POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e Bioingegneria

iSpy: A Real-Time Application of
Shoulder Surfing Attacks

Thesis Supervisor: Federico Maggi

Thesis Co-Supervisor: Stefano Zanero

Naz Saltoglu
764823

Contents

1 Introduction 3
2 Application Overview 5
2.1 Background and Theory 5
2.2 User Interface 8
2.3 View Controller 9
2.4 Image Processingo 10
2.4.1 Phase 1: Screen Detection and Rectification 10

2.4.2 Phase 2: Background Subtraction and Edge Detection . . . 11

2.4.3 Phase 3: Magnified Keys Detection and Template Matching 12

3 Implementation Details 13
3.1 User Interface 13
3.2 View Controller 13
3.3 Image Processing oL 17
3.3.1 Phase 1: Screen Detection and Rectification 18

3.3.2 Phase 2: Background Subtraction and Edge Detection . . . 20

3.3.3 Phase 3: Magnified Keys Detection and Template Matching 21

4 Testing 24
4.1 Requirements and Assumptions 24
4.2 Tests Performed 24
4.3 Results. 25
4.4 Corner Cases v i i e 26
4.4.1 Lighting and Angles 26

4.4.2 Frame Skipping and Sampling Issues 26

5 Conclusions 27
6 Bibliography 28

Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Initialization Snippeto 14
Session Configuration Snippet 14
Button Action Snippet 15
Capture Output Snippet 16
imageProcess Method 17
Extracting Keypoints Snippet 18
Extracting Descriptors Snippet L. 18
Homography Estimation Snippet 18
Rectification Snippet L o 19
Background Subtraction Snippeto 20
Thresholding and Morphological Filter Snippet 20
Blob Detection 21
Position Detection Lo 22
ROI Detection 23
Result Detection 23

Chapter 1

Introduction

As far as all the digital and physical ways of obtaining information about a person,
spying on a person is the most reliable way of doing so. Even if the person is
protected from all digital attacks by protection software, he/she has very little to
do against being spied on.

The mobile application I developed focuses on the idea of digitalising and au-
tomating these kind of spying(or shoulder-surfing attacks). It is based on another
eavesdropping attack[1], where they implemented the idea of eavesdropping on the
input that is being entered to an iPhone, exploiting the magnification of the keys
on the keyboard, with a video that is post processed, yielding reliable results. My
application focuses on providing these results in real time on a mobile platform,
with only the power of another mobile device. This way, it increases the usability
and mobility of the attack, as it may be performed while the victim is unaware
that such an attack is being performed on him/her.

The application relies on the computer vision and image processing techniques.
With the help of the in-built camera of the device, it inputs a video to send to
processing. Based on three different stages of image processing, it first detects
the screen, distinguishes and separates it from the rest of the frame that is being
captured by the camera. As the screen of the phone is probably tilted, or captured
from an angle, the screen is transformed by the help of a feature detection algorithm
and rectified to make use of the input. After this process, the screen goes through
several processes to distinguish the background (i.e., the keyboard without any
input or occlusion) from the fluctuations that may happen on the keyboard. These
may be the enlarged keys or occlusions (fingers on the keyboard, etc). Later these
fluctuations are processed to distinguish the actual input (enlarged keys) from
occlusions. After these eliminations of the input, the application matches the

CHAPTER 1. INTRODUCTION 4

template of the keys to the input according to their position on the keyboard. The
user sees the estimated keys through the application in-real time, as well as the
processed frames.

My implementation process was done with C++ and Objective-C, which uses
the camera input to get the each frame, forward it to implementations of SURF
algorithm to obtain the screen, plot the homography to rectify it, see if this yields
a solution that corresponds with the optical flow of the screen, get the result and
try to see if it yields a foreground which can be used by the image processing
methods. If so, continue with thresholding the image to make use of the high pass
filters and feed to the blob detectors that detect keys according to their size and
area. Later on, finding the location of the key and matching the template of the
key to the found area, to make sure we have the right output.

The tests were done with a random text and with changing conditions(lighting,
angles, threshold of the blob finding and sampling frame rate). These conditions
show to be in a very delicate equilibrium since with different settings, the correctly
detected key rate may change very quickly. They show that the sampling rate is
still not enough for recording all keystrokes, while from the ones that the device
can distinguish, given the right conditions, the application is able to distinguish
the keys at a decent success percentage at quasi real-time.

As this application is quite the first step for such shoulder surfing attacks via
mobile, this is a promising one in mobile shoulder surfing attacks, while there is a
lot of room to improve.

Chapter 2

Application Overview

2.1 Background and Theory

The architecture of the application is composed of the User Interface of the ap-
plication, the View Controller, and the Image Processing Part, which could be
seen in Figure 2.1. User Interface interacts with the View Controller, while View
Controller interacts both with User Interface and Image Processing part.

User Interface

View Controller

Image Processing

Figure 2.1: General
Overview

The earlier work [1] focuses on creating a system that
eavesdrops on iPhones exploiting the key magnifica-
tion phase. They analyze the input video searching
for a (possibly) tilted, distorted, or rotated image of
the screen. The next step is to rectify and straighten
the screen, making it easier to perform image pro-
cessing on. Most of my work corresponds with their
work throughout the image processing parts, while I
had some parts to implement differently, given that
OpenCV or Objective-C implements things differently,
or was infeasible to implement, given that frames are
reached in a different way. Their work was mainly
based on Matlab, and was including the pre processing
of a video with rectified frames, which were fed to the
background later on. A real-time approach made back-
ground estimation and such other calculations based
on previous frames a little more difficult, though I tried
to implement each step of the algorithm that they have
created in a another manner.

CHAPTER 2. APPLICATION OVERVIEW 6

X X
y| -~ H |y
1 1

The linear transformation that corresponds to the relation between the distorted
screen and rectified screen is called Homography. Homography facilitates the re-
alignment of the screen with an equation such as this: where (x’, y’) and (x, y)
are the image coordinates of the points of the acquired images before and after
rectification, respectively. 3 x 3 matrix H represents the homography relating the
two images. The template image is used as a reference for after rectification screen,
so that we can also exploit the common parts in both matrices and find the cor-
responding points to have a more solid estimation for homography matrix. When
a screen is detected its image is tracked along the subsequent frames, following
the natural movement of the user or of the spying camera. Then, a geometrical
transformation is estimated to rectify the image of the screen thus eliminating
distortions such as rotations or perspective deformations. The resulting image is
almost equivalent to a screen template.

The rectification of the screen and homography calculation phase is almost the
same as their work, though the rest is different as it is implemented in OpenCV
and C++. These steps can be roughly seen in the Figure 2.2.

Phase 2 subtracts the background (i.e., an image of the virtual keyboard with no
keys pressed) from each frame, to highlight the variations on the screen. For this
background to be detected properly, we use the weighted background accumulation
method. Every frame obtained adds to the background with a small weight. Let
B¢ be the background image at time t:

Bt = (1 — Oé)Bt_l + O[Ft (21)
where F is the rectified frame at time t, and By_; is the background image at time
t-1 and « € [0,1] is an update parameter.

Equation 2.2 demonstrates how the accumulated background is subtracted from
the frame to obtain the foreground at time t(Z).

Z, = |Fy, — By (2.2)

The foreground consists of magnified keys, other objects such as fingers or other
occlusions, or sometimes parts of the keyboard, given the change in lighting, angle
or a rectification error may produce a difference in the location of the keyboard in

CHAPTER 2. APPLICATION OVERVIEW

~

Get frame from Image
Rectification Phase

~N

¥

Detect Homography

¥

Rectify Frame
and Crop

¥

Nothing new in
the foreground

Subtract background

Is Fore-
ground
Null?

Subtract short-
term foreground

¥

High Pass filters
and Thresholding

¥

Blob Detection

¥

False Detected Blob

Get Blob

Is Blob in
Keyboard
Area?

View Controller

Find Location and
Match Template

Send Frame and
Text To Display

Figure 2.2: Phase 2 and 3 Overview

CHAPTER 2. APPLICATION OVERVIEW 8

the frame and the background. Foreground is processed with high pass gradient
and Laplacian filters to exploit the contrast of the keys and bring out the fore-
ground contrasts in a better way. Equation 2.3 shows how the output image(dst)
is being created:

d’src O?src
dst = Asrc = 97 + 5 (2.3)

After these processes, we blend the output of the Laplacian method with the short
term foreground, and we apply a threshold value to distinguish between the blobs
that yield magnified keys,other possible blobs and rest of the image for good.

0 if sre(x,y)>threshold
maxVal otherwise

dst(z,y) = {

These variations are either fingers, removed with appropriate image filtering tech-
niques, or the visual feedback we want to capture. In Phase 3, the recognition
phase, the center of each blob (highlighted area) is computed, and matched to
the keyboard layout to determine the general area of the pressed key. Then, the
templates of the letters neighboring the target region are exploited to find the
best-matching areas, thus recognizing the keystrokes (if any).The best-matching
key is looked up within those candidate letters that have a percentage of black and
white pixels similar to their templates.

The phases 1-3 determine the best-matching key at each frame i.e., the magnified
key that has been most likely pressed in each frame.

2.2 User Interface

The Main View of the application consists of many different kind of objects:

e Two Image Views(UllmageView): One for displaying the Camera Input, the
other one for displaying the output of the processed frame.

e One text display(UlTextView) for displaying the estimated keys that are
pressed

e A 7Start” button that starts the input flow of frames to the View Controller.

CHAPTER 2. APPLICATION OVERVIEW 9

2.3 View Controller

The View Controller is the vital
key control mechanism between the
application’s data and its visual
interface. The initialization and

Let's Start!

b, b, b, b,
configuration of the user interface S somanas , G d, d,md,I r,lh,f, m,
: : : oouoc , s , s bl
objects is managed through View " naunon s e e ey
- o B 3))
Controller. Every frame or text m, m,

goes through View Controller to
get displayed. Also the events that
are triggered by the user via ges-
ture, tap or button clicks get man-
aged in View Controller to execute
the appropriate action and man-
aging the functional part of the
code.

In our application, we use the View
Controller for:

Setting up the Camera(device)
and Video Session Configurations:
This process takes place when the
app is invoked. We ensure that the
video input session is initialized and setup properly. Later we move on to setting
up it’s quality of the frames that will be flowing through. Moreover, we ensure
that the Capture Session is created and configured properly.

Figure 2.3: View of the User Interface

Pressing the Start Button and Initialising the Output : Pressing the ”Start” button
on the User Interface triggers the output setup and input flow. While setting up
the output flow, we make sure that the system does not dispose of the frames
that wait while the other frames are being processed. This is a crucial part of our
operation since our processing procedures take relatively longer than the speed of
the frames being buffered. Therefore, our frames wait a bit to get processed, as it
is essential for our process that they do not get discarded.

Capturing Output and Passing Frames to Image Processing: As session starts
running, output captures frames of the camera input and loads them into a buffer.
Each time the output captures frames, a method is invoked to notify the user.
We use this method to obtain the frame from the buffer and then pass this frame
to the Image Processing part to start the processing immediately. The Image

CHAPTER 2. APPLICATION OVERVIEW 10

Processing part sends back the processed frame and the estimated keys, and we
use our dispatch queue to display them in the correct order. If the output drops
samples (frames) for some reason, the user is notified by another method. We use
it to investigate why the frame has been dropped.

2.4 Image Processing

2.4.1 Phase 1: Screen Detection and Rectification

This phase is divided into two sub-tasks executed in cascade: screen detection, that
searches for any occurrence of the screen in the input video, and image rectification
and crop, which estimates the perspective difference of the detected screen,rectifies
and crops its image accordingly. Both methods rely on feature extraction and
matching: an image feature is a small image patch centered on a point of the
image, usually where the image presents a discontinuity, e.g., a corner or an edge.
Given two images and their features, the features can be matched in order to
find image correspondences. In our work we use features which are invariant to
rotation, scaling and skew transformations.

Screen Detection: To detect the screen in the frame is a quite costly and challenging
task since the perspective, the size and the position of the screen in the frame
can vary as the camera moves. Therefore, the whole frame must be searched for
the screen image. Also, the screen can be occluded by fingers or other unknown
objects.

For these reasons, we use a feature-based template matching algorithm, SURF.
The features of the template are matched with the features of the frame,in order
to find the corresponding points and detect the screen’s location within the frame.
These matchings may sometimes provide false matching points, those mismatches
are eliminated within the Homography estimation process, which we will discuss
on the Screen Rectification phase. The output of this phase is the corresponding
points of the screen inside the frame.

Screen Rectification: Input of this phase is indeed the output of the Screen Detec-
tion phase. The corresponding points, which are aligned in an angle, are distorted,
and they need to be realigned to sustain the original perspective of the screen.
Homography creation also provides the functionality to discriminate inliers and
outliers i.e. good and false points. If inliers outnumber the outliers, the estimated
homographs is used for rectification of the image. Otherwise, the homography is
considered to be false, as if no matches were found, and therefore not used, while

CHAPTER 2. APPLICATION OVERVIEW 11

the frame is discarded. This gives the chance to eliminate false positives provided
by the Screen Detection phase.

Finally the estimated homography
is used to rectify and crop the
screen accordingly. The output
of this phase is the rectified and
cropped screen, providing a more
polished and ready view for back- Co/Boc
ground estimation and subtraction.
Figure 2.4 shows the outcome of
this phase.

ol i

2.4.2 Phase 2: Back-

ground Subtraction and E E E m u n m n E n
Edge Detection n E E H a m n E E

After receiving the rectified and

cropped frame, we perform a back- w E E E n E m .-.H a
ground subtraction to highlight the
dynamic changes on the screen
(foreground), whether it be fingers

or magnified keys. Figure 2.4: Output of Screen Detection and
Rectification

For this background to be detected

properly, we use the weighted background accumulation method. Every frame
that we obtain adds to the background with a small weight. The accumulated
background is differenced from the frame to obtain the foreground. The foreground
is checked to be empty or not, since if it is empty, it means that we cannot identify
any magnified keys. If it is not, we continue with the process.

The foreground consists of magnified keys, other objects such as fingers or other
occlusions, or sometimes parts of the keyboard, given the change in lighting, angle
or a rectification error may produce a difference in the location of the keyboard in
the frame and the background. We pass the foreground through high pass filters
to exploit the contrast area of the keys. Foreground is processed with Sobel and
Laplacian filters, the conclusion becoming a mixture of both.

After these processes, we blend the output of the Laplacian method with the
short term foreground, and we apply a threshold value to distinguish between the
magnified keys and rest of the image for good. If there is a pixel that is over a

CHAPTER 2. APPLICATION OVERVIEW 12

decided threshold value, it will be assigned the color white, while all the pixels
that have a value below the threshold will be assigned black. This will help us in
binarizing the image.

In addition to this, the binary image goes through a morphological transformation
that is called ”closing”, for eliminating the noise - or unnecessarily detected pixels.
The objective is to get rid of all the noise of the smaller pixels that may have
passed through the high-pass filters and thresholding. Finally, the last step of our
foreground extraction and elimination: the edge detection. For edge detection we
use the Canny algorithm, then we find and trace the extracted edges on to the
frame by only tracing the external parts of the detected regions.

2.4.3 Phase 3: Magnified Keys Detection and Template
Matching

In this phase, we detect the blobs that may be the possible magnified keys and
filter them by their area and their color, and get the centres of the blobs that
may be candidates to be magnified keys. Our next step is to try to confine them
according to their place on the screen, since we only need the blobs that occur in
the keyboard area. First elimination comes through the acceptance of the blobs
that are only in the keyboard area, later the blobs are distinguished according to
their rows, given that we have three rows on the keyboard to choose from (the
last row is not considered, see Section 4). After that according to their locations
on the row, their location detection is made. The location of the keys lead to the
estimation of which key was pressed and matching the template of that key to the
estimated key.

Chapter 3

Implementation Detalils

3.1 User Interface

The Interface of the application
is created with the help of the
Storyboard, which lets the users
to use a graphical user interface
while creating the interface of the
application, instead of coding it
in. The storyboard design of the
application may be seen in Fig-
ure 3.1.

3.2 View Controller

Setting up the Camera(device)
and Video Session Configurations:
When we open the app, we make
sure that all the configurations for
the Camera and Input session is set
up correctly.

We set the quality of the frames
Medium: High quality seems to
have a negative effect on the mem-

Let's Start!
[} i} {1
o {m286:135)
o - O
SR
. ng .]

Figure 3.1: View of the Storyboard

13

oW N e

o) ~ (=] ot

9
10
11
12

13

CHAPTER 3. IMPLEMENTATION DETAILS 14

ory that the app uses, while low has too little resolution for the image processing
to run smoothly. Since it is not set to a constant number, but a generic value
"Medium”, it will be different on each device, depending on their performance. We
make sure that the camera is setup, and will only input in video type. The next
step is to make sure that the input coming from the camera is setup, and displayed
in the Ul If we have any kind of device error, NSLog keeps track of the issues.
The Initialization Snippet demonstrates how all these parts come together:

Listing 3.1: Initialization Snippet

[super viewDidLoad];
session = [[AVCaptureSession alloc] init];
session.sessionPreset = AVCaptureSessionPresetMedium;

CALayer *viewLayer = self.frameView.layer;

AVCaptureVideoPreviewLayer *captureVideoPreviewLayer =
[[AVCaptureVideoPreviewLayer alloc] initWithSession:session];

captureVideoPreviewLayer.frame = self.frameView.bounds;
[self.frameView.layer addSublayer:captureVideoPreviewLayer] ;

AVCaptureDevice *device = [AVCaptureDevice
defaultDeviceWithMediaType:AVMediaTypeVideo];
NSError *error = nil;
input = [AVCaptureDeviceInput deviceInputWithDevice:device error:&error];
if (Yinput) {
NSLog(@"ERROR: trying to open camera: %@", error);
b

For the Capture Session to start, we add the input coming from the camera to
the session and start the configurations. We set the frame rate of the session as
we please. Our tests include experimenting with different frame rates, for more
information on them Chapter 5. Later on, if the Auto Focus mode is available
on the testing device, we disable the option since it may cause null frames, by
constantly moving in and out of focus., whereas disabling the option lets the
camera use the autofocus feature only once, in the beginning of the session. Also
White Balance Mode goes through the same procedure since if the option is kept
on, constant white balancing of the screen when there is a change of lighting,
may also cause null frames to be captured through output. After locking in the
configurations, the session is started. Session Configuration Snippet demonstrates
this configuration.

Listing 3.2: Session Configuration Snippet

[

- W

o

AW N &

o

CHAPTER 3. IMPLEMENTATION DETAILS 15

[session addInput:input];
[device lockForConfiguration:nil];
[session beginConfiguration];
[device setActiveVideoMinFrameDuration:CMTimeMake (10, 300)];
[device setActiveVideoMaxFrameDuration:CMTimeMake (10, 300)];
NSLog(@"formats %@ ", device.activeFormat.videoSupportedFrameRateRanges) ;
if ([device isFocusModeSupported:AVCaptureFocusModeLocked]){
[device setFocusMode:AVCaptureFocusModeLocked] ;
NSLog(@"Auto Focus Locked");
}
if ([device isWhiteBalanceModeSupported:AVCaptureWhiteBalanceModeLocked]) {
[device setWhiteBalanceMode:2];
NSLog(@"White Balance Mode Locked");
}
[session commitConfiguration];
[device unlockForConfiguration];
[session startRunning];

Pressing the Start Button and Initialising the Output : Pressing the ”Start” but-
ton on the User Interface triggers the output setup and input flow. First of all
we create an output channel, and make sure that the video settings are arranged
correctly. setAlwaysDiscardsLateVideoFrames: NO enables us to ask the sys-
tem not to discard the late processed frames. An essential part of our process is
our dispatch queue. A dispatch queue can be described as a task queue that exe-
cutes the passed tasks onto it in the specified order. setSampleBufferDelegate
helps us to illustrate which queue to set callbacks to, when a new video sample
buffer is captured. It is sent to the sample buffer delegate using captureQutput:
didOutputSampleBuffer:fromConnection:, which can be viewed in Capture Out-
put Snippet. All delegate methods are invoked on the specified dispatch queue.
We implement the initialization the connection as described in the Button Action
Snippet:

Listing 3.3: Button Action Snippet

- (IBAction)processButton: (id)sender {

dataOutput = [AVCaptureVideoDataOutput new] ;

dataOutput.videoSettings = [NSDictionary dictionaryWithObject: [NSNumber
numberWithUnsignedInt:kCVPixelFormatType_32BGRA] forKey: (NSString
*)kCVPixelBufferPixelFormatTypeKey] ;

[dataOutput setAlwaysDiscardsLateVideoFrames:NO];

AVCaptureConnection *videoConnection = [dataOutput
connectionWithMediaType:AVMediaTypeAudio];

10
11

12
13

15
16
17
18

20
21

CHAPTER 3. IMPLEMENTATION DETAILS 16

if ([session canAddOutput:dataOutput])
[session addOutput:datalutput];

dispatch_queue_t queue = dispatch_queue_create("VideoQueue",
DISPATCH_QUEUE_SERIAL) ;
[dataOutput setSampleBufferDelegate:self queue:queue];

if ('running){
running = YES;
[session startRunning];

}

elseq{
[session stopRunning];
running = NO;

1>

Capturing Output and Passing Frames to Image Processing: We use it to make sure
the output frame and the estimated keys are being displayed in the synchronously.
The captureOutput:didOutputSampleBuffer:fromConnection: method noti-
fies the caller that a video frame is captured by output and written to sampleBuffer.
This method includes the reference to the buffer containing the frame:

Listing 3.4: Capture Output Snippet

- (void)captureQutput: (AVCaptureOQutput *)captureQutput
didOutputSampleBuffer: (CMSampleBufferRef)sampleBuffer
fromConnection: (AVCaptureConnection *)connection
{
UIImage *image = [self imageFromSampleBuffer:sampleBuffer];
if (image!=NULL) A{
frame = [ImageProcessing imageProcess:image];
NSString* candidates = [ImageProcessing getResult];
NSLog(@"Frame processed.");
dispatch_sync(dispatch_get_main_queue(), ~{
_outLabel.text = candidates;
[rectifiedView initWithImage:frame];
s
X
}

imageFromSampleBuffer method creates a Ullmage from the Captured Output
frame that was put in the buffer. ImageProcess: method obtains the output
frame that includes the guessed blobs from the ImageProcessingPart. getResult
method returns the text of estimated keys through all frames. We call the dispatch
queue to display the text of keys, and the output frame to the user.

CHAPTER 3. IMPLEMENTATION DETAILS 17

If the output drops samples(frames) for some reason, the user is notified by
captureOutput:didDropSampleBuffer:fromConnection: method. We use it to
investigate and log why the frame has been dropped.

3.3 Image Processing

While getting the frame from the View Controller and sending it back, I used
another method to have all the settings ready for the code and type conversions
of Objective-C to C++ and vice versa. imageProcess method helps the back and
forth communication with View Controller and initializing the needed parameters.
We get the screen template from our application and initialise it, to be used in
rectification stage. We also get the image that View Controller passed us, do the
conversion from Ullmage to cv::Mat, and check if it has come NULL, if so, since
we cannot do any processing on it, we send it back, if it is not NULL, we move on
to the Image Processing phases. When the processed frame comes back, we send
it back to the View Controller. imageProcess Method Snippet, goes in detail, on
how the implementation for this is performed:

Listing 3.5: imageProcess Method

+ (UIImage*) imageProcess: (UIImage#*) image

{

NSBundle* bundle = [NSBundle mainBundle];

NSString *imagePath = [bundle pathForResource:@"template" ofType:@"png"];
NSData* data = [[NSData alloc] initWithContentsOfFile:imagePath];
templateFile = [[UIImage alloc] initWithData:datal];

Mat mtx = [self cvMatFromUIImage:image];

cvtColor(mtx, cur.img_proc, CV_BGR2GRAY);
cur.img_out = 0;
cur.img = mtx;
if (cur.img.empty()){
return NULL;

}

else

{
cv::Mat rectifiedFrame = processStepOne();
Ullmage* rectified = [self imageWithCVMat:rectifiedFrame];
return rectified;

}

- w N -

ot

CHAPTER 3. IMPLEMENTATION DETAILS 18

3.3.1 Phase 1: Screen Detection and Rectification

During screen detection and rectification phase, the crucial parts of implementation
is the way homography is calculated and the screen is rectified.

The first step to calculate homography is to use the SURF algorithm to extract
keypoints and descriptors for both template of the screen and frame that includes
the screen.

Keypoints include the location of the points that get over the Hessian threshold.
The Hessian threshold determines how large the output from the Hessian filter
must be for a point to be used as an interest. Theoretically, bigger the Hessian
threshold gets, the less points (although more reliable) we get. We implement
keypoint extraction as follows:

Listing 3.6: Extracting Keypoints Snippet

void frame_obj::Extract_surf_keypoints(){
int minHessian = 600;
std::vector<KeyPoint> keypoints;
SurfFeatureDetector detector(minHessian);
detector.detect(img_proc, keypoints);
key=keypoints;

Descriptors, on the other hand, enables us to compare the keypoints that we have
obtained. It is size, perspective and shade independent. Therefore if we obtain
the descriptors for both screen template and the frame that includes the screen,
we would be able to comment on how similar or different they are by using the
descriptors.

Listing 3.7: Extracting Descriptors Snippet

void frame_obj::Extract_descriptor(){

SurfDescriptorExtractor extractor;
Mat descriptors;
extractor.compute(img_proc, key, descriptors);
desc=descriptors;
}

If the extraction processes go without any problems for both template and frame,
we estimate the homography via the findHomography function. During this pro-
cess we also distinguish between good matching points and false matching points.

1

CHAPTER 3. IMPLEMENTATION DETAILS 19

Listing 3.8: Homography Estimation Snippet

for(int i = 0; i < matching.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_obj[matching[i].queryIdx].pt);
scene.push_back(key[matching[i].trainIdx].pt);

}
Mat H = findHomography(obj, scene, CV_RANSAC, 3 ,mask);

int cont_inliers=0;
int cont_outliers=0;
for(unsigned int k=0; k<obj.size();++k){
if (mask.at(k)) {
++cont_inliers;
}
else {
++cont_outliers;
}
}
inliers=cont_inliers;
outliers=cont_outliers;
return(H) ;

}

After a homography is estimated, we check to see the optical flow of the homogra-
phies, how this new homography compares to the one that was detected before.
When a screen is detected its image is tracked along the subsequent frames, fol-
lowing the natural movement of the user or of the spying camera. This comes from
the theory that even if there is a camera movement, it is generally not sudden but
follows a natural pattern. For example, if the camera is moving right a bit, the
next frame will move right a bit too, or at least will be close to the last frame loca-
tion that was detected. With this method we ensure that our frame rectifications
are running smoothly.

We create the homography according to the optical flow. If everything is OK, we
go on to rectifying the screen via warpPerspective method. The correct perspective
is provided by the newly computed Homography matrix. After it is rectified, the
frame is cropped according to the location and size of the phone screen. The
Rectification Snippet shows how they are implemented:

Listing 3.9: Rectification Snippet

warpPerspective (img_frame, crop,Homo.inv (DECOMP_LU),
cvGetSize (img_template_color));

AW N e

LSRN R

CHAPTER 3. IMPLEMENTATION DETAILS 20

Mat cropedImage (img_template_color,true);
crop.copyTo(cropedImage) ;
scene_corners.clear();

The output of this phase is the cropped and rectified screen to be fed to the
background subtraction.

3.3.2 Phase 2: Background Subtraction and Edge Detec-
tion

For Background Subtraction phase, we obtain the proper frame from the rectifi-
cation step, and we take the absolute difference of the old background from the
current frame, to visualise the foreground. If there is nothing on the foreground,
we have no new data to process, so we return the frame.If there is more data on
the foreground, we use the weighted background accumulation method via matrix
multiplication with a scalar. Note that the following piece of code implies the rest
of the image processing material all work under the assumption that foreground
has some data to work with and the frame is different from the background:

Listing 3.10: Background Subtraction Snippet

absdiff (frame, background, fore);
if (fore.empty()) return frame;
background = (alpha * frame) + ((l-alpha) * background);

with the weight alpha being 0.05. We would like very little influence of each
frame to the background, assuming that the first frame we obtain is the proper
background.

Later on we subtract the short term foreground from the actual foreground. We
perform the same accumulation method as background for the short term fore-
ground, with alpha being higher, given that we want the short term foreground
to only last a few frames, while a key is magnified. Then we feed the output of
that operation into the Laplacian method of OpenCV. That output is fed to the
threshold, dilate and erode operations in the following way:

Listing 3.11: Thresholding and Morphological Filter Snippet

absdiff (fore, foreground, fore);

foreground =(0.5 * fore) + (0.5 * foreground);

Laplacian(fore, dst, ddepth, 3, scale, delta, BORDER_DEFAULT);
output = dst;

=W NN =

CHAPTER 3. IMPLEMENTATION DETAILS 21

threshold(output, output, 30, 255, THRESH_BINARY_INV);
dilate(output,output,Mat());
erode (output,output,Mat());

3.3.3 Phase 3: Magnified Keys Detection and Template
Matching

We first start with the detection of the blobs and retrieving their centers. Simple-
BlobDetector class helps us in defining these blobs. The SimpleBlobDetector class
is defined with parameters to our blobs are filtered by area and by color black,
given that the outcome of the output should be black. The Blob Detection snippet
shows how it has been initialised and detected.

Listing 3.12: Blob Detection

SimpleBlobDetector: :Params params;
params.minDistBetweenBlobs = 20.0;
params.minThreshold = 50;
params.maxThreshold 150;
params.thresholdStep = 5;
params.filterByInertia = false;

params.filterByConvexity = false;
params.filterByColor = true;
params.blobColor = 255;
params.filterByCircularity = false;
params.filterByArea = true;
params.minArea = 200.0;
params.maxArea = 1600.0;

SimpleBlobDetector * blob_detector;
blob_detector = new SimpleBlobDetector(params);
blob_detector->create("SimpleBlobDetector");
vector<cv::KeyPoint> keypoints;
blob_detector->detect (output, keypoints);

The matrix output is the matrix of the thresholded foreground to be detected,
while detect method passes keypoints vector as an output that holds the centers
of the blobs that have been found.

The detection of the position of the blob with the corresponding key is enforced
by elimination of the blobs firstly through confining them the general keyboard
area, then to rows, then to the exact position. The letters are distinguished by

CHAPTER 3. IMPLEMENTATION DETAILS 22

their rows according to the y-axis position of the blob center. Later on, each row
Letters A, L , Q and P, are specifically found given that they are on the ends of the
keyboard, the rest of the key centres are compared to the neighbouring key centers
and found through absolute difference of both distances. In the Position Detection
snippet, the detailed code is shown. X and Y refer to the x and y-axis coordinates
of the center of the blob that has been detected, while keyCenterCoordinates is
the vector of the centroids of each key on the template, stored accordingly to the
QWERTY setting.

Listing 3.13: Position Detection

if (Y < (frameRows * 0.54)){
if (X<(frameColumns*0.05))
letterNum=1;
else if (X>(frameColumns*0.85))
letterNum=10;
else if((abs(keyCenterCoordinates[(X/17)].x - X)
<(abs(keyCenterCoordinates [(X/17)+1].x - X))))
letterNum=(X/17);
else letterNum = (X/17)+1;
}
else if((Y < (frameRows * 0.66))&&(X <(frameColumns * 0.95))){
if (X<25)4
letterNum=11;
}
else if (X>(frameColumns*0.85))
letterNum=19;
else if((abs(keyCenterCoordinates[(X/19)+10].x - X)
<(abs(keyCenterCoordinates [(X/19)+11].x - X))))
letterNum=(X/19)+10;
else letterNum = (X/19)+11;
}
else if (X > (frameColumns*12/100) || (X < (frameColumns* 82/100)))
{
letterNum = ((X)/(frameColumns*10/100))+19;
if (letterNum>26) continue;
}

else continue;

After the detection of the position, it is time to see whether the blob we have
found is a Magnified Key or not. We select a Region Of Interest (ROI) within the
frame, which is approximately in the selected key’s coordinates and shape. ROI
is selected as follows: for the letters that are on the either side of the keyboard,
a ROI is selected in a manner that preserves the frame boundaries, while for the
other keys, it is a 40x40 square that takes the detected key center in the middle.

[

(=] ot - w

= W N =

[

CHAPTER 3. IMPLEMENTATION DETAILS 23

In the ROI Detection Snippet, the implementation details can be seen.

Listing 3.14: ROI Detection

if (keyCenterCoordinates[letterNum-1].x<25){
roiRect = cv::Rect(0,keyCenterCoordinates[letterNum-1] .y-20,40,40);
}
else if(keyCenterCoordinates[letterNum-1].x>155){
roiRect = cv::Rect(keyCenterCoordinates[letterNum-1].x-20,
keyCenterCoordinates[letterNum-1] .y-20,
frameColumns-keyCenterCoordinates[letterNum-1] .x+20, 40);

3

else roiRect = cv::Rect(keyCenterCoordinates[letterNum-1].x-20,
keyCenterCoordinates[letterNum-1].y-20, 40, 40);

For this reason we compare the template of the key that has been found, versus the
region of interest of the key. Then display the result if that key is correctly detected.
This is done by the openCV’s matchTemplate and the minmaxLoc methods, we
compare our ROI with the detected location. minMaxLoc determines which is the
spot that the matching has been done. Result Detection Snippet shows how this
procedure is laid out:

Listing 3.15: Result Detection

matchTemplate(roi, templ, result, CV_TM_SQDIFF_NORMED) ;
normalize(result, result, O, 1, NORM_MINMAX, -1, Mat());

cv::Point minLoc; cv::Point maxLoc;
cv::Point matchLoc;

minMaxLoc(result, & minVal, & maxVal, & minLoc, & maxLoc, Mat());

minLoc.x=minLoc.x + roiRect.x;
minLoc.y = minLoc.y + roiRect.y;
matchLoc = minLoc;

aa << letterNumArray[1etterNum—1] << "oy
rectangle(frame, matchLoc, cv::Point(matchLoc.x + templ.cols , matchLoc.y +
templ.rows), Scalar::al1(0), 2, 8, 0);

Chapter 4

Testing

4.1 Requirements and Assumptions

The system is limited to the visual feedback of the magnified keys. There are a
few situations where the keys may not be estimated:

Lighting changes and angles,

Sudden movements of the camera or the phone, or in general situations that
may cause Homography estimation process to be wrong,

e Fingers occluding half or all of magnified key,
e The frame which includes the magnified key not being sampled.

I also consider the QWERTY keyboard only and and given that space key is not
magnified, I did not include the detection of the space key within the algorithm.
This also excludes the difference between lowercase and uppercase letters. There-
fore, I assume that I can only consider the keyboards with a qwerty setting, and
no space key or the punctuation, with case-insensitivity.

4.2 Tests Performed

The first test I made is about the performance of the application and how fast it
displays the results back to the user. I made a test case where I pressed random
letters, in an artificially lit environment with iPad Mini second generation and kept

24

CHAPTER 4. TESTING 25
Lighting Threshold Frame Magnified Magnified Difference % Correct
Range Rate Input Output
Natural 50-150 30 7asdfghjkl” 7asdfghjk” 02.84° 88
Natural ~ 100-200 30 7asdfghjkl” ”adfghkl” 02.66’° 78
Natural ~ 50-150 20 ? ohjkl” ” ohik” 04.35’ 44
Artificial ~ 50-150 30 "asdfghjkl” ”sfhjkl” 02.8’ 66
Artificial ~ 100-200 30 ?asdfghjkl” ”adfghj” 02.30° 66
Artificial ~ 50-150 20 7asdfghjkl” ”adfgjk” 02.53’ 55

Figure 4.1: Test Results

track of the time of recognition between the time that I press the first letter on the
keyboard and the time that we see the same frame on the output display.

Later on, I made another test where I changed the control elements a bit, lighting,
moving the phone or the testing device and the threshold. The Random Text of
"asdfghjkl” was written every time.

4.3 Results

In my first test, the results showed that show that between the time that we press
the first frame and the frame is displayed back, we have around 03’55 seconds in
average. There were frames that were not displayed, or that my finger covered the
magnified key. Those tests are not covered in the results and discussed further in
the next section. The tests show that through continuously changing conditions,
the performance changes as well. In my second controlled test, the Test Results
table indicate how the test results came to be. Difference field in the table repre-
sents the time between the first frame is pressed on the keyboard and the frame
is displayed back to the user. Magnified Input field is the keys that were readable
from the sampled frames that have reached the Phase 2. Magnified Output field
are the keys that were displayed back to the user. Therefore we aim to show how
fast the frame is processed and returned to the user via User Interface. These tests
are all done on one device, which is the iPad mini second generation.

I also did some tests on the Second Generation iPad, they proved to be very
fruitless, given that the device’s computing power was too slow to handle the heavy-
load image processing computations in real-time, which caused a lot of dropped
frames and very little sampling rates, which gave us even less to work with in
terms of blobs and magnified key samples.

CHAPTER 4. TESTING 26

4.4 Corner Cases

4.4.1 Lighting and Angles

The application is quite sensitive to even small light changes, which causes a change
in the foreground. If the change in the foreground is effective enough to be able
to pass through the Laplacian filters, thresholding and closing, they cause the
application to recognise some blobs that are not there, which occasionally causes
false estimations of the pressed keys.

The sudden change of the angles provide a disturbance in the homography esti-
mation, which disturbs the image returned to the image processing part, which
may cause false estimation of the key centers, therefore false matching of tem-
plates.

4.4.2 Frame Skipping and Sampling Issues

The tests also show that lower frame rates cause less sampling, therefore less mag-
nified key containing frames. Though 30 frame per second is also not completely
safe for not skipping samples. No matter how fast we set the frame rate to keep
the sampling rate high, with the existing technology(using one of the fastest com-
puting mobile devices of 10S), it seems like we are not able to prevent skipping of
some frames and therefore magnified keys, given that sampling rate is still quite
slow. This leads to less on-point recognization of the keys.

The inability to detect keys also occur when an object is intervening with the view
of the magnified key, either partially or completely. These objects could be fingers
which is often the case.

Another reason for this, is a badly detected rectified frame, even when there is no
significant change of an angle or lighting, which causes the detection of no frames
at all, or in some cases, false frames.

Chapter 5

Conclusions

I developed this application to demonstrate the feasibility of a real-time, automated
shoulder surfing. I believe that I fulfilled that objective. This application makes
the real-life scenarios of automated shoulder surfing quite real, given that all the
attacker would need is a mobile phone with this application, and the victim’s
compatible phone. This application proves that spying on another person is quite
easy and it will become easier as technology advances.

I described the mathematical background, general architecture and the implemen-
tation parts of the application that I have built, in-detail. I have shown that it
can work efficiently and can recognise keystrokes in almost real-time, while main-
taining a decent correctness percentage. I have met a lot of difficulties, such as
lighting, sampling rates, angle of the devices and sudden movements, since there
are a lot of performance-affecting conditions that need to be more stable. Obvi-
ously, the limitations to the device performances and the algorithm leaves space
for improvement.

Admittedly, there are a lot of steps to go to estimate the pressed keys better, having
stable performances even through angle changes and frame sampling, processing
rates getting higher to enable higher correctly guessed key rates. Another branch
of this application could be the estimation of the keys through the color changes
of the pressed keys rather than magnifications, or a different estimation scheme
with different keyboard layouts and key templates.

Right now, our assumptions that helped me build the application make it a tiny
step in this big world of shoulder surfing.

27

Chapter 6
Bibliography

[1] Maggi, F., Volpatto, A., Gasparini, S., Boracchi, G.,Zanero, S. “A Fast Eaves-
dropping Attack Against Touchscreens” in Information Assurance and Security
(IAS), 2011 7th International Conference on, 2011. p. 320-325. ISBN: 978-1-4577-
2154-0 DOT: 10.1109/TSTAS.2011.6122840, 05 Dec 2011.

28

