
Politecnico di Milano

Scuola di Ingegneria Industriale e

dell’Informazione

Tesi di Laurea Magistrale in Ingegneria Matematica

A MCMC method for the
analysis of large datasets via

Generalized Linear Model

Candidato:
Emanuele Battistello
matr. 786403

Relatore:
Prof.ssa Alessandra

Guglielmi

Correlatore:
PhD Anders Sjögren
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A B S T R A C T

Markov chain Monte Carlo are a class of computational statistics
algorithms, used to sample from a known probability distribu-
tion. Because of their potentialities, they are widely used in the
scientific literature. They are based on Markov chains, deeply
studied random processes, and their properties. The goal of our
work is to introduce, describe and implement a particular type
of Markov chain Monte Carlo: the Hamiltonian Monte Carlo.
Firstly introduced by Duane et al. in 1987, despite its potentia-
lity, it is not part of the Monte Carlo methods usually studied.
The main characteristic of Hamiltonian Monte Carlo is that, at
each step of the sampler scheme, a simulation of an Hamiltonian
dynamics is included. This peculiarity improves several aspects
of the sampler, analyzed in this work.

Finally we apply the algorithm to a simulated dataset using
a generalized linear model through the Bayesian approach. The
posterior estimates that we get are in complete agreement with
the true values of the regression parameters used to generate the
data, showing the good performance of the Hamiltonian Monte
Carlo in this case.

All the algorithms developed for the applications in this thesis
are implemented in R language.

This thesis has been written at Chalmers Tekniska Högskola
(Göteborg, Sweden), at the Mathematics Department, under the
supervision of doctor Anders Sjögren.
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S O M M A R I O

I metodi Monte Carlo per catene di Markov sono uno strumento
di statistica computazionale molte potente e diffuso, utilizzato
per campionare variabili aleatorie data la loro distribuzione di
probabilità. Essi si basano sulle proprietà delle catene di Mar-
kov, un particolare tipo di processo aleatorio le cui caratteristi-
che sono state ampiamente studiate. Lo scopo di questo lavoro
è introdurre, descrivere ed implementare uno di questi meto-
di, particolarmente interessante per le sue proprietà: l’Hamilto-
nian Monte Carlo. Introdotto per la prima volta da Duane et
al. nel 1987, nonostante le sue notevoli potenzialità non è parte
dei metodi Monte Carlo solitamente studiati. La sua principale
differenza con i metodi classici è che esso include nel proprio
algoritmo la risoluzione di un sistema Hamiltoniano, peculiarità
che ne migliora diversi aspetti.

Infine applichiamo l’algoritmo ad un dataset simulato, utiliz-
zando un modello di regressione lineare generalizzata tramite
un approccio Bayesiano. La stima delle distribuzioni a poste-
riori che otteniamo corriponde perfettamente ai valori reali dei
parametri di regressione utilizzati per generare i dati, mostran-
do la bontà del metodo descritto.

Tutti gli algoritmi presentati in questo lavoro sono stati imple-
mentati in linguaggio R.

Questa tesi è stata scritta all’Università di Chalmers (Göteborg,
Svezia), nel Dipartimento di Matematica, sotto la supervione del
dottor Anders Sjögren.
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“Per la ragione, che non cesserà di sognare
un qualche disegno del labirinto”

J.L. Borges
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I N T R O D U C T I O N

A common problem in statistics is sampling from a given proba-
bility density function. For this purpose Metropolis et al. in 1953

introduced the Markov chain Monte Carlo, with the landmark pa-
per [Met+53]. This computational method, now widely used in
different contexts of applied probability and statistics, was ini-
tially designed to reproduce the state of a system of molecules.
Another approach to molecular simulation, presented by Alder
and Wainwright in [AW59], was deterministic and followed the
laws of motion, formalized as Hamiltonian Dynamics.
Finally, in 1987, Duane et al. combined these two different schemes,
creating an “hybrid Monte Carlo”, which used both a random
component, like Metropolis, and a deterministic Hamiltonian
dynamics simulation [Dua+87].
In this work we present this method, called Hamiltonian Monte
Carlo, studying its theoretical motivations and practical imple-
mentations.
Finally, we apply the method to a Bayesian problem: we com-
pute the posterior distribution of parameters in a regression
model, so that we obtain not only pointwise estimates, but also
credibility intervals.

In Chapter 1 we shortly describe all the mathematical tools
we need. We begin with an overview about the physics concepts
of Hamiltonian system and canonical distribution. Then the
Markov chains on a general state space are introduced, followed
by a resume on their Monte Carlo applications: the Markov
chain Monte Carlo methods.

Chapter 2 presents the Hamiltonian Monte Carlo (HMC) scheme.
We describe it, its properties and theoretical bases. The sam-
pler is a Metropolis-Hastings-like scheme, in which the proposal
state is chosen in the following way. First we resample a sup-
port variable, called momentum, which provides the randomness
of the procedure. Then, starting from it, we simulate an Hamil-
tonian dynamics to obtain a new proposed variable, which can
be accepted or rejected as new state of the chain.
Afterward an important improvement is introduced, increasing
the method performance. Using a property of the Hamiltonian
system we precondition, at each step, the variable of interest to
better explore the target density. This modification requires the
computing of a particular Hessian matrix and increases the com-
putational cost. A complete description of the two algorithms
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INTRODUCTION

and their pseudocodes is included. The full codes in R language
are reported in the appendix.
We conclude the chapter presenting an optimization technique,
called quasi-Newton method and adapt it to our HMC sampler,
increasing the efficiency from a time and memory consuming
point of view.

Chapter 3 is dedicated to the description of a wide class of
models, called Generalized Linear Models (GLMs). After an overview,
we illustrate the application of HMC to GLMs: estimate the pos-
terior distributions of regression parameters, given covariates
and outcomes.
Finally we sketch a real problem that can be modeled and solved
with the techniques previously presented: the ad optimization.
The goal is, observing several web pages, infer which factors
and how affect the popularity of on-line advertisements.

Final conclusions end this work with Chapter 4.
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1
H A M I LT O N I A N S Y S T E M S A N D M C M C

We start introducing some concepts usefull for the understand-
ing of the next chapters, like hamiltonian systems and canonical
distributions. Then we will shortly describe the important statis-
tical tool we will use to implement our methods: Markov chain
Monte Carlo. For a more complete study see [RC99], [RC+10],
[GL06], [Jac09].

1.1 hamiltonian dynamics

1.1.1 Hamiltonian System

Let us consider a two dimensions system, consisting in a puck
moving on frictionless surface. The state of this system is formed
by two variables, that describe the situation of the puck in a
given instant: its position q and its momentum p (i.e. mass times
velocity). To each one of these physical quantities we can as-
sociate an energy: the potential energy U(q), proportional to the
height of the current position of the puck and the kinetic energy
K(p) = |p|2/2m. In this case the evolution with respect to time
of the system, technically its dynamics, describes how the puck
moves on the frictionless surface. Thanks to the momentum the
mass can move on a rising slope and increase its height, until its
momentum (and so its kinetic energy) becomes 0. Then it moves
back, decreasing the potential energy and increasing the kinetic
one.
Formally the physics system is fully described by the Hamilto-
nian function

H(q, p) = U(q) + K(p) (1.1)

that is the sum of the two energies, while its dynamics (i.e. evo-
lution of its state (q, p) over time) is the solution of the Hamilton’s
equations

dq
dt

=
∂H
∂p

dp
dt

= −∂H
∂q

(1.2)
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1.1 hamiltonian dynamics

We now generalize this example to a 2d-dimension system: the
position and momentum variables are d-vectors, the potential
energy is a function

U : Rd → R (1.3)

while the kinetic one is

K(p) =
1
2

pT M−1 p, (1.4)

basically a multidimensional generalization of

K(p) = |p|2/2m.

M is a d× d matrix, consistently called mass matrix.
In the multidimensional case

q = [q1, . . . , qd] p = [p1, . . . , pd] (1.5)

and equations (1.2) become

dqi

dt
=

∂H
∂pi

dpi

dt
= −∂H

∂qi
.

(1.6)

for i = 1, 2 . . . , d.

Since the quadratic form of the kinetic energy and considering
that the variables are separated, we can rewrite equations (1.6)
as

dqi

dt
= [M−1 p]i

dpi

dt
= −∂U

∂qi
.

(1.7)

Let us note that, perfectly consistently with its physical in-
terpretation, the potential energy is defined up to an additive
constant. That is because the dynamics equations concern only
its derivative.

1.1.2 Properties of Hamiltonian Dynamics

The solution of (1.7) is the dynamics, i.e. two functions q(t) and
p(t) that describe the evolution of the system. This dynamics
has some important properties:

• Reversibility If the system evolves from a state (q0, p0) to
a new state (q1, p1) in a time s, it is always possible moving
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1.1 hamiltonian dynamics

in the opposite direction. So the system can evolve from
(q1, p1) to (q0, p0). This is equivalent to the assumption
that the map

Ts : (q(t), p(t))→ (q(t + s), p(t + s))

describing the dynamics is one-to-one and admits inverse
T−s

• Conservation of the Hamiltonian Moving according the
Hamiltonian dynamics keeps the Hamiltonian function con-
stant, i.e.

H(q, p) = H(Ts(q), Ts(p)) ∀s ∈ R+

• Symplecticness It is a generalization of volume conserva-
tion. Intuitively, given a set of points A in the 2d-phase
space, its evolution according to Hamiltonian dynamics
lets the volume of the set invariant

V(A) = V(Ts(A)) ∀s ∈ R+

The first two properties can be easily understood if we think
to the initial example. Since the surface is frictionless the total
energy is constant and, changing the direction of velocity the
system can go back to its previous states. The third one instead
is harder to imagine and it means, basically, that the system
states cannot implode in a small area or explode to a big one.
These properties are very important in the next chapter.

1.1.3 Numerical solution of Hamiltonian Dynamics

In our simulations we need to implement a method that repli-
cates the dynamics, without analytically solving the equations
(1.7). The Leapfrog method is a modification of Forward Euler
method, in which we partially update the momentum variables,
then we do a full step for the position variables and finally we
complete the momentum update, i.e.

p(t + ε/2) = p(t)− (ε/2)∇U(q(t))

q(t + ε) = q(t) + εM−1 p(t + ε/2)

p(t + ε) = p(t + ε/2)− (ε/2)∇U(q(t + ε/2))

(1.8)

10



1.1 hamiltonian dynamics

Using L times equations (1.8) we compute the dynamics from po-
sition (q(t), p(t)) to (q(t + Lε), p(t + Lε)). The choice of suitable
values for L and ε is part of the tuning process.

Algorithm 1: LeapfrogSim
Data: (q(t), p(t)), U(q), M, ε, L
Result: (q(t + Lε), p(t + Lε))

(q, p)← (q(t), p(t)) ;
for i← 1 to L do

p← p− (ε/2)∇U(q) ;
q← q + εM−1 p ;
p← p− (ε/2)∇U(q) ;

(q(t + Lε), p(t + Lε))← (q, p) ;

Obviously Algorithm 1 is just an approximation of the real dy-
namics. Anyway, even if approximated, the simulated trajectory
has reversibility and symplecticness properties.
On the contrary, conservation of the Hamiltonian property is not
valid anymore, i.e. due to numeric approximation, simulating
the dynamic with leapfrog method does not leave the Hamilto-
nian exactly invariant.

1.1.4 Linear change of variables

Considering an Hamiltonian System, with state (q, p), choosing
a non singular square matrix A, we define new variables (q̂, p̂),
in the following way {

q̂ = Aq
p̂ = A−T p

. (1.9)

Then we define new energy functions (Û(q̂), K̂( p̂)) as{
Û(q̂) = U(A−1q̂)
K̂( p̂) = K(AT p̂)

. (1.10)

Let us note that, if the original system kinetic energy has
quadratic form (1.4), then the new one will be

K̂( p̂) = K(AT p̂) = (AT p̂)T M−1(AT p̂)/2 = p̂T(AM−1AT) p̂/2.
(1.11)

In other words only the mass matrix is changed

K̂( p̂) = p̂T M̂−1 p̂/2

M̂ = A−T MA−1.
(1.12)

So we have two different systems, related by (1.9) and (1.10).
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1.2 canonical distribution of an hamiltonian system

Since

dq
dt

= A−1 dq̂
dt

= A−1M̂−1 p̂ = A−1(AM−1AT)A−T p = M−1 p

dp
dt

= AT dp̂
dt

= −AT∇Û(q̂) = −AT A−T∇U(A−1q̂) = −∇U(q)

(1.13)

these two systems have the same dynamics.
That is, using the relations (1.9, 1.10), the variables (q̂, p̂) repre-
sent the same physical system state of (q, p) using another coor-
dinate system, that is a linear transformation of the original one.
It means that the evolution of the variables (q̂, p̂) follows exactly
(q, p).

1.2 canonical distribution of an hamiltonian sys-
tem

1.2.1 Canonical Distribution

We now introduce the notion of canonical distribution, borrowed
from statistical mechanics. Let us consider a physics system, its
state x and the energy function E(x). It is possible to prove that
the state variable x is a random variable, following a distribution
called canonical with a density function

P(x) =
1
Z

exp(−E(x)) (1.14)

1.2.2 Building the target joint distribution

If we consider an Hamiltonian system, identified by the function
H(q, p) = U(q) + K(p), and we compute its canonical distribu-
tion we obtain

P(q, p) =
1
Z

exp(−U(q))exp(−K(p)) (1.15)

Since in H the variables p and q are separated, P(q, p) is the
product of two marginal distributions of independent random
variables. This is the key property of P(q, p) and the reason
we use it.

Now given a target distribution π(q), we define

U(q) = −log[π(q)]

K(p) =
1
2

pT M−1 p
(1.16)
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1.3 markov chain and mcmc

and we obtain

P(q, p) =
1
Z

exp(−U(q))exp(−K(p)) =

=
1
Z

π(q)exp(−1
2

pT M−1 p)
(1.17)

and so
P(q, p) ∝ π(q) fNd(0,M)(p) (1.18)

where fNd(0,M)(p) is the density function of a d-dimension multi-
variate normal random variable, with expected value [0, . . . , 0]T

and covariance matrix M.

1.3 markov chain and mcmc

1.3.1 Basic notions

Let us consider a random process, i.e. a sequence of random
variables that can be imagined as evolving over time

X0, X1, X2, . . . , Xi, . . .

These variables assume value in a set χ. The description of the
process and its properties are different if χ and the time index i
are discrete or continue. In this work we just consider variables
with discrete time index on a continuous space χ ⊆ Rd .

A Markov chain is a random process that satisfies the Markov
condition:

P(Xi ∈ A|X0 = x0, X1 = x1, . . . , Xi−1 = xi−1) =

= P(Xi ∈ A|Xi−1 = xi−1)

∀A ∈ B(χ)

where B(χ) is the Borel σ-algebra on χ.
The condition above is a conditional independence restriction:

given an instant i, the present state Xi of the process depends on
the past only through the previous state Xi−1.

We consider the time homogeneous case, in which

P(Xi ∈ A|Xi−1 = xi−1) = P(X1 ∈ A|X0 = x0) ∀i

Because of its property, a Markov chain is fully determined by
its kernel K, that is a function defined on χ × B(χ) such that

• ∀x ∈ χ, K(x, ·) is a probability measure

• ∀A ∈ B(χ), K(·, A) is measurable
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1.3 markov chain and mcmc

and
P(Xi ∈ A|Xi−1 = xi−1) =

∫
A

K(xi−1, dx)

So the kernel K describes the conditional probability distribution
of Xi given Xi−1.
On the same way we denote with Kn(·, ·) the kernel for n tran-
sitions, indicating the conditional probability distribution of Xi
given Xi−n.

A key notion related with Markov chain is

Definition 1. Let {Xi} be a Markov chain on state space χ, with a
transition kernel K(·, ·). A probability measure π is said to be an in-
variant probability measure with respect to K(·, ·) and hence with
respect to the Markov chain if

π(A) =
∫

χ
K(x, A)π(dx) ∀A ∈ B(χ)

It follows from the definition that an additional iteration of
the chain with kernel K leaves the distribution π unchanged, i.e.

Xi ∼ π =⇒ Xi+1 ∼ π ∀i.

For this reason π is also called stationary distribution

1.3.2 Irriducibility and Harris recurrence

We now introduce some definitions and theorems with a consid-
erable practical importance

Definition 2. Let ϕ be a measure on (χ,B(χ)). A Markov chain
{Xi} on state space χ, with a transition kernel K(·, ·), is said to be
ϕ - irreducible if ∀A ∈ B(χ) with ϕ(A) > 0, ∃n s.t. Kn(x, A) >

0 ∀x ∈ χ

The key idea of irreducibility is that, regardless of where the
chain starts, it can reach any states.

The following theorem can be found in [RC99, Pb. 6.60]

Theorem 3. If a chain is ϕ-irreducible and allows for an invariant
probability measure π, then this measure is unique.

Now let us define

Definition 4. A Markov chain that is ϕ- irreducible and admits unique
invariant probability measure is said to be positive.

The next definitions formalize the idea of a chain that visits
all the states infinitely many times.

14



1.3 markov chain and mcmc

Definition 5. Let {Xi} be a Markov chain on state space χ and a
subset A ∈ B(χ). The number of passages of the chain through A
in a infinitely long run is

v(A) =
∞

∑
i=1

I(Xi ∈ A)

Definition 6 (Harris recurrent set). Let {Xi} be a Markov chain on
state space χ. A set A is said Harris recurrent if P(v(A) = ∞|X0 =

x) = 1 ∀x ∈ A

Definition 7 (Harris recurrent chain). Let {Xi} be a Markov chain
on state space χ. If there exists a measure ϕ s.t. {Xi} is ϕ-irreducible
and ∀A ∈ B(χ) s.t. ϕ(A) > 0, A is Harris recurrent the chain is said
Harris recurrent

1.3.3 Reversibility

Another important property of a chain dynamics is the indepen-
dence on the direction of time. Let us define:

Definition 8. A Markov chain {Xi} is said to be reversible if the
distribution of Xn+1 conditionally on Xn+2 = x is the same as the
distribution of Xn+1 conditionally on Xn = x.

Reversibility is very important cause is strongly related with
the existence of a stationary distribution.

Definition 9 (Detailed balance condition). A Markov chain {Xi}
on state space χ, with a transition kernel K(·, ·), satisfies the detailed
balance condition if there exists a probability density function π s.t.

K(y, x)π(y) = K(x, y)π(x)

for every (x, y).

It can be prove the following

Theorem 10. If a Markov chain {Xi} with a transition kernel K(·, ·)
satisfies the detailed balance condition with a probability density func-
tion π, then

1. π is the invariant density of the chain

2. the chain is reversible

So we have a sufficient condition, often easy to check, for π to
be a stationary distribution.

Moreover we do not want that the chain has some determinis-
tic paths, i.e. its kernel has to provide random behavior of the
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1.3 markov chain and mcmc

walk in the χ space.
Since in the continuous case the proper definition is quite diffi-
cult, we give it considering χ a discrete space. That should give
an idea of the property we are describing.

Definition 11. Let a Markov chain {Xi} on a discrete space with
transition function K(·, ·). The period of a state A is

g.c.d.{m ≥ 1|Km(A, A) > 0}.

An irreducible Markov chain with all the states having period 1 is said
to be aperiodic.

1.3.4 Convergence of Markov chains

Following the notation of [Jac09, p. 187], we introduce the subse-
quent definitions:

Definition 12. A Markov chain {Xi} is said to be ergodic if it is

1. positive

2. Harris recurrent

3. aperiodic

Definition 13. Let µ and γ be measures over (χ,B(χ)). Then the
total variation norm is

‖µ− γ‖TV = sup
A∈B(χ)

|µ(A)− γ(A)|

We can now enunciate this two important theorems, that allow
us to use Monte Carlo simulations:

Theorem 14. If a Markov chain {Xi}, with a transition kernel K(·, ·),
is ergodic with invariant distribution π then, for every initial distribu-
tion π0

lim
n→∞
‖
∫

χ
Kn(x, ·)π0(dx)− π‖TV = 0

Theorem 15. Let {Xi} an Harris recurrent Markov chain on state
space χ, with invariant probability measure π. Let h a π-measurable
function s.t.

∫
χ |h(x)|dπ(x) < ∞. Then

lim
N→∞

1
N

N

∑
i=1

h(Xi) =
∫

χ
|h(x)|dπ(x) = Eπ[h(X)]

The last theorem is a sort of Law of Large Numbers. It is
important to note that is valid even if the numbers generated
Xi’s are not independent.
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1.3 markov chain and mcmc

1.3.5 McMC

We summarized a large piece of theory in order to be able to de-
scribe the meaning of Markov chain Monte Carlo. The basic idea
is the following: given a target distribution π, build a Markov
chain with a kernel K satisfying the assumptions of the limiting
theorem Th. 15. So we have to build an chain such that it has
stationary and limiting distribution π.
Then, starting from an arbitrary point X0, generate the chain
{Xi}N

i=0 using the kernel K. After a high number of chain steps,
Xi (the i-th random variable of the process) has approximately
distribution π.

1.3.6 Metropolis-Hasting algorithm

Given the target density function π(x) : Rd → R, the Metropolis-
Hastings approach uses a conditional density q(y|x) to produce
a Markov chain {Xi}N

i=0 in the following way

Algorithm 2: Metropolis-Hastings
Data: π(x), x0, N
Result: {x0, x1, x2, . . . , xN}
for i← 1 to N do

1. Sample Y ∼ q(y|xi−1);

2. Compute ρ = min
[
1, π(Y)

π(xi−1)
q(xi−1|Y)
q(Y|xi−1)

]
3. Xi =

{
Y with prob. ρ

xi−1 otherwise

It is possible to prove that the chain {Xi} generated by Al-
gorithm 2 has a transition kernel K that respects the detailed
balance equation with the target density π. So it has π as sta-
tionary distribution. As reference see [Jac09, ch. 5.1.1].

To verify the consistency of Metropolis-Hasting we have to prove
also the ergodicity of {Xi}, and so the convergence of the chain
variables distribution to the π, independently on the initial value
or distribution.

Since we have already prove the existence of the stationary
distribution, to prove the positivity we need that {Xi} is irre-
ducible.
A sufficient condition for irreducibility is that

q(y|x) > 0 ∀x, y ∈ χ.
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1.3 markov chain and mcmc

Moreover, irreducibility implies Harris recurrence for chains
generated by the Algorithm 2.

Finally aperiodicity is a consequence of P(Xi−1 = Xi) > 0,
that is

P (q(Y|xi−1)π(xi−1) ≤ π(Y)q(xi−1|Y)) < 1

In general these are not restrictive conditions on q(y|x).
For instance the Random Walk Metropolis algorithm uses as pro-
posal distribution for the new state q(y|x) a random walk cen-
tered in the current state then

Y ∼N(x, σ2)

18



2
H A M I LT O N I A N M O N T E C A R L O

In this chapter we will introduce a new type of Markov chain
Monte Carlo based on the Metropolis-Hasting scheme. After the
description of the algorithm we will sketch its theoretical motiva-
tion and some useful changes. Finally we will use a optimization
technique to improve the performance of the algorithm from a
time and memory consuming point of view. As reference see
[Nea11] and [ZS11].

2.1 the hamiltonian monte carlo algorithm

Our goal is to sample from a given continuous target density func-
tion π(q) in Rd, supposing we are able to compute its logarithm
and the partial derivatives of its logarithm.
Hamiltonian Monte Carlo accomplishes this achievement sam-
pling from a joint density P(q, p) of the form 1.18:

P(q, p) =
1
Z

exp(−U(q))exp(−K(p)) =

=
1
Z

π(q)exp(−1
2

pT M−1 p)

with marginal distribution the target density π. So, knowing π,
we define the proper functions U(q) and K(p) as specified in
1.16:

U(q) = −log[π(q)]

K(p) =
1
2

pT M−1 p

After the definition of the energy the iterative part can start.
At each iteration there are two different steps, the first changes
only the momentum variable while the second one concerns
both position and momentum.

1. In the first step we resample the momentum variable p
from its marginal distribution, that is a gaussian distribu-
tion independent from the current value of the position
q. So we move from the state (q, p) to (q, p′) and, since
the drawing from the correct conditional (due to indepen-
dence), the joint distribution does not change.
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2.1 the hamiltonian monte carlo algorithm

2. The second step has the basic structure of the classical
Metropolis-Hasting sampler, with a new proposed variable
accepted using a proper acceptance rate. To propose a new
state, instead of using a conditional distribution q(·|·), we
evolve the states according to the Hamiltonian dynamics.
So, starting from the current point (q, p′) we simulate the
Hamiltonian dynamics using the leapfrog method, com-
puting the trajectory of L steps of length ε and obtaining
the state (q∗, p∗). This proposed state is accepted as the
new state of the Markov chain with probability

ρ = min[1, exp(−H(q∗, p∗) + H(q, p′)].

If it is refused the chain does not move in this iteration and
the new state is the same of the current one: qi = qi−1.

The chain explores the joint distribution P(q, p), but we just
care of the position variable q while the momentum p is resam-
pled at each iteration. So, on practical implementation, we save
only the sequence of the position states {q1, q2, . . . , qN}.

Since there are no reason to have correlation between the mo-
mentum components the easiest choice of the mass matrix M is
the identity matrix: M = Id.

Hamiltonian Monte Carlo implementation scheme is reported
in Algorithm 3. Let us note we use, at each iteration, Algorithm
1 to simulate the dynamics of the system.

Algorithm 3: HMC
Data: π(q), M, q1, ε, L, N
Result: {q1, q2, . . . , qN}
Define U(q) = −log[π(q)] ;
for i← 2 to N do

1. Sample p′ ∼ Nd(0, M);

2. (q∗, p∗)← LeapfrogSim((qi−1, p′), U(q), M, ε, L);

3. Compute ρ = min[1, exp(−H(q∗, p∗) + H(q, p′))];

4. qi =

{
q∗ with prob. ρ
qi−1 otherwise

As pointed up in the description of equation 1.6, the potential
energy U(q) can be defined up to an additive constant. Since
P(q, p) ∝ exp(−U(q))exp(−K(p)), that matches perfectly with
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2.1 the hamiltonian monte carlo algorithm

the property of Metropolis-Hasting scheme in which the target
distribution is known up to a multiplicative constant.

2.1.1 Ergodicity of HMC

Hamiltonian Monte Carlo generates a chain with unique limit-
ing invariant distribution the canonical distribution P(q, p). We
now try to explain why.
As we said, the first passage leaves the canonical joint distribu-
tion invariant because it samples from the proper marginal, that
we choose easy to sample from.
The second step respects the Metropolis-Hasting scheme and has
the same invariance property. Indeed, substituting the condi-
tional density q(·|·) with a deterministic evolution of the Hamil-
tonian system keeps the detailed balance condition respected:

P(q0, p0)T(q1, p1|q0, p0) = P(q1, p1)T(q0, p0|q1, p1) (2.1)

where P(q, p) is as usual the canonical distribution and T rep-
resents the transition kernel of the chain created with the Algo-
rithm 3.
That happens because the properties of reversibility and volume
preservation of the Hamiltonian dynamics.
As consequence the chain is reversible and has unique invariant
distribution P(q, p).
To understand the limiting property we can imagine it as the
capacity of not be stacked in some subset of the variable space.
It is achieved by the resampling of the momentum, performed
at each step, that can highly change it. So the chain widely ex-
plores, independently of choice of the starting point q1, the space
and converges to its invariant distribution.

2.1.2 Properties of HMC

Let us compare HMC method with the classic Metropolis-Hasting
scheme, illustrated in the previous chapter (Algorithm 2).
The main difference is that in Algorithm 3 the mixing is pro-
vided by the first step: it can change the probability P(q, p) for a
large amount because the independent modification of the mo-
mentum.
In the subsequently step, since the invariance property of the
Hamiltonian function:

H(q, p′) = H(q∗, p∗)
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2.2 a change of variables

and the formula of the canonical distribution:

P(q, p) =
1
Z

exp(−H(q, p))

the dynamics moves on a equiprobability surface in the space
R2d, affecting the position variable in arbitrary way. As conse-
quence, if simulated exactly, the dynamics leads to an acceptance
rate

min[1, exp(−H(q∗, p∗) + H(q, p′)] = min[1, exp(0)] = 1.

As we said describing the leapfrog method, since it is a numeric
solution, it is affected by numeric approximation and it does not
conserve exactly the Hamiltonian function H. So:

H(q, p′) ' H(q∗, p∗)

and

min[1, exp(−H(q∗, p∗) + H(q, p′)] = min[1, exp(0)] ' 1.

Then, on practical implementation, the acceptance rate is very
high, even not always 1, that is still a good result.

So we provide, at each step, both a significant mixing in the
chain and a high acceptance ratio, making the Hamiltonian Monte
Carlo a performing Markov chain Monte Carlo method.

The two functions, written in R, implementing Algorithm 3

are shown in the code section:

• Listing 4.1 is the code for a single iteration of the chain

• Listing 4.2 implements the chain loop.

2.2 a change of variables

The position variable takes place in Rd and the chain could have
some ”favorite moving directions”, i.e. it could better explore
some components of q, while some others are less considered.
That mainly depends on the shape of the function U(q).

Since our goal is to have an algorithm that explores equally
every component, we want to mitigate this behavior and have a
better description of the density function π(q).
To achieve that and improve the performance of the chain, we
use at each step i, to compute qi, an estimate of the Hessian
matrix of U(q) for qi−1, in the following way.
Suppose we know, for a given point qx, the Hessian matrix B of
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2.2 a change of variables

U(q) and suppose B is positive-definite, so we can consider its
Cholesky decomposition B = LLT

Hq(U(q))
∣∣
q=qx

= B = LLT. (2.2)

If we define a new variable q̌ and a new potential energy as{
q̌ = LTq
Ǔ(q̌) = U(L−T q̌)

, (2.3)

it follows, from the Hessian properties, that

Hq̌(Ǔ(q̌))
∣∣
q̌=q̌x

=

= L−1 Hq(U(q))
∣∣
q=qx

L−T

= L−1BL−T =

= L−1LLT L−T = Id.

(2.4)

So, with respect the new variable q̌, the new function Ǔ is at
least locally better conditioned. I.e. the components of q̌ are less
correlated and have similar scale.
We now consider 2.3 as the position and potential energy of our
system. Since the dynamics moves according to it, choosing as
starting point q̌x the first step explores equally every component.

We now apply the variable change idea exposed above in two
simple examples. Let us note how, applying Equations 2.3, the
shape of functions changes.

Example 1. Let us consider a 2-dimension multivariate normal distri-
bution

q = [q1, q2]
T ∼ N2(µ, Σ)

with

µ = [3 5]T Σ =

[
50 3
3 2

]
.

Its density function is

f (q) =
1

2π
√
|Σ|

exp
[
−1

2
pTΣ−1 p

]
.

and its contour lines are shown in figure 2.1. Let us note the big differ-
ence in scale between the two components q1 and q2.

Consistently with the notation above, we choose qx = µ. So, the
Hessian of f evaluated in µ is

Hq( f (q))
∣∣
q=µ

= Σ−1 =

[
50 3
3 2

]−1

=

[
0.022 −0.033
−0.033 0.55

]
.
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Figure 2.1: q

We obtain the Cholesky decomposition

L =

[
0.15 0
−0.22 0.71

]
.

Using Equations 2.2 and 2.3 we define{
q̌ = LTq
f̌ (q̌) = f (L−T q̌)

,

The contour lines of the new system are shown in figure 2.2, with

q̌x = [−0.67 3.54]T

Example 2. Let us consider the function

U(q) = q2
1 + q1q2 − q3

2.

Using the same notation as before we define

qx = [−1− 1]T

B =

[
2 1
1 6

]

L =

[
1.4 0
0.71 2.3

]
and so

q̌x = [−2.1 − 2.3]T.
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Figure 2.2: q̌ = LTq

Figure 2.3 shows the contour lines for the original system (q, U(q),
while Figure 2.4 is referred to the new one (q̌, Ǔ(q̌).
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Figure 2.3: q

Example 1 is a very simple case, because the function f (q)
we are considering has Hessian B = Σ−1 constant for each q.
As consequence the linear change of variable better rescale the
components in each point q̌, indeed

Hq̌( f̌ (q̌)) = I2 ∀q̌ ∈ R2
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Figure 2.4: q̌ = LTq

Moreover let us note we can obtain the same result thanks to
the multivariate normal distribution property:

x ∼ N (µ, Σ) =⇒ Sx ∼ N (Sµ, SΣST)

choosing S = LT.

On the contrary, in Example 2 the Hessian matrix of the func-
tion is not constant. In Figure 2.4 we note the scale similarity
between the two components is in a bound of q̌x (marked with a
black dot).

We now return to the original problem. How can we use the
change of variable property, described above, to regularize the
shape of the U function?
Obviously we are not interested in the variable q̌, because we
want to sample q. Using the property described in subsection 1.1.4
and choosing A = L−T we deduce that the system

(q̌, p) = (LTq, p)

has the same dynamics of

(L−T q̌, (L−T)−T p) = (q, Lp).

So we can improve each step of the algorithm modifying only
the momentum variable and consistently its kinetic energy. I.e.,
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2.2 a change of variables

as explained by equation 1.12, we have just to change the mass
matrix M = Id with a new one:

M̂ = A−T MA−1 = (L−T)−TId(L−T)−1 = LLT = B.

So, to improve the performance and eliminate the existence
of chain drifting favorite directions, determined by the differ-
ent scale and correlation between the components, at each step
we use the Hessian matrix of U(q) evaluated in the current
state as the mass matrix of the kinetic energy.

The new improved algorithm is Algorithm 4.

Algorithm 4: HMC mass
Data: π(q), q1, ε, L, N
Result: {q1, q2, . . . , qN}
Define U(q) = −log[π(q)] ;
for i← 2 to N do

1. Compute M = Hq(U(q))
∣∣
q=qi−1

;

2. Sample p′ ∼ Nd(0, M);

3. (q∗, p∗)← LeapfrogSim((qi−1, p′), U(q), M, ε, L);

4. Compute ρ = min[1, exp(−H(q∗, p∗) + H(q, p′)];

5. qi =

{
q∗ with prob. ρ
qi−1 otherwise

The mass matrix M is different at each step and it is used sev-
eral times: as covariance of the sampled momentum p′, to solve
the differential equation in the leapfrog simulation and to com-
pute the kinetic energy.

The code implementation of the new Algorithm 4 is reported
in Listing 4.3.
Let us note how the only difference with the previous code 4.2 is
the definition of the variable v, while the single iteration script
does not change. Because Algorithm 4 evaluates the Hessian
matrix of U(q) at each step, on practical implementation we need
to write a function (in our case hess_U()) to do that.

2.2.1 Effective sample size

To show the improvement, we now introduce the concept of ef-
fective sample size of a Markov chain. For a more detailed descrip-
tion see [RC99] and [RC+10].
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2.2 a change of variables

Let us consider N random variables Xi, independent and identi-
cally distributed. The mean, defined as

X̄ =
∑N

i=1 Xi

N
, (2.5)

is a random variable with variance

Var(Xi)

N
. (2.6)

On the contrary, for a Markov chain of length N, {Xi}, we
have to count the loss in efficiency due to the fact that each vari-
able is not independent to the previous ones. So, using the same
formula as the independent case 2.6 underestimates the true vari-
ance of the mean. Given a Markov chain, the effective sample
size (ESS) is the size of an iid sample with the same variance
of the mean as the current chain. So the variance of the mean
of the Markov chain is

Var(X)

NESS
.

The ESS can be computed in several ways. For instance, the R

language, with the command effectiveSize{CODA} computes
it estimating the spectral density function.
In our work it is particularly useful checking the effective sam-
ple size for each component of the chain variable q, to diagnose
any wrong behaviors of algorithm in the exploration of every
direction of π support.

Example 3. Let us consider a 100-dimension multivariate normal dis-
tribution, with all the components independent each others, expected
value equal to 1 and standard deviation respectively 0.01, 0.02, . . . , 0.99, 1.
So

X ∼ N100(µ, Σ)

with

µ = [1 . . . 1 1]T Σ =


0.012 0 · · · 0

0 0.022 · · · 0
...

...
. . .

...
0 0 · · · 12


We want a sample x1, x2, . . . , xN of X, obtained using the two differ-

ent algorithm. So we run two Markov chains, the first one using the
variable change (implemented in Algorithm 4 ), while the second one
without (Algorithm 3).
For each one of the 100 components of the variable X we compute the
mean, the standard deviation and the effective sample size. Figure 2.5
shows the different results using Algorithm 4 (left column) and Algo-
rithm 3 (right column).
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Figure 2.5: Mean, standard deviation and effective sample size
of each component, using the two different algorithm.
The continuous lines represent the real means and
standard deviations
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2.3 a quasi-newton method

The continuous lines represent the true values of mean and standard
deviation, while dots are the approximated ones. The last graphs repre-
sent the effective sample size for each components.
Let us note how in the improved method each direction is explored
equally (the ESS is more or less constant at 50% for each components).
Meanwhile without variable change, the chain explores significantly
only the first components and, as consequence, means and standard de-
viations are worse approximated in the last components, as displayed
in the right column.
Finally we remark that using HMC to sample multivariate normal dis-
tribution does not have any sense, because at each step of the sampler
we have to be able to generate exactly a multivariate normal distribu-
tion (obviously different from the target one). Indeed this example has
to be considered a simple case without any real application.

2.3 a quasi-newton method

In this subsection we want to improve our algorithm on the im-
plementation side. In each step of Algorithm 4 we evaluate and
save the d × d Hessian matrix of U(q). This passage can be,
especially for high value of d, very expensive from a time and
memory consuming point of view.
So we introduce a technique, borrowed from optimization liter-
ature, to avoid forming the full Hessian matrix. More precisely,
we obtain a second order information (the Hessian) using some
first order informations, i.e. the gradient vectors of the previous
k states of the chain. The schemes written for this purpose are
part of a family called quasi-Newton methods. In our work we use
one of them called BFGS. It can be found and deeply described
in [WN99].

2.3.1 Quasi-Newton in general

In the context of optimization, quasi-Newton methods work in
the following way: given a function f : Rd → R they search for
the minimum by generating a sequences qk+2, qk+1, qk, . . . that
converges to it. The q values are iteratively computed using the
formula

qk+1 = qk − αkDk∇ f (qk)

where Dk is an approximation of the inverse of the Hessian
matrix of f evaluated in qk and αk another parameter.

The important point is that Dk is computed from the previous
values

qk, qk−1, qk−2, . . .
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2.3 a quasi-newton method

and their gradients

∇ f (qk),∇ f (qk−1),∇ f (qk−2), . . .

There are several quasi-Newton methods, with different ap-
proximation of Dk.
The one we are interested in is limited-memory BFGS (L-BFGS). It
works iteratively in the following way:

Dk+1 = (I−
yksT

k

sT
k yk

)Dk(I−
skyT

k

sT
k yk

) + sksT
k (2.7)

with
sk = qk+1 − qk (2.8)

yk = ∇ f (qk+1)−∇ f (qk) (2.9)

and as base case of the recursion

Dk−m = I. (2.10)

This method is called limited-memory because it does not use all
the previous iterates q, but only the last ones.

Since we are interested in the Hessian of the function U(q) we
could use this method to approximate it. It is particularly suit-
able for our purpose because, since we are saving all the chain
path, it is not a problem to keep in memory the last states. More-
over, because the leapfrog method requires the computation of
the gradient of U(q), we have already implement it.

2.3.2 Quasi-Newton in samplers

So we want to approximate the Hessian matrix, at each step of
the chain, exploiting the quasi-Newton technique above. For this
purpose we need to introduce some modifications, essential to
include the algorithm in the Markov chain Monte Carlo sampler.
These changes are sketched in [ZS11], for a more complete de-
scription see [BGG73] and [DJS96].

At each step Algorithm 4 needs the Hessian B and its in-
verse B−1 to, respectively, sample the new momentum variable
p′ ∼ Nd(0, B) and compute the kinetic energy

K(p) =
1
2

pTB−1 p.
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2.3 a quasi-newton method

We now introduce a variant of the method above. Instead of
the Hessian B and its inverse D = B−1, it computes, as before
iteratively, their decompositions:

Bk+1 = Lk+1LT
k+1 Dk+1 = Sk+1ST

k+1 (2.11)

using the equations:

Lk+1 = (I− uktT
k )Lk (2.12)

uk =
sk

sT
k Bksk

tk =

√
sT

k Bksk

sT
k yk

yk + Bksk (2.13)

Sk+1 = (I− vkwT
k )Sk (2.14)

vk =
sk

sT
k yk

wk =

√
sT

k yk

sT
k Bksk

Bksk − yk (2.15)

with the base cases

Lk−m = Sk−m = I. (2.16)

Because of the matrices forms, the matrix-vector product can
be computed very fast, as a sequence of inner products

Sk+1z =
k

∏
i=k−m−1

(I− viwT
i )Sk−mz,

with z a general vector.
So we avoid the high memory cost of storing the full d × d
matrix.
Furthermore, we can sample p′ ∼ Nd(0, B) more easily, because
we know the decomposition of B = LLT:

p′ = Lw with w ∼ N (0, I)

2.3.3 Positive definition of the Hessian matrix

Finally we need to guarantee that Bk is positive-define, since it
is used as a covariance matrix.
It can be proved that, for a convex function f , an optimizer us-
ing a quasi-Newton method, always forms a positive-definite
Hessian matrix (see [WN99, ch. 8]).

The case of a sampler is totally different. Indeed, we are not
defining a sequence qi with a complete deterministic algorithm,
since there is a random component in the choice of the next state
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2.3 a quasi-newton method

(however we do not want to converge to some point, we want
widely explore an area).
So we have to ensure the positive definition of the matrix Bk in
the some way. First we sort the previous position states {qi}
in ascending order with respect U(q). Then we remove any re-
peated state qi = qi−1 of the chain, that can be present due to
some rejections of the proposed state. Finally we apply the for-
mulae 2.12- 2.15.
The proof of the positive-definition of the matrix obtained is dis-
played in [JWE92, ch. 9.2].

However if the Hessian of potential energy function U is not
positive-definite we can not use it as covariance matrix. Even
in this case, sorting the states and using equations 2.12- 2.15

we produce a positive-definite Hessian approximation. Indeed,
that happens because the method introduced computes the best
positive-definite approximation of the Hessian matrix. What
“best” means is described in [DJS96] and it is not part of this
work. We just say the formulae above are written to form the
positive-definite matrix nearest to the Hessian, where nearest is
respect to a specific norm.

So we do not have any requirement on the function U, be-
cause using equations 2.12- 2.15 we always have an exploitable
Hessian approximation.

2.3.4 Convergence

To complete the description of the chain obtained with the quasi-
Newton Hessian approximation we have to formalize its conver-
gence to the target distribution. We now describe the general
idea, for a complete picture see [ZS11].

Since each step uses the previous k states to compute the ap-
proximated Hessian, the chain will be then a K order Markov
chain. Moreover can be easier analyzed as a first order Markov
chain over an enlarged space. So, the position state of the new
chain is an ordered set of the last k positions q. At each step
only one of its components is updated, using the others k − 1
to approximate the Hessian and perform a single step of the
Hamiltonian Monte Carlo with the quasi-Newton scheme, de-
scribed above.
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2.3 a quasi-newton method

That chain is over a Rd×k space and can be proved it has a sta-
tionary limiting distribution:

k

∏
i=1

π(qi).

I.e. reached the stationarity, every component is distributed ac-
cording to the target distribution π. The proof of this property
needs the concept of ensemble-chain adaptation, see Gilks, Roberts,
and George in [GRG94].
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3

A P P L I C AT I O N T O G E N E R A L I Z E D L I N E A R
M O D E L S

In this chapter we will apply the Hamiltonian Monte Carlo, il-
lustrated and implemented in the previous chapter, to a real
problem. At first we will describe a wide class of models called
Generalized Linear Models (GLMs) and its importance (a full
description is available in [Woo06, ch. 2]).
Then we will introduce some practical situations in which GLMs
can be very useful to model the outcomes.

3.1 generalized linear models

Linear models are statistical models in which a response yi is
represented as the sum of two terms:

1. a linear predictor µi

2. a random error ε i

The linear predictor depends on some predictor variables called
covariates

x(i)1 , x(i)2 , . . . , x(i)d−1

and measured with the response variable yi, and some unknown
parameters called regressors

β0, β1, . . . , βd−1.

They are related according to the formula:

µi = β0 + x(i)1 β1 + x(i)2 β2 + · · ·+ x(i)d−1βd−1. (3.1)

The error is modeled as a zero-mean Gaussian variable

ε i ∼ N (0, σ2). (3.2)

So, the outcome variable yi is

yi ∼ N (Xiβ, σ2) (3.3)

with expected value
E[Yi] = Xiβ (3.4)
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3.1 generalized linear models

where Xi is the ith row of the model matrix X

Xi = [1, x(i)1 , x(i)2 , . . . , x(i)d−1] (3.5)

and β is the vector of unknown parameters we want estimate

β = [β0, β1, . . . , βd−1]
T. (3.6)

Generalized Linear Models (GLMs) relax the hypothesis of nor-
mal distribution of yi (Equation 3.3) and the linear dependence
of the mean with respect the predictors and the regressors (Equa-
tion 3.4).
Indeed, the new assumption on which GLMs are based is

g(µi) = Xiβ (3.7)

where
E[Yi] = µi (3.8)

and g is a smooth monotonic link function, that represents the
non-linearity of the model.

Moreover, we assume:

Yi ∼ some exponential family distribution.

As shown in the next subsection, the exponential family of dis-
tributions includes Normal distribution and many others, very
used in practical modeling, such as Poisson, Binomial and Gamma
distributions.

To explain the adjective generalized let us note that, if the link
function is chosen as the identity f (x) = x, and the normal
distribution of Yi is assumed, then linear models are recovered
as a particular case of GLM.

3.1.1 The exponential family of distributions

In a GLM we assume that the response variable Yi can have any
distribution from the exponential family. A distribution belongs
to the exponential family if its probability density function, can
be written in the following form:

fθ(y) = exp
[

yθ − b(θ)
a(φ)

+ c(y, φ)

]
(3.9)

where

• a(φ), b(θ) and c(y, φ) are arbitrary functions
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3.1 generalized linear models

• φ an arbitrary ”scale” parameter

• θ another parameter, called canonical parameter.

We choose the notation fθ(y) to point out that the density distri-
bution is a function on the variable y, while θ is a parameter.

It is easy to see that Normal and Poisson distributions belong
to the exponential family, as shown in the following examples:

Example 4. The normal distribution density can be written as

f (y) =
1√

2πσ2
exp

[
− (y− µ)2

2σ2

]
=

= exp
[
−y2 + 2yµ− µ2

2σ2 − log(
√

2πσ2)

]
=

= exp
[

yµ− µ2/2
σ2 − y2

2σ2 − log(
√

2πσ2)

]
So, referring to Equation 3.9, we define:

θ µ

φ σ2

a(φ) φ

b(θ) θ2

2

c(y, φ) − y2

2φ − log(
√

2πφ)

Example 5. Also a discrete random variable can belong to the expo-
nential family. Indeed, we can rewrite the Poisson mass function in the
following way:

f (y) =
µye−µ

y!
=

= exp [ylog(µ)− µ− log(y!)] =

= exp

[
ylog(µ)− elog(µ)

1
− log(y!)

]
As before, referring to Equation 3.9:

θ log(µ)
φ 1

a(φ) φ

b(θ) eθ

c(y, φ) −log(y!)

3.1.2 Likelihood function

Let us consider a random variable Y with some exponential fam-
ily distribution.
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3.1 generalized linear models

Given a realization y of Y, we define the likelihood function L(θ)
simply as fθ(y) as a function of θ.

L(θ) = exp
[

yθ − b(θ)
a(φ)

+ c(y, φ)

]
. (3.10)

It can be easily prove (see [Woo06, ch. 2.14] or [JWE92]) the re-
lation between the canonical parameter θ and the expected value
of Y is expressed by the formula:

E[Y] = b′(θ). (3.11)

We skip the proof of this result because describing the theory of
likelihood function and its property is not a goal of this work.
We just note that, for the two examples above, the relation is
immediately verified, as shown below.

Example 6. Recall that in the Gaussian case

b(θ) =
θ2

2
θ = µ

and so
b′(θ) = θ = µ

Example 7. Poisson case

b(θ) = eθ θ = log(µ)

and so
b′(θ) = eθ = elog(µ) = µ

3.1.3 Fitting Generalized Linear Models

We now consider a vector of n random variables Yi:

Y = [Y1, Y2, . . . Yn]
T

and the vector y of observed values, realization of Y :

y = [y1, y2, . . . yn]
T.

We assume the variables Y1, Y2, . . . Yn are independent and each
one Yi is distributed according an exponential family distribu-
tion f , with canonical parameter θi:

Yi ∼ fθi(yi).
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3.1 generalized linear models

We can also define the likelihood function L of Y = y. Due to
independence of Yi it is:

L(θ) =
n

∏
i=1

Li(θi) (3.12)

where Li(θi) is the likelihood function of θi given the observation
yi, as defined in 3.10.
Let us note that L is a function of the vector of canonical param-
eters

θ = [θ1, θ2, . . . θn]
T.

Considering the data y coming from a GLM, we know, recalling
Equation 3.7:

g(µi) = Xiβ (3.13)

and, because the property of likelihood 3.11:

µi = E[Yi] = b′(θi). (3.14)

we can express the likelihood function L as a function of β

L(β) =
n

∏
i=1

Li(θi(β)) (3.15)

We now give a simple but complete example of the setting
illustrated above.

Example 8. Let us consider

Yi ∼ Poi(µ)

and the link function 3.7

log(µi) = Xiβ.

The observed values, with d = 2 and n = 3 are

X1 =

[
1,

1
3

]
, y1 = 12

X2 =

[
1,

1
2

]
, y2 = 26

X3 = [1, 1] , y3 = 52
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3.1 generalized linear models

We can represent Equation 3.7 using the model matrix X:

g(µ) = Xβ

g

µ1

µ2

µ3

 =

1 1
3

1 1
2

1 1

 [β0

β1

]
So, the likelihood function L as a function of β, introduced above as
Equation 3.15, is:

L(β) =
n

∏
i=1

µi(β)yi e−µi(β)

yi!
=

n

∏
i=1

eXi βyi e−eXi β

yi!
=

=
eβ0+

1
3 β1 e−eβ0+

1
3 β1

12!
· eβ0+

1
2 β1 e−eβ0+

1
2 β1

26!
· eβ0+1β1 e−eβ0+1β1

52!

In this example the link function g is chosen equal to the func-
tion θ = θ(µ), so we obtain:

θi = Xiβ. (3.16)

In a GLM that is a common choice of g for several reasons
we will not consider in this work. We just note that, one of the
consequences of 3.16 is that Equation 3.15 is a convex function
in β. I.e. its Hessian matrix is positive-definite. For the proof of
that fact and a complete exposition of the other effects see [BS77,
ch. 2].

We now return on the original GLM problem: given the ob-
served values

(Xi, yi) for i = 1, 2, . . . , n

we want to estimate the regressors vector

β = [β0, β1, . . . , βd−1]
T.

The classical approach is to compute the vector β̂ that maxi-
mize the likelihood function 3.15

β̂ = arg max
β

L(β) (3.17)

β̂ is pointwise estimate of the unknown parameter β called
maximum likelihood estimate
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3.2 hmc for generalized linear models

3.2 hmc for generalized linear models

We introduce another strategy to solve the GLM problem, re-
quiring some basic knowledge of Bayesian statistics. Thus we
sketch here the central ideas on the topic, useful to describe the
method.
Nevertheless Bayesian statistics is deeply studied in literature
and the reader can easily find many texts on the argument, for
example see [Chr+11].

As before, given

(Xi, yi) for i = 1, 2, . . . , n

we build the likelihood function L(β), as defined in 3.15 .

According to the Bayesian approach, the parameters are ran-
dom variable. A distribution is assigned on the vector of parame-
ters, according to information available “prior to see” the data. If
such information is difficult to elicit, standard “non-informative”
priors can be used instead. Let us denote the prior distribution of
the regression parameters β with:

f (β). (3.18)

Then we define the posterior distribution:

f (β|X, Y = y) ∝ L(β) f (β) (3.19)

Prior distribution 3.18 represents a belief before the observation
of the outcomes. Meanwhile the posterior one 3.19 expresses the
knowledge on β after the evidences have been observed.
If we do not have any information on β before the collection
of data, the prior, called non-informative, is a sort of uniform
distribution all over the β space and its density is proportional to
a constant. Because its nature f (β) is not a distribution anymore,
for that reason it is also called improper prior.
As consequence 3.19 is proportional to the likelihood:

f (β|X, Y = y) ∝ L(β). (3.20)

So, we are interested in β, a random variable with the distri-
bution 3.20. We explore it using the Hamiltonian Monte Carlo
introduced in the previous chapter.

Let us note, as pointed up before, we just need to know the
distribution of interest up to a multiplicative constant. Since we
concern 3.20, consistently with the former notation, the target
function π(q) is now L(β).
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3.2 hmc for generalized linear models

Consequently the correct potential energy function is, as explained
in 1.16:

U(β) = − log[π(q)] =

= − log

[
n

∏
i=1

Li(θi(β))

]
=

= −
n

∑
i=1

log [Li(θi(β))] =

= −
n

∑
i=1

li(θi(β))

(3.21)

Let us note that the function l(x) = log [L(x)], called log-likelihood,
is widely used in statistics.

While the classic approach gives us a pointwise estimate for
regressors, we now are able, knowing the empirical distribution,
to build a credibility interval for β and, as consequence, for its
components β0, β1, . . . , βd−1.

We now apply this approach continuing Example 8.

Example 9. Remanding the likelihood function:

L(β) =
n

∏
i=1

µi(β)yi e−µi(β)

yi!

we define the potential energy U, function of β

U(β) = − log L(β) =

=
n

∑
i=1

[−yi log[µi(β)] + µi(β) + log[yi!]] =

=
n

∑
i=1

[−yi log[µi(β)] + µi(β)] +
n

∑
i=1

[log[yi!]]

Since ∑n
i=1 [log[yi!]] does not depend on β and U(β) is defined up to

an additive constant, we can remove it and re-define:

U(β) =
n

∑
i=1

[−yi log[µi(β)] + µi(β)]

Finally, reminding
log(µi) = Xiβ

we obtain

U(β) =
n

∑
i=1

[
−yiXiβ + eXi β

]
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3.2 hmc for generalized linear models

So, substituting the data

U(β) =− 12
(

β0 +
1
3

β1

)
+ eβ0+

1
3 β1 − 26

(
β0 +

1
2

β1

)
+ eβ0+

1
2 β1−

− 52 (β0 + 1β1) + eβ0+1β1

We explore that function using Algorithm 4. The functions U,∇U
and H(U), required to run the chain, are implemented in the code dis-
played in Listing 4.4.

We run 10 chains with length N = 103, parameters ε = 0.5, L = 1
and starting points randomly chosen as uniformly distributed variables
over [0, 10]× [0, 10].
Traceplot of the first variable is shown in Figure 3.1 and of the second
one in 3.2. The black continuous lines represent the true values of β0

and β1 used to generate the data, i.e. β0 = β1 = 2. The red lines are
their maximum likelihood estimates (computed by R built-in function
glm{stats}).
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−
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iteration

v
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1

Figure 3.1: β0: traceplots of the 10 chains, true value (black) and
MLE (red)

We can be easily note that the choice of the starting point does not af-
fect the convergence. Indeed zooming the graphs we see the convergence
is reached, more or less, after 40 iterations for both the components.

Since β is just a 2-dimension vector, we can plot, in Figure 3.5, the
(position part of the) chains in R2, over the contour of U. Let us note
again the convergence of all the chains, independently of the starting
points.
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Figure 3.2: β1: traceplots of the 10 chains, true value (black) and
MLE (red)
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Figure 3.3: β0: first 60 iterations of the chains
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Figure 3.4: β1: first 60 iterations of the chains
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Figure 3.5: Walks of the chains in R2, over the contour lines of U
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3.3 a practical example : ad optimization

Finally, we show, in Figure 3.6, the output of the summary{base}
command on the McMC list. Using empirical quantile, we can build
credibility intervals for the β components: let us note how they include
the real values of β.

Figure 3.6: summary of the chains list

3.3 a practical example : ad optimization

We now describe a practical use of HMC: the ad optimization, we
refer to [Wäs12] for more extended studies on the topic.
On-line advertisements are promotional market messages dis-
played on web pages, they consist in pictures, texts or anima-
tions. As ordinary advertisements, they are created to promote
products among consumers.
The success of an on-line advertisement is measured with the
number of clicks it receives: more clicks means more profits.
Our goal is to increase the earnings for on-line publishers. To
achieve that, given an ad, we want to infer its number of re-
ceived clicks basing on some available informations, such as ad
content or hosting website. So we will be able to optimize an
ad, knowing which parameters are involved and how, in the rev-
enues.

Thus we build a Generalized Linear Model predicting the ex-
pected number of clicks via the covariates:

• Placement id (p): the position of the ad in the web page

• Material id (m): the name of the advertisement

• Advertiser id (a): the advertiser who has designed the ad

We know about n ads displayed on various website, let con-
sider one of them. We define the i-th observation as:

• the number of clicks received Yi
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3.3 a practical example : ad optimization

• the covariates (pi, mi, ai)

We can now introduce the model hypothesis.

The basic idea is that each covariates possible value affects the
model in a different way. So we define a parameter βx for each
one. For example, let P the ordered set of all possible placements
p:

P = {top, bottom, le f t, right},

as consequence we have the regressors

βtop, βbottom, βle f t, βright.

Consistently with the previous chapter, we now define X i, the
i-th row of the model matrix X. Thus, if corresponding to the
i-th outcome Yi we observe the covariate pi = top, X i is defined
as

X i = [1, 1, 0, 0, 0, . . . ]

Where, the first element equal to 1 is due, as usual, at the pres-
ence of the intercept β0. Whereas the second, third, fourth and
fifth elements represent the covariate pi = top. More precisely
the components have boolean values, 1 in correspondence to the
observed one and 0 the others.
The dots mean that there are other 0 and 1 values, correspond-
ing to the other covariates: material, frequency,...

I.e. supposing the observed covariates

(pi, mi, ai),

because the X i defined above, we obtain

Xiβ = β0 + βpi + βmi + βai .

As in the previous easier example, we suppose the outcomes
Yi Poisson distributed

Yi ∼ Poi(µ)

and the link function

log(µi) = Xiβ.

We immediately note that, as consequence of this kind of mod-
elization, the dimension of the GLM is very high. Indeed the
number of regressors is c = 1+ |P|+ |M|+ |A|, where P, M, A,
are the ordered set of placement, material, frequency and adver-
tiser respectively.
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3.3 a practical example : ad optimization

Moreover, the model matrix X is sparse. On the implementa-
tion side that can be exploited to write more performing code.
However the analysis of this aspect is not included in our work.

Finally we give to all regressors a prior distribution. The as-
sumption is that parameters β are independent, zero mean nor-
mally distributed, with different variant according to the set they
are associated to (P, M or A).
Normal distribution is chosen because its simple analytical form
and its light tails, avoiding extreme values results.

βi ∼ N (0, σ2
xi
) ∀i (3.22)

where
xi ∈ {P, M, A} s.t. i ∈ xi (3.23)

So the prior is:

f (β) =
c−1

∏
s=0

fN (0,σ2
xs )
(βs) (3.24)

The prior parameters σx, called hyperparameters, are fixed and
chosen basing on the previous knowledge we have on β.

The posterior distribution 3.19 is not simply proportional to
the likelihood anymore, we have to take in account a “belief
before the outcomes” about the regressors.

f (β|X, Y = y) ∝ L(β) f (β) (3.25)

L(β) f (β) =
n

∏
i=1

µi(β)yi e−µi(β)

yi!

c−1

∏
s=0

fN (0,σ2
xs )
(βs) (3.26)

The potentially energy function is

U(β) = − log

[
n

∏
i=1

µi(β)yi e−µi(β)

yi!

c−1

∏
s=0

fN (0,σ2
xs )
(βs)

]
=

=
n

∑
i=1

[−yi log[µi(β)] + µi(β) + log[yi!]] +

−
c−1

∑
s=0

[
1
2

log[2πσ2
xs
] +

β2
s

2σ2
xs

] (3.27)

We can eliminate the additive parts constant with respect to β

and redefine U as

U(β) =
n

∑
i=1

[−yi log[µi(β)] + µi(β)]−
c−1

∑
s=0

[
β2

s
2σ2

xs

]
. (3.28)

48



3.3 a practical example : ad optimization

According with the model descripted above, we now show an
example of ad optimization. Chosen the true β parameters, we
simulate, using R bult-in functions, the outcomes Y .

Example 10. Consistently with the above notation, we define:

• Number of observations: n = 200

• Number of covariates: |P| = 2, |M| = 2, |A| = 3

• Hyperparameters: σ2
xi
= 104 ∀i

Then the number of regressors is c = 1 + 2 + 2 + 3 = 8.
Using Algorithm 4, we run an McMC of length N = 104. We re-
move, as burn-in period, the first 1000 iterations. Figure 3.7 shows
traceplots, one for each regressor. The black continuous lines represent
the true values of βi, fixed and used to generate the data. The red lines
are their maximum a-posteriori estimates. Green lines are 2.5%, 50%
and 97.5% empirical quantiles of the chain. They create credibility in-
tervals, which include the true values of β.
The traceplots show clearly the convergence of the chain to its station-
ary distribution.

The code generating data and required functions is displayed in List-
ing 4.5

The analysis of non-simulated datasets is not part of this work.
Anyway we conclude analyzing the performance of the scheme
with gradually larger datasets, to give an idea of the potentiality
for future applications.
Indeed we run a short chain (10 iterations) for increasing dimen-
sions, to explain the time consuming as function of the dimen-
sion.

As displayed in Figure 3.8, the time elapsed seems to be linear
with respect to the dimension, so using HMC to solve bigger
dimension GLM is a promising direction for future works.
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Figure 3.7: Traceplots of the components of the chain, corre-
sponding to a component of β, true value (black),
MAP (red) and quantiles (green)
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Figure 3.8: Total elapsed time for running the chain as function
of the problem dimension
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4

C O N C L U S I O N S A N D F U T U R E W O R K

This work can be considered a simple introduction to Hamil-
tonian Monte Carlo and its application. The operation of the
chain algorithm is completely depicted and theoretically moti-
vated, pseudo-code algorithms are also implemented in R lan-
guage. Application to a class of model has been tested on a
small simulated dataset. The results are encouraging and seem
to suggest good performance on real problems too.
The use of HMC in real applications is an interesting direction
for future work and several modifications are required. The
codes are written in order to clearly show the working proce-
dure, rather than to maximize the efficiency. For example the
memory usage optimization is not taken into account so far.
Moreover implementing with a lower-level programming lan-
guage, such as C++, is recommended, as it can speed up con-
siderably the algorithm.

Generalized Linear Models, shortly described in the final chap-
ter, are a family of models often involved in many current prob-
lems. Following the Bayesian approach, we compute the pos-
terior distributions of the regression parameters. Because of
the efficiency in the exploration of the target density function,
Hamiltonian Monte Carlo is particularly promising: it can be
used when the dataset dimension is large and classical McMC
methods fail.
Indeed, several industry cases and machine learning challenges,
modeled with GLM, could use HMC to obtain the posterior dis-
tributions.
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C O D E

Listing 4.1: Implementation of Alg. 3 iteration
HMC mass = function (U, grad U, M, epsi lon , L ,

current q )
{

q = current q
d <− dim (M) [ 1 ]
p = mvrnorm ( 1 ,mu=rep ( 0 , d ) ,M)
current p = p

## l e a p f r o g
p = p − eps i lon ∗ grad U( q ) / 2

for ( i in 1 : L )
{

q = q + eps i lon ∗ solve (M, p )
i f ( i ! =L ) p = p − eps i lon ∗ grad U( q )

}
p = p − eps i lon ∗ grad U( q ) / 2

# E v a l u a t e p o t e n t i a l and k i n e t i c e n e r g i e s
# a t t h e b e g i n n i n g and
# a t t h e end o f t r a j e c t o r y
current U = U( current q )
current K = t ( current p ) %∗%

solve (M, current p ) / 2

proposed U = U( q )
proposed K = p %∗% solve (M, p ) / 2

# Accep t o r r e j e c t t h e s t a t e a t
# end o f t r a j e c t o r y
i f ( runif ( 1 ) < exp ( current U−proposed U+
current K−proposed K) )

return ( q ) # a c c e p t
e lse

return ( current q ) # r e j e c t
}

Listing 4.2: Implementation of Alg. 3 loop
source ( ’new hmc step . R ’ , echo=F )

HMC MC <− function (U, grad U, epsi lon , L , N,
s t a r t )
{

d <− length ( s t a r t )
chain<−matrix ( data=rep ( 0 ,N∗d ) , nrow=d )
chain [ , 1 ] = s t a r t # s t a r t i n g p o i n t
v <− diag ( d )
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for ( i in 2 :N)
chain [ , i ]= HMC mass (U, grad U, v ,

epsi lon , L , chain [ , i −1])

return ( t ( chain ) )
}

Listing 4.3: Implementation of Alg. 4 loop
source ( ’new hmc step . R ’ , echo=F )

HMC MC <− function (U, grad U, hess U, epsi lon ,
L , N, s t a r t )
{

d <− length ( s t a r t )
chain<−matrix ( data=rep ( 0 ,N∗d ) , nrow=d )
chain [ , 1 ] = s t a r t # s t a r t i n g p o i n t

for ( i in 2 :N)
{

v<− hess U( chain [ , i −1])
chain [ , i ]= HMC mass (U, grad U, v ,
epsi lon , L , chain [ , i −1])

}

return ( t ( chain ) )
}

Listing 4.4: Implementation of the functions in example 9

xx <− matrix ( data =1 :n / n , nrow = n , ncol =1)
x <− cbind ( rep ( 1 , n ) , xx )
y <− c ( 1 2 , 2 6 , 5 2 )

# p o t e n t i a l e ne r gy
U <− function ( beta )
{

return (sum( exp ( x %∗% beta ) − y ∗ ( x %∗% beta ) ) )
}

# g r a d i e n t
grad U <− function ( beta )
{

temp <− exp ( x %∗% beta)−y
return ( colSums ( matrix ( temp , nrow=length ( temp ) ,

ncol= dim ( x ) [ 2 ] ) ∗ x ) )
}

# h e s s i a n
hess U <− function ( beta )
{

temp <− matrix ( 0 , nrow=d , ncol=d )
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for ( j in 1 : n )
{

temp <− temp + exp ( x %∗% beta ) [ j ] ∗
( x [ j , ] %∗% t ( x [ j , ] ) )

}
return ( temp )

}

Listing 4.5: Implementation of data generation and functions in
example 10

# Plac ement
nPlac <− 2

a l l P l a c = 1 : nPlac
a l l P l a c I d s = f a c t o r ( paste ( ”P” , a l l P l a c , sep=”” ) ,

l e v e l s =paste ( ”P” , s o r t ( a l l P l a c ) , sep=”” ) )
be taP lac <− rnorm ( nPlac , 0 , 1 )
names ( be taP lac )<− a l l P l a c I d s

# M a t e r i a l s
nMateria l <− 2

a l l M a t e r i a l = 1 : nMater ia l
a l l M a t e r i a l I d s = f a c t o r ( paste ( ”M” , a l l M a t e r i a l , sep=”” ) ,

l e v e l s =paste ( ”M” , s o r t ( a l l M a t e r i a l ) , sep=”” ) )
be taMater ia l <− rnorm ( nMaterial , 0 , 1 )
names ( be taMater ia l )<− a l l M a t e r i a l I d s

# A d v e r t i s e r s
nAdver <− 3∗A
allAdver = 1 : nAdver
al lAdverIds = f a c t o r ( paste ( ”A” , allAdver , sep=”” ) ,

l e v e l s =paste ( ”A” , s o r t ( al lAdver ) , sep=”” ) )
betaAdver <− rnorm ( nAdver , 0 , 1 )
names ( betaAdver )<− al lAdverIds

# I n t e r c e p t s
i c e p t <− rnorm ( 1 )

# True Be ta
b true <− c ( i cept , betaPlac , betaMater ia l , betaAdver )

# Outcomes
n <− 200

p l a c I x <− sample ( 1 : nPlac , n , replace=T )
m a t e r i a l I x <− sample ( 1 : nMaterial , n , replace=T )
adverIx <− sample ( 1 : nAdver , n , replace=T )
true mean <− exp ( i c e p t + betaPlac [ p l a c I x ] +
betaMater ia l [ m a t e r i a l I x ] + betaAdver [ adverIx ] )
y <− rpois ( n , t rue mean )

Data <− data . frame (
placment= a l l P l a c I d s [ p l a c I x ] ,
m a t e r i a l= a l l M a t e r i a l I d s [ m a t e r i a l I x ] ,
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a d v e r t i s e r = al lAdverIds [ adverIx ] ,
nrOfClicks=y

) ;

# m = n r O f C l i c k s ˜ p la cment + m a t e r i a l + a d v e r t i s e r
x i <− model . Matrix ( ˜ 1 , Data , sparse=T )
xp <− model . Matrix ( ˜ placment−1 , Data , sparse=T )
xm <− model . Matrix ( ˜ mater ia l −1 , Data , sparse=T )
xa <− model . Matrix ( ˜ a d v e r t i s e r −1 , Data , sparse=T )
x <− cBind ( xi , xp ,xm, xa )

d <− ncol ( x )

# p o t e n t i a l e ne r gy
U <− function ( beta )
{

return (sum( exp ( x %∗% beta ) − y ∗ ( x %∗% beta ) )
+ sum( beta ˆ 2 ) / 2 )

}

# g r a d i e n t
grad U <− function ( beta )
{

temp <− exp ( x %∗% beta)−y
return ( colSums ( matrix ( temp , nrow=length ( temp ) ,

ncol= dim ( x ) [ 2 ] ) ∗ x ) + beta )
}

# h e s s i a n
hess U <− function ( beta )
{

temp <− matrix ( 0 , nrow=d , ncol=d )
for ( j in 1 : n )

temp <− temp + exp ( x %∗% beta ) [ j ] ∗
( x [ j , ] %∗% t ( x [ j , ] ) )

return ( temp + diag ( d ) )
}
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