
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

High Level Control Architecture and

Dynamic Simulation for an Autonomous

All Terrain Robot

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Relatore: Ing. Matteo Matteucci

Correlatore: Ing. Davide Cucci

Tesi di Laurea di:

Gianluca Bardaro, matricola 787012

Anno Accademico 2013-2014

Abstract

In this thesis, the control architecture of an autonomous all terrain vehi-

cle has been designed and developed together with the dynamic simula-

tion used for its validation and for the rapid development/improvement of

autonomous navigations strategies. The development of the control archi-

tecture has been done using a well-known and widely used framework for

robotics: ROS (Robot Operating System). It is characterized by a high

modularity, implemented with a publish-subscribe pattern, and the avail-

ability of several off-the-shelf modules. Taking advantage of the flexibility

of the ROS framework, we integrated ROAMFREE (Robust Odometry Ap-

plying Multisensor Fusion to Reduce Estimation Errors) in our architecture,

which is a library for multisensor fusion and pose estimation. We use this

library to solve the localization problem, always present in the case of au-

tonomous vehicles, and we couple it with a module that integrates odometry

data to achieve a faster local estimate based on the absolute one provided by

ROAMFREE. The simulation tools have been realized using V-REP (Vir-

tual Robot Experimentation Platform), a simulator that allows to model

complex scenarios that includes robot models with multiple sensor, physical

object, and terrains; moreover, V-Rep has a native integration with ROS.

While realizing the dynamic simulation great attention was given to inte-

grate it seamlessly with the control architecture. The overall design of the

control architecture and the dynamic simulation have been validated on the

real physical platform through an extensive experimental activity with ex-

periments on sensor fusion, localization, trajectory planning, and trajectory

following.

I

Sommario

In questa tesi, l’architettura di controllo di un veicolo autonomo all-terrain

è stata progettata e sviluppata insieme alla simulazione dinamica usata per

la sua validazione e per il rapido sviluppo/miglioramento delle strategie di

navigazione autonoma. Lo sviluppo dell’architettura di controllo è stato

fatto usando un noto e largamente usato framework per la robotica: ROS

(Robot Operating System). È caratterizzato da un’elevata modularità, im-

plementata con un publish-subscribe pattern, e dalla disponibilità di svariati

moduli già pronti. Sfruttando la flessibilità del framework ROS, abbiamo

integrato ROAMFREE (Robust Odometry Applying Multisensor Fusion to

Reduce Estimation Errors) nella nostra architettura, che è una libreria per

la fusione multisensore e per la stima della posizione. Usiamo questa libre-

ria per risolvere il problema della localizzazione, sempre presente quando

si tratta di veicoli autonomi, ed è stata associata ad un modulo che in-

tegra i dati dell’odometria per ottenere una stima locale veloce basata su

quella assoluta fornita da ROAMFREE. Gli strumenti di simulazione sono

stati realizzati usando V-Rep (Virtual Robot Experimentation Platform), un

simulatore che permette di creare modelli di scenari complessi che includono

modelli di robot con multipli sensori, oggetti fisici e terreni; inoltre, V-Rep

ha un’integrazione nativa con ROS. Nel realizzare la simulazione dinamica

particolare attenzione è stata fatta nell’integrarla senza soluzione di con-

tinuità con l’architettura di controllo. L’intera struttura dell’architettura

di controllo e della simulazione dinamica sono state convalidate sulla pi-

attaforma fisica reale attraverso un’estesa attività sperimentale con esperi-

menti in fusione di sensori, localizzazione, pianificazione della traiettoria e

inseguimento della traiettoria.

III

Ringraziamenti

Innanzi tutto voglio ringraziare il professor Matteo Matteucci, che mi ha

dato l’opportunità di svolgere questa tesi, lavorando con un oggetto parti-

colare com’è il quad. In secondo luogo voglio ringraziare Davide Cucci, che

mi ha seguito più da vicino in questo lavoro e che ha dovuto sopportare, suo

malgrado, la mia scarsa propensione per i test e per la documentazione. Un

grazie generale a tutte quelle persone che hanno partecipato alle “giornate

al quad”, che hanno dovuto sopportare il freddo, o il caldo, a seconda della

stagione.

Inoltre, se sono arrivato fino a questo punto, è solo grazie ai miei genitori,

Giuseppe e Roberta, che mi hanno permesso di intraprendere e completare

questo cammino. Con loro voglio ringraziare tutta la mia famiglia, mia

nonna Luigia, che verso la fine era ben più in ansia di me per i miei esami,

e mia sorella Serena, che non ha mai smesso di ricordami quanto impegno e

dedizione siano necessari per affrontare l’Università. Ringrazio anche tutti

i parenti vicini e lontani che si sono sempre interessati ai progressi del mio

percorso in tutti questi anni.

Un ringraziamento speciale a tutti i miei amici, quelli che conosco da

anni, quelli che nella mia vita sono apparsi da poco, perché senza di loro

probabilmente la conclusione di questa tesi sarebbe arrivata prima, ma

l’avrei barattata con un bel po’ della mia sanità mentale.

Non posso escludere da questi ringraziamenti tutti i ragazzi e le ragazze

che ho incontrato durante le mie ore di volontariato a Nature. Qualunque

fossero i miei impegni in questi ultimi anni, ho sempre cercato di ritagliare

un pomeriggio alla settimana da dedicargli. L’ho fatto per loro, per aiutarli

con i loro studi e i loro compiti, ma l’ho fatto anche per me, perché sono

sicuro di aver imparato più io da loro di quanta matematica sia mai riuscito

ad insegnargli.

Grazie a tutti.

Gianluca

V

Contents

Abstract I

Sommario III

Ringraziamenti V

1 Introduction 13

2 State of the art 17

2.1 Unmanned vehicles . 17

2.2 Quadrivio project . 22

2.2.1 Main vehicle characteristics 25

2.2.2 Original software architecture 26

2.3 Physical simulation of vehicles 28

2.4 Virtual Robot Experimental Platform 31

2.5 Robot operating system . 35

2.6 ROAMFREE . 38

3 Robot platform 43

3.1 Vehicle . 43

3.2 Sensor . 44

3.2.1 Global positioning system 44

3.2.2 Inertial measurement unit and magnetometer 48

3.2.3 Laser scanner . 50

3.2.4 Cameras . 50

3.3 Low-level control system . 51

3.4 Computer . 54

3.5 Teleoperation . 54

4 Software architecture 57

4.1 Architecture overview . 57

3

4 CONTENTS

4.1.1 General structure . 57

4.1.2 Main modules . 58

4.2 State machine . 60

4.3 Low-level interface . 62

4.4 Sensors . 64

4.4.1 GPS . 65

4.4.2 IMU . 67

4.4.3 Laser scanner . 68

4.4.4 Cameras . 69

4.5 Localization . 70

4.5.1 Coordinate frames . 71

4.5.2 Absolute positioning with ROAMFREE 72

4.5.3 Predicted position . 74

4.6 Trajectory generation . 75

4.6.1 Recorded trajectory 76

4.6.2 Generated trajectory 77

4.6.3 Planner . 78

4.7 Path following system . 80

5 Robot simulation 83

5.1 Scene description . 83

5.2 Robot model . 85

5.2.1 Steering system and suspensions 85

5.2.2 Geometric characteristics 86

5.2.3 Step response . 87

5.3 Simulated sensors . 89

5.3.1 Global positioning system 90

5.3.2 Inertial measurement unit 90

5.3.3 Magnetometer . 91

5.3.4 Odometer . 91

5.3.5 Laser and camera . 92

5.4 Integration with the architecture 93

6 Experimental results 95

6.1 Localization and autonomous drive 95

6.2 Simulation . 99

6.3 Path planning . 103

4

CONTENTS 5

7 Conclusions and future work 105

7.1 Conclusions . 105

7.2 Future work . 105

Bibliography 107

A A Simulation Based Architecture for the Development of an

Autonomous All Terrain Vehicle 113

5

List of Figures

2.1 Some of the first prototypes: Shakey (a), Stanford Cart (b),

DARPA ALV (c), and Ground Surveillance Robot (d) 19

2.2 Two prototypes of autonomous car: VaMP (a) and ARGO (b) 19

2.3 Three participants in the DARPA Grand Challenge: Stanley

(a), Sandstorm (b), and Kat-5 (c) 20

2.4 Some recent examples of UGV: Mörri (a), Mana (b), ARTOR

(c), RTS-HANNA (d), and RAVON (e) 23

2.5 The robot, before the work of this thesis, with the drone

parked on its platform. On the left it is possible to see the

ground station for the RTK correction 23

2.6 The position on the robot of it main components 24

2.7 Two of the sensors that are still installed on the robot but

not currently used: the omnidirectional camera (left) and the

linear potentiometers (right) 24

2.8 Schema of the original high-level control system 26

2.9 Some examples of simulators for robotic application: MORSE

(a), Webots (b), OpenHRP3 (c), Gazebo (d) 29

2.10 Some examples of multi-domain simulators: Dymola (a) and

20-sim (b) . 30

2.11 Main window of V-Rep . 31

2.12 Some of the built-in models that V-Rep offers 33

2.13 V-REP framework. Colored areas can be customized 34

2.14 Main elements of the ROS framework 36

2.15 Reference frames and coordinate transformations in ROAM-

FREE . 39

2.16 An instance of the hypergraph, with four pose vertices ΓWO (t)

in circles, odometry edges eODO (triangles), two shared cali-

bration parameters kv and kθ(squares), two GPS edges eGPS
and the GPS displacement S

(O)
GPS 40

7

8 LIST OF FIGURES

3.1 The original Grizzly 700 (left) and how the vehicle appears

after the customizations (right) 44

3.2 The three motors that controls the accelerator, the brake and

the steer . 45

3.3 The Trimble 5700 (left) and its position on the robot with

the external antenna (right) 46

3.4 MTi with sensor-fixed coordinate system overlaid 48

3.5 The SICK LMS291 laser scanner (left) and where it is mounted

on the robot (right) . 49

3.6 The Prosilica GC750C camera 51

3.7 The X20 system . 52

3.8 The low-level control system of the vehicle, with the X20 in

the center and the modules on the left 52

3.9 The Acer aspire 5742G . 54

3.10 Microsoft Xbox 360 Wireless Controller 55

4.1 The structure of the packages quadrivio and quadrivio msgs 58

4.2 The main module composing the architecture 59

4.3 The internal state machine 61

4.4 Button used to change the state of the internal state machine 61

4.5 PLCClient node and its communication channels 62

4.6 Sensors nodes and their topics 64

4.7 Geodetic (yellow), ECEF (blue) and ENU (green) coordinates 67

4.8 Example of the calibration procedure 69

4.9 Hierarchy of the coordinate frames (left) and their position

on the moving robot as seen in rviz (right) 71

4.10 The class diagram (left) of the fastPredictor node, and the

relationship between the instances of the classes (right) . . . 73

4.11 Button used to control the behaviour of the trajectoryRecorder

node (left) and the trajectoryGenerator node (right) . . . 76

4.12 Nodes used to generate the trajectory and their topics 80

4.13 The overall architecture . 82

5.1 The two scenes used. On the left, quadrivio full.ttt, on

the right, quadrivio light.ttt 84

5.2 Steering system and suspensions of the vehicle model 85

5.3 Comparison between the robot model (left) and the original

model (right) . 86

5.4 Model parameters. 88

8

LIST OF FIGURES 9

5.5 Plot of the vehicle linear speed step responses on the real

vehicle and on the the simulated one. 89

5.6 How the main modules of the architecture interacts with the

simulation . 93

6.1 Online trajectory following results, on the real platform, with-

out the predictor. Reference path for the trajectory follower

(black dashed line), the ROAMFREE position output (blue

line), and the GPS readings (red crosses). 96

6.2 Online trajectory following results with the predictor on a

sinusoidal path. Reference path for the trajectory follower

(black dashed line), the predictor position output (blue line),

and the GPS readings (red crosses). 98

6.3 Online trajectory following results with the predictor on a

rectangular-shaped path. Reference path for the trajectory

follower (black dashed line), the predictor position output

(blue line), and the GPS readings (red crosses). 98

6.4 Online trajectory following results without the predictor. Ref-

erence path for the trajectory follower (black dashed line), the

ROAMFREE position output (blue line), and the GPS read-

ings (red crosses). 100

6.5 Online trajectory following results with the predictor. Refer-

ence path for the trajectory follower (black dashed line), the

predictor position output (blue line), and the GPS readings

(red crosses). 101

6.6 Online trajectory following results in more complex condi-

tions: high speed and rough terrains. Reference path for the

trajectory follower (black dashed line), the predictor position

output (blue line), and the GPS readings (red crosses). . . . 102

6.7 The map as seen in rviz (a) and V-Rep (b). 104

6.8 Online trajectory following results on a path generated by

the planner. Reference path for the trajectory follower (black

dashed line), the predictor position output (blue line), and the

GPS readings (red crosses). The black areas are the obstacles,

the green dot is the first point of the plan, and the yellow dot

is the goal. 104

9

List of Tables

3.1 LEDs behaviour of the Trimble 5700. 46

3.2 Calibrated data performance specification. 49

3.3 Pin assignment of the 9-pin serial inferface. 50

4.1 Paramteres used to configure the PLCClient node. 64

4.2 Possible values of the status field in the sensor msgs/NavSatFix

message. 65

4.3 Paramteres used to configure the trajectoryControl node. . 81

11

Chapter 1

Introduction

In this thesis, the high-level control architecture of an autonomous all terrain

vehicle has been designed and developed together with the dynamic simula-

tion used for its validation and for the rapid development/improvement of

autonomous navigations strategies. The robot used is an unmanned ground

vehicle (UGV); this category contains various type of vehicles that share the

characteristic of being able to operate without an on-board human presence.

UGVs can be used for applications where it may be inconvenient, danger-

ous, or impossible to have an operator present; for instance, they can be

used to explore hazardous environments or difficult places to be reached for

humans. Generally, they can be divided in two categories, those built on a

custom platform and those based on a modified vehicle. Our robot is part of

the second one, since it is based on a commercial ATV modified to support

autonomous driving and equipped with various sensors used for perception

and localization.

The work of this thesis starts from the robot already sporting a high-level

control architecture developed using OROCOS. Although the original archi-

tecture implemented most of the core features required to an autonomous

vehicle (i.e., manual drive, localization, and autonomous drive), those func-

tionalities required significant improvements. It was also necessary to in-

clude the path following algorithm and the path planning module, both

realized by other thesis, and this motivated the decision of developing a

completely new architecture.

The development of the control architecture has been done using a well-

known and widely used framework for robotics: ROS (Robot Operating

System). It is characterized by a high modularity, implemented with a

publish-subscribe pattern, and the availability of several off-the-shelf mod-

14 Chapter 1. Introduction

ules. This allowed us to develop a flexible architecture suitable for a pro-

totype, which could undergo various modification during its development,

while remaining a sufficiently robust and viable system for long-term use.

Moreover, ROS simplify the integration of modules developed separately,

e.g., the path following algorithm, and the planner.

Among the modules we are interested in integrating we have ROAM-

FREE (Robust Odometry Applying Multisensor Fusion to Reduce Estima-

tion Errors), which is a library for multisensor fusion and pose estimation.

We use this library to solve the localization problem, always present in the

case of autonomous vehicles, and we couple it with a module that integrates

odometry data to achieve a faster local estimate based on the absolute one

provided by ROAMFREE.

Working with an autonomous all terrain vehicle, the role of the simula-

tor is fundamental. The characteristics of this kind of robots, for example

the physical dimensions and the typical operating environment, make it

challenging to develop and test all the software components on the field.

Therefore, a simulation that mimics the robot and the environment is re-

quired. The simulation we have developed is realized using V-REP (Virtual

Robot Experimentation Platform), a simulator that allows to model complex

scenarios that includes robot models with multiple sensor, physical objects,

and terrains; moreover, it has a native integration with ROS. While realizing

the dynamic simulation great attention was given to integrate it seamlessly

with the control architecture. The result is a simulation environment that

can substitute completely the real vehicle and it can be used to test and

validate the system, and to perform complex experiments (i.e., high-speed

trajectory following, rough terrain navigation, etc.). The overall design of

the control architecture and the dynamic simulation have been validated

on the real physical platform through an extensive experimental activity in

sensor fusion, localization, trajectory planning, and trajectory following.

The contents of this thesis can be divided in two main contributions:

the high-level control architecture and the simulation. First, we describe

the architecture, starting from the communication with the low-level con-

trol system and with the sensors. Following how we solved the localization

problem combining the absolute position estimated by the ROAMFREE li-

brary with a predictor based on the odometry data. Then we describe how

we integrated in the architecture the path following and the path planning

modules. Regarding the simulation, we provide a general description of the

simulated environment, and then a detailed description on how we simulated

each sensor to match the real behavior. Finally, we describe how the sim-

ulation interacts with the high-level architecture. Experiments done with

14

15

both the robot and the simulation complete the thesis.

Starting from the contents of this thesis, in particular the interaction

between the architecture and the simulation, a paper titled “A Simulation

Based Architecture for the Development of an Autonomous All Terrain Ve-

hicle” has been submitted and accepted for oral presentation at the 2014

International Conference on Simulation, Modeling, and Programming for

Autonomous Robots (SIMPAR 2014).

The structure of the thesis is the following:

• In Chapter 2 some examples of autonomous vehicles proposed in lit-

erature are illustrated, followed by a description of the state of the

robot before this thesis. The chapter contains also an overview of ex-

isting simulators and a detailed description of V-Rep. Also, the ROS

framework and the ROAMFREE library are discussed.

• In Chapter 3 the current hardware configuration of the robot is illus-

trated. Starting from the vehicle characteristics, followed by a descrip-

tion of the sensors and the systems used to control the robot.

• In Chapter 4 an overview of the high-level control architecture is de-

scribed, followed by a detailed description of each module developed

or integrated.

• In Chapter 5 the simulated environment is illustrated, then the robot

model is presented in details. The chapter contains also a description

on how the simulation interact with the architecture.

• In Chapter 6 experimental results of experiments on localization, tra-

jectory planning, and trajectory following are analysed and discussed.

• In Chapter 7 conclusions are made, and some possible extensions and

improvement of this work are presented.

• Appendix A contains the paper derived from the contents of this the-

sis and accepted for publication in the 2014 International Conference

on Simulation, Modeling, and Programming for Autonomous Robots

(SIMPAR 2014).

15

Chapter 2

State of the art

2.1 Unmanned vehicles

Vehicular automation is as old as the vehicles themselves; today numerous

automatic system are included in aircraft, boats, industrial machinery and

agricultural vehicles. However, fully autonomous ground vehicles able to

navigate on rough terrain or complex environment remain an ambitious

goal. This kind of vehicles has various applications, for instance they can be

used to explore hazardous environments or difficult places to be reached for

humans. They can also improve everyday life, for example reliable driverless

car could reduce the risk of accidents.

Unmanned ground vehicles (UGV) comes in very different sizes and

shapes depending on the task they have been designed to accomplish. Gener-

ally, they can be divided in two categories, those built on a custom platform

and those based on a modified vehicle. Over the years various vehicles were

used as base to develop autonomous robots, like military vehicles, trucks,

fuel-powered or electric automobiles, four-wheelers, and buses. Even if the

world of UGV is quite diverse, they share some common characteristics:

• they are equipped with sensors to perceive the environment;

• it is possible to remotely control the vehicle;

• they are able to perform some autonomous tasks.

Moreover when designing an autonomous vehicle some common problems

have to be faced, namely how to control the actuators of the vehicle, how

to fuse the information from the sensors to determinate its position and

how to drive autonomously. During the years, various approaches have been

18 Chapter 2. State of the art

adopted in order to build and manage an UGV. In the following we present

a list of some UGVs developed during the years, starting from the first

examples of autonomous mobile robots [20].

Shakey [36] (SRI International, United States, 1966-1972, Figure 2.1a)

is considered the first mobile robot capable of autonomous behavior. It was

a wheeled platform equipped with steerable TV camera, ultrasonic range

finder, and touch sensors. An SDS-940 mainframe computer performed nav-

igation and exploration tasks, a RF link connected the robot to it. While

the robot autonomous capabilities were simple, it established the functional

baselines for mobile robots of its era.

Stanford Cart [34] [35] (Stanford University AI Lab, United States,

1973-1981, Figure 2.1b) was a remotely controlled TV-equipped mobile

robot. A computer program drove the Cart through cluttered spaces, gain-

ing its knowledge of the world entirely from images broadcast by an on-board

TV system. It used a sophisticated stereo vision system, where the single

TV camera was moved to each of nine different positions on the top of its

simple mobility base.

DARPA Autonomous Land Vehicle [30] [42] (DARPA’s Strategic

Computing, United States, 1985-1988, Figure 2.1c) was built on a Standard

Manufacturing eight-wheel hydrostatically-driven all-terrain vehicle capable

of speeds of up to 45 mph on the highway and up to 18 mph on rough terrain.

The sensor suite consisted of a color video camera and a laser scanner. Video

and range data processing modules produced road-edge information that was

used to generate a model of the scene ahead.

Ground Surveillance Robot [23] [22] (Naval Ocean Systems Center,

United States, 1985-1986, Figure 2.1d) project explored the development of

a modular, flexible distributed architecture for the integration and control

of complex robotic systems, using a fully actuated 7-ton M-114 armored

personnel carrier as the host vehicle. With an array of fixed and steerable

ultrasonic sensors and a distributed blackboard architecture implemented on

multiple PCs, the vehicle successfully demonstrated autonomous following

of both a lead vehicle and a walking human.

VaMP [16] [32] [31] (Bundeswehr University of Munich, Germany, 1993-

1995, Figure 2.2a) is considered the first truly autonomous car, it was able to

drive in heavy traffic for long distances without human intervention, using

computer vision to recognize rapidly moving obstacles such as other cars, and

automatically avoid and pass them. It was a 500 SEL Mercedes modified

such that it was possible to control steering wheel, throttle, and brakes

18

2.1. Unmanned vehicles 19

(a) (b)

(c) (d)

Figure 2.1: Some of the first prototypes: Shakey (a), Stanford Cart (b), DARPA ALV

(c), and Ground Surveillance Robot (d)

(a) (b)

Figure 2.2: Two prototypes of autonomous car: VaMP (a) and ARGO (b)

19

20 Chapter 2. State of the art

(a)

(b) (c)

Figure 2.3: Three participants in the DARPA Grand Challenge: Stanley (a), Sandstorm

(b), and Kat-5 (c)

through computer commands, and equipped with four cameras. In 1995, the

vehicle was experimented on a long-distance test from Munich (Germany)

to Odense (Denmark), and it was able to cover more than 1600 km, 95% of

which with no human intervention.

ARGO [4] (University of Parma, Italy, 1998, Figure 2.2b) was a Lancia

Thema passenger car equipped with a stereoscopic vision system consist-

ing of two synchronized cameras able to acquire pairs of grey level images,

which allowed to extract road and environmental information for the auto-

matic driving of the vehicle. The ARGO vehicle had autonomous steering

capabilities and human-triggered lane change maneuvers could be performed

automatically. In June 1998, the vehicle was able to carry out a 2000 km

journey through the Italian highway [7], 94% of the total trip was performed

autonomously.

Stanley [44] (Stanford University, United States, 2005, Figure 2.3a) is

20

2.1. Unmanned vehicles 21

an autonomous car that participated and won the second edition of the

DARPA Grand Challenge in 2005 [10]. Stanley is based on a diesel-powered

Volkswagen Touareg R5 with a custom interface that enables direct elec-

tronic actuation of both the throttle and brakes. A DC motor attached to

the steering column provides electronic steering control. It is equipped with

five SICK laser range finders, a color camera for long-range road perception,

two RADAR sensors, and a GPS positioning system. It was able to complete

the 212 Km off-road course in 6 hours and 54 minutes.

Sandstorm [47] (Carnegie Mellon University, United States, 2004-2005,

Figure 2.3b) is an autonomous vehicle that participated at both editions of

the DARPA Grand Challenge, the first in 2004, the second in 2005. Sand-

storm is based on a heavily modified 1986 M998 HMMWV and drive-by-wire

modifications control the acceleration, braking and shifting. The sensors

used in 2004 included three fixed LIDAR laser-ranging units, one steerable

LIDAR, a radar unit, a pair of cameras for stereo vision, and a GPS. In

2005, three additional fixed LIDAR were added, while the stereo cameras

were removed. In 2004, Sandstorm obtained the best result but covered only

11.9 Km, in 2005, finished the race in 7 hours and 5 minutes, placing second.

Kat-5 [46] (GrayMatter, Inc., United States, 2005, Figure 2.3c) is an

autonomous car developed by a team comprising employees from The Gray

Insurance Company and students from Tulane University. It participated to

the 2005 DARPA Grand Challenge and finished with a time of 7 hours and

30 minutes, only 37 minutes behind Stanley. Kat-5 is a 2005 Ford Escape

Hybrid modified with the sensors and actuators needed for autonomous

operation. It uses oscillating LIDARs and information from the INS/GPS

unit to create a picture of the surrounding environment and drive-by-wire

systems to control the vehicle.

RAVON [40] [39] (University of Kaiserslautern, Germany, 2006-2013,

Figure 2.4a) is an autonomous robot based on the RobuCar TT platform

by Robosoft. The vehicle’s battery-driven 4WD utilizes four independent

motors. It is equipped with two 2D SICK laser scanner, a custom-built

stereo camera, a GPS, an IMU, and a magnetic field sensor. In 2007 and

2008, RAVON participated to the ELROB [41] competition obtaining good

results in non-urban scenarios.

RTS-HANNA [28] [24] (University of Hannover, Germany, 2008-2013,

Figure 2.4b) is based on a Kawasaki Mule 3010 side-by-side vehicle. Equipped

with a drive-by-wire retrofit kit, this vehicle is fully controllable via com-

puter. The robot is equipped with various sensors for tele-operation, semi-

autonomous operation and fully autonomous operation. The main sensor is

21

22 Chapter 2. State of the art

a pair of 3D laser range scanner; in addition, multiple cameras, Differential-

GPS and inertial sensors are used.

Mörri [45] (University of Oulo, Finland, 2008-2010, Figure 2.4c) is a six

wheel solid base robot with very strong motors. The robot has been designed

in order to operate in extreme conditions and weathers and with heavy load

to carry. It is equipped with two laser scanners, an omnidirectional camera,

a thermal camera, inclinometer, and a GPS. Several autonomous features

are availble, including collision avoidance, route execution, obstacle analysis,

and data fusion.

Mana [5] (LAAS/CNRS, France, 2011-2013, Figure 2.4d) is a SegWay

RMP400 that has been equipped with a stereovision bench, a LIDAR, a

solid-state inertial measurement unit and a fiber-optic gyro. To perform au-

tonomous navigation, Mana is assisted by the drone Mentor, which embeds

a Hokuyo laser scanner and a camera. Mentor can assist Mana by providing

him global information on the terrain ahead and by localizing him.

ARTOR [27] (ETH of Zurich, Swizerland, 2012-2014, Figure 2.4e) is

a robotic vehicle capable of driving in rough terrain and at relatively high

speed. It is based on a LandShark from Black-I Robotics, a 6-wheeled,

skid-steered electric vehicle. The equipment includes a rotating 3D laser

scanner, two 2D laser scanners, a stereo camera, a GPS receiver and an

inertial measurement unit. Furthermore, a pan-tilt-zoom unit containing

both a visual and a thermal camera is installed. The robot won the Creative

Solution Award at the seventh European Land Robot Trials.

Looking at the prototypes listed above it is possible to note that origi-

nally mobile robots were simple prototype (i.e., Shakey, Standford Cart) or

products resulting from substantial investments (i.e., DARPA Autonomous

Land Vehicle, Vamp). While today big competition, like the DARPA Grand

Challenge that offers a prize in millions of dollars, still exist, more low cost

prototype with complex functionalities are developed thanks to the increased

computational power of computers and advances in robotics. Moreover, it

is possible to see a trend in the sensors used. Originally, vision sensors were

preferred and used extensively, today, most of the prototypes relies on GPS,

laser scanner and IMU to determinate their position.

2.2 Quadrivio project

In 2008, the AIRLab (Artificial Intelligence and Robotics Laboratory) and

the MERLIN (Mechatronics and Robotics Laboratory for Innovation) of

Politecnico di Milano, in collaboration with Aero Sekur S.p.A., developed

22

2.2. Quadrivio project 23

(a) (b)

(c) (d) (e)

Figure 2.4: Some recent examples of UGV: Mörri (a), Mana (b), ARTOR (c), RTS-

HANNA (d), and RAVON (e)

Figure 2.5: The robot, before the work of this thesis, with the drone parked on its

platform. On the left it is possible to see the ground station for the RTK correction

23

24 Chapter 2. State of the art

Figure 2.6: The position on the robot of it main components

Figure 2.7: Two of the sensors that are still installed on the robot but not currently

used: the omnidirectional camera (left) and the linear potentiometers (right)

24

2.2. Quadrivio project 25

a mobile robot based on a commercial ATV [8] [11] [49]. The final aim

of the Quadrivio project was to develop an autonomous vehicle equipped

with a manipulator arm in order to interact with object in the environment.

While the arm was never installed, the robot reached its goal of autonomous

driving.

2.2.1 Main vehicle characteristics

The robot is equipped with:

• an aluminum platform mounted over the chassis

• an industrial pc

• the actuators to control the vehicle

• a low-level control system that controls the actuators and receives the

odometry

• a GPS with a ground station for the RTK correction

• an IMU with a magnetometer

• four linear potentiometers to measure suspensions stroke

The vehicle had also a platform where a drone could land and an om-

nidirectional camera associated with it. A second camera was mounted in

front of the robot, and was used when teleoperating the vehicle. Finally, a

laser scanner was mounted between the front wheels, but it was not con-

nected to the system. The control of the robot was distributed; part on

a teleoperating station and part on the robot itself. The robot was able

retrieve its own speed and steer position, received from the GPS a fairly

accurate global position, thanks to the RTK correction, and determinate its

orientation using the IMU. The linear potentiometer were used to derive a

rollover index.

An operator could control the steer and the speed of the robot remotely

using a joypad (a Microsoft Xbox 360 Wireless Controller). The teleop-

eration system was robust and it has been tested outdoor on numerous

occasions. Moreover, the robot could follow a trajectory defined with a list

of waypoints by the user. No fully autonomous behavior with the use of a

planner was available.

Shortly before the beginning of this thesis, the robot was revised, all

the original equipment is still on the vehicle, but some of them now are

disabled, and not used anymore. The industrial pc was replaced with a

25

26 Chapter 2. State of the art

Figure 2.8: Schema of the original high-level control system

commercial laptop with superior computational power to accommodate the

new software architecture. The omnidirectional camera is no longer used,

since the aerial drone no longer works in conjunction with the robot (it was

an external component from the sponsoring company). The GPS no longer

use the RTK correction, since there is no terrestrial control station.

Additional changes have been made during this thesis, the camera used

for teleoperation is now replaced by two stereo cameras with superior char-

acteristics. Lastly, the laser scanner is now connected to the system and

works properly. A more detailed description of the current robot hardware

is given in Chapter 3.

2.2.2 Original software architecture

The original high-level control architecture was implemented in C/C++ us-

ing a framework known as OROCOS (Open Robot Control Software) [9].

The system was organized in modules implemented separately and inte-

grated with OROCOS. This framework provides support for efficient and

reliable management of real-time application, concurrent execution and com-

munication between modules. Figure 2.8 shows a complete scheme of the

architecture and following a brief description of the modules.

Remote Control Station (RCS) interface: This module communi-

cates through a Wi-Fi connection with the remote graphical interface, which

allows the manual drive of the vehicle, the definition of the GPS waypoints

for autonomous drive and the monitoring of the vehicle status via telemetry

data. This module periodically sends telemetry data at a frequency of 10 Hz,

and it is activated when receiving new messages on the Wi-Fi connection.

26

2.2. Quadrivio project 27

Low-level control system (PLC) interface: This module commu-

nicates using an Ethernet socket with the low-level control system that im-

plements the low-level control loops and collects measurements coming from

the sensors. Therefore, this module sends to the low-level system the speed,

steer and brake setpoints, and receives odometry data (i.e., speed, and steer).

The control system sends odometry measurements at a frequency of 20 Hz.

Converter (CON): This module converts measurements in the NMEA

format coming from the GPS and the Remote Control Station to the ENU

format used on the vehicle for planning and navigation. Moreover, it is used

to process the waypoints received from the remote control system and the

state of the vehicle received from the Kalman filter.

Driver GPS (GPS): The GPS module interfaces with the GPS unit

mounted on board of the vehicle, reads the GPS record in the NMEA 0813

format (at a frequency of 5 Hz), extracts the useful information (i.e., latitude,

longitude, altitude and the estimated errors) and makes them available to

the Kalman filter.

Kalman filter (KAL): This module implements the sensor fusion be-

tween the odometry coming from the low-level control system and the GPS

data, in order to obtain an accurate estimate of position, speed and ori-

entation of the vehicle. The Kalmann filter integrates, using a six degrees

of freedom model, the previous state of the vehicle with the GPS and the

odometry, providing an estimate of the current robot position. The initial

position of the robot comes from the first available GPS data, while, for the

orientation, it is necessary to drive the vehicle briefly.

Trajectory planner (TRJ): This module implements the planner algo-

rithm and the trajectory following algorithm. It receives from the Kalmann

filter the estimate of the current state of the robot, and from the Converter

a list of waypoints. From these, the module derives the current setpoint of

speed, steer and brake to be sent to the low-level control system.

Supervisor (SUP): This module manages the different operating modes

of the vehicle: autonomous drive, manual drive from the Remote Control

Station and manual drive using the joypad. Moreover, it implements secu-

rity policy that stops the vehicle in the case of faulty behaviours.

Although the original architecture implemented most of the core fea-

tures required to an autonomous vehicle (i.e., manual drive, localization,

and autonomous drive), those functionalities required significant improve-

ments. Therefore, we decided to develop a new architecture, described in

details in Chapter 4, based on ROS that is characterized by its flexibility

27

28 Chapter 2. State of the art

and modularity. Moreover, this architecture permits to integrate easily the

new path planning and path following modules developed for the vehicle.

The only module reused from the original architecture is the one that com-

municated with the low-level control system, reimplemented as a ROS node

is now called PLCClient.

2.3 Physical simulation of vehicles

When working with an autonomous all terrain vehicle, the role of the simu-

lator is fundamental. The characteristics of this kind of robots, for example

the physical dimensions, the typical operating environment and the com-

plexity of the system architecture, make it challenging to develop and test

all the software components. Therefore, a simulation that mimic the robot

and the environment is necessary.

Simulators are commonly used in various areas of science and engineer-

ing, robotics is no exception. Each step of the development of a robot may

benefit from the use of a simulator. Even before building the real robot is it

possible to use the simulator to create a prototype and verify the feasibility

of the project. After that, it can be used to assist the design and develop-

ment of the robot. Lastly, when doing experiments with the real robot they

can be validated by similar ones in the simulation.

There are various types of simulators available. Some of them are spe-

cific for robotic applications, some focus on simplicity and fast prototyping,

while others aim at flexibility. Moreover, there are simulators designed for a

specific category of robots, e.g., humanoids, manipulators or mobile robots.

On the other side, there are software for simulating vehicles that focus on

a precise physical simulation and on the interaction of multiple systems. In

the following we provide a list of simulators with a brief description for each

one:

V-Rep [19] [38] is a general purpose robot simulator with integrated

development environment. It is based on a distributed control architecture;

each object can be individually controlled via scripts, remote APIs or ROS

nodes. This makes V-REP versatile and ideal for multi-robot applications.

It can be used for fast algorithm development, fast prototyping and verifi-

cation.

Webots [33] (Figure 2.9b) is a development environment used to model,

program and simulate mobile robots. The simulator has various built-in

models of robots, sensors and actuators. The robot behavior can be tested

in physically realistic worlds, simulated using the Open Dynamic Engine.

28

2.3. Physical simulation of vehicles 29

(a) (b)

(c) (d)

Figure 2.9: Some examples of simulators for robotic application: MORSE (a), Webots

(b), OpenHRP3 (c), Gazebo (d)

29

30 Chapter 2. State of the art

(a) (b)

Figure 2.10: Some examples of multi-domain simulators: Dymola (a) and 20-sim (b)

Moreover, it offers an integrated IDE to develop controllers, which can be

then directly transferred to commercially available real robots.

Gazebo [26] (Figure 2.9d) is an open source simulator. It was origi-

nally integrated with ROS, but now it is an independent project. Gazebo

can simulate with accuracy and efficiency populations of robots in complex

indoor and outdoor environments. It offers various models for sensors and

a rich choice of physics engines, i.e., ODE, Bullet, Simbody, and DART.

OpenHRP3 [25] (Figure 2.9c) is an integrated software platform for

robot simulations and software developments. It allows the users to inspect

an original robot model and control program by dynamics simulation. In

addition, OpenHRP3 provides various software components and libraries

that can be used for robotics related software developments.

MORSE [29] (Figure 2.9a) is a generic simulator for academic robotics.

It focuses on realistic 3D simulation of small to large environments, indoor

or outdoor, with one to tenths of autonomous robots. It comes with a set of

standard sensors (e.g. cameras, laser scanner, GPS), actuators and robotic

bases. MORSE bases the rendering on the Blender Game Engine. The

MORSE OpenGL-based Engine supports shaders, advanced lightnings, and

uses the Bullet library for physics simulation.

Dymola [17] (Figure 2.10a) is a commercial modeling and simulation

environment based on the open Modelica modeling language. It offers unique

multi-engineering capabilities, which mean that it is possible to simulate

the dynamic behavior and complex interactions between systems of many

engineering fields, such as mechanical, electrical, thermodynamic, hydraulic,

pneumatic and control systems. It lacks built-in sensors simulation.

30

2.4. Virtual Robot Experimental Platform 31

Figure 2.11: Main window of V-Rep

MapleSim [1] is a multi-domain modeling and simulation tool. It gen-

erates model equations, runs simulations, and performs analyses using the

symbolic and numeric mathematical engine of Maple. Models are created

using a drag-and-drop interface selecting modules that model object from

various areas of science and engineering.

20-Sim [6] (Figure 2.10b) is a modeling and simulation program for

mechatronic systems. Models are created graphically, similar to an engi-

neering scheme, and they can be used to simulate and analyze the behavior

of multi-domain dynamic systems and create control systems.

For our work, we chose to adopt V-Rep. What driven our choice was

it simplicity and ease of use, contrary to Gazebo, which is notoriously diffi-

cult to install. Moreover, its flexibility makes it suitable to simulate differ-

ent types of robots, differently from OpenHRP3 focused on a specific type.

Lastly, V-Rep has a native integration with ROS, which simplify the inter-

action with our robot architecture. Simulators like Dymola are not suitable

for our needs; while they have a precise physical simulation, they lack sensor

models, which are fundamental to create a complete robot simulation.

2.4 Virtual Robot Experimental Platform

Virtual Robot Experimental Platform (V-Rep) [19] [38] is a general purpose

robot simulator developed by Coppelia Robotics. Its main characteristics

are the integrated development environment, with a customizable user in-

terface, and a modular structure, both for the objects that compose the

31

32 Chapter 2. State of the art

simulation and for the control methods. The development environment,

available inside the simulator, simplifies the creation of robot models and

simulations allowing for fast prototyping, fast algorithm development and

verification. Moreover, when the simulation is active, this area act as a 3D

rendering of the simulation, giving a real time feedback of the behavior of

the models. Regarding the modularity, it takes form in the three main func-

tionalities of the simulator: the objects that compose the scene, the control

mechanisms and the computing modules. A V-Rep simulation scene, or

simulation model, contains several objects that are assembled in a tree-like

hierarchy. The following elements can compose a scene:

• Shapes: triangular meshes used for rigid body simulation and visu-

alization. Other scene objects or calculation modules heavily rely on

shapes for their calculations.

• Joints: elements that link two or more objects together with one to

three degrees of freedom. There are four different types: prismatic,

revolute, screw-like and spherical. Joints can be controlled using a

direct force or torque, simulating electrical motors, or left in a passive

mode.

• Proximity sensors: they calculate the exact distance to a shape in a

configurable volume, instead to simply performing detection based on

rays. This results in a more continuous operation and allows for a

simulation that is more realistic.

• Vision sensors: They extract complex image information from a simu-

lation scene (colors, object sizes, depth maps, etc.). A built-in filtering

and image processing function enables the composition of blocks of fil-

ter elements.

• Force sensors: they are rigid links between shapes that can record

applied forces and torques, and that can conditionally break apart

when reaching a given threshold.

• Graphs: they can record predefined or custom data streams. Data

streams can then be displayed directly in function of time, combined

in two-dimensional graphs or 3D curves.

• Cameras: they allow scene visualization when associated with a view-

port.

• Lights: they provide illumination to the scene and directly influence

cameras or vision sensors.

32

2.4. Virtual Robot Experimental Platform 33

Figure 2.12: Some of the built-in models that V-Rep offers

• Paths: they allow complex movement definitions in space (succession

of translations and rotations), and they could be used for guiding a

robot along a predefined trajectory.

• Dummies: a dummy is a reference frame, which is useful for various

tasks, and it is mainly used in conjunction with other scene objects.

• Mills: they are customizable convex volumes used to simulate surface

cutting operations on shapes.

The combination of these simpler elements permit to create complex models

raging from manipulators to wheeled robots, and to simulate different types

of sensors, like cameras, laser scanner, GPS, gyroscopes, etc. Moreover, V-

Rep offers multiple build-in model, both for robot and for sensors, which are

fully customizable. This makes the creation of fully functional scenes even

simpler and faster.

Various control mechanism are available to manage the behavior of each

element of the simulation, some integrated inside the simulator, while oth-

ers permit to control the object from outside the simulated environment.

Among internal mechanisms, the main one is the use of child scripts, which

can be associated with any element in the scene. They handle a particular

part of the simulation and they are an integral part of their associated ob-

ject, being duplicated and serialized, together with them. Therefore, they

are a portable and scalable control element: a single package containing the

model definition together with its control or functionality.

A main script, which handles general functionalities is contained in each

scene, and it calls the child scripts in a cascaded way with respect to the

33

34 Chapter 2. State of the art

Figure 2.13: V-REP framework. Colored areas can be customized

scene hierarchy. Child scripts have two execution modes: non-threaded and

threaded. In the first case, the script is called at each main loop execu-

tion, synchronized with the simulation. For threaded script, V-Rep’s thread

scheduler makes them behave and appear as coroutines, which allow control-

ling the time at which the thread is executed, allowing for a synchronization

with the main script or other child scripts. Moreover, each threaded script

can programmatically request behaving like a real thread, for example when

managing I/O operations. Embedded scripts also fill the gaps between var-

ious interfaces offered by the simulator: they can register ROS publishers

and subscribers, open and handle communication lines, launch executables,

load and unload plug-ins, or start remote API server services.

In order to customize and extend the functionalities offered by the em-

bedded scripts it is possible to use plug-ins, written in C/C++. They can

register custom Lua commands, allowing the execution of fast callback func-

tions from within an embedded script. They can also extend the function-

ality of a particular simulation element, and they can be used to implement

an interface to a specific hardware. In a similar way, add-ons are lightweight

simulator customization methods built inside V-Rep using Lua scripts; they

can implement stand-alone functions or regularly executed code.

34

2.5. Robot operating system 35

V-Rep offers also a method to control the simulation from outside the

simulator, this is useful for distributed architectures or simulator-in-the-loop

configurations. The remote API interface in V-REP allows interacting with

the simulation using a socket communication. It is composed by remote

API server services and remote API clients. The client side, written in

C/C++, Python, Java, Matlab or Urbi, can be embedded in any software

running on remote control hardware or real robots, and it allows remote

function calling, as well as fast data streaming. Functions support two

calling methods to adapt to any configuration: blocking, waiting until the

server replies, or non-blocking, reading streamed commands from a buffer.

Plug-ins implement the API server inside V-Rep, therefore, other than those

built-in in the simulator, it is possible to develop custom remote APIs.

Moreover, the simulator offers a native integration with ROS. It implements

a ROS node with a plug-in, which allows a node to call V-REP commands via

ROS. Embedded scripts can enable publishers and subscribers using custom

functions to stream data for the simulator to ROS and vice versa. V-Rep

supports various standard ROS messages that are directly associated with

the characteristics of the objects composing the simulation, like geometrical

and dynamic properties and sensors readings.

To manage the interaction between the objects in the simulation, V-

Rep contains various calculation modules. It has a kinematic module to

calculate forward and invers kinematic of any mechanism (e.g., branched,

closed, redundant, containing nested loops). The simulator includes a dy-

namic module that handles rigid body dynamic calculation and interaction

via the Bullet Physics Library [13], the Open Dynamics Engine [43] or Vor-

tex Dynamics [2]. It is possible to choose which physics engine to use before

starting the simulation. Independent from the dynamic module, there is a

collision detection module, which allows fast interference checking between

any shape or collection of shapes. It uses data structures based on a binary

tree of oriented bounding boxes for accelerations. The mesh-mesh distance

calculation module uses the same structure to calculate the minimum dis-

tance between any shape or collection oh shapes. For versatility all these

modules are implemented in a general way, without any assumptions on the

underlying simulation scenes or models.

2.5 Robot operating system

In robotics, writing software is difficult because different types of robot can

have extremely diverse hardware, making code reuse non-trivial. Moreover,

the modules developed must implement a deep stack starting from driver-

35

36 Chapter 2. State of the art

Figure 2.14: Main elements of the ROS framework

level software up to high-level functionalities, like autonomous driving, rea-

soning or localization. In order to resolve these issues, during the years,

various frameworks have been developed often aiming at a very specific pur-

pose. This caused a fragmentation in the robotic software systems used

in industry and academia. ROS is an attempt to create a general frame-

work that promotes modularity and code reuse, and it became the de facto

standard for robot software.

The Robot operating system (ROS) [37] is a flexible framework, de-

veloped by the Stanford Artificial Intelligence Laboratory and by Willow

Garage. It is an open-source, meta-operating system, providing typical ser-

vices of operating systems, including hardware abstraction, low-level device

control, message-passing between processes and package management. The

main points around which ROS is designed are the portability and thinness

of the software, a distributed architecture, the support of multiple program-

ming languages and the availability of tools to extend its functionalities.

A typical ROS system consists of a number of processes, called nodes,

potentially on a number of different hosts, connected at runtime in a peer-to-

peer topology. Each node is an independent unit that performs computation,

usually associated with a specific functionality or hardware component.

Nodes are organized in packages, which are directories that contain an

XML file describing the package and stating any dependency. In order to

increase the flexibility and portability of the system, it is possible to imple-

ment nodes using four different languages: C++, Python, Octave and LISP.

Modules implemented with different languages can coexist in the same sys-

36

2.5. Robot operating system 37

tem, therefore it possible to use different tools for specific needs, e.g., fast

prototyping and implementation of simpler node using Python with core

functionalities implemented with C++. This is possible because the speci-

fication of ROS is at the messaging layer.

Messages defined with a simple, language-neutral Interface Definition

Language (IDL) allow the communication between nodes. The IDL uses

short text files to describe fields of each message, and allows composition of

messages. Code generators for each supported language then generate na-

tive implementations, which are automatically serialized and deserialized by

ROS as messages are sent and received. The ROS-based codebase contains

hundreds of types of messages, which transport data ranging from sensor

feeds to objects and maps, moreover it is possible to define custom messages

for any specific need.

A node sends a message by publishing it to a given topic, which is identi-

fied by its name. A node that is interested in a certain kind of data subscribes

to the appropriate topic. Multiple concurrent node can publish or subscribe

on a single topic, and each node can interact with multiple topic. In general,

publishers and subscribers are not aware of each other existence.

In order to complement the asynchronous communication system realized

by the topic-based publish-subscribe model, ROS provides a synchronous

system, called services. Each service is defined by a string name and a pair

of strictly typed messages: one for the request and one for the response.

Unlike topics, only one node can advertise a service of any particular name.

The peer-to-peer topology requires some sort of lookup mechanism to

allow processes to find each other at runtime. The master has this role,

it enables individual ROS nodes to locate each other. Once these nodes

have located each other, they communicate with using peer-to-peer channels.

Moreover, the master provides a parameter server, which is a shared, multi-

variate dictionary that is accessible via network APIs. Nodes use this server

to store and retrieve parameters at runtime.

Another strength of ROS is the availability of various existing nodes and

packages, currently there are several hundreds of ROS packages available on

publicly-viewable repositories. Most of them implements specific function-

alities, e.g., sensors drivers, others more general ones, e.g., a path planner.

For instance, tf [18] is a package that lets the user keep track of multiple co-

ordinate frames over time. It maintains the relationship between coordinate

frames in a tree structure buffered in time, and it lets the user transform

points between any two coordinate frames at any desired point in time. The

package offers two interfaces to access its functionalities: a listener and a

broadcaster. The broadcaster notifies to the system about a transformation

37

38 Chapter 2. State of the art

between two coordinate frames at a specific time, even in the future, while

the listener provides the transformation at any time.

Along with the meta-operating system, the ROS environment provides

various tools. These tools perform various tasks: for example navigate the

source code tree, get and set configuration parameters, visualize the peer-

to-peer connection topology, run collection of nodes, monitor the behavior

of topics, graphically plot message data and more. Some of these tools have

simple functionalities, e.g., showing all the messages published on a topic,

while others are more complex. For example, rviz [21] is a complete visu-

alization tool that shows in real time, in a 3D environment, data streamed

on the topics. Another example is rosbag, which records and plays back to

ROS topics.

2.6 ROAMFREE

Pose tracking is one of the most important issue in autonomous mobile

robotics, because the performance of high-level control systems and navi-

gation modules are related to the localization accuracy. Usually, in order

to estimate the position of the robot, multiple sensor are used, which need

to be calibrated and their measurements combined in one single estimate.

ROAMFREE (Robust Odometry Applying Multisensor Fusion to Reduce

Estimation Errors) [14] is a framework developed by Politecnico di Milano

that offers:

• a library of sensor families handled directly by the framework

• an on-line tracking module based on Gauss-Newton minimization

• an off-line calibration suite which allows to estimate unknown sensor

parameters

The framework is designed to fuse measurements coming from an arbi-

trary number of sensors. In order to maintain a general approach, it ab-

stracts from the nature of the information sources, and it works with logical

sensors, which are characterized only by the type of measurements provided.

Therefore, the association between physical and logical sensors is not unique,

since a single device can correspond to multiple logical sensors (e.g., IMU)

or multiple physical sensors can cooperate to obtain a single measurement

(e.g., stereo cameras). ROAMFREE divides the sensors in categories ac-

cording to the type of measurements they provide: absolute position and/or

velocity, angular and linear speed, acceleration and vector field (e.g, mag-

netic field, gravitational acceleration). For each of these categories an error

38

2.6. ROAMFREE 39

Figure 2.15: Reference frames and coordinate transformations in ROAMFREE

model exists, which relates the state estimate with the measurement data,

taking into account all the common sources of distortion, bias and noise.

Moreover, it is possible to define a set of the predefined calibration param-

eters using specific values or by letting the framework estimate them with

an off-line formulation of the tracking problem.

ROAMFREE uses three reference frames: W , the fixed world frame, O,

the moving reference frame, placed at the odometric center of the robot,

and the i-th sensor frame, Si, whose origin and orientation are defined with

respect to O. The tracking module estimates the position and orientation

of O with respect to W , i.e., ΓWO (Figure 2.15).

The tracking problem is formulated as a maximum likelihood optimiza-

tion on a hyper-graph in which the nodes represent poses and sensor pa-

rameters and hyper-edges correspond to measurement constraints. An error

function is associated to each edge in order to measure how well the values

of the nodes connected to edge fit the sensor observations. The goal is to

find a configuration for the poses and sensor parameters that minimizes the

negative loglikelihood of the graph given all the measurements.

Let ei(xi, η) be the error function associated to the i-th edge in the hyper-

graph, where xi is a vector containing the variables appearing in any of the

connected nodes and η is a zero-mean Gaussian noise. Thus ei(xi, η) is a

random vector and its expected value is computed as ēi(xi) = ei(xi, η)|η=0.

Since ei can involve non-linear dependencies, the covariance of the error is

computed through linearization.

Σei = JiΣηJ
T
i |η=0 (2.1)

39

40 Chapter 2. State of the art

Figure 2.16: An instance of the hypergraph, with four pose vertices ΓWO (t) in cir-

cles, odometry edges eODO (triangles), two shared calibration parameters kv and

kθ(squares), two GPS edges eGPS and the GPS displacement S
(O)
GPS

where Ση is the covariance matrix of η and Ji is the Jacobian of ei with

respect to η. The optimization problem is defined as follows:

P : arg min
x

N∑
i=1

ēi(xi)
TΩei ēi(xi) (2.2)

where Ωei = Σ−1
ei is the i-th edge information matrix and N is the total

number of edges. If a reasonable initial guess for x is known, a numeri-

cal solution for the problem can be found by means of Gauss-Newton or

Levenberg-Marquardt algorithms.

In order to build the graph it is necessary to define a master sensor, with

a high frequency, and for which it is possible to predict ΓWO (t+∆t) given the

last pose estimate available, Γ̆WO (t), and its measurement z(t). Each time a

new reading for this sensor is available, we instantiate a new node ΓWO (t+∆t)

using the last pose estimate available, ΓWO (t), and z(t) to compute an initial

guess for this node. z(t) is also employed to initialize an odometry edge

between poses at time t and t + ∆t. Each time a new measurements is

available, their corresponding edge is inserted into the graph between the

two nodes with the nearest timestamp. The graph optimization approach

can be used to solve both the on-line position tracking problem, in which

the requirements are related to precision and robustness, and the off-line

calibration problem, in which the goal is to determine the sensor parameters

directly form data.

40

2.6. ROAMFREE 41

A general framework for graph optimization, called g2o, solves the opti-

mization problem, and it is reported to solve graph problems with thousands

of nodes in fractions of a second. Anyhow, for real time online tracking, it is

necessary to define a finite time window and discard the older poses to avoid

an excessive increase of computational load. Conversely, during off-line cali-

bration, a set of the parameter nodes is chosen for estimation and the graph

containing all available measurements is considered. The ROAMFREE li-

brary provides a simple interface that allows adapting the environment to

the specific needs of each robot. It is possible to add logical sensors, choose

the master, define the time window and the execution frequency, and more.

Moreover, a ROS wrapper is available that subscribe to the sensors topics

and periodically broadcast the estimated position using tf.

41

Chapter 3

Robot platform

In this chapter we provide a description of the robot platform, consisting

in the vehicle, all the sensors and all the high-level and low-level control

systems.

3.1 Vehicle

The vehicle used as a base for the development of the system is the Grizzly

700, a commercial all-terrain vehicle (ATV) produced by Yamaha. The

Grizzly 700 is a utility ATV and it is specifically designed for agriculture

work. As a result it is equipped with knobby tires and it has a total load

capacity of 130 Kg. It is powered by a single cylinder 686cc 4-stroke engine

with electronic fuel injection and it has an output of 46 HP (33.8 kW).

The ATV features a fully automatic CTV type drive (Constantly Variable

Transmission) which uses a low maintenance belt to transfer the power from

the engine to the gearbox. It is possible to drive the vehicle with a two-

wheel drive (2WD) or four-wheel drive (4WD) configuration. The braking

system is hydraulic with two dual disc brake on front and rear wheels. A

12 V battery, with a capacity of 18 Ah, powers the electrical system and

it is recharged by a 35 A alternator. Moreover, there are two auxiliary

12 V batteries, with a capacity of 38 Ah, used to power all the additional

instrumentation placed on the vehicle. The tires used are Dunlop/KT421

(standard AT25 x 8-12) on front and Dunlop/KT425 (standard AT25 x 10-

12) on rear. For the purpose of the project, the original chassis of the Grizzly

700 was removed and replaced with an aluminum platform used as a base

for all the electronic equipment.

The steering system of the vehicle has been modified to allow the auto-

44 Chapter 3. Robot platform

Figure 3.1: The original Grizzly 700 (left) and how the vehicle appears after the cus-

tomizations (right)

matic driving. The EPS system was removed, interrupting the connection

between the handlebar and wheels, then the steering column was replaced

with a DC-motor (Intecno ND180.240 motor and Intecno NDP180/813 re-

ducer) which controls the pitman arm and, consequently, the wheels. The

actuation of two stepper motor, B&R 80MDP4.300S000-01, controls the ac-

celerator and the braking system. Regarding the braking system, since the

motor pulls the brake lever near the right foot-board, only the rear brake is

controlled.

3.2 Sensor

The robot uses the sensors to perceive the environment. The measurements

are used to estimate the position and to perform other autonomous tasks.

Here we provide a description of each sensor.

3.2.1 Global positioning system

In order to have an absolute position used as a ground truth in simultane-

ous localization and mapping experiments and for global localization, the

robot is equipped with a GPS; the model is a Trimble 5700. It is a rugged

device designed to withstand the conditions that typically occurs in field

operations, it is coupled with an external antenna to maximize the quality

of the measurement.

The GPS alone provides sub-meter accuracy real-time positioning using

pseudorange corrections with less than 20 ms latency, these measurements

can be enhanced using the RTK correction, which achieve an accuracy in

44

3.2. Sensor 45

(a) The Intecno ND180.240 motor that controls the

steer

(b) The B&R 80MDP4.300S000-01 step-

per motor that controls the accelerator

(c) The B&R 80MDP4.300S000-01 step-

per motor that controls the brake

Figure 3.2: The three motors that controls the accelerator, the brake and the steer

45

46 Chapter 3. Robot platform

Figure 3.3: The Trimble 5700 (left) and its position on the robot with the external

antenna (right)

Logging/memory
On Data is being logged

Off Data is no being logged

SV tracking

Slow flash Tracking four or more satellites

Fast flash Tracking three or more satellites

Off Not tracking any satellites

Radio Slow flash A CMR packet marker has been received

Battery

On Healthy

Fast flash Low power

Off No power source

Table 3.1: LEDs behaviour of the Trimble 5700.

46

3.2. Sensor 47

the order of centimetres. In our setup, the GPS alone is used and no RTK

accuracy is obtained.

The connection between the GPS receiver and computer is serial, using

the RS-232 standard. Since the computer is not equipped with a serial port,

a serial-to-USB adapter is used. The Trimble 5700 steams its measurements

using the NMEA standard at 5 Hz. In this standard each message is an

ASCII string with a specific format. Each sentence’s starting character is a

dollar sign, all the data fields are comma-separated and a newline terminates

the message. The NMEA standard includes various messages with a fixed

number of fields, the first one is a code to identify them. Messages coming

from a GPS, like in our case, have the GP prefix, the following is an example

of a fix message:

$GPGGA,172814.0,37.46,N,12.26,W,2,6,1.2,18.893,M,-25.669,M,

2.0,0031*4F

In this case the fields are:

• Timestamp (UTC) of the position fix (172814.0)

• Latitude with its direction (N for North, S for South) (37.46,N)

• Longitude with its direction (E for East, W for West) (12.26,W)

• GPS quality indicator (from 0, no fix, to 5, RTK correction) (2)

• Number of satellites tracked (6)

• Horizontal dilution of precision (1.2)

• Height with its unit of measurement (M for meters)(18.893,M)

• Geoidal separation with its unit of measurement (M for meters)

(-25.669,M)

• Age of differential GPS data record (2.0)

• Reference station ID (0031)

The hexadecimal number after the asterisk is the checksum. As it is

possible to see from the structure of the message, the position is expressed in

the geodetic coordinate system, which uses latitude, longitude and altitude.

47

48 Chapter 3. Robot platform

Figure 3.4: MTi with sensor-fixed coordinate system overlaid

3.2.2 Inertial measurement unit and magnetometer

The robot is equipped with an xsens MTi, which is a miniature inertial

measurement unit (IMU) with integrated 3D magnetometers (3D compass).

The IMU is composed by accelerometers and gyroscopes, it can calculate roll,

pitch and yaw in real time, as well as outputting calibrated 3D linear ac-

celeration and rate of turn. The magnetometer provides 3D earth-magnetic

field data. The sensor provides measurements at a frequency up to 100 Hz.

All calibrated sensor readings (accelerations, rate of turn, earth magnetic

field) are in the right handed coordinate system as defined in Figure 3.4. This

coordinate system is body-fixed to the device. The Earth-fixed coordinate

system used as a reference to calculate the orientation is defined as a right

handed coordinate system with:

• x positive when pointing to the local magnetic North.

• y according to right handed coordinates (West).

• z positive when pointing up.

In this work the MTi is used to acquire raw magnetic field measurements

and raw rate of turn. The specification associated with those measurements

are listed in 3.2.

The xsens is placed on the robot in a central position, between the vehicle

and the sensor there is a piece of foam used as a mechanical filter to remove

vibration. The connection between the MTi and the computer is done by a

USB interface, which is used for both data transfer and power.

48

3.2. Sensor 49

rate of turn acceleration magnetic field

Unit [deg/s] [m/s2] [mGauss]

Dimensions 3 axes 3 axes 3 axes

Full Scale [units] +/-300 +/-50 +/-750

Linearity [% of FS] 0.1 0.2 0.2

Bias stability [units 1σ] 1 0.02 0.1

Scale factor stability [% 1σ] - 0.03 0.5

Noise density [units /
√

Hz] 0.0513 0.002 0.5 (1σ)

Alignment error [deg] 0.1 0.1 0.1

Bandwidth [Hz] 40 30 10

A/D resolution [bits] 16 16 16

Table 3.2: Calibrated data performance specification.

Figure 3.5: The SICK LMS291 laser scanner (left) and where it is mounted on the

robot (right)

49

50 Chapter 3. Robot platform

Pin Signal Data interface

1 RD- RS 422

2 RD+/RxD RS 422/RS 232

3 TD+/TxD RS 422/RS 232

4 TD- RS 422

5 GND Ground

6 n.c.

7 Brigde to pin 8
Enables the RS 422

8 Brigde to pin 7

9 n.c.

Table 3.3: Pin assignment of the 9-pin serial inferface.

3.2.3 Laser scanner

In order to perceive the environment near the vehicle and to detect unpre-

dictable obstacles, the robot is equipped with a laser scanner; the model

is Sick LMS291. The sensor can measure the distance from an object on

a plane up to 80 meters, in a range of 180◦with a resolution of 1◦, 0.5◦or

0.25◦depending on the configuration. The laser can transmit measurements

to the computer at various rates, starting from 9600 Bd up to 500 kBd, to

achieve the highest transmission speed and receive real time measurements

it is necessary to connect the sensor using a RS-422 serial cable with a cus-

tom wiring. Since the computer used on the robot has no serial connection,

we use a custom-built RS-422-to-USB adapter with the wiring described in

Table 3.3

The LMS291 requires an operating voltage of 24 V with a power con-

sumption of less than 20 W, power is supplied using another custom-wired

serial cable, connected directly to the electric system of the robot. In this

cable only two pins are used: number 1 for ground and number 3 for power.

The laser is mounted on the robot upturned between the front wheels.

Given its orientation, the laser beam turns towards the right and its coordi-

nate frame has the z-axis pointing down, the x-axis pointing ahead and the

y-axis pointing right.

3.2.4 Cameras

Mounted on the front of the robot there are two cameras, both pointing

forward and parallel to each other. The model is Prosilica GC750C. The

cameras use an Ethernet connection to communicate with the system, they

50

3.3. Low-level control system 51

Figure 3.6: The Prosilica GC750C camera

support a Gigabit connection to stream uncompressed images at high frame

rate. They are powered at 12 V with a custom wiring that connects them

to the electric system of the robot, a DC-DC converter decouples the two

parts for increased security. The cameras are connected to each other, this

is necessary to have synchronous images in the stereo configuration. The

master camera sends a signal to the slave camera using this connection,

while the master streams frames continuously, the signal trigger the capture

of each frame in the slave. Since the connection is symmetrical, both cameras

can be master, which one has the master role is defined via configuration.

In our system the right camera streams images continuously and act as a

master, while the left camera receives the trigger signal.

Each Prosilica mounts a 1/3” Apatina MT9V022 CMOS sensor and it

can stream color images up to 67 frames per second with a resolution of 752

x 480 pixels. We set our cameras to stream greyscale raw images, with a full

resolution, at 5 frames per second, when connected using Fast Ethernet, or

20 frames per second, when using Gigabit Ethernet.

The coordinate frame of the cameras it the one commonly used for this

type of sensor, which means x is pointing right, y downwards and z from

the camera into the scene.

As stated before, an Ethernet connection connects the cameras to the

system, it is not necessary to define static IPs to identify the devices, since

each one has a unique ID that can be used to establish a connection. In the

current setup, the ID of the right camera is 45032 and for the left one is

45031.

3.3 Low-level control system

An X20 system produced by the Austrian company B&R realizes the low-

level control system. It is a programmable logic controller (PLC) used in

51

52 Chapter 3. Robot platform

Figure 3.7: The X20 system

Figure 3.8: The low-level control system of the vehicle, with the X20 in the center and

the modules on the left

52

3.3. Low-level control system 53

industrial applications to monitor and control various devices (e.g., sensors,

actuators, industrial PC, etc.). The system, powered by 24 V, is equipped

with an Intel Celeron processor at 650 MHz, 64 MB of RAM, 1 MB of

SRAM and a backup battery to maintain global variables. A CompactFlash

memory card (up to 8 GB) acts as mass storage to contain the operating

system and the working data. The system is equipped with the following

connection ports: Ethernet, two USB ports and an RS232 port. The X20 is

modular, it is possible to assemble various units, and each one can manages

I/O signals (analog or digital), controls stepper motor or acquires data from

various sensors. Here a brief description of the modules used:

• Analog output module AO2622: the module is equipped with two

outputs with 12-bit digital converter resolution. It is possible to select

between a current (0-20 mA) or voltage (+/- 10 V) signal. One of these

modules is used to send the current setpoint to the motor controlling

the steer.

• Digital output module DO9322: the module is equipped with

twelve outputs for 1-wire connections, each one can have a value of 24

V (logic level high) or 0 V (logic level low). The outputs are controlled

independently with Boolean values or in groups with strings. This

module is used to send to the steer motor the Enable signal.

• Stepper motor module SM1436: the stepper motor module is

used to control stepper motors with a rated voltage of 24 to 39 V at

a motor current up to 3 A. Additionally, this module has four digital

inputs that can be used as limit switches or as encoder inputs. In the

low-level control system there are two of these modules, one is used

to controls the stepper motor which moves the brake pedal, the other

one controls the motor associated with the accelerator lever. One of

the two modules also receives the signal coming from the phonic wheel

(speed sensor) of the vehicle.

The connection between the low-level control system and the rest of the

hardware is Ethernet; the X20 system has a static IP, which is 192.168.0.1.

The same channel is used to transmit setpoints and receive odometry mes-

sages. The messages are strings with a specific format. A valid sentence is

a list of values separated by commas between angular brackets. The next

chapter contains a more detail description of these messages.

53

54 Chapter 3. Robot platform

Figure 3.9: The Acer aspire 5742G

3.4 Computer

The computer receives all sensor readings, implements localization algo-

rithms, act as an interface between human and vehicle during manual drive

and sends command to the low-level control system during autonomous

drive. Originally, the robot was equipped with an industrial pc mounted

directly on the vehicle, but to simplify the development of the new software

it has been replaced with a commercial laptop. The model is an Acer aspire

5742G, it is equipped with an Intel Core i5-450M processor running at 2.6

GHz, 4 GB of RAM and a ATi HD5470 video card. Concerning the storage,

we replaced the original mechanical hard disk with a solid-state drive to

avoid damage caused by the vibration of the engine; it has a capacity of 60

GB.

The on-board operating system is Ubuntu-Linux. This choice is driven

by the OS full compatibility with ROS and by the availability in the Ubuntu

repository of most of the ROS packages and add-ons. The version is Ubuntu

13.10 because it was the newest version available compatible with the ROS

distribution used, ROS Hydro Medusa, when we stared developing this

project. The computer has a static IP, which is 192.168.0.100.

3.5 Teleoperation

The robot can be teleoperated using a wireless joypad. The joypad used

is a Microsoft Xbox 360 Wireless Controller, but any device supporting

XInput API is compatible with the system. The controller is connected to

the computer with an USB wireless receiver with a range of 9 meters. The

joypad has two analog sticks with an angular range of 360◦, a 4-way digital

54

3.5. Teleoperation 55

Figure 3.10: Microsoft Xbox 360 Wireless Controller

pad, two analog triggers, ten digital buttons, two of which activated by

pressing the analog sticks. The device is used to access various functionality:

manual drive, changing the internal state of the system and activate specific

behavior in some software modules. When driving manually the operator

controls the speed of the vehicle using the left analog, the speed increase

by tilting it up, to a maximum of 5 m/s. Tilting the left analog backward

activates the brake. The right analog controls the steer, tilting it left to

make a left turn and vice versa, in a range from -20◦and +20◦.

In addition to teleoperation, the controller also is used to control some

of the software modules, a detailed description about this is provided in

Chapter 4.

55

Chapter 4

Software architecture

This chapter describes the new software architecture designed and devel-

oped for the robot within this thesis. First, a general description of the

architecture is given, then we describe how the communication with the

low-level control system is implemented. A summarization of the modules

used to communicate with the sensors follows. The last part is about the

autonomous drive and explains how the robot is localized, the path is gen-

erated, and the actuators are controlled.

4.1 Architecture overview

4.1.1 General structure

In order to develop the architecture of our robot we used ROS, an open

source framework which as recently become the de facto standard in many

robotic applications. One of the main characteristics of ROS is its modu-

larity, implemented through a structure based on packages, nodes, messages

and services. We used these features to design a highly modular architecture.

The mains reasons behind this choice are, fundamentally, two; first, when

working with a prototype, it is important to have the possibility to add or

remove parts (e.g., sensors) with ease and, consequently, to enable or disable

the associated software modules without compromising the entire system.

This is realized in our architecture by the use of independent nodes for each

functionality and by a hierarchical structure of ROS launch files.

The second reason that drove our decision is the integration with a

simulated environment. Given the characteristics of the robot, a realistic

simulation is fundamental, even more important is to have a seamless in-

terchangeability between the real vehicle and the simulated environment.

58 Chapter 4. Software architecture

Figure 4.1: The structure of the packages quadrivio and quadrivio msgs

The software architecture has been designed introducing a decoupling layer

between the real robot and the high-level perception and control software.

This layer can be removed and substituted with the simulation; a detailed

description on how the architecture interact with the simulation is in Chap-

ter 5. Briefly, we created two packages for the core system, quadrivio

and quadrivio msgs, the first one contains all the nodes, while the other

one contains the messages. Figure 4.1 shows a simplified structure of the

packages, it shows only the source, launch and configuration files. Splitting

packages in nodes and messages, or services, is a standard ROS practice.

Inside the quadrivio package each node, or each group of nodes, has a sep-

arate folder, this structure creates a well-organized workspace where it is

simple to disable unused node, for example when switching between the real

robot and the simulated environment.

Other nodes developed during this project but not explicitly for it, for

example sensors nodes or the internal state machine, have their own pack-

ages.

4.1.2 Main modules

Figure 4.2 shows the main modules of the high-level software architecture

and their relations with the external sensors and the vehicle servomecha-

nisms. The core part of the perception architecture consists in the localiza-

tion node (Section 4.5.2), which is based on ROAMFREE. This framework

provides pose tracking fusing the information coming from an arbitrary num-

ber of sensors. In the current configuration the localization module estimates

58

4.1. Architecture overview 59

Figure 4.2: The main module composing the architecture

the robot poses exploiting vehicle kinematic data (i.e., the handlebar posi-

tion and the rear wheel speed), GPS, magnetometer, and the gyroscopes

in the inertial measurement unit. These measurements are provided to the

localization module by the nodes that act as drivers (Section 4.4) for the

sensors and communicate directly with the physical device.

The pose estimate is generated by the localization node at a frequency

of 10 Hz. However, due to the latencies introduced by the ROS network,

delays in the trajectory control loop which affect the system stability can

occasionally arise. In order to prevent the detrimental effects of these de-

lays, we introduced a predictor node (Section 4.5.3). This node computes a

prediction of the future robot pose at a frequency of 50 Hz; this prediction

is based on the latest available global pose estimate and on the integration

of the Ackermann kinematic model with the kinematic readings from the

vehicle.

Given a map and a goal, a planner node (Section 4.6.3), based on the

SBPL library , produces a global path, which is then fed to a lower level

trajectory following module (Section 4.7). This module computes setpoints

for the vehicle speed and handlebar angle, based on the current pose and

velocity estimates, and on the planned trajectory. These setpoints are sent

to the low-level regulators by a ROS node (Section 4.3) communicating with

the PLC, which additionally acts as a multiplexer between the autonomous

drive and the manual setpoints, depending on the current operating mode.

59

60 Chapter 4. Software architecture

4.2 State machine

In order to manage the functionalities of the robot, the software architecture

is design around an internal finite state machine. The possible states are

MANUAL, ASSISTED, AUTO, SAFE and HALT. Each state corresponds

to one of the possible modes in which the robot can operate:

• MANUAL: in this state, the robot is driven manually controlled by the

joypad. PLCClient discards all the setpoints coming from any source

other than JOYPAD, these are sent directly to the low-level control

system.

• ASSISTED: currently this state behave exactly like MANUAL. It exist

because in the future the robot will have collision detection features.

In this state, these features will be active to assist the manual drive.

• AUTO: The follower is active and the robot is driven autonomously,

any trajectory published is executed immediately. PLCClient forwards

to the low-level control system only setpoints having the source AUTO.

• SAFE: The robot stands still, a neutral setpoint is sent to the low-level

control system. The vehicle cannot be operated until a different state

is selected.

• HALT: This is the starting state of the robot and its emergency state.

Reachable from each other state, it stops the vehicle and put the low-

level control system in its own halt state.

The transition between two states is done using the controller by pressing

one or more buttons simultaneously. The state-transition function is defined

in the following way:

• from HALT to SAFE by pressing BACK and START at the same time;

• from SAFE to:

– MANUAL by pressing B;

– ASSISTED by pressing RB;

– AUTO by pressing LT and RT at the same time;

– HALT by pressing BACK and START at the same time;

• from MANUAL, ASSISTED or AUTO to:

– SAFE by pressing LB

60

4.2. State machine 61

Figure 4.3: The internal state machine

Figure 4.4: Button used to change the state of the internal state machine

61

62 Chapter 4. Software architecture

Figure 4.5: PLCClient node and its communication channels

– HALT by pressing BACK and START at the same time;

In order to implement this state machine in our architecture we have adopted

a package developed by Politecnico di Milano, called heartbeat. This pack-

age offers two main functionalities, first to manage the internal state ma-

chine, second to keep updated all the nodes on the current state of the

system. This is done using a client-server paradigm, a node act as a server

and manage the state machine, other nodes defines a client object that can

retrieves the current state or change it. In order to start the server it is

necessary to launch the server node, found inside the heartbeat package.

This node manages the state machine and the requests coming from the

clients. Each node that want to know or change the current state of the

system have to instantiate a HeartbeatClient object. It is possible to ini-

tialize the object in two ways, with and without a timeout. In the first case

the node can retrieve the current state using the method getState() and

modifying it using setState(newState). In the second, other than these

functionalities, the node must periodically call a method called alive(). If

more than the time defined in the initialization passes between two calls,

the node is considered malfunctioning, this is notified with an error message

and the system is shut down. Currently only one node use this functionality,

PLCClient (Section 4.3).

4.3 Low-level interface

As described in Chapter 3 the low-level control system is connected to the

computer via Ethernet. A node called PLCClient act as an interface between

the high-level and low-level system.

The PLCClient receives messages form the X20 system; these messages

contain information about the status of the vehicle. They are strings with

a specific structure: each one starts with a < symbol and ends with a >

symbol, the fields are comma-separated. Every message has a fixed amount

62

4.3. Low-level interface 63

of fields with a specific order: time, steer SP, steer PV, steerCurrent SP,

steerCurrent PV, speed SP, speed PV, throttle SP, throttle PV, throttle CS,

brake SP, brake PV, brake CS, stateMachine. After processing the message,

the values are published directly on a topic called /PLC/raw values, this

is to expose the internal values of the low-level control system on a higher

level and simplify tests and validations.

From the content of these messages, PLCClient derives the odometry

of the vehicle, which is published on two different topic. One is /PLC-

/ackermann odometry, the message published is roamros msgs/Single-

TrackAckermannOdometryStamped, which contains the raw value of speed

and steer of the vehicle. Moreover, the message has a header, a field includ-

ing a sequence number, a timestamp, and a frame id, which is a string iden-

tifying the reference frame. The other one is /PLC/odometry, this message

(quadrivio msgs/QuadOdometry) contains speed, steer and brake, differ-

ently from the previous one, the values are expressed in m/s, for speed, and

radians, for steer. The conversion from the raw measurements received from

the X20 system to values in standard units of measurement is done using

three constants defined as parameters in the parameter server: ksteer, es-

timated as -0.5622, psisteer, estimated as -0.0061, and kspeed, estimated

as 0.0584. These values are estimated with the off-line calibration suite

provided by the ROAMFREE library (see Section 2.6) using data recorded

from the vehicle during manual drive. The conversion formulae are:

speedm/s = Kspeed speedodo (4.1)

steerrad = Ksteer steerodo + ψsteer. (4.2)

The node PLCClient also has the task to send to the low-level control

system setpoints generated by the high-level system, whether they are from

manual or autonomous drive. Setpoints are published by other nodes on

a topic called /setpoint, the message used is quadrivio msgs/SetPoint,

which contains four fields: steer, speed, brake and source. The last field iden-

tifies the source of the setpoint, if it comes from the manual drive (JOYPAD)

or the follower (AUTO). PLCClient reads these messages and, depending

on the internal state of the system, forwards them to the low-level control

system. The messages sent to the X20 system are strings with the following

structure: starts with a < symbol, ends with a > symbol and the fields are

comma-separated. Each string contains the following values in this order:

brake, speed, steer angle, steer speed and command. The last one is used

to change the internal state of the low-level control system. The states are

identified by integers numbers, and the node can set two different values:

63

64 Chapter 4. Software architecture

Name Value Description

quadPLCIpAddress 127.0.0.1 Parameters of the connection to the

quadPLCPort 20001 low-level control system. Address,

frequency 20 Hz port and frequency of the messages.

heratbeatTimeout 0.5 s Maximum time is it possible to wait

for a message from the low-level con-

trol system.

kspeed 0.0584 Parameters used to convert the

ksteer -0.5622 odometry to to standard units of

psisteer -0.0061 measurement.

Table 4.1: Paramteres used to configure the PLCClient node.

Figure 4.6: Sensors nodes and their topics

20, a safe state where no setpoint is forwarded to the actuators, and 40, the

normal operating state of the system.

Given the crucial role of this node in the architecture, it has a thigh cou-

pling with the internal state machine. Each time a new odometry message

is received PLCClient notify to the state machine that the connection to

the low-level control system is still active. A missing notification for a pro-

longed time cause the system to shut down, in order to prevent unexpected

behaviours. As stated before, the node is configurable via parameters, which

are specified in a configuration file called core.yaml. Various parameters,

described in Table 4.1, are used to configure the node.

4.4 Sensors

This robot, like most of the robots, is equipped with various sensor. In this

section, we describe the ROS nodes used to retrieve data from these devices.

64

4.4. Sensors 65

Name Value Description

STATUS NO FIX -1 Fix unavailable

STATUS FIX 0 Unaugmented fix available

STATUS SBAS FIX 1 Fix with satellite-based augmenta-

tion available

STATUS GBAS FIX 2 Fix with ground-based augmenta-

tion available

Table 4.2: Possible values of the status field in the sensor msgs/NavSatFix message.

4.4.1 GPS

As described in Chapter 3 the output of the Trimble 5700 is in NMEA

format, which is based on strings with a well-defined structure. ROS al-

ready has in its repository a node able to read these messages and con-

vert them in standard ROS messages. It is contained in a packaged called

nmea navsat driver. The node, called nmea serial driver, reads NMEA

sentences directly from the GPS, converts them in a sensor msgs/NavSatFix

message, and publish them on a topic called /fix. The message contains

a standard ROS header, the coordinates, expressed as latitude, longitude

(both in degrees), and altitude (in meters), a status field and the covariance

matrix. The status field contains information about the quality of the fix

and the number of satellites used. Since the message is always sent, even

when there is no fix, this field is used also to notify that the values are not

valid. The last field is a 3x3 matrix filled with covariance values derived

directly from the NMEA sentences.

Two parameters have to be set to have this driver working properly:

the logical port corresponding to the device and its baud rate. The baud

rate is a value defined by the device, and in our case it is set at 57600

baud. Concerning the port, instead, since various devices are connected to

the computer via USB, we cannot predict which virtual port will be as-

signed to the GPS. We solve this problem by writing an udev rule. It allows

you to identify devices based on their properties, like vendor ID and device

ID, dynamically, and to specify a name, which is given to it regardless of

which port is plugged into. In our case, we built a symbolic link for the

logical port of the GPS and use that link as a port name for the node.

The name used to identify the device is /dev/trimble, and the rule is:

SUBSYSTEM=="tty", ATTRS{idVendor}=="0557", SYMLINK+="trimble",

ATTRS{manufacturer}=="Prolific Technology Inc."

65

66 Chapter 4. Software architecture

Since the /fix is given in geodetic coordinates (i.e., latitude, longitude

and altitude) and ROAMFREE works with ENU coordinates (i.e. East,

North and Up), node nmea serial driver is coupled with another one that

implements this conversion. The node nmea to enu reads the message pub-

lished by nmea serial driver, converts the coordinates and publish it on

the topic /enu, using a geometry msgs/PoseWithCovarianceStamped mes-

sage. This message has a header, filled with the same values of the original

one, information about the position (using three coordinates), information

about the orientation (using a quaternion), and a covariance matrix, which

is copied from the original message. Since this is a message about GPS co-

ordinates, the orientation field is not used and the covariance matrix, which

is 6x6, is only partially filled:

V (x) C(x, y) C(x, z) 0 0 0

C(y, x) V (y) C(y, z) 0 0 0

C(z, x) C(z, y) V (z) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(4.3)

where C(x, y) is the covariance between x and y, defined as E[(x− µx)(y −
µy)], µx being the expected value of x. V (x) is the variance of x, defined

as C(x, x). There is no information about the fix quality in this message,

therefore when the status field notify that there is no fix, no message is

published.

The conversion from the geodetic to ENU has two steps, first a conver-

sion from geodetic to Earth-centered earth-fixed (ECEF), then from ECEF

to ENU. Geodetic coordinates (latitude φ, longitude λ, height h) can be

converted into ECEF coordinates using the following formulae:

X = (N(φ) + h) cosφ cosλ (4.4)

Y = (N(φ) + h) cosφ sinλ (4.5)

Z =
(
N(φ)(1− e2) + h

)
sinφ (4.6)

Where:

N(φ) =
a√

1− e2 sin2 φ
(4.7)

e2 = f(2− f) (4.8)

a is the major equatorial radius, and f is the flattening, both values are

chosen by reference to the WGS84 datum, which is the standard reference

ellipsoid used to model Earth by the Global Positioning System.

66

4.4. Sensors 67

Figure 4.7: Geodetic (yellow), ECEF (blue) and ENU (green) coordinates

To transform from ECEF coordinates to the local coordinates a local

reference point is necessary. In our node is defined using geodetic coordinates

via parameters, this is the best solution because it can be set on the field

using the coordinates from the GPS. Given the reference point in ECEF

coordinate as Xr, Yr, Zr and the GPS as Xp, Yp, Zp then the vector pointing

from the reference point to the GPS in the ENU frame is:xy
z

 =

 − sinλr cosλr 0

− sinφr cosλr − sinφr sinλr cosφr
cosφr cosλr cosφr sinλr sinφr

Xp −Xr

Yp − Yr
Zp − Zr

 . (4.9)

4.4.2 IMU

The ROS repository already has a driver node for the xsens MTi, but two

problems forced us to develop a new one. First, there was a connection prob-

lem, where the node could not always find the device, second, the message

type used for magnetic field was incorrect, geometry msgs/Vector3Stamped

instead of sensor msgs/MagneticField.

The developed node is based on a C++ library provided by the vendor,

this library manages the connection with the device and the retrieval of the

measurements. We developed a node that act as a wrapper for this library,

publishing the raw data on the ROS topics: /imu/data and /magnetic.

The first one contains data about the accelerometers and the gyroscopes.

The message type is sensor msgs/Imu, which has a header, a quaternion

67

68 Chapter 4. Software architecture

for the orientation and two vector of three elements for linear acceleration

and angular velocity. The header is filled with a timestamp taken from

the system (using ros::Time::now()), an increasing sequence number and

“/imu” as the reference frame. Velocity and acceleration are expressed in

rad/s and m/s2, respectively.

The other message contains the Earth magnetic field. The message type

is sensor msgs/MagneticField, which has a header, filled with the same

values of the other message, a vector of three elements for the magnetic

field, expressed in mG, and a covariance matrix. The sensor provides no

information about the covariance, so it is assumed to be the identity ma-

trix. It is possible to define the frequency at which the sensor provides its

measurements, currently it is set at 20 Hz, and this frequency must match

the frequency of the node to avoid a delay in the messages.

As for the GPS node, it is necessary to define the logical port in the

parameters; being impossible to predict which port the system will assign,

so we used another udev rule. The name used to identify the device is

/dev/xsens, and the rule is:

SUBSYSTEM=="tty", ATTRS{serial}=="XSV8BTGS", SYMLINK+="xsens",

ATTRS{idProduct}=="d38b"

4.4.3 Laser scanner

Natively the Sick LMS291 provides drivers only for Windows environments,

but an open-source software package that implements stable C++ drivers

and configuration tools is available. Moreover, the ROS repository supplies

a wrapper for these drivers, resulting in a complete integration with our

architecture. The package is called sicktoolbox wrapper, while the driver

node is called sicklms.

The node streams the measurements received by the sensors on a topic

called /scan, using a sensor msgs/LaserScan message. This message con-

tains a standard ROS header, the string “/laser” used to identify the frame,

a set of information regarding the configuration of the laser (e.g., scanning

range and resolution), and an array of distances in meters measured by the

sensor in each angular section, in our case the array contains 361 elements.

The order of the values is counter-clockwise around the z-axis, in accordance

to the convention used to measure angles. As stated in Chapter 3, the laser

is mounted upturned, therefore the first values in the array contains the

distance of a point at the extreme left of the robot. In order to complete the

configuration of the node we have to set some parameters: the baud rate,

set at 500000 Bd to obtain real time measurements, and the device path,

68

4.4. Sensors 69

Figure 4.8: Example of the calibration procedure

defined as /dev/lms291. As with all other sensors connected via USB, we

defined the following udev rule to identify univocally the laser, regardless of

the port it is connected to:

SUBSYSTEM=="tty", ATTRS{manufacturer}=="FTDI", SYMLINK+="lms291",

ATTRS{serial}=="FTUUYD2A"

4.4.4 Cameras

ROS provides various nodes to work with cameras: drivers to retrieve im-

ages, calibration tools, and utilities to view the images in real time. All

these node are compatible with the Prosilica cameras installed on the robot.

The package containing the driver is prosilica camera, while the node

is called prosilica node. This node retrieves images from the camera and

publishes them on a topic using a sensor msgs/Image message, which con-

tains a header and the uncompressed image. Every frame is coupled with cal-

ibration information, published by the node using a sensor msgs/Camera-

Info messages. This message contains a header, a distortion matrix, a 3x3

intrinsic camera matrix, a 3x3 rectification matrix and a 3x4 projection ma-

trix, these last two are used only for stereo cameras. ROS automatically

determines and fills all the values after the camera is calibrated using the

tools provided with the camera calibration package.

In our work, we used the cameras both in stereo and mono configuration,

the calibration procedure is basically the same, the only difference is that for

stereo cameras only one calibration is done for both cameras simultaneously,

while for two mono cameras two separate calibrations are required.

69

70 Chapter 4. Software architecture

The node used for calibration is cameracalibrator.py, which is part

of the package camera calibration. The procedure to calibrate a camera

is the following. First, a large chessboard with known dimension is needed,

the board must be rectangular (i.e., more columns than rows), so that the

calibrator can recognize its orientation. Then, execute the calibrator node

and provide as parameters the characteristics of the chessboard and the

topic where the images of the camera are published. For example, this is

the command to execute to calibrate a mono camera using an 8x9 chessboard

with squares with sides of 5 cm:

rosrun camera calibration cameracalibrator.py --size 8x9

--square 0.05 image:=/camera/image raw camera:=/camera

Once the node is in execution, in order to achieve a good calibration,

you have to move the chessboard around in the camera frame such that:

• The chessboard is on the camera’s left, right, top and bottom parts of

the field of view.

• The chessboard fills the whole field of view.

• The chessboard is tilted to the left, right, top and bottom.

When enough samples have been collected, press the CALIBRATE button,

after the calibration is complete use the COMMIT button to send the cal-

ibration parameters to the camera for permanent storage. The driver node

retrieves these parameters during execution to fill the calibration message.

Since there are two cameras installed on the robot, two instances of

node are in execution. To avoid conflicts we need to distinguish the left

camera from the right one. In order to do this we give an identifying name

to each instance of the node and we use the remap function of ROS to

rename the topics. A unique ID identifies each camera. Therefore the left

camera is managed by a driver node called left driver, which publish its

messages on /stereo/left/image raw and on /stereo/left/camera info,

while the right one interacts with a node called right driver, which publish

on /stereo/right/image raw and on /stereo/right/camera info.

Some common parameters are defined for both cameras, like the byte

rate, which defines the amount of images per seconds, the use of auto expo-

sure, the gain and the reference frame id, which is “stereo frame”.

4.5 Localization

In order to drive the robot autonomously it is necessary to know its position

precisely. To do this, in our current configuration, we use measurements

70

4.5. Localization 71

Figure 4.9: Hierarchy of the coordinate frames (left) and their position on the moving

robot as seen in rviz (right)

coming from the GPS, the IMU, and the odometer, and estimate an absolute

position using the ROAMFREE library. We used a node called roamros, a

ROS wrapper for the functionalities of the library, which subscribes to all

the sensor topics and provides a position using tf. This node is coupled

with another one, called fastPredictor, developed within this thesis as an

extension to the ROAMFREE library [14], which uses odometry and the

absolute position estimated by ROAMFREE to predict local positions at a

higher frequency.

4.5.1 Coordinate frames

We have to define the coordinate frames, these are necessary for various rea-

sons: first, ROAMFREE needs to know the sensor displacement to calculate

the estimate, moreover, some of the ROS tools used, tf to publish the pose

and rviz for visualization, require a well-defined coordinate frames tree to

work properly. Lastly, the robot planner (Section 4.5.3) uses a map, which

has a different reference point with respect to the GPS, and the difference

between these two origins is defined with a coordinate frame. The structure

of the coordinate frames of the robot is the following (defined following the

ROS convention and all of them are right-handed):

• /world: is the root of the tree and the global coordinate frame, it is

defined with the z-axis pointing up. Its origin corresponds to the local

reference point used in the ENU coordinates.

• /map: this is the coordinate frame of the map. Each time a map is

used a static transform between its origin and the /world coordinate

frame has to be published.

71

72 Chapter 4. Software architecture

• /roamfree: this frame correspond to the robot position estimated by

roamros, it is placed in the middle of the rear axle of the vehicle. It has

the x-axis directed as the vehicle pointing ahead, the z-axis pointing

up and the y-axis pointing to the left of the robot.

• /base link: this frame is published by the predictor node, as a trans-

formation from the /roamfree frame. This is the coordinate frame

used as a reference by every node that needs to know the position of

the robot. It has the same convention, with respect to the robot, of

its parent frame.

• Sensor frames: each sensor has its own coordinate frame that repre-

sents its position on the robot, each one defined statically as a roto-

translation from the base link frame.

– /gps: defines the displacement of GPS, x = 0.7 m, y = -0.46 m,

z = 0.88, with no rotation.

– /imu: defines the displacement of the IMU, x = 0.96 m, y = -0.03

m, z = 0.9 m, with no rotation.

– /laser: defines the displacement of the laser scanner, x = 1.74

m, y = 0 m, z = 0.15 m, with a roll of 3.14 radians

– /stereo frame: defines the displacement of the stereo cameras,

x = 1.77, y = 0 m, z = 0.91 m, with a yaw of -1.5707 radians and

a roll of -1.5707 radians

4.5.2 Absolute positioning with ROAMFREE

Node roamros subscribes to sensor topics: /PLC/ackermann odometry, the

topic about the odometry of the vehicle, /magnetic, with information about

the measurement of the magnetic field, /enu, gps readings in ENU coordi-

nates, and /imu/data, for gyroscopes and accelorometers. Each sensor with

its corresponding topic is defined in the configuration file of the node; in

such file which sensor is the master is also specified, i.e., the odometer in

our case. In the parameters, each sensor has its own static covariance matrix

if not provided dynamically by the sensor itself; in our case, only the GPS

has a dynamic matrix.

The sensors listed in the file are not the physical sensors of the vehicle,

but the logical sensors used by the fusion engine. While in most cases the

correspondence is one to one, i.e., odometer, GPS, and magnetometer, for

the IMU it is necessary to define two different logical sensors: a gyroscope

and an accelerometer. The odometer, which is the master, is used to build

72

4.5. Localization 73

Figure 4.10: The class diagram (left) of the fastPredictor node, and the relationship

between the instances of the classes (right)

the hyper-graph, as described in Chapter 2, since it provides enough in-

formation to predict the next robot pose. The covariance matrix is used

to determinate the reliability of each sensor, and therefore their weight in

calculating the estimated position.

The configuration file contains also the parameters used to configure the

error models for each sensor. For example, hard and soft iron distortion that

affect the magnetometer readings, or the constants used to convert from the

raw odometry values to the actual steer and speed measurements.

Lastly, this file contains the parameters about the frequency of the es-

timated position and the size of the time window used. The time window

size is the maximum number of measurements that are considered to deter-

minate the position, and it is defined in seconds. Defining this parameter is

crucial, because a larger window means that more measurements are used

to determinate the position, therefore attaining more accuracy, but at the

same time this increases the computation time reducing the frequency of the

node. During experiments and simulations, we tried various values for these

parameters, in the end the more suitable were:

• Window size: 5 seconds

• Frequency: 10 Hz

When started, roamros waits for the availability of the sensor displace-

ments and retrieves the initial pose, which is published by another node on

the topic /initialpose. This node is called initialPose-roamros.py, it

retrieve the position using the GPS and the orientation using the magne-

tometer, when these two values are available, it composes them in a initial

pose. Starting form this pose and after collecting enough sensor measure-

ments, roamros estimates the current robot position, and broadcasts it pe-

riodically using tf.

73

74 Chapter 4. Software architecture

4.5.3 Predicted position

In order to drive the robot autonomously it is necessary to provide the

current position with high frequency and the lowest possible delay. It is

possible to increase the frequency of roamros at the cost of a lower accuracy

and increased computational load, but there will be always a delay caused

by the time required to compute the position. Therefore, we developed a

node, i.e., fastPredictor, that predicts a relative position, starting from

the absolute position given by roamros and integrating the odometry of the

vehicle.

The design of fastPredictor is based on the fact that position calcu-

lated from odometry is reliable if the distance travelled is short, but it accu-

mulates errors over time. The node subscribes to the topic /PLC/odometry

to receive information about the speed and the steer of the vehicle and im-

plements a listener to receive the position broadcast by roamros. The node

is characterized by few parameters: first, it is necessary to define the coor-

dinate frame of the absolute position, in our case it is /roamfree, and at

which frequency this position is broadcast, 10 Hz as stated before, lastly,

the frequency of the odometry, 20 Hz in our robot. These two values are

used to determinate the number of odometry measurements to store, since

in the worst case you only need the last fo/fr+1 measurements to calculate

the relative position until the next global update is generated.

Each time a new odometry message is received the node extracts the

steer and speed values and stores them in in two instance of an object called

Interpolator, each measurement is coupled with its timestamp. Inside

each Interpolator, values are stored in two circular buffer (one for the

measurements and one for the timestamps), which size is determined by the

frequencies defined in the parameters. Therefore, the node keeps in two

separate containers the last fo/fr + 1 values of speed and steer.

The main purpose of these objects is to convert a discrete measurement,

in our case speed and steer, into a continuous one. In order to do this, it

necessary to interpolate, hence the name of the object, and because we want

to do a prediction some extrapolation is required, too. To achieve a smooth

interpolation we used splines, which are continuous smooth functions that

are piecewise-defined by polynomial functions, and to integrate them in our

software we used the GNU scientific library, which provides functions to

create and use splines. For the extrapolation we used a linear extrapola-

tion based on the two newest values, this approximation is sufficient as the

extension in the future is in the order of milliseconds.

The continuous function defined by Interpolator is used by Kinematic,

74

4.6. Trajectory generation 75

another object that defines the differential equations describing the kine-

matic of the robot. This structure permits to generalize the use of fast-

Predictor, because it is possible to adapt the node by modifying the differ-

ential equations defined inside Kinematic. In the case of our robot, which is

a four-wheeled vehicle with an Ackermann steer, the differential equations

describing its kinematic are:{
ẋ = v(t)

θ̇z = v(t)/L tan(φ(t))
(4.10)

Where v(t) is the speed, φ(t) is the steering angle, both derived from the

odometry, and L is the wheelbase of the vehicle. Integrating these equation

gives the position of the robot in its reference frame.

In order to integrate these equations we used odeint [3], a C++ library

for numerically solving ordinary differential equations. This is done directly

in the main loop of the node. Each time the main loop of the node is

executed a listener retrieves the timestamp of the newest absolute position

broadcast by roamros, this is the starting time of integration, while the end-

ing time is the current time plus a dt. Integrating a few milliseconds in the

future gives a prediction of the future position of the robot, and grants the

lowest possible delay. The result of the integration is the relative position

of the robot, and it is broadcast as a transformation from the coordinate

frame /roamfree to /base link using tf. In order to maintain the coordi-

nate frames tree consistent, when it is impossible to integrate because not

enough odometry or no absolute position is available the node broadcasts

the identity transformation between /roamfree and /base link.

4.6 Trajectory generation

Integral part of any autonomous driving system are methods to define a tra-

jectory to follow. In our architecture, we have different nodes that provide a

path and all of them have a common interface. Trajectories are published on

a topic called /path, using a custom message: quadrivio msgs/PathWith-

Velocity. The message contains a nav msg/Path, which has a standard

ROS header and a list of positions, and an array of speeds. The size of

the array is the same of the number of positions. Another topic called

/visualize path is used to view the trajectory on rviz, on this topic only

the positions are published using a nav msg/Path. Currently there are three

different methods to create a trajectory: drive the vehicle manually to record

its path then publish it, generate a specific trajectory from a list of instruc-

75

76 Chapter 4. Software architecture

Figure 4.11: Button used to control the behaviour of the trajectoryRecorder node

(left) and the trajectoryGenerator node (right)

tion or a planner that creates a plan given a goal, a map, and the starting

robot position.

4.6.1 Recorded trajectory

The node that has the task to record and publish a trajectory is called

trajectoryRecord. The functionalities of the node are accessed using the

controller and are represented by three internal states. In order to receive

the commands from the joypad, the node subscribes to the /joy topic, where

a message containing the current status of the buttons of the controller is

published by the joypad drive node. When a message is received the node

reads the content and change the internal state accordingly. In the WAIT

state, the node does nothing, pressing the A button starts the recording

and change the state to RECORD. In this state, a listener retrieves the

broadcasted robot position, which is used to create the path. In order to

avoid duplicates and an accumulation of points when the robot stands still

or when is moving slowly, a new position becomes part of the recorded

trajectory only if the distance from the last one is greater than a specified

value. A constant value fills the array of speeds, this allows driving the robot

slowly on a well-defined path, record it, and then replay it with different

speeds. Pressing again the A button while in the RECORD state ends the

recording and change the state to TRAJECTORY. In this state the path

is ready to be sent to the follower, by pressing the Y button a message

is published on the /path topic, with no changes to the state, therefore

pressing Y again sends again the message. Pressing the X button deletes

the path and returns the node to the WAIT state.

76

4.6. Trajectory generation 77

4.6.2 Generated trajectory

To generate a specific path we developed a node called trajectoryGenerator,

this node reads a list of command from a file and creates a well-defined tra-

jectory, which is built using a list of poses, containing a specific position and

orientation. We developed this node because while the recorded path was

useful for the first experiments of autonomous navigation, the fact that is

based on the estimated position made it unsuited for more advanced ones.

In this case, instead, only the starting position of the robot is required to

create a path with a specific shape, i.e., a circle, an oval, a sinusoid, therefore

it is possible to predict the path of the robot and, consequentially, verify it.

The file containing the commands have a specific structure: each line is a

different command, a line starting with a hash is a comment and each com-

mand contains three numbers separated by a comma. The three numbers in

each line are, in order: a translation, in meters, a rotation, in radians, and

a number of repetitions. Accordingly, the commands to create a straight

line of 5 meters with a point every 10 centimetres followed by a 90◦curve six

meters long with a point every 30 centimetres are:

#straight line 5 meters

0.1,0,50

#left turn

0.3,0.07853,20

Combining rotations and translations it is possible to create any kind of tra-

jectory, moreover a specific command to create sinusoid-like path is available.

In a way similar to the recording node, trajectoryGenerator is con-

troller using the joypad. Therefore, this node, in the same of the previous

one, subscribes to the /joy topic and use the content of the message pub-

lished to change the its internal state. There are only two internal states:

WAIT and TRAJECTORY. In the WAIT state pressing the A button gener-

ates the path and changes the state to TRAJECTORY. A listener retrieves

the current position of the robot, one meter ahead from that position the

trajectory is created by reading the commands in the file. This slight ad-

vancement makes the path more manageable by the follower. A value speci-

fied in the parameters fills the array of speeds. In the TRAJECTORY state

the generated path is published on the topic /path by pressing the Y but-

ton, further pressions send more messages. In order to go back to the WAIT

state and delete the trajectory it is necessary to press the X button. The

node retrieves the speed and the commands again at each path generation,

therefore it is possible to change them during execution without restarting.

77

78 Chapter 4. Software architecture

4.6.3 Planner

The two methods to define a trajectory described above are useful when

conducting laboratory experiments, but are ill-suited for real world applica-

tions. Therefore, a global planner developed by another thesis at Politecnico

di Milano [12] is an integral part of the software architecture of the robot.

It is an extension of a ROS compatible library, SBPL (Search Based Plan-

ning Library), inserting in it the possibility to have more vehicle features

than those considered in its current version. The result is a planner usable

with an ATV vehicle, which reduces the risk of overturn, and it can take

into account many sources of information during planning. In order to use

the planner in our architecture, a ROS node has been developed, called

trajectoryPlanner. The node use AD* as a default planning algorithm

and have the capability to publish a suboptimal solution. This path is im-

proved over time and is published again every iteration of the main loop

of the node. It is possible to change the starting point, the goal and the

map between two iteration of the planning algorithm, therefore the subop-

timal trajectory is improvable even if the robot is moving, i.e., it changed

its starting position. The node is configurable with various parameters:

• the file of motion primitives to use, which contains a collection of the

possible minimal movements of the robot

• an initial suboptimality value

• the width of the vehicle footprint

• the length of the vehicle footprint

• the type of the environment to use among the one with three state

variables (x, y, θ), the one with four state variables (x, y, θ, v) and

the two with five state variables (x, y, θ, v, δ) or (x, y, θ, v, ω)

• the obstacle threshold (from which cost value a cell has to be consid-

ered as an obstacle)

• the cell size (i.e., the resolution of the map)

• the number of orientations used to initialize the environment

• the maximum time allowed to find a feasible path

• the flag indicating if the node must continue search until a solution is

found (if exists) ignoring the maximum time allowed to find a feasible

path

78

4.6. Trajectory generation 79

• the search direction flag (true is forward, false is backward)

• some parameters needed if the environment used is the one with three

variables

– the nominal velocity

– the time to turn in place

• some parameters if the environment used takes into account (x, y, θ,

v [, . . .])

– the number of linear velocities admitted

– the linear velocities admitted

– the number of steering angles if the environment take into account

the steering angles

– the number of angular velocities admitted if the environment take

into account angular velocities

– the angular velocities admitted if the environment take into ac-

count angular velocities

The node retrieves the map from a topic called /map, which is published

by a modified version of the ROS map server, called map server decimal-

cost. This version admits for each cell decimal costs, while the version

available on the ROS repository only admits integer costs. A listener re-

trieves the starting position of the robot broadcast by the predictor. Since

the planner needs to know the current speed of the robot, the node sub-

scribes to /PLC/odometry, to retrieve the odometry message. The goal is

a position published on the topic /goal, currently we use rviz to select a

goal directly on the map.

When the node receives the map, the starting position and the goal, it

begins to plan. As soon as a trajectory is available, the node publishes it

and the follower starts following it. The node runs at a frequency of 15

Hz, and at each iteration of the main loop the trajectory is improved, each

time, if necessary, using the updated starting position. The node publishes

the improved path at the end of each iteration. The improvement continues

until the optimal solution is found, or if the goal is modified, in this case a

new plan starts.

79

80 Chapter 4. Software architecture

Figure 4.12: Nodes used to generate the trajectory and their topics

4.7 Path following system

The path follower used to control the robot while it is in the autonomous

state is designed by another thesis at Politecnico di Milano [15] specifically

for the ATV used as a base for our robot. In order to integrate it in our

architecture we developed a ROS node that implements the functionalities of

the follower. The node, called TrajectoryControl, subscribes to the topic

/path to receive the trajectory to follow, and uses a listener to retrieve

the current robot position broadcast by the predictor. The path received

contains a collection of points, but the specific algorithm performing the

trajectory control needs a continuous trajectory. Therefore, we used splines,

implemented again using the GNU scientific library, to create a continuous

function from the positions contained in the message. This new path is

usable by the path follower, which, at every execution loop of the node,

retrieves the current robot position, generate a setpoint compatible with

the trajectory and publish it on the /setpoint topic with the value AUTO

as a source. The node works only when the internal state machine is in the

autonomous state, otherwise every path received is discarded. In any case, if

the node sends setpoints when not in the autonomous state, the PLCClient

ignores them. This ensures that the vehicle does not move when not in the

autonomous state. The robot follows the trajectory until the distance to the

goal is lower than a threshold, at that point the node stops the following and

sends to the low-level control system setpoints that keep the vehicle braked.

80

4.7. Path following system 81

Name Value Description

maxCurvature 0.625 maximum curvature that the vehicle can

perform

lambda 0.001 Parameters of the ellipsoid, which repre-

epsilon 0.7 sent the maximum distance between the

followed reference frame and the robot

sogliaAlpha 0.001

gamma 1 Gains of the internal controller of the path

H 3.0 following algorithm for speed and steer

beta 2.2

Table 4.3: Paramteres used to configure the trajectoryControl node.

Other than the setpoints, the node publish two more topics: one contains

the followed reference frame, viewable on rviz, it is useful to know if the

robot is at the right point of the followed trajectory, while the other is a

custom message that expose some of the internal values of the path following

algorithm. In order to have a complete integration of the follower in our

architecture we have turned its parameters into ROS parameters described

in Table 4.3.

81

8
2

C
h

a
p

te
r

4
.

S
o
ftw

a
re

a
rch

ite
c
tu

reFigure 4.13: The overall architecture

82

Chapter 5

Robot simulation

In this chapter, we describe the simulation tools developed alongside the

software modules. We used the simulation to improve and test the architec-

ture before the deployment on the robot. We start with a general description

of the simulated environment, followed by a detailed analysis of the robot

model. After that, we introduce how the sensors are simulated and how we

integrated them with the robot architecture.

5.1 Scene description

In V-Rep a scene is a simulated environment, it includes all the elements that

compose the simulation. A scene contains a hierarchy of objects; these can

be physical (e.g., the robot, obstacles or a terrain), or virtual (e.g., scripts,

lights or cameras). Each scene has a main script, which contains the basic

code that allows a simulation to run. While V-Rep allows you to customize

models using child scripts, the main script is not supposed to be modified,

although possible. Moreover every scene contains a series of cameras, not

to be confused with vision sensors, that allow to view a real-time rendering

of the simulated objects from different points of view while composing the

scene and during the simulation.

For this work, we created two different scenes; one is a complete scene,

with a rough terrain covered with a texture, 3D models of trees, to create

obstacles and reference points used when computing the visual odometry.

Moreover, in this scene, the robot is equipped with all its sensors, including

vision sensors and laser. The other scene is simpler, it as a flat terrain, no

texture, no obstacles and the robot lacks the laser and the vision sensors.

The use of these two scenes allows us to simulate easily a large number of

84 Chapter 5. Robot simulation

Figure 5.1: The two scenes used. On the left, quadrivio full.ttt, on the right,

quadrivio light.ttt

different behaviors.

In both scenes, to simulate the ground, we use a heightfield shape, which

represent a terrain as a regular grid, where only the heights change. This

shape is optimized for dynamics collision response calculation, and V-Rep

allows importing specific terrains using two types of sources:

• Images files: an image file (JPEG, PNG, TGA, BMP, TIFF or GIF

file) where the various height values are taken from the red, green and

blue color components of each pixel: height = (red+green+blue)/3.

• Comma-separated values files: the file should contain y rows where

each has x values separated by commas.

After selecting the file to import it possible to specify the size of terrain and

the real height corresponding to the maximum height value in the source

file. In our scenes we use images to generates random terrains, for example

a completely black image for a flat terrain or a grey-scale image for a rough

terrain, and we use CSV files to recreate in the simulation terrains taken

from real maps.

In early stages of development for our architecture, we designed and used

the simpler scene, called quadrivioLight.ttt. Having a flat terrain, i.e.,

without any roughness, and lacking obstacles, it is well suited to test the

model of the robot, its localization and the path following behavior. Since

problems encountered during any of these tests can be isolated as a fault in

the software and not caused by external elements. Moreover, the absence

of the laser and vision sensors reduce the computational load, making the

simulation running almost in real time, this permits to an operator to drive

the simulated robot without difficulties.

Going on in the development of the software architecture, we had the

need to test the robot in a more complex environment, therefore we designed

the second scene, quadrivioFull.ttt. The rougher terrain is useful to test

84

5.2. Robot model 85

Figure 5.2: Steering system and suspensions of the vehicle model

the robustness of the path follower, the 3D models of trees are obstacles

detectable by the laser and act as a reference point for the vision sensors.

The simulation of this scene cannot be carried on in real time, therefore

manual drive results difficult, but, thanks to the use of simulation time in

ROS, there are no limitation when the robot is autonomous.

5.2 Robot model

To simplify the creation of our robot model, we used one of the built-in mod-

els that V-Rep offers as a base. We chose one that shares the Ackermann

steering and the suspension geometry of our vehicle and we customized it

to match the robot characteristics. In this section, we describe the charac-

teristics of the model and the customization we have implemented.

5.2.1 Steering system and suspensions

As the structure of the suspension and the Ackermann steering system are

the characteristics on which we based our choice of the starting model, we

did few modifications to match the behavior of the robot.

The Ackermann steering system is untouched, except for the change of

size to match the real vehicle dimensions. A rotational joint controls the

position of the handlebar, its angle is the same as the steering angle of the

model, and therefore no conversion is needed when applying the setpoints.

The joint is part of a system connected to two rigid arms that control the

position of the front wheels. As we are not interested in studying the dy-

namics of the steering motion control system, but only in simulating the

overall vehicle dynamics, the simulator does not include an accurate model

of the steering column.

85

86 Chapter 5. Robot simulation

Figure 5.3: Comparison between the robot model (left) and the original model (right)

Four prismatic joints realize the suspensions, each one connected to the

vehicle chassis and to the wheels by mean of rotational joints. In order to

recreate the behavior of a real suspension, a PID controls the joint to achieve

the damping effect of a spring. In order to tune the parameters of the PID,

we started from the values used in the original model and modified them

until a behavior comparable to the real vehicle was reached. In the end, the

configuration of the joints is the following: maximum force of 400 N, the

proportional control action is 100 and the derivative control action is 800.

5.2.2 Geometric characteristics

The most noticeable difference between the original model and our robot

is the size. Despite the realism of the components, like the steer and the

suspensions, the original model is comparable to a toy car in terms of dimen-

sions. Moreover, the ratio between the wheelbase and the track is different

from that of our robot.

In order to remove these differences we did some customization: first, we

used a scaling function offered by V-Rep to match the size of the model with

that of the robot, since the proportion are not the same, we scaled the model

using the track of the vehicle as a reference. The choice of this dimension

was made in order to maintain the structure of the transmission and the

steering system. After that, we changed the size of the wheels, and gave

86

5.2. Robot model 87

Vehicle model specifications.

Wheelbase 1920 mm

Track 1250 mm

Weight (vehicle) 390 kg

Front wheel (WxH) 201 x 635 mm

Weight (front wheel) 7 Kg

Moment of inertia (front wheel) 0.3528 kgm2

Rear wheel (WxH) 247 x 635 mm

Weight (rear wheel) 8 Kg

Moment of inertia (rear wheel) 0.4032 kgm2

them a mass and a moment of inertia equal to the real ones. In addition, we

reduced the wheelbase by moving back all the components on the front of

the vehicle: the front wheels, the steering system and the front suspensions.

Lastly, we moved up the bodywork to adapt the position of the center of

mass to that of the vehicle, moreover we changed its mass to obtain a total

value comparable of that of the robot. In order to match the robot visually

as well as structurally, we replaced the bodywork of the original model with

a mesh with the shape the robot one. Table lists the values used to size the

model of the robot.

5.2.3 Step response

The next step in vehicle simulation is to ensure the real vehicle and the

simulation model share the same dynamic and kinematic behavior. In par-

ticular, we required the step response for the handlebar loop and the speed

loop on the real vehicle and in simulation to be similar. In order to achieve

this we regulated the values of the PIDs that control the steer and the speed

loops, until the simulated responses of these controlled systems were as close

as possible to the experimental ones.

First, we recorded data of the handlebar step response and the speed

step response of the real vehicle, then, using a ROS node to send the same

input to the simulator, we recorded the response of the model. We used

the comparison between these two results to tune the parameters of the

simulated PID controllers.

Since the steering system is particularly similar to the vehicle one, it is

possible to tune its step response using the joint built-in controller. The PID

controls the position of the handlebar column by modulating its velocity. Us-

ing the values from the real vehicle as a reference, we defined the maximum

87

88 Chapter 5. Robot simulation

Figure 5.4: Model parameters.

speed of the joint as 70 ◦/s. Figure 5.4 shows a comparison between the

handlebar response for the real vehicle (blue line) and the simulated one

(red line). It is possible to see that the two behaviors substantially match,

but the simulated steer cannot reach a value as high as the real one, because

of geometric limitations in the original model. Nevertheless, we obtained a

reasonable behavior in common operation ranges.

For the speed response, we could not use the built-it PID, because this

controller minimizes the error on the position, which is incompatible with a

continuously rotating joint like the one that act as a motor. Moreover, the

motor joint has a behavior similar to that of an electric motor, while the

vehicle has a fuel-powered engine with significantly different characteristics.

Therefore, we developed a custom PID controller, which controls the torque

applied to the motor joint minimizing the difference between the current

rotating speed and the target speed. In particular, the controller has two

different behaviors, one for the acceleration and one for the deceleration, in

both cases only the proportional control action is used. While accelerating

the Kp is 0.875, on the contrary while decelerating Kp is 0.7875. In the

end, we obtain a good matching behavior in the acceleration phase, while

there is a slight difference in deceleration, even with the specific proportional

control action, due to the difficulties in modelling the engine braking when

the throttle setpoint decreases suddenly. Figure 5.5 shows a comparison

between the real vehicle and the simulator.

88

5.3. Simulated sensors 89

Figure 5.5: Plot of the vehicle linear speed step responses on the real vehicle and on

the the simulated one.

5.3 Simulated sensors

In order to complete the model, we added a simulated version of each sensor

installed on the robot. Most of them are already available in V-Rep, while

others has been developed ad hoc. All the simulated sensors lacked ROS

integration and they did not account for noise and faulty behavior, therefore

we customized each of them to be more realistic and to match the ROS

interface of the real sensor. In order to integrate these simulated sensors

in our software architecture we designed their structure with a “two layer”

approach. The first layer is implemented inside the simulator, it consists

in the sensor itself and a script that prepares and publishes ROS messages.

The second layer is outside the simulator and it consists in a ROS node

that reads the messages published by the simulator and converts them into

a format that matches the one produced by sensors on the real vehicle. This

design aims at creating a decoupling between the simulator and the high-

level perception and control architecture. As a result, from the point of view

of the high-level, system there is no difference between the simulated sensors

and the real ones.

In the following we provide a detailed description of each sensor, how it

is implemented inside V-Rep and how we designed the ROS interface.

89

90 Chapter 5. Robot simulation

5.3.1 Global positioning system

V-Rep already has a built-in simulated GPS, which provides x/y/z-coordinates;

while these are not the usual GPS coordinates (latitude, longitude and alti-

tude), they are compatible with the East-North-Up (ENU) system used in

our architecture, so no further conversion is needed. The script associated

with the sensor introduces some uniform noise and streams the values on

a ROS topic, called /vrep/gps, using a geometry msgs/Point32 message,

therefore only the three coordinates are available.

The node associated with the sensor subscribes to that topic, retrieves

the message coming from the simulator and converts it in a geometry msgs-

/PoseWithCovarianceStamped. In order to do the conversion it fills the

header, using ros::Time::now() for the timestamp and setting “/gps” as

the frame, moreover it adds a covariance matrix derived from real data.

To obtain a more realistic behavior of the sensor, the node can simulate

downtimes; using parameters it is possible to define their frequency, ranging

from a perfect sensor to an always-off sensor. The node has an internal

timer, when it fires a roll is performed, if its values exceeds the threshold

defined via parameters, the sensor turn off for a variable time interval, going

from 0.75 seconds to 1.25 seconds. As for the real sensor the node publishes

the message on the /enu topic.

5.3.2 Inertial measurement unit

The simulator provides out of the box models for accelerometers and gyro-

scopes. A mass coupled with a force sensor implements the accelerometers;

at each simulation step, the script measures the force applied to the mass

and derives three accelerations. The gyroscopes consist in a dummy object,

at each simulation step, the script compares its position with the one at

the previous step, and the change of orientation in time determinates the

angular velocity on the three axes. Inside V-Rep, the IMU is implemented

as two different sensors, i.e., an accelerometer and a gyroscope, since it is

necessary to have synchronized values, the measurements are collected by a

third script though an internal communication system. This script receives

the values from the accelerometers and the gyroscopes, combines them in

a geometry msgs/TwistStamped and streams them on the /vrep/imuData

topic. Normally, this message is used to contain a linear velocity and an

angular velocity, in this specific case it contains a linear velocity and an

angular acceleration. The values in the message are the following:

• twist.linear contains the values of the linear acceleration.

90

5.3. Simulated sensors 91

• twist.angular contains the values of the angular speed.

The corresponding node subscribes to two topics: /vrep/imuData and

/vrep/realPose. The first one to retrieve the measurements, the other

one to have some orientation data to fill the sensor msgs/Imu message (the

localization module of the robot does not use that information). The node

composes a message published on the /imu/data topic.

5.3.3 Magnetometer

To implement the Earth magnetic field sensor we extract the current vehi-

cle model orientation with respect to the global fixed reference frame and

we stream it to ROS using a geometry msgs/PoseStamped message pub-

lished on the topic /vrep/simuMag. The node associated with this sensor

subscribes to the topic and retrieves the orientation. In order to create a

sensor msgs/MagneticField message, we have to derive a magnetic field

value from the orientation of the model. Since on the real vehicle hard and

soft iron distortion affect the magnetometer readings, according to the sensor

model presented in [48], we use a set of parameters to modify the simulated

magnetic field and match the behavior of the real sensor. The values of these

parameters have been calibrated using the sensor self-calibration capabili-

ties of the ROAMFREE sensor fusion framework. Moreover, it is possible

to set the current Earth magnetic field via parameters to have a complete

and realistic simulation of the magnetometer. The complete formula used

to derive the measurement of the magnetic field is the following:

M = Rq−1 h+ S (5.1)

Where q is the quaternion that represents the orientation of the robot, h is

the Earth magnetic field, R and S are the distortion parameters.

5.3.4 Odometer

The position of the joint that controls the handlebar provides directly the

steering angle. For the current speed of the vehicle, we measure the orien-

tation of the wheels at each simulation step its change in time is used to

calculate the angular velocity, and, consequently, the linear velocity of the

vehicle.

As described in Chapter 4, the low-level control systems sends the odom-

etry in non-standard units of measurements. In order to mimic this behav-

ior we have to convert the values derived from the simulation using kspeed,

ksteer and psisteer. The formulae used are:

91

92 Chapter 5. Robot simulation

speedodo = speedm/s/Kspeed (5.2)

steerodo =
steerrad − ψsteer

Ksteer
. (5.3)

After that we build a message with the same format of the one used by

the real low-level control system, and transmit it using a TCP socket to the

PLCClient node. In order to implement the communication between the

simulator and the architecture, we used a separate threaded script. This

is necessary because transmissions using sockets are potentially blocking,

disrupting the flow of the simulation. The threaded script that manages

the socket connection receives the odometry from the script associated with

the robot model through a tube, which is a specific communication channel

used inside V-Rep to transmit information between two different scripts.

Another tube is used to transmit setpoints in the opposite direction. At

each simulation step the main script produce an odometry message, which

is sent to the socket script, and transmitted to the high-level architecture as

soon as possible.

5.3.5 Laser and camera

V-Rep already provides a highly customizable vision sensor that can match

the characteristics of the cameras mounted on the robot. Moreover, it has a

laser scanner with the same specification of the LMS291. Since both sensors

already streams their measurements in a format compatible with the real

ones, there is no need of external ROS nodes to interface them with the high-

level architecture. In order to make the vision sensor behaves as the Prosilica

cameras, we changed the internal resolution and increased the distance of

the far clipping plane. For the laser, we set the scanning angle at 180◦and

the resolution at 0.5◦.

The only difference that remains between the real sensors and the simu-

lated ones is the frequency at which measurements are transmitted. While

the camera operates at 60 fps and the laser at 50 Hz, the simulation only

works at 20 Hz and this is the highest frequency at which the simulated sen-

sors can operate. This issue remains unresolved but does not comprise the

validity of the simulation, since the cameras and the laser scanner are sec-

ondary sensors not currently used for localization. Moreover, in the current

configuration, the cameras operates at 20 fps on the real vehicle, too.

92

5.4. Integration with the architecture 93

Figure 5.6: How the main modules of the architecture interacts with the simulation

5.4 Integration with the architecture

As described in Chapter 4, the design of the software architecture is highly

modular, therefore we can seamlessly replace the robot with the simulation.

In order to do this we remove all the ROS nodes communicating with the

real sensors and replace them with ROS interfaces described in this chapter.

Using a hierarchical structure of the launch files, we can do this substitution

by replacing the sensors launch file with the simulated one. When every sen-

sor is replaced by its simulated counterpart, nothing changes from the point

of view of the perception and control modules, since the communication is

done on the same ROS topics and using the same messages. Moreover, the

PLCClient node interacts with a simulated low-level control system through

a local socket connection; it receives odometry messages from the simula-

tion and sends setpoints. In order to connect the node to the simulator, it

is necessary to modify the connection parameters changing the IP from the

address of the low-level control system to the IP of the machine running the

simulation, usually 127.0.0.1.

One important issue to address when coupling a simulator with a control

architecture is to make sure that they share a global time reference. In

order to obtain this we exploit a ROS functionality that allows to use a

simulated clock instead of the system clock. We developed a node that,

93

94 Chapter 5. Robot simulation

using a ROS service provided by V-Rep, publishes the simulation time on

the topic /clock. To make the nodes use the time published on the topic, the

use sim time parameter must be set to true before the node is initialized.

The use of the simulated clock become essential when running challenging

simulations which involve complex terrain or vision sensors and cannot be

carried out in real-time.

94

Chapter 6

Experimental results

In this chapter, we provide the results obtained from experiments done both

with the robot and the simulation using the proposed architecture. First,

we report a combination of localization and autonomous drive on the vehicle

with and without the predictor. Then, the same behavior in the simulation

is presented, followed by more complex trajectories and rougher terrains to

show the capabilities of the simulator.

6.1 Localization and autonomous drive

Given the characteristics of the vehicle, it is difficult to test the localization

alone. In order to drive the robot wide outdoor spaces are required, therefore

no external tracking system is available to derive a ground truth, neither it

is possible to create a structured environment. In our experiment, we use

well-defined trajectories to test localization and autonomous drive simulta-

neously. The more the behavior is close to the planned trajectory the better

it is. The localization is the first functionality to be validated in order to

validate the entire architecture, since various modules rely on the estimated

position. Therefore our first experiments were aimed at determining the

reliability of the localization module.

The first set of examples precedes the development and use of the predic-

tor, and shows the first experiments of autonomous drive of the robot. We

employed an eight-shaped trajectory originating 1 meter ahead with respect

to the current position of the robot, the robot follows this path starting

from the smaller circle and doing a left turn first. The bigger circle has a

diameter of 18 meters, while the smaller one has a diameter of 12.5 meters.

Figure 6.1 shows six runs on the real robot; in it we have plotted the

96 Chapter 6. Experimental results

(a) 2 m/s (b) 2 m/s

(c) 2 m/s (d) 2 m/s

(e) 3 m/s (f) 4 m/s

Figure 6.1: Online trajectory following results, on the real platform, without the pre-

dictor. Reference path for the trajectory follower (black dashed line), the ROAMFREE

position output (blue line), and the GPS readings (red crosses).

96

6.1. Localization and autonomous drive 97

reference path, with a black dashed line, the robot position estimated by

ROAMFREE, with a blue solid line, and the raw GPS readings, with red

crosses. These graphs show that the GPS, the closest information we have

to a ground truth, is not always reliable. Figure 6.1a, in particular, but also

the other ones, shows the multipath phenomenon where the position given

by the GPS may be shifted by several meters. Despite these inaccuracies, it

is possible to see that ROAMFREE is able to estimate a reasonable position,

particularly visible when the GPS is correct, and to account for compromised

sensor readings. Regarding the trajectory following, the graphs show that

the robot follows the path with reasonable accuracy, but tends to oversteer

or understeer, even more when the localization is partially compromised

by a faulty GPS behavior. While the autonomous driving of the vehicle

requires some improvements, these first experiments show that the overall

architecture is solid, since the robot was able to generate and follow with

sufficient accuracy a predefined path. In an effort to increase the accuracy of

the path following, we designed and developed the predictor. This addition

gives us the possibility to reduce the frequency of the pose estimated by

ROAMFREE, and therefore increase its accuracy. Moreover, the predictor

reduces delays caused by computation of the position and those introduced

by ROS.

Figure 6.2 and Figure 6.3 show the results obtained in the experiments

when using the predictor. As before, we plotted the generated path, the es-

timated position and the GPS readings. In these tests we use three different

trajectories, the first two are sinusoids, one with an amplitude of 4 meters,

while the other only 2 meters, both with a distance between two crests of

15 meters. The third one is a rectangular-shaped path with smooth turns

at the corners. It contains four left turns, and four straight road, two long

ones of 15 meters and two short ones of 2 meters. The robot repeats this

trajectory two times to complete the path. As it is possible to see from

the graphs in Figure 6.3 the robot follow the trajectory more closely, some

oversteer problems persists, because the vehicle has an higher speed than

expected when approaching the turn, therefore these problems are not as-

sociated with the localization or the path following algorithm. Moreover,

multi-path phenomena have less effect on the position estimate, because

reducing the frequency and increasing the time window in roamros grants

more robustness.

97

98 Chapter 6. Experimental results

(a) 2 m/s

(b) 3 m/s

Figure 6.2: Online trajectory following results with the predictor on a sinusoidal path.

Reference path for the trajectory follower (black dashed line), the predictor position

output (blue line), and the GPS readings (red crosses).

(a) 3 m/s (b) 3 m/s

Figure 6.3: Online trajectory following results with the predictor on a rectangular-shaped

path. Reference path for the trajectory follower (black dashed line), the predictor

position output (blue line), and the GPS readings (red crosses).

98

6.2. Simulation 99

6.2 Simulation

In order to validate the simulated environment created with V-Rep, we

replicated the same experiments done with the real vehicle in the simula-

tion, using the same configuration parameters and the same sinusoidal and

rectangular-shaped trajectory. The final aim is to verify that the behav-

ior of the simulated robot is close enough to the real one in order to use

the simulation to perform complex experiments (i.e., high-speed trajectory

following, rough terrain navigation, etc.) before doing them with the real

robot.

Figure 6.4 shows a series of experiments done with the simulator without

the use of the predictor. With respect to the real vehicle we obtain a different

behavior, the model closely follows the trajectory, but tends to oscillate

around it. In some cases, for example Figure 6.4d and Figure 6.4e, these

oscillations diverge, making it impossible for the simulated robot to complete

the path. This significant difference between the behavior of the real vehicle

and the simulation is not due structural differences between the model and

the robot. It is caused by the delays introduced by ROS and the computation

of the position, which cause an expected behavior in path following algorithm

when the time is discrete, like in the simulator.

Figure 6.5 shows how the simulation behaves when the predictor is ac-

tive. The robot model follow the trajectory closely, with no oscillations, and

can complete all the paths. These graphs also show the simulated downtimes

in the GPS and how the localization is robust to the temporary absence of

one of the sensors. Despite the noise and the faulty behaviors added to the

simulated sensors, these remain more reliable than the real ones. Therefore,

the results obtained in the simulation are more precise than those obtained

with the real vehicle are. Nevertheless, the two behaviors are sufficiently

similar to use the simulated environment to perform experiments in condi-

tion difficult to obtain in reality, e.g., wide rough terrains, or dangerous for

the robot, e.g., high-speed trajectory following. Figure 6.6 show the results

of some of these experiments.

Figures from 6.6a to 6.6c show what we obtained from a high-speed tra-

jectory following experiment done in the simulation. While not significantly

different from the previous ones, these are useful to test the limits of the

vehicle, which has a high rollover risk, in a simulated environment before

doing them with the real robot. Moreover they show the robustness of the

follower when high speed manoeuvres are required. Figure N.d shows the

results obtained in trajectory tracking performed on a rough terrain with a

path more complex than those seen so far, i.e., the eight-shaped trajectory

99

100 Chapter 6. Experimental results

(a) 4 m/s

(b) 2 m/s (c) 2 m/s

(d) 3 m/s (e) 3 m/s

Figure 6.4: Online trajectory following results without the predictor. Reference path

for the trajectory follower (black dashed line), the ROAMFREE position output (blue

line), and the GPS readings (red crosses).

100

6.2. Simulation 101

(a) 4 m/s

(b) 5 m/s (c) 5 m/s

(d) 4 m/s (e) 4 m/s

Figure 6.5: Online trajectory following results with the predictor. Reference path for

the trajectory follower (black dashed line), the predictor position output (blue line),

and the GPS readings (red crosses).

101

102 Chapter 6. Experimental results

(a) 7 m/s

(b) 7 m/s (c) 7 m/s

(d) 4 m/s

Figure 6.6: Online trajectory following results in more complex conditions: high speed

and rough terrains. Reference path for the trajectory follower (black dashed line), the

predictor position output (blue line), and the GPS readings (red crosses).

102

6.3. Path planning 103

is combined with two rectangular-shaped ones. As it might be expected

given the characteristics of the robot, the vehicle follows the path with some

difficulties, the few deviations are caused by the irregularities in the terrain.

6.3 Path planning

The path planning module is the newest addition to the control architec-

ture and the ROS node that integrates it in the architecture is still under

development. Nevertheless, thanks to the simulation, it is possible to test

its functionalities in an environment as close as possible the reality and to

identify potential problems, before deploying it on the real robot. Here we

provide an example of path planning and consequent trajectory following

realized in the simulation. Since the development of the node is still in its

earlier stages, we use a map with only two height levels: the terrain level,

completely flat, and the obstacles, impossible to be overcome by the robot.

The map is represented by a black and white image (Figure 6.7a), where

the obstacles are the black areas. To provide a realistic simulation, we

recreated the same map inside the simulator; this is possible thanks to V-

Rep, which permits to create terrains from grey-scale images. Figure 6.7b

shows the map after we imported it in the scene.

For this experiment, we provide the goal using rviz, which allows pub-

lishing directly on a topic a point selected on the map with a mouse click.

Figure 6.7a shows the path generated by the planner, i.e., the green line,

and the position of the robot, i.e., the reference frame. As it is possible

to see from Figure 6.8 the robot follows the path generated by the planner

with no issue, except for the beginning where the robot performs an initial

maneuver to align with the first point of the trajectory. This is caused by

the fact that the planner discretizes the map in a finite number of cells, and

it places the first point of the trajectory in the middle of the cell closer to

the robot. Some solutions have already been proposed in order to solve this

issue, for instance, removing from the plan all the points in the immediate

proximity of the robot. Understanding this kind of problems is the exact

reason why a reliable and realistic simulation is required when testing new

algorithms.

103

104 Chapter 6. Experimental results

(a) rviz (b) V-Rep

Figure 6.7: The map as seen in rviz (a) and V-Rep (b).

Figure 6.8: Online trajectory following results on a path generated by the planner. Ref-

erence path for the trajectory follower (black dashed line), the predictor position output

(blue line), and the GPS readings (red crosses). The black areas are the obstacles, the

green dot is the first point of the plan, and the yellow dot is the goal.

104

Chapter 7

Conclusions and future work

7.1 Conclusions

The result of this work is a high-level control architecture developed with

ROS that includes localization, path following and path planning function-

alities. It is characterized by a high flexibility and modularity, key features

when working with a prototype that can undergo many changes in con-

figuration. This architecture, which integrates software modules developed

separately, has proven effective during the experiments, obtaining good re-

sults in both localization and path following. Moreover, we have produced

a simulation environment that simulates the robot and can substitute it

seamlessly from the point of view of the architecture. This permits to test

and validate the software before deploying it on the robot. In addition, it is

useful to perform experiments in condition difficult to obtain or potentially

dangerous for the real robot, simplifying future developments of additional

functionalities.

7.2 Future work

Currently the robot has all its core functionalities implemented: manual

drive, localization, autonomous drive and path planning. However, it is

possible to extend and enhance them. As described in Chapter 3 the robot

is equipped with two cameras and a laser scanner, while these sensors are

integrated in the architecture, the localization module does not use them.

Adding them would increase the accuracy and the quality of the estimated

position. Moreover, the laser scanner can be used to detect obstacles in

front of the robot and to implement an obstacle detection system, useful

106 Chapter 7. Conclusions and future work

during both manual and autonomous drive. The results of the experiments

presented in Chapter 6 show some of the limitation of the path following

algorithm. The oversteer problem highlighted in Figure 6.3 is caused by

a speed higher than expected. In order to avoid this behavior the path

following module can be enhanced with a system to limit the speed based

on the curvature of the trajectory. Moreover, when the robot reaches a

faulty state during autonomous drive, like in Figure 6.4d, there is no system

that can detect it. A heuristic able to detect and potentially avoid this kind

of behavior would increase the general robustness of the system.

Regarding the path planning module, currently it is still in a testing

phase, but its functionalities can be extended by planning on two different

levels. On a higher level a plan based on a map of the area and a goal

defined by the user. While, on a lower level a local plan based on a map

created using the laser scanner mounted on the robot and a goal defined by

the intersection of the two maps. This system accounts for unpredictable

obstacles and for errors in the current position of the robot.

The simulation has proven useful to test and validate the software archi-

tecture, but in order to use it for more advanced experiments, it is necessary

to improve the robot and the sensors models, also exploiting V-Rep frequent

updates. Regarding the robot model, the suspensions have to be updated in

order to simulate better the behavior of the real robot, especially in the case

of experiments on rough terrains. In order to improve the sensors models it

is possible to add more faulty behaviors and noise to match the real ones.

For example adding the multipath phenomenon to the GPS, or accounting

for engine vibration in the IMU.

106

Bibliography

[1] Maplesim, high performance physical modeling and simulation.

http://www.maplesoft.com/products/maplesim/. Accessed: 2014-09-

12.

[2] Vortex dynamics. http://www.vxsim.com. Accessed: 2014-09-12.

[3] Karsten Ahnert and Mario Mulansky. Odeint-solving ordinary differ-

ential equations in c++. arXiv preprint arXiv:1110.3397, 2011.

[4] Massimo Bertozzi, Alberto Broggi, Gianni Conte, and Alessandra Fas-

cioli. Vision-based automated vehicle guidance: the experience of the

argo vehicle. Tecniche di Intelligenza Artificiale e Pattern Recognition

per la Visione Artificiale, pages 35–40, 1998.

[5] R Boumghar and S Lacroix. Over the hill and far away: aerial/ground

cooperation for long range navigation. World Scientific.

[6] Jan F Broenink. 20-sim software for hierarchical bond-graph/block-

diagram models. Simulation Practice and Theory, 7(5):481–492, 1999.

[7] Alberto Broggi, Massimo Bertozzi, and Alessandra Fascioli. The 2000

km test of the argo vision-based autonomous vehicle. IEEE Intelligent

Systems, 14(1):55–64, 1999.

[8] Brunati and Porta. Progetto e realizzazione di un servomeccanismo per

il controllo dello sterzo di un veicolo atv. Master thesis, Politecnico di

Milano, 2008.

[9] Herman Bruyninckx. Open robot control software: the orocos project.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In-

ternational Conference on, volume 3, pages 2523–2528. IEEE, 2001.

[10] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The 2005 darpa

grand challenge. Springer Tracts in Advanced Robotics, 36(5):1–43,

2007.

107

108 BIBLIOGRAPHY

[11] Castelli. Progetto e realizzazione di un servomeccanismo per il controllo

della frenata di un veicolo atv. Master thesis, Politecnico di Milano,

2009.

[12] A Conforto. On the development of a search-based trajectory planner

for an ackermann vehicle in rough terrains. Master thesis, Politecnico

di Milano, 4 2014.

[13] Erwin Coumans et al. Bullet physics library. Open source: bulletphysics.

org, 4(6), 2006.

[14] Davide Antonio Cucci and Matteo Matteucci. A flexible framework

for mobile robot pose estimation and multi-sensor self-calibration. In

ICINCO (2), pages 361–368, 2013.

[15] E D’Amelio and F Fontanile. Sintesi legge di controllo per l’esecuzione

di path following per un atv. Master thesis, Politecnico di Milano, 4

2013.

[16] Ernst Dieter Dickmanns, Reinhold Behringer, Dirk Dickmanns,

Thomas Hildebrandt, Markus Maurer, Frank Thomanek, and Joachim

Schiehlen. The seeing passenger car’vamors-p’. In Intelligent Vehicles’

94 Symposium, Proceedings of the, pages 68–73. IEEE, 1994.

[17] Hilding Elmqvist, Dag Brück, and Martin Otter. Dymola-user’s man-

ual. Dynasim AB, Research Park Ideon, Lund, Sweden, 1996.

[18] Tully Foote. tf: The transform library. In Technologies for Practical

Robot Applications (TePRA), 2013 IEEE International Conference on,

pages 1–6. IEEE, 2013.

[19] Marc Freese, Surya Singh, Fumio Ozaki, and Nobuto Matsuhira. Vir-

tual robot experimentation platform v-rep: a versatile 3d robot sim-

ulator. In Simulation, Modeling, and Programming for Autonomous

Robots, pages 51–62. Springer, 2010.

[20] Douglas W Gage. Ugv history 101: A brief history of unmanned ground

vehicle (ugv) development efforts. Technical report, DTIC Document,

1995.

[21] David Gossow, Adam Leeper, Dave Hershberger, and Matei Ciocarlie.

Interactive markers: 3-d user interfaces for ros applications [ros topics].

Robotics & Automation Magazine, IEEE, 18(4):14–15, 2011.

108

BIBLIOGRAPHY 109

[22] S Harmon. The ground surveillance robot (gsr): An autonomous vehicle

designed to transit unknown terrain. Robotics and Automation, IEEE

Journal of, 3(3):266–279, 1987.

[23] SY Harmon, G Bianchini, and B Pinz. Sensor data fusion through a

distributed blackboard. In Robotics and Automation. Proceedings. 1986

IEEE International Conference on, volume 3, pages 1449–1454. IEEE,

1986.

[24] Matthias Hentschel and Bernardo Wagner. Autonomous robot navi-

gation based on openstreetmap geodata. In Intelligent Transportation

Systems (ITSC), 2010 13th International IEEE Conference on, pages

1645–1650. IEEE, 2010.

[25] Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Kajita. Openhrp:

Open architecture humanoid robotics platform. The International Jour-

nal of Robotics Research, 23(2):155–165, 2004.

[26] Nathan Koenig and Andrew Howard. Design and use paradigms for

gazebo, an open-source multi-robot simulator. In Intelligent Robots

and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Inter-

national Conference on, volume 3, pages 2149–2154. IEEE, 2004.

[27] P Krüsi and P Frugale. Artor (autonomous rough terrain out-

door robot). http://www.artor.ethz.ch/doku.php?id=robots:artor. Ac-

cessed: 2014-09-12.

[28] Marco Langerwisch, Marko Reimer, Matthias Hentschel, and Bernardo

Wagner. Control of a semi-autonomous ugv using lossy low-bandwidth

communication. In The Second IFAC Symposium on Telematics Appli-

cations (TA). Timisoara, Romania, 2010.

[29] Séverin Lemaignan, Gilberto Echeverria, Michael Karg, Jim Mainprice,

Alexandra Kirsch, and Rachid Alami. Human-robot interaction in the

morse simulator. In Proceedings of the seventh annual ACM/IEEE

international conference on Human-Robot Interaction, pages 181–182.

ACM, 2012.

[30] James W Lowrie, Mark Thomas, Keith Gremban, and Matthew Turk.

The autonomous land vehicle (alv) preliminary road-following demon-

stration. In 1985 Cambridge Symposium, pages 336–350. International

Society for Optics and Photonics, 1985.

109

110 BIBLIOGRAPHY

[31] Markus Maurer, Reinhold Behringer, Dirk Dickmanns, Thomas Hilde-

brandt, Frank Thomanek, Joachim Schiehlen, and Ernst D Dickmanns.

Vamors-p: An advanced platform for visual autonomous road vehicle

guidance. In Photonics for Industrial Applications, pages 239–248. In-

ternational Society for Optics and Photonics, 1995.

[32] Markus Maurer, Reinhold Behringer, S Furst, F Thomanek, and

ED Dickmanns. A compact vision system for road vehicle guidance.

In Pattern Recognition, 1996., Proceedings of the 13th International

Conference on, volume 3, pages 313–317. IEEE, 1996.

[33] Olvier Michel. Webots: a powerful realistic mobile robots simulator. In

Proceeding of the Second International Workshop on RoboCup, 1998.

[34] Hans P Moravec. Obstacle avoidance and navigation in the real world

by a seeing robot rover. Technical report, DTIC Document, 1980.

[35] Hans P Moravec. The Stanford cart and the CMU rover. Springer,

1990.

[36] Nils J Nilsson. Shakey the robot. Technical report, DTIC Document,

1984.

[37] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source

robot operating system. In ICRA workshop on open source software,

volume 3, page 5, 2009.

[38] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile

and scalable robot simulation framework. In Intelligent Robots and

Systems (IROS), 2013 IEEE/RSJ International Conference on, pages

1321–1326. IEEE, 2013.

[39] Bernd-Helge Schäfer and Karsten Berns. Ravon - an autonomous vehi-

cle for risky intervention and surveillance. In International Workshop on

Robotics for risky intervention and environmental surveillance - RISE,

06 2006.

[40] Bernd-Helge Schäfer, Martin Proetzsch, Tim Braun, Jan Koch, Norbert

Schmitz, and Karsten Berns. Ravon - a robust autonomous vehicle for

off-road navigation. In European Land Robot Trial - ELROB, May 2006.

[41] Frank E Schneider, Dennis Wildermuth, Bernd Brüggemann, and Timo

Röhling. European land robot trial (elrob) towards a realistic bench-

mark for outdoor robotics. 2010.

110

BIBLIOGRAPHY 111

[42] Daniel G Shapiro. Three anecdotes from the darpa autonomous land

vehicle project. AI Magazine, 29(2):40, 2008.

[43] Russell Smith et al. Open dynamics engine, 2005.

[44] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David

Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Mor-

gan Halpenny, Gabriel Hoffmann, et al. Stanley: The robot that won

the darpa grand challenge. Journal of field Robotics, 23(9):661–692,

2006.

[45] A Tikanmaki and J Roning. Development of mörri, a high perfor-

mance and modular outdoor robot. In Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on, pages 1441–1446. IEEE,

2009.

[46] Paul G Trepagnier, Jorge Nagel, Powell M Kinney, Cris Koutsougeras,

and Matthew Dooner. Kat-5: Robust systems for autonomous vehi-

cle navigation in challenging and unknown terrain. Journal of Field

Robotics, 23(8):509–526, 2006.

[47] Chris Urmson, Charlie Ragusa, David Ray, Joshua Anhalt, Daniel

Bartz, Tugrul Galatali, Alexander Gutierrez, Josh Johnston, Sam Har-

baugh, William Messner, et al. A robust approach to high-speed

navigation for unrehearsed desert terrain. Journal of Field Robotics,

23(8):467–508, 2006.

[48] JF. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and B. Cardeira.

Geometric approach to strapdown magnetometer calibration in sen-

sor frame. Aerospace and Electronic Systems, IEEE Transactions on,

47(2):1293–1306, 2011.

[49] M Zago. Modellistica e controllo del servomeccanismo di sterzo di un

atv. Master thesis, Politecnico di Milano, 4 2012.

Appendix A

A Simulation Based

Architecture for the

Development of an

Autonomous All Terrain

Vehicle

A Simulation Based Architecture

for the Development of an Autonomous All
Terrain Vehicle

Gianluca Bardaro, Davide Antonio Cucci, Luca Bascetta,
and Matteo Matteucci

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract. In this work we describe a simulation environment for an
autonomous all-terrain mobile robot. To allow for extensive test and
verification of the high-level perception, planning, and trajectory con-
trol modules, the low-level control systems, the sensors, and the vehicle
dynamics have been modeled and simulated by means of the V-Rep 3D
simulator. We discuss the overall, i.e., high and low-level, software archi-
tecture and we present some validation experiments in which the behav-
ior of the real system is compared with the corresponding simulations.

1 Introduction

In this work we present an Autonomous All-Terrain Robot developed starting
from a commercial, fuel-powered, All-Terrain Vehicle (ATV), i.e., a Yamaha
Grizzly 700. This robot is characterized by an Ackermann steering kinematic
and the original vehicle commands have been replaced by servomechanisms con-
trolling the handlebar position, the throttle, and the brake. Multiple sensors have
been fitted on the robot to perform perception activities: two laser range-finders,
a stereo camera rig, a GPS, an Inertial Measurement Unit (IMU), as well as,
wheel and handlebar encoders.

Given the physical dimensions of the robot, the typical operating environment,
and the complexity of the system architecture, it has been quite challenging to
develop and test all the software components, especially in early stages of devel-
opment. The main difficulties come from the intrinsic complexity in operating
the robot, the little repeatability of experiments, the time consuming activity of
fault detection and isolation. Moreover, meteorological and space issues further
affected field evaluation, either because a suitable test area was not always avail-
able for experiments, and because of safety issues for the vehicle itself, which
have a high roll-over risk, and for the people working with it.

To address these challenges we developed a simulation environment in which
the vehicle and its sensors are substituted by a simulator in a way that is trans-
parent with respect to the high-level perception and control software architec-
ture. In contrast with respect to classical hardware-in-the-loop techniques, in
which key elements of the real system, which might be difficult to model, re-
place their simulated counterpart, here the real system and the environment are
replaced with models without changes in the robot control software.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

A Simulation Based Architecture 75

In our work we employed the Virtual Robot Experimentation Platform (V-
REP) [7], a physical simulator which relies on a distributed and modular ap-
proach and allows to model complex scenarios in which multiple sensors and
actuators operate asynchronously at various rates. Other simulator were avail-
able, such as Gazebo [10], which is mainly focused on robotic applications, and
Dymola [4], which instead focuses on highly accurate multi-domain, multi-body,
physical, simulations. We decided to use V-REP instead of Dymola because
of its capability in simulating the vehicle sensors and we preferred V-REP to
Gazebo for its ease of use. The high-level perception and control architecture
of the robot is implemented relying on the Robot Operating System [13], an
open source framework which has recently become popular in the literature for
its turn-on-and-go functionalities, easiness of deployment, large community, and
support.

The use of simulators is common in robotics and several works related to the
use of a simulator in the development of an autonomous all terrain robot, and
autonomous robots in general, have been presented in the literature: in [9] a
high fidelity model, including sensors, is developed to study the behavior of an
autonomous ATV, focusing on the simulation itself, rather than the integration
with the robot architecture. A simulator is also used in [8] in the actual robot
architecture for real-time path planning, where the aim is to foresee potential
collisions and change the plan accordingly. In [12], the SimRobot simulator is
introduced and example applications in the RoboCup competition are discussed.

This work is organized as it follows: in Section 2 the overall robot architec-
ture is briefly discussed. Next we move to the high-level perception and control
modules implemented employing the ROS framework. In Section 3 we present
the simulation environment and we discuss sensor and vehicle models. Finally,
in Section 4 we validate our approach comparing the behavior of the simulated
system with the real one during autonomous trajectory following experiments.

2 The Quadrivio ATV

In this section we briefly review the vehicle specifications and the developed hard-
ware and software architectures. The original vehicle used is a Yamaha Grizzly
700 (see Figure 1a), a commercial fuel-powered utility ATV, specifically designed
for agriculture work. For the purposes of the project, the vehicle cover has been
removed and substituted with an aluminum one; this new cover allows to easily
accommodate for control hardware and sensors. Furthermore, the vehicle has
been equipped with three low-level servomechanisms, each one with its own con-
trol loop, to automatically regulate the steer position, the throttle aperture and
the braking force [2][3]. Figure 1b shows the vehicle after customization. The
main characteristics of the vehicle are listed in Table 1.

2.1 The Hardware Architecture

In order to allow for teleoperation and autonomous navigation, an on-board
hardware/software control architecture has been developed.

76 G. Bardaro et al.

(a) Original Yamaha Grizzly 700 (b) Quadrivio ATV

Fig. 1. On the left the original all-terrain vehicle, on the right the vehicle after the
changes to make it autonomous

The architecture is divided in two different layers: the higher level is developed
using ROS and is responsible for acquiring data from external sensors, such
as GPS, magnetometer, Inertial Measurement Unit (IMU), cameras and laser
range-finders. Moreover, it hosts the modules for localization, path planning,
high-level trajectory control and autonomous driving. The lower level acts as
an interface between the vehicle servomechanisms and the ROS architecture:
it receives desired setpoints from the higher level, reads the handlebar angle,
throttle ratio, vehicle speed measurements and runs the low-level control loops.

To implement such an architecture that includes high-level and low-level tasks,
a multi-layered and multiprocessor hardware/software architecture is required,
which consists of: an industrial PLC, which allows a good compromise between
the hard real-time requirements and high-level programming, and a standard
i5 PC, on which runs the high-level ROS architecture (perception, localization,

Table 1. Vehicle characteristics

Main characteristics of the vehicle

Engine type 686cc, 4-stroke, liquid-cooled, 4 valves
Drive train 2WD, 4WD, locked 4WD
Transmission V-belt with all-wheel engine braking
Brakes dual hydraulic disc (both f/r)
Suspensions independent double wishbone (both f/r)
Steering System Ackermann
Dimensions (LxWxH) 2.065 x 1.180 x 1.240 m
Weight 296 Kg (empty tank)

A Simulation Based Architecture 77

ROAMFREE

GPS node IMU node Magnetometer
node

Fast predictor

PLCClient

GPS IMU Magnetometer Odometer Low level
control system

Vehicle

Ttrajectory follower

Planner

ROS

Joypad

Joypad node

Map

Fig. 2. The real system architecture

obstacle avoidance, medium-long range navigation, planning, etc.). Communica-
tion between the two layers is obtained through an Ethernet link.

2.2 The Software Architecture

Figure 2 shows the main modules of the high-level software architecture and
their relations with the external sensors and the vehicle servomechanisms. These
modules live as independent applications running on the standard PC and the
communication between them is guaranteed by the ROS middleware.

The core part of the perception architecture consists in the localization node,
which is based on ROAMFREE [5]. This open source framework provides out-of-
the-box 6-DOF pose tracking fusing the information coming from an arbitrary
number of information sources such as wheel encoders, inertial measurement
units, and so on1. In ROAMFREE, high-level measurement models are used to
handle raw sensor readings and provide calibration parameters to account for
distortions, biases, misalignments between sensors and the main robot reference
frame. The information fusion problem is formulated as a fixed-lag smoother and
it runs in real time tanks to efficient implementations of the inference algorithms
(for further details see [6], and [11]). At the present stage of development the
localization module estimates the robot poses exploiting vehicle kinematic data
(i.e., the handlebar position and the rear wheel speed), GPS, magnetometer, and
the gyroscopes in the inertial measurement unit.

1 http://roamfree.dei.polimi.it

http://roamfree.dei.polimi.it

78 G. Bardaro et al.

The pose estimate is generated by the localization node at a frequency of
20 Hz. However, due to the latencies introduced by the ROS network, delays
in the trajectory control loop which affect the system stability can occasionally
arise. In order to prevent the detrimental effects of these delays, we introduced
a predictor node. This node computes a prediction of the future robot pose at
a frequency of 50 Hz; this prediction is based on the latest available global pose
estimate and on the integration of the Ackermann kinematic model with the
kinematic readings from the vehicle.

Given a map and a goal, a planner node, based on the SBPL library [1],
produces a global path, which is then fed to a lower level trajectory following
module. This module computes setpoints for the vehicle speed and handlebar
angle, based on the current pose and velocity estimates, and on the planned
trajectory. These setpoints are sent to the low-level regulators by a ROS node
communicating with the PLC, which additionally acts as a multiplexer between
the autonomous drive and the manual setpoints, depending on the current op-
erating mode.

3 The Simulation Environment

The software architecture in Figure 2 has been designed introducing a decoupling
layer between the real robot and the high-level perception and control software.
This layer is composed by ROS nodes that respectively handle the GPS and the
IMU sensors, and the communication module between the standard PC and the
PLC. In this section we describe how we have replaced the real vehicle with a
physical simulator and how we set up vehicle and sensor models so that they
accurately mimic the real robot.

3.1 The Simulator

The vehicle simulator was developed using V-Rep [14], a software for robot mod-
elling offering an accurate physics simulation. This software has been chosen for
some of its features that fit particularly well with the requirements of our appli-
cation. First of all, it is simple to set up and use with its integrated development
environment, it has a library with various examples of robots already modeled,
and one of them is particularly similar to our vehicle in terms of kinematics
and suspension geometry. Another important feature is the possibility to control
every object in the simulation with a remote API, that allows the integration
with ROS, making it suitable for interacting with our software architecture.

One important issue which has to be addressed in coupling a simulator with
a control architecture is to make sure that they share a global time reference. In
our case, this was obtained enabling the use sim time parameter is ROS and
having V-Rep publishing the current simulation time on the clock ROS topic.
This is particularly useful when challenging simulations are run which involve
complex terrain or environments and cannot be carried out in real-time.

A Simulation Based Architecture 79

(a) The customized model (b) Suspensions and Ackermann steering

Fig. 3. The vehicle model used in simulation

3.2 The Vehicle Model

V-Rep offers multiple built-in vehicle models. We chose one that shares the
Ackermann steering and the suspension geometry with our vehicle and we cus-
tomized it to match the Quadrivio ATV specifications. The vehicle characteris-
tics required to set up the model are listed in Table 2, while Figure 3a shows the
customized model in which it is possible to see the image from the camera and
the trace of the laser range-finder on the terrain. Figure 3b shows details of the
Ackermann steering and suspensions.

The next step in vehicle simulation was to ensure the real vehicle and the
simulation model share the same dynamic and kinematic behavior. In particular,
we required that the step response for the handlebar and the speed loops on
the real vehicle and in simulation were similar. As we are not interested in
reproducing the engine behavior or in studying the dynamics of the steering
motion control system, but only in simulating the overall vehicle dynamics, the
simulator does not include an accurate model of the steering column and of the
engine. Instead, the steer and speed loops, both based on a PID controller, were

Table 2. Model parameters

Vehicle model specifications.

Track 1920 mm
Wheelbase 1250 mm
Front wheel (WxH) 201 x 635 mm
Rear wheel (WxH) 247 x 635 mm
Weight (estimated) 390 kg

80 G. Bardaro et al.

(a) Handlebar position response (b) Vehicle linear speed response

Fig. 4. Plot of the vehicle actuators step responses on the real vehicle and on the the
simulated one

directly modelled in such a way that the simulated responses of these controlled
systems were as close as possible to the experimental ones.

We recorded data for the handlebar step response of the real vehicle and then
we tuned the PID regulators that control the handlebar column in the V-Rep
simulator so that the simulated vehicle handlebar position step response matches
the one of the real vehicle. In particular, setpoints for the handlebar position and
vehicle speed were recorded while being sent to the real vehicle, then we feed
the simulated vehicle with the same setpoints, allowing to tune the simulator
response. Figure 4a shows a comparison between the handlebar response for the
real vehicle (blue line) and the simulated one (red line). It is possible to see that
the two behaviors substantially match, but the simulated steer cannot reach
a value as high as the real one, because of geometric limitations in the original
model. However, we obtained a reasonable behavior in common operation ranges.

For the speed step response we implemented a custom PID controller, which
controls the torque applied to the motor joint minimizing the error over the
target speed. It was not possible to use the one integrated in the simulator
because the model uses a motorized joint, which models an electric motor, while
the vehicle has a fuel-powered engine with a significantly different characteristic.
After the tuning with field data of the motor PDI, we obtained a good matching
behavior in the acceleration phases, while there is still a slight difference in
deceleration due to the difficulties in modeling the engine braking when the
throttle setpoint is suddenly decreased (see Figure 4b).

3.3 The Sensor Models

After modeling the vehicle we added the sensors: GPS, IMU, magnetometer and
odometer. Most of them were already available in V-Rep, but they lacked the
ROS integration and they did not account for noise and fault situations.

The sensors are realized with a “two layers” approach; the first layer is im-
plemented directly inside the simulator, it consists in the sensors itself and a
script that prepares and publishes ROS messages. The second layer is outside

A Simulation Based Architecture 81

the simulator and it consists in a ROS node that reads the messages published by
the simulator and converts them into a format which matches the one produced
by sensors on the real vehicle. This double conversion has the aim of obtaining
the decoupling between the simulator and the high-level perception and control
architecture; indeed, from the point of view of the high-level architecture, there
is no difference between the real sensors and the simulated ones.

The following are the sensor we have simulated with a brief description:

– GPS: V-Rep provides already a simulated GPS providing x/y/z-coordinates
which are compatible with the East-North-Up (ENU) reference frame used
in our architecture, so no further conversion was needed. The node coupled
with this sensor builds the correct ROS message introducing some Gaussian
noise (derived from real data) and allows to model random downtimes, to
simulate for real world GPS unavailability;

– IMU: models for accelerometers and gyroscopes are provided by the simu-
lator out of the box. The raw readings are published as ROS messages and
converted in the desired format;

– Magnetometer: to implement this sensor we extract the current vehicle model
orientation with respect to the global fixed reference frame; from it we can
compute a simulated value for the Earth magnetic field reading in the sensor
reference frame. However, on the real vehicle, hard and soft iron distortion
affect the magnetometer readings. These are considered by employing the
sensor model presented in [15], whose parameters have been calibrated by
means of the sensor self-calibration capabilities of the ROAMFREE sensor
fusion framework;

– Odometer: the vehicle rear wheel speed and the current handlebar position
are extracted from the current status of the relevant joints in V-Rep, and a
TCP socket is employed to communicate with the PLCClient ROS nodes, in
a way that mimics the behavior of the X20 industrial PLC.

Moreover, there are two sensors that are simulated but not currently used for
localization:

– Laser: the simulator provides a laser scanner out of the box. The associated
script required some adjustment to publish the correct ROS message;

– Camera: V-Rep offers a highly customizable vision sensor that we used to
realize a camera that matched our needs.

Figure 5 shows how the overall architecture changes when the simulator sub-
stitutes the vehicle and the real sensors. Every sensor now is substituted by its
simulated counterpart, yet nothing changes from the point of view of the per-
ception and control modules, since the communication is done on the same ROS
topics. The PLCClient, in charge of communicating with the low-level control
of the vehicle, interacts with a simulated low-level control system through a lo-
cal socket connection. Inside the simulator a script converts setpoints from the
PLCClient into setpoints of the model joints, another one collects odometry and
sends it back to the ROS node. Migration from the simulated environment and
the real vehicle is simple and requires only the change of few parameters.

82 G. Bardaro et al.

ROAMFREE

Simulated GPS
node

Simulated IMU
node

Simulated
magnetometer

node

Fast predictor

PLCClient

Ttrajectory follower

Planner

ROS

Joypad

Joypad node

Map

Simulation

Simulation/ROS interface

V-Rep

Local socket

Fig. 5. Overall architecture in the simulation setup

4 Experimental Evaluation

In this section we discuss some autonomous trajectory following experiments
done on the real vehicle and in the simulation environment. We employ an eight-
shaped trajectory originating 1 meter ahead with respect to the current pose of
the robot. The two circles have a diameter of respectively 18 and 12.5 meters.

Figure 6 shows the results of six experiments done with the real vehicle, in it we
have plotted the reference path, the robot position, estimated by ROAMFREE,
and the raw GPS readings. Especially in the first experiment (Figure 6a), but
also in the other ones, it is possible to see how the trajectory is followed with
reasonable accuracy, and with ROAMFREE being able to account for substantial
multi-path effect compromising GPS readings.

Figure 7, instead, shows the results of the same experiments done with the
simulator In this case the GPS, like all the other sensors, is simulated and it
is possible to appreciate its simulated faulty behavior. The robot position is
estimated using measurements given by the simulated sensors as they were real,
no special configuration is necessary to use them.

In Figure 7a, and 7b, it is possible to see that multipath effect compromises
the real GPS sensor readings. This happens when the receiver tracks a replica
of the GPS signal which is reflected by environmental features such as buildings
and trees. This effect is hard to model and it has not been simulated in V-Rep,
even though, if we restrict to its effect on localization, a noise model which
accounts for a random transformation to be applied occasionally on the GPS
readings could be considered.

A Simulation Based Architecture 83

(a) 2 m/s (b) 2 m/s

(c) 2 m/s (d) 2 m/s

(e) 3 m/s (f) 4 m/s

Fig. 6. Online trajectory following results. Reference path for the trajectory follower
(black dashed line), the ROAMFREE position output (blue line), and the GPS readings
(red crosses).

84 G. Bardaro et al.

(a) 2 m/s (b) 2 m/s

(c) 3 m/s (d) 4 m/s

Fig. 7. Simulation trajectory following results. Reference path for the trajectory fol-
lower (black dashed line), the ROAMFREE position output (blue line), and the GPS
readings (red crosses).

5 Conclusions

In this work we have presented and validated a simulated environment which
provides an alternative when experiments on the real robots cannot be afforded,
and ultimately simplifies the development and the testing of complex robotic
architectures. As described in Section 3, the simulator transparently substitutes
the real vehicle and its sensors. This is possible thanks to the highly modular
ROS architecture and to the native integration of V-Rep with it. The simulator
does not account for latency of sensors, either internal or caused by the com-
munication, and this makes a simulation more ideal than we would like it to
be, therefore a possible improvement to the current work could be addition of
latency to sensors. The next step is to exploit the features of V-Rep to test the
robot on rough terrains, since the simulator permits to add complex terrains that
can be difficult to find in the real world, or that are too risky for the vehicle.

A Simulation Based Architecture 85

References

1. http://wiki.ros.org/sbpl

2. Bascetta, L., Magnani, G.A., Rocco, P., Zanchettin, A.M.: Design and implemen-
tation of the low-level control system of an all-terrain mobile robot. In: 2009 In-
ternational Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009)

3. Bascetta, L., Cucci, D., Magnani, G., Matteucci, M., Osmankovic, D., Tahirovic,
A.: Towards the implementation of a mpc-based planner on an autonomous all-
terrain vehicle. In: Proceedings of Workshop on Robot Motion Planning: Online,
Reactive, and in Real-time (IEEE/RJS IROS 2012), pp. 1–7 (2012),
http://cs.stanford.edu/people/tkr/iros2012/schedule.php

4. Brück, D., Elmqvist, H., Mattsson, S.E., Olsson, H.: Dymola for multi-engineering
modeling and simulation. In: Proceedings of Modelica, Citeseer (2002)

5. Cucci, D.A., Matteucci, M.: Position tracking and sensors self-calibration in au-
tonomous mobile robots by gauss-newton optimization. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE (to appear, 2014)

6. Cucci, D.A., Matteucci, M.: On the development of a generic multi-sensor fusion
framework for robust odometry estimation. Journal of Software Engineering for
Robotics 5(1), 48–62 (2014)

7. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation
platform V-REP: A versatile 3D robot simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

8. Hellstrom, T., Ringdahl, O.: Real-time path planning using a simulator-in-the-loop.
International Journal of Vehicle Autonomous Systems 7(1), 56–72 (2009)

9. Jayakumar, P., Smith, W., Ross, B.A., Jategaonkar, R., Konarzewski, K.: Devel-
opment of high fidelity mobility simulation of an autonomous vehicle in an off-road
scenario using integrated sensor, controller, and multi-body dynamics. Tech. rep.,
DTIC Document (2011)

10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2004)

11. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A gen-
eral framework for graph optimization. In: 2011 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)

12. Laue, T., Spiess, K., Röfer, T.: SimRobot – A general physical robot simulator and
its application in roboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg
(2006)

13. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3 (2009)

14. Rohmer, E., Singh, S., Freese, M.: V-REP: A versatile and scalable robot simula-
tion framework. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1321–1326 (2013)

15. Vasconcelos, J., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: Geometric ap-
proach to strapdown magnetometer calibration in sensor frame. IEEE Transactions
on Aerospace and Electronic Systems 47(2), 1293–1306 (2011)

http://wiki.ros.org/sbpl
http://cs.stanford.edu/people/tkr/iros2012/schedule.php

	A Simulation Based Architecture for the Development of an Autonomous All Terrain Vehicle
	Introduction
	The Quadrivio ATV
	The Hardware Architecture
	The Software Architecture

	The Simulation Environment
	The Simulator
	The Vehicle Model
	The Sensor Models

	Experimental Evaluation
	Conclusions

