
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Prometheus: A Web-based Platform for

Analyzing Banking Trojans

Relatore: Prof. Federico Maggi

Correlatore: Ing. Michele Carminati

Andrea Braschi, matricola 797136

Andrea Continella, matricola 797581

Anno Accademico 2013-2014

Contents

Sommario 17

1 Introduction 19

2 State of the art 23

2.1 Overview of Banking Trojans 23

2.1.1 The underground economy 24

2.1.2 The fraud scheme . 25

2.1.3 Man in the Browser attacks and WebInject 26

2.1.4 Hooking mechanism 29

2.1.5 The Automatic Transfer System 31

2.1.6 Man in the Mobile . 31

2.1.7 A new Target: Bitcoin 32

2.2 The ZeuS Crimeware Toolkit 33

2.2.1 Keylogging, formgrabbing, screenshotting and click-

grabbing . 34

2.2.2 Components . 35

2.3 Banking Trojan detection . 37

2.3.1 Antivirus detection . 37

2.3.2 Reverse Engineering 38

2.3.3 Other related work . 39

2.4 Challenges and Goals . 39

3 Prometheus: the approach 43

3.1 Proposed Approach . 43

3.2 Prometheus Analyses . 44

3.2.1 URL analysis . 45

3.2.2 Sample analysis . 45

3.3 System Overview . 46

3.3.1 Phase 1: Data Collection 47

3

3.3.2 Phase 2: Data Processing 48

3.3.3 Phase 3: Results Elaboration 49

3.4 The Crawler . 52

4 Prometheus: implementation 55

4.1 The Overall Architecture . 55

4.2 Libraries and Tools . 57

4.3 The Configuration file . 58

4.4 Cuckoo . 59

4.4.1 Quick Overview . 60

4.5 Back-end . 61

4.5.1 Cuckoo analysis packages 62

4.5.2 Executor . 63

4.5.3 Submit Server . 64

4.5.4 Scheduler . 65

4.5.5 VMs Server . 66

4.5.6 Comparisons Manager 67

4.5.7 Comparer.jar . 68

4.5.8 Memory Analysis . 69

4.6 Back-end functioning . 70

4.6.1 Phase 1: Data Collection 70

4.6.2 Phase 2: Data Processing 71

4.6.3 Phase 3: Results elaboration 74

4.7 Web Service . 76

4.7.1 Analysis Submission and Results Retrieval 78

4.8 The Crawler . 80

5 Experimental Evaluation 85

5.1 Deployment . 85

5.2 Challenges . 86

5.3 Datasets construction . 86

5.3.1 Samples dataset . 86

5.3.2 URLs list creation . 86

5.3.3 Ground truth . 88

5.4 Experiments . 89

5.4.1 False positives discussion 89

5.4.2 False negatives discussion 91

5.4.3 Memory analysis discussion 91

5.4.4 Performance . 92

6 Conclusions 95

6.1 Limitations . 96

6.2 Future Works . 97

Bibliography 99

A The Database 103

B Determine Malware Activation Time 105

List of Figures

2.1 Number of infected computers in 2013 24

2.2 Number of infected computers in 2013 by country 24

2.3 The fraud scheme . 27

2.4 Example of a real injection 28

2.5 WebInject Hooking mechanism 28

2.6 Man in the Mobile attack scheme 31

2.7 Example of virtual keyboard 34

2.8 ZeuS control panel interface 36

3.1 I/O Scheme of the URL analysis 45

3.2 I/O Scheme of the sample analysis 46

3.3 Overview of the sample analysis 47

3.4 Graphical explanation of differences comparison and filtering 51

3.5 ZeuS tracker monitor page . 52

3.6 SpyEye tracker monitor page 53

4.1 Prometheus architecture . 56

4.2 Prometheus architecture, crawler interaction 56

4.3 Comparisons Manager data structure 69

4.4 Link relations between web pages. 77

4.5 Snapshot of the DOM visualization page (no injections). . . . 78

4.6 Snapshot of the DOM visualization page (with injections). . . 79

4.7 Snapshot of the search through hashes page. 80

4.8 Snapshot of the Top Ten targeted URLs page. 81

4.9 Snapshot of the sample submission page. 81

4.10 Snapshot of the URL submission page. 82

4.11 Particular of the results page. 82

4.12 Loading bar in results page. 82

4.13 Keys extraction in results page. 83

4.14 Regular expressions matching in results page. 83

4.15 Regular expressions extraction in results page. 83

7

5.1 False Positive Rate depending on the ε threshold 90

5.2 False Positive Rate depending on the number of VMs used . . 91

5.3 Speed and Scalability of Prometheus 94

5.4 Trade-off between Performance and False Positive Rate . . . 94

A.1 EER schema of the database. 104

B.1 Table of API hooks in cuckoo results. 106

B.2 WebInject hook. 106

List of Tables

2.1 Typical APIs hooked by ZeuS 30

5.1 Samples dataset . 87

5.2 Most injected websites . 89

5.3 Most found regular expressions 92

9

List of code and log excerpts

2.1 Portion of a real leaked ZeuS webinject.txt 35

4.1 Prometheus configuration file 59

4.2 Webinject Cuckoo package . 62

4.3 Scheduler run method . 66

4.4 Scheduler submit sample analysis method 66

4.5 Comparisons Manager checking new comparisons to do after

the arrival of a new DOM . 72

4.6 YARA rule defined to extract WebInject targets 74

4.7 Example of differences JSON file 75

4.8 Crawler log example . 80

A.1 Example Query . 104

Abbreviations

API Application Programming Interface

AJAJ Asynchronous Javascript and JSON

C&C Command and Control

DNS Domain Name System

DOM Document Object Model

DLL Dynamic-Link Library

HTML Hypertext Markup Language

HTTP(S) Hypertext Transfer Protocol (Secure)

IP Internet Protocol

JAR Java Archive

JSON JavaScript Object Notation

MaaS Malware-as-a-Service

OS Operating System

OTP One-Time Password

P2P Peer-To-Peer

PIN Personal Identification Number

REGEX Regular Expression

URL Uniform Resource Locator

VM Virtual Machine

XML eXtensible Markup Language

13

Abstract

Nowadays, banking trojans are reaching alarming levels of sophistication.

New variants (the most famous examples are ZeuS, SpyEye and Citadel)

are constantly being introduced to avoid detection by antivirus software on

the victim’s PC and to make it difficult for banks and account holders to

spot fraud attempts as they occur.

Furthermore, these trojans are sold on underground markets as

“toolkits” that include development kits, web-based administration panels,

builders and easy-to-use customization procedures. The main consequence

is that anyone, independently on the skill level, can buy a malware builder

and create a customized sample.

Banking trojans exploit API hooking techniques to be able to intercept

all the data going through the browser even when the connection is encryp-

ted. This kind of malware contains also a WebInject module able to modify

web pages. This module is used by the attackers to add new fields in forms

in order to steal the target information.

We propose a web based platform, Prometheus, that analyzes banking

trojans exploiting the visible DOM modifications in the HTML page that

they cause. Prometheus is able, independently on the trojan’s family or

version, to detect the injections performed by the malware and, through

memory forensic techniques, to extract the targets (the URLs of the web

pages monitored and modified by the malware). In conclusion, Prometheus

is useful to malware analysts because it significantly reduces the need of

manual reverse engineering.

We evaluated Prometheus on 53 ZeuS samples and 62 real banking web-

sites showing that our system correctly detects the injections performed by

trojans and successfully extracts the WebInject targets.

15

Sommario

Attualmente i banking trojan stanno raggiungendo allarmanti livelli di so-

fisticazione. Nuove varianti (gli esempi più famosi sono ZeuS, SpyEye e

Citadel) sono costantemente rilasciate dai cybercriminali allo scopo di eva-

dere gli antivirus e rendere più difficile per vittime e amministratori bancari

individuare le frodi che essi portano a termine. Questi trojan, inoltre, so-

no venduti online, nei cosiddetti underground markets, in “pacchetti” che

includono pannelli di amministrazione, builders e procedure di personalizza-

zione. La conseguenza più pericolosa è rappresentata dal fatto che chiunque,

indipendentemente dalle abilità possedute, può acquistare un costruttore di

malware e creare la sua versione personalizzata.

I banking trojan sfruttano tecniche di “hooking” per agganciarsi alle

API usate dal browser e riuscire ad eseguire codice malevolo che intercetta

tutti i dati che fluiscono attraverso il browser, anche quando la connessione

utilizzata è criptata. Questo tipo di malware contiene anche un modulo

chiamato WebInject in grado di modificare le pagine web. Questo modulo è

usato dai cybercriminali per lo più per inserire nuovi campi all’interno dei

forms delle pagine web con lo scopo di rubare ulteriori informazioni.

Il nostro lavoro propone un piattaforma web, Prometheus, che analizza i

banking trojan sfruttando le modifiche che essi causano ai DOM delle pagine

web. Prometheus è in grado, evitando lo sforzo di reversare gli eseguibili

analizzati, di individuare le modifiche effettuate dai malware sui DOM e,

attraverso delle tecniche forensi di ispezione della memoria, di estrarre gli

obbiettivi del modulo WebInject ovvero gli URL (e le espressioni regolari che

generano gli URL) delle pagine web monitorate e modificate dal malware.

L’approccio base che Prometheus sfrutta per individuare le iniezioni cau-

sate dai banking trojan consiste nell’avviare due macchine virtuali, infettare

una delle due con il malware da analizzare, visitare le pagine web da moni-

torare da entrambe le macchine, scaricare i DOM delle pagine e confrontarli.

Inoltre avviando un ulteriore macchine virtuale, infettandola e acquisendo

17

il dump della memoria Prometheus riesce a combinare i risultati ottenuti

dal processo di confronto dei DOM con le informazione estratte dall’analisi

della memoria.

Nonostante questo approccio sia semplice ed abbia il grande vantaggio

di essere indipendentemente dalla famiglia o della versione del trojan ana-

lizzato esso è allo stesso tempo molto approssimativo e può portare ad avere

molti falsi positivi. Infatti ci sono tantissimi casi in cui il contenuto di una

pagina web può variare legittimamente, questo potrebbe essere dovuto per

esempio a script lato server, inclusioni pubblicitarie, o inclusioni di conte-

nuti dinamici. Per questo motivo ogni analisi necessita di diverse macchine

virtuali, alcune delle quelli infette e altre lasciate pulite. Questo permette

di eliminare le differenze legittime che si verificano tra due o più macchine

pulite. Inoltre abbiamo progettato e sviluppato degli ulteriori filtri basati

su euristiche per ridurre i falsi positivi.

Per concludere, Prometheus è utile agli analisti di malware perché esso

riduce significativamente il bisogno di reversare manualmente i malware in

questione.

Abbiamo testato e valutato i risultati prodotti dalle analisi di Prome-

theus su 53 diversi campioni di ZeuS e 62 reali siti web mostrando che il

nostro sistema è in grado di individuare correttamente le modifiche inseri-

te dai banking trojan e di estrarre con successo gli obbiettivi del modulo

WebInject.

Chapter 1

Introduction

In mid 1990s, financial institutions started providing online banking services

to their customers. Using a Web browser, clients could log into their bank’s

secure website to view statements and perform financial transactions. Since

then, online banking has grown in popularity and today most financial in-

stitutions evolved the service further to reach mobile devices. In parallel

to the diffusion of online banking services we witnessed an enormous rise of

cybercrime. What changed in the past twenty years are the motivations of

the cybercriminals. No longer searching only for notoriety and fame, cyber-

criminals have turned their attention to financial gain. Online frauds have

become a way to earn a living. Meanwhile, banks upgraded their secur-

ity measures to protect online transactions from fraud. However, attackers

adapted to these countermeasures and sophisticated banking trojans, that

kind of malicious software that aims at stealing banking credentials, began

to emerge. While initial attacks involved simple phishing emails and key-

logging trojans, which steal each keystroke the user inputs, over the years

the sophistication of malware targeting financial institutions has increased

dramatically and banking trojans have become one of the most prevalent

categories of malware today.

Banking trojans are the main cause of billions of dollars stolen by cyber-

criminals. The purpose of these trojans, of which ZeuS and SpyEye are the

most representative families, is stealing banking credentials and any other

kind of private information. Essentially, they load code in memory and hook

the network-related Windows APIs used by the browser. For this reason,

they are often called “Man in the Browser” or MitB. With this technique,

they can execute code that intercepts all the data going through the browser

even when the connection is encrypted. This kind of malware contain also

Chapter 1. Introduction

a WebInject module that allows the cybercriminals to write scriptable pro-

cedures that modify a web page right before rendering. This module can

be used to add new form fields in order to steal the target information

(e.g., One-Time Passwords). Each WebInject module relies on an encrypted

configuration file containing a list of targeted URLs, or regular expressions

against which URLs are matched, and some HTML/JavaScript code to be

injected for each URL.

The development process of banking trojans, and modern malware in

general, is very refined and mature as shown in [23] [16] [8]. Banking trojans

are sold on the underground markets as “toolkit” that includes builders,

web-based administration panels and easy to customize configuration files.

This makes everyone, even without technical skills, able to purchase a kit

and start spreading a customized sample.

Antivirus software are continuously updated to counteract banking tro-

jans but, while they offer an acceptable detection rate after having some

time to issue new signatures, the detection of fresh malware samples is poor

and if a cybercriminal updates the sample executable regularly he has a good

chance to evade signature detection. Other works have been done regarding

analysis and detection of banking trojans [7] [5] [26] but, as explained in

Section 2.3, most of them are too dependent on a specific malware family

or version and require a big effort to be adapted to new samples. These

limitations are mainly due to the fact that the signatures are based on fea-

tures such as the injection of a DLL, the hooking of some specific API or the

update of a field in the Windows registry. These signatures can be bypassed

if the cybercriminals release new variants of their samples hooking different

API or exploiting a different type of hooking, installing browser extensions,

injecting DLL into a different process.

Based on the findings of the exploratory work by Criscione et al.,

2014, [10], which demonstrated the feasibility of web-page differential ana-

lysis, we propose Prometheus, a web-based platform that automatizes and

facilitates the analysis of banking trojans. The proposed system works at

high level of abstraction, completely indepentent from the implementation

details of the malware. The key idea, proposed in Criscione et al., 2014, [10],

is to analyze banking trojans exploiting the visible DOM modifications that

they cause inside the HTML pages. Comparing DOMs downloaded in clean

machines with those downloaded in infected machines we can generate sig-

natures and we can extract the modifications reconstructing the WebInject

configuration file. However, the exploratory work presented in [10] did not

fully leverage the potential of differential analysis. First, it used only one in-

fected virtual machine, whereas we show the benefits of using multiple ones.

20

Chapter 1. Introduction

Secondly, they did not perform a detailed analysis of the runtime behavior

of the trojan, and in particular they did not analyzed the time required

by the sample to activate. Third, they did not explored the possibility of

using memory forensics to recover, at least partially, the valuable content

of the encrypted configuration file. Our system is able to perform memory

forensic analyses. Inspecting the memory dumps generated from infected

machines we can reconstruct part of the list of the WebInject targets, which

are the URLs of the websites monitored by the trojans. This is really helpful

because not all the webinject rules become visible DOM modifications. In

some cases banking trojans just steal what the victim submits in web forms

without injecting new fields. Moreover Prometheus, as explained in Sec-

tion 3.2.2, exploits the knowledge base gained by memory forensic analyses

to rank the most targeted URLs and improve the results of future analyses.

We implemented Prometheus to make it available to users and fellow

researchers through a web application. Through the web interface users

can easily submit samples or URLs, obtain the results of their analyses

and inspect also the results of previous analyses. Indeed, we were able to

implement a crawler that feeds our system continuously with new samples.

We evaluated Prometheus on a dataset of 53 distinct samples of ZeuS

analyzing 62 real, live URLs of banking websites. The results show that Pro-

metheus correctly detects the injections performed by the analyzed trojans

with a low fraction of false positives (0.52%).

We evaluated Prometheus speed performances. Prometheus is able to

process a single URL in about 6 seconds and the analysis of a sample pro-

cessing 62 URLs require about 6 minutes. Since Prometheus has been de-

signed to be asynchronous and to parallelize all the computations, its exe-

cution time depends only on the time required to download the DOMs of

all the web page and it is able to scale directly with the available resources.

In conclusion, Prometheus gives a contribution in the analysis and detec-

tion of WebInject-based banking trojans. Prometheus complements existing

antivirus by offering a helpful tool for malware analysts and bank security

experts that can easily analyze samples, extracting their WebInject config-

uration file, or submit the URLs of their website to check if they are targeted

by some previous analyzed sample.

21

Chapter 2

State of the art

In this chapter we start describing modern banking trojans in general show-

ing the techniques that these trojans exploit, their characterizing features

and the environment in which they are created and diffused (Section 2.1).

Then we describe in details the ZeuS crimeware toolkit as a study case

(Section 2.2). We consider ZeuS as an example because it is one of the most

diffused banking trojan and the majority of its peculiarities are present, in

a similar way, in all the banking trojan families.

After this, in Section 2.3, we report the state of the art of banking tro-

jans detection commenting the limitations of each presented approach.

At the end of the chapter we set the goals of our work announcing the

challenges we faced during the development process (Section 2.4)

2.1 Overview of Banking Trojans

Banking Trojans are malicious programs that aim at stealing banking cre-

dentials in order to perform online financial frauds. Modern banking trojans

are very complex and the process behind their development and diffusion

reached a very sophisticated state. Banking Trojans live in a convoluted en-

vironment that includes development kits, web-based administration panels,

builders, automated distribution networks, and easy-to-use customization

procedures. The most alarming thing is that anyone can buy a malware

builder from underground marketplaces and create a customized sample.

New variants (the most famous examples are ZeuS and SpyEye) are con-

stantly being introduced to avoid detection by antivirus software on the

victim’s PC and to make it difficult for banks and account holders to spot

fraud attempts as they occur. This has been shown by Lindorfer et al. [23],

2.1. Overview of Banking Trojans Chapter 2. State of the art

Figure 2.1: Number of computers com-

promised by banking trojans in 2013

(source [11]).

Figure 2.2: Number of computers com-

promised by banking trojans by country

in 2013 (source [11]).

that measured how these trojans are developed and maintained by the cy-

bercriminals.

Figure 2.1 and Figure 2.2 show the number of computers infected by

banking trojans in 2013. These numbers describe significantly how much

the banking trojans are diffused.

As we said the purpose of these trojans is stealing banking credentials

and any other kind of private information performing MitB (Man in the

Browser) attacks. This type of trojans can intercept data that the victim

types into website forms and for this reason they are also called “Informa-

tion Stealers” and they are the main cause of millions of dollars stolen by

cybercriminals.

In October 2010, the FBI investigation called “Operation Trident

Breach” [21] led up to the arrest of a group of criminals that stole a total

of more than $70 million from bank accounts. The malware used by these

criminals was a version of ZeuS.

The architecture on which information stealers are based is the well-

known centralized botnet architecture. There is a C&C (Command and

Control) server through which the cybercriminal, also called botmaster,

manages all the infected machines that belong to his botnet. All the in-

formation stolen on an infected machine are then sent to the C&C server.

During the years the functionalities of these trojans increased aiming at

evading modern defense mechanisms.

2.1.1 The underground economy

One of the most worrying aspect of the banking trojans problem is that

anyone independently on the skill level can perform financial frauds as the

underground marketplace provides an abundance of resources like a service

industry. Even those that do not have the expertise and the ability to write

24

Chapter 2. State of the art 2.1. Overview of Banking Trojans

an own malware, can simply purchase what they need. The trojans and

services available on the underground markets are different and vary. The

price depends on the features of the trojans, typically starts from 100$ for

an older leaked version to about 3000$ for a new complete version. Fur-

thermore, cybercriminals also offer paid support and customizations, or sell

advanced configuration files that the end users can include in their custom

builds. Custom WebInjects can be purchased for between 30$ and 100$.

Goncharov [15] studied the Russian underground economy of cybercrim-

inals and the results of his investigation demonstrate how much this system

is active and dangerous. He estimated a 2.3 billion dollars market. This [16]

is alarming and represents one of the main threats to financial frauds and

cybersecurity in general.

2.1.2 The fraud scheme

The fraud scheme behind the money stealing process is quite sophisticated

(Figure 2.3). The first step is the malware implementation. Malware writers

implement the malware toolkit and put it on sale on the underground mar-

kets. When a cybercriminal buys the toolkit and creates a customized

sample (or the malware writers themselves create the executable) he starts

spreading the trojan to infect victims. The infection happens mainly in

three ways:

• The first way is called “drive-by download”. The user visits or is

brought to visit a webpage that contains malicious code. The mali-

cious code hosted in the visited webpage often exploit some browser’s

vulnerabilities, or some vulnerabilities of its plugins or third-party ex-

tension, and downloads and executes a malware sample on the victim’s

machine. The user may be brought to a malicious website in many

ways. For example thanks to short links and redirection chains that,

starting from a website bring the user to the final infected website.

In addition most of these malware can be easily spread through so-

cial network and just clicking on them the user can became infected

without being aware of what happened.

• The second way to infect users uses phishing emails. In this scen-

ario the user receives a fake email that pretends to be from trusted

institutions or websites. The email usually contains an executable at-

tachment and the message invites the user to download and install the

executable to increase protection measures, update a software or try

a new “cool” service.

25

2.1. Overview of Banking Trojans Chapter 2. State of the art

• Another way banking trojans infect computers is using fake tools. A

fake tool is an executable that is presented to be a benign application

while it contains malicious code. When a user runs a fake tool he sees

the benign part of the executable that implement the actual functions

the user downloaded it for but, in the background, it executes malicious

code infecting the machine.

While the botmaster keeps spreading his sample infecting more and more

machines he starts performing criminal actions on his bots, that means steal-

ing money from victim’s bank accounts. The stolen money are kept on bank

accounts that are not in the criminals’ name, but they are property of an-

other actor, called “money mule”. Money mules receive the stolen money,

keep part of the sum for themselves and move the rest to the criminals’ real

accounts. In this way the criminals add another layer between themselves

and victims making it very hard to identify the real responsible behind the

fraud. Furthermore, controlling botnets that have thousands of infected ma-

chines located in different countries and continents makes even more difficult

to trace botmasters.

2.1.3 Man in the Browser attacks and WebInject

Financial fraud Trojans use Man in the Browser (MitB) technique to perform

attacks. This technique exploits API hooking and, as the name suggest,

allows the malware to be logically executed inside the web browser and to

intercept all data flowing through it.

Since the last years almost all the banking trojan families have also a

module called WebInject. This module is able to manipulate and modify

data transmitted between an HTTP(S) server and the browser. Once the

victim is infected the WebInject module is placed between the browser’s ren-

dering engine and the API functions that allow to send and receive HTTP(S)

data. In this way this module is effective even in case of an HTTPS connec-

tion, because it can access data after decryption. Exploiting this module a

cybercriminal can inject HTML code to add further fields in forms and steal

the target information. Each WebInject module has an encrypted config-

uration file. It contains a list of webinject rules composed by the targeted

URL, or the regular expression from which URLs are generated, and the

HTML/JavaScript code to be injected.

Recently a new variant of ZeuS was found in the wild. The particularity

of this variant is that it uses images as a decoy to retrieve its configuration

file. It exploits steganography techniques to hide the encrypted configuration

file inside apparently normal jpg images [27].

26

Chapter 2. State of the art 2.1. Overview of Banking Trojans

Figure 2.3: The fraud scheme (source [13]).

27

2.1. Overview of Banking Trojans Chapter 2. State of the art

Figure 2.4: Example of a real injection on the login form in a web page of online-

offshore.lloydstsb.com.

Figure 2.5: Scheme of the WebInject Hooking mechanism.

Man in the Browser attack scheme reminds the phishing attacks but

in this case there is no fake website and the manipulation happens on the

victim’s machine at the presentation layer. The attacker does not need to

host and maintain a fake website. This guarantee to the attacker much more

effectiveness and flexibility than phishing.

In Figure 2.4 it is shown a case in which the WebInject module injected

additional input fields in the login form of a banking website.

The goal of the attacker is to inject new fields in forms, in order to steal

the target information, but without altering the main aspect of the web

page so that the victim does not suspect that a fraud is happening. For

this reason the webinject rules often target only a small portion of a web

page. The syntax to define WebInjects follows simple rules, as shown in

Section 2.2.2.

28

Chapter 2. State of the art 2.1. Overview of Banking Trojans

2.1.4 Hooking mechanism

Information stealers use userland rootkits techniques to intercept and ma-

nipulate web traffic. The malware injects code into the web browser process

on start up and installs code hooks for API functions of the system libraries

loaded by the process. An example of API functions hooked by the Trojan

ZeuS version 2 inside the web browser Microsoft Internet Explorer is shown

in Table 2.1.

By hooking high-level API communication functions in user-mode code,

the trojan can more conveniently intercept data than traditional kernel-

rootkit with keyloggers and is able to intercept web data after it gets de-

crypted and before it gets encrypted again (Figure 2.5).

There are different ways to hook API functions in a Windows operating

system: inline hooks, import address table (IAT) hooks, export address

table (EAT) hooks and hook techniques to manipulate the windows loader

mechanism.

Inline hooks

This is the most common method and it is based on overwriting code bytes

of an API function with a jump instruction that point to a code section con-

trolled by the trojan. Typically the first five bytes are overwritten (Brues-

cher et al. [7]).

Import address table hooks

This technique modifies the import address table (IAT), which is used by

processes to obtain the position of functions or variables that are imported

from dynamically loaded libraries. IAT hooks overwrite the original destin-

ation of an imported API function and point it to code controlled by the

malware (Bruescher et al. [7]).

Export address table hooks

The export address table (EAT) of a module contains the addresses of all

API functions exported by that module. As for IAT hooks this technique

overwrites the corresponding function address in the table (Bruescher et

al. [7]).

29

2.1. Overview of Banking Trojans Chapter 2. State of the art

LIBRARY API

wininet.dll HttpQueryInfo

wininet.dll HttpSendRequest

wininet.dll HttpSendRequestEx

wininet.dll HttpSendRequestExW

wininet.dll HttpSendRequestW

wininet.dll InternetCloseHandle

wininet.dll InternetQueryDataAvailable

wininet.dll InternetReadFile

wininet.dll InternetReadFileEx

ntdll.dll NtCreateThread

ntdll.dll NtCreateUserProcess

ntdll.dll LdrLoadDll

ws2 32.dll closesocket

ws2 32.dll send

ws2 32.dll WSASend

kernel32.dll GetFileAttributesExW

user32.dll GetCursorPos

user32.dll OpenInputDesktop

user32.dll SwitchDesktop

user32.dll DefWindowProc

user32.dll DefDlgProc

user32.dll DefFrameProc

user32.dll DefMDIChildProc

user32.dll CallWindowProc

user32.dll RegisterClass

user32.dll BeginPaint

user32.dll EndPaint

user32.dll GetDCEx

user32.dll GetDC

user32.dll GetWindowDC

user32.dll GetUpdateRect

user32.dll GetUpdateRgn

user32.dll GetMessagePos

user32.dll SetCursorPos

user32.dll SetCapture

user32.dll ReleaseCapture

user32.dll GetCapture

user32.dll GetMessage

user32.dll PeekMessage

user32.dll GetCapture

user32.dll TranslateMessage

user32.dll GetClipboardData

nspr4.dll PR OpenTCPSocket

nspr4.dll PR Close

nspr4.dll PR Read

nspr4.dll PR Write

crypt32.dll PFXImportCertStore

Table 2.1: APIs hooked by ZeuS inside the web browser Microsoft Internet Explorer

30

Chapter 2. State of the art 2.1. Overview of Banking Trojans

Figure 2.6: Scheme of the common attacks that involve a malicious mobile component

to steal OTP codes from mobile phones.

Other hooking techniques

Other examples of rarely used hooking techniques are exploited when an

infected parent creates a child process. It is also possible to use several

combinations of any of the above mentioned hooking methods.

2.1.5 The Automatic Transfer System

Another dangerous feature that some banking trojans present is the so called

Automatic Transfer System (ATS). The ATS emerged since 2012 and it con-

sists in a more sophisticate WebInject module. In fact it is able to auto-

matically perform money transaction or modify user’s transaction changing

the amount and the recipient on the fly. Unlike WebInject files that show

pop-ups or insert form fields to steal victims’ credentials, ATS remains invis-

ible. It does not display any visible modification but performs several tasks

such as checking account balances and conducting wire transfers using the

victims’ credentials without alerting them and hiding traces of its presence.

2.1.6 Man in the Mobile

In order to fight the credential stealing problem most of the financial insti-

tutions and banks proposed two-factor authentication. This kind of authen-

tication requires users to provide a one time password (OTP) in addition to

the usual username password pair. This one time password is sent to the

user’s mobile phone by SMS and it is valid once and just for a short limited

amount of time. In the case an attacker steal the user’s credential he cannot

complete transaction without the OTP. Even if an attacker gets an OTP

31

2.1. Overview of Banking Trojans Chapter 2. State of the art

from an infected machine after that the user has submitted it in a form it

will be useless because expired.

Since this authentication mechanism is by now quite common, in the last

two years most of the banking trojans toolkit have been diffused including

a mobile component. This mobile component works in tandem with the PC

versions and can access all the information in the user’s phone, including

SMS, and send it to its C&C server. This attack scheme is called Man in

the Mobile (MitMo). The usual scheme to perform this attacks defeating

the two-factor authentication is shown in Figure 2.6 and follows these steps:

• The first step is to infect the victim’s PC according to the process

described above.

• Once the victim’s PC is infected, when the victim visits his online

banking website the trojan steals his credentials and inserts a message

in the web page that invites the user to download and install a new

mobile application to be able to access his account even from mobile

phone. This step is usually performed inserting in the web page a QR

code that points to the malicious application’s download.

• When the victim downloads and installs the mobile malware his phone

is compromised. The mobile malware can now intercept all the SMS,

silently avoid the system notification and remove them after they have

been sent to the C&C. In this way the attacker manages to steal the

OTP hiding the SMS arrival to the victim.

2.1.7 A new Target: Bitcoin

During the last years new versions of banking trojans targeted Bitcoin wal-

lets [9]. The interest in Bitcoin has grown substantially in 2013, particularly

since the exchange rate for one Bitcoin rose to over 1000$ in November 2013.

Over the last few years, malware authors have developed trojans that com-

promise Bitcoin wallets stealing the local stored files of the offline wallet

and/or passwords to access online Bitcoins.

We expect a further growing interest from attackers in this digital cur-

rency, especially because Bitcoin’s value is currently increasing.

32

Chapter 2. State of the art 2.2. The ZeuS Crimeware Toolkit

2.2 The ZeuS Crimeware Toolkit

ZeuS, also known as Zbot, is the most diffused family of banking trojans. It

was detected for the first time in 2007 and during the last years it spreaded

massively and captured media attention especially when police arrested sev-

eral botmasters that had stolen millions of dollars from bank account.

In January 2013, a 24-years old Algerian man, Hamza Bendelladj, known

as “bx1” was arrested for financial frauds running a ZeuS botnet [22].

Bendelladj admitted that with just one transaction he could earn 10 to

20 million dollars.

Since the ZeuS 2.0.8.9 source code1 was stolen and leaked to the under-

ground community in May 2011, nearly every banking trojan contains ZeuS

features. The relative maturity and broad success of ZeuS has provided a

model in the weaponization and development of other families of banking

trojans.

Current versions of ZeuS can infect almost all Microsoft’s operating sys-

tems targeting principally Internet Explorer and Mozilla Firefox browsers.

However recent variants of ZeuS and other trojans are able to perform web

injections also in Google Chrome and Opera.

In December 2013 a 64-bit version of ZeuS was found in the wild [25].

This demonstrate one more time that the malware authors constantly main-

tain and update their malware adapting them to the evolving technologies.

The ZeuS toolkit includes also a mobile component, Zitmo (ZeuS in

the mobile), which targets Android mobile phones and acts as explained in

Section 2.1.6.

When a victim machine gets infected ZeuS performs a sequence of actions

in order to take control of the machine.

1. ZeuS executable first of all creates a directory and copies itself in there.

Both the directory and the file name are generated randomly.

2. It then insert keys in the system registry so winlogon.exe spawns the

process at startup time.

3. It injects malicious code into other process (e.g., winlogon.exe, ex-

plorer.exe, svchost.exe) and starts new thread executing its malicious

code, so the main process can terminate.

4. It creates a folder to store configuration files and stolen data.

1https://bitbucket.org/davaeron/zeus/

33

2.2. The ZeuS Crimeware Toolkit Chapter 2. State of the art

Figure 2.7: Login page on the website of SBTOnline advices to use the virtual keyboard.

5. It injects new malicious code inside the processes responsible for net-

work communications and hooks Internet-related APIs.

6. It steals saved credential (e.g., cookies, certificates, browser’s pass-

word)

7. It downloads the configuration file from the C&C server.

2.2.1 Keylogging, formgrabbing, screenshotting and click-

grabbing

The basic feature ZeuS presented in his first version was keylogging. This

technique consists in storing in a file each keystroke the user inputs and

sending the file containing all the recorded keystroke to the botmaster. Even

though this technique is very effective, there are situations in which input

data can not be intercepted, for example when the user copies and pastes

data from a file or when the user select an option from a menu that does

not require any data typed on keyboard.

Another feature is the form-grabbing. The “FormGrabber” is a module

that can be configured to intercept and steal data that the user submits into

the form fields of websites.

As a defense mechanism against form-grabbing some banks provided an

on-screen keyboard written in JavaScript in the login page (Figure 2.7). In

this way during the login phase the user does not have to type his credential

on the physical keyboard but he needs just to click on the letters of the

virtual keyboard that is shown on the bank’s web page.

The malware authors answered to this mechanism implementing two

more features: screenshotting and clickgrabbing. The first one allows the

attacker to take screenshots of the victim’s PC during the login phase. The

second one is able to track and record the mouse position when the user

clicks.

34

Chapter 2. State of the art 2.2. The ZeuS Crimeware Toolkit

2.2.2 Components

The ZeuS toolkit is released and sold in the underground markets with all

its components and with a user manual that explains how to set up each

component. Cybercriminals also offer paid support for update and personal

customization. The main components of the toolkit are the following:

• The builder is the program that generate the customized sample ex-

ecutable. It is written in C++ and it has a GUI that allows to generate

the executable with just a couple of clicks. During the generation of

the sample, the botmaster set an encryption key and other parameters

that are hardcoded and obfuscated in the bot executable. The builder

encrypts also the configuration file that is uploaded to the C&C server

and distributed to the bots.

• The configuration file contains the information needed to commu-

nicate with the C&C server, the URL where to download the encrypted

configuration file, the key to encrypt and decrypt the configuration file

and the traffic to and from the server.

• The webinject.txt file contains the rules to perform injections as

explained in Section 2.1.3. Each rule is defined by:

– set url ; it specifies the URL the webinject refers to. It can be a

regular expression that generates more URL of the same host and

it can also contain special characters and parameters that specify

the conditions under which the injection is enabled;

– data before; it specifies the hooking point inside the page where

the HTML code is injected. As the previous field also this one

allows special characters and regular expressions in order to in-

crease chances for a successful injection;

– data inject ; it specifies the actual code to inject. It can contain

scripting code;

– data after ; it specifies in another way a hooking point;

– data end ; it is used to close each code part.

Listing 2.1 shows a portion of a real leaked ZeuS webinject.txt.

s e t u r l https : //www. bbvane t o f f i c e . com/ loca l bdno /

l o g i n bbv an e t o f f i c e . html GP

data be f o r e

name=”password”∗<tr>

data end

35

2.2. The ZeuS Crimeware Toolkit Chapter 2. State of the art

Figure 2.8: A screenshot of the control panel of ZeuS (source: abuse.ch).

da t a i n j e c t

</tr>

<tr><td he ight=”20” c l a s s=”c”>Firma

:</td></tr>

<tr><td he ight=”20” c l a s s=”c”><input type=”password” name

=”ESpass” s i z e =”16” maxlength=”9” onkeyUp=”j a v a s c r i p t

: cuenta (’pwd ’) ; ” tabindex=”2”></td></tr>

<tr>

data end

da t a a f t e r

data end

da ta be f o r e

name=”btnEntrar ”

data end

d a t a i n j e c t

OnClick=” j a v a s c r i p t : i f (document . forms [0] . ESpass . va lue .

l ength < 3) {

a l e r t (’ Debe i n t r odu c i r l a Firma ’) ; r e turn f a l s e ;

}”

data end

da t a a f t e r

data end

s e t u r l https : //www. we l l s f a r g o . com/∗ G

data be f o r e

<input type=”password”∗

data end

d a t a i n j e c t

<l a b e l f o r=”atmpin”>ATM PIN</l abe l >:</strong

36

Chapter 2. State of the art 2.3. Banking Trojan detection

>

<input type=”password” acce s skey=”

A” id=”atmpin” name=”USpass” s i z e =”13” maxlength=”14”

s t y l e=”width :147 px” tabindex=”2” />

data end

da t a a f t e r

data end

Listing 2.1: Portion of a real leaked ZeuS webinject.txt

• The C&C control panel is the management component, written in

PHP, installed on the C&C (Figure 2.8). It is the centralized part

that manages and communicates with all the bots. It stores the stolen

data received by the bots and provides an interface through which

the botmaster can handle his bots. It allows to get statistics about

the botnet, such as connected bots, information about each bot and

it provides a mechanism that allows the botmaster to easily write

scripts and send them to the target bots. They allow to perform any

functionality a bot master may think of: rebooting or shutting down

the remote OS, stealing files, updating the bot and its configuration

file, enabling or disabling some of its features. From the server it is

also possible to enable or disable BackConnect, a feature that allows

to use an infected machine as a SOCKS proxy, circumventing firewalls

and NAT restrictions.

2.3 Banking Trojan detection

The current number of different existing banking trojan samples is huge.

New banking trojans families and new versions of already existing families

are continuously released and, as we have seen above, each specific trojan can

be customized and obfuscated generating millions of different executables.

In addition also the custom configuration files are encrypted and embedded

in the final executable. For this reasons analyzing manually all the samples

is a mission impossible even for a great number of malware analysts and

automatic mechanisms to extract configuration files from sample or, more

simply, to detect the activity of an infected machine are needed.

2.3.1 Antivirus detection

Antivirus software are continuously fighting information stealing malware.

The main problem is that they can offer an acceptable detection rate only

after having some time to issue new signatures while they fail in detecting

37

2.3. Banking Trojan detection Chapter 2. State of the art

fresh malware samples. This allows cybercriminals to evade signature detec-

tion updating regularly their sample executable. Furthermore, as explained

in detail in Binsalleeh et al. [5], ZeuS executables, like most of the modern

malware executables, are packed and obfuscated. Each sample executes dif-

ferent deobfuscation routines when it is executed. This makes really hard

for antivirus software to achieve an acceptable detection rate on the basis of

static signatures also because the packers and crypters used by the attackers

are vary and constantly updated.

For instance, as of Aug 5, 2014, according to ZeuS Tracker2 there are

7,852 distinct variants that are yet to be included to the Malware Hash

Registry database3. This high number of variants results in a low detection

rate overall (39.83% as of Aug 5, 2014).

Another limitation of Antivirus software is their inconsistent malware

characterization as shown in [4]. The reason for this is that antivirus vendors

are interested in reliable detection but only partly in naming the detected

threat correctly. In most cases the vendor just wants to provide some name

to the user. A more reliable classification can be achieved using dynamic

signatures and behavioral information on the interaction between an applic-

ation and the operating system.

2.3.2 Reverse Engineering

Reverse engineering is one of the oldest and most effective technique to ana-

lyze malware samples, even if they are obfuscated and embed encrypted

configuration files. However reverse engineering is too time-consuming and

requires a big effort. Sometimes malware present some vulnerabilities (e.g.,

SQL injection, weak cryptography) that can be leveraged to speedup the

reverse engineering process or to extract the encrypted information hard-

coded in the executable. This is the case of Ricciardi et al. [26] that found

a vulnerability in the ZeuS internal cryptography scheme and exploited it

performing a chosen-plaintext attack to recover the key used in the com-

munication between ZeuS and its C&C. The attack is based on the fact

that ZeuS malware does not update the RC4 initialization vector, exposing

its communications to key reuse attacks. By executing a ZeuS sample in a

controlled environment it is possible to perform a chosen-plaintext attack

controlling, on the infected machine, the cookies and other information (e.g.,

computer hostname, user credentials) that will be sent after the infection

phase.

2https://zeustracker.abuse.ch/statistic.php.
3http://www.team-cymru.org/Services/MHR/

38

Chapter 2. State of the art 2.4. Challenges and Goals

Binsalleeh et al. [5] performed a complete reverse engineering of the

ZeuS crimeware toolkit v.1.2.4.2 explaining the functionalities of each its

component and focusing particular attention on the deobfuscation routines

done by the malware when it is executed.

In [18] a reverse engineering of both SpyEye and ZeuS is presented. It

gives a detailed overview of the hooking and the process injection mechanism

of both the malware providing a comparison between the two families.

All these approaches based on a the reverse engineering of malware bin-

aries are effective and useful to understand the activity of malware, extract

the main features that can be used in the detection systems or to identify

vulnerabilities. However the principal drawback of this modus operandi is

the lack of generality. Often the results obtained by reverse engineering are

valid only for the specific malware family and/or version and require a big

effort to be adapted to different releases.

2.3.3 Other related work

Other works have been done regarding analysis and detection of banking

trojans and WebInject. Bruescher et al. [7] proposed a different approach

to identify WebInject based information stealers. The idea of the authors is

similar to the usual rootkit detection, that means the detection of API hooks

in common libraries. In particular the signatures are generated looking at

hooks in browser and Internet related APIs. The objective of the proposed

system is to search for code injection or modification inside Windows In-

ternet related libraries. Furthermore, since the list of API function hooks

is different for most of the trojan families this approach can be used also

for classification. To prevent false positives detection of legitimate software

they inspect the destination of each hook and check if the pointed module

is trusted and correctly signed.

The limitation of this detection approach is the strong dependence on the

version of the trojan, on the operating system and on the hooked browser.

Different trojans or future releases could change the list of API functions to

hook or target another browser that use different libraries.

2.4 Challenges and Goals

In Section 2.3 we discussed the limitations of the current techniques to detect

and extract encrypted information from banking trojans. The objective of

our work is to propose a different approach based on a common feature

present in all the banking trojans, the WebInject.

39

2.4. Challenges and Goals Chapter 2. State of the art

Our work takes inspiration from the previous work of Criscione et al. [10].

We started from their results, which show that the adopted detection ap-

proach is sound, and we extended and engineered their work into a more

complete prototype system, Prometheus.

The objectives of this work are the following. First, we want to develop

a platform for analyzing banking trojans based on the idea proposed in

Criscione et al., 2014, [10]. Differently from previous work in the field, we

want to analyze banking trojans at high level of abstraction, completely

independent on their implementation details. The key idea, proposed in

Criscione et al., 2014, [10], is to analyze banking trojans exploiting the visible

DOM modifications that they cause in the HTML pages. Comparing DOMs

downloaded in clean machines with those downloaded in infected machines

we want to generate signatures and extract the modifications reconstructing

the WebInject configuration file.

Second, we want to guarantee low false positives. Comparing DOMs

downloaded from multiple clean machines, we want to discard all the le-

gitimate differences of a web-page due, for example, to server-side scripts

and advertisement inclusions. This is not an easy task as nowadays most of

the web pages are formed almost entirely by JavaScript and highly variable

contents.

Third, we want to reduce the number of VMs needed in order to achieve

the same level of precision reached by Zarathustra [10]. This implies a

considerable improvement of the performance. However, since guaranteeing

low false positives requires an high number of VMs, the challenge towards

this goal is to design and implement a new set of heuristics to reduce the

false positive rate.

Further, we want to combine the web-page differential analysis with

memory forensic analysis in order to recover, at least partially, the valu-

able content of the encrypted configuration file and to exploit it to check

and validate the results of the web-page differential analysis. We do not want

to rely on any implementation details of a specific banking trojans’ family.

We want to provide an automated extraction mechanism that is as general

as possible. Moreover, since the information we look for are not placed in

fixed memory locations, we need to develop an automated mechanism able

to scan the entire memory and extract only the correct information without

generating false positives.

Another goal is to guarantee good performance, that means a low ex-

ecution time required to analyze malware. The critical point that mostly

affects the performance of the proposed system is the high number of VMs.

40

Chapter 2. State of the art 2.4. Challenges and Goals

However, as we said, we need a lot of VMs in order to correctly discard

legitimate differences. Therefore, a further challenge of this work consists

in evaluating the trade-off between performance and false positive rate.

Finally, we want to implement our system to make it available to users

and fellow researchers through a web application.

41

Chapter 3

Prometheus: the approach

In this chapter we introduce the approach on which Prometheus is based.

Section 3.1 provides a general view of the approach, Section 3.2 shows

the two kinds of analysis that we conduct, then Sections 3.3.1, 3.3.2 and 3.3.3

provide a deeper look into the three main phases of the approach.

We reserve more architectural and implementation details for the next

chapter.

3.1 Proposed Approach

For one of the main features of our work we take inspiration from Zarathus-

tra [10], a tool developed at the NECSTLab of Politecnico di Milano. Za-

rathustra was a proof of concept to detect the behavior of any “WebInject-

based information stealer” (WBIS) by looking at the evidence of Webin-

jects in the targeted websites. This approach do not take in consideration

any implementation details of the information stealer analyzed. For this

reason from now on we will talk of WBIS in their most general interpreta-

tion without taking into account any implementation detail. A WBIS is any

kind of malware which employs a mechanism in order to change the content

of a web page injecting some extra contents in the (decrypted) data that

transits between the network layer and the rendering engine of a browser.

In Prometheus we completely reimplemented Zarathustra integrating its

analysis results in a comprehensive web service. We completely rethought

Zarathustra heuristics at an high level of abstraction. As we will show

in Chapter 5 this approach leads us in drastically reducing the number

of VMs needed in order to achieve the same level of precision reached by

Zarathustra. This result is due to the nature of our heuristics which belong

3.2. Prometheus Analyses Chapter 3. Prometheus: the approach

more from a formal characterization of a webinjection than from a noise

filtering process. In addition to [10] we also integrated a memory forensic

inspection mechanism in order to retrieve from the memory dump of an

infected VM some useful information. These information allows Prometheus

to rank the most targeted URLs and improve the results of future analyses.

The base approach of the webinjections detection process consists in

starting two virtual machines, then infecting one of them with the malware,

downloading a page from a targeted site on both the machines and then

comparing the two downloaded DOMs. On one hand, this approach is quite

simple and has the main advantage to be easily scalable and automatable,

on the other hand is very naive and could lead to high values of false posit-

ive rate. In fact there are a lot of cases in which the content of a web page

may vary legitimately, for example this could be due to server-side scripts,

advertisement inclusion that may change or include content that varies dy-

namically. For this reason we run the analyses on multiple machines in order

to be able to discard the legitimate differences that occur between two or

more clean machines. Moreover, to reduce false positive rate, we designed

and implemented four heuristic-based filters.

As we said above, we combine this high level approach with a memory

forensic inspection that allows us to extract from memory dumps, retrieved

from an infected VM, the regular expressions, contained in the encrypted

WebInject configuration file, that describe the WebInject targets. At the

end of the analyses we check if any of the URLs stored in the database

match any of the extracted regular expressions. The matches allow us to

obtain information about the most targeted URLs. This information is

used, in future analyses, to select and process the URLs that are most likely

to be targeted. Moreover, relying on some implementation details of the

most common WBIS we are able to extract from infected memory dumps

also other useful data like the cryptographical keys used to encrypt the

WebInject configuration file and the connection to the C&C.

These approaches are combined in a web service platform in which users

can easily upload malware’s sample or submit a certain URL and dynamic-

ally get the results of the analysis. The web interface also allows to navigate

through old analysis looking at their results and inspecting the dumped

DOMs.

3.2 Prometheus Analyses

Prometheus can conduct two kind of analyses: URL analysis and sample

analysis.

44

Chapter 3. Prometheus: the approach 3.2. Prometheus Analyses

Figure 3.1: I/O Scheme of the URL analysis. It takes in input the URL and returns to

the user the list of injections found for each processed sample and the regular expressions

the URL matches.

3.2.1 URL analysis

The objective of the URL analysis is processing the submitted URL infecting

the VMs with the last submitted samples, checking if the DOM of the web-

page has been modified by some of them and returning to the user the list

of injections found for each selected sample. The number of samples to

be considered for a URL analysis is set in the configuration file but it can

also be chosen by users during the submission. In particular Prometheus

behaves as follow. When a new URL is submitted Prometheus checks if it

matches any of the previously extracted regular expressions and selects for

the analysis those samples from which the regular expressions have been

extracted. At the end of the analysis Prometheus returns to the user the

list of injections found for each selected sample and the regular expressions

the URL matches (Figure 3.1).

This kind of analysis is thought to be useful for website administrators

which would like to know if their site is targeted by a man in the browser

attack. From the results of the analysis they can know if there is some

active sample effectively targeting their page and what are the injections.

Furthermore looking at the list of regular expressions they can have insights

on which other pages can be targeted by the samples.

Moreover, every submitted URL is permanently added to our URLs data-

base and it can be selected to be processed for sample analyses on the base

of the ranking explained in the next Section.

3.2.2 Sample analysis

The sample analysis runs the submitted sample while visiting a list of URLs.

Figure 3.2 shows the basic I/O scheme of the sample analysis. Once the user

submits a sample Prometheus starts the analysis and interactively returns

the results to user through the web interface. On the result page the user can

45

3.3. System Overview Chapter 3. Prometheus: the approach

Figure 3.2: I/O Scheme of the sample analysis. It takes in input the sample and

returns to the user the list of injections found for each processed URL and the in-

formation extracted through the memomry forensic analysis (regular expressions, RC4

cryptographical keys, C&C address).

retrieve the injections that the analyzed sample produced on every analyzed

page. The number of URLs to be processed in a sample analysis is set in

the configuration file.

Furthermore, together with the webinjections detection process, Pro-

metheus performs a memory forensic inspection in order to search and ex-

tract from infected memory dumps the WebInject targets and the crypto-

graphical keys. The extracted WebInject targets are then used to check

if any of the processed URLs match any of them. This allows to validate

the results of the web-page differential analysis and to obtain information

about the most targeted URLs. More precisely, Prometheus exploits the

knowledge base created from past memory analyses to select, for the fu-

ture sample analyses, the URLs that are most likely to be targeted. URL’s

likelihood is taken from the previously analyzed samples; in fact the more

the system found, in the memory of infected VMs, regular expressions that

match with a certain URL the more that URL is likely to be targeted also

by other samples. In this way we generate a ranking of the URLs that is

constantly updated after each analysis.

This kind of analysis is thought to be mainly used by malware analysts

which find malware in the wild and are interested in retrieving as much in-

formation as possible. With our system analysts are able to detect WebInject

based information stealers and to retrieve an almost complete summary of

the WebInject configuration file of the sample they submitted, reducing to

zero the whole effort in reversing and decrypting the malware.

3.3 System Overview

Both the sample and the URL analysis process can be described in three

phases: Data Collection, Data Processing and Results. The main difference

46

Chapter 3. Prometheus: the approach 3.3. System Overview

Figure 3.3: Overview of the sample analysis. The web-page differential analysis and

the memory analysis are performed in parallel. Both the analyses follows the three

phases described in Section 3.3. The overview of the URL analysis is the same with

the exception that no memory analysis is performed.

is represented by the memory forensic analysis that is performed only in

the case of a sample analysis. Figure 3.3 shows the overview of the sample

analysis with all its phases. The following sections provide an high-level

explanation of the three Prometheus phases.

3.3.1 Phase 1: Data Collection

During the data collection phase our system retrieves two kinds of data: the

DOMs and the memory dump. For the DOMs retrieval it starts a certain

number of VMs, half of which are infected with the sample to be analyzed,

and visits the list of selected URLs on each VM. For the memory dumps,

Prometheus starts another VM, opens the browser and dumps its memory.

DOMs Collection

In this phase, Prometheus processes a list of URLs to analyze and visits each

of them on several clean and infected VMs, specified by the user during

47

3.3. System Overview Chapter 3. Prometheus: the approach

the submission. For each visited URL Prometheus dumps its DOM and

stores it. Since there are a lot of cases in which the content of a web page

may vary legitimately, this could be due, for example, to server-side scripts

or advertisement inclusions that may change or include content that vary

dynamically, the DOMs collection phase should be performed on multiple

machines some of which have to be infected with the submitted malware

and the others left clean. This allows, during the results elaboration, the

elimination of legitimate differences that occur between two or more clean

VMs. When this phase terminates, the doms directory contains all the

dumped DOMs and the database has an entry for each DOMs.

Memory Dump

In this phase Prometheus executes a further VM, infects it with the submit-

ted sample and dumps its memory. We use a separate VM for the memory

analysis because visiting many URLs, as the other machines do, can gen-

erate false positives as the URLs are stored in memory and they could be

wrongly detected as WebInject targets. To get the WebInject targets we

are looking for, Prometheus waits for the sleep time and opens the browser

inside the VM in order to let the malware loads the WebInject targets in

memory. This is fundamental because the regular expressions that specify

the sample’s targets are allocated in the process address space of the browser

and if it is not executed we will not find any of them. At the end of this

phase we get the memory dump stored as a file.

3.3.2 Phase 2: Data Processing

During the second phase of our approach Prometheus compares the DOMs,

referring to the same URL, downloaded by different VMs and extracts the

WebInject targets from the memory dump obtained in the previous phase.

DOMs Comparison

After the collection phase the dumped DOMs have to be compared. What is

important to highlight is that Prometheus has been designed to parallelize

the computations and to execute them as soon as the required data are

available. This means that the DOMs comparison phase starts as soon as

the first DOMs are downloaded and so it is partially overlapped with the

DOMs collection phase.

In this phase we consider “clean DOMs” those downloaded by a clean VM

and “infected DOMs” those downloaded by an infected VM. The comparis-

48

Chapter 3. Prometheus: the approach 3.3. System Overview

ons concerning each URL are done considering one clean DOM as reference

and comparing all the others with that one. All the differences found are

then appended into two lists (black and white) depending if the compared

DOM is clean or infected. Every difference is composed by three elements:

- Type: The nature of the difference (deletion, insertion, modification

etc.).

- XPath: The xml path to the node which is affected by the difference.

- Content: The value of the difference (e.g., in the case of a node inser-

tion the content is the HTML node inserted with all his attributes).

At the end of this phase for each processed URL the blacklist and the whitel-

ist contain all the differences output by the comparisons.

Memory inspection

When the infected memory dump is generated it is inspected in order to

extract the WebInject targets and the RC4 cryptographical keys. The in-

spection is performed thanks to some forensic tools (Volatility and YARA)

properly extended and customized. The approach is based on the definition

of some regular expressions to scan the memory dump. Doing so we are able

to recover a complete list of the WebInject targets, the RC4 cryptographical

keys used for the encryption of the WebInject configuration file and of the

connection to the C&C server and the address of the C&C server.

3.3.3 Phase 3: Results Elaboration

In the third phase of our approach Prometheus filters out the legitimate

differences employing four heuristics. Moreover, it exploits the information

extracted by memory analysis in order to update the URLs ranking.

Differences Filtering

The two lists of differences produced in the previous phase are filtered ac-

cording to some heuristics in order to eliminate the legitimate differences,

toward reducing false positives. After the filtering process the differences

remaining in the blacklist are those considered as malicious webinjections.

We designed and implemented the following four heuristic-based filters:

1. In certain pages there may be some nodes that change very often

their contents (calendar, clock, advertisement and so on). This kind

49

3.3. System Overview Chapter 3. Prometheus: the approach

of nodes generate a lot of differences that refer to the same node but

with different content, and in particular they are present in both the

blacklists and the whitelist. For this reason we remove from the black-

list all the differences that have the same Type and the same XPath

of a difference belonging to the whitelist. For example in the case of

a web-page containing an advertisement that dynamically change its

message, thanks to this filter we are able to discard the differences

that it causes.

2. In other pages may happen that some nodes with a fixed content (for

example, and mostly, Javascript) sometimes are omitted or located in

different places inside the webpage. We remove from the blacklist all

the differences that have the same Type, the same last node in the

XPath and the same content of a difference in the whitelist (in par-

ticular this heuristics is adopted as preparation for the application of

the next one). For example in the case of a web-page containing an

advertisement that presents a fixed content but that is loaded dynam-

ically in different positions of the page, thanks to this filter we are able

to discard the differences that it causes.

3. Since malware authors are interested in inserting new elements, in

order to steal data from the victims, we are interested in looking only

at those differences that are insertion or modification of something.

For this reason all the differences that imply other mechanisms (like

for example deletion of nodes) are filtered out. Moreover we filter out

all the differences that regard harmless attribute (value, class, width,

height, sizset, title, alt).

4. A typical injection has the following characteristics: it is present

mostly in all the infected machines but it is never present on the

DOMs downloaded by clean machines. An injection will always in-

ject the same content and will inject it in the same node, even if the

node changes his XPath in the DOMs downloaded by different VMs.

So a typical webinjection will always refer to the same last node of an

XPath that may vary somehow. Hence the idea is to filter out all the

differences that are not present (with the same Type, the same last

node of the XPath and the same content) in all the injected DOMs.

However, sometimes may happen that on a certain VM the malware

does not activate itself because malware authors take counter meas-

ures to prevent dynamic analysis, so, if the malware activation time

is randomized, it may happen that a sample manifests its behavior

50

Chapter 3. Prometheus: the approach 3.3. System Overview

Figure 3.4: Graphical explanation of differences comparison and filtering: DOM1 is

the Reference DOM for a given URL; DOM2 is a DOM dumped from a clean VM for

the same URL; DOM3 and DOM4 are two other DOMs dumped from infected VMs

again for the same URL. The differences produced by the comparisons shown are then

filtered. Being present in another clean DOM the red difference is discarded. Also the

blue difference is discarded because it is not present in all the infected DOMs

only in a subset of the VMs. For this reason we consider a threshold

ε (configurable at submission time), and we filter out all the differ-

ences that are not present in at least ε% of the infected DOMs. While

this approach could theoretically bring to false negatives, this never

happened during the evaluation (Section 5.4.2).

Regular Expression Matching

Once Prometheus has extracted all the useful information from the memory

dump it stores them in the database. Furthermore for every regular expres-

sion found Prometheus checks if it has some match with the URLs present

in our database, that are the URLs used for the sample analyses. Finally,

the full list of matches is stored in the database.

51

3.4. The Crawler Chapter 3. Prometheus: the approach

Figure 3.5: ZeuS tracker monitored page.

In this way every time a new analysis is performed its results are used

to improve future analyses. In fact, as already explained in Section 3.2.2,

during the analysis the VMs are programmed to visit a certain number of

URLs. The URLs that Prometheus select to be processed in order to perform

the analysis are those one that are most likely to be targeted by samples.

URL’s likelihood is taken from the malware’s samples previously analyzed;

in fact the more the system found, in the memory of infected VMs, regular

expressions that match with a certain URL the more this URL is likely to

be targeted.

3.4 The Crawler

Another important component of Prometheus is the crawler which automat-

ically retrieves from ZeuS tracker [2] and SpyEye tracker [1] (Figures 3.5,3.6)

new malware’s samples uploading them on the web service, in order to keep

updated our sample dataset. The two sites mentioned above are two of the

most important malware trackers which offer to the analysts’ community a

great service collecting all the reports about new malware’s samples active

in the world. Once the malware has been reported on a tracker it has a

short life, because either the malware owner remove it, or the owner of the

server that unlawfully host the C&C server destroys it. For this reason it

is very important to analyze active samples as soon as they are reported,

obviously keeping this procedure automated will lead in having best results

in analyzing the largest possible quantity of active samples and in keeping

our database of regular expressions and URLs always fresh and updated in

respect to the status of interest of the malware authors.

52

Chapter 3. Prometheus: the approach 3.4. The Crawler

Figure 3.6: SpyEye tracker monitored page.

53

Chapter 4

Prometheus: implementation

In this chapter we introduce the architecture of Prometheus. We show how,

referring to the approach expressed in Chapter 3, we developed Prometheus

giving a better view of all the implementation details.

In Section 4.1 we provide a quick overview on the whole system, which

can be considered divided in four parts: the web front-end, the back-end,

the sandbox system Cuckoo and the crawler. These components will be

analyzed into details in the next sections.

Section 4.4 gives a quick overview on Cuckoo, the sandbox system we

decided to use to manage the VMs’ execution.

In Section 4.5 we go deep into the details of the implementation of the

system’s back-end which is essentially the core of Prometheus, while in Sec-

tion 4.7 we introduce the web front-end.

Section 4.8 explains the second kind of interaction we have with the back-

end, the one given by the crawler which automatically submit new analysis

to our system.

4.1 The Overall Architecture

As said before the whole system (Figure 4.1 and 4.2) is composed by four

parts. The central part is the back-end. Its main objective is to receive as

input the specification of the submitted analysis, then schedule it managing

the available resources (VMs), interact with the sandbox system, receive

the dumped DOMs from the virtual machines, receive the dumped memory

from the virtual machine devoted to memory analysis, process the data in

the way explained at the end of Chapter 3 and output and store the results.

When partial results are ready the back-end notifies the web client (if it is

4.1. The Overall Architecture Chapter 4. Prometheus: implementation

Figure 4.1: Schema representing the ar-

chitecture of Prometheus. – web-service

+ back-end –

Figure 4.2: Schema representing the ar-

chitecture of Prometheus. – crawler +

back-end –

an online analysis) of the completion in order to let it retrieve and show the

results to the user.

This project should have required a big effort for the implementation

of a sandbox or a system able to automatically spawn VMs and control

them automating the execution of the web browser. This work, also, would

have been very risky since sandboxes are a very sensitive subject. For these

reasons we decided to adopt a ready-to-use solution: the Cuckoo sandbox.

Cuckoo is an open-source project widely supported by a great community of

developers and researchers which easily allows to automate dynamic analysis

of malware. Cuckoo offers wide set of Python APIs (it has also a set of REST

APIs) that leave to the user the only burden to script the module that is

executed on the VM to automatize the analysis.

Central and accessed by almost every component the MySQL database

contains all the information about the regular expressions found during the

memory analysis, the full list of interesting URLs, the list of sample ana-

lyzed plus other information found during the memory analysis and a table

indexing by sample and URL all the files containing the results of the ana-

lysis.

The third component is the web interface that allows to every analyst to

directly interact with our system and retrieve results in a human readable

format. The interface allows to the users to navigate through old analysis,

retrieve information and statistics about the most targeted URLs looking

at the actual status of interest of the malware authors. It also gives the

possibility to retrieve the code of the injections.

Furthermore, during the analysis processing, the front-end communicates

continuously with the back-end via web-socket. In this way every time

partial results relative to certain URLs are ready they are instantly showed

56

Chapter 4. Prometheus: implementation 4.2. Libraries and Tools

to the users drastically reducing the waiting time.

Another interaction with the central back-end is done by the crawler

that automatically submits samples found online on two of the most famous

trackers for the malware of our interest.

After this quick overview is interesting to notice that every of the above

mentioned components is independent from the implementation of the others

and can be easily replaced or enhanced only keeping constant its APIs.

Furthermore since all the components are developed as servers they can be

moved on different machines without any effort making Prometheus very

easy to scale and also adaptable to a cloud environment.

4.2 Libraries and Tools

Prometheus is implemented mainly in Python2.7. Python’s elasticity and

usability allowed us to get quickly to our results and, since it has a big

support from the developers community, we were able to find all the libraries

we needed already implemented and well documented.

Our system interacts with the Cuckoo sandbox which is also written in

Python2.7. As we will better explain in Section 4.4 Cuckoo is an open-source

sandbox which interacts with some of the most common virtual machine

manager. It is able to start a VM and automate the execution of an ana-

lysis task and it offers the possibility to process its result with some powerful

forensic tools. We used as Virtual Machine Monitor VirtualBox by Oracle

which is the one suggested by Cuckoo’s developers. In order to perform

memory forensic analyses we used Volatility. The Volatility Framework is

a completely open collection of tools, implemented in Python, for the ex-

traction of digital artifacts from volatile memory (RAM) samples. Volatility

offers a wide set of common functionalities but it also allows to increase its

power through easy to develop plugins.

We developed a Volatility Plugin base on YARA to automate the WebIn-

ject targets extraction. YARA is a tool aimed at (but not limited to) helping

malware researchers to identify and classify malware samples. YARA allows

to define rules based on textual or binary patterns. Each rule consists of a

set of strings and a boolean expression which determine its logic.

Another important Python tool we used is WebDriver by Selenium. This

library is installed inside our VMs and is used to control and automate the

execution of the browser, in our case Internet Explorer. Moreover WebDriver

APIs allow to deal with popups, alerts and, above all, to retrieve the DOMs

of the visited web pages

57

4.3. The Configuration file Chapter 4. Prometheus: implementation

We also used a Java tool: XMLUnit. XMLUnit is used by our back-

end to compare different DOMs downloaded during the analysis. We decide

to use this Java tools as we have seen that other existing Python tools

and libraries are not so precise and efficient in resources consumption as

XMLUnit will.

In developing the crawler we took advantage of some Python libraries:

Mechanize and BeautifulSoup. Mechanize allows to easy simulate the be-

havior of a web browser via code, automating the retrieval of web pages.

Exploiting BeautifulSoup then the crawler inspects the HTML structure

parsing the tables of the web sites we crawl looking for active samples.

For the web server we employed and configured an installation of

Apache2 with PHP5. Employing PHP we were able to easy develop a web

service which interact with our back-end and the database. We use a MySQL

database that is central and interacts with all the components of our sys-

tem working as glue and coordinating the whole process. We developed the

front-end in HTML5, we used JQuery for the AJAJ implementation and we

employed Bootstrap for the style. JQuery gives us a stable set of JavaS-

cript APIs in order to implement AJAJ call and DOM managing. Instead,

Bootstrap allows to quickly develop a very userfriendly GUI that enhances

the usability of our system. Furthermore we implemented a JavaScript’s

web-socket in order to dynamical send results to our clients so to drastically

reduce users waiting time. The Web socket communicates with a Python

server coordinated by our back-end.

Furthermore we used the “Wkhtmltopdf”1 command line toolkit to

render collected DOMs and present them to the user. We believe that

showing injections also in a graphical way could be useful for analysts in

presenting the threat to their clients giving them a taste of what are the

kind of injections that happen on their websites, furthermore a graphical

representation could help in finding countermeasures.

4.3 The Configuration file

Listing 4.1 shows the Prometheus configuration file. The first four paramet-

ers are the amount of time, in seconds, to wait for the malware activation,

the amount of time to wait after having loaded a web page and before start

loading the next one, the number of DOMs to collect before sending all them

in single JSON, the allowed amount of time to load a web page and dump its

DOM. The next parameters are the network address of the machine where

1http://wkhtmltopdf.org/

58

Chapter 4. Prometheus: implementation 4.4. Cuckoo

the Prometheus back-end is hosted and the TCP ports on which the VMs

Server and the Submit Server listen. Then it is specified the number of

Comparer Threads to be started, the number of clean and infected VMs to

be used during the analysis, the number of last samples considered during

an URL analysis, the threshold ε explained in Section 3.3.3, the number of

URLs processed in a single analysis and the critical timeout of the analysis.

This last parameter set a timeout that, when expired, causes the interrup-

tion of the running analysis. Finally we have the parameter required to

connect to the database.

Prometheus reads and parses the configuration file every time a new

analysis is scheduled. This makes it possible to modify the configuration

parameters and to make the modification effective without restarting Pro-

metheus. Some of these parameters are also configurable during the analysis

submission via web service.

<prometheus config>

<vm>

<sleep time>40</sleep time>

<loading time>0</loading time>

<doms per json>2</doms per json>

<page timeout>15</page timeout>

</vm>

<server>

<host>192.168.56.1</host>

<port>54500</port>

<submit port>54510</submit port>

<n task threads>10</n task threads>

<n clean vm>6</n clean vm>

<n infected vm>6</n infected vm>

<last samples>1</last samples>

<black diff threshold>0.8</black diff threshold>

<n urls>62</n urls>

<timeout>600</timeout>

</server>

<db>

<db host>localhost</db host>

<db name>db name</db name>

<db username>username</db username>

<db password>password</db password>

<db unix socket>/path/to/mysqld.sock</db unix socket>

</db>

</prometheus config>

Listing 4.1: Prometheus configuration file

4.4 Cuckoo

As stated before, malware sandboxing is a very sensitive process and the im-

plementation of a sandbox could have lead us to spend a lot of time to come

59

4.4. Cuckoo Chapter 4. Prometheus: implementation

out with an efficient solution. For this reason we decided to use an already

existing sandbox: Cuckoo2. Cuckoo exposes to us the required elasticity

also to implement a task that is quite on the border line of Cuckoo scope,

in fact in our analysis, on average, half of the machine are not effectively

sandboxing any malware but they are simply acting as reference without

any infection. Furthermore Cuckoo monitors the VMs and allows us to re-

trieve some additional information, like the memory dump that we use for

our memory analysis, but also it could take screenshots or perform taint

analysis that are interesting features that could be included in next devel-

opment of Prometheus. In the next section we will quickly introduce how

Cuckoo works (Section 4.4.1) then we will explain what are the modules

that we implemented to automate our analysis in Section 4.5.1.

4.4.1 Quick Overview

Cuckoo is a malware sandbox written in Python which transparently inter-

acts with all the most common virtual machine hypervisors. Oracle Virtu-

alBox3 is the one suggested by Cuckoo’s developers. Cuckoo exposes a wide

range of APIs and the one we used in this project is the command line APIs

which easily allows to submit new analysis. At configuration time Cuckoo

needs to have registered in the configuration files a set of VMs already in-

stalled and ready to be used. Each VM has to run the Cuckoo agent that is

a Python script implementing an RPC server through which Cuckoo com-

municates with the VMs. Moreover for each VM there has to be a snapshot

from which the VM is restored. For our project we configured 20 VMs with

Windows XP and Internet Explorer 8. The network card was set in “host

only” mode but the host had iptables configured in order to forward Internet

traffic to the VMs.

When an analysis starts, Cuckoo unfreezes the first free VM restoring

the snapshot, then it contacts the agent running on it uploading the malware

and specifying the analysis to execute. After the execution of the analysis

Cuckoo restores the snapshot and starts processing the information it has

retrieved. In our case this last part is completely excluded since we want

to process results with our components and since most of the data that we

retrieve are sent back to our back-end by the VM during the analysis. Once

Cuckoo was configured the only thing the we needed to do was writing the

modules to be executed on the VM. For the analysis described before we

needed to implements two modules: one for the DOMs retrieval and one

2http://www.cuckoosandbox.org
3https://www.virtualbox.org

60

Chapter 4. Prometheus: implementation 4.5. Back-end

to retrieve the memory dump. These two modules are introduced in the

next section. From now on we will refer to the term analysis indicating

the whole process performed by our system between the submission and

the representations of the results. Instead we will refer to Cuckoo’s task

indicating one single execution of a VM from which our systems retrieve

the data for an analysis. In practice an analysis is composed by multiple

Cuckoo’s tasks. When a new analysis is submitted our system submits to

Cuckoo a number of tasks equal to the selected number of VMs plus a further

task from which retrieving the memory dump. Every Cuckoo’s task runs a

VM executing the specified package as we will explain in Section 4.5.1. All

the task are executed in parallel.

4.5 Back-end

The Python back-end is the central core of Prometheus and also the most

complex component. It is composed by the following main modules:

• The Submit Server: in charge of receiving analysis submissions and

forwarding them to the Scheduler.

• The Scheduler: it receives analysis requests from the SubmitServer,

enqueues them, and schedules them when the system is free. It inter-

acts with Cuckoo as it submits the required tasks.

• The VMs Server: in charge of communicating with the VMs. It

provides to the VMs the URLs list to process and receives from each

VM the dumped DOMs. Every time a DOM is dumped and sent, the

VMs Server forward it to the Comparisons Manager.

• The Comparisons Manager: it is the main module of the architecture.

It gets notified whenever a new DOM has been correctly sent to the

VMs Server and handles the entire DOMs comparisons process.

• The Comparer.jar: it is the component that performs the DOMs com-

parisons. Given two DOMs it outputs the differences between them.

• The Memory Analysis module: it handles the memory forensic ana-

lyses, extracting useful information from infected memory dumps.

Moreover two other components interact with the back-end system:

• Cuckoo analysis packages: Cuckoo modules invoked during the Cuckoo

tasks. Their role is to initialize and guide the execution of the VMs.

61

4.5. Back-end Chapter 4. Prometheus: implementation

• The Executor: is the component that runs inside each VMs. It handles

the VMs’ parameters, controls the browser and communicates with the

VMs Server.

4.5.1 Cuckoo analysis packages

The analysis packages are a core component of Cuckoo Sandbox. They

consist in structured Python classes which, executed in the guest machines,

describe how Cuckoo’s analyzer component should conduct the analysis.

A package class contains three methods start, check and finish that are

executed on the VM respectively when the VM start, during the VM running

and when the VM is stopped. The check method is called repeatedly every

two seconds and specifies the condition to stop the VM (e.g., stop the VM

where a process complete its task).

We developed two different packages: the first one, the webinject pack-

age, deals with the VMs that have to process URLs and download their

DOMs, the second one, the meminject package, deals with the VM from

which we get the memory dump.

• Webinject package: it is the main used package. As shown in List-

ing 4.2, it receives some parameters through which a boolean that

indicates if the specific machine has to be infected (as we said we use

both clean and infected machines). According to this parameter the

package executes the sample and starts the Executor module. The

VM is stopped when the Executor process terminates.

• Meminject package: it executes the malware, waits for the sleep time

and opens the browser in order to let the malware load in memory the

WebInject targets. Then it dumps the memory and stops the VM.

class WEBINJECT(Package):

"""WebInject malware analysis package."""

def start(self, path):

ip = self.options.get("ip", None)

sample_name = self.options.get("sample", None)

clean = self.options.get("clean", False)

doms_per_json = self.options.get("doms_per_json", 2)

url = self.options.get("url", None)

url_id = self.options.get("url_id", None)

sleep_time = self.options.get("sleep_time", 1)

loading_time = self.options.get("loading_time", 0.5)

page_timeout = self.options.get("page_timeout", 15)

if ip is None:

62

Chapter 4. Prometheus: implementation 4.5. Back-end

raise CuckooPackageError("WebInject Package: Unable to find ip option

, analysis aborted")

if sample_name is None:

raise CuckooPackageError("WebInject Package: Unable to find sample

option, analysis aborted")

if not clean:

#run malware sample

malware = Process()

if not malware.execute(path=path, suspended=False):

raise CuckooPackageError("WebInject Package: Unable to execute

malware process, analysis aborted")

#build sample analysis args string

if url is None or url_id is None:

args = r"C:\\seltests\\executor.py {0} {1} {2} {3} {4} {5} {6}".

format(ip,sample_name,sleep_time,loading_time,clean,doms_per_json

,page_timeout)

#build URL analysis args string

else:

args = r"C:\\seltests\\executor.py {0} {1} {2} {3} {4} {5} {6} {7}

{8}".format(ip,sample_name,sleep_time,loading_time,clean,

doms_per_json,page_timeout,url_id,url)

#run executor

executor = Process()

if not executor.execute(path=r"C:\\seltests\\selenv\\Scripts\\python.exe"

, args="%s" % args, suspended=False):

raise CuckooPackageError("WebInject Package: Unable to execute

executor process, analysis aborted")

return executor.pid

def check(self):

#check stop condition

return Process(pid=self.pids[0]).is_alive()

def finish(self):

return True

Listing 4.2: Webinject Cuckoo package

4.5.2 Executor

The Executor is the component that, running inside the VMs, manages the

processing of the URLs and the download of their DOMs. It is invoked by the

webinject Cuckoo analysis package and requires the following parameters:

• the address and the port of the VMs Server to communicate with it;

• the sample ID;

• the sleep time to be waited in the infected VMs;

63

4.5. Back-end Chapter 4. Prometheus: implementation

• a boolean indicating if the VM is infected or not;

• the loading page timeout;

• the number of DOMs to collect before sending them to the VMs in a

single shot;

• the URL to visit. In case of an URL analysis.

As we said in Section 4.3, most of these parameters can be set in the

Prometheus configuration file.

In the infected VMs the first thing the Executor does is sleeping, since

we need to allow a minimum amount of time for the trojan to hook the

APIs used by the browser, otherwise no WebInject will be detected before

this interval (see Appendix B).

Now we have to distinguish if the running analysis is a sample analysis

or an URL analysis. In the case of an URL analysis the Executor opens the

browser interacting with WebDriver, visits the desired web page, downloads

its DOM and sends it to the VMs Server.

In the case of a sample analysis the Executor first of all downloads from

the VMs Server the URLs list to process and then executes two different

threads in parallel. The first thread visits each web page downloading their

DOMs. The second thread sends the already downloaded DOMs to the VMs

Server. The two threads communicates through a shared queue according

to the usual producer-consumer scheme. As soon as the first thread, the

producer, downloads a DOM and puts it in the shared queue, the consumer

get the DOM from the queue and sends it to the VMs Server. The sender

can also collect a certain number of DOMs, as specified in the configuration

file, before sending them all together. The downloaded DOMs are sent to

the VMs Server in a JSON format. The producer-consumer scheme allows

Prometheus to send the already dumped DOMs and so to start processing

them without waiting for the entire DOMs collection phase to finish. This

improve performance and allows Prometheus to show partial results during

the analyses.

4.5.3 Submit Server

The Submit Server receives via socket a description of the analysis that is

required (by a web user or by the crawler, from now on both referred as

user). The description indicates whether the user has required to analyze

an URL or a sample. In the first case the description is composed by the

URL to be analyzed and optionally some parameters: the sleep time to

64

Chapter 4. Prometheus: implementation 4.5. Back-end

wait in order to be sure that the sample is active on an infected machine,

number of samples to be considered in the analysis, number of clean and

infected VMs to use for the analysis and the ε threshold for the fourth filter

heuristic. If these parameters are not given default values are taken from a

XML configuration file. In the second case it is composed by the name of

the sample, we adopted the format < md5sum(sample) > .exe, and some

optional parameters like before, regarding the number of VMs to use, the

sleep time and the ε threshold. Then the Submit Server forwards to the

Scheduler the analysis request and its parameters. When the request is

forwarded to the Scheduler the latter returns to the state of the Scheduler:

free or busy depending whether or not the system is processing another

analysis. This is used to inform the user that his request has been enqueued

or it has been executing.

4.5.4 Scheduler

The Scheduler is the component that handles the analysis requests. In this

first release Prometheus is able to run one analysis at time. The Scheduler

receives the analysis request from the Submit Server and puts them in a

queue. The state maintained by the Scheduler can be free o busy. The

Listing 4.3 shows the Scheduler run method. If the system is not busy the

Scheduler takes the next analysis to process from the analysis queue or waits

if no analyses were submitted. We used the Python synchronizedQueue that

embeds the synchronization handling and the wait-notify mechanism. The

Scheduler checks also that the critical timeout did not expire. In this case it

stops the running analysis and set the system’s state to free. If the system

is processing another analysis the Scheduler simply enqueues the analysis

request in the analyses queue otherwise it proceeds as follow. It takes the

analysis request on top of the queue and distinguishes if it is an URL analysis

or a sample analysis. It then interacts with Cuckoo submitting the required

tasks, that means starting the VMs.

As shown in Listing 4.4 the Cuckoo tasks are submitted through the

submit.py Cuckoo utility called through a Python Popen. This utility allows

to select the package to be used an to specify all the required parameters.

Furthermore, if the scheduled analysis regards a sample and not an

URL, the Scheduler starts the MemoryAnalysis component which submits

to Cuckoo a further execution of a VM using the specific Cuckoo package in

order to retrieve the memory dump.

65

4.5. Back-end Chapter 4. Prometheus: implementation

def run(self):

print "Scheduler: active!"

while(True):

if self.free:

analysis = self.analyses_queue.get()

self.analyses_queue.task_done()

self.free = False

self.analysis_start_time = time.time()

self.submit_analysis(analysis)

elif not self.free and (time.time() - self.analysis_start_time > self.config.

timeout):

self.stop_current_analysis()

self.free = True

else:

time.sleep(10)

Listing 4.3: Scheduler run method

def submit_sample_analysis(self, sample_id, sample_name):

print "Scheduler: start sample analysis, {0}".format(sample_name)

#start mem analysis

mem_analysis = MemoryAnalysis(self.db_man, sample_name, sample_id, self.

config.sleep_time)

mem_analysis.start()

for i in range(self.config.n_infected_vm):

p = Popen("python ../cuckoo/utils/submit.py --package webinject --options

\"ip={0}:{1},sample={2},sleep_time={3},loading_time={4},doms_per_json

={5},clean=False,page_timeout={6}\" ../samples/{7}".format(self.config

.host, self.config.port, sample_id, self.config.sleep_time, self.

config.loading_time, self.config.doms_per_json, self.config.

page_timeout, sample_name), stdout=PIPE, stderr=PIPE, shell=True)

(output, err) = p.communicate()

for i in range(self.config.n_clean_vm):

p = Popen("python ../cuckoo/utils/submit.py --package webinject --options

\"ip={0}:{1},sample={2},sleep_time={3},loading_time={4},doms_per_json

={5},clean=True,page_timeout={6}\" ../samples/{7}".format(self.config.

host, self.config.port, sample_id, self.config.sleep_time, self.config

.loading_time, self.config.doms_per_json, self.config.page_timeout,

sample_name), stdout=PIPE, stderr=PIPE, shell=True)

(output, err) = p.communicate()

Listing 4.4: Scheduler submit sample analysis method

4.5.5 VMs Server

The VMs Server is the component that communicates with the VMs. It

consists in an HTTP server, implemented with the ThreadedHTTPServer

66

Chapter 4. Prometheus: implementation 4.5. Back-end

Python class, used to exchange JSON. It contains two methods to handle

GET and POST requests. The GET request returns a JSON containing the

list of the URLs to be processed by the VMs. In particular, as explained in

Section 3.2.2, the VMs Server selects the most matching URLs, that means

the URLs that have the highest probability to be injected by trojans, on the

base of the knowledge gained in the past analyses. The POST requests are

used by the VMs to send the dumped DOMs. Even in this case the we use

the JSON format to send data.

When a VM sends a new DOM the VMs Server preprocesses it and stores

it. The preprocess function convert the HTML DOM into an XML format

in order to allow easier comparisons. The VMs Server inserts a new entry in

the DOM table of the Database and saves the dumped DOM in a file named

< id dom > .dom. The VMs Server shares a queue with the Comparisons

Manager used to notify the arrival of new DOMs.

4.5.6 Comparisons Manager

The Comparisons Manager is the component that handles the entire DOMs

Comparisons process. It has been designed to be fully parallelizable and

asynchronous. This means that all the computations are performed in par-

allel and as soon as the data required are available. The functioning of the

Comparisons Manager is based on the data structure that it holds (Fig-

ure 4.3). The main data structure that the Comparisons Manager handles

consists in a two levels dictionary. When we discuss about the Comparis-

ons Manager and how it works we refer to DOM, sample and URL but we

actually mean their ID (DOM ID, sample ID and URL ID) that are unique

identifiers and, since they are long integers, they are obviously easier to be

managed. The IDs refer to the primary key in the database tables.

The first dictionary of the data structure is indexed by sample and points

to a second level of dictionaries. For each sample the first dictionary points

to a second dictionary indexed by URL. Finally for each URL the second

dictionaries point to a structure containing four lists: the list of clean DOMs,

the list of infected DOMs, the differences blacklist and the differences whitel-

ist. Since the blacklists and the whitelists are shared and accessed by differ-

ent Comparer Threads, the Comparisons Manager holds also a dictionary

of Python Locks used to handle the race conditions.

Whenever the VMs Server notifies the arrival of a new DOM this is

appended in the correct list, clean or infected, according to the sample-URL

pair. The first clean DOM is considered as reference and from now on we

will call it the reference DOM. When comparing two DOMs, we call control

67

4.5. Back-end Chapter 4. Prometheus: implementation

DOM the one we use as the reference and we call test DOM the second term

of the comparison. It is important to stick to this arbitrary assignment of

control and test node/DOM to define the direction of the difference: for

instance, if a field on the test node is missing in the control node that may

be a WebInject. If it’s the other way round that is a removed node. The

objective of the Comparisons Manager is to compare all the infected DOMs

and all the clean DOMs with the reference DOM. The differences output

from the comparisons of a clean DOM and the reference DOM are added

into the whitelist while the differences output from the comparisons of an

infected DOM and the reference DOM are added into the blacklist.

When the Comparisons Manager is notified of the arrival of a new DOM,

it checks if there are new comparisons to do. If it is the case it puts in the

tasks queue the DOMs to be compared and some other information. In

the meanwhile, a number of threads in charge of computing the comparison

tasks, called Comparer Threads, waits for a queue to be filled with tasks:

as soon as one is added, a free thread pops it and begins to process it.

Each comparison task consists in: the ID of the DOMs to compared, the

sample and the URL the DOMs refer to and a further boolean indicating

if the produced differences have to be appended in the whitelist or in the

blacklist. The DOMs comparisons are performed by a further component,

the Comparer.jar. The Comparer Threads execute the Comparer.jar giv-

ing the IDs of the DOMs to be compared. The Comparer.jar reads from

files the previously stored DOMs, compares them and outputs the differ-

ences found. When the Comparer.jar finished comparing the DOMs, the

ComparerThread that called it parses appropriately its output and insert

the differences in the whitelist or the blacklist according to the DOMs com-

pared.

Finally, when all the comparisons relating a URL are done, the Com-

parerThread that executed the last comparison performs the filtering phase.

4.5.7 Comparer.jar

The Comparer.jar, based on the XMLUnit library, is the component that

executes the comparisons between two DOMs and outputs the differences

between them. As we said all the comparisons are done respect to the

reference DOM. When it is called, the Comparer.jar, receives as paramet-

ers the identifiers of the DOMs to compare. The Comparer.jar reads from

files the corresponding DOMs, compares them and outputs the differences

found. The XMLUnit classes that are most important to us and that are

used by the Comparer.jar are the Diff class and one of its subclasses,

68

Chapter 4. Prometheus: implementation 4.5. Back-end

Figure 4.3: Comparisons Manager Data Structure. The red arrows indicate the com-

parisons whose differences are appended to the whitelist, the blue arrows those whose

differences are appended to the blacklist

DetailedDiff . The first one walks through the DOMs and returns a boolean

value that states whether the two DOMs are equal. The second class, on

the other hand, goes on with the comparison even after the first difference

has been found, collecting all the differences in the remaining part of the

document. In particular the instances of the DetailedDiff class have a

method, getAllDifferences(), which returns a List of the differences. Each

difference is then printed on the standard output. The Comparer Thread

that called the Comparer.jar through a Python Pipe receives the output of

the Comparer.jar and parses it properly getting all the differences.

4.5.8 Memory Analysis

The memory analysis is performed in parallel to the webinjections detec-

tion process. It is handled by the Memory Analysis module, running on

a different thread, which is launched by the Scheduler when it starts a

sample analyses. The memory analysis thread first of all submits the task to

Cuckoo invoking the meminject package previously described and waits for

the memory dump. When the memory dump is generated it is inspected.

69

4.6. Back-end functioning Chapter 4. Prometheus: implementation

The most important role of the memory analysis thread is extracting

the URLs and Regular expression from the memory dump. To do this we

developed a volatility plugin based on YARA. The plugin extracts the strings

the satisfies the designed YARA rule and that are allocated in the address

space of the browser (in our case Internet Explorer). Once the Memory

Analysis module extracted the URL regular expression, it stores the data

e checks if some of the URLs in the database match any of the extracted

regular expressions.

Exploiting another volatility plugin the Memory Analysis module ex-

tracts also the address of the C&C server and the RC4 cryptographical keys

used to encrypt the configuration file and the connection to the C&C server.

4.6 Back-end functioning

As we said in Section 3.2, Prometheus provides two kinds of analyses, the

sample analysis and the URL analysis. Both the analyses can be logic-

ally separated in three phases, Data Collection, Data Processing, Results

elaboration, with the exception that the URL analysis does not include the

memory forensic inspection. The three phases can be thought separately

but indeed they are partially overlapped. Moreover the URL analysis can

be seen as a part of the sample analysis since the sample analysis executes

the same three phases considering more URLs. In parallel to the webinjec-

tions detection process also the memory forensic analysis follows the above

three phases.

4.6.1 Phase 1: Data Collection

DOMs Collection

When a new analysis is submitted to the Submit Server and scheduled by the

Scheduler the first phase, the data collection starts. The Scheduler submits

the Cuckoo tasks that start all the require VMs in parallel. The Cuckoo

package infects part of the VMs and starts the Executor. The Executor, after

having waited for malware activation in the infected machines, downloads

from the VMs Server the JSON containing the list of URLs to process and,

leveraging the WebDriver APIs, opens Internet Explorer. It then starts

visiting all the URLs dumping their DOMs and sending them to the VMs

Server through a POST request in JSON format. During the URL visiting

process we set a timeout for the page download that means that we allow

limited amount of time to dump its DOM. The page timeout can be set

in the configuration file, during the evaluation with set 15 seconds. If the

70

Chapter 4. Prometheus: implementation 4.6. Back-end functioning

timeout expires the page is skipped and an Error notification is sent to the

VMs Server. When a VM sends a new DOM the VMs Server preprocesses it,

inserts a new entry in the Database and stores the DOM in a file named with

the ID of the database entry. The preprocess function convert the HTML

DOM into an XML format in order to allow easier comparisons. Finally

the VMs Server put the DOM ID in a queue shared with the Comparisons

Manager.

Memory Dump

In case of a sample analysis Prometheus performs also a memory forensic

inspection. When the sample analysis is scheduled the Scheduler starts the

MemoryAnalysis module that manages the memory inspection.

In the first phase it submits the Cuckoo task starting another VM. The

meminject Cuckoo package running inside the VM waits for malware ac-

tivation and then open Internet Explorer. We do this because we noticed

that the regular expression indicating the target website configured in the

WebInject configuration file are loaded in memory only when the hooked

browsers is launched. In fact the regexes are loaded exactly in the browser

address space. After some seconds the browser has been launched the VM

is stopped.

Just before stopping the VM Cuckoo, through the VirtualBox API,

dumps the VM memory and save the dump into a file in the report dir-

ectory of the task.

4.6.2 Phase 2: Data Processing

DOMs Comparison

The DOMs Comparison process is entirely managed by the Comparisons

Manager and by the Comparer Threads it starts.

As described in Section 4.5.6 whenever a the VMs Server puts a new

DOM in the shared queue the Comparisons Manager pops it and adds it into

its own data structure. When a new DOM is registered in the data structure

the Comparisons Manager checks, on the base of the already dumped DOMs,

if new comparisons can be done.

• If the new DOM is a clean one and it is not the first DOM dumped, that

means there is already the reference DOM, a new task that indicates

the comparison between the new DOM and the reference one is added

in the task queue.

71

4.6. Back-end functioning Chapter 4. Prometheus: implementation

• If the new DOM is a clean one and it is the first DOM dumped, the

new DOM is selected as reference DOM and the Comparisons Manager

add a comparing task for each injected DOM already dumped.

• Otherwise if the new DOM is an infected one the Comparisons Man-

ager add a comparing task if the reference DOM has been already

dumped.

This mechanism (shown in the Code Snippet 4.5) allows to perform all the

comparisons as soon as the data required are available.

clean_doms = self.data[sample][url][CLEAN]

infected_doms = self.data[sample][url][INFECTED]

if clean:

if clean_doms: #reference dom yet received

self.task_queue.put([sample, url, clean_doms[0], dom, False, analysis])

else:

for infected_dom in infected_doms:

self.task_queue.put([sample, url, dom, infected_dom, True, analysis])

clean_doms.append(dom)

else:

if clean_doms:

self.task_queue.put([sample, url, clean_doms[0], dom, True, analysis])

infected_doms.append(dom)

Listing 4.5: Comparisons Manager checking new comparisons to do after the arrival

of a new DOM

The tasks enqueue in the task queue are then removed from the queue

and executed by a pool of Comparer Threads.

A comparison task consists in: the ID of the DOMs to compared, the

ID of the sample and of the URL the DOMs refer to and a further boolean

indicating if the produced differences have to be appended in the whitelist

or in the blacklist.

Each Comparer Thread calls the Comparer.jar passing as parameters

the two DOMs to be compared. The output of the Comparer.jar is then

parsed and the differences are appended in the whitelist or in the blacklist

according to the DOMs compared.

During the parsing a first difference filter is applied as we do not consider

the differences we are not interested in. We consider four type of difference:

• Node insertion: This is really important to detect one of the most

common web injection. Most of the information stealer add new fields

72

Chapter 4. Prometheus: implementation 4.6. Back-end functioning

in forms injection the < input/ > node.

• Attribute insertion: This type of difference detect injection that are

mostly related to JavaScript code injection. In the common case the

trojans add attributes such as onclick to bind JavaScript code and

perform malicious actions whenever certain user-interface events occur.

• Node modification: This type of difference happens when trojans

modify the content of an existing node. In the most cases the tar-

get node is a < script > one.

• Attribute modification: This type of difference happens when trojans

change the value of an existing attribute to change the server that

receives the data submitted in a form or to modifies the JavaScript

code bound to a specific event.

Every difference is an object composed by three fields:

• Type: The nature of the difference. One of the four types previously

discussed (node insertion, attribute insertion, node modification, at-

tribute modification)

• XPath: The XML path to the node which is affected by the difference.

• Content: The value of the difference (e.g., in the case of a node inser-

tion the content is the HTML node inserted with all its attributes).

Moreover, we consider for each difference an integer that counts how

many times the difference has been detected. This is needed to apply one

the filters (Section 3.3.3).

At the end of the DOM comparison phase we have the full differences

whitelist and blacklist for each URL processed.

Memory inspection

As soon as the memory dump is generated the Memory Analysis module

start inspecting it. To extract the target URLs and regular expressions we

developed a volatility plugin based on YARA. YARA is a tool aimed that

allows to define rules based on textual or binary patterns. Each rule consists

of a set of strings and a boolean expression which determine its logic.

The plugin we developed scans the memory dump looking for all the

strings that match a YARA rule. In particular, since we observed that the

URLs and the regular expressions are loaded in the browser’s memory, the

plugin inspects only the Internet Explorer address space.

73

4.6. Back-end functioning Chapter 4. Prometheus: implementation

rule WebInjectTargets

{

strings:

$URL = /((http[s*]?:\/\/)|*)[*\/.0-9a-zA-Z-#]*\.(com|it|org|nl|uk|es|ru|

net|ae|fr|de|bg)[*\/.0-9a-zA-Z-]*/ fullword

condition:

for any i in (1..#URL) : (@URL[i] < @URL[i-1] + 20)

}

Listing 4.6: YARA rule defined to extract URLs and regular expression. In this

example we omitted all the top-level domain showing only the most common ones.

Listing 4.6 shows the YARA rule that we defined. The $URL string

defines a regular expression that matches the URLs and the regular expres-

sions defined in the WebInject configuration file. The modifier ”fullword”

guarantees that the string will match only if it appears in the file delimited

by non-alphanumeric characters. The condition forces that the matching

strings have to be placed at most 20 bytes of distant from the previous.

Since we noticed that the regular expression are located sequentially this

condition filters out all the matching strings that are not WebInject targets.

In all the samples we manually analyzed the maximum distance between

two URLs/regexes was 16 bytes and during the evalutation we did not incur

in false negatives extracting correctly all the WebInject targets.

We integrated also another volatility plugin, ZeuSscan4, developed by

the volatility’s community. This plugin allows us to extract from infected

memory dumps the RC4 cryptographical keys used to encrypt the config-

uration file and the connection to the C&C server and the address of the

C&C server. However this solution depends on the implementation of the

encryption scheme and it is guaranteed to work correctly only on ZeuS and

Citadel samples. We aim to improve the keys extraction mechanism to make

it as general as possible in the next release.

4.6.3 Phase 3: Results elaboration

Differences Filtering

The differences filtering phase starst when all the comparisons related to

an URL have been done and the differences whitelist and blacklist are com-

pleted. The objective of this last stage is to remove from the blacklist all the

4https://code.google.com/p/volatility/source/browse/trunk/contrib/plugins/

malware/zeusscan.py?r=2835

74

Chapter 4. Prometheus: implementation 4.6. Back-end functioning

differences that are not caused by the malware. At the end of this phase the

blacklist will contain the final list of differences detected as webinjections.

The filtering phase is performed by the ComparerThread that executed the

last comparison.

We implemented the filters on the base of what said in Section 3.3.3. A

first filter, the one discarding useless differences (e.g., deletion differences

and differences regarding useless attributes), is implemented directly after

the differences parsing process, so in this phase we consider the remaining

three filters.

The first filtering action is removing from the blacklist all the differences

present in the whitelist. Removing differences implies that we have some

criteria to compare them and to determine whether two differences may be

considered equal or not. In our context, two differences are equal if the same

element has been added or modified in two different DOMs, with respect

to our clean reference DOM. We observed which features actually allow

to uniquely identify modified (or added) objects in two different versions

of the same page and we decided to base our comparison on the type of

difference and on the XPath of the elements. If two differences of the same

type have equal XPath we consider them equal. This criteria is used in

the first filter. However, dealing with highly dynamic page, we decided to

add another concept of equality to remove from the blacklist the whitlisted

differences. Since sometimes it happens that some node with a fixed content

(mostly JavaScript) are omitted or situated in different places, that means

different XPath, we consider the content of the difference. We remove from

the black list all the differences that have the same Type, the same last

node in the XPath and the same content of a differnce in the whitelist. This

represents the second filter. The last filter as said in Section 3.3.3 consists in

removing those differences that are not present in at least ε% of the infected

DOMs (with the same Type, the same last node of the XPath and the same

content).

When the filtering is finished a new entry is inserted into the diff table

in the database and the differences remained in the blacklist are stored into

a JSON file (Listing 4.7). Then the Scheduler is notified that the URL

processing has been completed so that it can notify the Web socket in order

to update the results page (Section 4.7.1).

{

"sample": 353,

"url": 3,

"differences": [

{

"xpath": "/html[1]/body[1]/form[1]/center[1]/table[2]/tbody[1]/tr[2]/

75

4.7. Web Service Chapter 4. Prometheus: implementation

td[1]/div[1]/table[1]/tbody[1]/tr[2]/td[2]/table[1]/tbody[1]/tr

[3]",

"id": 3,

"value": "<tr><td class=\"BLUE\" width=\"220\">Password Dispositiva</

td><td><input maxlength=\"8\" name=\"PASS\" onkeypress=\"

TastoEnter(event.which, event.keyCode)\" size=\"8\" type=\"

password\" value=\"\"/></td></tr>"

}

]

}

Listing 4.7: Example of differences JSON file. It refers to the

analysis of the sample 40ed6f385f4665537a9f401621deb2c2 and the URL

https://www.gruppocarige.it/grps/vbank/jsp/login.jsp

Regular Expression Matching

When the Memory analysis module finished to extract and store in the

Database the target regular expressions it, as explained in Section 3.3.3,

checks if some of the URLs stored in our database match any of the regular

expression. In order to do so, the extracted regular expressions are converted

into the standard Python regex format of the re library. Every match,

represented as a couple of URL ID and regex ID, is then stored in the

database.

4.7 Web Service

The whole front-end is presented as a set of HTML pages rendered with

PHP (Figure 4.4 show the link relation among web pages). We used per-

sonalization of the kit Bootstrap [17] for the CSS page layout and some

JQuery [14] scripts for AJAJ implementations and dynamic contents man-

agement. The web application offer to the users a navigation-bar with the

following options:

- Navigate through DOMs (Figures 4.5, 4.6): This function allows users

to look at a PDF version of the DOMs retrieved during every analysis

in such a way to give developers the possibility to see the injections on

their page with a visual representation and try to remove or randomize

the injection hooking points. The GUI offers the possibility to search

DOMs indexed by URL or by the MD5 hash of the sample whom

analysis has produced the DOM. HTML DOMs are rendered by PHP

via the wkhtmltopdf command line tool. Since this process can be

quite time consuming and we believe that a very few portion of users

76

Chapter 4. Prometheus: implementation 4.7. Web Service

Figure 4.4: Link relations between web pages.

will use it, we preferred to render the PDF the first a user wants to see

it instead of rendering it during DOM dumping to not interfere with

the analysis performances.

- Search Through Hashes (Figure 4.7): This function allows users to re-

trieve analysis of old inactive samples already analyzed by our systems,

either submitted by other users either by the crawler. The format of

the representation of the results is identical to the one offered when

the analysis is followed online by the submitter.

- Top Ten Targeted URLs (Figure 4.8): In this page we expose a very

useful statistic, which is a ranking of the Top Ten URLs that results

to have more matches with regular expressions found in the analyzed

samples’ memory. Administrating a page belonging to this top ten

may be a big alert for web developers.

- Submit Sample (Figure 4.9): For sample analysis submission.

- Submit URL (Figure 4.10): For URL analysis submission.

77

4.7. Web Service Chapter 4. Prometheus: implementation

Figure 4.5: Snapshot of the DOM visualization page (no injections).

4.7.1 Analysis Submission and Results Retrieval

Both the two submission pages behave quite in the same way: in the sub-

mission pages users upload a malware’s sample or an URL and optionally

specify some analysis parameters and then attend for the results. When a

user uploads a sample (or submit an URL) and pushes the button in order

to start the analysis, the parameter inserted in the form are passed as ana-

lysis description to the Submit Server which forwards the analysis request

to the Scheduler, as we have seen before. The analysis submission happens

through a Python script submit analysis.py, called by a PHP shell exec,

which sends the analysis request to the SubmitServer through a TCP socket.

When the submit analysis.py is called it returns the identifier of the sample

or URL submitted and a boolean that indicates if the submitted analysis

has been enqueued, because the system is processing another analysis, or if

it has been already launched. After the submission the user is redirected to

a dynamic page (result.php). Result.php is connected via web-socket with

the web-socket server. Every time the Comparisons Manager stores on the

filesystem and on the database the result of the analysis of a certain URL

(or a sample) it notifies the web-socket server which notifies the web-client

78

Chapter 4. Prometheus: implementation 4.7. Web Service

Figure 4.6: Snapshot of the DOM visualization page (with injections).

which retrieves the results from the filesystem in JSON format. If the ana-

lysis has been launched the page dynamically renders partial results as soon

as they are ready, otherwise it simply show a link where the user will later

find the results of the analysis. The same link is also proposed in the dy-

namic page for those users who do not want to assist dynamically at the

analysis process. The results page is initially blank with a loading bar

(Figure 4.12) and every time partial results came to the client the loading

bar proceeds illustrating the user the progress of the analysis. When the

analysis end the user is alerted with a sound message. Every time the cli-

ent retrieves a result from the web-server it renders in that way: the ID of

the analyzed element (URL’s or sample’s name) followed by the number of

injections found as header of a hidden dropdown list in which are shown

all the injections (type, XPath and content) (Figure 4.11). A click on the

ID will redirect the user to Navigate through DOM section in which he can

look at the injections found. When the analysis of a sample ends, the client

loads also the result from the memory analysis (Figures 4.13, 4.14, 4.15) and,

furthermore, it marks all the URLs that have a match with any of the found

regular expressions adding a tip reporting the matching regular expression.

79

4.8. The Crawler Chapter 4. Prometheus: implementation

Figure 4.7: Snapshot of the search through hashes page.

4.8 The Crawler

The crawler is written in Python and uses the libraries Mechanize and

BeautifulSoup to automatically check the presence of new samples on the

ZeuSTracker and SpyEyeTracker pages. Mechanize offers a set of utilities

used to automatically navigate in the web and monitor the pages of the two

trackers.

Every time a new malware is online the crawler compares its hash with

the ones present in the Prometheus database and, if the sample has not yet

been analyzed, downloads the sample and submits its analysis to the Submit

Server.

[22−08−2014 12:50:32] Start crawling..

[22−08−2014 12:50:32] Crawling https://zeustracker.abuse.ch

[22−08−2014 12:50:35] Crawling https://spyeyetracker.abuse.ch

[22−08−2014 12:50:36] Sleeping..

[22−08−2014 13:10:37] Crawling https://zeustracker.abuse.ch

[22−08−2014 13:10:38] Found new active Sample, d03c15ec47b096136d61bec17507b4c1

[22−08−2014 13:10:39] Sample Downloaded: d03c15ec47b096136d61bec17507b4c1.exe

[22−08−2014 13:10:39] Submitting Sample: d03c15ec47b096136d61bec17507b4c1.exe

[22−08−2014 13:10:41] Crawling https://spyeyetracker.abuse.ch

Listing 4.8: Crawler log example

80

Chapter 4. Prometheus: implementation 4.8. The Crawler

Figure 4.8: Snapshot of the Top Ten targeted URLs page.

Figure 4.9: Snapshot of the sample submission page.

81

4.8. The Crawler Chapter 4. Prometheus: implementation

Figure 4.10: Snapshot of the URL submission page.

Figure 4.11: Particular of the results page.

Figure 4.12: Loading bar in results page.

82

Chapter 4. Prometheus: implementation 4.8. The Crawler

Figure 4.13: Keys extraction in results page.

Figure 4.14: Regular expressions matching in results page.

Figure 4.15: Regular expressions extraction in results page.

83

Chapter 5

Experimental Evaluation

We evaluated Prometheus on a dataset of 53 distinct samples of ZeuS (Table

5.1) analyzing 62 real, live URLs of banking websites. However Prometheus

is still running and the crawler is continuously feeding our system with new

samples.

Our choice to use ZeuS as testing family is due to the fact that it is the

most diffused banking trojan family and so it is easier to find valid samples.

SpyEye is less monitored than ZeuS and so it is more difficult to obtain an

ample set of recent samples.

The purpose of the evaluation is to measure the correctness of the in-

jections detection process, especially studying how the quality of the results

depends on the two most influencing parameters: the number of virtual ma-

chines used and the threshold ε used to filter out the differences not present

in most of the infected VMs.

As for the injection detection process we measure also the correctness of

the results extracted by memory analysis.

Finally in Section 5.4.4 we focus our attention also on the evaluation of

the performance.

5.1 Deployment

We deployed Prometheus on a 2.0GHz, 8-cores Intel machine with 24GB

of RAM running Ubuntu 12.04. We used VirtualBox as virtual machine

monitor and each VM was equipped with Windows XP SP3 and Internet

Explorer 8. Each VM was configured with 1GB of RAM. The network

configuration was set to Host-Only but we add iptable rules to the host

virtual network interface to grant Internet access to the VMs.

5.2. Challenges Chapter 5. Experimental Evaluation

5.2 Challenges

The main challenge to face was finding enough samples to obtain a good

dataset. The principal reason of this is due to the fact that all the banking

trojans contact the C&C server and download the encrypted configuration

file as soon as they start and, in the case they don’t manage to do it, they do

not manifest their behavior. This means that for our purpose they became

useless because they do not perform any injection. Most of the samples

posted on online services as ZeuSTracker1 remain active for just few hours

because when they are detected the C&C server is inserted in a blacklist

and blocked. In this scenario we developed a crawler (Section 4.8) to auto-

matically download and submit to Prometheus new samples as soon they

are published. Thanks to the crawler we managed to create a sufficiently

ample dataset.

5.3 Datasets construction

5.3.1 Samples dataset

The sample dataset used for the evaluation has been created downloading

samples from ZeuSTracker and VirusTotal2. The dataset is composed en-

tirely by ZeuS samples. This is due to the fact that ZeuS is the most diffused

banking trojan family and so it is easier to find samples with the C&C on-

line. SpyEye is less monitored than ZeuS and so it is more difficult to obtain

an ample set of recent samples.

We downloaded and submitted to Prometheus 65 samples. However we

noticed that 12 samples failed to install because they were able to detect and

evade the controlled environment (some recent ZeuS variants implement this

feature) or because the executables were corrupted (sometimes corrupted

samples are posted on ZeuSTracker). Hence our final dataset is composed

by 53 samples and it is shown in Table 5.1.

5.3.2 URLs list creation

We evaluated Prometheus on a list of 62 URLs. The URL list was created

starting from a webinjects.txt leaked as part of the ZeuS 2.0.8.9 source

code3 and adding some new URLs extracted from initial memory analyses.

1https://zeustracker.abuse.ch
2https://www.virustotal.com
3https://bitbucket.org/davaeron/zeus/

86

FAMILY MD5 DETECTED INJECTIONS % FPR

ZeuS c07d6b14db7b896942b0e3dcc871488c 40 0%

ZeuS ba8acf19dcfeae5ad362169dcf752fd5 0 0%

ZeuS 8240b17d7fb0fe5251b268befddca180 21 0%

ZeuS ba57db487bb18b15217cbb08c923da50 31 0%

ZeuS db028fadc3cf758169eac36d361c92a8 32 1.61%

ZeuS df677b3461944899bec4f9d45b0dfe59 21 0%

ZeuS f60ab638881a4b01591b66741fa3d38c 21 0%

ZeuS ca2e8e008cfb74ee8952e9d5a4d03799 0 0%

ZeuS f9d67916f8d348158ba0f6c7f4e22940 59 1.61%

ZeuS e988cf945afcce08ec467bad977db530 21 0%

ZeuS 3b997a5a3918b2ae5d7d15ed3b288792 32 0%

ZeuS e5ff769dd2a98c0dd240e176aaef0d2b 21 0%

ZeuS e6e944d021431c826aa9b4d67bed686e 0 0%

ZeuS 4bcead4107ed219f4af8a6d206ad3285 32 1.61%

ZeuS 9b1da26b16f40ded6a9a45cf7c07e02e 32 0%

ZeuS ff05f92688c9ce5f4d9d9b53cd21484f 37 3.22%

ZeuS 73287fe7e25abff78054ba7b0f4621f0 0 0%

ZeuS 7081eaf92b6cc54bda51377276d74966 32 0%

ZeuS dd944a21d4fa63b7edd96efc43cef774 31 1.61%

ZeuS e8404581991f8fc218c26525b1b77f3f 32 1.61%

ZeuS 49e000294f4d287ee6b758ec72c89657 32 0%

ZeuS ab45ebf631bd68892ee5a02c399c5525 85 0%

ZeuS 0f1fc1347d85b5d0b74deb73e4567296 38 0%

ZeuS 24921a1f6f7ec496a26e7246808666a9 38 0%

ZeuS 2c72564cb24fa1eeb38addf4177dd7b4 0 0%

ZeuS fe4cfd09c85b1e529c4af48bd9c04a42 38 1.61%

ZeuS 13b2c0c5c5d946a1b42f0e97454e6569 31 0%

ZeuS 6d3221e22750a3f017f043eeda3a89a0 31 1.61%

ZeuS 5cf9b0d66bc7fdba0053ca3b55a6de6c 38 0%

ZeuS c4a848a1b6aeda6b36bd21fc3e4c2c08 31 1.61%

ZeuS 2226e7cfae79ba763d35424435f7c2c6 38 0%

ZeuS a55ac78eca45212d4947209914a930fb 38 0%

ZeuS de491974dee9a33d2278b50f01f03b04 32 1.61%

ZeuS 06db9d5e4030da3a3d84d9d644a60734 31 0%

ZeuS 90f4d535c3b79d8ed7c67ba38fb06ac6 31 0%

ZeuS f55f44678a68ea615b997585a8d72cb2 31 0%

ZeuS aaa4cc8e0b9584e96f63d843ba972183 38 0%

ZeuS 27563287dceddfc5588d02762bed7dac 32 1.61%

ZeuS 4cb596ab068dd8f29e510afef91e2ecc 38 0%

ZeuS 7cc9351fa29b6a7a44a48e420c867f11 38 1.61%

ZeuS 59cbbd1a374d12e5063b75ac7b338f26 38 0%

ZeuS c78a6aeecaf14f7e4ce54ee8264a9fb4 32 0%

ZeuS 40ed6f385f4665537a9f401621deb2c2 38 0%

ZeuS 470dff32fb454e1c13fcfe8fd9f7630a 32 1.61%

ZeuS 5d873312d764a3ae77c6cb408bfe51e5 32 0%

ZeuS 41098823375ae77d85ed29658a8d3be5 32 0%

ZeuS 717c8ed361d724754df8ccdbe0f09b53 0 0%

ZeuS fbeb17f3212de2cabb91eee41c575999 32 1.61%

ZeuS 45a1e07d0a66b27a337f0f2e0e223bd3 32 0%

ZeuS 6451caab830185967cceece215c76c13 32 0%

ZeuS 144afb85337981169cdbcb23300b18c4 31 1.61%

ZeuS dd838e7033debab5bdc51004a78ca8f3 32 0%

ZeuS 0d7b5bb7d32f4db92f822b3a3605d128 32 1.61%

Table 5.1: Samples dataset. For each evaluated sample the Table shows the number of

injections detected (false positives excluded) and the False Positive Rate of the analysis.

The configuration the results refers to was: 12 VMs (6 clean VMs and 6 infected VMs),

40 seconds as sleep time and threshold ε = 0.8

5.3. Datasets construction Chapter 5. Experimental Evaluation

However most of the URLs contained in the initial list have been removed

because they presented one or more of the following problems:

• the URL was unavailable. Since the leaked webinjects.txt was quite

old some of the URLs were not still active;

• Internet Explorer 8 always crashed or froze when the website was vis-

ited;

• the web-page was too heavy to be loaded in Internet Explorer 8 and

it took to much time to download the page;

• the URL was a post login page that required user authentication.

The final URL list that has been evaluated was composed by 62 distinct

URLs.

5.3.3 Ground truth

Finding a way to measure the quality of the evaluation results was not an

easy task since to determine the real injections performed by a sample we

should have decrypted and checked his own WebInject configuration file.

We initially created a controlled botnet and we build a ZeuS sample with

a customized webinject.txt. However we wanted to test Prometheus on real

samples found in the wild. Therefore we decided to manually analyze the

results provided by Prometheus to ensure if false positives and false negatives

were found.

As regards false negatives, as explained in Section 5.4.2, the only cause of

false negatives for our system is the non activation of a sample in some of the

infected VMs. However this did not happen during the dataset evaluation.

As regards false positives, two further methodologies were applied in

order to measure the false positive rates. First of all we submitted to Pro-

metheus some known benign executables. In this way we were sure that

ideally no differences should have been detected and each difference was a

false positive. Secondly we exploited the knowledge base created by memory

forensic analysis to validate the results as follows: if a difference is detected

on a URL that does not match any of the regexs extracted from infected

memory dumps it is a false positive. This reduced the volume of data to

analyze manually.

In our evaluation we considered a granularity at the URL level and not

at the difference level. We are interested in signaling an URL as injected or

not independently from the number of injections found. Using this approach

88

Chapter 5. Experimental Evaluation 5.4. Experiments

DOMAIN AVERAGE NUMBER OF INJECTIONS

ybonline.co.uk 10.244

cbonline.co.uk 9.723

lloydstsb.com 7.482

bbvanetoffice.com 4.275

banesto.es 1.620

gruppocarige.it 1.121

scrigno.popso.it 0.916

isideonline.it 0.861

wellsfargo.com 0.861

uno-e.com 0.747

Table 5.2: Most injected websites

we have only two possible case: zero detected differences, that means a clean

URL, and a higher than zero detected differences, that means an injected

URL.

5.4 Experiments

Prometheus correctly (true positives) detected web injections in the 17.74%

of the URLs analyzed. Table 5.2 shows the most injected URLs and their av-

erage number of injections. What we noticed is that most of the samples have

many common injections and the targeted websites are often the same. We

performed the tests changing the number of VMs used and the threshold ε.

Our results indicate that, as expected, the heuristic based on the ε threshold

(Section 3.3.3) did not generate any false negative even for high value of ε

while it helped to filter out false positive differences. We determined that

12 VMs are enough to have good results, which means almost zero false

positives. However in order to lower false positives the number could be

increased, even if this will slightly worsen the performance.

5.4.1 False positives discussion

A false positive occurs when Prometheus detects a benign difference in a

web-page and classifies it as a malicious injection. As showed in Table 5.1

Prometheus produced, with some exceptions, no false positives analyzing

most of the samples in our dataset. The overall average of the False Positive

Rate is a low 0, 52%. We manually observed that the vast majority of the re-

maining false positives were caused by JavaScript-based modifications. Most

of the modern websites contain JavaScript code that modifies the DOM of

89

5.4. Experiments Chapter 5. Experimental Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

ε

%
F
P
R

Figure 5.1: False Positive Rate depending on the ε threshold evaluating 62 distinct

URLs and using 12 VMs (6 clean ones and 6 infected ones) for the analysis of ZeuS

59cbbd1a374d12e5063b75ac7b338f26.

the web-page at runtime loading dynamically changing content. Further-

more sometimes server-side scripts generate different JavaScript code every

time the page is requested (e.g., advertisement). Another cause of false pos-

itives is the failing in dumping DOMs. Sometimes happened, during the

evaluation, that some of the VMs did not manage to load a web-page and

dump its DOM within the timeout, due to temporary network slowdown or

overloading. This decreases the number of DOMs to be considered in the fil-

tering phase and can generate false positives, as we want an high number of

different DOMs in order to be able to discard all the legitimate differences.

In any case most of remaining false positives are easily distinguishable look-

ing at the results extracted by memory analysis, since a difference detected

on a URL that do not match any of the extracted regular expressions is

certainly a false positive. We preferred to leave this check to the users, in-

stead of automatically discarding the differences relating to URLs that do

not have references in memory, because this procedure could generate false

negatives if the memory analysis fails in extracting some regular expressions.

The results presented in Table 5.1 refer to a configuration with 12 VMs (6

clean ones and 6 infected ones) and threshold ε = 0.8. We analyzed the

effects of the number of VMs and of the threshold ε on the false positives

(two examples are shown in Figure 5.1 and Figure 5.2). We observed that

the number of VMs is the most effective parameter in the reduction of false

positives. However since the number of VMs required to guarantee good

results is high, at least 24, and this can worsen the performance because of

the overloading, using an high value of ε helps in guaranteeing such results

with a lower number of VMs (10-12).

90

Chapter 5. Experimental Evaluation 5.4. Experiments

2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

Number of Virtual Machines used

%
F
P
R

Figure 5.2: False Positive Rate depending on the number of VMs used for the anlysis of

ZeuS 59cbbd1a374d12e5063b75ac7b338f26 on 62 distinct URLs with threshold ε = 0.8.

5.4.2 False negatives discussion

A false negative occurs when Prometheus does not detect a malicious in-

jection in a web-page. Since the DOMs comparison process is deterministic

there are only two cases in which this can happen. The first one occurs

when an high threshold is used and a sample fails to execute in some of

the infected machines. As explained in Section 3.3.3 the differences that are

not present in most (depending on ε) the infected machines are filtered out,

so if a sample manifests his behavior just in few of the infected machines

his injections might not be detected. However this scenario never happened

during the evaluation and all the evaluated samples succeeded to install and

execute in all the machines or in none of them. The second case is related to

the ε threshold too. Since the heuristic used is based on the assumption that

each sample injects a static content, if a sample injected different dynamic

content on the same web-page every time it is executed it would evade our

system. Even this case never happened during evaluation. Our assumption

was right because the content of each injection is statically specified in the

WebInject configuration file.

5.4.3 Memory analysis discussion

Prometheus successfully extracted the RC4 keys and the entire WebInject

targets list from all the samples in our dataset. Despite the average number

of targets for sample is about one hundred, the total number of distinct

regular expressions we extracted by memory analysis is only 203. That

means that most of samples have almost the same WebInject configuration

file.

91

5.4. Experiments Chapter 5. Experimental Evaluation

REGULAR EXPRESSION

http://vkontakte.ru*

odnoklassniki.ru/

https://www.paypal.com/*/webscr?cmd= account

https://ibank.barclays.co.uk/olb/x/LoginMember.do

https://www.bbvanetoffice.com/local bdno/login bbvanetoffice.html

https://banesnet.banesto.es/*/loginEmpresas.htm

https://online.wellsfargo.com/sigon*

https://ibank.barclays.co.uk/olb/x/LoginMember.do

https://home.ybonline.co.uk/login.html*

https://scrigno.popso.it*

https://www.gruppocarige.it/grps/vbank/jsp/login.jsp

https://home.cbonline.co.uk/login.html*

*.ebay.com/*eBayISAPI.dll?*

https://bancaonline.openbank.es/servlet/PProxy?*

https://www.us.hsbc.com/*

https://www.gruposantander.es/bog/sbi*?ptns=acceso*

https://online*.lloydstsb.co.uk/logon.ibc

https://www.uno-e.com/local bdnt unoe/Login unoe2.html

https://www.isideonline.it/relaxbanking/sso.Login*

*//money.yandex.ru/index.xml

Table 5.3: Most found regular expressions

What it is important for us is that the true injections detected were

present in URLs that matched some regex extracted. This is a further proof

that can help distinguish real injections from false positives.

Another important finding that emerged from the results is that not all

the regular expressions imply injections. There are some cases in which some

URLs were not injected even if they were present in the memory-extracted

targets list. The cause of this fact could be that the injections failed because

the hooking points configured in the WebInject configuration file were wrong

or old (because the web-page changed and do not contain that HTML code

anymore) or simply the sample just monitors the URLs stealing the data

submitted by the victim without injecting new contents.

In conclusion, our results show that combining both the web-page dif-

ferential analysis and the memory forensic inspection is important in order

to guarantee low false positives and low false negatives.

5.4.4 Performance

We measured the execution time of Prometheus. Prometheus has been de-

signed and implemented trying to parallelize all the computations. Further-

more the approach used to perform DOMs comparisons is asynchronous and

all the computations are executed in parallel as soon as the required data is

available. For this reason the Prometheus execution time is dominated by

92

Chapter 5. Experimental Evaluation 5.4. Experiments

the time required by the VMs to sequentially visit each URL and dump its

DOM, while the time required to compare DOMs and filter the differences

is irrelevant.

Prometheus performs a sample analysis on 62 URLs using 10 VMs in

about 6 minutes. The sample analysis includes also the memory forensic

inspection that is performed in parallel and requires less time than the web-

page differential analysis. However, while we have considered all the URLs

during the evaluation phase, our idea is to reduce the number of URLs to

be evaluated on each sample analysis. Since the Prometheus execution time

scales linearly with the number of URLs processed this will bring to faster

analysis. At the same time this will not limit the capacity of Prometheus

because, as explained in Section 3.2.2, it will process the URLs that have

the highest probability to be injected.

Prometheus is designed to exploit all the available resources. As shown

in Figure 5.3 Prometheus is able to process each URL in little more than 4

seconds when 2 VM are used. The picture shows that Prometheus scales well

increasing the number of VMs with just a little overhead. However when

the number of VMs is higher than 10 the overhead slightly increases. This

is due to the overload on the single physical machine. Moreover increasing

the number of parallel VMs the time required to dump a DOM increases

and some of the DOMs fail to be dumped within the timeout. This is due

to the fact that all the VMs network traffic flows through the single vir-

tual interface between VirtualBox and the host OS. This problem could be

solved deploying Prometheus on the cloud to exploit the maximum scalab-

ility allowing it to scale directly with the amount of resources and avoiding

bottlenecks.

Figure 5.4 shows the trade-off between performance and false positive

rate depending on the number of VMs.

We measured also the amount of memory required by Prometheus. Pro-

metheus required at most 15 GB for a sample analysis using 13 VMs, each

of them set with 1 GB of memory. However, since VirtualBox allocates the

entire amount of memory assigned to the VMs, we inspected the VMs from

their internal and we measured that each VM requires about 300 MB.

93

5.4. Experiments Chapter 5. Experimental Evaluation

2 3 4 5 6 7 8 9 10 11 12
200

300

400

500

600

4.35 4.59 5.11

5.46

6.31
6.95

Number of Virtual Machines used in parallel

T
im

e
(s
ec
on

d
s)

Figure 5.3: Speed and Scalability of Prometheus: Mean time required to process 62

URLs for each sample. The labeled points indicate the mean time required to process

a single URL.

2 3 4 5 6 7 8 9 10 11 12

300

400

500

600

Number of Virtual Machines used in parallel

T
im

e
(s
ec
on

d
s)

0

20

40

60
%
F
P
R

Figure 5.4: Trade-off between Performance and False Positive Rate. The blue line

refers to the execution time required to process 62 URLs. The red line refers to the

False Positive Rate for the anlysis of ZeuS 59cbbd1a374d12e5063b75ac7b338f26 on 62

distinct URLs with threshold ε = 0.8.

94

Chapter 6

Conclusions

We have presented Prometheus, a web based platform, which combines dif-

ferent dynamic malware analysis techniques to offer an automated analysis

of those malware which steal information via man in the browser attacks.

Prometheus compares the different DOMs retrieved by VMs when they are

infected with a malware and when they are not. These differences are then

filtered via some heuristics in order to filter out legitimate ones. This tech-

nique do not rely on any implementation detail of the analyzed malware and

so can successfully detect any kind of WebInject based malware.

Differently from previous work in the field, our system combines this

webinjection detection analysis with a memory forensic inspection. In this

way our system offers to the users more useful information on the malware

they submitted and retrieves some hints on the targeted URLs trying to

make every times new analyses more effective. These features are offered

through a web interface that allows users to submit and analyze samples or

URLs and to get dynamically the results of the analyses avoiding any kind

of reverse engineering effort.

Furthermore, we created a crawler which automatically submit new

samples to Prometheus every time they are tracked and published on

ZeuSTracker or SpyEyeTracker. In this way our sample base is always up

to date and most of the times analysts do not need to upload their sample

but only to look at the results of previous analyses.

We evaluated Prometheus on a dataset of 53 distinct samples of ZeuS

analyzing 62 real, live URLs of banking websites. The results show that Pro-

metheus correctly detected the injections performed by the analyzed trojan

with a low fraction of false positives (0.52%) mostly due to the dynamic

content generated by JavaScript code. However, while we have considered

6.1. Limitations Chapter 6. Conclusions

all the URLs during the evaluation phase, our idea is to reduce the number

of URLs to be evaluated on each sample analysis. Since the Prometheus

execution time scales linearly with the number of URLs processed this will

bring to faster analyses. At the same time this will not limit the capacity of

Prometheus because, as explained in Section 3.2.2, it exploits the knowledge

base gained by memory forensic analysis to select and process the URLs that

have the highest probability to be injected.

Prometheus is able to process a single URL in about 6 seconds and the

analysis of a sample processing 62 URLs requires about 6 minutes. Fur-

thermore Prometheus has been designed to scale directly with the amount

of available resources and the designed architecture hypothetically allows to

increase the number of analyses conducted simultaneously.

In the next sections we will introduce the limitations 6.1 that we put

to our work and the future works 6.2 that may be conducted starting from

this limitations. Other future works that we propose are raised during the

development phase in which we noticed some lack of technology or some

very useful improvements that could be done on the tools that we used.

6.1 Limitations

One limitation of Prometheus is represented by the assumption on which

some heuristic-based filters have been implemented. As we said, some of

the filters assume that the content of the injections performed by WebInject

based information stealers is static, that means that the injections performed

by the same malware present always the same content. The assumption

holds for all the samples we analyzed but if in the future new samples will

perform dynamically changing content injections, these filters will have to

be disabled and new heuristic will have to replace them to keep low false

positive rates.

Another limitation is represented by the RC4 keys extraction mechan-

ism. Since the mechanism we use to extract RC4 cryptographical keys is

depended on the malware implementation it could fail to correctly extract

cryptographical keys from some banking trojan version. Furthermore new

banking trojans began using AES to encrypt their configuration files and

their connections. For this reason it will be useful to improve our key ex-

traction mechanism.

Another obstacle that Prometheus has to face are evasion mechanisms

employed by the malware to fool dynamic analysis. Furthermore the ac-

tual version of Prometheus is not able to distinguish beetwen those samples

which evade the sandbox and those ones which are simply inactive. This

96

Chapter 6. Conclusions 6.2. Future Works

problem could be solved working on bare metal and adopting the method

proposed by [20] to obtain a virtual-machine-equivalent snapshots on phys-

ical hardware.

6.2 Future Works

As mentioned in the previous chapter Prometheus’ performance could be

improved. Due to its design Prometheus is very easy to scale, in fact it

will be sufficient to deploy the web server, the database, Cuckoo and the

back-end on different machines in order to guarantee better performances.

Moreover all this system could be deployed on a cloud with some adjustments

to make it automatically scale upon the needs of the current workload. In

this scenario Prometheus could be improved to handle more than a single

analysis simultaneously.

A second improvement could be done in the cryptographical keys extrac-

tion phase in order to make it less relying on the actual ZeuS implementation

and to extract also AES keys.

Actually, for the population of our URLs database we rely only on users

submission. It will be very useful to have a tool which starting from our

regular expressions database searches in the web for valid URLs matching

these expressions and automatically submits them to our system. In addi-

tion, we noticed that a significative number of URLs extracted from infected

memory dumps are post login pages. Hence designing a solution that allows

Prometheus to detect injections even in this scenario will contribute to im-

proving Prometheus’ effectiveness.

A further improvement will be to detect and reveal to the users which

samples are evading our sandbox and suggest a manual analysis. In order

to do that it will be useful to extend the analysis conducted by Lindorfer et

al. [24] to Cuckoo sandbox in order detect major points of failure of Cuckoo

and improve them.

In addition our system could be used to conduct an interesting analysis

observing how webinjects vary in respect with the malware families and

so could be used to generate signatures describing different malware. In

particular these signatures could be used by antivirus to detect if a certain

machine has been infected by a given sample simply looking at how the

content of certain web pages is presented an comparing it with our results.

97

6.2. Future Works Chapter 6. Conclusions

Furthermore it will be very useful to make our system interact with

some of the most diffused malware analysis platform (VirusTotal [28], Cy-

becrime [29] etc.) in order to automatically publish on their pages our

results, interacting with their APIs in order to make results more reachable

by analysts’ community.

98

Bibliography

[1] Abuse.ch. Spyeye tracker. https://spyeyetracker.abuse.ch/.

[2] Abuse.ch. Zeus tracker. https://zeustracker.abuse.ch/.

[3] Ross Anderson, Chris Barton, Rainer Böhme, Richard Clayton, Michael

van Eeten, Michael Levi, Tyler Moore, and Stefan Savage. Measuring

the cost of cybercrime. In WEIS, 2012.

[4] Michael Bailey, Jon Oberheide, Jon Andersen, Z Morley Mao, Farnam

Jahanian, and Jose Nazario. Automated classification and analysis of

internet malware. In Recent Advances in Intrusion Detection, pages

178–197. Springer, 2007.

[5] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit

Sinha, Amr Youssef, Mourad Debbabi, and Lingyu Wang. On the ana-

lysis of the zeus botnet crimeware toolkit. In Privacy Security and

Trust (PST), 2010 Eighth Annual International Conference on, pages

31–38. IEEE, 2010.

[6] Zheng Bu, Pedro Bueno, Rahul Kashyap, and Adam Wosotowsky. The

new era of botnets. White paper from McAfee, 2010.

[7] Armin Buescher, Felix Leder, and Thomas Siebert. Banksafe inform-

ation stealer detection inside the web browser. In Recent Advances in

Intrusion Detection, pages 262–280. Springer, 2011.

[8] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Paxson.

Measuring pay-per-install: The commoditization of malware distribu-

tion. In USENIX Security Symposium, 2011.

[9] Graham Cluley. Corkow, the lesser-known bitcoin-

curious cousin of the russian banking trojan family.

http://www.welivesecurity.com/2014/02/11/corkow-bitcoin-russian-

banking-trojan/, February 2014.

99

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Claudio Criscione, Fabio Bosatelli, Stefano Zanero, and Federico Maggi.

Zarathustra: Extracting WebInject signatures from banking trojans.

In Twelfth Annual International Conference on Privacy, Security and

Trust (PST), volume (to appear), Toronto, Canada, July 2014. IEEE

Computer Society.

[11] Stephen Doherty, Piotr Krysiuk, and Candid Wueest. The state

of financial trojans 2013. Luettavissa: http://www.symantec.com/

content/ en/ us/ enterprise/media/ security response/whitepapers/

the state of financial trojans 2013.pdf . Luettu, 4:2014, 2013.

[12] Nicolas Falliere and Eric Chien. Zeus: King of the bots. Symantec

Security Response (http://bit.ly/3VyFV1), 2009.

[13] FBI. The fraud scheme. http://www.fbi.gov/news/stories/2010/

october/cyber-banking-fraud.

[14] JQuery Foundation. Jquery. http://jquery.com/.

[15] Max Goncharov. Russian underground 101. Trend Micro Incorporated

Research Paper, 2012.

[16] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J

Dietrich, Kirill Levchenko, Panayiotis Mavrommatis, Damon McCoy,

Antonio Nappa, Andreas Pitsillidis, et al. Manufacturing compromise:

the emergence of exploit-as-a-service. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 821–832.

ACM, 2012.

[17] Twitter Inc. Bootstrap. http://getbootstrap.com/.

[18] IOActive. Technical white paper. reversal and analysis of zeus and

spyeye banking trojans. Technical report, 2012.

[19] Loucif Kharouni. Automating online banking fraud. Technical report,

Technical report, Trend Micro Incorporated, 2012.

[20] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox: ef-

ficient malware analysis on bare-metal. In Proceedings of the 27th An-

nual Computer Security Applications Conference, pages 403–412. ACM,

2011.

[21] Brian Krebs. Operation trident breach.

http://krebsonsecurity.com/tag/operation-trident-breach/, 2011.

100

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Brian Krebs. Police arrest alleged zeus botmaster ”bx”.

http://krebsonsecurity.com/2013/01/police-arrest-alleged-zeus-

botmaster-bx1/, January 2013.

[23] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Mil-

ani Comparetti, and Stefano Zanero. Lines of malicious code: insights

into the malicious software industry. In Proceedings of the 28th An-

nual Computer Security Applications Conference, pages 349–358. ACM,

2012.

[24] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.

Detecting environment-sensitive malware. In Robin Sommer, Davide

Balzarotti, and Gregor Maier, editors, Recent Advances in Intrusion

Detection, volume 6961 of Lecture Notes in Computer Science, pages

338–357. Springer Berlin Heidelberg, 2011.

[25] Michael Mimoso. 64-bit version of zeus banking trojan in the

wild. http://threatpost.com/64-bit-version-of-zeus-banking-trojan-in-

the-wild/103159, December 2013.

[26] Marco Riccardi, Roberto Di Pietro, and Jorge Aguila Vila. Taming zeus

by leveraging its own crypto internals. In eCrime Researchers Summit

(eCrime), 2011, pages 1–9. IEEE, 2011.

[27] Jerome Segura. Hiding in plain sight: a story about a sneaky banking

trojan. http://blog.malwarebytes.org/security-threat/2014/02/hiding-

in-plain-sight-a-story-about-a-sneaky-banking-trojan/, February 2014.

[28] VirusTotal Team. Virustotal. https://www.virustotal.com/.

[29] Xylitol. Cybercrime. http://cybercrime-tracker.net/.

101

Appendix A

The Database

All the data produced by our system are stored in a single central MySQL

database, whose structure is proposed in Figure A.1. Every component has

direct access to the database. The database is composed by 6 tables: 5

representing entity and one representing a relationship:

1) sample: This table indexes all samples retrieved during the analysis,

storing the unique id (that identifies also the sample analysis), the

name (hash MD5 of the sample), timestamp of submission and the

information retrieved from the memory forensic analysis.

2) url: This table stores all the URLs used by our system with a couple

id-URL; the id is unique and identifies also the submission analysis of

the URL.

3) regex: This table is a collection of the regular expressions retrieved

during the memory analyses. It contains the regular expressions with

their unique id and the sample with which the machine was infected

when the system retrieved the regular expressions.

4) domDump: This table indexes all the DOMs retrieved by our system

during the analysis keeping a reference to the sample and URL that has

generate them. All the DOMs are stored in files named < dom− id >

.dom in a directory called doms, inside the web directory.

5) diff: This table indexes the differences generated by our system during

the analysis keeping a reference to the sample and URL that has gen-

erate them. All the diffs are stored in files named < diff − id > .diff

in a directory called diffs, inside the web directory.

6) match: This table represents the match relation between regular ex-

pressions and URLs. Every time a regular expression is added to the

Appendix A. The Database

z_diff

id INT(11)

sample INT(100)

url INT(11)

z_url_id INT(11)

Indexes

z_domDump

url INT(11)

sample INT(100)

dom INT(11)

z_sample_id INT(11)

z_url_id INT(11)

Indexes

z_match

url INT(11)

regex INT(11)

Indexes

z_regex

id INT(11)

regex VARCHAR(150)

sample INT(11)

Indexes

z_sample

id INT(11)

name VARCHAR(100)

time_stamp TIMESTAMP

cnc VARCHAR(500)

config_key LONGTEXT

credential_key LONGTEXT

Indexes

z_url

id INT(11)

url TEXT

Indexes

Figure A.1: EER schema of the database.

database every URL is compared with this regular expression and if

they match the couple is added to the match table, the same is done

when a new URL is added to the database. This table is the key point

in the implementation of the URLs ranking (Listing A.1). A similar

query is done when VMs require the list of URLs at the begin of a

new sample analysis.

SELECT COUNT(m.regex) AS m, u.url AS name, u.id AS id

FROM prometheus.z_url AS u JOIN prometheus.z_match AS m ON m.url = u.id

GROUP BY u.id

ORDER BY COUNT(m.regex) DESC

LIMIT 10;

Listing A.1: Example Query

104

Appendix B

Determine Malware

Activation Time

Dynamic malware analysis has to take into account many issues, that are

due to the fact that malware do not let it be analyzed so easily. The most

common technique used for this purpose is the delayed activation of the

sample, which means that a sample infecting a machine may activate itself

some time after the infection, and the activation time is often randomized.

In order to conduct our analysis it is necessary that the analyzed sample

is active. For this reason we conducted some experiments in order to es-

timate an average of the activation time to be used as default sleep time

in the configuration file. The VMs will then wait this sleep time before

starting downloading DOMs. In order to mitigate the effect of random ac-

tivation we also employed the threshold for the last heuristics as expressed

in Section 3.3.3.

In order to estimate an average time of activation of banking trojans, we

build a specific analysis package for Cuckoo. The module works as follow:

when the analysis is submitted through the Cuckoo command line interface

we specify together with the sample to analyze a sleep time (in seconds);

Cuckoo then starts the VM, infects it, waits for the given amount of time and

then starts the browser, dumps the memory and stops the analysis. Cuckoo

offers some module for results processing in particular the new version offers

support for volatility analysis. We exploited a module that shows all the

API hooks installed by the malware. In particular we are interested in

looking for a hook on the DLL WININET at the function openURL()

(Figures B.1, B.2). In fact this hook is installed by malware to perform

man in the browser attacks. Hence when we find this hook it means that

the sample has activated himself. Then to estimate the activation time we

Appendix B. Determine Malware Activation Time

Figure B.1: Table of API hooks in cuckoo results.

Figure B.2: WebInject hook.

repeated our analysis applying a search algorithm (bisection) in order to

find with a reasonable precision the instant of activation of the sample. We

have repeated these experiments on 6 different active samples obtaining the

results that after 40 seconds every samples is active. This result has also been

confirmed by the precision of our system achieved during the evaluation.

106

