worker expertise and the
question di�culty; and thus, the object probability P (Xi = lz) is
well-adjusted. However, ELICE also has the same disadvantages
about the trapping set Ω like HP as previously described. �

Hung at al. [33]

Pros

• Good performance.

• Robust against random and malicious annotators.

Cons

• Requires a ground-truth with a su�cient size in order to estimate cor-
rectly the goodness/expertise of the annotators.

• Requires the ability to inject the ground-truth inside the normal work-
�ow.

• Requires a method to uniquely identify the user that has generated an
annotation.

• Requires a greater number of annotations with respect to other meth-
ods, because some of them are not directly used in the aggregation,
they are just used to estimate the user goodness/expertise.

This requires more time, and higher costs if it is used with a paid
crowdsourcing system.

Ertekin at al. [35] propose a modi�ed version of a priori quality checking
that allows to reduce the required annotations. In this version the tasks are
assigned to just a subset of the crowd, this subset is identi�ed at runtime.

29

2.3 Expectation Maximization

Expectation maximization is an approach based on a probabilistic model, as
presented by Dempster at al. [11] and Whitehill at al. [44].

� The Expectation Maximization (EM) technique iteratively com-
putes object probabilities in two steps: expectation (E) and max-
imization (M). In the (E) step, object probabilities are estimated
by weighting the answers of workers according to the current es-
timates of their expertise. In the (M) step, EM re-estimates the
expertise of workers based on the current probability of each ob-
ject. This iteration is repeated until all object probabilities are
unchanged. Brie�y, EM is an iterative algorithm that aggregates
many objects at the same time. Since it takes a lot of steps to
reach convergence, running time is a critical issue. �

Hung at al. [33]

This method outperforms a priori quality checking and is more robust to the
presence of spammers as demonstrated by Vuurens at al. [41] and Raykar
at al. [34] even though it is sensible to the initialization. Di�erent starting
points can lead to di�erent solutions.

Pros

• Does not require a ground-truth.

• Robust against random and malicious annotators.

Cons

• Sensible to starting point.

• Requires a method to uniquely identify the user that has generated an
annotation.

• Iterative and therefore computational heavy

A similar technique for annotator quality estimation is proposed by Ipeirotis
at al. [22]. It has been tailor to multiple choice question and uses �soft�
labels instead of hard ones during the estimation of both object probability
and worker quality score.

� The score separates the intrinsic error rate from the bias of the
worker, allowing for more reliable quality estimation. This also
leads to more fair treatment of the workers. �

Ipeirotis at al. [22]

30

2.4 Iterative Learning

As explained by Kerger at al. [26] [27] Iterative Learning is a belief-propagation-
based method for annotation aggregation.
As suggested by Hung at al. [33] it can be even used to estimate question
di�culty.

� Iterative Learning (ITER) is an iterative technique based on
standard belief propagation. It also estimates the question dif-
�culty and the worker expertise, but slightly di�erent in details.
While others treat the reliability of all answers of one worker as
a single value (i.e. worker expertise), ITER computes the relia-
bility of each answer separately. And the di�culty level of each
question is also computed individually for each worker. As a re-
sult, the expertise of each worker is estimated as the sum of the
reliability of his answers weighted by the di�culty of associated
questions. One advantage of ITER is that it does not depend on
the initialization of model parameters (answer reliability, ques-
tion di�culty). Moreover, while other techniques often assume
workers must answer all questions, ITER can divide questions
into di�erent subsets and the outputs of these subsets are propa-
gated in the end. �

Hung at al. [33]

As explained in [27] this method obtains performance similar to expecta-
tion maximization and belief propagation with a far more simple underlying
model.

Pros

• Does not require a ground-truth.

• Robust against random and malicious annotators.

• Simpler model with respect to expectation maximization and belief
propagation.

• Proven convergence in the binary labeling case [27].

Cons

• Requires a method to uniquely identify the user that has generated an
annotation.

• Iterative and therefore computational heavy

The algorithm presented in the Chapter 3 is based on this approach.

31

32

Chapter 3

Proposed Approach

The aim of this Chapter is to present and formally de�ne the proposed
algorithm.

In the �rst part we will propose a general framework for annotation aggrega-
tion regardless to the kind of annotation. This framework is a generalization
of the one proposed by Karger et al. [27] and partially presented in [6], we
will go beyond the speci�c case and try to identify a general version.

In the second one we will analyze common kinds of annotation. For each one
of them we will take in account common/naïve algorithms and an instanti-
ation of the proposed algorithm.

3.1 Preliminaries

Let O be a set of objects, let Oi denote the i-th object in the set, and let
Fi ∈ F be a feature associated to this object where F is the space on which
the feature is de�ned.

Let A be a set of users, called annotators, let aj denote the j-th annotator in
the set and Fi,j ∈ F the annotation provided by annotator aj for the feature
Fi of the object Oi.

Let Ai denote the set of the annotators who provided an annotation for the
object Oi.

Similarly, let Oj denote the set of objects annotated by aj .

Under ideal circumstances, Fi,j = Fi. However, due to noise intrinsic in
the annotation process, Fi,j 6= Fi, this require to aggregate the annotations
coming from more users, in order to reduce/eliminate the noise.

Let F̂i ∈ F denote the aggregated annotation for the feature Fi.

The goal of the algorithm is to minimize the distance (or maximize the
similarity) between the real feature Fi and the estimate F̂i.

33

3.2 General Algorithm

In order to �nd the estimate F̂i, the available annotations need to be aggre-
gated.

Depending on the speci�c kind of annotation there are already known al-
gorithms generally based on the computation of an average or a median,
like majority voting, which share a common property, they assign the same
weight to all the annotations.

Our algorithm goes beyond by assigning di�erent weights to the di�erent
annotations. That is:

F̂i = f({〈Fi,j , wi,j〉|aj ∈ Ai}) (3.1)

The weights wi,j ∈ W, W ≡ [0, 1] ⊂ R capture the quality of annotator aj
to annotate object Oi. The challenging aspect lies in how to automatically
determine these weights without any prior knowledge about the quality of
the annotators.

To this end, we propose an iterative algorithm that is able to accomplish
this task while relying only on the available annotations.

Following an approach similar to [27], the algorithm seeks the solution iter-
atively by alternating two steps:

• For each object Oi, given the available annotations Fi,j , aj ∈ Ai, and

some knowledge about the reliability of each annotator w
(k)
i,j available

at iteration k, compute |Ai| di�erent estimates F̂
(k)
i,j , aj ∈ Ai. Each

estimate is obtained by aggregating all annotations but the one given
by aj . That is:

F̂
(k)
i,j = f({〈Fi,j′ , w

(k)
i,j′〉|aj′ ∈ Ai \ {aj}}) (3.2)

where f() is an aggregation function that computes a weighted consen-
sus among the available annotations.

34

F i,j1

F i,j2

F i,j3
F i,j3
ˆ

F i,j1
ˆ

F i,j2
ˆ

wi,j1

wi,j2

Figure 3.1: Aggregation Step

• For each annotator aj , given the available annotations Fi,j , Oi ∈ Oj ,

and the current estimate F̂
(k)
i,j , compute w

(k+1)
i,j , i.e., the quality in

annotating each object Oi, by measuring the coherence between the

annotation Fi,j , and the current estimate F̂
(k)
i,j obtained by using all

the annotations but the one related to Oi. That is:

w
(k+1)
i,j = g({〈Fi′,j , F̂

(k)
i′,j 〉|Oi′ ∈ Oj \ {Oi}}) (3.3)

where g() is a coherence function that given a set of pairs 〈Fi′,j , F̂
(k)
i′,j 〉

computes the weight associated to the annotation Fi,j .

wi1,j

F i3,j
ˆ

F i1,j
ˆ

F i2,j
ˆ wi2,j

wi3,j

F i3,j

F i2,j

Figure 3.2: Coherence Estimation Step

35

Note that the description of the algorithm is general and that it does not im-
pose any constraint on the nature of the feature Fi for which the annotations
are available. Indeed, the only requirement is the possibility to specify:

i) an aggregation function f() de�ned in Equation (3.2)

ii) a coherence function g() de�ned in Equation (3.3)

Therefore, the proposed algorithm signi�cantly extends the original work
in [27], which was speci�cally tailored to work with features associated with
a single binary label, whereas we are able to deal with objects that are
associated with features of any kind.
The algorithms iteratively executes the two steps until the relative change
of the weights falls below a threshold τ , i.e.:∑

i,j |w
(k+1)
i,j − w(k)

i,j |∑
i,j |w

(k)
i,j |

< τ (3.4)

In our experiments we set τ = 10−6, and the algorithm converged in 6-7
iterations on average. The theoretical analysis of the convergence properties
of the algorithm is left to future work. Upon convergence, the �nal estimate
of the feature is computed according to Equation (3.1), in which the weights
are set equal to those computed in the last iteration of the algorithm.

3.2.1 Aggregation Function

In Section 3.2 we have presented the aggregation function f() that more
rigorously can be de�ned as:

f : (F ×W)|Si| → F (3.5)

where |Si| is the size of the input set.
In many situations f() can be rewritten in the following way

f(Si) = m′(ϕ(S ′i)) (3.6)

S ′i = {〈xi,j , wi,j〉|xi,j = m(Fi,j), 〈Fi,j , wi,j〉 ∈ Si}
Si = {〈Fi,j , wi,j〉|aj ∈ Ai}

where:

• m() and m′() are two mapping function that allow to map an item
of the feature space to and from an item of a convenient intermedi-
ate space X where linear operations can be de�ned (ex: Rn). Their
rigorously de�nitions are:

m : F → X (3.7)

m′ : X → F (3.8)

36

• ϕ() is an aggregation function that works in the intermediate space X .
Its rigorously de�nitions is:

ϕ : (X ×W)|Si|
′ → X (3.9)

Under these assumptions we can replace ϕ(), that is de�ned over X , where
linear operations exist, with a weighted average of the mapped annotations:

ϕ(S ′i) =

∑
〈xi,j ,wi,j〉∈S′ wi,j · xi,j∑
〈xi,j ,wi,j〉∈S′ wi,j

(3.10)

3.2.2 Coherence Function

In Section 3.2 we have presented the coherence function g() that more rig-
orously can be de�ned as:

g : (F × F)|Sj | →W (3.11)

where |Sj | is the size of the input set.
In many situations this de�nition of g() can be too general. Often g() can
be de�ned as the average of the coherence computed on the pairs 〈Fi,j , F̂i,j〉.
In this situation g() becomes:

g(Sj) =
1

|Sj |
∑
s∈Sj

σ(s) (3.12)

Sj = {〈Fi′,j , F̂i′,j〉|Oi′ ∈ Oj \ {Oi}}

where σ() is a function that computes the coherence of a single pair. More
rigorously it can be de�ned as:

σ : F × F →W (3.13)

3.3 Example Cases

Here we will present four of the most common kind of annotations.

For each one of them we will present:

• the feature space

• a common aggregation algorithm

• the proposed aggregation function f()

• the proposed coherence function g()

37

3.3.1 Binary

Under this kind of annotation can be grouped all the ones related to "on/o�"
features or classi�cation ones when the available classes are two.

Feature Space

For binary annotations the feature space is simply the set:

F = {−1,+1} (3.14)

Common Aggregation Algorithm

For binary annotations one of the most common aggregation algorithms is
majority voting, which formal de�nition is:

F̂i = sign

 1

|Ai|
∑

aj∈Ai

Fi,j

 , (3.15)

where sign(x) = ±1, depending on the sign of x, and we arbitrarily set
sign(0) = +1 to break ties.

Proposed Aggregation Function

For binary annotations we choose to use a modi�ed version of majority vot-
ing, the (thresholded) weighted average, which formal de�nition is:

F̂i = sign

[∑
aj∈Ai

wi,j · Fi,j∑
aj∈Ai

wi,j

]
, (3.16)

Under the framework proposed in Section 3.2.1 this can be de�ned even in
the following way

X = [−1, 1] ⊂ R (3.17)

m(F) = F

m′(x) = sign(x), x ∈ X

Proposed Coherence Function

For binary annotations we choose to use the framework proposed in Sec-
tion 3.2.2 and assign +1 when the annotation is equal to the estimate and
−1 when it is not:

σ(〈F, F̂ 〉) = F · F̂ (3.18)

38

3.3.2 Binary Vector

Under this kind of annotation can be grouped all the ones that can be rep-
resented as a stream of bits.

We will analyze in the speci�c case the Regions Of Interest (ROIs) in an
image.

Feature Space

For binary vector annotations the feature space is:

F = {−1,+1}N (3.19)

In the speci�c case of the ROIs N = r · c the number of pixels in the image.
Every item in the bit stream represents that the corresponding pixel in the
image is part of the ROI or not.

Common Aggregation Algorithm

For binary vector annotations the most common aggregation algorithm is
majority voting, which formal de�nition is:

F̂i = sign

 1

|Ai|
∑

aj∈Ai

Fi,j

 (3.20)

where sign(x) = ±1, depending on the sign of x, and we arbitrarily set
sign(0) = +1 to break ties.

Proposed Aggregation Function

For binary vector annotations we choose to use a modi�ed version of majority
voting, known as (thresholded) weighted average, executed on each item
of the vector, which formal de�nition is:

F̂i = sign

[∑
aj∈Ai

wi,j · Fi,j∑
aj∈Ai

wi,j

]
(3.21)

Under the framework proposed in Section 3.2.1 this can be de�ned even in
the following way

X = [−1, 1] ⊂ R (3.22)

m(F) = F

m′(x) = sign(x), x ∈ X

39

Proposed Coherence Function

For binary vector annotations and in the speci�c case ROIs we choose to use
the framework presented in Section 3.2.2 and de�ne σ() using the Jaccard's
similarity proposed by Paul Jaccard in [23] [24]:

σ(F1, F2) =
|{x|F1(x) = +1 ∧ F2(x) = +1}|
|{x|F1(x) = +1 ∨ F2(x) = +1}|

(3.23)

3.3.3 Real Vector

Under this kind of annotation can be grouped all the ones that are based on
a vector of real numbers, like a key-point descriptor or a bounding box.

Feature Space

The real vector feature space can be de�ned as a set of vectors composed by
N natural or real numbers:

F = RN (3.24)

Common Aggregation Algorithm

Two of the most common aggregation algorithms are the average and the
median.

• Average

Which formal de�nition is:

F̂i =

∑
aj∈Ai

Fi,j

|Ai|
(3.25)

Pros

� Easy to implement

� Easy to parallelize

� Linear complexity in the number of annotations

Cons

� High sensitivity to outliers (spammers)

40

• Median

In the particular we use a median or each component of the vector:

F̂i(x) = median{Fi,j(x)|aj ∈ Ai} (3.26)

Pros

� Low sensibility to outliers (spammers)

Cons

� Not linear complexity in the number of annotations

Proposed Aggregation Function

As aggregation function we have chosen to use two modi�ed versions of
the previously proposed algorithms that take in account the quality of the
annotations.

• Weighted Average

The weighted average takes in account the quality of the annotations
weighting them in a di�erent way:

F̂i =

∑
aj∈Ai

wi,j · Fi,j∑
aj∈Ai

wi,j
(3.27)

Under the framework proposed in Section 3.2.1 this can be de�ned even
in the following way:

X = RN (3.28)

m(F) = F

m′(x) = x

41

• Weighted Median

As you can see from Figure 3.3 the weighted median is a modi�ed
version of the median that weights the elements in a di�erent way as
proposed by Edgeworth, F.Y in[13]:

F̂i = wmedian{〈Fi,j , wi,j〉|aj ∈ Ai} (3.29)

Figure 3.3: Regular Media vs. Weighted Median [3]

Proposed Coherence Function

As coherence function we have chosen to follow the framework proposed
in Section 3.2.2 using a σ() function based on the Chebyshev distance

proposed by James Abello et al. [4]:

DChebyshev(p, q) = max(|pi − qi|) (3.30)

The Chebyshev distance gives a value in {x|x ≥ 0 ∧ x ∈ R} this value can
be mapped in a value of the space used by our framework (see Section 3.2)
in the following way:

σ(〈F, F̂ 〉) =
1

1−DChebyshev(F, F̂)
(3.31)

42

3.3.4 Ranking

Under this kind of annotation can be grouped all the ones that are based on
the ranking/sorting of a �nite set of items.

Feature Space

The ranking feature space can be de�ned as a set of vectors composed by
the �rst N natural numbers without repetition:

F = {〈I1, ...IN 〉|N ∈ N+∧∀k∈[1,N]Ik ≤ N∧(∀k,l∈[1,N]k 6= l ⇐⇒ Ik 6= Il)} ⊂ N+N

(3.32)

Common Aggregation Algorithm

The most common ranking aggregation algorithm is the median rank ag-

gregation presented by Ronal Fagin et al. [14].

Let ρ(Ik, Fi,j) be the location given by annotator aj to item Ik in Fi,j .

We compute µ′i(Ik) as the median over all the ρ(Ik, Fi,j):

µ′i(Ik) = median({ρ(Ik, Fi,j)|aj ∈ Ai}), k ∈ [1, N] (3.33)

Ordering the µ′i(Ik) we can obtain a permutation µi that can be used to
create the estimate F̂i

µ =< µ′i(Ik), ..., µ′i(Il) > |∀k,l∈[1,N]k < l ⇐⇒ µ′i(Ik) ≤ µ′i(Il) (3.34)

F̂i =< Ik, ..., Il > |∀k,l∈[1,N]k < l ⇐⇒ µ′i(Ik) ≤ µ′i(Il)

Proposed Aggregation Function

As aggregation function we have chosen to use a modi�ed version of the
median rank aggregation, that instead of using a simple median use a
weighted median. The only step in the algorithm that changes is Equa-
tion (3.33) that becomes:

µ′i(Ik) = wmedian({〈ρ(Ik, Fi,j), wi,j〉|aj ∈ Ai}), k ∈ [1, N] (3.35)

43

Proposed Coherence Function

As coherence function we have chosen to follow the framework proposed in
Section 3.2.2 using a modi�ed version of the Spearman's rank correlation

coe�cient to compare the ranking pairs, as proposed by Charles Spearman
[39].

s(〈F,F̂ 〉) = 1−
6
∑

i∈[1,N] di(〈F, F̂ 〉)2

N(N2 − 1)
(3.36)

di(〈F, F̂ 〉) = ρ(Ii, F)− ρ(Ii, F̂)

Where di is the distance between the position of the i-th item in the two
rankings. The coe�cient is a value in [−1,+1] where +1 means that the two
rankings are exactly the same (maximum correlation), 0 no correlation and
−1 the rankings are exactly one the opposite of the other. In order to map
this in a value in the range [0,+1] we have decided to compute a saturation
to 0 of the negative values.
The σ() function becomes formally:

σ(〈F, F̂ 〉) =

{
s(〈F, F̂ 〉) s(〈F, F̂)〉 ≥ 0

0 elsewhere
(3.37)

3.4 Convergence

While for the binary version of the algorithm we can be proven that converges
in a �nite number of steps as in [27] for the others we have not analyzed the
convergence property of the algorithm in detail. We can state that in all
our tests the algorithm converges after a small number of iterations. The
number of required iterations grows when the number of bad users grows or
in case they follow a common pattern.

44

Chapter 4

Implementation Details

In this chapter we will analyze the algorithm proposed in Chapter Section 3
from the implementation point of view. We will discuss its computational
complexity, its scalability and �nally present a reference implementation that
we have used during our tests.

4.1 Computational Complexity

During this chapter let n be the total number of annotations that the system
is going to deal with.

n = |{Fi,j |Oi ∈ O ∧ aj ∈ A}| (4.1)

De�ning the computational complexity of the algorithm is not a simple task,
due to the following reasons:

• The algorithm is iterative and does not have a prede�ned number of
iterations.

The problem can be overcome by making an assumption. The algo-
rithm will converge in a �nite number of steps (independent of the size
of the input set) or will be interrupted automatically after a prede�ned
number of iterations.

Let fw(n) be an hypothetical function that computes the whole algo-
rithm and let fi(n) be the hypothetical function that computes a single
iteration.

Under these assumptions the complexity of the whole algorithmO(fw(n))
can be seen as the computational complexity of the single iteration
multiplied by a constant O(fw(n)) = O(k · fi(n)) = O(fi(n)). For this
reason in order to analyze the complexity of the whole algorithm we
can just consider a single step.

45

• Since the algorithm does not de�ne the aggregation function f() and
the coherence function g(), it is not possible to �nd a unique solution,
but it will depend on the computational complexity of the speci�c
aggregation or coherence estimation function.

The complexity of the single iteration will be the sum of the com-
plexities of the aggregation step fa(n) (function of O(f(n))) and the
coherence estimation step fc(n) (function of O(g(n))).

O(fi(n)) = O(fa(n)) +O(fc(n)) = O(F(n, f())) +O(G(n, g())) (4.2)

4.1.1 Aggregation Step

As suggested in Equation (4.2) the complexity of the aggregation stepO(fa(n))
can be seen as function of the complexity of the aggregation functionO(F(n, f())).

During this step for each annotation Fi,j we need to compute its estimate
F̂i,j , this require to apply the aggregation function f() on the set of all the
annotations of the i-th object. The complexity of f() is not independent
of the object we are estimating and the number of annotators |Ai| that has
annotated that object.

For these reasons:

O(fa(n)) =
∑
Oi∈O

|Ai| ·O(f(Fi, |Ai| − 1)) (4.3)

Let now make some assumptions.

The complexity of f() is independent of the feature we are estimating or
that the di�erence is a reasonably small constant.

We cannot assume that the complexity of f() is independent of the size of
Ai (the set of all the annotators that has given an annotation on Oi). This
would be a really strong assumption. We can relax this by stating that the
complexity is dependent on the size of Ai, but we can assume that the size of
Ai is independent of i. We are though assuming the graph that de�nes the
problem to be regular. Let so de�ne na as the number of annotators (and
though annotations) related to each object.

n = na · |O| (4.4)

∀Oi∈O|Ai| = na

46

Under these assumptions we can simplify Equation (4.3) as follow:

O(fa(n)) =
∑
Oi∈O

|Ai| ·O(f(Fi, |Ai| − 1))

=
∑
Oi∈O

na ·O(f(na − 1))

= n ·O(f(na − 1))

= O(n · f(na))

Finally

O(fa(n)) = O(n · f(na)) (4.5)

4.1.2 Coherence Step

As suggested in Equation (4.2) the complexity of the coherence estimation
step O(fc(n)) can be seen as function of the complexity of the coherence
function O(G(n, g())).

During this step for each annotation Fi,j we need to estimate its quality co-
e�cient wi,j , this requires to apply the coherence function g() on the set of
all the annotations of the j-th annotator. The complexity of g() is not inde-
pendent of the feature and the number of annotators |Ai| that has annotated
that objects.

For these reasons:

O(fc(n)) =
∑
aj∈A

∑
Oi∈Oj

O(g(Fi, |Oi| − 1)) (4.6)

Let now make some assumptions.

The complexity of g() is independent of the feature we are estimating or that
the di�erence is a reasonably small constant.

We cannot assume that the complexity of f() is independent of the size of the
Oj (the objects annotated by aj). This would be a really strong assumption.
But we can relax this by stating that the complexity is dependent on the
size of Oj , but we can assume that the size of Oj is independent of j. We
are though assuming the graph that de�nes the problem to be regular. Let
so de�ne no as the number of objects (and though annotations) related to
each annotator.

n = no · |A| (4.7)

∀aj∈A|Oj | = no

47

Under these assumptions we can simplify Equation (4.6) as follow:

O(fc(n)) =
∑
aj∈A

∑
Oi∈Oj

O(g(Fi, |Oi| − 1))

=
∑
aj∈A

∑
Oi∈Oj

O(g(no − 1))

=
∑
aj∈A

no ·O(g(Fi, no − 1))

= n ·O(g(no − 1))

= O(n · g(no))

Finally
O(fc(n)) = O(n · g(no)) (4.8)

4.1.3 Iteration Complexity

We can �nally compute the complexity of one iteration by substituting Equa-
tion (4.5) and Equation (4.8) in Equation (4.2).

O(fi()) = O(n · f(na)) +O(n · g(no))

= O(n · (f(na) + g(no)))

Finally
O(fi()) = O(n · (f(na) + g(no))) (4.9)

Furthermore we can see that the component (f(na) + g(no)) depends on the
aggregation function f(), on the coherence function g() and on the structure
of the graph (the in-degree of the feature nodes na and the out-degree of
the user nodes no). Being f() and g() prede�ned and na and no generally
controllable we can state that (f(na) + g(no)) becomes a constant indepen-
dent of n. Due to these considerations we can see that the complexity of one
iteration is:

O(fi(n)) = O(n) (4.10)

4.1.4 Algorithm Complexity

Given the consideration presented at the beginning of the chapter and Equa-
tion (4.10) we can state that the whole algorithm have a linear complexity
in the number of annotations.

O(fw(n)) = O(n) (4.11)

This property leads to interesting considerations from the scalability point
of view.

48

4.2 Scalability

One of the possible de�nition of scalability is the one proposed by André B.
Bondi

� Scalability is the ability of a system, network, or process to
handle a growing amount of work in a capable manner or its
ability to be enlarged to accommodate that growth �

André B. Bondi [8]

As stated by Mark D. Hill

� An intuitive notion of scalability is that it implies a favorable
comparison between a larger version of some parallel system with
either a sequential version of that same system or a theoretical
parallel machine. �

Mark D. Hill [21]

This de�nition implies the notion of speedup.
Let time(n, x) be the time required by an n-processor system to execute a
program of size x.

speedup(n, x) =
time(1, x)

time(n, x)
(4.12)

We de�ne scalable a system with nearly linear speedup speedup(n, x) ∼ n

Can the proposed algorithm be implemented in a scalable way?

In order to address the question we need to analyze the parallelizability of
the algorithm.
We need to identify the presence of tasks that can be executed with no
interdependency and with minimum communication e�orts.
The algorithm per se is not fully parallelizable due to inter-iteration data

dependencies, like the weights w
(k)
i,j and infra-iteration data dependencies

like the annotation estimates F̂
(k)
i,j produced by the aggregation step and

required by the coherence estimation step.
We need to analyze the parallelizability of both the aggregation step and the
coherence estimation step.

4.2.1 Aggregation

Analizing Equation (3.1) and Equation (3.2) we can see that the aggregation
step is highly parallelizable due to the fact that the only dependencies are on

the input data, the annotations Fi,j and the weights w
(k)
i,j that during this step

are immutable so it is not required any synchronization or communication
between the parallel tasks.

49

4.2.2 Coherence Estimation

Analizing Equation (3.3) we can see that the coherence estimation step is
highly parallelizable due to the fact that the only dependencies are on the

input data, the annotations Fi,j and the estimates F̂
(k)
i,j , that during this step

are immutable so it is not required any synchronization or communication
between the parallel tasks.

4.2.3 Final Considerations

Due to the considerations presented in Section 4.2.1 and Section 4.2.2 we
can state that the algorithm can scale if the communication e�orts required
for data dependency are negligible with respect to the e�orts required by the
actual computations.

4.3 The Library

In this section we will present a java reference implementation for the pro-
posed algorithm (CrowdAnnotationAggregator - GitHub [5]).
In order to maintain the generic nature of the algorithm we have based the
library on templating, in this way only a generic version of the algorithm
has been implemented, thus the application of the algorithm become easier
for developers.

4.3.1 Asynchronicity

The library has been built from the ground up on the concept of asynchronic-
ity in order to exploit the parallelizability of the underlying algorithms.
To accomplish this all the the APIs are non blocking and will signal their
completion via callbacks.

4.3.2 Data Containers

The library is based on three data container classes: the Annotator, the
Content and the Annotation.

• The Annotator represents the homonym concept aj in the algorithm.

While the base version of it simply contains an identi�er, it can be
extended in order to contain information valuable for both the aggre-
gation and the coherence estimation algorithms.

• The Content represents the object Oi in the algorithm.

While the base version of it simply contains an identi�er, it can be
extended in order to contain information valuable for both the aggre-
gation and the coherence estimation algorithms.

50

• The Annotation represents the homonym concept Fi,j in the algo-
rithm.

It contains the reference to the Annotator from which the annotation
comes from and the Content it refers to. It must be extended in order
to contain information, related to the speci�c kind of annotation, that
will be used by both the aggregation and the coherence estimation
algorithms.

4.3.3 Step Abstraction

In order to maintain the generic nature of the algorithm the library base its
behavior on two classes the Aggregator and the CoherenceEstimator.

• The Aggregator is an abstraction over the aggregation function f().

Given the nature of the aggregation step we have chosen to group
the annotations by Content. Each Aggregator is responbile of the
aggregation of all the Annotations related to the same Content.
This allows to exploit the linear version of the aggregation function
proposed in Section 3.2.1.

This class must be extended in order to implement the aggregation
function chosen for the speci�c kind of annotation.

• The CoherenceEstimator is an abstraction over the coherence esti-
mation function g().

Given the nature of the coherence estimation step we have chosen to
group the annotations by Annotator. Each CoherenceEstimator is
responbile of the estimation of the weights assigned to all the Annota-
tions given by the same Annotator. This allows to exploit the linear
version of the coherence estimation function proposed in Section 3.2.2.

This class must be extended in order to implement the aggregation
function chosen for the speci�c kind of annotation.

4.3.4 Algorithm Abstraction

The whole algorithm is orchestrated by the AggregationManager a class
responsible for instantiating the Aggregators and CoherenceEstimators,
to start the aggregation and coherence estimation tasks and to manage the
inter-iteration and infra-iteration data dependencies.

This is the heart of the library and does not need any intervention from the
developer, that is just responsible to con�gure it with the right Annota-
tions, Aggregators and CoherenceEstimators.

51

4.4 Akka

In order to reach an high scalability we have chosen to implement our tests
using Akka.

� Akka is a toolkit and runtime for building highly concurrent,
distributed, and fault tolerant event-driven applications on the
JVM. �

www.akka.io

4.4.1 Actors

Akka is based on Actors

� Actors are very lightweight concurrent entities. They process
messages asynchronously using an event-driven receive loop. �

www.akka.io

In our implementation we have developed a central actor that is responsi-
ble to initialize the AggregationManager and spawn new actors related
to eachAggregator and CoherenceEstimator. Communications between
theAggregationManager and the workers are wrapped inside special mes-
sages.
This allows us to use the full potential of the underline machine. This is due
to the number of active workers that is surely greater than the number of
cores of the machine and though, thanks to Akka's automatic load balancing,
we can use 100% of the underline computational power.

52

Chapter 5

Experimental Study

We have carried out a large set of experiments in order to evaluate the
performance of the proposed algorithm.

5.1 Image Segmentation

Concept-based image retrieval is based on the analysis of the image content
by means of computer vision algorithms to automatically assign labels. In
some cases, labels are assigned to the image as a whole. In other cases,
image regions are identi�ed and given distinct labels. This sort of �ne-
grained tagging enables more �exible querying paradigms. As an example,
several works have recently addressed the problem of annotating body parts
[9] and/or garments [25]. Despite the tremendous improvement in accuracy
brought by the latest computer vision algorithms, the problem has not been
solved yet.

We solve the problem using human-computation. We ask users to draw the
contour of the garments in a set of pictures r × c. This contour can be
converted into a binary matrix r × c. This problem can be solved with the
methods described in Section 3.3.2 by converting the matrix into a vector
simply by serializing rows one after the other.

We have carried two kind of tests, synthetic ones and a real world scenario
with data coming from Sketchness [20], a GWAP designed to assign labels
to localized regions in an image.

5.1.1 Synthetic Case

Table 5.1 reports the parameters used in the generation of the synthetic
datasets, which are illustrated in the following. We simulated the gameplay
of a total of M players annotating N images. The ground-truth regions of
interest were generated by synthesizing one out of many possible geometrical

53

shapes (rectangles, ellipses, stars, etc.) in a random location within each
image. Each image was used in n games (|Ai| = n, ∀i). The images were
randomly assigned to the players. Hence, the number of played games per
player varies, and on average it is equal to nN/M . Alternatively, we also
considered a regular topology for the bi-partite assignment graph, in which
all players annotate the same number of images. We considered two classes
of players: good players and cheaters. The fraction of cheaters over the
total number of players is denoted as q. The gaming tracks of good players
were generated by adding independent and identically distributed Gaussian
noise (zero mean, standard deviation σ) to the ground truth contours of the
regions of interest and smoothing the track with an averaging �lter. Instead,
cheaters added their annotations by drawing a geometrical shape in a random
location. We also considered the possibility that a small fraction g of images
were available with the corresponding ground truth, to evaluate the impact
of the availability of a gold standard.

Parameter symbol values

N. games / image n 3, 5, 10
Number of players M 10, 100
Number of images N 100, 1000
Topology - regular, random
Pr. cheating q 0, 0.25, 0.50, 0.75
Noise σ 10, 40, 80
Gold standard g 0.0, 0.01, 0.02, 0.10

Table 5.1: Image Segmentation - Parameters of synthetic dataset (default).

For each con�guration of the parameters used in our experiments, we gener-
ated 10 instances in order to compute the average results.

Methods

As a baseline, we considered aggregating annotations based on majority vot-
ing (MV) as in Equation (3.20). We investigated both the proposed algorithm
(wMV). In addition, we also compare with a modi�ed version of majority
voting (MVgoodonly) that is assumed to know in advance who the good players
are, and thus aggregates only their annotations.

Measures

We carried out an evaluation by comparing the regions of interest produced
by the di�erent aggregation methods with the ground-truth. The true pos-
itive rate (TP) is the fraction of pixels within the region of interest, which
are correctly labeled. The false positive rate (FP) is the fraction of pixels

54

outside the region of interest, which are deemed to belong to the region in-
stead. All algorithms produce as output a binary estimate of the region of
interest, due to the sign operator in Equation (3.20). However, it is possible
to trace complete TP rate vs. FP rate ROC curves by replacing sign with
a thresholded version of it, and then computing TP rate and FP rate with
di�erent thresholds. Hence, using this information we estimate the TP rate
at a target FP rate equal to 1% (TP@1%).

Results

3 4 5 6 7 8 9 10
50%

60%

70%

80%

90%

100%

n

T
P
@
1
%

MV
wMV
MVgoodonly

Figure 5.1: Image Segmentation - TP@1% vs. number of games per image n

Figure 5.1 illustrates the performance of the di�erent methods when varying
the number n of games per image and setting all other parameters to their
default values. The proposed algorithm achieved TP@1% ≈ 80% with as few
as n = 3 games per image, whereas aggregating by majority voting required
n = 6 games per image. Notice that when n ≥ 6, the proposed algorithm
slightly outperformed even MVgoodonly. This is due to the fact that, besides
assigning a low weight to cheaters (like MVgoodonly does), wMV assigns unequal
weights to good players, depending on their potentially di�erent skills, thus
resulting in a more accurate aggregated region of interest. This allows us
to trust more the more accurate players and less the other ones, thereby
reducing the e�ect of the imprecise borders of the regions.

55

10 100
0%

20%

40%

60%

80%

100%

M

T
P
@
1
%

MV
wMV
MVgoodonly

Figure 5.2: Image Segmentation - TP@1% vs. number of players M

Figure 5.2 illustrates the performance of the di�erent methods when varying
the number M of players and setting all other parameters to their default
values. It should be noted that the proposed algorithm work better with a
small number of players. This can seem strange, but keeping all the other
parameters at the default value it means that each player annotates in av-
erage 3 images, this reduces the ability of the algorithm to �nd consensus
among the data.

56

10 100
0%

20%

40%

60%

80%

100%

N

T
P
@
1
%

MV
wMV
MVgoodonly

Figure 5.3: Image Segmentation - TP@1% vs. number of images N

Figure 5.3 illustrates the performance of the di�erent methods when varying
the number N of images and setting all other parameters to their default
values. It should be noted that the proposed algorithm work better with a
great number of images. This can be explained because keeping all the other
parameters to default values forces the players to annotate a greater amount
of images giving more chances to the algorithm to �nd consensus among the
data.

57

0 0.25 0.5 0.75
0%

20%

40%

60%

80%

100%

q

T
P
@
1
%

MV
wMV
MVgoodonly

Figure 5.4: Image Segmentation - TP@1% vs. probability of cheating q

Figure 5.4 illustrates the performance of the di�erent methods when varying
the probability q of cheating. For q = 0, all methods achieved the same
results (TP@1% ≈ 99%). For q = 0.25, 0.50, wMV signi�cantly outperformed
MV. When the number of cheaters is greater than the number of good players
(q = 0.75), the proposed method fails to identify the quality of the players.

58

0 0.01 0.02 0.1

50%

60%

70%

80%

90%

100%

n

T
P
@
1
%

MV
wMV
MVgoodonly

Figure 5.5: Image Segmentation - TP@1% vs. ground-truth q

Figure 5.5 illustrates the performance of the di�erent methods when varying
the ground-truth size g. The availability of the gold standard did not change
the results, demonstrating the fact that the proposed algorithm does not need
additional source of information to reliably estimate the player's quality.

59

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

FP Rate

T
P

R
a
t
e

wMV

Figure 5.6: Image Segmentation - TP Rate vs. FP Rate in user goodness identi�cation

Figure 5.6 illustrates how the algorithm is able to identify correctly good
and bad annotators, thresholding the average �nal weight of the annotations
coming from the same user.

It should be noted that the algorithm was able to identify 90% of the good
annotators misidentifying only less than the 30% of the bad ones.

60

5.1.2 Sketchness

As for the real dataset, we collected 551 gaming tracks from Sketchness
[20]. The images were obtained from the Fashion-focused creative commons
social dataset [29], which consists of user-generated content images related to
fashion. On average, each image was used in 2.8 games (standard deviation
1.7), and each player participated in 12.8 games (standard deviation 39.4).

0% 5% 10% 15% 20%
0%

20%

40%

60%

80%

100%

FP Rate

T
P

R
a
t
e

MV
wMV

Figure 5.7: Image Segmentation - ROC of pixel identi�cation in the real dataset

Figure 5.7 illustrates the ROC curve obtained using the real dataset which
consists of gaming tracks from Sketchness [20]. The solid marker (�lled
triangle) in each curve indicates the point at which the threshold is set equal
to zero, as in Equation (3.20). The results con�rm those obtained with
synthetic data. In this case wMV and MV attained TP@1% equal to 55% and
44%, respectively. Increasing the target FP rate to 5%, we obtained 83%
and 68%, respectively. In this experiment, we omit MVgoodonly as it would
require prior knowledge about the good players and the cheaters in a real
crowd.

61

5.2 Bounding Box - Real Vector

Another common task is the identi�cation of objects (or faces) in images.
Speci�cally the interest is on identifying the bounding box of the object.
This allows to identify product placements in commercials or identi�cation
of persons. Despite the tremendous improvement in accuracy brought by
the latest computer vision algorithms, still there are situations in which au-
tomatic procedures fail, like in case of non-perspective projections or object
occlusions.

We solved the problem using human-computation. We ask users to draw
the bounding box of the object (face) in the image. The bounding box is
composed of four integer numbers xmin, xmax, ymin, and ymax. This problem
can be solved by building the vector 〈xmin, ymin, xmax, ymax〉 and applying
the methods described in Section 3.3.3.

5.2.1 Synthetic Case

Table 5.2 reports the parameters used in the generation of the synthetic
datasets, which are illustrated in the following. We simulated the annota-
tions of a total of M annotators related to N images. The ground-truth
bounding box were generated in random location within each image with a
random size. Each image was used in n tasks (|Ai| = n, ∀i). The images
were randomly assigned to the annotators. Hence, the number of task per
annotator varies, and on average it is equal to nN/M .

We considered two classes of annotators: good annotators and cheaters. The
fraction of cheaters over the total number of annotators is denoted as q. The
annotations of good annotators were generated by adding independent and
identically distributed Gaussian noise (zero mean, standard deviation σ) to
the ground truth coordinates. Instead, cheaters annotations were generated
as a random bounding box in a random location and with a random size.

Parameter symbol values

Number of annotations n 3, 4, 5, 6, 7, 8, 9
Number of annotators M 10, 100
Number of images N 100, 1000
Pr. cheating q 0, 0.25, 0.5, 0.75
Noise σ 10, 20

Table 5.2: Bounding Box - Parameters of synthetic dataset (default).

For each con�guration of the parameters used in our experiments, we gener-
ated 100 instances in order to compute the average results.

62

Methods

As baseline, we considered aggregating annotations based on average (AVG)
as in Equation (3.25) and on median (Median) as in Equation (3.3.3). We
investigated the proposed algorithms (wAVG) and (wMedian).

Measures

We carried out an evaluation by comparing the bounding box produced by
the di�erent aggregation methods with the ground-truth. We had analyzed
the maximum error on one coordinate.

Results

3 4 5 6 7 8 9
n

a
v
e
r
a
g
e
e
r
r
o
r

wAVG
wMedian
AVG
Median

Figure 5.8: Bounding Box - Average Error vs. Number of annotations per image n

Figure 5.8illustrates the performance of the di�erent methods when varying
the number of annotations per image size n. It should be noted that the
proposed algorithms outperform the others in all con�gurations and converge
faster to a near zero error.

63

100 1000
N

a
v
e
r
a
g
e
e
r
r
o
r

wAVG
wMedian
AVG
Median

Figure 5.9: Bounding Box - Average Error vs. Number of images N

Figure 5.9 illustrates the performance of the di�erent methods when vary-
ing the number of images N . The proposed algorithms outperform the oth-
ers. It should be noted that increasing the number of images the proposed
algorithms reduce the average error (increases in accuracy), because the an-
notators have to annotate a greater number of images allowing the algorithm
to exploit more information about the annotator reliability. In this situation
wMedian obtain better results with respect to wAVG. As expected the Median
is not a�ected by N because the actual number of annotations per image
does not change and so the performance.

64

10 100
M

a
v
e
r
a
g
e
e
r
r
o
r

wAVG
wMedian
AVG
Median

Figure 5.10: Bounding Box - Average Error vs. Number of annotators M

Figure 5.10 illustrates the performance of the di�erent methods when vary-
ing the number of annotatorsM . As expected even the proposed algorithms
loose in performance because in this situation the average number of anno-
tations per annotator decrease so the algorithms have less information from
which obtain the annotator quality.

65

0% 25% 50% 75%
q

a
v
e
r
a
g
e
e
r
r
o
r

wAVG
wMedian
AVG
Median

Figure 5.11: Bounding Box - Average Error vs. Probability of cheating q

Figure 5.11 illustrates the performance of the di�erent methods when vary-
ing the probability of cheating q. It should be noted that the proposed
algorithms are more robust because they do have a very small performance
drop increasing q to the 25%, they do have a moderately performance drop
increasing q to the 50% while they obtain a performance near to the other
algorithms when q reaches 75%.

66

10 20
σ

a
v
e
r
a
g
e
e
r
r
o
r

wAVG
wMedian
AVG
Median

Figure 5.12: Bounding Box - Average Error vs. Noise σ

Figure 5.12 illustrates the performance of the di�erent methods when vary-
ing the noise present in the good annotations σ. It should be noted that
increasing the noise the error increase, but the proposed algorithms loose
in performance less than the other ones. This is due to fact that while the
proposed algorithms have to deal with only the noise of the good annotators
(the cheaters are weighted less and so are removed) the other ones have to
deal even with the cheaters.

67

5.3 Ranking

Another common task is the ranking of objects. Common examples are hotel
or restaurant rating or market surveys. This allows to enhance advertising
or recommendation systems.

While already known algorithms lead to valuable solutions we would like to
prove that the proposed one gives better results or at least as good as the
state of the art.

We will use the same framework proposed in Section 3.3.4 using as base-
line Median Rank Aggregation MRA and test our modi�ed version Weighted
Median Rank Aggregation wMRA.

5.3.1 Synthetic Case

Table 5.3 reports the parameters used in the generation of the synthetic
datasets, which are illustrated in the following. We simulated the tasks of
a total of M annotators related to N groups of objects. The ground-truth
ranking were generated by a random permutations of the numbers between
1 and the number of objects. Each group of objects was used in n tasks
(|Ai| = n, ∀i). The tasks were randomly assigned to the annotators. Hence,
the number of annotations per annotator varies, and on average it is equal
to nN/M . We considered two classes of annotators: good annotators and
cheaters. The fraction of cheaters over the total number of annotators is
denoted as q. The gaming tracks of good players were generated by randomly
swapping between 0 and σ pairs of neighbors in the ground truth. Instead,
cheaters generate a totally random ranking.

Parameter symbol values

Number of annotations n 3, 4, 5, 6, 7, 8, 9
Number of annotators M 10, 100
Number of rankings N 100, 1000
Pr. cheating q 0, 0.25, 0.5, 0.75
Swaps σ 0, 1, 2, 3

Table 5.3: Ranking - Parameters of synthetic dataset (default).

For each con�guration of the parameters used in our experiments, we gener-
ated 10 instances in order to compute the average results.

Methods

As a baseline, we considered aggregating annotations based on Median Rank
Aggregation (MRA) as in Equation (3.31). We investigated the proposed al-
gorithm (wMRA).

68

Measures

We carried out an evaluation by comparing the ranking produced by the
di�erent aggregation methods with the ground-truth. We had analyzed the
coherence between the estimated ranking and the ground-truth using the
Spearman's rank correlation coe�cient Equation (3.36).

Results

3 4 5 6 7 8 9
0.75

0.8

0.85

0.9

0.95

1

n

a
v
er
a
g
e
co
h
er
en

ce

wMRA
MRA

Figure 5.13: Ranking - Coherence vs. Number of annotations per ranking n

Figure 5.13 illustrates the performance of the di�erent methods when vary-
ing the number of annotations per image size n. It should be noted that the
proposed algorithm wMRA gives the same performance of the of the art MRA
with n = 3 while outperforms it when n increases. This shows that while
MRA has a low sensitivity to bad annotations the proposed algorithm exploit
more information and obtains better results.

69

100 1000
0.75

0.8

0.85

0.9

0.95

1

N

a
v
er
a
g
e
co
h
er
en

ce

wMRA
MRA

Figure 5.14: Ranking - Coherence vs. Number of rankings N

Figure 5.14 illustrates the performance of the di�erent methods when vary-
ing the number of annotated rankings N . It should be noted that wMRA

obtains better performance increasing N while MRA does not. This is due to
the fact that increasing N the average number of annotations per annotator
increases giving more chances to the algorithm to identify cheaters.

70

10 100
0.75

0.8

0.85

0.9

0.95

1

M

a
v
er
a
g
e
co
h
er
en

ce

wMRA
MRA

Figure 5.15: Ranking - Coherence vs. Number of annotators M

Figure 5.15 illustrates the performance of the di�erent methods when vary-
ing the number of annotatorsM . It should be noted that wMRA obtains worst
performance increasing M while MRA does not. This is due to the fact that
increasing M the average number of annotations per annotator decreases
giving lower chances to the algorithm to identify cheaters.

71

0% 25% 50% 75%
0.75

0.8

0.85

0.9

0.95

1

q

a
v
er
a
g
e
co
h
er
en

ce

wMRA
MRA

Figure 5.16: Ranking - Coherence vs. Probability of cheating q

Figure 5.16 illustrates the performance of the di�erent methods when vary-
ing the cheating probability q. As expected both the algorithms obtains great
performance when q = 0. Both of them loose in performance increasing q,
by the way the wMRA gives better performance with respect to MRA when q
increases, being less sensible to cheaters.

72

0 1 2 3
0.75

0.8

0.85

0.9

0.95

1

σ

a
v
er
a
g
e
co
h
er
en

ce

wMRA
MRA

Figure 5.17: Ranking - Coherence vs. Noise σ

Figure 5.17 illustrates the performance of the di�erent methods when vary-
ing the the noise (number of random swaps) present in the good annotations
σ. As expected increasing σ we obtain worst performance. Both the algo-
rithms loose in coherence in the same way. It should be noted that wMRA still
has a better performance with respect to MRA.

5.4 Final Considerations

As proven by the carried out tests the proposed algorithm always outper-
forms the state of the art. In the worst situations it gives the same results.
Due to this it represents a valuable alternative even if requires a greater
e�ort from the computational point of view.

73

74

Chapter 6

Conclusions and Future Work

In this work we have presented a generic algorithm for annotation aggre-
gation in a crowdsourcing environment regardless of the annotation kind.
We have analyzed many of the most common annotation types used nowa-
days and proposed instantiations of the algorithm in that speci�c cases. The
algorithm has generally given good results outperforming naïve approaches.

The algorithm gives really good performance when used in batch processes,
having a linear complexity in the number of annotations.

The algorithm though does not performs so well in real time applications,
especially when the number of annotations grows and when the annotation
representation grows in size and complexity (like in the image segmentation
case. see Section 5.1).

6.1 Future Studies

As stated in Section 3.4 one of the future studies will be a deep analysis of
the convergence property of the algorithm. As for other algorithms, while it
is preferable to prove the convergence it is not a deep requirement to still give
good results in real world scenarios. If the convergence cannot be proved one
of the interesting �elds of study will be the analysis of input set in order to
identify a property that can guarantee the convergence or not in that speci�c
case.

In Section 5 we have compared the proposed algorithm with naïve approaches
that still give acceptable results. Future works will focus on comparing the
proposed algorithm with more robust methods like expectation maximization,
standard belief propagation and RANSAC, in order to identify similarities,
strengths and weakness of the proposed approach with respect to them.

As suggested in [7] the output of the algorithm are not just the aggregated
annotations, but even the �nal weights can be exploited in order to obtain
information on the quality of both the original annotations and the aggregate

75

ones. While an intuitive relation is that the more good is the annotation the
higher is the weight, an interesting study can be carried on the correlation
between the �nal weights and the goodness of the annotator.

6.2 Future Enhancements

Identify the possibility to compute an incremental update of the estimates
when new annotations are available. This will allow the algorithm to be used
in real time scenarios. Even though this may not be possible an approximate
solution is still acceptable. In this situation a complete execution of the
algorithm can be scheduled periodically and in the meantime incremental
updates will be used.

76

Bibliography

[1] Amazon mechanical turk. https://www.mturk.com/.

[2] Launchpad translations. https://translations.launchpad.net.

[3] �weighted median" by bscan - own work. licensed under cre-
ative commons zero, public domain dedication via wikimedia
commons. http://commons.wikimedia.org/wiki/File:Weighted_

median.svg#mediaviewer/File:Weighted_median.svg.

[4] James Abello, Panos M. Pardalos, and Mauricio G. C. Resende, editors.
Handbook of Massive Data Sets. Kluwer Academic Publishers, Norwell,
MA, USA, 2002.

[5] Carlo Bernaschina. Crowdannotationaggregator. https://github.

com/B3rn475/CrowdAnnotationAggregator, 2014.

[6] Carlo Bernaschina, Piero Fraternali, Luca Galli, Davide Martinenghi,
and Marco Tagliasacchi. Robust aggregation of gwap tracks for local
image annotation. In Proceedings of International Conference on Mul-
timedia Retrieval, ICMR '14, pages 403:403�403:406, New York, NY,
USA, 2014. ACM.

[7] Giorgia Bero�o. Designing bots in gwap. Master's thesis, Politecnico
di Milano - Polo di Como, Como, Italy, September 2014.

[8] André B. Bondi. Characteristics of scalability and their impact on per-
formance. In Proceedings of the 2Nd International Workshop on Soft-
ware and Performance, WOSP '00, pages 195�203, New York, NY, USA,
2000. ACM.

[9] Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In Computer Vision, 2009
IEEE 12th International Conference on, pages 1365�1372, Sept 2009.

[10] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a discipline. Commun.
ACM, 32(1):9�23, January 1989.

77

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeli-
hood from incomplete data via the em algorithm. JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1�38, 1977.

[12] Marcello Dionisio, Piero Fraternali, Erik Harlo�, Davide Martinenghi,
Isabel Micheel, Jasminko Novak, Chiara Pasini, M Tagliasacchi, and
Sr�an Zagorac. Building social graphs from images through expert-
based crowdsourcing. In Proceedings of the International Workshop on
Social Media for Crowdsourcing and Human Computation, Paris, 2013.

[13] F.Y. Edgeworth. On a New Method of Reducing Observations Relating
to Several Quantities. 1888.

[14] Ronald Fagin, Ravi Kumar, and D. Sivakumar. E�cient similarity
search and classi�cation via rank aggregation. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
SIGMOD '03, pages 301�312, New York, NY, USA, 2003. ACM.

[15] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth.
Knowledge discovery and data mining: Towards a unifying framework.
pages 82�88. AAAI Press, 1996.

[16] Roman Fedorov. Mountain peak detection in online social media. Mas-
ter's thesis, Politecnico di Milano - Polo di Como, Como, Italy, Septem-
ber 2013.

[17] Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. Mountain
peak identi�cation in visual content based on coarse digital elevation
models. In Proceedings of the 3rd ACM International Workshop on
Multimedia Analysis for Ecological Data, MAED '14. ACM, 2014.

[18] Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. Snow phe-
nomena modeling through online public media. In Image Processing,
2014 IEEE International Conference on, pages 2179�2181. IEEE, 2014.

[19] Piero Fraternali, Andre Castelletti, Rodolfo Soncini-Sessa, Carmen
Vaca Ruiz, and Andrea Emilio Rizzoli. Putting humans in the loop:
Social computing for water resources management. Environ. Model.
Softw., 37:68�77, November 2012.

[20] Luca Galli, Piero Fraternali, Davide Martinenghi, Marco Tagliasacchi,
and Jasminko Novak. A draw-and-guess game to segment images. In
Privacy, Security, Risk and Trust (PASSAT), 2012 International Con-
ference on and 2012 International Confernece on Social Computing (So-
cialCom), pages 914�917, Sept 2012.

[21] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News,
18(4):18�21, December 1990.

78

[22] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality man-
agement on amazon mechanical turk. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, HCOMP '10, pages 64�67,
New York, NY, USA, 2010. ACM.

[23] Paul Jaccard. Lois de distribution �orale dans la zone alpine. Bulletin
de la Société Vaudoise des Sciences Naturelles. 1902.

[24] Paul Jaccard. The distribution of the �ora in the alpine zone.1. New
Phytologist, 11(2):37�50, 1912.

[25] Yannis Kalantidis, Lyndon Kennedy, and Li-Jia Li. Getting the look:
Clothing recognition and segmentation for automatic product sugges-
tions in everyday photos. In Proceedings of the 3rd ACM Conference
on International Conference on Multimedia Retrieval, ICMR '13, pages
105�112, New York, NY, USA, 2013. ACM.

[26] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning
for reliable crowdsourcing systems.

[27] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-
optimal task allocation for reliable crowdsourcing systems. CoRR,
abs/1110.3564, 2011.

[28] Kyumin Lee, James Caverlee, and Steve Webb. The social honeypot
project: Protecting online communities from spammers. In Proceedings
of the 19th International Conference on World Wide Web, WWW '10,
pages 1139�1140, New York, NY, USA, 2010. ACM.

[29] Babak Loni, Maria Menendez, Mihai Georgescu, Luca Galli, Claudio
Massari, Ismail Sengor Altingovde, Davide Martinenghi, Mark Melen-
horst, Raynor Vliegendhart, and Martha Larson. Fashion-focused cre-
ative commons social dataset. In Proceedings of the 4th ACM Multi-
media Systems Conference, MMSys '13, pages 72�77, New York, NY,
USA, 2013. ACM.

[30] T.W. Malone, R. Laubacher, and C. Dellarocas. Harnessing crowds:
Mapping the genome of collective intelligence. Research Paper No.
4732-09, MIT, Sloan School of Management, Massachusetts Institute
of Technology, Cambridge, MA, USA, February 2009. Sloan Research
Paper No. 4732-09.

[31] Manoj Parameswaran and Andrew B. Whinston. Social computing: An
overview. Communications of the Association for Information Systems,
19, 2007.

79

[32] Alexander J. Quinn and Benjamin B. Bederson. Human computation:
a survey and taxonomy of a growing �eld. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI '11, pages
1403�1412, New York, NY, USA, 2011. ACM.

[33] Nguyen Quoc Viet Hung, NguyenThanh Tam, LamNgoc Tran, and Karl
Aberer. An evaluation of aggregation techniques in crowdsourcing. In
Xuemin Lin, Yannis Manolopoulos, Divesh Srivastava, and Guangyan
Huang, editors,Web Information Systems Engineering â�� WISE 2013,
volume 8181 of Lecture Notes in Computer Science, pages 1�15. Springer
Berlin Heidelberg, 2013.

[34] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo
Valadez, Charles Florin, Luca Bogoni, and Linda Moy. Learning from
crowds. J. Mach. Learn. Res., 11:1297�1322, August 2010.

[35] Ertekin �eyda, Hirsh Haym, and Rudin Cynthia. Approximating the
wisdom of the crowd. In Proceedings of the Second Workshop on Compu-
tational Social Science and the Wisdom of Crowds (NIPS 2011), 2011.

[36] Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get an-
other label? improving data quality and data mining using multiple,
noisy labelers. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD '08, pages
614�622, New York, NY, USA, 2008. ACM.

[37] Mark D. Smucker. Crowdsourcing with a crowd of one and other trec
2011 crowdsourcing and web track experiments. In In Proceedings of
the Text REtrieval Conference (TREC, 2011.

[38] Rion Snow, Brendan O'Connor, Daniel Jurafsky, and Andrew Y. Ng.
Cheap and fast�but is it good?: Evaluating non-expert annotations for
natural language tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP '08, pages 254�263,
Stroudsburg, PA, USA, 2008. Association for Computational Linguis-
tics.

[39] Charles Spearman. The proof and measurement of association between
two things. By C. Spearman, 1904. The American journal of psychology,
100(3-4):441�471, 1987.

[40] Luis Von Ahn. Human Computation. PhD thesis, Pittsburgh, PA, USA,
2005. AAI3205378.

[41] Jeroen Vuurens, Arjen P. De Vries, and Carsten Eickho�. How Much
Spam Can You Take? An Analysis of Crowdsourcing Results to Increase
Accuracy. In Matthew Lease, Vaughn Hester, Alexander Sorokin, and

80

Emine Yilmaz, editors, Proceedings of the ACM SIGIR 2011 Workshop
on Crowdsourcing for Information Retrieval (CIR 2011), pages 48�55,
Beijing, China, July 2011.

[42] Gang Wang, Tianyi Wang, Haitao Zheng, and Ben Y Zhao. Man vs. ma-
chine: Practical adversarial detection of malicious crowdsourcing work-
ers. In 23rd USENIX Security Symposium, USENIX Association, CA,
2014.

[43] Tsai Wei-Tek, Wu Wenjun, and M.N. Huhns. Cloud-based software
crowdsourcing. Internet Computing, IEEE, 18(3):78�83, May 2014.

[44] Jacob Whitehill, Paul Ruvolo, Ting fan Wu, Jacob Bergsma, and Javier
Movellan. Whose Vote Should Count More: Optimal Integration of La-
bels from Labelers of Unknown Expertise, page 2035�2043. December
2009.

[45] Okubo Yuki, Kitasuka Teruaki, and Aritsugi Masayoshi. A preliminary
study of the number of votes under majority rule in crowdsourcing.
Procedia Computer Science, 22(0):537 � 543, 2013. 17th International
Conference in Knowledge Based and Intelligent Information and Engi-
neering Systems - {KES2013}.

81

