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Sommario

Lo studio delle dinamiche pedonali è un passo fondamentale nella proget-
tazione di strutture pedonali più sicure ed efficienti. Per questo motivo negli
ultimi decenni diversi fisici hanno iniziato a sviluppare modelli in grado di
riprodurre queste dinamiche in modo realistico.

In particolare in questo lavoro abbiamo deciso di usare il modello ad
automi cellulari bidimensionale con campi di forza. L’introduzione di questi
campi rende il modello in grado di replicare situazioni complesse senza perdere
la sua semplicità.

Lo scopo di questo lavoro è in primo luogo di dare una visione generale
delle valutazioni sperimentali già presenti in letteratura, fondamentali per
la comprensione della materia, e dei vari modelli matematici usati per la
simulazione delle dinamiche. La seconda parte invece si concentrerà sulle
simulazioni fatte con il modello appena menzionato.

La parte originale del lavoro è lo studio eseguito sul campo di forze di-
namico e la conseguente calibrazione del modello, fatta grazie al contributo
di questo studio. L’analisi accurata delle diverse simulazioni ha reso possi-
bile la comprensione dell’influenza che ha ogni parametro del modello sulle
dinamiche dei pedoni. Questo ci ha portato a capire anche quali sono i
vantaggi e gli svantaggi del modello CA. Infine abbiamo trovato un’unica
combinazione di parameteri, che ha reso il modello in grado di replicare sod-
disfacentemente diversi dati sperimentali.
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Abstract

The study of pedestrian dynamics is an important task in the planning of
efficient and safe pedestrian facilities. For this reason physicists began to
develop models in order to reproduce these dynamics in a realistic way.

In particular the model used in this work is the 2-dimensional Cellular
Automata model with floor fields. The introduction of these fields allows us
to reproduce even complex situations without loosing the advantage of the
simplicity of the model.

The aim of this work is firstly to give an extensive summary of exis-
tent experimental observations, fundamental for a deep understanding of the
subject, and to introduce different type of modelling of pedestrian dynamics.
The second part has as its goal the reproduction of the evacuation dynamics
by computational simulations with the model mentioned before.

The original part of the work is the study of the dynamic floor field and
the consequent calibration of the model developed thanks to this study. This
accurate analysis of the model made us understand firstly the influences
of the different parameters on the dynamics of the simulated particles and
secondly the benefits and disadvantages of the use of this model. Eventually
an unique combination of values of the different parameters of the model has
been found, so that the model is able to reproduce different experimental
data satisfactorily.

13
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Estratto della tesi

Negli ultimi decenni molti fisici si sono interessati allo studio delle dinamichi
pedonali, in modo da trovare soluzioni più sicure ed efficienti. Lo studio di
queste dinamiche è molto complesso e va analizzato sotto diversi punti vista:
fisico, psicologico e sociale.

In questo lavoro abbiamo analizzato i diversi tipi di comportamenti dei
pedoni, i vari modelli con cui simularli e infine ci siamo concentrati sul mod-
ello ad automi cellulari per simulare queste dinamiche.

La parte originale del lavoro è lo studio eseguito sul campo di forze di-
namico del modello appena menzionato e la conseguente calibrazione, fatta
grazie al contributo di questo studio. L’analisi accurata delle diverse simu-
lazioni ha reso possibile la comprensione dell’influenza che ha ogni parametro
del modello sulle dinamiche dei pedoni. Questo ci ha portato a capire an-
che quali sono i vantaggi e gli svantaggi del modello CA. Infine abbiamo
trovato un’unica combinazione di parameteri, che ha reso il modello in grado
di replicare soddisfacentemente diversi dati sperimentali.

L’elaborato è suddiviso nel seguente modo:

• Capitolo 1 — riassumiamo in modo accurato tutti gli studi riguardanti
le dinamiche pedonali. In particolare vengono analizzate le osservazioni
sperimentali presenti nella letteratura e le diverse grandezze fisiche utili
per questo studio.

• Capitolo 2 — questo capitolo è diviso in due sezioni. Nella prima
parte ci occupiamo di descrivere le caratteristiche dei vari modelli uti-
lizzati per la simulazione delle dinamiche pedonali. Nella seconda parte
invece vengono descritti i primi modelli sviluppati dai fisici per la sim-
ulazione di queste dinamiche: i modelli ispirati dalla fluidodinamica e
dalla cinetica dei gas, il modello “Social force” e il modello “Optimal
velocity”.

• Capitolo 3 — questo capitolo contiene la descrizione del modello ad
automi cellulari con campi di forza utilizzato in questo lavoro per la

15
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simulazione dei pedoni. La parte finale del capitolo riguarda lo studio
del campo di forze dinamico, utile al fine di ottenere successivamente
una calibrazione più accurata del modello.

• Capitolo 4 — descriviamo i risultati della calibrazione del modello
CA. Lo scopo di questo capitolo è di ottenere una combinazione di pa-
rameteri del modello, al fine di renderlo capace di riprodurre in modo
realisto diversi esperimenti presenti in letteratura. Nella parte finale
viene descritta la validazione dei parameteri ottenuti nella calibrazione,
confrontando i risultati delle simulazioni con quelli di due diversi es-
perimenti.

• Capitolo 5 — contiene una sintesi delle tematiche e dei metodi pro-
posti ed impiegati nella tesi, e affronta alcuni punti aperti che saranno
oggetto della futura ricerca in questo ambito.



Chapter 1

Introduction

In the last 30 years the interest of physicists in pedestrian dynamics has grown
a lot, in order to find solutions for better and safer evacuations. Nowadays
in many occasions a large number of people gathers in small areas. On
regular basis large events related to sport, religion and entertainment are
organized all over the world. Office buildings and apartments are becoming
larger and more complex. These situations cause serious safety issues for
the organizers and participants of the event that have to be ready for any
emergency and critical situations. For example, crowds stampede, are still a
problem nowadays. Even if the safety standards are better today, the total
number of victims per panic events increases with the frequency of mass
events. Since 1995 [4],[5],[37] more than 40 large crowd panics have occurred,
in which more than 2000 people were killed and at least 5000 were seriously
injured. Before 1995 one of the most famous disaster was “The Who concert
disaster”, which took place in Riverfront Coliseum in Cincinnati in 1979.
In 1994 and 2006, 270 and 345 people respectively were killed at Jamarat
Bridge in Mecca during the stoning of the Devil. In 1996 in Guatemala
City there were 82 fatalities and 147 injuries during a World Cup qualifying
match. Another example is of course the terrorist attacks of 9/11, in which
more than 2500 people died. In 2001 over 160 people were killed in two
major crowd stampede in football stadiums in South Africa and Ghana. It
is possible to find examples also in the United States, where in 2003 over
120 people died in Rhode Island and Chicago due to crowd panics in night
clubs. The first one is known as the Station nightclub fire. In 2005 one of
the deadliest stampede happened in Baghdad on the Al-Aaimmah bridge,
where 953 people died. More recently 21 people were killed and more than
500 were injured during the mass panic at the Love Parade in Duisburg.

During these situations the people have to be guided out of the building
or the dangerous area as soon as possible. That is why it is so important

17
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(a) Love Parade disaster (2010) (b) Station Nightclub fire (2003)

(c) Disaster at the Jamarat Bridge (1994) (d) Al-Aaimmah bridge stampede (2005)

Figure 1.1: Pictures of famous crowds stampede

to understand the dynamics of a large group of people. The study of these
situations is really complex due to large number of people and their inter-
actions, external factors like fire etc., complex buildings geometries and the
panic behaviour of the pedestrians. For these reasons the dynamics have to
be understood on different levels: physical, social and psychological. The
aim of the research of pedestrian dynamics is really important in order to
develop elements that allow the increase of the efficiency and safety of pedes-
trian facilities. This study [5] is developed in 3 steps: 1) understanding of
several collective phenomena of the pedestrian dynamics (Section 1.2), 2)
development and calibration of models that are able to reproduce the dy-
namics in a realistic way (Chapters 2-4), 3) application of these models to
design facilities for the pedestrians and to prepare and manage emergencies.

For these reasons in the last decades a lot of physicist worked on the
creation of models to replicate the pedestrian behaviour in normal and panic
situations.

The first models were based on fluid-dynamics and gas-kinetic models,
because of the similarity in some aspects of the pedestrian dynamics with
the one of fluid and gases. In 1971 Henderson did the first studies on these
kind of models [13],[14].
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Based on the traffic models made years before, in 1998 and 2000 the
first models introduced respectively the idea of “social-forces” [16],[17] and
stochasticity [21]-[31]. The first one was introduced by Helbing and is based
on the idea that velocity and direction of people are influenced by the pres-
ence of other pedestrians, obstacles and points of interest. The second kind
of models are called Cellular Automata. A lot of different versions of this
model were made in the last decade, but the last one developed was the one
based on the idea of the floor fields. The simulations in this paper are based
on this last model. The reasons for this choice were essentially two: 1)despite
its simplicity, this model is able to reproduce the real behaviour with a high
accuracy; 2)being one of the last models developed, it has more potentiality
of being improved, in order to create a really simple model able to reproduce
even complex situations.

All these models will be described more accurately in the next chapters:
the fluid-dynamics and gas-kinetic based models and the social force model
in Chapter 2; the cellular automata models, in particular the one based on
the floor fields, in Chapter 3.

In order to create models that are able to predict real data, it is neces-
sary to understand deeply the real pedestrian behaviour. This study will be
described in Section 1.2.

1.1 Reason of the research

As already mentioned, nowadays it is really important that architects and
engineers, who project buildings, shopping centres, airports, railway stations
or stadiums as well as organizers of big events are able to understand and
prevent problems caused by evacuations in emergency situations. The simu-
lation of pedestrian dynamics is an important, sometimes required, stage to
understand these problems. Because of the complex and chaotic nature of
pedestrian dynamics, simple analysis are not enough to understand the real
behaviour of people in these situations. Evacuation exercises are too expen-
sive, time consuming and dangerous to be a standard measure for evacuation
analysis. For example, the UK Marine Coastguard Agency in 1996 [1] made
an evacuation exercise that costed more than 10000 £. These exercises are
although useful to be used as empirical data for the construction of the model
[5] in three ways: 1) identify the parameters (factors that influence the evac-
uation process, e.g. capacity and width of the bottlenecks), 2) quantify those
parameters (e.g. flow through the bottleneck in persons per meter and sec-
onds), 3)validate the simulation results (compare the overall evacuation time
measured with the one simulated).
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1.2 Empirical observations

The first step of the creation of more efficient and safe pedestrian facilities is
to understand the several collective phenomena of the pedestrian dynamics.

Pedestrian crowds dynamics have been studied since 1958 by Hankin and
Wright [2], but a real extensive summary was done the first time by Helbing
in 2002 [4]. They studied many self-organization phenomena on the base of
observations, photographs and time-lapse movies. The idea is to understand
deeply the dynamics of the pedestrian in order to recreate a mathematical
model able to reproduce these features in a realistic way. This gives the
possibility to study different other cases in an easier and more economic
way, indeed computer simulations are a really powerful tool for designing
and planning pedestrians facilities. This second part will be discussed in the
following Chapters 2-4, while in this section only the empirical results will be
described. The empirical study is not only important for the creation of the
model but also for applications like safety study and legal regulations. At the
beginning the collective phenomena in normal situations will be described.
Some of these are common from everyday experience. This will be an initial
benchmark test for the models used. In earlier days investigations of self-
organization phenomena were based on qualitative empirical observations
and video-based analysis [37]. They include:

1. bidirectional pedestrian streams in corridors or alleys [42],[44],[45]

2. four intersecting pedestrian streams with and without guidance through
obstacles and railings [45]

3. the movement of pedestrians through a waiting crowd [45],[46]

4. the escape of students from a room with a narrow exit, without pushing
[47]

5. uni- and bidirectional pedestrian streams in corridors with and without
bottlenecks [37]

6. two intersecting pedestrian streams [37]

Some of these experiments will be used in Chapter 4 in order to cali-
brate the model and to be sure that the model used is able to recreate the
phenomena observed in the reality.

It is mode difficult to understand the behaviour of the pedestrian in panic
situations. Obviously it is difficult to recreate situations of emergency in a
simulation of an escape without putting in danger people. Most of the results
of the behaviour in these situations are qualitative observations, though there
are a couple of experiments [37] that try to reproduce those situations like:
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1. the escape of disoriented people from a room (where some effects of
dense smoke or an outage of power supply were imitated by wearing
eye masks) [48]

2. pushy pedestrians rushing toward an exit with and without an obstacle
in front of it [37]

1.2.1 Behaviour in normal situations

Though the dynamics of the pedestrians can be sometimes chaotic and irreg-
ular, it is possible to find some regularities and rules, some of which become
more visible in time-lapse films. The following list is a summary result of
some other pedestrians studies and observations [2]-[7]:

1. Pedestrians prefer to walk with an individual pedestrian speed, that
normally is the least energy consuming and comfortable one. Normally
this speed is the minimum one in order to arrive to the destination in
time. Considering that the speed of walking within pedestrian crowds
depends on the situation, age, sex, purpose of the trip, time of the
day, etc., it is possible to observe that the velocity is distributed as a
Gaussian with average value of approximately 1.34 m

s
and a standard

deviation of 0.26 m
s

.

2. Many pedestrians show a strong aversion to detours or moving in the
opposite direction than the desired one, even if the direct route is
crowded. However there is also some evidence that normally they
choose the fastest way and not the shortest one. The consequence
of this is that it is possible to approximate the shape of their ways as
a polygon. People always prefer to walk straight ahead as far as they
can and change direction as late as possible, if the alternative routes
are of the same length and not more attractive, for example, because
of a friendlier environment, more light, less noise, etc. .

3. Normally pedestrian try to keep a certain distance from other pedes-
trians and from the environment (walls, obstacles, etc.). This distance
is smaller if the pedestrian is in hurry and with the increase of the
pedestrians density. This density is higher around particularly attrac-
tive places. Another interesting observation is that individuals knowing
each other can form a group that behaves like a single pedestrian. Some
studies modelled the size of groups as a Poisson distribution.

4. Pedestrian always act more or less automatically, even if the situation is
new. An example of this behaviour are pedestrians that cause delays or
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obstructions, by entering a train or an elevator before other pedestrians
went out of them.

1.2.2 Behaviour in panic situations

Typically “panic situations” are those, where people compete for scarce or
dwindling resources (e.g. safe space and access to an exit), which leads to
selfish, asocial or even irrational behaviours and contagion that affects large
groups. This phenomena is understandable in life threatening situations, like
a fire in a crowded building, but sometimes it occurs even in unreasonable
situations like in cases of a rush for good seats at concerts.

As mentioned before it is difficult to understand this behaviour, but some
features appear to be typical [2]-[7]:

1. People try to move considerably faster than in normal situations

2. Moving and passing through bottlenecks becomes uncoordinated and
hard

3. Escape is slowed down by fallen or injured pedestrians turning into
obstacles

4. Alternative exits are often overlooked or inefficiently used in these sit-
uations

5. Individuals start pushing and physical interactions between pedestrians
can cause dangerous pressures up to 4500 N

m
.

The following quotations of “The Who concert disaster” give a more
personal impression of the conditions during escape panics:

• “They just kept pushin’ forward and they would just walk right on top
of you, just trample over ya like you were a piece of the ground.”

• “People were climbin’ over people ta get in ... an’ at one point I almost
started hittin’ ’em, because I could not believe the animal, animalistic
ways of the people, you know, nobody cared.”

• “Smaller people began passing out. I attempted to lift one girl up and
above to be passed back ... After several tries I was unsuccessful and
near exhaustion.”

1.2.3 Collective Phenomena

One of the main reasons why physicists are interested in pedestrians dynamics
is because under certain conditions, pedestrian flows form collective effects
and self-organization phenomena, such as:



1.2. EMPIRICAL OBSERVATIONS 23

• clogging and jamming effects or oscillatory flows at bottlenecks

• density waves in dense crowds

• lanes of uniform walking directions in pedestrian counter-flows

• circulating flows intersections

With self-organization [37] it is meant that these patterns are not ex-
ternally planned, prescribed or organized, for example by traffic signs, laws,
behavioural conventions, or previous organization. This patterns are created
by the non-linear interaction between the pedestrians and the environment.
Physicist are able to study and reproduce mathematically by simulations this
phenomena, only because these interactions are more reactive and subcon-
scious than based on strategical considerations or communication.

Jamming, clogging and oscillation

Jamming and clogging typically occur for high densities at locations where
the inflow exceeds the capacity of the passage. These locations with a re-
duced capacity are called bottlenecks. In Fig.1.2 it is possible to see how
the pedestrians are jamming next to a bottleneck. When several pedestrians
reach the bottleneck at the same time , their mutual blockage leads to a
deadlock that none of them can pass through the passage. This is a typical
situation in which it is possible to observe the clogging phenomena. The
consequence of this effect is the exclusion principle: the space occupied by
one particle is not available for others.

Figure 1.2: People jamming at the entrance of the Apple Store in Sanlitun,
China
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Other types of jamming occur in the case of counter-flows at bottlenecks.
In this case it is possible to oscillatory changes of the passing direction, in
the case that people don’t panic. Once a pedestrian is able to pass through
the narrowing, the other pedestrian with the same walking direction are
facilitated in following him and pass through the bottleneck until somebody
is able to pass in the opposite direction.

Lane formation

In a room with counter-flow movements, i.e. two groups of people moving
in opposite directions, lanes are formed where people move in just one di-
rection [3]. In this way most of the interactions caused by the counter-flow
are reduced, which is more comfortable and allows higher walking speeds.
Pedestrians moving against the stream or in areas with mixed directions will
have for sure more interactions with the pedestrians moving in the opposite
direction. In each interaction, the encountering pedestrians will move a little
aside in order to pass each other. This sidewards movement tends to separate
oppositely moving pedestrians, which leads to segregation. To understand
better this phenomena, Fig.1.3 shows a lane formation in a crowded walkway
in Bordeaux, France. The number of lanes can vary considerably with the
total width of the flow. Usually this number is not constant and can change
in time, even if there are small changes in the density of the environment.
The number of lanes of opposite directions is not always the same.

Figure 1.3: Lane formation phenomena in a crowded walkway in Bordeaux,
France

Panic

This behaviour is usually characterized by selfish and anti-social behaviour,
which through contagion afflicts large groups and even leads sometimes to
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completely irrational actions. It occurs often in situations where people com-
pete for scarce of dwindling resources, which in the case of an escape from a
building are safe space or access to an exit. Different typical behaviours can
be seen during this situation [6]:

• Herding — Herding is a term from zoology, that in this context means
“go with the flow” or “follow the crowd”. In many panic situations a
lot of pedestrians tend to do what the majority of the other people is
doing. A lot of times this causes some overcrowded exits, in which the
majority of the people goes, and some other exits that are not used at
all or not used in an optimized way.

• Stampede — Stampede, like herding, is a term from zoology used for
crowd accidents too. In zoology, stampede defines a large herd of mam-
mals like buffaloes collectively running in one direction and overrunning
any obstacles. In panic situations this phenomena unfortunately hap-
pens even in human crowds. In the attempt to escape, many times
humans trample other people.

• Faster-is-slower effect —Due to impatience caused by panic, pedes-
trian have an higher desired velocity, that leads to a slower movement
of the crowd.

• Freezing-by-heating effect — In counter-flows, at sufficiently high
densities, lanes are destroyed by the increasing fluctuation strength
(which is similar to the temperature). However,instead of the expected
transition from the “fluid” lane state to a disordered, “gaseous” state,
a solid state is formed. This is characterized by a blocked situation.

1.3 Observables

Before explaining the models and the experimental studies with the conse-
quent calibration of the model, it is important to introduce the commonly
used observables. The flow J of a pedestrian stream gives us the number of
people crossing a fixed location of a facility per unit of time. Usually it is
taken as a scalar value since only the normal flow to the crossing section is
considered. In order to calculate the flow, it is necessary to determine the
times ti at which pedestrian pass through the fixed location. The time gaps
4ti = ti+1 − ti between two consecutive pedestrians i + 1 and i are strictly
related to the flow:

J =
1

4t
with 4t =

1

N

N∑
i=1

4ti =
tN+1 − ti

N
(1.1)
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Another way to measure this flow is with a fluid dynamic approach. The
flow J through a facility of width b determined by the average density ρ and
the average speed v can be calculated with the following formula:

J = ρvb = Jsb (1.2)

where the specific flow:
Js = ρv (1.3)

gives the flow per unit-width. This relation is also known as hydrodynamic
relation.

Another way to quantify these quantities was proposed by Helbing [39].
The local density at place ~r = (x, y) and time t was obtained with the
following formula:

ρ(~r, t) =
∑
j

f(~rj(t)− ~r) (1.4)

In the equation ~rj(t) represents the position of the pedestrians j in the sur-
rounding of ~r and

f(~rj(t)− ~r) =
1

πR2
e−
‖~rj(t)−~r‖

R2 (1.5)

is a Gaussian distance-dependent weight function. R is a measurement pa-
rameter.

1.3.1 Fundamental diagram

The fundamental diagram describes the empirical relation between the pedes-
trian flux J and the density ρ. Due to hydrodynamic relation 1.3 there are
three equivalent forms: Js(ρ), v(ρ) and v(Js). As suggested by the name,
this diagram is really important in the study of the pedestrian dynamics. In
applications the relation is a basic input for engineers to design and dimen-
sion the pedestrian facilities. Furthermore it is a quantitative benchmark
for models, since it is possible to calibrate them thanks to the fundamental
diagram.

Fig.1.4 shows different fundamental diagrams used in planning guidelines
and measurements in some similar empirical studies. It is possible to notice
that the results disagree considerably. In particular the maximum value of
the specific flow Js,max ranges from 1.2 1

ms
to 1.8 1

ms
and the values of the

density in which the maximum is reached ρc ranges from 1.75 1
m2 to 7 1

m2 .
Many explanations have been suggested for these huge differences in the
fundamental diagrams such as:

• cultural and population differences
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Figure 1.4: Fundamental diagrams for pedestrian movement in planar facili-
ties. Data: SFPE Handbook (SFPE) [3], Predtechenskii and Milinskii (PM)
[10], Weidmann (WM) [9], Older (OL) [11], Helbing (HEL) [12]

• short-ranged fluctuations

• influence of psychological factors given by the incentive of movement

• type of traffic (commuters, shoppers, etc.)

However all the diagrams agree at least in one characteristic: the velocity
decreases with increasing density. The reason of this speed reduction is not
completely clear yet. One reason could be that the walking speed of the
pedestrian depends linearly on the step size and the inverse of the density
can be regarded as the required length of one pedestrian to move. Thus it
seems that smaller step sizes caused by a reduction of the available space
with increasing densities is one cause of the reduction of speed.

Now that all the empirical observations and the most important phys-
ical quantities were described, it is possible to introduce the modelling of
pedestrian dynamics. At the beginning of the next chapter the most impor-
tant characteristics of the models will be introduced, with all their positive
and negative sides. The successive sections will describe the most important
models developed in the last years, except by the Cellular Automata model,
that will be described in Chapter 3.
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Chapter 2

Modelling

Choice of activities

Walking interaction with 

other pedestrians and with

the system

Schedule of activieties

Choice of activity area

Route choice

Strategical level

Tactical level

Operational level

Network topology

Timetables

Geometry

Obstacles

Charactheristics of

the pedestrians

Figure 2.1: Different levels of modelling pedestrian behaviour

In order to understand the pedestrian dynamics in a global way it is nec-
essary to take into account three levels of behaviour [5] (Fig.2.1). First of all
it is necessary to understand which activities the pedestrians decide to do and
the time in which they do these. This first level is called the strategical level.
After the choices made in the strategical level, the tactical level concerns the
short-term decisions of the pedestrians, like choosing precise routes in order
to arrive in the desired place in the fastest and most comfortable way. Finally
the operational level describes the actual walking behaviour of the pedestri-
ans in order to avoid collision with the environment and other pedestrians.

29
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The first 2 levels are usually considered exogenous to the pedestrian dynam-
ics simulations, even if there are some models that take into account certain
elements of these two levels. The first macroscopic observations of the oper-
ational level have been already described in 1.2. Modelling the operational
level is usually based on the variations of models from physics. The reason
of this is the fact that the motion of pedestrian crowds have similarities with
the fluid, gases and granular material flow [4]:

• the emergence of pedestrian streams through standing crowds appears
analogous to the formation of river bed

• footprints of pedestrians in snow look similar to streamlines of fluids

• at borderlines between opposite directions of walking one can observe
“viscous fingering”, i.e. the formation of patterns in a morphologically
unstable interface between two fluids in a porous medium

• when the density is high enough, pedestrians spontaneously organize in
lanes of uniform walking directions like the segregation or stratification
phenomena in granular material

• at bottlenecks, the passing direction of pedestrian oscillates and can be
compared to the granular “tickling of the hourglass”

• the propagation of shock waves can be seen in dense pedestrian crowds
pushing forward

The aim is to find a model that is as simple as possible, but at the
same time can reproduce in a realistic way the behaviour of the pedestrians
observed in empirical studies. Therefore, taking inspiration from physics,
pedestrians are often modelled as simple “particles” that interact with each
other. All these models have characteristics [5] that can be used to classify
the modelling approaches:

• macroscopic vs. microscopic — In macroscopic models different
pedestrians can not be distinguished, but instead the state of the sys-
tem is described by densities, usually a mass density derived from the
position of the particles and a corresponding locally averaged veloc-
ity. In contrast, in microscopic models each individual is considered
separately. This kind of models allow to introduce different types of
characteristics to the single pedestrian, like the desired route or the
desired velocity.

• discrete vs. continuous — All the variables in the models for the
description of the system of pedestrian are time and state variables
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(e.g. velocities). These variables can be either discrete or continuous.
Cellular automata models are by definition discrete, but it is possible
to implement it even in a continuous way. In computer simulations
this is realized through a random-sequential update where at each time
step the particle or site to updated is chosen randomly from the set of
all particles and sites respectively. The discrete time version is usually
implemented through a parallel or synchronous update where all the
particles are moved in the same time. With this approach it is necessary
to introduce a time-scale.

• deterministic vs. stochastic — The dynamics of pedestrians can
be described either in a deterministic or a stochastic way. In the deter-
ministic way the behaviour of the particle is determined by the present
state. This means that if a particle is in a certain state, it will react
always in the same way. Differently in stochastic models the behaviour
is controlled by certain probabilities in order that pedestrians can re-
act differently in the same state. The introduction of this stochasticity,
even in really simple models, can generate really complex behaviours.
But thanks to this stochastic behaviours it becomes often possible to
generate rather realistic representations of complex systems like pedes-
trian crowds. The introduction of these probabilities reflects our lack
of knowledge of the underlying physical process, e.g. determines the
decision-making of the pedestrians.

• rule-based vs. force-based — The difference between rule-based
and force-based models is that the interaction of the pedestrian with
the environment and other particles is implemented in two different
ways. In the first one all the pedestrian make their movement deci-
sion based on their current and neighbourhood situation, so it focuses
on the local situation of the pedestrian. In contrary the force-based
models are implemented taking into account the global situation of the
system. In these models particles “feel” a force exerted by others and
the infrastructure and act accordingly. It is a physical approach based
on the observation that the presence of others leads to a deviation from
a straight movement.

All the cellular automata (CA) models will be described accurately in
Chapter 3, while in the following the other models will be briefly described.
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MODEL

Fluid-dynamics models macroscopic continuous deterministic force-based
Social-force models microscopic continuous semi-stochastic force-based

Optimal velocity model microscopic continuous deterministic force-based
CA Fukui-Ishibashi model microscopic discrete deterministic rule-based

CA Blue-Adler model microscopic discrete stochastic rule-based
CA floor field model microscopic discrete stochastic rule-based

Table 2.1: Summary of all the most important models with their usual char-
acteristics.

2.1 Fluid-dynamics and gas-kinetic models

Similarly to many vehicular dynamics models, the first pedestrian dynamics
models took inspiration from hydrodynamic and gas-kinetic theory. Hen-
derson [13],[14] was the first one who tried to establish an analogy of large
crowds with a classic gas. The result of his first work [13] was that the ve-
locity vector V of a particle is considered to be the sum of a mean steady
velocity transition V and a random fluctuation part v′:

V = V + v′ (2.1)

Taken over a crowd, V represents the average velocity of convection along
a footpath. The random part v′ is built under the hypothesis that all the
particles are statistically independent of one another. Physically speaking, all
the particles are free to select their V without any interference. Under these
assumptions he found a good agreement of the p.d.f. of v′ with Maxwell-
Boltzmann distribution:

f(v) =

√( m

2πkT

)3
4πv2e−

mv2

2kT (2.2)

where m is the particle mass and kT is the product of Boltzmann’s constant
and thermodynamic temperature. This p.d.f. gives the probability, per unit
speed, of finding the particle with speed near v.

In a later work [14] Henderson tried to improve his model developing a
fluid-dynamic theory of pedestrian flow. He described an homogeneous crowd
by the well-known kinetic theory of gases, representing the interactions be-
tween the pedestrians as a collision process where the particles exchange
momenta and energy. The kinetic theory of gases is based on several conser-
vation laws. The conservation of mass, corresponding to the conservation of
pedestrians in this case of study, is expressed with the following formula:

∂ρ(~r, t)

∂t
+∇ · J(~r, t) = 0 (2.3)
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which connects the local density ρ(~r, t) with the current J(~r, t) (in position ~r
and time t ). However the hypothesis of conservation of energy and momenta,
made to apply the kinetic theory of gases, is not true for interactions between
pedestrians, which in general do not even satisfy the Newton’s third law
(“actio=reactio”).

In [15] a better fluid-dynamical description was derived on the basis of a
gas-kinetic model which describes the system in terms of a density function.
First of all the pedestrians are divided into groups of different types µ of

motion, e.g. by their different intended directions ~eµ :=
~v0µ
‖~v0µ‖

of motion.

With this method all the pedestrian are distinguished in several disjoint and
complementary sets Φµ.

Thanks to a suitable choice of these sets it was possible to get approxi-
mately unimodal densities ρ̂µ(~x,~vµ, ~v

0
µ, t) and therefore to obtain appropriate

mean value equations. This function describes the number Nµ of pedestrians
of type µ around a place ~x having approximately the intended velocity ~v0µ
but approximately the actual velocity ~vµ:

ρ̂µ(~x,~vµ, ~v
0
µ, t) ≡ ρ̂µ(~x, ~uµ, t) :=

Nµ(U(~x)× S(~uµ), t)

A · V
(2.4)

where:

• U(~x) is a neighbourhood around the position ~x of all accessible places.
A = A(~x) denotes the area of U(~x).

• S(~uµ) is a neighbourhood of ~uµ := (~vµ, ~v
0
µ) with a volume V = V (~uµ).

The density function ρ̂µ changes in time due to four different effects:

1. A relaxation term with characteristic time τ describes the tendency of
pedestrians to approach their intended velocity.

2. The interaction between pedestrians is modelled like in the Boltzmann
equation. In this case pair interactions between types µ and ν occur
with a total rate that is proportional to the densities ρ̂µ and ρ̂ν .

3. Pedestrians are allowed to change from type µ to ν.

4. Additional gain and loss terms allow to model entrances and exits where
pedestrians can enter or leave the system.

To conclude, the resulting equations derived from this gas-kinetic ap-
proach are similar to the equations of hydrodynamics (Euler equations for
the motion of the gases).
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2.2 Social force model

The social force model [16],[17] is a deterministic continuum model in which
the interactions between pedestrians are implemented by using the concept
of a social force or social field. This model is based on the idea that it is
possible to put the rules of the pedestrian behaviour into an equation of
motion. This equation will describe the temporal change d~vα

dt
of the velocity

~vα of a pedestrian α and depends on a vectorial quantity ~Fα called social force.
Clearly, this social force must represent the effect of the environment, e.g.
other pedestrians or borders, on the behaviour of the described pedestrian:

1. Let us consider a pedestrian α that wants to reach a certain destination
~r0α as comfortable as possible. Therefore he/she will take the shortest
way possible, that usually has the shape of a polygon with edges ~r0α :=
~r1α, . . . , ~r

n
α. If ~rkα is the next edge of the polygon the pedestrian will have

a desired direction ~eα(t):

~eα(t) :=
~rkα − ~rα
‖~rkα − ~rα‖

(2.5)

If the pedestrian is not disturbed, he/she will walk in the desired direc-
tion ~eα(t) with the desired speed v0α. A deviation of the actual velocity
~vα from the desired one ~v0α := v0α~eα(t) due to necessary deceleration,
leads to a tendency to approach again ~v0α within a certain relaxation
time τα. This can be described by an acceleration term:

~F 0
α(~vα, ~v

0
α) :=

1

τα
(~v0α − ~vα) (2.6)

2. The pedestrian α is influenced even by the presence of other pedes-
trians, e.g. pedestrian β. He/she keeps a certain distance from other
pedestrians, that depends on the pedestrian density and on the desired
speed v0α. This results in a repulsive force:

~fαβ(~rαβ) := −∇~rαβVαβ[b(~rαβ)] (2.7)

where:

• Vαβ(b) is a monotonic decreasing function of b with equipotential
lines having the form of an ellipse that is directed into the direction
of motion

• b denotes the semi-minor axis of the ellipse and is give by:
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2b(~rαβ) :=
√

(‖~rαβ‖+ ‖~rαβ − vβ ∆t ~eβ‖)2 − (vβ ∆t)2

with ~rαβ := ~rα−~rβ and sβ := vβ ∆t that represents the step width
of the pedestrian β.

In the same way the pedestrian α is influenced by borders of buildings,
walls, streets, obstacles, etc. . Therefore a border B evokes a repulsive
effect that can be described by:

~FαB(~rαB) := −∇~rαBUαB(‖~rαB‖) (2.8)

where:

• UαB(‖~rαB‖) is a monotonic decreasing function

• ~rαB := ~rα − ~rαB, where ~rαB denotes the location of that piece of
border that is nearest to the pedestrian α

3. Pedestrians are sometimes attracted by other pedestrians, e.g. friends,
or objects, e.g. exits. These attractive effects can be modelled in a
similar way like the repulsive effects:

~fαi(‖~rαi‖, t) := −∇~rαiWαi(‖~rαi‖, t) (2.9)

where ~rαi := ~rα − ~ri and Wαi(‖~rαi‖, t) is a monotonic increasing func-
tion.

The formulas described above for attractive and repulsive effects only
hold for situations that are perceived in the desired direction ~eα(t) of motion.
Situations located behind a pedestrian will have a weaker influence c with
0 < c < 1. To take this effect into account it is necessary to introduce an
effective angle of sight 2ϕ and the weights:

w(~e, ~f) :=

{
1 if ~e · ~f > ‖~f‖ cosϕ
c otherwise

(2.10)

In conclusion, the repulsive and attractive forces are give by:

~Fαβ(~eα, ~rαβ) := w(~eα,−~fαβ)~fαβ(~rαβ) (2.11)

~Fαi(~eα, ~rαi, t) := w(~eα, ~fαi)~fαi(~rαi, t) (2.12)

Therefore the social force model is now defined by:

d~vα(t)

dt
:= ~Fα(t) + fluctuations (2.13)

where:

~Fα(t) := ~F 0
α(~vα, ~v

0
α) +

∑
β
~Fαβ(~eα, ~rαβ) +

∑
B
~FαB(~eα, ~rαB) +

∑
i
~Fαi(~eα, ~rαi, t)

The fluctuation term takes into account random variations of the be-
haviour of the pedestrian α.
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2.3 Optimal-velocity model

The optimal-velocity (OV) model [18],[19] for pedestrian dynamics is based
on the one dimensional one thought for traffic flow. So first of all is important
to briefly present the one dimensional OV model [18] to understand the two-
dimensional one applicable for pedestrian dynamics. The basic concept of
the model is that each driver controls the acceleration in order to reduce the
difference between the optimal velocity and his/her real velocity. This can
be expressed by the equation of motion:

d2xn(t)

dt2
= a

[
V (∆xn(t))− dxn(t)

dt

]
(2.14)

where:

• xn and ∆xn are the position and the headway of the nth vehicle

• a is the sensitivity, which represents the strength of reaction of each
driver

• V (∆x) := α[tanh β(∆x − b) + c] is the OV function, which indicates
the optimal velocity of the driver depending on the headway

This model has a trivial homogeneous flow solution:

xn = hn+ V (h)t+ const (2.15)

where all vehicles run with the same velocity V (h) and the same headway h.
In order to apply this model to the pedestrian dynamics it is necessary

to construct a two-dimensional OV model [19]. The equation of motion for
a pedestrian j is given by:

d2~xj(t)

dt2
= a

[{
~V0 +

∑
k

~F (~xk(t)− ~xj(t))

}
− d~xj(t)

dt

]
(2.16)

where:

• ~xj := (xj, yj) and ~xk := (xk, yk) are the positions of the jth and kth
pedestrian

• ~F expresses the interaction between pedestrians and has the following
form:

~F (~xk − ~xj) = f(rkj)(1 + cosϕ)~nkj
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with rkj = ‖~xk − ~xj‖, ~nkj =
(~xk−~xj)
rkj

and ϕ is the angle between the

vectors (~xk − ~xj) and ~V0. f(rkj) = α[tanh β(rkj − b) + c] represents the
OV function like in the one-dimensional model.

The next chapter will introduce the last kind of models described at
the beginning of this chapter, the Cellular Automata model. Differently
from the models described in the previous sections this model is discrete and
stochastic.
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Chapter 3

Cellular automata model

Cellular automata (CA) [5]-[30] are rule-based models that are discrete in
space and time. The structure is a two-dimensional grid, that describes the
size and the shape of the room, which can be closed periodically in one or
both directions.

Each cell can only be occupied by one particle so that this space require-
ment can be identified with the size of the cell. A natural space discretization
can be calculated from the maximal densities observed in crowds which gives
the minimal space occupied by one person. Empirical results showed that
the maximum density is 6.25 per/m2 that leads to a cell size of 40 × 40 cm2,
that is the typical space occupied by a person in a dense crowd [24]-[30].

The update of the position of every particle is done in parallel, this in-
troduces a time scale into the dynamics which can be identified with the
reaction time treac. In the model used in this work, a single particle, that
doesn’t interact with others, moves with a velocity of one cell per time step.
The average velocity of a pedestrian observed in this kind of situations is
about 1.3 m/s that leads to treac ≈ 0.3 s [24]-[30].

The next section will discuss the general basic rules applicable in any kind
of CA model. Sections 3.2-3.4 will focus on the CA model with floor fields.
The chapter will end with a study made on the dynamic floor field, that will
improve the accuracy of the calibration in Chapter 4.

3.1 Basic rules

All the particles are able to move in one of the four neighbouring sites, if
they are free, or to stay in the same cell. The dynamics is defined by rules
which specify transition probabilities for the motion of the particle (Fig.3.1).
In each update step, for each particle a desired move is chosen randomly

39
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according to these probabilities. If no other particle targets the same cell,
the move is executed, otherwise there is a conflict and only one or none can
move. This argument will be discussed deeper in Section 3.3.1 [24]-[30].

Figure 3.1: Possible directions of motion of a particle and the corrisponding
transition probabilities pij [26]

The transition probabilities can be determined in different ways, accord-
ing to the kind of CA model, but are always defined by three factors [5] : (1)
the desired direction of motion, (2) interactions with other particles, and (3)
interactions with the infrastructure (walls, doors , etc.). The model used in
this work is a specific one, namely the floor field model (Sec.3.2-3.3). The
probabilities in this model are calculated through a coupling to so-called floor
fields. A couple of other examples of CA models are the following:

Fukui-Ishibashi Model

In this model [22]-[23] the pedestrians are divided in two groups. One group
moves from east to west and the other one in the opposite direction on
the same passageway. The passageway of length L and width W is defined
by a two-dimensional lattice of L × W. The pedestrians of the east bound
group Eg on each of W lanes of the passageway walk from west to east and
encounter the pedestrians of the other group Wg, that are walking in the
opposite direction. All pedestrians advance by one cell on one time step.
On every odd time step, the pedestrians of the Eg group advance eastbound
by one site. The pedestrians of the Wg group advance westbound at each
even time step, if the site in front of them is empty. If the site in front
of a pedestrian is occupied by a particle of the same group, he stops there,
whereas is the site is occupied by a particle of the other group he’ll change
lane to avoid collision. The two following rules are applied:
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1. Sidestepping model : If the site just beside the concerned pedestrian
is empty, he sidesteps there. If both sides are empty, he chooses one
randomly, while if both are occupied, he doesn’t change the lane. The
pedestrian going forward is given priority over the pedestrian changing
lane.

2. Diagonal sidestepping model : If the diagonal front site is empty, the
particle moves there. All the other rules are the same as 1.

Blue-Adler Model

The Blue-Adler CA model [20]-[21] is based on three fundamental elements:
side stepping (lane changing), forward movement (breaking, acceleration),
and conflict mitigation. Side stepping refers to the desire of the pedestrian to
switch lane. Forward movement must be adaptable to the desired velocity of
the pedestrian and the placement of the other particles in the neighbourhood.
Conflict mitigation refers to the manner in which pedestrians approaching
each other from opposite directions try to avoid a head-on deadlock. The
basic rules of this model were developed around these three elements and
were designed to work in a framework with parallel updates. To avoid the
problem of head-on conflicts the use of a probability pexch was introduced.
When opposing pedestrians are within one cell of each other, the two particles
will swap their positions with probability pexch.

Each pedestrian is randomly assigned a desired speed of 2, 3, or 4 cells
per time step. The rule set for the Blue-Adler CA model [20] is the following:

• LANE CHANGE (parallel update 1)

1. Eliminate conflicts: two walkers that are laterally adjacent may
not sidestep into one another

(a) An empty cell between two walkers is available to one of them
with 50/50 random assignment

2. Identify gaps: same lane or adjacent (left or right) lane is chosen
that best advances forward movement up to vmax according to
the gap computation sub-procedure that follows the step forward
update

(a) For dynamic multiple lanes (DML)

i. Step out of lane of a walker from opposite direction by
assigning gap=0 if opposing pedestrian is within 8 cells

ii. Step behind a same direction walker when avoiding an
opposite direction walker by choosing any available lane
with gapsame,dir = 0 when gap=0
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(b) Ties of equal maximum gaps ahead are resolved according to:

i. Two-way tie between the adjacent lanes: 50/50 random
assignment

ii. Two-way tie between current lane and single adjacent
lane: 80/20 random assignment for stay in lane/adjacent
lane

iii. Three-way tie: 80/10/10 assignment for stay in lane or
either adjacent lane

3. Move: each pedestrian pn is moved 0, +1, or -1 lateral sidesteps
after 1. and 2. are completed

• STEP FORWARD (parallel update 2)

1. Update velocity: Let v(pn) = gap, where gap was calculated with
“gap computation” below

2. Exchanges:

if (gap=0 or gap=1) AND gap = gapopp then
with probability pexch v(pn) = gap+ 1;

else
v(pn) = 0

end

3. Move: each pedestrian pn is moved v(pn) cells forward on the
lattice after 1. and 2. are completed

• SUB-PROCEDURE : GAP COMPUTATION

1. Same direction: Look ahead a max of 8 cells (8 = 2 largest(vmax))

if occupied cell found with same direction then
set gapsame to number of cells between entities;

else
gapsame = 8

end

2. Opposite direction:
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if occupied cell found with opposite direction then
set gapopp = ceil(0.5 number of cells between entities);

else
gapopp = 4

end

3. Assign gap = min(gapsame, gapopp, vmax)

In the first parallel update, a set of lane changing rules is applied to each
pedestrian to determine the next lane of each pedestrian based on the current
condition. The lane that offers the best forward movement, between the left,
same or right lane, is chosen as the next lane of the pedestrian. Once all the
sidesteps are decided, all the pedestrian are moved to the new cells.

In the second parallel update, a set of forward movement rules is applied
to each pedestrian. The allowable movement of each pedestrian is based on
the pedestrian’s desired speed and the available gap in the lane he chooses.
Once speeds are found for every particle, all of them execute their forward
movement to the new cells [21].

3.2 Floor fields

In order to reproduce certain collective phenomena it is necessary to intro-
duce longer-ranged interactions. In some continuous models this is done
using the idea of social force. Since we want to keep the model as simple as
possible we introduce in the CA model the concept of floor field [5], [24]-[30].

This kind of approach allows us to take into account the interactions
between particles and the geometry of the system, without loosing the ad-
vantage of the local transition rules, that is the reason why this model was
chosen. The two floor fields are called the static floor field and the dynamic
floor field. These two fields are going to influence the transition probabilities
in such a way that a motion into the direction of a larger field is preferred.

3.2.1 Static floor field

The static floor field S does not evolve in time and is not changed by the
presence of the particles. Such a field is used to specify some region of the
system of particular interest for the pedestrians, such as emergency exits
or shop windows. In case of an evacuation, the static floor field describes
the shortest distance to an emergency exit. The values of S in each cell
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are calculated due to a certain distance metric so that the field values are
increased in the direction to the door.
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(b) Four doors

Figure 3.2: Examples of static floor fields

In this work the values of Sij are calculated in the following way [25] :
The pedestrian can leave the room only through a number of door cells
{(iT1 , jT1) · · · (iTk , jTk)} and can move only on the cells (il, jl) with no obsta-
cles. The explicit values of S are calculated with a distance matrix:

Sij = min
(iTs ,jTs )

{max
(il,jl)

[
√

(iTs − il)2 + (jTs − jl)2 −
√

(iTs − i)2 + (jTs − j)2]}

This means that the value of the static floor field depends on the shortest
distance to an exit. The value max

(il,jl)

√
(iTs − il)2 + (jTs − jl)2 is the largest dis-

tance of any cell to the door (iTs , jTs). This is used to normalize the values of
the field so that they increase with the decreasing distance

√
(iTs − i)2 + (jTs − j)2

to a door and are equal to zero for the cell farthest away from the exit as it
is shown in Fig.3.2.

3.2.2 Dynamic floor field

The dynamic floor field D is modified by the presence of the pedestrians and
evolves in time. The chosen approach is very similar to the one used by some
insects for communication [31]. They create a chemical trace to guide other
individuals to food sources. In this case pedestrians also create a trace, that
differently from the one created by insects is only virtual, although one can
assume that it corresponds to some abstract representation of the path in the
mind of the pedestrians. Since the total transition probability is proportional
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to the dynamic field every particle becomes more attracted to follow other
particles. At the beginning of the simulation all cells are empty of this trace.
Whenever a pedestrian jumps from site (i,j) to one of the four neighbours,
the trace in the cell (i,j) is increased by one.

Dij −→ Dij + 1

The dynamic floor field is also subject to diffusion and decay which leads
to a dilution and finally yo the vanishing of the trace after some time [24]-
[25] . After all motions of the pedestrians during one time step have been
performed, the oldest trace of each cell is destroyed with probability α, the
destruction parameter. With probability δ, the diffusion parameter, the trace
diffuses randomly to one of the neighbouring cells I=[(p,k)∈(neighbouring
cells of (i,j))].

α : Dij −→ Dij − 1
δ : Dij −→ Dij − 1 and Dpk −→ Dpk + 1 with (p, k) ∈ I
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Figure 3.3: Examples of dynamic floor fields (two doors)

3.3 Movement rules

The movements of all the particles is driven by the transition probability
matrix. In order to reproduce certain collective phenomena and to give an
intelligence to the particles, this matrix must be dependent from the two
floor fields. At each time step for each particle a matrix is created in order
to choose where to move [26],[29] :
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pij = NekSSijekDDij(1− ηij)pIijpDij (3.1)

Here ηij is the occupation of the target cell in direction (i,j). A cell is
occupied if there is a particle or an obstacle on it.

ηij =

{
1 if (i, j) is occupied
0 if (i, j) is empty

N is a normalization constant to ensure that Σijpij = 1, where the sum
is over the five possible targets.

kS and kD are the coupling strength of the two fields. This two parameter
drive the influence that the two fields have on the probabilities (see 3.4). Sij
and Dij are the values of the static and the dynamic fields in the cell (i,j). For
a strong coupling to the static field pedestrians will choose the shortest way
to the exit. This represents a normal situation. A strong coupling with the
dynamic field instead implies a strong herding effect behaviour leading the
pedestrians to follow the others. This often happens in emergency situations.

The inertia factor pIij is equal to ekI , where kI is the inertia parameter,
if during the time step from t-1 to t the particle has moved in the same
direction, so that this movement is enhanced. Otherwise the inertia factor is
equal to 1 [29].

The correction factor pDij is equal to e−kD , if in the time step t-1 the
particle was in (i,j). Otherwise it is equal to 1. This factor avoids the risk of
a particle being influenced by the trace that he left in the previous time step.
The update rules Z [25] of the full model including the interaction with the
floor fields have the following structure:

1. For each pedestrian, the transition probability matrix for a move to an
unoccupied neighbour cell is determined.

2. Each pedestrian chooses a target cell based on the probabilities of the
transition matrix.

3. The conflicts arising by two or more pedestrians attempting to move
to the same target are resolved like in 3.3.1.

4. The pedestrians allowed to move execute their step.

5. The pedestrians change the dynamic floor field of the cell they occupied
before the move.

6. The dynamic floor field is modified according to its diffusion and decay
rules described in 3.2.2.
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3.3.1 Conflicts

In each time step, a desired move is chosen according to the transition prob-
ability matrix, like described in the previous section. This is done in parallel
for all the particles, therefore conflicts can occur where different particles
choose the same destination cell. If the target cell is empty and no other
particle targets the same cell, the move is executed. In case two or more
particles choose the same cell, a conflict arises which can be solved in two
ways:

1. While one particle is picked randomly and execute the move, the other
particles involved in the conflict don’t move. This can be simply done
by updating the move of the pedestrian sequentially and not in parallel.
At every time step the order of move of the particles is randomly picked.

2. For the floor field model it has been shown that the behaviour becomes
more realistic if not all conflicts are resolved. This means that one
pedestrian for sure is allowed to move whereas the others stay at their
position [28]. That is why it is possible to introduce to the model a new
parameter, the so called friction parameter µ ∈ [0, 1] . With probability
µ the movement of all involved pedestrians is denied (Fig.3.4). This
allows to describe clogging effects between the pedestrians in a much
more detailed way, but the computational time using µ is much higher
than without.

Figure 3.4: Refused movement due to the friction parameter µ [28]

C++ Implementation

Parameters
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• xsize ∈ Z+ : size of the room in the x axes

• ysize ∈ Z+ : size of the room in the y axes

• ρ ∈ [0, 1] : density of pedestrians in the room

• numcells ∈ Z+ : number of cells with no obstacles and doors on it

• numped = ρ numcells : number of pedestrian in the room

• α ∈ [0, 1] : destruction parameter

• δ ∈ [0, 1] : diffusion parameter

• kS ∈ R+ : coupling strength to the static floor field

• kD ∈ R+ : coupling strength to the dynamic floor field

• kI ∈ R+ : inertia parameter

Variables

• ES ∈ Rxsize×ysize
+ : static floor field matrix

• ED ∈ Rxsize×ysize
+ : dynamic floor field matrix

• EO ∈ {0, 1, 2, 3}xsize×ysize : occupation matrix
(0=empty, 1=occupied by a pedestrian, 2=occupied by an obstacle,
3=door)

• P i ∈ R3×3 with pi−1−1 = pi11 = pi−11 = pi1−1 = 0 :
probability matrix of the ith pedestrian

• pedinroom ∈ N : number of pedestrians still in the room

• PED ∈ Npedinroom : vector containing the indices of the pedestrian still
in the room

• DM ∈ Npedinroom×2 : matrix containing the desired moves of all the
particles

Functions

• assignfp : function that assigns the first position to all pedestrians and
updates EO

• createstatic : function that creates ES with the metric described in
3.2.1, and assigns the right value to maxstat (Sec. 3.4)

• probmatrix : function that calculates the probability matrix of a par-
ticle

• permutation : function that permutes the elements of the vector
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• move : function that executes the move of the pedestrians

• desmove : function that decides the desired move of a particle

• moveconflicts : function that evaluates all the desired moves and exe-
cutes them, taking into account the conflicts arisen

• updatedynamic : function that updates the matrix ED with the diffu-
sion and decay rules described in 3.2.2

ES = createstatic(xsize, ysize);
EO = assignfp(numped);
while pedinroom!=0 do

PED = permutation(PED);
for k=1:pedinroom do

i = PED(k);
P i = probmatrix(EO, ES, ED, kD, kS, kI);
[EO, ED] = move(P i);

end
ED = updatedynamic(α, δ);

end

Algorithm 1: Without friction

ES = createstatic(xsize, ysize);
EO = assignfp(numped, );
while pedinroom!=0 do

for i=1:pedinroom do
P i = probmatrix(EO, ES, ED, kD, kS, kI);
DM i = desmove(P i)

end
[EO, ED] = moveconflicts(DM);
ED = updatedynamic(α, δ);

end

Algorithm 2: With friction

3.4 Dynamic floor field study

The purpose of this study is to understand how the average maximum value
of the floor field varies in function of the parameters of the system in a
simulation of an evacuation from a room. The idea is to find a suitable upper
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limit for the static floor field to avoid overflow problems in the simulation
with C++. Once the two coupling strengths kS = kD = 1 are fixed, we expect
that the movement of the particles depends from the two fields more or less
in the same way, but that is not true if one of the fields is much stronger than
the other one. Normalizing the static floor field with the average maximum
value of the dynamic floor field with a fixed combination of parameters should
equalize the strength of the two floor fields, so that the two terms ekSS

and ekDD depend only from the two coupling strengths and not from the
parameters of the system.

Another useful aspect of this normalization can be seen in the calibra-
tion of the model. The experimental data of the evacuation are considered
in a certain system. Once the right proportion of kS and kD to reproduce
the experimental data is found, it is not sure that this proportion is correct
changing the system, because the maximum values of the two floor fields
change their intensities. This problem can be solved partially with the nor-
malization described in this section.

The maximum value of the static floor field maxstat = maxstat(siz),
with the metric used in this work, depends from the size of the room, be-
cause the value max

(il,jl)

√
(iTs − il)2 + (jTs − jl)2 describes the maximum dis-

tance from one door to each cell. The average maximum value of the dynamic
floor field maxdyn = maxdyn(siz, ρ, α, δ) is a function of the four parame-
ters of the system, but does not change significantly for different simulation
with a fixed combination of those parameters. The parameters of the system
are: a)the size of the room: siz× siz ; b)the initial density of pedestrians in
the room ρ ; 3)the destruction parameter α ; d)the diffusion parameter δ.

The maximum values of the dynamic floor field at each time step, while
the field is stationary, maxdynt(siz, ρ, α, δ) are averaged in time for every
combination of the four parameters.

maxdyn(siz, ρ, α, δ) = Et[maxdynt](siz, ρ, α, δ) (3.2)

The maximum value of the static floor field maxstat and the inertia pa-
rameter kI are fixed to the values maxstat = 20 and kI = 1. The value
20 has been determined observing the average maximum values of the dy-
namic floor field in some preliminary simulations. After finding the val-
ues maxdyn(siz, ρ, α, δ) , a second simulation is done changing the max-
imum values of the static field for every combination of the parameters:
maxstati = maxdyni−1 where i are the simulations. This process is repeated
until the succession of all the maxdyni(siz, ρ, α, δ) converge to certain points.
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3.4.1 Geometry

In order to understand the dependence of the dynamic floor field to the
number and the position of the doors, two different geometries of the system
were tried. The dynamic field is for sure dependent on the number and the
positions of the doors, but if the results with the two systems are similar, it
is possible to conclude that this dependence is not strong enough to influence
this study, that is only qualitative.
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(b) Geometry of the room
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(c) Simulation in t=0s
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(d) Simulation in t=210s

Figure 3.5: Dynamic floor field study: one door geometry

The system is symmetric with one door and with periodic boundary con-
ditions in all directions (Fig. 3.5), in order to investigate a general case. The
door is placed in the middle of the square in order to maintain the symmetry
of the system. From now on blue, light blue, yellow and red cells represent
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the free cells, the pedestrians, the obstacles (walls, columns, etc.) and the
doors respectively.
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(c) Simulation in t=0s
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(d) Simulation in t=210s

Figure 3.6: Dynamic floor field study: two doors geometry

The second system is also symmetric and with periodic boundary condi-
tions but with two doors placed in the first and third quarter of the system
always to maintain the symmetry (Fig. 3.6).

3.4.2 1-dimensional study

In the first simulations only the dependence of maxdyn from one of the 4
parameters is studied. The purpose of this is to have a preliminary under-
standing of the dependence of each parameter singularly to the dynamic floor
field to control that the 4-dimensional study is correct.



3.4. DYNAMIC FLOOR FIELD STUDY 53

PARAMETERS VARIABLE

ρ=0.5 ; α=0.4 ; δ=0.2 siz
siz=45 ; α=0.4 ; δ=0.2 ρ
siz=45 ; ρ=0.5 ; δ=0.2 α
siz=45 ; ρ=0.5 ; α=0.4 δ

Table 3.1: Parameters used for the 1-dimensional dynamic floor field study

One Door

The function maxdyn(siz) (Fig.3.7.a) is constant around the value 4.5 for
every size of the room. Even if the pedestrians in the room are more, with a
bigger room, the effect seen in the function maxdyn(siz) is not of particular
influence in this case.

In Fig.3.7.b the function maxdyn(ρ) is shown. The average value and
standard deviation of the dynamic floor field increases with the initial density.
The increase of the number of pedestrian inside the room brings to a higher
probability that a pedestrian walks on the cells near the door and this causes
an increase of maxdyn. The minimum value is obtained in ρ = 0.2 and is
equal to 2.5, while the maximum is obtained in ρ = 0.9 and equals 5.7.

In Fig.3.7.c it is possible to observe, that the values of maxdyn and
the standard deviation decrease with the increase of α. This result was
predictable, because α is the probability that the oldest trace is destroyed.
The shape of the function remembers an exponential function. The maximum
value is 17, while the minimum is 1, and are obtained respectively for α = 0.1
and α = 0.9.

The maximum average value of the dynamic floor field decreases with
the increase of δ (Fig.3.7.d). If the diffusion probability is higher, the traces
of the pedestrians diffuse more easily and this brings to a decrease of the
dynamic floor field. Even if the trend seems to be monotonic decreasing,
the maximum is obtained in δ = 0.1 and δ = 0.7 and equals 4.3, while the
minimum equals 3 and is obtained in δ = 0.9.

In the following Table 3.2 all the values of the non-linear regression of the
four functions maxdyn(·) are listed. For each variable the best function that
suits the values of maxdyn(·) is chosen for the non-linear regression.

Two Doors

In the 2 doors system the function maxdyn(siz) (Fig.3.8.a) is not constant
in a unique value. In this case the enlargement of the room brings to an
increase of the average maximum value of the dynamic field. These values
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Figure 3.7: 1-dimensional study: one door

VARIABLES FUNCTION COEFFICIENTS

siz f(x) = aln(x) + b a=-0.087294 b=4.9237
ρ f(x) = ax2 + bx+ c a=0.20073 b=2.6805 c=2.04
α f(x) = aebx + c a=26.892 b=-4.9345 c=0.48061
δ f(x) = ax2 + bx+ c a=-0.019458 b=-0.64989 c=3.9122

Table 3.2: One door: Non-linear regression coefficients of the 1-dimensional
dynamic floor field study
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go from 2.9 in siz = 80 to 4 in siz = 120.

For the same reason as before the function maxdyn(ρ) (Fig.3.8.b) and the
standard deviation is increasing with the initial pedestrian density ρ. The
minimum value is obtained in ρ = 0.3 and the maximum in ρ = 0.9 and they
are equal to 1.9 and 3.5 respectively.

The function maxdyn(α) is shown in Fig.3.8.c. The results are exactly
the same as in the one door system.

The function maxdyn(δ) is increasing with δ as in the one door system.
The maximum value is 3.5, while the minimum value is 2.1, and are obtained
respectively in δ = 0.1 and δ = 0.8.
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Figure 3.8: 1-dimensional study: two doors
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VARIABLES FUNCTION COEFFICIENTS

siz f(x) = aln(x) + b a=0.8911 b=-0.50539
ρ f(x) = ax2 + bx+ c a=0.57579 b=1.4243 c=1.823
α f(x) = aebx + c a=27.062 b=-5.1572 c=0.51949
δ f(x) = ax2 + bx+ c a=-1.1175 b=-0.45604 c=3.3143

Table 3.3: Two doors: Non-linear regression coefficients of the 1-dimensional
dynamic floor field study

3.4.3 4-dimensional study

In this section the results of the 4-dimensional simulation are shown. After
the preliminary results, all the points of the function maxdyn(siz, ρ, α, δ)
are calculated. For computational time problems it was not possible to have
a really dense grid, but this problem has been avoided, interpolating the
simulated values in a denser grid. The following table shows the values of
the parameters used for the simulation.

VARIABLE POINTS

siz [17,33,65,129]
ρ [0.1,0.3,0.5,0.7,0.9]
α [0.1,0.3,0.5,0.7,0.9]
δ [0.1,0.3,0.5,0.7,0.9]

Table 3.4: Parameters used for the 4-dimensional dynamic floor field study

One door

As mentioned before this simulation is repeated until the average of the differ-
ence between the last simulation and the previous one over all combinations
of the four parameters (siz, ρ, α, δ) ∈ C = { all possible combinations } is
not so high:

E(siz,ρ,α,δ)∈C |maxdyni(siz, ρ, α, δ)−maxdyni−1(siz, ρ, α, δ)| < ε

After the second simulation we can observe that the average difference
observed between the second and the first simulation is 0.84959. This value
is still a bit high even assuming that there is a bit of variance between the
two simulations and that the values are rounded up. It is possible to see
in Fig.3.9.a, where the probabilities of a certain difference between the two
simulation are plotted, that there are still many combinations where the
difference is 1 and 2.
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Figure 3.9: One door: probability density function of the differences between
2 consecutive simulations

Repeating again the simulation changing the values ofmaxstat3 = maxdyn2

the average value decreases to 0.32051. This value is acceptable and in
Fig.3.9.b it is even possible too see that almost all the probability density
function is concentrated in 0, that was the desired result.

In Fig.3.10.a-b the values of the dynamic field as a function of α and
respectively the density and the size of the room are shown. For small values
of α the two functions are increasing in density and size, as predicted from the
1-dimensional study. For higher values of α this dependence is weaker, and
the values of maxdyn don’t change so much, increasing ρ and siz. This result
is understandable, because if α is high, the dynamic field can not grow, even
with higher values of ρ and siz. The maximum values for the two functions
are obtained in (ρ, α) = (0.9, 0.1) and (siz, α) = (129, 0.1) and are equal to
16 and 17 respectively. The minimum values are equal to 1 and are obtained
for both the functions in α = 0.9. The function maxdyn(siz, ρ) (Fig.3.10.c)
is increasing with both siz and ρ and has a maximum value equal to 5 and
a minimum value equal to 1.

In Fig.3.11 are plotted the functionsmaxdyn(siz) , maxdyn(ρ) , maxdyn(α)
and maxdyn(δ) fixing the other parameters like in 3.4.2, to compare the re-
sults with the 1-dimensional study. All four functions have almost the same
behaviour as in 3.4.2. The following table shows the coefficients of the non-
linear regression made on the 1-dimensional functions:

The results of the regression are similar to the one obtained in the 1-
dimensional study, this confirms that the 4-dimensional study is correct.
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Figure 3.10: 4-dimensional study (2 variable dependence) : one door

VARIABLES FUNCTION COEFFICIENTS

siz f(x) = aln(x) + b a=0.36737 b=2.7443
ρ f(x) = ax2 + bx+ c a=-4.5827 b=7.922 c=1.3513
α f(x) = aebx + c a=25.77 b=-4.8672 c=0.43673
δ f(x) = ax2 + bx+ c a=-1.4855 b=1.6792 c=3.8561

Table 3.5: One door: Non-linear regression coefficients of the 4-dimensional
dynamic floor field study
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Figure 3.11: 4-dimensional study (1 variable dependence) : one door
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Two doors

Even in the two doors system the simulation is repeated until the average of
the difference between the last simulation and the previous one over all combi-
nations of the four parameters (siz, ρ, α, δ) ∈ C = { all possible combinations }
is not so high.
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Figure 3.12: Two doors: probability density function of the differences be-
tween 2 consecutive simulations

Like in the one door system after the second simulation the mean dif-
ference with the first are a bit too high: 1.0726, and the combinations with
differences equal to 1 and 2 are still plenty (Fig.3.12.a).

Repeating again the simulation, changing the values ofmaxstat3 = maxdyn2,
the average value decreases to 0.28182. This value is acceptable and in
Fig.3.12.b is even possible too see that almost all the probability density
is concentrated in 0.

In Fig.3.13 the 3 functionsmaxdyn(ρ, α), maxdyn(siz, α) andmaxdyn(siz, ρ)
are shown. It is possible to notice that the results are approximately the same
as in the system with one door.

In Fig.3.14 are plotted the functionsmaxdyn(siz) , maxdyn(ρ) , maxdyn(α)
and maxdyn(δ) fixing the other parameters like in 3.4.2. Even in the two
doors system all four functions have almost the same behaviour as in 3.4.2.
The following table shows the coefficients of the non-linear regression made
on the 1-dimensional functions:

Even in this case the non-linear regressions are similar to the one of the
1-dimensional study, confirming that the 4-dimensional one is correct.
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Figure 3.13: 4-dimensional study (2 variable dependence) : two doors

VARIABLES FUNCTION COEFFICIENTS

siz f(x) = aln(x) + b a=0.55032 b=1.4316
ρ f(x) = ax2 + bx+ c a=-1.4249 b=5.0427 c=1.2969
α f(x) = aebx + c a=27.081 b=-5.5426 c=0.62374
δ f(x) = ax2 + bx+ c a=-2.5562 b=1.5109 c=3.3864

Table 3.6: Two doors: Non-linear regression coefficients of the 4-dimensional
dynamic floor field study
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Figure 3.14: 4-dimensional study (1 variable dependence) : two doors
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Conclusion

The difference between the one door and the two doors geometries is not
so high. It is not possible to say that for all number of doors and for each
position of these, the average value of the dynamic floor field does not change,
but we can conclude that it is not so influential in this qualitative study.

Once the right value of the 4 movement parameters ( kS, kD, kI and µ
) are found, in order to reproduce in a correct way the real data for a fixed
geometry, therefore with the 4 fixed system parameters ( siz, ρ, α and δ ), it is
possible, thanks to the values found for each system parameters combination,
to use the same movement parameters in different geometries obtaining the
right desired movement of the pedestrians. As already mentioned in 3.4 this
is done, using the normalization of the static floor field so that its strength is
comparable to the one of the dynamic floor field. These considerations will
be important in the next chapter, where the calibration of the model will be
discussed.

C++ Implementation

xsize = ysize;
for xsize = 17 : 129 do

for ρ = 0.1 : 0.9 do
for α = 0.1 : 0.9 do

for δ = 0.1 : 0.9 do
Algorithm 1;

end

end

end

end

Algorithm 3: Dynamic floor field study
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Chapter 4

Calibration

The aim of this chapter is to calibrate the model, i.e. finding the right
values of the movement parameters in order to reproduce correctly the real
pedestrian dynamics. Past works about the cellular automata model focused
on the study of these parameters, but none of them found precise values. For
this reason there are no information about the right values of the different
parameters.

The calibration is made using the Montecarlo method and a statistical
estimation method that has as input the experimental data. The aim of this
operation is to calculate the values of the parameters of the model in order
to minimize the difference between the modelled values and the experimental
values of some variables of interest.

Let us assume xi = [xi1, . . . , xn
i] the points in which the variable i is calcu-

lated, f ir = f ir(x
i) the real values of the variable i taken from the experiments

and f i(kS ,µ,kI) = f i(kS ,µ,kI)(x
i) the simulated variables for each combination of

the parameters. The method used is the following:
Minimize the average on xi of the ratio between the absolute error between

the simulated and the real value of the variable i and the real value of the
variable i:

minerri1 = min
(kS ,µ,kI ,c)

Exi

[
|f i

(kS,µ,kI )
−f ir|

f ir

]
To determinate the parameters that better fix different variables i, the fol-
lowing equation was used:

mintot1 = min
(kS ,µ,kI ,c)

E[minerr11, . . . ,minerr
n
1 ]

As already explained in Section 3.4, the parameters of the environment
are: the size of the room, the decay parameter α, the diffusion parameter

65
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δ and the initial density of pedestrians in the room ρ. These values will
be fixed in order to study the other parameters of the model that concern
the movement of the pedestrians. The values of α and δ are fixed to 0.4
and 0.2 respectively, while the size of the room and the initial density of
the pedestrians in the room change according to the experiment used. The
parameters of the movement are the following:

• Dynamic coupling strength kD — This parameter controls the in-
fluence that pedestrians have from the dynamic floor field. It is really
important to understand the right value in order to reproduce differ-
ent behaviours observed in real dynamics, like the herding effect. The
value of kD ∈ N.

• Static coupling strength kS — Exactly like kD, the static coupling
strength controls the influence of the pedestrians from the static floor
field. After a preliminary study on the movement of the particles is
possible to conclude that the value of kS ∈ N ∩ [kD,∞], otherwise the
particles begin to move randomly without aiming to the exits.

• Inertia parameter kI — This parameter describes the will of the
particles of moving in the same direction of the previous step. The
value of kI ∈ N.

• Friction parameter µ— The value of the friction parameter describes
the probability, in case of conflicts between different particles, that
nobody moves. Clearly µ ∈ [0, 1].

Since we have already studied the dynamic floor field (3.4), it is not
necessary to study both kD and kS separately, but it is possible to consider
the ratio kS

kD
. This is done fixing the value of kD to 1 and changing the

value of kS. After this is fixed it is necessary to understand the sensitivity of
this ratio, studying how the movement changes, increasing the value of c in
c kS
kD

. This will be done equalizing c to kD and putting the value of the static
coupling strength equal to ckS

Changing the combination of the values of these 3 movement parameters
and the sensitivity parameter, it is possible to reproduce different scenarios
and different collective phenomena described in chapter 1 like:

• Normal situation — In this scenario the pedestrians are walking
normally without a particular hurry. As already described in section
1.2 pedestrians normally head to the exit creating a jam next to the
bottleneck. In this scenario they will try to walk with a certain distance
to each other to avoid collisions, so it can be expected to obtain a not
so high value of µ and a quite a high value of the ratio kS

kD
.
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• Panic situation — In panic situations pedestrians begin to push and
to walk faster. In contrast with the normal scenario, the value of the
friction parameter has to be high in this case, in order to reproduce even
collective phenomena like the freezing by heating effect (Section 1.2.2).
It is even reasonable to expect an increase of both the parameters kD
and kS, therefore an increase of the sensitivity parameter.

In this work we will focus on the calibration of the normal situation,
because it is the benchmark for all the other scenarios and because of the
lack of experiments for the panic situation.

4.1 Normal situation

In order to calibrate the model in a accurate way, we will use an experiment
that will calculate different fundamental quantities for the understanding
of the dynamics. The experiment will study the flow and the total time
of evacuation in function of the size of the bottleneck b and the number
of initial pedestrians in the room N . Since in an evacuation simulation the
dynamics of the pedestrian near the bottleneck are the most important things
to study, this first experiment will be the benchmark for our calibration. The
final decision will be taken considering which combination of parameters will
produce the results of the variable of interest, that best fit the experimental
data, both separately and in average. At the beginning of the study we
will first find the optimal value of the combination of parameters with fixed
c = kD = 1 (Sec.4.1.1). Once found the optimal values, we are going to
change the value of the sensitivity parameter in a neighbourhood of these
parameters to see if this change brings to a more accurate model. This study
will be done even on another experiment in order to improve the accuracy of
the model even more.

4.1.1 Fixed sensitivity parameter c

Because of the lack of information of the right values of the 3 parameters,
at the beginning of the calibration a preliminary study to understand which
parameters were surely not correct for the reproduction of the experimental
data was necessary. This preliminary study brought to the values listed in
Table 4.1.

Starting from these values, all the combinations of kS, kI and µ were
tried.

The experimental data taken are considered in a room with a variable
bottleneck [36]. The students have to evacuate from a corridor through an
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PARAMETERS POINTS

kS [1,25]
kI [1,13]
µ [0,0.6]

Table 4.1: Parameters used for the calibration in the normal situation fixed
c

b

Figure 4.1: Schematic illustration of the first experiment

exit walking normally. The schematic illustration of the experimental set-
up is shown in Fig.4.1. The exact width of the channel is W=2m and its
length L=6m. All the students stand in a random place at the beginning of
the experiment and after a signal they begin to walk through the exit. The
following table describes the settings in which this experiment was taken:

PARAMETERS POINTS

Number of initial students [5,10,20,30,40,60]
Width of the bottleneck [0.4,0.8,1.2,1.6]

Table 4.2: Experiment settings for the flow through a bottleneck

The first physical quantity, that has been tried to reproduce, is the num-
ber of escaped pedestrians in function of the escape time. The experimental
results for the fixed bottleneck width b = 0.4m and b = 1.2m respectively
and changing the number of initial pedestrians are shown in Fig.4.2.a-b.

Clearly it is possible to see that the escape time increases with the order
of escaped pedestrians. For each fixed initial number of walkers we can see
that the dependence is linear. The slopes of these straight lines increase with
the initial number of pedestrians in the room, which means that the flow of
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(b) b = 1.2m

Figure 4.2: Number of escaped pedestrians in function of the escape time,
changing the number of initial pedestrians in the room (experimental results)

the pedestrians is higher with higher initial number of walkers. This result
is even more clear with higher values of the width of the bottleneck. It is
even clear that the total time of evacuation decreases with the increase of the
bottleneck width. It is possible to see that for b = 1.2m the escape time of
all the pedestrians is almost half of that with b = 0.4m for each fixed number
of initial pedestrians in the room.

In the following plots (Fig.4.3) the simulation of the evacuation of 5 pedes-
trians in the room with bottleneck width equal to 0.4m are shown. All the
sub-plots try to reproduce the same experimental values in function of the
3 parameters kS, kI and µ. The plots are ordered in the following way: for
a fixed value kI and row the plots represent the values for increasing µ; for
a fixed column and friction parameter the plots represent the values for in-
creasing kI , while in each sub-plot there are the variation of the function for
increasing kS. It is possible to see how for each fixed value of kI and µ the
pedestrians evacuate faster for increasing parameter kS. This was predictable
assuming that, increasing the static coupling strength, the pedestrians move
more direct to the exit. Clearly there is the opposite effect for increasing
values of µ. For increasing value of kI , until kI = 5, the pedestrians are
faster for each value of kI and µ, while they walk almost in the same way for
higher values of kI .

Table 4.3 lists all the combination of the four parameters that best repro-
duce the functions described before fixing the initial number of pedestrians
in the room. In addiction there is even the combination that best reproduces
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Figure 4.3: 5 pedestrians through a bottleneck with width b = 0.4m (sensi-
tivity parameter c = 1)
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all the functions in average. It is possible to see how for each value of N the
best combination of parameters varies. There is not a clear trend of the best
combinations of parameters, but it is clear that this can be caused by the
high stochasticity of the cellular automata model. This effect was reduced a
bit through the use of the Montecarlo method, but the number of simulations
for a fixed combination of parameters was not so high due to computational
problems.

N PARAMETERS

5 kS
kD

= 17 kS = 17 µ = 0 kI = 1

10 kS
kD

= 21 kS = 21 µ = 0.3 kI = 7

20 kS
kD

= 15 kS = 15 µ = 0 kI = 1

30 kS
kD

= 17 kS = 17 µ = 0.3 kI = 5

40 kS
kD

= 25 kS = 25 µ = 0 kI = 9

60 kS
kD

= 25 kS = 25 µ = 0 kI = 13

Average best kS
kD

= 19 kS = 19 µ = 0 kI = 11

Table 4.3: Best combination of parameters with fixed value of b = 0.4m,
varying N

In Fig.4.4 the comparisons of the simulated and experimental number of
evacuated pedestrian in function of time, using the combination of param-
eters listed in Table 4.3 are shown. We can see that the model is able to
reproduce the experimental data almost perfectly, except for N = 40 and
N = 60 (Fig.4.4.d and Fig.4.4.f respectively), in which the model overes-
timates a bit the total time of evacuation. This result, however, is not so
important, because our goal is to find a unique combination of parameters
that are able to reproduce in a acceptable way all the situations and charac-
teristics of the pedestrian dynamics.

Fig.4.5 shows this comparison for all the initial number of pedestrians
in the room, using the combination of parameters with the lowest average
relative error. Obviously the approximation is worse than the one using the
best combination with a fixed number of initial pedestrians, anyway it is in
average acceptable. We can see that the model overestimates the total time
for N > 10. This overestimation is caused by the decrease of velocity of
the last pedestrians, indeed the simulated curves are not completely straight
lines, but have a slight curvature for the last escaped pedestrians. The reason
of this is that sometimes the last pedestrians have some difficulties in finding
the exit in a fast way like the other particles at the beginning of the simula-
tion. This is caused by the high value of the inertia parameter, that, at the
beginning of the simulation, helps the pedestrians to increase their velocities,
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(b) N = 10
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(c) N = 20
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(d) N = 30
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(e) N = 40
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(f) N = 60

Figure 4.4: Best approximations of the number of escaped pedestrians as
function of time with fixed N and b = 0.4m
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but with few particles in the system causes a wrong dynamic of the pedes-
trians, that begin to walk next to the walls of the room until they hit the
corner with the exit. This effect is not so evident in this experiment because
the exit is set on the corner of the room, but as we will see in the Sec.4.1.2,
this wrong dynamic brings to an high increase of the error for experiments
in which the exit is not situated in a corner of the room.

The average relative error is equal to 0.0825, indeed it is possible to see
that the absolute total time of evacuation error goes from 0s to almost 5s
for 5 initial pedestrians to 60 respectively.
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Figure 4.5: Best average approximation of the number of escaped pedestrians
as function of time with b = 0.4m, varying N

Almost the same results are visible in the flow with the bigger bottle-
neck width (Fig.4.6). As mentioned before the velocity of evacuation of the
pedestrians increases with the increase of kS and the decrease of µ. In this
case the increase of the value kI enhances the velocity of the pedestrians with
more influence than in the case of b = 0.4m. This is caused by the fact that
having more space to exit, the pedestrians are more free to flow straight.

Like for the b = 0.4m case, Table 4.4 shows the best combination of
parameters to reproduce the number of evacuated pedestrians against the
evacuation time for each value of N and for fixed b = 1.2m. It is possible to
notice that except for N = 5, the value of the ratio kS

kD
is lower than in the
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Figure 4.6: 5 pedestrians through a bottleneck with width b = 1.2m (sensi-
tivity parameter c = 1)
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previous case with the smaller exit. In this case the pedestrians exit from
the room in a much easier way than in the previous one due to the bigger
width of the bottleneck. This is the reason for the decrease of the ratio,
because with higher values the simulated pedestrians exit too fast from the
room compared to the real ones.

N PARAMETERS

5 kS
kD

= 19 kS = 19 µ = 0 kI = 3

10 kS
kD

= 17 kS = 17 µ = 0.6 kI = 1

20 kS
kD

= 7 kS = 7 µ = 0 kI = 1

30 kS
kD

= 7 kS = 7 µ = 0.3 kI = 1

40 kS
kD

= 9 kS = 9 µ = 0.3 kI = 1

60 kS
kD

= 7 kS = 7 µ = 0.3 kI = 5

Average best kS
kD

= 19 kS = 19 µ = 0.6 kI = 11

Table 4.4: Best combination of parameters with fixed value of b = 1.2m,
varying N

The simulations (Fig.4.7) of the single cases of N separately show that the
model is able to reproduce correctly even the case with the bottleneck equal
to 1.2m. For the same reason explained before, even here it is possible to
notice how the velocity of evacuation is correct, expect for the last pedestrians
that decrease a bit their velocity.

The result of the simulation with the combination that gives the lowest
average relative error with b = 1.2m is shown in Fig.4.8. Clearly even in this
case the approximation is worse than the one using the best combination with
a fixed number of initial pedestrians. The average relative error is equal to
0.1299, this confirms that the simulation is able to reproduce the evacuation
in a correct way. Anyway even in this case for N > 10, for the same reason
as before, the simulated pedestrians have a tendency in decreasing the flow
with the increasing time of evacuation. The absolute total time of evacuation
errors go from 1 to 3 for N = 30 and N = 10 respectively. As we can see, the
total times of evacuation are almost correct, but the simulated pedestrians
flow faster than the real ones at the beginning of the simulation and decrease
their velocity in the end, giving to the functions a curvilinear shape instead
of straight one.

The same quantity is calculated changing the width of the bottleneck
with the fixed number of initial pedestrians equal to 60. Fig.4.9 shows the
experimental results of the number of evacuated pedestrian against the escape
time with N = 60 and changing the bottleneck width. Clearly even here it
is possible to see how the time of escape decreases with the increase of b.
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(a) N = 5
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(b) N = 10
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(c) N = 20
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(d) N = 30
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(e) N = 40
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(f) N = 60

Figure 4.7: Best approximations of the number of escaped pedestrians as
function of time with fixed N and b = 1.2m
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Figure 4.8: Best average approximation of the number of escaped pedestrians
as function of time with b = 1.2m, varying N

As shown previously in Fig.4.3, for the case of 5 pedestrians with bottle-
neck width of b = 0.4m, even in this case (Fig.4.10) the total evacuation time
decreases with the increase of the ratio kS

kD
. As mentioned before for small

bottlenecks the influence in the increase of velocity due to high values of the
inertia parameter is less visible than for higher values of b. The influence of
the friction parameter µ is exactly the same as in the previous case.

Table 4.5 shows the values of the combination of parameters that best
reproduce the experimental data, both with fixed values of the bottleneck
width and in average. As already mentioned before, it is possible to see
how the model needs a high value of the ratio kS

kD
to reproduce the correct

flow of the pedestrians through bottlenecks with a small width: b 6 0.8m.
For higher values of b the optimal value of the ratio decreases, because the
particles do not need a high value of the static coupling strength in order to
find the right position of the door. Higher values of this ratio would cause an
underestimation of the total time of evacuation due to an excessive increase
of the velocity of the pedestrians.

Fig.4.11 shows the simulations of the quantity studied, varying the width
of the bottleneck with fixed number of initial pedestrians equal to 60. Like
before the model, using different combinations of parameters for each fixed
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Figure 4.9: Number of escaped pedestrians in function of the escape time,
changing the bottleneck width with N = 60 (experimental results)

b[m] PARAMETERS

0.4 kS
kD

= 25 kS = 25 µ = 0 kI = 13

0.8 kS
kD

= 19 kS = 19 µ = 0.3 kI = 1

1.2 kS
kD

= 7 kS = 7 µ = 0.3 kI = 5

1.4 kS
kD

= 5 kS = 5 µ = 0 kI = 5

Average best kS
kD

= 7 kS = 7 µ = 0 kI = 7

Table 4.5: Best combination of parameters with fixed value of N = 60,
varying b
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Figure 4.10: 60 pedestrians through a bottleneck woth width b = 0.4m (sen-
sitivity parameter c = 1)
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value of b, is able to reproduce the experimental data almost correctly, except
for the decrease of velocity of the last pedestrians explained previously.
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(a) b = 0.4m
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(b) b = 0.8m
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(c) b = 1.2m
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(d) b = 1.6m

Figure 4.11: Best approximations of the number of escaped pedestrians as
function of time with fixed b and N = 60

The result of the simulation with the combination that gives the lowest
average relative error with N = 60 and changing the width of the bottleneck
is shown in Fig.4.12. Even in this case the approximation is worse than the
one using the best combination with a fixed number of initial pedestrians.
As we can see in the plots, it is possible to notice that the model is able
to reproduce correctly the experimental data and the decreasing tendency
of the total evacuation time with the increase of the bottleneck width. The
average relative error is equal to 0.1181. Anyway even in this case there is the
decrease of the velocity of the pedestrians with the increase of the time. This
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tendency is really visible with the smallest width of the bottleneck, because
of the optimal ratio kS

kD
that is too low compared to the optimal value of kI

to allow the pedestrians to find the right position of the exit fast enough.
The absolute error of the total time of evacuation varies from approximately
3s for b = 1.6m to 15s for the smallest bottleneck width.

0 10 20 30 40 50
0

10

20

30

40

50

60

Escape time [s]

N
u
m

b
e
r 

o
f 
e
s
c
a
p
e
d
 p

e
d
e
s
tr

ia
n
s

Best average approximation for N=60

 

 

Simulation
Experiment

Figure 4.12: Best average approximation of the number of escaped pedestri-
ans as function of time with N = 60, varying b

The last quantity that has been tried to reproduce, is the mean flow
rate against the initial density of pedestrians in the room for b = 0.4m and
b = 1.2m. With increasing density, the mean flow rate increases and saturates
at a value for narrow exit b = 0.4m. The saturation of the flow rate is caused
by the clogging of walkers at the bottleneck. For a wider exit b = 1.2m, the
mean flow rate increases with the density without saturating. Clearly the
values of the mean flow increase with the increase of the bottleneck width.
These results are visible in Fig.4.13 that shows the experimental result of
this quantity.

The following table (Tab.4.6) describes the optimal values of the param-
eters for the correct reproduction of the mean flow of the pedestrians against
the initial density changing the bottleneck width and in average. The de-
crease of the ratio kS

kD
due to an increase of b is visible even in this case,

though the effect is weaker. This is caused by the fact that the calculation of
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Figure 4.13: Mean flow rate in function of the initial pedestrian density in
the room, varying the bottleneck width (experimental results)

the mean relative error is made averaging on the errors for each fixed density,
i.e. the number of initial pedestrians in the room, while in the previous case
(Tab.4.3-4.4), these were considered separately.

b[m] PARAMETERS

0.4 kS
kD

= 23 kS = 23 µ = 0 kI = 13

1.2 kS
kD

= 19 kS = 19 µ = 0.6 kI = 11

Average best kS
kD

= 17 kS = 17 µ = 0 kI = 9

Table 4.6: Best combination of parameters for the mean flow rate fixing b

The results of the simulations of the mean flow against the initial density
made with the optimal parameters both with b = 0.4m and b = 1.2m are
shown in Fig.4.14. Both cases are reproduced by the model in a correct way.
In particular with b = 0.4m the model is able to reproduce the mean flow
perfectly for densities lower than 0.4, while for higher densities it saturates
at a lower value than the experimental mean flow, underestimating it ap-
proximately of 0.11

s
. Anyway in both cases the general trend of the mean

flow is simulated in the correct way, indeed the mean flow increases with the
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increase of the density and for a narrow exit it saturates at a certain value.
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(a) b = 0.4m
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(b) b = 0.8m

Figure 4.14: Best approximations of the mean flow as function of the initial
density with fixed b

The plot of the simulation of the mean flow with the combination of
parameters with the lowest average relative error is shown in Fig.4.15. The
simulated values, even with this combination, describe in a correct way the
trend of the real mean flow, except in N = 10 (density equal to 0.13), in
which the increase of the flow is much lower than the real one in both cases
b = 0.4m and b = 1.2m. The average error is 0.1256, which confirms that
the simulation is able to reproduce the data in a acceptable way.

Conclusion

We have obtained the optimal values of the parameters in order to reproduce
four different quantities from the experimental data:

1. The number of evacuated pedestrians against the evacuation time with
fixed bottleneck width equal to 0.4m and varying the number of initial
number of pedestrians in the room

2. The number of evacuated pedestrians against the evacuation time with
fixed bottleneck width equal to 1.2m and varying the number of initial
number of pedestrians in the room

3. The number of evacuated pedestrians against the evacuation time with
fixed number of initial pedestrians in the room equal to 60 and varying
the bottleneck width
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Figure 4.15: Best average approximation of the mean flow rate as a function
of the initial pedestrian density, varying b

4. The mean flow rate as a function of the initial density of pedestrians
in the room, varying the bottleneck width

Averaging the relative errors of the four quantities, we were able to find a
unique optimal combination of parameters, that will be the starting point for
the next section (Sec.4.1.2), in which we are going to study the dependence
of the sensitivity parameter in order to describe in a more accurate way this
experiment and a second one.

The optimal combination, that gives the lowest average relative error of
the four quantities is:

kS
kD

= 17 kS = 17 µ = 0 kI = 9

The total average error is 0.1416 and in the following plots (Fig.4.16) are rep-
resented all the four quantities calculated with the combination just showed.
It is possible to see how the model describes in an acceptable way all the four
quantities, but clearly still shows the mistakes described earlier.
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(a) Number of escaped pedestrians against
evacuation time with b = 0.4, varying N
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(b) Number of escaped pedestrians against
evacuation time with b = 1.2, varying N
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(c) Mean flow rate against initial density in
the room with b = 0.4 and b = 1.2
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(d) Number of escaped pedestrians against
evacuation time with N = 60, varying b

Figure 4.16: Best approximation of the four quantities studied in Sec.4.1.1
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4.1.2 Variable sensitivity parameter c

In this section we will discuss the influence on the simulation of the sensitivity
parameter c and we will try to improve the accuracy of the model introducing
this parameter inside the simulation. As already mentioned in the previous
section the simulated pedestrians sometimes begin to walk around the room
next to the walls due to the high value of the inertia parameter kI . However
this effect is not so visible in the experiment used in the previous section
(Sec.4.1.1), because the bottleneck is placed in the corner of the room, there-
fore the wrong dynamic of the pedestrians described before doesn’t influence
so much the total evacuation time and the correct flow of the particles. For
this reason it is necessary to study even another case in which the system is
different in order to calibrate the model, so that it is able to reproduce differ-
ent scenarios. To do this we will first study qualitatively how the sensitivity
parameter influences the dynamics of the simulated particles. Afterwards we
will try to reproduce the dynamics of the second experiment using a neigh-
bourhood of the optimal parameters found in the previous section changing
the value of c. In the end we will find the the combination of parameters
that will return the lowest average error between the two experiments.

Fig.4.17 shows the results of the simulation, with the optimal combina-
tion of parameters found in the end of the previous section, of the number
of evacuated pedestrians against the evacuation time, fixing b and N and
changing the sensitivity parameter. Increasing the value of the sensitivity
parameter the particles walk much faster. This is caused by the beginning
of the simulation, in which the increase of the value kS is more influential by
the one of kD, because the matrix of the dynamic floor field is null at time
0. This effect is more evident with few pedestrians in the room, while it is
possible to see how for N = 60 the sensitivity parameter has a little influence
on the dynamics of the pedestrians. Another consequence of the increase of
the sensitivity parameter is that both the values kS and kD increase their in-
fluence on the particles dynamics, reducing the dependence from the inertia
parameter kI . This fact solves partly the wrong dynamics explained before,
but improves even the velocity at the beginning of the simulation, causing
an underestimation of the total time of the evacuations.

In order to increase the accuracy of the calibration, the model has to
be able to reproduce different experimental data compared to the one used
previously. The second experiment considered [34] is the flow through bot-
tlenecks with different widths (b ∈ [0.4, 1.6]) and with a depth of 0.4m. The
difference between this experiment and the one seen in the previous section,
is the position of the door. As we can see in Fig.4.18 the bottleneck is not
placed in the corner of the room like in the previous experiment. The space



4.1. NORMAL SITUATION 87

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

kS=17,  kI=9,  µ=0

Escape time [s]

N
u
m

b
e
r 

o
f 
e
s
c
a
p
e
d
 p

e
d
e
s
tr

ia
n
s

 

 

c=1

c=1.5

c=2

c=2.5

Experiment

(a) b = 0.4m and N = 5
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(b) b = 1.2m and N = 5
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(c) b = 0.4m and N = 60
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(d) b = 1.2m and N = 60

Figure 4.17: Influence of the sensitivity paramter on the simulation of the
number of escaped pedestrians against the evacuation time fixing b and N
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Figure 4.18: Schematic illustration of the second experiment

in front of the bottleneck is about 4m wide and 9m deep. At the beginning
of each run the 100 pedestrians are standing in front of the bottleneck. The
quantities calculated are the total time of evacuation and the flow, both as
a function of the bottleneck width. Both cases are calculated considering
firstly all the 100 pedestrians involved in the experiment and secondly con-
sidering the first 80 pedestrians passed through bottleneck. Thanks to this,
we will be able to understand more deeply why and how the model errs in
the reproduction of the dynamics of the last pedestrians in the room. We will
see that to solve partly this problem the model needs a higher value of the
sensitivity parameter, in order to increase the dependence of kS enough, to
be stronger than the one of kI next to the bottleneck, but this will cause even
an underestimation of the total time of evacuation of the first 80 pedestrians.

After the first preliminary simulations with the optimal combination of
the parameters found in Sec.4.1.1 it is immediately clear that the inertia
parameter kI is too high compared to ratio kS

kD
(is equal to kS for c = kD = 1)

in order to reproduce in a correct way this experimental data. The last
pedestrians in the room begin to walk around it next to the walls and are
not able to find the position of the bottleneck, causing an high overestimation
of the total time of evacuation.

Taken into account the results of the calibration with fixed c = 1 and
analysing the results of the preliminary study, the following parameters
(Tab.4.7) were tried for the reproduction of the quantities of this second
experiment. In this first simulation we will understand if the increase of c is
able to increase the strength of the static floor in order to reduce the errors
explained before. In case this increase of the sensitivity parameter does not
solve the problem, another simulation will be run with lower values of kI . As
mentioned before, the inertia parameter found in the previous study is too
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high for the right reproduction of this experiment, therefore it was useless to
try higher values. On the contrary we increased the range of values of the
friction parameter, in order to reduce the velocity of the pedestrians due to
the increase of the sensitivity parameter.

PARAMETERS POINTS

kS [13,19]
kI [5,7]
µ [0,0.8]
c [1,2.5]

Table 4.7: Parameters used for the calibration in the normal situation with
variable c (first simulation)

The first quantity studied is the total time evacuation as a function of
the bottleneck width. Clearly it is possible to see how the total time of
evacuation decreases with the increase of the bottleneck width (Fig.4.19).
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Figure 4.19: Total time of evacuation in function of the bottleneck width,
varying the number of pedestrians considered (experimental results)

The following table (Tab.4.8) describes the best combination of parame-
ters for the representation of the quantity just described, considering all the
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100 pedestrians and the first 80 passed through the bottleneck. We can see
how the optimal ratio kS

kD
is for both cases equal to 13, but if we consider

all 100 pedestrians, they need a much higher value of the static coupling
strength in order to avoid partly the wrong dynamics described before and
this causes an increase of the sensitivity parameter. We can also see that the
friction parameter for 80 pedestrians is the double of the one with 100. This
confirms the fact that if there are still a lot of pedestrians in the room the
model overestimates their velocities and therefore needs a low value of c and
a high value of µ in order to replicate the real data.

PEDESTRIANS PARAMETERS

100 kS
kD

= 13 kS = 26 µ = 0.4 kI = 5 c = kD = 2

80 kS
kD

= 13 kS = 13 µ = 0.8 kI = 7 c = kD = 1

Average best kS
kD

= 13 kS = 26 µ = 0.8 kI = 5 c = kD = 2

Table 4.8: Best combination of parameters for the total time of evacuation
against the bottleneck width, varying the number of pedestrians considered

Fig.4.20 shows the simulation with the best combination for each fixed
number of pedestrians considered in comparison with the experimental data.
Both cases are reproduced in a good way by the model, expect for the final
saturation of the total time of evacuation, that stops to decrease for b > 1.2
in the experiment, but still decreases in both cases in the simulation.
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(b) 80 pedestrians considered

Figure 4.20: Best simulation of the total time of evacuation against the
bottleneck width, fixing the number of pedestrians considered

The plots of both cases using the average best combination of the param-
eters are shown in Fig.4.21. As already shown in Tab.4.8 the average best
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combination is really similar to the best combination considering all the 100
pedestrians, except for µ that is equal to the optimal one considering the
first 80 pedestrians. The model, in order to reproduce both quantities in a
acceptable way, increases the velocity of the pedestrians choosing an high
value of the sensitivity parameter, but decreases their velocity when there
are still many inside the room, opting for the highest value of the friction
parameter. This brings to an overestimation for 100 pedestrians and a bot-
tleneck width equal to 0.4m, in which the effect of µ is really strong, and an
underestimation of the total time of evacuation considering the first 80 par-
ticles and larger bottleneck widths. This confirms that even while using the
average best combination of parameters for the optimal reproduction of both
cases, the model is able to reproduce the total time in acceptable way, but
lacks in the replication of the right dynamics of a group of pedestrians exiting
through a bottleneck, that normally have a constant velocity in evacuating
the room.
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Figure 4.21: Best average approximation of the total time of evacuation
against the bottleneck width

The experimental results of the mean flow are shown in Fig.4.22. It is
possible to see that the flow is almost equal in both case, i.e. the pedestrians
do not loose velocity in the end of the evacuation.

For the same reasons explained before, the model favours high values
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Figure 4.22: Mean flow rate in function of the bottleneck width, varying the
number of pedestrians considered (experimental results)

of c and low values of µ if we consider all the 100 pedestrians and favours
the opposite thing in the other case. The best average is, like before, a
compromise between the two cases.

PEDESTRIANS PARAMETERS

100 kS
kD

= 19 kS = 38 µ = 0 kI = 7 c = kD = 2

80 kS
kD

= 13 kS = 13 µ = 0.8 kI = 7 c = kD = 1

Average best kS
kD

= 13 kS = 26 µ = 0.8 kI = 5 c = kD = 2

Table 4.9: Best combination of parameters for the mean flow against the
bottleneck width, varying the number of pedestrians considered

Fig.4.23 shows the results of the simulation with the best combinations
fixing the number of pedestrians considered. For all the 100 pedestrians the
mean flow is reproduced almost correctly, expect for the final saturation of the
flow for b > 1.2m. The simulation considering only the first 80 pedestrians
overestimates, for all b, the experimental mean flow of the pedestrians. This
was predictable considering the results seen previously.

Using the combination with the minimum average error the model is able
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(b) 80 pedestrians considered

Figure 4.23: Best simulation of the mean flow against the bottleneck width,
fixing the number of pedestrians considered

to reproduce almost correctly the flow for 100 pedestrians, but lacks to repro-
duce in the correct way the mean flow considering the first 80 particles. As
already explained before in order to reproduce the flow of the 100 pedestrians
in a correct way, the model overestimates the flow of the first 80 because with
the increase of the evacuation time the pedestrians decrease their velocity.

The optimal combination of parameters that best reproduces both the
quantities in average is the following:

kS
kD

= 13 kS = 26 µ = 0.8 kI = 5 c = kD = 2

The average relative error is equal to 0.2705, which confirms that the model is
not able to reproduce both cases of both the quantities in an acceptable way.
Most of the error is caused by the overestimation of the velocity of the first
80 pedestrians as we can see in Fig.4.25. The other results are completely
similar to the ones explained before.

Analysing the plot of the time-gaps of evacuation between two consecutive
pedestrians (Fig.4.26) it is possible to see even better the wrong dynamic of
the pedestrians in the end of the simulation. The time-gaps should oscillate
around a certain value without having this high variation. In Fig.4.26.b it is
possible to see that this happens considering the first 80 pedestrians crossing
the bottleneck. If we consider all the pedestrians, we have an high increase
of the time-gaps for the last pedestrians. Indeed for b = 0.4m the time-
gaps oscillate around a value equal to approximately 1.25s, while this value
increases for the last pedestrians up to 16s. This brings to an almost correct
evaluation of the total time of evacuation also without reproducing well the
real pedestrians dynamics.
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Figure 4.24: Best average approximation of the two
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(b) Mean flow against the bottleneck width

Figure 4.25: Best approximation of the two quantities studied in Sec.4.1.2
(first simulation)
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Figure 4.26: Time-gaps between two consecutive pedestrians (first simula-
tion)

For the reasons explained in the first simulation we will try to simulate
again this experiment considering even lower values of the inertia parameter
in order to try to reduce its effect on the dynamics of the last pedestrians.
Table 4.10 shows the new ranges of the parameters tried in the simulation.

PARAMETERS POINTS

kS [13,19]
kI [1,7]
µ [0,0.8]
c [1,2.5]

Table 4.10: Parameters used for the calibration in the normal situation with
variable c (second simulation)

Since the single results of each quantity have been explained deeply in the
first simulation, we will present only the final results of this second simulation.
The result of the best combination of parameters that gives the lowest average
error of all the quantities is the following:

kS
kD

= 13 kS = 13 µ = 0.8 kI = 1 c = kD = 1

As we expected, the model advantages low values of the inertia parameter
and therefore does not need a high value of the sensitivity parameter in order
to reduce the effect of kI .

Fig.4.27 shows the simulations of both the total time of evacuation and the
mean flow against the bottleneck width using the combination of parameters
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just mentioned. It is possible too see that the model is able to reproduce both
cases in a much better way compared to the first simulation. The shape and
the simulated values of the total time of evacuation are really similar to the
real ones in both cases, expect for the final saturation of the function, that the
model is not able to reproduce correctly. Like for the total time of evacuation
the model is able to replicate the general trend of the mean flow, except for
the final saturation. The mean flows of the two cases are really close like in
the experiment, this confirms us that in this second simulation the mistake
in the dynamics described in the first simulation is almost vanished, indeed
the pedestrians have almost a constant velocity of escape during the whole
simulation, differently from the first simulation made.
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(b) Mean flow against the bottleneck width

Figure 4.27: Best approximation of the two quantities studied in Sec.4.1.2
(second simulation)

This is evident even analysing the time-gaps of evacuation between two
consequent pedestrians. It is possible to see in Fig.4.28.a that even in this
case the last pedestrians decrease a bit their velocity, increasing the time-
gaps, but differently from before, this increase is really low. Indeed for b =
0.4m the time-gaps of two consecutive pedestrians oscillate around the value
1.3s, while the maximum value obtained for the last pedestrians is equal to
5s. This result is acceptable because the decrease of velocity is quite low.

Conclusion

In the previous two sections we studied two different experiments in order to
find the right values of the 3 movement parameters and the sensitivity param-
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Figure 4.28: Time-gaps between two consecutive pedestrians (second simu-
lation)

eter. Averaging the relative errors of the quantities studied in each experi-
ment, we found the optimal values of the combination of the four parameters
in order to replicate in the best way the two experiments separately. Our
aim is to find the right combination, so that the model is able to reproduce
different experiments with different settings and quantities studied. There-
fore we are going to simulate again the first experiment, using the ranges
of the 4 parameters used in the second simulation of the second experiment
(4.10). The combination of parameters that gives the lowest average error of
the two experiments is the following:

kS
kD

= 13 kS = 13 µ = 0.6 kI = 1 c = kD = 1

Fig.4.29 shows the results using the optimal combination of the quantities
studied in the first experiment. It is possible to see that the model is able
to reproduce in an acceptable way all the quantities studied, except for the
number of escaped pedestrians against the evacuation time for b = 0.4m and
N > 20 (Fig.4.29.a). In this case the pedestrians flow too slowly to repro-
duce in the correct way the experimental data. As already seen in Sec.4.1.1
the model improved the quality of the approximation of the first experiment
increasing the value of the inertia parameter to increase the velocity of the
pedestrians. However the high value of kI , useful to reproduce this quan-
tity in the correct way, brought to high errors in different settings. This
problem is even evident analysing the mean flow against the initial density
(Fig.4.29.c). We can see that the model underestimates the flow for b = 0.4m
for densities higher than 31

s
, i.e N > 20, however it is able to reproduce the
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final saturation for increasing initial density. For higher bottleneck widths
(b = 1.2m) the model reproduces almost perfectly the two quantities as we
can see in Fig.4.29.b-c. For N = 60 (Fig.4.29.d) the simulated particles
have almost the same behaviour as the real pedestrians for b > 0.8, however
as already explained the model overestimates their time of evacuation for
b = 0.4m.
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(a) Number of escaped pedestrians against
evacuation time with b = 0.4, varying N
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(b) Number of escaped pedestrians against
evacuation time with b = 1.2, varying N
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(c) Mean flow rate against initial density in
the room with b = 0.4 and b = 1.2
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(d) Number of escaped pedestrians against
evacuation time with N = 60, varying b

Figure 4.29: Approximation of the first experiment using the average best
combination of the two experiments

The simulation results of the second experiment using the combination
just found are shown in Fig.4.30. All the parameters are equal to the ones
found in Sec.4.1.2, expect for the value of the friction parameter µ, that is
equal to 0.6 instead of 0.8, therefore the results of the simulation are almost
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the same. Even with this combination the total time of evacuation and the
mean flow against the bottleneck width are replicated with low average errors
by the model, except for the final saturation for both quantities. The mean
flow (Fig.4.30.b) considering both the first 80 pedestrians flowing through
the exit and all the 100 pedestrians are almost the same. This confirms that
the mistake in the dynamics of the particles seen at the beginning of this
study is almost vanished.
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(b) Mean flow against the bottleneck width

Figure 4.30: Approximation of the second experiment using the average best
combination of the two experiments

In these first two sections we studied all the effects of the movement
parameters on the simulation of different quantities in two different experi-
ments. The aim of the next section is to validate the model, i.e. to apply
the model on different experiments with different settings, in order to prove
that it is able to reproduce even different experimental data from the ones
used in the calibration.

4.1.3 Validation

In order to validate the model with the fixed parameters found in the cali-
bration, the model has to be able to reproduce different experimental data
compared to the one used previously.

The first experiment considered [35], had as its goal to study the depen-
dence of the density on the velocity of the pedestrians in a plane corridor
without bottlenecks. The settings of the corridor are shown in Fig.4.31. The
width of the passageway in the measurement section is 0.8m, while on the
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Figure 4.31: Schematic illustration of the first experiment (validation)

curve it is equal to 1.2m. Using the combination of parameters found in the
last section we want to try to reproduce the results found in the experiment.
Fig.4.32 shows the comparison between the experimental and simulated re-
sults. It is possible to see how the model overestimates a bit the velocity for
densities between 1 1

m2 and 4.5 1
m2 , however is able to replicate the decrease

of the velocity with the increase of the density. The overestimation can be
caused by the fact that in the experiment the pedestrians were not allowed
to surpass, while in the simulation they were, since the passageway has a
width of 0.8m. Although the simulated velocity does not have the exact
same shape of the experimental one, we can consider the result satisfactory
for the reasons just explained.

The second experiment taken into account is the flow through a narrow
bottleneck of width 1m and length 5m described in [33]. The walking area
in the experiment has a length of 10m and a width of 4m (Fig.4.33).

The quantities studied are the average spatial distributions of the densi-
ties and velocities in the room in different periods of the experiment. In the
first period (t ∈ [0s, 120s]) they observed low densities and relatively high
velocities. During this period pedestrians used only a small portion of the
walking area. In the second period [120s, 240s], the densities were still rela-
tively low, but the velocities started to decrease, because pedestrians could
not walk at their desired speed. Even in this case the walking area was
not fully used. They observed higher speeds at the edges of the useful area
compared to the ones in the middle due to pedestrians that walked around
the low-speed region near the center. The last period t ∈ [360s, 480s] was
characterized by the congestion next to the bottleneck and a larger portion
of the walking area used. The average density rose up to 2.5 1

m2 , while the
average speed in the bottleneck and upstream of the bottleneck was 1m

s
and
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Figure 4.32: Horizontal velocity against density of pedestrians in the corridor
(validation)
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Figure 4.33: Schematic illustration of the second experiment (validation)
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0.3m
s

respectively. In summary the three periods were characterized by free
flow, minor congestion and major congestion respectively.

The quantities studied in the experiment describe the precise movements
of the pedestrians, therefore we do not expect that the model is able to re-
produce them in a perfect way. However we expect that the general results
can be replicated. Moreover it is not so clear in the description of the exper-
iment how the pedestrians re-enter in the room after passing the bottleneck.
In the simulation we consider closed boundary conditions and this causes an
acceleration in the congestion of the room, however this is not so important,
because the aim of this particular study is to see if the model is able to repli-
cate the three different periods characterized by free flow, minor congestion
and major congestion respectively.

Fig.4.34 shows the results of the simulations in the three different peri-
ods. In the first period (t ∈ [0s, 30s]) we can observe low densities and that
the particles use only a small portion of the walking area like in the exper-
iment. The velocities observed are lower than the ones in the experiment,
while the densities are higher. Normally pedestrians try to keep a certain
distance from other pedestrians, while this does not happen to the simulated
particles causing a higher increase of the densities. In the second period
(t ∈ [30s, 60s]) it is possible to notice how the densities around the bottle-
neck begin to increase, although the walking area is still not completely used
by the particles. The velocities start to decrease in this period due to the
clogging next to the bottleneck. The last period (t ∈ [90s, 120s]) is charac-
terized by a high congestion. It is possible to see how the densities upstream
the bottleneck are really high and consequently the velocities in the same
area really low.

Although the simulated results are not perfectly related to the ones in the
experiment, we can consider them really satisfactory, because the model is
able to reproduce almost perfectly the behaviour of the pedestrians next to
the bottleneck. Indeed even in the simulation we obtain the three different
periods that characterized also the experiment previously described.
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(d) Average velocities for t=(30s,60s)
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Figure 4.34: Surface plots showing the average spatial distributions of the
densities and speeds in the walking area (validation)



104 CHAPTER 4. CALIBRATION



Chapter 5

Conclusions and future works

In this work we have addressed the understanding and simulation of pedes-
trian dynamics. The first part has focused on the description of the empirical
observations, fundamental for a deep understanding of the subject and for
the development of mathematical models, which are able to reproduce these
dynamics. The model used for the simulations is the Cellular Automata
model, that has been chosen for its simplicity and its ability to reproduce
even complex situations.

The mathematical framework for the simulations has been implemented
through shared libraries using an object-oriented programming language (C++).

In the first simulations we have encountered some overflow problems to
excessively high values of the staticfloorfields. For this reason we decided
to normalize this field with the average value of the dynamic floor field for
a fixed combination of the system parameters: 1) size of the room, 2) initial
density of pedestrians in the room, 3) the destruction parameter and 4) the
diffusion parameter. This study did not only solve the overflow problems, but
also gave an important contribution on the calibration of the model. For each
fixed combination of parameters of the system we equalized the intensities of
the two fields, so that the right proportion of the two coupling strengths kS
and kD did not depend on the system considered.

The last part has focused on the calibration of the model in normal sit-
uations. We have tested the model on different experiments reaching a very
good agreement with the real dynamics of the pedestrians. Furthermore
this study helped to understand in detail the influences of the movement
parameters and the sensitivity parameter on the behaviour of the simulated
particles.

To conclude, we wish to mention some possible directions for future ac-
tivities and investigations:

105
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1. The CA model described in Chapter 3 can be improved in different
ways. It is possible to implement the model, so that the particles are
able to have different velocities. This can be done by decreasing the
reaction time and by stopping the slowest particles in some time-steps.
Another possible extension is the addition of a finer discretisation of
the space. For some applications the discretisation used in this work
could not be adequate and a finer one can be necessary [30].

2. In the calibration chapter we have assumed that the 3 movement pa-
rameters and the sensitivity parameter are constant. Analysing the
simulations we have seen that they depend on the time of evacuation
and on the system settings. It is possible to improve the calibration
removing the assumption done in Chapter 4.
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