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Sommario

L’obbiettivo principale di questo lavoro di tesi è stato l’identificazione un modello
MIMO della risposta alle vibrazioni di una cabina di elicottero. Il modello stimato
verrà utilizzato per progettare un sistema di controllo attivo delle vibrazioni per
l’attenuazione del disturbo generato dal rotore principale. Il sistema da identificare
è costituito da una serie di attuatori e accelerometri posizionati nella fusoliera di un
elicottero Agusta A109.

Degli esperimenti sono stati eseguiti eccitando un singolo attuatore e registrando
le risposte dei sensori alle vibrazioni generate. Da questi dati, tramite un algoritmo
di identificazione a sottospazi il modello è stato identificato. La capacità del modello
di riprodurre i segnali di output partendo dal segnale di eccitazione è stata testata.
Il modello ha prodotto buoni risultati per attuatori e sensori posizionati dallo stesso
lato dell’elicottero. Le performance sono invece meno buone considerando attuatori
e accelerometri su lati opposti, a causa della maggiore attenuazione a cui i segnali
sono soggetti. Paragonando le risposte in frequenza del modello con quelle calcolate
dai dati si è notata una maggiore accuratezza del modello per alte frequenze.

Nonostante il progetto del sistema di controllo vada oltre gli obbiettivi pre-
posti, tale problema è stato indagato considerando una classica configurazione in
retroazione. Per semplificare il problema del controllo, un disacoppiatore SVD è
stato utilizzato in modo da ottenere un numero di sistemi SISO indipendenti. In
questo modo un sistema di controllo può essere progettato per ciascuna componente
frequenziale del disturbo. Sul sistema semplificato l’algoritmo Higher Harmonic Con-
trol (HHC) è stato applicato. Alcune simulazioni sono state effettuate su un piccolo
sottosistema per validare il sistema di controllo considerato: queste hanno mostrato
una buona attenuazione del disturbo nonostante le inaccuratezze del modello. I
risultati ottenuti insieme alla sua semplicità e facilità di implementazione, sembrano
validare questa tecnica come una valida alternativa per il controllo attivo delle vi-
brazioni negli elicotteri.
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Abstract

In this thesis the identification of a MIMO model of the vibration response of a
helicopter cabin was carried out. The estimated model will be used to design an active
vibration control system to reduce the vibrations generated by the main rotor. The
system to be identified consists of a set of piezoelectric actuators and accelerometers
located on a fuselage of an A109 Agusta helicopter.

First, a set of experiments was performed where each actuator was individually
excited and the responses of the sensors to the induced vibrations were recorded.
Using the recorded data, a subspace identification algorithm was employed to identify
the model of interest.

To test the model, we passed the recorded input to the model and evaluated its
ability to reproduce the recorded output. The model produced a good performance,
especially when actuators and sensors were positioned on the same side of the he-
licopter. The model’s performance deteriorated when actuators and sensors were
located on opposite sides of the helicopters, due to the larger attenuation the signals
are subject to. Additionally, the frequency responses of the model were compared to
the ones calculated from the recorded data. The results showed that the model is
more accurate for high frequencies.

Although a full scale control system goes beyond the scope of this work, a feed-
back control system has been proposed, based on the estimated model. Using an
SVD decoupler, the MIMO system can be reduced to a set of independent SISO
systems. This allowed creating a simple control system capable of attenuating indi-
vidual frequency components using the appropriate subset of sensors and actuators.
This simplified system was controlled by the Harmonic Control (HHC) algorithm.
To validate the control system, some software simulations were performed on a sub-
set of channels. The results showed a significant disturbance attenuation despite
the inaccuracies of the model. These results, together with the simplicity and ease
of implementation, indicate that this method provides a valid option for vibration
reduction techniques.
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Nomenclature

A1, ..., A18: Eighteen accelerometers placed inside the fuselage

ACSR: Active Control of Structural Response

AD01, ..., AD08: Eight actuators on the right rear strut

AS01, ..., AS08: Eight actuators on the left rear strut

DRGA: Dynamic Relative Gain Array

HHC: Higher Harmonic Control

IBC: Individual Blade Control

LTI: Linear Time Invariant

MIMO: Multi Input Multi Output

MOESP: Multivariable Output Error State Space algorithm

NSRGA: Non-Squared Relative Gain Array

PI-MOESP: Past Input Instrumental Variable MOESP algorithm

PI-MOESP: Past Output Instrumental Variable MOESP algorithm

RGA: Relative Gain Array

SISO: Single Input Single Output

SVD: Singular Values Decomposition

TD01, ..., TD12: Twelve actuators on the right wing of the anti-torque plate

TS01, ..., TS12: Twelve actuators on the side wing of the anti-torque plate
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Chapter 1

Introduction and motivations

A basic description of the vibrations in a helicopter is given in this chapter and some
of the passive and active systems for vibration attenuation are discussed. The problem
of vibration attenuation is then discussed, with reference to the system employed in
this work.

1.1 Background

Helicopters play an essential role in today’s society. Thanks to their peculiarities
they are employed in several extreme conditions such as rescue operations, air medical
services or military missions. However the high noise level produced is one of the most
important factors affecting the passengers’ and crew’s comfort and can potentially
compromise the success of the mission. In the helicopter cabin, the sound pressure
level of the noise is on average from 20 to 30 dB higher than those of fixed wing
aircrafts [7]. Moreover, the noise attenuation inside modern helicopter cabins is still
unsatisfactory compared to modern commercial jet airplanes. In addition to this,
the tonal components are typically in the frequency range between 500 Hz and 4500
Hz to which the human ear is most sensitive.

The high levels of vibrations are also responsible for the degradation of the struc-
tural integrity as well as an increase in the fatigue of the mechanical components of
the helicopter and a reduction of the effectiveness of the on-board computer systems.
All these aspects have as a further consequence the increase of the maintenance costs.
Therefore, considerable efforts have been taken for the last few decades to reduce the
level of noise and vibrations in helicopters.
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Sources of vibrations in helicopters

1.2 Sources of vibrations in helicopters

Vibrations in the helicopter originate from the main rotor, the tail rotor, the engines
and other machinery [14]. The main rotor, that generates the aerodynamic forces
necessary to fly the aircraft, is rigidly mounted on the roof structure of the helicopter
via connecting members called struts through which vibrations are transmitted to
the cabin roof. The frequencies of the disturbance created by the main rotor are
integer multiples of the rotor frequency. Main rotor vibrations arise especially in
forward flight.

Another source of vibration is represented by the blades. They are a critical
component of the helicopter and a major responsible of the vibrations produced, due
to the particular aerodynamic loads they are subjected to.

The intensity of the vibrations also depends on the speed of the helicopter (a
typical profile is shown in Figure 1.1). Severe vibrations occur in two distinct flight
conditions:

• low speed transition flight: generally during the landing and taking off ma-
noeuvres;

• high speed flight.

Figure 1.1: Vibration profile of a helicopter as a function of cruise speed.

At low speed, the severe vibration level is primarily due to abrupt changes in
the blades’ load. This happens when a rotor blade passes in close proximity of
the vortices created by a previous blade. This condition is generally referred to as
Blade Vortex Interaction (BVI). In moderate-to-high speed cruise, the BVI-induced
vibration is reduced and the vibrations are caused mainly by the main rotor.
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1.3 Review of vibration reduction techniques

A number of techniques have been developed to reduce noise and vibration inside
helicopter cabins. They can be broadly divided into "passive" and "active" vibra-
tion control techniques. The main difference between the two categories is in the
employment of active devices such as actuators and loudspeakers.

1.3.1 Passive vibration control techniques

A first approach, usually performed during the vehicle design phase, involves design-
ing blades and fuselages in such a way that their natural vibration frequencies lie
away from the rotor harmonic frequencies. This tuning helps avoiding blade and fuse-
lage resonances with the rotor harmonics. This method, however, requires extensive
modelling and testing of the blade and fuselage structural characteristics throughout
the aircraft development phase [11].

Other passive techniques use mechanical components that absorb the energy of
the vibrations, such as tuned-mass absorbers and tuned-mass dampers. A typical
dynamic absorber is a single degree of freedom system with a relatively small mass
on a spring. It is attached to a structure in order to reduce the dynamic response
of the structure. The frequency of the absorber is tuned to a particular structural
frequency so that when that frequency is excited, it will resonate out of phase with
the structural motion. A tuned-damper works in a similar manner but it has as
additional mechanical component a damper. With this technique, each mode of
vibration requires a separate absorber. Vibration absorbers and dampers are tuned
to the frequencies to be removed and are placed at specific locations in the fuselage.

Despite its simplicity, the reduction obtained with such methods is limited (both
in the amount of energy absorption and frequency operation range) and involves an
additional weight. Another drawback is that, due to their fixed design, tuned-mass
absorbers and dampers are not able to adapt to operating condition changes [11].

Rotor isolation is another common vibration reduction technique. Isolating mate-
rials, such as pads of rubber or springs are placed between the vibrating system and
its supporting structure to reduce the force transmitted from the vibrating system
to the supporting structure.
Although tuned mass absorbers and isolators are passive devices, both can be im-
plemented as semi-active systems as well. In both cases though, these vibration
reduction techniques can only achieve local effects.
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1.3.2 Active vibration control techniques

Active vibration reduction techniques were introduced to overcome the limitations
imposed by passive control techniques and to increase the reduction of both noise and
vibrations. A typical active noise and vibration control system consists of four main
components: a set of sensors, a set of actuators, a power supply unit and a controller.
The acoustic noise signals or vibrations are measured by the sensors mounted on the
fuselage. The signals are processed by the controller and used to generate a signal
to drive the actuators. The signal is used by the actuators to produce a vibration
field as close as possible to the vibration field to be removed but opposite in phase,
producing a destructive interference as result. A classification of the existing active
methods can be carried out according to the actuators location:

• Higher Harmonic Control System (HHC)

• Individual Blade Control (IBC)

• Active Control of Structural Response (ACSR)

The HHC and IBC methods aim at attenuating the vibrations by means of ac-
tuators placed on the rotor. In this way, the vibrations are attenuated before they
propagate to the fuselage. On the contrary, in the ACSR method, only the vibra-
tions that are transmitted to the cabin are attenuated. All these systems rely on the
Higher Harmonic Control algorithm that will be presented in Chapter 4 [2].

1.3.2.1 Higher Harmonic Control System

The higher harmonic control system aim at reducing the vibrations that affect the
main rotor before they propagate to the cabin [6] [2]. Transducers are mounted at
key locations in the fuselage to measure the residual vibrations while the actuators
are typically mounted in the non-rotating swash plate. The actuators excite the
blades in order to create blade oscillations which, when properly phased, reduce the
vibrations induced by the rotor during flight conditions. Typical actuators for this
system are hydraulic or electromagnetic actuators. A scheme of this type of systems
is shown in Figure 1.2.

1.3.2.2 Individual Blade Control

The Individual blade control technique (IBC) is, in many aspects, similar to that
of HHC, except that using different locations of the actuators are employed [2].
While the HHC technique uses actuators placed in the non-rotating frame, the IBC
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(a)

(b)

Figure 1.2: Scheme of an HHC system[6]

approach employs actuators located in the rotating frame, allowing to control each
blade independently. A scheme of the IBC is shown in Figure 1.3. The actuators
can be placed between the hub and the blades or directly on the blades, according
to different implementation of the system.
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Figure 1.3: Scheme of an IBC system [6]

1.3.2.3 Active Control of structural response

Unlike the HHC and IBC techniques, that aim at achieving a global reduction of the
vibration by placing the actuators in the rotor system, the ACSR approach, pioneered
by Westland helicopters, is designed to attenuate the vibration in the fuselage. Cur-
rently, ACSR is one of the most successful helicopter vibration reduction methods.
Vibration sensors are placed at key locations in the fuselage, where minimal vibration
is desired (for example at the pilot and passenger seats). An ACSR controller uses
the sensors’ input to calculate the actuators’ response needed to reduce the vibra-
tions. Recently, the ACSR technology has been incorporated in modern production
helicopters such as the Westland/Augusta AW101. A scheme of this technique is
shown in Figure 1.4.

1.4 State of the art

Some control systems have already been implemented in helicopters showing good
results also during in-flight tests. An example is given in [16] where a system
aimed at attenuating the primary gear-mesh tone is presented. In that work a set of
proof-mass actuators and microphones were used. The algorithm used to drive the
actuators was the HHC algorithm (discussed in Chapter 4). The results are presented
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Figure 1.4: Scheme of an ACSR system [4]

in Figure 1.5 showing a significant noise attenuation for a system mounted on a S-76
helicopter.

Helicopters implementing active noise/vibration control are already commercially
available. Some of these are the S-76C++ and the S-76D of S-76 Sikorsky series.
Notably, the latter has a vibration control system that attenuates the perceived noise
level not only in the cabin but also externally.

Another example of commercial implementation of active control systems is given
by the AW101 helicopter of the Agusta-Westland. This helicopter, designed for
military, maritime and civil roles, implements an ACSR vibration control system.

Figure 1.5: Gear-mesh reductions at microphones during the second flight test in [16].
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1.5 Friendcopter project

An attempt to design an active control system for noise reduction in a helicopter
cabin was performed also by the Aerospace Department of Politecnico di Milano. In
this project, named Friendcopter, the following set-up was used.

1.5.1 Description of the set-up

Figure 1.6: Helicopter fuselage employed during the Friendcopter project.

The set-up present in the aerospace engineering laboratory shown in Figure 1.6 is
an actual fuselage of an Agusta A109 helicopter, lacking of many devices (e.g. the
blades, the tail rotors, pumps, internal equipments, etc.) but equipped with the
main components of the main rotor and structural links. To have a more realistic
situation, more similar to the on-flight conditions, an aerodynamic brake (shown in
Figure 1.7) was mounted [17].

Some of the omitted devices (e.g. pumps, tail rotor) are also sources of noise.
However, the current set-up allows to reproduce the common disturbance tones gen-
erated by the main rotor gearbox [17]. The gearbox is connected to the fuselage with
a set of rigid struts and an aluminium anti-torque plate mounted above the cabin
roof. In this way all the loads generated by the rotor are transmitted to the anti-
torque plate instead of the struts. A typical shape of the anti-torque plate is shown in
Figure 1.8. The generated vibrations are transmitted to the fuselage mainly through
the anti-torque plate and the rear struts.
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Figure 1.7: Aerodynamic brake.

Figure 1.8: Example of an anti-torque plate.

1.5.2 Choice of actuators and their location

The type of actuators employed were piezoelectric patches that are not bulky and do
not affect the mechanical structure significantly. Their locations were selected by the
aerospace engineers of the laboratory after performing a laser scanner analysis [17].
Following the results of these tests, 16 patches were placed on the two rear struts (8
on the left one and 8 on the right one) and 24 on the anti-torque plate (12 on the
left side and 12 on the right side) for a total of 40 actuators. No actuator was placed
on the front struts because no significant vibration field was detected in the part of
the roof corresponding to their structural attachments to the cabin. The actuators
location is shown in Figure 1.9.
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(a) Actuators on one side of the
anti-torque plate

(b) Actuators on one side of the
anti-torque plate

(c) Actuators on the rear struts (d) Actuators on the rear
struts

Figure 1.9: Actuators location [17].
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1.5.3 Choice of sensors and their location

During theFriendcopter project, the type of sensors chosen were accelerometers. In
this project 6 accelerometers were used, 3 per side and they were placed all on the
cabin roof. Considering just one side of the cabin, 2 accelerometers were placed at
the points of the structural attachment of the anti-torque plate, and the remaining
one at the point of structural attachment of the rear strut.

1.5.4 Disturbance frequencies

Figure 1.10: Noise spectrum inside the cabin. [17].

The frequency response inside the cabin due to the rotor motion was identified and is
shown in Figure 1.10. It is possible to distinguish among three types of noise: large
amplitude, low frequency (< 200 Hz) rotor harmonics that are far from the speech
frequency range, broadband noise and higher frequency tones that are considered to
be the most annoying for the human ear. In this specific case the higher frequency
tones are at 1599 Hz, 1785 Hz, 2400 Hz, and 4250 Hz [17]. The attenuation of these
high frequency tones is generally the main objective of active vibration control in
helicopters.
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1.5.5 Type of control

During the Friendcopter project an active vibration attenuation system was devel-
oped. The system was a semi-decentralized feedforward controller: each group of
actuators was controlled independently, so that there was a controller for the ac-
tuators on the left rear strut, a controller for the actuators on the left side of the
anti-torque plate, a controller for the right rear strut and a controller for the actuators
on the right side of anti-torque plate.

The algorithm used was the normalized FxLMS with a FIR filter of 100 coefficients
[17]. The idea for this configuration was based on experimental analysis that showed
that the actuators on the left part of the helicopter do not have much authority on
the sensors located on the right part of the cabin and vice versa. Although this might
be true for the actuators on the rear struts, all the output signals are not negligible
when an actuator on the anti-torque plate is excited. With such a configuration only
an attenuation of the main peaks was obtained, allowing however higher broadband
noise levels.

The semi-decentralized control approach is not a good choice for this category
of problems because the actuators might fight each other. In other words, in such
a configuration the vibrations created by a group of actuators might be seen as
vibrations to be attenuated by another group of actuators.

1.6 Current project description

In the current work the same set-up was used, apart from the accelerometers whose
number was augmented to 9 per side, for a total of 18. They were placed in the
area of the roof to be monitored, where high vibration levels are present. Due
to the lack of reference points in the roof, the sensors are not perfectly symmetric
between the left and right side. A large number of accelerometers was used under the
assumption that the higher the number of measurements, the higher the attenuation
of the disturbance that can be achieved, although this is not always guaranteed. The
sensitivity of the accelerometers used is shown in the table 1.1.
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Figure 1.11: Locations of the accelerometers on the left side of the cabin. The accelerometers
1 and 2 are the ones corresponding to the anti-torque plate structural attachment while the ac-
celerometer 9 is the one corresponding to the rear strut structural attachment. The others are the
ones that have been added in the current project.

Accelerometer Model Serial Number Sensibility[mv/g]
1 333B32 14492 100.1
2 333B32 13967 105
3 352C33 69539 100.1
4 352C33 69541 99.8
5 333B32 31666 99.0
6 352C33 69535 100.1
7 352C33 69540 100.1
8 333B32 14479 102.2
9 352C33 69538 99.0
10 352C33 69533 99.7
11 352C33 69534 102.3
12 352C33 70273 100
13 333B32 13974 98.2
14 333B32 14779 101.6
15 352C33 69532 99.4
16 352C33 69543 99.0
17 352C33 69530 107.3
18 352C33 69536 101.1

Table 1.1: Table of the accelerometer sensitivities.
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1.6.1 Acquisition system

The acquisition system employed consists of two PCI’s (PCI-6251, PCI-MIO-16E-
1) that are used to acquire the signals of the accelerometers and to generate the
excitation signals for the actuators. The generated signals are sent to a reconstruction
filter with cut-off frequency set to 5 kHz and to a power amplifier whose gain was
set to 20. The accelerometers are connected to the 478A16 signal conditioners that
provide the voltage supply needed by the sensors. The software used to perform the
experiments and to set the devices correctly is NI LabVIEW SignalExpress. The
sampling frequency was set to 10 kHz and the cut-off frequency of the anti-aliasing
filters was set to 5 kHz. Both the anti-aliasing filters and the reconstruction filters
are KEMO 8 BenchMaster 21M. All the data are analysed using MATLAB and the
same program was used to estimate the model.

1.6.2 Problem statement and objective of the work

The final goal of this study is to attenuate the acoustic noise and vibrations at least
in a specific and reduced volume of the helicopter fuselage. Specifically, it would be
desirable to reduce the noise in the volume where the passengers are supposed to
sit. This is partially achieved with active techniques as the ones seen in this chapter.
Most of them need however a reliable model of the system to be controlled. The
estimation of such a model is the main objective of this thesis. The particularity of
this work is the large number of input and output channels of the system that makes
the identification process more difficult. No example is documented in the literature
of such a large system for noise and vibration reduction purposes. The identification
was carried out with different techniques to obtain satisfactory results.

The problem of control was sketched out, which is also quite complex in view
of the size of the MIMO system. Particularly in this work, a way to simplify the
MIMO system was investigated and a control algorithm specific for active vibration
reduction in helicopters has been simulated in order to understand if such a control
can be applied to the system.
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Subspace model identification

In this chapter the underlying theory for the subspace identification methods used for
a discrete LTI (state space) system with exogenous input and without a feedback loop
is presented. Particularly the ordinary MOESP (and its variants PI-MOESP and
PO-MOESP) and the N4SID methods are presented.
Shortly, also their implementation in the Matlab environment is discussed.

2.1 Reachability and Observability matrices

Consider a discrete-time LTI system described by the model in equation (2.1):

x(t+ 1) = Ax(t) +Bu(t) (2.1a)

y(t) = Cx(t) +Du(t) (2.1b)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are respectively the state vector, the
control signals and the output signal; t represents the discrete time variable. The
matrix A ∈ Rn×n is the dynamic matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n

is the output matrix and D ∈ Rp×n is the feedthrough matrix.
Such a system (the pair (A,C)) is said to be observable if two different initial

states do not exist such that their corresponding output motions are identical. In
other words, a system is observable if, starting from its output y(t), it is possible
to see the effect of each state variation. A system is observable if and only if the
observability matrix O defined in the expression (2.2) is full rank or equivalently,
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its rank is equal to the system order n.

O =


C
C A
C A2

...
C An−1

 . (2.2)

A state space system (the pair (A,B)) (from input u(t)) is reachable if starting
from a null initial state we can always find an input signal which leads the system
to any a-priori selected final state in finite time. Reachability from u(t) indicates in
practice that u(t) affects all the system states. A system is reachable (from u(t))
if and only if the Reachability matrix R defined in equation (2.3) is full rank or
equivalently its rank is equal to the system order n.

R =
[
B AB A2B · · · An−1B

]
. (2.3)

2.2 Realization problem

Consider again the discrete-time LTI system described by the equations (2.1) as-
sumed to be reachable and observable: in this case we say that (A,B,C) is minimal.

Suppose that the matrices of the system are unknown but that input and output
data {u(t), y(t), t = 1, · · · , N−1} are given. The problem is to identify the dimension
n of the system and its matrices, up to a similarity transformation. This is a subspace
identification problem for a deterministic LTI system. To perform this task some data
matrices are defined.

2.2.1 Data matrices

Consider a LTI system at rest(u(t) = 0, y(t) = 0 for t < 0) and suppose the input
and output data to be (u(0), u(1), · · · , u(N − 1)), (y(0), y(1), · · · , y(N − 1)) where
N is sufficiently large. Then for k > 0 we get

[
y(0) · · · y(N − 1)

]
=
[
gk−1 · · · g0

]


0 · · · 0 u(0) · · · u(N − k)
... . .

.
. .
.

u(1) · · · u(N − k + 1)

0 . .
.

. .
. ...

...
u(0) u(1) · · · u(k − 1) · · · u(N − 1)

 (2.4)
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where
[
gk−1 · · · g0

]
is the impulse response that can be calculated using the least

square method if the right hand matrix is full rank.
Suppose the input and output data are given and that k > n where n is the

dimension of the state vector. Then we can build the block Henkel matrices defined
below:

U0|k−1 =

 u(0) u(1) · · · u(N − 1)
...

...
...

u(k − 1) u(k) · · · u(k +N − 2)

 ∈ Rkm×N (2.5)

and

Y0|k−1 =

 y(0) y(1) · · · y(N − 1)
...

...
...

y(k − 1) y(k) · · · y(k +N − 2)

 ∈ Rkp×N (2.6)

where the number of columns is usually fixed to a sufficiently large N . Combining
iteratively the two equations of the state space system we get equation (2.7):

 y(t)
...

y(t+ k − 1)

 =

 C
...

C Ak−1

x(t) +
 D

...
. . .

. . .

C Ak−2B · · · C BD


 u(t)

...
u(t+ k − 1)

 . (2.7)

We define

yk(t) =


y(t)

y(t+ 1)
...

y(t+ k − 1)

 ∈ Rkp (2.8a) uk(t) =


u(t)

u(t+ 1)
...

u(t+ k − 1)

 ∈ Rkm (2.8b)

and the block Toeplitz matrix

Φk =


D
C B D
...

. . .
. . .

C Ak−2B · · · C BD

 ∈ Rkp×km . (2.9)

Then we can redefine equation (2.7) as

yk(t) = Okx(t) + Φkuk(t) (2.10)
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for t = 0, 1, · · · , k − 1. Then the block Hankel matrices can be expressed as:

U0|k−1 =
[
uk(0) uk(1) · · · uk(N − 1)

]
(2.11a)

Y0|k−1 =
[
yk(0) yk(1) · · · yk(N − 1)

]
. (2.11b)

Combining equations (2.10) and (2.11) yields:

Y0|k−1 = OkX0 + ΦkU0|k−1 (2.12)

where X0 =
[
x(0) x(1) · · · x(N − 1)

]
∈ Rn×N is the initial state matrix. Simi-

larly we define

Uk|2k−1 =
[
uk(k) uk(k + 1) · · · uk(N + k − 1)

]
(2.13a)

Yk|2k−1 =
[
yk(k) yk(k + 1) · · · yk(N + k − 1)

]
. (2.13b)

Then for t = k, k + 1, · · · , k +N − 1 we have:
Yk|2k−1 = OkXk + ΦkUk|2k−1 (2.14)

where Xk =
[
x(k) x(k + 1) · · · x(k +N − 1)

]
∈ Rn×N . The block Hankel matri-

ces U0|k−1 and Y0|k−1 are usually called the past inputs and past outputs, respectively,
whereas the block Hankel matrices Uk|2k−1 and Yk|2k−1 are called the future inputs
and future outputs, respectively.

Now we make some assumptions that will be used later:

• rank(X0) = n

• rank(U0|k−1) = km where k > n

• span(X0) ∩ span(U0|k−1) = 0

where span(.) denotes the space spanned by the row vectors of a matrix. The first
assumption ensures that the state vector is sufficiently excited. The second one
ensures that the input sequence satisfies the persistently exciting (PE) condition of
order k. The third assumption means that the row vectors of X0 and U0|k−1 are
linearly independent or in other words that there is no feedback (data are obtained
from open loop experiment).
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2.2.2 LQ decomposition

The solution of the identification problem exploits the orthogonal decomposition of
a matrix. In this case the LQ decomposition is considered.

Suppose we have rectangular data matrices with a large number of columns.
Applying the LQ decomposition we get a block lower triangular matrix with a zero
block at the upper right corner. The LQ decomposition, obtained by taking the
transpose of the QR, is considered and it amounts to:[

U0|k−1
Y0|k−1

]
=

[
L11 0
L21 L22

] [
QT

1

QT
2

]
(2.15)

where L11 ∈ Rkm×km, L21 ∈ Rkp×km and L22 ∈ Rkp×kp, with L11, L22 lower triangular
and Q1 ∈ RN×km, Q2 ∈ RN×kp are orthogonal.
It can be proven that rank(L22) = n, where n is the order of the system so that now
we have the first piece of information needed to identify the model. As a consequence
computing the Singular Value Decomposition (SVD) of L22, the order of the system
is given by the number of the singular values bigger than zero. This is also the rank
of the observability matrix. Knowing the rank and the observability matrix, we can
estimate the matrices A,C while the information of matrices B,D is included in the
matrices L11, L21.

2.2.3 MOESP algorithm

The Multivariable Output Error State Space algorithm, commonly known as MOESP
algorithm developed by Verhaegen and Dewilde exploits the orthogonal projection,
expressed as Ê{.|.} [8].
From the LQ decomposition equation we obtain two matrix equations:

U0|k−1 = L11Q
T
1 =⇒ QT

1 = L−111 U0|k−1 (2.16a)

Y0|k−1 = L21Q
T
1 + L22Q

T
2 =⇒ Y0|k−1 = L21L

−1
11 U0|k−1 + L22Q

T
2 . (2.16b)

Using the previous assumptions, it can be noticed that L11 is nonsingular so that the
equivalence in the first equation is obtained. Using this result the equivalence in the
second equation is obtained.

From the orthogonality of Q1 and Q2 we obtain that the first term of the right
hand side of the second equation is spanned by the row vectors of U0|k−1 and the
second term is orthogonal to it. Hence the orthogonal projection of the row space of
Y0|k−1 onto the row space of U0|k−1 is given by equation (2.17)

Ê{Y0|k−1|U0|k−1} = L21Q
T
1 = L21L

−1
11 U0|k−1 (2.17)
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and the orthogonal projection of the row space of Y0|k−1 onto the complement U⊥0|k−1
of the row space U0|k−1 is given by

Ê{Y0|k−1|U⊥0|k−1} = L22Q
T
2 . (2.18)

Combining equation (2.12) and (2.16) it follows that

OkX0 + ΦkL11Q
T
1 = L21Q

T
1 + L22Q

T
2 (2.19)

where the right hand side is an orthogonal sum while the left hand side is not, so the
equivalence between single terms does not hold. Post multiplying by Q2 (recalling
that QT

1Q2 = 0, QT
2Q2 = Ikp) yields:

OkX0Q2 = L22 . (2.20)

Under the previous assumptions and supposing rank(Ok) = n then the product
X0Q2 has full row rank n and rank(Ok) = n = rank(L22). Performing the SVD on
L22 we get the order n:

L22 =
[
U1 U2

] [Σ1 0
0 0

] [
V T
1

V T
2

]
= U1Σ1V

T
1 (2.21)

where U1 ∈ Rkp×n and U2 ∈ Rkp×(kp−n). Then substituting the result in equation
(2.21) we get:

OkX0Q2 = U1Σ1V
T
1 . (2.22)

We define the extended observability matrix as

Ok = U1Σ
1
2 (2.23)

and n = dim(Σ1). At this point, recalling the definition of the observability matrix
given in equation (2.2) and knowing the order of the model, we can extract the C
matrix of the system:

C = Ok(1 : p, 1 : n) . (2.24)

Matrix A is obtained by solving the following linear matrix equation:

Ok(1 : p(k − 1), 1 : n)A = Ok(p+ 1 : kp, 1 : n) . (2.25)
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Now we have to estimate the matrices B and D. From equation (2.21), it is possible
to notice that UT

2 L22 = 0 and consequently from equation (2.20) we have that
UT
2 Ok = 0. Pre-multiplying equation (2.19) by UT

2 yields:

UT
2 ΦkL11Q

T
1 = UT

2 L21Q
T
1 (2.26)

and post-multiplying by Q1 yields:

UT
2


D 0 · · · 0
C B D · · · 0
...

...
. . .

...
C Ak−2B C Ak−3B · · · D

 = UT
2 L21L

−1
11 . (2.27)

This is a linear matrix equation with respect to B and D hence the least squares
method can be adopted to find the two matrices. Let us define

UT
2 :=

[
L1 L2 · · · Lk

]
(2.28a)

UT
2 L21L

−1
11 :=

[
M1 M2 · · · Mk

]
(2.28b)

where Li ∈ R(kp−n)×p, i = 1, · · · , k and Mi ∈ R(kp−n)×m, i = 1, · · · , k. Thus we
obtain the following linear system:

L1D + L2CB + · · ·+ Lk−1CA
k−3B + LkCA

k−2B =M1 (2.29a)

L2D + L3CB + · · ·+ LkCA
k−3B =M2 (2.29b)

... (2.29c)

Lk−1D + LkCB =Mk−1 (2.29d)

LkD =Mk (2.29e)

Defining Li =
[
Li · · · Lk

]
∈ R(kp−n)×(k+1−i)p, i = 2, · · · , k then we get the following

overdetermined linear equation:
L1 L2Ok−1
L2 L3Ok−2
· · · · · ·
Lk−1 LkO1

Lk 0


[
D
B

]
=


M1

M2

· · ·
Mk−1
Mk

 . (2.30)

To obtain a unique least square solution for B and D the block matrix must have full
column rank, so that k(kp− n) ≥ (p + n) holds: this condition is satisfied if k > n,
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as it was assumed before. Finally, the initial state can be estimated from equation
(2.12).

Summarizing, if we are given the data matrices U0|k−1 and Y0|k−1 we have the
following algorithm procedures:

• compute the LQ decomposition as in equation (2.15);

• compute the SVD of matrix L22 found at the previous step as in equation (2.21)
and let n = dim(Σ1); define the extended observability matrix as Ok = U1Σ

1
2
1 ;

• calculate the C and A matrices as in equation (2.24) and (2.25) respectively;

• solve the equation (2.30) using the least-square method to estimate B and D;

• estimate the initial state vector from equation (2.12).

This algorithm is called ordinary MOESP (OM-MOESP) or simply MOESP and the
assumption under which it was developed is that the measurements are not affected
by noise. In the next section the effects of random noise in the measurements are
presented. Then two variations of the classical MOESP are explained that can deal
with noise affecting the system.

Note that to describe the MOESP algorithm the LQ decomposition was exploited.
Exactly the same conclusions can be derived using the QR decomposition.

2.2.4 SVD and additive white noise

Until now we have assumed a complete noise-free dataset but in practice this is
never the case. However, it has been proven that if a system is disturbed in its
measurements by a white noise process, the problem can still be solved with ordinary
MOESP. The presence of noise introduces new singular values so that the rank of
L22 is not equal to the model order n anymore but it is bigger and the order of the
system might be overestimated. However, generally the singular values related to
noise are much smaller than the singular values related to the real system. Hence,
recalling that σ1 ≥ σ2 ≥ · · ·σn when plotting them we should note the presence of a
gap as shown in Figure 2.1: in this case the order of the model corresponds to the
number of singular values significantly bigger than zeros. When such a gap does not
exist, an arbitrary choice about the system order must be made; an example of this
situation is shown in Figure 2.2.
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Figure 2.1: Plot of singular values of in case of noisy measurements with a visible gap.

Figure 2.2: Plot of singular values in case of noisy measurements without a visible gap.

2.3 PI-MOESP algorithm

The ordinary MOESP can only deal with white noise on the measurements while real
measurements might contain other types of random noise: hence when the measure-
ments are disturbed by a coloured noise signal, a new algorithm is necessary: this is
the case of the Past Input Instrumental Variable MOESP (PI-MOESP) proposed by
Verhaegen and Dewilde [5].
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The system is described by the following state space equations:

x(t+ 1) = Ax(t) +Bu(t) (2.31a)

y(t) = Cx(t) +Du(t) + e(t) (2.31b)

where e(t) is a colored noise perturbation. Note that we assume that the state
equation is not affected by noise. A scheme of the system is shown in Figure 2.3

A,B,C,D +

e(t)

u(t) y(t)

Figure 2.3: Output error identification scheme.

The data equation is now given by

Yk|2k−1 = OkX0 + ΦkUk|2k−1 + Ek|2k−1 (2.32)

where Ek|2k−1 is the noise block Hankel matrix. For the estimation of A and C in
the ordinary MOESP the data equation in (2.19) has been multiplied by Q2 to
obtain equation (2.20). Now a new variable Z, uncorrelated with the noise signal
but correlated with the state vector, is introduced in order to remove the influence of
the noise on the output. A good choice for this variable is a matrix constructed from
past input values so that Z = U0|k−1. Now it is possible to eliminate the undesired
terms by multiplying the equation by the orthogonal complement of Uk|2k−1 (as in
the MOESP) and by Z. The data matrix is finally given by:Uk|2k−1

Z
Yk|2k−1

 =

Uk|2k−1
U0|k−1
Yk|2k−1

 =

L11 0 0
L21 L22 0
L31 L32 L33

QT
1

QT
2

QT
3

 . (2.33)

Now the SVD analysis must be performed over the matrix L32. Firstly the estimation
of matrices A and C is performed using the same procedure as for the ordinary
MOESP. Then as done for the previous algorithm it it possible to estimate in the
same way the matrices B and D and the initial state x0.
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2.4 PO-MOESP algorithm

So far, only the case of measurement noise was considered. However, if the system is
also disturbed by an additive noise, the previous algorithms are no longer effective. In
this case, another algorithm is available, which is commonly known as Past Output
Instrumental Variable MOESP (PO-MOESP) [5]. The state space model is now
given by

x(t+ 1) = Ax(t) +Bu(t) + w(t) (2.34a)

y(t) = Cx(t) +Du(t) + e(t) (2.34b)

where e(t) is called measurement noise and w(t) is called process noise. The cor-
responding scheme is shown in Figure 2.4. Let w(t) and e(t) be zero mean noise

A,B,C,D

w(t)

+

e(t)

u(t) y(t)

Figure 2.4: Innovation model identification scheme.

sequences that are statistically independent from the input u(t). Let the pair (A,B)
be controllable and the pair (A,C) be observable, let the system be stable and the
input u(t) persistently exciting. We can define the system in the following equivalent
form:

x̂(t+ 1) = Ax̂(t) +Bu(t) +Ke(t) (2.35a)

ŷ(t) = Cx̂(t) +Du(t) (2.35b)

y(t) = ŷ(t) + e(t) (2.35c)

where the matrix K is called the Kalman gain. So now the problem is to estimate
the system order n, the matrices of the system A,B,C,D, the kalman gain matrix K
and the initial state vector. Now in the data equation another term is present:

Yk|2k−1 = OkXk + ΦkUk|2k−1 + Ek|2k−1 +GkWk|2k−1 (2.36)

where

Gk =


0 0 · · · 0
C 0 · · · 0
C A C · · · 0

C Ak−2 C Ak−3 · · · 0

 . (2.37)
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Again all the terms on the right hand side must be removed except OkXk. As for the
PI-MOESP if the number of samples is big enough, the noises are uncorrelated with
the input and we can use the instrumental variable: now also the past output block
Hankel matrix is introduced. First, data are projected on the orthogonal complement
of U(k|2k − 1) to remove ΦkUk|2k−1; then they are projected onto the instrumental
variable to remove the two noise terms.

The instrumental variable Z is now defined as follows:

Z =

[
U0|k−1
Y0|k−1

]
. (2.38)

The result using the LQ factorization is:

Uk|2k−1
Z

Yk|2k−1

 =


Uk|2k−1
U0|k−1
Y0|k−1
Yk|2k−1

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44



QT

1

QT
2

QT
3

QT
4

 . (2.39)

The SVD analysis is performed on
[
L42 L43

]
to get the order of the system; then

the estimation of A and C is done in the same way of the previous algorithms. In
this way the deterministic part of the system has been estimated.

Now the stochastic part needs to be estimated as well. The data equation of the
innovation model is:

Yk|2k−1 = OkX̂k + ΦkUk|2k−1 +MkEk|2k−1 (2.40)

where

Mk =


Ip 0 · · · 0
C K Ip · · · 0
C A C · · · 0

C Ak−2K · · · C K Ip

 . (2.41)

First the state sequence X̂k needs to be estimated. Combining the equations of
(2.35) we get:

x̂(t+ 1) = A x̂(t) +B u(t) +K y(t) (2.42)

with A = A − KC and B = B − KD. The state sequence can be written as a
function of the initial state:

X̂k = A
k
X̂0 + Cu,kU0|k−1 + Cy,kY0|k−1 (2.43)
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where
Cu,k =

[
A

k−1
B A

k−2
B · · · B

]
(2.44a)

Cy,k =
[
A

k−1
K A

k−2
K · · · K

]
. (2.44b)

Since A is stable, the term A
k
X̂0 disappears as k →∞.

Let us call the projection operator onto the space spanned by Z, ΠZ . Substituting
equation (2.43) onto equation (2.40), after some manipulation, X̂k can be estimated
as:

X̂k = O†k(Yk|2k−1ΠZ − ΦkUk|2k−1) (2.45)

and a similar equation can be obtained for X̂k+1|2k.
Now that we have the state sequences we can solve the following equation[

X̂k+1|2k
Yk+1|2k−1

]
=

[
Â B̂

Ĉ D̂

] [
X̂k|k−1
Uk|k−1

]
+

[
Ŵk|2k−1

V̂k|2k−1

]
(2.46)

for Ŵk|2k−1 and V̂k|2k−1. The covariance matrices are then estimated by[
Q̂ Ŝ

ŜT R̂

]
=

1

N

[
Ŵk|2k−1

V̂k|2k−1

] [
Ŵk|2k−1

V̂k|2k−1

]T
(2.47)

and with thes estimates we can calculate the Kalman filer gain K as:

K̂ = (ÂP̂ ĈT + Ŝ)(ĈP̂ ĈT + R̂)−1 (2.48a)

P̂ = ÂP̂ ÂT + Q̂− (ÂP̂ ĈT Ŝ)(ĈP̂ ĈT + R̂)−1(ÂP̂ ĈT + Ŝ)T . (2.48b)

2.5 N4SID algorithm

The N4SID algorithm is another method developed by Van Overschee and De Moor
to solve the identification problem, that together with the previous ones belongs to
the subspace algorithm class [8].

Let us define Up = U0|k−1 Yp = Y0|k−1 Xp = X0 and Uf = Uk|2k−1 Yf = Yk|2k−1
Xf = Xk where the subscripts p and f denote respectively the past and future.
Recalling the two output equations, one has that:

Yp = OkXp + ΦkUp (2.49a)
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Yf = OkXf + ΦkUf . (2.49b)

We define also Wf ,Wp ∈ R(m+p)×N as

Wp =

[
Up

Yp

]
=

[
U0|k−1
Y0|k−1

]
(2.50a)

Wf =

[
Uf

Yf

]
=

[
Uk|2k−1
Yk|2k−1

]
. (2.50b)

Performing the LQ decomposition the following equation is obtained:
Uf

Up

Yp
Yf

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44



QT

1

QT
2

QT
3

QT
4

 (2.51)

where L11, L22 ∈ Rkm×km, L33, L44 ∈ Rkp×kp are lower triangular and where Q1, Q2 ∈
RN×km, Q3, Q4 ∈ RN×kp are orthogonal. For convenience let us rewrite this equations
as follows: Uf

Wp

Yf

 =

R11 0 0
R21 R22 0
R31 R32 R33


Q

T

1

Q
T

2

Q
T

3

 . (2.52)

Now from the second relation we have

R22Q
T

2 = Wp −R21Q
T

1 . (2.53)

Thus

QT
2 = R†22(Wp −R21Q

T

1 ) . (2.54)

From the third relation of equation (2.52) we have that

Yf = R31Q
T

1 +R32Q
T

2 . (2.55)

Substituting equation (2.54) and using QT

1 = R−111 Uf from the first relation of (2.52)

Yf = (R31 −R32R
†
22R21)R

−1
11 Uf +R32R

†
22Wp (2.56)

where the right hand side is a direct sum of of the oblique projections of Yf onto
span(Uf ) along span(Wp) and of Yf onto span(Wp) along span(Uf ).
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Using the assumptions made in the subsection 2.2.1:

rank(L42) = rank(L43) = rank

[
L33

L43

]
= rank

[
L42 L43

]
= n . (2.57)

Let the oblique projection of Yf onto Wp along Uf be given by (using the results
of equation (2.56)):

ξ = Ê||Uf
{Yf |Wp} = R32R

†
22Wp (2.58)

and let the SVD of ξ be given by

ξ =
[
U1 U2

] [Σ1 0
0 0

] [
V T
1

V T
2

]
= U1Σ1V

T
1 . (2.59)

Then recalling the results of the equation (2.14) we have the following:

n = dim(Σ1) (2.60a)

ξ = OkXf ∈ Rkp×N (2.60b)

Ok = U1Σ
1
2
1 T ∈ Rkp×n , |T | 6= 0 (2.60c)

Xf = T−1Σ
1
2
1 V

T
1 ∈ Rn×N . (2.60d)

The estimates of the matrices A and C can be obtained from the extended ob-
servability matrix. We have also that:

Φk = (R31 −R32R
†
22R21)R

−1
11 (2.61)

hence from the definition of Φk
D 0 · · · 0
C B D · · · 0
...

...
. . .

...
C Ak−2B C Ak−3B · · · D

 = (R31 −R32R
†
22R21)R

−1
11 (2.62)

so that we can apply the same method used in the MOESP algorithm to compute
the estimates of D,B. Using the estimate of the state vector given by the relation
(2.60d),we can write:

X̂k+1 =
[
x(k) x(k + 1) · · · x(k +N − 2) x(k +N − 1)

]
. (2.63)

We define the following matrices with N − 1 columns:
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Xk+1 =
[
x(k + 1) · · · x(k +N − 1)

]
(2.64a)

Xk =
[
x(k) · · · x(k +N − 2)

]
(2.64b)

Uk|k =
[
u(k) · · · u(k +N − 2)

]
(2.64c)

Y k|k =
[
y(k) · · · y(k +N − 2)

]
. (2.64d)

Then it follows that: [
Xk+1

Y k|k

]
=

[
A B
C D

] [
Xk

Uk|k

]
. (2.65)

This is a system of linear equations for the system matrices that can be solved with
the least square method:[

Â B̂

Ĉ D̂

]
=

([
Xk+1

Y k|k

] [
Xk

Uk|k

]T)([
Xk

Uk|k

] [
Xk

Uk|k

]T)−1
. (2.66)

Summarizing we have the following algorithm:

• compute the LQ decomposition as in equation (2.52) and calculate ξ from
equation (2.58);

• compute the state vector as defined in (2.60d) Xk and define X̂k+1, X̂k, Ŷk|k,
Ûk|k as in equation (2.64);

• compute the matrices A, B, C, D by solving the regression equation (2.65)
using the least square method.
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2.6 Implementation of subspace identification
algorithms in Matlab

The software chosen to estimate the state space model using the input-output data
is Matlab. A short overview on the implementation of subspace methods is given
here.

2.6.1 System Identification Toolbox

The System Identification toolbox provides Matlab functions and Simulink blocks
to construct mathematical models of dynamic systems from measured input-output
data [9]. The estimation can be performed both using time-domain data and frequency-
domain data. The algorithm implemented to perform the state space model estima-
tion is the n4sid algorithm.

In the case of this work study the problem is to build a global discrete state
space model using different experiments in which only one actuator per time was
excited. To do this an iterative method that allows to update at each step the
current information available with the information given by the next experiment is
needed. In this toolbox there is not such a functionality that is why another toolbox
has been preferred

2.6.2 SMI (Subspace Model Identification) Toolbox

The SMI toolbox was developed by Delft University and consists of functions for
the implementation of the subspace identification algorithms [5]. Particularly the
PO-MOESP and PI-MOESP algorithms are implemented.

For both the algorithms the identification is divided into three steps:

• estimation of A and C (and K for the PO-MOESP algorithm);

• estimation of B and D;

• estimation of the initial state x0.

This toolbox allows to build models iteratively starting from different experiments.
In fact, the available data consist of different experiments in which only one actuator
was excited and all the signals of the accelerometer were saved. The identification is
hence performed, by feeding the algorithm with all the output signals of the current
experiment, the input signals and the current estimation of the matrix R coming
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from the QR decomposition as seen before. The samples are used to build the data
Hankel matrices while the estimation of the Rmatrix is updated at each step with the
new data. The size of the data matrices is defined by the number of samples and the
input parameter s. This parameter should be chosen larger than the expected system
order, although the optimal value has to be found by trial. Particularly it influences
the time horizon of the model and consequently also the frequency response of the
model. In particular, with a small value of this parameter the frequency response of
the model might result inaccurate at low frequencies.

When all the data batches have been used and the order of the system has been
chosen, the matrices A and C (and also the K matrix when using the PO-MOESP)
can be calculated. A similar iterative procedure is used for the second step of the
estimation. Finally the estimation of the initial state vector is performed using the
estimated matrices of the system. The estimation of the initial state does not require
an iterative procedure. The identification of the model under study was carried out
with the PO-MOESP algorithm.
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Estimation of the model

In this chapter the procedures used to identify a global model are explained, present-
ing the underlying reasonings and the obtained results. A preliminary analysis was
performed by estimating some SISO models in order to check the properties of the
system. Then different global models were estimated using different techniques in
order to improve the results.

3.1 Excitation signals

The first thing to do was to choose the type of excitation signal for the identification
step. For this kind of problems typically frequency rich signals are used. Among
these, there are the chirp (or sweep) signals and noise signals.

A chirp signal is a periodic signal whose frequency changes with time. A linear
sinusoidal chirp signal is given by eq. (3.1)

y(t) = sin[φ0 + 2π(f0t+
k

2
t2)] (3.1)

where k = f1−f0
t1

is the rate at which the frequency increases. With this type of
signal, the frequency variation must be very slow (less than 10 Hz per second) hence
the simulation requires a lot of time. Being the frequency range significantly big
(from 1500 Hz to 5000 Hz approximately) and having a huge number of actuators
this solution is infeasible due to the limitations of the acquisition system.

The other type of signals used for identification purposes are random noise signals.
Different kinds of such signals exist, the most used of which is the white gaussian
random noise which has a normal distribution. However in this work a uniform white
noise signal, that has a uniform distribution, was used to overcome some practical
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problems: in this way we are sure that no sample of the excitation signal generated
via software exceeds the output voltage range of the device.

The experiments were performed by exciting each time a single actuator and
recording the signals of all the sensors.

3.2 Analysis of the data

The data showed some interesting facts. First of all, all the outputs have small
amplitudes (1 V maximum), compared to the amplitude of the excitation signal
(±7.5V), especially the ones resulting from the experiments in which the actuators
on the rear struts were excited. This happens because the path that the mechanical
wave has to cover is longer than in the case of an actuator on the anti-torque plate.
This is especially true for the sensors located at the physical attachments of the anti-
torque plate (A1, A2, A10, A11). On the contrary, for the accelerometers located at
the physical attachments of the rear struts (A9 and A18), the amplitudes are very
similar. An example of these situations is given in Figure 3.2. For the same reason
when an actuator on the right or left side is excited, the signals measured with the
sensors on the same side have generally bigger amplitudes than the ones measured
at the opposite side. An example is given in Figure 3.1.

The amplitudes of the output signals in some cases might be comparable to
the noise so that the identification procedure for the specific input-output channel
becomes difficult.

Figure 3.1: Data acquired at sensors A5 (in red) and A14 (in blue) when the actuator TD04 is
excited.
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(a) Accelerometer 10

(b) Accelerometer 15

(c) Accelerometer 18

Figure 3.2: Data acquired at the same sensors when the actuators TD04 (in blue) and AD04 (in
red) are excited.

53



SISO models identified with the SMI Toolbox

Figure 3.3: Plot of singular values of the SISO model having as input the actuator AD01 and as
output the accelerometer 18. Note that there is not any clear gap between the singular values.

3.3 SISO models identified with the Subspace Model
Identification Toolbox

Some SISO models having as input an actuator on the rear struts and as outputs
the accelerometers on the same side, were estimated with the PO-MOESP algorithm
implemented in the Subspace Model Identification (SMI) Toolbox. The models were
estimated by letting the order vary from 1 to 50. The number of samples used for
the identification step is 30000 and the same number of samples was used for the
validation step.

3.3.1 Selection of the model order

The order selection procedure described in Chapter 2 is not always reliable due to
the lack of a clear gap in the plot of the singular values. This happens also in our
case, as shown in Figure 3.3.

For this reason, another procedure was adopted to select the order: the simulation
errors were calculated and plotted for varying model orders. As the model order
increases, the simulation error becomes smaller. When the simulation error stops
decreasing significantly for high values of the order or it is considered sufficiently
small, then the order is selected arbitrarily by the user. The metric used to calculate
the simulation error is the variance accounted for (vaf) defined in equation (3.2):
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vaf =

(
1− var(e)

var(y)

)
100 (3.2)

where e is the error obtained by simulating the model using the excitation signal of
the experiment and calculating the difference between the simulated output and the
true output; y in the formula stands for the measured output. This metric is a sort
of percentage measure: if the model is a perfect representation of the system, the
simulation error is zero and its variance is zero too so that the value of the variance
accounted for is 100. When the estimation is not good, the variance of the error
increases while the vaf value decreases and it can assume also negative values. Of
course the identification process and the validation process must be performed on
different portions of data.

Some plots of the simulation error for the actuators on the right rear strut and
the accelerometers on the right side are shown in Figure 3.4. It is possible to notice
how for some models a low order can be selected since their performances are really
good, while some others need a higher order. However note that the performances
of the SISO models are really good, especially considering that the output signals
obtained by exciting the actuators on the rear struts have small amplitudes, and for
an order between 15 and 20 all of them have a vaf value higher than 70.

(a) vaf of models AD01 - right
accelerometers

(b) vaf of models AD02 - right
accelerometers

Figure 3.4: Simulation errors in terms of the vaf criterion calculated for varying model orders
for the SISO models having as input an actuator on the right strut and as output an accelerometer
on the right side.
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Figure 3.5: Simulation errors in terms of the vaf criterion calculated for varying models orders
averaged on stable SISO models having as input an actuator on the right strut and as output an
accelerometer on the right side.

Figure 3.5 reports the average vaf over the stable models having as input an
actuator on the right rear strut and as output an accelerometer on the right side.

Looking at these figures, the order for these models was selected to 19. A stability
analysis was performed to be sure that for the chosen order, all the models were
stable.

To validate this choice, the frequency responses of the models were compared
to the frequency responses calculated from the data: some examples are shown in
Figure 3.6. As it is possible to notice from the plots, they have the same trend,
especially for high frequencies (above 1000 Hz). Note also that for the accelerometer
18, corresponding to the attachment of the right rear strut, the responses are more
similar than for the accelerometer 10.

3.3.2 Poles of the models

The poles of the models having the same input were compared to check if they share
some common characteristics. Some examples are given in Figure 3.7. The same
was performed for the models sharing the same input and having different outputs
(Figure 3.8). In both cases it is possible to notice that only few poles are clustered
and most of them are at high frequencies. For this reason, we expect that the
frequency responses are significantly different, even for the models sharing an input
or an output.
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(a) AD04 - A10

(b) AD01 - A18

Figure 3.6: Comparison between the frequency responses of some SISO models (in blue) and the
frequency responses calculated from the data (in red). The models considered have as inputs the
actuators AD01 and AD04, and as outputs the accelerometers 10 and 18.
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(a) A1 - right strut actuators (b) A2 - right strut actuators

Figure 3.7: Poles of the SISO models having as input an actuator on the right rear strut and as
output the same right accelerometers.

(a) AD01 - right accelerometers (b) AD02 - right accelerometers

Figure 3.8: Poles of the SISO models having as output an accelerometer on the right side of the
cabin and as input the same actuator on the right rear strut.
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3.3.3 Frequency response

To check if the system has any property of symmetry the magnitudes of the Bode
plots were compared: particularly in each case two SISO models were considered,
sharing the same actuator and having as output an accelerometer on the right side
of the cabin and the symmetric left accelerometer. An example is shown in Figure
3.9.

(a) TD01 - A2, A11

(b) TD01 - A1, A10

Figure 3.9: Comparison between the magnitudes of the Bode plot for two SISO models having as
input the same actuator (TD01) and as output one accelerometer on the right side ( (a) A11, (b)
A10, in red) and the symmetric left accelerometer ( (a) A2, (b) A1, in blue).

Some remarks are in order. First of all the responses are flat for low frequencies
and start to grow around 1000 Hz: this depends on the size of the data matrices used
for the identification process whose size depends on the chosen number of samples
and on the parameter s already discussed in Section 2.6.2. Then there is a strong
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attenuation between the left and right accelerometers, as already noted from the data
acquired. The two responses tend to have the same shape for middle frequencies and
then differ increasingly more for high frequencies. From this analysis it is possible to
state that the structure is not symmetric and this can be connected to the intrinsic
asymmetry of the rotary system of the helicopter and to the fact that the locations
of the accelerometers is not perfectly symmetric. For this reasons, no property of
symmetry can be assumed.

3.4 Identification of the global model

Finally, the first attempt to identify a complete model considering all the accelerome-
ters and all the actuators was performed. Being the system so large and its estimation
requiring a lot of time, it is not possible to identify the model for varying orders and
evaluate each time the simulation error to select the order. However it is still possible
to look at the plot of the singular values, shown in Figure 3.10. Again, there is no
significant gap in the plot: that is why the order was chosen arbitrarily by keeping
the same value used for the identification of the SISO models.

Different estimations were performed using different numbers of samples and
different values of the input parameter s (discussed in Section 2.6.2).

The values of the number of samples considered are 10000, 20000, 30000 while
the considered values for the parameter s are 50 and 80. Bigger values of both these
parameters are not possible due to the limited computing power available. Although
the results are quite similar, the best model was the one estimated with 30000 samples
and having a value for s equal to 80.

The simulation results in terms of the vaf criterion are visually shown in Figures
3.11, 3.12, 3.13 and 3.14 that correspond to the different groups of actuators (the
numerical results are shown in Appendix A): the first figure is for the actuators
on the left rear strut, the second for the left actuators on the anti-torque plate, the
third for the actuators on the right strut and the fourth for the right actuators on
the anti-torque plate.

Looking at the results it is possible to notice that the simulation errors are far
worse than the ones seen in the cases of the SISO models. The complete model gives
best simulation results for the actuators on the anti-torque plate than it does for the
actuators on the rear struts, since the corresponding frequency responses have higher
amplitudes. As expected, with some exceptions, the simulation errors are smaller
when the excited actuator and the accelerometer are on the same side of the cabin.
This is because the output signals of the accelerometers on the opposite side are
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Figure 3.10: Plot of the singular values for the order selection of the global model.

more attenuated.
Another observation is that when e.g. one excites the actuators on the left rear

strut, the accelerometer at the rear strut (on the same side of the excited actuator)
give better simulation results than the accelerometers of the anti-torque plate (on
the same side). On the contrary, when an actuator on the left side of the anti-
torque plate is excited, the simulation error is smaller for the accelerometer at the
left physical attachment of the anti-torque plate than for the accelerometers at the
rear strut on the same side.

The averaged value of the simulation result in terms of the vaf criterion is −11.
The negative value is due to the fact that some channels have as simulation results
big negative values.
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Figure 3.11: Visualisation of the simulation results of the global model for the actuators on the
left rear strut in terms of the vaf criterion.

Figure 3.12: Visualisation of the simulation results of the global model for the actuators on the
left side of the anti-torque plate in terms of the vaf criterion
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Figure 3.13: Visualisation of the simulation results of the global model for the actuators on the
right rear strut in terms of the vaf criterion

Figure 3.14: Visualisation of the simulation results of the global for the actuators on the right
side of the anti-torque plate in terms of the vaf criterion.
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3.5 Identification of the global model with
normalized measurements

The procedure for the identification of the model is based on the minimization of
a sum of squared errors. In the system considered, as seen before, there are some
output signals whose amplitudes are significantly bigger than the others. Consider
for example the function to be minimized as a sum of two terms as in equation (3.3):

E(t) = e1(t)
2 + e2(t)

2 (3.3)

Now suppose that the average amplitude of e1(t) is ten times bigger than the am-
plitude of e2(t): it is clear that when minimizing E(t), the effort of the algorithm
will be put mostly on the minimization of the first squared term, which is 100 times
bigger than the second one. That is why a second estimation was performed, with
the same setting of the parameters of the previous estimation but with a normaliza-
tion of the output signals: particularly the output signals were scaled between ±1
and the identification step was performed on the scaled data. The scaling factors
of each input-output channel were memorized in a matrix. When simulating the
model, the outputs must be multiplied by the corresponding scaling factor. As done
for the previous model, the model was simulated and the results are visually shown
in Figures 3.15, 3.16, 3.17 and 3.18 (the numerical results are shown in Appendix
B).

The average simulation error in terms of the vaf criterion is now around 22,
which has improved significantly with respect to the previous case: in fact almost all
big negative values have disappeared.

Also in this case the simulation errors are smaller when the excited actuator and
the accelerometer are on the same side of the cabin and better simulation results are
achieved for the accelerometers located in correspondence of the structural element
on which the excited actuator is positioned.
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Figure 3.15: Visualisation of the simulation results of the global model estimated after scaling
the output signals for the actuators on the left rear strut in terms of the vaf criterion.

Figure 3.16: Visualisation of the simulation results of the global model estimated after scaling
the output signals for the actuators on the left side of the anti-torque plate in terms of the vaf
criterion.
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Figure 3.17: Visualtisation of the simulation results of the global model estimated after scaling
the output signals for the actuators on the right rear strut in terms of the vaf criterion.

Figure 3.18: Visualisation of the simulation results of the global model estimated after scaling
the output signals for the actuators on the right side of the anti-torque plate in terms of the vaf
criterion.
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3.6 Identification of the global model with filtered
data

Since the disturbance signal has specific frequency components, the model is required
to be precise not at all frequencies but only in a small neighborhood of these fre-
quencies. For this reason, not only were the output data scaled but both input and
output signals were filtered. Two possibilities are available: identify a model for each
frequency component using many band-pass filters or identify just one model for all
the frequency components by filtering the data with a multiband filter. In this case
only one frequency of the disturbance has been considered.

As example, an identification of the model in a neighborhood of 1800 Hz was
performed. In this case the digital filter used to filter the input and output data
is a IIR band-pass filter of bandwidth equal to 100 Hz centered at 1800 Hz. The
frequency response of the filter is shown in Figure 3.19. Having reduced the frequency
range, the order of the model was also reduced and set to 15 (this was established
empirically by identifying some SISO filtered models) and the parameter s was set
to 80. The number of samples used for the identification step was kept the same.
The simulation results of the model are visually shown in Figures 3.20, 3.21, 3.22
and 3.23 (the numerical results are shown in Appendix C).

As one can see, the results have greatly improved and now the average value of
the simulation error in terms of the vaf criterion is 48. Only few negative values
are present and the simulation errors are small even when the accelerometers and
actuators are on opposite side of the cabin.

Figure 3.19: Frequency response of the filter used to filter the data.
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Figure 3.20: Visualisation of the simulation results of the global model estimated after scaling
and filtering the signals for the actuators on the left rear strut in terms of the vaf criterion.

Figure 3.21: Visualisation of the simulation results of the global model estimated after scaling
and filtering the signals for the actuators on the right side of the anti-torque plate in terms of the
vaf criterion.
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Figure 3.22: Visualisation of the simulation results of the global model estimated after scaling
and filtering the signals for the actuators on the right rear strut in terms of the vaf criterion.

Figure 3.23: Visualisation of the simulation results of the global model estimated after scaling
and filtering the signals for the actuators on the right side of the anti-torque plate in terms of the
vaf criterion.
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3.7 Comparison between the frequency responses of
the global models and the SISO models

A comparison among the frequency responses calculated from the data, the frequency
responses of the global model estimated directly from the data, the global model
estimated with the normalization procedure and the corresponding SISO models was
performed: an example is given in Figure 3.24. As one can notice, although the
curves have the same trend, they are significantly different and this is especially true
when the actuator and the accelerometer are on opposite sides. In fact in this case,
due to the lower amplitudes of the signals, the global models are more inaccurate.
Another important thing to notice is that all the responses are flat for low frequencies
but the one corresponding to the SISO model starts to grow earlier than the ones
of the global models: this is due to the choice of the input parameters used for
the identification. Note also how the frequency response of the SISO model is very
similar to the one calculated from the data when the accelerometer is on the same
side of the excited actuator (Figure 3.24b). On the contrary, when the accelerometer
is on the opposite side of the cabin (Figure 3.24a), even the frequency response of
the SISO model tends to differ from the one calculated from data.
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(a) TD11 - A3

(b) TD11-A12

Figure 3.24: The figure shows a comparison among the frequency responses of the global model
estimated directly from data (in green), the global model estimated with the normalization pro-
cedure (in red) and the SISO model (in blue) for the input-output channel TS04-A2. Also the
magnitude of the frequency response calculated from data is shown (in black).
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Control design

In this chapter the definitions of some general control techniques are recalled, pointing
out the advantages and disadvantages of each one and discussing them in relation to
the system. Particularly the techniques compared are feedforward versus feedback and
centralized versus decentralized control. Then the motivations that led us to the choice
of a decentralized control are discussed and some algorithms present in literature to
obtain such a control are explained with particular emphasis on the Relative Gain
Array algorithm and the SVD algorithm. Finally, the results of a simulation study
are illustrated.

4.1 Definition of a controller

A controller is a dynamic system that generates the signals to pilot the actuators in
order to control a given plant. A control system consists generally of three compo-
nents:

• the physical system consisting of a set of actuators and sensors, the anti-aliasing
filters, the DAC and ADC components and the power amplifier;

• an algorithm that is used to take decisions depending on the signals measured
at the sensors according to the minimization of a cost function (the actual
control law);

• a computer that performs the calculation.

In some applications also a previous knowledge of the plant to be controlled is needed.
Different types of controllers exist in literature depending on the specific applications.
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In the following two categories of control techniques are discussed in relation to the
system under study.

4.1.1 Feedforward versus feedback disturbance attenuation

Feedforward and feedback control systems are two different methods employed in
control theory in order to attenuate an undesired disturbance acting on the output.
The difference between the two methods relies on the way the control signal is gen-
erated [12].
Consider a SISO system for simplicity. The former technique relies in the possibility
to measure a reference signal strongly correlated to the primary disturbance acting
on the plant. Based on this signal, and on the residual error signal measured at
the error sensor, the coefficients of an adaptive filter are calculated according to a
least mean square procedure. Using the reference signal, the adaptive filter generates
the signal that, after being converted to the continuous domain, drives the secondary
source. The secondary source converts the electrical signal to a mechanical wave that
sums up with the primary disturbance at the error sensor, resulting in a destructive
interference. The limiting condition of this technique is generally that the reference
signal must be highly correlated with the primary noise and when using acoustic
sensors such as microphones, the problem of acoustic feedback from the secondary
source to the reference microphone can arise. A scheme of a feedforward system
applied for noise reduction in helicopters is shown in Figure 4.1.

Figure 4.1: Example of a feedforward control scheme [3]
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P (z)
x(n)

Ŝ(z)

+

W (z)

LMS

S(z)

d(n)

x′(n)

y(n)

e(n)

y′(n)

•

Figure 4.2: FxLMS feedforward control scheme.

One of the most common feedforward control technique, especially used for broad-
band active noise control applications, is the FxLMS algorithm whose block diagram
is shown in Figure 4.2. The adaptive filter is indicated as W (z) in the block dia-
gram. The filter P (z) represents the unknown primary path that is the relationship
between the disturbance signal measured at the reference sensor and the disturbance
acting on the error sensor. The secondary path S(z) represents the relationship be-
tween the control signal and the mechanical wave produced at the summing junction
and includes the D/A converter, the reconstruction filter, the power amplifier, the
mechanical path from the secondary source to the summing junction and from the
summing junction to the error microphone, the error microphone, the anti-aliasing
filter and the D/A converter. Ŝ(z) is an estimate of the dynamics of the secondary
path, introduced to compensate the intrinsic delay between the error signal e(n) and
the reference signal x(n).

In a feedback system the control signal is derived in a different way: the error
signal is processed in order to attenuate the residual effects of the disturbance. In
such a configuration no reference signal is required, so that we have one less sensor
and consequently the problem of acoustic feedback is eliminated.

When there is the possibility to have a reference signal, a feedforward system is
generally preferred because of its potentially superior performance. However feedback
systems are simpler to implement, that is why they are often used for noise and
vibration attenuation applications. Another advantage of feedback systems is that
they do not require the estimate of the dynamics of the secondary path. A general
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block diagram of feedback control is shown in Figure 4.3, with the following notation:

• the System block represents the plant to be controlled, consisting of p outputs
and m inputs;

• r ∈ Rm: is the reference signal vector or in other words the constant values we
want the measured signals to assume. We are dealing with the attenuation of
vibrations so ideally r is a zero vector of length equal to the number of outputs;

• u(n) ∈ Rm is the control signal vector, the signals to be applied to the secondary
sources so that the measured signals assume a value close to the reference
vector;

• y(n) ∈ Rp are the output signals, or in other words the signals generated by
the system when the inputs u(n) are applied to the secondary sources;

• d(n) ∈ Rp are the disturbances acting on the sensors and that get summed
with the outputs of the system;

• e(n) ∈ Rp are the residual errors or the measured signals, given by the sum of
the disturbance signals with the output signals of the system;

• the Regulator is the system with p inputs and m outputs that, based on the
measurements and on a control law, generates the control signals to be applied
to the system in order to have as measured outputs constant signals close to
the reference signals r.

+ Regulator System +

d(n)

r u′(n) u(n) y(n) e(n)

−

Figure 4.3: General block diagram of a feedback system.

As far as regarding our system the choice is to use a feedback system although
in a rotorcraft the measurement of a signal strongly correlated with the periodic
disturbance is not a problem. The choice was due to the simplicity since in the
feedback problem no estimation of the secondary paths is needed.
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4.1.2 Centralized versus decentralized control

When a system has more than one inputs and outputs the so called cross-talking
phenomena arises. Basically in such cases each input affects each output so that it is
not possible to design one controller for each input-output channel independently. If
this is done then an actuator, used only to control the disturbance acting on a specific
sensor, has some effects also on the other sensors controlled by other actuators, for
which this signal is a disturbance to be attenuated.

The only case when this type of control, called decentralized control, can be
applied to a MIMO system is when the transfer function matrix for the system is
almost diagonal: in this case, considering for example a square system, the signal
generated by an actuator has a significant effect only for an output so that it is
possible to design different independent controllers for each input-output channel.
Such a condition is desirable since it simplifies the multichannel system to many
SISO systems that can be more easily controlled.

When this does not hold, then a centralized control must be adopted, meaning
that the procedure to generate the control signals takes into account all the output
signals. Such control laws are not easy to design and their complexity grows expo-
nentially with the number of channels. For this reason some techniques have been
developed to simplify a multichannel system so that many independent decentralized
controllers can be employed to control the given plant.

In our case it is obvious that the design of a centralized control is too difficult
due to the large number of channels. For this reason some ways to simplify the
system were analysed. In the following sections some techniques used to deal with
such systems are discussed. Particularly they aim at transforming a MIMO system
to an equivalent one on which a decentralized control approach can be applied:
this procedure is commonly referred as decoupling control and it allows to have an
equivalent diagonal system.

4.2 Diagonalization

When the system has too many inputs and outputs a centralized controller becomes
too difficult to be designed so that other methods are employed. Diagonalization is
a way of transforming a non-diagonal multi channel system to a diagonal one. This
is typically done by pairing, if the system is square, each input to an output. The
assumption is that the majority of the effect of an input is mainly just on one sensor
so that the effects on the other sensors can be completely neglected.
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4.2.1 Relative Gain Array

One of the diagonalization technique is the Relative Gain array [15]. Consider a
square multivariable process: the relative gain λi,j between a controlled variable yi
and a manipulated variable uj is defined as a dimensionless ratio of two steady state
gains:

λi,j =

(
∂yi
∂uj

)
uk=0,k 6=j(

∂yi
∂uj

)
yk=0,k 6=i

(4.1)

where the numerator is called open-loop gain and it is evaluated by keeping all
the manipulated variables constant except uj. On the contrary the denominator is
called closed-loop gain and it is evaluated with all the controlled variables except yi
maintained to the set-point. Defining G as the steady state response of the square
system, the RGA can be easily calculated with the equation (4.2):

Λ = G� (G−1)T (4.2)

where the symbol � indicates element by element multiplication. The RGA matrix
gives information on how to pair each input with an output in order to obtain the
best possible diagonal system. The pairing rules are the following:

• select input-ouput pairings that results with an element close to 1;

• avoid pairing negative elements;

• large RGA elements are not appropriate for input-output pairings.

Then the system must be reorganized to obtain an almost diagonal matrix; the
RGA of the redefined system in this way is close to the identity matrix. After that the
pairings have been performed then it is like having many independent SISO systems
for which the controllers can be designed independently. However such method can
be employed only if each input has effects only on one output and vice versa. Even
in this case, there are nevertheless some problems: considering especially our system,
we are interested in some specific frequencies that are far from the steady state and
the transfer functions can vary a lot in the frequency range. This problem is solved by
the Dynamic Relative Gain Array (DRGA), that is calculated in a similar manner of
equation (4.2); now the matrix G is the frequency response of the system calculated
at the considered frequency. The pairing rule is now the following:
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• the pairing should be such that, over the frequency range of interest, the mag-
nitude of the diagonal elements is close to one and the magnitude of the off
diagonal elements is small [1].

Also an extension of the RGA in order to deal with non-square plants exists and
it is called the Non-Square Relative Gain Array (NSRGA) which works exactly in
the same way.

A dynamic non-squared RGA analysis was performed to the system and it showed
that a paring between input and outputs can not be performed, due to the large
number of off-diagonal elements.

4.2.2 Singular Values Decomposition

The SVD (singular value decomposition) is a matrix decomposition algorithm that
allows to express a rectangular matrix A as a product of three matrices:

A = UΣV H (4.3)
where V H is the Hermitian of the matrix V since the SVD algorithm can be also
applied to complex matrices. If matrix A is real then the Hermitian simplifies to
the transpose. Considering the so called economy SVD, if A ∈ Cp×m with m > p
then Σ ∈ R+p×p is a non-negative diagonal matrix, U ∈ Cp×p is a unitary matrix,
V ∈ Cm×p is a unitary matrix too. On the contrary, if p > m then Σ ∈ R+m×m is
still diagonal, U ∈ Cp×m is a unitary matrix, V ∈ Cm×m is also a unitary matrix.
In the easiest case, when m = p, all the matrices are square and have the same
dimensions. The columns of U are called left singular vectors, the columns of V are
called the right singular vectors and the elements of Σ that are in decreasing order
so that σ1 ≥ σ2 ≥ · · ·σi ≥ 0 , i = min(m, p) are called singular values.

Let us consider for simplicity that A ∈ Rp×m. The matrices for the economy SVD
are built in the following way: if p ≥ m the columns of U are the first m eigenvectors
of the matrix AAT while the columns of V are the eigenvectors of the matrix ATA.
On the contrary if p < m the columns of U are the eigenvectors of the matrix AAT

while the columns of V are the first p eigenvectors of the matrix ATA. The (positive)
singular values forming the diagonal matrix Σ are the eigenvalues of ATA (that are
the same eigenvalues of ATA).

Also the full SVD exists, that allows to retrieve all the eigenvectors of the matrices
AAT and ATA: the matrix Σ has in this case the same size of the matrix A with
non-negative diagonal elements in the decreasing order, the matrix U is of size p× p
and it is built with all the p eigenvectors of the matrix AAT while the matrix V is
of size m×m and it is built with all the m eigenvectors of the matrix ATA.
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Since the full SVD does not supply any further information, from now on the
economy SVD is considered.

Consider a matrix multiplication such as y = Ax and the SVD of A = UΣV T

then the multiplication can be written as y = UΣV Tx. Basically the columns of V
form an orthonormal basis for the input so that the multiplication V Tx rewrites the
inputs according to this base. On the contrary the columns of U form an orthonormal
basis for the output. The multiplication by the matrix Σ represents just a scaling
factor.

The state space system with m inputs and p outputs with m > p can be equiv-
alently represented in terms of the frequency response matrix G(jω) of size p ×m.
If in the considered application we are interested in just one frequency, then the
frequency response reduces to a complex numerical matrix of the same size that we
call G(jω), on which SVD can be applied.

The decomposition of the complex matrix gives a lot of information: it tells us
which are the most significant inputs and outputs in terms of amplitude and if there
are some inputs that can be piloted by the same signal so that they can be grouped
together. Also, in a similar manner of the RGA, it can be used to pair inputs and
outputs with the following pairing rule: the measurement variable corresponding the
largest element of the first column of the matrix U is taken and it is paired with the
control variable corresponding to the largest element of the first vector of the matrix
V . The same is done for the other columns.

However all these pieces of information are limited to the specific frequency con-
sidered, and different results may be obtained for different frequencies.

4.3 Decoupler

Sometimes the previous approaches can not be adopted because the the cross-talking
between the channels can not be neglected. In these cases the concept of decoupler
is introduced. The decoupler is a block inserted typically between the regulator and
the plant. It basically compensates for process interactions and thus reduce control
loop interactions so that each output can be controlled only by one input. Typically,
decoupling controllers are designed using a simple process model such as a steady
state model or a transfer function model.

Consider as example a 2 × 2 system as the one shown in Figure 4.4 where a
decoupler was inserted. Let us call the outputs of the regulator u′1(t) and u′2(t).
Equations (4.4a) and (4.4b) represent the output signals. Without the decoupler we
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would have only the first two terms of equations (4.4a) and (4.4b):

Y1(s) = P11(s)U
′
1(s) + P21(s)U

′
2(s) + P11(s)D12(s)U

′
2(s) + P21(s)D21(s)U

′
1(s) (4.4a)

Y2(s) = P22(s)U
′
2(s) + P12U

′
1(s) + P22(s)D21(s)U

′
1(s) + P12(s)D12(s)U

′
2(s) (4.4b)

Now we want to eliminate from the first (second) output equation the contribution
of the second (first) input. So setting to zero the sum of the terms containing the
undesired inputs we get:

D12(s) = −P21(s)

P11(s)
(4.5a) D21(s) = −P12(s)

P22(s)
(4.5b)

+

+

R1(s)

R2(s)

+

+

P11(s)

P22(s)

P21(s)

P12(s)

+

+

u′1(t)

u′2(t)

D21(s)

D12(s)

y1(t)

y2(t)

Figure 4.4: Block diagram of the system with a decoupler.

In this case the decoupler is a 2× 2 transfer matrix whose diagonal terms are 1 and
the other elements are the ones shown above. The regulator and the decoupler have
been treated as separated blocks but in general they are represented together as a
unique regulator block.

When the system is of bigger size the decoupler can not be designed in this man-
ner. Fortunately other techniques exist that overcome these difficulties. Especially
in the next section a SVD decoupler is considered.
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4.3.1 SVD decoupling and control

A much more elegant way to implement a decoupler is with the SVD algorithm.
Again consider just one frequency component of the disturbance and the feedback
system in Figure 4.3. The regulator, according to the measured signals, generates a
set of control signals applied to the system.

From the block diagram it is obvious that the following relationships hold:

Y (jω) = G(jω)U(jω) (4.6a)

E(jω) = D(jω) + Y (jω) (4.6b)

U(jω) = R(jω)U ′(jω) (4.6c)

The state space system with m inputs and p outputs with m > p can be equivalently
represented in terms of the frequency response matrix G(jω) of size p×m. If in the
considered application we are interested in just one frequency, then the frequency
response reduces to a complex matrix of the same size that we call G(jω), on which
the SVD can be applied.
Suppose we rewrite the regulator of Figure 4.3 as R(jω) = V R2(jω)UH where
R2(jω) is a m × p frequency response matrix evaluated at ω. Then we can rewrite
the block diagram of Figure 4.3 as shown in Figure 4.5:

+ UH R2(jω) V V H Σ U +

D(jω)

0 U(jω) Y (jω) E(jω)

−

G(jω)R(jω)

Figure 4.5: SVD expansion of the general feedback block diagram.

Now exploiting the fact that UHU = Im×m and V HV = Im×m the system simpli-
fies to the one showed in Figure 4.6.

This holds for every frequency but the SVD can be calculated only on a numeric
matrix so before computing the decomposition, the transfer function must be calcu-
lated at the frequency we are interested in (in our case ω). For R2(jω) the plant to
be controlled is a diagonal system hence it can be designed as a diagonal controller:

82



Chapter 4: Control design

+ R2(jω) Σ +

D(jω)

0 Uv(jω) Yv(jω) Ev(jω)

−

Figure 4.6: Block diagram after the SVD simplification.

in this way the problem becomes that of designing p independent regulators. Note
that now the control signals and measured signals are Uv(jω) and Ev(jω): this is the
effect of the simplification of the SVD. In fact it remaps the real input and measured
signals in a smaller number of virtual input and measured signals. The latter are
obtained as a linear combination of the former and the mapping is described by the
matrices V and U . In this way the matrices U and V of the SVD has been used
define a decoupler that transforms the MIMO system to a smaller diagonal MIMO
system.

Being the procedure limited to one frequency, different regulators must be de-
signed, one for each frequency of the disturbance to be controlled.

4.4 Higher Harmonic Control Algorithm

The algorithm used in this work for noise vibration reduction in helicopters, described
in [2] and in [10], is called Higher Harmonic Control and has had great success for
vibration reduction applications in helicopters due to its simplicity. It is a frequency
domain method whose basic idea is to attenuate the vibratory components at the
blade-passing frequency in the fuselage accelerations or in the rotor hub loads by
adding suitably phased harmonic components to the rotor controls. The HHC al-
gorithm is based on the assumption that the system of the helicopter, in terms of
input and output signals can be represented by a linear model, at least in a fixed
state flight condition. Calling N the number of blades and Ω the rotor frequency,
assumed to be constant, the algorithm isolates the components at the frequency NΩ
from the previous cycle of the measured residual disturbance. This is done with the
expressions in equation (4.7) where ψ = Ωt.
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e
(i)
Nc =

2

T

∫ T

0

e(i)(ψ) cos(Nψ)dψ (4.7a) e
(i)
Ns =

2

T

∫ T

0

e(i)(ψ) sin(Nψ)dψ (4.7b)

u
(i)
Nc =

2

T

∫ T

0

u(i)(ψ) cos(Nψ)dψ (4.7c) u
(i)
Ns =

2

T

∫ T

0

u(i)(ψ) sin(Nψ)dψ (4.7d)

From these we define the relations in (4.8a) and (4.8b).

eN =


e
(1)
Nc

e
(1)
Ns
...

e
(m)
Nc

e
(m)
Ns

 (4.8a) uN =


u
(1)
Nc

u
(1)
Ns
...

u
(p)
Nc

u
(p)
Ns

 . (4.8b)

At the steady state conditions uN and yN are related by the following linear equation:

eN = TN,NuN + w (4.9)

where TN,N is a 2p×2m constant coefficient matrix and w represents the component
of the vibration affecting the system at the frequency NΩ.

The matrix TN,N can be calculated from the system frequency response matrix
G(jω) of size p×m, evaluated at the frequency NΩ:

TN,N =

[
T

(1,1)
N,N · · · T

(1,m)
N,N

T
(p,1)
N,N · · · T

(p,m)
N,N

]
(4.10)

T
(i,j)
N,N =

[
R
{
G(i,j)(jNΩ)

}
I
{
G(i,j)(jNΩ)

}
−I
{
G(i,j)(jNΩ)

}
R
{
G(i,j)(jNΩ)

}] . (4.11)

Then, the discrete time algorithm for the attenuation of the effect of w on yN , known
in the rotorcraft literature as the T-matrix algorithm, can be derived by minimizing
at each discrete-time step k the LQ-like cost function. Generally such a function is
the sum of two terms: one term associated to the residual error to be minimized, and
the other associated with the input signal in order to avoid big input signals that
might saturate the actuator. The cost function is defined as:
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J(k) = eN(k)TQeN(k) + uTN(k)RuN(k) (4.12)

where k is the current iteration, Q = QT ≥ 0, Q ∈ R2p×2p, R = RT > 0 R ∈ R2m×2m

are weighting factors.
R and Q are design parameters that must be set carefully since they affect the
maximum attenuation that can be achieved. Particularly, if R is close to the zero
matrix, all the effort of the algorithm will be on minimizing the error, with no regard
for the control effort. On the contrary, the bigger R, the more attention is put in not
generating big control signals that might saturate the actuator. Typically Q and R
are chosen diagonal.
To derive the control law the cost function must be minimized as in equation (4.13):

∂J(k)

∂u(k)
= 0 = 2RuN + 2

(
∂eN(k)

∂u(k)

)T

QeN . (4.13)

Substituting equation (4.9) and considering that ∂eN (k)
∂u(k)

= TN,N :

RuN(k) = −T T
N,NQTN,NuN(k)− T T

N,NQw(k) (4.14)

so that

(QTNN +R)uN(k) = −T T
N,NQw(k) (4.15)

and calling (QTN,N +R) = D we get:

uN(k + 1) = −D−1T T
N,NQw(k) . (4.16)

We can rewrite this equation in an recursive form using again equation (4.9):

uN(k + 1) = −D−1T T
N,NQ(eN(k)− TN,NuN(k)) (4.17a)

uN(k + 1) = −D−1T T
N,NQeN +D−1T T

N,NQTN,NuN . (4.17b)

Let us call KN = −D−1T T
N,NQ and KM = −KNTN,N so that the update equation

for the control signal can be written as:

uN(k + 1) = KNeN(k) +KMuN(k) . (4.18)

In this way a recursive form for the control law has been found. To get the signal
back in the time domain the following operation is performed:

u(t) = uNc cos(ωt) + uNs sin(ωt) . (4.19)
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4.5 Modified HHC algorithm

Now let us consider a specific frequency ω of the disturbance. The relations in (4.7)
can be rewritten in the following way:

eNc =
2

T

∫ T

0

e(t) cos(ωt)dt (4.20a) eNs =
2

T

∫ T

0

e(t) sin(ωt)dt (4.20b)

uNc =
2

T

∫ T

0

u(t) cos(ωt)dt (4.20c) uNsuNs =
2

T

∫ T

0

u(t) sin(ωt)dt (4.20d)

where now T is a multiple of the period corresponding the frequency component to
be attenuated.

Thanks to the SVD simplification now the system to be controlled is diagonal
and its frequency response is represented by the matrix Σ, hence it is possible to
design each regulator independently, so let us consider one SISO case. Based on the
measured signal, which has a strong component at one frequency ω, the regulator
generates a control signal so that the frequency component of the disturbance is
reduced.

Since the considered system is diagonal, it can be treated as m independent
single channel systems, and since we are interested in one frequency component, the
transfer function reduces to a complex number in the most general case. From this
complex number, the equation in (4.10) can be rewritten in the following way:

TN,N =

[
R {G(jω)} I {G(jω)}
−I {G(jω)} R {G(jω)}

]
(4.21)

However notice that the frequency response of the considered single channel model
is the corresponding singular value σi so that:

TN,N =

[
σi 0
0 σi

]
. (4.22)

For each SISO system now the signals defined in (4.8b) and (4.8a) are eN ∈ R2 and
uN ∈ R2. The cost function for each single channel system is defined as in equation
(4.12). Now the weighting matrices are Q = QT ≥ 0, Q ∈ R2×2, R = RT > 0
R ∈ R2×2. Also the update equation is the the same one given in equation (4.18).
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At this point before going back to the time domain, another operation must be
performed: in fact the signals eN and uN are the measured and control signals for
the virtual actuators and sensors obtained with the singular values decomposition.
Hence, starting from e

(r)
N obtained from the real measurements, e(v)N corresponding

to the virtual measurements must be calculated. From the latter, using the update
equation in (4.18) the new u

(v)
N is calculated. In the same way u(r)N corresponding to

the real system must be calculated.
To get the virtual measured signals from the real ones and the real control signals

from the virtual ones, we have to exploit the matrices V and UH , the matrices of the
SVD. From these matrices two real matrices are defined as done in (4.21) for the
transfer function:

VN =


V

(1,1)
N · · · V

(1,p)
N

...
...

V
(m,1)
N · · · V

(m,p)
N

 (4.23a) UH
N =


U

H(1,1)
N · · · U

H(1,p)
N

...
...

U
H(p,1)
N · · · U

H(p,p)
N

 (4.23b)

This multiplication must be performed in the following way. For the i− th simplified
single channel case we have two vectors e(v,i)N and u(v,i)N of size 2 × 1, for the virtual
measured and control signals. These vectors corresponding to different virtual single
channel cases are collected in two vectors in the following way (remember that thanks
to the SVD simplification, we have p virtual inputs and p virtual outputs):

e
(v)
N =


e
(v,1)
N

e
(v,2)
N
...

e
(v,p)
N

 (4.24a) u
(v)
N =


u
(v,1)
N

u
(v,2)
N
...

u
(v,p)
N

 (4.24b)

so that e(v)N ∈ R2p×1 and u(v)N ∈ R2p×1. They are equivalent to the following:

e
(v)
N =


e
(v,1)
Nc

e
(v,1)
Ns
...

e
(v,p)
Nc

e
(v,p)
Ns

 (4.25a) u
(v)
N =


u
(v,1)
Nc

u
(v,1)
Ns
...

u
(v,p)
Nc

u
(v,p)
Ns

 (4.25b)

The same can be applied for the real measured and control signals to get e(r)N ∈ R2p×1
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and u(r)N ∈ R2m×1. Now we perform the following transformations:

e
(v)
N = UH

N e
(r)
N (4.26a) u

(r)
N = VNu

(v)
N . (4.26b)

Summarizing, the following steps must be performed:

• from the (real) measured signal e(t) calculate e(r)N from equations in (4.20a)
and (4.20b);

• once we have these coefficients, we need to calculate the coefficients corre-
sponding to the virtual measurements. This is done by multiplying them by
the matrix UH

N and in this way we get e(v)N . Then from this vector whose struc-
ture is the same of equation (4.24a) we extract the coefficients e(v,i)N for each
i− th virtual single channel;

• for each virtual single channel the coefficients u(v,i)N of the virtual control signals
are calculated independently with the update equation in (4.18);

• from u
(v)
N defined in (4.24b), we need to calculate the coefficients u(r)N of the

real system: this is done by multiplying it by the matrix VN ;

• finally the control signals for the real actuators can be brought to the time
domain thanks to equation (4.19) to get u(t).

The procedure described above must be performed for each frequency component of
the disturbance that must be attenuated. In this way, a set of control variables is
obtained for each frequency. Thanks to the linearity assumption, the control variables
are independent and they can be summed.

4.6 Simulation of the control technique on a small
subsystem

To test the described procedure some simulations were performed on a small subsys-
tem characterised by a limited number of channels. The frequency response matrix
of the global model identified with the scaling procedure was calculated each time
at one specific frequency. Then only the terms corresponding to the channels of the
subsystem have been considered. On the resulting matrix the SVD was applied and
the matrices VN and UH

N were calculated as in equations (4.23). In this way the
control has been defined using the frequency response of the global model.
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The same frequency response matrix was used to represent the subsystem to be
controlled, on which the control was applied. However, to have a more realistic situa-
tion, for each simulation the control was also tested on the subsystem represented by
the frequency responses of the SISO models, assumed to be a closer representation
of the real subsystem. In both cases the frequency response of the subsystem was
represented in the form of equation (4.10). The output generated by the model was
calculated as in equation (4.27):

yN = TN,N uN . (4.27)

The disturbance acting on the sensors of the subsystem was assumed to be the same
and to be given by equation (4.28):

d(t) = 10 cos(ωt) (4.28)

that can be rewritten using equation (4.8a) as DN =

[
10
0

]
.

In all the simulations the number of actuators was kept higher than the number
of sensors and all the weighting matrices were defined as in equation (4.29):

Q = I2 (4.29a) R = ρ I2 (4.29b)

where ρ is a setting parameter. In particular, with small values of ρ, the control
signals generated are of large amplitudes while the number of iterations needed to
reach the steady state increases. Although in these simulations no attention was
put on the control signals, generally the weighting matrices must be chosen to avoid
actuators saturation.

Despite the fact that the disturbance was assumed to have only a cosine com-
ponent, when testing the control it was noticed that the sine component assumed
a value different from zero in some cases. For this reason in the plots the residual
disturbance has been represented in terms of the modulus, instead of representing
the sine and cosine components separately.

4.6.1 First simualtion: influence of the R weighting matrix

A first simulation was performed to show the influence of the weighting matrix R
for varying values of ρ. The considered inputs are the actuators TS06, TS12, TD05,
TD11 while the sensors are the accelerometers 3 and 11. The frequency of the
disturbance was assumed to be 4250 Hz.
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Simulation of the control technique on a small subsystem

The results are shown in Figures 4.7 and 4.8. When the control is tested on
the subsystem defined with the same frequency response, the steady state is reached
at the first iteration. Moreover, in this case it is possible to make the disturbance
arbitrarily small by using a sufficiently small value of ρ.

When the control is tested on the subsystem defined with the frequency response
of the SISO models, for relatively high values of ρ the steady state is still reached
in a few number of iterations. When ρ decreases, a larger attenuation is achieved
but a higher number of iterations is needed to reach the final attenuation. However
if the chosen value is too small, due to the differences between the two frequency
response matrices, the output might diverge. Sometimes it happens that the levels of
attenuation are even larger when the control is applied to the subsystem calculated
from the SISO models (Figure 4.8). This might be due to the fact that the frequency
responses of the SISO models have generally a bigger magnitude compared to the
frequency responses of the same channels of the global model. For this reason, the
generated control signal is able to attenuate more the disturbance.

(a) Global model (b) SISO models

Figure 4.7: Module of the disturbance at the accelerometer 3 for the control applied to the
subsystem defined with the frequency response of the global model ( 4.7a) and to the subsystem
defined with the frequency response of the SISO models ( 4.7b) for different values of ρ.
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(a) Global model (b) SISO models

Figure 4.8: Module of the disturbance at the accelerometer 11 for the control applied to the
subsystem defined with the frequency response of the global model ( 4.8a) and to the subsystem
defined with the frequency response of the SISO models ( 4.8b) for different values of ρ.

4.6.2 Second simulation

Another simulation was performed on a different frequency of the disturbance (2400
Hz). The inputs employed are the same (TS06, TS12, TD05, TD11) while the outputs
considered are now the accelerometers 2 and 11. The parameter ρ has been adjusted
to 3×10−5. The results are shown in Figure 4.9. In this case the attenuation obtained
at the accelerometer 2 (Figure 4.9a) is almost equal for both of the subsystems. On
the contrary for the accelerometer 11 the results are significantly different: a larger
attenuation is achieved for the subsystem defined with the frequency response of the
global model. This fact is caused by the differences in the two frequency response
matrices used to define the subsystem. Setting a smaller value of ρ not only does
not improve the levels of the attenuations but on the contrary might result in an
increased disturbance or may cause the outputs to diverge.
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(a) accelerometer 2 (b) accelerometer 11

Figure 4.9: Module of the residual disturbance at the accelerometers 2 ( 4.9a) and 11 ( 4.9b) for
the second simulation. The results obtained for the subsystem defined with the frequency response
of the global model are in blue, the ones for the subsystem defined with the the frequency response
of the SISO models are in red.

4.6.3 Third simulation

A third simulation was performed considering again the frequency 4250 Hz of the
disturbance. In this case a larger number of inputs and outputs have been taken
into account. In particular the inputs are the actuators TS05, TS06, TS11, TS12,
TD05, TD06, TD11, TD12. The sensors are the accelerometers 3, 4, 12 and 16 and
the parameter ρ was set to 2× 10−4.

The results are shown in Figure 4.10. Also in this case a significant attenuation
is obtained at all the sensors. Again, in some cases a larger attenuation is obtained
when testing the control on the subsystem defined with the SISO frequency responses.

Performing other simulations on a different set of channels with the same number
of inputs and outputs showed that in this case the problem of control becomes more
difficult. In particular it happens that no significant attenuation is obtained at some
channels while for some others the disturbance is greatly reduced. Apart from the
inaccuracy of the global model this might be related to the fact that some input chan-
nels might be important only for few accelerometers and vice versa. For this reason,
only a subset of inputs and outputs might be needed to control the disturbance at
one considered frequency, simplifying the problem a lot.
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(a) accelerometer 3 (b) accelerometer 4

(c) accelerometer 11 (d) accelerometer 16

Figure 4.10: Module of the residual disturbance at the accelerometers 3 ( 4.10a), 4 ( 4.10b), 11
( 4.10c) and 16 ( 4.10d) for the third simulation. The results obtained for the subsystem defined
with the frequency response of the global model are in blue, the ones for the subsystem defined
with the frequency responses of the SISO models are in red.
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4.7 Comments on the results

These simulations were performed in order to understand if the SVD approach to-
gether with the adopted control technique can give good results in real applications,
although the estimation of the global model is not accurate. From the results we
can state that this method seems promising: despite the differences in the frequency
responses, a significant attenuation is always achieved for a small subsystem, given
a proper choice of the weighting matrices.

However, when testing the control technique on a larger subsystem, the atten-
uation becomes more difficult. First of all, higher values of ρ must be selected to
avoid divergence. This fact reduces the maximum achievable attenuations and for
this reason at some sensors no significant attenuation is achieved. This might be
connected to the fact that for some channels the estimation of the global model is
inaccurate. Probably, with a more reliable model better results can be achieved.
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Conclusions

In this chapter the results obtained with the identified models and the simulations of
the control are commented and possible ways of improvement are discussed. Finally,
possible further developments of the project are discussed.

5.1 Comments on the models estimated

This work represents an introductive study for active vibrations control applied to
a helicopter cabin. The adopted control technique requires a model of the plant to
be controlled and the identification of the system was the primary objective of this
study.

Different models were estimated employing different techniques in order to achieve
a better estimation. However the results were only partially satisfactory and the
model can be considered reliable only for a limited number of channels. Nevertheless
when using the identified model to design a simple control for a small subsystem,
good levels of attenuations of the disturbance were achieved in the simulations.

Being the final objective of this class of projects the design of a full control system,
a more reliable model might be needed. To achieve a better estimation, the following
possibilities can be taken into account:

• improve the set-up (actuators, sensors, acquisition devices etc.,): one of the
problems seen is that the output signals have a very small amplitude and this
is true especially when the actuators on the rear struts are excited. Changing
the actuators and the acquisition devices enables to generate inputs of larger
amplitudes so that also the amplitudes of the output signals are larger. In this
way a better identification of the model should be obtained;
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• increase the number of samples for the identification and the value of the pa-
rameter s (see Section 2.6.2): due to the limited computing power, it was not
possible to set these parameters to higher values. However increasing them
might result in significant improvements in the estimated model. To do this
two possibilities are available: use a more powerful computer or reduce the
number of input and output channels. For the latter particularly, when esti-
mating small MIMO models it has been noticed that as the number of channels
was increased, the performances were degraded;

• perform an identification of the model at specific frequencies or identify a model
for each frequency component of the disturbance: this can be achieved by
filtering the data off-line with a narrow bandpass filter or using other types of
excitation signals such as chirp signals. In this way the model should be more
accurate at the frequencies of interest and even a lower order might be selected.

With these techniques a reliable model should be obtained on which the full design
of the control system can be carried out.

5.2 Comments on the control system

As seen in Chapter 4, the problem of the control design was analyzed and some
simulations were performed on a small subsystem. To have a more realistic situation,
the control was designed using the frequency response of the global model identified
with the scaling procedure, and it was applied to the subsystem defined by the SISO
models previously identified, assumed to be a closer representation of the real system.

The control law based on the HHC algorithm, together with the SVD decoupler,
showed encouraging results for small subsystems. The attenuation of the disturbance
becomes more difficult for larger subsystem, more likely due to the differences be-
tween the frequency responses. Although the design of the control system must be
further analyzed, possibly exploiting a more reliable model, the results obtained with
the simulations together with its simplicity and ease of implementation, make this
innovative control technique appealing for noise vibration control in helicopters.
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5.3 Further developments

Apart from the already discussed improvements for the identification of the model,
the main development for this work regards the design of the control system.

The design of an active system for vibration control in helicopters is generally
a challenging task requiring many years of studies and experiments. Among the
numberous steps to be performed, once the technique of control is defined, the control
algorithm must be implemented and on-ground experiments must be performed, in
order to test the ability of the system to reduce the vibrations induced by the main
rotor. When good results are achieved for these tests, then the active system must
be prepared for flight tests.

During the flight, many problems can arise depending on the different flight con-
ditions. First of all the tones of the disturbance are not constant but can shift in the
frequencies: this might require an additional step in which the frequency of the dis-
turbance must be determined. Consequently, the identified model is required to be
accurate at least in a neighborhood of the frequencies of the disturbance. Secondly,
particular non-stationary aerodynamic conditions can arise during the flight. The
unsteady conditions decrease the achievable attenuations and varying flight condi-
tions produces uncertainties in the estimation of the T-matrix, that might require
an on-line estimation [13].

For these reasons, the design of an efficient control system for active vibrations
control in helicopters is a demanding objective and being this thesis a first study,
still much work must be performed.
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Appendix A

Numerical results for the simulation of the global model

AS01 AS02 AS03 AS04 AS05 AS06 AS07 AS08
A1 -120.84 -58.35 -105.64 -124.76 -13.07 -29.76 10.33 15.28
A2 -30.24 -17.43 -144.15 -84.07 -87.88 -70.23 -16.77 -43.50
A3 37.10 32.88 38.95 45.69 53.08 44.90 45.21 46.71
A4 25.38 29.36 59.91 42.23 43.71 56.72 39.95 47.20
A5 4.47 -0.84 -3.03 2.06 -8.10 -15.32 -14.40 -16.81
A6 31.26 41.36 67.58 48.10 58.99 75.17 57.49 57.12
A7 5.10 14.33 21.63 17.57 29.71 18.18 25.82 21.89
A8 5.87 3.06 -7.24 -18.64 13.76 50.59 31.66 49.54
A9 4.30 4.98 9.97 10.76 20.87 18.89 22.66 23.71
A10 -115.58 -79.82 -207.72 -231.63 -268.61 -380.81 -369.17 -399.64
A11 -179.94 -125.19 -122.28 -258.51 -287.35 -364.50 -479.34 -290.22
A12 33.02 -0.35 -18.99 40.32 16.31 0.07 6.79 -6.32
A13 2.46 -3.73 12.85 -15.86 -22.50 -103.13 -107.84 -16.46
A14 -36.97 -23.84 -35.91 -27.89 -25.07 -77.44 -52.44 -46.71
A15 1.94 -54.81 -19.10 -61.53 -24.77 -8.83 -41.21 22.93
A16 -39.54 -51.84 -0.40 18.72 32.89 15.36 27.52 -1.04
A17 9.45 10.49 -25.11 -11.25 -3.77 -19.96 -3.37 -3.23
A18 -5.35 -13.95 -24.92 -6.56 -25.40 -42.24 -42.45 -52.29

Table A.1: Simulation results of the global model for the actuators on the left rear strut in terms
of the vaf criterion.
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TS01 TS02 TS03 TS04 TS05 TS06 TS07 TS08 TS09 TS10 TS11 TS12
A1 60.57 62.90 55.03 58.55 50.52 17.99 29.95 52.82 63.68 38.70 53.83 58.47
A2 27.08 27.21 47.38 36.42 38.75 30.24 34.19 41.79 52.37 46.51 51.59 45.67
A3 61.20 77.43 84.31 69.34 62.02 64.89 44.95 62.91 73.22 64.03 71.78 71.09
A4 47.29 67.25 55.67 47.68 61.93 33.11 3.80 -11.27 21.19 23.73 30.63 6.01
A5 11.73 20.68 6.25 12.48 6.37 1.73 -0.01 15.56 26.74 14.91 1.36 7.28
A6 27.18 43.59 33.47 35.76 22.72 31.44 55.51 72.56 51.66 39.15 66.10 63.25
A7 3.11 27.60 26.21 22.82 22.53 -42.46 4.20 20.71 21.71 -0.82 1.97 1.03
A8 9.68 31.92 36.79 6.68 15.15 13.29 -8.23 30.95 26.44 14.46 -22.27 19.80
A9 0.52 -44.02 -17.23 -7.20 -2.56 -33.82 -32.45 -89.49 -1.27 8.21 -22.30 -13.93
A10 -37.91 -16.95 -34.93 -27.08 1.79 -17.13 -32.94 -55.48 -69.79 -47.06 -85.08 -45.04
A11 9.79 -46.07 -75.81 -4.52 -1.14 -30.98 -151.56 -219.15 -199.42 -91.37 -138.85 -145.69
A12 36.04 -14.74 42.13 60.31 51.74 45.84 -22.84 -15.78 11.03 3.94 20.13 37.56
A13 25.73 22.72 23.68 34.69 47.98 30.21 -43.31 -56.35 -34.63 -13.08 -8.37 -29.84
A14 -3.26 -47.97 -62.09 -4.49 13.87 5.90 -8.42 -26.17 -8.66 -5.31 9.38 6.27
A15 42.23 22.41 19.67 57.44 69.53 55.35 -12.38 -47.57 0.55 -8.01 -4.45 5.48
A16 37.61 -0.63 31.36 49.19 58.76 25.08 15.79 38.10 24.22 20.72 17.91 24.98
A17 -6.49 -15.73 -3.50 -6.10 -12.92 -7.98 2.87 -1.56 2.69 -2.43 -5.12 -6.09
A18 9.89 -11.07 -14.76 12.21 27.74 18.38 -8.64 -69.30 9.62 10.14 -36.77 0.61

Table A.2: Simulation results of the global model for the actuators on the left side of the anti-
torque plate in terms of the vaf criterion.

AD01 AD02 AD03 AD04 AD05 AD06 AD07 AD08
A1 -153.53 -135.48 -59.50 -115.41 -217.84 -180.07 -496.47 -552.51
A2 -256.17 -225.96 -83.41 -152.85 -329.92 -243.76 -484.59 -298.39
A3 1.65 -30.46 -60.96 -29.21 -138.45 -65.56 -141.14 -154.46
A4 -107.06 -105.54 3.69 -41.04 18.68 39.24 6.24 32.07
A5 -16.55 -10.44 -24.43 -50.32 -50.84 -46.34 -50.25 -38.36
A6 -37.79 -36.51 -43.58 4.56 -23.78 -53.49 -56.59 -49.45
A7 -9.34 9.62 -78.55 -102.05 -83.13 -73.37 -44.45 -42.81
A8 -17.21 -13.41 -37.16 -86.28 -177.23 -68.94 -125.86 -121.53
A9 -2.62 1.63 -14.75 3.20 -29.82 -43.49 -17.63 -42.64
A10 -11.53 -53.03 -194.47 -268.43 -338.77 -189.36 -252.59 -276.76
A11 -9.38 -7.79 -129.90 -16.05 -51.10 -168.57 -103.05 -84.90
A12 28.34 13.86 -15.47 0.78 -2.73 -4.47 4.91 7.70
A13 28.72 41.04 13.25 15.23 71.35 61.72 68.33 68.14
A14 4.59 -5.45 -8.67 -10.67 39.24 22.69 25.35 37.85
A15 51.72 61.84 55.23 52.88 82.07 81.93 85.86 85.88
A16 -9.14 11.42 53.45 58.39 58.59 54.24 56.74 36.94
A17 8.48 7.43 -11.90 -12.40 -8.77 16.84 23.33 28.28
A18 -3.79 -3.52 28.62 17.99 38.76 39.71 34.34 42.70

Table A.3: Simulation results of the global model for the actuators on the right rear strut in
terms of the vaf criterion.
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TD01 TD02 TD03 TD04 TD05 TD06 TD07 TD08 TD09 TD10 TD11 TD12
A1 -7.41 -0.46 -40.99 -19.98 -36.95 -73.71 -8.16 -20.35 -34.57 -59.73 -24.80 -7.41
A2 13.54 12.02 -85.64 -34.09 -19.70 -68.72 -52.12 -105.50 -256.57 -175.24 -112.92 -118.22
A3 40.88 47.41 59.77 49.83 38.81 43.74 -41.51 -77.04 13.70 17.87 31.16 24.00
A4 -4.91 -27.43 -20.25 2.93 5.03 -89.84 -10.62 -31.20 -9.63 -8.59 -23.29 -9.21
A5 -0.01 7.24 8.07 3.92 8.27 3.45 0.42 -8.73 2.11 16.16 0.45 4.44
A6 14.74 -9.37 -16.05 7.74 22.28 18.92 -23.05 -2.69 -5.21 -12.97 -25.02 -9.14
A7 -1.07 10.43 9.01 7.48 25.20 7.62 15.34 10.46 15.73 14.12 -1.63 7.87
A8 -34.66 -26.36 -44.84 -26.48 -26.52 -14.60 2.99 6.14 7.50 5.66 -35.01 -18.24
A9 -8.43 -2.17 19.06 5.04 -4.40 -3.26 -9.65 -41.34 6.35 15.90 3.60 4.18
A10 43.10 54.23 21.98 35.32 39.87 -3.22 30.19 56.18 47.81 27.28 48.80 51.35
A11 16.55 17.99 25.67 24.33 18.20 26.04 16.39 18.07 25.63 21.80 17.48 18.89
A12 30.58 57.68 74.23 59.14 49.06 54.18 34.53 49.28 62.76 48.50 46.83 50.54
A13 -8.41 3.56 7.22 16.62 30.71 -27.97 18.70 20.19 -1.70 -1.44 13.69 12.36
A14 26.64 -21.06 4.52 36.89 13.40 13.86 10.13 20.97 21.44 15.46 20.55 14.48
A15 63.95 54.87 60.80 62.83 60.75 57.22 13.67 30.59 29.56 13.31 26.64 38.71
A16 81.16 55.52 61.74 83.69 50.02 60.84 22.90 18.48 38.53 20.61 37.53 43.68
A17 3.81 4.61 6.76 6.20 5.70 7.57 14.40 2.33 -2.74 5.06 -2.46 2.98
A18 36.28 33.37 33.42 28.66 43.58 39.92 18.20 13.11 6.70 9.76 12.34 19.47

Table A.4: Simulation results of the global for the actuators on the right side of the anti-torque
plate in terms of the vaf criterion.
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Numerical results for the simulation of the global model
identified with normalized measurements

AS01 AS02 AS03 AS04 AS05 AS06 AS07 AS08
A1 -7.48 -0.97 30.17 14.89 26.86 25.18 26.24 29.79
A2 13.41 20.70 -3.66 7.41 29.14 15.81 38.55 28.80
A3 28.21 27.47 35.05 32.06 32.98 38.46 28.30 26.28
A4 44.13 40.52 77.00 59.86 60.91 63.55 42.37 59.16
A5 12.13 -1.44 44.66 37.22 35.48 39.13 24.07 28.61
A6 28.96 37.49 59.65 50.23 65.64 74.06 67.87 57.18
A7 6.55 27.12 13.60 26.55 51.49 19.93 44.39 34.04
A8 5.30 9.93 8.83 -12.11 21.73 52.61 37.18 47.30
A9 12.68 8.93 10.72 25.12 43.40 35.87 50.17 36.36
A10 -0.39 4.25 -8.42 -20.34 -21.71 -10.26 -5.21 -21.54
A11 -7.26 -1.14 -15.17 -19.15 -20.87 -18.68 -7.28 -14.25
A12 27.25 11.82 4.26 17.71 19.08 14.44 25.84 25.18
A13 4.14 23.61 17.46 1.09 39.93 21.45 37.82 57.57
A14 24.79 46.05 40.69 30.57 40.58 31.27 34.54 44.60
A15 0.12 -5.48 -0.81 -17.32 -9.22 -1.38 -2.01 19.19
A16 -0.55 -2.93 12.52 18.80 15.02 24.81 26.67 -2.36
A17 19.09 21.76 24.40 32.16 31.62 31.75 39.88 41.21
A18 0.95 -8.68 5.68 18.89 11.73 -0.99 -4.87 -7.23

Table B.1: Simulation results of the global model identified with the scaled output signals for the
actuators on the left rear strut in terms of the vaf criterion.
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TS01 TS02 TS03 TS04 TS05 TS06 TS07 TS08 TS09 TS10 TS11 TS12
A1 40.93 35.53 43.71 36.29 39.24 35.65 18.41 9.75 54.24 42.58 44.41 44.19
A2 44.03 57.98 66.52 54.89 71.22 56.70 50.03 65.01 58.40 53.00 58.36 67.71
A3 37.97 34.22 57.91 51.21 49.84 52.19 15.78 21.05 25.59 27.81 23.74 29.87
A4 43.14 69.65 68.54 52.12 56.92 44.28 30.33 24.89 27.28 12.46 29.99 29.08
A5 39.68 19.38 32.60 23.00 25.51 28.11 36.54 60.73 35.26 26.91 39.14 35.30
A6 13.64 12.22 14.84 19.56 23.60 19.44 39.41 47.15 33.95 11.59 41.79 49.82
A7 28.14 19.12 21.78 33.83 30.95 -17.75 15.11 14.69 20.54 26.74 18.43 15.20
A8 15.09 38.77 36.47 9.98 18.10 26.60 11.99 15.15 23.80 18.83 -1.21 23.57
A9 26.76 30.95 28.44 23.70 33.59 12.50 15.93 21.79 41.57 22.55 19.51 24.99
A10 8.05 7.96 13.12 12.96 9.11 6.25 -10.77 -13.96 1.61 12.91 -0.17 0.36
A11 38.61 43.07 51.93 40.33 45.79 52.42 -3.12 3.99 -1.17 7.37 -5.75 -0.75
A12 22.03 18.36 30.79 30.10 26.65 27.33 -1.28 2.11 17.25 15.22 13.77 20.13
A13 36.48 34.41 50.39 44.01 55.60 48.31 -3.88 1.19 22.30 13.96 18.83 3.53
A14 25.61 27.55 36.14 13.44 -2.73 31.23 1.90 -13.68 9.64 6.29 0.60 -6.36
A15 39.15 17.49 27.80 50.11 56.89 43.51 -2.82 -7.23 -4.43 8.63 16.09 6.04
A16 16.50 -11.46 11.24 33.03 34.89 14.62 4.27 -0.26 15.16 12.82 10.03 13.33
A17 33.89 39.00 40.56 33.24 35.94 31.04 31.00 42.54 20.88 4.09 20.07 14.74
A18 23.21 20.67 21.58 17.26 30.59 34.53 -1.83 -10.18 9.61 12.64 -10.27 5.22

Table B.2: Simulation results of the global model identified with the scaled output signals for the
actuators on the left side of the anti-torque plate in terms of the vaf criterion.

AD01 AD02 AD03 AD04 AD05 AD06 AD07 AD08
A1 -16.16 -7.52 8.40 5.06 -8.99 2.72 -5.29 -10.82
A2 -1.19 2.77 14.41 5.85 10.25 10.61 16.37 20.58
A3 19.79 -0.61 5.92 6.96 5.78 14.93 4.98 9.67
A4 8.45 15.16 27.76 15.89 22.88 33.43 35.64 28.52
A5 19.07 2.80 12.49 16.48 28.46 33.89 37.60 38.68
A6 -18.89 -11.44 -3.38 5.76 0.35 -2.98 1.24 -12.06
A7 6.22 10.34 -3.88 0.75 -2.19 7.09 11.39 2.26
A8 10.06 16.14 -5.28 -1.35 -0.91 -7.09 5.40 0.41
A9 -1.77 8.23 -0.13 3.05 -0.70 -1.95 0.05 -9.03
A10 35.57 19.80 23.83 12.09 24.15 31.66 41.75 47.68
A11 9.98 15.51 11.90 24.49 34.03 25.95 37.85 29.78
A12 27.65 22.65 5.57 14.95 34.32 25.79 34.51 39.77
A13 70.23 52.07 34.54 30.41 70.51 81.49 77.88 84.68
A14 40.91 14.48 29.54 42.65 73.50 69.45 70.32 78.68
A15 24.70 31.40 50.72 47.75 76.56 77.58 79.47 80.22
A16 -5.02 14.50 33.59 36.63 52.03 36.79 43.69 47.87
A17 48.04 37.64 10.04 22.04 -9.73 7.24 26.03 29.74
A18 -15.12 -2.65 36.98 33.55 50.36 48.48 53.58 55.03

Table B.3: Simulation results of the global model identified with the scaled output signals for the
actuators on the right rear strut in terms of vaf criterion.
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Appendix B: Numerical results of the model identified with normalized measurements

TD01 TD02 TD03 TD04 TD05 TD06 TD07 TD08 TD09 TD10 TD11 TD12
A1 -5.44 17.44 9.52 -11.15 -0.70 17.69 5.51 -10.23 8.74 3.37 2.35 18.14
A2 23.13 30.12 25.50 18.71 37.53 33.72 -1.63 -0.38 5.70 2.35 -3.13 0.15
A3 16.29 22.64 27.06 30.48 33.37 17.21 3.89 -9.90 33.18 36.42 29.63 25.81
A4 24.22 12.25 10.26 31.08 23.57 14.18 0.95 11.02 8.39 3.78 10.01 5.05
A5 28.82 38.84 37.36 25.97 23.29 29.16 11.27 20.79 5.38 7.43 11.93 -0.74
A6 24.46 -10.27 6.52 18.71 10.40 9.70 0.92 8.98 16.70 8.69 5.20 10.29
A7 5.79 14.51 7.42 13.46 36.76 16.25 8.32 -0.49 6.03 6.62 -7.95 -1.00
A8 -7.68 -8.33 -9.47 -9.61 -16.60 -6.32 -7.28 -4.67 -0.71 1.79 -12.69 -22.11
A9 17.48 24.33 14.36 12.97 25.36 17.16 -1.74 -1.09 -1.49 6.31 -3.53 -0.31
A10 30.88 13.14 -1.96 17.71 18.45 0.34 33.84 15.33 35.98 40.81 24.69 35.91
A11 24.25 40.51 52.80 42.79 33.15 48.00 40.97 50.91 35.30 29.40 28.81 31.79
A12 24.74 42.86 56.17 42.15 32.61 41.99 31.07 30.25 45.74 37.86 30.96 38.22
A13 21.08 4.06 20.53 30.14 39.97 -0.17 46.57 49.31 16.08 11.19 23.27 27.92
A14 48.10 18.13 41.53 44.61 30.77 37.13 29.21 46.15 35.38 31.23 34.63 41.82
A15 61.75 39.38 58.84 62.73 57.65 46.45 16.87 14.55 9.02 -7.98 15.63 31.79
A16 59.70 25.97 34.72 61.49 49.86 51.85 33.45 18.53 11.91 2.68 36.76 35.98
A17 8.84 58.77 19.92 -7.45 34.27 27.59 21.04 31.11 10.45 12.05 2.80 15.20
A18 45.04 43.46 39.23 38.42 46.82 53.71 39.96 23.67 25.19 29.30 26.50 35.29

Table B.4: Simulation results of the global model identified with the scaled output signals for the
actuators on the right side of the anti-torque plate in terms of the vaf criterion.
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Appendix C

Numerical results for the simulation of the global model
identified with filtered data

AS01 AS02 AS03 AS04 AS05 AS06 AS07 AS08
A1 35.42 53.91 50.77 63.05 48.50 74.55 37.71 30.88
A2 23.30 15.75 41.04 78.27 26.00 19.79 86.75 53.78
A3 47.47 73.48 52.39 9.67 68.96 4.23 17.89 29.35
A4 24.03 4.04 30.57 19.12 12.49 52.43 4.59 15.22
A5 49.98 -3.08 50.34 68.24 -8.56 18.62 63.65 72.88
A6 51.02 1.25 46.77 85.05 4.91 33.09 84.20 71.61
A7 16.12 13.15 48.35 70.53 23.21 30.34 70.61 67.60
A8 66.20 -6.82 21.87 69.79 18.22 61.74 59.43 22.78
A9 24.34 88.64 48.79 26.79 84.36 17.02 29.92 20.55
A10 7.98 40.75 10.41 38.77 53.94 44.84 55.46 46.18
A11 15.59 65.77 75.95 48.43 60.84 32.45 36.16 65.58
A12 21.98 27.24 37.68 53.44 55.58 70.57 57.00 54.69
A13 20.20 41.21 61.31 51.00 44.42 16.54 50.51 58.86
A14 8.66 2.81 48.22 45.69 8.06 62.25 51.61 50.41
A15 64.13 26.16 42.47 33.39 26.48 80.51 30.22 15.93
A16 36.18 66.20 47.00 44.31 70.50 50.87 47.85 33.39
A17 59.43 29.27 14.26 52.44 7.92 74.06 48.03 17.16
A18 75.17 33.96 22.96 61.17 36.92 79.40 48.93 -3.49

Table C.1: Simulation results of the global model estimated with the filtered signals for the
actuators on the left rear strut in terms of the vaf criterion.
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Appendix C: Numerical results of the model identified with filtered data

TS01 TS02 TS03 TS04 TS05 TS06 TS07 TS08 TS09 TS10 TS11 TS12
A1 40.39 43.26 25.37 17.64 32.02 41.69 34.73 39.07 73.84 60.55 61.79 45.42
A2 63.25 9.66 76.90 82.99 53.14 77.08 55.69 64.03 21.16 25.62 45.44 58.76
A3 61.30 57.24 4.57 89.13 39.33 57.62 80.89 79.84 56.99 32.76 81.97 71.63
A4 67.80 92.30 82.21 57.93 90.00 77.90 86.61 59.14 54.09 47.87 62.12 89.32
A5 94.98 83.36 78.70 76.91 71.55 91.38 91.16 86.09 62.66 0.14 68.19 89.17
A6 84.67 78.04 49.97 30.74 58.58 75.47 21.69 15.59 50.17 30.24 45.13 51.79
A7 69.02 86.13 85.60 53.91 90.11 91.91 53.49 56.82 28.97 19.91 60.44 59.65
A8 62.71 85.02 90.10 -6.56 87.25 88.04 74.75 75.57 26.69 73.07 38.59 89.83
A9 40.72 21.45 42.95 3.41 19.52 45.91 48.14 34.76 46.85 81.31 34.45 47.38
A10 39.12 38.92 38.63 14.17 27.93 55.95 35.08 24.98 75.08 -15.76 56.48 59.28
A11 46.59 58.20 -24.97 67.78 54.58 77.54 -4.83 27.47 15.69 12.70 14.11 66.64
A12 0.60 66.36 -18.46 69.42 38.22 -34.33 44.54 23.39 8.42 54.80 63.09 35.92
A13 64.75 64.15 14.77 42.93 34.55 17.24 24.45 23.16 50.06 67.71 59.58 62.02
A14 29.82 53.36 -2.07 46.41 41.18 -0.34 31.43 31.08 37.41 46.31 63.52 31.43
A15 32.61 21.04 52.62 36.46 60.05 47.43 50.40 64.41 44.31 76.24 68.25 29.90
A16 11.74 50.13 74.00 80.24 58.45 58.75 62.15 30.83 54.03 65.56 69.29 67.98
A17 61.22 32.72 76.68 62.00 13.62 80.20 64.18 45.87 9.02 88.82 66.33 86.43
A18 60.16 66.92 53.38 68.15 84.18 52.00 37.22 50.61 80.53 70.98 67.00 55.02

Table C.2: Simulation results of the global model estimated with the filtered signals for the
actuators on the right side of the anti-torque plate in terms of the vaf criterion.

AD01 AD02 AD03 AD04 AD05 AD06 AD07 AD08
A1 52.78 67.62 16.96 47.64 77.25 62.41 69.11 31.18
A2 41.44 76.70 60.80 56.22 79.54 51.00 55.74 57.96
A3 46.05 56.22 6.89 38.50 34.57 56.90 41.53 16.25
A4 46.63 72.34 72.02 54.49 52.48 35.48 35.08 57.28
A5 31.32 38.74 57.51 56.89 58.98 35.82 65.07 77.54
A6 50.03 76.60 38.17 46.81 78.90 71.54 49.81 43.73
A7 15.36 52.80 44.41 45.32 61.73 37.04 58.52 39.73
A8 63.45 23.55 40.34 64.35 51.45 44.05 65.56 47.22
A9 77.48 45.60 74.49 80.94 32.91 71.51 72.35 48.55
A10 42.09 56.46 24.25 44.28 58.28 15.21 60.02 31.31
A11 54.99 -3.29 30.69 68.00 -25.14 18.38 80.29 51.23
A12 16.75 90.12 68.02 26.72 75.03 6.81 64.66 57.46
A13 94.22 1.61 19.68 87.28 -27.79 88.60 34.43 41.13
A14 29.37 19.30 51.69 17.84 6.99 36.87 0.20 62.10
A15 29.01 23.65 16.72 30.21 31.38 4.92 39.84 21.11
A16 44.77 45.58 19.67 46.12 81.12 76.29 62.30 23.29
A17 96.47 43.89 16.86 73.31 57.70 84.08 60.16 -9.02
A18 11.67 89.28 61.07 42.29 66.17 -4.26 41.39 57.74

Table C.3: Simulation results of the global model identified with the filtered signals for the
actuators on the right rear strut in terms of the vaf criterion.
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TD01 TD02 TD03 TD04 TD05 TD06 TD07 TD08 TD09 TD10 TD11 TD12
A1 65.03 47.03 1.13 5.40 40.81 43.66 44.41 68.88 61.01 60.90 9.63 39.74
A2 74.95 57.46 43.90 46.50 47.56 43.31 50.04 35.15 72.99 48.08 3.98 19.86
A3 46.14 49.80 76.23 22.50 52.34 75.24 64.33 79.20 67.90 75.96 50.10 60.64
A4 40.09 22.70 39.79 56.34 50.93 44.23 38.91 32.93 5.38 13.96 53.35 53.04
A5 45.45 50.34 85.45 69.91 81.37 82.72 66.65 70.60 9.35 49.78 34.43 63.75
A6 45.35 9.23 70.60 48.16 46.24 39.51 40.18 36.28 6.52 48.87 4.99 -13.36
A7 54.31 19.20 59.91 51.47 67.75 36.54 59.97 37.27 82.31 48.33 74.30 72.74
A8 54.53 28.65 37.72 27.13 46.34 46.80 40.88 45.79 28.15 82.12 28.85 5.92
A9 34.86 58.25 59.68 42.90 58.90 69.50 60.47 60.58 70.25 82.09 74.69 69.01
A10 45.46 43.34 12.97 13.81 26.07 14.33 11.06 12.70 66.34 16.57 59.48 11.21
A11 67.89 63.53 81.33 74.76 66.19 79.76 73.81 84.17 20.27 80.89 26.95 62.67
A12 26.76 51.80 28.50 14.22 61.81 24.75 61.63 52.92 63.24 56.81 81.40 92.29
A13 59.65 68.56 74.46 92.50 84.42 69.68 70.99 26.21 92.55 9.17 25.92 72.34
A14 58.40 62.62 9.06 73.42 29.01 24.72 -5.14 7.58 61.96 79.38 93.12 22.69
A15 36.23 48.42 78.12 87.37 89.78 87.63 22.12 44.82 38.74 -0.02 54.66 79.57
A16 9.98 14.25 76.87 45.03 74.92 71.74 89.51 93.37 53.08 -12.57 72.33 76.40
A17 38.91 59.65 84.57 34.49 64.86 76.88 81.43 75.20 35.40 77.48 35.73 67.20
A18 71.57 62.88 48.11 16.27 30.52 64.62 20.56 20.15 58.11 71.32 20.67 62.20

Table C.4: Simulation results of the global model identified with the filtered signals for the
actuators on the right side of the anti-torque plate in terms of the vaf criterion.
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