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Abstract 

In this thesis we present an application of recent theoretical results regarding Markov 

Jump Linear Systems to the control of systems affected by random faults. More 

precisely, we consider a feedback control system where the actuation signal is 

intermittent, due to the occurrence of faults. The model of faults is described by a 

discrete-time Markov chain, while the dynamics of the plant and the controller is 

linear. As an additional control input, a deterministic scheduling signal is considered 

that can switch among a set of possible controllers. In that case, the model becomes 

a Dual Switching Linear System. 

The main problem addressed in this work is the design of suitable switching feedback 

strategies able to ensure mean-square stability and the attainment of some 

guaranteed level of performance in terms of a quadratic cost function. 

The design is carried out by using the Matlab LMI-Toolbox under different 

assumptions on the control scheme (single/multi plant, single/multi controller) and 

the parameters of the underlying Markov chain. Several simulations are carried out 

in order to validate the theoretical results, to assess the degree of conservatism of 

the results on the performance, and to compare different strategies for computing 

the input applied to the plant when the actuator is faulty (zero-input vs. input-hold). 

 

 

Keywords: Markov Jump Linear Systems, Dual-switching, random faults, 

Mean-Square stability, H2 performance, feedback systems. 
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Sommario 

In questa tesi presentiamo l’applicazione di alcuni recenti risultati teorici sui sistemi 

lineari a commutazione Markoviana (MJLS) al controllo di sistemi soggetti a guasti. 

Precisamente, consideriamo un sistema di controllo in retroazione in cui il segnale di 

attuazione è intermittente a causa della presenza di guasti. Il modello dei guasti è 

descritto da una catena di Markov a tempo discreto, mentre le dinamiche 

dell’impianto e del controllore sono lineari. Come ingresso di controllo aggiuntivo si 

considera un segnale deterministico di schedulazione capace di commutare 

all’interno di un insieme di possibili controllori. In tal caso il modello diventa un 

sistema lineare a duplice commutazione (Dual Switching Linear System).  

Il principale problema trattato in questo lavoro è il progetto di opportune strategie di 

commutazione in retroazione capaci di assicurare la stabilità in media quadratica e di 

ottenere un livello garantito di prestazioni in termini di una funzione di costo 

quadratica. 

Il progetto è realizzato mediante il Matlab LMI-Toolbox formulando diverse ipotesi 

sullo schema di controllo (impianto singolo/doppio, controllore singolo/doppio) e sui 

parametri della sottostante catena di Markov. Sono state condotte varie simulazioni 

allo scopo di convalidare i risultati teorici, valutare il grado di conservativismo dei 

risultati di prestazione e confrontare diverse strategie per calcolare l’ingresso 

all’impianto quando l’attuatore è in condizioni di guasto. 

 

 

Parole chiave: sistemi lineari a commutazione Markoviana, Dual-switching, guasti 

casuali, stabilità quadratica media, prestazione H2, sistemi retroazionati. 
  



3 
 

Acknowledgments 

 

First and foremost, we would like to show our deepest gratitude to our supervisor, 

Prof. Paolo Bolzern, a respectable, responsible and resourceful scholar,who has 

provided us with valuable guidance in every stage of the writing of this thesis. 

Without his enlightening instruction, impressive kindness and patience, we could not 

have completed our thesis. His keen and vigorous academic observation enlightens 

us not only in this thesis but also in my future study. 

     

We shall extend our thanks to our parents, for their endless supports in these years 

we studying far away home. 

 

 

 

Sincerely 

Wang & Zhang 

September,2014 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



4 
 

Contents 

Abstract ............................................................................................................................................. 1 

Sommario .......................................................................................................................................... 2 

Acknowledgments ............................................................................................................................. 3 

List of Figures .................................................................................................................................... 5 

1 Introduction ................................................................................................................................... 7 

1.1 Motivation ........................................................................................................................... 7 

1.2 Objective ............................................................................................................................. 8 

1.3 Organization of thesis.......................................................................................................... 8 

2 Scheduling problem in Control systems subject to random faults ................................................. 9 

2.1 Single Plant Single controller Scheme ................................................................................. 9 

2.2 Single Plant Multi-Controller Scheme ............................................................................... 10 

2.3 Multi-Plant Multi-Controller Scheme ................................................................................ 11 

3 Dual-switching Markov Jump Linear systems............................................................................... 13 

3.1 Markov Chains in discrete time ......................................................................................... 13 

3.2 Markov Jump Linear Systems ............................................................................................ 17 

3.3 Dual-switching systems ..................................................................................................... 21 

4 Scheduling and Control Design .................................................................................................... 25 

4.1 The model ......................................................................................................................... 25 

4.2 Single Plant Single controller Scheme  ............................................................................. 30 

4.3 Single Plant Dual Controller scheme ................................................................................. 38 

4.4 Dual-plant Dual-controller scheme ................................................................................... 68 

4.5 Possible Extension ............................................................................................................. 73 

5 Bibliography ................................................................................................................................. 74 

 

 
 
 
 
 



5 
 

 

List of Figures 

 

Figure1 scheme of single plant single controller ..................................................................... 9 

Figure2 scheme of single plant multi-controller.................................................................... 10 

Figure3 scheme of multi-plant multi-controller ...................................................................... 11 

Figure 4 𝛔 jumping state ....................................................................................................... 18 

Figure5 single controller MS-stable region ............................................................................. 32 

Figure6 single controller upper bound J2-surface................................................................... 33 

Figure7 single controller simulation J2 ∗-surface ................................................................... 34 

Figure8 particular example z(k) plot for single controller scheme 1 ....................................... 35 

Figure9 particular example z(k) plot for single controller scheme 2 ....................................... 36 

Figure10 particular example z(k) plot for single controller scheme 3 ..................................... 37 

Figure11 difference on initial state ......................................................................................... 42 

Feagure12 dual controller MS-stable region ........................................................................... 42 

Figure13 particular example for dual controller of σ sample for case 1 ............................... 43 

Figure14 particular example for dual controller of z(k) for case 1 .......................................... 44 

Figure15 particular example for dual controller of γ for case 1 .............................................. 44 

Figure16 particular example for dual controller of σ sample2 for case2 ................................ 45 

Figure17 particular example for dual controller of z(k) for case 2 .......................................... 46 

Figure18 particular example for dual controller of γ for case 2 .............................................. 46 

Figure19 particular example for dual controller of σ sample for case 3 ................................. 47 

Figure20 particular example for dual controller of z(k) for case 3 ........................................ 48 

Figure21 particular example for dual controller of γ for case 3 .............................................. 48 

Figure 22 particular example for dual controller of σ sample for case 4 ................................ 49 

Figure 23 particular example for dual controller of z(k) for case 4 ......................................... 50 

Figure24 particular example for dual controller of γ for case 4 .............................................. 50 

Figure25 dual controller for performance plot of z(k) and γ for case 1 .................................. 52 

Figure26 dual controller for performance plot of z(k) and γ for case 2 .................................. 53 

Figure27 dual controller for performance plot of z(k) and γ for case 3 .................................. 54 

Figure28 dual controller for performance plot of z(k) and γ for case 4 .................................. 55 

Figure29 Φ matrix MS-stable regions ..................................................................................... 58 

Figure30 input-hold configuration α β MS-stable regions ...................................................... 59 

Figure31 input-hold configuration of σ sample for case 1 ...................................................... 60 

Figure32 input-hold configuration of z(k) for case 1 ............................................................... 60 

Figure33 input-hold configuration of γ for case 1 ................................................................... 61 



6 
 

Figure34 input-hold configuration of z(k) for case 2 ............................................................... 61 

Figure35 input-hold configuration of γ for case 2 ................................................................... 63 

Figure36 input-hold configuration of σ sample for case 3 ...................................................... 63 

Figure37 input-hold configuration of z(k) for case 3 ............................................................... 64 

Figure38 input-hold configuration of γ for case 3 ................................................................... 64 

Figure39 input-hold configuration of z(k) for case 4 ............................................................... 65 

Figure40 input-hold configuration plot of γ for case 4............................................................ 65 

Figure41 different control energy effort weight behavior ...................................................... 67 

Figure42 MS-stability region for dual-plant dual-controller scheme ...................................... 70 

Figure43 particular example plots for dual-plant dual-controller scheme ............................. 72 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



7 
 

1 Introduction 

1.1 Motivation  

One of the most important issues in control systems is their capability of maintaining 

an acceptable behavior and meeting some performance requirements even in the 

presence of abrupt changes in the system dynamics. These changes can be due to 

abrupt environmental disturbances, component failures or repairs, changes in 

subsystems interconnections and so on. In some situation these systems can be 

modeled by a set of discrete-time linear systems with modal transition given by a 

Markov chain. This class is known in the specialized literature as Markov jump linear 

systems (MJLS). Applications cover diverse fields including economics, biomedicine, 

networked control, fault tolerant systems, communication networks, aerospace etc. 

Switching linear systems are widely studied for their ability to describe the behavior 

of systems where the dynamics changes abruptly due to jumps in parameters taking 

values in a finite set. It is well known that the presence of jumps may significantly 

affect the performance and the stability of the switching system. The switching signal 

can be modeled as either a deterministic or a random signal taking values in a finite 

set. In various applications (such as networked control, fault tolerant systems) 

problems are encountered where the system is jointly affected by two independent 

external sources, for instance a manipulated switching signal and stochastic jumps. 

These systems are referred as dual-switching systems.  Random packet dropout can 

cause serious problem in data transitions. Thanks to MJLS, the random faults can be 

described in a stochastic setting by means of a Markov chain. If we have more than 

one controller in parallel in a feedback system, then there is a potential application of 

dual switching framework. In this framework, we consider a scheduling problem for a 

feedback system with actuator subject to random faults.    
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1.2 Objective 

One of the main topics in the study of MJLS is investigating the notion of stability. 

Several definitions of stability have been given. The most significant stability notion 

for the analysis of such systems is Mean-Square (MS) stability. 

Besides stability, it is important to endow the control system with other important 

properties. In this aspect, it is customary to define an index of performance related 

to a quadratic cost, called H2 index. This cost represents the energy of the controlled 

output starting from a given initial state. Keeping this cost small (or even minimizing 

it) implies a reduced effect of the initial state on the output. 

In this thesis we will apply recent mathematic tools from dual-switching MJLS theory 

to different problems of scheduling and control systems suffered by random faults 

step by step. Using simulation from Matlab to compare the differences between 

different feedback systems, and see how the mathematic tools work on those MJLS.   

 

1.3 Organization of thesis 

-Chapter2 introduces an overview of the feedback system scheme and the challenges 

we meet. 

-Chapter3 briefly review some notion of mathematic tools that we will implement in 

this thesis, such as Markov chain, Markov Jump Linear Systems, dual-switching 

systems , Mean-Square stability and so on.  

-Chapter4 precisely shows how we apply the mathematical theory illustrated in 

Chapter3 to those systems introduced in Chapter2. We will also discuss some results 

obtained from the simulations and introduce possible extension. 
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2 Scheduling problem in Control systems 

subject to random faults 

In several modern control systems, a digital communication network is used to 

support the data transmission between sensors, actuators and controllers. Therefore, 

this are called Networked control Systems (NCS). 

Networked control systems have been applying in a broad range of areas such as 

mobile sensor networks, remote surgery, and automated highway systems. However, 

using several dedicated independent connections introduces new challenges to the 

control system designer as it introduces important limitations and non-idealities 

which have be considered in order to guarantee stability and performance.  

For instance, each communication channel can only carry a finite amount of in 

information. Moreover, the data transmitted over a network may subject to 

unpredictable delay. The data also might be lost while travelling along the 

network.[1]  

In this thesis, we will focus on the basic mechanism of packet dropout, which can be 

described in a stochastic setting by means of a Markov chain.   

 

2.1 Single Plant Single controller Scheme 

First we introduce single plant single controller case. 

 

 
Figure1 scheme of single plant single controller 
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In this scheme, the channel from controller to plant is affected by the phenomenon 

of packet dropout. So, in some time instants, the control u which applied to the plant 

is different from the original u�  delivered by the controller. 

In this simplest case, σ is a binary variable describing the fact that the actuator is 

working properly (healthy mode) or is unable to transmit commands to the plant 

(faulty mode) 

In this thesis, two configurations will be considered: 

One is zero-input configurations: 

When the data is not received by the plant, the input u=0 is applied to the system. 

Another one is input-hold configurations: 

When the data is not received by the plant, the previous value of the input is applied 

to the system.  

 

 

2.2 Single Plant Multi-Controller Scheme 

Second, we consider the switching case, which contain M different controllers. 

Instead of one deterministic controller, the input receive data from which controllers 

will be decided by the switching signal  γ (we can also call it scheduling signal). 

 

 

 
Figure2 scheme of single plant multi-controller  

 

 

- 

u�  
Actuator Plant 

u 
σ 

z 

Controller1 

ControllerM 

γ 

Sensors 

…
. e 



11 
 

The scheduling signal γ taking values in a set M= {1,2 … , M}. Like the single 

controller case, σ is a binary variable describing healthy mode or faulty mode for 

plant. 

The same, two configurations will be considered: zero-input configurations and 

input-hold configurations: 

 

2.3 Multi-Plant Multi-Controller Scheme 

Considering a scheduling problem for a multi-loop networked control system subject 

to packet dropout. Precisely, assume M, a linear (possible unstable) plants have to be 

controlled by a single regulator exchanging input-output data through a shared 

network, as described in figure 3. The regulator is allowed to attend only one plant at 

a time according to the scheduling signal γ taking values in a finite set M=

{1,2 … . . M}. Transmission of actuator data over the net work is subject to random 

faults modeled by a Markov process σ, σ is a binary variable describing healthy 

mode or faulty mode.[9] 

 

 

 

 

 

 

 

 

 

 

 

 
Figure3 scheme of multi-plant multi-controller  

σ 

 

 

z10 

u�M 

u�1 

+ 

...... ...... 

ControllerM 

Plant 1 

Plant M 

 
 
 
Actuator 

u1 

uM 

Controller1 
γ 

z1 

zM zM0  

+ 

- 

- 



12 
 

The same, two configurations will be considered: zero-input configurations and 

input-hold configurations: 

 

In these three schemes, faulty mode indicates packet dropout situations; we will 

discuss how to guarantee simultaneous stability and the fulfillment of some global 

H2 performance specifications for this faulty mode in following chapters 
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3 Dual-switching Markov Jump Linear 

systems 

In this chapter, we will discuss some mathematical tools that is useful in the analysis 

and design of systems subject to random faults. 

The occurrence of random faults in the system will be described in a stochastic 

setting in terms of a discrete-time Markov chain. A brief review if the basic properties 

of Markov Chain are provided in section 3.1. 

 

The next, the class of Markov Jump Linear Systems (MJLS) will be introduced. These 

models which consist of a finite set of linear subsystems (called modes) and a 

switching signal, described as a Markov Chain, governing the jumps form one 

subsystem to the next one. Fundamentally notion related to MJLS, such as stability 

and performance, will be revealed in section 3.2. 

 

Finally, section3.3 deals with extensions of the MJLS modeling framework which is 

able to cope with two different switching signals, the switching signal acting as a 

disturbance is modeled again as a Markov Chain, while the second switching signal is 

to be regarded as a control variable, used to attain desired properties, like stability 

and guaranteed performance. This class of models is called Dual-switching Systems.   

 

 

3.1 Markov Chains in discrete time 

A Markov chain is a discrete finite system that undergoes transitions from one state 

to another on a state space. It is a random process usually characterized as 

memoryless: the next state depends only on the current state and not on the 

sequence of events that preceded it. His specific kind of "memoryless" is called 

http://en.wikipedia.org/wiki/Memorylessness�
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the Markov property.Markov chains have many applications as statistical models.[2] 

3.1.1 Markov property 

To be precise, Let Xk, k = 0, 1, 2 . . ., be a discrete time stochastic process taking 

values in a finite set s = {1,2, … N}. 

The Markov property holds: 

P{Xk = in | X0 = i0, . . . ,Xk−1 = ik−1} = P{Xk = ik | Xk−1 = ik−1}, i0, . . . , ik ∈ S. 

Which says that the probabilities associated with future states only depends on the 

current state, and not on the full history of the process. Any process Xk, k ≥ 0, 

satisfying the Markov property is called a discrete time Markov chain. 

3.1.2 Transition matrix 

The one-step transition probability of a Markov chain from state i to state j, denoted 

by λij(k), is 

λij(k) = P{Xk+1 = j | Xk = i}. 

Then we can define the transition matrix: 

The transition matrix Λ for a Markov chain with state space S = {1, 2, . . . ,N} and 

one-step transition probabilities λij is the N × N matrix: 

Λ =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛
λ11 λ12

λ21 λ22

⋯
λ1N

λ2N
⋮ ⋱ ⋮

λN1 λN1 ⋯ λNN⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 

If the state space S is infinite, then Λ is formally defined to be the infinite matrix 

with i, jth component λij . 

the matrix Λ satisfies 

0 ≤ λij ≤ 1,   1 ≤ i, j≤ N, 

�λij = 1
N

j=1

 

Any matrix satisfying the above two conditions and is called a Markov or stochastic 

matrix, and can be the transition matrix for a Markov chain.  

http://en.wikipedia.org/wiki/Markov_property�
http://en.wikipedia.org/wiki/Markov_property�
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3.1.3 State probability distribution 

Let πi(k) denote the probability of finding the chain in state I at time k, the vector 

π(k) = �
π1(k)

…
πN(k)

� 

is called the state probability distribution at time k. Of course, the elements of π(k) 

sum up to 1, ∀k. 

It can be shown that, starting from an initial state probability distribution π(0), the 

time evolution of π(k), k ≥ 0 is the solution of the following equation: 

π(k + 1)T = π(k)TΛ 

Where Λ is the one-step transition matrix. So, at a generic time k > 0, it result that 

π(k)T = π(0)TΛ
k
 

It is interesting to understand under which condition the limit of π(k) for k → ∞ is 

constant. If this limit exists, it is called stationary distribution. 

 

 

3.1.4 Stationary distribution 

The n-step transition probability, denoted λ (n)
ij , is the probability of moving from 

state i to state j in n steps,  

λ (n)
ij= P{Xn = j | X0 = i} = P{Xn+k = j | Xk = i}, 

 

Let λn
ij denote the i, jth entry of the matrix λn. For all n ≥ 0 and i, j ∈ S, p(n)

ij = 

Pn
ij . 

In order to get the stationary distribution for every process Xn, there are some 

preconditions one the transition matrix. 

First, let us introduce some notations. 
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Reducible 

The state j ∈ S is accessible from i ∈ S, and we write i → j, if there is an n ≥ 0 such 

that 

λ (n)
ij > 0. 

That is, j is accessible from i if there is a positive probability of the chain hitting j if it 

starts in i. 

States i, j ∈ S of a Markov chain communicate with each other, 

and we write i ↔ j, if i → j and j → i. We may now decompose the state space using 

the relation ↔ into disjoint equivalence classes called communication classes. 

 

A Markov chain is irreducible if there is only one communication class. That is, if i ↔ j 

for all i, j ∈ S. Otherwise, it is called reducible. 

 

Periodic 

Periodicity helps us understand the possible motion of a discrete time Markov chain. 

The period of state i ∈ S is 

d(i) = gcd{n ≥ 1 : λ(n)
ii > 0}, 

Where, gcd stands for greatest common divisor. If {n ≥ 1: λ (n)
 ii > 0} = ∅, we take d(i) 

= 1. If d (i) = 1, we say that i is aperiodic, and if d (i) > 1, we say that i is periodic with a 

period of d (i). 

 

Stationary distributions characterize the long time behavior of Markov chains. 

Consider a Markov chain with transition matrix Λ. A non-negative vector π is said to 

be an invariant measure if 

πTΛ = πT , 

Which in component form is 
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πj = �πjλji
j

 

for all i ∈ S. 

If π also satisfies∑ πkk = 1, then π is called a stationary, equilibrium or steady state 

probability distribution. 

Thus, a stationary distribution is a left eigenvector of the transition matrix with 

associated eigenvalue equal to one. 

In addition, for a finite Markov chain with transition matrix Λ, to guarantee a 

unique stationary distribution, Λ should be irreducible and aperiodic.  

 

3.2 Markov Jump Linear Systems 

Markov Jump Linear Systems are described by a set of linear subsystems with 

commutations generated by a finite state Markov chain. Applications cover diverse 

fields including economics, biomedicine, networked control, fault tolerant systems.  

To illustrate MJLS, consider a dynamical system that is, in a certain moment, well 

described by a model G1. Suppose that this system is subject to abrupt changes that 

cause it to be described, after a certain time-instant, by a different model, say G2. 

More generally we can imagine that the system is subject to a series of possible 

qualitative changes that make it switch, over time, among a countable set of models, 

for example, {G1, G2, . . . , GN}. We can associate each of these models to an operation 

mode of the system or just mode and will say that the system jumps from one mode 

to the other or that there are transitions between them.[3] 

We assume that the jumps evolve stochastically according to a Markov chain, that is, 

given that at a certain instant k the system lies in mode i, we know the jump 

probability for each of the other modes, and also the probability of remaining in 

mode i.( We assume that the jump probability is known) 

 

Switched linear systems are piecewise linear systems evolving according to a finite 
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number of operating modes, subject to an external switching signal that selects, at 

any time instant, which mode is currently active. 

 

A general form for switched linear systems in discrete time is like the following: 

x(k + 1) = Aσ(k)x(k), x(0) = x0      (3.1) 

defined for all k ≥ 0 where x(k) ∈ Rn is the state, σ(k) is the switching signal 

and x0 is the initial condition. Considering a set of matrix Ai ∈ Rn×n ,i=1,…..,N be 

given, the switching signal σ(k), for each k ≥ 0, is such that Aσ(k) ∈ {A1, … , AN}. 

Aσ(k)is constrained to jump among the N vertices of the matrix polytope {A1, … , AN}. 

The switching rule of σ(k) is characterized by a pre-known N × N transition matrix 

Λ. 

Λ =

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛
λ11 λ12

λ21 λ22

⋯
λ1N

λ2N
⋮ ⋱ ⋮

λN1 λN1 ⋯ λNN⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 

We suppose that Λ is irreducible and aperiodic ,so as to guarantee unique 

stationary distribution. 

. 

 

 

 

 

 

 

 

Figure 4 𝛔 jumping state 
 

…… 1 2 N 

λ12 

λ21 

Figure 4 
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Since σ(k) is a stochastic jumping signal, giving a initial state of Ai, we will get a 

stochastic sequences of Ai and the state itself x(k) is a stochastic process.[4] 

 

Stability 

The stability of a class of Markov Jump Linear Systems characterized by constant 

transition rates and system dynamics is investigated. For these Markov Jump Linear 

Systems, mean square stability is related to the time evolution of the second-order 

moment of the state. [5] 

For the above switched linear discrete system (3.1), we assume its unique stationary 

distribution is π�, then we get: 

π� = Λ
T
π� 

The system is mean-square stable(MS) if, 

limt→∞ E[‖x(k)‖2] = 0, 

for any initial condition X0, and any initial probability distribution π0. 

The symbol E[∙] denotes the expectation with respect to the stationary distribution 

π�. 

 

The system is exponential mean-square stable(EMS-stabel), if ∃ α > 0,𝛽 < 1: 

E[‖x(k)‖2] ≤ α‖x0‖2β, 

For any k ≥ 0. 

It is obvious that EMS-stability implies MS-stability. The converse implication is also 

true, so that the two notion are actually equivalent. [6] 

It is remarkable that a necessary and sufficient condition for MS-stability can be 

stated in terms of LMI. 

 

THEOREM1.  Mean-square stability condition(based on Lyapunov equation): 

The MJLS is MS-stable, If and only if, exist a positive-definite matrix Pi satisfying the 

Inequality: 
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�λijAi
TPjAi − Pi

N

j=1

< 0, 𝑖 = 1,2, … ,𝑁 

 

Sketch of proof: 

We set V(x, i) = xTPix, a stochastic Lyapunov Function, ∀ x(k) = x,σ(k) = i, εx,i 

indicates the event �x(k),σ(k) = (x, i)�. Computer its expected one-step difference 

to get: 

E�V�x(k + 1),σ(k + 1)��εx,i
�� − V(x, i) 

= E�x(k)TAi
TPσ(k+1)Ai�εx,i

�� − xTPix 

= �λijx
TAi

TPjAix
j

− xTPix < 0 

Since this inequality is negative and V is quadratic, MS-stability follows from standard 

segments on stochastic Lyapunov functions. 

 

Performance 

Extension of system (3.1), consider now the following: 

�
x(k + 1) = Aσ(k)x(k),

z(k) = Cσ(k)x(k) , x(0) = x0� 

Then H2 performance can be defined as the following expected quadratic cost: 

 

J2 = E �� z(k)Tz(k)
∞

k=0

� = E �� x(k)TQσ(k)x(k)
∞

k=0

�,  

 Qσ(k) =  Cσ(k)
TCσ(k) 

This cost can be interpreted as the expected energy of the output z when the initial 

state is x0. 

 

THEOREM2.  If ∃Pi > 0 satisfying the equation 
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�λijAi
TPjAi

N

j=1

− Pi + Qi = 0, 

Then we have: 

J2 = x0T ��π�iPi

N

i=1

� x0 

Or if ∃Pi > 0 satisfying the inequality  

�λijAi
TPjAi

N

j=1

− Pi + Qi < 0, 

Then we have: 

J2 < x0T�∑ π�iPiN
i=1 �x0. 

In other words, either the value of the cost or its upper bound can be obtained.  

 

 

3.3 Dual-switching systems 

In various applications (such as networked control, fault tolerant systems, 

communication networks) problems are encountered where the system is affected 

by two independent external sources, for instance a manipulated switching signal 

and stochastic jumps. These systems are referred to in literature as dual-switching 

systems. They reveal a complex dynamic behavior due to the interplay between the 

two switching signals. A typical example of dual-switching systems is a networked 

control system with deterministically switching control laws and stochastic jumps 

between levels of network congestion.[7][8] 

 

To define the general form for dual-switching signal, we assume we have two 

switching signal, one is γ(k), which is regarded as a control variable. The other one 

is σ(k), with transition matrixΛ. 
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The class of discrete-time dual switching linear systems is described below: 

�
x(k + 1) = Aσ(k)

γ(k) x(k),

z(k) = Cσ(k)
γ(k)x(k)

, x(0) = x0�        (3.2) 

Where, k is the discrete time index, x(k) ∈ Rn  is the state, z(k) ∈ Rp  is the 

performance output, γ(k) is the switching signal taking values in the finite set 

M={1,2, … . , M}, and σ(k) is a time homogeneous Markov process taking values in 

the set N={1,2, … . , N}. As seen already, the entry λij ≥ 0 of Λ represents the 

probability of a transition from mode i to mode j, namely 

λij = P{σ(k + 1) = j|σ(k) = j�}, 

Λ is a right stochastic matrix( row sum to unit and nonnegative matrix). 

Let π(k) denote by the state probability distribution at time k, its evolution is 

governed by the equation 

π(k + 1)T = π(k)TΛ,π(0) = π0 

In the sequel, we assume thatΛ is irreducible and aperiodic, so that the Markov 

process admits a unique stationary probability distribution π� satisfying  π�T = π�TΛ. 

The system is subject to both stochastic jumps governed by the form process σ(k) 

and deterministic switches dictated by the control signal γ(k).So, the state dynamics 

of the overall system is characterized by(Ai
r, Cir), i ∈ N, r ∈ M. 

 

Stability  

In accordance with standard notions of stochastic stability, like single switching 

system, for a given deterministic switching signal γ(k), system (3.2) is mean-square 

stable if, 

limt→∞ E[‖x(k)‖2] = 0, ∀x0,π0, 

Again, The symbol E[∙] will denote the expectation with respect to the stationary 

distribution π�. 
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Still, we can get the Mean-square stability condition based on Lyapunov equation: 

 

THEOREM3. If there exist positive definite matrix Pir , i ∈ N, r ∈ M  and a 

right-stochastic matrix Φ = [φrs] satisfying,∀ i, r 

��λijφrkAi
rTPjkAi

r − Pir
M

k=1

N

j=1

< 0,           ( 3.3) 

Then the feedback switching law 

γ∗ = argminrxTPσrx 

Makes the closed loop system MS-stable. 

 

Proof: 

Consider the stochastic Lyapunov function V(x, i) = minrxTPirx and compute its 

expected one-step difference at time k with the position x(k) = x, σ(k) = i and 

g = argminrxTPσrx. For brevity, εx,i indicates the event �x(k),σ(k) = (x, i)� and 

εi indicates the event σ(k) = i. 

E[∆V(x, i)] = E�V�x(k + 1), σ(k + 1)��εx,i
�� − V(x, i) 

= E�minrx(k + 1)TPσ(k+1)
r x(k + 1)�εx,i

�� − minrxTPirx 

= E �minrxT�Ai
g�
T

Pσ(k+1)
r Ai

gx|εi�� − xTPi
gx 

Notice that the expected value of the minimum of a function is not greater than the 

minimum of the expectation. Moreover, 

E�Pσ(k+1)
r |εi�� = �λijPj

r

j

 

Therefore, it follows 

E[∆V(x, i)] ≤ minrxT�Ai
g�
T
�λijPj

r

j

Ai
gx − xTPi

gx 

Since it holds that 
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minrxT�Ai
g�
T
�λijPj

r

j

Ai
gx ≤ xT�Ai

g�
T
�λij�φgk

k

Pjk

j

Ai
gx 

And also holds (3.3) we obtain 

E[∆V(x, i)] < xTPi
gx − xTPi

gx = 0 

Mean square-stability follows from standard results on stochastic discrete-time 

Lyapunov functions. 

 

Performance 

By slightly strengthening the conditions of stability, it is possible to yields a 

guaranteed H2 performance, 

THEOREM4. If ∃Pir > 0, i ∈ N, r ∈ M  and a right-stochastic matrix Φ = [φrs] 

satisfying,∀ i, r 

��λijφrkAi
rTPjkAi

r − Pir
M

k=1

N

j=1

+ Cir
TCir < 0,   

then 

γ∗ = argminrxTPσrx 

Makes the closed loop system MS-stable and 

J2(γ∗) < J2� = minrx0T ��π�i

N

i=1

Pir�x0 

It should be notice that in order to implement the switching strategy γ∗ , the 

controller needs to have respect information on both the state x and the stochastic 

signal σ.  
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4 Scheduling and Control Design 

In this chapter, we will apply the mathematical theory on MJLS and Dual-Switching 

systems to the analysis and design of the control system subject to random faults 

introduced in chapter2. 

First, the models of the plant, the faulty actuator and the controller, along with the 

evaluation of performance of the control loop in the ideal situation of a fault-free 

actuator will be presented in section 4.1. Next in section 4.2, analysis of stability and 

performance of the single controller scheme will be carried out, by using the results 

of section 3.2. Finally in Section 4.3, the design of stabilizing and suboptimal 

feedback switching strategies will be reformed with reference to the dual controller 

scheme. 

 

4.1 The model 

4.1.1 Plant 

Recall the scheme in chapter 2, the plant part 

 

 

We define the plant as a double integrator present as state space format 

�x
(k + 1) = Ax(k) + Bu(k)

z(k) = x(k)
�  

 

A = �1 1
0 1�,   B=�01� ,    C = [1 0] 

With  x0 = 0 

It is obvious that the transfer function of plant is  

G(z) =
1

(z − 1)2 

Plant 
u z 
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4.1.2 Faulty Actuator 

Recall the scheme in chapter 2, the actuator part 
 
 
 
 

We model signal σ(k) as 

�σ
(k) = 1     Healthy
σ(k) = 2       Faulty

� 

So the overall system is jumping between two states according to σMarkov chain, 

which is determined by transition matrix 

Λ = �1 − β β
α 1 − α

� ,      0 ≤ 𝛼,𝛽 ≤ 1. 

Λ is a right-stochastic matrix 

If the value of β is large, it means system has more chance to jump to faults model. 

If the value of α is large, the probability of recovering after a fault is higher.  

In the following sections, we will use Matlab to be a simulation tool to find the region 

of α,β that makes the feedback system mean-square stable. 

 

We will set 2 different configurations for the faulty actuator model 

1 zero-input configuration 

u(k) = �u�
(k)    σ(k) = 1 

0         σ(k) = 2
� 

When the actuator is working(σ=1), the system is in closed loop configuration, if the 

actuator is faulty(σ=2), then the system is in open loop configuration. 

2 input-hold configuration 

u(k) = �u�
(k)               σ(k) = 1 

u(k − 1)       σ(k) = 2
� 

When the actuator is working(σ=1), the system is in closed loop configuration, if the 

actuator is faulty(σ=2), instead of open loop, we use the previous input u(k− 1). 

σ 

Actuator 
u�  u 
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4.1.3 Controller 

Recall the scheme in chapter 2, the actuator part 

 

 

 

The controller is Linear Time invariant (LMI) and at first order.  

At single controller scheme we need only one controller, but for dual switching 

scheme we need two different controllers. So we design an aggressive controller first 

and then design a moderate controller. 

By using the sisotool box in Matlab we get an aggressive controller and a moderate 

controller to make feedback system stable: 

 

R1(z) =
0.5z − 0.4

z
 

State space realization: 

�xc
(k + 1) = Acxc(k) + Bce(k)
u�(k) = Ccxc(k) + Dce(k)

� 

Ac = 0, Bc = 0.5, Cc = −0.8, Dc = 0.5 

 

For moderate controller 

z0 u�  
Controller 

e 

z - 

+ 
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R2(z) =
0.13(z − 0.9)

z − 0.5
 

State space realization: 

�xc2
(k + 1) = Ac2xc2(k) + Bc2e(k)
u�(k) = Cc2xc2(k) + Dc2e(k)

� 

Ac2 = 0.5, Bc2 = 0.25, Cc2 = −0.208, Dc2 = 0.13 

 

4.1.4 Analysis of the Fault-free control Systems 

In order to better understand and analysis the dual-switching feedback system, we 

now discuss the fault-free situation respect to two different controllers.  

That is means without actuator. 

 

 

 

 

The aggressive controller: 

The overall feedback system with the aggressive controller can be represent as 

following state space form: 

�xa
(k + 1) = Aaxa(k) + Baz0

za(k) = Caxa(k) + Daz0
� 

Aa = �
1 1 0

−0.5 1 −0.8
−0.5 0 0

� , Ba = �
0

0.5
0.5

� , Ca = [1 0 0], Da = 0 

 

+ 

- 

Plant 
z 

Controller u e Z0 
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We can calculate its transfer function  

 

Ga = 0.5
z − 0.8

(z− 0.6886 +  0.41i)(z− 0.6886−  0.4100i)(z− 0.6227 ) 

We can see, the absolute value of 3 closed loop poles are all smaller than 1, so the 

feedback system is stable. 

As for performance 

J2 = E �� z(k)Tz(k)
∞

k=0

� = 0.6414 

 

The moderate controller: 

The overall feedback system with the aggressive controller can be represent as 

following state space form: 

�xm
(k + 1) = Amxm(k) + Bmz0

zm(k) = Cmxm(k) + Dmz0
� 

Am = �
1 1 0

−0.13 1 −0.208
−0.25 0 0.5

� , Bm = �
0

0.13
0.25

� , Cm = [1 0 0], Dm = 0 

We can calculate its transfer function  

 

Ga = 0.13
z − 0.9

(z − 0.8397 +  0.2163i)(z− 0.8397−  0.2193i)(z− 0.8207) 

We can see, the absolute value of 3 closed loop poles are all smaller than 1, so the 

feedback system is stable. 

As for performance 

J2 = E �� z(k)Tz(k)
∞

k=0

� = 2.6579 
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4.2 Single Plant Single controller Scheme Analysis 

4.2.1 Complete model design 

Recall the single controller scheme figure1 in chapter 2 

 
Set sensors to be 1 

Specific Plant: 

�x
(k + 1) = Ax(k) + Bu(k)

z(k) = Cx(k)
� 

A = �1 1
0 1� , B = �01� , C = [1 0], D = 0 

 

The overall system with controller and σ(k) present as 

�
x�(k + 1) = Aσ(k)x�(k) + Bσ(k) z0(k)

z�(k) = Cσ(k)x�(k)
� 

 

 x�(k) = � x(k)
xc(k)�,  x�0(k) = �

1
0
0
� 

When system switch to health model, u(k) = u�(k) 

x(k + 1) = Ax(k) + B�Ccxc(k) + Dce(k)� 

xc(k + 1) = Acxc(k) + Bce(k) 

z(k) = Cx(k) 

Then we have 

x�(k + 1) = �A BCc
0 Ac

� x�(k) + �BDc
Bc

�  e(k) 

+ 

- 

Actuator Plant 
u z 

Controller 
u�  

e z0 

Sensors 

σ 
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Where e(k) = z0(k) − z(k) = z0(k) − Cx(k), we get 

x�(k + 1) = �A − BDcC BCc
−BcC Ac

� x�(k) + �BDc
Bc

�  z0(k) 

When system switch to fault model, u(k) = 0 

Similarly, we can get 

x�(k + 1) = � A 0
−BcC Ac

� x�(k) + � 0
Bc
�  z0(k) 

 

Then we have 

A1 = �A − BDcC BCc
−BcC Ac

� , A2 = � A 0
−BcC Ac

� 

B1 = �BDc
Bc

� , B2 = � 0
Bc
� 

C1 = C2 = [1 0 0] 
 

4.2.2 Stability and Performance  

In this subsection, we will use Matlab to simulate the feedback system, find out 

which α and β pairs make the system MS-stable and which are not(by using the 

code ‘feasp’).Furthermore, we will find out the optimize J2(H2  performance) of the 

feedback system.(by using the code ‘mincx’) 

The actuator is subjected to failure modeled by Markov chain with transition matrix 

Λ and initial distribution π0, this signal is represented by σ.The plant is a discrete  

When the actuator is normal(σ=1), the system is in closed loop configuration, if the 

actuator is faulty(σ=2), then the system is in open loop configuration. So the overall 

system is jumping between two states according to σ, which in turn is determined 

by transition matrixΛ=[1-β β;α 1-α], so as a and αβ change from 0 to 1, the 

system will jump between MS-stable and MS-unstable. 

 

In addition, we will also use Matlab to simulation the real system behavior so that to 

roughly validate the theorem in chapter 3. Besides, because simulation is not real 

system, we will also discuss the inconsistencies and consistencies 
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Region of MS-stability and performance  

By using Matlab, we can plot a α, β region that is MS-stable (define in chapter3) and 

a J2 surface (H2  performance) for this system.  

First, as we already know, if give a fixed Λmatrix(which means fixed α, β), we can 

use Matlab LMI tool(code ‘feasp’) to find if there exist a positive P matrix satisfy the 

inequality in chapter3(THEOREM1.), if exist, the Matlab result shows ‘feasible’, that is 

to say the system is MS-stable for thisΛmatrix( or α,β pair).  

Now we try 400 different  α, β pairs (range from 0.05 to 0.95, the resolution is 0.05) 

to find which pair guarantee MS-stable for system which not, then we can plot 

an α, β plan shows MS-stable region. 

 

α,β MS-stable region: 

 
Figure5 single controller MS-stable region 

Then we can also calculate performance through the formular （THEOREM2）: 

J2 = x0T ��π�iPi

N

i=1

� x0 

J2 is called optimal upper bound in this theorem. 

Notice that we can only calculate the MS-stable region, for the reason that the 

MS-unstable region is infeasible we can’t get P matrix, so we set it all to be 0 in this 

plot. 
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J2-surface: 

 
Figure6 single controller upper bound J2-surface 

The blue region is MS-unstable region, and the red and yellow region stands for 

MS-stable region. From the figure4, we can see, α is more important for MS-stable 

of this feedback system. So in application, in order to guarantee MS-stable of system, 

the value of  α should be large enough.  

From figure6, it is obvious that when choose a certain α, the larger the β, the larger 

the J2, which means bigger energy theoretically. 

 

For the simulation related to real system realization. 

We set the time index k=50, and generate 50(n=50) different σ(k) markov chains to 

simulate z(k), then we can get the value of J2 by calculating from this simulated 

output z(k), we call it J2∗ . 

 

J2∗ = �� z(k)Tz(k)
50

k=1

� /50 

Repeat the 400 pairs of α,β sample; we plot the  J2∗   surface respect to α, β  plan. 
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J2∗-surface of α,β: 

 
Figure7 single controller simulation J2∗-surface 

 

From figure7, because of the simulation quantity 400 is not large enough so the 

surface is not smooth (because z(k) is a little random).But we can still see the 

trends is similar to figure6 and most of the value of J2∗  is smaller than the value J2 in 

figure6, J2 is the theodicy upper bound. 

 

 

Particular examples for 𝛂,𝛃 

Now, as we already known the MS-stable α,β region, we choose 3 different points on 

α,β  plan as examples to plot z(k) behaviors. Then use the same simulation 

method when we calculate J2∗ . 

This time we set time index k=100, use Matlab to simulate 50(n=50) different value 

(view as real data) of z(k) for each point. 

We plot both 50 pairs z(k) together and its average value. 
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α = 0.9,β = 0.9(well inside the stable region）: 

 

 
Figure8 particular example z(k) plot for single controller scheme 1 

From figure8, we obviously see 50 z(k) converge to steady state quickly, and the 

average line also shows that z(k) go to steady state fast. 
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α = 0.2,β = 0.9(close to stable bound): 

 

 
Figure9 particular example z(k) plot for single controller scheme 2 

From figure9, some z(k) diverge, but the average line of z(k) might finally go to 

steady state 0, because this point is near unstable bound, so the time go to steady 

state is longer. 
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α = 0.1,β = 0.1( unstable case): 

 

 
Figure10 particular example z(k) plot for single controller scheme 3 

From figure10, many z(k) lines diverge, the average line of z(k) shows that it 

finally go far away from steady state, so this point must be unstable. 

These simulation results of the three points which chosen both from unstable and 

stable region shows the stable α β region which calculates from the theorem in 

Chapter3 is correct.  
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4.3 Single Plant Dual Controller scheme 

4.3.1 Complete model design 

Recall the dual-switching scheme in chapter 2 

 

 

Again assume sensors are 1. 

Specific Plant: 

�x
(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
� 

A = �1 1
0 1� , B = �01� , C = [1 0], D = 0 

We have two controllers in this system, an aggressive one and a moderate one. So 

M=2, and �γ
(k) = 1    controller1
γ(k) = 2    controller2

� 

Recall that 

Controller1  

�xc
(k + 1) = Acxc(k) + Bce(k)
u�(k) = Ccxc(k) + Dce(k)

� 

Ac = 0, Bc = 0.5, Cc = −0.8, Dc = 0.5 

Controller2: 

�xc2
(k + 1) = Ac2xc2(k) + Bc2e(k)
u�(k) = Cc2xc2(k) + Dc2e(k)

� 

Ac2 = 0.5, Bc2 = 0.25, Cc2 = −0.208, Dc2 = 0.13 

- 

u�  
Actuator Plant 

u 
σ 

z 

Controller1 

ControllerM 

γ 

Sensors 

…
. e 
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Where  e(k) = −z(k), 

Scheduler signal for controllers: 

u�(k) = �u�1
(k),     if  γ(k) = 1

u�2(k)      if γ(k) = 2
� 

The signal regulate by actuator here, we have two methods to model the fault state.  

One is zero-input configuration, which set u(k) = 0, when fault occurs,  

u(k) = � u�(k),   σ(k) = 1
         0,       σ(k) = 2      

� 

Another one is input-hold configuration, which set  u(k) = u(k− t)( the last step 

value): 

u(k) = � u�(k),   σ(k) = 1
  u(k − t),σ(k) = 2      

� 

 

For zero-input configuration: 

 

x�(k + 1) = A�σ(k)
γ(k) x�(k),    x�(k) = �

x(k)
xc(k)

xc2(k)
� 

 

A�11 = �
A − BDcC BCc 0
−BcC Ac 0
−Bc2C 0 Ac2

�,      A�12 = �
A − BDc2C 0 BCc2
−BcC Ac 0
−Bc2C 0 Ac2

� 

A�21 = A�22 = �
A 0 0

−BcC Ac 0
−Bc2C 0 Ac2

� 

Performance output 

z�(k) = �
[C − DcC Cc 0],       if γ(k) = 1

[C − Dc2C 0 Cc2],       if γ(k) = 2
� 
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For input-hold configuration: 

 

x�(k + 1) = A�σ(k)
γ(k) x�(k),    x�(k) =

⎣
⎢
⎢
⎡

x(k)
xc(k)
xc2(k)

u(k − 1)⎦
⎥
⎥
⎤
 

 

A�11 = �

A − BDc2C BCc
−BcC Ac

0 0
0 0

−Bc2C 0
−DcC Cc

Ac2 0
0 0

� 

 

 

A�12 = �

A − BDc2C 0
−BcC Ac

BCc2 0
0 0

−Bc2C 0
−Dc2C 0

Ac2 0
Cc2 0

� 

 

 

A�21 = A�22 = �

A 0
−BcC Ac

0 B
0 0

−Bc2C 0
0 0

Ac2 0
0 I

� 

 

Performance output 

 

z�(k) = �C 0 0 ηI�x�(k) 
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Where η is the weight of u(k − 1).Greater values ofη imply higher cost of the 

control input, so we should push towards a trade-off between performance and 

moderation of control. 

4.3.2 Stability and Performance analysis 

We set matrix Φ to be a constant matrix�0.5 0.5
0.5 0.5�, which related to γ(k). 

still, Λ=[1-β β;a 1-a] (|α|, |β| < 1) 

Difference on initial state 

First, we discuss the influence of different initial state on performance output z(k).                                      

Output z(k) as a function of k 

when x0

Λ=[0.8 0.2;0.7 0.3] 

= [1; 1; 0] 

J2

 

=205.6214 

 

 

 

Output z(k) as a function of k 

when x0

Λ=[0.8 0.2;0.7 0.3] 

= [1; 2; 0] 

J2

 

=803.8743 

Output z(k) as a function of k 

when Λ= [0.8 0.2;0.7 0.3] 

x0

J

= [2; 1; 0] 

2=268.8563 
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Output z(k) as a function of k when 

x0

Λ=[0.8 0.2;0.7 0.3] 

= [2; 2; 0] 

J2

 

=822.4855 

Figure11 difference on initial state 

According to the plots above, as long as the α and β pair is chosen from the stability 

region, the output of the system z(k) always converges. Also because in any cases 

the output matrix C is always [1 0 0], means the output is actually the first state 

variable X1

Region of MS-stability  

, when the system is MS-stable, the states eventually goes to 0. 

Now let’s discuss α,β region for Λ matrixes. σ is used to model the stochastic 

behavior of the actuator, which can take one of the two states either normal or 

faulty, at each time instant k, when σ(k) take value 1, it means the actuator is in 

normal condition and the system is in feedback configuration, otherwise the actuator 

is in faulty condition and the system is in open loop configuration.  

 
Feagure12 dual controller MS-stable region 
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This is the stability region of α and β pair, red region above indicates that this α β pair 

makes system stable and blue region indicates that this α β pair makes system 

unstable. Compare to the single controller scheme in last section, the stability region 

is similar. 

 

Particular examples for stability  

To deeply discuss the α β region, now we take 4 pairs of α and β to make simulation, 

they are 4 point from 4 comers of the stability α β region. When the actuator is faulty 

the input to the plant is 0(zero-input case). 

Since the generation of σ doesn't depend on X0, let us consider different Λ，we 

will first simulate the z(k) behavior step by step with the above σ signal series, to 

check stability of the certain point which we choose in the stable α β region, and 

second use the law in chapter 3 to generate  γ  from  σ , third calculate H2 

performance J2

① as Λ=[0.8 0.2;0.7 0.3] (well inside stable region ).  

 , compare it with simulation output performance J. 

 
Figure13 particular example for dual controller of σ sample for case 1 

This figure shows σ jumps generated from Λ ratio matrix, we have big α, small β , 

which means it has a high chance be in 1st state, overall the system “spends” more 

time in state 1 than state 2, which is coincide with the σ plots above. As a result the 
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system should be surely MS-stable.   

 
Figure14 particular example for dual controller of z(k) for case 1 

The output z(k) as a function of k (=100) in the figure quickly go to steady stead, 

the good response of z(k) obviously proof that the system is MS-stable. When k is in 

0-25 interval, σ jumps frequently, the response of z(k) appears vibrations as well, 

it says that the jumps cause energy vibration of the system  

 

 
Figure15 particular example for dual controller of γ for case 1 

This figure is γ signal jumps generated from the formula  

γ∗ = argminrxTPσrx 

We will discuss, with ②③④, the relationship between γ  and σ 



45 
 

J2

J_bar = 0.2721, stands for classic energy form, which is E[z(k)Tz(k)]. 

= 205.6214, stands for theorem upper bound (according to the theorem in 

chapter3). 

Generally speaking, J_bar < J2 should be exist, in case ①, it did, we will also check 

this condition in following cases. 

The feasible P matrix related to switching strategies: 

P11 = �
24.4741 −33.4072 41.1251
−33.4072 101.0199 −77.4483
41.1251 −77.4483 83.1081

�   P12 = �
13.4122 −5.8982 20.3861
−5.8982 101.4743 −36.0256
20.3861 −36.0256 46.7915

� 

P21 = �
11.4788 11.0953 12.1780
11.0953 113.2723 −8.1485
12.1780 −8.1485 29.8791

�           P22 = �
12.9270 7.4700 15.8007
7.4700 112.7384 −15.1265

15.8007 −15.1265 38.4343
� 

② with Λ=[0.8 0.2;0.25 0.75](near unstable bound): 

 
Figure16 particular example for dual controller of σ sample2 for case2 

In this case, we have small α, and small β , the state switching frequency will be 

quiet low, as can be seen from the σ plot, it well reflect the low frequency jump 

behavior. Since n this case the chosen point is near unstable bound, the MS-stability 

is not that obvious, so a simulation is necessary to check this property. 
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Figure17 particular example for dual controller of z(k) for case 2 

The simulation z(k) vibrate amplitude is large but finally go to zero steady 

state; it indicates the system is still MS-stable. It also proof that this point we chosen 

from stable α β region really guarantee system stable.  

 
Figure18 particular example for dual controller of γ for case 2 

In this case, γ also swichs not frequently. 

J2

J_bar = 3.5331 

= 224.0791 
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It satisfied the condition J_bar < J2, compared with case ①, J_bar is higher 

because in this case point is near unstable bound, it cost more energy to make 

system stable, but J2

The feasible P matrix related to switching strategies: 

 is not the same trends.  

P11 = �
25.4934 −37.8729 43.0458
−37.8729 90.3932 −75.9761
43.0458 −75.9761 79.1414

� P12 = �
11.8680 −10.6231 19.3574
−10.6231 90.4997 −34.2603
19.3574 −34.2603 38.2160

� 

P21 = �
6.8081 8.5122 9.2158
8.5122 160.1058 −10.7083
9.2158 −10.7083 19.0769

� P22 = �
8.0533 7.6857 11.4794
7.6857 159.2143 −12.2187

11.4794 −12.2187 23.2107
� 

 

③ Λ=[0.2 0.8;0.3 0.7] (near unstable bound). 

 

Figure19 particular example for dual controller of σ sample for case 3 

In this case, we have small α, and big β, that means system will has more chance to 

be in 2nd

The same to case ②, the chosen point is near unstable bound, let’s check output 

z(k).  

 state, the σ plot shows the same trends: state 2 appears more. 
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Figure20 particular example for dual controller of z(k) for case 3 

The z(k) response’s vibration amplitude seems a litter larger (especially at the 

beginning), though spend more time, eventually, around k=100, it goes to zero 

steady state, this result proof MS-stable of the system. 

 
Figure21 particular example for dual controller of γ for case 3 

γ jumps more often than case ②. 

J2

J_bar = 10.8688 

= 16.6454 
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Condition J_bar < J2 satisfied. 

The feasible P matrix related to switching strategies: 

P11 = �
2.8619 −5.0678 4.9900
−5.0678 11.7312 −9.4605
4.9900 −9.4605 9.0854

� P12 = �
0.9524 −1.3426 1.6911
−1.3426 11.8280 −3.5987

1.6911 −3.5987 3.4427
� 

P21 = �
0.5289 0.1853 0.8015
0.1853 11.2884 −0.9899
0.8015 −0.9899 1.6487

� P22 = �
0.6826 −0.0020 1.0774
−0.0020 11.1795 −1.3584
1.0774 −1.3584 2.1397

� 

 

④Λ=[0.2 0.8;0.9 0.1]( well inside stable region ). 

 

Figure 22 particular example for dual controller of σ sample for case 4 

In this case, we have big α, and big β, that is to say there is a high chance to 

jump to the other one, so as can be seen from the σ plot, the jumping frequency is 

high. 
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Figure 23 particular example for dual controller of z(k) for case 4 

After some little strong vibration, at k=60,  z(k) slowly goes to steady state, so 

the system of this  α  β pair is MS-stable. In addition, this z(k)  shows more 

oscillation than other case, it may caused by the frequently jumps of σ. 

 
Figure24 particular example for dual controller of γ for case 4 

γ jumps frequently, since σ jumps very often. 

J2

J_bar = 3.6508 

= 8.2019 
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Condition J_bar < J2 also satisfied. 

We can see, the two near unstable bound case ②and③ compared with case①and

④ spend more time and energy to reach steady state. 

The feasible P matrix related to switching strategies: 

P11 = �
1.1918 −1.9115 2.0458
−1.9115 5.3926 −3.9256
2.0458 −3.9256 3.9666

� P12 = �
0.5144 −0.3355 0.8135
−0.3355 5.4320 −1.4784
0.8135 −1.4784 1.8168

� 

P21 = �
0.4070 0.1790 0.5511
0.1790 4.6755 −0.4847
0.5511 −0.4847 1.2307

� P22 = �
0.5156 −0.0610 0.7680
−0.0610 4.6306 −0.9527
0.7680 −0.9527 1.6666

� 

 

In conclusion, on one hand, all z(k) simulation behavior shows that the system is 

MS-stable at the 4 point (pairs of α β) we chosen from stable α β region. So, the 

stability theorem in chapter 3 is correct. On the other hand, the vibration frequency 

of z(k) and jumping frequency of γ is co react with σ. 

 

Particular examples for performance (different LMI) 

Now begin with the performance problem which includes the CTC in LMI terms. 

Because of the extra CTC term and different simulation code (in this case we use 

optimization ‘mincx” code), the optimized P matrix is different from stability case, so 

the z(k), γ and J2 

Because the code ‘mincx’ can’t directly judge feasibility of LMI, so it’s hard for us to 

get a exactly α β stable region(when use the code ‘feasb’ for CTC included LIM the 

region is the same with stability LMI) ,In theory, the stableα β region for performance 

LMI should be a little smaller than stability LMI. So, we will repeat the 4 cases step to 

see the simulation response of z(k), reproduce γ signal series and calculate J

will be little different ether. 

2  

performance with the different P matrix. In order to compare, we use the same σ 

series with stability case. 
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First checks the stability of above 4 cases by plotting its output z(k) as a function of 

k. The initial condition is x0

 

= [1; 1; 0] in all the cases. 

①:Λ=[0.8 0.2;0.7 0.3]  

 

Output z(k) response shows MS-stable for system, and it behavior is similar to 

the stability case but not completely same. 

 

Figure25 dual controller for performance plot of z(k) and γ for case 1 

γ series is similar but not same to stability case as well. 

J2= 185.1876 
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J_bar = 0.2625 

Condition J_bar < J2 satisfied. 

 

②: Λ=[0.8 0.2;0.25 0.75]  

 

Output z(k) response shows MS-stable for system, and it behavior is similar to 

the stability case but not completely same. 

 
Figure26 dual controller for performance plot of z(k) and γ for case 2 

γ series is similar but not same to stability case as well. 

J2

J_bar = 3.5246 

= 1.6380e+003 
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Condition J_bar < J2 satisfied. 

 

③:Λ=[0.2 0.8;0.3 0.7] 

 

Output z(k) response shows MS-stable for system, and it behavior is similar to the 

stability case but not completely same. In this case the vibration amplitude looks 

littler larger than stability case, and takes longer time to reach steady state. 

 
Figure27 dual controller for performance plot of z(k) and γ for case 3 
 

γ series is similar but not same to stability case as well. 

J2= 2.2826e+003 
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J_bar = 11.2316 

Condition J_bar < J2 satisfied. 

④:Λ=[0.2 0.8;0.9 0.1] 

  

Output z(k) response shows MS-stable for system, and it behavior is similar to the 

stability case but not completely same. 

  

Figure28 dual controller for performance plot of z(k) and γ for case 4 

γ series is similar but not same to stability case as well. 

J2

J_bar = 3.1248  

= 294.7699 
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Condition J_bar < J2 satisfied. 

 

 

Φ matrix 

In this system, Φ matrix influence the switching frequency between two controllers, 

state1 stands aggressive controller, state2 stands moderate controller. In previous 

case we fixed γ rate matrix Φ = [0.5，0.5；0.5，0.5]，and change elements of 

Λ.Now, we are interested in if we fixedΛmatrix, set Φ = �1− a，a；b，1 −

b�(|a|, |b| < 1), then change the parameter a and b, what will be happen to the 

feedback system. 

Now we give 5 known Λmatrixes, change a and b ,to find the stable a b region. 

①:Λ=[0.8 0.2;0.7 0.3]  

 
No unstable point, any a and b from 0 to 1 makes system MS-stable 
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②: Λ=[0.8 0.2;0.2 0.8]  

 

Blue area means unstable, red region means MS-stable. 

③: Λ=[0.2 0.8;0.3 0.7]  

 

Blue area means unstable, red region means MS-stable. 
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④Λ=[0.2 0.8;0.6 0.4] 

 
Blue area means unstable, red region means MS-stable. Compare to last case, 

when b become bigger the unstable area becomes smaller.  

⑤:Λ=[0.2 0.8;0.9 0.1] 

 
Figure29 Φ matrix MS-stable regions 

No unstable point, any a and b from 0 to 1 makes system MS-stable 

Conclusion: From the 5 plots, we find that when fixed Λmatrix, different choices 

ofΦ matrixes may influence feedback system MS-stable, and all figure shows that 
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unstable area is in upper right hand area, that is too say when a and b is too bigger, 

the system might be unstable. Big a and b stands for higher jumping frequency 

between controllers, so, that’s means if we change controller too often, system may 

be unstable. In addition, there may exist an αβ region makes any a and b from 0 to 

1 guarantee MS-stable for the feedback system. 

 

Input-hold case 

Region of MS-stability  

Before we assume that when the actuator is in faulty condition, the output of the 

actuator is 0, however a more realistic situation is when the actuator is faulty; the 

output takes the previous value. By doing so, the actuator needs to have memory by 

itself, we model the past value as u(k-1).For simulation, we assumeηthe weight of 

u(k − 1) to be 0, that is to say past control effort is neglected. 

First, let’s find the α β stable region for input-hold configuration. 

 

Figure30 input-hold configuration α β MS-stable regions 

The stability region of dual-switching input-hold case, compared to the zero-input 

case before is much smaller. 

Particular examples for stability  
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Again we select 4 α β pairs, taken values from the 4 ‘corners’ of the stable α β 

region. This time we use performance LMI (containCTC) to get optimized P matrix, 

after all the performance LMI is more strictly than stability one. Then, we will 

compare the result to zero-input case. 

①Λ=[0.8 0.2;0.9 0.1] 

 
Figure31 input-hold configuration of σ sample for case 1 

 This is σ series plot; state 2 appears much less than state1. 

 
Figure32 input-hold configuration of z(k) for case 1 

Output z(k) response goes to steady state quickly indicates MS-stable for 

system. 
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Figure33 input-hold configuration of γ for case 1 

J2

J_bar = 0.4237 

= 156.8758 

Condition J_bar < J2 satisfied. 

 

②Λ=[0.8 0.2;0.7 0.3](near unstable bound) 

In this case, σ series is the same with case① of zero-input model 

 
Figure34 input-hold configuration of z(k) for case 2 

 

First the plot indicates MS-stable for system. Second, though this α β pair is near 

unstable bound, z(k) response looks smooth not like zero-input case, oscillate a lot. 
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Zoom out plot 

 

 

Compared with zero-input case z(k) response, the trends is too similar, even 

when zoom out the plot, it’s still hard to say which one makes more effort, we will 

see the classic energy form J_bar in the follows sentences. 
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Figure35 input-hold configuration of γ for case 2 

Compare γ series plot, the jumping frequency is quiet similar to zero-input 

case. 

J2

J_bar = 0.2226 

= 235.1275 

Condition J_bar < J2 satisfied. 

Zero-input case J_bar = 0.2625, it is little bigger than input-hold case.  

 

③Λ=[0.3 0.7;0.7 0.3] (near unstable bound) 

 
Figure36 input-hold configuration of σ sample for case 3 

This is σ series plot; big α and big β makes it jump very often.  
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Figure37 input-hold configuration of z(k) for case 3 

The plot indicates MS-stable for system. Still, this α β pair is near unstable bound, 

z(k) response just vibrate little at beginning and then go to steady state soon, that 

is much faster than zero-input case when in near unstable bound case. 

 
Figure38 input-hold configuration of γ for case 3 
 

γ series plot, γ jumps frequently along with σ. 

J2

J_bar = 0.4909         

= 1.1467e+003 

Condition J_bar < J2 satisfied. 
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④Λ=[0.2 0.8;0.9 0.1] 

In this case, σ series is the same with case④ of zero-input model 

 
Figure39 input-hold configuration of z(k) for case 4 

In this plot, z(k) oscillate frequently along with high switching frequency of σ, 

though oscillate, we extend k to 150, we can see that after a long time, the energy 

will become smaller and smaller, it will finally stay in 0, so we still can conclude that 

the system is MS-stable. 

In this case, compare with zero-input case, the vibration amplitude is obviously 

smaller than zero-input case. 

 
Figure40 input-hold configuration plot of γ for case 4 
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In this case, γ jumps less frequent than zero-input case. 

J2

J_bar = 1.6267  

= 240.9429 

Condition J_bar < J2 satisfied. 

Zero-input case J_bar = 3.1248 is bigger than this input-hold case one. 

 

In conclusion, after compare zero-input case① to input-hold case②, and zero-input 

case④ to input-hold case④, we can see that input-hold case is easier and spend 

less energy to reach MS-stable, that also validate our previous guess: input-hold 

configuration is behavior better and more reasonable for the dual-switch system. 

 

 

Balance between output energy and control energy effort: 

In previous input-hold case,η the weight of u(k − 1) is setting to 0. 

Recall that,  

z�(k) = �C 0 0 ηI�x�(k) 

we will discuses, when the weight η =1,2,3,4, what will happen to z(k) and 

classic energy J_bar. 

 

We take case④Λ=[0.2 0.8;0.9 0.1] as a example, this α β pair is surely makes 

system MS-stable as we proofed before. 
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whenη =1:                         whenη =2 

  

J_bar= 0.4355                   J_bar= 0.8951 

whenη =3                     whenη =4 

  

J_bar= 0.2159                      J_bar= 0.7804 

Figure41 different control energy effort weight behavior 

From the plots, we can see, when the weightηbecomes bigger , z(k) response 

becomes more serrated, not smooth. J_bar seems no regularity. 
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4.4 Dual-plant Dual-controller scheme 

4.4.1 Complete model design 

Recall the Multi-plant Multi-controller scheme in Chapter2 

 

 

 

 

 

 

 

 

 

For father applications, we can apply the theorem in chapter 3 also in a scheme with 

two specific plants and two controllers. 

Beside the original plant  

�x
(k + 1) = Ax(k) + Bu1(k)

z(k) = Cx(k)
� 

A = �1 1
0 1� , B = �01� , C = [1 0], D = 0 

We can add a plant2 

�x2
(k + 1) = A2x2(k) + B2u2(k)

z2(k) = C2x2(k)
� 

A2 = �1.8 −0.81
1 0 � , B2 = �10� , C2 = [1 0], D2 = 0 

G2(z) =
1

(z − 0.9)2 

Plant2 is also a double integrator, but stable.  

Then we can design a complete model for the overall dual-plant dual-controller 

feedback system, and discuss its MS-stable region and performance. 

 

z10 

u�M 

u�1 

+ 

...... ...... 

ControllerM 

Plant 1 

Plant M 

 
 
 
Actuator 

u1 

uM 

Controller1 
γ 

z1 

zM zM0  

+ 

- 

- 
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Controller1  

�xc
(k + 1) = Acxc(k) + Bce(k)
u�1(k) = Ccxc(k) + Dce(k)

� 

Ac = 0, Bc = 0.5, Cc = −0.8, Dc = 0.5 

Controller2: 

�xc2
(k + 1) = Ac2xc2(k) + Bc2e2(k)

u�2(k) = Cc2xc2(k) + Dc2e2(k)
� 

Ac2 = 0.5, Bc2 = 0.25, Cc2 = −0.208, Dc2 = 0.13 

Where  e(k) = −z(k),  e2(k) = −z2(k), 

 

Scheduler for controllers: 

�u1 = u�1(k) and u2 = 0,     if  γ(k) = 1
u1 = 0 and u2 = u�2(k) ,    if γ(k) = 2

� 

The signal regulate by actuator here, we have two methods to model the fault state.  

For zero-input configuration, we set ur(k) = 0, when fault occurs,  

ur(k) = � u�r(k),   σ(k) = 1
         0,       σ(k) = 2     ,   r = 1,2� 

Then we obtain he overall system: 

x�(k + 1) = Aσ(k)
γ(k) x�(k),    x�(k) =

⎣
⎢
⎢
⎡

x(k)
xc(k)
x2(k)
xc2(k)⎦

⎥
⎥
⎤
 

 

A1
1 = �

A − BDcC BCc
−BcC Ac

0 0
0 0

0 0
0 0

A2 0
−Bc2C2 Ac2

� 

A1
2 = �

A 0
−BcC Ac

0 0
0 0

0 0
0 0

A2 − B2Dc2C2 B2Cc2
Bc2C2 Ac2

� 
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A2
1 = A2

2 = �

A 0
−BcC Ac

0 0
0 0

0 0
0 0

A2 0
−Bc2C2 Ac2

� 

Performance output 

 

z�(k) = [C 0 C2 0]x�(k) 

 

 

4.4.2 Stability and Performance 

Region of MS-stability 

Again, let’s discuss α,β region for Λ matrixes. 

 

 
Figure42 MS-stability region for dual-plant dual-controller scheme 

This is the stability region of α and β pair, red region above indicates that this α β pair 

makes system stable and blue region indicates that this α β pair makes system 

unstable. Compare to the single plant dual-controller scheme in last section, the 

stability region is smaller though the plant2 is a stable plant. 
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Particular examples for stability  

Again we select the same 2 α β pairs with single controller case (which are well inside 

the stable region), and use the same σ sample sequence to simulate their behaviors 

of output z(k). 

①Λ=[0.8 0.2;0.7 0.3]  

 

The output z(k) as a function of k (=100) in the figure quickly go to steady stead, 

the good response of z(k) obviously proof that the system is MS-stable. Compared 

with single-plant scheme, z(k) takes more time to reach steady state. 

 
γ signal jumps plot is very different from single-plant case 

J2

J_bar = 0.7331   It satisfied the condition J_bar < J2 

= 257.7314 
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④Λ=[0.2 0.8;0.9 0.1] 

 
Though this α β pair is well in stable region, z(k) line shows not so obvious at k=100 

it will reach steady state or not, it may takes more time to reach steady state, but in 

single-plant scheme, z(k) already reach steady state at k=100. 

 

Figure43 particular example plots for dual-plant dual-controller scheme 
 

Different from single plant scheme, γ jumps not frequently while σ jumps very 

often. 

J2

J_bar = 1.6230     Condition J_bar < J2 also satisfied. 

= 324.3988 
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4.5 Possible Extension 

 

In order to expand the range of applications, in the future, we can also consider the 

system behavior with a deterministic disturbance. We set w(∙)ϵ l2 , then the overall 

discrete-time dual switching linear systems can be present like this: 

�
x(k + 1) = Aσ(k)

γ(k) x(k) + Bσ(k)
γ(k)w(k) 

z(k) = Cσ(k)
γ(k)x(k)

, x(0) = x0� 

Assume  w(k) = δ(k)ek, we may get a new formula which includes Bσ(k)
γ(k) yielding a 

guaranteed H2 performance. 

For the multi-plants situation, each plant has a wr(k), a new overall system can be 
designed in the future.  
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