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ABSTRACT 
 

etection of cracks in a mechanical component is one of the most important 
aspect in industrial field. These elements are in fact responsible for sudden 
ruptures or failure and may therefore be a serious danger to the overall 

security of a mechanical structure indeed. 
In this paper will be completely illustrated a new approach to crack identification. 
The method presented is part of the Non Destructive Testing (NDT). 
It is know that a damage induces a nonlinear behaviour in the system analysed. Even 
in presence of small depth cracks, the dynamic behaviour of structures with breathing 
cracks forced by harmonic excitation is characterized by the appearance of sub-
harmonic and super-harmonics in the response spectrogram. This is the main 
expression of the system nonlinearity. 
With the objective of developing a crack identification method, great part of this 
study is focused on the study of super-harmonic frequencies of the system response. 
These frequencies are used to weigh the non-linearity of system behaviour at each 
frequency considered. 
Dealing with the presence of a single crack, the study follows the intuition that the 
non-linearity of system behaviour tend to be switched off when the crack is located 
in correspondence of a nodal point of the mode of interest. Since the objective is to 
track the gap between non-linear and linear behaviour of a cracked structure, it is 
necessary to create an index that can be used in a later stage to locate the damage. 
This index, named Non-Linearity Index, evaluate these frequencies in which the 
behaviour is approximately linear and use them in conjunction with the nodal point 
location information to identify the position of the crack. 
Nodal point location can be obtained by analytical way for simple geometries as well 
as by Finite Element Analysis for complex geometries where an analytical solution is 
not available. 
Multiple advantages are related with the use of the crack identification method 
discussed in this paper. Nodal points information can be achieved from the study of 
an undamaged model of the structure that is more easily solvable respect to a system 
where a crack needs to be modelled. Finally the fact that it is possible to obtain 
information useful to crack identification directly from the measures of one single 
point of the structure. These facts make the method costly and versatile indeed. 
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SOMMARIO 
 

identificazione delle cricche in un componente meccanico riveste uno degli 
aspetti più importanti in campo industriale. Questi elementi sono infatti 
responsabili di rotture improvvise e disservizi che a volte possono essere un 

serio pericolo per la sicurezza complessiva di una struttura meccanica. 
In questo lavoro sarà illustrato in modo completo un nuovo approccio 
all’identificazione delle cricche. Il metodo presentato fa parte di quelli che vengono 
comunemente chiamati Controlli Non Distruttivi (CND). 
È risaputo che un danneggiamento introduce una non linearità all’interno del 
sistema. Anche in presenza di piccole cricche, il comportamento dinamico di una 
struttura con una cricca aperta, quando forzata con un eccitazione armonica, è 
caratterizzato dalla presenza di frequenze sub e super armoniche nello spettrogramma 
della risposta. Questa è la principale espressione della non-linearità del sistema. 
Con l’obiettivo di sviluppare un metodo di identificazione delle cricche, gran parte 
del lavoro si è focalizzato sullo studio delle frequenze super-armoniche della risposta 
del sistema. Queste frequenze sono usate per pesare la non-linearità del sistema ad 
ogni frequenza considerata. 
Considerando la presenza di una singola cricca nel sistema, lo studio segue 
l’intuizione che la non-linearità del sistema tende a svanire quando la cricca viene a 
trovarsi in corrispondenza di un punto nodale del modo di vibrare di interesse. 
Siccome l’obiettivo è quello di tracciare la distanza tra risposta non-lineare e lineare 
di una struttura criccata è necessario creare un indice da utilizzare successivamente 
per la localizzazione del danneggiamento. Questo indice, chiamato Non-Linearity 
Index, valuta queste frequenze in cui il comportamento è approssimativamente 
lineare e le utilizza in unione alle informazioni sulla posizione del nodi del modo per 
identificare la posizione della cricca. 
La posizione dei nodi della curvatura può essere ottenuta per via analitica nel caso di 
geometrie semplici oppure attraverso un analisi ad elementi finiti per geometrie 
complesse dove una soluzione analitica non è possibile. 
I vantaggi nell’utilizzo del metodo di identificazione delle cricche discusso in questa 
relazione sono molteplici. Le informazioni sulla posizione dei nodi della curvatura 
possono essere ricavate dallo studio di una struttura non danneggiata e quindi, più 
facilmente risolvibile rispetto ad una in cui la cricca debba essere modellata. Infine il 
fatto che sia possibile ricavare informazioni utili all’identificazione della cricca 
direttamente dalle rilevazioni fatte in un unico punto della struttura. Questi fatti 
rendono il metodo poco costoso e soprattutto versatile. 

L’





 

 

INTRODUCTION 
 
In industrial field, every critical product needs to be checked to verify its integrity 
and compliance with applicable regulations. It is well known that a crack, even of 
reduced dimension, when subjected to fatigue stress, grows and propagates leading 
to a sudden failure. Cracks are not easily detectable so, for their identification, 
detailed investigations are required indeed. 
The sudden failure of structural components is very costly and may be catastrophic 
in term of human life and property damage. One of the most important aspects of 
evaluation of structural systems and ensuring their lifetime safety is structural damage 
detection. Some structures such as large bridges should be continuously monitored 
to detect possible damage (e.g. cracks) for ensuring uninterrupted service due to 
damage growth.  
The presence of a crack not only causes a local variation in the mechanical 
characteristics of the structure at its location, but it also has a global effect that 
involves the entire structure. For this reason, the dynamic characterization of cracked 
structures can be used for damage detection in non-destructive tests and, among the 
various techniques, vibration-based methods offer an effective means of detecting 
fatigue cracks in structures [1-5]. 
There are two main categories of crack models used in detection methods: open crack 
models and breathing crack models. Consequently, vibration based methods are also 
classified into two categories: the linear approaches and the nonlinear approaches. 
The majority of identification techniques involve the use of measured structural 
responses under dynamic excitation. When a structure experience fatigue 
phenomenon for example, some cracks may occur in the structure. These cracks cause 
changes in structural parameters (e.g., the stiffness of a structural member such as 
beam elements), which, in turn, change dynamic properties (such as natural 
frequencies and mode shapes). 
Crack detection of beam elements involve in two different aspects: the first is the 
effects of cracks on eigen parameters as a forward problem and the second one may 
be considered as how to detect the location and qualification of cracks as an inverse 
problem. The inverse problem may be defined as determination of the internal 
structure of a physical system from the system’s measured behaviour of identification 
of the unknown input that gives rise to measured output signal. To address the 
solutions of an inverse problem for a cracked beam, it is necessary to know “forward 
solutions”, which are the results of determination of cracked beam natural 
frequencies knowing the crack parameters. 
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Non-destructive testing methods like ultrasonic testing, X-ray, etc., are generally 
useful for the purpose. These methods are costly and time consuming for long 
components, e.g., railway tracks, long pipelines, etc.  
Vibration-based methods can offer advantages in such cases. This is because 
measurement of vibration parameters like natural frequencies is easy. Further, this 
type of data can be easily collected from a single point of the component. This factor 
lends some advantages for components that are not fully accessible. This also helps 
to do away with the collection of experimental data from a number of data points on 
a component, which is involved in a prediction based on, for example, mode shapes. 
Several approaches have been used for modelling a crack in a beam, in the following 
chapter, a series of method of investigation for the detection of crack in beams will 
be presented, these methods formed the base for the development of our method of 
analysis. The available theories for this argument are too numerous to be dealt all 
completely, so we decide to focus on the most used. 
After highlighting what are the characteristics of each technique and the results 
obtained from researchers, this text will move to a purely theoretical discussion of the 
concepts on which the new approach to crack identification is based and in particular 
some theoretical recall of Vibration of Continuous Systems, Modes of Vibration and 
Non-Linear behavior. Crack identification method will be then introduced and 
explained in all its aspects. 
Last part of this paper is dedicated to the experimental validation of the method 
presented, this is done on a real physical model created and with the cooperation of 
both analytical or numerical solutions of the geometry considered. 
Data obtained from multiple acquisitions are used to create a theoretical coefficient 
that permits to locate the crack present in the structure. 
 
 
 



 

 

Chapter 1  STATE OF THE ART 
 
In this part, a series of methods for crack identification are presented. During the last 
fifteen years several approaches have been used for modelling a crack in a beam. The 
methods presented use different techniques with all positive or negative 
characteristic, in some of them the crack is modelled by appropriately reducing the 
section modulus or by a local flexibility matrix in other approaches the crack is 
represented by a rotational spring. A finite element method has also been used for 
study of the vibration of cracked components. 
 
1.1 Modelling of transverse vibration of short beams 
 
S. P. Lele and S. K. Maiti presented this study in 2001[1], based on frequency 
measurements and extended to short beams taking into account the effects of shear 
deformation and rotational inertia through the Timoshenko beam theory and 
representing the crack by a rotational spring. The method is able to measure change 
in crack length from the change in the first natural frequency. Particularly, in the 
paper, were presented a method for solving forward problem (determination of 
frequencies of beams knowing the crack parameters), for inverse problem 
(determination of crack location knowing the natural frequencies) and crack 
extension estimation. A crack located at distance ܮଵ from the fixed end of a cantilever 
(Fig. 1) is represented by a rotational spring of stiffness ܭଵ, whose magnitude is given 
by : 

௧ܭ  ൌ
ସܹܤܧ

ߨ72 ׬ ܽሺ݂ ቀ
ܽ
ܹ
ቁሻଶ݀ܽ

௔

଴

 (1)

 
Where ݂ሺܽ/ܹሻ is given by:  
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ܽ

ܹ
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ଶ
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ܽ
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ܽଷ
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ܽ଺
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ܽ଻
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଼ܽ

଼ܹ
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ܽଽ

ܹଽ
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ܽଵ଴

ܹଵ଴
൅ 225 ∙ 6

ܽଵଶ

ܹଵଶ
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Fig. 1 – Model of beam with rotational spring. 

 
The governing equations of flexural vibration are given by Timoshenko as follows: 
 

ܫܧ 
߲ଶݕ

ଶݔ߲
൅ ݇ᇱ ൬

ݕ߲

ݔ߲
െ ߰൰ܩܣ െ ܫߩ

߲ଶ߰

ଶݐ߲
ൌ 0 (3) 

 

ߩ 
߲ଶݕ

ଶݐ߲
െ ݇ᇱ ቆ

߲ଶݕ

ଶݔ߲
െ
߲߰

ݔ߲
ቇܩ ൌ 0 (4) 

 
where ݕ is the transverse deflection, ߰ the angle of rotation due to bending moment, 
E the modulus of elasticity, G the modulus of rigidity, A the area of cross-section, I 
the area moment of inertia, ρ the density and k’ the numerical shape factor for the 
cross-section. 
The solutions for these equations can be written in the following form: 
 
 

 
ܻ ൌ ଵܣ coshሺܾߚ݌ሻ ൅ ଶܣ sinhሺܾߚ݌ሻ ൅ ଷܣ coshሺܾߚݍሻ ൅ ସܣ sinhሺܾߚݍሻ 

 
Ψ ൌ ଵܣ

ᇱ sinhሺܾߚ݌ሻ ൅ ଶܣ
ᇱ coshሺܾߚ݌ሻ ൅ ଷܣ

ᇱ coshሺܾߚݍሻ ൅ ସܣ
ᇱ sinhሺܾߚݍሻ 

(5) 

 
 
Where Y is the amplitude function of ݕ and ψ the amplitude function of ߰. 
For a cracked beam (Fig. 1), the two segments lying on the other side of the crack 
can be analysed separately. 
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The solution for the two segments can be written as follows:  
 

 

ଵܻ ൌ ଵܥ coshሺܾߚ݌ሻ ൅ ଶܥ sinhሺܾߚ݌ሻ ൅ ଷܥ coshሺܾߚݍሻ ൅ ସܥ sinhሺܾߚݍሻ 
 

Ψଵ ൌ ଵܥ
ᇱ sinhሺܾߚ݌ሻ ൅ ଶܥ

ᇱ coshሺܾߚ݌ሻ ൅ ଷܥ
ᇱ coshሺܾߚݍሻ ൅ ସܥ

ᇱsinh	ሺܾߚݍሻ 
 

ଶܻ ൌ ହܥ coshሺܾߚ݌ሻ ൅ ଺ܥ sinhሺܾߚ݌ሻ ൅ ଻ܥ coshሺܾߚݍሻ ൅ ଼ܥ sinhሺܾߚݍሻ 
 

Ψଶ ൌ ହܥ
ᇱ sinhሺܾߚ݌ሻ ൅ ଺ܥ

ᇱ coshሺܾߚ݌ሻ ൅ ଻ܥ
ᇱ coshሺܾߚݍሻ ൅ ଼ܥ

ᇱsinh	ሺܾߚݍሻ 

(6)

 
The last part of the theory are the boundary conditions and the conditions for 
continuity of displacement, moment and shear force at the crack location and the 
jump in the slope. This leads to a long characteristic equation used to solve forward 
and inverse problems. 
 
Forward problem 
 
For the determination of the natural frequencies for a given crack location and size, 
the rotational spring stiffness is given as input. The characteristic equation is solved 
to get the frequency parameter b. In turn, the natural frequency ω is determined 
using the equation : 
 

 ܾଶ ൌ
ସ߱ଶܮܣߩ

ܫܧ
 (7)

 
Inverse problem 
 
The characteristic equation for the Timoshenko beam with a crack is written in the 
form :  
 

ܭ  ൌ െ
|∆ଵ|

|∆ଶ|
 (8)

 
The method of Nandwana and Maiti  is utilized to obtain the solution. Since the 
rotational spring stiffness representing the crack is independent of the vibration 
mode, the point of intersection of three (minimum) curves gives the location of the 
crack. 
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1.1.1 Crack extension measurement 
 
In this case, the objective is to estimate Δܽ ൌ ܽଶ െ ܽଵ, from the knowledge of ߱ଵ 
and ߱ଶ which correspond to crack lengths. The starting crack length ܽଵ is 
specified. For some dimensionless parameters (b and s), it is clear that there is a 
dependence on material properties. If b is to remain the same for two different values 
of frequency, there is a need for adjusting either E or ρ. Choosing to adjust E, the 
corrected modulus ܧത corresponding to ωഥ  is given by : 
 

ସ߱ଶܮܣߩ 

ܫܧ
ൌ
ସܮܣߩ ഥ߱ଶ

ܫܧ
⇒

ܧ

തܧ
ൌ ቀ

߱

ഥ߱
ቁ
ଶ

 (9) 

 
There is an improvement accuracy with this E correction. That was demonstrated 
through case studies. 

 
1.1.2 Results 
 
The method has been tested considering various geometric combinations and two 
sets of material properties. One important fact is the nature of the crack, in this case 
of study is introduced in the beam with wire cut machining. 
The results of the Timoshenko beam model are in good agreement with the FEM 
results in the entire range of ܮ/ܹ ratio. For shorter beams, the difference between 
the results by the Euler-Bernoulli model and the FEM, as expected, increases. This 
shows the effect of rotational inertia and shear deformation. The present model 
predicts the first natural frequency with the highest accuracy when the FEM results 
are taken as the basis.  
Since the interest lies in the detection of a crack anywhere in the whole span of the 
beam, it is logical to express the percentage error taking the beam length as the basis. 
The percentage error is therefore given by the difference between the predicted and 
actual crack locations expressed as a percentage of the beam length. 
From the range of crack locations and sizes considered in the numerical studies, the 
errors in prediction of natural frequencies are observed to be ≤ 1% 
for the first mode of vibration for beams with ܮ/ܹ	 ൒ 	3. For the second and third 
mode, the errors are of the order of 10%. The errors in detection of crack location 
and estimation of crack extension are ≤ 10%. Based on the experimental study, the 
errors in the prediction of natural frequencies and detection of crack location are of 
the order of 10%. The maximum error in estimation of crack extension is about 
34%. 
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1.2 Crack detection in beams using kurtosis 
 
Natural frequencies have been the most appealing damage indicator because they can 
be easily measured and are less contaminated by experimental noise. 
The main disadvantage of using natural frequency changes for crack detection is the 
fact that significant cracks may cause small changes in natural frequencies, which may 
go undetected due to measurements errors. In an effort to overcome these difficulties, 
research has been focused on using changes in mode shapes. Mode shapes are more 
sensitive to local damag compared to changes in natural frequencies but has some 
drawbacks. The presence of a crack may not significantly influence lower modes that 
are usually measured from vibration tests. Extracted mode shapes are usually affected 
by experimental noise and the duration of measurements increases considerably if a 
detailed mode shape has to be estimated.  
In this paper, the fundamental vibration mode of a cracked cantilever beam is 
analysed and both the location and size of the crack are estimated. The location 
of the crack is detected by a sudden change in the spatial variation of the analysed 
response, while the size of the crack is related to the kurtosis measure. The proposed 
technique forms a Kurtosis-based crack detector, which takes into account the non-
Gaussianity of the vibration signal in order to efficiently detect both the location and 
the size of the crack [2]. Compared to existing methods for crack detection, the 
proposed kurtosis-based prediction scheme is attractive due to low computational 
complexity and inherent robustness against noise. 
This model has been successfully applied to simply supported, cantilever, and fixed–
fixed cracked beams. Experiments were finally conducted on Plexiglass Beam. 
 
Mathematical background 
 
Let ሼܺሺ݇ሻሽ be a real random zero-mean process that is fourth-order stationary. The 
kurtosis is a measure of the heaviness of the tail in the distribution of the ܺሺ݇ሻ 
sequence. If outliers or abrupt changes in the ܺሺ݇ሻ appears then the non-Gaussianity 
of the signal is powered, making heavier the tails of the distribution and destroying 
its symmetry, resulting in high values of the kurtosis parameter. In this way, the 
kurtosis could be used to establish an effective statistical test in identifying abrupt 
changes in signals, such as those produced in the vibration signals from cracked 
beams due to the existence of a crack. 
The KCD (Kurtosis Crack Detector) is based on the property of kurtosis to identify 
deviations from Gaussianity in band-limited random process. This non-Gaussianity 
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could vary with different structural conditions, i.e., reduction of the stiffness due to 
the occurrence of a crack, and, thus, changes in the mode shapes of vibration. 
The output vector of the KCD scheme is constructed as: 
 
 ෠݇

ସ ൌ ොସߛ| െ |ସߛ̅ (10) 
 
where ߛොସ is the vector with the estimated ߛොସ values derived at each position of the 
sliding M-sample window across the N-sample vibration signal and ̅ߛସ is the sample 
mean value of ߛොସ. In this way, the values of the output vector ෠݇ସ outside the area of 
the crack location are almost zeroed, obviously enhancing the visual inspection of the 
existence of a crack in the KCD output. 
 
Analysis 
 
A cantilever beam of length L, of uniform rectangular cross-section ݓ	 ൈ  with a ݓ	
crack located at ܮ௖ is considered as shown in Fig. 2(a). The crack is assumed to be 
open and have uniform depth α. Due to the localized crack effect, the beam can be 
simulated by two segments connected by a massless spring (Fig. 2(b)). 
 

 
Fig. 2 – (a) Cantilever beam under study; (b) cracked cantilever beam model. 

 
 

In this analysis, since only bending vibrations of thin beams are considered, the 
rotational spring constant is assumed to be dominant in the local flexibility matrix. 
For numerical simulations a Plexiglas beam of total length 30 cm and rectangular 
cross-section 22ݔ	ܿ݉ଶ is considered. A crack of relative depth 20% is introduced at  
ݔ ൌ 4	ܿ݉  from clamped end. 
From the first analysis we can see that the displacement data reveal no local features 
that directly indicate the existence of the crack. 
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1.2.1 Determination of crack location 
 
To determine the location of the crack was investigate the values of kurtosis on 
simulated response data. The estimated kurtosis versus distance along the beam is 
presented in Fig. 3. It can be seen that in all cases the estimate of kurtosis exhibits a 
peak value at x = 4 cm where the crack is located. It can be also observed that the 
peak value increases with increasing crack depth indicating that kurtosis is related to 
crack depth. 
 

 
Fig. 3 – Estimated kurtosis as a function of distance along the cracked beam 

 
To estimate the size of the crack, the dependence of the kurtosis estimate on both 
crack location and depth was systematically investigated. For that purpose, the 
vibration modes of the beam were calculated for relative crack depths varying from 
5% up to 50% in steps of 5%, while the crack location was varied from 2 cm to 10 
cm from the clamped end. The results are presented in Fig. 4. 
 

 
Fig. 4 – Estimated kurtosis versus normalized crack depth 
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It can be seen that kurtosis increases with increasing crack depth. For a given crack 
depth, the rate of increase depends on crack location. The increment of the increase 
is higher for cracks close to the clamped end and decreases gradually as the crack 
location is shifted towards the free end. Consequently, cracks in the vicinity of the 
clamped end could be more easily and accurately determined.  
The method was tested on noise robustness using different crack depths and noise 
presence. 
 
1.2.2 Experimental results 
 
To validate the analytical results an experiment on a Plexiglas beam has been 
performed. A crack of relative crack depth 30% was introduced at x = 6 cm from the 
clamped end. An electromagnetic vibrator by Link and two B&K accelerometers 
were used for the experiment. Harmonic excitation was utilized via a 2110 B&K 
analyzer and the fundamental mode of vibration was investigated. The vibration 
amplitude was measured with a sampling distance of 7.5 mm, which was the effective 
diameter of the accelerometer used, so that a total number of 39 measuring points 
were obtained. Mode shape was measured by using two calibrated accelerometers 
mounted on the beam. One accelerometer was kept at the clamped end as the 
reference input, while the second one was moved along the beam to measure the 
mode amplitude. For that purpose, a miniature accelerometer weighting 2.5 g was 
used. It can be seen that there is a main clear peak at x = 6 cm and smaller in different 
positions Fig. 5. 
 

 
Fig. 5 – Estimation of Kurtosis along the length of the beam 
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1.2.3 Conclusion 
 
The numerical results were confirmed by the application of the method to 
experimental mode shapes of a cracked cantilever beam. Using the noisy  
experimental data, the location and size of a crack were detected with reasonable 
accuracy. In conclusion, the presented results provide a foundation of using kurtosis 
as an efficient crack detection tool. Compared to existing methods for crack 
detection, it is attractive due to its low computational complexity and robustness 
against noise. 
 
1.3 Detection of crack using wavelet finite element methods 
 
In this methodology, developed by B. Li, X.F. Chen, J.X. Ma, Z.J [3], the detection 
of crack location and size takes advantage of wavelet finite element methods 
(WFEM). First, the beam is discretized into a set of wavelet finite elements, and then 
the natural frequencies of the beam with various crack locations and sizes are 
accurately obtained. The frequency response functions, function of crack location 
and size, are approximated by means of surface-fitting techniques. Measured natural 
frequencies are used in a crack detection process and the crack location and size can 
be identified by finding the point of intersection of three frequency contour lines. 
In order to overcome the difficulties that traditional FEM have, wavelet spaces have 
been employed as approximate spaces and then wavelet finite element methods 
(WFEM) have been derived. By comparison with the conventional FEM, WFEM 
lend several advantages for modal analysis of crack problems. A main attractive 
feature is that WFEM have the ability to accurately represent fairly general functions 
with a small number of wavelet coefficients, as well as to characterize the smoothness 
of such functions from the numerical behaviour of these coefficients. WFEM. The 
frequency response function (FRF), as a function of crack location and size, is 
approximated through surface-fitting techniques and three-dimensional plots of 
FRFs are shown. Then, for a particular crack location and size, the three frequency 
contour lines of the beam are obtained under the situation that measured natural 
frequencies of crack beams are set as input. The crack location and size can be 
identified through finding the points of intersection of the three contour lines. 
 
Analysis 
 
The basic idea of WFEM, which is similar to the traditional FEM, is to discretize a 
body into an assemble of discrete finite elements which are interconnected at the 



Crack identification method for mechanical structures 

24 STATE OF THE ART 

nodal points on element boundaries. The displacement field is approximated over 
each wavelet-based finite element, in terms of the nodal displacements. 
For a one-dimensional wavelet-based finite element, the nodal displacements can be 
represented by the shape functions, whose forms are as follows: 
 
 ܰ ൌ ߮ܶ (11) 

 
where T stands for the transform matrix, and � denotes the Daubechies wavelet 
scaling function collection. While for an arbitrary two-dimensional wavelet-based 
finite element, the shape functions are given as 
 
 ܰ ൌ ௫ܰ ⊗ ௬ܰ (12) 

 
Where ⊗ is Kronecker symbol, ௫ܰ and ௬ܰ are the shape functions in the horizontal 
(x) and vertical (y) directions, respectively. 
After constructing wavelet-based shape functions, the procedures of construction of 
the stiffness matrix ܭ௘ and the mass matrix ܯ௘ can be achieved as in the traditional 
FEM. The forms of both matrixes are represented as: 
 

 

௘ܭ ൌ නሺܰܮሻ்ܦሺܰܮሻ ݕ݀ݔ݀

ஐ

௘ܯ ൌ න்ܰܰߩ ݕ݀ݔ݀

ஐ

 
(13) 

 
where L and D denote the generalized strain and the elasticity matrix, respectively 
and finally � is the beam density. The superscript T stands for the transpose of a 
matrix or a vector. For the model is used a uniform beam with an open crack located 
at ߚ ൌ   .(Fig. 6) ܮ/݁
 

 
Fig. 6 – Beam model 
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L, H, and B represent the length, height and width of the beam, respectively. ݁ and 
ܽ are the crack location and crack size, respectively. � and � stand for the normalized 
crack position and normalized crack size, respectively. 
Suppose that the crack is located between two wavelet-based finite elements, and the 
numbers of two nodes are Le and Ri, respectively (Fig. 7). The crack introduces a 
local flexibility that is a function of the crack depth, the flexibility changes the 
stiffness of the beam. Also in this case, as usual, the crack is represented by a massless 
rotational spring with a computable stiffness ܭ௧. 
 

 
Fig. 7 – Model used to describe the crack 

 
The continuity conditions at the crack position indicate that the left and right nodes 
have the same vertical deflection, while their rotations are connected through the 
stiffness matrix ܭ௖ 
 

௖ܭ  ൌ ൤
௧ܭ െܭ௧
െܭ௧ ௧ܭ

൨ (14)

 
Hence, we can assemble ܭ௖ into the global stiffness matrix, K, through employing a 
single dof of the vertical deflection of both nodes Le and Ri. The global mass matrix 
of cracked beam is equal to the uncracked. Using the displacement-based formulation 
in conjunction with the principle of virtual displacement, the equations of the beam 
motion can be then written as: 
ܻܯ  ൅ ܻܭ ൌ 0ሷ (15)

 
Supposing that a time harmonic solution for the nodal displacements can be 
represented as 
 ܻ ൌ ܣ sin߱௜ݐ (16)

 
where A is the amplitude of the nodal displacements. This leads to 
 
 ሾെ߱௜

ଶܯ ൅ ሽܣሿሼܭ ൌ 0 → detሺܭ െ ߱௜
ଶܯሻ ൌ 0 (17)
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Finally, the effective values of the natural frequencies can be found through solving 
generalized eigenvalues of last equation written. 
 
1.3.1 Crack identification methods 
 
Since the crack location and the crack size influence the changes in the natural 
frequencies of a cracked beam, a particular frequency can correspond to different 
crack locations and crack sizes. This can be observed from three-dimensional plots of 
the first three natural frequencies of the free–free beam (Fig. 8). On this basis, a 
contour line, which has the same frequency resulting from a combination of different 
crack locations and crack sizes (for a particular mode) can be plotted in a curve with 
crack position and crack size as its axes. 
 

 
Fig. 8 – First three natural frequencies of the free–free beam 

 
The development of a crack, at a certain location, corresponds to a sudden reduction 
of the bending stiffness of the beam, and furthermore leads to a shift of the natural 
frequency. The inverse problem of the crack identification is to predict the location 
β and depth α of a crack once the value of natural frequencies ߱௜ is measured. 
 
 ሺߙ, ሻߚ ൌ ݃௜ሺ߱௜ሻ (18) 

 
If the crack coincides the vibration node of one mode, the frequency for that mode 
remains almost unchanged. Therefore a minimum of three curves is required to 
identify the two unknown parameters of crack location and size. 
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1.3.2 Experimental verification 
 
Test specimens were steel beams with 0.032	x	0.016	݉ଶ rectangular cross-section 
and 0.72m long. The corresponding material properties were: 
 

E ൌ 206	GPa, ν ൌ 0.29, ρ ൌ 	7650	kg/݉ଷ 
 
The crack in each beam was simulated by a cut normal to the beams’ longitudinal 
axis, with a controlled depth. In order to avoid the nonlinear characteristics of an 
opening and closing crack, the thickness of the cut was carefully defined, taking into 
account that both sides of the crack were not supposed to make contact during the 
dynamic bending of the beam. 
To have better results, it is also studied the correction of Young’s Modulus, infact 
the evaluation of the natural frequencies through the characteristic equation of the 
free–free beams requires the knowledge of the material properties. Quoted values of 
Young’s modulus are not sufficiently accurate for this purpose. The problem can be 
overcome by an iterative approach, which uses the undamaged natural frequencies of 
the beams to determine an effective value of the Young’s modulus E. 
 

 det ൬߱௜
ଶܯ െ ௠ܧ

ܭ

ܧ
൰ ൌ 0 (19)

 
where ܧ௠ is the corrected value of Young’s modulus E. It should be noted that the 
physical significance for the correction of Young’s modulus E is not to change the 
value E, but to narrow the error between the numerical model and real-life situation. 
In fact, this is a zero setting procedure. 
 

 

  
Fig. 9 – Variations of the first three natural frequencies vs crack size 
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Tab. 1 – Results from WFEM and FEM obtained 

 
 
In order to obtain natural frequencies with high accuracy, the wavelet finite element 
analysis is performed. Must be noted that using fewer wavelet-based finite elements 
is possible to obtain higher analytical accuracy. The result of the WFEM and FEM 
is tabulated in Table 1. 
The investigation leads to understand that there is a correlation between the 
variations of the first three natural frequencies with crack size for some of the crack 
locations of a free–free beam. (see Fig. 9) 

 
1.3.3 Conclusions 
 
The methods leads to good results, the predicted crack positions and crack sizes are 
in good agreement with the actual values. The average error of crack locations 
without E correction is 11.64%. While the average error of crack locations with E 
correction is 2.65%. The average error of crack sizes without E correction is 22.1%. 
While the average error of crack sizes with E correction is 5.62%. 
Through an approach for Young’s modulus correction, the error between theoretical 
analysis and experimental studies, which are caused by boundary condition and 
material parameters, can be greatly reduced. Experimental results verify that the 
present method can be utilized to detect crack location as well as crack size. The 
procedure for detection of crack is simple and general. It is believed that this 
procedure can be easily extended to complex structures, such as rotor, blade, etc. with 
multiple cracks. 
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1.4 Free vibration behaviour of a cracked cantilever beam 
 
Understanding the vibration behaviour of a simple structural element containing a 
single crack is the first step towards diagnosing damage on more complex structures. 
This study [4] is based on cracks that occurred in metal beams obtained under 
controlled fatigue-crack propagation. The beams were clamped in a heavy vise and 
struck in order to obtain a clean impulse modal response. Spectrograms of the free-
decay responses showed a time drift of the frequency and damping: the usual 
hypothesis of constant modal parameters is no longer appropriate. 
Extracted worms show that the second mode of a beam with a deep crack is 
modulated in frequency by the first mode. In fact, the dominant mode opens and 
closes the crack, thereby modulating the beam stiffness, which affects higher modal 
frequencies. The first state is difficult for a small crack to reach since high-amplitude 
excitation is required to fully open the crack. 
One of the main focus on this paper is about the assumption of the crack as always 
open, in many other works this was the main hypothesis, in this case the author tries 
to explain why it’s not correct to use that case.  
Narrow slots cannot exhibit the behaviour of a crack in metallic structures for many 
reasons: 
 

 A mechanical slot has a measurable width which prevents any interaction 
between the two faces of the slot. In such cases, the slot behaves as a hinge. 
It closes under a negative load and is already open at zero load. However, 
interactions between crack faces are possible and do in fact occur, resulting 
in event that is known as crack closure effects (Fig. 10). 

 

 
Fig. 10 – Crack behaviour influenced from external load 

 
A cracked beam will exhibit the static behaviour of an uncracked beam until 
the applied load is sufficiently high to overcome the closure load. 
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Consequently, the opening force generated by the vibration must be greater 
than this load in order to fully open the crack (Fig. 11). 
 

 
Fig. 11 – Crack behaviour 

 
 The roughness of the fracture surface, corrosion debris in the crack, plastic 

deformation left in the wake of a propagating crack, strain-induced phase 
transformation in the fatigue process zone and hydraulic wedging produced 
by oil trapped in the crack are all phenomena leading to crack closure. 
Moreover, these phenomena can play a role in the vibration damping. 

 A crack can be only partially open with an appropriate strain distribution. 
Consequently, the free-decay response of a cracked beam exhibits three 
consecutive vibrational states: fully open to closed, partially open to closed 
and remaining closed. On the other hand, a slot generates two vibrational 
states: open to closed and remaining open (see Fig. 12). 

 

 
Fig. 12 – Vibrational states 
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The target is a match between modelling and experimental measurements. On the 
one hand, better crack modelling must include non-linear stiffness, hysteresis effects 
and a damping function of the crack opening. Some of the usual modal-analysis 
hypotheses are no longer valid with a real crack. 
Almost all crack diagnosis algorithms based on dynamic behaviour call for a reference 
signature. In fact, these algorithms fail when the reference signature is not available, 
is not taken in the same operating condition or is not measured on an identical 
structure. Many algorithms are based on a modal shape, a frequency or a damping 
shift, and are not accurate enough to detect early cracks with a small relative cross-
section less than 10%. These algorithms cannot work without a previous reference 
signature. This paper proposes a few new ways to detect cracks without using a 
reference signature. 
For the experiments, beams of square cross-section (2.5 cm x 2.5 cm), 24.5 cm long, 
were machined from an AISI 4340 steel plate. A semi-circular groove 0.2 cm deep 
was machined around the beam, 7.5 cm from one of its extremities, to keep the crack 
straight. 
 

 
Fig. 13 – Experimental setup 
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The fatigue cracks were produced by cycling in pure bending (four-point bending 
fixture) in lab air (30-40% RH), at low frequency (1-5 Hz) on a servo hydraulic 100-
kN-capacity testing rig. 
An impact hammer with a known fall height generates an excitation centred on the 
neutral axis of the beam in order to minimise torsional vibration (Fig. 13). 
The repeatability of the clamping device and the measurement set-up was tested by 
mounting, measuring and dismantling the uncracked beam 10 times. The first and 
second modes had a frequency of 660.60 ± 0.02 and 3536.31 ± 0.11 Hz, respectively, 
with a 30-ppm or 0.003% standard deviation. 
For both modes, the damping ratio estimates had less than 1% dispersion between 
consecutive mountings: the damping ratio appeared more sensitive than the 
frequency. The overall repeatability was good enough to superimpose the time traces 
for many milliseconds for different mountings. 
The observed frequency and damping behaviour are similar to those reported by 
other authors: the frequency drops and damping increases with crack depth as 
illustrated in Fig. 14 for the first two modes. Note that a small crack induces small 
frequency and damping shifts between measurements taken on the cracked specimen 
and the reference specimen. As illustrated in Fig. 15, the beam oscillates in period 
T1 when the crack is closed and in period T2 when the crack is open. Since the 
stiffness decreases when the crack is open, T2 is larger than T1 and increases with 
crack depth along with its statistical occurrence. Modal damping also appears as a 
function of the crack depth. The damping behaviour is quite complex and decreases 
with crack depth in some cases. 
 

 
Fig. 14 – Influence of crck depth on damping 

 
The time drift of the modal frequency is also explained by the existence of two 
periods, as illustrated in Fig. 16. Observe in Fig. 11 that the crack closure load moves 
up the elbow on the transfer function. At high motion amplitude, the mean 
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frequency is a function of the two periods. With the decreasing amplitude present in 
a free-decay response, period T1 gradually dominates statistically. 
 

 
Fig. 15 – Influence of the crack on periodic oscillation 

 

 
Fig. 16 – Phase spectrogram 

 
The magnitude of the short-time fast Fourier transform (STFFT) is defined as a 
spectrogram. The right portion of Fig. 16 shows the phase spectrogram of a 
suspended uncracked beam to illustrate a constant phase (frequency) behaviour. The 
sensitivity of the phase spectrogram is a function of the single/noise ratio and inter-
modal frequency distance. Phase spectrograms have revealed that every structure 
shows a time drift behaviour of the modal frequency in its free-decay response. The 
amplitude of the behaviour is a function of the geometry and the material. 
 
Analysis 
 
Spectrograms are based on the Fourier transform, which models the signal as a sum 
of constant amplitude and frequency sines. The corresponding signal model has only 
three degrees of freedom: amplitude, phase and frequency. When the amplitudes and 
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frequencies are no longer constant over the spectral window, the Fourier transform 
yields inaccurate results. To overcome this limitation, a sinusoid extraction algorithm 
was developed using a model with seven degrees of freedom. 
The term “worm transform” has been used to describe this algorithm because the 
modulated sinusoid was extracted ring by ring and the rings then linked together to 
obtain a continuous time function for both amplitude and phase. 
Fig. 17 presents the time-frequency free-decay response for the two first bending 
modes of the beam with the deepest crack. 
 

 
Fig. 17 – Time-frequency free-decay response 

 
The modal frequencies extracted by worm transform are a good illustration of how 
the second mode of a cracked beam is modulated in frequency by the "rst mode. The 
mode with the dominant amplitude opens and closes the crack, thereby modulating 
the beam stiffness and affecting high-order instantaneous modal frequencies and 
amplitudes. Three vibration states are easy to observe on a deep crack beam: one 
where the crack is alternately fully open and fully closed, a second with a crack 
partially open, and a third with an alternating force acting on a closed crack. High 
harmonic contents characterise the first state. 
In the third state, the crack stays closed, since the peak force is smaller than the crack's 
intrinsic closure load. However, the modulating force acts on closed-crack widths, 
thus modulating the crack stiffness and the second mode frequency. 
The behaviour can be described on the basis of two time scales: on a large scale, the 
mean stiffness determines the average modal frequency while, on a small scale, the 
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instantaneous stiffness modulates the modal frequency. The dominant mode, which 
opens and closes the crack, is affected only by the mean stiffness, whereas high-order 
mode frequencies follow the instantaneous stiffness. 
It should be noted that a mode might have more than one frequency component at 
the same time; for example, in the first state, the first bending mode of a cracked 
beam must include its visible harmonics on a spectrogram. Actually, this mode is a 
distorted sinusoid, since the crack opens and closes synchronously with the sinusoid 
from the modal motion. On the opposite side of the record, when the amplitude is 
not enough to allow crack breathing, the first mode can be described by one 
frequency component because the corresponding sinusoid is not distorted. 
 
Amplitude-dependent modal damping 
 
In general, the classical damping ratio must be carefully used to characterise a non-
linear system since the related viscous damping hypothesis and uncoupled modes are 
no longer valid. It is worth noting that most of the present-day modal software is 
designed in terms of fitting constant modal frequencies rather than an amplitude-
dependent frequency mode.  
The peak/rms ratio is proposed as being a simple tool better designed to globally 
characterise ADMD. Note that the peak/energy ratio yields a similar result. 
When beam #2 is struck with a screwdriver, the human ear perceives a diminishing 
sound amplitude with an increasing impact force around 1 kN: with increasing 
impact force the clear tonality becomes a short low-frequency damped noise. The 
impact amplitude also influences the modal amplitude distribution. This variation is 
explained, on the one hand, by a modal excitation efficiency, which is a function of 
an impact point vs modal shape, and a modal shape, which is a function of the 
vibration state. On the other hand, after a few milliseconds, the modal amplitude is 
also a function of the modal damping, itself a function of the vibration state (Fig.18). 
The instantaneous damping modulation can be explained by crack breathing as 
follows: 
 

 When fully open, a crack acts like a hinge and contributes slightly to structure 
damping.  

 When partially open, a crack crushes the crack surface oxidation by-products 
and dust, breathes air and trapped oil in and out and in this way increases the 
damping. 

 When fully closed, a crack has little effect on the structure damping. 
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The highest damping value occurs when a dominant mode partially opens the crack, 
allowing the higher-order modes to open and close the crack. 
 

 
Fig. 18 – Influence on modal amplitude distribution 

 
It is concluded that lower-order modes are a!ected by the average damping 
corresponding to crack states whereas high-order modes react instantaneously to the 
damping modulated by crack breathing. The resulting global damping is a fairly 
complex function of excitation and time. 
 
1.4.1 Crack detection 
 
Criteria based on damping, harmonic distortion, the bispectrum, the frequency 
spectrogram and the coherent modulated power were tested. 
Since the non-linear behaviour of a crack is accentuated in the first vibration state, 
an appropriate impact force is needed to fully open the crack. Smaller cracks, 
however, call for a higher impact force yet high impact amplitude may damage the 
structure and also generate non-linear components on an uncracked structure. 
Whatever the technique used, detection of small cracks is therefore usually restricted 
to the measurement of the third vibrational state. 
The harmonic distortion criterion can easily detect a crack if enough record length is 
provided in the first vibrational state. When a strong impact is not possible without 
damage, the second and especially the third vibrational states do not generate enough 
distortion to allow detection of a small crack. 
Tests were also performed with a bispectral transform from which the auto-
bicoherence yields better results than the auto-bispectrum. It was found that 
bispectral transform has limited success on beam #1, it is thought to be due to: 
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 the spread of high-order spectral components due to frequency drifts; 
 high-frequency components whose amplitude is greater for the uncracked 

beams; 
 more frequency components present on uncracked beam due to high 

damping of cracked beam that has wiped off many frequencies; 
 non-linearity of the measurement apparatus itself. 

 
Finally crack-detection accuracy is defined by the product of the accuracy of the 
frequency estimate and the ratio of the ‘crack length' over the ‘corresponding 
frequency drift'. 
 
1.4.2 Conclusions 
 
A cantilever beam with a fatigue crack shows a modal behaviour dependent on the 
vibration state of the crack opening. When the amplitude allows full opening, the 
amplitude-dominant mode generates harmonics and modulates the higher-order 
modes. With the crack partially open, the damping reaches its highest value for most 
modes. When the tvibration amplitude decreases and becomes too small to open the 
crack, many modal frequencies increase and modal damping diminishes. 
Consequently, the modal frequencies, modal damping and amplitude distribution 
between modes are all a function of the 
excitation amplitude, this also reduces the repeatability of measurements. 
The frequency spectrogram and a criterion based on the coherent power of amplitude 
modulation have detected fatigue cracks with a 6.2% surface ratio. 
 
1.5 Crack detection based on the anti-resonance technique 
 
In this paper is presented an alternative technique for crack detection in a 
Timoshenko beam based on the first anti-resonant frequency [5]. 
In order to characterize the local discontinuity due to cracks, a rotational spring 
model based on fracture mechanics is proposed to model the crack. Subsequently, 
the proposed method is verified by a numerical example of a simply-supported beam 
with a crack. The effect of the crack size on the anti-resonant frequency is 
investigated. The position of the crack of the simply-supported beam is also 
determined by the anti-resonance technique. The proposed technique is further 
applied to the “contaminated” anti-resonant frequency to detect crack damage, 
which is obtained by adding 1-3% noise to the calculated data. 
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The crack of the beam is assumed to be open, and with a uniform depth in width. 
The length, height and width of the beam are L, H and B, respectively. And there is 
a crack at a distance ܮ௖ from the left end of the beam, as shown in Fig. 19.  
In the analysis, a steel beam is considered, thus, the influence of material damping 
on the resonant frequencies is ignored, and only bending vibrations are considered. 
 

 
Fig. 19 – Beam model 

 
The stiffness of the rotational spring can be denoted as: 
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െ ଻ݏ126.9 ൅ ଼ݏ172 െ ଽݏ43.97 ൅ ଵ଴ݏ66.56
(20) 

 
where c is the local flexibility due to a crack, f(s) is the non-dimensional local 
compliance function, s = δ/H, is the relative crack depth, δ is the depth of the crack. 
Each segment of the beam separated by the crack and the applied force can be viewed 
as an individual component, and the dynamic equation governing the flexural 
vibration of each segment of the beam is: 
 

ܩܣߢ  ൌ ቆ
߲ଶ ௜ܹ

ଶݔ߲
െ
߲߶௜
ݔ߲

ቇ ൌ ܣߩ
߲ଶ ௜ܹ

ଶݐ߲
 (21) 
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߲ଶ߶௜
ଶݐ߲

݅ ൌ 1,2,3 (22) 

 
where κ is the shear correction factor, G is the modulus of rigidity of the materials, 
Φ is the slope of the deflection curve due to bending deformation, W is the flexural 
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displacement and the beam has a constant cross-section area A and area inertia I. Its 
material properties, Young’s modulus E and mass density ρ, are also constant.  
After some demonstrations, the use of separation of variables and the introduction of 
boundary conditions it can be found that the vibration solution to each equation can 
be depicted as follows: 
 
௜ݓ  ൌ ሻߚଵߙሺ݄ݏ݋௜ܿܣ ൅ ሻߚଵߙሺ݄݊݅ݏܤ ൅ ሻߚଶߙሺݏ݋௜ܿܥ ൅ ሻ (23)ߚଶߙሺ݊݅ݏ௜ܦ

 
 ߶௜ ൌ ݉ଵܣ௜݄ܵሺߙଵߚሻ ൅ ݉ଵ݄ܥܤሺߙଵߚሻ െ ݉ଶܥ௜݊݅ݏሺߙଶߚሻ ൅݉ଶܦ௜ܿݏ݋ሺߙଶߚሻ (24)

 
To calculate the mechanical impedances of the cracked Timoshenko beam is 
considered that the driving-point impedance at an arbitrary position x along the 
beam length can be derived according to the expression 
 

 ܼሺݔሻ ൌ
଴ܨ

ሻݔሺ݂߱ߨ2݆
 (25)

 
where j is the unit of an imaginary number, w(x) is the corresponding displacement 
and f is the frequency. 
The crack identification procedure follows these steps.  
 

1. The cracked beam is excited by a harmonic force with wide scanning 
frequencies, and the driving force is moved from the left end to the right end 
of the beam. At the same time, the mechanical impedance at each driving 
point location is measured, which can be computed numerically according 
to the previous equation, and some graphs describing the mechanical 
impedance characteristics are given. 

2. The first anti-resonant frequencies are extracted from the graphs, and a figure 
correlating the first anti-resonant frequency with the driving point location 
along the beam is plotted. A discontinuity in the figure is seen, which 
corresponds to the crack of the beam. Thus, the crack of the beam is 
identified by monitoring the presence of the discontinuity. 

 
1.5.1 Analysis 
 
In order to demonstrate the validity of the technique proposed in the above section, 
a numerical example of a simply-supported beamwith a crack is presented. 
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In the example, the steel beamgeometries and material properties are as follows:  
length = 1 m, height = 0.2 m, width = 0.2 m, Young’s modulus E = 210×109 Pa, 
shear modulus G = 79×109 Pa, κ = 0.85, and density ρ = 7860 kg/m3. The crack is 
located at 0.3 m from the left end of the beam, which was stimulated by the harmonic 
force 10 N. 
The mechanical impedances under several cracked beam scenarios are presented in 
comparison with those of the intact beam scenario in Fig. 20.  
From Fig. 20 it is found that the presence of a crack induces the reduction of the 
resonant frequency and the anti-resonant frequency of the Timoshenko beam, and 
with an increase of crack depth both the first resonant frequency and the first anti-
resonant frequency decrease gradually. 
 

 
Fig. 20 – Variation of mechanical impedance vs depth of the crack. 

 
In this paper, the effects of the driving point location on the mechanical impedance 
of the simply supported Timoshenko beam are also investigated. Fig. 21, indicates 
the variation of mechanical impedance with the variation of the force location in the 
case of the intact beam (a) and those in the case of cracked beam with a crack located 
somewhere at 0.3 m from the left end of the beam (b). It can be found that when the 
driving force moves from an end to near the midpoint of the beam, the first natural 
frequency remains constant, whereas the first anti-resonant frequency increases and 
approaches the second natural frequency gradually, and the magnitude of the fist 
anti-resonance decreases more quickly in the case of a cracked beam than in the case 
of the intact beam. 
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The crack of the beam will be located using the first anti-resonant frequency 
information, which is extracted from the mechanical impedance graphs 
corresponding to different driving points. Must be noted that, when a crack in the 
simply-supported beam is presented, the decrease of the first anti-resonant frequency 
is much larger with the Euler beam theory applied than that with the Timoshenko 
beam theory applied. 
The study shows that the peak value of the first anti-resonant frequency curves 
decreases as the depth of the crack increase in the case of different cracked beam 
scenarios and the driving point location corresponding to the peak value is no longer 
just in the midpoint of the beam, but excursive from the midpoint. When the driving 
force goes through the midpoint and approaches the right end, the first resonance 
frequency decreases gradually. 
 
 

 
Fig. 21 – Variation of mechanical impedance vs force location 

 
The most important finding, however, is that the curves corresponding to different 
cracked beam cases show some discontinuities at the position 0.3 m from the left end 
of the cracked beam. It seems that the discontinuity indicates the appearance of the 
crack damage and the predicted crack location is coincident with the assumed crack 
location. It is also found that as the depth of the crack increases, the discontinuities 
become more accentuated. 
Fig. 22 shows the changes in the first anti-resonant frequency curves with the variable 
depths of the beam crack under 1% and 3% noise cases. From this figure can be 
noted that the beam crack can be located, this verifies the robustness of the proposed 
crack identification technique. 
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Fig. 22 – The first anti-resonant frequency with variable depths of the crack 

 
To verify the proposed crack identification method an experiment on a steel beam 
has been performed. In this experiment, a 384 mm long steel beam of rectangular 
cross-section 18 ൈ 13	݉݉ଶ was simply supported at a steel support. 
A crack of relative crack depth 60% was introduced at a distance of 286 mm from 
the left end of the beam. Harmonic excitation was used via a vibrator and the driving 
force was kept constant and was shifted in steps from the left to the right end of the 
beam. Based on the first anti-resonant frequencies extracted, the curves of the first 
anti-resonance versus driving point location were plotted in intact and cracked beam 
cases. The experimental results are coincident with the calculated results in intact and 
cracked beam cases. The calculated results showed that in the thin beam example the 
effects of different beam theories on the first anti-resonant frequency were quite 
small. It has also been found that the presence of 60% crack damage induced the 
notable decrease of the first anti-resonant frequency and a discontinuity occurred at 
a distance of about 280 mm from the left end of the steel beam, which corresponds 
to the location of crack in the steel beam (Fig. 23). 
 

 
Fig. 23 – Experimental and calculated results for the first anti-resonance 
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1.5.2 Conclusions 
 
The work shows that the presence of the crack will induce the changes in the 
mechanical impedance characteristics of the beam. At one time, the first anti-
resonant frequencies and the first resonant frequencies also decrease. In addition, 
since the anti-resonant frequency is a local parameter, it can be used as important 
information for crack localization. 
The numerical results show that when a crack occurs in the beam, the curve of the 
first anti-resonant frequency versus driving-point location will not be smooth but 
show discontinuity at the crack position, and the degree of the discontinuity depends 
on the depth of the crack. It is also concluded that the proposed technique for crack 
identification in a Timoshenko beam is robust to the measuring noise. 





 

 

Chapter 2  A NEW APPROACH 
 

efore introducing the new approach for crack identification, it is important 
to understand completely the theory behind the principle, in particular all the 
aspects involved in description of continuous system behaviour. 

The analysis of a continuous system could be seen as the analysis of a n gdl discrete 
system with n that tends to ∞. The problem is to analytically realize this formal 
passage, indeed for continuous systems, equation of motion are in the form of PDE 
because depends from both space (x,y,z) and time (t). All real systems should be 
studied as continuous systems but apart from the most simple cases, analytical 
solution could not be obtained using the continuous approach. In this cases it is 
indispensable the use of discrete methodology as the FEM analysis to solve the 
problem. 
The study carried out on continuous systems is important and form the base for the 
method of crack identification developed in this thesis. For this purpose, we will limit 
the study on a single and simple case that could be treated analytically in closed-form. 
The case is relative to bending vibration of beams. 
A beam is typically described as a structural element having one dimension (length) 
which is many times greater than its other dimensions (width and depth). It may be 
straight or curved. Beams are one of the most fundamental structural and machine 
components. Almost every structure or machine one can think of has one or more 
beam components. Buildings, steel framed structures, and bridges are examples of 
beam applications in civil engineering. In these applications, beams exist as structural 
elements or components supporting the whole structure. In addition, the whole 
structure  can  be  modelled  at  a  preliminary  level  as  a  beam.  For example, a 
high-rise building can be modelled as a cantilever beam, or a bridge modelled as a 
simply supported beam.  In mechanical engineering, rotating shafts carrying pulleys 
and gears are examples of beams. In addition, frames in machines (e.g., a truck) are 
beams.  
Robotic  arms  in  manufacturing  are  modelled  as  beams  as  well.  In aerospace  
engineering,  beams  (curved  and  straight)  are  found  in many  areas  of  the  aircraft  
or  space  vehicle.  In addition, the whole wing of a plane is often modelled as a beam 
for some preliminary analysis. Innumerable other examples of beams exist.  
In  many  of  these  applications,  beams  are  subjected  to  dynamic loads.  Imbalance  
in  driveline  shafts,  combustion  in  crank  shaft applications, wind or earthquake 
on a bridge or a structure, and impact load  when  a  vehicle  goes  over  a  bump  are  

B
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all  examples  of  possible dynamic loadings that beam structures can be exposed to. 
All of these loads and others can excite the vibration of the beam structure. This can 
cause durability concerns (because of potentially excessive dynamic stresses) or 
discomfort because of the resulting noise and vibration. 
The first part of this chapter will be dedicated to the explanation of the main 
principles of the new method for crack identification successively entering in the 
detail about an argument that formed the base of the algorithm developed during 
this work that is the study of transverse vibrations of beams. The equations of motion 
will first be derived. Solutions are then  found  and  discussed  for  the  natural  
frequencies  and  mode shapes of various boundary conditions using exact methods. 
As studied in the first chapter of this paper, it is easy to understand that although 
there are several known ways to identify a crack they all have positive or negative 
aspects to be considered. The main goal this work is the develop a new method that 
must be advantageous in terms of costs and above all repeatable and efficient. Before 
entering in the details of the method it is useful to recall some theory principle on 
which it is based like Modes of Vibration and Nodes. 
 
2.1 Modes of vibration 
 
Any complex body (i.e. more complicated than a single mass on a simple spring) can 
vibrate in many different ways. I.e., there is no one “simple harmonic oscillator”. 
These different ways of vibrating will each have their own frequency, that frequency 
determined by moving mass in that mode, and the restoring force which tries to 
return that specific distortion of the body back to its equilibrium position. 
It can be somewhat difficult to determine the shape of these modes. For example one 
cannot simply strike the object or displace it from equilibrium, since not only the 
one mode liable to be excited in this way. Many modes will tend to excited, and all 
to vibrate together. 
The shape of the vibration will thus be very complicated and will change from one 
instant to the next. However, one can use resonance to discover both the frequency 
and shape of the mode. If the frequencies of the modes are different from each other, 
then we know that if we jiggle the body very near the resonant frequency of one of 
the modes, that mode will respond a lot. The other modes, with different resonant 
frequencies will not respond very much. Thus the resonant motion of the body at 
the resonant frequency of one of the modes will be dominated by that single mode. 
Doing this with strings under tension, we find that the string has a variety of modes 
of vibration with different frequencies. The lowest frequency is a mode where the 
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whole string just oscillates back and forth as one with the greatest motion in the 
center of the string (Fig. 24). 
 

 
Fig. 24 – First mode of vibration 

 
The diagram gives the shape of the mode at its point of maximum vibration in one 
direction and the dotted line is its maximum vibration in the other direction. 
If we increase the frequency of the jiggling to twice that first modes frequency, we 
get the string again vibrating back and forth, but with a very different shape. This 
time, the two halves of the string vibrate in opposition to each other. As one-half 
vibrates up, the other moves down and vice versa (Fig. 25). 
 

 
Fig. 25 – Second mode of vibration 

 
 
Again the diagram gives the shape of this mode, with the solid line being the 
maximum displacement of the string at one instant of time, and the dotted being the 
displacement at a later instant (180 degrees phase shifted in the motion from the first 
instant). 
If we go up to triple the frequency of the first mode, we again see the string vibrating 
a large amount– i.e. at the resonant frequency of the so-called third mode. In this 
case, the string is divided into three equal length section, each vibrating in opposition 
to the adjacent piece (Fig. 26). 
 

 
Fig. 26 – Third mode of vibration 

 
As we keep increasing the jiggling frequency, we find at each whole number multiple 
of the first modes frequency another mode. At each step up, the mode gets an extra 
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“hump” and an extra place where the string does not move at all. Those places where 
the string does not move are called the nodes of the mode. Nodes are where the 
quantity (in this case the displacement) of a specific mode does not change as the 
mode vibrates. 
The modes of the string have the special feature that the frequencies of all of modes 
are simply integer multiples of each other. The ݊௧௛ mode has a frequency of ݊ times 
the frequency of the first mode. This is not a general feature of modes. In general, 
the frequencies of the modes are not related to each other. As an example, let us look 
at the modes of a vibrating free bar (Fig. 27). In the figure below, we plot the shape 
of the first three modes of a vibrating bar, together with the frequencies of the three 
modes. Again the solid lines are the shape of the mode on maximum displacement 
in one direction and the dotted the shape on maximum displacement in the other 
direction. Note that these are modes where the bar is simply vibrating, and not 
twisting. If one thinks about the bar being able to twist as well, there are extra modes. 
For a thin bar, the frequencies of these modes tend to be much higher than these 
lowest modes discussed here. However the wider the bar, the lower the frequencies 
of these modes with respect to the vibrational modes. 
 

 
Fig. 27 – First three modes for a free bar 

 
The concept of Nodes just introduced will be used as a base for locate a crack along 
the beam length. 
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2.2 Non-linear behavior 
 
Most researchers have assumed that the crack in a structural member is open and 
remains open during vibration. This assumption is usually satisfied when the damage 
is rather large and avoids the complexity resulting from nonlinear behavior when a 
breathing crack is presented. On the contrary, breathing behavior is generally 
reported in the case the damage interests only a small portion of the cross section of 
the structural element but it requires a nonlinear model to take into account its effect 
on the system dynamics. 
Nonlinear approaches require that the damage induces a nonlinear behavior in the 
system and are suitable for the early-detection of cracks when they behave in a 
breathing way. In fact, the breathing crack model considers that, during the vibration 
cycle of a structure, the edges of the crack come into and out of contact, leading to 
sudden changes in the dynamic response of the structure and these changes can be 
useful for the detection of cracks. 
While these nonlinear effects make the response of beams more difficult to model 
with respect to notched beams, their appearance clearly marks the boundary between 
undamaged and damaged behavior. 
As already demonstrated by other researchers [11], when a system with a breathing 
crack is excited by a single harmonic force, distinctive nonlinear features appear in 
the response. The excitation, in fact, forces the crack to open and close and the 
resulting clapping of the crack’s edges produces harmonics that are integer multiple 
or fractional multiple of the forcing frequency. These harmonics are commonly 
referred as to super-harmonics and sub-harmonics, respectively. These features are 
easily detectable when the excitation frequency is in an integer ratio or is a multiple 
of a resonance frequency of the system; moreover, these would be much more 
sensitive to cracks characteristics than the modal properties of a linear system. 
The non-linear effects that characterize a cracked beam are detectable through the 
Spectrogram of the beam dynamic response. A linear behavior is identified from the 
presence of a single line linked with the exiting frequency (Fig. 28.a). Spectrogram 
of a non-linear system shows instead the presence of multiple lines related to sub-
harmonics and super-harmonics of forced frequency (Fig. 28.b). 
Returning to the previous concept of Nodes (2.1) it is possible to ask ourselves 
something, “What happen if the crack is in a nodal point of the mode?” 
If the crack is in the Node of the mode shape, then it is impossible to open and close 
cyclically, this result in a cracked beam that behave as an undamaged beam at that 
particular frequency. That frequency is the one that have a node of the mode 
coincident with the crack position. When such a thing happen, breathing behavior 
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of the crack is disabled and so its nonlinear features. It must be noted that 
observations above are valid for cracks in general but it is obvious that, in order to 
make possible for the crack to be perfectly in coincidence with a nodal point it is 
required that its size is restrained. Due to this fact, the effect on super-harmonic 
frequency could be also linked with the particular geometry of the crack and in 
particular on the influence that it has on nodal points. 
 
 

 
 
 

 
Fig. 28 – Spectrogram example for linear (a) and non-linear (b) behavior 
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2.3 Crack identification 
 
The study of the Spectrogram of the beam dynamic response assume an important 
role in the whole procedure of crack identification that we want to present in this 
paper. As previously introduced, through its study it is possible to verify the presence 
of harmonics that are integer multiple or fractional multiple of the system forcing 
frequency. These frequencies, as already mentioned are named super-harmonics and 
sub-harmonics respectively. 
In a perfect case, super-harmonics and sub-harmonics would disappear from the 
Spectrogram but, in realty, their expression is only damped down. This happens for 
different reasons especially related to the geometry of the crack. 
Effects on non-linear feature are various depending on dimension and position of the 
crack indeed. The size and especially the spatial extension of the crack can influence 
different nodal point of the mode shape and for this reason, oblique crack will affect 
differently from longitudinal as well as transversal cracks. 
In this paper, we limit the study only to the case of a transversal crack. In this way, 
its extension is limited to only few points of the structure and so its effects on super-
harmonic frequencies will be maximized. 
Information of the Nodes and of the system behavior can be used to develop an index 
useful to investigate the presence of a crack. As already written, if the crack is in a 
Node of the mode shape, then it will be impossible to open and close cyclically, this 
result in a linear behavior at that particular frequency. For this purpose, it is necessary 
to make the nodal points of the curvature to move along the length of the beam until 
they meet the crack making possible its identification. Nodal points change position 
gradually along the beam as frequency change so, for a correct identification, it is 
necessary to force the beam in a certain range of frequency studying its behavior. This 
fact leads to an innate connection between frequency and node displacement that 
must be considered during the test since a frequency step will turn into a spatial 
resolution for crack location. 
The first step to accomplish is to obtain the position of curvature nodes of the 
structure at each frequency; this is possible in two different ways related to the 
complexity of the system itself. Simple geometries could be treated analytically while 
complex structures need to be analyzed with the help of a FEA software. 
To first understand the analytical study of a simple case used to validate the method 
it is necessary to deal with the equation that describe the bending vibration of beams. 
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2.4 Bending vibration of beams 
 
In this part, we introduce the study of vibrations in distributed parameter systems by 
dealing with the bending vibrations of a beam [8], [9]. 
We will treat the problem under the following assumptions:  
 

1. Small displacements 
2. Linear elastic constitutive law: we will consider a linear, isotropic relationship 

between stress and strain in the beam material; this assumption is normally 
well satisfied by metallic materials (steel, aluminum) until the plastic yield 
limit is achieved. 

3. Constant section and homogeneous material: we will consider the section of 
the beam as constant in shape and dimensions along the beam axis. 
Furthermore, we will assume that no all-physical properties of the beam 
material (density, modulus of elasticity) depend upon the particular position 
inside the beam volume. 

4. Damping effect can be neglected 
5. No forces applied on the beam, except at the boundaries.  
6. The beam is not subject to tension/compression. 
7. Plane bending of the beam is studied, assuming that the plane where the 

bending motion occurs contains one of the principal axes of the beam section. 
It is easy to verify that, under this assumption, the plane bending motion 
studied is totally de-coupled from a second component of bending, occurring 
in an orthogonal plane which contains the other principal axis of the beam 
section. Therefore, the results obtained may be applied to the study of the 
three-dimensional bending motion of the beam, provided that the two 
bending motions in the two orthogonal planes are combined each other. 

8. The center of gravity of the beam sections falls on the principal axis contained 
in the considered plane of bending: by this assumption, the bending motion 
studied is de-coupled from the torsional vibrations of the beam. 

9. The beam is “slender”, i.e. the ratio of the height h of the section over the 
beam length l is small : 

݄

݈
൏൏ 1 

 
The last condition implies that the so-called “Euler-Bernoulli” theory can be used to 
describe beam bending. According to this theory, the angular distortion produced in 
the beam by the action of shear forces (see below) is negligible, so that if we denote 
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by w(x,t) the transversal displacements of the points along the beam axis and by 
M(x,t) the bending moment in the beam, the following relationship may be 
established between the two: 
 

ܯ  ൌ ܬܧ
߲ଶݓ

ଶݔ߲
 (26)

 
where E is the modulus of elasticity for the beam material and J is the geometric 
moment of inertia of the beam section along the principal axis orthogonal to the 
plane of bending. Additionally, the “Euler-Bernoulli” theory assumes that the effect 
of rotational inertia in the beam may be neglected (the consequence of this further 
assumption is discussed in detail below). 
It is worth recalling that other beam models exist, allowing to consider the effect of 
shear deformation and/or of beam rotational inertia. The use of these theories is 
recommended in the study of “thick” beams, where the ratio ௟

௛
 is in the range of ଵ

ଵ଴
 

or more. 
We consider the system represented in Fig. 29 Errore. L'origine riferimento non è 
stata trovata.and confine the study to the bending motion in the x-z plane, denoting 
by w(x,t) the transversal displacements of the points on the axle of the beam. The 
conventions introduced for shear forces T and bending moments M is also shown in 
the figure. 
 

 
Fig. 29 – Model of the system 

 
Now, in order to write the equation of motion for the bending vibration of the beam, 
we consider an element of infinitesimal length dx in a generical time t. The element 
is subjected to the forces shown in the figure below (Fig. 30) that, in absence of 
external forces are:  
 

- The shear force T(x,t) and the bending moment M(x,t) acting on the left face 
of the element. 
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- The shear force T(x+dx,t) and the bending moment M(x+dx,t) acting on the 
right face of the element. 

- The inertia force, expressed as the product of the infinitesimal mass of the 

element dm times the acceleration of the element  డ
మ௪

డ௧మ
  with the sign changed. 

 

 
 

Fig. 30 – Infinitesimal element 
 
Due to the fact that the “Eulero-Bernoulli” theory for the beam is used, we may 
consider as negligible the inertia torque expressed as the product of the beam element 
moment of inertia times the angular acceleration of the element with the sign 
changed (this is what was meant in the list of assumptions as “negligible rotatory 
inertia”). 
Now it is clearly possible to write, for the infinitesimal element, two dynamic 
equilibrium equations. 
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Merging the two equilibrium equations, it is easy to obtain the following expression: 
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				 ; 				
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ൌ െ݉

߲ଶݓ

ଶݐ߲
⟹

ࣔ૛ࡹ

૛࢞ࣔ
ൌ െ࢓

ࣔ૛࢝

૛࢚ࣔ
 (29)

 
Using now the relation valid for the Eulero-Bernoulli theory, it is possible to write 
the indefinite equilibrium equation that describe the bending vibration of a generic 
beam: 
 

ܬܧ 
߲ସݓ

ସݔ߲
ൌ െ݉

߲ଶݓ

ଶݐ߲
 (30)

 
 
2.4.1 Stationary solutions 
 
To study bending motion of the beam, we seek for stationary solutions in the form 
 

,ݔሺݓ ሻݐ ൌ  ሻݐሺߚሻݔሺߙ
 
where ߙሺݔሻ is a function of space alone describing the waveform of the stationary 
vibration and ߚሺݐሻ is a time dependent vibration amplitude coefficient. To derive 
appropriate expressions for ߙሺݔሻ and ߚሺݐሻ we observe that: 
 

߲ସߙሺݔሻߚሺݐሻ

ସݔ߲
ൌ ;				ሻݐሺߚሻݔூ௏ሺߙ 					

߲ଶߙሺݔሻߚሺݐሻ

ଶݐ߲
ൌ  ሻݐሷሺߚሻݔሺߙ

 
By introducing the above relationships in the indefinite equilibrium equation we get: 
 
ሻݐሺߚሻݔூ௏ሺߙܬܧ  ൌ െ݉ߙሺݔሻߚሺݐሻሷ (31)

 
then, using the “separation of variables principle” scheme we get: 
 

ሻሷݐሺߚ 

ሻݐሺߚ
ൌ െ

ܬܧ

݉

ሻݔூ௏ሺߙ

ሻݔሺߙ
ൌ െ߱ଶ (32)

 
Now it is possible to use the Separation of Variables method to get solution for the 
system. With this method is possible to separate the (32) in a second-order 



Crack identification method for mechanical structures 

56 A NEW APPROACH 

differential equation in ߚሺݐሻ alone and a fourth-order differential equation in ߙሺݔሻ 
alone: 
 
ሻݐሷሺߚ  ൅ ߱ଶߚሺݐሻ ൌ 0 (33) 
   

ሻݔூ௏ሺߙ  െ
݉߱ଶ

ܬܧ
ሻݔሺߙ ൌ 0 (34) 

 
the first equation provides the solution: 
 
ሻݐሺߚ  ൌ ݐሺ߱ݏ݋ܿܧ ൅ ߮ሻ (35) 

 
to solve the second of equations we first simplify the notation by defining: 
 

ସߛ  ൌ
݉߱ଶ

ܬܧ
 (36) 

so that the equation becomes: 
 
ሻݔூ௏ሺߙ  ൅ ሻݔሺߙସߛ ൌ 0 (37) 

 
which is a fourth order, linear differential equation with constant parameters. The 
solution of this type of equation is a linear combination of four terms having the 
exponential form: 
 
ሻݔሺߙ  ൌ ଴݁ߙ

ఒ௫ → ሻݔூ௏ሺߙ ൌ ଴݁ߙସߣ
ఒ௫ (38) 

 
with the constant coefficient ߛ in the exponent being in general complex valued. By 
substitution of the above solution in equation (37) we get: 
 
 ሺߣସ െ ଴݁ߙସሻߛ

ఒ௫ ൌ 0 → ሺߣସ െ ଴ߙସሻߛ ൌ 0 (39) 
 
and, in order to discard the “trivial” solution ߙሺݔሻ ൌ 0 
 

ସߣ െ ସߛ ൌ 0 
 
that provides as solution ߣ : 

ଵ,ଶߣ ൌ േ݅ߛ	
ଷ,ସߣ ൌ േ݅ߛ 
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so that the solution of eq. (37) takes the complex form: 
 
ሻݔሺߙ  ൌ ଵ݁ߙ

௜ఊ௫ ൅ ଶ݁ߙ
ି௜ఊ௫ ൅ ଷ݁ߙ

ఊ௫ ൅ ସ݁ߙ
ିఊ௫ (40)

 
now, we know from the solution of the free undamped motion of discrete systems 
that the first two terms in the above solution may be rewritten as: 
 
ଵ݁ߙ 

௜ఊ௫ ൅ ଶ݁ߙ
ି௜ఊ௫ ൌ ሻݔߛሺݏ݋ܿܣ ൅ ሻݔߛሺ݊݅ݏܤ (41)

 
moreover, by definition of the hyperbolic cosine Ch and hyperbolic sine Sh 
functions we have: 
 

ሻݔߛሺ݄ܥ ൌ
݁ఊ௫ ൅ ݁ିఊ௫

2
						 ; 						݄ܵሺݔߛሻ ൌ

݁ఊ௫ െ ݁ିఊ௫

2
 

 
so that if we use the following substitutions in equation (40): 
 

ଷߙ ൌ
ܥ ൅ ܦ

2
					 ; ସߙ					 ൌ

ܥ െ ܦ

2
 

 
in this way the global solution of ߙሺݔሻ it is given by: 
 
ሻݔሺߙ  ൌ ሻݔߛሺݏ݋ܿܣ ൅ ሻݔߛሺ݊݅ݏܤ ൅ ሻݔߛሺ݄ݏ݋ܿܥ ൅ ሻ (42)ݔߛሺ݄݊݅ݏܦ

 
and then: 
 
,ݔሺݓ  ሻݐ ൌ ሾݏ݋ܿܣሺݔߛሻ ൅ ሻݔߛሺ݊݅ݏܤ ൅ ሻݔߛሺ݄ܥܥ ൅ ݐݓሻሿcosሺݔߛሺ݄ܵܦ ൅ ߮ሻ (43)

 
where the amplitude of the time dependent part of the solution of ߚሺݔሻ has been 
embedded in constants A, B, C, D. The expression obtained represents the general 
solution for the stationary free bending vibration of a beam with constant section, 
regardless the boundary conditions acting on the beam at its ends. Different values 
of natural frequencies and modes of vibration are then associated to different 
boundary conditions at the ends of the beam.  
In the next three sections the problem is examined evaluating different aspects related 
to boundary conditions. Different kinds of possible boundary conditions are first 
examined and translated into mathematical conditions, then the simplest case 
represented by the “pinned-pinned” boundary conditions is examined, and finally a 
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general procedure to treat the problem for arbitrary boundary conditions and for 
systems of beams is introduce. 
 
2.4.2 Different boundary conditions for the bending motion 
 
In the case of transversal vibrations of a tensioned string, one boundary condition 
was written for each end of the beam, thus providing a total of two boundary 
conditions. It could be demonstrated that the total number of boundary conditions 
in the problem is always equal to the maximum order of spatial derivatives in the 
partial derivatives differential equation to be solved. Thus we expect in the case of 
bending vibrations four boundary conditions, which means in turn two per each end 
of the beam.  
In this section, we will consider three possible cases of boundary conditions that are 
those most frequently occurring in engineering practice. Other boundary conditions 
may be introduced [9] but their treatment may be deduced from the examples 
reported hereafter. 
The first case we consider is the clamped beam end: this kind of constraints prevents 
the end of the beam from undergoing any vertical displacement or rotation. 
If we denote by x the position of the section where the constraint is placed (this will 
be either ݔ ൌ 0 for the left end or ݔ	 ൌ 	݈ for the right end of the beam), we must 
then require: 
 
,ݔሺݓ ሻ|௫ୀ௫̅ݐ ൌ 0				for	any	time	ݐ 
	
ݓ߲

ݔ߲
ฬ
௫ୀ௫̅

ൌ 0											for	any	time	ݐ	 

 
where the second boundary condition is justified by the fact that if the distortions of 
the element produced by shear forces are negligible (in accordance with the Euler-
Bernoulli beam theory). Then the rotation of the section coincides with the 
inclination of the beam axis, which in turn is expressed by the derivative of the 
transversal displacement w(x,t) with respect to the spatial derivative x. 
We see that in the case of a clamped end, the two boundary conditions reflect both 
the presence of a constraint and are then called “geometric” boundary conditions. 
As a second case, we consider the “free end” boundary conditions, where the beam is 
not subjected to any constraint. Obviously in this case it is not possible to write 
geometric boundary conditions. However, if we consider an infinitesimal element of 
the beam that includes the free end of the beam, then there are two equilibrium 
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equations that we may write and will provide us with two boundary conditions that 
are called “natural” boundary conditions. In order to clarify this point we consider 
(without loss of generality) the case where the left end of the beam is free. The 
situation is depicted in Fig. 31: 
 

 
Fig. 31 – Equilibrium of an infinitesimal beam element on the left end 

 
 
We may then write a dynamic equilibrium equation along the vertical direction and 
one dynamic equilibrium equation with respect to the rotation of the same element. 
 

݉ݑ݅ݎܾ݈݅݅ݑݍ݁	݈ܽܿ݅ݐݎܸ݁  ∶ ܶሺ0, ሻݐ ൅
߲ܶ

ݔ߲
ݔ݀ ൅ ݔ݀݉

߲ଶݓ

ଶݐ߲
ൌ 0 (44)

 

݉ݑ݅ݎܾ݈݅݅ݑݍ݁	݊݋݅ݐܽݐ݋ܴ  ∶ ,ሺ0ܯ ሻݐ ൅
ܯ߲

ݔ߲
ݔ݀ ൌ 0 (45)

 
In both equations, the terms containing the infinitesimal length ݀ݔ of the element 
are negligible with respect to the finite terms, so that we may simplify the equations 
in: 

ܶሺ0, ሻݐ ൌ 0					; ,ሺ0ܯ					 ሻݐ ൌ 0 
 

and, recalling equations (26) and (28): 
 

 
ܬܧ
߲ଷݓ

ଷݔ߲
ቤ
௫ୀ଴

ൌ 0 ⟶
߲ଷݓ

ଷݔ߲
ቤ
௫ୀ଴

ൌ 0 

ܬܧ
߲ଶݓ

ଶݔ߲
ቤ
௫ୀ଴

ൌ 0 ⟶
߲ଶݓ

ଶݔ߲
ቤ
௫ୀ଴

ൌ 0 
(46)
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if we now remove the assumption of considering the left end of the beam, we get the 
general expression for the free end boundary conditions in a generic extremity of the 
beam x: 
 

 

߲ଷݓ

ଷݔ߲
ቤ
௫ୀ௫̅

ൌ 0 

߲ଶݓ

ଶݔ߲
ቤ
௫ୀ௫̅

ൌ 0 

 

(47) 

we note by the way that the “natural” boundary conditions introduced in the free 
end involve higher order derivatives of the solution ݓሺݔ,  ”ሻ that the “geometricݐ
boundary conditions. Also we note that in presence of a clamp constraint, it is 
impossible to write any natural boundary condition, since each of the two 
equilibrium equations written above in the case of the free end would introduce in  
that case an unknown force component (either the clamping shear force or the 
clamping moment) associated with the presence of the constraint. 
Finally, we consider a case that may be considered as intermediate between the 
“clamped end” and the “free end” cases. That is the case of a “pinned end”, which 
means that the considered beam section is supported by a constraint like a hinge that 
prevents the section from any vertical displacement but leaves it free to rotate around 
a fixed point. We may introduce in this case one single geometric boundary condition 
that reflects the constraint acting on the vertical displacement and will thus 
correspond to the first of conditions found in the case of a clamped section, and 
additionally one single natural boundary condition that reflects the possibility for the 
beam section to freely rotate, and will then correspond to the second of conditions 
(47), found in the case of a free section. Thus, the two boundary conditions 
corresponding to a pinned section are: 
 

 

,ݔሺ̅ݓ ሻݐ ൌ 0 
 

߲ଶݓ

ଶݔ߲
ቤ
௫ୀ௫̅

ൌ 0 
(48) 
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2.5 The pinned-pinned beam 
 
We consider first the case of a pinned-pinned beam to find the associated natural 
frequencies and modes of vibration. The advantage of considering this case is that 
the resulting equation is simple, allowing an analytical treatment. This is not the case 
for generic boundary conditions, where the use of a numerical procedure is normally 
needed, as will be clarified in the next section. If we consider a pinned boundary 
condition applied at both beam ends ̅ݔ ൌ 0 and  ̅ݔ ൌ ݈ we get as the total set of four 
boundary conditions: 

 

,ሺ0ݓ ሻݐ ൌ 0 ; ,ሺ݈ݓ ሻݐ ൌ 0 
 

߲ଶݓ

ଶݔ߲
ቤ
௫ୀ଴

ൌ 0 ;
߲ଶݓ

ଶݔ߲
ቤ
௫ୀ௟

ൌ 0 
(49)

 
we replace the general solution (43) into (49), taking into consideration that: 
 

 ߲ଶݓ

ଶݔ߲
ൌ ሻݔߛሺݏ݋ܿܣଶሾെߛ െ ሻݔߛሺ݊݅ݏܤ ൅ ሻݔߛሺ݄ܥܥ ൅ ݐሺ߱	ሻሿcosݔߛሺ݄ܵܦ ൅ ߮ሻ (50)

 
so that we get from the first and second of (49): 
 

 ቄ
ܣ ൅ ܥ ൌ 0
ܥ െ ܣ ൌ 0

→ ቄ
ܣ ൌ 0
ܥ ൌ 0

 (51)

 
if we now consider the third and fourth of conditions (49), taking into account the 
above result, we get: 
 

 ൜
ሻ݈ߛሺ݊݅ݏܤ ൅ ሻ݈ߛሺ݄ܵܦ ൌ 0

െ݊݅ݏܤሺ݈ߛሻ ൅ ሻ݈ߛሺ݄ܵܦ ൌ 0
→ ൜

ሻ݈ߛሺ݄ܵܦ ൌ 0

ሻ݈ߛሺ݊݅ݏܤ ൌ 0
 (52)

 
Now, since the hyperbolic sine function is zero only for zero argument and since 
݈ߛ ് 0, the first of the two above conditions necessarily implies 
 
ܦ  ൌ 0 (53)

 
On the other hand, if we consider the second of the above conditions, we may come 
out with two possibilities: the first one is ܤ	 ൌ 	0, that (taken into account that we 
found previously ܣ ൌ ܥ ൌ ܦ ൌ 0) would imply a trivial case, where the beam 
remains still. 
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In order to avoid this trivial solution we need to set: 
 
ሻ݈ߛሺ݊݅ݏ  ൌ 0 → ݈ߛ ൌ ߨ݇ (54) 

 
and finally, recalling the definition of ߛ by equation (36): 
 

 ݉߱ଶ

ܬܧ
ൌ ସߛ ൌ ൬

ߨ݇

݈
൰
ସ

 (55) 

 
and solving the above condition for the possible values of the pulsation ߱ : 
 

 ߱௞ ൌ ൬
ߨ݇

݈
൰
ଶ

ඨ
ܬܧ

݉
; ݇ ൌ 1,2, … (56) 

 
Where ߱௞ take the meaning of the natural frequencies of the pinned-pinned beam 
in its bending vibrations. In (565656) coefficient ݇ may assume any integer positive 
value, without any upper limit. In order to define the corresponding ݇ െ  mode ݄ݐ
of vibration we introduce equations (51), (53) and (56) into the general expression 
of stationary bending vibrations, (43). From the substitutions, we easily obtain: 
 

,ݔ௞ሺݓ  ሻݐ ൌ ௞ܤ sin ൬
ߨ݇

݈
൰ݔ cosሺ߱௞ݐ ൅ ߰௞ሻ (57) 

 
which shows that the ݇ െ  mode of vibration (space function describing the shape ݄ݐ
of deformation associated with the ݇ െ  natural frequency) is the same as for the ݄ݐ
transversal vibration of a tensioned string, i.e. a sinusoid having as its wavelength an 
integer sub-multiple of twice the beam span: 
 

ሻݔ௞ሺߙ  ൌ ௞ܤ sin ൬
ߨ݇

݈
 ൰ (58)ݔ

 
Fig. 32 reports the shape of the first four modes of vibration. The more general 
bending motion for the pinned-pinned beam in bending motion is then the 
combination of all motion components of the type (57): 
 

,ݔሺݓ  ሻݐ ൌ ෍ݓ௞ሺݔ, ሻݐ

ஶ

௞ୀଵ

ൌ ෍ܤ௞

ஶ

௞ୀଵ

sin ൬
ߨ݇

݈
൰ݔ cosሺ߱௞ݐ ൅ ߮௞ሻ (59) 
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where the amplitude parameters ܤ௞ and the phase parameters ߮௞ have to be 
determined by considering a particular set of initial conditions for the system. 
 

 
Fig. 32 – Shape of the first four modes of vibration for the pinned-pinned beam 

 
2.5.1 Other boundary conditions 
 
As explained above, the natural frequencies and modes of vibration of a beam in 
bending do not only depend upon the physical parameters of the beam (length, 
section, material), but also upon the particular boundary conditions considered. The 
same approach previously described may be used to define the natural frequencies 
and modes of vibration for any combination of boundary conditions, with the only 
difference that, in general, an analytical solution will not be possible.  
We provide an example of the general procedure to consider a generic combination 
of boundary conditions by considering the cantilever beam, clamped at one end and 
free at the other, see Fig. 33. 
 

 
Fig. 33 – Model of the beam 
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In this case, the four conditions to be processed are the two of the clamped end in 
x=0 and the two of the free end in ̅ݔ ൌ ݈ 
 

 

,ሺ0ݓ ሻݐ ൌ 0 ;
ݓ߲

ݔ߲
ฬ
௫ୀ଴

ൌ 0 

 
߲ଶݓ

ଶݔ߲
ቤ
௫ୀ௟

ൌ 0 ;
߲ଷݓ

ଷݔ߲
ቤ
௫ୀ௟

ൌ 0 

(60) 

 
It is left to the reader to verify that introducing these four conditions in the general 
solution (43) for the stationary bending vibration of the system, the following system 
of four equations in the unknowns A, B, C, D is obtained: 
 

 

ܣ ൅ ܥ ൌ 0
ܤ ൅ ܦ ൌ 0
െݏ݋ܿܣሺ݈ߛሻ െ ሻ݈ߛሺ݊݅ݏܤ ൅ ሻ݈ߛሺ݄ܥܥ ൅ ሻ݈ߛሺ݄ܵܦ ൌ 0
ሻ݈ߛሺ݊݅ݏܣ െ ሻ݈ߛሺݏ݋ܿܤ ൅ ሻ݈ߛሺ݄ܵܥ ൅ ሻ݈ߛሺ݄ܥܦ ൌ 0

(61) 

 
which may be rewritten in the for of the following matrix equation: 
 
 ሾܪሺߛሻሿݔ ൌ 0 (62) 

 
where axis the vector formed by the four unknowns: 
 

ݔ  ൌ ൞

ܣ
ܤ
ܥ
ܦ

ൢ (63) 

 
and ሾܪሺߛሻሿ has the following expression: 
 

 ሾܪሺߛሻሿ ൌ ൦

1 0 1 0
0 1 0 1

െcosሺܮߛሻ െ݊݅ݏሺܮߛሻ ሻܮߛሺ݄ܥ ݄ܵሺܮߛሻ
ሻܮߛሺ݊݅ݏ െܿݏ݋ሺܮߛሻ ݄ܵሺܮߛሻ ሻܮߛሺ݄ܥ

൪ (64) 
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By considering any other boundary conditions different from those of the cantilever 
beam, the same equation (62) would have been obtained, but with a different 
expression for matrix ሾܪሺߛሻሿ. Now, we may observe that in equation (62): 
 

- the term at right hand is zero (i.e., the problem is homogeneous) 
- matrix ሾܪሺߛሻሿ depends upon parameter ߛ 

 
From the first observation above, in order to get non-trivial solutions, we must 
require: 

ሻሿߛሺܪሾݐ݁݀ ൌ 0 
 
which results into a non-linear equation in parameter ߛ, having an infinite number 
of solutions ߛ௞, k=1,2,… Using equation (36) it is then possible to obtain the 
corresponding values for the natural frequencies that will be: 
 

 ߱௞ ൌ ሺߛ௞ሻ
ଶඨ
ܬܧ

݉
 (65)

 
Finally, by replacing ߛ ൌ  ௞ for that equation willݔ ௞ into equation (62), a solutionߛ
be found, being formed by the four parameters ܣ௞, ܤ௞, ܥ௞, ܦ௞, where (as always in 
non-trivial solutions of homogeneous problems) one of the values will be chosen 
arbitrarily. By replacing these four values into solution (43), the ݇ െ  component ݄ݐ
of the free motion for the system is defined, with the spatial part of the solution ߙ௞ 
representing the ݇ െ ݇ mode of vibration, associated with the ݄ݐ െ  natural ݄ݐ
frequency ߱௞. 
As we may see, the solution scheme to be adopted in the case of generic boundary 
conditions is the same as the one introduced while treating the pinned-pinned case. 
The difference is that in a generic case an analytical treatment of equation (62) is not 
possible, while in the case of the pinned-pinned beam equation (62) is easily 
transformed into the particular form: 
 
ܣ  ൌ 0	 ; ܥ ൌ 0 ; ܦ ൌ 0 ; sinሺ݈ߛሻ ൌ 0 (66)

 
that may be treated in a very simple way, as discussed at the beginning of section 2.5. 
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2.6 Systems of beams 
 
The solutions for the free motion of beams in bending discussed in sections (2.5) and 
are referred to the case of a single beam with constant section, which is not subjected 
to any concentrated force (as could be caused by the presence of a constraint, or a 
concentrated spring / mass, etc.) except at its ends. However, we easily recognize that 
the presence of “discontinuities” along the beam axis is often encountered in the 
engineering practice where variations of the section, constraints and concentrated 
masses / springs may take place due to the particular design of the system to be 
studied. This could be the case e.g. of the shaft of a steam turbine + generator, 
normally resting on several supports that may be represented in first approximation 
as pins, with a mechanical scheme corresponding to that shown in Fig. 34. 
 

 
 

Fig. 34 – Shaft of a steam turbine + generator scheme 
 

The scheme in Fig. 34 could also be a representative of a railway / road viaduct, 
which may also be considered in some cases as a continuous beam resting on multiple 
supports. We recognize that the situation of Fig. 34 may be described as that of a 
“system of beams” interconnected each other, where in the specific case each beam is 
represented by the single span separating two subsequent supports. Aim of this 
section is to describe how the solution for the free bending motion of such systems 
may be computed using the general solution for the free bending vibration of a single 
beam (43). 
 

 
Fig. 35 – Railway / road viaduct scheme 
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To this end, we simplify the example in Fig. 34 to the case of a continuous beam 
resting on three supports, as represented in Fig. 35: this will allow us to illustrate the 
procedure in a simple case, but from the treatment, it should be clear that the same 
approach may be used for more complicate systems of beams. 
In order to treat the case of Fig. 35, we observe that the assumptions under which we 
found solution (43) are not applicable to the whole beam (due to the presence of the 
central support), but instead are satisfied if we consider separately the left and right 
halves (spans) of the beam. Thus, we may introduce two axial coordinates ݔଵ and ݔଶ, 
spanning respectively the left and right halves of the system, and correspondingly two 
solutions of the type (43) that separately apply to the left and right spans of the 
system: 
 
,ଵݔଵሺݓ ሻݐ ൌ ሾܣଵ ଵሻݔߛሺݏ݋ܿ ൅ ଵܤ ଵሻݔߛሺ݊݅ݏ ൅ ଵሻݔߛሺ݄ܥଵܥ ൅ ݐሺ߱ݏ݋ଵሻሿܿݔߛଵ݄ܵሺܦ ൅ ߮ሻ

,ଶݔଶሺݓ ሻݐ ൌ ሾܣଶ ଶሻݔߛሺݏ݋ܿ ൅ ଵܤ ଶሻݔߛሺ݊݅ݏ ൅ ଶሻݔߛሺ݄ܥଵܥ ൅ ݐሺ߱ݏ݋ଶሻሿܿݔߛଵ݄ܵሺܦ ൅ ߮ሻ
  (67)

 
 
We observe by the way the time-dependent part of the two solutions must obviously 
be the same, since the motion of the two halves of the system must be synchronized. 
From eq. (36), it then follows that since parameter ߱ is equal for the two solutions 
in (67), then also the same ߛ coefficient has to be used for the two subsystems, as far 
as the ܬܧ	and ݉ coefficients are the same along the whole beam.  
To find the natural frequencies and modes of vibration for the system in Fig. 35, we 
must define a set of appropriate boundary conditions for equation (67), which will 
be referred to both the “external boundaries” (the ends of the system, sections A and 
B) and the “internal boundary” (the central pin, section C, where the two halves are 
connected). For sections A and C, the already encountered boundary conditions of 
the pinned end take place: 
 
 

 
,ଵሺ0ݓ ሻݐ ൌ 0				; 				

߲ଶݓଵ
ଵݔ߲

ଶ ቤ
௫భୀ଴

ൌ 0

,ଶሺ݈ݓ ሻݐ ൌ 0				; 				
߲ଶݓଶ
ଶݔ߲

ଶ ቤ
௫మୀ௟

ൌ 0 
(68)

 
 
Moreover, in point C four additional boundary conditions hold, the first three being 
geometrical (equality of displacements and rotations at the connection between the 
two halves of the beam, plus zero displacement due to the presence of the pin) and 
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the fourth one being a natural boundary condition representing the rotational 
dynamic equilibrium of the infinitesimal beam element cut just before and just after 
the central pin: 
 

 

,ଵሺ݈ݓ ሻݐ ൌ ,ଶሺ0ݓ ;				ሻݐ 				
ଵݓ߲
ଵݔ߲

ฬ
௫భୀ௟

ൌ
ଶݓ߲
ଶݔ߲

ฬ
௫మୀ଴

 

	

,ଵሺ݈ݓ ሻݐ ൌ 0										; 								
߲ଶݓଵ
ଵݔ߲

ଶ ቤ
௫భୀ௟

ൌ
߲ଶݓଶ
ଶݔ߲

ଶ ቤ
௫మୀ଴

 

(69) 

 
we note by the way that the total number of boundary conditions (eight) equals the 
number of unknowns in eq. (67): ܣଵ, ଵܤ ,ଶܣ ଵ, plusܦ	… ଶܤ  ଶ. The above listedܦ	…
eight boundary conditions may be written as a single matrix equation with the form 
(62), the only difference with the case of the cantilever beam previously treated being 
that in this case matrix ሾܪሺሻሿ will have dimension 8 instead than 4. The same 
procedure to find the natural frequency and modes of vibrations described in the end 
of section 2.5.1 (based on computing the values of parameter that correspond to zero 
values of the determinant of matrix ሾܪሿ) may be used also for the system of beams in 
Fig. 35 and, more generally, for any system of beams where all elementary beams 
have a common axis. 
 
 
2.7 Clamped beam with boundary displacement 
 
In order to validate the crack identification method based on the study of super-
harmonic frequencies a different configuration must be studied for the purpose. 
The idea of moving the nodal points along the length of the beam necessitate the 
system to be forced in a generic range of frequency. For this purpose, it is chosen the 
configuration presented in Fig. 36. 
The configuration it’s physically the same presented in section 2.5.1 with a different 
boundary condition due to the presence of a vertical pulsing displacement in the 
constrain. 



Gianmaria Celico Fadini – Politecnico di Milano 2014 

   
 

 

69 A NEW APPROACH 

 
Fig. 36 – Clamped beam with boundary pulsing displacement 

 
Now, to obtain the dynamic equation, it is possible to start from the (43) and 
substitute the boundary condition that are: 
 
,ሺ0ݓ ሻݐ ൌ 	ሻݐሺΩݏ݋ܿܧ

ݓ߲

ݔ߲
ฬ
௫ୀ௢

ൌ 0	

߲ଶݓ

ଶݔ߲
ቤ
௫ୀ௟

ൌ 0	

߲ଷݓ

ଷݔ߲
ቤ
௫ୀ௟

ൌ 0 

 
Now it is possible to use this conditions with the generic dynamic equation of motion 
obtained for bending vibration of beams that is equal to (43): 
 
,ݔሺݓ ሻݐ ൌ ሾ݊݅ݏܣሺݔߛሻ ൅ ሻݔߛሺݏ݋ܿܤ ൅ ሻݔߛሺ݄݊݅ݏܥ ൅ ሻሿݔߛሺ݄ݏ݋ܿܦ ∙  ሻݐሺΩݏ݋ܿ
 
As already calculated for different boundary conditions, it is possible to create the 
system and obtain the unknown coefficient A, B, C, D: 
 

ە
۔

ۓ
Condition	1 ∶ ሺܤ ൅ ሻݐߗሺݏ݋ሻܿܦ ൌ ሻݐߗሺݏ݋ܿܧ 				→ ࡮				 ൅ ࡰ ൌ ࡱ
Condition	2 ∶ ܣሺߛ	 ൅ ሻܥ ൌ 0			 → ࡭				 ൌ െ࡯

Condition	3 ∶ 	െ࢔࢏࢙࡭ሺࡸࢽሻ െ ሻࡸࢽሺ࢙࢕ࢉ࡮ ൅ ሻࡸࢽሺࢎ࢔࢏࢙࡯ ൅ ሻࡸࢽሺࢎ࢙࢕ࢉࡰ ൌ ૙

Condition	4 ∶ 	െ࢙࢕ࢉ࡭ሺࡸࢽሻ ൅ ሻࡸࢽሺ࢔࢏࢙࡮ ൅ ሻࡸࢽሺࢎ࢙࢕ࢉ࡯ ൅ ሻࡸࢽሺࢎ࢔࢏࢙ࡰ ൌ ૙

 

 
This leads to the following matrix system in the form ሾܪሺߛሻሿݔ ൌ ሾܳሿ were x is the 
vector containing the unknown parameters. 
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ݔ ൌ ൞

ܣ
ܤ
ܥ
ܦ

ൢ 

 
Now the system may be rewritten as: 
 

 ൦

0 1 0 1
1 0 1 0

െsinሺܮߛሻ െܿݏ݋ሺܮߛሻ ሻܮߛሺ݄݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ
െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ ሻܮߛሺ݄݊݅ݏ

൪ ݔ ൌ ሾܳሿ (70) 

 
In this case, vector ሾܳሿ contain only coefficient E in the first row and then all zeros. 
Coefficient E represent the amplitude of boundary displacement so, for simplicity it 
could be expressed by ܧ ൌ 1	to have 
 

 ൦

0 1 0 1
1 0 1 0

െsinሺܮߛሻ െܿݏ݋ሺܮߛሻ ሻܮߛሺ݄݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ
െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ ሻܮߛሺ݄݊݅ݏ

൪ ൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ ൦

1
0
0
0

൪ (71) 

 
Since we are seeking the analytical expression of parameter A, B, C, D, we may write: 
 

 ൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ ൦

0 1 0 1
1 0 1 0

െsinሺܮߛሻ െܿݏ݋ሺܮߛሻ ሻܮߛሺ݄݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ
െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ ሻܮߛሺ݄ݏ݋ܿ ሻܮߛሺ݄݊݅ݏ

൪

ିଵ

൦

1
0
0
0

൪ (72) 

 
 
The expression obtained (72) contain the inverse matrix of the system that must be 
solved to obtain the unknown coefficient. 
Using the Adjoint method to calculate the inverse matrix we get: 
 
 

 ൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ
1

det	ሾܪሺߛሻሿ
൦

ଵଵሻܪሺ݂݋ܥ ଵଶሻܪሺ݂݋ܥ ଵଷሻܪሺ݂݋ܥ ଵସሻܪሺ݂݋ܥ
ଶଵሻܪሺ݂݋ܥ ଶଶሻܪሺ݂݋ܥ ଶଷሻܪሺ݂݋ܥ ଶସሻܪሺ݂݋ܥ
ଷଵሻܪሺ݂݋ܥ ଷଶሻܪሺ݂݋ܥ ଷଷሻܪሺ݂݋ܥ ଷସሻܪሺ݂݋ܥ
ସଵሻܪሺ݂݋ܥ ସଶሻܪሺ݂݋ܥ ସଷሻܪሺ݂݋ܥ ସସሻܪሺ݂݋ܥ

൪

்

൦

1
0
0
0

൪ (73) 
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We proceed with the calculus of the det	ሾܪሺߛሻሿ 
 

ݐ݁݀ ൦

0 1 0 1
1 0 1 0

െ sinሺܮߛሻ െ cosሺܮߛሻ Shሺܮߛሻ Chሺܮߛሻ

െ cosሺܮߛሻ sinሺܮߛሻ Chሺܮߛሻ Shሺܮߛሻ

൪ ൌ 

ൌ െ1 ∙ ݐ݁݀ ൥

1 1 0
െ sinሺܮߛሻ Shሺܮߛሻ Chሺܮߛሻ

െ cosሺܮߛሻ Chሺܮߛሻ Shሺܮߛሻ
൩ െ 1 ∙ ݐ݁݀ ൥

1 0 1
െ sinሺܮߛሻ cosሺܮߛሻ Shሺܮߛሻ

െ cosሺܮߛሻ sinሺܮߛሻ Chሺܮߛሻ
൩ 

ൌ ሾെ݄ܵଶሺܮߛሻ ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋ܿ ൅ ሻܮߛଶሺ݄ܥ െ ሻሿܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

൅ ሾܿݏ݋ሺܮߛሻ݄ܥሺܮߛሻ ൅ ሻܮߛଶሺ݊݅ݏ ൅ ሻܮߛଶሺݏ݋ܿ ൅  ሻሿܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

This leads to 
 

ݐ݁݀  ൦

0 1 0 1
1 0 1 0

െ sinሺܮߛሻ െ cosሺܮߛሻ Shሺܮߛሻ Chሺܮߛሻ

െ cosሺܮߛሻ sinሺܮߛሻ Chሺܮߛሻ Shሺܮߛሻ

൪ ൌ ૛ ൅ ૛࢙࢕ࢉሺࡸࢽሻࢎ࡯ሺࡸࢽሻ (74)

 
Substituting (74) in (73), the system become: 
 

൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
൦

ଵଵሻܪሺ݂݋ܥ ଵଶሻܪሺ݂݋ܥ ଵଷሻܪሺ݂݋ܥ ଵସሻܪሺ݂݋ܥ
ଶଵሻܪሺ݂݋ܥ ଶଶሻܪሺ݂݋ܥ ଶଷሻܪሺ݂݋ܥ ଶସሻܪሺ݂݋ܥ
ଷଵሻܪሺ݂݋ܥ ଷଶሻܪሺ݂݋ܥ ଷଷሻܪሺ݂݋ܥ ଷସሻܪሺ݂݋ܥ
ସଵሻܪሺ݂݋ܥ ସଶሻܪሺ݂݋ܥ ସଷሻܪሺ݂݋ܥ ସସሻܪሺ݂݋ܥ

൪

்

൦

1
0
0
0

൪ 

 
And transcribing the transposed matrix we get:  
 

൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
൦

ଵଵሻܪሺ݂݋ܥ ଶଵሻܪሺ݂݋ܥ ଷଵሻܪሺ݂݋ܥ ସଵሻܪሺ݂݋ܥ
ଵଶሻܪሺ݂݋ܥ ଶଶሻܪሺ݂݋ܥ ଷଶሻܪሺ݂݋ܥ ସଶሻܪሺ݂݋ܥ
ଵଷሻܪሺ݂݋ܥ ଶଷሻܪሺ݂݋ܥ ଷଷሻܪሺ݂݋ܥ ସଷሻܪሺ݂݋ܥ
ଵସሻܪሺ݂݋ܥ ଶସሻܪሺ݂݋ܥ ଷସሻܪሺ݂݋ܥ ସସሻܪሺ݂݋ܥ

൪ ൦

1
0
0
0

൪ 

 
Solving the right part of the system, we may rewrite: 
 

 ൦

ܣ
ܤ
ܥ
ܦ

൪ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
൦

ଵଵሻܪሺ݂݋ܥ
ଵଶሻܪሺ݂݋ܥ
ଵଷሻܪሺ݂݋ܥ
ଵସሻܪሺ݂݋ܥ

൪ (75)
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Expression (75) can be rewritten using analytical expressions of cofactors that are: 
 

ଵଵሻܪሺ݂݋ܥ ൌ ݐ݁݀ ቎

0 െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ

1 ݄ܵሺܮߛሻ ሻܮߛሺ݄ܥ

0 ሻܮߛሺ݄ܥ ݄ܵሺܮߛሻ
቏ ൌ ሻܮߛሺ݄ܥሻܮߛሺ݊݅ݏ ൅  ሻܮߛሻ݄ܵሺܮߛሺݏ݋ܿ

 

ଵଶሻܪሺ݂݋ܥ ൌ െ݀݁ݐ ቎

1 െ݊݅ݏሺܮߛሻ െܿݏ݋ሺܮߛሻ

1 ݄ܵሺܮߛሻ ሻܮߛሺ݄ܥ

0 ሻܮߛሺ݄ܥ ݄ܵሺܮߛሻ
቏ ൌ 1 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋ܿ െ  ሻܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

 

ଵଷሻܪሺ݂݋ܥ ൌ ݐ݁݀ ቎

1 െ݊݅ݏሺܮߛሻ െܿݏ݋ሺܮߛሻ

0 െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ

0 ሻܮߛሺ݄ܥ ݄ܵሺܮߛሻ
቏ ൌ െܿݏ݋ሺܮߛሻ݄ܵሺܮߛሻ െ  ሻܮߛሺ݄ܥሻܮߛሺ݊݅ݏ

 

ଵସሻܪሺ݂݋ܥ ൌ െ݀݁ݐ ቎

1 െ݊݅ݏሺܮߛሻ െܿݏ݋ሺܮߛሻ

0 െܿݏ݋ሺܮߛሻ ሻܮߛሺ݊݅ݏ

1 ݄ܵሺܮߛሻ ሻܮߛሺ݄ܥ
቏ ൌ 1 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋ܿ ൅  ሻܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

 
In this way, system (75) can be organized as follows 
 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ܣۓ ൌ

1

det	ሾܪሺߛሻሿ
∙ ଵଵሻܪሺ݂݋ܥ

ܤ ൌ
1

det	ሾܪሺߛሻሿ
∙ ଵଶሻܪሺ݂݋ܥ

ܥ ൌ
1

det	ሾܪሺߛሻሿ
∙ ଵଷሻܪሺ݂݋ܥ

ܦ ൌ
1

det	ሾܪሺߛሻሿ
∙ ଵସሻܪሺ݂݋ܥ

 

 
Using analytical expression obtained from (74) and from cofactors calculation, it is 
now possible to solve the system (73) and obtain the values of unknown coefficient. 
 

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ܣۓ ൌ

1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
∙ ሻܮߛሺ݄ܥሻܮߛሺ݊݅ݏ ൅ ሻܮߛሻ݄ܵሺܮߛሺݏ݋ܿ

ܤ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
∙ 1 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋ܿ െ ሻܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

ܥ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
∙ െܿݏ݋ሺܮߛሻ݄ܵሺܮߛሻ െ ሻܮߛሺ݄ܥሻܮߛሺ݊݅ݏ

ܦ ൌ
1

2 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋2ܿ
∙ 1 ൅ ሻܮߛሺ݄ܥሻܮߛሺݏ݋ܿ ൅ ሻܮߛሻ݄ܵሺܮߛሺ݊݅ݏ

 (76) 
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Analytical expressions from (76) can be substituted inside the general solution (43) 
to obtain displacement values of every portion of the beam. 
 
,ݔሺݓ ሻݐ ൌ ሾ݊݅ݏܣሺݔߛሻ ൅ ሻݔߛሺݏ݋ܿܤ ൅ ሻݔߛሺ݄݊݅ݏܥ ൅ ݐݓሺ	ሻሿcosݔߛሺ݄ݏ݋ܿܦ ൅ ߮ሻ 

 
This is one of the most important part for the crack identification method proposed 
since with expression just written is possible to calculate the curvature nodes position 
of the structures and use these information to locate the crack as already explained in 
section 2.3. 
 
2.8 Curvature node position 
 
Simple geometries could be analytically treated and it is possible to find the position 
of curvature nodes at each frequency studying the expression of ݓሺݔ,  ሻ alreadyݐ
obtained. Curvature parameter is expressed by ߢ and it is defined as the second 
derivative of the deflection: 

ߢ  ൌ
߲ଶݓ

ଶݔ߲
 (77)

 
Using the dynamic equation (43) we get: 
 

 

ݓ߲

ݔ߲
ൌ ߛ ∙ ሾݏ݋ܿܣሺݔߛሻ െ ሻݔߛሺ݊݅ݏܤ ൅ ሻݔߛሺ݄ݏ݋ܿܥ ൅  ሻሿݔߛሺ݄݊݅ݏܦ

	
߲ଶݓ

ଶݔ߲
ൌ ଶߛ ∙ ሾെ݊݅ݏܣሺݔߛሻ െ ሻݔߛሺݏ݋ܿܤ ൅ ሻݔߛሺ݄݊݅ݏܥ ൅  ሻሿݔߛሺ݄ݏ݋ܿܦ

 

(78)

Moreover, to obtain the nodal points related with the curvature of the mode of 
vibration we must search for 
 
െ݊݅ݏܣሺݔߛሻ െ ሻݔߛሺݏ݋ܿܤ ൅ ሻݔߛሺ݄݊݅ݏܥ ൅ ሻݔߛሺ݄ݏ݋ܿܦ ൌ 0 
 
Where A, B, C, D are the parameters found before, ݔ is the coordinate along the 
length of the beam and finally 
 

ߛ  ൌ ඩ߱ඨ
݉

ܬܧ
→ ߛ ൌ ඨ

݉߱ଶ

ܬܧ

ర

 (79)
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Results obtained from analytical calculations are used to create a graph that links 
frequency and position of the nodes along the length of the beam. 
To easily get the position of nodal points for the simple geometry just examined a 
Matlab function called clamped_beam_flexure.m is created. Function developed uses 
parameters ܣ, ,ܤ ,ܥ  to give results for the beam configuration considered and give ܦ
in output the chart to be used to locate the crack (Fig. 37). Blue points in fact 
represent the transition to zero for the curvature values of the different vibration 
modes of the beam. Axe ݔ contain the frequency used to force the system and axe ݕ 
the position of the node expressed as a percent of the length ݔ/݈. 
 

 
Fig. 37 – Curvature nodes position at different frequency for a generic beam 

 
As is possible to see, different lines are present since node numbers increase as modes 
changes during the frequency increasing. This graph will be used to investigate the 
presence of a crack in a generic point as well as to deny its presence.  
Before testing it on a specific case it is now time to introduce the parameter used to 
get the right value to enter on it that is the Non-Linearity Index. 
 
2.9 Non-Linearity Index 
 
Crack identification method introduced in this paper has the aim of weigh the non-
linear behavior of a structure with the purpose to locate the position of a crack. This 
is possible using, as a point of start, the Matlab Spectrogram function of the response. 
As explicatory example, Fig. 38 shows two spectrogram of the response recorded from 
a damaged and an undamaged beam. Observing the figures, it is possible to see 
difference in their behavior. Non-linear behavior is clearly noticeable for damaged 
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beam since different lines representing the super-harmonic frequencies appear in the 
graph (Fig. 38 (b)). 
In particular, the target is to find out where these lines disappear gathering 
frequencies that show a linear behavior despite the presence of the crack. This fact 
implies that the crack cannot open in its position at that particular frequency 
suggesting that its location is actually in a curvature node. 
Using the analytical model created in section (2.7) it is possible to track the location 
of the crack since it is known where the nodes at positioned for every frequency. 
 

 

 
Fig. 38 – Spectrogram of linear (a) and non-linear (b) system 

 
 
For this purpose, a Non-Linearity Index is created to weigh the non-linear behavior 
of the beam at each frequency. To do that is necessary to examine result obtained 
from Spectrogram and in particular, the matrix S that it creates. To make it easy 
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applicable, a script is created in Matlab. This script scans the entire matrix S column-
by-column collecting the peak values at each resonant frequency and weighting the 
super-harmonic frequencies contributes as shown in Fig. 39. 
Non-Linearity Index is so defined as: 
 

ூ௡ௗ௘௫ሺ݅ሻܮܰ  ൌ 1 െ
ܲ݁ܽ݇଴ ൅ ܲ݁ܽ݇ଵ ൅ ܲ݁ܽ݇ଶ

ܲ݁ܽ݇଴
 (80) 

 
Where ݅ is the considered frequency, ܲ݁ܽ݇଴ is the resonant frequency value, ܲ݁ܽ݇ଵ 
and ܲ݁ܽ݇ଶ are the first and the second super-harmonic frequencies respectively. 
 

 
Fig. 39 – Contributes of resonant and super-harmonic frequencies 

 
Linear behavior of the structure will be identified by the minimum values of this 
index. These minimum points correspond to particular frequencies in which the 
crack seems to have no breathing behavior. When the frequency that correspond to 
a minimum of the Non-Linearity Index is obtained it is possible to locate the position 
of the crack entering with it in the Curvature Node Graph (Fig. 37). 
Procedure is schematically reported in Fig. 40 and consist of: 
 

1. Frequency corresponding to Non-Linearity Index is used to enter in axe x of 
the graph. 

2. Interception with node position line is obtained. 
3. Node position line is used to intercept axe y that report position in percent 

of beam length. This is the possible crack position. 
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Fig. 40 – Example #1 on the use of NL_Index to locate the crack 

 
Now to find further confirmation about the presence of the crack it is possible to 
use the node position just obtained to verify it on other modes (Fig. 41). 
 

4. Horizontal line is traced from node position obtained and is intercepted 
with following lines that correspond to other modes. 

5. Another frequency is obtained on axe x. This value is used to check if it 
correspond to another minimum of the Non-Linearity Index. 

 

 
Fig. 41 – Example #1 investigation on higher mode 
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It is important to highlight that results may not be univocal due to the presence of 
more than one node at high frequency. In this case, the procedure is the same: 
 

1. Frequency corresponding to Non-Linearity Index is used to enter in axe x of 
the graph. This leads to two nodes because it correspond to second mode. 

2. Two possible position of the crack are located on y axe (Fig. 42 (a)). 
3. Now it is possible to check the nodes position on higher or lower frequency 

modes to verify if they correspond to other minimum points of the Non-
Linearity Index and so indicating the presence of the crack (Fig. 42 (b)). 

 

 
Fig. 42 – Example #2 on the use of NL_Index 

 
The method presented could so be used to validate as well as deny the presence of a 
crack in a certain point due to the possibility to verify the Non-Linearity Index of the 
same node at different frequencies. 
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Chapter 3  NUMERICAL SOLUTION 
 

rack identification method presented in Section 2.3 is strictly based on the 
study of curvature nodes position of the structure that must be analyzed. 
This is not a priori knowledge and so must be examined for each structure. 

This problem can be faced off using the equations that describe continuous systems 
when a simple geometry is considered, but in the most cases, we need to deal with 
complex structures that are not easily solvable analytically. In this case curvature 
nodes position is still achievable using the Finite Element Analysis. 
The case of clamped beam examined in the previous chapter is simple and the relation 
obtained between frequency and node position could be naturally obtained in the 
same way with numerical simulation. 
 
3.1 A brief history 
 
Finite Element Analysis (FEA) was first developed in 1943 by R. Courant, who 
utilized the Ritz method of numerical analysis and minimization of variational 
calculus to obtain approximate solutions to vibration systems. Shortly thereafter, a 
paper published in 1956 by M. J. Turner, R. W. Clough, H. C. Martin, and L. J. 
Topp established a broader definition of numerical analysis. The paper centered on 
the "stiffness and deflection of complex structures".  
By the early 70's, FEA was limited to expensive mainframe computers generally 
owned by the aeronautics, automotive, defense, and nuclear industries. Since the 
rapid decline in the cost of computers and the phenomenal increase in computing 
power, FEA has been developed to an incredible precision. Present day 
supercomputers are now able to produce accurate results for all kinds of parameters. 
Finite Element Analysis is one of several numerical methods that can be used to solve 
complex problems and is the dominant method used today. As the name implies, it 
takes a complex problem and breaks it down into a finite number of simple problems. 
A continuous structure theoretically has an infinite number of simple problems, but 
finite element analysis approximates the behaviour of a continuous structure by 
analysing a finite number of simple problems. Each element in a finite element 
analysis is one of these simple problems. Each element in a finite element model will 
have a fixed number of nodes that define the element boundaries to which loads and 
boundary conditions can be applied. The finer the mesh, the closer we can 
approximate the geometry of the structure, the load application, as well as the stress 
and strain gradients. However, there is a tradeoff: the finer the mesh, the more 

C



Crack identification method for mechanical structures 

80 NUMERICAL SOLUTION 

computational power is needed to solve the complex problem. The strategy of 
optimizing the mesh size can greatly reduce an analyst’s time without compromising 
on the quality of analysis results. 
In spite of the great power of FEA, the disadvantages of computer solutions must be 
kept in mind when using this and similar methods: they do not necessarily reveal 
how the stresses are influenced by important problem variables such as materials 
properties and geometrical features, and errors in input data can produce wildly 
incorrect results that may be overlooked by the analyst. 
 
A finite element analysis usually consists of three principal steps: 
 

1. Pre-processing: The user constructs a model of the part to be analyzed in which 
the geometry is divided into a number of discrete sub-regions, or “elements,” 
connected at discrete points called “nodes.” Certain of these nodes will have 
fixed displacements, and others will have prescribed loads. These models can 
be extremely time consuming to prepare, and commercial codes vie with one 
another to have the most user-friendly graphical “preprocessor” to assist in 
this rather tedious chore. Some of these preprocessors can overlay a mesh on 
a preexisting CAD file, so that finite element analysis can be done 
conveniently as part of the computerized drafting-and-design process. 
 

2. Analysis: The dataset prepared by the preprocessor is used as input to the 
finite element code itself, which constructs and solves a system of linear or 
nonlinear algebraic equations  
 

௝ݑ௜௝ܭ ൌ ௜݂ 
 
where ݑ and ݂ are the displacements and externally applied forces at the 
nodal points. The formation of the ܭ matrix is dependent on the type of 
problem being attacked, and this module will outline the approach for truss 
and linear elastic stress analyses. Commercial codes may have very large 
element libraries, with elements appropriate to a wide range of problem types. 
One of FEA’s principal advantages is that many problem types can be 
addressed with the same code, merely by specifying the appropriate element 
types from the library. 
 

3. Post-processing: In the earlier days of finite element analysis, the user would 
pore through reams of numbers generated by the code, listing displacements 
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and stresses at discrete positions within the model. It is easy to miss important 
trends and hot spots this way, and modern codes use graphical displays to 
assist in visualizing the results. A typical postprocessor display overlays 
colored contours representing stress levels on the model, showing a full-field 
picture similar to that of photo elastic or more experimental results. 

 
3.2 Creation of the model 
 
The first step for planning a numerical analysis is the creation of the model, for this 
purpose it is chosen to use Abaqus from Dessault Systemes. In this part is important 
to take into consideration some aspects related to the experimental test that will be 
carried out in the following steps and in particular about the physical model that is 
available to validate the crack identification method. To avoid future modification 
of the model and the repetition of the complete numerical simulation all physical 
element such as dimensions, material and boundary condition are chosen in this part. 
Considering the analytical model seen in the previous chapter (Fig. 43) both a model 
for the undamaged and damaged beam were created. 
 

 
Fig. 43 – Model used for analytical analysis 

 

 
Fig. 44 – Abaqus model for undamaged (a) and damaged (b) beam 

 
Material chosen for the beam is aluminum; section is rectangular with dimension of 
 ݉݉. Crack is modelled as a simple cut	and a total length of 260 ݉݉	10	ݔ	݉݉	15
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of depth 5	݉݉ and width 0.25	݉݉ that cover all the width of the beam (Fig. 45). 
All physical details like mass and density are resumed in Tab. 2. 
 

 

 
Fig. 45 – Damaged beam geometry (a); Crack details (b) 

 
 
Tab. 2 – Physical detail for the beam 

Material	 Aluminum
Density	 2800	[kg/m3]
Young’s	Modulus 70000	[Mpa]
Poisson	ratio	 0.33
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For a more complete analysis, and to investigate about the change in natural 
frequencies due to the presence of the crack two different models are created for the 
damaged beam. Fig. 46 show the different crack configuration used for this purpose. 
 

 
Fig. 46 – Crack configurations geometry 

 
When all physical characteristics are defined, it is possible to complete the model 
inside Abaqus (Appendix A). 
 
3.3 Natural frequencies 
 
The first operation accomplished is about to verify the quality of the analytical model 
used to find the position of the curvature nodes. To evaluate that, is possible to check 
the difference in natural frequencies between analytical model and numerical ones. 
This can give an idea of the correspondence between the two models used and of the 
error that could be committed using one model instead the other. 
In order to accomplish a good simulation, the 3D model previously created is used. 
The main reason for this choice relay on the fact that it will be possible to see all the 
mode of vibration of the beam and not only the ones that we will force with the 
boundary displacement. This will be useful especially during the experimental test 
on the real physical model (Appendix B). 
Tab. 3 shows the results obtained from the simulation. 
 
Tab. 3 – Natural frequencies of system for analytical and numerical analysis 

 ANALYTICAL [Hz] NUMERIC [Hz] ERROR 
Mode 1 177.5	 177.78	 0.15	%	

Mode 2 1115	 1097.1	 1.6	%	

Mode 3 3122	 3001	 3.8	%	

Mode 4 6119	 5696.4	 6.9	%	
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Since the computational effort for this kind of simulation is not elevate and the mode 
shapes involves all axes x,y,z, the first ten Natural Frequencies ߱௢௜ of the clamped 
beam are estimated for both damaged and undamaged model in order to observe 
changes due to the presence of the crack. Results are presented in Tab. 4. 
 
Tab. 4 – Results obtained from Abaqus analysis on both model 

  ABAQUS SYMULATION MODEL

   UNCRACKED BEAM  CONFIGURATION 1 CONFIGURATION 2 

Mode  Axis  Nat Freq [Hz]  Nat Freq [Hz]  Nat Freq [Hz] 
1  X‐Z  117,3  116,54 115,41 

2  X‐Y  177,78  173,31 167,21 

3  X‐Z  730,12  720,55 729,89 

4  X‐Y  1097,1  1044,2 1096,6 

5  X‐Z  2022,8  2013 2005 

6  Y‐Z  2430,4  2407,2 2396,6 

7  X‐Y  3001  2953,9 2902,8 

8  X‐Z  3905,4  3875,4 3854,8 

9  X‐Y  4815,7  4695 4643,4 

10  X‐Y  5696,4  5571,7  5510,5 

 
Since the vertical displacement considered in analytical study (Paragraph 2.10) 
involves only plane x-y we expect to see only natural frequency highlighted in yellow 
during the simulation that we will carry out. From the table it is easy to see that crack 
changes natural frequencies of the beam as studied in the theory (Chapter 1). For the 
completeness of the results, in Fig. 47 the shapes of the vibration modes obtained 
from the simulation are presented. 
 

 
Fig. 47 – Shapes of vibration modes 

 
 
 



Gianmaria Celico Fadini – Politecnico di Milano 2014 

   
 

 

85 NUMERICAL SOLUTION 

 
3.4 Frequency response and curvature 
 
In order to validate the performance of the crack identification method, the most 
important information obtainable from the FEA analysis is the system Frequency 
Response. This information is important because through it, it is possible to evaluate 
the position of the curvature nodes at each frequency. Since we need information in 
a certain range of frequency, it is used a Sweep to force the whole system in the 
boundary constrain (Appendix B). 
Undamaged Beam Model is used for this purpose; this because we need to investigate 
where the cracked beam behave linearly and so, computational effort to solve a non-
linear system would become useless. 
Database created contain displacement values at each step-frequency of the sweep 
implemented. Information obtained will be used to calculate the curvature of the 
beam through the second derivative of the vertical displacement ݓሺݔ, ݂ሻ 
 

ߢ ൌ
߲ଶݓ

ଶݔ߲
 

 
As already done in Section 2.11 it is necessary to study the trend of such parameter 
and find where ߢ ൌ 0 to find position of nodes at each frequency. For this purpose, 
a node-set is created (Appendix B.2) for the model and information are extracted for 
displacement, frequency and position respectively (Fig. 48). 
It is obvious that precision of parameter ߢ is directly linked with the number of nodes 
used to divide the length of the structure. In order to obtain good results it is 
necessary to choose dimension of the mesh cleverly so that the distance between 
points is not too high. 
 

 
Fig. 48 – Set of points used to extract displacement values 
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Fig. 49 – Set of points used in Abaqus 3D Model 

 
From the simulation’s field output a matrix and two vectors are created, 
Pos(i)_NodeDisp, Pos(i)_NodeCoord and Pos(i)_Freq and imported in the workspace 
of Matlab. Vector Pos(i)_NodeCoord contain coordinate values ߦ௜ of each node, 
Pos(i)_Freq contain frequency values in which the displacement is evaluated and 
finally matrix Pos(i)_NodeDisp contain displacement values for each node (rows) 
calculated for the single frequencies considered in the analysis (columns). 
Data collected permitted the creation of the curvature ߢ function and so to obtain 
the same graph already obtained from analytical study of Section 2.11 (Fig. 50). 
 

 
Fig. 50 – Curvature node position at each frequency 

 
Now that Curvature node chart is obtained it is possible to test the crack 
identification method on a real system that will reproduce the one studied up to this 
time.



 

 

Chapter 4  EXPERIMENTAL TEST 
 

xperimental test is the most critical part because will give us an idea on how 
much the method developed is precise and above all efficient. The main 
purpose of this section is to examine the possibility of estimating location of 

a crack by measuring the response of the free end of the beam when exited with a 
pulsing displacement in the constraint. This is achieved checking minimum of the 
Non-Linearity Index and using frequencies obtained as input for the Curvature Node 
Graph. 
Frequency response of the system can be obtained using a Vibrant Table but, since 
the need is to reach high frequencies, it is important to choose it accurately. 
For the purpose of the experiment an LDS Shaker Vibrator is used (Fig. 51). 
Datasheet report a Useful Frequency Range of 5 Hz – 9 kHz that make it ideal for our 
experimental test. 
 

 
Fig. 51 – LDS Vibrator V406 and V408 datasheet 

 
Data will be recorded from two accelerometer positioned in the constraint and at the 
free end of the beam, in this way it is possible to obtain the transfer function of the 
system that will be used for a comparison with the analytical and numerical model. 
The choice of the accelerometer to use for data acquisition is linked to two aspects, 
the first, more important, directly connected with the maximum energy that the 

E
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Vibrator can introduce in the system and the other to the necessity to not affect the 
behavior of the system.  
This second aspects is valid only for the accelerometer that will be applied on the free 
end of the beam that could move the natural frequency of the system due to its mass. 
Looking at the LDS Vibrator datasheet (Fig. 51), we note that it is reported a 
maximum acceleration equal to: 
 

௔௖௖ݔܽ݉ ൌ 100 ∙ 9.8	 ቂ
݉

ଶݏ
ቃ ൌ 980 ቂ

݉

ଶݏ
ቃ 

 
For the constrain it is worth to use a 200 G accelerometer in this case and at least a 
500 G accelerometer for the free end since we expect to observe greater acceleration 
in this point. Final choice was for PCB Model 353B02 and 352A25 for the constrain 
and the free end respectively (Fig. 52). 
 

 
Fig. 52 – Accelerometer used for constrain (a) and free end (b) 

 
The complete equipment used for experimental test consist of (Fig. 53):  
 

- LDS V406/8 Series Vibrator 
- LDS PA100E Power Amplifier 
- Agilent – Function Waveform generator Model 33220A 
- PCB – ICP Accelerometer Model 352A25 
- PCB – ICP Accelerometer Model 353B02 
- PCB – Amplifier Model 482A16 
- National Instruments – cDAQ-9178 Chassis 
- National Instruments – NI 9239 Input Module 
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Fig. 53 – Complete equipment used for acquisitions 

 
The system used in our experimental test must be identical to the one used in 
analytical study (Fig. 43), so it is necessary to physically reproduce the constraint for 
boundary condition in point A. With the help of Autodesk Inventor a clamp it is 
created and it is used to fix the beam to the LDS Vibrator. Dimension of the 
constraint must be considered for this purpose to permit the attachment of the beam 
to the instrument (Fig. 54).  
 

 
Fig. 54 – Joint created to reproduce the system boundary condition 
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To maintain coherence with the Abaqus model used in previous chapter, a set of 
aluminum bar of the same section is created. Crack is obtained using a 0.25 mm 
blade from a Mechanical Precision Processing. 
The clamp created guarantee attachment to the LDS Vibrator through its M4 holes 
and make it possible to reproduce the boundary condition used for the analytical 
model (Fig. 36).  
Now the last important aspect to study before pratical experimental acquisition is 
relative to the influence of the free end accelerometer on the system behavior. This 
operation could easily dealt with Abaqus using the model already created. 
 
4.1 Accelerometer physical influence on system behavior 
 
Results obtained from numerical simulations do not take into account the influence 
that the accelerometer could have on the system behavior. To check if its inertia may 
distort the results it is possible to edit Abaqus model verify how the accelerometer 
change natural frequencies positions. 
Since dimensions and weight are reported in the datasheet (Tab. 5), it was possible 
to calculate the inertial contribute given to the system. 
 
Tab. 5 – Accelerometer physical properties 

PHYSICAL PROPERTIES
Weight 0.6 grams 
Height 3.6 mm 
Length 11.4 mm 
Width 6.4 mm 

 

 
Fig. 55 – Accelerometer geometry 
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Considering the setup shown in Fig. 55 it is possible to calculate the values to be used 
for mass and inertia inside the numerical simulation. 
Mass parameter must be inserted as ton instead of kg as already saw in Appendix A 
so: 
 

݉ ൌ 0.6 ∙ 10ିଷሾ݇݃ሿ ൌ 6 ∙ 10ି଻ሾ݊݊݋ݐሿ 
 
Now it is possible to calculate the whole inertia given to the system. The generic 
formula for a continuous body is: 

ܬ ൌ නݎߩଶܸ݀
௏

 

 
that become 

ܬ ൌ ܾ ∙ ଶݔනሺߩ ൅ ܣଶሻ݀ݕ
஺

 

	

௭ܬ ൌ ቆ
6.4 ∙ 11.4ଷ

12
൅
6.4 ∙ 3.6ଷ

12
ቇ ሾ݉݉ସሿ ∙

6 ∙ 10ି଻ሾ݊݊݋ݐሿ

6.4 ∙ 3.6 ∙ 11.4	ሾ݉݉ଷሿ
∙ 6.4ሾ݉݉ሿ 

 
And so 

௭ܬ ൌ 1.2 ∙ 10ିହሾ݊݊݋ݐ ∙ ݉݉ଶሿ 
 
Now we proceed calculating  
 

௓்ܬ ൌ ݉ ൬7.5 ൅
3.6

2
൰
ଶ

ሾ݉݉ଶሿ ൌ 5.2 ∙ 10ିହ	ሾ݊݊݋ݐ ∙ ݉݉ଶሿ 

 
The calculus for inertial value finally is: 
 

௧௢௧ܬ ൌ 6.4 ∙ 10ିହሾ݊݋ݐ	݉݉ଶሿ 
 
This value obtained is used in Abaqus to evaluate the influence of the accelerometer 
on the natural frequency. 
Results obtained from simulation are resumed in the following table.  
 
Tab. 6 – Influence of accelerometer on natural frequencies 

 Mode 1 Mode 2 Mode 3 
Natural frequency 175.82 1085.05 2968.23 
Difference 1.1% 1% 1% 
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It is noticeable that an accelerometer, as the one chosen, can cause a 1% natural 
frequency variation. This is totally acceptable and suggest that results won’t be 
distorted by the weight of the instrument used. 
 
4.2 Transfer function 
 
The first test is about to verify if the physical model is compatible with the one used 
for numerical and analytical study. This part is achievable simply comparing the 
natural frequency obtained from the evaluation of the transfer function. 
System is excited in the proper frequency range to contain the first three natural 
frequency and the transfer function is obtained with the help of Matlab. 
Since the Vibrator has a sweep limitation of 500 seconds, different windows were used 
in order to have a step of 1	ܿ݁ݏ/ݖܪ. 
 

 
Fig. 56 – Transfer function for crack configuration #1 

 
Transfer function obtained is compared with Tab. 3 in order to verify results 
compatibility. Fig. 56 and Fig. 57 show that all the natural frequencies obtained from 
analytical and numerical simulation are present. Values are different since the crack 
has the property of changing natural frequencies in different ways depending on the 
mode considered and its position along the beam. 
Minimum peaks are observable for modes that do not involve y axe. Other peaks and 
antiresonances are present and this could be related with Vibrator Table features that 
has a bad performance at particular frequencies and with the joint that could only in 
part emulate the behavior of a perfect clamp. 



Gianmaria Celico Fadini – Politecnico di Milano 2014 

   
 

 

93 EXPERIMENTAL TEST 

 
Fig. 57 – Transfer function for crack configuration #2 

 
To investigate the reason of such behavior in the range 200 Hz – 600 Hz an 
acquisition on the Vibrator Head is performed using only the PCB Model 353B02 
Accelerometer. Fig. 58 shows results obtained using the Fourier Transform 
algorithm.   
 

 
Fig. 58 – Frequency response for Vibrator’s head 

 
From Fig. 58 it is observable that only the first two peaks are attributable to the ones 
reported in the transfer function studied in Fig. 56-57. It is concluded that Frequency 
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range from 200 Hz to 600 Hz is disturbed from the presence of the joint used to 
clamp the beam that is not perfect as the one obtainable with numerical analysis. 
 
4.3 Application of the algorithm of crack identification 
 
Equipment used in this experimental test permits to excite the system up to 9 kHz 
but for the purpose it is used 5 kHz as limit. For this reason, it is necessary to acquire 
at least at 50 kHz in order to analyze the super-harmonic frequencies due to the non-
linear behavior of the system. 
Frequency resolution is evaluated as: 
 

∆݂ ൌ
1

ܶ
ൌ  ݖܪ	0.002

 
Since the Nyquist frequency is: 
 

ே݂௬௤௨௜௦௧ ൌ
௦݂௔௠௣

2
ൌ
ݖܪ݇	50

2
ൌ ૛૞	ࢠࡴ࢑ 

 
With this sampling frequency, it will be possible to observe up to four super-
harmonic frequencies of the resonant. 
For the generation of the boundary displacement it is used a Sine Wave Generator. 
Starting frequency it is chosen at 500 Hz for two reasons, firstly Vibrator has the 
difficulty to transfer enough energy to the system at low frequency and finally the 
Curvature Node Graph has the first curve from about 500 Hz. 
As already mentioned it is important to consider the intrinsic connection between 
frequency-step and spatial resolution because of the node repositioning at every 
frequency. Since it is important to excite the system in all frequency range, it is 
important to choose intelligently Sweep-Step parameter to avoid bad results. 
To gain better results it is a good procedure to first perform a fast sweep of 
 maximum and then perform slowest sweeps in important frequency ܿ݁ݏ	/	ݖܪ	1
windows.  
Acceleration of the free end is acquired for both damaged beams and NL_Index is 
generated with the script created in Matlab. Fig. 59 shows results obtained for the 
first beam relative to Crack Configuration #1 in which the damage is located 100 mm 
from the constrain. 
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Fig. 59 – NL_Index for Configuration #1 (Crack located at 42.3% of length) 

 
Frequency obtained gives a crack located at 46.7% of the beam length that 
correspond to 121 mm. The error is about 4.5% that is totally acceptable (Fig. 60). 
 

 
Fig. 60 – Estimation of damage location for Crack Configuration #1 

 
Now an important observation on the use of the graph in Fig. 60. As is possible to 
see, the frequency related to the NL_Index minimum leads to two blue lines of the 
curvature nodes. The solution could not be univocal indeed; in this case, it is 
necessary to investigate about the other possible crack location detected. First blue 
line intercepted would indicate a position at 11% of beam length and this should 
necessary leads to NL_Index minimum at 684 Hz (Fig. 61).  
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Fig. 61 – Investigation about the first node for Configuration #1 

 
Returning with this frequency in the NL_Index plot it is easy to see that there is no 
minimum point at that particular frequency so this indicate that the crack is on the 
second node of the curvature as previously shown (Fig. 62). 
 

 
Fig. 62 – Investigation about the first node for Configuration #1 

 
Same tests were performed on Crack Configuration #2 Beam. Results obtained from 
NL_Index (Fig. 63) show a mimimum at 1240 Hz that should indicate a crack 
located at 23.5% of beam length (Fig. 64). In this case error is only 0.4%. 
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Fig. 63 – NL_Index for Configuration #2 (Crack located at 60 mm) 

 

 
Fig. 64 – Crack location for Configuration #2 

 
The second blue curve could be used to find a validation on the position just 
obtained. Position 23.5% would be linked with another minimum of the NL_Index 
related to frequency 4421 Hz (Fig. 65). 
Frequency just recorded it is used inside NL_Index plot to find out if it correspond 
to a minimum of its trend (Fig. 66). 
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Fig. 65 – Investigation on higher modes 

 

 
Fig. 66 – NL_Index Investigation on higher modes 

 
It is notable that there is a minimum point at frequency 4338 Hz that is compatible 
with what we were searching. In this case, an error of 1.8% leads to the conclusion 
that the crack is certainly located at 23.5% of beam length. 
This procedure could be used also to check validation on other minimum highlighted 
from NL_Index, for example frequency 2740 Hz (Fig. 67). 
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Fig. 67 – Investigation on other minimum points 

 
Entering with this value in the Curvature Node plot it is found a relation with a 
possible crack located at 10.6 % of beam length (Fig. 68). This is the first curvature 
node of the second vibration mode but is also the only node for mode 1 at frequency 
664 Hz. 
 

 
Fig. 68 – Possible crack location for other minimum point 

 
NL_Index trend shows no minimum at this frequency and so, there is no crack 
located at 10.6 % of beam length (Fig. 69). 
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Fig. 69 – NL_Index value at frequency 664 Hz 

 
From the previous experiment, it is easy to understand that this procedure is useful 
to confirm as well as to deny the presence and the location of a crack. 



 

 

CONCLUSIONS 
 

ith the objective of developing a Non-Destructive method to locate the 
presence of a crack in a structure it was studied the frequency behavior of 
the system when exited with a pulsing displacement. 

The method presented was tested on a real model that include two cracked beams 
and a system to force them in a certain range of frequency. 
The main advantage of this method despite the others studied in the first part of this 
paper, is the possibility to obtain useful information to locate the crack with only a 
single sensor measuring in a single point of the structure. 
Data are obtained from an accelerometer and processed in Matlab were the Scripts 
created permitted the creation of the Non-Linearity Index in automatic way. 
For the success of the method is necessary to have the position of the curvature node 
at each frequency, this can be achieved in two way, by analytical study and by 
numerical study. The case used for the experiment was a simple clamped beam and 
so has given the opportunity of using both method due to geometry simplicity. 
Model created were compared using results obtained from their natural frequencies 
extraction and shows that difference is minimal. This justify the use of a costly 
method like the analytical one for simple geometries as beams. 
On the other hand, FEA software analysis is expensive but more flexible and permits 
to treat complex geometries easily extending the usability of the method to all 
mechanical structures. 
Real physical tests highlighted problems involved in the methodology that need to 
be faced to improve the performance. First of all the implicit difference that will ever 
exist between a numerical or more generally ideal boundary condition and a real one.  
Anyway, results obtained are encouraging and demonstrate that the crack location is 
identifiable with the method presented. Crack identification was successful in both 
cases locating the crack with a maximum error of 4.5%. This could be in part related 
to the 1% influence of the accelerometer inertia and in part to the joint behavior. 
Results suggest that the method is applicable and future studies could be conducted 
on the subject. Versatility of the method and innovation on the use of super-
harmonics lead to a possible publication to describe completely this new crack 
identification method and its possible enhancement to improve overall performance 
and to be adapted for the localization of different type of cracks.  

W





 

 

Appendix A 
 

reation of the model is a delicate part since it is important to reproduce 
accurately the physical model that must be analysed. There are different ways 
to obtain a good model and they are all related with the type of analysis to 

be carried out. 
Inside the Part Module of Abaqus is possible to choose the kind of model to use for 
the analysis (Fig. 70). For the creation of complex systems as the ones represented 
from cracked beams it is better to use a 3D Deformable Solid Shape while for 
undamaged beam and other kind of simple geometry it is possible to use Wire Shapes. 
It is important to specify that Wire Shapes Models are more simple to treat with since 
Mesh operations are easier. 
 

 
Fig. 70 – Creation of the Part 

 
After that geometry is assigned in Part Module it is possible to assign all physical 
properties to the shape with the Property Module (Fig. 71). 
Since we need to deal with a real physical model in the following steps, it is important 
to choose these parameters correctly to prevent further modification of the model. 
Tab. 2 resume all physical properties used to create the model. Since geometry 
created is measured in ሾ݉݉ሿ and the Young’s Modulus is defined in ሾܰ/݉݉ଶሿ it is 

C



Crack identification method for mechanical structures 

104 Appendix A 

important to use ሾ݊݋ݐ/݉݉ଷሿ instead of ሾ݇݃/݉ଷሿ for material density value to avoid 
wrong results. 
 

 
Fig. 71 – Material editor window 

 
Now that geometry and physical properties are assigned it is necessary to reproduce 
the boundary conditions used in the analytical configuration used in Section 2.7. 
Analytical model consist of a clamped beam with a pulsing boundary displacement. 
Moving forward to the Load Module the boundary conditions are chosen. 
Since point A represent the clamped constrain (Fig. 43) it is necessary to insert a 
Displacement and Rotation boundary condition at the left side of the beam as initial 
condition (Fig. 72). 
 

 
Fig. 72 – Boundary condition editor 
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In this section, the boundary pulsing displacement it is not considered and will be 
inserted for the simulation that require it to run properly. 
Once boundary condition are reproduced as in the analytical model studied, it is 
time to enter in Mesh Module to define number and type of element to use. 
Even though for following analysis it is used a Wire Shape model, it is show how to 
deal with complex geometries and so how to mesh a 3D Solid Shape model. 
Mesh operation is the critical part in this kind of simulation, the goal is to have an 
accurate discretization of the model but at the same time maintain low computational 
effort. In order to achieve this result a good compromise is mandatory so it is chosen 
to divide the model in 3 different sections as in Fig. 73. In this way it is possible to 
choose two different element size dimension for the mesh, the first smaller to describe 
the behavior in the neighborhood of the crack and the second largest for the parts far 
from it (Fig. 74). 
 

 
Fig. 73 – Partition of the model for numerical analysis 

 
It is important to note that there is no a right or wrong element dimension for the 
creation of the Mesh. In order to achieve good results it is first important that the 
size of the element fits well in the geometry of the shape; sometimes it takes several 
attempts before achieving a satisfactory result. 
 

 
Fig. 74 – Mesh result around the crack 
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When element dimension is defined, it is possible to choose the type of element to 
assign at each session. For the kind of simulation to carry out on the model it is 
sufficient to assign 3D Stress Linear Elements (Fig. 75). 
 

 
Fig. 75 – Element type assignment 

 
After the completion of the mesh it is possible to implement the numerical analysis 
useful to get information for the application of the crack identification method. This 
is practicable editing the Step Module of Abaqus that provide numerous tools to 
accomplish every kind of simulation that is needed. 
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Natural frequency estimation 
 

o obtain natural frequencies and mode of vibration it is necessary to go inside 
the Step Module of Abaqus and create a new step. Inside the editor, it is 
necessary to choose Linear Perturbation Procedure  Frequency (Fig. 76). 

 

 
Fig. 76 – Step creation for eigenvalues extraction 

 
In the following window it is possible to setup the Eigen-solver to use as well as the 
number of natural frequencies to acquire. Since computational effort is not elevate 
for this kind of numerical analysis it is best to extract the first 10 natural frequencies 
especially because the model used is free to vibrate in the whole space and so modes 
of vibration will include all ݔ െ ݕ െ  .axes ݖ
 
Frequency response 
 
Frequency response of the system is important to achieve displacement information 
of the beam at each frequency.  
The operation consist of setting up a frequency sweep for the pulsing displacement 
at the constrain. To do that it is necessary to create another step inside the Step 
Module of Abaqus, this will be called “Sweep” to prevent confusion. The new step is 
created choosing a Linear Perturbation procedure and then Steady-State Dynamic, 
Direct (Fig. 77 (a)). 

T
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Fig. 77 – Step creation for sweep frequency response 

 
The new window in (Fig. 77 (b)) shows useful parameter to be edited. It is possible 
to choose the Lower and the Upper frequency of the sweep as well as the number of 
points that substantially correspond to the frequency resolution that we need in the 
results. For the purpose of the numerical analysis that will be executed on the model 
it is set up a frequency sweep from 0 Hz to 5000 Hz with a step of 1 Hz and so 
choosing 5001 points. 
 

 
Fig. 78 – Field output editor window 

 
Sweep Simulation is computationally hard and so it is a good procedure to edit the 
Field Output of Abaqus (Fig. 78) and leave only the calculus that effectively are 
needed. In this case, the necessity is to extract coordinates, displacements and 
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accelerations. For this purpose a set of nodal points is created to easily extract tabular 
data from them. This is done in Tools  Set  Create and selecting on the viewport 
the points to include in the set (Fig. 79) 
 

 
Fig. 79 – Creation of a Node-Set 

 
Once the sweep step is created, it is necessary to edit boundary condition for it. This 
is done inside the Load Module. To obtain the same results of the analytical model 
studied it is necessary to setup the vertical displacement of the constrain. In the 
Boundary condition Editor it is possible to chose the interested step and so on to 
change values for each degree of freedom. In this case d.o.f. U2 is edited as shown in 
Fig. 80.  
 

 
Fig. 80 – Boundary condition editor for the Sweep step 
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