
POLITECNICO DI MILANO

Master of Science in Computer Engineering

Dipartimento di Elettronica e Informazione

Extracting Verbal Frames from Natural Language
Sentences

Relatore: Prof. Licia Sbattella
Correlatore: Ing. Roberto Tedesco

Thesis by:

Kadir GUNEL , 762552

2013 - 2014

To Seçkin...

Abstract

This study describes an approach for the Italian language by extracting verbal frames
to determine their complementary parts within sentences. The model uses a theoret-
ical approach which is designed specifically for Italian. Two sequentially dependent
technologies are used for putting this plan into practice : A dependency parser and a
rule based system. The parser returns the sentence structure as a set of dependency
among words; the rule based system transforms such representation, permitting to
recognize the subject, the predicate and the related complements. This model is
evaluated by simply giving Italian text files. The results show that the model covers
as much information as possible and gives results accordingly. However, the lack of
information between verbs and its possible complements might cause inaccurate out-
comes when given a sentence. As a future work, this consequence implies the need
of an auxiliary system which holds semantical information of Italian verbs and their
usages in sentences such like VerbNet and FrameNet systems for English language.

Sommario

La tesi propone un’approccio, mirato alla lingua italiana, per estrarre la struttura dei
complementi delle frasi. Il modello si basa su una caratterizzazione della struttura
delle frasi, specifica per l’italiano. Due metodologia sono utilizzate: un dependency
parser e un sistema a regole di produzione. Il parser ritorna la struttura della frase,
sotto forma di relazioni di dipendenza tra le parole; il sistema a regole di produzione
elabora tale rappresentazione, riconoscendo il soggetto, il predicato e i relativi com-
plementi. Il modello è stato valutato utilizzando un insieme di testi italiani; i risultati
mostrano che il modello ritorna i risultati attesi. Il modello non utilizza informazioni
a priori circa i complementi che ciascun verbo può reggere. A causa di ciò, in alcuni
casi, i risultati possono essere errati. Come sviluppo futuro, si prevede di incorpo-
rare un database semantico dei frame verbali, sul modello proposto da VerbNet o
FrameNet per la lingua inglese.

ii

Acknowledgements

I can not separate you from others. You all helped me to find my path for going
“home”. I am thankful to all of you, one by one, by my heart.

Kadir GUNEL

iii

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Purpose of Thesis . 6
1.3 Thesis Organization . 6

2 Used Technologies 7
2.1 Linguistic Framework . 7

2.1.1 Parser Types . 7
2.1.2 LinguA Parser . 9
2.1.3 TextPro Tool Parser . 10
2.1.4 TULE Parser & TUT TreeBank 11
2.1.5 Motivation of Selected Technologies 12

2.2 Rule Based Systems . 13
2.2.1 Architecture of a Rule Based System 14
2.2.2 Working Strategies of Rule Based Systems 15
2.2.3 Existed Technologies . 16

2.2.3.1 Prolog . 16
2.2.3.2 Drools JBOSS . 16
2.2.3.3 CLIPS . 16
2.2.3.4 JESS . 16

2.2.4 Motivation for Selected Technology 17
2.3 Java . 18
2.4 JCommander . 19

3 Design 20
3.1 Sentence Structure in Italian . 20

3.1.1 Complement Types . 20
3.1.2 Verbs in Italian . 21

3.2 Logical Analysis . 21
3.3 Lexical Approach . 22

1

CONTENTS CONTENTS

3.4 System Design . 22
3.5 Design of Java Classes . 23
3.6 Design of Rule Files . 24

3.6.1 First Rule File . 25
3.6.2 Second Rule File . 26
3.6.3 Third Rule File . 27
3.6.4 Summary of Rule Files . 29
3.6.5 Scripting . 31
3.6.6 Problem of Disordered Words and its Solution 32
3.6.7 Queries . 32

4 Implementation 34
4.1 System Architecture . 34
4.2 Program vs. Tool Set . 35
4.3 Splitting Tools . 35
4.4 Details of CallParser . 36

4.4.1 Decompilation . 39
4.4.2 Reflection . 39

4.5 Details of CallRuler . 40

5 Conclusion and Future Work 45

Bibliography 45

A User’s Manual 48
A.1 CallParser User Manual . 48
A.2 CallRuler User Manual . 50
A.3 A Crucial Note About the Terminal Commands 50
A.4 Setting Tule Server . 51

A.4.1 Steps for Installing TULE Server 51

2

List of Figures

2.1.1 The LinguA Dependency Tree output for the sentence: “Io e Marco
siamo andati al mare.” . 10

2.1.2 The TextPro Dependency Tree output for the sentence : “Io e Marco
siamo andati al mare.” . 10

2.1.3 The TULE Parser’s Dependency Tree for the sentence : “Io e Marco
siamo andati al mare.” . 11

2.1.4 TUT file example . 12
2.2.1 A general architecture of a rule based system 14
2.2.2 More detailed architecture of the rule based system 14

3.1.1 Complement categories and their elements in Italian 21
3.4.1 System Overview . 23
3.5.1 Word Object Relations . 24
3.6.1 Rule Engines and their proper Objects 25
3.6.2 A simple rule for separating a sentence with two predicates 26
3.6.3 Example rule for finding auxiliary verb 27
3.6.4 Dependency tree for “Il gatto di mia soralla” 28
3.6.5 Example rule for finding complemento di specificazione for Subject . . 29
3.6.6 Objects in Rule Engine 1 . 30
3.6.7 Objects in Rule Engine 2 . 31
3.6.8 Objects in Rule Engine 3 . 31
3.6.9 Query example . 33

4.1.1 General System Architecture . 35
4.3.1 System architecture with an Extra Component 36
4.4.1 CallParser Packages . 36
4.4.2 Command UML . 37
4.4.3 File Package UML . 38
4.4.4 Parser Package UML . 38
4.5.1 CallRuler Packages . 40

3

LIST OF FIGURES LIST OF FIGURES

4.5.2 Commander Package . 41
4.5.3 Files Package . 41
4.5.4 Turin Package . 42
4.5.5 Transformer Package . 43
4.5.6 Rules Package . 44

4

Chapter 1

Introduction

1.1 Motivation

In recent years, research and development of Artificial Intelligence (A.I.) and its sub-
field Natural Language Processing (N.L.P.) has increased so well that nowadays com-
panies and academicians work on projects that were science fiction stories only a
decade ago.

Today, NLP programs that are available and their development kits in the global
market are focused on human to computer interaction as in a computer to understand
human language. These products or in a better term programs can be based on speech
recognition, text summarization, text translation or natural language[1] which is the
best one among out of all. Main contributors to both programs and development kits
are large companies like Microsoft, Apple and Google but there are also supporters
from universities, like MIT NLP, Stanford NLP and Berkley NLP groups. As it is
obvious, all these contributors are based in North America so the programs are devel-
oped for English speakers. There are only a few products and APIs that are developed
in other languages. Hence this lack encouraged me to build a subsystem for Italian
language, which finds the complementary parts of human sentences autonomously.
This subsystem will be capable of adapting itself to a well developed NLP system
that has the ability to process a natural language other than English. Thus creates
the principle motivation for this thesis.

My second motivation for this thesis is too important to be ignored: Education
of the youth. Today, both public and private schools are still teaching grammar
by using traditional approaches. Since, schools don’t offer one-to-one education the
possibility of lack of communication between the teacher and the student is very
high. Considering that computers are ubiquitous today and that they are spreading
unavoidable, the usage of NLP programs could be a complementarity part in both

5

1.2. PURPOSE OF THESIS CHAPTER 1. INTRODUCTION

learning and teaching a natural language.

1.2 Purpose of Thesis

A natural language parser program focuses on generating a general grammatical struc-
ture. The program does not give conclusive information only indicates is a group of
words forms this complement type. It provides information for all words in a sen-
tence about their lemma, part of speech, position in the sentence and dependency to
another words. Also, by using its internal system, it gives basic information about
the direct complements of a sentence as in; subject, object and verb. Consequently,
groups of words, which form indirect complements by using prepositions, cannot be
supplied directly by the parser. As mentioned in the motivation, if there is a need for
building a system, such that does sort things like text summarization or text trans-
lation. The very first centralization should be covering the lack of producing indirect
complements by building a natural language tool. Hence, the focus of this thesis is
about closing this lack of information first by finding a proper linguistic method for
logical analysis of a given sentence. Secondly, this approach should be implemented
in a rule-based system such as the overall system should be both capable and flexible
of interacting with other subsystems of larger systems.

1.3 Thesis Organization

The rest of this document is organized into following chapters:
Chapter 2: Used Technologies. This chapter gives information about what kind

of technologies are necessary for development of this thesis, which of them are available
for Italian. It also explains required coding philosophy by giving reasons in detail.

Chapter 3: Design. This chapter explains the problem and shows a suitable
approach for solution.

Chapter 4: Implementation. Explanation of system architecture and implemen-
tation details are described by giving code snippets and UML diagrams.

Chapter 5: Conclusion and Future Work. Conclusion and the required improve-
ments for future development are given by complying results of the program.

6

Chapter 2

Used Technologies

In order to create a system which understands a natural language, there is need
of having subsystems which can somehow “understands” the grammatical structure.
Therefor the meaning of input streams will be passed to the next phases by gradually
increasing the information on that input. To achieve this, first a sub-system is needed
which is called Parser . Thus forming the linguistic framework of the system is done
but this is not enough. There is still need of using this information for generating
new ones between “groups of words”. And to produce these “groups of words” which
form complements of a given sentence another suitable technology is required. To do
so a rule based rule system is needed.

This chapter will introduce you technologies that are used for building overall sys-
tem. Please note that to have a successfully running program, deciding the required
technologies for that program is crucial. To show this importance, this chapter de-
scribes essential technologies, their implementation variants by different groups of
people. Finally, reasons why particular ones are selected among others are discussed
in detail by giving personal thinking.

2.1 Linguistic Framework

This section starts with the description of different kind of parsers. Then it gives
information about different Italian Parsers that are available in the industry. Then
how these parsers process same input sentence is shown. At the end of this section
motivation for the selected parser is described.

2.1.1 Parser Types

There are different types of NLP parsers and each finds different usages in both
research and industry. The main ones can be listed as :

7

2.1. LINGUISTIC FRAMEWORK CHAPTER 2. USED TECHNOLOGIES

• Shallow Parser

• Semantic Parser

• Shallow Semantic Parser

• Probabilistic Parser

• Full Parser

A Shallow Parser analyzes a given sentence in a way that it outputs only the syntac-
tical information by dividing the sentence into chunks[2]. It can be associated to the
Lexical Analysis of a programming language. And due to this it is called light parsing
too . Example :“Jack and Jill went up the hill to fetch a pail of water.” An output
from Illionis Shallow Parser for this example[3] :

[NP Jack and J i l l] ; NP− Noun Phrase
[VP went] ; VP − Verb Phrase
[ADVP up] ; ADVP − Adverb Phrase
[NP the h i l l] ; NP− Noun Phrase
[VP to f e t ch] ; VP − Verb Phrase
[NP a pa i l] ; NP− Noun Phrase
[PP o f] ; PP − Prepo s i t i o na l Phrase
[NP water] ; NP− Noun Phrase .

A Semantic Parser analyzes the given text so that it tries to match the text
with a formal meaning representation. This type of NLP parser requires extra work
because in order to build a semantic parser the most used approach is to use human
experts[4]. The reason for that is a sentence can have the same meaning but with a
different syntax such example is :

“Utah is next to Idaho.” and “Utah shares a border with Idaho.”

Researchers try to free this manual assignment by using ML techniques such as
Supervised and Unsupervised. A working example for semantic parser is the Stanford’s
SEMPRE Parser.

A Shallow Semantic Parser finds the predicate of the sentence and then it tries to
match the predicate with different questions which give different complements. These
questions are Who, Where, Which, Where, Why, etc. An example is :

“Shaw Publishing offered Mr. Smith a reimbursement last March.”

And by using the predicate all other components of the sentence are determined :
Shaw Publishing is Agent, Mr. Smith is Recepient , a reimbursement is Theme, last
March is Time.

8

2.1. LINGUISTIC FRAMEWORK CHAPTER 2. USED TECHNOLOGIES

A Probabilistic Parser is one of the most promising and widely used parser in
the NLP research area. What it does is to simply use its a priori knowledge, which
is also called trained data, and it tries to estimate the outcome of a given sentence
as accurate as it has in its knowledge. The most popular one is the Stanford NLP
group’s probabilistic parser called Stanford Parser.

A Full Parser is a kind of parser which besides the morphological description
of words in the sentence, it gives the dependency relation between different token
components of a sentence. The concept of Full parser can be compared with a Shallow
Parser more easily than the other kinds of parser in this list. An example for the Full
Parser is :

“Me and Marc went to the sea side.”

And the dependency relation between words can be given as (from Stanford Parser
[5]):

nsubj (went−4, Me−1)
conj_and (Me−1, Marc−3)
nsubj (went−4, Marc−3)
root (ROOT−0, went−4)
det (s ide −8, the−6)
nn(s ide −8, sea−7)
prep_to (went−4, s ide −8)

2.1.2 LinguA Parser

LinguA is developed by Italian Natural Language Processing laboratory. LinguA
combines machine learning techniques and rule-based systems and offers following
services :

• Sentence splitting

• Tokenization

• Part-of-speech tagging

• lemmatization Dependency parsing

By giving these services it also supports a visualization tool which is available online.
And it allows users to download analyzed sentences in CoNLL format which keeps
lemma, coarse and fine grained Part-of-Speech, morphological features, and syntactic
Dependency information about given sentences.

In addition to Italian parser, LinguA offers also English parser sevice.

9

2.1. LINGUISTIC FRAMEWORK CHAPTER 2. USED TECHNOLOGIES

Figure 2.1.1: The LinguA Dependency Tree output for the sentence: “Io e Marco
siamo andati al mare.”

2.1.3 TextPro Tool Parser

TextPro tool is developed by the Bruno Kessler Foundation. It is a suite of tools
which are performing a number of NLP task. It provides the following services :

• Tokenization

• Morphological Analyzer

• Lemmatizer

• Chunker which is used for syntactical analysis.

• Tagger

• Dependency Parser

• A statistical based tool which recognizes temporal expressions in the text

It has an online demo version like LinguA and for researchers, they provide a free
version of the TextPro tool.

Figure 2.1.2: The TextPro Dependency Tree output for the sentence : “Io e Marco
siamo andati al mare.”

10

2.1. LINGUISTIC FRAMEWORK CHAPTER 2. USED TECHNOLOGIES

2.1.4 TULE Parser & TUT TreeBank

The TULE parser is built by a group of researchers from Turin University. Main aim
of this parser is to produce a dependency tree by using a tree bank, called TUT Bank.
TULE parser is implemented in a way that it can handle four different languages:
Italian, English, Catalan and French. It also supplies a graphical user interface which
produces dependency tree in a tree structure. Each leaf on tree has information such
as : Part of Speech, relation between words, lemma, etc.

By time of writing, the developers of TULE parser discontinued to support their
product but they gave an opportunity to install the parser server to a local computer.
So that it is still usable. 1

Figure 2.1.3: The TULE Parser’s Dependency Tree for the sentence : “Io e Marco
siamo andati al mare.”

On the other hand, TUT (Turin University TreeBank) is a treebank project
[6]which contains 2860 italian sentences with 5 different categories. This treebank
includes also 200 english sentences. All these sentences are annotated morphologi-
cally, semantically and syntactically.

As shown in figure 2.1.3, TULE parser uses TUT Treebank in order to obtain
dependency trees. It is seen that every word in the sentence has a dependency rela-
tionship with one or the other. These relations between words are provided by using
the TUT. TUT uses ARS (Augmented Relational Structure) annotations for rela-
tional dependencies of words in a sentence. By using ARS structure, every relation
can include derived values from morpho-syntactic, functional-syntactic and syntactic-
semantic.

Let’s take the same example : “Io e Marco siamo andati al mare.” The output for
this example from TUT by using the TULE parser is the following :

1For more information on installing the TULE read users’ manual in Appendix A.

11

2.1. LINGUISTIC FRAMEWORK CHAPTER 2. USED TECHNOLOGIES

1 Io (IO PRON PERS ALLVAL SING 1 LSUBJ) [5 ;VERB−SUBJ]
2 e (E CONJ COORD COORD) [1 ;COORD+BASE]
3 Marco (MARCO NOUN PROPER M SING ££NAME) [2 ;COORD2ND+BASE]
4 siamo (ESSERE VERB AUX IND PRES INTRANS 1 PL) [5 ;AUX+TENSE]
5 andat i (ANDARE VERB MAIN PARTICIPLE PAST INTRANS PL M) [0 ;TOP−VERB]
6 a l (A PREP MONO) [5 ;VERB−INDCOMPL−LOC+TO]
6 .1 a l (IL ART DEF M SING) [6 ;PREP−ARG]
7 mare (MARE NOUN COMMON M SING) [6 . 1 ;DET+DEF−ARG]
8 . (#\\. PUNCT) [5 ;END]

Figure 2.1.4: TUT file example

For the example given above has 4 different parts for each word in a sentence :

5 andati (ANDARE VERB MAIN PARTICIPLE PAST INTRANS PL M) [0;TOP-VERB]

1. The position of word in the given sentence, colored number with magenta in the
example above.

2. The word’s usage in sentence, colored word with cyan in the example.

3. The semantical characteristic of word, series of words colored with blue in the
example.

4. The dependency number of that word which shows position of another word in
the sentence and its relation role in the sentence. Both are colored with green
in the given example above.

2.1.5 Motivation of Selected Technologies

Before going further to the next technological system for building a NLP tool it is
required to describe main motivational criteria for selecting TULE and TUT.

Since our aim is to analyze a natural language, in this case Italian, it is necessary
for a linguistic tool which can handle italian phrases accurately as much as it can.
First of all, the bad news is that both in industry and in academia there are only a
few options for languages other than English. And this really makes it hard to find a
good dependency parser for Italian.

From the list of parsers that are given above the dependency output of TULE
parser makes a clear difference among others that TULE can handle sentences most
accurately and can give as much information about words in sentence as possible.
And also considering easiness of use makes the TULE and TUT the selected linguistic
framework for this thesis.

12

2.2. RULE BASED SYSTEMS CHAPTER 2. USED TECHNOLOGIES

2.2 Rule Based Systems

The use of selected programming paradigm affects implementation phase very deeply
so it is important to cogitate about an appropriate programming paradigm before
writing the code. Therefor at the end of coding phase the selected programming
paradigm could save developer time and code complexity by not giving any priority
from the cleanness, shortness and functionality of the code. Considering this long but
absolute statement, in order to find complementary parts of sentence in any natural
language using an imperative language paradigm is possible but not suitable. Because
an imperative (or procedural) language paradigm forces to know every logical detail2

in order to control the flow of the program. So it can be said that the imperative
programming paradigm focuses on HOW the computer should do.

On the other hand, from the perspective of a developer of such a tool, the focus
should be on WHAT the computer is to do, not on HOW. By using a declarative
language paradigm, this WHAT can be “declared” without touching every logical
detail[7]. Thus giving the programmer the flexibility of thinking more as a human
being rather than as a machine.

Since a declarative programming paradigm is needed, so a system which includes
a declarative language is needed. Thus Rule Based Systems are introduced. “A Rule
Based System is a system that uses rules to derive conclusions from premises.” [8] A
Rule Based System can be used in all areas where an algorithmic solution does not
exists clearly like Classification, Prediction, Diagnosis and Pattern Recognition

The elementary parts of a rule can be shown as follows :

1. IF part (LHS - Left Hand Side)

2. THEN part (RHS- Right Hand Side)

Example Rule: (youDriving and yourCellPhoneRings) => (doNotAnswerPhone)

In order to run a rule, data is indispensable in the system that is called The
Domain. So given the rule above and a proper domain system concludes that you
should not answer your phone while driving.

The main difference which separates a rule based system from imperative lan-
guages paradigm is that rule based systems can automatically infer to fire a rule
wherever and whenever it sees a statement which matches with proper rule. But in
imperative paradigm if execution of a particular statement is passed then there is no
way to execute that particular piece of code during the lifecycle of that execution.

2This means tons of nested if-else statements

13

2.2. RULE BASED SYSTEMS CHAPTER 2. USED TECHNOLOGIES

2.2.1 Architecture of a Rule Based System

The general architecture of a rule based system is composed of 3 different components
that are working memory, inference engine and knowledge base (or rule base).

Figure 2.2.1: A general architecture of a rule based system

The working memory holds the data that you need in order to run other two
components. Working memory is also called fact base. The knowledge base has all
constrains that can trigger entire system. The inference engine itself is the trigger.
The link between knowledge base and inference engine is directed towards to the
inference engine. On the other hand, the link between the working memory and the
inference engine is double linked. This means that inference engine is the one which
can change the state of working memory.

From these 3 components the inference engine plays the central role for a Rule
Based System. So let’s take a closer look.

Figure 2.2.2: More detailed architecture of the rule based system

14

2.2. RULE BASED SYSTEMS CHAPTER 2. USED TECHNOLOGIES

An inference engine composed of three additional parts that are : Pattern Matcher,
Agenda and Execution Engine. Aim of inference engine is to match all defined rules in
the knowledge base by comparing them to working memory and by using the pattern
matcher as its subcomponent.

With more easy terms, inference engine takes list of facts from working memory
and forms different possible combinations with them. It does it so fast by using a
special algorithm called Rete[9] then it tries to apply them on the rule set. If rule
pattern matches with fact combination then inference engine is triggered and possibly
a new fact is born in the working memory. This hole process is repeated in order to see
if there are more. This process can be thought as the triggering system in relational
databases.

Since there are set of rules in a rule based system which are processed in parallel
one rule might conflict with another one. To solve this problem a mechanism is
necessary to save the overall system from crashes thus a mechanism called Agenda is
created. An agenda holds the necessary information so that no rule can conflict with
each other. In other words, we know that a rule based system is working in a huge
while loop and rules are run in parallel. Think if a rule conflicts with another rule;
meaning that they are triggering each other all the time. Then the program might
not stop until it finds a fact which does not cause any more triggering. Agenda simply
solves this problem by deciding a strategy for firing rules in order.

And finally, the execution engine is the part which executes THEN part of a rule
(or RHS in terms of rule based systems).

2.2.2 Working Strategies of Rule Based Systems

Basically, there are 2 kinds of working strategy of a Rule based system that are :

1. Forward Chaining

2. Backward Chaining

A rule based system can include both like Jess, Drools or either of one like Prolog.
In Forward Chaining, the starting point for evaluating a rule is the IF part. It tries

to match working memory with rule’s IF part. So the strategy of Forward Chaining
is to ask the question: “Do I have it?” to working memory. If it has then fires
the consequence otherwise it doesn’t. On the other hand, in Backward Chaining the
starting point for evaluating a rule is THEN part. So the strategy for matching a
rule in Backward Chaining is asking the question to Inference Engine “To have this
consequence, what should I have? ” This approach is also known as Gaol Seeking.
These strategies are the main differences between rule engines.

15

2.2. RULE BASED SYSTEMS CHAPTER 2. USED TECHNOLOGIES

2.2.3 Existed Technologies

There are many rule based systems as product. Most used ones are Prolog, JBoss
Drools, CLIPS and Jess. Mainly they differentiate on how the engine executes rules
as it is described in the previous section. Let’s take a look at different rule based
systems.

2.2.3.1 Prolog

Prolog is a general purpose logic programming language. It mostly uses declarative
programming paradigm. And it is used mainly in natural language processing and
other fields of Artificial Intelligence. Rule engine of Prolog uses backward chaining
mechanism in order to evaluate its rules. Main importance which distinguishes Prolog
from others is that Pure Prolog is Turing-complete[10].

2.2.3.2 Drools JBOSS

JBoss Drools is used mainly by enterprises as an expert system. It uses declarative
programming paradigm. It supports JSR-94 Java standards which makes it 100%
java compatible. For examining defined rules, it gives option to use both Forward
and Backward Chaining approaches. It uses an enhanced version of Rete algorithm
in order to make combinations of facts during the evaluation process.

JBoss has an enterprise project which includes several facilities for enterprises.
And apart from the enterprise version, it has also a community project which provides
free version. This free version has more features compared to the enterprise version
but it is less steady. In time these features are transferred to enterprise edition with
a steady state.

2.2.3.3 CLIPS

Clips is the most widely used expert system tool. It is written in C. It uses declarative
programming paradigm and also it includes a complete object oriented language called
COOL. It has an interface for Java but is not supporting JSR-94 Java standards
completely. It has a similar syntax to Lisp programming language.

2.2.3.4 JESS

Jess is a rule engine and a variant of CLIPS. It supports JSR-94 Java standards hence
it is 100% compatible with Java. It uses declarative programming paradigm with Lisp
like syntax. It provides a dynamic programming environment but it can also be used
with a different kind of XML which is created specifically for JESS that is called
JessML.

16

2.2. RULE BASED SYSTEMS CHAPTER 2. USED TECHNOLOGIES

Rule engine in Jess can be programmed to be used both for Forward Chaining
and Backward Chaining approaches. It uses Rete Algorithm for evaluating defined
rules. Apart from traditional rule engines Jess also provides an additional feature
which allows user to write queries for retrieving the facts from working memory. So
that a user can use it as a relational database.

Jess provides the facility to programmers while they write their code in Java with
object oriented paradigm. A developer can call Java objects, data structures like
arrayLists, hashMaps etc. inside it self. It also permits to be called from inside Java.
Moreover, a user can define new rules or even functions of Jess inside Java. If Jess
user explores that additional commands are needed then he/she can extend the main
abilities of Jess by inserting new functionalities inside it. Jess can also be used while
developing GUI applications which need some rules.

For programming environment Jess provides an Eclipse plug-in which has even a
debugger inside. But there is a community of people who built other plugins for text
editors like Emacs.

A dummy rule example and its file dummy-rule.clp is written in Jess as follows:

(d e f r u l e i f−phone−r ings−while−driving
"a␣ d e s c r i p t i o n ␣ o f ␣ the ␣ ru l e ␣ i s ␣ wr i t t en ␣ in ␣ here "
(d r i v i ng (s t a tu s TRUE)) ; t h i s i s a f a c t in the working memory
(phone_rings (s t a tu s TRUE)) ; t h i s i s a l s o a f a c t in the working memory

=> ; i f two are matched then p r i n t ou t
(p r in tout t "Do␣not␣answer ! " c r l f))

2.2.4 Motivation for Selected Technology

While considering selection of a proper rule based system five criteria are considered
:

1. Compatibility with the programming language used in the thesis,

2. Rule engine strategy: Forward and Backward Chaining

3. Ease of learning phase,

4. Stability of the overall system,

5. The virtual weight on the program of the thesis3

Programming language for this thesis is Java 4. So first criteria requires a rule based
system which has libraries that are 100% compatible with Java. CLIPS is not a good

3 in terms of space in storage.
4Its reasons are described in the next section

17

2.3. JAVA CHAPTER 2. USED TECHNOLOGIES

candidate for this. It is true that it has an interface for Java but it does not have the
required specifications determined by Java which might cause problems during the
implementation. Thus it makes CLIPS eliminated.

For the second criteria the approach of rule engines is considered. Both strategies
are important in specific fields; sometimes it seems like Forward Chaining is advan-
tageous but sometimes it is the other way around. So the selected rule engine should
support both. Thus Prolog is eliminated.

The third and the forth criteria can be combined together for JBoss Drools and
Jess. It can be said that they have similar syntax structure with minor differences.
Both systems can work with Java objects. Stabilities of both systems are good. Even
though community edition of Drools is less steady than the enterprise edition, it is
still good for use as a rule based system. Jess and JBoss Drools can both work on
java objects.

So in order to determine the selected rule engine a new criteria was necessary
which creates the fifth criteria. The space occupied by Jess is much smaller than the
space occupied by the JBoss. Libraries of Jess needs a space nearly to 1,1MB and
Drools needs 98MB of space. So, Jess is selected as the default rule engine for this
project.

2.3 Java

The main programming paradigm for thesis is Object Oriented besides the declara-
tive paradigm of rule engine. And there are many programming languages in industry
which support object oriented paradigm. But for the thesis it is chosen Java program-
ming language due to the below facts:

• Java has a large API.

• The documentation support is really good.

• Performance compared to other similar languages such as Ruby, Python is much
better.

• Portability of the code to other platforms and operating systems without re-
compiling the source code.

• Most of the development tools support mainly Java.

• The integrity with Jess; the rule engine used for thesis.

18

2.4. JCOMMANDER CHAPTER 2. USED TECHNOLOGIES

2.4 JCommander

There is no GUI for the program of this thesis. This is done intentionally and its jus-
tification is explained in detail in the implementation chapter. For this reason a small
and efficient terminal library was in search of and was found out that JCommander
is a very small library which provides interaction between user and program.

19

Chapter 3

Design

In order to develop a program which tries to find complementary parts of a natural
language, it is essential to represent how sentences are formed in that particular
language and how the logical analysis for that particular language is done. Then it
is required to represent an appropriate approach which is suitable for that language.
In this chapter, these 3 arguments are introduced to show the design phase of this
thesis.

3.1 Sentence Structure in Italian

In Italian, phrases have a structure like the following :

SUBJECT - PREDICATE - COMPLEMENTS

And complements of a phrase is divided into 2 subcategories which are Comple-
menti Diretti and Complementi Indiretti.

3.1.1 Complement Types

This type of complements form the basic structure in Italian sentences. Complementi
Diretti are the ones which connect directly to the predicate of a sentence and they
do not have any preposition1. There are 3 kinds of Complementi Diretti : Comple-
mento Oggetto, Complemento Predicaticvo del Soggetto and Complemento Predicativo
dell’Oggetto.

Complementi Indiretti are the ones which connect to the predicate indirectly and
have prepositions.2.

1Actually, this information is partially correct some of direct complements can have
prepositions[11]. But simplification of text it is discarded.

2Note that Complementi Indiretti are not limited with those in the figure. There are many more
of Complementi Indiretti

20

3.2. LOGICAL ANALYSIS CHAPTER 3. DESIGN

Figure 3.1.1: Complement categories and their elements in Italian

3.1.2 Verbs in Italian

Verbs in Italian are declared according to the subject which does the action, as in any
language. But the declarations of verbs show difference from one language to another.
In Italian there are 6 different declarations for each verb tense. In order to show this
difference more clearly, it is better to compare it with a very known language which
is English. When a verb is declared in English it can be declared in 2 different ways :

1. Verb’s non-simple form : takes the suffix -s (for present tense verbs) and used
by 3rd person singular.

2. Verb’s simple form : does not take any suffix and is used by all other persons
(I, You, We, They) except 3rd person singular.

On the other hand, in Italian verb structure is more complicated but this complication
gives more expressive power in a sentence. Such that it is not required to express
explicitly subject of the sentence because the verb itself implicitly refers to it hence
subject is known a priori by the verb.

3.2 Logical Analysis

In the broadest sense, the word analysis means “the process of separating something
into its constituent elements.”3 [12] And in linguistic, it means “the use of separate,

3In English Logical Analysis has more deep meaning but in this text Logical Analysis is considered
as in the linguistics content.

21

3.3. LEXICAL APPROACH CHAPTER 3. DESIGN

short words and word order rather than inflection or agglutination to express gram-
matical structure.”[12] In other words, in linguistics Logical Analysis4 focuses on the
individual elements in a sentence. And it asks questions to the predicate of the sen-
tence for determining the syntactical function of each element ; like who, with who,
where, etc.

3.3 Lexical Approach

The approach that is used in order to find complementary parts of a given sentence
is so called Lexical Approach. In this approach, predicate of the sentence plays the
role of an atom and all other words are arguments of that atom which try to attach
it only if atom permits them. More formally, Lexical Approach says that the verb
by itself includes very crucial and important information about number and type of
arguments which can be bound to itself[13].

This theoretical method is the one which is needed in order to find complements
precisely. Therefor there is the need of a subsystem which processes sentences and
gives as much information as possible about the predicate and the words that are
bound to it. This step can be completed by using a dependency parser but still there
is a lack on how we could match complementary parts and information of words in a
sentence. This gap can be filled with a rule based system.

3.4 System Design

Since our design aims to follow Lexical Approach which focuses on relation between
verb and its arguments. We need to find a way to determine this dependency relation
of words to predicate. As it is mentioned in technologies part, for the purpose of
finding complements a parser which produces dependency trees is the only option so
it is required to use it in our system. Now, we have necessary information which comes
from dependency tree but this is not enough. We need to find out an autonomous
way for determining which preposition forms a particular complement type and this
can be done by defining rules hence a rule based system is an obligation.

Our general system design can be explained with a drawing more easily so, please
look at figure 3.4.1. At first we have a text which is composed of Italian sentences
and we give this text to a blue toolbox which is actually the program of this thesis.
This toolbox generates the dependency trees of each sentences after that it sends
these dependency relations to rule engine system which has predefined rules file for
Italian grammar. These rules try to match themselves with information of dependency
relations and once they find a match, they return it to toolbox. After all dependency

4Analisi Logica in Italian

22

3.5. DESIGN OF JAVA CLASSES CHAPTER 3. DESIGN

Figure 3.4.1: System Overview

relations are consumed by defined rules, blue toolbox writes found complements in a
text file for showing them to user.

3.5 Design of Java Classes

The design procedure of Java classes that are interacting with rule engines plays
essential role in the overall system. These classes are forced to be POJO objects
by Jess. POJO is the acronym for Plain Old Java Object. Main characteristic of a
POJO object class is for each property that is defined in that class has a setter and
a getter method. It can be said that POJO paradigm is the most simplistic approach
in terms of intelligibility for object oriented paradigm. We have 6 different POJO
classes that are interacting with rule engine sets. These object classes are : Word,
R1Word, ourSubject, ourVerb, ourObject and ourNotKnownYet. Let’s observe the
relation between them and the design of each object classes.

First of all, Word object type is the “mother” of R1Word object class and R1Word
object is the “mother” of the rest. So it can be said that all object classes are actually
Word objects; see figure 3.5.1.

A Word object contains information about a specific word in a sentence such as
its position, lemma, part of speech(POS), relation with verb, etc. These information
are taken from the dependency tree and converted from streams of characters to
meaningful strings by creating Word object. When passing from one rule engine to
another this Word object 5 adds itself new information so it needs to transform itself
to another object type but of course this necessary information depends to the scope

5By Word object we mean all its children classes

23

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.5.1: Word Object Relations

of the rule set. Please, check the figure 3.6.1. This figure shows each step of object
transformation. Rule engine 1 and rule set 1 is designed to work with only Word
Object and after leaving this engine, before entering rule engine 2 Word object is not
anymore Word Object but R1Word object. The same happens in rule engine 3.

3.6 Design of Rule Files

The design of rule files are separated into 3 different rule categories. These rule sets
(or categories) have different roles and are linked to each other consecutively. Each
rule set possesses its own rule engine and each rule engine can work with only proper
Word object types; as described in the previous section. As a brief description the
aim of each rule set has its own scope :

1. Rule Set 1: This rule set breaks a taken sentence into number of main predicates
by considering its complements it holds.

2. Rule Set 2: After first rule set finishes its mission second rule set starts to find
subject, verb and object of sentence and leaves the indirect complements for the
next phase.

3. Rule Set 3: This rule set recognizes indirect complements that are defined in its
rule file.

Now, let’s take a closer look to each rule file and their purposes.

24

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.1: Rule Engines and their proper Objects

3.6.1 First Rule File

Our main criteria on logical analysis is Lexical Approach as described in section 3.3.
By using definition of Lexical Approach, we can infer that a sentence is a bag of words
in which there exists only one predicate but there are situations where a sentence
might have more than one predicate by using one or more conjunctions. For example
consider the sentence below :

“Andiamo a fare la spesa e poi ti incontrerò con i miei amici. ”

A simple way to reduce this issue is to break sentence into 2 chunks when an
additional predicate is encountered as main verb. Thus our first rule file is created and
also aim of the first rule engine is determined : Breaking Sentences. The figure 3.6.2
shows a simple rule for checking if the sentence has 2 predicates. It checks if there
exists a conjunction and a main verb which comes after that conjunction. If this
rule finds these two then it will print out “A sentence with 2 main verbs is found,
calling for separation....”. This rule can handle only 2 predicates so a question might
be “what if we have more?”. Well, then we need to write another rule which checks
if a sentence has 3 predicates and later may be another rule for 4 predicates and so
on. This depends on the language usage but if it needs more separations then same
pattern can be used. Also after writing each rule for separation, say for 3 predicates,
we need to clear one of the conjunctions thus now there are 2, otherwise the rule
engine is going to trigger itself again and again infinitely. So “cleaning rules” are also
play an important role for this particular rule set.

25

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.2: A simple rule for separating a sentence with two predicates

Another important information about this rule set is to distinguish each separated
sentence. For this reason a sentence number is assigned to each word object of the
sentence and each sentence’s word is put in a Java object called R1Word for the next
rule engine.

3.6.2 Second Rule File

After separating a sentence, depending on the number of main verbs it holds, now
our second step is to start working on words in sentences. First it necessary to find
the predicate of the sentence, then the subject of it. Also we know that there are
2 kinds of complements : Diretti and Indiretti. Complementi diretti are ones which
are easy to find compared to indiretti because parser gives proper information of a
word which is subject, verb and object more clearly. So the second step is to discover
which word(s) forms the subject, predicate and object of the sentence. What we do in
by creating this stage is we are inserting an intermediate stage between complementi
diretti and indiretti thus we alleviate commotion of finding everting at one time. If
we would use the approach of finding everything at once then readability of the code
would reduce.

Let’s take a look at the rule in figure 3.6.3 . This rule will be triggered when it
encounters with a word which has “AUX+TENSE” as its relation and has a comple-
ment type “not-known-yet” and once it is fired it will assign “AUX-TENSE-VERB”
to its complement type which was previously unknown. So this rule, like all defined
rules, checks all the words in a sentence in order to match itself with it. An example
which triggers this rule might be :

“Ho comprato una bambola per mia figlia.”

If our described rule above and depicted below was working on a rule engine and
if above sentence would be given as an input, it would start to check every word of
that sentence and when it finds a proper word that matches with itself then it would
assign to that word’s complement type AUX-TENSE-VERB (or auxiliary verb). For
this example it is word “Ho”.

26

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.3: Example rule for finding auxiliary verb

At the end of this stage each found verb, subject and object are put inside a proper
java object: ourVerb, ourSubject, ourObject and those which left uncategorized are
put in objects called ourNotKnown. These four Java classes are just children classes
of R1Word class meaning that they do not have any newly defined property in their
Java classes.

3.6.3 Third Rule File

The first rule set checks if there are more than one main verb exists in a sentence and
when such condition holds it separates them. The second rule set identifies subject,
verb and object of sentences and if there exists a word which is not compatible with
those 3 types it is left as not know. So, our only mission in this rule set is to find
this 4th category of words that are actually words forming complementi indiretti.
This stage takes ourVerb, ourObject, ourSubject and ourNotKnown objects from the
previous rule set. It might seem odd the necessity of ourVerb object type in this rule
set but by taking ourVerb objects we actually simplify the control flow of the program.
Let’s observe the example below by using it with the rule depicted in figure 3.6.5.

“Il gatto di Marco è molto intelligente.”

Let’s assume that we executed all the previous rule sets and in the previous rule
set it is found out that “Il gatto di Marco” is the subject of the sentence. But there is
a complemento di specificazione in this subject which is “di Marco”. The rule below is
defined in a way that it only searches ourSubject objects and for this case ourSubject
objects are composed of : Il, gatto, di, Marco. When the rule sees word’s lemma as
“di”, the relation of the word as “prep-rmod”- a special string which came from parser
- and preposition as the word’s part of speech then it tries to combine this particular
element with another subject element(or object) which comes after that “di” and if
it succeeds it fires the rule and assigns COMPLEMENTO-DI-SPECIFICAZIONE as
this word’s complement type.

The rule depicted below finished its purpose by assigning the complement type but
as you can see from the rule code snippet there are 3 binding operations. We already
used one of them for that particular word which comes after “di”. What about the

27

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.4: Dependency tree for “Il gatto di mia soralla”

other 2? The first binding changes the source number of the preposition “di”. This
is necessary because we are taking information from a parse tree which gives word
relations in a tree form meaning that they are linked to each other and if you want to
reach a particular element you need to pass each element that are in between. More
clearly, if we had a subject like :

“Il gatto di mia sorella “

If we want to reach “sorella” we need to first pass from word “mia” because it has
the necessary information in order to reach it. This can be shown easily by using
the figure 3.6.4. This “traversing” information is provided by source number and
destination number data in the TUT file; see figure 2.1.4. So next time when this
rule tries to match itself again for “di” and its dependents, this binding operation will
serve it to take the “position” of the “mia” and give it to “di” hence it can see word
“sorella”. Note that, we are not erasing word “mia”, we are just assigning its position
to “di”.

The third binding operation is assigning COMPLEMENTO-DI-SPECIFICAZIONE
to “di” itself.

28

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.5: Example rule for finding complemento di specificazione for Subject

Another importing point for this rule, and generally for this rule file set, is if
a complement type is matched it assigns same complement category to preposition
itself. Let’s take again same example :

“Il gatto di mia sorella”

After the above rule matches for assigning the proper complement type to “mia”
it assigns also to “di”. Next time when it matches for assigning complement type for
“sorella” it again assigns to “di”. This is a design choice too. There were 2 possibilities
for writing complement rules. One is described and the other one is : it should be
written another rule which assigns the proper complement type for each preposition.
This second “idea” is not bright. First it messes the code and the second thing it
slows down the execution process of the code.

3.6.4 Summary of Rule Files

For the purpose of describing aims of each rule files this subsection shows what hap-
pens when an example sentence is taken as an input. Our sentence for this subsection
is :

“Il gatto di Marco è scappato.”

First of all, when a sentence is taken all of words that are inside it are converted
to Word object then sent to first engine; see figure 3.6.6 for the real view of Word
objects in rule engine 1. The aim of this engine is to check if there is another main
verb in the sentence. For the example above there is only one main verb so it will
allow to pass all word objects to the next engine without touching any of them. From
passing from rule engine 1 to rule engine 2, word objects are transformed to R1Word
objects. This transformation step is essential for determining the sentence number of
each word when there is another main verb in the sentence.

29

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.6: Objects in Rule Engine 1

Now, rule engine 2 takes all R1Word objects, finds the subject, verb and object
of the sentence; see figure 3.6.7. For our example “Il gatto di Marco” is subject
and “è scappato” forms the predicate of the sentence. After this phase finishes, like
in the previous step, all objects are transformed. This time all R1Word objects
are transmuted into 4 different object classes : ourSubject, ourVerb, ourObject and
ourNotKnown. Each object class, as its name suggests, contains words that are found
as subject, verb, object. All those words that left unknown and words groups that
contain complementi indiretti are going to be processed by the next engine; rule
engine 3. Here by saying word groups we mean a subject or an object which includes
a complementi indiretti. For our example the subject “Il gatto di Marco” is inside
this “words groups” class. Because “di Marco” forms Complemento di Specificazione
which is complemento indiretto.

After word objects are transformed into 4 different categories, rule engine 3 takes
all of them, see figure 3.6.8, and searches if any of them contains complementi indiretti.
For our case it is “di Marco”. After it consumes all words it sends type of found
complements and all other information for each word in the sentence to Java for
writing process to text file.

30

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.7: Objects in Rule Engine 2

Figure 3.6.8: Objects in Rule Engine 3

3.6.5 Scripting

During thesis, one of main considerations about rule file sets was that if any manipu-
lations on the engine side is needed then the user should not interact with the source
code in order to make improvements on rules. And by using rule system language

31

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

as a scripting language provides user to manipulate behavior of the program without
touching any source code. This is done by the Jess’ compatibility with Java.

For instance if user wants to add new rules to the system then he/she only needs
to open proper .clp6script file and write the necessary rule. This is applicable for all
rule files.

3.6.6 Problem of Disordered Words and its Solution

Jess takes POJO objects and puts them in its working memory by assigning IDs.
It tries to match these working memory things, called facts, with user defined rules
and it does not care about the order. Although on one hand, this makes it perform
operations much faster, on the other hand this condition forces Jess to give results
unordered. As expected from a natural language tool, given results should be in an
order otherwise, the end user gets confused easily. So a simple and efficient solution for
this issue is to store IDs and word details in a HashMap. Since, Jess gives developers
to access Jess variables inside Java source code, 2 lists can be created, which contain
ID and word details, then these two variables can be passed to Java and inside Java,
these two lists can be put inside a HashMap. And lastly, when time comes for getting
results in order this HashMap structure will be used.

3.6.7 Queries

Queries play an important role in the design of the thesis program. When each rule
set consumes all words that are in the working memory of Jess, the last step is to
send found results to Java for object conversion. This “sending service” is carried out
by using query structure of Jess.

Look at figure 3.6.9. This set of query is designed for the second rule file. Re-
member that the second rule file tries to find subject, verb, object. And it leaves
exploration of complementi indiretti to the third rule file. Basically, these queries
search words in the working memory and when they find a proper one they save it
inside a list7 and since a Jess list can be reached by Java all R1Word objects which
their complement types are equal to a proper complement type like VERB, MODAL-
VERB or SUBJECT, etc. can be put inside a new word object type like ourVerb or
ourSubject, etc.

6extension format of Jess files
7name of the list here is the name of the query. For instance return-verbs or return-subjects.

32

3.6. DESIGN OF RULE FILES CHAPTER 3. DESIGN

Figure 3.6.9: Query example

33

Chapter 4

Implementation

4.1 System Architecture

In the design section, it is mentioned shortly about suitable approaches for building
a system which finds complementary parts of a sentence. And as a consequence, it is
found out that one subsystem is dependent to other such that they form predecessor
successor relationship. Thus forces program to be in sequential order. For implement-
ing this consecutiveness Batch-Sequential architecture pattern is selected. A general
information about A Batch-Sequential architectural pattern can be given as follows:

• It is formed by stages,

• each of its stages are independent of each other and a stage is only dependent
to its input data,

• each stage interacts with the next component by only sending(passing) its out-
put as input,

• the relation between stages form a graph which is Directed Acyclic Graph.

• each stage consumes all of its data first and than passes that data to the next
one. This provides modifiability of a stage without touching others.

A General overview of system architecture can be described as follow:
A text file which contains natural language sentences is taken as an input to the

system. Then system sends this text file to Tule Parser Server which is remote and
waits the return of parse tree. After parse tree (or dependency tree) is returned from
the Tule Server it directly sends to other system which takes Rule Scripts’ Folder
besides parse tree. This “new” system first transforms the dependency tree to object
form and by using the rule engines and rule scripts it publishes found complements
on a text file; figure 4.1.1 depicts general architecture.

34

4.2. PROGRAM VS. TOOL SET CHAPTER 4. IMPLEMENTATION

Figure 4.1.1: General System Architecture

4.2 Program vs. Tool Set

Until now, all of the work that has been done is shown as one single program. But, the
most important difference which separates the implementation chapter from others is
that in reality the whole system is composed by 2 distinct and consecutive programs.
Thus form a tool set : CallParser & CallRuler.

1. CallParser calls TULE parser and gives the dependency tree as output.

2. CallRuler takes output of the CallParser and finds the relations between words
then by using rule engines it gives complements of given sentences.

4.3 Splitting Tools

Using a dependency parser produces dependencies of each word in the given sentences
but it is possible that parser does not give the appropriate trees, even though this
situation exceeds the limit of this thesis, for future improvement of the tool set/thesis,
this possibility can not be avoided. Otherwise, there will be situations with undesired
results - and actually it happens with usage of specific prepositions; see Conclusion
section. Hence, a flexible approach is needed which allows users to manipulate de-
pendency tree, either by hand or by using an extra tool; figure 4.3.1. Also this is
another reason why the architecture of the tool set is built with Batch & Sequential
paradigm.

35

4.4. DETAILS OF CALLPARSER CHAPTER 4. IMPLEMENTATION

Figure 4.3.1: System architecture with an Extra Component

4.4 Details of CallParser

The CallParser tool is composed of 4 different packages that are : Command Package,
File Package, Parser Package and ReflectVariables Package.

Figure 4.4.1: CallParser Packages

36

4.4. DETAILS OF CALLPARSER CHAPTER 4. IMPLEMENTATION

Figure 4.4.2: Command UML

1. Command Package : This package holds input parameters which are given by
user and helps the system interacts according to these input.

2. File Package : This package helps to receive input file and create output file in
the paths that user has determined by using the command line; see figure 4.4.3.

3. Parser Package : This package serves to connect to Tule Parser server locally
and get dependency trees for the sentences It also helps for determining language
of parser server and its IP address and port number which can be specified by
command line; see figure 4.4.4.

4. ReflectVariables Package : This package helps to manipulate static variables of
used .jar libraries. Hence it helps us to change the IP address, Port number of
the server dynamically.

37

4.4. DETAILS OF CALLPARSER CHAPTER 4. IMPLEMENTATION

Figure 4.4.3: File Package UML

Figure 4.4.4: Parser Package UML

38

4.4. DETAILS OF CALLPARSER CHAPTER 4. IMPLEMENTATION

In next sections, description of CallRuler tool will be shared. For finding comple-
mentary parts of a sentence it might be seen that all important work is done by
the CallRuler tool hence its implementation details are more important. Still this is
partially correct, during the implementation phase of the CallParser tool some im-
portant techniques are used which might be useful and interesting for developers :
Decompilation, Reflection.

4.4.1 Decompilation

Decompilation of Java source code is easy. And this feature can be used in order to
integrate your code with someone else’s code with using its code as a library. This
property is followed during the implementation of CallParser. Since Tule Parser has
already been built and written in Java. It can be used as a usual .jar library. Other
than this, reading someone else code is the only thing that has to be done. During
this phase a Java Decompiler tool is used which has plugins both for Eclipse and
IntelliJ IDEA.

4.4.2 Reflection

Reflection is another used feature during the implementation of CallParser tool. Re-
flection serves to manipulate Java classes that are designed to be “untouchable” at run
time. For our case variables like IP address of TULE server in the TULE’s “.jar” file
are statically determined and can not be neither changed nor touched. Even though
due to performance reasons Reflection usage is discouraged, in situations like it is
negligible. Thus now a user can enter what ever IP address he/she assigned to Tule
Server.

public stat ic void s e t Ins tanceVa lue (f ina l Object c l a s s I n s t anc e , f ina l St r ing
fieldName , f ina l Object newValue) throws NoSuchFieldException ,
I l l e g a lAc c e s sExc ep t i on {

f ina l Fie ld f i e l d = c l a s s I n s t an c e . ge tC la s s () . g e tDec la r edF ie ld (
f ie ldName) ;

f i e l d . s e tAc c e s s i b l e (true) ;
f i e l d . s e t (c l a s s I n s t anc e , newValue) ;

}

The description of the above code can be given as :
First in order to use this method it is required to create an instance of that par-

ticular class. Hence we have an object of that class.This means that, that particular
object contains the default values which are untouchables. What does this method
do? It takes that created object, it takes the field name that has to be changed, and
the value that we want to replace with the original field name. At the end it replaces
the old value with our value.

39

4.5. DETAILS OF CALLRULER CHAPTER 4. IMPLEMENTATION

Figure 4.5.1: CallRuler Packages

4.5 Details of CallRuler

The CallRuler tool is composed of 5 packages that are : Commander Package, Files
Package, Transformer Package, Turin Package and Rules Package.

1. Commander Package : This package, as in the CallParser tool, holds input
parameters which are taken from user and helps the system interaction between
user and the tool by sending these information to the appropriate packages; see
figure 4.5.2 .

2. Files Packages: Different than the CallParser’s File Package, Files Packages has
3 different classes that serve to give output for particular information: Base-
Facts, RelationsText and RuleText; figure 4.5.3 shows classes of this package.

• RelationsText class gives the output of dependency parser in TUT format
in a path determined by the user.

• BaseFacts class gives the output of dependency relations of words in a
sentence. Output path is determined by the user.

• RuleText class takes rule files from the user and sends them to appropriate
rule engines.

40

4.5. DETAILS OF CALLRULER CHAPTER 4. IMPLEMENTATION

Figure 4.5.2: Commander Package

Figure 4.5.3: Files Package

41

4.5. DETAILS OF CALLRULER CHAPTER 4. IMPLEMENTATION

Figure 4.5.4: Turin Package

3. Turin Package : This package holds the data converted from dependency tree to
TUT format. Transformer package will use these information for creating word
objects.

4. Transformer Package: This package has necessary methods for converting strings
of data, taken from TUT format, to java objects. It creates Word objects and
put those word objects to an array structure. An important note about Word
class is that it is a POJO1 class. The characteristic of this object paradigm is
for each its defined property in the class it has a setter and a getter method.
By using this object paradigm we can interact with Jess. Another important
feature of Word Class is that it is the “mother” of all other object classes that are
interacting with Jess engine such as R1Word, ourSubject, ourVerb, ourObject
and ourNotKnown classes; see figure 4.5.5.

5. Rules Package : This package serves to send Word objects and its children class
objects to separate rule engines which are positioned sequentially. It also serves
to send .clp files to rule engines for processing Word objects and its variants.
At the end of each processing, it returns query results from rule engines; see
figure 4.5.6.

1Plain Old Java Object

42

4.5. DETAILS OF CALLRULER CHAPTER 4. IMPLEMENTATION

Figure 4.5.5: Transformer Package

43

4.5. DETAILS OF CALLRULER CHAPTER 4. IMPLEMENTATION

Figure 4.5.6: Rules Package

44

Chapter 5

Conclusion and Future Work

The aim of this thesis was finding the proper complementary parts of a given verbal
frame in a natural language, in this case in Italian. In order to do so, two separate tools
were built by using an Italian parser and a rule based system that works dependently
to the results of the parser. The design and implementation sections describe the
systems behavior in detail.

The results have shown that the data taken from the parser is sometimes enough
but sometimes it is not. Also, this data is always dependent to the verb of the
sentence. Hence, this outcome proves that the used approach and methods in this
thesis are in fact correct. However the lack of the information between verbs and its
possible complements might causes inaccurate consequences when given a sentence.

To avoid unwanted results there is the need of an auxiliary system. This auxiliary
component should hold semantic information of verbs and their usages in sentences.
So this way, the accuracy of the outcome will increase. Such systems have been
developed previously for English as in VerbNet or FrameNet but there are none for
Italian and very few for other languages. The development and implementation of a
system like this requires time, effort and most importantly a community of engineers
who can collaborate with experts in linguistics. Hopefully, this thesis will show others
how important this problem is and will promote them to work for progression of such
systems.

45

Bibliography

[1] O.L. Oliveira, AM. Monteiro, and N. Trevisan Roman. Can natural language be
utilized in the learning of programming fundamentals? In Frontiers in Education
Conference, 2013 IEEE, pages 1851–1856, Oct 2013. 5

[2] V. Punyakanok and D. Roth. The use of classifiers in sequential inference. In
NIPS, pages 995–1001. MIT Press, 2001. 8

[3] Illinois shallow parser. URL: http://cogcomp.cs.illinois.edu/demo/

shallowparse/?id=7 [cited 18/09/2014]. 8

[4] Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Process-
ing: Volume 1-Volume 1, pages 1–10. Association for Computational Linguistics,
2009. 8

[5] Stanford online parser. URL: http://nlp.stanford.edu:8080/parser/ [cited
18/09/2014]. 9

[6] Cristina Bosco, Manuela Sanguinetti, and Leonardo Lesmo. The parallel-tut: a
multilingual and multiformat treebank. In LREC, pages 1932–1938, 2012. 11

[7] Michael Lee Scott. Programming language pragmatics. Morgan Kaufmann, 2000.
13

[8] Ernest Friedman-Hill. JESS in Action. Manning Greenwich, CT, 2003. 13

[9] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial intelligence, 19(1):17–37, 1982. 15

[10] Adrian A Hopgood. Intelligent systems for engineers and scientists. CRC press,
2011. 16

[11] Complementi diretti in detail [online]. URL: http://www.

zanichellibenvenuti.it/wordpress/?p=6162 [cited 18/09/2014]. 20

46

http://cogcomp.cs.illinois.edu/demo/shallowparse/?id=7
http://cogcomp.cs.illinois.edu/demo/shallowparse/?id=7
http://nlp.stanford.edu:8080/parser/
http://www.zanichellibenvenuti.it/wordpress/?p=6162
http://www.zanichellibenvenuti.it/wordpress/?p=6162

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Erin McKean. The new oxford american dictionary, volume 2. Oxford University
Press New York, NY:, 2005. 21, 22

[13] A CERRINA. Elementi di sintassi strutturale, 2001. 22

47

Appendix A

User’s Manual

As mentioned before there are two programs for this thesis : CallParser and CallRuler.
They are 2 dependent tools. The usage of CallRuler is dependent to the output
of CallParser. Both of these tools are designed to be work in any JRE installed
environment. And both tools are in .jar files so that if these tools are needed by
someone else in his/her application they can be included as libraries1.

A.1 CallParser User Manual

First of all, in order to get the dependency tree from the TULE Parser you first need
to install the TULE Parser Server to your local host, otherwise CallParser.jar file will
send you connection errors.

After you downloaded the CallParser.jar file open a terminal window, go to the
folder in which the CallParser.jar is located and then type one of the following:

1. Help Option : Gives you the all possible input parameters by their
description.

java −j a r Ca l lPar se r . j a r −h

or

java −j a r Ca l lPar se r . j a r −−help

2. Input a File : This command is mandatory in order to give a text file to the
parser.

java −j a r Ca l lPar se r . j a r − i /your_input_path/where_your_input_fi le_is . txt

1The code is well documented

48

A.1. CALLPARSER USER MANUAL APPENDIX A. USER’S MANUAL

This command line means call the CallParser.jar given the .txt file as input(-i).
And by default it will generate the dependency tree in the same path(/your_input_path/)
as an output file called Output.txt.

3. Output Path : This command is optional.

java −j a r Ca l lPar se r . j a r − i /your_input_path/
where_your_input_fi le_is . txt −o /your_output_path/

This command includes the first command and gives you the option to specify
the output path. And the program will automatically generate the output text
file as Output.txt by default.

4. Another way for Output : This command is optional.

java −j a r Ca l lPar se r . j a r − i /your_input_path/
where_your_input_fi le_is . txt −o /your_output_path/
you_name_the_output . txt

This command line includes the first command andy the second command. And
will generate the output file as you named it in your_output_path.

5. Determining the IP and PORT number: This command is optional.

java −j a r Ca l lPar se r . j a r − i /your_input_path/
where_your_input_fi le_is . txt −ip 192 . 168 . 1 . 1 09 : 5 000

This command will allow you to insert an ip address and port number for con-
necting to the TULE Parser Server. By default ip and port number is set to :
192.168.1.103:5000.

6. Determining the Language of the Server :

java −j a r Ca l lPar se r . j a r − i /your_input_path/
where_your_input_fi le_is . txt −lang eng l i s h

This command will allow you to specify the language of the server. By default
the server language is set to ITALIAN. And if somehow you decide to insert
English sentences into the parser then you need to open the dispatcher for that
particular language. This particular step is described in the “For setting the
Tule Parser” section below.

49

A.2. CALLRULER USER MANUAL APPENDIX A. USER’S MANUAL

A.2 CallRuler User Manual

In order to run CallRuler Tool, you need to give a sentence to the CallParser tool
and use the output of that tool as the input of CallRuler tool. As in the previous
case, you need to download .jar file to your computer and also the rule scripts which
you can find them as .zip files on the repository. After these steps you can open a
terminal window, go to the folder where the CallRuler is located. This time you do
not need to have a server connection. Just type one of the following:

1. Help Option : Gives you the all possible input parameters by their
description.

java −j a r Ca l lRuler . j a r −h

or

java −j a r Ca l lRuler . j a r −−help

2. Input a File : This command is mandatory for giving the dependency tree to
the rule engine.

java −j a r Ca l lRuler . j a r − i /your_input_path/
where_your_input_dependency−t r e e_ f i l e_ i s . txt

This command will take the input file from the path that you gave. Attention!
You can only insert the dependency tree of the given text file to Parser. Other-
wise, nothing will work. And as always the text file should end with .txt . If you
try to execute this command by itself you should receive an error message.

3. Insert Rule Files :

java −j a r Ca l lRuler . j a r − i /your_input_path/
where_your_input_dependency−t r e e_ f i l e_ i s . txt −R /
your_input_path_of_Rules_FOLDER/ X_1. c lp X_2. c lp X_3. c lp

Takes the .clp scripts and runs it on the given text file. This option can only 3
.clp files as an input. And the first argument should be the path of the .clp files!
Meaning it should be the folder and should end with ’/’ ! Also the order of the
rule scripts is important! Because each of rule scripts has different scopes.

A.3 A Crucial Note About the Terminal Commands

Please note that the terminal commands might change in the future; in a positive way.
So please always check the read me file or the repository for further improvements.

50

A.4. SETTING TULE SERVER APPENDIX A. USER’S MANUAL

A.4 Setting Tule Server

Since Tule Parser is not downloadable from online, it is mandatory for me to describe
the steps in order to set it up on your local or on a virtual machine.

First of all, in the CallParser repository in the downloads section there is a file
called TULEDISTR.zip which is for installing the server. And there is another file
which is called viewerTULETUT.jar. This file is for seeing the dependency tree in a
graph from. This second file is not mandatory but it is a handy tool.

A.4.1 Steps for Installing TULE Server

1. Open the folder and click to Clisp folder.

2. Click to CLisp.exe. If your local host does not have common lisp interpreter
version 2.35, you need to install this specific version. Otherwise, it will not
work.

3. Then go to the Server Folder which is under the Root folder.

4. And first click to compile.bat then dispatcher.bat

5. Lastly, click the parser type which you want to take the dependency tree. (ex
parserIt.bat)

The server should now be ready to receive inputs from the CallParser.

51

	Introduction
	Motivation
	Purpose of Thesis
	Thesis Organization

	Used Technologies
	Linguistic Framework
	Parser Types
	LinguA Parser
	TextPro Tool Parser
	TULE Parser & TUT TreeBank
	Motivation of Selected Technologies

	Rule Based Systems
	Architecture of a Rule Based System
	Working Strategies of Rule Based Systems
	Existed Technologies
	Prolog
	Drools JBOSS
	CLIPS
	JESS

	Motivation for Selected Technology

	Java
	JCommander

	Design
	Sentence Structure in Italian
	Complement Types
	Verbs in Italian

	Logical Analysis
	Lexical Approach
	System Design
	Design of Java Classes
	Design of Rule Files
	First Rule File
	Second Rule File
	Third Rule File
	Summary of Rule Files
	Scripting
	Problem of Disordered Words and its Solution
	Queries

	Implementation
	System Architecture
	Program vs. Tool Set
	Splitting Tools
	Details of CallParser
	Decompilation
	Reflection

	Details of CallRuler

	Conclusion and Future Work
	Bibliography
	User's Manual
	CallParser User Manual
	CallRuler User Manual
	A Crucial Note About the Terminal Commands
	Setting Tule Server
	Steps for Installing TULE Server

