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Abstract

In this thesis we discuss the mathematical analysis of the Swift-Hohenberg
equation that describes the phenomenon of Rayleigh-Bénard convection in
which a fluid is confined between a hot and a cold plate. Thanks to its
rich spatio-temporal dynamics, it represents a paradigm in the study of
pattern formation. The Swift-Hohenberg equation is also employed in the
phase field theory to model the transition from an unstable to a (meta)stable
state. We consider a recent generalisation of the original equation, obtained
by introducing an inertial term to predict fast degrees of freedom in the
system.

We first establish the existence, the uniqueness and the regularity of the
solutions with respect to the data to both the equations. Then the solutions
are interpreted as dynamical systems in suitable phase space. By making
use of the theory of attractors for infinite dimensional dissipative dynamical
systems, we analyse the long-time behavior of the solutions. In particular,
the main results concern the existence of the global and exponential at-
tractors. Finally, reading the equation with the inertial term as a singular
perturbation of the original equation, we prove the upper semicontinuity
of the global attractor and we construct a family of exponential attractors
which is Hölder continuous with respect to the perturbative parameter of
the system.

1



Sommario

In questa tesi trattiamo l’analisi matematica dell’equazione di Swift- Hohen-
berg che descrive il fenomeno della convezione di Rayleigh-Bénard in cui un
fluido è confinato tra una piastra calda e una fredda. Grazie alla sue ricche
dinamiche spazio-temporali, essa rappresenta un paradigma nello studio di
formazione di pattern. L’equazione di Swift-Hohenberg viene anche impie-
gata nella teoria del campo di fase per modellizzare la transizione da uno
stato instabile a uno (meta)stabile. Noi consideriamo una recente generaliz-
zazione dell’equazione originale, ottenuta introducendo un termine inerziale
per prevedere i gradi di libertà veloci nel sistema.

Anzitutto determiniamo l’esistenza, l’unicità e la regolarità delle so-
luzioni rispetto ai dati iniziali per entrambe le equazioni. In seguito le
soluzioni vengono interpretate come sistemi dinamici in appropriati spa-
zi delle fasi. Facendo uso della teoria degli attratori per sistemi dinamici
dissipativi infinito dimensionali, analizziamo il comportamento per tem-
pi grandi delle soluzioni. In particolare, i principali risultati riguardano
l’esistenza dell’attratore globale e dell’attratore esponenziale. Infine, leg-
gendo l’equazione con il termine inerziale come una perturbazione singolare
dell’equazione originale, proviamola continuità superiore dell’attratore glo-
bale e costruiamo una famiglia di attratori esponenziali la quale è Hölder
continua rispetto al parametro perturbativo del sistema.
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1 Introduction

The beauty of nature lies in infinite mechanisms which generate fascinating
and complex phenomena in the world around us. A scientist is conscious
that a model may only describe the main aspects of the phenomenon con-
cerned. At the same time, being an abstraction of the reality, a model can be
involved in problems related to different areas. This versatility occurred for
the Swift-Hohenberg equation, which has become a famous model in fluid
dynamic, in pattern formation and in phase field theory.

Our aim is to explain the importance of the Swift-Hohenberg model in
the three different areas of application, following an historical approach.
We will also provide a detailed exposition of the general method to deduce
this equation and its meaningful variant with the phase field methodology.
Lastly, we will change our point of view from the physical modelling to the
mathematical analysis with the purpose to motivate the ideas which we will
discuss in the following chapters.

1.1 Rayleigh-Bénard convection

The Swift-Hohenberg equation was originally proposed in [17] to describe
the effects of thermal fluctuations on the convective instability. In Rayleigh-
Bénard experiment, a fluid is confined between two horizontal plates and
is heated from the bottom. The heating upsets the thermodynamic equi-
librium, the particles of fluid near the bottom plate expand and so their
density decrease, due to the absorption of heat. Conversely, the particles
near the upper plate lose heat, contract their volume and show a density
increase. Then the colder and heavier fluid naturally tends to go toward
the heated plate under the gravity force. This motion is contrasted by two
dissipative mechanisms: the fluid viscosity and the heat conduction. If the
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Figure 1.1: Convecting rolls formation in Rayleigh-Bénard experiment.

temperature difference between the two plates is not large enough, these
mechanisms have a stabilizing effect and only the diffusion of particles is
observable. However, when a critical value of the temperature difference
is reached, the phenomenon is unstable and, since all the cold fluid cannot
go downward simultaneously, the microscopic random movement becomes a
macroscopic pattern consisting in convective parallel rolls. The experimental
criterion for the onset of convection is established by the threshold

R > Rc ≈ 1708 (1.1)

where the dimensionless parameter R is the so-called Rayleigh number, de-
fined by

R = αgd3∆T
νκ

. (1.2)

In this expression α = −(1/ρ)(∂ρ/∂T )|p is the fluid’s coefficient of the ther-
mal expansion at constant pressure, ρ is the density, g represents the grav-
itational acceleration, d is the distance between the two plates, ∆T is the
difference of temperature, ν represents the kinematic viscosity and κ the
thermal diffusivity.

In ([17]) the Swift-Hohenberg equation was obtained from the Boussi-
nesq equations for convection, which consider a fluid trapped between two
infinite horizontal plates, separated by a distance d, at a temperature T1
and T1 + ∆T respectively. Swift and Hohenberg have considered the lin-
earized equation for the velocity field perpendicular to the plates vz and
θ = T − T1 + (∆T/d)z, which describes the deviation of the temperature
from the uniform gradient ∆T/d. The solution of the linearized equation
contains stable and unstable eigenvalues. The Swift-Hohenberg equation
was developed considering only the wavelengths near the unstable wave-
lengths obtained in the linear analysis. In the limit R → Rc, the equation
takes the following form

φt = [ε− (1 + ∆)2]φ− φ3 + η (1.3)

where φ represents a dimensionless form of a linear combination of the fluid’s
velocity and the temperature. The parameter ε > 0 is proportional to the
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distance of the Rayleigh number R with the critical value Rc and acts as
a control parameter. η is a Gaussian random field, with zero mean and
correlations

< η(x, t)η(x′, t′) >= 2λδ(x− x′)δ(t− t′), (1.4)

where λ is the intensity of noise. In this present work, we will only consider
the deterministic Swift-Hohenberg equation (we refer the reader to [9], [13],
[18] for a stochastic analysis).

1.2 Pattern formation
From biology to chemistry, from physic to computer graphic, our eyes have
always been attracted by formation of ordered structure in Nature. Self-
organized patterns represent an long-standing challenge from mathematical
point of view which tries to describe these phenomena, arising from different
areas, on the basis of the same mathematical structure.

Numerical simulations and laboratory experiments highlight the surpris-
ing aspects of certain dynamical systems where nonlinear field evolves from
an irregular initial condition to a regular and symmetric pattern. In many
situations, the final state is characterized by repeated steady structure, such
as stripes, squares or hexagons, or by time-dependent spirals. In other
examples the dynamic can degenerate in a spatio-temporal chaos, namely
the nontransient dynamic is bounded but not stationary, periodic or quasi-
periodic. The behavior of these systems strongly depends on the value of
the parameters, which are involved into the model. Understanding how a
certain value may determine the dynamic is not only an interesting issue
from a mathematical point of view. Indeed, it represents an important as-
pect in engineering because the prediction of the dynamic allows to control
actively the entire system by applying an external perturbation.

In this framework, numerical calculations have revealed how the Swift-
Hohenberg equation possesses a rich spatio-temporal dynamics and soon has
become a paradigm model in the study of pattern formation(see [4], [19],
[24][25] for more details). Indeed, on the one hand it contains specific sym-
metries, structures at a preferred length scale, nonlinearity that saturates
exponentially growing modes and reproduces qualitative features of the ex-
periments. On the other hand, it is a relatively simplified model to test
theoretical formalisms.

A main property of the Swift-Hohenberg equation derives from its form.
Equation 1.3 can be written as follow

φt = −∂F
∂φ

(1.5)

where F is a potential which depends on φ and has the property that its value
decrease monotonically in time. This is an important feature, especially in
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numerical simulations, because the patterns are determined by the minima
of these functional. However, this functional may have a great variety of
different minima and the study of this systems become highly interesting.

The simple case of stripes pattern-formation involves the Swift-Hohenberg
equation. This pattern has been viewed in magnetic films, liquid crystals
and eutectic growth. In particular, numerical simulations are used to un-
derstand the influence of the boundary in the orientation of the stripes into
the whole domain. As it is shown in Figure 1.2, the wide variety of defects
introduced by boundaries and curvature is evident.

Figure 1.2: Numerical simulations of the Swift-Hohenberg equation with
different value of ε and time τ . (a), (b), (e) and (f) correspond to ε = 0.1,
(c) and (d) to ε = 0.9. The initial conditions are stripes for (a) and (c) and
random for others. (e) is evolving in time, eventually giving the pattern in
(f), while the other states have reached a steady state.

The equation is also applied to the coarsening dynamic that occurs in
gradient flow. During the evolution, the pattern is characterized by domains
of relatively well ordered stripes with an increasing of the average domain
size (see Figure 1.3). Furthermore, equation 1.3 has been widely used to
understand other problems of pattern formation, namely the dynamics of
localized patterns, such as dislocation, grain boundaries and other defects.

To incorporate additional physics aspects observed in nature, the model
has been enriched with additional terms. A more generic form of the Swift-
Hohenberg equation has been considered to avoid the symmetry u→ −u in
(1.3). The simplest way introduces a quadratic nonlinear term

φt = [ε− (1 + ∆)2]φ+ γφ2 − φ3 (1.6)

A first application of the equation (1.6) in pattern formation occurs in study-
ing supercritical Rayleigh-Bénard convection in two-dimension geometry.
With different initial condition and g2 > g2c, the system may reach a pat-
tern with hexagonal structure as highlighted in the here below Figure (1.4).
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Figure 1.3: Numerical simulation of the Swift-Hohenberg equation in a large
periodic geometry with ε = 0.25, starting from random initial conditions and
stopped at time t = 10 and t = 10000.

It is also displayed the formation of a crystalline lattice in the whole do-
main if the initial condition possesses a single hexagonal structure. These
observations have led to study equation 1.6 to questions related to the com-
petition between stripe and hexagonal states, wave number selection as well
as front propagation.

More complicated generalizations of the Swift-Hohenberg model (1.6),
including nonlinear terms of the gradient of the spatial distribution, such as
φ(∇φ)2, φ(∆φ)2 or φ(∆φ2), are involved in crystal formation. The result is
the formation of square cells in a circular cavity at a sufficiently large time.

An interesting connection between the Swift-Hohenberg equation and
Rayleigh-Bénard convection is the formation of stable rotating spiral into
the stable convective rolls. This phenomenon has been studied with the
introduction of a new field, the so-called mean flow, which allows to put
in touch different regions of the pattern. The importance of mean flow to
explain spirals was demonstrated in many experiments. The equation 1.3 is
generalized with the inclusion of an advection term

φt + U · ∇φ = [ε− (1 + ∆)2]φ− φ3 (1.7)

with mean flow velocity

U = ∂Ψ
∂y

ex −
∂Ψ
∂x

ey (1.8)

where Ψ satisfy[
∂

∂t
− Pr

(
∆− c2

)]
∆Ψ = [∇(∆φ)×∇φ] · ez. (1.9)
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Figure 1.4: Numerical simulations of the Swift-Hohenberg equation showing
the evolution of hexagonal structure. The initial conditions are (a) rolls, (b)
a disk, (c) a square, (d) seven symmetrically distributed circles.

In this last equation, Pr is the Prandtl number defined by

Pr = ν

κ
(1.10)

and may be viewed as the ratio of the vertical thermal diffusion time τκ and
the vertical viscous relaxation time τν . Its value depends on the examined
fluid. The introduction of the mean flow in system 1.7 and 1.9 eliminates
the gradient flow nature of 1.3 and allows also to consider spatio-temporal
chaos in accord to experiments (see Figure 1.5).

1.3 Phase-field theory
A relevant aspect of the modern engineering is the study of the materi-
als properties, which establishes the material suitability in applications and
provide the quality of performance. The material science investigates the
connection between the macroscopic properties, such as strength, ductility,
corrosion resistance, hardness, and the microstructures developed at small
scale. The particular features of the microstructures arise during the pro-
cesses of solidification, re-crystallization and thermo-mechanical processing.

Historically, to explain the physics governing such microstructure for-
mation, this phenomenon was modelled by evolution mathematical relations
describing the heat diffusion, the transport of impurities and by means com-
plex boundary conditions which take into account the thermodynamic at the
interface. In solidification, commonly guaranteed boundary conditions are
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Figure 1.5: Spiral chaos in numerical simulations of the generalized Swift-
Hohenberg system (1.7), (1.9).

a balance of flux of heat and the Gibb’s Thomson condition for the tem-
perature. This problem was called sharp interface model because the free
boundary has zero thickness.

In literature, the most known problems are Stefan or Hele-Shaw problem,
respectively for solidification and fluid mechanics. However, the laws at the
interface are not easily determined for different phenomena and the analysis,
especially the numerical simulation, is difficult when the topology of the
interface becomes complicated or multiply connected.

In order to overcome these obstacles, it was introduced a new class of
models to describe these phenomena, the so-called diffuse-interface models.
The main idea was to consider the interface with a finite thickness where a
fast but smooth change of the relevant physical quantities occurs. In this
direction, following the basic principles by Poisson, Maxwell and Gibbs, the
theory of the gradient in diffuse-interface by Lord Rayleigh, van der Waals
and Korteweg, and the phase transition formalism of the Landau theory, a
model describing anomalous sound absorption of liquid helium was presented
by Landau and Khalatnikov. Subsequently, diffuse-interface models have
been developed with the Ginzburg-Landau form of free-energy functional
and the theory of critical phenomena by Halperin, Hohenberg and Ma.

The main aspect which characterized these models is the introduction
of an additional function, called order parameter or phase-field variable. In
solidification, the order parameter φ assumes different constant value in each
phases, namely φ = 1 in the initial unstable phase which is changing in the
final phase with φ = −1. In the intermediate region between the different
phases, the order parameter is continuously interpolated. From the physical
point of view, the meaning of the new field was to identify the moving

10



interfacial boundary. After, this concept was generalized and actually can
be used to describe different phenomena, such as the degree of crystallinity
and the atomic order or disorder in a phase (see [8] and reference given
there) .

The other two common features which play a relevant role are the free
energy functional and the type of dynamic of the phase field. The former
acts on the phase field and the other scalar fields, such as temperature, con-
centration and strain, and explains the thermodynamic connections between
the fields. The second aspect describes how the phase-field evolves during
the time. A conserved dynamic of phase transition, which takes the form of
a flux-conserving equation, implies that an integral of the phase field does
not change in time. As a specific example, this evolution occurs in the Cahn-
Hilliard equation for spinodal decomposition. Conversely, in nonconserved
dynamic, the evolution of the phase field does not fulfil a conservation law,
then global quantities can change their value during the time evolution. In
this case, the dynamic of φ can be commonly described by a Langevin type
equation, where the time variation of the phase field is proportional to the
variational derivative of the free energy with respect to φ. Many interesting
examples are isothermal solidification of pure material or magnetic domain
growth.

It is worth to point out that it does exists a connection between the
phase-filed models and the major models of the sharp interface. Indeed, by
means an asymptotic analysis, Caginalp has proved how Stefan and Hele-
Shaw models with any set of physical parameters in any dimension can be
approximated with arbitrary accuracy by a set of phase-field equations.

In the last decades, the phase-field methodology was successful in ex-
plaining various phenomena on the mesoscopic scale, such as solidification,
fluid convection, multiphase and multiscale trasformation. Subsequently, it
has been introduced a new type of model in the phase-field theory, the so-
called phase-field crystal (PFC), which describes the system at atomic length
and diffusive time scale in periodic systems. The aim of substituting meso-
scopic with microscopic scale in the model is to capture the mechanisms of
creation, destruction, and interaction of dislocations in polycrystalline ma-
terials. Several PFC models have been proposed to simulation liquid-solid
transition, diffusion defects and glass formation.

1.4 Slow and fast dynamics in phase transition
From thermodynamic formalism, intensive properties are features which do
not depend on the size of the system. They establish the exchanges within
the system and with the outside. Thanks to these properties, the ther-
modynamic state of equilibrium can be defined as global or local. In the
first case, the intensive parameters are homogeneous throughout the whole
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system. The second case allows to assume the global equilibrium in a neigh-
borhood of any point of the system.

A common hypothesis of the main phase field models is the local equi-
librium within a volume of the system, consistently with the ideas of the
classic irreversible thermodynamic (CIT). Therefore, only system near an
equilibrium can be predicted. The local equilibrium assumption is also valid
when the characteristic time scale of the phenomenon is higher than the
transient period or the period of intense forced oscillations. It is commonly
said that these models describe the slow phase transition .

Recently, a new relevant front of investigation are systems far beyond
the equilibrium, characterized by rapid changes in time. In rapid transfor-
mation, the local equilibrium is not respected within the bulk phase and at
the interface. These systems describe the fast dynamic with the formalism
of extended irreversible thermodynamic (EIT). It replaces the classic the-
ory and gives a causal description of transport processes. Moreover, EIT
avoids the paradox of propagation of disturbances with an infinite speed.
In this framework, the variable selection becomes necessary for an accu-
rate description of a nonequilibrium state. The classical work of a rapid
phase transformation within a diffuse interface in a binary system is given
by Galenko and Jou in [12].

1.5 The physical model
We explain a general approach to describe non-conserved dynamics with
slow and fast phase transition introduced in ([11]).

Let φ(~r, t) be the order parameter which defines the state of the system,
where ~r is the vector position of a point in the bulk system and t is the
time. To describe the evolution from an unstable to a metastable or stable
phase state, including short time period and macroscopic time, it is used
the prehistory of response between the driving force δF/δφ and the first
derivative of the order parameter with respect to the time

φt = −
∫ t

−∞
M(t− t∗)δF(t∗, ~r)

δφ
dt∗ (1.11)

where M(t− t∗) is the memory function which connects the dynamic at the
time t with the past moment t∗ by setting different weights in the past.

1. We consider
M(t− t∗) = M (1)(0)δ(t− t∗), (1.12)

where M (1)(0) is a constant and δ(t− t∗) is the Dirac delta function.
This first kernel provides a concrete evolution with zero memory, es-
tablishing an instantaneous correlation with the driving force at the
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present time. Substituting 1.12 into the equation (1.11), we get

φt = −M (1)(0)δF
δφ
. (1.13)

From the mathematical point of view, the obtained equation has a
parabolic nature and describes a dissipative phase transition. Indeed,
the form of the memory function neglects the past driving force and the
instantaneous interaction is given by the proportionality φt ∼ δF/δφ.
The equation (1.13) is a typical example model of slow dynamic, which,
roughly speaking, means to ignore fast degrees of freedom.

2. The memory function is defined by

M(t− t∗) = const. (1.14)

Contrary to the first case, the kernel (1.14) gives the same importance
to all driving forces in the past in order to predict the change of the
phase field at the present time. The order parameter evolution is
modelled by the following equation

φtt = −M(0)δF
δφ
, (1.15)

where M(0) is the mobility at t = t∗. This constant memory function
describes a transition with infinite memory. The obtained model is
an undamped wave equation and, due to the constant memory, the
system oscillates around the equilibrium.

3. In the last case, we assume a memory function with an exponential
relaxation of the Maxwell type

M(t− t∗) = M2(0)
τR

exp

(
− t− t

∗

τR

)
, (1.16)

where τR is the characteristic relaxation time and represents the time
of the system to reach pure dissipative dynamics described by (1.13)
for a motion without inertia. In applications related to pure or binary
systems, there exist different models to determine a numeric value of
τR depending by considered alloy. The kernel of the Maxwell type
connects in a intermediate way the present with the past. Indeed,
going to the past, the contribution of the driving force becomes less
effective. After substitution into equation (1.11), we obtain

τRφtt + φt = −M2(0)δF
δφ
. (1.17)

From thermodynamic conditions linked to entropy and stability,M2(0)
is positive as well as τR. The acceleration term φtt represents the iner-
tia effects into the diffuse interface and is a consequence of considering
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φ and φt as independent variables. This choice directly implies that
an equation for φtt should be found. Moreover, the relaxation term
τRφtt leads to a maximum possible value for the speed of the interface
and allows oscillatory phenomena in the width of the interface.

Many physical systems present a periodic pattern in their microstructure.
Their particular features, such as the specific length scale that characterizes
stationary states or the symmetry, which promotes some direction of the
gradient, are taken into account in the free energy functional. We assume
the following form of the free energy

F(φ) =
∫ {
−a∆0

φ2

2 + u
φ4

4 + λ

2φ(q2
0 + ∆)2φ

}
dv, (1.18)

where v is the subvolume of the system, a > 0 is the parameter of the
system periodicity, q0 is the wave number, u > 0 and λ are parameters and
∆0 = Tc − T is the quench depth representing the control parameter with
the critical temperature Tc and the actual temperature T . This form of free
energy functional is minimized by spatial periodic structures of the order
parameter and is used especially to describe periodic systems arising from
the elasticity. The main examples involve the elasticity in growing crystals,
the striple-bubble transition and for crystalline or copolymeric chains.

To obtain the final form of the Swift-Hohenberg equation with slow and
fast dynamics, we introduce the free energy (1.18) into the equation 1.17
and we proceed with the definition of the suitable variables to get the di-
mensionless form of the model

t̃ = tM2(0)λq4
0, ∇̃ = q0∇, φ̃ = φ

√
u

λq4
0

(1.19)

and parameters
σ = τRM

2(0)λq4
0, ε = a∆0

λq4
0
. (1.20)

Substituting these variables into equation (1.17) and omitting the "tilde",
we have the modified Swift-Hohenberg equation

σφtt + φt = [ε− (1 + ∆)2]φ− φ3 (1.21)

In an analogous way, replacing 1.18 in 1.13 and considering the above
variables, it is possible to compute the dimensionless form of the Swift-
Hohenberg with slow dynamic, obtaining 1.3.

1.6 Thermodynamic consistency

We verify the consistency of the equation (1.21) with the thermodynamic
(macroscopic) theory. Three principle conditions need to be respect:
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1. the free energy must be at a minimum in the equilibrium state,

2. the free energy must not be an increase function of the time, i.e.
∂F/∂t ≤ 0,

3. the second differential of F with respect to φ must be positive, i.e.
δ2F > 0, to guarantee stability in dynamical solutions.

To control the above conditions, we consider a free energy in dimension-
less form, which is more general than (1.18) because takes into account both
the contributions of the slow variable φ and the fast variable φt.

F(φ, ∂φ/∂t) =
∫ {

g(φ)− |∇φ|2 + 1
2 |∆φ|

2 + σ

2

(
∂φ

∂t

)2}
dv (1.22)

where
g(φ) = −ε− 1

2 φ2 + 1
4φ

4.

The first condition is obviously verified by the form of the equation (1.21)
and the free energy (1.22). In order to guarantee the second condition, we
split the ∂F/∂t into the sum of the external exchange of free energy(

∂F
∂t

)
ex

=
∮
s

{(
∇n

∂φ

∂t

)
∆φ− ∂φ

∂t
∇n(∆φ)− 2∂φ

∂t
∇nφ

}
ds

and the internal change of free energy(
∂F
∂t

)
in

=
∫
v

{
dg(φ)
dφ

+ 2∆φ+ ∆2φ+ σ
∂2φ

∂t2

}
∂φ

∂t
dv, (1.23)

where ∇n represents gradient normal vector to the surface s. We observe
that natural boundary conditions to ensure zero exchange of free energy are

φ ≡ const, ∇nφ = 0

or
φ ≡ const, ∆φ = 0. (1.24)

Following the ideas of the extended irreversible thermodynamic and by
the sign of (1.23), it follows that thermodynamic fluxes Ji and their conju-
gated forces Xi are proportional in first approximation. Thus we can write

Ji ≡
∂φ

∂t
= −MXi ≡ −M

(
dg(φ)
dφ

+ 2∆φ+ ∆2φ+ σ
∂2φ

∂t2

)
.

Observing that (∂F/∂t)in =
∫
v(JiXi) dv, this implies that

∂F
∂t

=
(
∂F
∂t

)
in

= −
∫
v
M

(
dg(φ)
dφ

+ 2∆φ+ ∆2φ+ σ
∂2φ

∂t2

)2

dv ≤ 0.
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Furthermore, from mathematical point of view, we can infer that the free
energy (1.22) is a Lyapunov function for the modified Swift-Hohenberg equa-
tion.

To check the third condition, we calculate δ2F , assuming that δ2φ and
δ2(∂φ/∂t) = 0 as a consequence of the independency of φ and ∂φ/∂t. The
result is

δ2F =
∫ {
L(φ,∆)(δφ)2 + σ

(
δ
∂φ

∂t

)2}
dv,

where
L(φ,∆) = d2g

dφ2 + ∆ + 1
2∆2.

Due to the non convexity of g, the operator L has not fixed sign and the
solutions, corresponding to some wave vectors, may present instability.

1.7 Plan
Complex physical and mechanical phenomena are usually modelled by a set
of time-dependent fields which satisfy nonlinear evolution equations. The
idea of discovering an exact solution immediately fails due to the present
of the nonlinear term, so a qualitative theory is formulated to provide a
consistent description of the physical events. In addition, in study of partial
differential equations, it is not possible to obtain a general result, valid for
each equation as well as in ordinary differential equations. Therefore, the
first level is the analysis of the well-posedness of the physical models con-
cerned. We are interested in finding a formulation and prove the results es-
tablishing existence, uniqueness and regularity of the solutions with respect
to the data of the problem. Moreover, we investigate the well-posedness
of the associated stationary problem. Generally for these models, arising
from phase field theory with non convex free energy, the cardinality of the
stationary solutions may be very high, also countable or continuum.

As we have seen in the previous section, the introduction of the iner-
tial term φtt allows a description of the transition from an unstable to a
(meta)stable phase state, including microscopic and mesoscopic scale, con-
cerning system far from the equilibrium and taking into account the transient
phenomena. It is worth pointing out that this additional term is not only
a modelling generalization, but it has also a relevant impact on the math-
ematical analysis. Indeed, as it comes out at the well-posedness level, the
Swift-Hohenberg equation has the intrinsic property to regularize the solu-
tion in finite-time, which does not appear in the modified Swift-Hohenberg
equation.

When a solution is defined for all times, an interesting investigation is
to characterize its permanent regime, namely the behavior of the solution
when the influence of the initial data has vanished after a long time. The
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simplest form may be to prove that the time-dependent solution converges,
in a suitable sense, to its stationary solution. This strategy fully describes
the long-time behavior of a system with uniqueness of the equilibrium, but
it is a rare situation. Furthermore, many physical systems, for example
in fluidodynamic, reveal important time-dependent permanent regime, such
as periodic, quasi-periodic or chaotic solutions. For these reasons, we are
motivated to leave the idea of single solution and to consider the approach
of the dynamical systems in infinite dimension.

In dynamical systems governed by PDEs, as well as in finite dimension,
the solution is considered as a trajectory (curve) contained in a suitable
phase space of infinite dimension. Thanks to the well-posedness of the mod-
els, it is possible to define a family of maps S(t), the so-called semigroup,
which takes the initial data in input and returns the solution at time t. We
observe that the trajectory,corresponding to initial data u, is the image of
S(t)u as a function of t. The couple composed by phase space and semigroup
is commonly called a dynamical system.

In this framework, the description of the long-time behavior is performed
by means the existence of phase space subsets with particular properties
with respect to the semigroup. For PDEs governed systems, the dynamic is
described with inequalities in terms of the function norm, which establish
the uniform behavior of the solutions with initial data in a bounded set of
the phase space (see [26], [27] for more details).

An important class of dynamical systems involves the so-called dissipa-
tive systems. This means that exists a set B in the phase space and the
trajectories, which start from a generic bounded set, enter in finite time in
B. The set B is called absorbing set and its existence expresses the dissipa-
tion (coming from friction, viscosity and diffusion) in mathematical words.
However, experiments and numerical simulations have pointed out how the
permanent regime of the physical relevant quantities of this class of systems
is localized inside thin subsets compared to the infinite dimension of the
phase space. These sets may have very complicated geometries described
with a notion of fractal dimension. This remark contributed significantly
to define the relevant objects in theory of dynamical systems and it was
conjectured that they are invariant in time and finite-dimensional.

The main object is the so-called global attractor, namely a compact set
which attracts the bounded sets and is completely invariant under the ac-
tion of the semigroup (the trajectories which start into the attractor remain
into the attractor). From its properties directly follows that this attractor
is unique and contains the equilibrium points as well as the time-dependent
permanent regimes (periodic solution). Historically, many different defi-
nitions of attractors were proposed but this type became universally ac-
cepted after 1982, when Ladyzhenskaya showed its existence for the two-
dimensional Navier-Stokes system. In the subsequent years, the theory was
developed by many authors (see [1] or [22] and the references given there)
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and applied to a large class of models, such as reaction-diffusion, damped
wave, phase-field equations and Navier-Stokes system. Now there are many
techniques to prove the existence of this set and their application depends
to the PDEs concerned. After having established the existence of the global
attractor, it is possible to investigate further regularity properties of this
set, as an example determine the fractal dimension in term of the physical
parameters of the system.

All considered models arise from real physical phenomena, therefore we
are interested in studying the rate of attraction of the trajectories towards
the global attractor or evaluate as it may be robust under perturbation
of significant parameters. Many results demonstrated how the global at-
tractor may not satisfy these requirements positively. For example, it may
not depend with continuity from the parameters or attracts the trajecto-
ries arbitrary slowly. Moreover, fast attraction is a useful information to
approximate the long-time behavior with numerical simulations.

To avoid these defects, it is introduced the new concept of exponential
attractor, namely a compact set with finite fractal dimension, positively
invariant which attracts the trajectories with an exponential rate. This set,
if it exists, contains the global attractor but it is not necessarily unique. The
first construction was provided by Eden, Foias, Nicolaenko and Temam (see
[5]) in Hilbert spaces but it was generalized in the Banach space setting by
Efendiev, Miranville and Zelik in [7].

Frequently, existing models are modified and enriched of new terms with
the aim to describe further aspects of the phenomenon. From mathematical
point of view, we expect that the long-time behavior of the latter models is
closed to the one of the former under small perturbation. The exponential
attractor gives a positive answer to this problem: for both cases of regular
or singular perturbation (the phase space of the perturbed system is or not
the same of the unpertubed system), it is possible to construct a family of
exponential attractors which satisfy a propriety of continuity with respect
to the perturbative parameter.

Let Ω be a bounded domain in R3 and T > 0 the final time. We consider
the nonlinear term f as a real function for which some restrictions will be
given in the next chapter. This work is devoted to a mathematical analysis,
in line with the plan above presented, of the following models

1. the Swift-Hohenberg equation (SHE)
φt + ∆2φ+ 2∆φ+ f(φ) = 0 in Ω× (0, T )
φ = ∆φ = 0 on ∂Ω× (0, T )
φ(0) = φ0 in Ω

(1.25)
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2. the modified Swift-Hohenberg equation (MSHE)
σφtt + φt + ∆2φ+ 2∆φ+ f(φ) = 0 in Ω× (0, T )
φ = ∆φ = 0 on ∂Ω× (0, T )
φ(0) = φ0 in Ω
φt(0) = φ1 in Ω

(1.26)

The thesis is organized as follows. In Chapter 2 we formulate and prove
results of existence, uniqueness and regularity from initial data to the Swift-
Hohenberg and the modified Swift-Hohenberg equations with a more general
nonlinear term than the physical relevant function. In particular, to show
a continuity dependence from initial data for the equation with the inertial
term σφtt, we need to obtain an energy identity valid for the associated
linear models. We also prove the existence of at least a solution for the
stationary problem associated to these evolution models. In Chapter 3 we
briefly give an introduction to the theory of dissipative dynamical system
in infinite dimension with particular focus on the role of the global attrac-
tor and on the main abstract results to prove its existence. Afterwords,
thanks to the well posedness of the two models, we are able to define the
strong semigroups and to apply the strategies to the existence of the global
attractor to both the equations. Chapter 4 is devoted to the study of the ex-
ponential attractor. We give a short introduction of this object and explain
the general methods to prove its existence. After, we apply this strategies to
the Swift-Hohenberg and the modified Swift-Hohenberg equation. Finally,
in Chapter 5, we investigate the robustness property of the global and ex-
ponential attractor with respect to the parameter σ. In particular, we read
the modified Swift-Hohenberg equation as a singular perturbation of the
original Swift-Hohenberg model. In this framework we are able to prove the
upper semicontinuity of the global attractor and the existence of a robust
family of exponential attractors with respect to the perturbation.
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2 Well-posedness

In this chapter our aim is to investigate the well-posedness of the Swift-
Hohenberg and the modified Swift-Hohenberg equations presented in the
previous chapter. In particular, we will formulate results of existence, unique-
ness and regularity with a more general nonlinear term than the physical
relevant function. We will be able to prove necessary regularity properties,
especially a continuous dependence from initial data of the solutions, in or-
der to define a solution map in the suitable phase spaces and to study the
long-time behavior. Lastly, we will also prove the existence of a stationary
solution associated to the Swift-Hohenberg equation.

2.1 Functional setting and useful results

Let Ω be a regular domain in R3. Let V be a Banach space endowed with
the norm || · ||V and let V ∗ be its dual space. By <,>V ∗,V we indicate the
duality pairing between V and V ∗. We introduce the Hilbert space L2 (Ω)
with its standard inner product (u, v) =

∫
Ω uv dx and the induced norm

||u||L2(Ω) =
√

(u, u). For m ∈ N, we denote by Hm(Ω) the Sobolev space
with the following scalar product and its associated norm

(u, v)m =
∑
|k|≤m

∫
Ω
DkuDkv dx, ||u||Hm(Ω) = ((u, u)m)

1
2 ,

where Dk is the distributional derivative of order k.
We indicate by A : D(A)→ L2(Ω) the Laplace operator with homogeneous
Dirichlet boundary condition. A is a self-adjoint positive operator in L2(Ω).
The space D(A) can be fully characterized by using the regularity theory of
linear elliptic systems,

D(A) = H2(Ω) ∩H1
0 (Ω),
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where H1
0 (Ω) is the subspace of H1(Ω), defined as the closure of C∞c (Ω) in

H1(Ω). The spectral theory of this operator allows us to define the powers
of A, namely As: D(As)→ L2(Ω), for s ∈ R. D(As) is a Hilbert space with
the following inner product and norm

(u, v)D(As) = (Asu,Asv), ||u||D(As) = ||Asu||L2(Ω).

In particular, we consider the following Hilbert spaces

H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω),

H3 = D(A
3
2 ), H4 = D(A2),

endowed with the norms, induced by the inner products,

||v||H0 = ||v||L2(Ω), ||v||H1 = ||∇v||L2(Ω), ||v||H2 = ||∆v||L2(Ω),

||v||H3 = ||∇∆v||L2(Ω), ||v||H4 = ||∆2v||L2(Ω).

We observe that the norm of the space Hk is equivalent to || · ||Hk(Ω). More-
over, we introduce the product spaces

E0 = H2 ×H0, E1 = H3 ×H1, E2 = H4 ×H2,

endowed with the graph norms

||(u, v)||E0 =
(
||u||2H2 + ||v||2H0

) 1
2 , ||(u, v)||E1 =

(
||u||2H3 + ||v||2H1

) 1
2 ,

||(u, v)||E2 =
(
||u||2H4 + ||v||2H2

) 1
2 .

IdentifyingH0 with its dual spaceH∗0, we have the continuous and dense em-
beddings H2 ↪→ H0 ≡ H∗0 ↪→ H∗2. We also note that the Rellich-Kondrachov
Theorem implies Hk

c
↪→ Hk−1.

Let a be the bilinear, symmetric and bounded form on H2 ×H2 defined by

a (u, v) =
∫

Ω
∆u∆v − 2∇u · ∇v dx.

Thanks to the spectral Theorem for bilinear forms, there exist a sequence
{um}m>1 ⊂ H2 and a sequence {λm}m>1 ∈ R, nondecreasing and tending
to +∞ as m↗ +∞, such that:

1. ∆2um + 2∆um = λmum in Ω in the weak sense, ∀m,

2. um is an orthonormal base in H0 and is an orthogonal base in H2 with
respect to the scalar product (u, v)H2 = a(u, v) + λ(u, v), where λ is a
suitable positive constant.
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We assume that the nonlinear function f satisfies the following properties:

(H1) f ∈ C3(R), f (0) = 0,
(H2) ∃δ > 0 : f(s)s ≥ (1 + δ)s2 −K1,

where the positive constant K1 is independent of s.
These conditions are not particularly restrictive because they are satisfied
for cubic nonlinearities f(φ) = φ3 − (1 − ε)φ. Furthermore, we want to
emphasize how our request on the regularity of f is not always necessary.
Indeed, more precisely, we need a continuously differentiable function to
obtain the existence and the uniqueness. In order to get asymptotic results,
it is necessary to put some restrictions on f : we use a C2 regularity in the
analysis of the global and exponential attractors, C3 in the study of a robust
family of exponential attractors with respect to the parameter σ.
Let F be the primitive for f

F (s) =
∫ s

0
f(x) dx, ∀s ∈ R.

As a consequence of the above hypothesis, the following inequality holds

(C) F (s) ≥ (2 + δ

4 )s2 −K2,

where K2 is a positive constant that may depends on K1, δ and f .
In this work we consider equations endowed with Navier boundary con-

ditions. We observe that all formulated results can be generalized with small
changes for different boundary conditions, for example periodic boundary
conditions.

We resume two useful results for infinite-dimensional vector functions
establishing a criterion to obtain a compactness property. In particular,
these Theorems allow us to pass to the limit in approximating problems and
recover some regularity properties of the solutions.

Theorem 2.1.1. Let Y , X, Z be reflexive and separable Banach spaces

Y
c
↪→ X ↪→ Z.

Let {um}m≥1 be a sequence such that

• um is uniformly bounded in Lp1(0, T ;Y ), 1 < p1 <∞,

• u̇m is uniformly bounded in Lp2(0, T ;Z), 1 < p2 <∞.

Then there exists a subsequence that strongly converge in Lp1(0, T ;X).

Theorem 2.1.2. Let {um}m≥1 be a sequence bounded in Lp (Q) such that
um → u a.e. in Q. Then um → u weakly in Lp (Q).
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Lastly, we introduce a result which provides a condition to extend the
uniform estimates from approximating solutions φm to the limit solution φ.

Lemma 2.1.3. Let (V,H, V ∗) be a Hilbert triple with V compactly embedded
into H. Let {um}m≥1 be a sequence such that um is uniformly bounded in
L∞(0, T ;V ) by a constant C and um → u weakly in L2(0, T ;V ). Then there
holds

esssup
t∈[0,T ]

||u(t)||V < C.

Throughout this thesis, Q denotes a generic positive monotone function
while C, Ci, Ri, ρi and κi stand for positive constants that may be estimate
according to the parameters of the system. We will subsequently indicate
their dependencies. In particular, CΩ denotes some constant depending only
on Ω. To simplify notation in the proofs of this chapter, we use φ̇ to indicate
the derivative of φ with respect to the time. Moreover in the next chapters,
BX(0, R) stands for the closed ball in X centered in 0 with radius R.

2.2 Swift-Hohenberg equation
We consider the Swift-Hohenberg equation

φt + ∆2φ+ 2∆φ+ f (φ) = 0 in Ω× (0, T ),
φ = ∆φ = 0 on ∂Ω× (0, T ),
φ(0) = φ0 in Ω.

(2.1)

with the above assumptions on the nonlinearity term.
We give the following definition of weak formulation of the problem (2.1).

Definition 2.2.1. Let T > 0 be given. φ is a weak solution if φ ∈
L2 (0, T ;H2), φt ∈ L2 (0, T ;H∗2) such that

(1) < φt (t) , v >H∗2,H2 +a (φ (t) , v)+ (f (φ (t)) , v) = 0,
∀v ∈ H2, a.e. t ∈ (0, T ),

(2) φ(0) = φ0 in H0.

In this section we proceed with the study of the next result.

Theorem 2.2.2. Let φ0 ∈ H0. Then the problem (2.1) admits a unique
weak solution φ ∈ C([0, T ];H0). Moreover the following estimates holds

||φ1 − φ2||C([0,T ];H0) + ||φ1 − φ2||L2(0,T ;H2) 6 C1e
C2T ||φ01 − φ02||H0 , (2.2)

where φ1 and φ2 are weak solutions to (2.1), respectively with initial condi-
tions φ01, φ02, and the positive constant Ci depend on Ω, T , f , φ01, φ02.
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The main idea of the proof is to apply the Galerkin method (see [20]
for more details). Initially, we will define a family of solutions to suitable
finite-dimensional problems by making use of the eigenfunctions um. Then,
we will provide the uniform energy estimates, which allow us to pass to the
limit into the equation. The main difficulty comes out from the presence of
a nonlinear term, more precisely we will need to use the above compactness
results to guarantee that f(φm) converge to f(φ), and not to a generic
function.

Proof. Galerkin approximation scheme
We built a sequence of solutions with the Galerkin method: let us fixm ∈ N,
let H2,m be the finite dimensional subspace of H2, H2,m =span{u1, ..., um}.
We find a function φm ∈ C1([0, T ];H2,m) of the form

φm (t) =
m∑
k=1

ck (t)uk,

solution to problem

(1) (φ̇m(t), v) + a(φm(t), v)+(f(φm(t)), v) = 0,
∀v ∈ H2,m, a.e. t ∈ (0, T ), (2.3)

(2) φm(0) = φ0m in H0,

where φ0m =
m∑
k=1

αkuk → φ0 in H0.

Writing the problem (2.3) for each basis function of H2,m, we obtain a
nonlinear system of ODEs :{

ċs(t) = −a(us, us)cs(t)− (f(φm(t)), us), a.e. t ∈ (0, T ),
cs (0) = αs,

for all s= 1, ...,m.
The right hand side of the system is a continuous and locally Lipschitz
function of cs, ∀s, so it follows that there exists a unique vector solution

cm(t) =(c1(t), ..., cm(t)) ∈ C1([0, T ∗);Rm).

Consequently, the approximating problem (2.3) admits a unique solution
φm ∈ C1([0, T ∗);H2,m).

Energy estimates
We want to ensure that the approximating solutions are defined in [0, T ] and
satisfy some uniform boundedness properties. Using φm(t) as a test function
in (2.3), we get

(φ̇m(t), φm(t)) + a(φm(t), φm(t)) + (f(φm(t)), φm(t)) = 0
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From integration by parts, the Cauchy-Schwarz and Young inequalities, we
have

2||∇v||2H0 ≤ 2||∆v||H0 ||v||H0 ≤ (1− γ)||v||2H2 + 1
1− γ ||v||

2
H0 . (2.4)

where γ is a fixed real value such that 0 < γ < 1. According to the last
inequality with γ = δ

1+δ and the property (H2) of the nonlinear term, yields

1
2
d

dt
||φm(t)||2H0 + γ||φm(t)||2H2 ≤ K1|Ω|. (2.5)

In particular, applying the Gronwall Lemma and the embedding property
H2 ↪→ H0, we can rewrite 2.5 as

||φm(t)||2H0 ≤ ||φ0||2H0e
−C1t + C2[1− e−C1t] ≤ C,

where C depends on Ω, T, φ0, f but is independent of m. Integrating from
0 to T in (2.5), we can assert that

||φm(T )||2H0 +
∫ T

0
||φm(t)||2H2 dt ≤ ||φ0||2H0 +K1|Ω|T. (2.6)

These estimates allow us to conclude that

i. φm is uniformly bounded in L∞(0, T ;H0),

ii. φm is uniformly bounded in L2(0, T ;H2),

For simplicity of notation, we will use the same constant C to bound φm in
already cited spaces. As a consequence of (i), we can extend the approxi-
mating solutions to problem (2.3) on the interval [0, T ]. It follows from the
Gagliardo-Niremberg inequality that the following estimate holds

||φm(t)||NLN (Ω) ≤ CΩ||φm(t)||N−1
H0
||φm(t)||H2

≤ 1
2CΩ||φm(t)||2(N−1)

H0
+ 1

2 ||φm(t)||2H2 , ∀N ≥ 1.

Combining (i), (ii) and last inequality, we obtain

||φm||LN (Q) ≤ C, N ≥ 1,

where Q = Ω×(0, T ) and C may depend on Ω, T , φ0, f but it is independent
of N . Thus we deduce that

iii. φm is uniformly bounded in L∞(Q),

and, as a consequence of (H1), we conclude that

iv. f(φm) is uniformly bounded in L∞(Q).
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Now we prove an energy estimate for φ̇m: let v ∈ H2 be, by the projection
Theorem v = z + w, where z ∈ H2,m, w ∈ H⊥2,m. In a standard way, we get

| < φ̇m(t), v >H∗2,H2 | = | < φ̇m(t), z >H∗2,H2 |
= | − a(φm(t), z)− (f(φm(t)), z)|
≤ [C3||φm(t)||H2 + C4||f(φm(t))||H0 ] ||z||H2

≤ [C3||φm(t)||H2 + C4||f(φm(t))||H0 ] ||v||H2 .

This implies that

||φ̇m(t)||2L2(0,T ;H∗2) ≤
∫ T

0
C5||φm(t)||2H2 dt+

∫ T

0
C6||f(φm(t))||2H0 dt ≤ C,

where C depends on Ω, T , φ0, f but is independent of m.
Therefore we have

v. φ̇m is uniformly bounded in L2(0, T ;H∗2).

Passage to the limit
From energy estimates and by compactness arguments, we recover sufficient
convergence properties of the approximating solutions and we can pass to
the limit in the discrete problem (2.3). For abbreviation, we continue to
write φm also for subsequence.
By the energy estimates (ii) and (v), we conclude that

φm → φ weakly in L2(0, T ;H2),

˙φm → φ̇ weakly in L2(0, T ;H∗2).

Using Theorem 2.1.1, we have

φm → φ in L2(0, T ;H0) ⇒ φm → φ a.e. in Q

⇒ f(φm)→ f(φ) a.e. in Q,

by continuity of the nonlinear term f . Thanks to (iv), we apply Theorem
2.1.2 with p = 2 and we obtain

f(φm)→ f(φ) weakly in L2(Q).

Now we are ready to prove that the limit function φ is a solution to problem
(2.1). Let us consider v ∈ L2(0, T ;H2) and let us define

vN (t) =
N∑
k=1

bk(t)uk → v(t) in H2.
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In a standard way, we fix N such that m > N and we take vN (t) as a test
function in the discrete problem (2.3)

< ˙φm(t), vN (t) >H∗2,H2 +a(φm(t), vN (t)) + (f(φm(t)), vN (t)) = 0.

Integrating from 0 to T∫ T

0
< ˙φm(t), vN (t) >H∗2,H2 dt+

∫ T

0
a(φm(t), vN (t)) dt

+
∫ T

0
(f(φm(t)), vN (t)) dt = 0. (2.7)

We can now pass to the limit as m↗∞ in (2.7) and we get∫ T

0
< φ̇(t), vN (t) >H∗2,H2 dt+

∫ T

0
a(φ(t), vN (t)) dt

+
∫ T

0
(f(φ(t)), vN (t)) dt = 0.

Passing also to the limit as N ↗∞ and using that vN → v in L2(0, T ;H2),
we have ∫ T

0
< φ̇(t), v(t) >H∗2,H2 dt+

∫ T

0
a(φ(t), v(t))dt

+
∫ T

0
(f(φ(t)), v(t))dt = 0. (2.8)

Since v is arbitrary, the same equality holds true if v = wχ[s,s+h](t), where
w ∈ H2, ∫ s+h

s
< φ̇(t), w >H∗2,H2 dt+

∫ s+h

s
a(φ(t), w) dt

+
∫ s+h

s
(f(φ(t)), w) dt = 0.

Multiplying for h−1, passing to the limit to h → 0 and using Lebesgue
differentiation Theorem, we obtain

< φt(t), w >H∗2,H2 +a(φ(t), w)+(f(φ(t)), w) = 0,
∀w ∈ H2, a.e. t ∈ (0, T ).

To conclude that the limit function φ is a weak solution in the sense of
Definition 2.2.1, we need to check the initial condition. In this way, using
the well known Theorem for vector function in H1(0, T ;H2,H∗2), we have
that φ ∈ C([0, T ],H0). An easy computation shows that φ(0) = φ0 in H0:
indeed taking v ∈ C1([0, T ];H2) with v(T ) = 0 and subtracting (2.7) to
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(2.8), we can use integration by parts in time. Hence, passing to the limit
to m↗∞ and then to N ↗∞, we get

(φ(0), v(0)) = (φ0, v(0)) ⇒ φ(0) = φ0.

Uniqueness and continuous dependence from initial data
Finally, we want to prove the estimate (2.2), which allows us to conclude that
the weak solution to problem (2.1) is unique. As a consequence, we observe
that the whole sequence φm converge to φ and not only a subsequence φmj .
Furthermore an estimate of this type proves the continuity of the solution
from initial data.
Let us consider two solutions φ1 and φ2, respectively with data φ01 and φ02.
We define φ = φ1 − φ2 and we consider the following equation for φ

< φt(t), w >H∗2,H2 +a(φ(t), w) + (f(φ1(t))−f(φ2(t)), w) = 0,
∀w ∈ H2, a.e. t ∈ (0, T ).

Testing by w = φ(t), we obtain

1
2
d

dt
||φ(t)||2H0 + ||φ (t) ||2H2 − 2||∇φ (t) ||2H0

≤ ||
∫ 1

0
f ′(τφ1(t) + (1− τ)φ2(t))(φ1(t)− φ2(t)) dτ ||H0 ||φ(t)||H0 .

Since φ1, φ2 ∈ L∞(Q) and using inequality (2.4), we have

1
2
d

dt
||φ(t)||2H0 + 1

2 ||φ (t) ||2H2 ≤ C7||φ(t)||2H0 . (2.9)

Applying the Gronwall Lemma, we get

||φ||C(0,T ;H0) ≤ ||φ01 − φ02||H0e
C8T .

Using last inequality and integrating from 0 to T in (2.9), we have∫ T

0
||φ(t)||2H2 dt ≤ C9||φ01 − φ02||2H0e

C10T .

Combining these inequalities, the proof is complete.

Let us proceed with a regularity result.

Theorem 2.2.3. Let φ0 ∈ H2. Then the problem (2.1) admits a unique
strong solution, namely

φt + ∆2φ+ 2∆φ+ f (φ) = 0 in H0, a.e. t ∈ (0, T )
φ = ∆φ = 0 on ∂Ω× (0, T )
φ(0) = φ0 in Ω,

(2.10)
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such that

φ ∈ C([0, T ];H2) ∩ L2(0, T ;H4), φt ∈ L2([0, T ];H0).

Moreover, the following estimate holds

||φ1 − φ2||C([0,T ];H2) + ||φ1,t − φ2,t||L2(0,T ;H0) 6 C||φ01 − φ02||H2 . (2.11)

where φ1, φ2 are strong solutions to (2.10), respectively with initial data φ01,
φ02 and C may depend on the H2-norms of the initial data as well as on Ω,
T , f .

Proof. Considering the approximating problem (2.3), we have that φm ∈
C1([0, T );H2,m) so this allows us to take v = φ̇m(t) as test function, getting

|| ˙φm(t)||2H0 + d

dt

{1
2 ||∆φm(t)||2H0 − ||∇φm(t)||2H0 +

∫
Ω
F (φm(t)) dx

}
= 0.

We recall the following inequality

||∇v||2H0 ≤ ||∆v||H0 ||v||H0 ≤
(1− γ)

2 ||v||2H2 + 1
2(1− γ) ||v||

2
H0 . (2.12)

Integrating from 0 to T , using (2.12) with γ = δ
2+δ and the hypothesis on

the nonlinear term, we obtain∫ T

0
|| ˙φm(t)||2H0 ds+ γ

2 ||φm(T )||2H2 ≤ C1. (2.13)

where C1 depends on f, φ0 and Ω. This allows us to conclude that

vi. φ̇m is uniform bounded in L2(0, T ;H0),

vii. φm is uniform bounded in L∞(0, T ;H2).

Thanks to (vi), we have that φ̇m → φ̇ weakly in L2(0, T ;H0) for the unique-
ness of the limit in weaker spaces. Moreover, we can infer form (vii) and
Lemma 2.1.3 that φ is bounded in L∞(0, T ;H2). In particular we can write
the problem in the following form

a(φ(t), v) = −(φ̇(t) + f(φ(t), v), ∀v ∈ H2, a.e. t ∈ (0, T ).

Applying the regularity results for elliptic equations, we obtain that φ(t) ∈
H4(Ω) ∩ H1

0 (Ω). Then we are able to apply the Green formula with v ∈
C∞0 (Ω) and we deduce, by means the du Bois-Raymond Lemma, that

φt + ∆2φ+ 2∆φ+ f (φ) = 0, in H0, a.e. t ∈ (0, T ) .
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Considering a function test v ∈ H2, we can conclude that ∆φ = 0 on ∂Ω.
Consequently, using 2.13, an easy computation shows that

φ ∈ C([0, T ];H2) ∩ L2(0, T ;H4).

Let us consider two strong solutions φ1, φ2 with initial data φ01,φ02 in H2.
Rewriting the problem for the difference φ = φ1 − φ2, we obtain

φt(t) + ∆2φ(t) + 2∆φ(t) + f(φ1(t))− f(φ2(t)) = 0, in H0, a.e t ∈ (0, T ).

We multiply by φt and integrate on Ω, getting

||φt(t)||2H0 +(∆2φ(t), φt(t))+(2∆φ(t), φt(t))+(f(φ1(t))−f(φ2(t)), φt(t)) = 0.

In a standard way, we deduce that the following inequality holds

||φt(t)||2H0+ d

dt

{1
2 ||φ(t)||2H2 − ||∇φ(t)||2H0

}
≤ ||

∫ 1

0
f ′(τφ1(t) + (1− τ)φ2(t))(φ(t)) dτ ||H0 ||φt(t)||H0

≤ C2||φ(t)||H0 ||φt(t)||H0 .

Integrating from 0 to t and using the inequality (2.12), we have

1
2

∫ t

0
||φt(t)||2H0 ds+ γ

2 ||φ(t)||2H2 ≤ ||φ0||2H + ||φ(t)||2H0 + C3

∫ t

0
||φ(s)||2H0 ds.

Combining last inequality with (2.2), we conclude that

||φt||L2(0,T ;H0) + ||φ||C0(0,T ;H2) ≤ C4e
C5T ||φ0||H2 .

2.3 Modified Swift-Hohenberg equation
In this section we are interested in finding results of existence, uniqueness
and regularity of the solution to the modified Swift-Hohenberg equation

σφtt + φt + ∆2φ+ 2∆φ+ f (φ) = 0 in Ω× (0, T )
φ = ∆φ = 0 on ∂Ω× (0, T )
φ(0) = φ0 in Ω
φt(0) = φ1 in Ω,

(2.14)

where σ is a positive constant.
Linear problems and their features are essential in order to achieve one

of the main tasks of this section, namely the result of continuity of the
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weak solutions to problem (2.14) from initial data. Accordingly, we review
some of the standard facts on the following linear hyperbolic equation of the
fourth-order 

σutt + ∆2u = g(t) in Ω× (0, T )
u = ∆u = 0 on ∂Ω× (0, T )
u(0) = u0 in Ω
ut(0) = u1 in Ω.

(2.15)

We introduce the definition of weak formulation of the problem (2.15).

Definition 2.3.1. Let T > 0 be given. A pair (u, ut), is a weak solution if
(u, ut) ∈ L∞(0, T ; E0), utt ∈ L∞(0, T ;H∗2) such that

(1) < σutt(t), v >H∗2,H2 +(∆u(t),∆v) =(g(t), v),
∀v ∈ H2, a.e. t ∈ (0, T ),

(2) u(0) = u0 in H2, ut(0) = u1 in H0.

Before stating the result to be proved, we want to motivate the study
of the linear problem (2.15). The regularity of the weak solution to the
modified Swift-Hohenberg equation will not be sufficient to use φt as test
function, so it will not be possible to apply the approach adopted for the
Swift-Hohenberg equation. To overcome this difficulty, we will prove an
energy identity for (2.15) and we will read (2.14) as a linear problem. In
this way, we introduce the following functional associated to the solution
(u, ut)

J (t) = 1
2

∫
Ω

(
σ|ut(t)|2 + |∆u(t)|2

)
dx.

Theorem 2.3.2. Let us consider u0 ∈ H2, u1 ∈ H0 and g ∈ L2(0, T ;H0).
Then the problem (2.15) admits a unique weak solution

u ∈ C([0, T ];H2) ∩ C1([0, T ];H0).

Moreover, the following energy identity holds ∀t ∈ [0, T ]

J (t) = J (0) +
∫ t

0

∫
Ω
g(s)ut(s) dx ds. (2.16)

Proof. As in the proof of Theorem 2.2.2, we use the Galerkin method to
define a family of approximating solutions. The discretization is performed
by means of the eigenfunctions {wk}k≥1, corresponding to the bilinear form
associated to ∆2 in H2. In particular, we can write

u0m =
m∑
k=1

u0kwk → u0 in H2, u1m =
m∑
k=1

u1kwk → u1 in H0.
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Since C([0, T ];H0) is dense in L2(0, T ;H0), there exists a sequence gn ⊂
C([0, T ];H0) such that gn → g in L2(0, T ;H0). We fix m ∈ N and we define
H2,m =span{w1, ..., wm}. We find a function of the form

um (t) =
m∑
k=1

ck (t)wk,

solution to the linear problem

(1) (σüm(t), v) + (∆um(t),∆v) = (gm(t), v),
∀v ∈ H2,m, a.e. t ∈ (0, T ), (2.17)

(2) um(0) = u0m in H2, u̇m(0) =u1m in H0.

The linear problem (2.17) is equivalent to the following linear system of
ODEs 

σC̈m(t) + ΛCm(t) = Gm(t)
Cm(0) = C0m

Ċm(0) = C1m,

(2.18)

where

Cm(t) = (c1(t), ..., cm(t)), Λ = diag((∆wk,∆wk)),
Gm(t) = ((g1(t), w1), ...,(gm(t), wm)),

C0m = (u01, ..., u0m), C1m = (u11, ..., u1m).

We observe that Gm(t) ∈ C([0, T ];Rm), so there exists a unique global
solution Cm(t) ∈ C2([0, T ];Rm). This implies that there exists a unique
solution to problem (2.17), um ∈ C2([0, T ];H2). Testing by v = u̇m in
(2.17) we have

σ

2
d

dt
||u̇m(t)||2H0 + 1

2
d

dt
||um(t)||2H2 = (gm(t), ˙um(t)).

Integrating from 0 to t, we obtain the discrete energy identity∫
Ω

σu̇m(t)2

2 + ∆um(t)2

2 dx =
∫

Ω

σu2
1m

2 + ∆u2
0m

2 dx+
∫ t

0

∫
Ω
gm(s)u̇m(s) dxds.

Let us consider m > n, we compute the difference between the problems
related to um and un and we take v = u̇m(t)− u̇n(t) as test function

σ

2
d

dt
||u̇m(t)− u̇n(t)||2H0 + 1

2
d

dt
||um(t)− un(t)||2H2

= (gm(t)− gn(t), u̇m(t)− u̇n(t)).
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After applying the Cauchy-Schwarz inequality and the Gronwall Lemma, we
obtain

σ||u̇m(t)− u̇n(t)||2H0 + ||um(t)− un(t)||2H2

≤ eT {||u1m − u1n||2H0 + ||u0m − u0n||2H2 +
∫ t

0

1
σ
||gm(s)− gn(s)||2H0 ds}.

Since u1m → u1 inH0, u0m → u0 inH2, gm → g in L2(0, T,H0), we conclude
that um is a Cauchy sequence in C([0, T ];H2) ∩ C1([0, T ];H0) and we call
u its limit. Let us now prove that u is the solution of the problem (2.15)
and it fulfils the energy identity (2.16): first of all it is easy to verify that
üm is uniformly bounded in L2(0, T ;H∗2) so, at least for a subsequence for
n ↗ ∞, üm → ü weakly in L2(0, T ;H∗2). Repeating the same argument of
the Theorem 2.2.2 for the passage to the limit, we can conclude that u is
a weak solution of (2.15). Thanks to convergence properties of the discrete
solution as well as of gm, u0m and u1m, we can also pass to the limit in the
discrete energy identity and we conclude that 2.16 holds for the solution u.
To complete the proof we get the uniqueness of the solution u: let u1 and
u2 be two solution with the same initial data and we consider u(t) = u1(t)−
u2(t).
Let define the function v(t) as follows{∫ t

s u(τ)dτ, if 0 ≤ t ≤ s,
0, if s ≤ t ≤ T.

(2.19)

We observe that v(t) ∈ H2, ∀t ∈ [0, T ], thus we can use v(t) as a test function
and we integrate from 0 to s∫ s

0
< ü(t), v(t) >H∗2,H2 dt+

∫ s

0
a(u(t), v(t)) dt = 0.

Integrating by parts in time in both terms, we have∫ s

0

d

dt
[σ||u(t)||2H0 − ||∆v(t)||2H0 ] dt = 0.

This implies that

σ||u(s)||2H0 + ||∆v(0)||2H0 = 0 ∀s ∈ [0, T ]⇒ u(s) ≡ 0.

Now we study the well-posedness of the modified Swift-Hohenberg equa-
tion in terms of the next definition.
Definition 2.3.3. Let T > 0 be given. A pair (φ, φt) is a weak solution if
(φ, φt) ∈ L∞(0, T ; E0), φtt ∈ L∞(0, T ;H∗2) such that

(1) < σφtt(t), v >H∗2,H2 +(φt(t), v)+a(φ(t), v) + (f(φ), v) = 0,
∀v ∈ H2, a.e. t ∈ (0, T ), (2.20)

(2) φ (0) = φ0 in H2, φt (0) = φ1 in H0.
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Next, we state our main result of this section.

Theorem 2.3.4. Let (φ0, φ1) ∈ E0. Then the problem (2.14) has a unique
weak solution φ ∈ C([0, T ];H2)∩C1([0, T ];H0). Moreover, any weak solution
satisfies the following inequality, ∀t ∈ [0, T ],

||(φ1 − φ2, φ1,t − φ2,t)(t)||2E0 ≤ ||(φ10 − φ20, φ11 − φ21||2E0C1e
C2t, (2.21)

where φ1, φ2 are weak solutions to (2.14), respectively with initial data
φ10, φ11 and φ20, φ21. C1, C2 are positive constants depending on the norm
of the initial data as well as on σ,Ω and f .

This result will be proved in much the same way as Theorem 2.2.2.

Proof. Galerkin approximation scheme
Applying the same discretization technique used for the Swift-Hohenberg
equation, we obtain the approximating problem

(1) (σφ̈m(t), v) + (φ̇m(t), v) + a(φm(t), v ) + (f(φm(t)), v) = 0,
∀v ∈ H2,m a.e. t ∈ [0, T ] (2.22)

(2) φm(0) = φ0min H2, φ̇m(0) = φ1m in H0,

where φ0m =
m∑
k=1

αkuk → φ0 in H2, φ1m =
m∑
k=1

βkuk → φ1 in H0.

This is equivalent to a system of ODEs which admits a local unique so-
lution in C2([0, T ∗],Rm), so we deduce the existence of a unique solution
φm ∈ C2([0, T ∗],H2,m) to problem (2.22).

Energy estimates of the solutions
Taking v = φ̇m(t) as a test function, we have

d

dt

{
σ

2 ||φ̇m(t)||2H0 + 1
2a(φm(t), φm(t)) +

∫
Ω
F (φm(t))dx

}
+ ||φ̇m(t)||2H0 = 0.

Integrating in time from 0 to t, using the inequality (2.12) with γ = δ
2+δ

and the property (C), yields that

σ||φ̇m(t)||2H0+ 2
∫ t

0
||φ̇m(s)||2H0 ds+ γ

2 ||φm(t)||2H2

≤ K2|Ω|+ σ||φ1m||2H0 + ||φ0m||2H2 + 2
∫

Ω
F (φ0m) dx

≤ K2|Ω|+Q(||φ0||H2 , ||φ1||H0). (2.23)

This implies that

i. φm is uniformly bounded in L∞(0, T ;H2),
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ii. φ̇m is uniformly bounded in L∞(0, T ;H0).

Thanks to (i) and to the global existence Theorem for ODEs, we can con-
clude that φm, φ̇m are defined in [0, T ]. Moreover, by the Sobolev embedding
H2 ↪→ L∞(Ω) and the continuity of the nonlinear term, we get

iii. f(φm) is uniformly bounded in L∞(Q).

To obtain an energy estimate for φ̈m, we take v ∈ H2 and let v = z + w,
where z ∈ H2,m and w ∈ H⊥2,m by the projection Theorem. In a standard
way, we have

| < φ̈m(t), v>H∗2,H2 | = |(φ̈m(t), v)|
= | − (φ̇m(t), z)− a(φm(t), z)− (f(φm(t)), z)|

≤ C
(
||φ̇m(t)||H0 + ||φm(t)||H2 + ||f(φm(t))||H0

)
||z||H2

≤ C
(
||φ̇m(t)||H0 + ||φm(t)||H2 + ||f(φm(t))||H0

)
||v||H2 .

Using (i), (ii), (iii) in the last expression, we deduce that

iv. φ̈m is uniformly bounded in L∞(0, T ;H∗2).

Passage to the limit
As a consequence of the uniform estimates (i)-(iv) and by means compact-
ness argument, the following convergences hold true

φm → φ weakly star in L∞(0, T ;H2),

φ̇m → φ̇ weakly star in L∞(0, T ;H0),

φ̈m → φ̈ weakly star in L∞(0, T ;H∗2).

Combining (i) and (ii) with Theorem 2.1.1, we can assert that

φm → φ in L2(0, T ;H0) ⇒ φm → φ a.e. in Q

⇒ f(φm)→ f(φ) a.e. in Q,

by continuity of the nonlinear term f .
From Theorem 2.1.2 and (iii), we obtain

f(φm) ⇀ f(φ) in L2(Q).

Now we are able to prove that the limit function φ is a weak solution to
problem (2.14). We take v ∈ L2(0, T ;H2) and we define vN (t) as in the
parabolic case. Then, we fix N such that m > N and we take vN (t) as a
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test function in (2.22). Integrating in time from 0 to T and passing to the
limit as m↗∞ and also as N ↗∞, we finally have∫ T

0
< σφ̈(t),v(t) >H∗2,H2 dt+

∫ T

0
(φ̇(t), v(t)) dt

+
∫ T

0
a(φ(t), v(t)) dt+

∫ T

0
(f(φ(t)), v(t)) dt = 0. (2.24)

Since v is arbitrary, we consider v(t) = wχ[s,s+h](t), where w ∈ H2, and by
means of Lebesgue differentiation Theorem, we get

< σφ̈(t), w >H∗2,H2 +(φ̇(t), w) + a(φ(t), w)+(f(φ(t)), w) = 0
∀w ∈ H2, a.e. t ∈ [0, T ].

At this level, we also know that φ ∈ C([0, T ];H0) and φt ∈ C([0, T ;H∗2).
Thus, performing the standard method, namely integrating by parts in time
two times in both discrete problem and (2.24), computing the difference and
passing to the limit, we can conclude that

φt(0) = φ1, φ(0) = φ0.

Uniqueness
Let us consider two weak solutions φ1, φ2, with the same initial data, and
their difference u which satisfies the following equation

< σü(t), v >H∗2,H2 +(u̇(t), v) + a(u(t), v) + (f(φ1(t))− f(φ2(t)), v) = 0.

with u(0) = u̇(0) = 0. We define the function w(t) as follows{ ∫ t
s u(τ)dτ, if 0 ≤ t ≤ s,

0, if s ≤ t ≤ T. (2.25)

and we observe that w(t) ∈ H2 and ẇ(t) = −u(t).
Integrating from 0 to T the equation for u and taking v = w(t), we have∫ s

0
< σü(t), w(t) >H∗2,H2 dt+

∫ s

0
(u̇(t), w(t)) dt+

∫ s

0
a(u(t), w(t)) dt

+
∫ s

0
(f(φ1(t))− f(φ2(t)), w(t)) dt = 0.

Using integrations by parts in the first three terms, we obtain
σ

2 ||u(s)||2H0+
∫ s

0
||u(t)||2H0 dt+ 1

2 ||∆w(0)||2H0 − ||∇w(0)||2H0

= −
∫ s

0
(f(φ1(t))− f(φ2(t)), w(t)) dt

≤
∫ s

0
||
∫ 1

0
f ′(τφ1 + (1− τ)φ2)u(t) dτ ||H0 ||w(t)||H0

≤
∫ s

0
M ||u(t)||H0 ||w(t)||H0 dt.
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where M is a positive constant depending on f , φ1, φ2.
We observe that

||w(t)||2H0 ≤
∫

Ω
(
∫ s

0
|u(r)| dr)2 dx ≤ s

∫ s

0
||u(r)||2H0 dr, (2.26)

and it follows that∫ s

0
||w(t)||2H0 dt ≤

∫ s

0
s

∫ s

0
||u(r)||2H0 dr dt ≤ C1

∫ s

0
||u(r)||2H0 dr.

Thus we deduce that
σ

2 ||u(s)||2H0 +
∫ s

0
||u(t)||2H0 dt+ 1

2 ||∆w(0)||2H0−||∇w(0)||2H0

≤ C2

∫ s

0
||u(t)||2H0 dt.

Using the inequality (2.4), we get
σ

2 ||u(s)||2H0 +
∫ s

0
||u(t)||2H0 dt+ 1

4 ||∆w(0)||2H0

≤ C2

∫ s

0
||u(t)||2H0 dt+ ||w(0)||2H0 .

Applying once more the inequality (2.26) and the Gronwall Lemma, we con-
clude that u(s) ≡ 0 ∀s ∈ [0, T ].

Continuous dependence from initial data
Let us consider two weak solutions φ1, φ2, respectively with initial data
φ10, φ11 and φ20, φ21. We define their difference u and we rewrite the problem
for u as follows

σutt + ∆2u = −2∆u− ut − f(φ1) + f(φ2) in Ω× (0, T )
u = ∆u = 0 on ∂Ω× (0, T )
u(0) = φ10 − φ20 inΩ
ut(0) = φ11 − φ21 in Ω.

Since ut ∈ L2(Q), ∆u ∈ L2(Q) and f(φi) ∈ L2(Q) for i = 1, 2, we read u as
the solution to the linear problem (2.15) with

g := −2∆u− ut − f(φ1) + f(φ2) ∈ L2(Q).

Using the energy identity (2.16) and the Sobolev embedding H2 ↪→ L∞(Ω),
we have

σ||ut(t)||2H0 + ||u(t)||2H2 = −2
∫ t

0
||ut(s)||2H0 ds− 4

∫ t

0
(∆u(s), ut(s)) ds

− 2
∫ t

0
(f(φ1)− f(φ2), ut(s)) ds

+ ||ut(0)||2H0 + ||u(0)||2H2

≤ ||ut(0)||2H0 + ||u(0)||2H2 + C1

∫ t

0
||u(s)||2H2 ds.
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By the Gronwall Lemma, we finally get

||φ1,t − φ2,t||2H0 + ||φ1 − φ2||2H2 ≤
{
||φ11 − φ21||2H0 + ||φ10 − φ20||2H2

}
eC1t.

2.4 Stationary Swift-Hohenberg equation
We want to establish the existence of a weak solution to the stationary
equation associated to the evolution problems previously studied.{

∆2φ+ 2∆φ+ f (φ) = 0 in Ω ⊆ R3

φ = ∆φ = 0 on ∂Ω.
(2.27)

We start by introducing the weak formulation of the problem (2.27).

Definition 2.4.1. φ ∈ H2 is a weak solution if∫
Ω

[∆φ∆v − 2∇φ · ∇v + f (φ) v] dx = 0, ∀v ∈ H2. (2.28)

Theorem 2.4.2. The stationary problem admits a weak solution.

Proof. The strategy is based on the direct method of the calculus of varia-
tion. Let us consider the following functional associated to the problem

G(v) =
∫

Ω

[1
2 (∆v)2 − |∇u|2 + F (v)

]
dx, ∀v ∈ H2. (2.29)

Using the inequality (2.12) with γ = δ
2+δ and the hypothesis on the nonlinear

term, we see that

G(φ) = 1
2 ||∆φ||

2
H0 − ||∇φ||

2
H0 +

∫
Ω
F (φ) dx

≥ γ

2 ||φ||
2
H2 −

2 + δ

4 ||φ||2H0 +
∫

Ω
F (φ) dx

≥ γ

2 ||φ||
2
H2 −K2|Ω|. (2.30)

Hence G(φ) is bounded from below and G(φ)→ +∞ as φ→ +∞ in H2.
If we set

λ = inf
v∈H2

G(v),

by definition there exists a sequence vn ∈ H2 such that G(vn) → λ. It
follows that there exists C such that |G(vn)| ≤ C and we conclude from
(2.30) that vn is bounded in H2. Thanks to the Banach-Alaoglu Theorem,
we get, at least for subsequence of n ↗ ∞, vn → φ weakly in H2 and, by
the Sobolev embedding, vn → φ in H1 as well as vn is bounded in L∞(Ω).
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Moreover, since F is continuous, F (vn) → F (φ) a.e. in Ω and we conclude
from dominated convergence Theorem that∫

Ω
F (vn) dx→

∫
Ω
F (φ) dx.

Consequently, we obtain

G(φ) ≤ lim inf
n

G(vn) = λ.

Therefore, φ is a minimum of G(v) in H2 and we have from the Fermat
Theorem that

G′(φ)[v] = 0 ∀v ∈ H2,

where with G′ we indicate the Gâteaux derivative. An easy computation
shows that last equality is equivalent to (2.28).
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3 The global attractor

In this chapter we start to investigate the long-time behavior of the so-
lutions corresponding to the Swift-Hohenberg equation and the modified
Swift-Hohenberg equation. In particular, we study the permanent regime of
the trajectories independently of their initial data. In the first section we
will introduce the definitions and results of the theory of dissipative evolu-
tion equations in infinite-dimensional space. Firstly, we focus on the role
of the global attractor. In the second and third sections we will prove the
existence of the global attractor for the models concerned.

3.1 Basic definitions and existence results

Let X be a real Banach space and let u(t) ∈ X the solution to the au-
tonomous Cauchy problem

d

dt
u(t) = F(u(t)) ∀t > 0,

u(0) = u0 ∈ X.
(3.1)

The basic issue to analyse a physical or mechanical phenomenon governed by
evolution equations is to establish their well-posedness in terms of existence,
uniqueness and regularity properties. These information allow us to define
an abstract family of maps

S(t) : X → X, S(t)u0 = u(t), ∀t ≥ 0.

In this approach, X consists of all possible states of the system (phase space)
and S(t) determines the state at time t associated to an initial state in t = 0.
Existence and uniqueness of global solutions to (3.1) imply that S(t) is well-
defined for each t ≥ 0. Since u(t) satisfies the initial condition, it is clear
that S(0) = I, where I denotes the identity in X. In addition, the system
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is autonomous, namely the time does not appear explicitly in F , thus we
can write that S(t + τ) = S(t) ◦ S(τ). Furthermore, solutions of partial
differential equations are often continuous functions of t or with respect to
the initial data, so S(t)u0 turns out to be continuous in t or u0.

Definition 3.1.1. A one parameter family of maps S(t) : X → X, ∀t ≥ 0,
is a strongly continuous semigroup of operators if

S.1 S(0) = I,

S.2 S(t+ τ) = S(t)S(τ), ∀t, τ ≥ 0,

S.3 S(·)x ∈ C([0,∞);X), ∀x ∈ X,

S.4 S(t) ∈ C(X;X), ∀t ≥ 0,

A pair (X,S(t)) is called dynamical system.

In what follows, we only consider semigroups which satisfy the above
Definition, because the semigroups associated to the equations of the pre-
vious chapter fulfil these properties. More generally, X can be a compete
metric space and (S.4) can be replaced by the closed semigroup property,
i.e.

if xk → x and S(t)xk → y, then y = S(t)x.

The analysis to describe the long-time behavior of solutions of physi-
cal models is usually carried out by means the existence of subsets of the
phase space which satisfy specific properties of attraction with respect to
the semigroup ( see [1], [2] or [22] for more details). In this framework, by
considering the evolutions of the whole system, it is essential to think to
a single trajectory as one of a family which starts from a generic subset of
X. In particular, we will prove the so-called dissipative estimates, which
represent the distance between the trajectories and a suitable set, indepen-
dently of the features of the single solution. In application of the theory, we
will often confine the dynamics on a subset of the phace space, that is the
restriction of S(t) on B ⊂ X, so we define the following properties.

Definition 3.1.2. A nonempty set B ⊂ X is positively invariant for S(t) if

S(t)B ⊂ B, ∀t ≥ 0. (3.2)

A nonempty set B ⊂ X is fully invariant for S(t) if

S(t)B = B, ∀t ≥ 0, (3.3)

where S(t)B =
⋃
x∈B

S(t)x.
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A first useful example in description of the long-time behavior is the
ω-limit set.

Definition 3.1.3. The ω-limit set of a nonempty set B ⊂ X is given by

ω(B) = {x ∈ X : ∃tn →∞, xn ∈ B with S(tn)xn → x}.

This set is essential to construct the global attractor and it satisfies the
properties summarized in the next statement.

Proposition 3.1.4. Let B ⊂ X and ω(B) be a nonempty set. Then we
have

1. ω(B) =
⋂
t≥0

⋃
τ≥t

S(τ)BX ,

2. ω(S(t)B) = ω(B), ∀t ≥ 0,

3. ω(B) is positively invariant.

We now introduce two important sets which define the dissipative prop-
erty of dynamical systems from mathematical point of view.

Definition 3.1.5. A nonempty set B0 ⊂ X is called absorbing set for
(X,S(t)) if for every bounded set B ⊂ X there exists tB ≥ 0 such that

S(t)B ⊂ B0, ∀t ≥ tB. (3.4)

A dynamical system is said to be a dissipative system if it has a bounded
absorbing set. Given an absorbing set B0, it is possible to construct a
bounded positively invariant absorbing set for the semigroup S(t) setting

B1 =
⋃
t≥t0

S(t)B0,

where t ≥ t0 implies S(t)B0 ⊂ B0.

Definition 3.1.6. If A and B are nonempty subsets of X, the Haursdoff
semidistance between A and B is defined as follows

distH(A,B) = sup
x∈A

inf
y∈B
||x− y||X . (3.5)

We remark that the Haursdoff semidistance is not symmetric and it holds

distH(A,B) = 0⇒ A ⊂ B.

Definition 3.1.7. A nonempty setK is called an attracting set for (X,S(t))
if for every bounded set B ⊂ X there holds

lim
t→∞

distH(S(t)B,K) = 0. (3.6)
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A dynamical system is said to be asymptotically compact if it has a
compact attracting set. It is not difficult to prove that an asymptotically
compact dynamical system is also a dissipative system.

Definition 3.1.8. A nonempty set A is the global attractor for the system
(X,S(t)) if

G.1 A is fully invariant,

G.2 A is a compact set,

G.3 A is an attracting set.

The study of a set, which satisfies Definition 3.1.8, is justified in relation
to the consequence that can be inferred. Indeed, the global attractor, when
it exists, is unique, is the largest fully invariant bounded set and is the
smallest closed attracting set. Furthermore, it contains equilibrium points
and periodic orbits of the system. The global attractor can be characterized
as the section at time t = 0 of all the complete bounded trajectories. It
is also possible to prove the following topological property of the global
attractor.

Theorem 3.1.9. Let (X,S(t)) be a dynamical system with X connected.
Then the global attractor A, if it exists, is connected.

The ω-limit set of a bounded set has an important connection with the
global attractor which is stated in the next result.

Theorem 3.1.10. Let B ⊂ X be a nonempty bounded set. Suppose that
ω(B) is nonempty, compact and attracting for (X,S(t)). Then ω(B) is the
global attractor of (X,S(t)).

In order to give some results establishing the existence of the global
attractor under hypothesis effectively satisfied in applications, we need to
introduce additional tools.

Definition 3.1.11. Let B ⊂ X be a bounded set. The Kuratowski measure
of noncompacteness α(B) is defined by

α(B) = inf{d : B has a finite cover of balls of X of diameter less than d}.

The measure of noncompacteness satisfies the following properties:

K.1 α(B) = 0 if and only if BX is compact,

K.2 B1 ⊂ B2 implies α(B1) ≤ α(B2),

K.3 α(B1 ∪B2) ≤ max{α(B1), α(B2)},

K.4 α(B) = α(BX),
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K.5 Let {Bt}t≥0 be a family of nonempty bounded closed sets such that
Bt2 ⊂ Bt1 for t1 < t2 and lim

t→∞
α(Bt) = 0. Set B =

⋂
t≥0
Bt. Then

1. B is nonempty,
2. B is compact,
3. if the sets Bt are connected for all t, then B is connected.

Now we state the main existence result of the global attractor for the semi-
group S(t).

Theorem 3.1.12. Let us assume that the dynamical system (X,S(t)) has a
bounded absorbing set B0 ⊂ X and there exists a sequence tn ≥ 0 such that

lim
tn→∞

α(S(tn)B0) = 0.

Then ω(B0) is the global attractor of (X,S(t)).

Let us mention some important consequences of the Theorem 3.1.12
involved in application to PDEs. It is worth noting how they are only two
of the results which may be formulated.

Theorem 3.1.13. If (X,S(t)) has a compact absorbing set, then there exists
the global attractor A.

Theorem 3.1.14. Let (X,S(t)) be dissipative and let B0 be an absorbing
set. Suppose that S(t) is such that

S(t) = S1(t) + S2(t),

where
lim
t→∞
||S1(t)B0||X → 0,

and

S2(t)B0 ⊂ K compact, ∀t ≥ 0.

Then there exists the global attractor A ⊂ K.

We will use two different strategies to the Swift-Hohenberg and to the
modified Swift-Hohenberg equations. Indeed, in the former case, the parabolic
nature of the equation allows us to prove the existence of a compact ab-
sorbing set for the semigroup and we conclude the existence of the global
attractor by means of Theorem 3.1.13. Conversely, in the latter case, due
to the presence of term φtt, this approach seems not work, so we will split
the semigroup as in Theorem 3.1.14 .

The global attractor seems to be the most important object in terms of
information to describe the long-time behavior of a solution to dissipative
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models; nevertheless it presents some defects. A first problem is the rate
of attraction of the global attractor, which may be small and not estimable
with the physical parameters of the problem. A second drawback is a lack
of robustness with respect to perturbations. Actually it is possible to prove,
as we will see in the fifth chapter, the upper semicontinuity of the global
attractor, namely

distX(Aε,A)→ 0, as ε→ 0+,

where A is the global attractor of the system and Aε is the global attractor
of the perturbed system. Roughly speaking, this property means that the
global attractor cannot explode under perturbations. It is more difficult to
prove and it may not hold that the global attractor be lower semicontinuous,
i.e.

distX(A,Aε)→ 0, as ε→ 0+.

Conversely, this means that the global attractor cannot implode. To over-
come the above defects, it was introduced a bigger set which contains the
global attractor, attracts the trajectories with a very fast rate and is more
robust under perturbations. This object is called exponential attractor and
it will be the main theme of the next chapters.

3.2 Swift-Hohenberg equation
On account of the Theorem 2.2.2 of the previous chapter, we define the
strongly continuous semigroup S(t) on the phace space H0 such that

S(t) : H0 → H0, S(t)φ0 = φ(t) ∀t ≥ 0,

where φ(t) is the weak solution in the sense of Definition 2.2.1 to problem
(2.1) corresponding to the initial data φ0. In this section, we consider the
dynamical system (H0, S(t)) and we prove our main result.

Theorem 3.2.1. The dynamical system (H0, S(t)) has the connected global
attractor A which is bounded in H2.

The idea of the proof is to apply the general method for parabolic prob-
lems as we stated above. Firstly, we built an absorbing set B in the phase
space H0, therefore (H0, S(t)) is a dissipative dynamical system. After that
we prove how the trajectories, which get into B in finite time, are uniformly
contained in a bounded set of H2. In order to prove the last property, we
will need the following technical result, called Uniform Gronwall Lemma
(see [27] for the proof).
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Lemma 3.2.2. Let g, h, y be three positive locally integrable functions on
(t0,∞) which satisfy

dy

dt
≤ gy + h, ∀t ≥ t0,∫ t+r

t
g(s) ds ≤ a1,

∫ t+r

t
h(s) ds ≤ a2,

∫ t+r

t
y(s) ds ≤ a3, t ≥ t0,

where r, a1, a2, a3 are positive constants. Then there holds

y(t+ r) ≤ (a3
r

+ a2)ea1 , ∀t ≥ t0.

In the study of the long-time behavior of the solutions to the Swift-
Hohenberg and the modified Swift-Hohenberg equations, we prove some dif-
ferent estimates under the assumption that φ, φt are sufficiently regular to
guarantee the correctness of each passage. This method is only formal, how-
ever it can be exactly applied to the approximating solutions introduced in
the previous chapter and then pass to the limit as m↗∞.

Lemma 3.2.3. Let φ(t) be the weak solution to problem (2.14). Then, for
every t ≥ 0, the following estimate holds

||φ(t)||2H0 ≤ ||φ0||2H0e
− 2γ
Cp
t + ρ2

0[1− e−
2γ
Cp
t], (3.7)

where ρ0 is a positive constant depending on K1, γ and Cp. Moreover, if
||φ0||H0 ≤ R and t ≥ t0(R, ρ1), then∫ t+r

t
||φ(s)||2H2 ds ≤

Cp
2γ [2K1r + ρ2

1], (3.8)

where ρ1 > ρ0 and r > 0.

Proof. Taking v = φ as a test function, we obtain

1
2
d

dt
||φ||2H0 + ||φ||2H2 − 2||φ||2H1 + (f(φ), φ) = 0.

We recall the following inequality for v ∈ H2

2||∇v||2L2(Ω) ≤ 2||∆v||L2(Ω)||v||L2(Ω) ≤ (1− γ)||v||2H2 + 1
(1− γ) ||v||

2
H0 , (3.9)

where γ ∈ (0, 1). In order to use the hypothesis on the nonlinear term, we
set γ = δ

1+δ . Using last inequality and (H2), we get

1
2
d

dt
||φ||2H0 + γ||φ||2H2 ≤ K1|Ω|. (3.10)

In particular, thanks to Poincaré inequality, we have

d

dt
||φ||2H0 + 2γ

Cp
||φ||2H0 ≤ 2K1|Ω|.
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Applying the Gronwall Lemma, we obtain the following dissipative estimate

||φ(t)||2H0 ≤ ||φ0||2H0e
− 2γ
Cp
t + K1|Ω|Cp

2γ [1− e−
2γ
Cp
t], ∀t ≥ 0.

Setting ρ0 =
√

K1|Ω|Cp
2γ , we can deduce (3.7). Now we fix r > 0, ρ1 > ρ0 and

t0 = Cp
2γ ln( R2

ρ2
1 − ρ2

0
). Thanks to Lemma 3.7, we have

||φ(t)||H0 ≤ ρ1, ∀t ≥ t0.

Integrating in time (3.10) from t to t+ r, where t ≥ t0, we get

||φ(t+ r)||2H0 + 2γ
Cp

∫ t+r

t
||φ(s)||2H2 ds ≤ 2K1|Ω|r + ||φ(t)||2H0 .

Thus we can conclude that∫ t+r

t
||φ(s)||2H2 ds ≤

Cp
2γ [2K1|Ω|r + ρ2

1].

Lemma 3.2.4. Let φ(t) be the weak solution to problem (2.14) such that
||φ0||H0 ≤ R. Then there holds

||φ(t)||H2 ≤ Q(ρ1), ∀t ≥ t0(R, ρ1) + r. (3.11)

where r > 0 and Q is a positive monotone function which depends on r, f ,
Ω but it is independent of R.

Proof. Let ρ1 > ρ0 and t0 = t0(R, ρ1) be as in Lemma 3.2.3. We take v = φt
as test function in (2.2.1) and we obtain

||φt||2H0 + d

dt

{1
2 ||φ||

2
H2 − ||φ||

2
H1 +

∫
Ω
F (φ) dx

}
= 0. (3.12)

We define the energy functional

Λ(t) = ||φ||2H2 − 2||φ||2H1 + 2
∫

Ω
F (φ) dx, (3.13)

and we have
d

dt
Λ(t) ≤ 0.

Using (3.9) with γ = δ
2+δ and (2.1) for the nonlinear term, we get

Λ(t) ≥ γ||φ||2H2 −
2 + δ

4 ||φ||2H0 + 2
∫

Ω
F (φ) dx

≥ γ||φ||2H2 − 2K2|Ω|.
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Let us fix r > 0 and let be t ≥ t0(R, ρ1). We can deduce from Lemma 3.2.3
that ||φ||L∞((t,t+r);H0) ≤ ρ1 as well as ||φ||L2((t,t+r);H2) ≤ Q(r, ρ1). These
estimates imply that ||φ||L∞((t,t+r);L∞(Ω)) ≤ Q(r, ρ1). So we are able to
state that∫ t+r

t
Λ(s) ds ≤

∫ t+r

t
||φ(s)||2H2 ds+2

∫ t+r

t

∫
Ω
F (φ(s)) dx ds ≤ Q(r, ρ1) =: a3.

Using the uniform Gronwall Lemma, we obtain

||φ(t+ r)||2H2 ≤
1
γ

[
a3
r

+ 2K2|Ω|
]
, ∀t ≥ t0(R, ρ1).

Corollary 3.2.5. Under the above assumptions, then we have∫ ∞
s
||φt||2H0 dt ≤ Q(ρ1), (3.14)

where s = t0(R, ρ1) + r.

Proof. We consider (3.12)

||φt||2H0 + d

dt

{1
2 ||φ||

2
H2 − ||φ||

2
H1 +

∫
Ω
F (φ) dx

}
= 0.

Integrating from s = t0(R, ρ1) + r to t, we get∫ t

s
||φt||2H0 dt ≤

1
2 ||φ(s)||2H2 +

∫
Ω
F (φ(s))dx+ ||φ(t)||H1

≤ Q(||φ(s)||H2) + ||φ(t)||H1 ,

where Q is a generic positive monotone function. Letting t↗∞ and using
the existence of an absorbing set in V , we obtain∫ ∞

s
||φt||2Hdt ≤ Q(ρ1). (3.15)

Proof of Theorem 3.2.1. We can assert from Lemma 3.2.4 that

X 0 = BH2(0, Q(ρ1))

is a compact absorbing set for S(t) on H0. The conclusion follows from
Theorem 3.1.13.
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3.3 Modified Swift-Hohenberg equation
According to the Theorem 2.3.4, we define the strongly continuous semi-
group Sσ(t) associated to the problem (2.14) such that

Sσ(t) : E0 → E0, Sσ(t)(φ0, φ1) = (φ(t), φt(t)), ∀t ≥ 0,

where (φ, φt) is the unique solution to problem (2.14) with initial data in
E0. We study the dynamical system (E0, Sσ(t)) in this section.

The first step towards the existence of the global attractor for the semi-
group Sσ(t) is to prove the dissipative nature of the dynamical system
(E0, Sσ(t)). We report a technical result which we will need in the course of
our analysis (see [3] for the proof).

Lemma 3.3.1. Let X be a Banach space and let C ⊂ C([0,∞), X). Let
Φ : X → [0,∞) be given such that Φ(v(0)) ≤ c, for some c > 0 and every
v ∈ C. In addition, assume that for every v ∈ C the function t 7→ Φ(v(t)) be
continuously differentiable and satisfy the differential inequality

d

dt
Φ(v(t)) + k||v(t)||2X ≤ ω, (3.16)

for some ω ≥ 0 and k ≥ 0 independent of v ∈ C. Then for every δ > 0 there
exists tδ > 0 such that

Φ(v(t)) ≤ sup
v∈X
{Φ(v) : k||v||2X ≤ ω + δ}, ∀t ≥ tδ = c

δ
. (3.17)

Lemma 3.3.2. Let (φ, φt) be the weak solution to problem (2.14). Then
V0 = BE0(0, C) is an absorbing set for (E0, Sσ(t)), where C is a positive
constant depending on σ, f and Ω but it is independent of the norm of the
initial data. Moreover, if the initial data (φ0, φ1) is such that ||(φ0, φ1)||E0 ≤
R, the following estimate holds

||(φ, φt)||2E0 ≤ Q(R)e−t + C, ∀t ≥ 0. (3.18)

Proof. Let us test (2.14) by φt

d

dt

{
σ

2 ||φt||
2
H0 + 1

2a(φ, φ) +
∫

Ω
F (φ)dx

}
+ ||φt||2H0 = 0 (3.19)

and by φ

< σφtt, φ >H∗2,H2 +1
2
d

dt
||φ||2H0 + a(φ, φ) + (f(φ), φ) = 0. (3.20)

We recall the next formula

< φtt, φ >H∗2,H2= d

dt
(φt, φ)− ||φt||2H0 .
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Let ε be a small positive constant, we add (3.19) to ε(3.20) and we obtain

d

dt

{
σ

2 ||φt||
2
H0 + 1

2a(φ, φ) +
∫

Ω
F (φ)dx+ ε

2 ||φ||
2
H0 + σε(φt, φ)

}
+||φt||2H0 − σε||φt||

2
H0 + εa(φ, φ) + ε(f(φ), φ) = 0.

We can rewrite last equality as follows

d

dt
Y(t) +D(t) = 0 (3.21)

where

Y(t) = σ

2 ||φt||
2
H0 + 1

2a(φ, φ) +
∫

Ω
F (φ)dx+ ε

2 ||φ||
2
H0 + σε(φt, φ),

D(t) = ||φt||2H0 − σε||φt||
2
H0 + εa(φ, φ) + ε(f(φ), φ).

Using (2.12) with γ = δ
2+δ , the hypothesis on the nonlinear term and the

Young inequality, we have

Y(t) ≥ σ

2 ||φt||
2
H0 + 1

2 ||φ||
2
H2 −

1− γ
2 ||φ||2H2 −

1
2(1− γ) ||φ||

2
H0 +

∫
Ω
F (φ)dx

+ ε

2 ||φ||
2
H0 −

σ

4 ||φt||
2
H0 − ε

2σ||φ||2H0

≥ σ

4 ||φt||
2
H0 + γ

2 ||φ||
2
H2 −

2 + δ

4 ||φ||2H0 + (ε2 − ε
2σ)||φ||2H

+ 2 + δ

4 ||φ||2H0 −K2|Ω|.

Setting ε ∈
(
0, 1

2σ

)
, we get

Y(t) ≥ σ

4 ||φt||
2
H + γ

2 ||φ||
2
V −K2|Ω|. (3.22)

From the choice of ε, the hypothesis (H2) and (2.4) with γ = δ
1+δ , we

compute the other term in (3.21) as follows

D(t) ≥ 1
2 ||φt||

2
H0 + ε||φ||2H2 − 2ε||φ||2H1 + ε(f(φ), φ)

≥ 1
2 ||φt||

2
H0 + ε||φ||2H2 − ε(1− γ)||φ||2H2 −

ε

(1− γ) ||φ||
2
H0 + ε(f(φ), φ)

≥ 1
2 ||φt||

2
H0 + εγ||φ||2H2 −

ε

(1− γ) ||φ||
2
H0 + ε(1 + δ)||φ||2H0 −K1|Ω|

= 1
2 ||φt||

2
H0 + εγ||φ||2H2 −K1|Ω|.

Thus combining last inequality with (3.21), we get

d

dt
Y(t) + 1

2 ||φt||
2
H0 + εγ||φ||2H2 ≤ K1|Ω|. (3.23)
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In order to use Lemma 3.3.1, we consider C as the set of the solution trajecto-
ries to problem (2.14) with initial data (φ0, φ1) such that ||(φ0, φ1)||E0 ≤ R.
Let (v, w) ∈ E0. We define the following positive functional

Φ(v, w) = σ

2 ||w||
2
H0 + 1

2a(v, v) +
∫

Ω
F (v)dx+ ε

2 ||v||
2
H0 + σε(w, v) +K2|Ω|.

Using the Sobolev embedding H2
c
↪→ L∞, we can deduce an upper bound

estimate of Φ(φ(0), φt(0)) for a generic couple (φ, φt) ∈ C

Φ(φ(0), φt(0)) = Φ(φ0, φ1) = Y(0) +K2|Ω|

≤ σ

2 ||φ1||2H0 + 1
2 ||φ0||2H2 +Q(||φ0||H2) + ε

2 ||φ0||2H0

+K2|Ω|+
σε

2 ||φ1||2H0 + σε

2 ||φ0||2H0

≤ Q(||(φ0, φ1)||E0) ≤ Q(R).

We set C1 = min{1
2 , εγ} and we rewrite (3.23) in terms of Φ as follows

d

dt
Φ(φ(t), φt(t)) + C1||(φ(t), φt(t))||2E0 ≤ K1|Ω|. (3.24)

Applying Lemma 3.3.1, for every η > 0, we obtain

Φ(φ(t), φt(t)) ≤ sup
(v,w)∈E0

{
Φ(v, w) : ||(v, w)||2E0 ≤

K1Ω + η

C1

}
, ∀t ≥ Q(R)

η
.

Thanks to the above estimates and setting C2 = min{σ4 ,
γ
2}, we can conclude

that

||(φ, φt)||2E0 ≤
1
C2

(
Q

(√
K1Ω + η

C1

)
+K2|Ω|

)
=: C3, ∀t ≥ Q(R)

η
.

(3.25)
We recall the energy estimate (2.23)

||(φ, φt)||2E0 ≤ C4 +Q(R), t ≥ 0 (3.26)

where C4 = K2|Ω|
min{σ, γ2 }

. Collecting the above estimates together we get

||(φ, φt)||E0 ≤ Q(R)e−t + C, t ≥ 0 (3.27)

where C is a positive constant depending on σ, Ω, f and Ω but it is inde-
pendent of the norm of the initial data.

Now we split the solution into two parts as follows

(φ(t), φt(t)) = (φl(t), φlt(t)) + (φo(t), φot (t)), (3.28)
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such that {
σφltt + φlt + ∆2φl + ∆φl + kφl = 0
φl(0) = φ0 φlt(0) = φ1

(3.29)

and {
σφott + φot + ∆2φo + ∆φo + kφo + f(φ)− kφ = 0
φo(0) = 0 φot (0) = 0.

(3.30)

where k > 0 is a large fixed constant to be further determined.

Lemma 3.3.3. There exists k such that (φl(t), φlt(t)) fulfils the following
inequality

||(φl(t), φlt(t))||2E0 ≤ C||(φ0, φ1)||2E0e
−εt, ∀t ≥ 0, (3.31)

where C, ε may depend on σ, f , Ω but they are independent of the initial
data φ0, φ1.

Proof. We observe that the existence and the uniqueness of the solution
to the linear problem (3.29) directly follow from the Theorem 2.3.4. We
proceed analogously to the proof of Lemma 3.3.2 so, testing by φlt + εφl, we
obtain

d

dt

{
σ

2 ||φ
l
t||2H0 + 1

2a(φlt, φl) + k + ε

2 ||φl||2H0

}
+ ||φlt||2H0

+σε < φltt, φ
l >∗ +εa(φl, φl) + kε||φl||2H0 = 0.

It is equivalent to
d

dt
Y l(t) +Dl(t) = 0, (3.32)

where

Y l(t) = σ

2 ||φ
l
t||2H0 + 1

2a(φlt, φlt) + k + ε

2 ||φl||2H0 + σε(φlt, φl),

Dl(t) = (1− σε)||φlt||2H0 + εa(φl, φl) + kε||φl||2H0 .

Using (2.4) and the Young inequality, we get

Y l(t) ≥ σ

4 ||φ
l
t||2H0 + 1

4 ||φ
l||2H2 + (k + ε

2 − 1
4 − ε

2σ)||φl||2H0 .

Therefore, choosing ε ∈
(
0, 1

2σ

)
and k > 1

2 , we have

Y l(t) ≥ σ

4 ||φ
l
t||2H0 + 1

4 ||φ
l||2H2 .

We compute the other term Dl(t) as follows

Dl(t) ≥ 1
2 ||φ

l
t||2H0 + εa(φl, φl) + kε||φl||2H0

≥ C1Y l(t) + (kε− C1
k + ε

2 )||φl||2H0 − C1σε(φlt, φl),
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where C1 = 2ε. Dividing Dl(t) into two equal parts and using Cauchy-
Schwarz and Young inequalities, we obtain

Dl(t) ≥ 1
2C1Y l(t) + (kε− C1

k + ε

2 )||φl||2H0 − C1σε(φlt, φl)

+ 1
4 ||φ

l
t||2H0 + ε

2a(φl, φl) + kε

2 ||φ
l||2H0

≥ 1
2C1Y l(t) + ε

4 ||φ
l||2H2 + (3

2kε− C1
k + ε

2 − C2σ
2ε2

4 − ε

4)||φl||2H0 .

For k large enough, we have

Dl(t) ≥ εY l(t) + ε

4 ||φ
l||2H2 . (3.33)

Substituting (3.33) in (3.32), we get

d

dt
Y l(t) + εY l(t) ≤ 0. (3.34)

Applying the Gronwall Lemma, we can conclude that

Y l(t) ≤ Y l(0)e−εt.

By the definition of Y l(t), it follows that

||φlt(t)||2H0 + ||φl(t)||2H2 ≤ C{||φ1||2H0 + ||φ0||2H2}e
−εt, ∀t ≥ 0,

where C may depend on σ, f , Ω but it is independent of the initial data φ0,
φ1.

Lemma 3.3.4. Let (φ0, φ1) ∈ E0 such that ||(φ0, φ1)||E0 ≤ R. Then the
following inequality holds

||(φo(t), φot (t))||E1 ≤ Q(R), ∀t ≥ 0. (3.35)

Proof. The existence and the uniqueness of the solution (φl, φlt) imply the
existence and the uniqueness of the solution to the homogeneous problem
(3.30). By comparison, we can assert that

||φo||2H2 + ||φot ||2H0 ≤ Q(R), ∀t ≥ 0. (3.36)

Testing the equation in φo by −∆φot − ε∆φo, where ε is a sufficiently small
positive constant, we have

d

dt
Yo(t) +Do(t) = Ro(t), (3.37)
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where

Yo(t) = σ

2 ||∇φ
o
t ||2H0 + 1

2 ||∇∆φo||2H0 − ||∆φ
o||2H0

+ εσ(∇φot ,∇φo) + ε

2 ||∇φ
o||2H0 ,

Do(t) = ||∇φot ||2H0 − εσ||∇φ
o
t ||2H0 + ε||∇∆φo||2H0 − 2ε||∆φo||2H0 ,

Ro(t) = (f(φ)− kφ+ kφo,∆φot ) + ε(f(φ)− kφ+ kφo,∆φo).

Thanks to the Green formula and the Navier boundary conditions, we have
the following estimate in H3

||∆v||2H0 ≤ ||∇∆v||H0 ||∇v||H0 ≤
1
4 ||∇∆v||2H0 + ||∇v||2H0 . (3.38)

We can infer from (3.38) and Young inequality that

Yo(t) ≥ σ

2 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0 −

σ

4 ||∇φ
o
t ||0H

− σε2||∇φo||2H0 + ε

2 ||∇φ
o||2H0

≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0 + ε(1

2 − σε)||∇φ
o||2H0 .

Setting ε ∈ (0, 1
2σ ), we have

Yo(t) ≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0

= σ

4 ||φ
o
t ||2H1 + 1

4 ||φ
o||2H3 − ||φ

o||2H1 . (3.39)

For ε ∈ (0, 1
2σ ), we deduce

Do(t) ≥ 1
2 ||∇φ

o(t)||2H0 + ε||∇∆φo||2H0 − 2ε||∆φo||2H0

≥ εYo(t) + (1
2 −

εσ

2 )||∇φot ||2H0 + ε

2 ||∇∆φo||2H0 − ε||∆φ
o||2H0

− ε2σ(∇φot ,∇φo)−
ε2

2 ||∇φ||
2
H0

≥ εYo(t) + 1
4 ||∇φ

o
t ||2H0 + ε

4 ||∇∆φo||2H0 − ε||∇φ
o||2H0

− 1
8 ||∇φ

o
t ||2H0 − 2ε4σ2||∇φo||2H0 −

ε2

2 ||∇φ
o||2H0

≥ εYo(t) + 1
8 ||∇φ

o
t ||2H0 + ε

4 ||∇∆φo||2H0 − C1||∇φo||2H0

= εYo(t) + 1
8 ||φ

o
t ||2H1 + ε

4 ||φ
o||2H3 − C1||φo||2H1 . (3.40)
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On the other hand, using standard argument, we get

Ro(t) = (f ′(φ)∇φ− k∇φ+ k∇φo,∇φot ) + ε(f(φ)− kφ+ kφo,∆φo)

≤ 1
8 ||∇φ

o
t ||2H0 + ε

4 ||∆φ
o||2H0 + 2||f ′(φ)∇φ− k∇φ+ k∇φo||2H0

+ ε||f(φ)− kφ+ kφo||2H0

≤ 1
8 ||φ

o
t ||2H1 + ε

4 ||φ
o||2H2 +Q(R). (3.41)

Combining (3.40) and (3.41) with (3.37), we obtain

d

dt
Yo(t) + εYo(t) ≤ Q(R).

Applying the Gronwall Lemma, we have

Yo(t) ≤ Yo(0)e−εt +Q(R)(1− e−εt) ≤ Q(R), (3.42)

and, using (3.39), we conclude that

||φot ||2H1 + ||φo||2H3 ≤ Q(R). (3.43)

where Q also depends on σ, f , Ω.

We state our main result of this section for the modified Swift-Hohenberg
equation.

Theorem 3.3.5. For each σ > 0, the dynamical system (E0, Sσ(t)) has the
global attractor Aσ, which is connected and bounded in E1.

Proof. Let us fix σ > 0. Thanks to Lemma 3.3.2, V0 = BE0(0, C) is an
absorbing set for (E0, Sσ(t)). Lemma 3.3.2 also implies that the trajectories,
which start from the absorbing set V0, are uniformly bounded in E0. Com-
bining the split (3.28), Lemmas 3.3.3, 3.3.4 with the absorbing set V0 and
using Theorem 3.1.14, we conclude that there exists the global attractor Aσ,
which is bounded in E1. Since the semigroup Sσ(t) satisfies the property S3,
we also have that Aσ is connected.

Under the hypothesis stated in the second chapter for the nonlinear
term, we formulate and prove a more fine result of regularity for the global
attractor Aσ.

Lemma 3.3.6. Let (φ0, φ1) ∈ E0 be initial data such that ||(φ0, φ1)||E0 ≤ R.
Then the following inequality holds

||(φo(t), φot (t))||E2 ≤ Q(R), ∀t ≥ 0. (3.44)
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Proof. We recall that there holds

||φo||2H2 + ||φot ||2H0 ≤ Q(R), ∀t ≥ 0. (3.45)

Testing the equation in φo by ∆2φot + ε∆2φo, where ε is a sufficiently small
positive constant, we have

d

dt
Yo(t) +Do(t) = Ro(t), (3.46)

where

Yo(t) = σ

2 ||∆φ
o
t ||2H0 + 1

2 ||∆
2φo||2H0 − ||∇∆φo||2H0

+ εσ(∆φot ,∆φo) + ε

2 ||∆φ
o||2H0 ,

Do(t) = ||∆φot ||2H0 − εσ||∆φ
o||2H0 + ε||∆2φo||2H0 − 2ε||∇∆φo||2H0 ,

Ro(t) = −(f(φ)− kφ+ kφo,∆2φt)− ε(f(φ)− kφ+ kφo,∆2φ).

Thanks to the Green formula and the Navier boundary conditions, we have
the following estimate in H4

||∇∆v||2H0 ≤ ||∆
2v||H0 ||∆v||H0 ≤

1
4 ||∆

2v||2H0 + ||∆v||2H0 . (3.47)

Using (3.47) and standard arguments, we get

Yo(t) ≥ σ

2 ||∆φ
o
t ||2H0 + 1

4 ||∆
2φo||2H0 − ||∆φ

o||2H0 −
σ

4 ||∆φ
o
t ||0H

− σε2||∆φo||2H0 + ε

2 ||∆φ
o||2H0

≥ σ

4 ||∆φ
o
t ||2H0 + 1

4 ||∆
2φo||2H0 − ||∆φ

o||2H0 + ε(1
2 − σε)||∆φ

o||2H0 .

Choosing ε ∈ (0, 1
2σ ), we have

Yo(t) ≥ σ

4 ||∆φ
o
t ||2H0 + 1

4 ||∆
2φo||2H0 − ||∆φ

o||2H0

= σ

4 ||φ
o
t ||2H2 + 1

4 ||φ
o||2H4 − ||φ

o||2H2 . (3.48)

We estimate the other terms as follows

Do(t) ≥ 1
2 ||∆φ

o(t)||2H0 + ε||∆2φo||2H0 − 2ε||∇∆φo||2H0

≥ εYo(t) + (1
2 −

εσ

2 )||∆φot ||2H0 + ε

4 ||∆
2φo||2H0 − ||∆φ

o||2H0

− 1
8 ||∆φ

o
t ||2H0 − 2ε4σ2||∆φo||2H0 −

ε2

2 ||∆φ
o||2H0

≥ εYo(t) + 1
8 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0 − C1||∆φo||2H0

≥ εYo(t) + 1
8 ||φ

o
t ||2H2 + ε

4 ||φ
o||2H4 − C1||φo||2H2 ,
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and

Ro(t) = −(f ′′(φ)∆φ− k∆φ+ k∆φo,∆φot )− ε(f(φ)− kφ+ kφo,∆2φo)

≤ 1
8 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0 + 2||f ′′(φ)∆φ− k∆φ+ k∆φo||2H0

+ ε||f(φ)− kφ+ kφo||2H0

≤ 1
8 ||φ

o
t ||2H2 + ε

4 ||φ
o||2H4 +Q(R).

Combining these inequalities together, we obtain

d

dt
Yo(t) + εYo(t) ≤ Q(R). (3.49)

Applying the Gronwall Lemma, we conclude that

Yo(t) ≤ Yo(0)e−εt +Q(R)(1− e−εt) ≤ Q(R). (3.50)

This implies that
||φot ||2H2 + ||φo||2H4 ≤ Q(R), (3.51)

where Q also depends on σ, f , Ω.

Corollary 3.3.7. The global attractor Aσ is a bounded set in E2.

Proof. This result directly follows from Lemma 3.3.6. Indeed, it is sufficient
to substitute Lemma 3.3.4 with 3.3.6 in the proof of Theorem 3.3.5.
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4 Exponential attractors

A second type of attractor set plays a central role in this chapter. We will
briefly explain the notion of exponential attractor, its properties and a gen-
eral method to prove the existence of this set in the framework of dissipative
PDEs. Next, applying this strategy, we will examine the particular case of
the Swift-Hohenberg and the modified Swift-Hohenberg equations.

4.1 Construction of exponential attractors
In order to overcome the drawbacks presented about the global attractor,
A. Eden, C. Foias, B. Nicolaenko and R. Temam proposed a new object,
called exponential attractor (see [5]).

Definition 4.1.1. A compact set M ⊂ X is an exponential attractor for
(X,S(t)) if

E.1 M has finite fractal dimension, dimXM < +∞,

E.2 M is positively invariant,

E.3 M attracts exponentially the bounded subsets of X, namely

∀B ⊂ X bounded distX(S(t)B,M) ≤ Q(||B||X)e−ωt, ∀t ≥ 0,

where the positive constant ω and monotonic function Q are indepen-
dent of B.

The exponential attractor, if it exists, contains the global attractor and
it can be used to prove the finite (fractal) dimensionality of the global at-
tractor. The main feature of this set is the control of the rate of attraction of
the trajectories which starts from a generic bounded set of the phase space.
Moreover, it enjoys more properties of robustness than the global attractor
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as we will see in the next chapter. Instead, a negative aspect of the expo-
nential attractor is the lack of uniqueness. The first method to construct
an exponential attractor consisted in a fractal expansion of the global at-
tractor, making use of the Zorn’s Lemma. A control of this expansion at
each step was performed by the squeezing property, which essentially used
an orthogonal projector with finite rank, so it was valid only in the Hilbert
setting (see [5]). Then, a new construction was provided in Banach spaces
(see [6], [7] and references given there).

Now we explain a general strategy to prove the existence of an exponen-
tial attractor for equations with parabolic or damped hyperbolic nature (see
[22] for more details).

Construction of a more regular set
The first step is to try out the existence of a positively invariant absorbing
set B, which is also more regular, in terms of spatial derivatives, than a
generic absorbing set of X. Next, we confine the dynamics of the semigroup
into this set and we verify some sufficient conditions to guarantee the ex-
istence of an exponential attractor for trajectories departing from B. We
observe how the existence of these regular sets is usually a consequence of
the estimates already proved for the global attractor (see [14] ).

Discrete dynamical system
Let X and X1 be two Banach spaces with X1 compactly embedded into
X. Let Σ: B → B be a map. We consider the discrete dynamical system
generated by the iterations of Σ, that is

Σ(0) = I, Σ(n) = Σ ◦ ... ◦ Σn times, n ∈ N.

Definition 4.1.2. A compact setMd(in the topology of X) is an exponen-
tial attractor for Σ on B if

D.1 Md has finite fractal dimension,

D.2 Md is positively invariant,

D.3 distX(Σ(n)B,Md) ≤ αe−βn, where α, β are positive constants only
depend on B.

We introduce two relevant properties of the maps concerned.

Definition 4.1.3. A nonlinear map Σ enjoys the smoothing property if

||Σx− Σy||X1 ≤ C||x− y||X , ∀x, y ∈ B. (4.1)

Definition 4.1.4. A nonlinear map Σ satisfies the asymptotic smoothing
property if

Σ = Σ0 + Σ1, (4.2)
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where
||Σ0x− Σ0y||X ≤ λ||x− y||X , ∀x, y ∈ B, α < 1

2 , (4.3)

and
||Σ1x− Σ1y||X1 ≤ Λ||x− y||X , ∀x, y ∈ B. (4.4)

The following Theorem is the key to construct an exponential attractor
for the semigroup S(t) (see [7] for the proof).

Theorem 4.1.5. If the map Σ satisfies the smoothing property or the asymp-
totic smoothing property on B then the discrete dynamical system generated
by the iterations of Σ possesses an exponentially attractorMd ⊂ B.

In application to PDEs, the nonlinear map Σ is the continuous semi-
group at a time t∗ such that S(t∗) fulfils one of sufficient conditions to apply
(4.1.5).

Continuous exponential attractor
As final step, we consider the following set

M =
⋃

t∈[t∗,2t∗]
S(t)Md. (4.5)

If the semigroup S(·) is Lipschitz (or Hölder) continuous on [t∗, 2t∗]×B, then
M is an exponential attractor for the dynamical system (S(t),B). However,
at this level, M attracts the bounded subsets of B and not of the whole
phace space. This problem is being overcome introducing the transitivity
property of the exponential attraction (see [10] for the proof).

Lemma 4.1.6. Let (X, d) be a metric space and S(t) be a semigroup acting
on X such that

d(S(t)x, S(t)y) ≤ c1e
α1td(x, y), t ≤ 0, x, y ∈ X (4.6)

for some positive constants c1 and α1. Assume that there exist B1, B2, B3
such that

distH(S(t)B1, B2) ≤ c2e
−α2t, t ≥ 0, α2 > 0 (4.7)

and
distH(S(t)B2, B3) ≤ c3e

−α3t, t ≥ 0, α3 > 0, (4.8)

then
distH(S(t)B1, B3) ≤ c4e

−α4t, t ≥ 0, α2 > 0 (4.9)

where c4 := c1c2 + c3 and α4 := α2α3
α1+α2+α3

.

Applying Lemma 4.1.6, it is possible to conclude that M is the expo-
nential attractor for S(t) on X.
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4.2 Swift-Hohenberg equation
We start with the construction of a more regular set where we will confine
the dynamic of the semigroup S(t). From Lemma 3.2.3, we can assert that
X 0 = BH0(0, ρ1), where ρ1 > ρ0, is an absorbing set for the dynamical
system (H0, S(t)). Let tX 0 be such that S(t)X 0 ⊂ X 0, for ∀t ≥ tX 0 . We
define the positively invariant bounded absorbing set

X 1 =
⋃

t≥tX0

S(t)X 0
H0
. (4.10)

Thanks to the Lemma 3.2.4, we also state that BH2(0, Q(ρ1)) absorbs X 1.
Now setting

X 2 = X 1 ∩ BH2(0, Q(ρ1)), (4.11)

we have that X 2 fulfils the following properties{
∃ tX 2 : S(t)X 2 ⊂ X 2, ∀t ≥ tX 2 ,

||S(t)u||H2 ≤ Q(ρ1), ∀u ∈ X 2,∀t ≥ 0.
(4.12)

We observe that the second property easily follows from energy estimate
(2.13). Moreover, due to the absorbing and invariance properties of X 2, it
is clear that X 2 exponentially attracts every bounded set of H0.

We now show the smoothing property for a suitable map acting from X 2

into X 2.

Lemma 4.2.1. There exists t∗ > 0 such that the map S(t∗) : X 2 → X 2

satisfies

||S(t∗)u1 − S(t∗)u2||H2 ≤ C||u1 − u2||H0 , ∀u1, u2 ∈ X 2, (4.13)

where C is a positive constant depending on ρ1, t∗ and Ω.

Proof. Let φ1(t), φ2(t) be two solutions respectively with initial data φ01,
φ02 in X 2. We consider φ(t) = φ1(t)−φ2(t) and the corresponding equation

φt + ∆2φ+ 2∆φ+ f(φ1)− f(φ2) = 0. (4.14)

Testing by t∆2φ, we obtain∫
Ω
tφt∆2φdx+

∫
Ω
t(∆2φ)2dx+

∫
Ω

2t∆φ∆2φ+
∫

Ω
(f(φ1)−f(φ2))t∆2φ dx = 0.

Using integration by parts, we have

t

∫
Ω

∆φt∆φdx+ t||∆2φ||2H − 2t||∇∆φ||2H +
∫

Ω
(f(φ1)− f(φ2))t∆2φ dx = 0.
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We observe that there holds the following equality

t

∫
Ω

∆φt∆φdx = t

2
d

dt
||∆φ||2H = 1

2
d

dt
(t||∆φ||2H)− 1

2 ||∆φ||
2
H . (4.15)

We deduce from (4.15) and Cauchy-Schwarz inequality that

1
2
d

dt
(t||∆φ||2H) + t||∆2φ||2H − 2t||∇∆φ||2H

≤ 1
2 ||∆φ||

2
H + t

2 ||f(φ1)− f(φ2)||2H0 + t

2 ||∆
2φ||2H0 . (4.16)

Thanks to integration by parts and Navier boundary conditions, we have

2||∇∆φ||2H0 ≤
1
2 ||∆

2φ||2H0 + 2||∆φ||2H0 . (4.17)

From (4.16) and (4.17), we get

1
2
d

dt
(t||∆φ||2H) ≤ ( t2 + 2)||∆φ||2H0 + t

2 ||
∫ 1

0
f ′(τφ1 + (1− τ)φ2)φ dτ ||2H0 .

Using the Sobolev embedding H2 ↪→ L∞(Ω) and the properties of X 2, we
conclude that

1
2
d

dt
(t||∆φ||2H) ≤ t+ 4

2 ||∆φ||2H0 + C1
t

2 ||φ||
2
H0 ,

where C1 is a positive constant depending on ρ1. Integrating from 0 to T ,
we obtain

T ||∆φ(T )||2H0 ≤ (T + 4)
∫ T

0
||∆φ||2H0 + C2T

∫ T

0
||∆φ||2H0 .

Using the continuity from initial data (2.2), we have

T ||∆φ(T )||2H0 ≤ C3e
C4T ||φ01 − φ02||2H0 , (4.18)

where C3, C4 depend on ρ1, T and Ω.

The next result is a direct consequence of Lemma 4.2.1 and Theorem
4.1.5.

Proposition 4.2.2. There exists an exponential attractor Md for the dis-
crete dynamical system generated by the iteration of Σ = S(t∗) on X 2.

Next, we prove a regularity property for the semigroup S(t) acting on
X2 endowed with the H0-topology.

Lemma 4.2.3. The map (t, u) 7→ S(t)u : [t∗, 2t∗] × X 2 → X 2 is 1
2 -Hölder

continuous in time and Lipschitz continuous in the initial data.
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Proof. Let u1, u2 be in X 2 and t∗ ≤ τ ≤ t ≤ 2t∗. Thanks to (2.2), we get

||S(t)u1 − S(τ)u2||H0 ≤ ||S(t)u1 − S(t)u2||H0 + ||S(t)u2 − S(τ)u2||H0

≤ C||u1 − u2||H0 + ||φ2(t)− φ2(τ)||H0 .

In order to estimate the second term in the right-hand side, we observe that
the trajectories, which start from X 2, satisfy the following property

||φi||H2 ≤ C, ||φi,t||H∗2 ≤ C, (4.19)

where C only depends on ρ1. Then we have

||φ2(t)− φ2(τ)||2H0 ≤ ||φ2(t)− φ2(τ)||H2 ||φ2(t)− φ2(τ)||H∗2

≤ C||
∫ t

τ
φ2,t(s) ds||H∗2

≤ C

∫ t

τ
||φ2,t(s)||H∗2 ds ≤ C

2|t− τ |.

We conclude that

||S(t)u1 − S(τ)u2||H0 ≤ C||z1 − z2||H0 + C|t− τ |
1
2 , (4.20)

where C depends on t∗ and X2.

Now we formulate our main result of this section.

Theorem 4.2.4. The dynamical system (H0, S(t)) has an exponential at-
tractorM⊂ X 2.

Proof. Thanks to Proposition 4.2.2 and following the general strategy, we
define

M =
⋃

t∈[t∗,2t∗]
S(t)Md. (4.21)

The positive invariance, the compactness property and the finite fractal
dimension ofM follow from the properties ofMd and Lemma 4.2.3. Using
the discrete exponential attraction property ofMd, we have that ∀B ⊂ X 2

∃K,ω : distH0(S(t)B,M) ≤ Ke−ωt, ∀t ≥ 0. (4.22)

We deduce that the exponential attraction property holds for every B ⊂ H0
from (2.2), properties of X 2 and Lemma 4.1.6.
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4.3 Modified Swift-Hohenberg equation
In the previous chapter we have proved the existence of an absorbing set
V0 = BE0(0, C). Thanks to Lemma 3.3.2 and by definition of absorbing set,
we have {

∃ tV0 : Sσ(t)V0 ⊂ V0, ∀t ≥ tV0 ,

||Sσ(t)(u, v)||E0 ≤ Q(C), ∀(u, v) ∈ V0,∀t ≥ 0.
(4.23)

We define a set which contains at least all the states of the dynamic that
starts from V0 as follows

W0 =
⋃

t∈[0,tV0 ]
Sσ(t)V0

E0
. (4.24)

We observe that the following properties hold

Sσ(t)W0 ⊂ W0, ||Sσ(t)(u, v)||E0 ≤ Q(C) ∀(u, v) ∈ W0, ∀t ≥ 0.

Let B be a bounded set of W0. We infer from Lemmas 3.3.3 and 3.3.6 that
∀(u1, u2) ∈ B we also have

Sσ(t)(u1, u2) = (φ(t), φt(t)) = (φl(t), φlt(t)) + (φo(t), φot (t)),

||(φl(t), φlt(t))||E0 ≤ Q(C)e−εt, ||(φo(t), φot (t))||E2 ≤ Q(C) =: R, ∀t ≥ 0.

We can conclude that the set

V1 = BE2(0, R) ∩W0 (4.25)

exponentially attracts any bounded set B of W0. Observing that V0 ⊂ W0,
we have that W0 exponentially attracts any bounded set of E0. Thus, using
Lemma 4.1.6, we also obtain that V1 exponentially attracts any bounded
set of E0 with respect to the E0-metric.

To get a more regular absorbing set, we prove the high-order dissipative
estimate in E2.

Lemma 4.3.1. Let B be a bounded set of E2 ∩ W0. Assume that (φ, φt)
is the solution to problem (2.14) with initial data (φ0, φ1) ∈ B. Then the
following estimate holds

||(φ(t), φt(t))||2E2 ≤ Q(B)e−εt +R1, ∀t ≥ 0, (4.26)

where R1 = Q(R).
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Proof. Lemma 3.3.2 allows us to state that

||(φ, φt)||E0 ≤ Q(R) +
√
C, ∀t ≥ 0. (4.27)

Testing with ∆2φt, we obtain

σ

2
d

dt
||∆φt||2H0 + ||∆φt||2H0 + 1

2
d

dt
||∆2φ||2H0

− d

dt
||∇∆φ||2H0 + (f(φ),∆2φt) = 0. (4.28)

Testing with ∆2φ, we have∫
Ω
σφtt∆2φ dx+ 1

2
d

dt
||∆φ||2H0 + ||∆2φ||H0

− 2||∇∆φ||2H0 + (f(φ),∆2φ) = 0. (4.29)

We recall that holds∫
Ω
σφtt∆2φ dx = σ

d

dt
(∆φt,∆φ)− σ||∆φt||2H0 . (4.30)

Using (4.30) and adding (4.28) to ε(4.29), where ε is a positive constant, we
get

d

dt
Y(t) +D(t) = R(t), (4.31)

where

Y(t) = σ

2 ||∆φt||
2
H0 + 1

2 ||∆
2φ||2H0 − ||∇∆φ||2H0 + εσ(∆φt,∆φ) + ε

2 ||∆φ||
2
H0 ,

D(t) = ||∆φt||2H0 − σε||∆φt||
2
H0 + ε||∆2φ||2H0 − 2ε||∇∆φ||2H0 ,

R(t) = −(f(φ),∆2φt)− ε(f(φ),∆2φ).

We observe that holds the following inequalities

εσ|(∆φt,∆φ)| ≤ σ

4 ||∆φt||
2
H0 + ε2σ||∆φ||2H0 , (4.32)

||∇∆φ||2H0 ≤
1
4 ||∆

2φ||2H0 + ||∆φ||2H0 . (4.33)

Combining (4.32) and (4.33) with the expression of Y(t), we have

Y(t) ≥ σ

4 ||∆φt||
2
H0 + 1

4 ||∆
2φ||2H0 − ||∆φ||

2
H0 + (ε2 − ε

2σ)||∆φ||2H0 .

Taking ε ∈ (0, 1
2σ ), we can conclude that

Y(t) ≥ σ

4 ||∆φt||
2
H0 + 1

4 ||∆
2φ||2H0 − ||∆φ||

2
H0

≥ σ

4 ||φt||
2
H2 + 1

4 ||φ||
2
H4 − ||φ||

2
H2 .
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Thanks to the form of Y(t) and the choice of ε, we deduce

D(t) ≥ 1
2 ||∆φt||

2
H0 + ε||∆2φ||2H0 − 2ε||∇∆φ||2H0

≥ εY(t) + (1
2 −

εσ

2 )||∆φt||2H0 + ε

2 ||∆
2φ||2H0 − ε||∇∆φ||2H0

− ε2σ(∆φt,∆φ)− ε2

2 ||∆φ||
2
H0 .

Using (4.32) and (4.33), we obtain

D(t) ≥ εY(t) + 1
8 ||∆φt||

2
H0 + ε

4 ||∆
2φ||2H0 − C||∆φ||

2
H0

= εY(t) + 1
8 ||φt||

2
H2 + ε

4 ||φ||
2
H4 − C||φ||

2
H2 ,

where C depends on σ. We infer from the Sobolev embedding H2 ↪→ L∞(Ω)
and the hypothesis on the nonlinear term that

R(t) ≤ ||f ′′(φ)∆φ||H0 ||∆φt||H0 + ε||f(φ)||H0 ||∆2φ||H0

≤ 1
8 ||∆φt||

2
H0 + ε

4 ||∆
2φ||2H0 +Q(||φ||H2)

= 1
8 ||φt||

2
H2 + ε

4 ||φ||
2
H4 +Q(R).

Collecting these inequalities together, we have

d

dt
Y(t) + εY(t) ≤ Q(R). (4.34)

Using the Gronwall Lemma, we can assert that

Y(t) ≤ Y(0)e−εt +
∫ t

0
Q(R)e−ε(t−s) ds.

Then, we infer from the lower bound of Y(t) that

||φt||2H2 + ||φ||2H4 ≤ Q(B)e−εt +Q(R). (4.35)

Lemma 4.3.1 allows us to state that V2 = BE2(0, R2) ∩W0, where R2 >
R1, is an absorbing set for any bounded set of E2 ∩ W0. In particular
V2 absorbs V1, so V2 exponentially attracts any bounded set of E0 for the
transitivity property of the exponential attraction. Moreover, by definition
of absorbing set and Lemma 4.3.1, we conclude that V2 fulfils{

∃ tV2 : Sσ(t)V2 ⊂ V2, ∀t ≥ tV2 ,

||Sσ(t)(u, v)||E2 ≤ Q(R1), ∀(u, v) ∈ V2, ∀t ≥ 0.
(4.36)
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Now we proceed to prove the asymptotic smoothing property for a suitable
discrete dynamical system Sσ(t∗), where t∗ is sufficiently large.
Let (φ01, φ11), (φ02, φ12) be in V2. We consider the corresponding solution
defined by the semigroup operator Sσ(t). We denote the difference of the
two trajectories as follows

φ(t) = φ1(t)− φ2(t), φt(t) = φ1,t(t)− φ2,t(t), ∀t ≥ 0,

φ0 = φ01 − φ02, φ1 = φ11 − φ12.

The couple (φ(t), φt(t)) satisfies the following equation

σφtt + φt + ∆2φ+ 2∆φ+ f(φ1)− f(φ2) = 0.

We consider the split

(φ, φt) = (φl, φlt) + (φo, φot ), (4.37)

such that {
σφltt + φlt + ∆2φl + 2∆φl + kφl = 0
φl(0) = φ0, φlt(0) = φ1

(4.38)

and{
σφott + φot + ∆2φo + 2∆φo + kφo + f(φ1)− f(φ2)− kφ = 0
φo(0) = 0 φot (0) = 0.

(4.39)

By means Lemma 3.3.3 and by observing the problem for (φl, φlt), we can
assert that there exists k > 0 such that

||(φl, φlt)(t)||2E0 ≤ C||(φ0, φ1)||2E0e
−εt, ∀t ≥ 0, (4.40)

where C, ε are independent of the norm of the initial data.

Lemma 4.3.2. (φo(t), φot (t)) fulfils the following estimate

||(φo(t), φot (t))||2E1 ≤ C(t)||(φ0, φ1)||2E0 ,∀t ≥ 0. (4.41)

Proof. Testing the equation (4.39) by −∆φot − ε∆φo, where ε is a positive
small constant, we get

d

dt
Yo(t) +Do(t) = Ro(t), (4.42)

where

Yo(t) = σ

2 ||∇φ
o
t ||2H0 + 1

2 ||∇∆φo||2H0 − ||∆φ
o||2H0 + εσ(∇φot ,∇φo)

+ ε

2 ||∇φ
o||2H0 + k

2 ||∇φ
o||2H0 ,

Do(t) = ||∇φot ||2H0 − εσ||∇φ
o||2H0 + ε||∇∆φo||2H0

− 2ε||∆φo||2H0 + εk||∇φo||2H0 ,

Ro(t) = (f(φ1)− f(φ2)− kφ,∆φot ) + ε(f(φ1)− f(φ2)− kφ,∆φo).
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We recall the following inequality

εσ(∇φot ,∇φo) ≥ −
σ

4 ||∇φ
o
t ||2H0 − σε

2||∇φ||2H0 . (4.43)

Using (3.38) and (4.43), we have

Yo(t) ≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0

− σε2||∇φ||2H0 + k + ε

2 ||∇φ||2H0 .

Thus, taking ε ∈ (0, 1
2σ ) and k > 2, we obtain

Yo(t) ≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 ≥ C1||(φo, φot )||2E1 , (4.44)

where C1 = min{σ4 ,
1
4}. On the other hand, we deduce that

Do(t) ≥ 1
2 ||∇φ

o
t ||2H0 + ε||∇∆φo||2H0 − 2ε||∆φo||2H0 + εk||∇φo||2H0

≥ εYo(t) +
(1

2 −
σε

2

)
||∇φot ||2H0 + ε

2 ||∇∆φo||2H0 − ε||∆φ
o||2H0

− σε2(∇φot ,∇φo) +
(
εk

2 −
ε2

2

)
||∇φo||2H0

≥ εYo(t) + 1
8 ||∇φ

o
t ||2H0 + ε

4 ||∇∆φo||2H0

+
(
εk − 2ε− ε2

2 − 2σ2ε4
)
||∇φo||2H0 .

Setting k large enough, it is follows that

Do(t) ≥ εYo(t) + 1
8 ||∇φ

o
t ||2H0 + ε

4 ||∇∆φo||2H0

≥ εYo(t) + 1
8 ||∇φ

o
t ||2H0 + ε

4C2
||∆φo||2H0 .

Using standard arguments, we also have

Ro(t) ≤ |(f ′(φ1)∇φ1 − f ′(φ2)∇φ2 − k∇φ,∇φot )|
+ ε|(f(φ1)− f(φ1)− kφ,∆φo)|

≤ 1
8 ||∇φ

o
t ||2H0 + ε

4C2
||∆φo||2H0 + 4||f ′(φ1)∇φ1 − f ′(φ2)∇φ2||2H0

+ 2k2||∇φ||2H0 + 2C2
ε
||f(φ1)− f(φ2)||2H0 + 2k2||φ||2H0
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Using the Sobolev embedding H2 ↪→ L∞(Ω), we proceed term by term in
the following way

||f ′(φ1)∇φ1 − f ′(φ2)∇φ2||2H0

≤ 2||f ′(φ1)∇φ||2H0 + 2||
(
f ′(φ1)− f ′(φ2)

)
∇φ2||2H0

≤ C(||φ1||H2)||∇φ||2H0 + C3||
∫ 1

0
f ′′(τφ1 + (1− τ)φ2)φ dτ ||2L∞(Ω)||∇φ2||2H0

≤ C(||φ1||H2)||φ||2H1 + C(||φ1||H2 , ||φ2||H2)||φ||2H2 ,

||f(φ1)− f(φ2)||2H0 ≤ ||
∫ 1

0
f ′(τφ1 + (1− τ)φ2)φ dτ ||2H0

≤ C(||φ1||H2 , ||φ2||H2)||φ||2H0 .

Collecting these estimates together, we get

d

dt
Yo(t) + εYo(t) ≤ C(||φ1||H2 , ||φ2||H2)||φ||2H2 . (4.45)

Integrating (4.45) with respect to time and using the Lipschitz continuity
estimate (2.21), we obtain

Yo(t) ≤ C(||φ1||H2 , ||φ2||H2)
∫ t

0
||φ||2H2 ds

≤ C(t){||φ0||2H2 + ||φ1||2H0}.

Thanks to (4.44), we can conclude that

||(φo, φot )||2E1 ≤ C(t)||(φ0, φ1)||2E0 . (4.46)

We infer from (4.40) and (4.41) that there exists t∗ ≥ tV2 such that

||(φl(t∗), φlt(t∗))||E0 ≤ λ||(φ0, φ1)||E0 , (4.47)

||(φo(t∗), φot (t∗))||E1 ≤ Λ||(φ0, φ1)||E0 , (4.48)

where λ ∈ (0, 1
2). As a consequence, from the choice of t∗ and Theorem

4.1.5, we deduce

Proposition 4.3.3. There exists an exponential attractor Md
σ for the dis-

crete dynamical system generated by the iterations of Sσ(t∗) on V2.

The next result states a Lipschitz dependence of the semigroup Sσ(t)
with respect to t and to the initial data.
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Lemma 4.3.4. The map (t, (u, v)) 7→ Sσ(t)(u, v) : [t∗, 2t∗] × V2 → V2 is
Lipschitz continuous in time and in the initial data, when V2 is endowed
with the E0-topology.

Proof. Let t∗ ≤ τ ≤ t ≤ 2t∗, (u1, v1), (u2, v2) ∈ V2. Using (2.21), we have

||Sσ(t)(u1, v1)− Sσ(τ)(u2, v2)||2E0 ≤ 2||Sσ(t)(u1, v1)− Sσ(t)(u2, v2)||2E0

+ 2||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2E0

≤ C||(u1, v1)− (u2, v2)||2E0

+ 2||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2E0 ,

where C is a positive constant depending on V2, t∗. We recall that the
trajectories starting from V2 satisfy

||φi,t||H2 ≤ C, ||φi,tt||H0 ≤ C,

where C only depends on V2. Then we have

||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2E0

= ||φ2(t)− φ2(τ)||2H2 + ||φ2,t(t)− φ2,t(τ)||2H0

= ||
∫ t

τ
φ2,t(s) ds||2H2 + ||

∫ t

τ
φ2,tt(s) ds||2H0

≤
(∫ t

τ
||φ2,t(s)||H2 ds

)2
+
(∫ t

τ
||φ2,tt(s)||H0 ds

)2

≤ C|t− τ |2.

Collecting the above estimates together, we conclude that

||Sσ(t)(u1, v1)− Sσ(τ)(u2, v2)||E0 ≤ C||(u1, v1)− (u2, v2)||E0 + C|t− τ |.

Now we state the main result of this section.

Theorem 4.3.5. For each σ > 0, the dynamical system (E0, Sσ(t)) possesses
an exponential attractorMσ ⊂ V2.

Proof. We define the following set

Mσ :=
⋃

t∈[t∗,2t∗]
Sσ(t)Md

σ. (4.49)

Thanks to the positive invariance of Md
σ, it follows that Mσ is positive

invariance. The compactness property ofMσ is a consequence of the com-
pactness ofMd

σ and Lemma 4.3.4. Moreover,Mσ is the image of a Lipschitz
function on [t∗, 2t∗]×Md

σ →Md
σ, so we have

dimE0Mσ ≤ dimE0([t∗, 2t∗]×Md
σ) ≤ dimE0Md

σ + 1,

70



because Lipschitz functions preserves the fractal dimension. The discrete
exponential attraction property ofMd

σ imply that ∀B ⊂ V2

∃K,ω : distE0(Sσ(t)B,Mσ) ≤ Ke−ωt, ∀t ≥ 0. (4.50)

We infer that Mσ fulfills the exponential attraction property for every
bounded set of E0 from (4.50), properties of V2 and Lemma 4.1.6.
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5 Robust families of attractors

In the third and fourth chapters the long-time behavior of the equations
concerned, in the sense of global and exponential attractors, has been stud-
ied separately. In this chapter we change our point of view and we want
to highlight the relationship between the two models in the limiting case
σ → 0. In particular, we will read the equation with the inertial term as a
singular perturbation of the original equation. Then we will prove the upper
semicontinuity of the global attractor and the existence of a robust family
of exponential attractors with respect to the parameter σ.

5.1 Preliminaries

In this chapter, for any σ ∈ (0, σ0], we work with the Hilbert spaces

Eσ0 = H2 ×
√
σH0, Eσ1 = H3 ×

√
σH1, Eσ2 = H4 ×

√
σH2, (5.1)

endowed with the following norms

||(u, v)||Eσ0 =
(
||u||2H2 + σ||v||2H0

) 1
2 , ||(u, v)||Eσ1 =

(
||u||2H3 + σ||v||2H1

) 1
2 ,

||(u, v)||Eσ2 =
(
||u||2H4 + σ||v||2H2

) 1
2 .

For σ = 0, we set the second component of the above Hilbert spaces equal to
{0}. We observe how these spaces are the right setting in order to compare
the behavior of the solutions when σ → 0. Indeed, as we will see, we are
able to prove dissipative estimates which are independent of σ. We also note
that if σ1 > σ2, the closed ball BEσ1

i
(0, R) ⊆ BEσ2

i
(0, R), for i = 0, 1, 2.

Now we state the well-posedness result of the modified Swift-Hohenebrg
equation in this framework of phase spaces. We note that the following
Theorem may be proved in much the same way as Theorem 2.3.4.
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Theorem 5.1.1. For any σ ∈ (0, σ0] and initial data (φ0, φ1) ∈ Eσ0 , the
equation (2.14) has a unique weak solution such that

φ ∈ C([0, T ];H2) ∩ C1([0, T ];H∗0)

satisfying ∀t ∈ [0, T ]

||(φ1 − φ2, φ1,t − φ2,t)(t)||2Eσ0 ≤ ||(φ10 − φ20, φ11 − φ21)||2Eσ0 C1e
C2t, (5.2)

where φ1 and φ2 are weak solutions to (2.14) respectively with initial data
(φ10, φ11) and (φ20, φ21). C1, C2 are positive constants depending on the
norm of the initial data as well as on Ω and f , but independent of σ and t.

Thanks to Theorem 5.1.1, we can define the strongly continuous semi-
group for the modified Swift-Hohenberg equation: for any σ ∈ (0, σ0]

Sσ(t) : Eσ0 → Eσ0 , Sσ(t)(φ0, φ1) = (φ(t), φt(t)), ∀t ≥ 0, (5.3)

where (φ, φt) is the unique solution to problem (2.14) with initial data in
Eσ0 . Using Theorem 2.2.1, we also set for σ = 0

S0(t) : E0
0 → E0

0 S0(t)(φ0) = φ(t), ∀t ≥ 0, (5.4)

where φ is the unique solution to problem (2.1) with initial data in E0
0 . In

the next result we prove the dissipative nature of the dynamical system (Eσ0 ).

Lemma 5.1.2. For any σ ∈ (0, σ0], assume that (φ, φt) is the weak solution
to problem (2.14). Then Vσ0 = BEσ0 (0, R0) is an absorbing set for (Eσ0 , Sσ(t)),
where R0 is a positive constant depending on σ0, Ω and f but independent
of the initial data and σ. In addition, if the initial data (φ0, φ1) is such that
||(φ0, φ1)||Eσ0 ≤ R, the following estimate holds

||(φ, φt)||2Eσ0 ≤ Q(R)e−t +R0, ∀t ≥ 0. (5.5)

Proof. Testing (2.14) by φt + εφ, where ε is a small positive constant, we
have

d

dt

{
σ

2 ||φt||
2
H0 + 1

2a(φ, φ) +
∫

Ω
F (φ)dx+ ε

2 ||φ||
2
H0 + σε(φt, φ)

}
+||φt||2H0 − σε||φt||

2
H0 + εa(φ, φ) + ε(f(φ), φ) = 0.

We rewrite last equality as follows

d

dt
Y(t) +D(t) = 0, (5.6)

where

Y(t) = σ

2 ||φt||
2
H0 + 1

2a(φ, φ) +
∫

Ω
F (φ)dx+ ε

2 ||φ||
2
H0 + σε(φt, φ),

D(t) = ||φt||2H0 − σε||φt||
2
H0 + εa(φ, φ) + ε(f(φ), φ).
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Thanks to (2.4) with γ = δ
1+δ , the hypothesis on the nonlinear term and the

Young inequality, we obtain

Y(t) ≥ σ

2 ||φt||
2
H0 + 1

2 ||φ||
2
H2 −

1− γ
2 ||φ||2H2 −

1
2(1− γ) ||φ||

2
H0 +

∫
Ω
F (φ)dx

+ ε

2 ||φ||
2
H0 −

σ

4 ||φt||
2
H0 − ε

2σ||φ||2H0

≥ σ

4 ||φt||
2
H0 + γ

2 ||φ||
2
H2 −

2 + δ

4 ||φ||2H0 +
(
ε

2 − ε
2σ

)
||φ||2H

+ 2 + δ

4 ||φ||2H0 −K2|Ω|.

Setting ε ∈
(
0, 1

2σ0

)
, we get

Y(t) ≥ σ

4 ||φt||
2
H + γ

2 ||φ||
2
V −K2|Ω|. (5.7)

Using the choice of ε, (2.4) with γ = δ
1+δ and (H2), we compute the other

term in (5.6) as follows

D(t) ≥ 1
2 ||φt||

2
H0 + ε||φ||2H2 − 2ε||φ||2H1 + ε(f(φ), φ)

≥ 1
2 ||φt||

2
H0 + ε||φ||2H2 − ε(1− γ)||φ||2H2 −

ε

(1− γ) ||φ||
2
H0 + ε(f(φ), φ)

≥ 1
2 ||φt||

2
H0 + εγ||φ||2H2 −

ε

(1− γ) ||φ||
2
H0 + ε(1 + δ)||φ||2H0 −K1|Ω|

= 1
2 ||φt||

2
H0 + εγ||φ||2H2 −K1|Ω|. (5.8)

Thus combining (5.8) with (5.6), we have

d

dt
Y(t) + 1

2 ||φt||
2
H0 + εγ||φ||2H2 ≤ K1|Ω|. (5.9)

We consider C as the set of the solution trajectories to the problem (2.14)
with initial data (φ0, φ1) such that ||(φ0, φ1)||E0 ≤ R. Let (v, w) ∈ Eσ0 , we
define the following positive functional

Φ(v, w) = σ

2 ||w||
2
H0 + 1

2a(v, v) +
∫

Ω
F (v)dx+ ε

2 ||v||
2
H0 + σε(w, v) +K2|Ω|.

Using the Sobolev embedding H2 ↪→ L∞(Ω), we can infer an upper bound
estimate of Φ(φ(0), φt(0)) for a generic couple (φ, φt) ∈ C. Indeed, we have

Φ(φ(0), φt(0)) = Φ(φ0, φ1) = Y(0) +K2|Ω|

≤ σ

2 ||φ1||2H0 + 1
2 ||φ0||2H2 +Q(||φ0||H2) + ε

2 ||φ0||2H0 +K2|Ω|

+ σε

2 ||φ1||2H0 + σε

2 ||φ0||2H0 ≤ Q(||(φ0, φ1)||Eσ0 ) ≤ Q(R).
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Setting C1 = min{ 1
2σ0

, εγ} and rewriting (5.9) in terms of Φ, we get

d

dt
Φ(φ(t), φt(t)) + C1||(φ(t), φt(t))||2Eσ0 ≤ K1|Ω|.

Applying Lemma 3.3.1, for every η > 0 we obtain

Φ(φ(t), φt(t)) ≤ sup
(v,w)∈Eσ0

{Φ(v, w) : ||(v, w)||2Eσ0 ≤
K1Ω + η

C1
}, ∀t ≥ Q(R)

η
.

Setting C2 = min{1
4 ,

γ
2}, we infer from the above estimates that

||(φ, φt)||2Eσ0 ≤
1
C2

(
Q

(√
K1Ω + η

C1

)
+K2|Ω|

)
=: C3, ∀t ≥ Q(R)

η
.

(5.10)
As in the proof of Theorem 2.3.4, an easy computations shows that the
following energy estimates holds

||(φ, φt)||2Eσ0 ≤ C4 +Q(R), ∀t ≥ 0. (5.11)

where C4 = 2K2|Ω|
γ . Collecting the above estimates together, we get

||(φ, φt)||E0 ≤ Q(R)e−t +R0, ∀t ≥ 0. (5.12)

where R0 is a positive constant depending on σ0, Ω, f and Ω but it is
independent of the norm of the initial data and σ.

Thanks to the Lemma 5.1.2, we can conclude that

Yσ0 =
⋃

t∈[0,tV0 ]
Sσ(t)Vσ0

Eσ0
. (5.13)

is a positively invariant absorbing set, where tVσ0 is such that Sσ(t)Vσ0 ⊂ Vσ0 ,
for ∀t ≥ tVσ0 . We observe that tVσ0 is independent of σ. Moreover, the
following properties hold

Sσ(t)Yσ0 ⊂ Yσ0 , ||Sσ(t)(u, v)||Eσ0 ≤ Q(R0), ∀(u, v) ∈ Yσ0 , ∀t ≥ 0.

where Q(R0) may depend on σ0 but is independent of σ.
Now we define some phase spaces using Yσ0

Yσ1 = Eσ1 ∩ Yσ0 , Yσ2 = Eσ2 ∩ Yσ0 (5.14)

and we prove the high-order dissipative estimates in these spaces.
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Lemma 5.1.3. Let (φ0, φ1) ∈ Yσ1 . Then the solution (φ, φt) satisfies the
following inequalities

||(φ(t), φt(t))||2Eσ1 ≤ Q(||(φ0, φ1)||Eσ1 )e−εt + κ1, ∀t ≥ 0, (5.15)

sup
t≥0

∫ t+1

t
||∇φt(s)||2H0 ds ≤ κ2 +Q(||(φ0, φ1)||Eσ1 ), (5.16)

where κ1, κ2 and ε are positive constants which depend on R0 and σ0, but
are independent of the norm of the initial data and σ.
Proof. Testing 2.14 by −∆φt− ε∆φ, where ε > 0 is a constant to be further
determined, we obtain

d

dt
Z(t) +D(t) = R(t), (5.17)

where

Z(t) = σ

2 ||∇φt||
2
H0 + 1

2 ||∇∆φ||2H0 − ||∆φ||
2
H0 + σε(∆φt,∆φ) + ε

2 ||∇φ||
2
H0 ,

D(t) = ||∇φt||2H0 − σε||∇φt||
2
H0 + ε||∇∆φ||2H0 − 2ε||∆φ||2H0 ,

R(t) = (f(φ),∆φt) + ε(f(φ),∆φ).
For ε ∈ (0, 1

2σ0
), we get

Z(t) ≥ σ

4 ||∇φt||
2
H0 + 1

4 ||∇∆φ||2H0 − ||∇φ||
2
H0 + ε

2 ||∇φ||
2
H0 − σε||∇φ||

2
H0

≥ σ

4 ||∇φt||
2
H0 + 1

4 ||∇∆φ||2H0 − ||∇φ||
2
H0 .

In a standard way, we deduce

D(t) ≥ 1
2 ||∇φt||

2
H0 + ε||∇∆φ||2H0 − 2ε||∆φ||2H0

≥ εZ(t) + 1
4 ||∇φt||

2
H0 + ε

2 ||∇∆φ||2H0 − ε||∆φ||
2
H0

− σε2(∇φt,∇φ)− ε2

2 ||∇φ||
2
H0

≥ εZ(t) + 1
8 ||∇φt||

2
H0 + ε

4 ||∇∆φ||2H0 − ε
(

1 + 2σ2ε3 + ε

2

)
||∇φ||2H0

≥ εZ(t) + 1
8 ||∇φt||

2
H0 + ε

4 ||∇∆φ||2H0 − ε
(

1 + 2σ2
0ε

3 + ε

2

)
||∇φ||2H0 .

We also estimate R(t) term by term as follows∫
Ω
f(φ)∆φt dx ≤ ||∇f(φ)||H0 ||∇φt||H0 ≤ ||f ′(φ)||L∞(Ω)||∇φ||H0 ||∇φt||H0

≤ Q(||φ||H2) + 1
16 ||∇φt||

2
H0 ,

ε

∫
Ω
f(φ)∆φ dx ≤ ε

2 ||f(φ)||2H0 + ε

2 ||∆φ||
2
H0

≤ Q(||φ||H2) + ε

4 ||∇∆φ||2H0 + ε

4 ||∇φ||
2
H0 .
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Collecting the above inequalities together, we have

d

dt
Z(t) + εZ(t) + 1

16 ||∇φt||
2
H0 ≤ Q(||φ||H2), (5.18)

where Q is a positive monotone function which may depend on σ0. In
particular, applying the Gronwall Lemma and using the estimate from below
for Z(t), we obtain

σ||φt||2H1 + ||φ||2H3 ≤ Q(||φ0||H3 , ||φt||H1)e−εt

+
∫ t

0
Q(||φ||H2)e−ε(t−s) ds+ ||φ||2H1 .

Since (φ0, φ1) ∈ Yσ1 , we can conclude that

||(φ, φt)||2Eσ1 ≤ Q(||(φ0, φ1)||Eσ1 )e−εt + κ1, (5.19)

where κ1 depends on R0. On the other hand, we have

Z(t+ 1) + ε

∫ t+1

t
Z(s) ds+ 1

16

∫ t+1

t
||∇φt||2H0 ds ≤ C1 + Z(t).

where C1 depends only on R0 and f . Thanks to the above inequalities, we
get ∫ t+1

t
||∇φt||2H0 ds ≤ C2 +Q(||(φ0, φ1)||Eσ1 ).

Passing to the supremum in t ≥ 0 and setting κ2 = C2, the proof is complete.

In the same matter we can see the next result.

Lemma 5.1.4. Let (φ0, φ1) ∈ Yσ2 . Then the solution (φ, φt) satisfies the
following inequalities

||(φ(t), φt(t))||2Eσ2 ≤ Q(||(φ0, φ1)||Eσ2 )e−εt + κ3, ∀t ≥ 0, (5.20)

sup
t≥0

∫ t+1

t
||∆φt(s)||2H0 ds ≤ κ4 +Q(||(φ0, φ1)||Eσ2 ), (5.21)

where κ3, κ4 and ε are positive constants which depend on R0 and σ0, but
are independent of the norm of the initial data and σ.

As a consequence, we obtain a result for φtt.

Corollary 5.1.5. Let (φ0, φ1) ∈ Yσ2 . Then the following estimate holds

sup
t≥0

∫ t+1

t
σ||φtt(s)||2H0 ds ≤ Q(||(φ0, φ1)||Eσ2 ). (5.22)
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Proof. We consider φtt as a test function in (2.14)

σ||φtt||2H0 + 1
2
d

dt
||φt||2H0 + (∆2φ, φtt) + (∆φ, φtt) + (f(φ), φtt) = 0.

Using the integration by parts we have

d

dt

1
2
{
||φt||2H0 + (∆φ,∆φt)− 2(∇φ,∇φt) + (f(φ), φt)

}
+ σ||φtt||2H0

= ||∆φt||2H0 − 2||∇φt||2H0 + (f ′(φ)φt, φt)
≤ ||∆φt||2H0 + ||f ′(φ)||L∞(Ω)||φt||2H0 .

Integrating in time from t to t+ 1 and using the above Lemmas, we get∫ t+1

t
σ||φtt||2H0 ds ≤ Q(||(φ0, φ1)||Eσ2 ), (5.23)

where Q is a positive monotone function which may depend on f , σ0 and
Ω. Passing to the supremum in t ≥ 0, the proof is complete.

Thanks to Lemmas 5.1.3 and 5.1.4, there exist R1 and R2, with R1 >√
κ1 and R2 >

√
κ3, such that

Vσ1 = BEσ1 (0, R1) ∩ Yσ0 , Vσ2 = BEσ2 (0, R2) ∩ Yσ0

are absorbing sets respectively for (Yσ1 , Sσ(t)) and (Yσ2 , Sσ(t)).
Now we follow the same strategy of the previous chapter to prove the

existence of a regular set which exponentially attracts the bounded sets of
Yσ0 . In order to do this, we split the semigroup Sσ(t) into two parts

(φ(t), φt(t)) = (φl(t), φlt(t)) + (φo(t), φot (t)), (5.24)

such that {
σφltt + φlt + ∆2φl + 2∆φl + kφl = 0
φl(0) = φ0, φlt(0) = φ1

(5.25)

and {
σφott + φot + ∆2φo + 2∆φo + kφo + f(φ)− kφ = 0
φo(0) = 0 φot (0) = 0,

(5.26)

where k > 0 is a large fixed constant.

Lemma 5.1.6. There exists k > 0 such that (φl, φlt) fulfils the following
inequality

||(φl(t), φlt(t))||2Eσ0 ≤ C||(φ0, φ1)||2Eσ0 e
−εt, ∀t ≥ 0, (5.27)

where C, ε may depend on σ0, f , Ω but they are independent of the initial
data φ0, φ1 and σ.
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Proof. Testing (5.25) by φlt + εφl, we have

d

dt
Z l(t) +Dl(t) = 0, (5.28)

where

Z l(t) = σ

2 ||φ
l
t||2H0 + 1

2a(φlt, φlt) + k + ε

2 ||φl||2H0 + σε(φlt, φl),

Dl(t) = (1− σε)||φlt||2H0 + εa(φl, φl) + kε||φl||2H0 .

Using (2.4) with γ = 1
2 and the Young inequality, we get

Z l(t) ≥ σ

4 ||φ
l
t||2H0 + 1

4 ||φ
l||2H2 +

(
k + ε

2 − 1− ε2σ

)
||φl||2H0 .

Therefore choosing ε ∈
(
0, 1

2σ0

)
and k > 2, we have

Z l(t) ≥ σ

4 ||φ
l
t||2H0 + 1

4 ||φ
l||2H2 .

Using standard arguments, we estimate the remainder term Dl(t) as follows

Dl(t) ≥ 1
2 ||φ

l
t||2H0 + εa(φl, φl) + kε||φl||2H0

≥ εZ l(t) + 1
4 ||φ

l
t||2H0 + ε

4 ||φ
l||2H2 − ε||φ

l||2H0 + εk

2 ||φ
l||2H0

− 1
8 ||φ

l
t||2H0 − 2σ2ε4||φl||2H0 −

ε2

2 ||φ
l||2H0

≥ εZ l(t) + 1
8 ||φ

l
t||2H0 + ε

4 ||φ
l||2H2 + ε

(
k

2 − 1− 2σ2ε3 − ε

2

)
||φl||2H0 .

For k ≥ 2 + ε+ 4σ2
0ε

3, we obtain

d

dt
Z l(t) + εZ l(t) + 1

8 ||φ
l
t||2H0 + ε

4 ||φ
l||2H2 ≤ 0. (5.29)

In particular, applying the Gronwall Lemma, we have

Z l(t) ≤ Z l(0)e−εt.

Since k is large enough, we can conclude that

||(φl, φlt)||2Yσ0 ≤ 4Z l(0)e−εt ≤ C||(φ0, φ1)||2Eσ0 e
−εt.

Lemma 5.1.7. For any (φ0, φ1) ∈ Eσ0 , the following inequality holds

||(φo(t), φot (t))||Eσ1 ≤ Q(R0) = κ5, ∀t ≥ 0. (5.30)
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Proof. The existence and the uniqueness of the solution (φl, φlt) imply the
existence and the uniqueness of the solution to the homogeneous problem
(5.26). By comparison, we can assert that

||(φo, φot )||2Eσ0 ≤ Q(R0), ∀t ≥ 0. (5.31)

Testing the equation in φo by −∆φot−ε∆φo, where ε is a sufficiently positive
constant, we have

d

dt
Zo(t) +Do(t) = Ro(t), (5.32)

where

Zo(t) = σ

2 ||∇φ
o
t ||2H0 + 1

2 ||∇∆φo||2H0 − ||∆φ
o||2H0

+ εσ(∇φot ,∇φo) + ε

2 ||∇φ
o||2H0 ,

Do(t) = ||∇φot ||2H0 − εσ||∇φ
o||2H0 + ε||∇∆φo||2H0 − 2ε||∆φo||2H0 ,

Ro(t) = (f(φ)− kφ+ kφo,∆φot ) + ε(f(φ)− kφ+ kφo,∆φo).

Using Cauchy-Schwarz, Young and (3.38) inequalities, we get

Zo(t) ≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0 + ε(1

2 − σε)||∇φ
o||2H0 .

Setting ε ∈ (0, 1
2σ0

), we have

Zo(t) ≥ σ

4 ||∇φ
o
t ||2H0 + 1

4 ||∇∆φo||2H0 − ||∇φ
o||2H0

= σ

4 ||φ
o
t ||2H1 + 1

4 ||φ
o||2H3 − ||φ

o||2H1 .

From the choice of ε, we also deduce

Do(t) ≥ 1
2 ||∇φ

o(t)||2H0 + ε||∇∆φo||2H0 − 2ε||∆φo||2H0

≥ εZo(t) + (1
2 −

εσ

2 )||∇φot ||2H0 + ε

2 ||∇∆φo||2H0 − ε||∆φ
o||2H0

− ε2σ(∇φot ,∇φo)−
ε2

2 ||∇φ||
2
H0

≥ εZo(t) + 1
4 ||∇φ

o
t ||2H0 + ε

4 ||∇∆φo||2H0 − ||∇φ
o||2H0

− 1
8 ||∇φ

o
t ||2H0 − 2ε4σ2||∇φo||2H0 −

ε2

2 ||∇φ
o||2H0

≥ εZo(t) + 1
8 ||φ

o
t ||2H1 + ε

4 ||φ
o||2H3 − C1||φo||2H1 ,
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where C1 only depends on ε and σ0.

Ro(t) = −(f ′(φ)∇φ− k∇φ+ k∇φo,∇φot ) + ε(f(φ)− kφ+ kφo,∆φo)

≤ 1
8 ||∇φ

o
t ||2H0 + ε

4 ||∆φ
o||2H0 + 2||f ′(φ)∇φ− k∇φ+ k∇φo||2H0

+ ε||f(φ)− kφ+ kφo||2H0

≤ 1
8 ||φ

o
t ||2H1 + ε

4 ||φ
o||2H2 +Q(R0).

Combining these inequalities we obtain

d

dt
Zo(t) + εZo(t) ≤ Q(R0). (5.33)

Applying the Gronwall Lemma we conclude that

Zo(t) ≤ Zo(0)e−εt +Q(R0)(1− e−εt) ≤ Q(R0).

This implies that
||(φo, φot )||2Eσ1 ≤ Q(R0),

where Q also depends on σ0, f , Ω.

We infer from Lemmas 5.1.6 and 5.1.7 that the set

Wσ
1 = BEσ1 (0, κ5) ∩ Yσ0 (5.34)

exponentially attracts any bounded set B of Yσ0 . Observing that Vσ0 ⊂ Yσ0 ,
we have that Yσ0 exponentially attracts any bounded set of Eσ0 . Thus, using
Lemma 4.1.6, we conclude that Wσ

1 exponentially attracts any bounded set
of Eσ0 with respect to the Eσ0 -metric. We recall that Vσ1 is an absorbing set
in Yσ1 , then in particular Vσ1 absorbs Wσ

1 , so Vσ1 exponentially attracts any
bounded set of Eσ0 for the transitivity property of the exponential attraction.
Moreover, by definition of absorbing set and Lemma 5.1.3, we conclude that
the following properties hold{

∃ tVσ1 : Sσ(t)Vσ1 ⊂ Vσ1 , ∀t ≥ tVσ1 ,
||Sσ(t)(u, v)||Eσ1 ≤ Q(κ1), ∀(u, v) ∈ Vσ1 ,∀t ≥ 0.

(5.35)

With the same argument, we can prove the next result.

Lemma 5.1.8. Under the assumption of Lemma 5.1.7, the following in-
equality holds

||(φo(t), φot (t))||Eσ2 ≤ Q(R0) = κ6, ∀t ≥ 0. (5.36)
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In conclusion, the set Vσ2 absorbsWσ
2 = BEσ2 (0, κ6)∩Yσ0 , which exponen-

tially absorbs any bounded set of Eσ0 with respect to the Eσ0 -metric. Then,
Vσ2 exponentially attracts any bounded set of Eσ0 and we have{

∃ tVσ2 : Sσ(t)Vσ2 ⊂ Vσ2 , ∀t ≥ tVσ2 ,
||Sσ(t)(u, v)||Eσ2 ≤ Q(κ3), ∀(u, v) ∈ Vσ2 ,∀t ≥ 0.

(5.37)

Now we consider two couples of initial data (φ01, φ11) and (φ02, φ12) in
BEσ2 (0, ρ) ∩ Yσ0 and their respectively solutions (φ1, φt,1) and (φ2, φt,2). We
set their difference

(φ(t), φt(t)) = (φ1(t), φt,1(t))− (φ2(t), φt,2(t)), (5.38)

which satisfies
σφtt + φt + ∆2φ+ 2∆φ+ f (φ1)− f (φ2) = 0 in Ω× (0, T )
φ = ∆φ = 0 on ∂Ω× (0, T )
φ(0) = φ01 − φ02 = φ0 in Ω
φt(0) = φ11 − φ12 = φ1 in Ω.

(5.39)
We consider the following split

(φ(t), φt(t)) = (φl(t), φlt(t)) + (φo(t), φot (t)), (5.40)

such that {
σφltt + φlt + ∆2φl + 2∆φl + kφl = 0
φl(0) = φ0, φlt(0) = φ1,

(5.41)

and{
σφott + φot + ∆2φo + 2∆φo + kφo + f(φ1)− f(φ2)− kφ = 0
φo(0) = 0, φot (0) = 0.

(5.42)

By observing the problem for (φl, φlt), we can infer from Lemma 5.1.6 that
there holds

||(φl(t), φlt(t))||2Eσ0 ≤ C||(φ0, φ1)||2Eσ0 e
−εt, ∀t ≥ 0. (5.43)

where C and ε are independent of the norm of the initial data and σ.

Lemma 5.1.9. Under the above assumptions, we have

||(φo(t), φot (t))||2E1 ≤ C(t)||(φ0, φ1)||2E0 , ∀t ≥ 0. (5.44)
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Proof. Testing the equation (5.42) by ∆2φot + ε∆2φo, where ε is a positive
small constant, we get

d

dt
Zo(t) +Do(t) = Ro(t), (5.45)

where

Zo(t) = σ

2 ||∆φ
o
t ||2H0 + 1

2 ||∆
2φo||2H0 − ||∇∆φo||2H0 + εσ(∆φot ,∆φo)

+ ε

2 ||∆φ
o||2H0 + k

2 ||∆φ
o||2H0 ,

Do(t) = ||∆φot ||2H0 − εσ||∆φ
o||2H0 + ε||∆2φo||2H0 − 2ε||∇∆φo||2H0

+ εk||∆φo||2H0 ,

Ro(t) = −(f(φ1)− f(φ2)− kφ,∆2φot )− ε(f(φ1)− f(φ2)− kφ,∆2φo).

Using (3.38) and (4.43), we have

Zo(t) ≥ σ

4 ||∆φ
o
t ||2H0 + 1

4 ||∆
2φo||2H0 − ||∆φ

o||2H0

− σε2||∆φ||2H0 + k + ε

2 ||∆φ||2H0 .

Thus, taking ε ∈ (0, 1
2σ0

) and k > 2, we obtain

Yo(t) ≥ σ

4 ||∆φ
o
t ||2H0 + 1

4 ||∆
2φo||2H0 = 1

4 ||(φ
o, φot )||2Eσ2 . (5.46)

Consequently, in a standard way, we estimate D(t) as follows

Do(t) ≥ 1
2 ||∆φ

o
t ||2H0 + ε||∆2φo||2H0 − 2ε||∇∆φo||2H0 + εk||∆φo||2H0

≥ εYo(t) +
(1

2 −
σε

2

)
||∆φot ||2H0 + ε

2 ||∆
2φo||2H0 − ε||∇∆φo||2H0

− σε2(∆φot ,∆φo) +
(
εk

2 −
ε2

2

)
||∆φo||2H0

≥ εYo(t) + 1
4 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0 − ε||∆φ

o||2H0 −
1
8 ||∆φ

o
t ||2H0

− 2σ2ε4||∆φot ||2H0 +
(
εk

2 −
ε2

2

)
||∆φo||2H0

≥ εYo(t) + 1
8 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0

+
(
εk

2 − ε−
ε2

2 − 2σ2ε4
)
||∆φo||2H0 .

So, with k large enough, we can conclude that

Do(t) ≥ εYo(t) + 1
8 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0 .
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Moreover, applying Cauchy-Schwarz and Young inequalities, we deduce

Ro(t) ≤ |(f ′′(φ1)∆φ1 − f ′′(φ2)∆φ2 − k∆φ,∆φot )|
+ ε|(f(φ1)− f(φ2)− kφ,∆2φo)|

≤ 1
8 ||∆φ

o
t ||2H0 + ε

4 ||∆
2φo||2H0 + 4||f ′′(φ1)∆φ1 − f ′′(φ2)∆φ2||2H0

+ 4k2||∆φ||2H0 + 4
ε
||f(φ1)− f(φ2)||2H0 + 4k2||φ||2H0 .

Using the Sobolev embedding H2 ↪→ L∞(Ω), we proceed term by term in
the following way

||f ′′(φ1)∆φ1 − f ′′(φ2)∆φ2||2H0

≤ 2||f ′′(φ1)∆φ||2H0 + 2||
(
f ′′(φ1)− f ′′(φ2)

)
∆φ2||2H0

≤ Q(R0)||∆φ||2H0 + 2||
∫ 1

0
f ′′′(τφ1 + (1− τ)φ2)φ dτ ||2L∞(Ω)||∆φ2||2H0

≤ Q(R0)||∆φ||2H0 +Q(R0)||∆φ||2H0 ,

||f(φ1)− f(φ2)||2H0 ≤ ||
∫ 1

0
f ′(τφ1 + (1− τ)φ2)φ dτ ||2H0

≤ Q(R0)||φ||2H0 .

Collecting these estimates together, we get
d

dt
Yo(t) + εYo(t) ≤ Q(R0)||φ||2H2 . (5.47)

Integrating (5.47) with respect to time and using the Lipschitz continuity
estimate (5.2), we have

Yo(t) ≤ Q(R0)
∫ t

0
||φ(s)||2H2 ds

≤ Q(R0, t){||φ0||2H2 + σ||φ1||2H0}.

Thanks to (5.46) we can conclude that

||(φo, φot )||2Eσ2 ≤ C(t)||(φ0, φ1)||2Eσ0 . (5.48)

We can summarize the above results as follows

Sσ(t)(φ01, φ11)− Sσ(t)(φ02, φ12) = Lσ(t)((φ01, φ11), (φ02, φ12))
+Kσ(t)((φ01, φ11), (φ02, φ12)),

such that

||Lσ(t)((φ01, φ11), (φ02, φ12))||Eσ0 ≤ C||(φ01 − φ02, φ11 − φ12)||Eσ0 e
−εt,

||Kσ(t)((φ01, φ11), (φ02, φ12))||Eσ2 ≤ C(t)||(φ01 − φ02, φ11 − φ12)||Eσ0 ,

with ε and C > 0 independent of σ.
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Lemma 5.1.10. Let us fix t∗ > 0. Then the map (t, (u, v)) 7→ Sσ(t)(u, v) :
[t∗, 2t∗] × Vσ2 → Vσ2 is Lipschitz continuous, when Vσ2 is endowed with the
Eσ0 -topology.

Proof. Let us consider t∗ ≤ τ ≤ t ≤ 2t∗, (u1, v1), (u2, v2) ∈ Vσ2 . Using (5.2)
we have

||Sσ(t)(u1, v1)− Sσ(τ)(u2, v2)||2Eσ0 ≤ 2||Sσ(t)(u1, v1)− Sσ(t)(u2, v2)||2Eσ0
+ 2||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2E0

≤ C||(u1, v1)− (u2, v2)||2Eσ0
+ 2||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2Eσ0 ,

where C is a positive constant depending on Vσ2 , t∗. We recall that the
trajectories starting from Vσ2 satisfy

||φi,t||H2 ≤ C, ||φi,tt||H0 ≤ C,

where C depends on Vσ2 but is independent of σ.

||Sσ(t)(u2, v2)− Sσ(τ)(u2, v2)||2Eσ0
= ||φ2(t)− φ2(τ)||2H2 + σ||φ2,t(t)− φ2,t(τ)||2H0

= ||
∫ t

τ
φ2,t(s) ds||2H2 + σ||

∫ t

τ
φ2,tt(s) ds||2H0

≤
(∫ t

τ
||φ2,t(s)||H2 ds

)2
+ σ

(∫ t

τ
||φ2,tt(s)||H0 ds

)2

≤ C2(1 + σ0)|t− τ |2.

Collecting the above estimates together, we conclude that

||Sσ(t)(u1, v1)− Sσ(τ)(u2, v2)||Eσ0 ≤ C1||(u1, v1)− (u2, v2)||E0

+ C2|t− τ |, (5.49)

where C1,C2 are positive constant depending on Vσ2 , t∗.

5.2 Upper semicontinuity of the global attractor
The aim of this section is to investigate a result of stability for the global
attractor Aσ with respect to A when the parameter σ goes to 0. We recall
that the dynamical system (H0, S(t)) possesses a global attractor A, which
is bounded in H2. Furthermore, for each σ ∈ (0, σ0], the semigroup Sσ(t)
admits a global attractor Aσ in E0. Thanks to the Corollary (3.3.7), this set
is also bounded in E2.

Lemma 5.2.1. The global attractor A is a bounded set in H4.
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Proof. Since A is bounded in H2, using the invariance property of the global
attractor, we have

||φ(t)||H2 ≤ R, ∀t ≥ 0, (5.50)

where φ is the strong solution to problem (2.1) with initial data φ0 ∈ A.
Multiplying by ∆2φ in (2.1) and integrating on Ω, we get

1
2
d

dt
||∆φ||2H0 + ||φ||2H4 − 2||φ||2H3 + (f(φ),∆2φ) = 0.

Thanks to (5.50), (3.47 and the Sobolev embedding H2 ↪→ L∞(Ω), we de-
duce that

d

dt
||∆φ||2H0 + ||φ||2H4 ≤ Q(R).

Let us fix r > 0. Integrating from t to t+ r, we obtain∫ t+r

t
||φ(s)||2H4 ds ≤ ||φ(t)||2H2 + rQ(R) ≤ Q(R, r). (5.51)

Now we test (2.1) with ∆2φt and we have

||∆φt||2H0 + d

dt
Λ(t) + (f(φ),∆2φt) = 0,

where Λ(t) = 1
2 ||φ||

2
H4
− ||φ||2H3

.
We can infer from (5.50), (3.47 and the Sobolev embedding H2 ↪→ L∞(Ω)
that

Λ(t) ≥ 1
4 ||φ||

2
H4 −Q(R) (5.52)

and
||∆φt||2H0 + d

dt
Λ(t) ≤ Q(R). (5.53)

Thanks to (5.51), (5.52) and (5.53), we can apply the uniform Gronwall
Lemma and we conclude that

||φ(t+ r)||2H4 ≤ Q(R, r), ∀t ≥ 0. (5.54)

From the invariance property of A, it is immediate that A is bounded in
H4.

Lemma 5.2.1 allows us to define the set

A0 = {(φ, ψ) : φ ∈ A, ψ = −∆2φ−∆φ− f(φ)}, (5.55)

which is the lifting in E0 of the global attractor A of the equation (2.1).
We now proceed our analysis with regularity properties concerning Aσ.

As a consequence of Lemma 5.1.2 and the invariance of the global attractor,
we have the following results.
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Corollary 5.2.2. There exists a positive constant C such that, for any
σ ∈ (0, σ0],

∀(φ0, φ1) ∈ Aσ, ||(φ0, φ1)||Eσ0 ≤ C. (5.56)

Lemma 5.2.3. Let (φ0, φ1) be such that ||(φ0, φ1)||Eσ0 ≤ ρ0. Then we have∫ ∞
0
||φt(s)||2H0 ds ≤ Q(ρ0). (5.57)

Proof. Let us define the following functional

Λσ(u, v) = σ

2 ||v||
2
H0 + 1

2 ||∆u||
2
H0 − ||∇u||

2
H0 +

∫
Ω
F (u) dx. (5.58)

Testing the equation (2.14) by φt and integrating from 0 to t, we get∫ t

0
||φt(s)||2H0 ds = Λσ(φ0, φ1)− Λσ(φ, φt) ≤ Λσ(φ0, φ1) +K2|Ω|. (5.59)

In particular, this imply that∫ t

0
||φt(s)||2H0 ds ≤ Q(ρ0), ∀t ≥ 0. (5.60)

Lemma 5.2.4. Let (φ0, φ1) be the initial data such that ||(φ0, φ1)||Eσ0 ≤ ρ0
and ||(φ0, φ1)||Eσ2 ≤ ρ1, then the following estimate holds, for all t ≥ 0,

σ||φtt||2H0 + ||∆φt||2H0 + ||∆2φ||2H0 ≤ Q(ρ0) + Q(ρ0, ρ1)
σ2 e−εt. (5.61)

Proof. First of all,we can infer from Lemma 5.1.2 that

||(φ, φt)||2Eσ0 ≤ Q(ρ0)e−t +R0, t ≥ 0. (5.62)

We consider the following problem
σψtt + ψt + ∆2ψ + 2∆ψ + 2ψ = − (f ′(φ) + 2)φt in Ω× (0, T )
ψ = ∆ψ = 0 on ∂Ω× (0, T )
ψ(0) = φ1 in Ω
ψt(0) = 1

σ (−f(φ0)−∆2φ0 − 2∆φ0 − φ1) in Ω.

Since ψ(0) ∈ H2, ψt(0) ∈ H0 and the right-hand side of the equation belongs
to L2(0,+∞;H0), there is a unique weak solution (w,wt) ∈ C([0,+∞), Eσ0 )
and w(t) = φt(t).
Testing the previous equation by ψt + εψ, we obtain

d

dt
Z(t) +D(t) = R(t), (5.63)
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where

Z(t) = σ

2 ||ψt||
2
H0 + 1

2 ||∆ψ||
2
H0 − ||∇ψ||

2
H0

+ ||ψ||2H0 + ε

2 ||ψ||
2
H0 + εσ(ψt, ψ),

D(t) = (1− εσ) ||ψt||2H0 + ε||∆ψ||2H0 − 2ε||∇ψ||2H0 + 2ε||ψ||2H0 ,

R(t) =
(
(−f ′(φ) + 2)φt, ψt

)
+ ε

(
(−f ′(φ) + 2)φt, ψ

)
.

In a standard way, we get

Z(t) ≥ σ

4 ||ψt||
2
H0 + 1

4 ||∆ψ||
2
H0 +

(
ε

2 − ε
2σ

)
||ψ||2H0 .

Taking ε ∈ (0, 1
2σ0

), we have

Z(t) ≥ σ

4 ||ψt||
2
H0 + 1

4 ||∆ψ||
2
H0 (5.64)

We proceed with the other terms in (5.63) as follows

D(t) ≥ 1
2 ||ψt||

2
H0 + ε||∆ψ||2H0 − 2ε||∇ψ||2H0 + 2ε||ψ||2H0

≥ εZ(t) +
(1

2 −
εσ

2

)
||ψt||2H0 + ε

2 ||∆ψ||
2
H0 − ε||∇ψ||

2
H0 + ε||ψ||2H0

− ε2σ(ψt, ψ)− ε2

2 ||ψ||
2
H0

≥ εZ(t) + 1
8 ||ψt||

2
H0 + ε

4 ||∆ψ||
2
H0 − (2εσ2

0 + ε2

2 )||ψ||2H0 ,

R(t) ≤ 1
8 ||ψt||

2
H0 + ε

4 ||∆ψ||
2
H0 + 2||f ′(φ) + 2||2L∞(Ω)||φt||

2
H0+

+ C1ε||f ′(φ) + 2||2L∞(Ω)||φt||
2
H0 .

Collecting these estimates together and using (5.62), we get

d

dt
Z(t) + εZ(t) ≤ Q(ρ0)||φt||2H0 . (5.65)

In particular, applying the Gronwall Lemma and Lemma 5.2.3, yields that

Z(t) ≤ Z(0)e−εt +
∫ t

0
Q(ρ0)||φt||2H0e

ε(s−t) ds

≤ Z(0)e−εt +Q(ρ0).

Consequently, we obtain from (5.64)

σ||ψt||2H0 + ||∆ψ||2H0 ≤ 4Z(0)e−εt +Q(ρ0). (5.66)
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On the other hand, using standard argument, we deduce

Z(0) ≤ σ||ψt(0)||2H0 + C2||∆φ1||2H0

≤ σ|| 1
σ

(−f(φ0)−∆2φ0 − 2∆φ0 − φ1)||2H0 + C2||∆φ1||2H0

≤ C2
σ

{
||f(φ0)||2H0 + ||∆2φ0||2H0 + ||∆φ0||2H0 + ||φ1||2H0 + σ||∆φ1||2H0

}
≤ C2

σ

{
Q(ρ1) + ||φ1||2H0

}
≤ C2

σ

{
Q(ρ1) + 1

σ
Q(ρ0)

}
.

We can infer directly from the problem in ψ that

||∆2φ||2H0 ≤ C3
{
||f(φ)||2H0 + ||∆φ||2H0 + ||φt||2H0 + σ2||φtt||2H0

}
≤ C3

{
Q(R0) + (σ + C4)

[
4Z(0)e−εt +Q(R0)

]}
.

In conclusion, we can assert that

σ||φtt||2H0 + ||∆φt||2H0 + ||∆2φ||2H0 ≤ Q(ρ0) + C(5)Z(0)e−εt

≤ Q(ρ0) + Q(ρ0, ρ1)
σ2 e−εt.

Now we can state an immediate consequence of Lemma 5.2.4, based on
the invariance property of the global attractor.

Corollary 5.2.5. For any sigma ∈ (0, σ0], the global attractor Aσ is uni-
formly bounded in Eσ0

2 , namely

∀(φ0, φ1) ∈ Aσ, ||(φ0, φ1)||Eσ0
2
≤ C, (5.67)

where C is independent of σ. Moreover, for any orbit Φ(t) = (φ, φt)(t) of
2.14 with Φ(R) ⊂ Aσ, we have

√
σ||φtt(t)||H0 ≤ C, ∀t ∈ R. (5.68)

Following the method introduced in [16] and using the regularity prop-
erties for which:

i. there exists a bounded set B1 in Eσ0
2 such that⋃

σ∈(0,σ0]
Aσ ∪ A0 ⊂ B1; (5.69)
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ii. for any σ ∈ (0, σ0] and for any orbit Φ(t) = (φ, φt)(t) of 2.14 with
Φ(R) ⊂ Aσ, the following estimate holds

√
σ||φtt(t)||H0 ≤ C, ∀t ∈ R; (5.70)

we formulate our stability result.
Theorem 5.2.6. The global attractor Aσ is upper semicontinuous at zero
with respect to A0 as σ → 0, namely

distE0(Aσ,A0)→ 0, σ → 0. (5.71)

5.3 A robust family of exponential attractors
The main result of this section is the following Theorem which states the
existence of a family of exponential attractors fulfilling a Hölder continuous
property with respect to the parameter of the singular perturbation, σ.
Theorem 5.3.1. Let σ0 be a real positive fixed value. For any σ ∈ [0, σ0],
then there exists an exponential attractor Mσ for the semigroup Sσ(t) on
the phace space Eσ0 , which satisfies the following properties:
(P1) Mσ is positively invariant and bounded set in Eσ2 and Eσ0

0 with bounds
independent of σ.

(P2) The rate of attraction is uniformly exponential, i.e. for every B bounded
set in Eσ0

distEσ0 (Sσ(t)B,Mσ) ≤ Q(||B||Eσ0 )e−ωt, ∀t ≥ 0. (5.72)

(P3) The fractal dimension ofMσ is uniform bounded,

dimEσ0Mσ ≤ C, (5.73)

where C is independent of σ.

(P4) The map σ →Mσ is Hölder continuous in σ with exponent 1
4 , namely

distsymEσ1
0

(Mσ1 ,Mσ2) ≤ C(σ1 − σ2)
1
4 , 0 ≤ σ2 < σ1 ≤ σ0. (5.74)

The idea to prove Theorem 5.3.1 involves a discrete semigroup as in the
previous chapter. Now we also need a control about the difference between
solutions associated to different semigroups in terms of the perturbation.
We will apply the strategy introduced in [21] and adopted to study the
singularly perturbed damped wave equation, which is a standard model in
the study of a singularly perturbed dynamical system. We also refer to
[15], in which this construction is adapted to a phase-field model with high
regularity gap between the phase function φ and its time derivative φt.

The following abstract Theorem is the key to constructing a robust fam-
ily of exponential attractors ( see [6]).
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Theorem 5.3.2. Let H and H1 be two Banach spaces with H1 compactly
embedded into H, and let P be a closed subset of H bounded in H1. For
every ε ∈ [0, 1], assume that there exists a δ-neighbourhood Oδ(P ) (δ > 0)
of the set P in H1 and a family of maps Ŝε : Oδ(P ) → P satisfying the
following conditions:

(C1) For every x1, x2 ∈ Oδ(P ),

Ŝεx1 − Ŝεx2 = Lε(x1, x2) +Kε(x1, x2), (5.75)

where

||Lε(x1, x2)||H ≤ θ||x1 − x2||H ,
||Kε(x1, x2)||H1 ≤ C||x1 − x2||H ,

with θ < 1
2 , C > 0 independent of ε.

(C2) The family Ŝε is uniformly Hölder continuous with respect to ε, that
is,

sup
x∈Oδ(P )

||Ŝε1x− Ŝε2x||H ≤ C|ε1 − ε2|θ,

with θ < 1
2 , C > 0 independent of ε.

Then, there exists a family of closed sets M̂d
ε ⊂ P , positively invariant for

Ŝε, such that

distH(Ŝnε P,M̂d
ε) ≤ Ce−ωn,

dimHM̂d
ε ≤ C,

distsymH (M̂d
ε1 ,M̂

d
ε2) ≤ C|ε1 − ε2|θ,

where Ŝnε (n ∈ N) is the family of discrete semigroups generated by the iter-
ations of Ŝε.

We observe that the same thesis of Theorem 5.3.2 is also true if we
replace M̂d

ε with M̂d
ε,1 = ŜεM̂d

ε . This abstract result provides a criterion
to obtain a family of exponential attractors, which continuously depends on
the perturbation parameter ε, when we work with a family of maps defined
in the same Banach spaces. Conversely, in our setting, for any σ ∈ (0, σ0]
the semigroup Sσ(t) acts on Eσ0 , which explicitly depends on σ. In order
to overcome this problem, in [21] a scaling argument is introduced and it
allows us to apply the Theorem 5.3.2 in the case of singular perturbations.

For any σ ∈ [0, σ0], the scaling operator Tσ is such that

Tσ : Yσi → Y
σ0
i , Tσ(u, v) = (φ,

√
σσ−1

0 φt), i = 0, 1, 2. (5.76)
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We observe that

(u, v) ∈ Vσ2 ⇒ Tσ(u, v) ∈ Vσ0
2 . (5.77)

The rescaled semigroup is the map Ŝσ(t): Yσ0
i → Y

σ0
i defined by

Ŝσ(t)(u, v) =
{
TσSσ(t)T −1

σ (u, v), σ ∈ (0, σ0],
S0(t)(u, v), σ = 0.

Now we proceed to prove two important preliminary results.

Lemma 5.3.3. For any σ ∈ (0, σ0] and initial data (φ0, φ1) ∈ Yσ2 such that
||(φ0, φ1)||Eσ2 ≤ ρ, there holds

||(φ, φt)(t)||Eσ0
0

= ||Sσ(t)(φ0, φ1)||Eσ0
0
≤ Q(ρ), ∀t ≥ 1. (5.78)

Proof. We consider the solution (φ, φt) corresponding to the initial data
(φ0, φ1). We set v(t) = φt and we read problem (2.14) as follows

σvt + v = −∆2φ− 2∆φ− f(φ). (5.79)

Thanks to Lemma 5.1.4, we have

||φ||H4 ≤ Q(ρ, κ3) ⇒ ||−∆2φ−2∆φ−f(φ)||H0 ≤ Q(ρ, κ3), ∀t ≥ 0. (5.80)

Now we resolve (5.79) and we obtain

v(t) = v(0)e−
t
σ + 1

σ
e−

t
σ

∫ t

0
e
s
σ

(
−∆2φ− 2∆φ− f(φ)

)
ds. (5.81)

Computing the norm, we get

||v(t)||H0 ≤ ||v(0)||H0e
− t
σ + 1

σ
e−

t
σ

∫ t

0
e
s
σ ||∆2φ+ 2∆φ+ f(φ)||H0 ds

≤ σ−
1
2 ||(φ0, φ1)||Eσ0 e

− 1
σ
t + sup

t≥0
||∆2φ+ 2∆φ+ f(φ)||H0

≤ Q(ρ, κ3), ∀t ≥ 1

This imply that
||φt||H0 ≤ Q(ρ), ∀t ≥ 1, (5.82)

where Q is independent of σ. In conclusion we have the so-called boundary
layer estimate

||(φ, φt)||Eσ0
0
≤ Q(ρ), ∀t ≥ 1, (5.83)

where Q may depend on σ0 and κ3 but is independent of σ.
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Lemma 5.3.4. For any 0 ≤ σ2 < σ1 ≤ σ0, the following estimate holds for
t ≥ 1

||Ŝσ1(t)(φ0, φ1)− Ŝσ2(t)(φ0, φ1)||Eσ0
0
≤ Q(ρ)

√
teQ(ρ)t (σ1 − σ2)

1
4 , (5.84)

where (φ0, φ1) ∈ Yσ0
2 such that ||(φ0, φ1)||Eσ0

2
≤ ρ.

Proof. We need to consider the following two steps.
Step 1 We fix 0 = σ2 < σ1 ≤ σ0. We call φ0(t) the solution to problem

(2.1) with φ0(0) = φ0, and we denote (φ, φt)(t) the solution to problem
(2.14) such that (φ, φt)(0) = (φ0,

√
σ−1

1 σ0φ1). We define ψ = φ0 − φ, which
fulfils the parabolic equation

ψt + ∆2ψ + 2∆ψ = f (φ)− f (φ0) + σ1φtt in Ω× (0, T )
ψ = ∆ψ = 0 on ∂Ω× (0, T )
ψ(0) = 0 in Ω

(5.85)

Adding ±2ψ to the left-hand side and testing by ψt, we obtain

||ψt||2H0 + d

dt
Z(t) = R(t), (5.86)

where

Z(t) = 1
2 ||∆ψ||

2
H0 − ||∇ψ||

2
H0 + ||ψ||2H0 ,

R(t) = (f(φ)− f(φ0), ψt) + 2(ψ,ψt) + σ1(φtt, ψt).

Using standard arguments, we get

Z(t) ≥ 1
4 ||∆ψ||

2
H0 − ||ψ||

2
H0 + ||ψ||2H0 ≥

1
4 ||∆ψ||

2
H0 ,

and

R(t) ≤ ||f(φ)− f(φ0)||H0 ||ψt||H0 + 2||ψ||H0 ||ψt||H0 + σ1||φtt||H0 ||ψt||H0

≤ 1
2 ||ψt||

2
H0 + ||f(φ)− f(φ0)||2H0 + 8||ψ||2H0 + 2σ2

1||φtt||2H0

≤ 1
2 ||ψt||

2
H0 +Q(ρ)||ψ||2H0 + 2σ2

1||φtt||2H0

≤ 1
2 ||ψt||

2
H0 +Q(ρ)Z(t) + 2σ2

1||φtt||2H0 .

Collecting these estimates together, we have

d

dt
Z(t) + 1

2 ||ψt||
2
H0 ≤ Q(ρ)Z(t) + 2σ2

1||φtt||2H0 . (5.87)
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In particular we can infer from the Gronwall Lemma and Corollary 5.1.5
that

Z(t) ≤
∫ t

0

1
2σ

2
1||φtt(s)||2H0e

−Q(ρ)(s−t) ds

≤ 1
2σ1e

Q(ρ)t
∫ t

0
σ1||φtt(s)||2H0e

−Q(ρ)s ds

≤ σ1e
Q(ρ)tQ(ρ)t.

Thanks to the above estimate on Z(t), we obtain

||ψ||2H2 = ||∆ψ||2H0 ≤ Q(ρ)teQ(ρ)tσ1. (5.88)

Using the boundary layer estimate, we have

||φt||H0 ≤ C(σ0, κ3), ∀t ≥ 1. (5.89)

In conclusion we can state for t ≥ 1

||Ŝσ1(t)(φ0, φ1)− Ŝ0(t)(φ0, φ1)||2Eσ0
0

= ||(φ, φt)(t)− (φ0, 0)(t)||2Eσ1
0

= ||∆ψ||2H0 + σ1||φt||2H0

≤ Q(ρ)teQ(ρ)tσ1.

Step 2 Let us fix 0 < σ2 < σ1 ≤ σ0 and let (φ1, φ1,t), (φ2, φ2,t) be the
solution to problem (2.14) respectively with initial data (φ0,

√
σ−1

1 σ0φ1) and

(φ0,
√
σ−1

2 σ0φ1). We consider the difference of the two solutions (ψ,ψt) =
(φ1 − φ2, φ1,t − φ2,t), which is the solution to the problem

σ2ψtt + ψt + ∆2ψ + 2∆ψ = f (φ2)− f (φ1)− (σ1− σ2)φ1,tt

in Ω× (0, T )
ψ = ∆ψ = 0 on ∂Ω× (0, T )
ψ(0) = 0 in Ω
ψt(0) = (

√
σ−1

1 σ0 −
√
σ−1

2 σ0)φ1 in Ω.

As in the first case, testing by ψt, we have

||ψt||2H0 + d

dt
Z(t) = R(t), (5.90)

where

Z(t) = σ2
2 ||ψt||

2
H0 + 1

2 ||∆ψ||
2
H0 − ||∇ψ||

2
H0 + ||ψ||2H0 ,

R(t) = 2(ψ,ψt) + (f(φ2)− f(φ1), ψt)− (σ1 − σ2)(φ1,tt, ψt).
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From Lemma 5.1.4, we have in a standard way

Z(t) ≥ σ2
2 ||ψt||

2
H0 + ||∆ψ||2H0 ,

and

R(t) ≤ ||ψt||2H0 + 1
4 ||ψ||

2
H0 + 1

2 ||f(φ2)− f(φ1)||2H0 + (σ1 − σ2)2||φ||1,tt||2H0

≤ ||ψt||2H0 +Q(ρ)||ψ||2H0 + (σ1 − σ2)2||φ1,tt||2H0

≤ ||ψt||2H0 +Q(ρ)Z(t) + (σ1 − σ2)2||φ1,tt||2H0 .

Combining these estimates together and using the Gronwall Lemma, we
obtain

Z(t) ≤ eQ(ρ)tZ(0) +
∫ t

0
(σ1 − σ2)2||φ1,tt||2H0e

−Q(ρ)(s−t) ds. (5.91)

Thanks to Corollary 5.1.5, we can estimate the second term in the right-hand
side in (5.91) as follows∫ t

0
(σ1 − σ2)2||φ1,tt||2H0e

−Q(ρ)(s−t) ds

≤ (σ1 − σ2)2

σ1
eQ(ρ)t

∫ t

0
σ1||φ1,tt||2H0e

−Q(ρ)s ds

≤ (σ1 − σ2)2

σ1
eQ(ρ)tQ(ρ)t.

Using the estimate from below on Z(t) and observing that ψ(0) = 0, we get

σ2||ψt||2H0 + ||ψ||2H2 ≤ 4eQ(ρ)tσ2
2 ||ψt(0)||2H0 + 4Q(ρ)teQ(ρ)t (σ1 − σ2)2

σ1

≤ eQ(ρ)tσ2

(√
σ−1

2 σ0 −
√
σ−1

1 σ0

)2
||φ1||2H0

+Q(ρ)teQ(ρ)t (σ1 − σ2)2

σ1

≤ eQ(ρ)tσ0

(
1−

√
σ−1

1 σ2

)2
||φ1||2H0

+Q(ρ)teQ(ρ)t (σ1 − σ2)2

σ1

≤ eQ(ρ)tσ0
σ1 − σ2
σ1

||φ1||2H0 +Q(ρ)teQ(ρ)tσ1 − σ2
σ1

≤ Q(ρ)teQ(ρ)tσ1 − σ2
σ1

,
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where Q(ρ) may depend on σ0. Applying the boundary layer estimate, we
consequently obtain

||Ŝσ1(t)(φ0, φ1)− Ŝσ2(t)(φ0, φ1)||2Eσ0
0

= ||ψ(t)||2H2 + σ0||
√
σ1σ

−1
0 φ1,t(t)−

√
σ2σ

−1
0 φ2,t(t)||2H0

= ||ψ(t)||2H2 + ||
√
σ1φ1,t(t)−

√
σ2φ2,t(t)||2H0

= ||ψ(t)||2H2 + 2σ2||ψt(t)||2H0 + 2(
√
σ1 −

√
σ2)2||φ1,t||2H0

≤ 2Q(ρ)teQ(ρ)tσ1 − σ2
σ1

+Q(ρ) (σ1 − σ2)

≤ Q(ρ)teQ(ρ)tσ1 − σ2
σ1

, ∀t ≥ 1.

Using also the information from the first case, we can infer that

||Ŝσ1(t)(φ0, φ1)− Ŝσ2(t)(φ0, φ1)||2Eσ0
0

≤ 2||Ŝσ1(t)(φ0, φ1)− Ŝσ0(t)(φ0, φ1)||2Eσ0
0

+ 2||Ŝσ2(t)(φ0, φ1)− Ŝσ0(t)(φ0, φ1)||2Eσ0
0

≤ Q(ρ)teQ(ρ)tσ1, ∀t ≥ 1.

An easy computation shows that

min{σ1,
σ1 − σ2
σ1

} ≤ (σ1 − σ2)
1
2 ,

so we can conclude that

||Ŝσ1(t)(φ0, φ1)− Ŝσ2(t)(φ0, φ1)||Eσ0
0
≤ Q(ρ)

√
teQ(ρ)t (σ1 − σ2)

1
4 , ∀t ≥ 1.

Proof of Theorem 5.3.1. We divide the proof into three steps.
Family of robust exponential attractors: the discrete case

We set H = Yσ0
0 , H1 = Yσ0

2 and P = Vσ0
2 . Fixing δ > 0, we consider

Oδ(P ) = BEσ0
2

(0, R2 + δ) ∩ Yσ0
0 . Thanks to the property of the scaling

operator (5.77) and to Lemma 5.1.4, we can state that exists t∗ > 0 such
that

Ŝσ(t∗) : Oδ(P )→ P, ∀σ ∈ [0, σ0]. (5.92)

Moreover, by means of (5.43), (5.44) and Lemma 5.3.4 we have that

(1) For every (u1, v1), (u2, v2) ∈ Oδ(P ),

Ŝσ(t∗)(u1, v1)− Ŝσ(t∗)(u2, v2)
= L̂σ((u1, v1), (u2, v2)) + K̂σ((u1, v1), (u2, v2)),
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where L̂σ = TσLσ(t∗)T −1
σ , K̂σ = TσKσ(t∗)T −1

σ such that

||L̂σ((u1, v1), (u2, v2))||Eσ0
0
≤ θ||(u1 − u2, v1 − v2)||Eσ0

0
,

||K̂σ((u1, v1), (u2, v2))||Eσ0
2
≤ C||(u1 − u2, v1 − v2)||Eσ0

0
,

with θ ≤ 1
2 and K > 0 independent of σ.

(2) For every 0 ≤ σ2 < σ1 ≤ σ0, the family Ŝσ satisfies

sup
(u1,v1)∈Oδ(P )

||Ŝσ1(u1, v1)− Ŝσ2(u1, v1)||Eσ0
0
≤ Q(R2 + δ, t∗)(σ1 − σ2)

1
4 .

Applying the abstract Theorem 5.3.2, there exists a family of compact sets
Md

σ ⊂ Vσ2 positively invariant for Sσ(t∗) and uniformly bounded in Eσ0
0 such

that

distEσ0 (Sσ(t∗)nVσ2 ,Md
σ) ≤ Ce−ωn, dimEσ0M

d
σ ≤ C, (5.93)

distsymEσ1
0

(Md
σ1 ,M

d
σ2) ≤ C(σ1 − σ2)

1
4 , 0 ≤ σ2 < σ1 ≤ σ0. (5.94)

Family of robust exponential attractors
In a standard way, as well as in chapter four, we define for any σ ∈ [0, σ0]

Mσ =
⋃

t∈[t∗,2t∗]
Sσ(t)Md

σ. (5.95)

Thanks to the properties of Md
σ, joined to the Lipschitz property of the

map (t, (u, v)) 7→ Sσ(t)(u, v), we obtain that for any σ ∈ [0, σ0], Mσ ⊂ Vσ2
is compact, positively invariant,

dimEσ0Mσ ≤ dimEσ0M
d
σ + 1 ≤ C + 1, (5.96)

and for all B bounded in Vσ2

distEσ0 (Sσ(t)B,Mσ) ≤ Ce−ωt, ∀t ≥ 0. (5.97)

Since the family ofMd
σ is bounded in Vσ2 , we can infer from the boundary

layer estimate (5.78) that also the family of Mσ is uniformly bounded in
Eσ0

0 . Finally, using (5.94), (5.2) and 2.2, we obtain

distsymEσ1
0

(Mσ1 ,Mσ2) ≤ C(σ1 − σ2)
1
4 , 0 ≤ σ2 < σ1 ≤ σ0. (5.98)

Enlarging the basin of attraction
To conclude the proof, we need to ensure thatMσ exponentially attracts any
bounded set of Eσ0 . This property easily follows from (5.2), the properties
of Vσ2 ,Mσ and the transitivity property of the exponential attraction.
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Conclusions

The present work provides a mathematical analysis of the Swift-Hohenberg
and the modified Swift-Hohenberg equations. The classic model was origi-
nally introduced by Swift and Hohenberg to describe the effects of thermal
fluctuations on the convective instability in Rayleigh-Bénard experiment.
Subsequently, this equation has become a paradigm in the study of pattern
formation. The Swif-Hohenberg equation has also been recently employed
to model the evolution from an unstable to a metastable or stable state in
phase transition. In particular, the original model has been enriched with
an inertial term (i.e. a second order-time derivative) in order to predict fast
degrees of freedom.

A theoretical analysis of qualitative properties of the two models is pro-
posed in this thesis. In the first part we formulate and prove theorems of
existence, uniqueness and continuous dependence from initial data. We are
able to deal with a more generic nonlinear term than the physical relevant
one. In particular, we do not require any conditions to the derivatives of the
nonlinear term in addition to the continuity. Furthermore, the two models
present an intrinsic difference: the parabolic nature of the Swift-Hohenberg
model implies the regularization of the solution in finite-time, which does
not appear in the model with the inertial term. The second part is devoted
to study the long-time behavior of the solutions following the theory of dissi-
pative dynamical system in infinite dimension. The well-posedness allows us
to define the strongly semigroup map in suitable phase spaces of the models
concerned. Reading the equation as a dynamical system, we demonstrate
the existence of the global attractor and the exponential attractor. Also, we
interpret the modified Swift-Hohenberg equation as a singular perturbation
of the Swift-Hohenberg equation and we discuss the robustness of such in-
variant sets with respect to the perturbation parameter. The main results
regard the upper semicontinuity of the global attractor and the construc-
tion of a family of exponential attractors which are Hölder continuous with
respect to σ.

In closing, although we provide a wide dissertation of the main objects to
describe the long-time behavior within the theory of dissipative dynamical
system in infinite dimension, different ways of investigation may be consid-
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ered in a future work. We may establish the finite-dimensionality of the
global attractor related to the physical parameters or study the convergence
of a single solution to an equilibrium point. It would be interesting to con-
sider a nonlocal version of the Swift-Hohenberg equation, which is proposed
in recent papers, or the Swift-Hohenberg equation with advection term to
predict spiral chaos in Rayleigh-Bénard convection.
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