
POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MATEMATICA

Optimization of unsteady PDE systems using
a multi-objective descent method

Relatori:
Dr. Régis Duvigneau
Dr. Nicola Parolini

Tesi di Laurea di:
Camilla Fiorini

Matr. 798737

Anno Accademico 2013-2014

2

Ever tried,
Ever failed.
No matter.
Try again,
Fail again,
Fail better.

— Samuel B. Beckett

4

Abstract

The aim of this work is to develop an approach to solve minimization problems in
which the functional that has to be minimized is time dependent. In the literature, the
most common approach when dealing with unsteady problems, is to consider time-
average quantities: however, this approach is limited since the dynamical nature of the
state is neglected. These considerations lead to the idea, introduced for the first time
in this work, of building a set of cost functionals by evaluating a single cost functional
at different sampling times: in this way, we reduce the unsteady optimization problem
to a multi-objective optimization one, that will be solved using the Multiple Gradient
Descent Algorithm. Moreover, we propose new hybrid approach, which will be re-
ferred to as windows approach: in this case, the set of cost functionals is built by doing
a time-average operation over multiple intervals.

The following work has been developed during a five-months internship within the
OPALE project team at INRIA Méditerranée (Institut National de Recherche en Informa-
tique et en Automatique) - Sophia Antipolis, France.

5

6

Sommario

Lo scopo di questo lavoro è quello di sviluppare un approccio per risolvere problemi
di minimizzazione in cui il funzionale da minimizzare è tempo-dipendente.
L’approccio più comune in letteratura in questi casi è quello di considerare quantità me-
diate in tempo: tuttavia, questo approccio risulta limitato in quanto la natura dinamica
del fenomeno è trascurata. Queste considerazioni hanno portato all’idea, proposta per
la prima volta in questo lavoro, di costruire un insieme di funzionali costo valutando in
alcuni istanti temporali il funzionale costo tempo-dipendente: in questo modo il prob-
lema di ottimizzazione non stazionaria è stato ridotto a un problema di ottimizzazione
multi-obiettivo, per risolvere il quale sarà utilizzato MGDA (Multiple Gradient Descent
Algorithm), sviluppato dal team. Inoltre, viene qui proposto anche un nuovo approc-
cio ibrido, che chiameremo approccio windows: esso consiste nel costruire l’insieme di
funzionali costo facendo un’operazione di media su diversi intervalli temporali.

Il seguente lavoro è stato sviluppato durante uno stage di cinque mesi nel team
OPALE presso INRIA Méditerranée (Institut National de Recherche en Informatique et en
Automatique) - Sophia Antipolis, Francia.

7

8

Contents

Abstract 5

Sommario 7

Introduction 11

1 Multi-objective optimization for PDEs constrained problems 15
1.1 From optimization to multi-objective optimization 15

1.1.1 Basic concepts of multi-objective optimization 15
1.1.2 Steepest Descent Method . 19

1.2 Optimization governed by PDEs . 20
1.2.1 Basic concepts . 20
1.2.2 Theoretical results . 20

1.3 Objective of this work . 21

2 Multiple Gradient Descent Algorithm 23
2.1 MGDA I and II: original method and first improvements 24
2.2 MGDA III: algorithm for large number of criteria 25

2.2.1 Properties . 29
2.3 MGDA III b: Improvements related to the ambiguous case 31

2.3.1 Choice of the threshold . 31
2.3.2 Ordering criteria . 33

3 The PDE constraints 39
3.1 Solving method . 39
3.2 Test cases and numerical schemes . 41

3.2.1 Test cases . 41
3.2.2 Numerical schemes . 42

3.3 Convergence of the finite differences schemes 44
3.3.1 Advection problem with a steady solution 45
3.3.2 Advection unsteady problem . 46

3.4 Validation of the CSE method . 47

9

Contents

4 Numerical results 51
4.1 Instantaneous approach . 53

4.1.1 Linear case . 54
4.1.2 Nonlinear case . 56

4.2 Windows approach . 62

5 Conclusions and future developments 71

Appendices 73

A Implementation 75
A.1 Class mgda . 75
A.2 Class simulator . 80

Bibliography 85

Ringraziamenti 87

10

Introduction

Over the years, optimization has gained an increasing interest in the scientific world,
due to the fact that it can be highly valuable in a wide range of applications.

The simplest optimization problem consists in individuating the best point, accord-
ing to a certain criterion, in a set of admissible points: this can easily be reconduced to
finding the minimum (or the maximum) of a given function. However, this model is
often too simple to be used in real applications, because of the presence of many differ-
ent quantities of different nature that interact among themselves, sometimes in a com-
petitive way, sometimes in a synergistic way: this is the framework of multi-objective
optimization.

Multi-objective optimization problems arise from many different fields: economics
is the one in which, for the first time, has been introduced the concept of optimum in
a multi-objective framework as we intend it in this work; the idea was introduced by
Pareto in [Par96]. Other fields in which multi-objective optimization can be applied
are, for instance: game theory problems (for the relationship with the Pareto-concepts,
see [Rao86]); operations research, that often deals with problems in which there are
many competitive quantities to be minimized; finally, an important field is engineering
design optimization (see, for instance, [EMDD08]).

In this work, we propose an algorithm to identify a region of Pareto-optimal points.
The starting point is the Multiple Gradient Descent Algorithm, that is a generalization
of the classical Steepest-Descent Method. It has been introduced in its first version,
MGDA I, in [Dés09]; some first improvements to the original version gave birth to
MGDA II (see [Dés12a]). Finally, a third version, MGDA III, has been proposed in
[Dés12b] from a theoretical point of view. In this work, we implemented MGDA III, by
developing a C++ code, and we tested it on some simple cases: the testing process high-
lighted some limitations of the algorithm, therefore we proposed further modifications,
generating in this way MGDA III b.

The main topic of this work is to use MGDA to optimize systems governed by un-
steady partial differential equations. More precisely, we considered a model problem
defined by a one-dimensional nonlinear advection-diffusion equation with an oscilla-
tory boundary condition, for which a periodic source term is added locally to reduce
the variations of the solution: this could mimic a fluid system including an active flow
control device, for instance, and was inspired by [DV06], in which, however, single-
objective optimization techniques were used. The objective of this work is to apply
MGDA to optimize the actuation parameters (frequency and amplitude of the source

11

Introduction

term), in order to minimize a cost functional evaluated at a set of times.
In the literature, the most common approach when dealing with unsteady prob-

lems, is to consider time-average quantities (for instance, in [DV06] and [BTY+99] the
cost functional considered is the time-averaged drag force): however, this approach
is limited since the dynamical nature of the state is neglected. For this reason, in this
work we propose a new approach: the main idea is to built a set of cost functionals by
evaluating a single cost functional at different sampling times, and, consequently, ap-
plying multi-objective optimization techniques to this set. On one hand, this method is
computationally more expensive than a single-objective optimization procedure; on the
other hand, it guarantees that the cost functional decrease at every considered instant.
Finally, an hybrid approach is proposed, which will be referred to as windows approach:
in this case, the set of cost functionals is built by doing a time-average operation over
multiple intervals.

The work is organized as follows:

Chapter 1: in the first part of the chapter, starting from the definition of a single-
objective optimization problem, we define rigorous formulation of a multi-objective
optimization one, we recall the Pareto-concepts such as Pareto-stationarity and Pareto-
optimality and we analyse the relation between them. Finally we briefly illustrate the
classical Steepest-Descent Method in the single-objective optimization framework. In
the second part of the chapter, we recall some basic concepts of differential calculus
in Banach spaces and we illustrate a general optimization problem governed by PDEs.
Finally, we explain how all these concepts will be used in this work.

Chapter 2: initially, we briefly explain the first two versions of MGDA; then follows
an accurate analysis of MGDA III: we explain the algorithm in details with the help
of some flow charts, we introduce and prove some properties of it, and we illustrate
the simple test cases and the problems that they put in light. Finally, we propose some
modification and we illustrate the new resulting algorithm.

Chapter 3: first, we illustrate the general solving procedure that has been applied
in order to obtain the numerical results: in particular the Continuous Sensitivity Equation
method (CSE) is introduced, which has been used instead of the more classical adjoint
approach; then, the specific PDEs considered are introduced, both linear and nonlinear,
along with the numerical schemes adopted to solve them: in particular, two schemes
have been implemented, a first order and a second order one. Finally, the first nu-
merical results are shown: the order of convergence of the schemes is verified in some
simple cases whose exact solution is known, and the CSE method is validated. More-
over, in this occasion, the source term and the boundary condition used in most of the
test cases are introduced.

Chapter 4: here, the main numerical results are presented, i.e. the results obtained
by applying MGDA to the PDEs systems described in chapter 3. First MGDA III b is
applied to the linear case: these results show how this problem is too simple and, there-
fore, not interesting. For this reason, we focused on the nonlinear PDEs: to them, we
applied MGDA III and III b. The results obtained underlined how the modifications
introduced allow a better identification of the Pareto-optimal zone. Then, we applied

12

Introduction

MGDA III b in a space of higher dimension (i.e. we increased the number of parame-
ters). Finally, we tested the windows approach.

Appendix A: in this appendix the C++ code that has been developed is presented;
it was used to obtain all the numerical results presented in this work. The main parts
of the code are reported and illustrated in details.

13

Introduction

14

1 | Multi-objective optimization for
PDEs constrained problems

In this chapter, first we recall some basic concepts, like Pareto-stationarity and Pareto-
optimality, in order to formulate rigorously a multi-objective optimization problem;
then we recall some basic concepts of differential calculus in Banach spaces to illustrate
a general optimization problem governed by PDEs.

1.1 From optimization to multi-objective optimization

A generic single-objective optimization problem consists in finding the parameters that
minimize (or maximize) a given criterion, in a set of admissible parameters. Formally,
one can write:

min
p∈P

J(p) (1.1)

where J is the criterion, also called cost functional, p is the vector of parameters and
P is the set of admissible parameters. Since every maximization problem can easily be
reconduced to a minimization one, we will focus of the latter. Under certain conditions
(for instance, P convex closed and J convex) one can guarantee existence and unique-
ness of the solution of (1.1), that we will denote as popt. For more details about the
well posedness of this kind of problems, see [NW06], [Ber82]. This format can describe
simple problems, in which only one quantity has to be minimized. However, it is often
difficult to reduce a real situation to a problem of the kind (1.1), because of the pres-
ence of many quantities of different natures. This can lead to a model in which there
is not only one, but a set of criteria {Ji}n

i=0 to minimize simultaneously, and this is the
framework of multi-objective optimization. In order to solve this kind of problems, we
need to formalize them, since (1.1) does not make sense for a set of cost functionals. In
fact, in this context it is not even clear what means for a configuration p0 to be “better”
than another one p1. First, we give some important definitions that should clarify these
concepts.

1.1.1 Basic concepts of multi-objective optimization

The first basic concept regards the relation between two points.

15

Chapter 1. Multi-objective optimization for PDEs constrained problems

∇J1

∇J2

∇J3

∇J4

∇J5

∇J6

∇J7

∇J1

∇J2

∇J3

∇J4

∇J5

Figure 1.1: On the left a Pareto-stationary point, on the right a non Pareto-stationary
point.

Definition 1 (Dominance). The design point p0 is said to dominate p1 if:

Ji(p0) ≤ Ji(p1) ∀i and ∃ k : Jk(p0) < Jk(p1).

From now on, we consider regular cost functionals such as Ji ∈ C1(P) ∀i so that it
makes sense to write∇Ji(p), where we denoted with∇ the gradient with respect to the
parameters p. Now, we want to introduce the concepts of stationarity and optimality
in the multi-objective optimization framework.

Definition 2 (Pareto-stationarity). The design point p0 is Pareto-stationary if there exist
a convex combination of the gradients ∇Ji(p0) that is zero, i.e.:

∃ α = {αi}n
i=0, αi ≥ 0 ∀i,

n

∑
i=0

αi = 1 :
n

∑
i=0

αi∇Ji(p) = 0.

In two or three dimension it can be useful to visualize the gradients of the cost
functionals as vectors, all applied in the same point. In fact this is a quick and easy way
to understand whether or not a point is Pareto-stationary (see Figure 1.1).

Definition 3 (Pareto-optimality). The design point p is Pareto-optimal if it is impossible
to reduce the value of any cost functional without increasing at least one of the others.

This means that p is Pareto-optimal if and only if @p ∈ P that dominates it. The
relation between Pareto-optimality and stationarity is explained by the following theo-
rem:

Theorem 1. p0 Pareto-optimal⇒ p0 Pareto-stationary.

Proof. Let gi = ∇Ji(p0), let r be the rank of the set {gi}n
i=1 and let N be the dimension of

the space (gi ∈ RN). This means that r ≤ min{N, n}, n ≥ 2 since this is multi-objective

16

1.1. From optimization to multi-objective optimization

optimization and N ≥ 1.

If r = 0 the result is trivial.

If r = 1, there exist a unit vector u and coefficients βi such that gi = βiu. Let us
consider a small increment ε > 0 in the direction u, the Taylor expansion will be:

Ji(p0 + εu) = Ji(p0) + ε
(
∇Ji(p0), u

)
+O(ε2) = Ji(p0) + εβi +O(ε2)

⇒ Ji(p0 + εu)− Ji(p0) = εβi +O(ε2)

If βi ≤ 0 ∀ i, Ji(p0 + εu) ≤ Ji(p0) ∀ i but this is impossible since p0 is Pareto-optimal.
For the same reason it can not be βi ≥ 0 ∀i. This means that ∃ j, k such that β jβk < 0. Let
us assume that βk < 0 and β j > 0. The following coefficients satisfy the Definition 2:

αi =

−βk

β j−βk
i = k

β j
β j−βk

i = j

0 otherwise

then p0 is Pareto-stationary.

If r ≥ 2 and the gradients are linearly dependent (i.e r < n, with r ≤ N), up to a
permutation of the indexes, ∃ βi such that:

gr+1 =
r

∑
i=1

βigi ⇒ gr+1 +
r

∑
i=1

µigi = 0 (1.2)

where µi = −βi. We want to prove that µi ≥ 0 ∀ i. Let us assume, instead, that µr < 0
and define the following space:

V := span{gi}r−1
i=1 .

Let us now consider a generic vector v ∈ V⊥, v 6= 0. It is possible, since V⊥ 6= {0}, in
fact:

dimV ≤ r− 1 ≤ N − 1⇒ dimV⊥ = N − dimV ≥ 1.

By doing the scalar product of v with (1.2) and using the orthogonality, one obtains:

0 =

(
v, gr+1 +

r

∑
i=1

µigi

)
= (v, gr+1) + µr (v, gr) ,

then follow that: (
v,∇Jr+1(p0)

)
= −µr

(
v,∇Jr(p0)

)
,

and since µr < 0,
(
v,∇Jr+1(p0)

)
and

(
v,∇Jr(p0)

)
have the same sign. They cannot be

both zeros, in fact if they were, they would belong to V, and the whole family {gi}n
i=1

would belong to V, but this is not possible, since:

dimV ≤ r− 1 < r = rank{gi}n
i=1.

17

Chapter 1. Multi-objective optimization for PDEs constrained problems

Therefore, ∃ v ∈ V⊥, such that
(
v,∇Jr+1(p0)

)
= −µr

(
v,∇Jr(p0)

)
is not trivial. Let

us say that
(
v,∇Jr+1(p0)

)
> 0, repeating the argument used for r = 1 one can show

that −v is a descent direction for both Jr and Jr+1, whereas leaves the other functionals
unchanged due to the orthogonality, but this is a contradiction with the hypothesis of
Pareto-optimality. Therefore µk ≥ 0 ∀ k and, up to a normalization constant, they are
the coefficients αk of the definition of Pareto-stationarity.

Finally, this leave us with the case of linearly independent gradients, i.e. r = n ≤ N.
However, this is incompatible with the hypothesis of Pareto optimality. In fact, one can
rewrite the multi-objective optimization problem as follows:

min
p∈P

Ji(p) subject to

Jk(p) ≤ Jk(p0) ∀ k 6= i.
(1.3)

The Lagrangian formulation of the problem (1.3) is:

Li(p, λ) = Ji(p) + ∑
k 6=i

λk
(

Jk(p)− Jk(p0)
)

,

where λk ≥ 0 ∀k 6= i. Since p0 is Pareto optimal, it stands:

0 = ∇pLi|(p0,λ) = ∇p Ji(p0) + ∑
k 6=i

λk∇p Jk(p0),

but this is impossible since the gradients are linearly independent. In conclusion, it
cannot be r = n, and we always fall in one of the cases previously examinated, which
imply the Pareto-stationarity.

Unless the problem is trivial and there exist a point p that minimizes simultaneously
all the cost functionals, the Pareto-optimal design point is not unique. Therefore, we
need to introduce the concept of Pareto-front.

Definition 4 (Pareto-front). A Pareto-front is a subset of design points F ⊂ P such that
∀p, q ∈ F , p does not dominate q.

A Pareto-front represents a compromise between the criteria. An example of Pareto-
front in a case with two cost functionals is given in Figure 1.2: each point corresponds
to a different value of p.

Given these definitions, the multi-objective optimization problem will be the fol-
lowing:

given P , pstart ∈ P not Pareto-stationary, and {Ji}n
i=0

find p ∈ P : p is Pareto-optimal.
(1.4)

To solve the problem (1.4), different strategies are possible, for instance one can build a
new cost functional:

J =
n

∑
i=0

αi Ji αi > 0 ∀i,

18

1.1. From optimization to multi-objective optimization

Figure 1.2: Example of Pareto-Front

and apply single-objective optimization techniques to this new J. However, this ap-
proach presents heavy limitations due to the arbitrariness of the weights. See [Gia13]
for more details. In this work we will consider an algorithm that is a generalization
of the steepest descent method: MGDA, that stands for Multiple Gradient Descent Al-
gorithm, introduced in its first version in [Dés09] and then developed in [Dés12a] and
[Dés12b]. In particular we will focus on the third version of MGDA, of which we will
propose some improvements, generating in this way a new version of the algorithm:
MGDA-III b.

1.1.2 Steepest Descent Method

In this section, we recall briefly the steepest descent method, also known as gradient
method. We will not focus on the well posedness of the problem, neither on the conver-
gence of the algorithm, since this is not the subject of this work. See [QSS00] for more
details.

Let F(x) : Ω → R be a function that is differentiable in Ω and let us consider the
following problem:

min
x∈Ω

F(x).

One can observe that:

∃ρ > 0 : F(a) ≥ F(a− ρ∇F(a)) ∀a ∈ Ω.

Therefore, given an initial guess x0 ∈ Ω, it is possible to build a sequence {x0, x1, x2, . . .}
in the following way:

xn+1 = xn − ρ∇J(xn)

19

Chapter 1. Multi-objective optimization for PDEs constrained problems

such that F(x0) ≥ F(x1) ≥ F(x2) ≥ Under certain conditions on F, Ω and x0 (for
instance, Ω convex closed, F ∈ C(Ω) and x0 “close enough” to the minimum), it will
be:

lim
n→+∞

xn = x = argmin
x∈Ω

F(x).

1.2 Optimization governed by PDEs

1.2.1 Basic concepts

We start this section by introducing briefly the notion of a control problem governed
by PDEs, of which the optimization is a particular case. For a more detailed analysis,
see [Lio71], [Trö10].

In general, a control problem consists in modifying a system (S), called state, in
our case governed by PDEs, in order to obtain a suitable behaviour of the solution of
(S). Therefore, the control problem can be expressed as follows: finding the control
variable η such that the solution u of the state problem is the one desired. This can
be formalized as a minimization problem of a cost functional J = J(η) subject to some
constraints, described by the system (S).

If the system (S) is described by a PDE, or by a system of PDEs, the control variable
η normally influences the state through the initial or boundary condition or through
the source term.

We will focus on problems of parametric optimization governed by PDEs: in this
case, the control variable η is a vector of parameters p = (p1, . . . , pN) ∈ RN . Moreover,
in this work we will consider only unsteady equations and the optimization parameters
will be only in the source term. Therefore, the state problem will be:

∂u
∂t

+ L(u) = s(x, t; p) x ∈ Ω, 0 < t ≤ T

+ b.c. and i.c.,
(1.5)

where L is an advection-diffusion differential operator, and the optimization problem
will be:

min
p∈P

J(u(p)) subject to (1.5), (1.6)

where P ⊆ RN is the space of admissible parameters. Note that J depends on p only
through u.

1.2.2 Theoretical results

In this subsection, we will present some theoretical results about control problems. For
a more detailed analysis, see [Sal]. First, we recall some basic concepts of differential
calculus in Banach spaces. Let X and Y be two Banach spaces, and let L(X, Y) be the
space of linear functionals from X to Y.

Definition 5. F : U ⊆ X → Y, with U open, is Fréchet differentiable in x0 ∈ U, if there

20

1.3. Objective of this work

exists an application L ∈ L(X, Y), called Fréchet differential, such that, if x0 + h ∈ U,

F(x0 + h)− F(x0) = Lh + o(h),

that is equivalent to:

lim
h→0

‖F(x0 + h)− F(x0)− Lh‖Y

‖h‖X
= 0.

The Fréchet differential is unique and we denote it with: dF(x0). If F is differentiable
in every point of U, it is possible to define an application dF : U → L(X, Y), the Fréchet
derivative:

x 7→ dF(x).

We say that F ∈ C1(U) if dF is continuous in U, that is:

‖dF(x)− dF(x0)‖L(X,Y) → 0 if ‖x− x0‖X → 0.

We now enunciate a useful result, known as chain rule.

Theorem 2. Let X, Y and Z be Banach spaces. F : U ⊆ X → V ⊆ Y and G : V ⊆ Y → Z,
where U and V are open sets. If F is Fréchet differentiable in x0 and G is Fréchet differentiable
in y0, where y0 = F(x0), then G ◦ F is Fréchet differentiable in x0 and:

d(G ◦ F)(x0) = dG(y0) ◦ dF(x0).

We now enunciate a theorem that guarantees existence and uniqueness of the solu-
tion of the control problem, when the control variable is a function η living in a Banach
space H (more precisely η ∈ Had ⊆ H, Had being the space of admissible controls).

Theorem 3. Let H be a reflexive Banach space, Had ⊆ H convex closed and J : H → R.
Under the following hypotheses:

1. if Had is unbounded, then J(η)→ +∞ when ‖η‖H → +∞,

2. inferior semicontinuity of J with respect to the weak convergence, i.e.

ηj ⇀ η ⇒ J(η) ≤ lim inf J(ηj) j→ +∞.

There exists η̂ ∈ Had such as J(η̂) = min
η∈Had

J(η). Moreover, if J is strictly convex than η̂ is

unique.

Let us observe that the Theorem 3 guarantees the well posedness of a control prob-
lem. The well posedness of a parametric optimization problem as (1.6) is not a straight-
forward consequence: it is necessary to add the request of differentiability of u with
respect to the vector of parameters p.

1.3 Objective of this work

In this work, as we already said, we will consider only unsteady equation: this will
lead to time dependent cost functional J(t). A common approach in the literature is to

21

Chapter 1. Multi-objective optimization for PDEs constrained problems

optimize with respect to a time-average over a period, if the phenomena is periodic,
or, if it is not, over an interesting window of time. Therefore, chosen a time interval
(t, t + T), one can build the following cost functional:

J =
∫ t+T

t
J(t)dt, (1.7)

and apply single-objective optimization techniques to it. However this approach, al-
though straightforward, is limited since the dynamical nature of the state is neglected.
Considering only a time-averaged quantity as optimization criterion may yield unde-
sirable effects at some times and does not allow to control unsteady variations, for
instance. The objective of this work is thus to study alternative strategies, based on the
use of several optimization criteria representing the cost functional evaluated at some
sampling times:

Ji = J(ti) for i = 1, . . . , n. (1.8)

To this set of cost functionals {Ji}n
i=1 we will apply the Multiple Gradient Descent Al-

gorithm and Pareto-stationarity concept, already mentioned in Subsection 1.1.1, that
will be described in details in the next Chapter. Moreover, an other approach will be
investigated in this work that will be referred to as windows approach. Somehow, it is
an hybrid between considering a time average quantity like (1.7) and a set of instanta-
neous quantities like (1.8). The set of cost functional which the MGDA will be applied
to in this case is:

Ji =
∫ ti+1

ti

J(t)dt for i = 1, . . . , n, (1.9)

i.e the average operation is split on many subintervals.
Since the idea of coupling MGDA to the same quantity evaluated at different times

is new, only scalar one-dimensional equation will be considered, in order to focus more
on the multi-objective optimization details, that are the subject of this thesis, and less
on the numerical solution of PDEs.

22

2 | Multiple Gradient Descent Al-
gorithm

The Multiple Gradient Descent Algorithm (MGDA) is a generalization of the steepest
descent method in order to approach problems of the kind (1.4): according to a set of
vectors {∇J(p)}n

i=0, a search direction ω is defined such as −ω is a descent direction
∀Ji(p), until a Pareto-stationary point is reached.

Definition 6 (descent direction). A direction v is said to be a descent one for a cost func-
tional J in a point p if ∃ ρ > 0 such as:

J(p + ρv) < J(p).

If the cost functional is sufficiently regular with respect to the parameters (for in-
stance if J ∈ C2), v is a descent direction if (v,∇J(p)) < 0.

In this chapter we will focus on how to compute the research direction ω. That given,
the optimization algorithm will be the one illustrated in Figure 2.1.

p0, {Ji} k = 0
compute
∇Ji(pk) ∀i MGDA

ω
?
= 0

pk+1 = pk − ρωk = k + 1

popt = pk

6= 0

= 0

Figure 2.1: Flow chart of the optimization algorithm. The optimization loop is high-
lighted in green.

23

Chapter 2. Multiple Gradient Descent Algorithm

2.1 MGDA I and II: original method and first improvements

The original version of MGDA defines ω as the minimum-norm element in the set U of
the linear convex combinations of the gradients:

U = {u ∈ RN : u =
n

∑
i=1

αi∇Ji(p), with αi ≥ 0 ∀i,
n

∑
i=1

αi = 1}. (2.1)

In order to understand intuitively the idea behind this choice, let us analyse some two
and three dimensional examples, shown in Figure 2.2 and Figure 2.3. The gradients
can be seen as vectors of RN all applied in the origin. Each vector identifies a point
xi ∈ RN , and d is the point identified by ω. In this framework, U is the convex hull
of the points xi, highlighted in green in the Figures. The convex hull lies in an affine
subspace of dimension at most n− 1, denoted with An−1 and drawn in red. Note that
if n > N, An−1 ≡ RN . We briefly recall the definition of projection on a set.

Definition 7. Let x be a point in a vector space V and let C ⊂ V be a convex closed set.
The projection of x on C is the point z ∈ C such as:

z = argmin
y∈C

‖x− y‖V .

Given this definition, it is clear that finding the minimum-norm element in a set is
equivalent to finding the projection of the origin on this set. In the trivial case O ∈ U
(condition equivalent to the Pareto stationarity), the algorithm gives ω = 0.

Otherwise, if O /∈ U, we split the projection procedure in two steps: first we project
the origin O on the affine subspace An−1, obtaining O⊥; then, two scenarios are pos-
sible: if O⊥ ∈ U then d ≡ O⊥ (as in the left subfigures) and we have ω, otherwise it
is necessary to project O⊥ on U finding d and, consequently, ω (as shown in the right
subfigures).

Let us observe that in the special case in which O⊥ ∈ U, we are not “favouring” any
gradients, fact explained more rigorously in the following Proposition.

Proposition 4. If O⊥ ∈ U, all the directional derivatives are equal along ω:

(ω,∇Ji(p)) = ‖ω‖2 ∀i = 1, . . . , n.

O

x1x2 O⊥ ≡ d

∇J2 ∇J1

ω

UA1

O

x1x2 ≡ dO⊥

∇J2 ≡ ω

∇J1

UA1

Figure 2.2: 2D examples.

24

2.2. MGDA III: algorithm for large number of criteria

O

x1

∇J1

x2

∇J2

x3

∇J3

d ≡ O⊥

ω

U

O

x1

∇J1

x2

∇J2

x3

∇J3

O⊥
d

ω

U

A2

Figure 2.3: 3D examples.

Proof. It is possible to write every gradient as the sum of two orthogonal vectors: ∇Ji(p) =
ω + vi, where vi is the vector connecting O⊥ and xi.

(ω,∇Ji(p)) = (ω, ω + vi) =

= (ω, ω) + (ω, vi) = (ω, ω) = ‖ω‖2.

The main limitation of this first version of the algorithm is the practical determina-
tion of ω when n > 2. For more details on MGDA I, see [Dés09].

In the second version of MGDA, ω is computed with a direct procedure, based on
the Gram-Schmidt orthogonalization process (see [Str06]), applied to rescaled gradi-
ents:

J′i =
∇Ji(p)

Si
.

However, this version has two main problems: the choice of the scaling factors Si is
very important but arbitrary, and the gradients must be linearly independent to apply
Gram-Schmidt, that is impossible, for instance, in a situation in which the number of
gradients is greater than the dimension of the space, i.e. n > N. Moreover, let us
observe that in general the new ω is different from the one computed with the first
version of MGDA. For more details on this version of MGDA, see [Dés12a]. For these
reasons, a third version has been introduced in [Dés12b].

2.2 MGDA III: algorithm for large number of criteria

The main idea of this version of MGDA is that in the cases in which there are many
gradients, a common descent direction ω could be based on only a subset of gradi-
ents. Therefore, one can consider only the most significant gradients, and perform an
incomplete Gram-Schmidt process on them. For instance, in Figure 2.4 there are seven

25

Chapter 2. Multiple Gradient Descent Algorithm

0

g1

g2
g3

g4

g5
g6

g7 0

g1

g2
g3

g4

g5
g6

g7

Figure 2.4: 2D example of trends among the gradients. Two good vectors to compute a
common descent direction could be the ones in red.

different gradients, but two would be enough to compute a descent direction for all of
them. In this contest, the ordering of the gradients is very important: in fact, only the
first m out of n will be considered to compute ω, and hopefully it will be m� n. Let us
observe that if the gradients live in a space of dimension N, it will be, for sure, m ≤ N.
Moreover, this eliminates the problem of linear dependency of the gradients.
In this section we will indicate with {gi}n

i=1 the set of gradients evaluated at the current
design point p, corresponding respectively to the criteria {Ji}n

i=1, and with {g(i)}n
(i)=1

the reordered gradients, evaluated at p, too. The ordering criterion proposed in [Dés12b]
selects the first vector as follows:

g(1) = gk where k = argmax
i=1,...,n

min
j=1,...,n

(gi, gj)

(gi, gi)
, (2.2)

while the criterion for the following vectors will be shown afterwards. The meaning of
this choice will be one of the subject of the next section.

Being the ordering criterion given, the algorithm briefly consists in: building the
orthogonal set of vectors {ui}m

i=1 by adding one ui at a time and using the Gram-
Schmidt process; deciding whether or not to add another vector ui+1 (i.e. stopping
criterion); and, finally, computing ω as the minimum-norm element in the convex hull
of {u1, u2, . . . , um}:

ω =
m

∑
k=1

αkuk, where αk =
1

1 +
m

∑
j=1
j 6=k

‖uk‖2

‖uj‖2

. (2.3)

The choice of the coefficients αk will be justified afterwards.
Now we analyse in detail some of the crucial part of the algorithm, with the support

of the flow chart in Figure 2.5. The algorithm is initialized as follows: first g(1) is se-
lected (according to (2.2)), then one impose u1 = g(1) and the loop starts with i = 2. In
order to define the stopping criterion of this loop (TEST in Figure 2.5), we introduce an
auxiliary structure: the lower-triangular matrix C. Let ck,` be the element of the matrix

26

2.2. MGDA III: algorithm for large number of criteria

{gj}n
j=1 select g(1)

u1 = g(1)
i = 2

fill(i− 1)th

column of C TEST
pos.

neg.

compute
ω

ω

i = i + 1

ui = 0?

6= 0

= 0

compute
ui

select g(i)

P-S TEST
pos.

?

ω = 0 ω

go to MGDA-I

Figure 2.5: Flow chart of third version of MGDA

C in the kth row, `th column.

ck,` =

(g(k),u`)

(u`,u`)
` < k

k−1

∑
`=1

ck,` ` = k
(2.4)

This matrix is set to 0 at the beginning of the algorithm, then is filled one column at
a time (see Figure 2.5). The main diagonal of the matrix C contains the sum of the
elements in that row and is updated every time an element in that row changes. Given
a threshold value a ∈ (0, 1), chosen by the user and whose role will be studied in
section 2.3.1, the test consists in checking if c`,` ≥ a ∀` > i: if it is true for all the
coefficient the test is positive, the main loop is interrupted and ω is computed as in
(2.3) with m being the index of the current iteration, otherwise one continues adding a
new ui computed as follows: first there is the identification of the index ` such as:

` = argmin
j=i,...,n

cj,j, (2.5)

then it is set g(i) = g` (these two steps correspond to “select g(i)” in Figure 2.5), and
finally the Gram-Schmidt process is applied:

ui =
1
Ai

(
g(i) −∑

k<i
ci,kuk

)
, (2.6)

where Ai := 1−∑
k<i

ci,k = 1− ci,i.

27

Chapter 2. Multiple Gradient Descent Algorithm

The meaning of the stop criterion is the following:

c`,` ≥ a > 0 ⇒ ∃ i : c`,i > 0 ⇒ ĝ(`)ui ∈
(
−π

2
,

π

2

)
This means that a descent direction for J(`) can be defined from the {ui} already com-
puted, and adding a new u computed on the base of g(`) would not add much infor-
mation.
Once computed a new ui, before adding it to the set, we should check if it is nonzero,
as it is shown in the flow chart. If it is zero, we know from the (2.6) that is:

g(i) = ∑
k<i

ci,kuk (2.7)

It is possible to substitute in cascade (2.6) in (2.7), obtaining:

g(i) = ∑
k<i

ci,k

[
1

Ak

(
g(k) −∑

`<k
ck,`u`

)]
=

= ∑
k<i

ci,k

[
1

Ak

(
g(k) −∑

`<k
ck,`

[
1

A`

(
g(`) −∑

j<`

c`,juj

)])]
=

= . . .

(2.8)

Therefore, since u1 = g(1), one can write:

g(i) = ∑
k<i

c′i,kg(k) (2.9)

Computing the c′i,k is equivalent to solving the following linear system:

g(1)

∣∣∣∣∣∣∣∣∣∣∣
g(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
g(i−1)

︸ ︷︷ ︸

=A

c′1,i
c′2,i
...
...

c′i−1,i

︸ ︷︷ ︸

=x

=

g(i)

︸ ︷︷ ︸

=b

Since N is the dimension of the space in which the gradients live, i.e. gi ∈ RN ∀i =
1, . . . , n, the matrix A is [N × (i− 1)], and for sure is i− 1 ≤ N, because i− 1 is the
number of linearly independent gradients we already found. This means that the sys-
tem is overdetermined, but we know from (2.8)-(2.9) that the solution exists. In conclu-
sion, to find the c′i,k we can solve the following system:

ATAx = ATb (2.10)

where ATA is a square matrix, and it is invertible because the columns of A are linearly

28

2.2. MGDA III: algorithm for large number of criteria

independent (for further details on linear systems, see [Str06]). Once found the c′i,k, it
is possible to apply the Pareto-stationarity test (P-S TEST in Figure 2.5), based on the
following Proposition.

Proposition 5. c′i,k ≤ 0 ∀k = 1, . . . , i− 1⇒ Pareto-stationarity.

Proof. Starting from the (2.9), we can write:

g(i) −∑
k<i

c′i,kg(k) = 0 ⇒
n

∑
k=1

γkg(k) = 0

where:

γk =

−c′i,k k < i

1 k = i

0 k > i

γk ≥ 0 ∀k. If we define Γ =
n

∑
k=1

γk, then the coefficients {γk
Γ }n

k=1 satisfy the Definition 2.

Note that the condition given in Proposition 5 is sufficient, but not necessary. There-
fore, if it is not satisfied we fall in an ambiguous case: the solution suggested in [Dés12b]
is, in this case, to compute ω according to the original version of MGDA, as shown in
Figure 2.5.

2.2.1 Properties

We now present and prove some properties of MGDA III. Note that these properties
are not valid if we fall in the ambiguous case.

Proposition 6. αi, i = 1, . . . , n defined as in (2.3) are such that:

m

∑
k=1

αk = 1 and (ω, uk) = ‖ω‖2 ∀k = 1, . . . , m.

Proof. First, let us observe that:

1
αk

= 1 +
m

∑
j=1
j 6=k

‖uk‖2

‖uj‖2 =
‖uk‖2

‖uk‖2 +
m

∑
j=1
j 6=k

‖uk‖2

‖uj‖2 =
m

∑
j=1

‖uk‖2

‖uj‖2 = ‖uk‖2
m

∑
j=1

1
‖uj‖2

Therefore, it follows that:

m

∑
k=1

αk =
m

∑
k=1

1

‖uk‖2
m

∑
j=1

1
‖uj‖2

=
m

∑
k=1

1/‖uk‖2

m

∑
j=1

1
‖uj‖2

=
1

m

∑
j=1

1
‖uj‖2

m

∑
k=1

1
‖uk‖2 = 1.

29

Chapter 2. Multiple Gradient Descent Algorithm

Let us now prove the second part:

(ω, ui) =

(
m

∑
k=1

αkuk, ui

)
= αi(ui, ui) = αi‖ui‖2 =

1
m

∑
k=1

1
‖uk‖2

=: D

where we used the definition of ω, the linearity of the scalar product, the orthogonality
of the ui and, finally, the definition of αi. Let us observe that D does not depend on i.
Moreover,

‖ω‖2 = (ω, ω) =

(
m

∑
k=1

αkuk,
m

∑
`=1

α`u`

)
=

m

∑
j=1

α2
j (uj, uj) =

=
m

∑
j=1

αjD = D
m

∑
j=1

αj = D = (ω, ui) ∀i = 1, . . . , m.

Proposition 7. ∀i = 1, . . . , m (ω, g(i)) = (ω, ui).

Proof. From the definition of ui in (2.6), it is possible to write g(i) in the following way:

g(i) = Aiui + ∑
k<i

ci,kuk =

(
1−∑

k<i
ci,k

)
ui + ∑

k<i
ci,kuk =

= ui −
(

∑
k<i

ci,k

)
ui + ∑

k<i
ci,kuk

and doing the scalar product with ω one obtains:

(g(i), ω) = (ui, ω)−
(

∑
k<i

ci,k

)
(ui, ω) +

(
∑
k<i

ci,kuk, ω

)
︸ ︷︷ ︸

=(?)

We want to prove that (?) = 0. As we have shown in the proof of Proposition 6:

αk =
1

‖uk‖2
m

∑
j=1

1
‖uj‖2

⇒ αi‖ui‖2 =
1

m

∑
j=1

1
‖uj‖2

Using the definition of ω, the linearity of the scalar product and the orthogonality of

30

2.3. MGDA III b: Improvements related to the ambiguous case

the ui one obtains:

(?) = −
(

∑
k<i

ci,k

)
αi‖ui‖2 + ∑

k<i
ci,kαk‖uk‖2 =

= −
(

∑
k<i

ci,k

)
1

∑m
j=1

1
‖uj‖2

+

(
∑
k<i

ci,k

)
1

∑m
j=1

1
‖uj‖2

= 0.

Proposition 8. ∀i = m + 1, . . . , n (g(i), ω) ≥ a‖ω‖2.

Proof. It is possible to write g(i) as follows:

m

∑
k=1

ci,kuk + vi

where vi ⊥ {u1, . . . , um}. Since i > m, we are in the case in which the test ci,i ≥ a is
positive. Consequently:

(g(i), ω) =
m

∑
k=1

ci,k(uk, ω) =
m

∑
k=1

ci,k‖ω‖2 = ci,i‖ω‖2 ≥ a‖ω‖2.

In conclusion, as a straightforward consequence of the Propositions above, we have:

(g(i), ω) = ‖ω‖2 ∀i = 1, . . . , m (g(i), ω) ≥ a‖ω‖2 ∀i = m + 1, . . . , n,

which confirms that the method provides a direction that is a descent one even for the
gradients not used in the construction of the Gram-Schmidt basis and, consequently,
not directly used in the computation of ω.

2.3 MGDA III b: Improvements related to the ambiguous case

In this work we propose some strategies to avoid going back to MGDA-version I, when
we fall in the ambiguous case, since it is very unefficient when a large number of ob-
jective functional are considered. In order to do this, we should investigate which are
the reasons that lead to the ambiguous case. Let us observe that in the algorithm there
are two arbitrary choices: the value of the threshold a for the stopping test and the
algorithm to order the gradients.

2.3.1 Choice of the threshold

Let us start with analysing how a too demanding choice of a (i.e. of a too large value)
can affect the algorithm. We will do this with the support of the example in Figure 2.6,
following the algorithm as illustrated in the precedent section. For example, assume

31

Chapter 2. Multiple Gradient Descent Algorithm

0

g1

g2

g3

R2

0

g1

g2 ≡ g(1) ≡ u1

g3

u2

R2

Figure 2.6: Example to illustrate a wrong choice for a.

that the gradients are the following:

g1 =

(
5
2

)
g2 =

(
0
5

)
g3 =

(
−5
2

)
. (2.11)

Using the criterion (2.2) the gradient selected as first is g2. At the first iteration of the
loop the first column of the matrix C is filled in as in (2.4), with the following result:

C =

 1
0.4 0.4
0.4 0 0.4

If a is set, for instance, at 0.5 (or any value greater than 0.4) the stop test fails. However,
looking at the picture, it is intuitively clear that ω = u1 is the best descent direction one
can get (to be more rigorous, it is the descent direction that gives the largest estimate
possible from Proposition 8). If the test fails, the algorithm continues and another vector
ui is computed. This particular case is symmetric, therefore the choice of g(2) is not
very interesting. Let us say that g(2) = g3, than u2 is the one shown in the right side of
Figure 2.11 and, since it is nonzero, the algorithm continues filling another column of
C:

C =

 1
0.4 0.4
0.4 −0.6 −0.2

Even in this case the stopping test fails (it would fail with any value of a due to the
negative term in position (3,3)). Since we reached the dimension of the space, the next
ui computed is zero: this leads to the Pareto-stationarity test, that cannot give a posi-
tive answer, because we are not at a Pareto-stationary point. Therefore, we fall in the
ambiguous case.

To understand why this happens, let us consider the relation between a and ω,
given by Proposition 8 that we briefly recall:

∀i = m + 1, . . . , n (g(i), ω) ≥ a‖ω‖2.

This means that, for the gradients that haven’t been used to compute ω, we have a

32

2.3. MGDA III b: Improvements related to the ambiguous case

lower bound for the directional derivative along ω: they are, at least, a fraction a of
‖ω‖2. The problem is that it is impossible to know a priori how big a can be. For
this reason, the parameter a has been removed. The stopping test remains the same as
before, with only one difference: instead of checking c`,` ≥ a one checks if c`,` > 0.

However, removing a is not sufficient to remove completely the ambiguous case, as
it is shown in the next subsection.

2.3.2 Ordering criteria

In this section we will analyse the meaning of the ordering criterion used in MGDA III
and we will present another one, providing some two-dimensional examples in order
to have a concrete idea of different situations.

The ordering problem can be divided in two steps:

(i) choice of g(1)

(ii) choice of g(i), given g(k) ∀k = 1, . . . i− 1

The naïve idea is to order the gradients in the way that makes the MGDA stop as soon
as possible. Moreover, we would like to find an ordering criterion that minimizes the
times in which we fall in the ambiguous case (i.e. when we find a ui = 0 and the P-S
test is not satisfied).

Definition 8. Let us say that an ordering is acceptable if it does not lead to the ambiguous
case, otherwise we say that the ordering is not acceptable.

First, we discuss point (ii), since it is simpler. If we are in the case in which we have
to add another vector, it is because the stopping test gave a negative result, therefore:

∃`, i ≤ ` ≤ n : c`,` < 0.

We chose as g(i) the one that violates the stopping test the most. This explains the (2.5),
that we recall here:

g(i) = gk : k = argmin
`

c`,` i ≤ ` ≤ n.

The point (i) is more delicate, since the choice of the first vector influences strongly
all the following choices. Intuitively, in a situation like the one shown in Figure 2.7, we
would pick as first vector g5 and we would have the stopping test satisfied at the first
iteration, in fact ω = g5 is a descent direction for all the gradients. Formally, this could
be achieved using the criterion 2.2, that we recall:

g(1) = gk, where k = argmax
i

min
j

(gj, gi)

(gi, gi)
(2.12)

However, it is clear that this is not the best choice possible in cases like the one shown
in Figure 2.8, in which none of the gradients is close to the bisecting line (or, in three
dimensions, to the axis of the cone generated by the vectors). In this particular case, it

33

Chapter 2. Multiple Gradient Descent Algorithm

0
g1

g2

g3

g4g5g6

g7
g8

g9

0
g1

g2

g3

g4g5g6

g7
g8g9

Figure 2.7: Example 1.

0
g1

g2

g3

g4
g5

0
g1

g2 ≡ ω

g3

g4
g5

Figure 2.8: Choice of the first gradient with the criterion (2.2)-(2.5).

would be better to pick two external vectors (g1 and g5) to compute ω. Anyway, with
the criterion (2.2)-(2.5) we still obtain an acceptable ordering, and the descent direction is
computed with just one iteration. However, there are cases in which the criterion (2.2)-
(2.5) leads to a not acceptable ordering. Let us consider, for example, a simple situation
like the one in Figure 2.9, with just three vectors, and let us follow the algorithm step
by step.

Let the gradients be the following:

g1 =

(
1
0

)
g2 =

(
0.7
0.7

)
g3 =

(
−1
0.1

)
(2.13)

0

g1

g2

g3

0
g1

g2 ≡ u1

g3

u2
ω

Figure 2.9: Criterion (2.2)-(2.5) leads to a not acceptable ordering.

34

2.3. MGDA III b: Improvements related to the ambiguous case

Given the vectors (2.13), we can build a matrix T such as:

[T]i,j =
(gj, gi)

(gi, gi)
(2.14)

obtaining:

T =

 1 0.7 −1
0.714 1 −0.643
−0.99 −0.624 1

 min = −1
 min = −0.643
 min = −0.99

The internal minimum of (2.2) is the minimum of each row. Among this, we should
select the maximum: the index of this identifies the index k such as g(1) = gk. In this
case, k = 2. We can now fill in the first column of the triangular matrix C introduced in
(2.4), obtaining:

C =

 1
0.714 0.714
−0.642 0 −0.642

Since the diagonal terms are not all positive, we continue adding g(2) = g3, according
to (2.5). Note that, due to this choice, the second line of the matrix C has to be switched
with the third. The next vector of the orthogonal base u2 is computed as in (2.6), and
in Figure 2.9, right subfigure, it is shown the result. Having a new u2 6= 0, we can now
fill the second column of C as follows:

C =

 1
−0.642 −0.642
0.714 −1.4935 −0.77922

This is a situation analogue to the one examinated in the example of Section 2.3.1, there-
fore we fall in the ambiguous case.

A possible solution to this problem is the one proposed in the flow chart in Fig-
ure 2.10: compute ω with the {ui} that we already have and check for which gradients
it is not a descent direction (in this case for g1, as shown in the right side of Figure 2.9).
We want this gradient to be “more considered”: in order to do that we double their
length and we restart the algorithm from the beginning. This leads to a different matrix
T:

T =

 1 0.35 −0.5
1.428 1 −0.643
−1.98 −0.624 1

 min = −0.5
 min = −0.643
 min = −1.98

With the same process described above, one obtains g(1) = u1 = g1. The final output
of MGDA is shown in Figure 2.11, with ω = [0.00222, 0.0666]T.

However, rerunning MGDA from the beginning is not an efficient solution, in par-
ticular in the cases in which we have to do it many times before reaching a good or-
dering of the gradients. For this reason, a different ordering criterion is proposed: we
chose as a first vector the “most external”, or the “most isolated” one. Formally, this

35

Chapter 2. Multiple Gradient Descent Algorithm

{gj}n
j=1 select g(1)

u1 = g(1)
i = 2

fill(i− 1)th

column of C TEST
pos.

neg.

compute
ω

ω

i = i + 1

ui = 0?

6= 0

= 0

compute
ui

select g(i)

P-S TEST
pos.

?

ω = 0 ω

compute ω
using uk, k < i

compute
dj = (ω, gj) ∀j ω

dj > 0 ∀j

∀j : dj < 0
gnew

j = γgj

∃j :
dj < 0

{gnew
j }N

j=1

Figure 2.10: Flow chart of MGDA-III b

0
g1 ≡ u1

g2

g3 u2
ω

Figure 2.11: Criterion (2.2)-(2.5) after doubling.

36

2.3. MGDA III b: Improvements related to the ambiguous case

means:

g(1) = gk, where k = argmin
i

min
j

(gj, gi)

(gi, gi)
(2.15)

On one hand with this criterion it is very unlikely to stop at the first iteration, but on the
other hand the number of situations in which is necessary to rerun the whole algorithm
is reduced. Note that, in this case, instead of doubling the length of the non-considered
gradients, we must make the new gradients smaller.

These solutions are not the only ones possible, moreover there is no proof that the
ambiguous case is completely avoided. For instance, another idea could be the fol-
lowing: keeping the threshold parameter a for the stopping test and, every time the
ambiguous case occurs, rerunning the algorithm with a reduced value of a.

A C++ code has been developed in order to implement MGDA III and III b. It is
described in details in appendix A.

37

Chapter 2. Multiple Gradient Descent Algorithm

38

3 | The PDE constraints

In this chapter, first we will illustrate the general solving procedure that has been ap-
plied to solve multi-objective optimization problems with PDE constraints, then we will
introduce the specific PDEs used as test cases in this work and finally we will present
the first numerical results, related to the convergence of the schemes and the validation
of the methods used.

3.1 Solving method

In this section we want to explain the method used in this work to solve problem of the
kind (1.6). First, let us recall all the ingredients of the problem:

· state equation:
∂u
∂t + L(u) = s(x, t; p) x ∈ Ω, 0 < t ≤ T

∇u · n = 0 ΓN ⊆ ∂Ω, 0 < t ≤ T

u = f (t) ΓD ⊆ ∂Ω, 0 < t ≤ T

u = g(x) x ∈ Ω, t = 0

· cost functional J that we assume quadratic in u:

J(u(p)) =
1
2

q(u, u), (3.1)

where q(·, ·) is a bilinear, symmetric and continuous form. For instance, a very
common choice for J in problems of fluid dynamics is J = 1

2‖∇u‖2
L2(Ω)

.

Let us observe that every classical optimization method requires the computation of the
gradient of the cost functional with respect to the parameters p, that we will indicate
with ∇J. In order to compute it, we can apply the chain rule, obtaining:

∇J(p0) = d(J ◦ u)(p0) = dJ(u0) ◦ du(p0),

being u0 = u(p0). Therefore, ∇J is composed by two pieces. Let us start analysing the
first one.

39

Chapter 3. The PDE constraints

Proposition 9. If J is like in (3.1), than its Fréchet differential computed in u0 and applied to
the generic increment h is:

dJ(u0)h = q(u0, h)

Proof. Using the definition of Fréchet derivative one obtains:

J(u0 + h)− J(u0) =
1
2

q(u0 + h, u0 + h)− 1
2

q(u0, u0) =

= q(u0, h) +
1
2

q(h, h) = q(u0, h) + O(‖h‖2),

where the last passage is justified by the continuity of q(·, ·).

The second piece, i.e. du(p0), is just the derivative of u with respect to the parame-
ters. This means that the i− th component of the gradient of J is the following:

[∇J(p0)]i = q
(
u0, upi(p

0)
)

, (3.2)

where
upi(p

0) =
∂u
∂pi

(p0),

and it is called sensitivity (with respect to the parameter pi). We now apply this proce-
dure to the example introduced above, J = 1

2‖∇u‖2
L2(Ω)

. We observe that the form q
is:

q(u, v) = (∇u,∇v)L2(Ω),

that is bilinear, symmetric and continuous. Therefore we can apply the result of Propo-
sition 9, obtaining:

[∇J(p0)]i =
(
∇u0,∇upi(p

0)
)

L2(Ω)
.

Summing up: in order to solve a minimization problem like (1.6), we need to com-
pute the gradient of J with respect to the parameters. To do that, we see from (3.2) that
it is necessary to know u0 = u(p0) (therefore to solve the state equation with p = p0)
and to know upi . The last step we have to do is finding the equations governing the be-
haviour of the sensitivities upi . To do that, we apply the Continuous Sensitivity Equation
method, shorten in CSE method from now on. See [KED+10]. It consists in formally
differentiating the state equation, the boundary and initial condition, with respect to pi:

∂
∂pi

(
∂u
∂t + L(u)

)
= ∂

∂pi
s(x, t; p) x ∈ Ω, 0 < t ≤ T

∂
∂pi

(∇u · n) = 0 ΓN ⊆ ∂Ω, 0 < t ≤ T
∂

∂pi
u = 0 ΓD ⊆ ∂Ω, 0 < t ≤ T

∂
∂pi

u = 0 x ∈ Ω, t = 0.

40

3.2. Test cases and numerical schemes

After a permutation of the derivatives, if L is linear and Ω does not depend on p, one
obtains the sensitivities equations:

∂upi
∂t + L(upi) = spi(x, t; p) x ∈ Ω, 0 < t ≤ T

∇upi · n = 0 ΓN ⊆ ∂Ω, 0 < t ≤ T

upi = 0 ΓD ⊆ ∂Ω, 0 < t ≤ T

upi = 0 x ∈ Ω, t = 0.

(3.3)

For every i = 1, . . . , N, this is a problem of the same kind of the state equation and
independent from it, therefore from a computational point of view it is possible to use
the same solver and to solve the N + 1 problems in parallel (N sensitivity problems
plus the state). However, if L is nonlinear,

L(upi) 6=
∂

∂pi
L(u),

and we need to introduce a new operator L̃ = L̃(u, upi) = ∂
∂pi
L(u). Therefore, the

sensitivities equations in this case will be:

∂upi
∂t + L̃(u, upi) = spi(x, t; p) x ∈ Ω, 0 < t ≤ T

∇upi · n = 0 ΓN ⊆ ∂Ω, 0 < t ≤ T

upi = 0 ΓD ⊆ ∂Ω, 0 < t ≤ T

upi = 0 x ∈ Ω, t = 0.

(3.4)

They are no more independent from the state equation, but they remain independent
ones from the others. Let us observe that in this case it is necessary to implement a
different (but similar) solver than the one used for the state.

3.2 Test cases and numerical schemes

We now introduce the partial differential equations imposed as constraints of the test
cases considered and the numerical schemes adopted to solve them.

3.2.1 Test cases

In this work we will consider only unsteady one-dimensional scalar advection-diffusion
PDEs, both linear and nonlinear. Let Ω = (xa, xb) be the domain. The linear equation
will be the following:

∂tu− b∂2
xu + c∂xu = s(x, t; p) in (xa, xb), 0 < t ≤ T

u(xa, t) = fD(t) 0 < t ≤ T

∂xu(xb, t) = fN(t) 0 < t ≤ T

u(x, 0) = g(x) in (xa, xb)

(3.5)

41

Chapter 3. The PDE constraints

where b and c are constant coefficients b, c > 0, c� b (i.e. dominant advection), s(x, t),
fD(t), fN(t) and g(x) are given functions and p is the vector of control parameters.
Being c > 0 it makes sense to impose Dirichlet boundary condition in xa, since it is the
inlet, and Neumann boundary condition in xb, since it is the outlet. We observe that the
problem (3.5) is well posed, i.e. the solution exists and is unique. For more details on
the well posedness of this kind of problems see [Sal10], [Qua09].

Applying the CSE method, introduced in section 3.1, one obtains the following sen-
sitivity equations, for every i = 1, . . . , N:

∂tupi − b∂2
xupi + c∂xupi = spi(x, t; p) in (xa, xb), 0 < t ≤ T

upi(xa, t) = 0 0 < t ≤ T

∂xupi(xb, t) = 0 0 < t ≤ T

upi(x, 0) = 0 in (xa, xb)

(3.6)

Let us observe that the sensitivity equations (3.6) are independent one from the other
and all from the state. Moreover, the same solver can be used for all of them.

On the other hand, for the nonlinear case we consider the following equation:
∂tu− b∂2

xu + cu∂xu = s(x, t; p) in (xa, xb), 0 < t ≤ T

u(xa, t) = fD(t) 0 < t ≤ T

∂xu(xb, t) = fN(t) 0 < t ≤ T

u(x, 0) = g(x) in (xa, xb).

(3.7)

We will impose source term, initial and boundary condition such as u(x, t) > 0 ∀x ∈
(xa, xb), ∀t ∈ (0, T). In this way the advection field cu is such that xa is always the inlet
and xb the outlet, and we can keep the same boundary condition and, most important
thing, the same upwind scheme for the convective term, introduced in the next Section.
However, in this case the sensitivity equations are:

∂tupi − b∂2
xupi + cu∂xupi + cupi ∂xu = spi(x, t; p) in (xa, xb), 0 < t ≤ T

upi(xa, t) = 0 0 < t ≤ T

∂xupi(xb, t) = 0 0 < t ≤ T

upi(x, 0) = 0 in (xa, xb).

(3.8)

These are linear PDEs of reaction-advection-diffusion with the advection coefficient
cu(x, t) and the reaction coefficient c∂xu(x, t) depending on space and time. In this case
it is not possible to use the same solver for state and sensitivity, moreover the sensitivity
equations depend on the solution of the state.

3.2.2 Numerical schemes

We now introduce the numerical schemes used to solve the problems (3.5)-(3.6)-(3.7)-
(3.8). To implement them, a C++ code has been developed, described in appendix A. In

42

3.2. Test cases and numerical schemes

every case, the space has been discretized with a uniform grid {xi}N
i=0 where xi = xa + i∆x

and ∆x is the spatial step, that can be chosen by the user.

x0 x1 x2 x3 xN−1 xN
. . .

∆x

Also in time, we considered a uniform discretization: {tn}K
n=0 where tn = n∆t and ∆t

is chosen such as two stability conditions are satisfied:

∆t <
1
2

∆x2

b
∧ ∆t <

∆x
c

. (3.9)

These conditions (3.9) are necessary, since we use explicit methods in time, as shown in
the next subsections.

A first order and a second order scheme have been implemented, by using finite
differences in space for both orders, while in time explicit Euler for first order, and a
Runge-Kutta scheme for second order. See [Qua09] and [LeV07] for more details on
these schemes. The resulting schemes are the following:
all of them are initialized using the initial condition and the Dirichlet boundary condi-
tion:

u0
i = g(xi) ∀i = 0, . . . , N un

0 = fD(tn) ∀n = 0, . . . , K.

• First order scheme for the linear case ∀ n = 1, . . . , K, ∀ i = 1, . . . , N − 1:

un+1
i = un

i − ∆t c
un

i − un
i−1

∆x
+ ∆t b

un
i+1 − 2un

i + un
i−1

∆x2 + ∆t s(xi, tn) (3.10)

Neumann boundary condition i = N:

un+1
N = un+1

N−1 + ∆x fN(tn+1)

• Second order scheme for the linear case ∀ n = 1, . . . , K, ∀ i = 2, . . . , N − 1:
un+ 1

2
i = un

i −∆t
2 c 3un

i −4un
i−1+un

i−2
2∆x + ∆t

2 b un
i+1−2un

i +un
i−1

∆x2 + ∆t
2 s(xi, tn)

un+1
i = un

i −∆t c 3u
n+ 1

2
i −4u

n+ 1
2

i−1 +u
n+ 1

2
i−2

2∆x +

+∆t b u
n+ 1

2
i+1 −2u

n+ 1
2

i +u
n+ 1

2
i−1

∆x2 + ∆t s(xi, tn+ 1
2)

(3.11)

Neumann boundary condition i = N:

un+1
N =

1
3
(4un+1

N−1 − un+1
N−2 + 2∆x fN(tn+1))

Since the numerical dependency stencil for the internal nodes (∀i = 1, . . . , N − 1)
is the following:

43

Chapter 3. The PDE constraints

un+ 1
2

i−2 un+ 1
2

i−1 un+ 1
2

i un+ 1
2

i+1

un+1
i

∆t
2

∆x

for the computation of un+1
1 it is necessary to know the value of the solution

in a point outside the domain. Different choices for this node lead to differ-
ent schemes. Unless otherwise indicated, in this work we decided to impose
un
−1 = un

0 .

With these two schemes (3.10)-(3.11) it is possible to solve the linear state equation
(3.5) and the linear sensitivity equations (3.6).

For the nonlinear state equation (3.7) the scheme is very similar to the one shown
above, the only difference is in the advection term.

• First order scheme for the nonlinear case ∀ n = 1, . . . , K, ∀ i = 1, . . . , N − 1:

un+1
i = un

i − ∆t cun
i

un
i − un

i−1

∆x
+ ∆t b

un
i+1 − 2un

i + un
i−1

∆x2 + ∆t s(xi, tn) (3.12)

• Second order scheme for the nonlinear case ∀ n = 1, . . . , K, ∀ i = 2, . . . , N − 1:
un+ 1

2
i = un

i −∆t
2 cun

i
3un

i −4un
i−1+un

i−2
2∆x + ∆t

2 b un
i+1−2un

i +un
i−1

∆x2 + ∆t
2 s(xi, tn)

un+1
i = un

i −∆t cun+ 1
2

i
3u

n+ 1
2

i −4u
n+ 1

2
i−1 +u

n+ 1
2

i−2
2∆x +

+∆t b u
n+ 1

2
i+1 −2u

n+ 1
2

i +u
n+ 1

2
i−1

∆x2 + ∆t s(xi, tn+ 1
2)

(3.13)

Note that, since the numerical dependency stencil is the same as in the linear case,
we have the same problem for computation of the solution in the first node x1.

Finally, to solve the equation (3.8), the linear schemes can be used, with two simple
modification. The first one is that the coefficient c, constant in (3.10)-(3.11), has to be

substituted with cn
i in (3.10) and in the first equation of (3.11), and with cn+ 1

2
i in the

second equation of (3.13), being cn
i ' cu(xi, tn). Note that the equation is linear since

we are solving the sensitivity equations in upk and u(x, t) is given. The second one is
that the reaction term c(∂xu)n

i (upk)
n
i must be added. Let us observe that in this case, for

the second order scheme, it is necessary to know the state u on a temporal grid twice as
fine as the one used for the sensitivity equations.

3.3 Convergence of the finite differences schemes

In this section we will present some numerical convergence results in order to verify
the actual order of the finite differences schemes in some simple cases. This section is
not meant to be exhaustive on the convergence topic, but only a brief check in some

44

3.3. Convergence of the finite differences schemes

simple cases in which it is easy to compute the analytical solution. First let us observe
that the discretization of the diffusion term does not change from the first to the second
order scheme, therefore we focused on only advection problems.

3.3.1 Advection problem with a steady solution

The first simple case is the following:
∂tu + c ∂xu = x in (0, 1), 0 < t ≤ T

u(0, t) = 0 0 < t ≤ T

u(x, 0) = 0 in (0, 1).

(3.14)

Since both the source term and the Dirichlet boundary condition do not depend on
time, there will be a steady solution, that is uex = x2

2c . If the final time T is big enough,
also the numerical solution will be steady. The error is computed as follows:

e(T) = ‖uex(x, T)− uh(x, T)‖L2(0,1),

where uex is the exact solution and uh the numerical solution. In Figure 3.1 is shown the

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✲✹

✶�
✲✸

✶�
✲✷

✶�
✲✁

✶�
✵

❧✂✄☎✆✝

✞✟
✠
✡☛
☞☞
✌

❋✍✎✏✑ ✂✎✒✓✎

❘✓✏✔❧✑✏

❚✕✓✂✎✍✖✗❧ ✂✎✒✓✎

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✲✘

✶�
✲✙

✶�
✲✚

✶�
✲✹

✶�
✲✸

✶�
✲✷

✶�
✲✁

✶�
✵

❙✓✖✂✛✒ ✂✎✒✓✎

❧✂✄☎✆✝

✞✟
✠
✡☛
☞☞
✌

❘✓✏✔❧✑ ✶

❘✓✏✔❧✑ ✜

❚✕✓✂✎✍✖✗❧ ✂✎✒✓✎

Figure 3.1: Convergence advection steady problem

error with respect to the grid: the theoretical slope is in red. The first order scheme has
the expected convergence. For the second order, two different results are plotted: the
green one correspond to the choice of un

−1 = uex(−∆x, tn), the blue one to un
−1 = fD(tn).

As one can notice, the difference is not significant. However, in both cases the order
is not the one expected. This can be explained by the fact that numerically we are
imposing two boundary condition to a problem that requires only one. The results
obtained removing the Neumann boundary condition and imposing in the last node
the same scheme of the internal nodes are shown in Figure 3.2. These results show that

45

Chapter 3. The PDE constraints

the order is the one expected if we use un
−1 = fD(tn), otherwise, using the exact solution

for the external node leads to a problem that is too simple: the error is comparable to
the machine error for all the grids. In fact, we are imposing the exact solution in two
nodes (x−1 and x0). Moreover, developing by hand the scheme for the computation
of un

1 and imposing un
i = un+1

i (because of the stationarity), one finds that the scheme
yields u1 = ∆x2

2c , that is the exact solution in x1. Since uex is a parabola, two nodes inside
the domain (plus the external one) are enough to represent the exact solution.

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✲✁✂

✶�
✲✁✄

✶�
✲✁✹

✶�
✲✁✷

✶�
✲✁✵

✶�
✲✂

✶�
✲✄

✶�
✲✹

✶�
✲✷

✶�
✵

❧☎✆✝✞✟

✠✡
☛
☞✌
✍✍
✎

❘✏✑✒❧✓ ✶

❘✏✑✒❧✓ ✔

❚✕✏☎✖✗✘✙❧

Figure 3.2: Convergence advection steady problem, without Neumann boundary con-
dition

3.3.2 Advection unsteady problem

The second simple case considered is the following:
∂tu + c ∂xu = 0 in (0, 1), 0 < t ≤ T

u(0, t) = 1 + α sin(f t) 0 < t ≤ T

u(x, 0) = 0 in (0, 1).

(3.15)

Let us observe that the function u(x, t) = 1 + α sin(f (ct − x)) satisfies the equation
and the boundary condition. Moreover, if the time t is big enough (let us say t > t),
the influence of the initial condition is negligible. The results shown in this section are
obtained with c = 1, f = 3

2 π, t = 3 and T = 6. The error is computed as follows:

e(t) = ‖uex(x, t)− uh(x, t)‖L2(0,1) err = ‖e(t)‖L∞(t,T),

and it is shown in Figure 3.3 with respect to the grid. On the left there is the first order
scheme, on the right the second order. The theoretical slope is in red: when the grid
becomes fine enough, both schemes have the order expected, for every time considered.

46

3.4. Validation of the CSE method

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

log(N)

lo
g

(e
rr

)
First order

Numerical result

Theoretical order

(a) First order scheme

10
1

10
2

10
3

10
−4

10
−2

10
0

Second order

log(N)

lo
g

(e
rr

)

Numerical result

Theoretical order

(b) Second order scheme

Figure 3.3: Convergence advection unsteady problem.

3.4 Validation of the CSE method

The purpose of this section is to validate the CSE method introduced in Section 3.1. To
do that, we will consider the problems (3.5) and (3.7) with specific boundary and initial
conditions:

fD(t) = k + α sin(2π f t) fN(t) ≡ 0 g(x) ≡ k (3.16)

where α and f are given parameters, k is big enough to guarantee u(x, t) ≥ 0. We
consider the following source term:

s(x, t) =

{√
A sin(2π f t + ϕ) sin2(x−xc

L π − π
2), if x ∈ (xc − L

2 , xc +
L
2)

0, otherwise
(3.17)

where L is the width of the spatial support, xc is the centre of the support and A and
ϕ are the design parameters, therefore we have p = (A, ϕ). The source term at some
sample times is shown below.

47

Chapter 3. The PDE constraints

xc 1

L

x

Source term

t1
t2
t3
t4

These being the conditions of the state equation, we now introduce the source terms of
the sensitivity equations (3.6) and (3.8):

sA(x, t) =

{
1

2
√

A
sin(2π f t + ϕ) sin2(x−xc

L π − π
2), if x ∈ (xc − L

2 , xc +
L
2)

0 otherwise
(3.18)

and

sϕ(x, t) =

{√
A cos(2π f t + ϕ) sin2(x−xc

L π − π
2), if x ∈ (xc − L

2 , xc +
L
2)

0 otherwise.
(3.19)

Note that one must solve each problem ((3.6) and (3.8)) twice: once with (3.18) as source
term, and once with (3.19). To validate the method, we observe that a first order Taylor
expansion of the solution with respect to the parameters gives:

u(A + dA, ϕ) = u(A, ϕ) + dA uA(A, ϕ) + O(dA2), (3.20a)

u(A, ϕ + dϕ) = u(A, ϕ) + dϕ uϕ(A, ϕ) + O(dϕ2). (3.20b)

We now define uFD as the solution computed with the finite differences scheme, and
uCSE as an approximation of the solution obtained as follows:

uCSE(x, t; pi + dpi) = u(x, t; pi) + dpiupi(x, t; pi),

where pi can be either A or ϕ, and u(x, t; pi) is called reference solution. We want to
measure the following quantity:

diff(T) := ‖uFD(x, T)− uCSE(x, T)‖L2(0,1),

and we expect, due to the Taylor expansion (3.20), that it will be diff(T) ' O(dp2
i).

To do that, we varied the design parameters one at a time, following the procedure
illustrated in Algorithm 1. Figure 3.4 shows in a logarithmic scale diffA (on the left)
and diffϕ (on the right), computed as in line 9-10, Algorithm 1, for the linear case. The

48

3.4. Validation of the CSE method

Algorithm 1 Validation of the CSE method

1: A← Arefer, ϕ← ϕrefer

2: r ← rstart . r = ratio = dA
A = dϕ

ϕ

3: solve state equation with (A, ϕ) −→ store solution in urefer

4: solve sensitivity equations with (A, ϕ) −→ store solutions in uA, uϕ

5: for k = 0 . . . N do
6: dA← rA, dϕ← rϕ
7: solve state equation with (A + dA, ϕ) −→ store solution in uA+dA

8: solve state equation with (A, ϕ + dϕ) −→ store solution in uϕ+dϕ

9: diffA[k]← ‖uA+dA(x, T)− urefer(x, T)− dAuA(x, T)‖L2(0,1)

10: diffϕ[k]← ‖uϕ+dϕ(x, T)− urefer(x, T)− dϕuϕ(x, T)‖L2(0,1)
11: r∗ = 2
12: end for

red line is the theoretical slope. Figure 3.5 shows the same results for the nonlinear case.
One can notice that, in the nonlinear case, the slope is the one expected only starting
from a certain threshold. This is due to the approach chosen in this work, “differentiate,
then discretize”, opposed to the other possible approach “discretize, then differentiate”:
in fact Taylor expansion (3.20) is carried out on the exact solution. By discretizing the
equations, one adds discretization error, so:

diff(T) = O(dp2
i) + O(hr),

where r is the order of the scheme used. The change of slope of the numerical results in
Figure 3.5 corresponds to the point in which O(hr) gets comparable with O(dp2

i). Note
that in this case a spatial step ∆x = 0.05 has been used.

On the contrary, in the “discretize, then differentiate” approach, the Taylor expan-
sion is consistent with the numerical solution computed, whatever grid is used. In
the linear case, one can notice that both approaches yield to the same solution, which
explains the results.

49

Chapter 3. The PDE constraints

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

✶�
✲✆☎

✶�
✲✆✵

✶�
✲✝

✶�
✲✞

✶�
✲✂

✶�
✲☎

✶�
✵

❞✟✠✟

✡
☛☞
☞✌
✍
✎

❞✏✑✑
❆

❈ ❞✟
✷

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

✶�
✲✆✵

✶�
✲✒

✶�
✲✝

✶�
✲✓

✶�
✲✞

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

❞ ❢ ✠ ❢

✡
☛☞
☞✌
✍
✎

❞✏✑✑
✔

❈ ❞❢
✷

Figure 3.4: Validation of the CSE method, linear case. On the left diffA, on the right
diffϕ. In red the theoretical slope.

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

✶�
✲✆✵

✶�
✲✝

✶�
✲✞

✶�
✲✟

✶�
✲✠

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

❞✡☛✡

☞
✌✍
✍✎
✏
✑

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

✶�
✲✆✵

✶�
✲✝

✶�
✲✞

✶�
✲✟

✶�
✲✠

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✵

❞ ❢ ☛ ❢

☞
✌✍
✍✎
✏
✑

Figure 3.5: Validation of the CSE method, nonlinear case. On the left diffA, on the right
diffϕ. In red the theoretical slope.

50

4 | Numerical results

In this chapter we present the numerical results obtained by applying MGDA III b, to
problems governed by PDEs like (3.5) and (3.7), by following the procedure described
in Section 3.1.

First of all, we need to introduce the time dependent cost functional J. The same
J has been used in all the test cases, and it is the one introduced, as an example, in
section 3.1, i.e.:

J(p) =
1
2
‖∇u(p)‖2

L2(Ω) =
1
2
(∇u(p),∇u(p))L2(Ω) . (4.1)

We also recall that in this case the gradient of J with respect to the parameters is:

∇J(p) =
(
∇u(p),∇upi(p)

)
L2(Ω)

, (4.2)

whose computation requires to solve the state and the sensitivity equations.
First we will present some results obtained with the instantaneous approach, that

means, we define the set of objective functionals as:

Jk(p) = J(u(tk; p)) ∀k = 1, . . . , n,

later, we will present a result obtained with the windows approach, where:

Jk(p) =
∫ tk+1

tk

J(u(t; p))dt ∀k = 1, . . . , n.

The solving procedure is schematically recalled in the Algorithm 2, in the case of instan-
taneous approach. Note that the algorithm is general, the only significant difference for
the windows approach is in the evaluation of the cost functionals Jk (line 8).

In section 3.4 we introduced some specific source terms, boundary and initial con-
ditions: unless otherwise indicated, all the results of this chapter are obtained with the
same data, with fixed values of the non-optimized parameters, reported in Table 4.1.

These choices for the values of the parameters are related to the choice of the time
and grid steps: in order to have a spatial grid fine enough to represent accurately the
source term we chose

∆x =
L
20

,

that is, being L = 0.2, ∆x = 0.01. For the temporal step, we recall that it has to satisfy

51

Chapter 4. Numerical results

Algorithm 2 Solving procedure

1: p← pstart

2: while convergence do
3: solve state equation with p −→ store solution in u
4: if Nonlinear then
5: set u as advection-reaction field in sensitivity equations
6: end if
7: solve sensitivity equations with p −→ store solution in upi

8: Jk ← J(u(tk))
9: compute ∇u(tk) and ∇u(tk)pi

10: compute ∇p Jk as in (4.2)
11: ∇p Jk −→MGDA −→ ω
12: ρ← ρstart

13: ptemp ← p− ρω
14: if p /∈ P then correction
15: end if
16: solve state equation with ptemp −→ store solution in utemp

17: Jtemp
k ← J(utemp(tk))

18: if Jtemp
k < Jk ∀k then

19: update: p← ptemp

20: else
21: ρ← αρ . α ∈ (0, 1), fixed parameter
22: go to line 13
23: end if
24: end while

Table 4.1: Values of non-optimized parameters

Parameter Symbol Value

frequency f 4
source centre xc 0.2
source width L 0.2
b.c. average k 5
b.c amplitude α 1

52

4.1. Instantaneous approach

the stability condition (3.9).
As we said in the first chapter, unless all the cost functionals have their minimum

in the same point, there is not a unique optimal solution: this means that running the
multi-objective optimization algorithm from different starting points pstart we will ob-
tain different optimal points. For this reason, first we find the optimal points of the
single cost functionals popt

k (using, for instance, a steepest descent method), and in a
second time we run MGDA from different starting points around the zone identified
by the popt

k .
Let us observe that, being the vector of the optimization parameters composed by

an amplitude and a phase, i.e. p = (A, ϕ), the set of admissible parameters will be:

P = (0,+∞)× [0, 2π], (4.3)

that is an open set, therefore there is no theoretical proof of existence and uniqueness
of the minimum of the single cost functional J. However, we verified numerically case
by case at least the existence. Moreover, every time the parameters are updated it is
controlled whether or not they are in the admissible set (see Algorithm 2, line 14): if
the phase falls outside [0, 2π] it is set to a value on the boundary (for instance, if ϕ <

0 ⇒ ϕnew = 2π), while if the amplitude is negative it is set to a threshold, chosen by
the user.

Finally, while running the single objective optimization algorithm, we noticed an
anisotropy problem: the functionals are much flatter in A then in ϕ, i.e. to have a sig-
nificant difference in the value of the cost functionals, big variations of A are necessary
(big if compared with the variation necessary for ϕ to obtain the same difference for the
cost functionals), and this can affect significantly the numerical optimization method.
To solve this problem quickly, we multiplied by a factor µ > 1 the source term (3.17)
and, consequently, the source terms of the sensitivities. This is equivalent to a change-
ment of variable, therefore we are now optimizing with respect to a new parameter
Anew, related to the old one as follows:

µ
√

Anew =
√

Aold. (4.4)

From (4.4), it is clear that, if µ is big enough, big variations of Aold correspond to small
variations of Anew.

4.1 Instantaneous approach

We start by considering the instantaneous approach: first, it requires to chose suitable
(and interesting) times for the evaluation of the cost functionals. Let us observe that,
since in our case the Dirichlet boundary condition and the source term are both peri-
odic, with the same frequency f = 4, we expect also the solution u, and therefore the
cost functional J, to be periodic with frequency f = 4. For this reason it makes sense
to fix all the instant tk considered inside the same period. Moreover, we would like to
skip the transient part of the phenomena. This given, the choice made for the instant is
the one in Table 4.2. Let us observe that it would be better if the instant considered tk

53

Chapter 4. Numerical results

Table 4.2: Instant considered

t1 t2 t3 t4 t5 t6 t7

3.00 3.04 3.08 3.12 3.16 3.20 3.24

were actual points of the temporal grid, i.e. if ∃m ∈N : tk = m∆t ∀k.

4.1.1 Linear case

For the linear case (3.5)-(3.6) we chose the following values for the advection and dif-
fusion coefficients, and for µ:

c = 1 b = 0.01 µ = 10.

The values of the parameters corresponding to the minimum of the single objective
functionals are shown in Table 4.3. As one can notice, all the values are very close to
each other, therefore it is not an interesting case from a multi-objective optimization
point of view. Anyway, in Figure 4.1 it is shown the final result: the red points corre-
spond to the optimal value of the parameters for each functional; each blue point, in-
stead, correspond to one iteration of the while loop of Algorithm 2, this means that for
each blue point at least three equations have been solved (in fact in the cases in which
the control of line 18 does not succeed it is necessary to solve the state equation more
than once). From Figure 4.1 we can observe that there is a region strictly contained in
the convex hull of the “red points” in which all the points are Pareto-stationary. More-
over, for smaller amplitudes (0.875 ∼ 0.885), it is possible to identify quite clearly the
border of the set of Pareto-stationary points. However, being the region of the Pareto-
stationary parameters so small, it is not possible to appreciate a significant decrement
in the cost functional. In Figure 4.2 it is shown the cost functional J with respect to
time, over a period, for three different choices of parameters: one outside the Pareto-
stationarity zone, one inside and one on the border. As one can notice, it is almost
impossible to distinguish one from the other: to do that it is necessary to zoom in, as
done for Figure 4.3. However, it is clear that this is not a particularly interesting case,
therefore from now on we will consider nonlinear equation.

Table 4.3: Single-objective optimization results - linear case

time tk[s] 3.00 3.04 3.08 3.12 3.16 3.20 3.24

A 0.907108 0.882811 0.876467 0.906197 0.887208 0.873657 0.904139
ϕ 5.12258 5.11216 5.12904 5.1204 5.1116 5.12704 5.12732

54

4.1. Instantaneous approach

✥�✁✂

✥�✄

✥�✄✄

✥�✄☎

✥�✄✆

✥�✄✝

✥�✄✥

✥�✄✞

✥�✄✟

✥�✄✠

✁�✠✝ ✁�✠✥ ✁�✠✞ ✁�✠✟ ✁�✠✠ ✁�✠✂ ✁�✂ ✁�✂✄ ✁�✂☎ ✁�✂✆

♣
✡
☛
☞
✌

❆

Figure 4.1: Result of MGDA applied to the linear case from different starting points.

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✼�✂

✽

✽�✂

✾

✾�✂

✄✁

✄✁�✂

✄✄

✄✄�✂

✄☎

✄☎�✂

t✆✝✞

❏

❖✟t✝✠✡☛ ☞✌ ✍✎✏☛

■✏✝✠✡☛ ☞✌ ✍✎✏☛

❖✏ t✑☛ ✒✎✓✡☛✓ ✎✔ ☞✌ ✍✎✏☛

Figure 4.2: Cost functional for different parameters with respect to time, over a period.

55

Chapter 4. Numerical results

✸ ✸�✁✁✁✂ ✸�✁✁✁✄ ✸�✁✁✁✸ ✸�✁✁✁☎ ✸�✁✁✁✆ ✸�✁✁✁✝ ✸�✁✁✁✞ ✸�✁✁✁✟ ✸�✁✁✁✠ ✸�✁✁✂
✟�✞☎

✟�✞✝

✟�✞✟

✟�✟

✟�✟✄

✟�✟☎

✟�✟✝

✟�✟✟

✟�✠

t✡☛☞

❏

❖✌t☛✍✎✏ ✑✒ ✓✔✕✏

■✕☛✍✎✏ ✑✒ ✓✔✕✏

❖✕ t✖✏ ✗✔✘✎✏✘ ✔✙ ✑✒ ✓✔✕✏

Figure 4.3: Cost functional for different parameters with respect to time - zoom.

4.1.2 Nonlinear case

For the nonlinear case (3.7)-(3.8) we chose the following values for advection and dif-
fusion coefficients, and for µ:

c = 1 b = 0.1 µ = 50.

We followed the same procedure as in the linear case, therefore at first we computed
the optimal points of the single cost functionals, reported in Table 4.4 and drawn in red
in Figure 4.4. In this case, the optimal points found are much more varied, compared to
the linear case, therefore from a multi-objective optimization point of view it is a more
interesting case. For this reason we decided to run MGDA with both the ordering crite-
ria proposed in Section 2.3.2 to see the differences. The results are shown in Figure 4.4.
In order to analyse the differences, we briefly recall the ordering criteria:

· Criterion (2.2) selects the first gradient as:

g(1) = gk where k = argmax
i=1,...,n

min
j=1,...,n

(gi, gj)

(gi, gi)
, (4.5)

Table 4.4: Single-objective optimization results - nonlinear case

time tk[s] 3.00 3.04 3.08 3.12 3.16 3.20 3.24

A 0.34512 1.00652 0.644476 0.47365 1.15389 0.663846 0.216462
ϕ 2.36373 2.04267 1.76051 2.29071 2.1838 1.65968 2.22826

56

4.1. Instantaneous approach

✥�✁

✥�✂

✄

✄�✄

✄�☎

✆�✄ ✆�☎ ✆�✁ ✆�✂ ✥ ✥�✄

♣
✝
✞
✟
✠

❆

(a) criterion (4.5).

✥�✁

✥�✂

✄

✄�✄

✄�☎

✆�✄ ✆�☎ ✆�✁ ✆�✂ ✥ ✥�✄

♣
✝
✞
✟
✠

❆

(b) criterion (4.6).

Figure 4.4: Result of MGDA applied to the nonlinear case from different starting points.
57

Chapter 4. Numerical results

while criterion (2.15) select the first as:

g(1) = gk where k = argmin
i=1,...,n

min
j=1,...,n

(gi, gj)

(gi, gi)
, (4.6)

· The next gradients g(i) are chosen in the same way from both the criteria, that is:

g(i) = g` where ` = argmin
j=i,...,n

cj,j,

First, let us observe that the shape of the Pareto-stationary set is qualitatively the same
in the two cases, even if in case (4.4b) is much more defined. This means that, globally,
the choice of the first gradient does not affect too much the final result. However, it
is clear from the Figures that starting from the same point the two criteria leads to
different final points. Moreover, in the result shown in Figure 4.4a there seems to be a
tendency to converge at the closest single-objective optimal, if there is one close: this
can be explained by the fact that the criterion (4.5) tends to select the “middle vector”
and therefore is very likely to stop the MGDA loop at the first iteration and to compute
ω on the base only of one gradient; on the other hand, the criterion (4.6) prefers as
first vector an external one and therefore is very unlikely to stop MGDA at the first
iteration, this implies that in most of the cases the direction ω is computed on the base
of two gradients (obviously, in this case the maximum number of gradients considered
from MGDA is two, since it is the dimension of the space).

In Figure 4.5 it is shown the cost functional J with respect to time, for different
choices of parameters: the red ones are obtained evaluating the cost functional in some
parameters outside the Pareto-stationarity zone, while the green ones correspond to
parameters inside the region (see the exact value in Table 4.5). From this Figure it is
clear that the functional is periodic and that, sampling the time from only one period,
we minimize the cost functional also for all the other times, as expected. In Figure 4.6
there is the same image, zoomed over a period. The vertical lines denote the sampling
times: at a first view can seem strange that, even at some sampling times, the green
functionals are greater than the red ones. However, this can happen because the notion
of Pareto-stationarity is somehow local: in fact it is based on the evaluation of the gra-
dients in that point. What we can assure is the monotonicity of all the cost functionals
during the MGDA loop: for instance, considering Figure 4.4, we have monotonicity
“along every blue line”, but we cannot say anything if we skip from one to the other.
In Figures 4.7-4.8-4.9-4.10 it is shown the monotonicity “along the blue lines” in some
particular cases: in each subfigure, the red line represents the cost functional evaluated
in the starting parameters, while the purple and the green lines are the cost functional
evaluated in the convergence points of MGDA obtained using, respectively, criterion
(4.5) and criterion (4.6).

58

4.1. Instantaneous approach

Table 4.5: Values of the parameters chosen for Figure 4.5-4.6

A 0.15 0.2 1.0 1.1 0.45 0.4 0.6
ϕ 2.35 1.6 2.3 1.6 1.85 2.15 2.0

collocation outside outside outside outside inside inside inside

✵ ✶ ✷ ✸ ✹ ✺ ✻
✵

✵�✺

✶

✶�✺

✷

✷�✺

✸

✸�✺

✹

✹�✺

t

❏

❖✁t✂✄☎✆ ✝✞ ✟✠✡✆

■✡✂✄☎✆ ✝✞ ✟✠✡✆

Figure 4.5: Cost functional with respect to time for different parameters values - non-
linear case.

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

✄�✂

☎

☎�✂

✸

✸�✂

✹

✹�✂

t

❏

❖✆t✝✞✟✠ ✡☛ ☞✌✍✠

■✍✝✞✟✠ ✡☛ ☞✌✍✠

Figure 4.6: Cost functional with respect to time for different parameters values over a
period - nonlinear case.

59

Chapter 4. Numerical results

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

✄�✂

☎

☎�✂

✸

✸�✂

✹

✹�✂

t

❏

Figure 4.7: Monotonicity of MGDA - starting parameters: A = 0.15, ϕ = 2.35.

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

✄�✂

☎

☎�✂

✸

✸�✂

✹

✹�✂

t

❏

Figure 4.8: Monotonicity of MGDA - starting parameters: A = 0.2, ϕ = 1.6.

60

4.1. Instantaneous approach

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

✄�✂

☎

☎�✂

✸

✸�✂

✹

✹�✂

t

❏

Figure 4.9: Monotonicity of MGDA - starting parameters: A = 1, ϕ = 2.3.

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

✄�✂

☎

☎�✂

✸

✸�✂

✹

✹�✂

t

❏

Figure 4.10: Monotonicity of MGDA - starting parameters: A = 1.1, ϕ = 1.6.

61

Chapter 4. Numerical results

Three sources

In order to test MGDA in dimension higher than 2, we increased the number of param-
eters adding two source terms, of the same type of (3.17), with different centres xc. A
possible result of the complete source term is shown below.

xc1 xc2 xc3 1

L

x

Three sources

t1
t2
t3

As one can notice, the width L of the three sources is the same; moreover, also the
frequency f is the same (and for this simulation we kept the same values than in the
previous sections). In this way there are 6 parameters to optimize (three amplitudes
and three phases), with 7 different cost functionals. It is clear that it makes no sense to
find the single-objective optimal points and then run MGDA systematically in a grid
around these values, because there is no way to visualize the region. Therefore, in this
case we run MGDA starting from some random points.

For the first starting point we set all the amplitudes at 0.5 and all the phases at π.
Figure 4.11 shows the different cost functionals with respect to the iterations in a log-
arithmic scale: one can observe that at each iteration none of the functionals increases
and at least one of them decreases. In Figure 4.12 are compared the cost functional pre
and post optimization (respectively in red and blue) over a period. In Table 4.6 we re-
port the values of the parameters during the main MGDA loop: one can notice that the
second source’s amplitude tends to zero.

We here present the same results described above for a different starting point. One
can notice that, even in this case, the second source’s amplitude tends to zero.

4.2 Windows approach

The final result presented in this work is obtained with the windows approach applied
to the nonlinear case. In Table 4.8 are reported the intervals (tk, tk+1) considered in
this case. All the non-optimized parameters have the same values used for the nonlin-
ear case, with the simple source, and the criterion (4.6) has been used. In Figure 4.15
are shown in red the optimal points of the single objective optimization at in blue the
MGDA iterations, as in the previous cases. The shape of the Pareto-stationary zone is

62

4.2. Windows approach

10
0

10
1

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
0.8

10
0.9

J(3.00)

J(3.04)

J(3.08)

J(3.12)

J(3.16)

J(3.20)

J(3.24)

Figure 4.11: Cost functionals with respect to iteration - three sources - symmetric start-
ing point.

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

☎

✸

✹

✂

✻

✼

✽

✾

✄✁

✄✄

t

❏

✆ ✝✞✟ ✠✝t�

✆ ✝✠✡t ✠✝t�

Figure 4.12: Cost functionals with respect to time - three sources - symmetric starting
point.

63

Chapter 4. Numerical results

Table 4.6: Parameters during MGDA main loop - three sources - symmetric starting
point.

A1 A2 A3 ϕ1 ϕ2 ϕ3

0.5 0.5 0.5 3.14159 3.14159 3.14159
0.326183 0.01 0.497761 2.54601 3.031 3.55003
0.422592 0.0155267 0.276467 2.285 3.02927 3.51984
0.43974 0.0033347 0.248952 2.26425 3.02819 3.51827

0.434359 0.00126382 0.242303 2.26661 3.02778 3.52063
0.366366 0.01 0.126234 2.29823 3.02349 3.55691
0.348423 0.01 0.01 2.13807 3.01764 3.59255
0.349058 0.00062438 0.0102434 2.137 3.01759 3.59259
0.349064 0.000237505 0.0102312 2.13699 3.01759 3.59259
0.349065 9.08649e-05 0.0102276 2.13698 3.01759 3.59259
0.349065 3.4122e-05 0.0102267 2.13698 3.01759 3.59259
0.349065 1.16204e-05 0.0102264 2.13698 3.01759 3.59259

10
0

10
1

10
0.3

10
0.4

10
0.5

10
0.6

10
0.7

10
0.8

10
0.9

J(3.00)

J(3.04)

J(3.08)

J(3.12)

J(3.16)

J(3.20)

J(3.24)

Figure 4.13: Cost functionals with respect to iteration - three sources - asymmetric start-
ing point.

64

4.2. Windows approach

✸ ✸�✁✂ ✸�✄ ✸�✄✂ ✸�☎ ✸�☎✂
✄

☎

✸

✹

✂

✻

✼

✽

✾

✄✁

✄✄

t

❏

✆ ✝✞✟ ✠✝t�

✆ ✝✠✡t ✠✝t�

Figure 4.14: Cost functionals with respect to time - three sources - asymmetric starting
point.

Table 4.7: Parameters during MGDA main loop - three sources - asymmetric starting
point.

A1 A2 A3 ϕ1 ϕ2 ϕ3

0.25 0.5 0.75 3.14159 3.14159 3.14159
0.209686 0.01 0.671903 2.70767 2.9716 3.70705
0.28742 0.01 0.516188 2.56182 2.96944 3.7173
0.32335 0.01 0.385196 2.46421 2.96649 3.7297
0.352622 0.0151327 0.325739 2.40728 2.96619 3.72979
0.416572 0.01 0.209501 2.29981 2.96446 3.73147
0.432156 0.00440427 0.179948 2.2774 2.96396 3.73208
0.367466 0.01 0.0574286 2.25788 2.9599 3.74702
0.369833 0.01 0.0247545 2.1731 2.95696 3.75488
0.37018 0.00183642 0.0246056 2.17192 2.9569 3.75495
0.370197 0.000162565 0.024526 2.17177 2.9569 3.75495
0.370198 2.57116e-05 0.0245225 2.17177 2.9569 3.75495
0.370198 5.76837e-06 0.0245223 2.17177 2.9569 3.75495

Table 4.8: Intervals considered - window approach.

I1 I2 I3 I4 I5 I6

(3.00, 3.04) (3.04, 3.08) (3.08, 3.12) (3.12, 3.16) (3.16, 3.20) (3.20, 3.25)

65

Chapter 4. Numerical results

✥�✁

✥�✂

✥�✄

☎

☎�✥

☎�☎

☎�✆

☎�✝

✞�☎ ✞�✆ ✞�✝ ✞�✟ ✞�✠ ✞�✁ ✞�✂ ✞�✄ ✥

Figure 4.15: MGDA iterations for windows approach.

significantly different from the one obtained in the same case with the instantaneous
approach, however, one can say that approximatively in both cases the zone is centred
around the same value (Ac, ϕc) ∼ (0.6, 2.0).

To see how the window approach and the instantaneous one work, and if there is
any difference between them, we selected two starting points (in particular (A1, ϕ1) =

(1, 1.8) and (A2, ϕ2) = (0.6, 2.3)) that are outside the Pareto-stationary zone in both
cases, and we plotted J(t) with respect to time, computed in the optimal parameters
obtained with the two approaches. The results are shown in Figure 4.16: what appears
from this images is that none of the approaches is better that the other one, it depends
on the final result one is interested in. Moreover, it is not fair to compare two meth-
ods whose aim is to identify a region of points, only on the base of two or three points
in the identified region. The results shown in Figure 4.16 are meant as an example
of how MGDA, coupled with different approaches, works. In Tables 4.9-4.10-4.11-4.12
the precise values are reported: Jpre correspond to the cost functional pre optimization,
Jwin correspond to the cost functional optimized with the window approach and Jinst

is the one optimized with the instantaneous approach. The values shown in the Tables
are a further confirmation of the monotonicity of MGDA. Moreover, we recall that the
approaches (windows and instantaneous) are not alternative: in fact, it is possible to
consider a set of cost functionals of different nature, some of them generated by instan-
taneous evaluation of the cost functional, and some generated by an average operation

66

4.2. Windows approach

Table 4.9: Comparing the windows and the instantaneous approach - starting parame-
ters (A, ϕ) = (1, 1.8) - instantaneous values.

Jpre Jwin Jinst

t1 = 3.00 3.4651 3.0819 2.7550
t2 = 3.04 1.4981 1.3320 1.4196
t3 = 3.08 1.4826 1.4694 1.3487
t4 = 3.12 2.6260 2.2950 2.1037
t5 = 3.16 2.0030 1.7714 1.8955
t6 = 3.20 1.6249 1.6738 1.5410
t7 = 3.24 3.5074 3.1961 2.7891

Table 4.10: Comparing the windows and the instantaneous approach - starting param-
eters (A, ϕ) = (1, 1.8) - averaged values.

Jpre Jwin Jinst

I1 = (3.00, 3.04) 0.1015 0.0883 0.0847
I2 = (3.04, 3.08) 0.0509 0.0495 0.0505
I3 = (3.08, 3.12) 0.0838 0.0770 0.0687
I4 = (3.12, 3.16) 0.1006 0.0871 0.0861
I5 = (3.16, 3.20) 0.0618 0.0597 0.0620
I6 = (3.20, 3.25) 0.1415 0.1339 0.1167

over a window of time.
Finally, we report that, in this case (i.e. with only one source term and a non-

linear state equation), the optimal parameters obtained by minimizing with a single
objective technique the time-average over the whole period of the cost functional are
(Â, ϕ̂) = (0.528949, 1.96501). We observe that these values are in the middle of both
the Pareto-stationarity zones, the one obtained with the instantaneous approach and
the one with the windows approach. Moreover, we observe that this single objective
approach is equivalent to minimizing the sum of the cost functionals used for the win-
dows approach. In Table 4.13 we report the values (instantaneous and time-averaged
over the intervals) of the cost functional computed in the optimal parameters (Â, ϕ̂):
as expected, with this approach there are some instant at which the cost functional in-
creases, and also some intervals over which the average increases; this is balanced by
other instant, or intervals, in which the reduction of the cost functional value is bigger
than the one obtained with the multi-objective approach.

67

Chapter 4. Numerical results

3 3.05 3.1 3.15 3.2 3.25
1

1.5

2

2.5

3

3.5

4

t

J

J non optimized

J inst. approach

J windows approach

(a) Starting parameters (A, ϕ) = (1, 1.8).

3 3.05 3.1 3.15 3.2 3.25
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

t

J

J non optimized

J inst. approach

J windows approach

(b) Starting parameters (A, ϕ) = (0.6, 2.3),

Figure 4.16: Comparing the windows and the instantaneous approach.

Table 4.11: Comparing the windows and the instantaneous approach - starting param-
eters (A, ϕ) = (0.6, 2.3) - instantaneous values.

Jpre Jwin Jinst

t1 = 3.00 2.1546 2.2237 2.1386
t2 = 3.04 1.7273 1.5738 1.6303
t3 = 3.08 2.2081 2.0684 1.9736
t4 = 3.12 1.6072 1.6375 1.5941
t5 = 3.16 1.7478 1.6514 1.7390
t6 = 3.20 2.5253 2.3834 2.2855
t7 = 3.24 2.4536 2.5198 2.3795

68

4.2. Windows approach

Table 4.12: Comparing the windows and the instantaneous approach - starting param-
eters (A, ϕ) = (0.6, 2.3) - averaged values.

Jpre Jwin Jinst

I1 = (3.00, 3.04) 0.0702 0.0691 0.0696
I2 = (3.04, 3.08) 0.0833 0.0759 0.0753
I3 = (3.08, 3.12) 0.0763 0.0747 0.0709
I4 = (3.12, 3.16) 0.0641 0.0636 0.0652
I5 = (3.16, 3.20) 0.0850 0.0789 0.0795
I6 = (3.20, 3.25) 0.1293 0.1288 0.1213

Table 4.13: Results of the single-objective optimization.

JS-O

t1 = 3.00 2.2961
t2 = 3.04 1.4410
t3 = 3.08 1.4575
t4 = 3.12 1.7497
t5 = 3.16 1.8121
t6 = 3.20 1.7042
t7 = 3.24 2.3827

JS-O

I1 = (3.00, 3.04) 0.0736
I2 = (3.04, 3.08) 0.0568
I3 = (3.08, 3.12) 0.0631
I4 = (3.12, 3.16) 0.0744
I5 = (3.16, 3.20) 0.0669
I6 = (3.20, 3.25) 0.1076

69

Chapter 4. Numerical results

70

5 | Conclusions and future devel-
opments

In this work we have presented a procedure that identifies a zone of parameters that
are Pareto-stationary, i.e. a region of interesting values for the parameters of a complex
problem. This identification has a very high computational cost that, however, can be
reduced on three levels:

(i) it is possible to parallelize the whole process of identification of the Pareto-stationary
zone at the highest level, since the application of MGDA from one starting point
is independent from its application to another starting point;

(ii) it is also possible to parallelize the solution of the sensitivities, since they are
independent one from the other, and, in the linear case, also the solution of the
state; this can be useful as the number of parameters increases;

(iii) finally, it is possible to use reduced methods to solve the PDEs more efficiently.

A new ordering criterion of the gradients has been proposed in this work, to per-
form an incomplete Gram-Schmidt process: the numerical results have shown how this
criterion leads to a better identification of the Pareto-stationary region, which is more
defined.

Moreover, we would like to underline the generality of this multi-objective op-
timization method: in fact, even if this work was focused on systems governed by
unsteady PDEs, the method can be applied to any kind of problem, it is sufficient to
provide a set of cost functionals.

One can apply this method also to problems where there are different temporal
phases and one wants to minimize different cost functionals for each phase, as shown
in Figure 5.1. In fact the quantities that have to be minimized during a transient phase
are usually different from the ones to minimize when the steady state has been reached.
For instance, one can think to the optimization of an air foil of a plane: the interesting
quantities during the take-off are different from the one interesting during the steady
state or during the landing. The classical approach in these cases is to minimize a
convex combination of the different cost functionals, however the multi-objective op-
timization approach guarantees that all the cost functionals considered decrease (or,

71

Chapter 5. Conclusions and future developments

t
tI tI I tI I I

phaseI phaseI I phaseI I I

JI JI I JI I I

Figure 5.1: Example of different cost functionals for different phases.

in the worst case, remain at the same value) at every iteration, which instead is not
guaranteed using the classical approach.

Finally, this method will be applied by the OPALE team to optimize problems in
which the governing PDEs are three-dimensional incompressible unsteady Reynolds-
averaged Navier-Stokes equations: it will be used to optimize the parameters of a flow
control device, in particular a synthetic jet actuator as the one described in [DV06]. An-
other application proposed for the future is to use this technique to minimize the drag
coefficient for cars, since this is one of the main source of pollution, without changing
their shape: the idea is to apply some flow control device, the position of whose is one
of the parameters to optimize.

72

Appendices

73

A | Implementation

In this appendix we describe the C++ code (for a detailed manual, see [LLM05] and
[Str08]), developed for the implementation of the last version of MGDA introduced
in this work and for the resolution of some one-dimensional scalar PDEs used as test
case. Therefore, the code is built around two principal classes: the class mgda, which
implements the multi-objective optimization algorithm, and the class simulator, which
implements a solver for a specific kind of PDEs.

Since this code has been developed in the framework of an internship at INRIA, it
is an INRIA property, this is why we don’t report the whole code, but only some parts.
Moreover, this code is meant to be used from the researchers of OPALE team, in order
to solve multi-objective optimization problems.

A.1 Class mgda

We start describing the class mgda. Note that this class can be used independently from
the kind of problem that generated the multi-objective optimization one: the user only
needs to provide the set of gradients and the main method of the class computes the
descent direction ω. The following code shows only the most important structures and
method contained in the class:

1 c l a s s mgda
2 {
3 private :
4 vector <double> omega ;
5 vector <vector <double> > grads ;
6 vector <vector <double> > Cmatr ;
7 vector < int > idx ;
8 vector <vector <double> > b a s i s ;
9 bool i n i t i a l i z a t i o n () ;

10 . . .
11 public :
12 void compute_direct ion () ;
13 . . .
14 } ;

Let us now analyse every structure:

75

Appendix A. Implementation

· omega is the vector in which is stored the research direction.

· grads is provided by the user such as the vector grads[i] corresponds to gi, i.e. it
is the matrix of non-ordinate gradients.

· idx is the vector containing the indexes of the reordered gradients, in fact the ma-
trix grads given by the user remains unchanged during the algorithm. The vector
idx is necessary to access to it in the proper order, as follows: g(i) = grads[idx [i]].

· basis is a matrix built by the algorithm and contains the vectors ui that compose
the orthogonal basis, computed as in (2.6).

· Cmatr contains the lower triangular matrix C introduced in (2.4). In this case,
when at the i− th iteration the index ` is identified and g(i) = g`, the i− th and
the `− th lines of C are actually exchanged. To be more precise, only the elements
in the columns that have been filled (i.e. from the first to the (i− 1)− th), plus the
diagonal term, are exchanged, as shown in (A.1)-(A.2).

C =

•
• •
• • •
? � . ◦
• • • •
? � . ◦
• • • •

before permutation

←− curr. line i

←− line `

(A.1)

C =

•
• •
• • •
? � . ◦
• • • •
? � . ◦
• • • •

after permutation (A.2)

· some other members not reported in the code are: the integers NP and NCF to
store respectively the number of parameters and the number of cost functionals,
the integer m to store the number of gradients actually used to compute ω, two
integers recCount and recToll to control recoursive loops, a boolean verbosity
to decide whether or not to print the auxiliary structures as they change along
the algorithm, and some methods to set the parameters and to get the auxiliary
structures. In particular, there is the inline method void get_direction(vector<
double>&) and a second version of the method that computes the direction: void
compute_direction(vector<double>&).

Before describing the main method void compute_direction(), we introduce the pri-
vate method bool initialization () . The main part of it consists in building the matrix T

76

A.1. Class mgda

introduced in (2.14) in order to chose the first gradient, and to initialize all the auxiliary
structures. We now report and comment some of the fundamental parts.

1 bool mgda : : i n i t i a l i z a t i o n ()
2 {
3 i f (grads . empty ())
4 {
5 c e r r << " I t i s necessary to s e t the gradients f i r s t .\n" ;
6 return f a l s e ;
7 }
8 for (i n t i = 0 ; i < NCF; ++ i)
9 {

10 i f (s q r t (dot (grads [i] , grads [i])) < t o l l)
11 {
12 omega . ass ign (NP, 0) ;
13 return f a l s e ;
14 }
15 }
16 . . .

At the beginning of initialization it is checked whether or not it makes sense to run the
algorithm to compute the research direction. In particular, the second control (line 10)
verifies that none of the gradients is zero. The function double dot(const vector<double
>&, const vector<double>&) is implemented in the file utilities.hpp and returns the
scalar product between two vectors. If one of the gradients is zero, the problem is triv-
ial: ω = 0 and there’s no need to run the whole algorithm.

Done these controls, the actual initialization can start: the auxiliary structures are
cleared, resized and initialized as shown in the following code.

1 . . .
2 idx . c l e a r () ;
3 idx . r e s i z e (NCF) ;
4 for (i n t i = 0 ; i < NCF; ++ i)
5 idx [i] = i ;
6 b a s i s . c l e a r () ;
7 b a s i s . reserve (NCF) ;
8 m = NCF;
9 Cmatr . c l e a r () ;

10 Cmatr . r e s i z e (NCF) ;
11 . . .

Note that for basis the method reserve(NCF) has been used, instead of resize (NCF),
since it is the only structure whose size is unknown at the beginning of the algorithm.

We now need to build the matrix T introduced in (2.14): since this matrix is nec-
essary only to select the first gradient and than can be deleted, it makes sense to use
Cmatr to do that. In the following code is shown the process to chose the first gradient

77

Appendix A. Implementation

with the ordering criterion (2.15)-(2.5). The functions double min(const vector<double
>&) and int posmin(const vector<double>&) are implemented in utilities.cpp and
they simply call the function min_element contained in the library algorithm. They
have been introduced only to make the code easier to read.

1 . . .
2 for (i n t i = 0 ; i < NCF; ++ i)
3 {
4 Cmatr [i] . r e s i z e (NCF) ;
5 for (i n t j = 0 ; j < NCF; ++ j)
6 Cmatr [i] [j] = dot (grads [i] , grads [j]) ;
7 }
8 vector <double> a (NCF) ;
9 for (i n t i = 0 ; i < NCF; ++ i)

10 a [i] = min (Cmatr [i]) /Cmatr [i] [i] ;
11 i f (posmin (a) != 0)
12 swap (idx [0] , idx [posmin (a)]) ;
13 b a s i s . push_back (grads [idx [0]]) ;
14 . . .

After this, Cmatr is resized in order to contain a lower triangular matrix and is set to
zero, except for the element in position (0,0), set to one. Finally, the method returns
true.

1 . . .
2 for (i n t i = 0 ; i < NCF; ++ i)
3 Cmatr [i] . ass ign (i +1 ,0) ;
4 Cmatr [0] [0] = 1 ;
5 return true ;
6 }

We now report some of the fundamental parts of the body of the method com-
pute_direction(), analysing them step by step. At the beginning, the vector omega is
cleared and the private method bool initialization () described above is called: only if
the boolean returned from it is true, omega is set to zero and the algorithm can start.

1 vector <double> mgda : : compute_direct ion ()
2 {
3 omega . c l e a r () ;
4 bool f l a g = this−> i n i t i a l i z a t i o n () ;
5 i f (! f l a g) return ;
6 omega . ass ign (NP, 0) ;
7 double pmin (0) ;
8 bool amb (f a l s e) ;
9 . . .

78

A.1. Class mgda

We do not report the main loop for the Gram-Schmidt process, since it is just the coding
translation of the algorithm explained in the previous chapter. However, we would like
to focus on a particular part: the Pareto-stationarity test. Right after the computation
of a new ui, if this is zero, the test illustrated in Proposition 5 must be done, for which
it is necessary to solve the linear system (2.10). To do this, the lapack library has been
used as follows.

1 . . .
2 i f (s q r t (dot (unew , unew)) < t o l l)
3 {
4 . . .
5 / / d e f i n e A ’A
6 vector <double> AtA(i * i) ;
7 for (i n t row = 0 ; row < i ; ++row)
8 for (i n t c o l = 0 ; c o l < i ; ++ c o l)
9 AtA[row+ i * c o l] = dot (grads [idx [row]] , grads [idx [c o l]]) ;

10 / / d e f i n e A ’ b
11 vector <double> Cprime (i) ;
12 for (i n t k = 0 ; k < i ; ++k)
13 Cprime [k] = dot (grads [idx [i]] , grads [idx [k]]) ;
14 / / compute t h e s o l u t i o n
15 . . .
16 dgetrs_ (&TRANS,&N,&NRHS,&AtA[0] ,&LDA, IPIV ,&Cprime [0] ,&LDB,&

INFO) ;
17 . . .
18 m = i ;
19 i f (max(Cprime) <=0)
20 {
21 i f (v e r b o s i t y) cout << " Pareto−s t a t i o n a r i t y detec ted\n" ;
22 return ;
23 }
24 e lse
25 {
26 i f (v e r b o s i t y) cout << " Ambiguous case\n" ;
27 amb = t rue ;
28 }
29 break ;
30 }
31 . . .

Note that the vector Cprime is initialized as the right handside of the linear system and
it is overridden with the solution by the function dgetrs_. The break at line 29 exits
the main loop for the Gram-Schmidt process, whose index is i.

Finally, the ambiguous case is treated recursively, as follows:

1 . . .

79

Appendix A. Implementation

2 i f (amb)
3 {
4 bool desc = t rue ;
5 vector <vector <double> > newgrads = grads ;
6 for (i n t i = 0 ; i < NCF; ++ i)
7 {
8 i f (dot (omega , newgrads [i]) <0)
9 {

10 i f (v e r b o s i t y) cout << "omega i s not a d . d . f o r i =
" << i << endl ;

11 for (i n t comp = 0 ; comp < NP; ++comp)
12 newgrads [i] [comp] *= gamma;
13 desc = f a l s e ;
14 }
15 }
16 i f (! desc)
17 {
18 i f (v e r b o s i t y) cout << " re cou rs ive\n" ;
19 i f (recCount > r e c T o l l)
20 {
21 c e r r << " Recoursive l i m i t reached\n" ;
22 omega . c l e a r () ;
23 return ;
24 }
25 mgda rec (newgrads , verbos i ty , t o l l) ;
26 rec . set_recCount (this−>recCount +1) ;
27 rec . s e t _ r e c T o l l (this−>r e c T o l l) ;
28 rec . compute_direct ion (this−>omega) ;
29 }
30 }
31 return ;
32 }

A.2 Class simulator

The second main class of the code is the class simulator: the purpose of this class is
to solve three specific types of PDEs, introduced in (1.5) and (3.4), and used as test
case. We recall that the differential operators considered are of advection-diffusion,
with constant coefficients, and the PDEs are one-dimensional, scalar and unsteady.

The structure of the class is reported in the following code, in its main parts. Note
that this class stores pointers to polymorphic objects: this cooperation between classes
is know as aggregation. For more details on this programming technique, see [For].

1 c l a s s s imulator

80

A.2. Class simulator

2 {
3 private :
4 double c ;
5 double b ;
6 double xa ;
7 double xb ;
8 double T ;
9 double dx ; i n t N;

10 double dt ; i n t K;
11 vector <double> s o l ;
12 funct ion * bcD ;
13 funct ion * bcN ;
14 funct ion * i c ;
15 funct ion * source ;
16 . . .
17 public :
18 s imulator () ;
19 s imulator (const s imulator &) ;
20 void run (i n t order = 1) ;
21 . . .
22 } ;

We now explain every member and method listed above.

· c and b are, respectively, the advection and the diffusion coefficient.

· xa and xb are the extreme points of the domain and T is the final time.

· dx and dt are the spatial and time discretization step, while N and K are, respec-
tively, the number of nodes and of time steps.

· sol is the vector in which the solution is stored. There is also a boolean mem-
ber, memory, to decide whether to store the whole solution or only the last two
temporal steps (in this second case, the solution is printed on a file).

· bcD, bcN, ic and source are the analytical functions for boundary and initial con-
dition and for the source term. The abstract class function will be explained in
detail afterwards.

· simulator() is the default constructor: it initializes all the parameters to default
values (see Table A.1). Note that the pointer are initialized to the NULL pointer:
it is necessary to set all the analytical functions before running any simulation.

· simulator(const simulator&) is the copy constructor. It is necessary, for instance,
to store more equations in a vector (useful in case in which there are many sensi-
tivities).

81

Appendix A. Implementation

Table A.1: Default values.

Parameter Symbol Value

advection coeff. c 1
diffusion coeff. b 0.1
extremal point xa 0
extremal point xb 1

spatial step ∆x 0.02
final time T 6

temporal step ∆t 0.0004
analytical functions NULL pointer

· the method run is the main method of the class: it solves the equation according
to the schemes presented in Chapter 2.

· some other methods and members not listed in the code above are: some booleans
to handle the type of the equation (for instance if it is linear or not); a method
that, given the exact solution, computes the spatial convergence; a method that,
given an output stream, prints the solution in a gnuplot compatible format; many
methods to set and/or get the members.

Class function

To store the boundary and initial conditions and the source term in an analytical form,
the class function has been implemented. It is an abstract class, meant just to define the
public interface. The declaration of the class is reported below.

1 c l a s s func t ion
2 {
3 protected :
4 double a ;
5 public :
6 funct ion () { } ;
7 funct ion (double A) : a (A) { } ;
8 v i r t u a l ~funct ion () { } ;
9 v i r t u a l func t ion * clone () const = 0 ;

10 v i r t u a l double in (double , double) const ;
11 v i r t u a l double in (double) const ;
12 . . .
13 } ;

Some observation about the class:

· a parameter a is defined because even the most simple functions need it and, even
though it is not necessary, it is useful;

82

A.2. Class simulator

· it is necessary to declare the destructor virtual because some classes derived from
function may add new parameters;

· a method clone is implemented, since it is necessary for the copy constructor of
the class simulator;

· the methods in are the ones that evaluate the functions in the given point: there
are two methods in because there can be functions depending only on space, only
on time or depending on both. Note that the decision to implement a method in
instead of an operator() is merely esthetic, due to the fact that we use pointers
and not references in the class simulator.

From this class derive many other concrete ones, that implement the operator in
according to the problem one wants to solve. It is possible to implement every kind of
function, but the structure of the new class must be the following:

1 c l a s s newFun : public func t ion
2 {
3 protected :
4 double newParam ;
5 public :
6 newFun () { } ;
7 newFun (double A, double newP) : funct ion (A) , newParam (

newP) { } ;
8 v i r t u a l ~newFun () { } ;
9 v i r t u a l func t ion * clone () const { return ((funct ion *) (new

newFun (* t h i s))) ; } ;
10 . . .
11 } ;

Therefore, a derived class must implement:

· a virtual destructor, in order to override the one of the base class, if new members
are added;

· a method clone().

Naturally, the derived class can add as many parameters as needed: in the above exam-
ple there is only one new parameter for simplicity. Moreover, the derived class should
override at least one of the methods in.

On the destructor of the class simulator

Since the class simulator contains some pointers, the synthetic destructor does not work
properly: in fact it would destroy the pointer itself without freeing the pointed resource.
Before proposing some possible implementations of the destructor, let us observe that
in this work all the objects simulator have been declared at the beginning of the code

83

Appendix A. Implementation

always in the main scope, never inside loops, and destroyed only at the end of the pro-
gram: therefore, even if a proper destructor is not implemented, generally at the end of
a program the modern OSs free all the memory that has not been freed by the program
itself. However, it is good practice to implement the destructor and it gets necessary
if the class is used in more complex programs. The main problem for the implemen-
tation of the destructor is that the class simulator does not have the full ownership of
the pointed resources, but only a shared one. For this reason, here we propose some
possible implementations:

· the straightforward approach is to pass to C++11 (instead of C++) and use smart
pointers (in particular the shared ones);

· another approach can be to give to the class the full ownership of the functions:
however, this can lead to multiple (and useless) declaration of the same function;

· another approach is to remove the method clone from the class function and, in
the copy constructor of the class simulator, simply make the pointers of the new
object point to the same data of the copied object. However, in this way it is not
possible to build a simulator object with the copy constructor and changing the
parameters of the data afterwards, without changing also the ones of the original
object.

· finally, one can write his own class of smart pointers.

84

Bibliography

[Ber82] D.P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic Press, New York, 1982.

[BTY+99] D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh, and
M. J. Wolfgang. Drag reduction in fish-like locomotion. Journal of Fluid
Mechanics, 392:183–212, 1999.

[Dés09] J. A. Désidéri. Multiple-gradient descent algorithm (MGDA). INRIA Re-
search Report, RR-6953, 2009.

[Dés12a] J. A. Désidéri. MGDA II: A direct method for calculating a descent direction
common to several criteria. INRIA Research Report, RR-7922, 2012.

[Dés12b] J. A. Désidéri. Multiple-gradient descent algorithm (MGDA) for multi-
objective optimization. Comptes Rendus de l’Académie des Sciences Paris,
350:313–318, 2012.

[DV06] Régis Duvigneau and Michel Visonneau. Optimization of a synthetic jet
actuator for aerodynamic stall control. Computers & fluids, 35(6):624–638,
2006.

[EMDD08] Badr Abou El Majd, Jean-Antoine Désidéri, and Régis Duvigneau. Multi-
level strategies for parametric shape optimization in aerodynamics. Eu-
ropean Journal of Computational Mechanics/Revue Européenne de Mécanique
Numérique, 17(1-2):149–168, 2008.

[For] L. Formaggia. Appunti del corso di programmazione avanzata per il cal-
colo scientifico.

[Gia13] M. Giacomini. Multiple-gradient descent algorithm for isogeometric shape
optimization. Master’s thesis, Politecnico di Milano – INRIA Méditerranée
Sophia Antipolis, 2013.

[KED+10] A. Kozub, P. Ellinghaus, R. Duvigneau, J. C. Lombardo, and N. Dal-
masso. Interactive and immersive simulation using the continuous sen-
sitivity equation method with application to thermal transport. INRIA Re-
search Report, RR-7439, 2010.

85

Bibliography

[LeV07] R.J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Society for Industrial
and Applied Mathematics, 2007.

[Lio71] J.L. Lions. Optimal Control of Systems governed by Partial Differential Equa-
tions. Springer-Verlag, 1971.

[LLM05] S. B. Lippman, J. Lajoie, and B. E. Moo. C++ Primer (4th Edition). Addison-
Wesley Professional, 2005.

[NW06] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York,
2006.

[Par96] Vilfredo Pareto. Cours d’Economie Politique. Droz, Genève, 1896.

[QSS00] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer,
2000.

[Qua09] A. Quarteroni. Numerical models for differential problems, volume 2 of MS&A
Series. Springer, 2009.

[Rao86] S. S. Rao. Game theory approach for multiobjective structural optimization.
1986.

[Sal] S. Salsa. Note su ottimizzazione in spazi di Banach e Hilbert e sul controllo
per EDP.

[Sal10] S. Salsa. Equazioni a derivate parziali: Metodi, modelli e applicazioni. Springer
Italia Srl, 2010.

[Str06] G. Strang. Linear algebra ant its applications, fourth edition. Thomson Brooks
Cole, 2006.

[Str08] B. Stroustrup. Programming: Principles and Practice Using C++. Addison-
Wesley Professional, 1st edition, 2008.

[Trö10] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods,
and Applications. Graduate Studies in Mathematics. American Mathemati-
cal Society, 2010.

86

Ringraziamenti

Anche questa avventura è giunta al suo termine: sono stati cinque anni intensi, a tratti
felici e a tratti difficili, durante i quali sono cresciuta molto. Vorrei quindi ringraziare
tutte le persone che ci sono state e che hanno contribuito a rendere questo periodo della
mia vita speciale.

Ringrazio il professor Parolini per aver sostenuto la mia idea di fare la tesi all’estero,
ancor prima dell’esistenza di un progetto concreto, e per la passione che trasmette
quando insegna.

Donc, je veux remercier Régis pour le projet très intéressant qu’il m’a proposé et
parce que travailler avec lui a été une expérience nouvelle et stimulante. Je remercie
Jean-Antoine, pour toutes les “nouvelles idées” et Abdou, pour l’aide pour la prépa-
ration des examens. Je remercie toute l’équipe OPALE, plus les deux CASTOR, pour
m’avoir accuelli à Sophia: Matthias et José, pour l’aide, en particulier au début, Élise,
Aekta, Maria Laura et Paola. Un ringraziamento particolare a Enrico, per aver portato
un po’ di aria di casa e di Poli e per il grande aiuto con il francese.

Ringrazio alcuni dei professori che hanno segnato questi cinque anni: la prof. Paganoni,
per il buonumore, la simpatia e l’umanità; il prof. Fuhrman perché nel mio modo di
studiare si distingue chiaramente un “ante Fuhrman” e un “post Fuhrman”; il prof.
Tomarelli, perché spiega matematica come se parlasse di letteratura; i prof. Grasselli e
Formaggia per la grandissima disponibilità. Un grazie particolare va al professor Salsa:
per il modo di insegnare, per gli infiniti aneddoti e per l’attenzione che dedica agli stu-
denti. Infine, grazie a Francesca perché se non fosse stato per lei probabilmente non
avrei mai iniziato Ingegneria Matematica.

Ringrazio tutti gli amici che hanno condiviso con me questo percorso fin dai primi
passi: Franci, ottima compagna di tesi triennale e di grandi risate; Nico, per aver ar-
ricchito la cultura popolare di nuovi, interessantissimi proverbi; Eugenio, per essere
di poche, ma mai banali, parole; Anna, grande compagna di gossip (perché ormai
ringraziarla per le torte è diventato mainstream); Cri, nonostante ci abbia abbandonati;
Rik e Fiz, per tutte le feste organizzate negli anni; il Pot, per essere sempre un passo
avanti a tutti e non farlo pesare mai; infine ringrazio Andrea, per avermi spronata a
dare sempre il massimo e per avermi fatta crescere a livello personale.

87

Ringraziamenti

Un grande ringraziamento va all’AIM, per tutte le cose che ho imparato facendo
parte dell’associazione ma soprattutto per tutte le persone che ho conosciuto. In parti-
colare Marco, per avermi insegnato a ridere di me stessa ma soprattutto perché senza
di lui non avrei mai raggiunto l’incredibile traguardo di 120 stelle a supermario64; Nic,
per il modo in cui si appassiona a tutto quello che fa; Teo, per essere un’inesauribile
fonte di soluzioni a problemi burocratici; Nahuel, per il mese in cui non abbiamo mai
visto la luce per preparare ARF; Ale, per avermi indirizzata verso questa esperienza
in Francia; Abele, per tutte le risate nel preparare la famosa “domanda per la lode”;
Jacopo, per essere l’amico che ho sempre voluto e il miglior organizzatore di eventi che
il Poli abbia mai visto. Un grazie a tutto il direttivo 2014 per il grandissimo lavoro di
rinnovo.

Un ringraziamento particolare per i luoghi che hanno segnato questi anni: il Poli,
la Nave e il Tender, ormai seconde case; Milano, la mia città che tanto mi è mancata in
questi ultimi mesi; Rasun e Rimini, e con loro tutti gli amici riminesi e le persone incon-
trate in questi ventiquattro anni, per essere dei rifugi d’infanzia; Chiavari, per essere
diventata una “casa nel bosco”; Antibes, per avermi accolta nella sua stagione migliore.
Ringrazio poi U&B, Friends, i Beatles, Guccini, Dalla e De Gregori per la compagnia in
tutte le serate passate da sola. Grazie anche alle guance di Stefano, per essere il migliore
antistress di sempre.

Un grazie di cuore ai miei amici di sempre: Maui, per le ormai famose “battute
alla Maui” e per essere sempre presente quando chiamato; Eli perché, nonostante sia
sempre in giro per il mondo, alla fine torna sempre; Gue, per la capacità di ascoltare e
di mantenere sempre la calma; Giorgia, per l’intelligenza con cui ascolta chi ha punti di
vista diversi dal suo senza voler imporre le sue idee; Sonia, per essere la mia coscienza
e l’unica in grado di riportarmi coi piedi per terra quando ne ho bisogno; Martina, per
essere la sorella che non ho mai avuto.

Tutto questo non sarebbe mai stato possibile senza il sostegno della mia famiglia:
un grazie agli zii, che si sono sempre interessati; ai nonni Luigia e Silvio che pur non
essendo ancora riusciti a capire quello che faccio ne sono sempre stati fieri; alla nonna
Angela, che ha visto questo percorso iniziare ma purtroppo non finire, e al nonno Lu-
ciano, a cui spesso ho pensato nei momenti di indecisione e difficoltà. Grazie a una
mamma incredibile, sempre presente e pronta ad ascoltare le mie lamentele, e in grado
di risolvere ogni problema pratico esistente; grazie a papà per tutte le passioni che mi
ha trasmesso, dallo sport allo studio, e per la sicurezza che mi dà la sua presenza, in
ogni occasione.

Infine, il ringraziamento più grande va a Stefano: per avermi aiutata e supportata in
ogni cambio di idee, per essersi preso cura di me in ogni momento, per la straordinaria
capacità di rendermi quotidianamente felice.

88

