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Abstract
In the present work we describe and analyze the Cahn-Hilliard-Oono (CHO)
equation (also known in literature as Ohta-Kawasaki) coupled with the so-called
dynamic boundary condition.

CHO is a variant of the famous Cahn-Hilliard (CH) equation with the addition
of a reaction term: {

∂tu+ σu = ∆w in Ω, t > 0
w = F ′(u)− ε∆u in Ω, t > 0.

This fourth order, nonlinear PDE models the evolution in time of a binary
mixture composed, for instance, of reacting components or diblock copolymers.
Here u represents the order parameter, which is defined as the difference between
the relative concentration of the two substances, w is the chemical potential,
and F a double-well potential.

The above system can be coupled with different boundary conditions , the
homogeneous Neumann being the most common choice for both u and w. How-
ever, it has not yet been studied with the dynamic boundary condition

1
ω
∂tu = εΓ∆Γu+ σΓu− ε∂nu− F ′Γ(u) on Γ, t > 0

where Γ = ∂Ω. The word dynamic refers to the fact that the time derivative
of u appears explicitly in its formulation, thus making it a nonlinear parabolic
PDE on the boundary. This choice is justified by physical and mathematical
motivations explained in the text.
CHO with the above boundary condition is the system which is studied in this
thesis.

The mathematical model thus obtained is particularly difficult to manage since,
unlike the standard CH, the conservation of u is lost; moreover, the PDE on
the boundary brings a large number of terms which have to be treated in an
appropriate way. However, under a relatively small number of hypothesis, the
following results are proven:

• Existence and uniqueness of a weak solution
• Continuous dependence of the solution on the initial data
• Existence of a connected global attractor

In addition to these theoretical aspects, a numerical analysis is made; assuming
some stronger conditions (which are acceptable in the numerical setting) some
error estimates for a P1 finite elements discretization are proven.
Finally, using the numerical results, various finite element simulations are con-
ducted, with an implicit Euler time discretization; as the resulting system is
nonlinear, a Newton method is implemented to solve the problem at each time
step.
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Sommario
In questa tesi viene descritta ed analizzata l’equazione di Cahn-Hilliard-Oono
(CHO) (conosciuta in letteratura anche con il nome di Ohta-Kawasaki) con la
cosiddetta condizione al bordo dinamica.

CHO è una variante della nota equazione di Cahn-Hilliard (CH) con l’aggiunta
di un termine di reazione:{

∂tu+ σu = ∆w in Ω, t > 0
w = F ′(u)− ε∆u in Ω, t > 0.

Questa EDP non lineare del quart’ordine modellizza l’evoluzione nel tempo
di una miscela binaria composta, ad esempio, da elementi soggetti a reazione
chimica o da diblocchi di copolimeri. u rappresenta il cosiddetto parametro
d’ordine, ovvero la differenza tra le concentrazioni relative delle due sostanze,
w è il potenziale chimico, e F un potenziale a doppio pozzo.

Il sistema sopra riportato può essere abbinato a diversi tipi di condizioni al
bordo, ed una scelta di tipo Neumann omogeneo per u e w è la più comune.
Tuttavia, non è stato ancora studiato con la condizione al bordo dinamica

1
ω
∂tu = εΓ∆Γu+ σΓu− ε∂nu− F ′Γ(u) on Γ, t > 0

dove Γ = ∂Ω. Il termine dinamica si riferisce al fatto che la derivata temporale
di u appare esplicitamente nella sua formulazione, rendendola a tutti gli effetti
una EDP parabolica, non lineare, sul bordo. Questo tipo di scelta è giustificato
da motivazioni fisiche e matematiche discusse nel testo.
CHO con tale condizione al bordo rappresenta il sistema che viene analizzato
in questa tesi.

Il modello matematico così ottenuto è particolarmente difficile da trattare poiché
in questo caso, a differenza di CH standard, la quantità u non è conservata; in-
oltre, l’EDP sul bordo presenta un grande numero di termini che devono essere
trattati in modo adeguato. Tuttavia, assumendo un numero relativamente lim-
itato di ipotesi, i seguenti risultati sono dimostrati:

• Esistenza ed unicità di una soluzione debole
• Dipendenza continua della soluzione dai dati iniziali
• Esistenza di un attrattore globale connesso

Oltre a questi aspetti teorici, viene condotta un’analisi numerica; sotto alcune
ipotesi più forti (che sono comunque accettabili nell’ambito numerico) alcune
stime dell’errore per una discretizzazione ad elementi finiti di tipo P1 sono
dimostrate.
Infine, sfruttando i risultati numerici, varie simulazioni ad elementi finiti sono
effettuate, con una discretizzazione in tempo di tipo Eulero implicito; poiché il
sistema così ottenuto è non lineare, un metodo di Newton è stato implementato
per risolvere il problema ad ogni passo temporale.
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Chapter 1

Introduction

The study of the evolution in time of incompatible binary mixtures is important
in many fields of science and industrial processes; one can observe such phenomena
in both nature and human driven experiments, and understanding its features is
advantageous in different situations. The mathematical models which try to ex-
plain and predict the behavior of such systems are mainly based on the concept
of an initially homogeneous alloy, which evolves into an unstable state when some
parameter (usually temperature) is changed. The two components of the mixture
are called phases, and this process is in turn known as phase separation. Often, this
instability eventually leads to the formation of patterns - structures periodically
repeated in space - which on the other hand strongly influence the macroscopical
properties of the resulting material. The analysis of these models presents various
intrinsic difficulties, and thus make it intriguing from a mathematical viewpoint too.

In this chapter we first present a more detailed phenomenological description of the
problem, and then introduce the Cahn-Hilliard (CH) equation, which is probably
the most known mathematical model, with its many variants, for phase separation.
Next, we discuss the formulation of the Cahn-Hilliard-Oono (CHO) equation, which
can be considered as a perturbation of CH, particularly suited to describe the phe-
nomenon when the alloy is composed of diblock copolimers or reacting substances.
Finally, to complete the description of the problem that we analyze in the subsequent
chapters, we discuss how these equations can be coupled with boundary conditions,
which take differently into account the interaction of the mixtures with the wall.

1.1 Phase separation in binary alloys
Consider a mixture of two incompatible substances A and B, which is homogeneously
distributed and isothermal. Under certain circumstances, namely if the temperature
is above a critical threshold Tc, this configuration is stable; however, if suddenly
cooled down and kept at T < Tc, the initially (macroscopically) homogeneous alloy
evolves in a way such that A-rich and B-rich regions appear and grow. We can better
describe what happens with the aid of the phase diagram in Figure 1.1, which is in
good agreement with experimental evidence (see [5], [6]).
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Figure 1.1: Phase diagram with coexistence and spinodal curves

On the x-axis the relative concentration of one of the two substances is represented,
while temperature is on the y-axis where the critical threshold Tc is also highlighted.
The state of the mixture is then described by the different locations on the graph
relatively to the two curves.

The coexistence curve separates the diagram in regions where a homogeneous dis-
tribution is the only stable configuration (above) and where heterogeneous mixtures
are allowed (under); on the points along the curve the mixed and unmixed states
are in equilibrium with each other.
On the other hand, the spinodal curve divides the area under the coexistence curve
in regions where the mixed configuration is metastable (that is, stable with respect
to small perturbations) and unstable. The distinction in these two cases is due to
a difference in the free energy of the configuration: the central region is character-
ized by the spinodal decomposition phenomenon, which is spontaneous since it is
an unstable process; on the contrary nucleation happens in the metastable regions,
but only if an external source is provided which make it possible to get over a local
maximum in the free energy (see [7], where a description of the multicomponent case
can be found too).

The evolution in the spinodal decomposition region is that of wave-like concentra-
tion fluctuations which ultimately form zones of the two phases, with a subsequent
coarsening; the process comes to an end when the concentration lays on the inter-
section of the spinodal curve with the line T = T .
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As of nucleation, homogeneous A-rich and B-rich zones slowly aggregate in bubble-
like structures and grow (Figure 1.2 shows the difference between the two phenom-
ena). Here the (eventually asymptotic) final configuration is that of two approx-
imately homogeneous single phase regions, and the concentration is given by the
intersection of the coexistence curve with the line T = T .

For more information about the whole process see e.g., amongst a vast literature,
[8] and [9].

Figure 1.2: A numerical simulation taken from [1] shows the difference
between spinodal decomposition (left) and nucleation (right)

1.2 The Cahn-Hilliard equation
The theory of patterns as emerging from bifurcations of an homogeneous state goes
back to the work of Alan Turing in 1952 [10], but it was only six years later that
Cahn and Hilliard proposed an energy approach in [11], later extended by Fisk and
Widom in [12], with the aim of studying the spinodal decomposition process as that
of an interfacial problem; we will now briefly describe their work.

If we consider a bounded domain Ω ⊂ Rd filled with components A and B presenting
different properties, we can define their relative mass fraction for every x ∈ Ω as
uA(x) and uB(x), assuming that they are non-uniform, were clearly ui : Ω → [0, 1]
and uA(x)+uB(x) = 1. Choosing one of the two functions and relabeling it as u(x),
Cahn and Hilliard, under the additional hypothesis that the mixture is isothermal
and that the molar volume is uniform and independent on pressure, proposed that
the system goes towards the minimization of the following energy functional

E(u) =
∫

Ω

(
ε2

2 |∇u|
2 + F (u)

)
, (1.1)

F (u) being the Helmholtz free energy density (of a single component)

F (u) = 2kBTcu(1− u) + kBT (u ln(u) + (1− u) ln(1− u)).

Here kB is the Boltzmann constant, T and Tc the temperature and its aforemen-
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tioned critical threshold. With this description in mind, it is not surprising that
Tc plays a crucial role in the process: if T ≥ Tc, the behavior is trivial since F (u)
presents a single global minimum in u = 1

2 , and therefore the minimization of (1.1)
is obtained with a homogeneous distribution u(x) = 1

2 ∀x ∈ Ω. On the other hand,
if T < Tc, a physically relevant double-well appears in the function’s graph.

The first term in (1.1) takes into account the interfacial nature of the phenomenon:
it clearly increases the energy in those regions of the space where both A and B
are present (and thus u possess a high gradient). However, even if the substances
separation looks sharp from a macroscopical point of view, there is experimental
evidence of an intermediate, diffusive, stripe; the term ε2 is then such that ε is pro-
portional to the stripe’s thickness.

In the mathematical treatment of the problem, one usually uses as a variable the
so-called order parameter u(x) = uA(x) − uB(x), such that u : Ω → [−1, 1]. The
name is justified by the fact that it somehow measures the configuration’s regularity,
its extreme values representing the situation with a highest degree of order.
It can be easily shown that with this substitution, up to a multiplicative constant
which therefore changes nothing in the description of the problem, (1.1) holds un-
modified, while F (u) becomes

F (u) = −c0u
2 + c1((1 + u) ln(1 + u) + (1− u) ln(1− u)) c0 > c1 > 0, (1.2)

as we fixed T < Tc. Recalling now the hypothesis that the process minimizes (1.1)
over time, we get a differential description of the phenomenon as

∂tu+∇ · J = 0 in Ω.

where the flux J is defined by

J = −M(u)∇
(
δE(u)
δu

)
= −M(u)∇

(
F ′(u)− ε2∆u

)
,

The function M(u) is the mobility of the substances (which measures how much the
molecules are free to move) and is of the form (see [13])

M(u) = (1− u2)kM(u) k ≥ 1, M ∈ C1([−1, 1],R+
0 ). (1.3)

The equation is then usually decoupled, and finally written as

{
∂tu = ∇ · (M(u)∇w) in Ω
w = F ′(u)− ε2∆u in Ω,

(1.4)
(1.5)

where w represents the chemical potential, a form of potential energy which, at every
time t, depends on the mixture’s configuration. System (1.4)-(1.5) represents the
generic formulation of CH: clearly, as it is an evolution (with respect to u) PDE, an
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initial datum u0 is needed, that is, the distribution of the substances at t = 0.
Regarding the boundary conditions, we need two of them since the system is of the
fourth order: a first, natural, choice is

n ·M(u)∇w = 0 on Γ, (1.6)

where Γ = ∂Ω and n is the outer normal vector; in fact, integrating (1.4) over Ω
and applying the divergence theorem we obtain

d
dt

∫
Ω
u = 0,

that is, the conservation of u holds. As of a boundary condition for u, a Neumann
homogeneous choice

∂nu = 0 on Γ,

is the most common; however, we will discuss later the alternative proposed in this
text.

Figure 1.3: A comparison of the logarithmic potential (1.2) with c0 = 1,
c1 = 1

8 with the polynomial potential F (s) = 1
4 (s− 1)2

It is worth notice that system (1.4)-(1.5), although showing a deep phenomenological
explanation, is very hard to treat mathematically because of the terms F (u) and
M(u). One typically has to choose amongst the following alternatives concerning
these nonlinearities:

• The potential F (s) is called singular when defined as in (1.2), and regular
when it is substituted with a proper approximation, which avoids the fact
that lim

|s|→1
F (s) = +∞. In order for the approximation to be significant, many
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authors usually require that it still shows a double-well; moreover, the local
minima should coincide with the pure phases (see [14] and references therein).
A common choice is an even-degree polynomial with a positive leading coeffi-
cient, the case F (s) = 1

4(s2 − 1)2 being by far the most present in literature.
A comparison is shown in Figure 1.3.
We shall remark that in such case the solution of the problem (when it exists)
is no longer guaranteed to assume values in (−1, 1), as no maximum principle
holds.

• A similar difficulty regards the mobility M(u): it is indeed called degenerate
if in the form (1.3). Here the problem is that M(−1) = M(1) = 0, thus
the pure phases should be characterized by zero mobility. However, to sim-
plify the treatment, it is often assumed - as we will do from now on - that
M(u) = constant. See [13], [15] for an analysis of the CH equation with de-
generate mobility.

The literature on the argument is extremely vast, as different combinations in the
choice of F (u), M(u) and boundary conditions, in addition to the many variants
of (1.4)-(1.5), lead to a deeply different treatment of the problem. With the above
boundary conditions for u and w, we cite as references the articles [16], [17], [18],
[19], [20], [21].

We stated by the beginning of the chapter that phase separation effects are present
in different scopes. We will later discuss some industrial applications but, for the
time being, we cite two examples of natural phenomena of this kind which can be
modeled with the aforementioned equations.

Regarding the first one, in [22], Tremaine suggests that the irregular structure of
Saturn’s rings could be explained using a non-Newtonian fluid model coupled with
the CH equation. On the other hand, in a recent article [2], the authors found that
the spatial patterns in the distribution of mussels can be described with a CH model
(see Figure 1.4).

Figure 1.4: Spatial distribution of mussels in an experimental setting,
compared with a numerical simulation of the model presented in [2]
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1.3 The Cahn-Hilliard-Oono equation
We now focus on a particular case of phase separation, that occurs when the mix-
ture is composed of diblock copolymers; these are organic binary chains, composed
of two homogeneous linear subchains covalently joined with each other, e.g. polyiso-
prene and polystyrene. Here, the thermodynamical incompatibility between the two
elements composing the subchains leads to phase separation, which is however inhib-
ited at big scales because of the covalent bond. As a result, we observe a multitude
of nanostructures which rise from this competing short and long range interactions
(see Figure 1.5).

Figure 1.5: Diblock chains made of type A and B polymers and their
distribution in the domain (image taken from [3])

Trying to model this phenomenon as a minimization problem over all the possible
configurations is an incredibly hard task: using the statistical physics properties
of polymer chains, one has to solve a highly nonlinear and nonlocal optimization
problem. A different approach is given by the so-called self-consistent field theory
(SCFT) [23], [24]; the models belonging to the SCFT, instead of considering all
the interactions between the particles in a system, assume that the global effect
can be though as that of a single, averaged, force field, and this is why SCFT is
also called mean field theory. The power of these theory is clearly that of reducing
a many-body problem to a one-body-problem: it has been however reported that
this approximation could be inadequate in some cases, such as that of neutral poly-
mers or polyelectrolyte solutions in dilute and semidilute concentration regimes [25].

A much simpler model was introduced by Ohta and Kawasaki in [26]; the authors
proposed a Landau-type expansion in terms of monomer densities, and thus derived
a free energy functional which is nothing but a perturbation of (1.1) with the addi-
tion of a non-local Coulombic type term, as showed in [27]. Moreover, Choksi and
Ren proved in [28] that it can be obtained from SCFT by linearization about the
disordered state. The functional reads

H(u) =
∫

Ω

(
ε2

2 |∇u|
2 + F (u)

)
+ σ

2

∫
Ω

∫
Ω
G(x,y)(u(x)−m)(u(y)−m), (1.7)

where m ∈ R. G(x,y) is the Green’s function for −∆ in Ω with periodic or homo-
geneous Neumann conditions, i.e. the solution of

−∆G(x,y) = δ(x− y) in Ω.
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In order to explain the meaning of the number m, we proceed as in the previous
section and get the differential equation

{
∂tu+ σ(u−m) = ∆w in Ω
w = F ′(u)− ε2∆u in Ω.

(1.8)
(1.9)

We see that the perturbation led to an additional reaction term; moreover, if we
consider again the boundary condition (1.6), what we get now is

d
dt

∫
Ω
u = −σ

∫
Ω

(u−m),

so that the solution of this ODE is

〈u〉 = m+ 〈u0 −m〉e−σt,

where 〈u〉 is the spatial average of u in Ω. As we are considering σ > 0 (the case
σ = 0 being the standard CH equation), we clearly see that if 〈u0〉 6= m, the mean
value of u goes exponentially fast to this value.

In the case of diblock copolymers, m = 〈u0〉 by definition. There is no global effect
on the quantity of the two molecules, as no chemical reaction occurs between them;
therefore the effect of σ is that of contrasting the formation of big structures (see
Figure 1.6).
For more information on this model and how it is derived, see e.g. [28], [29], [3], [30];
some mathematical works of interest on the CHO equation are [31], [32].

Figure 1.6: A numerical simulation which compares the pattern evolution
over time using CHO with σ = 0 (first row) and σ > 0 (second row). The
average of the solution is fixed, and the formation of big structures is
clearly inhibited in the second case (image taken from [3])

CHO can also be applied to phase separation phenomena not related to diblock
copolymers; this is the case of binary alloys in which a chemical reaction between
the two elements actually happens, together with the spinodal decomposition. In
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this setting, m represents the global equilibrium for the reaction and (unless u0 is
chosen such that 〈u0〉 = m) the mean value decays in time towards this value, i.e.
〈u(t)〉 → m as t → ∞. We will discuss this very important application in the fol-
lowing section.

We already pointed out the ubiquity of CH models, as they are used in a great variety
of different fields. CHO-based equations are not an exception: some very interest-
ing results have been obtained by Bertozzi et al. (see [33], [34]), which exploited
a modified version of such equations in order to develop a filter for the inpainting
(i.e., the filling of missing fragments) of binary images. Their algorithm proved to
be good enough to be patented in the US in 2010.

1.4 An application of CHO: control of chemical reaction
in phase separating alloys

Consider a mixture of substances A and B, as we did in the previous sections;
moreover, now the two molecules undergo the following chemical reaction

A Γ1−⇀↽−
Γ2

B, (1.10)

where Γ1 and Γ2 represent the rate at which such reaction occurs, respectively for-
ward and backward: the presence of this effect, in addition to the phase separation,
clearly alters the way in which A and B are spatially distributed. Actually, the re-
action plays the role of a competing effect in contrast with spinodal decomposition
and coarsening, and it has been observed in numerical experiments that the process
may converge towards a steady state (see [4], [35]).
Glotzer et al. showed in [36] that in this case the following equation can be used to
describe the phenomenon

∂tuA = Λ∆
(
δE(uA)
δuA

)
− Γ1uA + Γ2(1− uA),

which can be rewritten, as before, relatively to the concentration difference; this
exactly leads to the CHO system∂tu = ∆w − (Γ1 + Γ2)

(
u− Γ1 − Γ2

Γ1 + Γ2

)
in Ω

w = F ′(u)− ε2∆u in Ω.

While linear analysis of (1.4)-(1.5) predicts an exponential growth of concentration
fluctuations, it has also been shown that the concurrent presence of (1.10) induces
a cutoff of the growth rate. Nonetheless numerical simulations show that this effect
is present even in the long times, when the nonlinear results are important. Indeed,
in the case Γ1 = Γ2 = Γr, the steady state structure size Req was found in [4] to be
asymptotically proportional to a power of Γr, that is

Req ∝
( 1

Γr

)1/3
.
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This phenomenon can also be simulated (see Figure 1.7) by a Monte Carlo approach;
in this case, the emerging pattern can be interpreted as the result of the competition
between pexch and pr, where

pexch = e−∆E/kBT

1 + e−∆E/kBT
,

is the acceptance probability for the exchange of two nearest-neighbors molecules,
and ∆E = Efinal − Einitial is the difference in the system’s energy before and af-
ter the exchange. On the other hand, pr represents the probability that a reaction
between two nearest-neighbors molecules of type A and B eventually happens, and
should be a value proportional to Γr.

It is evident from Figure 1.7 that using this method leads to the same conclusions
as in the case of diblock copolymers; the size of the structures emerging from phase
separation is clearly strongly influenced even by a small concurrent reaction.

Figure 1.7: Monte Carlo simulation of pattern formation in a lattice
following a quench to T < Tc, for a reaction probability of: (a) pr = 0,
(b) pr = 10−4, (c) pr = 5 × 10−4. In all three cases, t = 3 × 105 (image
from [4])

The chance of acting on the chemical reaction rate is a very powerful tool; the tun-
ability of the patterns gives a great way to control the final morphology of phase
separated materials, which in turn gives raise to different properties of the derived
alloy. Some applications in material sciences, with industrial consequences, are the
production of polymer mixtures with induced isomerization, and the production of
type-I superconductors with the aid of an external electric field. This kind of setting
is of great interest in the scientific community, and has been studied, for instance,
in [37], [38], [39].

The above arguments can also be applied to other pattern formation type phe-
nomena: for instance, in [40], numerous experiments involving metal-ion catalyzed
oxidation of organic compounds by bromate ions are discussed; here the result is
an oscillatory reaction which goes under the name of Belousov-Zhabotinsky. More
information about the pattern formation with concurrent reaction (and many other
settings) can be found in [40], [41] and references therein.
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1.5 Boundary conditions for phase separation
models

We intentionally avoided a deep discussion about boundary conditions on u for prob-
lems (1.4)-(1.5) and (1.8)-(1.9). We showed that a Neumann homogeneous condition
on w is more than acceptable from a physical viewpoint, as it leads to mass con-
servation if no reaction is present; however, a similar condition on u should not be
taken lightly.

Taking the assumption that ∂nu = 0 on Γ, as most works do, means that the gradi-
ent of u must be parallel with respect to the border. In other words, the interface
must be orthogonal to Γ, and this may happen to be a strong hypothesis.
Instead, we now present (and give a brief justification of) a different condition which
goes under the name of dynamic boundary condition, the word dynamic referring to
the fact that the time derivative ∂tu|Γ appears explicitly on the border. We use the
same arguments showed in [42].

Given a regular enough function v on Ω, (consider for instance Sobolev spaces of
increasing index), we know that its trace on the border is smooth too. Thus, one
may denote the total mass not just by 〈v〉, but considering to this aim also the
contribution on Γ (if v|Γ is at least in L1(Γ)); in other words one may define it as∫

Ω
v dm :=

∫
Ω
v dΩ +

∫
Γ
v w̃ dΓ,

where w̃ is some regular weight function which balances the contribute from Γ. It
can be easily shown that dm is equivalent to the standard Lebesgue measure dΩ×dΓ.
As we are admitting that some part of the mass is present on the border, it makes
sense to take into account a contribution from Γ on the free energy defined in the
previous sections. In the CH case, the new total free energy reads

Etot(u) = E(u) + EΓ(u) =
∫

Ω

(
ε2

2 |∇u|
2 + F (u)

)
+
∫

Γ

(
ε2

Γ
2 |∇Γu|2 + FΓ(u)

)
,

where ∇Γ is the surface gradient and FΓ a potential, which may be defined as F . If
we now evaluate the first variation of the total energy with respect to u and test it
against a test function z, we get (formally operating in a suitable function space)〈

δEtot(u)
δu

, z

〉
=
∫

Ω

(
−ε∆u+ F ′(u)

)
z +

∫
Γ

(
−εΓ∆Γu+ ε∂nu+ F ′Γ(u)

)
z,

∆Γ being the Laplace-Beltrami operator. We now assume that on Γ the density re-
laxes at a rate which is proportional to the part of the flux belonging to the border
(as we did when we assumed the mobility to be constant). The resulting PDE is the
boundary condition we were looking for

1
ω
∂tu = εΓ∆Γu− ε∂nu− F ′Γ(u) on Γ, ω > 0. (1.11)
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The formulation of (1.11) is relatively recent [43], but it has already been widely
studied as a way to take into account non-permeable walls, especially with the CH
equation (see [44], [45], [46], [47]). Moreover, it has also been coupled with the
Caginalp system [48] in [49], and the Allen-Cahn equation [50] in [51], two phase
separation models closely related to CH.
However, to the author’s knowledge, the problem of using such a boundary condition
with the CHO variant has not been studied yet; in such a case, as the reaction phe-
nomenon should be present on Γ too, we propose the following modification of (1.11)

1
ω
∂tu = εΓ∆Γu+ σΓu− ε∂nu− F ′Γ(u) on Γ, ω > 0. (1.12)

From a practical point of view this condition is not a new one, as it is the same
as in, e.g., [45]; however, when present, the term σΓu is considered to come from
the nonlinearity fΓ, and made explicit for technical reasons. The main difference
with the case we are considering is that this constant should be of the same order
of magnitude of σ: we however allow it to be different to account the chance that
the boundary boosts or inhibits the reaction.

1.6 CHO with dynamic boundary conditions
We now have all the elements to state the problem which is under analysis in this
paper. We thus use (1.8)-(1.9) together with the boundary conditions (1.6), (1.12)
and write 

∂tu+ σu−∆w = 0 in Ω, t > 0
w = −∆u+ F ′(u)− g in Ω, t > 0
∂nw = 0 on Γ, t > 0
∂tu+ ∂nu−∆Γu+ F ′Γ(u) + σΓu = gΓ on Γ, t > 0
u|t=0 = u0 on Ω = Ω ∪ Γ

We also added the source terms g and gΓ in order to consider a more generic for-
mulation; we moreover set the parameters other than the reaction ones as m = 0,
ε = εΓ = ω = 1 without loss of generality.

The plan of the thesis is the following:

• Chapter 2 is devoted to the proof of well-posedness of the above system; un-
der some assumptions on the data the existence, uniqueness and continuous
dependence on the initial datum are proven.

• In Chapter 3 we present a short introduction to the analysis of long time
behavior for dissipative dynamical systems, and some theoretical results are
then applied to our problem.
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• In Chapter 4 a Galerkin P1 finite elements discretization is formulated, and
some error estimates are proven; furthermore numerical simulations are exe-
cuted with the aid of the FreeFem++ software, with various choices for the
problem’s parameters. These simulations are then discussed and compared
with results found in literature.

• Conclusions and future work contains a brief summary of the results obtained,
and some aspects of interest not covered in this work that might be explored.

• Appendix A contains the main results used throughout the paper, regarding
both functional and numerical analysis; Appendix B contains the FreeFem++
code used for the simulations.
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Chapter 2

Well-posedness

In this chapter, we show that the CHO equation, coupled with the dynamic bound-
ary condition (1.12), is well posed. This means proving that for each initial datum
u0 there corresponds a unique solution to the problem, and that this solution is sta-
ble, in a suitable space, under small perturbations of u0. These results are essential
for both the study of the asymptotic behavior and the numerical analysis.

For the proof of existence we will use a Faedo-Galerkin method, following the same
arguments used in [44]; we will then prove the continuous dependence on the initial
datum, and the uniqueness as an immediate consequence.

2.1 Classical formulation and hypothesis
We recall the classical formulation of the problem we want to analyze

(CHO-D)



∂tu+ σu−∆w = 0 in Ω, t > 0
w = −∆u+ f(u)− g in Ω, t > 0
∂nw = 0 on Γ, t > 0
∂tu+ ∂nu−∆Γu+ fΓ(u) + σΓu = gΓ on Γ, t > 0
u|t=0 = u0 in Ω

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)

where Ω ⊂ Rd, (d = 2, 3) is a smooth (at least of class C2) and bounded domain,
and Γ is its boundary; T ∈ (0,+∞) will represent, from now on, the final time. We
also set f = F ′ and fΓ = F ′Γ.

We will use a regular potential as an approximation of the logarithmic one; f will
therefore be, as explained in the introduction, an odd-degree polynomial with posi-
tive leading coefficient

f(s) =
2p−1∑
j=1

ajs
j , p ∈ N ∩ [2,+∞), a2p−1 > 0, (2.6)

where the classical regular approximation is obtained with p = 2 and coefficients
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a3 = 1, a2 = 0 and a1 = −1 (see, e.g., [31], [52] and [53]). We remark that this
definition, in particular, implies that f is dissipative

lim inf
|s|→∞

f ′(s) > 0,

and as a consequence, due to the regularity of the potential, there must exist a
constant c0 ≥ 0 such that

f ′(s) ≥ −c0, ∀s ∈ R. (2.7)

We observe that F is thus given by

F (s) =
∫ s

0
f(r)dr =

2p∑
j=2

bjs
j + CF , CF ∈ R,

where clearly aj−1 = jbj , and the constant CF is given.

It is not clear yet if (CHO−D) possesses a solution, without growth restrictions on
f . So we will ask that, additionally, one of the following alternatives holds

p = 2, if d = 3,
or (2.8)

p ∈ N ∩ [2,+∞), if d = 2.

We remark that these requirements are in agreement with the growth condition on
f presented in many works dealing with a regular potential, such as [42], [44], [54].

Concerning the nonlinearity fΓ, we will assume that it is of the form

fΓ(s) =
2q−1∑
j=1

aΓ,js
j , q ∈ N ∩ [2,+∞), aΓ,2q−1 > 0, (2.9)

from which follows, in particular, that fΓ too is dissipative; it hence holds

f ′Γ(s) ≥ −c0,Γ, ∀s ∈ R, (2.10)

for some nonnegative c0,Γ. Finally, we ask for the following minimal requirements
on data

σ > 0, σΓ > 0, (2.11)
g ∈ H1(0, T ;L2(Ω)), gΓ ∈ H1(0, T ;L2(Γ)), (2.12)

u0 ∈ H1(Ω), u0|Γ ∈ H1(Γ). (2.13)

Conditions (2.11) do not represent a real limitation, due to the symmetry of the
order parameter u (see the Introduction); we however exclude the case σ = 0, since
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it has already been widely studied in literature. On the other hand, the case with
σΓ = 0 could be treated obtaining a term of the form λΓu, λΓ > 0, simply modifying
the nonlinearity fΓ (such a procedure does not alter its definition).
Assumptions (2.12) are essential for the well-posedness to be established (as will be
clear from the proof of existence of a discretized solution); we finally remark that
(2.13) are necessary for the formulation of the problem to make sense at t = 0.

Arguing now similarly as we did when we presented the CHO equation in the In-
troduction, we multiply (2.1) by 1

|Ω| and integrate over Ω; we then immediately see
(due to (2.3)) that

d
dt〈u〉+ σ〈u〉 = 0, (2.14)

where

〈φ〉 = 1
|Ω|

∫
Ω
φ ∀φ ∈ L1(Ω),

represents the mean value of function φ in Ω. The solution of ODE (2.14) is

〈u〉 = 〈u0〉e−σt, (2.15)

that is, the spatial average of the solution decays to 0 exponentially fast.
As already pointed out, if σ = 0, (CHO−D) becomes the well known CH equation
endowed with dynamic boundary conditions; in this case, (2.15) simply tells us that
the mean value of function u is fixed over time (that is, the mass is conserved).

Dealing with a function whose average is not fixed presents some intrinsic difficul-
ties; it will be clear from the estimates that we will later develop that we need to
work with a null mean function, defined as

u(t) := u(t)− 〈u(t)〉 = u(t)− 〈u0〉e−σt ∀t ≥ 0. (2.16)

This operation will prove to be essential, since it allows us to use many of the results
collected in Appendix A; as an example, the well-known Poincaré inequality with
its consequences. So, we use (2.16) to write (CHO−D) in the equivalent form



∂tu+ σu−∆w = 0 in Ω, t > 0
w = −∆u+ f(u)− g in Ω, t > 0
∂nw = 0 on Γ, t > 0
∂tu+ ∂nu−∆Γu+ fΓ(u) + σΓu = gΓ + (σ − σΓ)〈u0〉e−σt on Γ, t > 0
u|t=0 = u0 − 〈u0〉 in Ω

(2.17)
(2.18)
(2.19)
(2.20)
(2.21)
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Remark 2.1 The last term in (2.20) is justified by the fact that (2.16) implies

∂tu = ∂tu− σ〈u0〉e−σt

and
σΓu = σΓu+ σΓ〈u0〉e−σt

while the other terms hold unchanged with respect to (CHO−D) for obvious rea-
sons. We thus made explicit how the difference between the reaction parameters in
Ω and Γ influences the problem, as it results in what can be seen as an additional
source term on Γ, which vanishes exponentially fast as time goes to infinity.

Remark 2.2 By definition we have

∂tu+ σu = ∂tu+ σu, (2.22)

so, as a trivial consequence which will be useful in obtaining some of the a priori
estimate, it holds

∂tu = ∂tu+ σ(u− u). (2.23)

Remark 2.3 We point out a few rules that we will be following:

• As already did in the formulation of (2.17)-(2.21), we take for granted that
u = u+ 〈u0〉e−σt; all of the theorems and formulations will refer to u through-
out this chapter, the only exception being that of the continuous dependence
on initial data. It is however trivial to show that, by a simple translation,
every result is inherited by u.

• We will make use (especially in the a priori estimates) of various constants;
when the dependence on the problem’s parameters can be ignored, we will use
the generic letters c, C, possibly numbered. Otherwise, we will add the param-
eter as a subscript when we want to emphasize this dependence, such as in CR.

• We will write | · |0, | · |1 instead of || · ||L2(Ω), ||∇ · ||L2(Ω) (and equivalently for
the norms on Γ) in order not to make the text too heavy.

• Finally, again for the sake of readability, we will use the same symbol for a
function on Ω and its trace on Γ, as long as the difference is clear. We will
however add the restriction operator ·|Γ when more care is needed.
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2.2 Weak formulation and main results
We relabel for convenience the following function spaces

V = H1(Ω) H = L2(Ω),
VΓ = H1(Γ) HΓ = L2(Γ),
W = {u ∈ V | u|Γ ∈ VΓ}

V0 = {v ∈ V | 〈v〉 = 0} V ∗0 = {v∗ ∈ V ∗ | 〈v∗〉 = 0} ,

for which it is well-known that the following embeddings hold

V ⊂⊂ H = H∗ ⊂ V ∗,
VΓ ⊂⊂ HΓ = (HΓ)∗ ⊂ (VΓ)∗.

Furthermore, we recall that W equipped with the graph norm

||u||W :=
(
||u||2V + ||u|Γ||2VΓ

)1/2
∀u ∈W,

is a Hilbert space with the induced inner product.

Our goal in this section is to write the weak formulation of (2.17)-(2.21), whose
solution has to be looked for in some combination of these spaces.
To this aim, we multiply (2.17) and (2.18) by a test function and integrate over Ω,
thus obtaining the weak formulation:

we look for a couple (u,w) such that

u ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗), (2.24)
u|Γ ∈ L2(0, T ;VΓ) ∩H1(0, T ;HΓ), (2.25)

w ∈ L2(0, T ;V ), (2.26)
f(u) ∈ L2(0, T ;H), fΓ(u) ∈ L2(0, T ;HΓ), (2.27)

u|t=0 = u0 − 〈u0〉, (2.28)

and satisfying for a.a. t ∈ (0, T )

〈∂tu, y〉V ∗ + σ

∫
Ω
uy +

∫
Ω
∇w · ∇y = 0 ∀y ∈ V,∫

Ω
wy =

∫
Ω
∇u · ∇y +

∫
Ω

(f(u)− g)y

+
∫

Γ
∂tuy +

∫
Γ
∇Γu · ∇Γy + σΓ

∫
Γ
uy

+
∫

Γ
(fΓ(u)− gΓ)y − (σ − σΓ)〈u0〉

∫
Γ
e−σty ∀y ∈W.

(2.29)

(2.30)

We can now state the main results of this chapter, that will be proved in the next
two sections.
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Theorem 2.4 Assume (2.6), (2.9) and (2.11)-(2.13). If (2.8) holds, then there
exists a unique couple (u,w) solving problem (2.29)-(2.30) and satisfying (2.24)-
(2.28).

Corollary 2.5 Let the assumptions of Theorem 2.4 be satisfied. Then, if
u1 and u2 are two solutions of (2.29)-(2.30) corresponding to initial data u0,1, u0,2
such that max

i=1,2
||u0,i||W ≤ R, it holds:

||u1 − u2||C0([0,T ];V ∗) + ||u1 − u2||C0([0,T ];HΓ) ≤ CR,T ||u0,1 − u0,2||W . (2.31)

That is, the weak solution is continuously dependent on the initial datum with respect
to the weaker metric

dw(x, y) = ||x− y||V ∗ + ||x− y||HΓ .

2.3 Proof of Theorem 2.4 and Corollary 2.5
As already pointed out, we will prove Theorem 2.4 using a Faedo-Galerkin proce-
dure. So, as a first step, we write the problem in a finite-dimensional subspace Vn
and show that it possess a unique (local in time) solution. Then, we develop some
a priori estimates which allow us to extend the local solution to the whole (0, T ),
and take the limit as n → ∞, thus proving the existence of a solution for problem
(2.29)-(2.30).

2.3.1 Discretized problem

Let (ek)k∈N be the set of eigenfunctions of the Laplace operator with homogeneous
Neumann condition, which we normalize so that it forms an orthonormal base for
L2(Ω); we then denote by (µk)k∈N the corresponding eigenvalues, and we consider
an ordering of these two sets such that

0 = µ1 < µ2 ≤ µ3 ≤ . . .

This is always possible, as well known from spectral theory.

If we define Vn = span{e1, . . . , en} as the finite dimensional discretization subspace,
we can project our problem on it. Moreover, we define the approximation of the
initial datum un0 as the L2(Ω)-projection of u0 on Vn

un0 =
n∑
k=1

(∫
Ω
u0ek

)
ek.

The finite dimensional version of the problem then reads:
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we look for a couple (un, wn) such that

un ∈ H1(0, T ;Vn), wn ∈ L2(0, T ;Vn), (2.32)
un(0) = un0 − 〈u0〉, (2.33)

and satisfying for a.a. t ∈ (0, T )

∫
Ω
∂tu

ny + σ

∫
Ω
uny +

∫
Ω
∇wn · ∇y = 0 ∀y ∈ Vn,∫

Ω
wny =

∫
Ω
∇un · ∇y +

∫
Ω

(f(un)− g)y

+
∫

Γ
∂tu

ny +
∫

Γ
∇Γu

n · ∇Γy + σΓ

∫
Γ
uny

+
∫

Γ
(fΓ(un)− gΓ)y − (σ − σΓ)〈u0〉

∫
Γ
e−σty ∀y ∈ Vn.

(2.34)

(2.35)

Remark 2.6 Since the domain is regular, exploiting a classical elliptic regularity
result, the eigenfunctions are such that ek ∈ H2(Ω) ⊂ W ⊂ V for every k, and this
justifies the choice of a test function in Vn for both (2.34) and (2.35).

Remark 2.7 It is clear that, as we chose {ek}∞k=1 such that this set forms an
orthonormal base for L2(Ω), we have in particular e1 = |Ω|−1/2 and 〈ek〉 = 0 ∀k > 1
(as it is well known). Therefore it must also hold

〈un0 〉 =
〈

n∑
k=1

(∫
Ω
u0ek

)
ek

〉
= e2

1

∫
Ω
u0 = 〈u0〉,

and this is the reason why we wrote 〈u0〉 instead of 〈un0 〉 in both (2.33) and (2.35).

From this also follows the unsurprising fact

〈un(t)〉 = 0 ∀t ≥ 0.

We can now prove the following

Proposition 2.8 The discretized problem (2.34)-(2.35) possesses a unique local
in time solution.

Proof First we set

un(t) :=
n∑
j=1

ϕj(t)ej , wn(t) :=
n∑
j=1

wj(t)ej ,

y = ei i = 1, . . . , n,

26



and define

aij :=
∫

Ω
ejei = δij , bij :=

∫
Ω
∇ej · ∇ei = µiδij ,

aΓ
ij :=

∫
Γ
ejei, bΓij :=

∫
Γ
∇Γej · ∇Γei,

which will denote the coefficients of matrices A,B,AΓ and BΓ, respectively.
Then we notice that

un(0) = un0 − 〈u0〉 ⇒
n∑
j=1

ϕj(0)ej =
n∑
j=1

(∫
Ω
u0ej

)
ej − 〈u0〉.

Hence, if we take the mean value on both sides of the last equality, we can use the
same argument of Remark 2.7 to show that

ϕ1(0) = 0. (2.36)

Now problem (2.34)-(2.35) can be rewritten in the equivalent form of a system of
ODEs 

ϕ̇(t) + σϕ(t) +Bw(t) = 0
w(t) = Bϕ(t) + F(ϕ(t), t)−G(t) +AΓϕ̇(t) +BΓϕ(t)

+ σΓAΓϕ(t) + FΓ(ϕ(t), t)−GΓ(t)

ϕ1(0) = 0

ϕj(0) =
∫

Ω
u0ej j = 2, . . . , n,

(2.37)

(2.38)

where we set ϕ(t) = (ϕj(t))nj=1, w(t) = (wj(t))nj=1 and

Fj(ϕ(t), t) :=
∫

Ω
f

(
〈u0〉e−σt +

n∑
k=2

ϕk(t)ek
)
ej ,

FΓ,j(ϕ(t), t) :=
∫

Γ
fΓ

(
〈u0〉e−σt +

n∑
k=2

ϕk(t)ek
)
ej ,

Gj(t) :=
∫

Ω
g(t)ej , GΓ,j(t) :=

∫
Γ

(
gΓ(t) + (σ − σΓ)〈u0〉e−σt

)
ej .

Making explicit the term ϕ̇(t) in (2.37) we get

ϕ̇(t) = −Bw(t)− σϕ(t),

and substituting (2.38) in this equation leads to, after reordering
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(I +BAΓ)ϕ̇(t) =−
(
σI + σΓBAΓ +BB +BBΓ

)
ϕ(t)

−B
(
F(ϕ(t), t) + FΓ(ϕ(t), t)

)
+B

(
G(t) + GΓ(t)

)
.

(2.39)

The first line of system (2.39), owing to the definition of B and to (2.36), is simply

d
dtϕ1(t) = −σϕ1(t) = 0, a.a. t ≥ 0,

and this fact, together with (2.36), suggests us to eliminate the first row and column
of (2.39), thus getting the reduced system

(In−1 + CD)ẋ(t) = Λ(t)−Π(x(t), t)

xj(0) =
∫

Ω
u0ej+1 j = 1, . . . , n− 1,

(2.40)

where we set for readability x(t) = (ϕ2(t), . . . , ϕn(t))T ∈ Rn−1, C = Bn−1,
D = AΓ,n−1, E = BΓ,n−1 and

Λ(t) = C (Gn−1(t) + GΓ,n−1(t)) ,

Π(x(t), t) = (σIn−1 + σΓCD + CC + CE)x(t)
+ C(Fn−1(x(t), t) + FΓ,n−1(x(t), t)).

The n − 1 subscript has the clear meaning of restriction by elimination of the first
row and column.

We now show that the matrix on the left hand side of (2.40) is invertible.
Indeed C is diagonal and positive definite (since µk > 0 ∀k > 1), so C is invertible
and C−1 is diagonal and positive definite. Moreover D is at least positive semidefi-
nite, since this property holds for AΓ

zTAΓz =
( n∑
j=1

zj

∫
Γ

( n∑
i=1

ziei
)
ej
)

=
∫

Γ

( n∑
j=1

zjej
)2
≥ 0 ∀z ∈ Rn.

Hence (In−1 + CD) is positive definite and we are allowed to write
ẋ(t) = (In−1 + CD)−1(Λ(t)−Π(x(t), t))

xj(0) =
∫

Ω
u0ej+1 j = 1, . . . , n− 1.

Since g ∈ H1(0, T ;H) and gΓ ∈ H1(0, T ;HΓ), we have Λ(t) ∈ H1(0, T ;Rn−1) and
consequently Λ(t) ∈ C0([0, T ];Rn−1); moreover, Π(x(t), t) is continuous in both t
and x, due to the continuity of f and fΓ.
Then, it is trivial to check that Π(x(t), t) is also (at least locally) Lipschitz in x,
uniformly with respect to t (since 〈u0〉e−σt is bounded), and so is the whole right
hand side of the equation.
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Hence, it finally suffices to invoke the well known Picard-Lindelöf theorem, obtain-
ing the existence and uniqueness of a local solution in some interval [0, Tn], where
Tn ∈ (0, T ), for problem (2.34)-(2.35).

2.3.2 A priori estimates

We now prove some a priori estimates, independent on the discretization parameter
n. Here the main difficulty is represented by the fact that we have to deal with both
un and un, as it is clear that we cannot exploit an expression like f(un) because of
the nonlinearity of f . On the other hand, we will need to choose un, ∂tun as test
functions in (2.35); therefore, the first estimate we prove is an upper bound for the
quantities f(un)un and fΓ(un)un.

We will be extensively using the operator

N : V ∗0 → V0,

which is defined as the solution map for the Poisson problem with homogeneous
Neumann condition∫

Ω
∇v · ∇z = 〈g, z〉V ∗ g ∈ V ∗0 , ∀ z ∈ V0,

that is, N (g) = v. This operator’s properties are grouped in Appendix A.2.

A priori estimate for f(un)un and fΓ(un)un

We choose y = N (un) as test function in (2.34), and y = un in (2.35). We are
allowed to do so, as (2.36) gives us 〈un〉 = 0; it is moreover clear from the above
definition of N that it must be N (un) ∈ Vn.

Thus, using N properties (A.8) and (A.9), we obtain

1
2

d
dt ||u

n||2∗ + σ||un||2∗ +
∫

Ω
∇wn · ∇N (un) = 0∫

Ω
wnun = |un|21 +

∫
Ω
f(un)un −

∫
Ω
gun

+ 1
2

d
dt |u

n|20,Γ + |un|21,Γ + σΓ|un|20,Γ

+
∫

Γ
fΓ(un)un −

∫
Γ
gΓ u

n − (σ − σΓ)〈u0〉
∫

Γ
e−σtun.

(2.41)

(2.42)

The last term of the first equation and the first one of the second are equivalent due
to the definition of N , therefore we can substitute (2.42) in (2.41). After reordering
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and integrating the resulting equation in (0, t), where t ∈ [0, Tn], we get

1
2 ||u

n||2∗ + σ

∫ t

0
||un||2∗ +

∫ t

0
|un|21 + 1

2 |u
n|20,Γ +

∫ t

0
|un|21,Γ

+ σΓ

∫ t

0
|un|20,Γ +

∫ t

0

∫
Ω
f(un)un +

∫ t

0

∫
Γ
fΓ(un)un

= 1
2 ||u

n(0)||2∗ + 1
2 |u

n(0)|20,Γ +
∫ t

0

∫
Ω
gun +

∫ t

0

∫
Γ

(
gΓ + (σ − σΓ)〈u0〉e−σs

)
un.

In order to find an upper bound, it suffices to use the Cauchy-Schwarz, Poincaré and
Young inequalities, in addition to the Lp embedding results for bounded domains,
according to the terms on the left; the right hand side can hence be maximized with

1
2 ||u

n
0 − 〈u0〉||2∗ + 1

2 |u
n
0 − 〈u0〉|20,Γ + C

∫ t

0
|g|0|un|1 +

∫ t

0
|gΓ|0,Γ|un|0,Γ

+ |σ − σΓ||〈u0〉||Γ|1/2
∫ t

0
e−σs|un|0,Γ

≤ C
(
||un0 − 〈u0〉||2W +

∫ t

0
|g|20 +

∫ t

0
|gΓ|20,Γ + 1

)
+ 1

2

∫ t

0
|un|21 + σΓ

2

∫ t

0
|un|20,Γ

so we get, simplifying and neglecting the remaining positive terms on the left hand
side∫ t

0

∫
Ω
f(un)un +

∫ t

0

∫
Γ
fΓ(un)un ≤ C

(
1 + ||un0 ||2W +

∫ t

0
|g|20 +

∫ t

0
|gΓ|20,Γ

)
(2.43)

for every t ∈ [0, Tn], where the constant C depends on 〈u0〉, σ, σΓ, |Γ| and Ω. We
also remark that since∫ t

0
e−σs|un|0,Γ ≤ Cε

∫ t

0
e−2σs + ε

∫ t

0
|un|20,Γ

<
Cε
2σ + ε

∫ t

0
|un|20,Γ, ∀ ε > 0, ∀ t ∈ [0, Tn],

(2.44)

C, in particular, does not depend on Tn.

A priori estimate for un and ∂tu
n

We set y = N (∂tun) in (2.34), y = ∂tu
n in (2.35); such choices are once again admit-

table, as the arguments explained in the previous estimate hold almost unchanged.

Thus, proceeding in a similar fashion as in the previous paragraph, we get
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∫ t

0
||∂tun||2∗ + σ

2 ||u
n||2∗ + 1

2 |u
n|21 +

∫ t

0
|∂tun|20,Γ + 1

2 |u
n|21,Γ + σΓ

2 |u
n|20,Γ

+
∫ t

0

∫
Ω
f(un)∂tun +

∫ t

0

∫
Γ
fΓ(un)∂tun

= σ

2 ||u
n(0)||2∗ + 1

2 |u
n(0)|21 + 1

2 |u
n(0)|21,Γ + σΓ

2 |u
n(0)|20,Γ +

∫ t

0

∫
Ω
g∂tu

n

+
∫ t

0

∫
Γ

(
gΓ + (σ − σΓ)〈u0〉e−σs

)
∂tu

n.

(2.45)

We now notice that, according to (2.23), the second to last term on the left hand
side can be rewritten in the following way∫ t

0

∫
Ω
f(un)∂tun =

∫ t

0

∫
Ω
f(un)∂tun + σ

∫ t

0

∫
Ω
f(un)(un − un)

=
∫ t

0

∫
Ω

d
dtF (un) + σ

∫ t

0

∫
Ω
f(un)(un − un)

=
∫

Ω
F (un)−

∫
Ω
F (un(0)) + σ

∫ t

0

∫
Ω
f(un)un − σ

∫ t

0

∫
Ω
f(un)un.

Then, due to the definition of F , it is trivial to show that it holds (since b2p > 0)

−C1 ≤ F (s) ≤ C2|s|2p + C3 ∀ s ∈ R.

with Ci suitable positive constants. Moreover, because of (2.7) and the fact that
f(0) = 0, we have

f(s)s ≥ −c0|s|2 ∀ s ∈ R.

Hence, collecting the above results, we get∫ t

0

∫
Ω
f(un)∂tun ≥− C

(
||un0 ||

2p
L2p(Ω) + 1

)
− σc0

∫ t

0
|un|20

− σ
∫ t

0

∫
Ω
f(un)un,

(2.46)

and move these terms to the right hand side of (2.45); we then remark that, because
of (2.9)-(2.10), the same argument applies to fΓ, and we will write∫ t

0

∫
Γ
fΓ(un)∂tun ≥− C

(
||un0 ||

2q
L2q(Γ) + 1

)
− σc0,Γ

∫ t

0
|un|20,Γ

− σ
∫ t

0

∫
Γ
fΓ(un)un.

(2.47)
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We hence use (2.46) and (2.47) in (2.45), thus getting∫ t

0
||∂tun||2∗ + σ

2 ||u
n||2∗ + 1

2 |u
n|21 +

∫ t

0
|∂tun|20,Γ + 1

2 |u
n|21,Γ + σΓ

2 |u
n|20,Γ

≤ C
(
1 + ||un0 ||

2p
L2p(Ω) + ||un0 ||

2q
L2q(Γ) + ||un0 ||2W

)
+
∫ t

0

∫
Ω
g∂tu

n

+
∫ t

0

∫
Γ

(
gΓ + (σ − σΓ)〈u0〉e−σs

)
∂tu

n + σ

(∫ t

0

∫
Ω
f(un)un +

∫ t

0

∫
Γ
fΓ(un)un

)
+ σ

(
c0

∫ t

0
|un|20 + c0,Γ

∫ t

0
|un|20,Γ

)
,

(2.48)

where we also maximized the terms containing un(0). The terms in the second pair
of brackets are exactly the ones we estimated in (2.43); on the other hand, the other
integrals can be maximized as follows∫ t

0

∫
Ω
g∂tu

n =
∫

Ω
gun −

∫
Ω
g(0)un(0)−

∫ t

0

∫
Ω
∂tgu

n

≤ 1
4 |g|

2
0 + |un|20 + 1

2 |g(0)|20 + 1
2 |u

n(0)|20 + C

∫ t

0
|∂tg|20 +

∫ t

0
|un|21

≤ C
(

1 + ||un0 ||2W + |g|20 + |g(0)|20 +
∫ t

0
|∂tg|20

)
+ |un|20 +

∫ t

0
|un|21.

(2.49)

Here we integrated by parts and applied the Poincaré, Cauchy-Schwarz and Young
inequalities. We proceed in a similar fashion with the other terms and get∫ t

0

∫
Γ

(
gΓ + (σ − σΓ)〈u0〉e−σs

)
∂tu

n ≤
∫ t

0
(|gΓ|0,Γ + |σ − σΓ||〈u0〉||Γ|1/2e−σs)|∂tun|0,Γ

≤ C
(

1 +
∫ t

0
|gΓ|20,Γ

)
+ 1

2

∫ t

0
|∂tun|20,Γ.

(2.50)

σ

(
c0

∫ t

0
|un|20 + c0,Γ

∫ t

0
|un|20,Γ

)
≤ C

(
1 +

∫ t

0
|un|21 +

∫ t

0
|un|20,Γ

)
. (2.51)

All of the constants labeled as C in the above inequalities are once again indepen-
dent on Tn, as the same argument used for (2.44) holds.

Using now (2.43), (2.49)-(2.51), simplifying and reordering, (2.48) becomes
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∫ t

0
||∂tun||2∗ + σ

2 ||u
n||2∗ + 1

2 |u
n|21 + 1

2

∫ t

0
|∂tun|20,Γ + 1

2 |u
n|21,Γ + σΓ

2 |u
n|20,Γ

≤ C1

(
1 + ||un0 ||

2p
L2p(Ω) + ||un0 ||

2q
L2q(Γ) + ||un0 ||2W + |g|20 + |g(0)|20 +

∫ t

0
|g|20

+
∫ t

0
|∂tg|20 +

∫ t

0
|gΓ|20,Γ

)
+ C2

(∫ t

0
|un|20,Γ +

∫ t

0
|un|21

)
+ |un|20, ∀ t ∈ [0, Tn].

(2.52)

We then recall that, due to the well-known Sobolev embedding theorem, it holds

V ↪→ Lp
∗(Ω) ∀ p∗ ∈ [2,∞), if d = 2,

V ↪→ Lp
∗(Ω) ∀ p∗ ∈ [2, 6], if d = 3.

Therefore, for both alternatives in (2.8), we have

||un0 ||
2p
L2p(Ω) ≤ c||u

n
0 ||

2p
W ≤ C

(
||un0 − u0||2pW + ||u0||2pW

)
≤ C

(
1 + ||u0||2pW

)
,

where we have exploited the fact that a converging sequence (see (A.2)) is bounded.
Treating the term ||un0 ||

2q
L2q(Γ) in the same way, it suffices to use (A.11) on the last

term of (2.52) and eliminate some positive quantities on the left in order to get

||un||2V + |un|20,Γ ≤ C̃1 + C̃2

∫ t

0

(
||un||2V + |un|20,Γ

)
∀ t ∈ [0, Tn]. (2.53)

As already pointed out, C̃2 does not depend on Tn; moreover, C̃1 is an upper bound
for the terms in the first pair of brackets of (2.52), which holds up to t = T due
to the sources’ regularity (we remark that |g|20 and |g(0)|20 are bounded too, by
||g||2H1(0,T ;H), since H1(0, T ;H) ↪→ C0([0, T ];H)).
Because of these arguments, (2.53) is actually valid in the whole interval [0, T ].

Gronwall’s Lemma can now be applied: we conclude that

||un(t)||2V + |un(t)|20,Γ ≤ C ∀ t ∈ [0, T ]. (2.54)

To be more precise, we point out that the constant C in (2.54) depends on ||u0||W ,
σ, σΓ, Ω and |Γ|, as well as on f and fΓ coefficients and the norms ||g||H1(0,T ;H),
||gΓ||L2(0,T ;H); but it does not depend on n.

Using the last estimate in (2.52), we get the more general result

||un||L∞(0,T ;V )∩H1(0,T ;V ∗) + ||un||L∞(0,T ;VΓ)∩H1(0,T ;HΓ) ≤ C. (2.55)

Remark 2.9 Estimate (2.55) tells us in particular that the unique, local solution
of the discretized problem can be extended up to the final time T .

33



Remark 2.10 We make explicit an obvious, nonetheless useful, consequence of
(2.55); if the initial data is chosen from a bounded subset of W

||u0||W ≤ R, (2.56)

while the other parameters are fixed, then it must hold

||un||L∞(0,T ;V ) + ||un||L∞(0,T ;VΓ) ≤ CR,

for every solution correspondent to an initial datum such that (2.56) is satisfied.
Once the existence of the solution is proved, the same estimate will be valid for u:
we will be using it in the proof of continuous dependence on the initial data.

A priori estimate for f(u) and fΓ(u)

We use once more the Sobolev embedding theorem cited in the previous paragraph.
It is indeed straightforward to check that

||un||p
∗

Lp∗ (0,T ;Lp∗ (Ω)) ≤ C1 + C2||un||p
∗

L∞(0,T ;V ) ≤ C,

for every p∗ ≥ 2 if d = 2, and for p∗ ∈ [2, 6] if d = 3.

Therefore, for both options in (2.8), it holds

||f(un)||2L2(0,T ;H) =
∫ T

0

∫
Ω

∣∣∣∣∣∣
2p−1∑
j=1

aj [un]j
∣∣∣∣∣∣
2

≤ C
∫ T

0

∫
Ω

2p−1∑
j=1
|un|2j

≤ C
4p−2∑
p∗= 2

||un||p
∗

Lp∗ (0,T ;Lp∗ (Ω)) ≤ C,

(2.57)

since 4p− 2 = 6 when d = 3 (and hence p = 2).

Regarding fΓ, we can clearly apply the same argument and get

||fΓ(un)||2L2(0,T ;HΓ) ≤ C.

We remark that all these constants, as we exploited the previous estimates, depend
on the same parameters as the bounds for un norms.
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A priori estimate for wn

If we test (2.34) by y = wn − 〈wn〉 and integrate over (0, T ), we obtain∫ T

0

∫
Ω
∂tu

n(wn − 〈wn〉) + σ

∫ T

0

∫
Ω
un(wn − 〈wn〉) +

∫ T

0
|wn|21 = 0.

The first integral can be seen as the duality pairing∫ T

0
〈∂tun, (wn − 〈wn〉)〉V ∗ ,

with ∂tun ∈ V ∗; so, applying once more the Cauchy-Schwarz and Young inequalities
we get∫ T

0
|wn|21 ≤

∫ T

0
||∂tun||V ∗ ||wn − 〈wn〉||V + σ

∫ T

0
|un|0|wn − 〈wn〉|0

≤ C + 1
2

∫ T

0
|wn|21,

(2.58)

where we also used the Poincaré inequality and the boundedness of un inH1(0, T ;V ∗)
and L2(0, T ;H).

Now that we have a bound for the norm of ∇wn, we need one for its mean value in
order to use (A.10). We get it by choosing y = 1

|Ω| in (2.35), squaring and integrating
over (0, T )∫ T

0
|〈wn〉|2 ≤ C

(∫ T

0
|f(un)|20 +

∫ T

0
|g|20 +

∫ T

0
|∂tun|20,Γ +

∫ T

0
|un|20,Γ

+
∫ T

0
|fΓ(un)|20,Γ +

∫ T

0
|gΓ|20,Γ + 1

)
≤ C,

(2.59)

owing to the previous estimates.

Finally, we simply sum up (2.58) and (2.59), thus getting∫ T

0
||wn||2V ≤ C

∫ T

0

(
|wn|21 + |〈wn〉|2

)
≤ C,

and concluding

||wn(t)||2L2(0,T ;V ) ≤ C.
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2.3.3 Existence of a solution

We now take advantage of these estimates in order to get some convergence results
that will be essential to prove Theorem 2.4, as we take the limit n → ∞. In the
previous subsection we found out that

un is bounded in L∞(0, T ;V ), un|Γ is bounded in L∞(0, T ;VΓ),
∂tu

n is bounded in L2(0, T ;V ∗), ∂tu
n|Γ is bounded in L2(0, T ;HΓ).

We hence recall a result from [55] that we will be using to exploit these estimates

Theorem 2.11 Let X, B and Y be Banach spaces such that

X ⊂⊂ B ⊂ Y,

and F be a bounded set in L∞(0, T ;X) such that ∂tF = {∂tf | f ∈ F} is bounded in
Lp(0, T ;Y ), with p > 1. Then, F is relatively compact in C([0, T ], B).

The hypothesis fit our case with

X = V, B = H, Y = V ∗, F = (un)n∈N ,

in Ω, and
X = VΓ, B = Y = HΓ, F = (un|Γ)n∈N ,

on Γ. Theorem 2.11 then gives

un is relatively compact in C([0, T ];H),
un|Γ is relatively compact in C([0, T ];HΓ),

thus obtaining

un → u strongly in C([0, T ];H),
un|Γ → u|Γ strongly in C([0, T ];HΓ),

(2.60)

at least for a subsequence.

Then, we notice that L∞(0, T ;V )) = (L1(0, T ;V ∗))∗ where L1(0, T ;V ∗) is separable;
moreover H1(0, T ;V ∗) is reflexive. So, due to the Banach-Alaoglu theorem, we get
the convergences

un
∗
⇀ u in L∞(0, T ;V ), un ⇀ u in H1(0, T ;V ∗),

and similarly on Γ

un|Γ
∗
⇀ u|Γ in L∞(0, T ;VΓ), un|Γ ⇀ u|Γ in H1(0, T ;HΓ).
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Next, since L2(0, T ;V ), L2(0, T ;H) and L2(0, T ;HΓ) are all reflexive spaces, it is
once again easy to see that

wn ⇀ w in L2(0, T ;V ),

and

f(un) ⇀ φ in L2(0, T ;H), fΓ(un) ⇀ φΓ in L2(0, T ;HΓ).

We remark that all of the above convergences are to be intended for at least a sub-
sequence.

If we now set Q = Ω× (0, T ) and Σ = Γ× (0, T ), owing to (2.60), we get

un → u a.e. (x, t) ∈ Q ⇒ f(un)→ f(u) a.e. (x, t) ∈ Q,

and analogously

fΓ(un)→ fΓ(u) a.e. (x, t) ∈ Σ.

This means that f(u) = φ almost everywhere in Q and fΓ(u) = φΓ almost every-
where in Σ, so we conclude that

f(un) ⇀ f(u) in L2(0, T ;H), fΓ(un) ⇀ fΓ(u) in L2(0, T ;HΓ).

We can finally take advantage of all these results. If m ∈ N is a fixed integer, we
can write problem (2.34)-(2.35) in the following, equivalent, way



∫ T

0
〈∂tun, y〉V ∗ + σ

∫
Q
uny +

∫
Q
∇wny = 0 ∀y ∈ L2(0, T ;Vm)∫

Q
wny =

∫
Q
∇un · ∇y +

∫
Q

(f(un)− g)y

+
∫

Σ
∂tu

ny +
∫

Σ
∇Γu

n · ∇Γy + σΓ

∫
Γ
uny

+
∫

Σ
(fΓ(un)− gΓ)y − (σ − σΓ)〈u0〉

∫
Σ
e−σty ∀y ∈ L2(0, T ;Vm),

which holds for every n ≥ m. If we now let n → ∞, it is clear from the above
arguments that every term converges so, roughly speaking, we can drop the n.
Since m was chosen arbitrarily, the same holds for every y ∈ L2(0, T ;V∞); hence
for every y ∈ L2(0, T ;V ) in the first equation, and y ∈ L2(0, T ;W ) in the second
because of density arguments (which are proved in Lemma A.3).
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To conclude the proof of existence, we just recall that Lemma A.1 guarantees the
convergence of the initial datum too.

Remark 2.12 The solution is more regular with respect to the original requests
(2.24)-(2.25), which were necessary for the weak formulation to be well defined.
Indeed we additionally have

u ∈ L∞(0, T ;V ) ∩ C0([0, T ], H),
u|Γ ∈ L∞(0, T ;VΓ) ∩ C0([0, T ], HΓ).

2.3.4 Continuous dependence on initial data

We conclude the proof of Theorem 2.4 by proving first Corollary 2.5, the uniqueness
of the solution being an immediate consequence.

To this aim, let (u1, w1), (u2, w2) be two solutions corresponding to initial data u0,1
and u0,2; we then set

uδ0 = u0,1 − u0,2, uδ = u1 − u2, wδ = w1 − w2,

and consequently

uδ = u1 − u2 = uδ − 〈u0,1 − u0,2〉e−σt = uδ − 〈uδ〉.

By definition, for i = 1, 2, it must hold

〈∂tui, y〉V ∗ + σ

∫
Ω
uiy +

∫
Ω
∇wi · ∇y = 0 ∀y ∈ V,∫

Ω
wiy =

∫
Ω
∇ui · ∇y +

∫
Ω

(f(ui)− g)y

+
∫

Γ
∂tuiy +

∫
Γ
∇Γui · ∇Γy + σΓ

∫
Γ
uiy

+
∫

Γ
(fΓ(ui)− gΓ)y − (σ − σΓ)〈u0,i〉

∫
Γ
e−σty ∀y ∈W,

for a.a. t ∈ [0, T ]. We now subtract the corresponding equations and test them by
y = N (uδ) and y = uδ, respectively; exploiting the usual results, we obtain

1
2

d
dt ||u

δ||2∗ + σ||uδ||2∗ + |uδ|21 + 1
2

d
dt |u

δ|20,Γ + |uδ|21,Γ + σΓ|uδ|20,Γ

= −
∫

Γ
(fΓ(u1)− fΓ(u2))uδ + (σ − σΓ)〈uδ0〉

∫
Γ
e−σtuδ

−
∫

Ω
(f(u1)− f(u2))uδ.

(2.61)
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We start treating the last term. Using (2.7), we show that it satisfies∫
Ω

(f(u1)− f(u2))uδ =
∫

Ω
(f(u1)− f(u2))(uδ − 〈uδ〉)

≥ −c0|uδ|20 − 〈uδ〉
∫

Ω
(f(u1)− f(u2)).

(2.62)

Furthermore, it holds

f(u1)− f(u2) =
2p−1∑
j=1

aj(uj1 − u
j
2) = (u1 − u2)

2p−1∑
j=1

aj

j−1∑
k=0

uj−1−k
1 uk2

 .
It is now just a simple algebra exercise, using the Young inequality, to verify that

|f(u1)− f(u2)| ≤ C|uδ|(1 + |u1|2(2p−3) + |u2|2(2p−3)),

so, using this result, we estimate the last term in (2.62) with∣∣∣∣〈uδ〉 ∫
Ω

(f(u1)− f(u2))
∣∣∣∣ ≤ C|〈uδ〉| ∫

Ω
|uδ|

(
1 + |u1|2(2p−3) + |u2|2(2p−3)

)
≤ C

(
|uδ|20 + |〈uδ〉|2

(
1 + ||u1||p

∗

Lp∗ (Ω) + ||u2||p
∗

Lp∗ (Ω)

))
,

(2.63)

where we set p∗ = 4(2p− 3) (note that, in particular, if d = 3 and hence p = 2, we
have p∗ = 4).

We now use (A.14) on uδ

|uδ|20 ≤ ε|uδ|21 + Cε(||uδ||2∗ + |〈uδ〉|2) ∀ε > 0, (2.64)

so that we can finally collect these inequalities and estimate the last term of (2.61)
with

−
∫

Ω
(f(u1)− f(u2))uδ ≤ c0|uδ|20 + 〈uδ〉

∫
Ω

(f(u1)− f(u2))

≤ 1
2 |u

δ|21 + C
(
||uδ||2∗ + |〈uδ〉|2

) (
1 + ||u1||p

∗

Lp∗ (Ω) + ||u2||p
∗

Lp∗ (Ω)

)
.

(2.65)

It is then straightforward to check that a similar bound holds for the integral with
fΓ, that is

−
∫

Γ
(fΓ(u1)− fΓ(u2))uδ

≤ C
(
|uδ|20,Γ + |〈uδ〉|2

) (
1 + ||u1||q

∗

Lq∗ (Γ) + ||u2||q
∗

Lq∗ (Γ)

)
,

(2.66)

where q∗ = 4(2q − 3). Hence, we use (2.65) and (2.66) back into (2.61) and write
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1
2

d
dt ||u

δ||2∗ + 1
2

d
dt |u

δ|20,Γ + σ||uδ||2∗ + 1
2 |u

δ|21 + |uδ|21,Γ + σΓ|uδ|20,Γ

≤ C
(
||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2

)1 +
∑
i=1,2

(
||ui||p

∗

Lp∗ (Ω) + ||ui||q
∗

Lq∗ (Γ)

)
+ |σ − σΓ||〈uδ0〉||Γ|1/2|uδ|0,Γ,

where we also exploited the usual inequalities to estimate the last term. We more-
over apply the Young inequality on the latter and obtain

|σ − σΓ||〈uδ0〉||Γ|1/2|uδ|0,Γ ≤ C
(
|〈uδ0〉|2 + |uδ|20,Γ

)
,

thus getting

1
2

d
dt ||u

δ||2∗ + 1
2

d
dt |u

δ|20,Γ + σ||uδ||2∗ + 1
2 |u

δ|21 + |uδ|21,Γ + σΓ|uδ|20,Γ

≤ C1|〈uδ0〉|2 + C2
(
||uδ||2∗ + |〈uδ〉|2 + |uδ|20,Γ

)1 +
∑
i=1,2

(
||ui||p

∗

Lp∗ (Ω) + ||ui||q
∗

Lq∗ (Γ)

) .
Finally, noting that the squared absolute mean value of uδ is clearly non-increasing

d
dt |〈u

δ〉|2 ≤ 0,

we can add this quantity to the left. Simplifying the positive terms on the left, we
conclude

d
dt
(
||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2

)
≤ C1|〈uδ0〉|2 + C2

(
||uδ||2∗ + |〈uδ〉|2 + |uδ|20,Γ

)1 +
∑
i=1,2

(
||ui||p

∗

Lp∗ (Ω) + ||ui||q
∗

Lq∗ (Γ)

) ,
for a.a. t ∈ [0, T ]; integrating this inequality in (0, t) with t ∈ [0, T ], it follows from
Gronwall’s lemma that

||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2 ≤ C
(
||uδ(0)||2∗ + (1 + t)|〈uδ0〉|2 + |uδ(0)|20,Γ

)
eγ(t), (2.67)

for every t ∈ [0, T ], and where

γ(t) =
∫ t

0

1 +
∑
i=1,2

(
||ui||p

∗

Lp∗ (Ω) + ||ui||q
∗

Lq∗ (Γ)

) .
We now recall Remark 2.10: if we choose the initial data from a bounded set, i.e.
there exists R > 0 such that

||u0,i||W ≤ R,
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it is clear that it holds

γ(t) ≤ γ(T ) ≤ CR, ∀t ∈ [0, T ],

since the only parameter that we are varying is the initial datum.

Therefore (2.67) becomes

||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2 ≤ CR,T
(
||uδ(0)||2∗ + |〈uδ0〉|2 + |uδ(0)|20,Γ

)
∀t ∈ (0, T ).

(2.68)

Then, we notice that

||uδ||2∗ + |uδ|20,Γ ≤ C
(
||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2

)
,

and

||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2 ≤ C
(
||uδ||2∗ + |uδ|20,Γ + |〈uδ〉|2

)
≤ C||uδ||2W ,

so estimate (2.68) leads to

||u1 − u2||2L∞(0,T ;V ∗) + ||u1 − u2||2L∞(0,T ;HΓ) ≤ CR,T ||u1 − u2||2W .

However, recalling Remark 2.12, this result can be improved (in the sense of a greater
regularity for uδ), as

||u1 − u2||2C0([0,T ];V ∗) + ||u1 − u2||2C0([0,T ];HΓ) ≤ CR,T ||u1 − u2||2W . (2.69)

Inequality (2.69) is exactly the claim of Corollary 2.5, so the proof of continuous
dependence on the initial data is complete.

Remark 2.13 This result, in particular, tells us that if u0,1 = u0,2 we have

u1 = u2 in L∞(0, T ;V ∗), u1|Γ = u2|Γ in L∞(0, T ;HΓ),

that is, the solution is unique. Hence we completed the proof of Theorem 2.4 too.

We conclude this chapter with some observations on the conditions on f and fΓ.
First of all, the above proofs can be adapted to the case fΓ ∈ C0,1(R): similar, if
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not easier, arguments apply and lead to the same conclusions.

Moreover, the same techniques can be exploited to generalize both f and fΓ; it would
be sufficient for them to be smooth enough, and satisfy suitable growth conditions
as well as coercivity like conditions. For instance, we could ask that f, fΓ ∈ C1(R,R)
satisfy (2.7), (2.10) and

f(s) = O(|s|3) as |s| → +∞ if d = 3,
f(s) = O(|s|p) as |s| → +∞ with p ≥ 1 if d = 2,

fΓ(s) = O(|s|q) as |q| → +∞ with q ≥ 1.
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Chapter 3

Asymptotic behavior and
existence of the global attractor

In this chapter we recall some definitions and classical results from [56] regarding
the long time behavior of infinite dimensional dynamical systems; we then apply
them to the problem under analysis.

In the upcoming section, (X, dX) will denote a complete metric space.

3.1 Long time behavior for semidynamical systems
Consider the problem 

d
dtx(t) = Dx(t) ∀t ≥ 0

x(0) = x0

(3.1)

where D : Y ⊂ X → X is a, usually differential, operator defined on some dense
subset Y of X; a typical choice would be Y = H1(Ω), X = L2(Ω). If the ini-
tial value problem (3.1) possesses a unique solution for every x0 ∈ Φ ⊂ Y and
S(t)x0 ∈ Φ ∀t ≥ 0, one can define the solution operator

S(t) : Φ→ Φ, S(t)x0 = x(t;x0) (3.2)

that satisfies

S(0) = I, S(t)S(s) = S(s)S(t) = S(t+ s) ∀t, s ≥ 0, (3.3)

which means that the family {S(t)}t≥0 forms a semigroup on Φ (also called the phase
space). A semidynamical system is then the couple(

Φ, {S(t)}t≥0

)
. (3.4)
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Such object is the central tool in the long time analysis for evolution PDEs; it indeed
forms the right setting in which one should study the asymptotic behavior.

An important concept arising in the analysis of semidynamical systems is that of
dissipation. At a first glance one can think of it as the tendency for all the equation’s
solutions to be eventually uniformly bounded; we however make this idea more pre-
cise with the following definitions

Definition 3.1 S(t) is point dissipative if there exists a bounded set C ⊂ Φ such
that

S(t)x0 ∈ C ∀x0 ∈ Φ, ∀t ≥ t0(x0)

for every x0 ∈ Φ.

Definition 3.2 S(t) is bounded dissipative if there exists a bounded set C ⊂ Φ
such that

S(t)B ⊂ C ∀t ≥ t0(B),

for every bounded set B ∈ Φ.

These two definitions are equivalent in RN , but this is not true in general for infinite
dimensional spaces. In both cases we say that C is an absorbing set for S(t).
The request of C being bounded is quite reasonable; however, in the applications,
one usually wants C to be compact too. We will therefore adopt the following defi-
nition

Definition 3.3 S(t) is dissipative if it is bounded dissipative and its absorbing
set C ⊂ Φ is compact.

One of the main goals in studying a semidynamical system is to find the set A ⊂ Φ
in which the asymptotic dynamics take place: in this way, it is possible to restrict
the analysis of S(t) on A. Such object is called the global attractor.

Definition 3.4 The global attractor A for a semidynamical system (Φ, {S(t)}t≥0)
is the maximal compact invariant set:

S(t)A = A ∀t ≥ 0,

and the minimal set which attracts bounded sets:

dist(S(t)B,A)→ 0 as t→∞,

for every bounded set B ⊂ Φ, where dist(U, V ) = sup
u∈U

inf
v∈V

dX(u, v).

Showing that a semidynamical system possess a global attractor is crucial for sys-
tems arising from physics and mechanics. In these cases, one can often prove that
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such attractor is also finite dimensional (in Hausdorff or fractal sense), showing that
in some way the original infinite dimensional system has, in fact, a finite number of
degrees of freedom (at least asymptotically).

We now state a classical result regarding the existence of the global attractor.

Theorem 3.5 If S(t) is dissipative and S(t)u0 is continuous in both t and u0,
then there exists a global attractor A = ω(B). If Φ is connected, then so is A.

Here, ω(U) is the so-called ω-limit set of U , that is

ω(U) = {y ∈ U | ∃tn →∞, xn ∈ U such that S(tn)xn → y}

=
⋂
t≥0

⋃
s≥t

S(s)U.

This theorem represents the standard approach in proving the existence of a global
attractor; nonetheless there are situations in which it is not of great help, namely
when the continuity of S(t)u0 with respect to u0 cannot be established.

We remark that the problem we are analyzing falls into this category, since Corol-
lary 2.5 gives us only

||S(t)u0,1 − S(t)u0,2||V ∗ + ||S(t)u0,1 − S(t)u0,2||HΓ ≤ C||u0,1 − u0,2||W ,

instead of

||S(t)u0,1 − S(t)u0,2||W ≤ C||u0,1 − u0,2||W .

In other words, the continuity is obtained only with respect to a weaker metric. To
overcome this problem, Pata and Zelik proved in [57] that the continuity condition
on the semigroup can be substituted with a, weaker, closedness condition. We recall
the authors’ result in the following

Theorem 3.6 Let S(t) be such that

xn → x and S(t)xn → y ⇒ S(t)x = y (3.5)

that is, S(t) is a closed operator. If S(t) has a connected compact absorbing set
K such that S(t)K ⊂ K for every t ≥ t0, then S(t) possesses a connected global
attractor A = ω(K).

This is the result that we will use to prove the existence of a global attractor for
problem (2.29)-(2.30).
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3.2 The semidynamical system
In the following, in order to prove some fundamental results, we will assume two
more hypothesis (which seem quite reasonable, and are common in literature [31],
[45]), in addition to the ones of the previous chapter; that is, we require a greater
regularity for the sources g, gΓ

g ∈ L∞(Ω), gΓ ∈ L∞(Γ). (3.6)

Notice that we also dropped the dependence on time, which is clearly necessary for
S(t) to define a semigroup in the sense we specified.

Recalling the results of the previous chapter, and assuming (3.6), the solution op-
erator S(t) is well defined for every t ≥ 0. Therefore, if we fix m ≥ 0, the natural
phase space for S(t) is

Φm := {u ∈W | |〈u0〉| ≤ m} ,

S(t) : Φm → Φm ∀t ≥ 0.

The semidynamical system is then(
Φm, {S(t)}t≥0

)
. (3.7)

We finally have all the elements to state the main result of the chapter

Theorem 3.7 Let the assumptions of Theorem 2.4 hold. Moreover, assume (3.6).
Then, problem (2.29)-(2.30) defines the semidynamical system (3.7), and Φm pos-
sesses a connected global attractor Am which is compact in H1(Ω)×H1(Γ).

3.2.1 Energy estimate

In the following we will operate in a formal way, that is, differentiating (2.29)-(2.30)
and using non-admittable test functions; the results could however be obtained in a
rigorous way using the discretized version of the equations and then letting n→∞;
nonetheless we avoid such procedure in order not to make the text too heavy.

We take y = N (∂tu+ σu) in (2.29) and y = ∂tu+ σu in (2.30). With such a choice,
and using N properties, the two equations read

||∂tu||2∗ + σ
d
dt ||u||

2
∗ + σ2||u||2∗ +

∫
Ω
∇w · ∇N (∂tu+ σu) = 0,

and
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∫
Ω
w(∂tu+ σu) = 1

2
d
dt |u|

2
1 + σ|u|21 +

∫
Ω

(f(u)− g)(∂tu+ σu)

+ |∂tu|20,Γ + σ

2
d
dt |u|

2
0,Γ + 1

2
d
dt |u|

2
1,Γ + σ|u|21,Γ

+ σΓ
2

d
dt |u|

2
0,Γ + σΓσ|u|20,Γ +

∫
Γ
(fΓ(u)− gΓ)(∂tu+ σu)

− (σ − σΓ)〈u0〉
∫

Γ
e−σt(∂tu+ σu),

where we also used (2.22) in the integrals with f and fΓ. Then, we substitute these
equations one into the other; we get, after reordering

||∂tu||2∗ + |∂tu|20,Γ + σ
(
σ||u||2∗ + |u|21 + |u|21,Γ + σΓ|u|20,Γ

)
+ 1

2
d
dt
(
2σ||u||2∗ + |u|21 + |u|21,Γ + (σΓ + σ)|u|20,Γ

)
+
∫

Ω
(f(u)− g)∂tu+ σ

∫
Ω

(f(u)− g)u+
∫

Γ
(fΓ(u)− gΓ)∂tu+ σ

∫
Γ
(fΓ(u)− gΓ)u

= (σ − σΓ)〈u0〉
∫

Γ
e−σt(∂tu+ σu).

(3.8)

We need to treat the last four terms on the left hand side; we only show the proce-
dure for the integrals on Ω, as the same arguments apply to those on Γ.

First of all, it clearly holds∫
Ω

(f(u)− g)∂tu = d
dt

∫
Ω

(F (u)− gu).

Then, in order to deal with the second term, we fix CF to be such that

F (s)− g(x)s ≥ 0 ∀s ∈ R, a.e. x ∈ Ω, (3.9)

which is always possible due to (3.6). We now need the following inequality

Lemma 3.8 There exist constants C1, C2 > 0 such that

(f(s)− g(x))s ≥ C1(F (s)− g(x)s)− C2 ∀s ∈ R, a.e. x ∈ Ω,

Proof We exploit f and F definitions to rewrite the above inequality as

2p∑
j=2

bj(j − C1)sj + C2 ≥ (1− C1)g(x)s+ C1CF ,

and we see that it is trivially satisfied by choosing C1 < 2p, and a consequently large
enough C2, due to the boundedness of g.
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Taking into account these results, and the correspondent ones for fΓ, we apply the
Cauchy–Schwarz and Young inequalities on the right hand side, getting

||∂tu||2∗ + |∂tu|20,Γ + σ

(
σ||u||2∗ + |u|21 + |u|21,Γ + σΓ|u|20,Γ + C1

∫
Ω

(F (u)− gu)

+C1,Γ

∫
Γ

(FΓ(u)− gΓu)
)

+ 1
2

d
dt
(
2σ||u||2∗ + |u|21 + |u|21,Γ + (σΓ + σ)|u|20,Γ

+2
∫

Ω
(F (u)− gu) + 2

∫
Γ

(FΓ(u)− gΓu)
)

≤ C
(
1 + |〈u0〉|2

)
+ 1

2 |∂tu|
2
0,Γ + σσΓ

2 |u|
2
0,Γ,

(3.10)

which we recall that is valid for almost every positive t. We then define the energy

E(t) := 2σ||u(t)||2∗ + |u(t)|21 + 2
∫

Ω
(F (u(t))− gu(t))

+ (σ + σΓ)|u(t)|20,Γ + |u(t)|21,Γ + 2
∫

Γ
(FΓ(u(t))− gΓu(t)) .

(3.11)

E(t) is clearly non-negative due to (3.9). Using definition (3.11), we can rewrite
(3.10) as

d
dtE(t) + αE(t) + ||∂tu||2∗ + |∂tu|20,Γ ≤ C a.a. t ≥ 0, (3.12)

for suitable positive constants α, C; then, eliminating the last two terms on the left
hand side, and integrating in [0, t], where t ≥ 0, we easily see that the solution to
the correspondent integral equation is

E(t) =
(
E(0)− C

α

)
e−αt + C

α
∀t ≥ 0,

thus, by a simple comparison argument, we get

E(t) ≤ E(0)e−αt + C0 ∀t ≥ 0. (3.13)

3.2.2 Bounded absorbing sets

We notice that, by definition, E must satisfy

E(t) ≤ C
(
||u(t)||2V + ||u(t)||2pL2p(Ω) + ||u(t)||2VΓ + ||u(t)||2qL2q(Γ) + 1

)
, ∀t ≥ 0.

(3.14)
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and

||u(t)||2V + ||u(t)||2VΓ ≤ c (E(t) + 1) , ∀t ≥ 0, (3.15)

where we have omitted the dependence on 〈u0〉 as this term is trivially bounded,
since u0 ∈ Φm. Indeed C depends on g, m, σ, σΓ and the coefficients of F and FΓ,
while c depends on Ω (through the Poincaré inequality), σ, σΓ and m.

According to Definition 3.3, let now B be a bounded subset of Φm: this means that
there exists R > 0 such that

||u0||W ≤ R ⇒ ||u0||2V + ||u0||2pL2p(Ω) + ||u0||2VΓ + ||u0||2qL2q(Γ) ≤ CR, (3.16)

for every u0 ∈ B. Therefore, due to (3.13), (3.14) and (3.15)

E(t) ≤ E(0)e−αt + C0 ≤ CRe−αt + C ∀ t ≥ 0

||u(t)||2V + ||u(t)||2VΓ ≤ CRe
−αt + C ∀ t ≥ 0. (3.17)

This is all we need to prove the existence of an absorbing set. Indeed a direct con-
sequence of (3.17) is that if C1 is a positive, large enough constant and we define

C :=
{
v ∈W

∣∣∣ ||v||2W ≤ C1
}
, (3.18)

then
u ∈ C ∀t ≥ t1(R), (3.19)

That is, there exists a bounded set in which S(t) maps every bounded subset of Φm,
after a sufficiently long time; however, C clearly cannot be compact. Thus, using
a standard approach, we will need to find another absorbing set in some subset of
Φm, containing more regular functions.

3.3 Higher-order estimates
A priori estimate for ∂tu (1)

Eliminating the non-negative term αE from (3.12) and integrating the resulting in-
equality in (t, t+ 1), we easily get

E(t+ 1) +
∫ t+1

t
(||∂tu||2∗ + |∂tu|20,Γ) ≤ E(t) + C ≤ E(0)e−αt + C
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which gives us ∫ t+1

t
(||∂tu||2∗ + |∂tu|20,Γ) ≤ CRe−αt + C ∀t ≥ 0.

So, if C2 is large enough∫ t+1

t
(||∂tu||2∗ + |∂tu|20,Γ) ≤ C2 ∀t ≥ t2(R). (3.20)

A priori estimate for ∂tu (2)

We formally differentiate (2.29)-(2.30) with respect to t



〈∂2
t u, y〉V ∗ + σ

∫
Ω
∂tuy +

∫
Ω
∇∂tw · ∇y = 0∫

Ω
∂twy =

∫
Ω
∇∂tu · ∇y +

∫
Ω
f ′(u)∂tuy +

∫
Γ
∂2
t uy +

∫
Γ
∇Γ∂tu · ∇Γy

+ σΓ

∫
Γ
∂tuy +

∫
Γ
f ′Γ(u)∂tuy + σ(σ − σΓ)〈u0〉

∫
Γ
e−σty,

(3.21)

(3.22)

and choose y = N (∂tu) in (3.21), y = ∂tu in (3.22). Applying the usual results, and
writing ∂tu = ∂tu+ σ〈u0〉e−σt in the integrals with f ′(u) and f ′Γ(u), we get

1
2

d
dt ||∂tu||

2
∗ + σ||∂tu||2∗ + |∂tu|21 +

∫
Ω
f ′(u)|∂tu|2 + σ〈u0〉e−σt

∫
Ω
f ′(u)∂tu

+ 1
2

d
dt |∂tu|

2
0,Γ + |∂tu|21,Γ + σΓ|∂tu|20,Γ +

∫
Γ
f ′Γ(u)|∂tu|2 + σ〈u0〉e−σt

∫
Γ
f ′Γ(u)∂tu

= −σ(σ − σΓ)〈u0〉
∫

Γ
e−σt∂tu.

(3.23)

Then, we eliminate the second and the eighth terms; moreover, we estimate the
fourth from below, using (2.7), as∫

Ω
f ′(u)|∂tu|2 ≥ −c0|∂tu|20.

An analogous inequality holds for fΓ; therefore we get, upon reordering,

1
2

d
dt
(
||∂tu||2∗ + |∂tu|20,Γ

)
+ |∂tu|21 + |∂tu|21,Γ

≤ c0|∂tu|20 + c0,Γ|∂tu|20,Γ − σ〈u0〉e−σt
(∫

Ω
f ′(u)∂tu+

∫
Γ
f ′Γ(u)∂tu

)
− σ(σ − σΓ)〈u0〉

∫
Γ
e−σt∂tu.

(3.24)
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We now apply once again the Cauchy-Schwarz and Young inequalities, in order to get

1
2

d
dt(||∂tu||2∗ + |∂tu|20,Γ) + |∂tu|21 + |∂tu|21,Γ
≤ c0|∂tu|20 + c0,Γ|∂tu|20,Γ + σ|〈u0〉|

(
|f ′(u)|0|∂tu|0 + |f ′Γ(u)|0,Γ|∂tu|0,Γ

)
+ σ|σ − σΓ||〈u0〉||Γ|1/2|∂tu|0,Γ

≤ C
(
1 + |∂tu|20 + |∂tu|20,Γ + ||u||4p−4

L4p−4(Ω) + ||u||4q−4
L4q−4(Γ)

)
a.a. t ≥ 0.

Where we also exploited the fact that f ′ and f ′Γ are, respectively, a 2p−2 and a 2q−2
order polynomial. Moreover we notice that, if d = 3 and so p = 2, the exponent of
the second to last term is 4p− 4 = 4; hence it can be bounded, in both cases (2.8),
with ||u||4p−4

V .

We now use formally (A.13) on |∂tu|20, and write

|∂tu|20 ≤
1
2 |∂tu|

2
1 + C||∂tu||2∗,

even if we have no clue that ∂tu ∈ V : again, to be rigorous, we should apply this
inequality to ∂tun.

Using (3.17) too, we conclude

1
2

d
dt
(
||∂tu||2∗ + |∂tu|20,Γ

)
+ 1

2 |∂tu|
2
1 + |∂tu|21,Γ

≤ C
(
||∂tu||2∗ + |∂tu|20,Γ

)
+ CRe

−βt + C, a.a. t ≥ 0
(3.25)

for some positive β depending on α and p. We are hence allowed to apply the Uni-
form Gronwall Lemma (see, for instance, [58]):

Lemma 3.9 Let y, g and h be three non-negative, locally integrable functions on
[t0,+∞) such that

d
dty(t) ≤ g(t)y(t) + h(t) a.a. t ≥ t0,

and ∫ t+τ

t
y ≤ γ1

∫ t+τ

t
g ≤ γ2

∫ t+τ

t
h ≤ γ3 ∀t ≥ t0, (3.26)

where τ , γ1, γ2 and γ3 are positive constants. Then

y(t+ τ) ≤
(
γ1
τ

+ γ3

)
eγ2 ∀t ≥ t0. (3.27)
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We set τ = 1. Then, if t0 = t2(R) and y = ||∂tu||2∗ + |∂tu|20,Γ, (3.20) tells us that the
first one of (3.26) is verified. The second and the third are trivially satisfied.

So, (3.27) gives

||∂tu||2∗ + |∂tu||20,Γ ≤ C3 ∀t ≥ t3(R) = 1 + t2(R). (3.28)

We now integrate (3.25) in (t, t+ 1) and forget some positive terms, getting∫ t+1

t

(1
2 |∂tu|

2
1 + |∂tu|21,Γ

)
≤ C

∫ t+1

t

(
||∂tu||2∗ + |∂tu|20,Γ

)
+ 1

2
(
||∂tu||2∗ + |∂tu|20,Γ

)
+ C, ∀ t ≥ 0,

(3.29)

and using (3.20) and (3.28) we get∫ t+1

t

(
|∂tu|21 + |∂tu|21,Γ

)
≤ C4 ∀t ≥ t4(R). (3.30)

Combining inequalities (3.20) and (3.30) we get the following uniform estimate∫ t+1

t

(
||∂tu||2V + ||∂tu||2VΓ

)
≤ C

(
1 +

∫ t+1

t

(
|∂tu|21 + |∂tu|20,Γ + |∂tu|21,Γ

))
≤ C5 ∀t ≥ t5(R).

(3.31)

A priori estimate for f(u) and fΓ(u)

It is almost trivial to check that

|f(u)|20 ≤ C
(
1 + ||u||4p−2

L4p−2(Ω)

)
≤ C

(
1 + ||u||4p−2

V

)
≤ CRe−γt + C, a.a. t ≥ 0

where γ is a positive constant depending on α and p.
So, for a suitable C6 ∫ t+1

t
|f(u)|20 ≤ C6 ∀t ≥ t6(R). (3.32)

An analogous estimate for fΓ is once again straightforward to get.

52



A priori estimate for w

It only remains to prove an estimate for w(t) in V -norm. This will be obtained, as
in the previous chapter, by bounding its gradient and mean value.
So, setting y(t) = w(t)− 〈w(t)〉 in (2.29)

|w|21 = −〈∂tu,w − 〈w〉〉V ∗ + σ

∫
Ω
u(w − 〈w〉)

≤ C(||∂tu||∗ + ||u||V )||w − 〈w〉||V

≤ C(||∂tu||2∗ + ||u||2V ) + 1
2 |w|

2
1, a.a. t ≥ 0

hence it follows from (3.17) and (3.31)∫ t+1

t
|w|21 ≤ C

∫ t+1

t

(
||∂tu||2V + ||u||2V + 1

)
≤ C7 ∀t ≥ t7(R). (3.33)

In order to estimate the mean value of w, we simply take y(t) = 1
|Ω| in (2.30) and get

|〈w〉| ≤C
(
||f(u)||L1(Ω) + ||g||L1(Ω) + ||∂tu||L1(Γ) + ||u||L1(Γ)

+||fΓ(u)||L1(Γ) + ||gΓ||L1(Γ) + 1
)

≤C
(
||u||2p−1

V + |∂tu|0,Γ + ||u||VΓ + 1
)
, a.a. t ≥ 0

so that exploiting the previous estimates∫ t+1

t
|〈w〉|2 ≤ C8 ∀t ≥ t8(R). (3.34)

Summing (3.33) and (3.34), and using the Poincaré inequality, we conclude∫ t+1

t
||w||2V ≤ C9 ∀t ≥ t9(R). (3.35)

3.4 A compact absorbing set
We will now use the uniform estimates found in the previous section, to construct
a compact absorbing set Km. We start by looking at problem (CHO−D) from a
different point of view: that is, as two different elliptic problems on Ω and Γ

{
∆u = g − f(u)− w in Ω,
∆Γu = ∂tu+ ∂nu+ σΓu+ fΓ(u)− gΓ − (σ − σΓ)〈u0〉e−σt on Γ,

(3.36)
(3.37)

where t is fixed.
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Owing to the bounds we proved, every term on the right side of (3.36) is at least in
L2(Ω), hence ∆u must be in this space as well; this in turn implies that u ∈ H2(Ω),
so (∂nu)|Γ ∈ H1/2(Γ) ⊂ L2(Γ). Therefore we are allowed to proceed with a similar
argument on (3.37), getting u|Γ ∈ H2(Γ).

It is hence natural to look for an upper bound for the solution in H2-norms. We
start by observing that

||u||2H2(Ω) + ||u||2H2(Γ) ≤ C
(
||u||2H2(Ω) + |u|22,Γ + |u|20,Γ + 1

)
,

since, as well known, | · |2,Γ + | · |0,Γ is equivalent to the standard H2(Γ) norm.

Then we use (3.37) and get

||u||2H2(Ω) + ||u||2H2(Γ) ≤ C
(
||u||2H2(Ω) + |∂tu|20,Γ + |∂nu|20,Γ + |u|20,Γ + |fΓ(u)|20,Γ + 1

)
.

Exploiting the continuity of the trace operator, that is |∂nu|0,Γ ≤ CT ||u||H2(Ω), we
obtain

||u||2H2(Ω) + ||u||2H2(Γ) ≤ C
(
||u||2H2(Ω) + |∂tu|20,Γ + |u|20,Γ + |fΓ(u)|20,Γ + 1

)
.

Finally, using (3.36), we get

||u||2H2(Ω) + ||u||2H2(Γ) ≤ C
(
|w|20 + |f(u)|20 + |∂tu|20,Γ + |u|20,Γ + |fΓ(u)|20,Γ + 1

)
.

(3.38)

We can now integrate (3.38) in (t, t + 1) and set t(R) = max
i=1,...,9

ti(R); owing to the
previous estimates, we conclude∫ t+1

t
(||u||2H2(Ω) + ||v||2H2(Γ)) ≤ C ∀t ≥ t(R), (3.39)

for a suitable C > 0. At this point, as we want to prove a compactness result, we
need to squeeze as much regularity as possible for u; to this aim, we will exploit
some classical results on interpolation theory and Bochner spaces (see, for instance,
[59]).

Let s > 0. We then define the space Z as

Z =
{
z ∈ L2(s,∞;H2(Ω))

∣∣∣ z′ ∈ L2(s,∞;H1(Ω))
}
,

where the (time) derivative z′ has to be intended in the usual, distributional, sense.
It is shown in [59] that the space of traces of Z, which we shall denote by T , can be
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characterized in the following way

||v||T = inf
z∈Z
z(s)=v

||z||1/2L2(s,∞;H2(Ω))||z
′||1/2L2(s,∞;H1(Ω)). (3.40)

For such a choice of the exponents on the right hand side of (3.40), it can also be
proven that T is an interpolation space between H1(Ω) and H2(Ω), that is, H3/2(Ω).
So, using the Young inequality, we can write

||v||H3/2(Ω) ≤ C inf
z∈Z
z(s)=v

(
||z||L2(s,∞;H2(Ω)) + ||z′||L2(s,∞;H1(Ω))

)
.

We now choose t > s and set z = uχ[t,t+1]. Thus we have

||u(s)||2H3/2(Ω) ≤ C
(∫ ∞

s
||u(r)χ[t,t+1](r)||2H2(Ω)dr +

∫ ∞
s
||∂ru(r)χ[t,t+1](r)||2H1(Ω)dr

+
∫ ∞
s
||u(r)δt(r)||2H1(Ω)dr +

∫ ∞
s
||u(r)δt+1(r)||2H1(Ω)dr

)
≤ C

(∫ t+1

t
||u||2H2(Ω)dr +

∫ t+1

t
||∂ru||2H1(Ω)dr

+||u(t)||2H1(Ω) + ||u(t+ 1)||2H1(Ω)

)
,

and exploiting (3.17), (3.31) and (3.39), we conclude (using the same argument for
u|Γ) that

||u||2H3/2(Ω) + ||u||2H3/2(Γ) ≤ C∗ ∀ t ≥ t∗(R).

Therefore we can define the absorbing set

Km :=
{
v ∈ Φm

∣∣∣ ||v||H3/2(Ω) + ||v||H3/2(Γ) ≤ C
}
. (3.41)

Km is clearly connected and, since H3/2(Ω) ⊂⊂ H1(Ω) and H3/2(Γ) ⊂⊂ H1(Γ),
compact in Φm; in other words, S(t) is dissipative in the sense of Definition 3.3.
Moreover, it follows from the definition that S(t)Km ⊂ Km after a sufficiently long
time.

3.5 Proof of Theorem 3.7
Since we want to use Theorem 3.6, we just need to show that S(t) is a closed oper-
ator, as the other hypothesis have already been proved; to this aim, we fix τ ∈ R+

and let vk be a sequence in W such thatvk
W−→ v

S(τ)vk
W−→ y.

(3.42)

(3.43)

We then need to prove that y = S(τ)u in W . Corollary 2.5, together with (3.42),
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tells us in particular that S(τ)vk
V ∗−→ S(τ)v

S(τ)vk|Γ
HΓ−→ S(τ)v|Γ.

At the same time, (3.43) gives usS(τ)vk
V−→ y ⇒ S(τ)vk

V ∗−→ y

S(τ)vk|Γ
VΓ−→ y|Γ ⇒ S(τ)vk|Γ

HΓ−→ y|Γ,

Hence the uniqueness of the limit implies the closedness of S(t). From Theorem 3.6,
we get the existence of a connected global attractor Am such that

Am = ω(Km),

which in turn implies that Am ⊂ Km, since S(t)Km ⊂ Km after a sufficiently long
time; we conclude that Am is compact too in H1(Ω) ×H1(Γ), and Theorem 3.7 is
proved.

Remark 3.10 The results of this Chapter too can be extended to the case fΓ
Lipschitz; however, it seems that the additional hypothesis fΓ ∈ L∞(R) is needed
(see [45]). Nonetheless, in this case, we remark that the presence of a linear term
on the boundary (as it is usually asked for in the applications) is still guaranteed by
the term σΓu.
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Chapter 4

Numerical analysis

In this chapter we will study the behavior of a P1 finite elements approximation for
our system; the arguments here presented are mainly based on the work of Cherfils
and Petcu (see [60], [61]), and the results of the simulations are compared to those
obtained in these papers.
Among the vast literature devoted to the numerical analysis of CH-type equations,
we cite [17], [62], [63] and [64] dealing with generic degree finite elements. Splitting
schemes are quite popular too because of the higher-order nature of the system: we
cite, for instance, [65], [66], [67].

In order to simplify the presentation, while maintaining a significant formulation,
we consider a slightly modified version of the problem: the domain Ω will now be a 2
or 3 dimensional slab endowed with dynamic boundaries conditions on two opposite
sides, and periodic on the rest of the boundary. Clearly, while the first appear ex-
plicitly in the problem’s formulation, the second will be part of the function spaces
definition. So, we now set

Ω =
(
d−1
Π
i=1

(R\kLi)
)
× (0, Ld) ∀k ∈ Z,

and

Γ =
(
d−1
Π
i=1

(R\kLi)
)
× {0, Ld} ∀k ∈ Z,

where Li > 0 i = 1, . . . , d. As already pointed out, in order to take into account
the periodic conditions, we redefine the function space V in the following way

V =
{
v ∈ H1(Ω)

∣∣∣ v(·, 0) ∈ H1
p (0, L1) and v(·, L2) ∈ H1

p (0, L1)
}
,

if d = 2, and similarly if d = 3.

This choice does not affect the analysis of the previous chapters: using this notation,
the same results can be proven. Moreover, we have the advantage of dealing both
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with a regular boundary and a polygonal domain.

4.1 Galerkin P1 semidiscretization

We choose a quasi-uniform family {Ωh} of triangulations of
d
Π
i=1

[0, Li], composed by
d-simplexes, which takes into account the periodic conditions; as customary, h rep-
resents the maximum diameter of the elements. Ωh is then a decomposition of Ω,
and it induces naturally the triangulation (of (d− 1)-simplexes) Γh of Γ. Then, we
define the P1 finite elements space Xh as

Xh =
{
v ∈ C0(Ω)

∣∣∣ v|T ∈ P1 ∀T ∈ Ωh

}
.

Remark 4.1 In contrast with the previous chapters, we will use the original for-
mulation of problem (that is, without operating the substitution u(t) = u(t)− 〈u(t)〉);
this choice is caused by the simple observation that it is more significant to estimate
the difference uh−u rather than uh−u, as the mean value of the solution and its dis-
cretization is not guaranteed to be the same. We remark that equations (2.29)-(2.30)
then read

∫
Ω
∂tuy + σ

∫
Ω
uy +

∫
Ω
∇w · ∇y = 0 ∀y ∈ V,∫

Ω
wy =

∫
Ω
∇u · ∇y +

∫
Ω

(f(u)− g) y +
∫

Γ
∂tuy

+
∫

Γ
∇Γu · ∇Γy + σΓ

∫
Γ
uy +

∫
Γ

(fΓ(u)− gΓ) y ∀y ∈W.

(4.1)

(4.2)

for a.a. t ∈ (0, T ), and with the initial condition u(0) = u0.

With this remark in mind, the Galerkin formulation is:

we look for a couple (uh, wh) such that

uh ∈ H1(0, T ;Xh), wh ∈ L2(0, T ;Xh), (4.3)
uh(0) = u0,h, (4.4)

and satisfying for a.a. t ∈ (0, T )

∫
Ω
∂tuhy + σ

∫
Ω
uhy +

∫
Ω
∇wh · ∇y = 0 ∀y ∈ Xh,∫

Ω
why =

∫
Ω
∇uh · ∇y +

∫
Ω

(f(uh)− g) y +
∫

Γ
∂tuhy

+
∫

Γ
∇Γuh · ∇Γy + σΓ

∫
Γ
uhy +

∫
Γ

(fΓ(uh)− gΓ) y ∀y ∈ Xh.

(4.5)

(4.6)

Here u0,h is a suitable approximation of u0, the properties of which will be specified
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later on. We skip the proof of existence of a unique solution of problem (4.3)-(4.6),
as it is essentially the same as in Chapter 2; we will thus focus on the error estimates
of such discretization.

Remark 4.2 In the following, we will make use of the operator

Nh : Xh,0 → Xh,0, Xh,0 = {vh ∈ Xh | 〈vh〉 = 0}

which is the discrete version of N (see Appendix A.2). Clearly, Nh shares all of
N properties, as long as we deal with functions belonging to the discretized space.
Moreover, we denote by || · ||∗,h the norm induced by this operator.

We now state the main result of this chapter:

Theorem 4.3 Let (u,w) be a solution of (4.1)-(4.2), corresponding to the initial
datum u0, such that

u, ∂tu, ∂
2
t u, w, ∂tw ∈ L2(0, T ;H2(Ω)), (4.7)

u|Γ, ∂tu|Γ, ∂2
t u|Γ ∈ L2(0, T ;H2(Γ)), (4.8)

and let (uh, wh) be a solution of (4.3)-(4.6) where u0,h is a proper approximation of
u0. Then, if h is small enough, the following error estimates hold

sup
[0,T ]

(|uh − u|0 + |uh − u|0,Γ + ||∂tuh − ∂tu||∗,h + |∂tuh − ∂tu|0,Γ) ≤ Ch2, (4.9)

(∫ T

0
|wh − w|20

)1/2

≤ Ch2, (4.10)

sup
[0,T ]
||uh − u||W ≤ Ch2, (4.11)

(∫ T

0
||wh − w||2V + ||∂tuh − ∂tu||2V + ||∂tuh − ∂tu||2VΓ

)1/2

≤ Ch2, (4.12)

where the constant C > 0 is independent on h.

Remark 4.4 The conditions asked for in (4.7) and (4.8) are rather strong; indeed,
using only the results of the previous chapter, we are not allowed to assume such
regularity in time for the solutions. However, because of the parabolic nature of the
problem on both Ω and Γ, it is expected that (4.7) and (4.8) are satisfied if u0, f ,
fΓ, g and gΓ are smooth enough.
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4.2 Auxiliary results
In this section, we develop some results which we will use in order to prove Theo-
rem 4.3.
We use a standard approach and we write

uh − u = αu + βu αu = uh − ũh, βu = ũh − u, (4.13)
wh − w = αw + βw αw = wh − w̃h, βw = w̃h − w, (4.14)

where ũh and w̃h are the so-called elliptic projections of u and w, defined as∫
Ω
∇ũh · ∇y + σΓ

∫
Γ
ũhy +

∫
Γ
∇Γũh · ∇Γy

=
∫

Ω
∇u · ∇y + σΓ

∫
Γ
uy +

∫
Γ
∇Γu · ∇Γy, ∀y ∈ Xh,

(4.15)

and 
〈w̃h〉 = 〈w〉,∫

Ω
∇w̃h · ∇y =

∫
Ω
∇w · ∇y ∀y ∈ Xh.

(4.16)

(4.17)

The well-posedness of (4.15)-(4.17) is easy to show; indeed problem (4.15) possesses
a unique solution, as it can be easily seen recalling that | · |1 + | · |0,Γ is an equivalent
norm on V , since the bilinear form

a(φ, ψ) =
∫

Ω
∇φ · ∇ψ + σΓ

∫
Γ
φψ +

∫
Γ
∇φ · ∇ψ

is coercive and continuous onW (and hence onXh). Therefore the conclusion follows
from the Lax-Milgram Lemma.
Moreover, we observe that (4.17) defines a solution which is unique up to an additive
constant; so, together with (4.16), we get the uniqueness.

Remark 4.5 We now clarify what we mean by “proper approximation” of the
initial datum (as requested in Theorem 4.3). Once u0 is given, we will ask that

αu(0) = u0,h − ũh(0) = 0, αw(0) = wh(0)− w̃h(0) = 0, (4.18)

are satisfied. This is not a real limitation in practice, as it only requires to solve
the linear elliptic equation (4.15), with u0 as the projected function; as of wh(0), its
choice doesn’t really affect the simulation, since the solution at the time step n+1 will
depend on the previous step only through un (since no time derivative of w appears
in the problem). The only reason why one should be interested in calculating wh(0),
would be in order to apply an iterative method with an initial datum close to the
real solution; however, a simple interpolation should work fine for most applications.

Requests (4.18) are due to technical reason, and the reason will be evident from
the proof of Theorem 4.3. Executing these operation prior than solving the real
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problem adds however just a little computational expense; on the other hand, getting
a prescription on how to build u0,h might even be advantageous.

We start by estimating the error relative to the elliptic projections. Regarding βw, it
is well-known (due to (4.16)-(4.17) and standard numerical results for elliptic prob-
lems) that, as w ∈ H2(Ω), it holds

|w̃h − w|0 + h|w̃h − w|1 ≤ Ch2|w|2, (4.19)

where C depends on Ωh only. A little more work is needed to get a similar estimate
for βu, which will be proved in the following

Lemma 4.6 Let u ∈ H2(Ω) such that u|Γ ∈ H2(Γ), and let ũh be the unique
solution of (4.15). Then

|ũh − u|0 + |ũh − u|0,Γ + h|ũh − u|1 + h|ũh − u|1,Γ ≤ Ch2(|u|2 + |u|2,Γ). (4.20)

Proof First, we denote by Ih the interpolation operator

Ih : C0(Ω)→ Xh.

We recall that Ihu is the unique function belonging to Xh that takes the same values
as u ∈ C0(Ω) on the nodes of the triangulation.

Clearly ũh − Ihu ∈ Xh, so we can write

a(ũh − u, ũh − u) = a(ũh − u, ũh − Ihu) + a(ũh − u, Ihu− u),

and the first term on the right hand side is zero by definition. Hence, exploiting the
coercivity and continuity of a(·, ·)

C0||ũh − u||2W ≤ (2 + σΓ)||ũh − u||W ||Ihu− u||W ,

and we conclude, due to Lemma A.5, that

||ũh − u||W ≤ Ch(|u|2 + |u|2,Γ). (4.21)

In order to get the whole estimate (4.20), we will now use what is known in literature
as the Aubin-Nitsche duality trick. So let φ be the unique solution of

a(φ, y) =
∫

Ω
χy +

∫
Γ
ψy ∀y ∈ Xh, (4.22)

where χ ∈ L2(Ω), ψ ∈ L2(Γ). Then, by elliptic regularity, we have φ ∈ H2(Ω) and
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φ|Γ ∈ H2(Γ); moreover it holds

|φ|2 + |φ|2,Γ ≤ C(|χ|0 + |ψ|0,Γ). (4.23)

If we now set y = ũh − u in (4.22), we obtain∫
Ω
χ(ũh − u) +

∫
Γ
ψ(ũh − u) = a(φ, ũh − u) = a(φ− Ihφ, ũh − u)

≤ C||φ− Ihφ||W ||ũh − u||W .
(4.24)

Finally we set χ = ũh − u, ψ = (ũh − u)|Γ, thus getting

|ũh − u|20 + |ũh − u|20,Γ ≤ Ch2(|φ|2 + |φ|2,Γ)(|u|2 + |u|2,Γ)

≤ Ch2(|ũh − u|0 + |ũh − u|0,Γ)(|u|2 + |u|2,Γ),

where we used (4.21), (4.23) and once more Lemma A.5. Simplifying and using the
resulting inequality with (4.21), we get (4.20).

We now prove an estimate for αu and αw.

Lemma 4.7 Let (u,w) be a solution of (4.1)-(4.2) corresponding to initial da-
tum u0, and (uh, wh) be a solution of (4.5)-(4.6) corresponding to initial datum u0,h
satisfying (4.18). Moreover, assume that

||u||C0([0,T ];C0(Ω)) < R ||∂tu||C0([0,T ];C0(Ω)) ≤ R ||u0,h||C0(Ω) < R, (4.25)

where R ∈ (0,+∞), and let Th ∈ (0, T ] be the maximal number satisfying

||uh(t)||L∞(Ω) ≤ R ∀t ∈ [0, Th]. (4.26)

Then there exist constants C∗i > 0, independent on h, u, uh, such that the following
estimates hold:

Φ(t) +
∫ t

0

(
|αw|21 + |∂tαu|20,Γ + |∂tαu|21 + |∂tαu|21,Γ

)
≤ C∗1Φ(0) + C∗2

∫ t

0

(
|βw|20 + |∂tβw|20 + |βu|20 + |βu|20,Γ

+|∂tβu|20 + |∂tβu|20,Γ + |∂2
t β

u|20 + |∂2
t β

u|20,Γ
)

+ t C∗3 |βu(0)|20 ∀t ∈ [0, Th],

(4.27)

and

|〈αw〉| ≤ C∗4
(
Φ1/2(t) + |βu|20 + |βu|20,Γ + |∂tβu|20 + |∂tβu|20,Γ + |βu(0)|20

)
∀t ∈ [0, Th],

(4.28)
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where

Φ(t) = |αu|21 + σΓ|αu|20,Γ + |αu|21,Γ + ||∂tαu − 〈∂tαu〉||2∗,h + |∂tαu − 〈∂tαu〉|20,Γ. (4.29)

Furthermore

|〈∂tαu〉| ≤ C∗5 (|βu(0)|0 + |∂tβu|0) ∀t ∈ [0, T ]. (4.30)

Proof We start by subtracting (4.1) from (4.5). What we get is∫
Ω
∂t(αu + βu)y + σ

∫
Ω

(αu + βu)y +
∫

Ω
∇(αw + βw) · ∇y = 0 ∀y ∈ Xh, (4.31)

which becomes, choosing y = 1
|Ω|

d
dt〈α

u + βu〉 = −σ〈αu + βu〉.

Similarly as we did in the first Chapter we can easily solve this ODE, and recalling
the first one of (4.18) yields to

〈αu〉 = 〈βu(0)〉e−σt − 〈βu〉,

so that

|〈αu〉| ≤ |Ω|−1/2(|βu(0)|0 + |βu|0) ∀t ∈ [0, T ], (4.32)

Differentiating (4.31) with respect to time, and using the same arguments, we also
get

|〈∂tαu〉| ≤ |Ω|−1/2(σ|βu(0)|0 + |∂tβu|0) ∀t ∈ [0, T ], (4.33)
|〈∂2

t α
u〉| ≤ |Ω|−1/2(σ2|βu(0)|0 + |∂2

t β
u|0) ∀t ∈ [0, T ], (4.34)

the first one being (4.30).

We now subtract (4.6) from (4.2) and find, after reordering

∫
Ω
∇αu · ∇y +

∫
Γ
∇Γα

u · ∇Γy + σΓ

∫
Γ
αuy +

∫
Γ
∂tα

uy =∫
Ω

(αw + βw)y −
∫

Ω
(f(uh)− f(u)) y −

∫
Γ

(fΓ(uh)− fΓ(u)) y −
∫

Γ
∂tβ

uy,
(4.35)

for every y ∈ Xh, where we eliminated some terms due to definition (4.15).
Choosing y = ∂tα

u in (4.35) leads to
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1
2

d
dt
(
|αu|21 + σΓ|αu|20,Γ + |αu|21,Γ

)
+ |∂tαu|20,Γ =∫

Ω
αw∂tα

u +
∫

Ω
βw∂tα

u −
∫

Ω
(f(uh)− f(u)) ∂tαu

−
∫

Γ
(fΓ(uh)− fΓ(u)) ∂tαu −

∫
Γ
∂tβ

u∂tα
u.

On the other hand, setting y = αw in (4.31) we get

|αw|21 = −
∫

Ω
∂t(αu + βu)αw − σ

∫
Ω

(αu + βu)αw,

because of (4.17). Summing the last two equations and simplifying the term in
common yields to

1
2

d
dt
(
|αu|21 + σΓ|αu|20,Γ + |αu|21,Γ

)
+ |∂tαu|20,Γ + |αw|21

= −
∫

Ω
(∂tβu + σαu + σβu)αw +

∫
Ω
βw∂tα

u −
∫

Ω
(f(uh)− f(u)) ∂tαu

−
∫

Γ
(fΓ(uh)− fΓ(u)) ∂tαu −

∫
Γ
∂tβ

u∂tα
u.

We can then use the Cauchy-Schwarz and Poincaré inequalities on the terms on the
right hand side, in order to get

1
2

d
dt
(
|αu|21 + σΓ|αu|20,Γ + |αu|21,Γ

)
+ |∂tαu|20,Γ + |αw|21

≤ C(|∂tβu|0 + |αu|0 + |βu|0)(|〈αw〉|+ |αw|1) + |βw|0|∂tαu|0

+ L(|αu|0 + |βu|0)|∂tαu|0 + LΓ(|αu|0,Γ + |βu|0,Γ)|∂tαu|0,Γ + |∂tβu|0,Γ|∂tαu|0,Γ,
(4.36)

where L and LΓ are the Lipschitz constants for f and fΓ, since we assumed (4.25),
(4.26) and the nonlinearities are at least locally Lipschitz: hence, this inequality
holds for every t ∈ [0, Th].

We see that an estimate for |〈αw〉| is needed; we get it, recalling definition (4.16),
by choosing y = 1

|Ω| in (4.35)

|〈αw〉| ≤ C(||αu||L1(Γ) + ||∂tαu||L1(Γ) + ||αu||L1(Ω) + ||βu||L1(Ω)

+ ||αu||L1(Γ) + ||βu||L1(Γ) + ||∂tβu||L1(Γ))

≤ C(|αu|0,Γ + |∂tαu|0,Γ + |αu|0 + |βu|0 + |βu|0,Γ + |∂tβu|0,Γ) ∀t ∈ [0, Th],
(4.37)

where we exploited again the lipschitzianity of the nonlinearities. From (4.37), in
particular, we prove (4.28) using the triangular and the Poincaré inequalities, in
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addition to (4.32), (4.33); indeed we get

|〈αw〉| ≤ C(|αu|0,Γ + |∂tαu−〈∂tαu〉|0,Γ + |βu(0)|0 + |αu|0 + |βu|0 + |βu|0,Γ + |∂tβu|0,Γ),

for every t ∈ [0, Th]; so, (4.28) follows from the definition of Φ(t).

We conclude the first part of the proof using (4.37) back into (4.36); we do not write
every passage because of the length of the resulting inequality, it however suffices
to repeatedly use the Young inequality. A little care in choosing the multiplicative
coefficients is needed only for the terms containing |αw|1 and |∂tαu|0,Γ, in order to
simplify them with the homologous on the left hand side. So we get, upon reordering,

d
dt
(
|αu|21 + |αu|21,Γ + σΓ|αu|20,Γ

)
+ |∂tαu|20,Γ + |αw|21

≤ C1(|∂tβu|20 + |βu|20 + |βu|20,Γ + |∂tβu|20,Γ + |βw|20) + C2(|αu|20 + |αu|20,Γ + |∂tαu|20),
(4.38)

for every t ∈ [0, Th].

We now look for an estimate for the derivatives of αu, αw. We differentiate (4.31)
and (4.35); then, choosing respectively y = Nh(∂tαu−〈∂tαu〉) and y = ∂tα

u−〈∂tαu〉
and summing the resulting inequalities yields to

∫
Ω
∂2
t α

uNh(∂tαu − 〈∂tαu〉) + σ

∫
Ω
∂tα

uNh(∂tαu − 〈∂tαu〉) + |∂tαu|21

+ |∂tαu|21,Γ + σΓ

∫
Γ
∂tα

u(∂tαu − 〈∂tαu〉) +
∫

Γ
∂2
t α

u(∂tαu − 〈∂tαu〉)

= −
∫

Ω
∂2
t β

uNh(∂tαu − 〈∂tαu〉)− σ
∫

Ω
∂tβ

uNh(∂tαu − 〈∂tαu〉)

+
∫

Ω
∂tβ

w(∂tαu − 〈∂tαu〉)−
∫

Ω

(
f ′(uh)∂tuh − f ′(u)∂tu

)
(∂tαu − 〈∂tαu〉)

−
∫

Γ

(
f ′Γ(uh)∂tuh − f ′Γ(u)∂tu

)
(∂tαu − 〈∂tαu〉)−

∫
Γ
∂2
t β

u(∂tαu − 〈∂tαu〉),

where, again, we eliminated some terms using the definition of elliptic projection.
We then write

∂tα
u = (∂tαu − 〈∂tαu〉) + 〈∂tαu〉, (4.39)

∂2
t α

u = (∂2
t α

u − 〈∂2
t α

u〉) + 〈∂2
t α

u〉, (4.40)

for the first, second, fifth and sixth terms on the left hand side. We then use the
properties of Nh, and in particular the definition of || · ||∗,h, to get
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1
2

d
dt ||∂tα

u − 〈∂tαu〉||2∗,h + σ||∂tαu − 〈∂tαu〉||2∗,h + |∂tαu|21

+ |∂tαu|21,Γ + σΓ|∂tαu − 〈∂tαu〉|20,Γ + 1
2

d
dt |∂tα

u − 〈∂tαu〉|20,Γ

= −
∫

Ω
(∂2
t β

u + 〈∂2
t α

u〉+ σ∂tβ
u + σ〈∂tαu〉)Nh(∂tαu − 〈∂tαu〉)

− σΓ

∫
Γ
〈∂tαu〉(∂tαu − 〈∂tαu〉)−

∫
Γ
〈∂2
t α

u〉(∂tαu − 〈∂tαu〉)

+
∫

Ω
∂tβ

w(∂tαu − 〈∂tαu〉)−
∫

Ω

(
f ′(uh)∂tuh − f ′(u)∂tu

)
(∂tαu − 〈∂tαu〉)

−
∫

Γ

(
f ′Γ(uh)∂tuh − f ′Γ(u)∂tu

)
(∂tαu − 〈∂tαu〉)−

∫
Γ
∂2
t β

u(∂tαu − 〈∂tαu〉).

(4.41)

We start dealing with the nonlinear terms; to this aim, we write

|f ′(uh)∂tuh − f ′(u)∂tu| ≤ |f ′(uh)(∂tuh − ∂tu)|+ |(f ′(uh)− f ′(u))∂tu|

≤ L′|∂tαu + ∂tβ
u|+ 2RL′|αu + βu|,

(4.42)

which makes sense for t ∈ [0, Th]. L′ is the Lipschitz constant for f ′, and fΓ is
treated analogously. We can hence use (4.42) in (4.41) and write, upon reordering

1
2

d
dt
(
||∂tαu − 〈∂tαu〉||2∗,h + |∂tαu − 〈∂tαu〉|20,Γ

)
+ σ||∂tαu − 〈∂tαu〉||2∗,h

+ |∂tαu|21 + |∂tαu|21,Γ + σΓ|∂tαu − 〈∂tαu〉|20,Γ

≤ |∂2
t β

u + 〈∂2
t α

u〉+ σ∂tβ
u + σ〈∂tαu〉|0||∂tαu − 〈∂tαu〉||∗,h

+ |σΓ〈∂tαu〉+ ∂2
t β

u + 〈∂2
t α

u〉|0,Γ|∂tαu − 〈∂tαu〉|0,Γ + |∂tβw|0|∂tαu − 〈∂tαu〉|0

+
(
L′|∂tαu + ∂tβ

u|0 + 2RL′|αu + βu|0
)
|∂tαu − 〈∂tαu〉|0

+
(
L′Γ|∂tαu + ∂tβ

u|0,Γ + 2RL′Γ|αu + βu|0,Γ
)
|∂tαu − 〈∂tαu〉|0,Γ,

(4.43)

for every t ∈ [0, Th], where we have also used the Poincaré inequality together with
(A.8), in order to get the || · ||∗,h norm on the right hand side.

To deduce a bound for the first three terms on the right, we exploit the triangular,
the Poincaré and Young inequalities, in addition to (4.33), (4.34) and (A.13), ob-
taining

C
(
|∂2
t β

u|20 + |∂tβu|20 + |βu(0)|20 + ||∂tαu − 〈∂tαu〉||2∗,h

+|∂2
t β

u|20,Γ + |∂tαu − 〈∂tαu〉|20,Γ + |∂tβw|20
)

+ 1
4 |∂tα

u|21.

Then, the second to last must be smaller than
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C (|∂tαu − 〈∂tαu〉|0 + |〈∂tαu〉|0 + |∂tβu|0 + |αu|0 + |βu|0) |∂tαu − 〈∂tαu〉|0

≤ C
(
|βu(0)|20 + |∂tβu|20 + |αu|20 + |βu|20 + ||∂tαu − 〈∂tαu〉||2∗,h

)
+ 1

4 |∂tα
u|21.

Then we observe that the last term is bounded by

C
(
|∂tαu − 〈∂tαu〉|20,Γ + |βu(0)|20 + |∂tβu|20 + |∂tβu|20,Γ + |αu|20,Γ + |βu|20,Γ

)
.

Again, we used all the aforementioned inequalities. Exploiting these results, we con-
clude

d
dt(||∂tαu − 〈∂tαu〉||2∗,h + |∂tαu − 〈∂tαu〉|20,Γ) + σ||∂tαu − 〈∂tαu〉||2∗,h

+ |∂tαu|21 + |∂tαu|21,Γ + σΓ|∂tαu − 〈∂tαu〉|20,Γ

≤ C1
(
|∂tβw|20 + |βu|20 + |∂tβu|20 + |∂2

t β
u|20 + |βu|20,Γ + |∂tβu|20,Γ + |∂2

t β
u|20,Γ

)
+ C2

(
|αu|20,Γ + |αu|20 + |∂tαu − 〈∂tαu〉|20,Γ + ||∂tαu − 〈∂tαu〉||2∗,h

)
+ C3|βu(0)|20.

(4.44)

It is now just a matter of summing (4.38) and (4.44); using (A.13), the Poincaré,
triangular, and Young inequalities, we get

d
dtΦ(t) + σ||∂tαu − 〈∂tαu〉||2∗,h + σΓ|∂tαu − 〈∂tαu〉|20,Γ

+ |∂tαu|20,Γ + |αw|21 + |∂tαu|21 + |∂tαu|21,Γ

≤ C4Φ(t) + C5
(
|βw|20 + |∂tβw|20 + |βu|20 + |∂tβu|20 + |∂2

t β
u|20

+|βu|20,Γ + |∂tβu|20,Γ + |∂2
t β

u|20,Γ
)

+ C3|βu(0)|20 ∀t ∈ [0, Th].

(4.45)

Finally we integrate (4.45) in (0, t), with t ∈ [0, Th]; applying Gronwall’s Lemma to
the resulting inequality, and substituting it back into (4.45), we get (4.7) and this
concludes the proof.

4.3 Proof of Theorem 4.3
We are now ready to complete the proof of the error estimates. We first notice
that we can differentiate (4.15)-(4.17) and get a version of inequalities (4.19)-(4.20)
involving the derivatives of βu and βw, that is,
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|∂tβu|0 + |∂tβu|0,Γ + h|∂tβu|1 + h|∂tβu|1,Γ ≤ Ch2(|∂tu|2 + |∂tu|2,Γ) (4.46)

|∂2
t β

u|0 + |∂2
t β

u|0,Γ + h|∂2
t β

u|1 + h|∂2
t β

u|1,Γ ≤ Ch2(|∂2
t u|2 + |∂2

t u|2,Γ), (4.47)

and

|∂tβw|0 + h|∂tβw|1 ≤ Ch2|∂tw|2. (4.48)

Then, because of the regularity hypothesis (4.7), (4.8), and due to the embedding
H2(Ω) ↪→ C0(Ω), we infer that there must exists R ∈ (0,+∞) such that

||u||C0([0,T ];C0(Ω)) < R ||∂tu||C0([0,T ];C0(Ω)) ≤ R (4.49)

We now deal with the initial datum u0,h; using Lemma A.6 and Lemma A.7, we
obtain

||u0,h − u0||C0(Ω) ≤ ||u0,h − Ihu0||C0(Ω) + ||Ihu0 − u0||C0(Ω)

≤ C1h
−d/2(|u0,h − u0|0 + |u0 − Ihu0|0) + C2h

γ |u0|2
(4.50)

where the Hölder exponent γ ∈ (0, 1) is such that H2(Ω) ↪→ C0,γ(Ω), and depends
on the dimension d. Therefore, recalling (4.18), using (4.20) and Lemma A.5, we get

||u0,h − u0||C0(Ω) ≤ C
(
h2−d/2(|u0|2 + |u0|2,Γ) + hγ |u0|2

)
.

This means that, if h is chosen small enough, it must hold

||u0,h||C0(Ω) < R.

Thus, together with (4.49), this tells us that the hypothesis of Lemma 4.7 are sat-
isfied.

Let us now show that

Φ(0) ≤ Ch4,

and then prove that the same result holds for Φ(t), t ∈ [0, T ].
By the definition of Φ and on account of (4.18), we have

Φ(0) = ||∂tαu(0)− 〈∂tαu(0)〉||2∗,h + |∂tαu(0)− 〈∂tαu(0)〉|20,Γ,

thus we only need to estimate these two terms. We do so by writing (4.31), (4.35)
at t = 0, and choosing y = Nh(∂tαu(0) − ∂t〈αu(0)〉), y = ∂tα

u(0) − 〈∂tαu(0)〉, re-
spectively. Summing these inequalities, using Nh definition, we get
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||∂tαu(0)− 〈∂tαu(0)〉||2∗,h + |∂tαu(0)− 〈∂tαu(0)〉|20,Γ

=
∫

Ω
(〈∂tαu(0)〉+ ∂tβ

u(0) + σβu(0))Nh(∂tαu(0)− 〈∂tαu(0)〉)

+
∫

Ω
(f(u0,h))− f(u0))(∂tαu(0)− 〈∂tαu(0)〉)

+
∫

Γ
(fΓ(u0,h)− fΓ(u0))(∂tαu(0)− 〈∂tαu(0)〉)

−
∫

Γ
(〈∂tαu(0)〉+ βu(0))(∂tαu(0)− 〈∂tαu(0)〉),

(4.51)

where we have also rewritten ∂tαu(0) as in (4.39).
The need for condition (4.18) will now be clear; in fact, exploiting also (4.33) and
the Cauchy-Schwarz and Poincaré inequalities, (4.51) yields

||∂tαu(0)− 〈∂tαu(0)〉||2∗,h + |∂tαu(0)− 〈∂tαu(0)〉|20,Γ

≤ C1(|βu(0)|0 + |∂tβu(0)|0)||∂tαu(0)− 〈∂tαu(0)〉||2∗,h

+ C2|βu(0)|0|∂tαu(0)− 〈∂tαu(0)〉|0

+ C3(|βu(0)|0,Γ + |∂tβu(0)|0,Γ)|∂tαu(0)− 〈∂tαu(0)〉|0,Γ.

(4.52)

We now use the Young inequality on the terms on the right hand side; clearly, the
only term which needs particular care is the L2(Ω) norm of ∂tαu(0)− 〈∂tαu(0)〉, for
which we need an upper bound.
Such bound is obtained by writing (4.31) at t = 0, and then choosing y = ∂tα

u(0)−
〈∂tαu(0)〉; using once more (4.17) and (4.18), we then get∫

Ω
∂t(αu(0)− 〈αu(0)〉+ 〈αu(0)〉+ βu(0))(∂tαu(0)− 〈∂tαu(0)〉)

+ σ

∫
Ω
βu(0)(∂tαu(0)− 〈∂tαu(0)〉) = 0,

so

|∂tαu(0)− 〈∂tαu(0)〉|20 ≤ C|〈∂tαu(0)〉+ ∂tβ
u(0) + σβu(0)|20

+ 1
2 |∂tα

u(0)− 〈∂tαu(0)〉|20,

and, owing to (4.33), we conclude

|∂tαu(0)− 〈∂tαu(0)〉|20 ≤ C(|βu(0)|20 + |∂tβu(0)|20). (4.53)

Finally, summing (4.52) and (4.53), it is now easy to show that it holds
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Φ(0) = ||∂tαu(0)− 〈∂tαu(0)〉||2∗,h + |∂tαu(0)− 〈∂tαu(0)〉|20,Γ

≤ C(|βu(0)|20 + |∂tβu(0)|20 + |βu(0)|20,Γ + |∂tβu(0)|20,Γ)

≤ Ch4(|u|22 + |u|22,Γ),

(4.54)

as it follows from (4.20) and (4.46); thus, Φ(0) ≤ Ch4 as claimed.

Examining estimate (4.27), we notice that the whole right hand side is now bounded
by a term of the form Ch4; hence, this immediately implies

Φ(t) ≤ Ch4, ∀t ∈ [0, Th]. (4.55)

In order to extend this result to the whole [0, T ], we first notice that (4.55) implies
|αu|0 ≤ Ch2, ∀t ∈ [0, Th]; then, using the same argument showed in (4.50), we get

||uh(t)− u(t)||C0(Ω) ≤ C1h
−d/2(|uh(t)− u(t)|0 + |u(t)− Ihu(t)|0) + C2h

γ |u(t)|2
= C1h

−d/2(|αu(t) + βu(t)|0 + |u(t)− Ihu(t)|0) + C2h
γ |u(t)|2

≤ C(h2−d/2 + hγ).

for every t ∈ [0, Th]; however, this means that

sup
t∈[0,Th]

||uh(t)− u(t)||C0(Ω) → 0 as h→ 0. (4.56)

Hence, by the definition of Th, we can choose h small enough in order to get
Th = T . Estimates (4.9)-(4.12) then follow immediately using the definition of
Φ(t) and (4.55).

4.4 Fully discrete scheme
We now know that a P1 finite elements semidiscretization is a “good” choice: at this
point, we need to choose how to approximate the time derivatives. In [60] both a
semi-implicit (with an explicit treatment of the nonlinearities) Euler method, and
a linearized Crank-Nicolson are used; the same authors suggested a completely im-
plicit Euler scheme in [61], and this will be our approach too.

To this aim, we first fix a time step ∆t, and consequently we set tn = n∆t, NT = T
∆t .

Hence, unh(x) ≈ u(x, tn) and wnh(x) ≈ w(x, tn) will be the approximations of the real
solution at time tn. With these conventions, we write the fully discretized system as
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

1
∆t

∫
Ω

(un+1
h − unh)y + σ

∫
Ω
un+1
h y +

∫
Ω
∇wn+1

h · ∇y = 0 ∀y ∈ Xh,∫
Ω
wn+1
h y =

∫
Ω
∇un+1

h · ∇y +
∫

Ω

(
f(un+1

h )− g(tn+1)
)
y

+ 1
∆t

∫
Γ
(un+1
h − unh)y +

∫
Γ
∇Γu

n+1
h · ∇Γy

+ σΓ

∫
Γ
un+1
h y +

∫
Γ

(
fΓ(un+1

h )− gΓ(tn+1
)
y ∀y ∈ Xh.

(4.57)

(4.58)

where n = 0, . . . , NT − 1 and u0
h is the approximation of the initial datum, as ex-

plained in Remark 4.5.

Denoting by Nh the number of degrees of freedom (that is, the number of points) of
Xh, we write (4.57), (4.58) in monolithic matrix form as

[
A B

C D

] [
Un+1

Wn+1

]
+
[

0
H(Un+1)

]
=
[
Gn+1

1
Gn+1

2

]
n = 0, . . . , NT − 1, (4.59)

where the unknowns are Un+1 = (un+1
i )Nh

i=1, Wn+1 = (wn+1
i )Nh

i=1 and the matrix
blocks are defined as follows

Aij = (1 + σ∆t)
∫

Ω
φjφi Bij = ∆t

∫
Ω
∇φj · ∇φi,

Cij = ∆t
∫

Ω
∇φj · ∇φi + (1 + σΓ∆t)

∫
Γ
φjφi + ∆t

∫
Γ
∇Γφj · ∇Γφi

Dij = −∆t
∫

Ω
φjφi.

Similarly, the vectors are defined as follows

Hi(Un+1) = ∆t
∫

Ω
f
( Nh∑
k=1

un+1
k φk

)
φi + ∆t

∫
Γ
fΓ
( Nh∑
k=1

un+1
k φk

)
φi

Gn+1
1,i =

∫
Ω
uni φi Gn+1

2,i = ∆t
∫

Ω
g(tn+1)φi + ∆t

∫
Γ
gΓ(tn+1)φi +

∫
Γ
uni φi.

In the above definitions, the indexes i, j vary between 1 and Nh, and (φi)Nh
i=1 is a

base for Xh.
In order to solve the nonlinear system (4.59), we use a Newton iterative method, at
each time step, to solve it. To this aim, we rewrite it as

Φ(Pn+1) = MPn+1 + H̃(Pn+1)−Gn+1 = 0, (4.60)

with an obvious meaning for the new letters, and define the flux
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JΦ(P) =
(
∂Φi

∂pj

)
(P) = M + Ñ(P),

where

Ñ(P) =
[

0 0
N(P) 0

]
N(P)ij =

∫
Ω
f ′
( Nh∑
k=1

pkφk
)
φjφi.

Therefore, given an initial vector Pn+1
0 , the Newton method prescribes to solve the

system JΦ(Pn+1
k ) δPn+1

k = Φ(Pn+1
k )

Pn+1
k+1 = Pn+1

k + δPn+1
k ,

until some convergence criterion is met, for each n = 0, . . . , NT − 1.

4.5 Numerical simulations
We chose to solve (4.59) with the aid of the FreeFem++ software, on a Lx × Ly =
50× 25 rectangle. Periodic conditions were imposed on the left and right sides, and
dynamic boundaries conditions on the top and bottom sides. The uniform mesh was
set to be composed of 250 × 125 points, hence with spatial steps hx = hy = 0.2;
moreover we set the time step to ∆t = 0.001. A very generic version of code that was
used is reported in Appendix B, and covers the simulations which we now discuss.

Remark 4.8 As one could choose to vary many different parameters of the prob-
lem, we make a simple observation: the maximum/minimum of u0, the reaction
coefficient σ and the final time T are linked each other, as it is clear recalling the
decay law for 〈u〉. Experimental tests show that, once u0 is fixed, the behavior after
a long time with a small σ are qualitatively the same as after a shorter time, with
a larger value for σ. We chose the second approach, which is the same as in [66].

For all the simulations f and fΓ were taken as follows

f(s) = s3 − s fΓ(s) = s,

and the initial datum was chosen randomly, with fluctuations of ± 0.5. For each set,
we show the distribution of u at t = 0.002, 0.005, 0.01, while varying the reaction
coefficients, a stable state being attained before t = 0.01; for each of these times,
the solution was saved and turned into a black and white image, where black areas
correspond to negative values of u.
We now examine in detail the different configurations that were considered.
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Initial datum with null average
The first set of simulations is characterized by an initial datum satisfying 〈u0〉 = 0,
and different values of σ = σΓ. Hence, this configuration fits the phenomenon of
phase separation of diblock copolimers.

Figure 4.1: Evolution of the same initially homogeneous distribution
satisfying 〈u0〉 = 0. In the first row, σ = σΓ = 100, in the second one
σ = σΓ = 1000. Each column represents respectively the times t = 0.002,
t = 0.005, t = 0.01

We immediately notice how, even after a small time, the reaction parameters influ-
ence the evolution of the mixture. Indeed, even if a similar pattern emerges at the
final time t = 0.1, the formation of big structures is inhibited in the case of larger
σ, σΓ (see Figure 4.1).

This fact gets even more evident if we increase such values, as in Figure 4.2; on the
other hand, no sensible difference was perceived in the range σ ∈ (0, 100).
We moreover remark that the same effect is present at the boundary, where the
distribution gets somehow more discontinuous for larger values of σΓ.
It is also clear that the dynamic boundaries condition, as explained in the Introduc-
tion, does not force the interface between the two components to be orthogonal to
the wall.

The results are qualitatively the same as the ones in [60], [61].
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Figure 4.2: Evolution of the same initially homogeneous distribution
satisfying 〈u0〉 = 0. In the first row, σ = σΓ = 5000, in the second one
σ = σΓ = 10000. Each column represents respectively the times t = 0.002,
t = 0.005, t = 0.01

Initial datum with non-null average

The natural subsequent simulations regard the case where the initial datum is char-
acterized by a non-null average. The fluctuations of u0 are the same as before, but
now 〈u0〉 ≈ −0.15, so we can think of this configuration as that of two reacting
substances in an initially homogeneous alloy.

Figure 4.3: Evolution of the same initially homogeneous distribution,
with 〈u0〉 ≈ −0.15. In the first row, σ = σΓ = 1000, in the second one
σ = σΓ = 5000. Each column represents respectively the times t = 0.002,
t = 0.005, t = 0.01

Similar arguments to those of the null-average case hold here too; indeed, even if
the steady states seem to contain more “black” component because of the loss of
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information in the conversion to a black and white image, numerically computing
the average shows that it follows the exponential decay law.

A part from this the qualitative analysis, including the behavior at the boundary, is
the same as in the previous case.

Source on Γ

We now want to investigate what happens if the PDE on Γ is non-homogeneous,
that is if gΓ 6= 0; in particular, we set gΓ = −0.5.

Figure 4.4: Evolution of the same initially homogeneous distribution,
with gΓ = −0.5. In the first row, σ = σΓ = 100, in the second one
σ = σΓ = 500. Each column represents respectively the times t = 0.002,
t = 0.005, t = 0.01

The upper and lower sides of the slab clearly show a “preference”, which grows as
time passes, for negative values of u, and this is again in good agreement with both
theory and [60], [61].

We did not report the simulation for larger values of σ, as in this case the same
effect happens too quickly to make a qualitative analysis.

Different reaction coefficients on Ω and Γ

In the last set of simulations, we wanted to test the cases where σ 6= σΓ. As pointed
out in Remark 2.1, the effect is that of an additional, time dependent, source on the
boundary.

We notice that far from the upper and lower sides, the distribution is almost the
same as in the previous tests; however, as the difference in the two values increases,
and time passes, some peculiar pattern slowly emerges from Γ (Figure 4.5).
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Figure 4.5: Evolution of the same initially homogeneous distribution,
with gΓ = −0.5. In the first row, σ = 2000, σΓ = 1000, in the second
one σ = 5000, σΓ = 2500. Each column represents respectively the times
t = 0.002, t = 0.005, t = 0.01

We however remark that it is not clear if such a case corresponds to a significant
physical situation; indeed this should be one of the topics for future works.
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Conclusions and future work

In this thesis, we have analyzed different properties of the Cahn-Hilliard-Oono equa-
tion with dynamic boundary conditions. We proved that, under reasonable assump-
tions, the correspondent problem is well posed and possesses a connected global
attractor. Moreover, we showed that a P1 finite elements discretization, with an
implicit treatment of the time derivatives, can be used to perform numerical simu-
lations which are in good agreement with the theory.

There are still, however, many other aspects of this system whose investigation
should be of great interest.

First of all, a significant generalization would be that of dealing with a singular po-
tential. It is expected that in this case a sign compatibility condition on fΓ will be
needed to prove the existence of a distributional solution; on the other hand, if such
condition is not assumed, it should be possible to obtain the existence of a weaker
solution satisfying a variational inequality, instead of an equality (see [68]).

In Chapter 2, we mentioned that a desirable property for the global attractor is
that of being finite dimensional, in Hausdorff or fractal sense. This result, in CHO
related equations, is often achieved obtaining estimates independent on σ and then
letting such value go to zero; examining our problem formulation, it is evident that
we would need better estimates than the ones we proved. Moreover, there is an
additional difficulty due to the presence of the parameter σΓ.

As a related topic, it seems that a deeper analysis on the link between σ and σΓ could
lead to significant conclusions; indeed, the numerical simulations suggested that the
phenomenon of reacting substances in binary alloys confined in non-permeable walls
is greatly influenced by the difference in these two values.

Finally, an analysis of the system coupled with the Navier-Stokes equations could be
performed: this should lead to a physically relevant model for reacting substances
in liquid mixtures, even close to the boundary (on this topic see, for instance, [69]).
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Appendix A

Results used in the paper

In this Appendix we state some results that were recurrently used throughout the
text, although non-essential to comprehend the work at a first read.

A.1 Function spaces
We recall how we relabeled the most used function spaces:

V = H1(Ω), H = L2(Ω),
VΓ = H1(Γ), HΓ = L2(Γ),
W = {u ∈ V |u|Γ ∈ VΓ} ,

V0 = {v ∈ V | 〈v〉 = 0} , V ∗0 = {v∗ ∈ V ∗ | 〈v∗〉 = 0} .

Let {µk}k∈N and {ek}k∈N be the set of ordered eigenvalues and the set of the corre-
spondent eigenfunctions for the Laplace operator on Ω with homogeneous Neumann
boundary condition, i.e. the countable set of couples (µ, e), µ ∈ R and e ∈ V \{0}
solving ∫

Ω
∇e · ∇z = µ

∫
Ω
ez ∀z ∈ V.

It is well-know that µ1 = 0 and µk > 0 ∀k > 1. Moreover, {ek}k∈N forms an or-
thonormal base for H. We then set Vn = span{e1, . . . , en} ∀n ≥ 1.

We now cite and prove three Lemmas regarding density results, taken from [44].

Lemma A.1 Let z ∈ Z =
{
z ∈ H2(Ω)

∣∣ ∂nz = 0 on Γ
}
. If we set

zn =
n∑
k=1

(z, ek)Hek, (A.1)

that is, zn is the L2(Ω)-projection of z on Vn, then

||zn − z||W → 0 as n→ +∞. (A.2)
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Proof If we set ak := (z, ek)H , it is clear that we can write

z =
∞∑
k=1

akek, z − zn =
∞∑

k=n+1
akek,

so that

−∆z =
∞∑
k=1

µkakek, −∆(z − zn) =
∞∑

k=n+1
µkakek.

Obviously {ak}∞k=1, {µkak}∞k=1 ⊂ l2(N). Then, exploiting the continuity of the trace
operator and the equivalence of norm || · ||H + || −∆ · ||H in H2(Ω)

||zn − z||2W = ||zn − z||2V + ||zn|Γ − z|Γ||2|VΓ ≤ c||z
n − z||2H2(Ω)

≤ c
{
||zn − z||2H + || −∆(zn − z)||2H

}
= c

∞∑
k=n+1

(a2
k + µ2

ka
2
k) <∞,

and (A.2) is proved.

Lemma A.2 Z (as defined in Lemma A.1) is dense in W .

Proof Clearly Z ⊂W . We then choose v ∈W such that v ⊥ Z, that is:

(v, z)W =
∫

Ω
vz +

∫
Ω
∇v · ∇z +

∫
Γ
v|Γz|Γ +

∫
Γ
∇Γv|Γ · ∇Γz|Γ = 0 ∀z ∈ Z. (A.3)

If now z ∈ C∞0 (Ω), it is clear that∫
Ω
vz −

∫
Ω

∆vz = 0 ⇒ v −∆v = 0 in D′(Ω),

hence ∫
Ω
vz +

∫
Ω
∇v · ∇z = 〈∂nv|Γ, z|Γ〉H−1/2(Γ)×H1/2(Γ) ∀z ∈ V. (A.4)

Since Z ⊂ V , we can substitute this last equation in (A.3) and thus obtain

〈∂nv|Γ, z|Γ〉H−1/2(Γ)×H1/2(Γ) +
∫

Γ
v|Γz|Γ +

∫
Γ
∇Γv|Γ · ∇Γz|Γ = 0 ∀z ∈ Z,

and owing to the surjectivity of operator |Γ

|Γ : H2(Ω)→ H1/2(Γ)×H3/2(Γ), |Γ : z 7→ (∂nz|Γ, z|Γ),

we conclude that

〈∂nv|Γ, zΓ〉H−1/2(Γ)×H1/2(Γ) +
∫

Γ
v|ΓzΓ +

∫
Γ
∇Γv|Γ ·∇ΓzΓ = 0 ∀zΓ ∈ H3/2(Γ). (A.5)
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Equation (A.5) actually holds for every zΓ ∈ VΓ since H3/2(Γ) is dense in H1(Γ).
Hence we can combine (A.4) with (A.5) to see that (A.3) holds for every z ∈W ; in
order to conclude the proof, it suffices to set z = v to get v = 0 in W .

Lemma A.3 Let V∞ =
∞⋃
n=1

Vn. Then, V∞ is dense in W .

Proof Let v ∈W . We set

vm :=
m∑
k=1

(v, ek)Hek.

Lemma A.1 tells us that ||vm − v||W → 0 since v ∈ Z. Moreover, vm ∈ V∞ ∀m ∈ N,
and this concludes the proof.

A.2 The operator N
Consider the problem ∫

Ω
∇u · ∇z = 〈g, z〉V ∗ ∀z ∈ V0 (A.6)

where g ∈ V ∗0 is given. Clearly, (A.6) is nothing but the weak formulation of Pois-
son’s problem with homogeneus Neumann condition on the border Γ and datum g;
since this problem is well posed, we can define the operator N : V ∗0 → V0, which
maps any given function g ∈ V ∗0 to the corresponding solution u = N (g) ∈ V0 of
(A.6).

N ∈ L(V ∗0 , V0) is clearly invertible, so it defines an isomorphism between V ∗0 and
V0 due to the bounded inverse theorem. Furthermore, it is self-adjoint and positive
semidefinite on V ∗0 , since∫

Ω
fN (g) =

∫
Ω
∇N (f) · ∇N (g) =

∫
Ω
N (f)g ∀f, g ∈ V ∗0 ,

and ∫
Ω
fN (f) =

∫
Ω
∇N (f) · ∇N (f) ≥ 0 ∀f ∈ V ∗0 .

If we now define

|| · ||∗ : V ∗ → [0,+∞),
||v∗||2∗ := ||∇N (v∗ − 〈v∗〉)||2H + |〈v∗〉|2 ∀v∗ ∈ V ∗, (A.7)
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it is easy to see that || · ||∗ is a norm that makes V ∗ a complete space, since conver-
gence in the norms on the right hand side forces convergence in || · ||∗. It then follows
from the theory that || · ||∗ is an equivalent norm in V ∗, i.e. there exist m∗,M∗ > 0
such that

m∗||v∗||V ∗ ≤ ||v∗||∗ ≤M∗||v∗||V ∗ ∀v∗ ∈ V ∗.

Moreover, we notice that in particular

〈v∗,N (v∗)〉V ∗ =
∫

Ω
|∇N (v∗)|2 = ||v∗||2∗ ∀v∗ ∈ V ∗0 , (A.8)

and, if v∗(t) ∈ H1(0, T ;V ∗0 )

〈∂tv∗(t),N (v∗(t))〉V ∗ =
∫

Ω
∇N (∂tv∗(t)) · ∇N (v∗(t)) = 1

2
d
dt

∫
Ω
|∇N (v∗(t))|2

= 1
2

d
dt ||v

∗(t)||2∗ a.a. t ∈ (0, T ).
(A.9)

A.3 Inequalities
We first recall the Poincaré inequality

||v||H ≤ C||∇v||H ⇒ ||∇v||2H ≤ ||v||2V ≤ C||∇v||2H ∀v ∈ V0,

with, as a consequence

C1(||∇v||2H + |〈v〉|2) ≤ ||v||2V ≤ C2
(
||∇v||2H + |〈v〉|2

)
∀v ∈ V, (A.10)

where all the positive constants depend on Ω only.

Then

ab ≤ ε

2a
2 + 1

2εb
2 ∀ε > 0, a, b ∈ R.

which is the well-known Young inequality.
We now use these results to write

||v(t)||2H = ||v(0)||2H +
∫ t

0

d
ds ||v(s)||2H = ||v(0)||2H + 2

∫ t

0
〈∂sv(s), v(s)〉

≤ ||v(0)||2H + ε

∫ t

0
||∂sv(s)||2V ∗ + 1

ε

∫ t

0
||v(s)||2V ∀ε > 0,

(A.11)
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which clearly hold for a.a. t ∈ (0, T ) whenever v(t) ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗).
Similarly we have

||v(t)||2HΓ ≤ ||v(0)||2HΓ + ε

∫ t

0
||∂sv(s)||2HΓ + 1

ε

∫ t

0
||v(s)||2HΓ ∀ε > 0 (A.12)

for a.a. t ∈ (0, T ) whenever v ∈ H1(0, T ;HΓ).

Finally, there holds

||v||2H ≤ ||v||2V = (v, v)V = 〈v, v〉V ∗ ≤ ||v||V ∗ ||v||V

≤ C||v||V ∗ ||∇v||H ≤ ε||∇v||2H + C2

4ε ||v||
2
V ∗ ∀ε > 0,

(A.13)

for every v ∈ V0. As a natural, more general, consequence

||v||2H ≤ ε||∇v||2H + C2

4ε ||v − 〈v〉||
2
V ∗ + |Ω||〈v〉|2 ∀ε > 0 (A.14)

for every v ∈ V .

We conclude this section stating the version of Gronwall inequality which was used
throughout the text

Lemma A.4 Let I = (a, b) be an interval on the real line, and α, β, v three real-
valued functions defined on I. Assume that β and v are continuous, and that α is a
non-decreasing function with integrable negative part on every compact subset of I.
If it holds

v(t) ≤ α(t) +
∫ t

a
β(s)v(s) ∀t ∈ I,

then

v(t) ≤ α(t) exp
(∫ t

a
β(s)

)
∀t ∈ I,

A.4 Error estimates
In the following, Vh will denote a Galerkin P1 approximation of V on a family of
triangulations {Ωh} of a domain Ω ⊂ Rd, and Ih the interpolation operator on Vh.

We recall three well-known results, a proof of which can be easily found in the lit-
erature (see, e.g., [70]).
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Lemma A.5 There exists a positive constant C, depending on {Ωh} only (and
in particular, independent on h), such that

||u− Ihu||H + h||∇ (u− Ihu) ||H ≤ Ch2||∆u||H ∀u ∈ H2(Ω), (A.15)
||v − Ihv||HΓ + h||∇Γ (v − Ihv) ||HΓ ≤ Ch

2||∆Γv||HΓ ∀v ∈ H2(Γ), (A.16)

Lemma A.6 There exists a positive constant C, depending on {Ωh} only (and
in particular, independent on h), such that

||φh||C0(Ω) ≤ Ch
−d/2||φh||H ∀φh ∈ Vh. (A.17)

Lemma A.7 Let γ ∈ (0, 1) such that H2(Ω) ↪→ C0,γ(Ω). Then there exists a
positive constant C depending on {Ωh} only (and in particular, independent on h),
such that

||u− Ihu||C0(Ω) ≤ Ch
γ ||∆u||H ∀u ∈ H2(Ω). (A.18)
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Appendix B

FreeFem++ code

1 real Lx = 50, Ly = 25; // Domain size
2 real nx = 250 , ny = 125; // Number of elements in x and y direction
3
4
5 mesh Th = square (nx , ny , [Lx * x, Ly * y]); // Mesh definition
6 fespace Vh(Th , P1 , periodic = [[2 , y], [4, y]]); // FE space definition
7
8
9 Vh w, wold , u, u0 , uold , utemp , phi , chi , feval , fgammaeval , dfeval ,

dfgammaeval , geval , ggammaeval ; // Finite elements functions
10
11 real dt = 0.001; // Time step
12 real T = 0.01; // Final time
13 int nsaveT = 2;
14 real [int] saveT = [0.002 , 0.005]; // Save times
15 real curtime ; // Current time
16 real sigma = 1000; // Reaction coefficient on Omega
17 real sigmagamma = 1000; // Reaction coefficient on Gamma
18 real dimVh = Vh. ndof ;
19 real dimTot = 2 * dimVh ;
20 int j = 0; // GMRES iteration number
21
22
23 func real f( real u) { // Non - linearity on Omega
24 return u^3 - u;
25 }
26
27 func real df( real u) { // Derivative of the non - linearity
28 return 3 * u^2 - 1; // on Omega
29 }
30
31 func real fgamma ( real u) { // Non - linearity on Gamma
32 return u;
33 }
34
35 func real dfgamma ( real u) { // Derivative of the non - linearity
36 return 1; // on Gamma
37 }
38
39 func real g( real t) { // Source term on Omega
40 return 0;
41 }
42
43 func real ggamma ( real t) { // Source term on Gamma
44 return 0;
45 }
46
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47
48
49 // Variational forms
50
51 varf a(u, chi) = int2d (Th)((1 + sigma * dt) * u * chi);
52
53 varf b(w, chi) = int2d (Th)(dt * (dx(w) * dx(chi) + dy(w) * dy(chi)));
54
55 varf g1(phi , chi) = int2d (Th)( uold * chi);
56
57
58 varf c(u, chi) = int2d (Th)(dt * (dx(u) * dx(chi) + dy(u) * dy(chi))) + int1d (

Th , 1, 3) ((1 + sigmagamma * dt) * u * chi) + int1d (Th , 1, 3)(dt * dx(u) *
dx(chi));

59
60 varf d(w, chi) = - int2d (Th)(dt * w * chi);
61
62 varf g2(phi , chi) = int2d (Th)(dt * geval * chi) + int1d (Th , 1, 3)(dt *

ggammaeval * chi) + int1d (Th , 1, 3)( uold * chi);
63
64
65
66 varf h(phi , chi) = int2d (Th)(dt * feval * chi) + int1d (Th , 1, 3)(dt *

fgammaeval * chi);
67
68 varf dh(phi , chi) = int2d (Th)(dt * dfeval * phi * chi) + int1d (Th , 1, 3)(dt *

dfgammaeval * phi * chi);
69
70
71
72 // Vectors definition
73
74 real [int] G1( dimVh ), G2( dimVh ), G( dimTot ), H( dimVh ), Htemp ( dimVh ), dH( dimVh ),

P( dimTot ), deltaP ( dimTot ), Pold ( dimTot ), U( dimVh ), Psi( dimTot ), Psitemp (
dimTot );

75
76
77
78 // Matrices definition
79
80 matrix A = a(Vh , Vh);
81 matrix B = b(Vh , Vh);
82 matrix C = c(Vh , Vh);
83 matrix D = d(Vh , Vh , solver = UMFPACK );
84
85 matrix M = [[A, B], [C, D]];
86 matrix N, J, Prec = [[A, 0], [0, D]];
87 set(Prec , solver = UMFPACK );
88
89 real [int , int] empty (dimVh , dimVh );
90 empty = 0;
91
92
93
94 // Function that return the residual of the linear system ( required by

LinearGMRES )
95
96 func real [int] Jmult ( real [int] &xx) {
97
98 j++;
99 cout << " GMRES iteration n. " << j << endl ;

100
101 real [int] rr( dimTot );
102 rr = J * xx;
103
104 return rr;
105
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106 }
107
108
109
110 // Initialization of u0 with elliptic projection
111
112 randinit (42);
113
114 real func initialize () {
115
116 real expvalue = 0.5 , fluctuation = 0.5;
117
118 if ( randreal1 () > expvalue ) return fluctuation * randreal1 ();
119 else return -1 * fluctuation * randreal1 ();
120
121 }
122
123 Vh uinit ;
124
125 uinit = initialize ();
126
127 solve ellproju (u0 , chi) = int2d (Th)(dx(u0) * dx(chi) + dy(u0) * dy(chi)) +

int1d (Th , 1, 3)( sigmagamma * u0 * chi) + int1d (Th , 1, 3)(dx(u0) * dx(chi))
- int2d (Th)(dx( uinit ) * dx(chi) + dy( uinit ) * dy(chi)) - int1d (Th , 1, 3)(

sigmagamma * uinit * chi) - int1d (Th , 1, 3)(dx( uinit ) * dx(chi));
128
129
130
131 // Initialization of w0
132
133 feval = f( uold );
134 fgammaeval = fgamma ( uold );
135 geval = g(0);
136 ggammaeval = ggamma (0);
137
138 real [int] Hinit ( dimVh ), Ginit ( dimVh ), tmp1 ( dimVh ), tmp2 ( dimVh ), tmp3 ( dimVh ),

tmp4 ( dimVh );
139
140 Hinit = h(0, Vh);
141 Ginit = g2(0, Vh);
142
143 tmp1 = Ginit - Hinit ;
144 tmp2 = C * uold [];
145 tmp3 = tmp1 - tmp2 ;
146 tmp4 = D^-1 * tmp3 ;
147
148 wold [] = tmp4 ;
149 uold = u0;
150
151
152 // Time iterations
153
154 for (int i = 0; i < (T / dt) ; i++) {
155
156 curtime = (i + 1) * dt;
157 cout << "CHO with dynamic boundaries condition - t = " << curtime << endl ;
158
159 geval = g( curtime );
160 ggammaeval = ggamma ( curtime );
161 G1 = g1(0, Vh);
162 G(0 : dimVh - 1) = G1;
163 G2 = g2(0, Vh);
164 G( dimVh : dimTot - 1) = G2;
165
166 Pold (0 : dimVh - 1) = uold [];
167 Pold ( dimVh : dimTot - 1) = wold [];
168 P = Pold ;
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169
170
171 // Computing initial residual
172
173 feval = f( uold );
174 fgammaeval = f( uold );
175 H = h(0, Vh);
176
177 real residual = 0;
178 real [int] y1( dimTot );
179 y1 = M * P;
180 real [int] y2( dimTot );
181 y2 = 0;
182 y2 (0 : dimVh - 1) = H;
183 real [int] resz ( dimTot );
184 resz = y1 + y2;
185 resz = resz - G;
186
187 for(int q = 0; q < dimTot ; q++) residual += resz [q] * resz [q];
188 cout << "*** Newton method initial residual = " << sqrt ( residual ) << "***"

<< endl ;
189
190 int k = 0;
191
192
193
194 // Newton iterations
195
196 while ( sqrt ( residual ) > 1e -6) {
197
198 uold [] = P(0 : dimVh - 1);
199
200 feval = f( uold );
201 fgammaeval = f( uold );
202 dfeval = df( uold );
203 dfgammaeval = df( uold );
204
205 matrix Ntemp = dh(Vh , Vh);
206
207 N = [
208 [empty , empty ],
209 [Ntemp , empty ]
210 ];
211
212 J = M + N;
213
214 Htemp = h(0, Vh);
215 H = 0;
216 H(0 : dimTot - 1) = Htemp ;
217
218 Psitemp = M * P;
219 Psitemp = Psitemp + H;
220 Psi = G - Psitemp ;
221
222
223 j = 0;
224
225 LinearGMRES (Jmult , deltaP , Psi , eps = 1e-5, nbiter = 1000) ;
226 P = P + deltaP ;
227
228
229
230 // Computing residual
231
232 uold [] = P(0 : dimVh - 1);
233 feval = f( uold );
234 fgammaeval = f( uold );
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235 H = h(0, Vh);
236
237 residual = 0;
238 real [int] x1( dimTot );
239 x1 = M * P;
240 real [int] x2( dimTot );
241 x2 = 0;
242 x2 (0 : dimVh - 1) = H;
243 real [int] res( dimTot );
244 res = x1 + x2;
245 res = res - G;
246
247 for(int q = 0; q < dimTot ; q++) residual += res[q] * res[q];
248
249 ++k;
250
251 cout << "*** Newton iteration : " << k << " residual = " << sqrt ( residual )

<< "***" << endl ;
252
253 }
254
255 u[] = P(0 : dimVh - 1);
256 w[] = P( dimVh : dimTot - 1);
257
258
259 string title = "Cahn -Hilliard -Oono with dynamic boundaries condition , t = "

+ curtime + " sigma = " + sigma ;
260 plot (u, wait = 0, fill = 1, value = 1, cmm = title );
261
262 uold = u;
263 wold = w;
264
265
266 // Saving solutions at prescribed times
267
268 for (int l = 0; l < nsaveT ; l++) {
269
270 if ( curtime == saveT (l) || curtime == T) {
271
272 string filenameu = " chod_u_t " + curtime + "_s" + sigma + ".txt";
273 string filenamew = " chod_w_t " + curtime + "_s" + sigma + ".txt";
274
275 ofstream fu( filenameu );
276 ofstream fw( filenamew );
277
278 for (int j = ny; j >= 0; j--) {
279
280 for (int i = 0; i < nx; i++) {
281
282 fu << u(i * (Lx / nx), j * (Ly / ny)) << " ";
283 fw << w(i * (Lx / nx), j * (Ly / ny)) << " ";
284
285 }
286
287 fu << u(Lx , j * (Ly / ny)) << "\n";
288 fw << w(Lx , j * (Ly / ny)) << "\n";
289
290 }
291
292 }
293
294 }
295
296 }
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