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Abstrat

Innovation and ompetition proesses are often identi�able in siene.

They are responsible for evolutionary dynamis driven by innovative

hanges in the harateristis of individual agents and by ompeti-

tive interations that promote better performing ones. Geneti mu-

tations and natural seletion play this role in biology, but the po-

tential appliability of the evolution paradigm an be extended to

soial, eonomi, information sienes and engineering. Quantitative

approahes to evolutionary dynamis were born from genetis and

eonomi game theory. While biologists traditionally onsider evo-

lutionary hange separated from the demography of the interating

populations, game theorists study the relative di�usion of a given set

of alternative strategies and the robustness of the orresponding equi-

libria with respet to invasion from potential dissident. By ontrast,

the more reent approah of Adaptive Dynamis (AD) takes expli-

itly into aount both the evolutionary and the demographi hange

and haraterizes both the evolutionary equilibria and transients and

non-stationary regimes. AD represents a �exible framework, based

on the hypothesis of rare and small mutations, for the formal de-

sription of evolution of the harateristis of the system in terms of

ordinary di�erential equations. Diversity inreases in the system eah

time ompetition between innovative and resident strategies gives rise

to their oexistene (evolutionary branhing), and redues when evo-

lution brings groups of agents to extintion. Evolutionary branh-

ing is partiularly interesting: in appropriate onditions, innovative

agents an oexist with resident ones and their strategies, initially

very similar, an then diverge generating two resident forms with dif-

ferent harateristis. The evolution of this enlarged system an still

bring to the situation in whih evolutionary branhing is possible for

one or both forms of agents present in the system. Thus, this su-

ession of evolutionary branhings brings simple systems (with few

resident forms) toward more omplex and diversi�ed on�gurations.
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The study of the possible branhing senarios is then very interest-

ing in biology (where it gives an interpretation of the diversi�ation

of speies from a ommon anestor), but also in soial sienes, eo-

nomis, tehnology, engineering, etetera. Moreover, some theoretial

aspets of branhing are still unstudied. For example, mathematial

onditions under whih branhing ours are expressed as sign on-

ditions on appropriate seond derivatives of the ompetition model,

but theoretial results in ritial ases in whih suh derivatives an-

nihilate are not yet available. Although mathematially non generi,

these situations are quite ommon in appliations, in whih partiular

symmetries of the model bring some derivatives to annihilate system-

atially. In onlusion, the main goal of the thesis is to fous both

on the analysis of theoretial aspets of evolutionary branhing in

the framework of AD and on the development of models to interpret

diversi�ation phenomena in the above mentioned �elds of siene.

The thesis is organized as follows. The �rst three hapters are just

an introdution to evolution and to the existing theory of Adaptive

Dynamis, with partiular fous on evolutionary branhing. Chap-

ter 4 extends the theory of evolutionary branhing in ritial ases,

expanding our knowledge on the phenomenon and providing more

general onditions under whih it ours. The next three hapter

are more appliative: the �rst onerns the evolution of biodiversity

in eologial oevolving ommunities and develops a general method-

ology to study diversi�ation senarios in evolutionary systems; the

seond fouses on �sheries-indued diversi�ation of �sh stoks; while

the third is about the emergene of fashion diversity in soial groups.

In partiular, hapter 1 is an introdution on the theory of evolu-

tion, starting from its history, passing through its basi elements (mu-

tation and seletion), and losing with the mathematial approahes

to the study of the evolutionary dynamis. The onept of evolu-

tionary diversi�ation and evolutionary extintion are also intuitively

introdued. Chapter 2 is dediated to the Adaptive Dynamis ap-

proah, the resident-mutant ompetition model, the omputation of

the invasion �tness, and the AD anonial equation, that models the

expeted long-term evolution of the phenotypi traits of the oevolv-

ing ommunity. In hapter 3 we fous on the emergene of diversity

in the AD framework, that is, evolutionary branhing. We lassify

the evolutionary equilibria with respet to their onvergene and evo-

lutionary stability, reovering the lassial branhing onditions, i.e.,

the two mathematial onditions in terms of seond derivatives of the

invasion �tness under whih the system beomes dimorphi and ex-



v

periene disruptive seletion, thus inreasing its diversity. Chapter

4 is devoted to the study of the branhing bifuration, namely, the

transition from evolutionary stability to evolutionary instability along

with the hange in a model parameter. This bifuration ours when

the branhing ondition ruling evolutionary stability hanges sign.

To study suh ritial ase, a partiular third order approximation of

the invasion �tness must be omputed, and a novel property of the

resident-mutant ompetition model must be exploited in order to ob-

tain simple and general results. The ase in whih the other branhing

ondition is ritial is more ompliated and is left for future researh,

but our theoretial approah is general and remains valid, also for fur-

ther degenerate ases (e.g., when both the branhing onditions are

ritial). In hapter 5 we develop a general methodology to study

the evolution of biodiversity in eo-evolutionary two-speies ommu-

nities, with an appliation to prey-predator interations. We then use

suh methodology in two �elds of siene di�erent from biology. In

hapter 6 we analyze the possibility that the interplay of natural and

arti�ial seletion due to �shing ould lead to disruptive seletion on

exploited �sh stoks. Finally, in hapter 7 we study the evolution of

fashion purely driven by soial interations, with partiular fous on

the emergene of style diversity, and �nd out that di�erent styles an

suessively emerge starting from a single style soiety. Chapter 8

disusses and summarizes the ahievements of the work and lose up

the thesis with suggestions on extensions and future researh.
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Chapter 1

Introdution

In this hapter we introdue the history of evolutionary theory and

the two fundamental proesses driving evolutionary dynamis: mu-

tation (innovation), that introdues new variants in the system, and

seletion (ompetition), that promotes the better performing ones.

Afterwards, we intuitively disuss the possibility that evolution an

both inrease and derease biodiversity through evolutionary branh-

ing and evolutionary extintion. Finally, we report a short review

of the possible modelling approahes to evolution. More details an

be found in Derole and Rinaldi [2008℄, on whih this introdution is

based.

1.1 History of evolution theory

The idea that living organisms on Earth have diversi�ed in time start-

ing from a ommon anestor goes bak to the Greek naturalisti phi-

losophy (VII-V entury BC). However, no further ontributions of

the evolutionary theory aroused until the XVIII entury, beause the

most di�used idea among European intelletuals was that of a uni-

verse whih was reated in its atual and �nal state. During the XVIII

entury, the work of enlightened intelletuals known as "Enylope-

dist" showed, through a systemati lassi�ation of living organisms

into groups, the presene of strutural ommon features among all life

forms. This led to a better understanding of the onept of speies and

revealed fundamental similarities among widely disparate organisms.

These observations were in ontrast with the idea of Creation and

set the ground for evolution theory. Considerable ontributions ame

from George-Louis Leler Bu�on (1707-1788) and Erasmus Darwin

(1731-1802), Charles' grandfather, who �rst introdued the hypoth-
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2 CHAPTER 1. INTRODUCTION

esis that life ould have evolved from a ommon anestor and posed

the question of how a speies ould evolve into another. The �rst ex-

pliit evolutionary theory was formulated by Jean Baptiste Lamark

(1744-1829), disiple of Bu�on, who �rst introdued the onept of

inheritane. The "Lamarkian" hypothesis has been widely ritiized

by naturalists of the time. At this point Charles Darwin (1809-1882)

and Alfred Russel Wallae (1823-1913) formulated the evolution the-

ory that is still aepted today. In 1858 they separately presented the

theory of evolution through natural seletion [Darwin and Wallae,

1858℄, arguing that

• there exist individual variations in a great number of features

in a population, some of whih may a�et the individual prob-

ability of survival and reprodutive suess;

• there probably exist an inheritable omponent at the basis of

these variations, but the evolutionary proess mainly relies on

the birth of new forms of organisms, alled mutants;

• from generation to generation there exist a natural seletion of

the features assoiated with a higher probability of survival or a

better reprodutive suess, whose frequenies in the population

thus inrease over time;

• umulative e�ets of mutations and natural seletion hange the

features of the speies from those of their anestors in the long

term;

• all living organisms desend through suessive modi�ations

from a ommon anestor, thus presenting hierarhial and re-

urrent similarities.

Darwin and Wallae ombined empirial observations with the the-

ory derived from the work of Thomas Robert Malthus (1766-1834)

on ompetition and population growth [Malthus, 1798℄. They had a

preise idea of natural seletion and of the possibility of mutations,

but they were not aware of the laws of genetis, disovered seven

years later by Gregor Mendel (1822-1884), who disovered the dis-

rete nature of inheritane through what we now all genes [Mendel,

1865℄.

More than a entury after the publiation of the theory of evo-

lution, it an be said that its impat on human thinking has widely

spread beyond the �eld of biology. Essentially, the evolutionary dy-

namis an be desribed by a two-step proess:
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• innovation, that is, the birth of variations;

• ompetition, that selets for the better performing variants.

This abstrat paradigm an be applied to many proesses and thus

explain the evolution of omplex systems, both natural and arti�-

ial, in whih a great number of agents, eah haraterized by its

individual traits whih are transmitted, with possible variations, to

the next generation, are seleted naturally or arti�ially through their

performane with respet to some optimality riteria. After the "Dar-

winian" revolution, very di�erent phenomena (suh as soio-ultural

networks, global and market eonomy, industrial proesses, tehnolog-

ial systems) an be interpreted and studied as evolutionary proesses

(see, e.g., Dawkins [1976℄, Dawkins [1982℄, and Derole and Rinaldi

[2008℄).

1.2 Basi elements of evolution theory

1.2.1 Mutation

As Darwin and Wallae �rst realized, evolutionary hanges are based

on the birth of new forms of organisms, alled mutants, haraterized

by variations in their phenotypes

1

with respet to their onspei�

individuals. These phenotypi hanges re�et inheritable hanges in

the geneti material, whih are alled mutations. Inheritable phe-

notypi hanges have been doumented in many organisms and for

many types of features, inluding intelligene and behavioral strate-

gies. Variations in these features, or traits, an give advantages or

disadvantages in the ompetition for ommon resoures or in terms of

survival and reprodutive ability. Mutations are the �rst fundamental

step for the evolutionary dynamis and they are the basis on whih

natural seletion ats. Notie, however, that this is not the only way

to introdue a variant in a system, sine di�erent traits an ome

from outside the system through a proess of immigration. However

this ours, new traits are always present in a single individual or in

very low fration of the population. Thus, this variations an have a

long-term impat only if other proesses (e.g., seletion) lead to the

inrease of the frequeny of the new trait in the population.

1

The genotype of an individual onsist in a partiular realization of the genome

of its speies, and it's omposed of the hromosomes e�etively possessed by the

individual. Otherwise, any individual feature determined by the genotype is alled

phenotype, that is, an inheritable feature from generation to generation [Li, 1955℄.
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1.2.2 Seletion

From the evolutionary point of view, what matters is the e�et of

the mutation on the phenotype of the mutant individual. Indeed,

the suess of an individual in the struggle for survival depends on

its phenotypi features and on the environmental onditions it is fa-

ing. Suh environmental onditions onsist in both physial fators

(e.g., lime, height, sea level, air or water pollution, et.) that de-

�ne the abioti environment, and in all individuals of its same or

di�erent speies interating with the onsidered individual, that de-

�ne the bioti environment (see, e.g., Lewontin [1983℄). The result

of the struggle for life of an individual faing intra- and interspei�

ompetition and ertain environmental onditions thus depend on its

phenotype, on the abundanes and phenotypes of the interating in-

dividuals, and on the abioti omponents of the environment, whih

typially �utuate in time.

Individuals with di�erent phenotypes with respet to the rest of

the population an thus have a di�erent probability of survival during

the reprodutive period (viability), a di�erent reprodutive suess or

a di�erent abundane of their o�spring (fertility). As a result, if we

imagine a onstant abioti environment, with no mutations or immi-

gration phenomena, then the demographi dynamis of the popula-

tion will tend to promote the phenotype that is better adapting to all

onditions, whih in the long term will dominate the whole popula-

tion. Therefore, under these assumptions, seletion is an autonomous

dynamial proess and will bring the system toward a regime, whih

an be stationary as non-stationary (yli or even haoti, see, e.g.,

Turhin [2003℄). These regimes orrespond to the attrators of the

dynamial proess, sine they attrat nearby states.

Approahing an attrator, some phenotypes ould disappear from

the ommunity, sine the individuals haraterized by suh features

are eliminated by better performing and ompetitive individuals. When

an attrator is reahed, the phenotypes oexisting in the population

are alled residents, as the group of individuals arrying suh features.

If a population is omposed by individuals haraterized by the same

phenotype it is alled monomorphi. In reality, seletion ould be

interrupted by a mutation or by a perturbation of the abioti envi-

ronment, events that would prevent the system to onverge to the

attrator. However, in the great majority of ases, the time interval

between two suessive mutations or environmental perturbations are

usually so long to allow seletion to bring the system on the attrator
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and thus to de�ne the resident groups of the population.

The timesale on whih seletion ats is the demographi timesale.

Analogously, the dynamis driven by seletion and the attrators to

whih this dynami tends are alled demographi. In the literature,

the term eologial is also often used, sine eology studies living or-

ganisms on a timesale for whih mutations and external environmen-

tal perturbations an be negleted (see, e.g., Roughgarden [1983℄).

For onveniene, in the biologial ontext the term �tness is used

to indiate the probability to survive and reprodue. Quantitatively

speaking, the �tness of an individual is de�ned as the abundane of its

o�spring in the next generation, or the per-apita growth rate of the

group of individuals with the same phenotype (i.e., the variation of

the abundane in the unit time with respet to the total abundane).

These two de�nitions (the �rst for a disrete-time and the seond for a

ontinuous-time approah) say that the abundane of the individuals

haraterized by a partiular phenotypi trait will grow, in a given

instant, if the �tness assoiated to that phenotype is greater than one

ore positive, respetively. This quantitative approah will be funda-

mental for the modeling of the evolutionary dynamis (see Chapter

2).

As disussed in Paragraph 1.2.1, a mutation generally ours in

a single individual or in a very small fration of the resident group.

Disadvantageous mutations redue survival and the reprodutive su-

ess of the mutant individuals, so that they will be eliminated by the

ompetition with the resident individuals. This is another fundamen-

tal role of seletion, namely, it keeps under ontrol mutations that

translates into undesirable and disadvantageous features for the indi-

viduals. By opposite, mutations that bring advantages to the mutant

individuals will be seleted, leading the the inrease of the abundane

of the mutant group. However, in the initial phase in whih the mu-

tant abundane is sare, these innovative individuals fae the risk of

aidental extintion and ould not spread in the population and in-

vade the resident group even if the mutation brings some advantages

to the mutant individuals. When the mutation has just born, the �t-

ness of the mutants is alled invasion �tness [Metz et al., 1992℄, and its

value gives a quantitative information of the advantages or disadvan-

tages for the mutant individuals. As will be disussed in Paragraph

1.2.3, the evolutionary proess goes on until there exist some pheno-

typi traits that favorably in�uene the �tness of the mutants that

esape aidental extintion and invade the resident population.
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1.2.3 Evolution

Intuitively, the evolutionary dynamis ould be de�ned as the long-

term dynamis of the phenotypi distributions of interating popula-

tions. If populations of di�erent speies are interating (e.g., through

predation, symbiosis, ompetition for ommon resoures, et.) the

evolution of a population of a speies will probably in�uene the evo-

lution of all other populations, so their oevolution [Futuyma and

Slatkin, 1983, Thompson, 1994℄ must be studied.

Natural evolution thus results from the ombination of the proess

of mutation (whose probability typially is of the order of one over

a million on the demographi timesale) and natural seletion, that

typially ours through interations of predation, symbiosis, ompe-

tition for spae or ommon resoures, exploitation of eologial nihes,

thus being a smooth and gradual phenomenon.

The evolutionary dynami onerns phenotypi traits that in�u-

ene the demography of interating populations through the invasion

�tness of the mutant individuals, whih an inrease their abundane

and spread in the population by means of natural seletion if the mu-

tation gives some advantages to the mutants with respet to some

optimality riteria. Phenotypi traits that in�uene the �tness are

apable to adapt to the environmental onditions and are therefore

alled adaptive. In priniple, there an exist phenotypes that do not

have any in�uene on �tness, or mutations that have no e�et on

phenotypes. These traits do not experiment any seletive pressure

and their evolution follows the rules of geneti drift. Therefore, two

di�erent types of evolution an be distinguished:

• mutation and seletion proesses, that involve phenotypes that

have some e�et on the �tness of the individuals;

• geneti drift of the phenotypes that do not in�uene the �tness

of the individuals.

Notie that mutant individuals are initially present in very low den-

sities, therefore with no seletive pressure the probability of faing

aidental extintion is very high. Thus, geneti drift is a very slow

phenomenon and it is typially dominated by the mutation-seletion

evolution.

It is now onvenient to introdue the di�erent timesales involved

in the evolutionary dynamis:

• demographi (or eologial) timesale, on whih seletion ats;
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• evolutionary timesale, on whih the e�ets of suessive muta-

tions and seletion of the best variant are appreiable.

Indeed, as introdued in Paragraph 1.2.2, the time interval between

two suessive mutations is generally su�iently long to allow sele-

tion to at and bring the system to an attrator and thus de�ne the

resident group. More preisely, if a mutation brings some advantages

to the mutants and if these individuals esape the mehanisms of ai-

dental extintion, then seletion brings the system on a new attrator,

where typially the mutants have replaed the former residents, be-

oming the new resident group. Otherwise, the system goes bak to

the former attrator.

In this way, in the ase of rare mutations, it is possible to de�ne

as evolutionary dynamis the sequene of attrators visited by the de-

mographi dynamis. Under this assumption the two timesales are

ompletely separated. In addition of being rare on the demographi

timesale, mutations also often have small phenotypi e�ets, so that

the evolutionary dynamis results to be slow and smooth. If we imag-

ine a sequene of mutations with small e�et on the phenotypes and

assume that eah time the mutant group is favored with respet to

the resident, thus ompletely substituting them in the population,

it is possible to draw an evolutionary trajetory. At a ertain time

instant on the evolutionary timesale, it is possible to de�ne a pheno-

typi trait spae, with an axis for eah trait of the resident group, so

that the urrent state orresponds to a point in this trait spae. Suh

a point slowly moves along the evolutionary proess, that is, eah

time a mutant group substitutes the resident group. Notie that the

dimension of the trait spae hanges eah time a new resident group

appear in the ommunity or eah time a resident group disappears in

favor of a mutant group.

As we will see in Chapter 2, these two simplifying assumptions

are the basis of many modeling approahes of the evolutionary dy-

namis, and even though they may seem extreme simpli�ations of

reality, they allow a desription of the demographi and evolutionary

dynamis that, at least qualitatively, an give very useful insights on

the real dynamis of the system.

As for the demographi dynamis (see Paragraph 1.2.2), it is pos-

sible to study the attrators of the evolutionary dynamis. However,

the evolutionary proess is not autonomous, sine it depends by par-

tiular sequenes of mutations and on the abioti environment �u-

tuations. Nonetheless, in this thesis the abioti environment will be

assumed as onstant, not only to simplify the analytial study of the
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models, but also to fous on the evolutionary e�ets that derive from

endogenous dynamis of the system and from the mutation-seletion

proess, negleting exogenous fators. In this way, evolution an be

studied as an autonomous dynamial proess and the obtained results

remain also valid if the exogenous variations of the abioti environ-

ment have frequenies that are not omparable with the ones typial

for the eologial and evolutionary proesses and if the results are

interpreted as the average of all possible realizations of the mutation

proess. For this, the evolutionary dynamis will tend to stationary as

well as non-stationary (periodi or haoti) attrators. Moreover, the

nonlinearities of the system makes the presene of multiple attrators

possible, making the outome of the evolutionary dynamis depen-

dent on the anestral ondition of the system [Derole and Rinaldi,

2008℄.

1.2.4 Emergene of diversity (evolutionary branhing)

One of the assumptions on whih the evolutionary theory is based is

that all living organisms are the desendants of self-replying organi

moleules originated by inorgani substanes more than 3 billion years

ago. All forms of life that have developed have been produed by the

natural seletion of the mutations that were better �tted to the envi-

ronment. So far, the onept of speies has been used without giving

a formal de�nition. However, in the great majority of ases, a speies

an be de�ned as a group of morphologially, struturally, and ge-

netially similar living organisms that are isolated from other groups

and that (when reprodution is sexual) are apable of interbreeding to

generate fertile o�spring [Mayr, 1942℄. For sexual speies the distin-

tion is then quite simple, that is not the ase for asexual organisms,

for whih it is neessary to rely on similarity measures.

The birth of new speies, alled speiation, is ertainly one of the

entral problems in the theory of evolution, and also one of the most

debated (see, e.g., Huthinson [1959℄, Maynard Smith [1966℄, Felsen-

stein [1981℄, Kaweki [1996℄, and Diekmann et al. [2004℄). Speiation

ours with the geneti and phenotypi divergene of onspei� pop-

ulations that adapt to di�erent environmental nihes in the same or

di�erent habitat. In the ase of sexual speies, divergene has to be

enough to produe some obstales to interbreeding (morphologial or

strutural inompatibility, sterility of the o�spring, di�erent habitat

preferenes or di�erent mating periods, sites, and rituals.)

The mehanism whih is traditionally aepted by the sienti�
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ommunity (proposed by Darwin) is that two populations of the same

speies are geographially isolated and then will follow two di�erent

evolutionary paths. Sine di�erent seletive pressures and di�erent

geneti drifts may our in di�erent environments, the two isolated

populations an beome two di�erent speies. This form of speiation

is alled allopatri when the two populations are geographially iso-

lated by natural or arti�ial barriers, or parapatri when they evolve

toward geographi isolation expoiting di�erent nihes of nearby habi-

tats. Although these mehanisms are supported by many observa-

tions for whih variants of the same speies (andidate to be di�erent

speies) often oupy di�erent regions, the main ingredient, i.e., the

geographi isolation, results to be somehow an exogenous fator more

than an e�et of the evolutionary proess itself.

A di�erent mehanism of speiation, alled sympatri [Maynard

Smith, 1966℄, onsiders populations in the same geographi region. In

this ase the most important ingredient is a seletive pressure that fa-

vors extreme phenotypes in a range of polymorphism. This so-alled

disruptive seletion an result, for example, from the ompetition for

alternative environmental nihes, where the speialization for a spe-

i� nihe an be advantageous respet of being generalists. Under

the pressure of disruptive seletion a monomorphi speies an beome

dimorphi with respet to a ertain phenotype: this phenomenon is

alled evolutionary branhing. The monomorphi population is di-

vided into two resident groups, initially very similar, that suessively

diversify following two separate and opposite evolutionary branhes,

eah one haraterized by its own mutations. In the trait spae, an

evolutionary trajetory approahes an equilibrium, alled branhing

point ; at this point the trait spae gains a new dimension, that is, the

trait that haraterize the new resident group [Derole and Rinaldi,

2008℄.

What makes evolutionary branhing very interesting is that this

phenomenon gives an autonomous and evolutionary explanation for

a possible proess of speiation, without referring to exogenous fa-

tors suh as the geographi isolation. It has however to be notied

that evolutionary branhing does not imply an immediate speiation

phenomenon, but favors a higher polymorphism in the phenotypes

of a ertain population that an thus be at the basis of a possible

speiation proess.
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1.2.5 Evolutionary extintion

So far, we have seen how the mehanism of speiation ould give an

evolutionary explanation to diversity of life on Earth. Nonetheless

estimations of the number of speies in the history of life [Wilson,

1988℄ show that the atual biodiversity is the result of a small surplus

of the birth of new speies respet to the loss of speies. This makes

the drivers of these extintions as important as those of speiation.

In the history of life, indeed, periods of derease of biodiversity

have existed, during whih extintions were greater than speiations.

Among these periods, the 5 mass extintions [Raup and Sepkoski,

1982℄ are the most important. Other than these mass extintions,

almost surely aused by natural atastrophes on global sales, there

also exist many more evidenes of minor extintion phenomena. How-

ever, even if aused by atastrophi events, these extintions are not

random proesses. Indeed they are the onsequene of a rapid hange

of the abioti environmental onditions on the evolutionary timesale,

that reates an evolutionary transient along whih speies try to adapt

at the new onditions. Some may have sueeded, other may have

failed, so it is orret to talk about evolutionary extintions.

As already observed (see Paragraph 1.2.3), the oevolution of o-

existing populations hanges the bioti environment in whih they

live, whih in turn in�uenes their evolution. For this, as a hange in

the abioti environment may lead to the extintion of some speies,

the same may our also for a hange in the bioti onditions. In other

words, the oevolution of di�erent populations in the same onstant

abioti environment may lead the phenotypi traits of some of these

populations to values for whih suh populations annot survive. The

idea that evolution an autonomously lead to extintion was already

pereived by Darwin, who observed that the proess of mutation-

seletion favors phenotypes that give advantages to the single indi-

vidual, but that ould, in the long term, reveal to be inonvenient for

the population.

Reently, the possibility of the evolution toward extintion in a

onstant abioti environment has been studied theoretially [Matsuda

and Abrams, 1994, Gyllenberg and Parvinen, 2001, Diekmann and

Ferriére, 2004, Parvinen, 2005℄ and three basi mehanisms have been

identi�ed:

• the �rst, alled evolutionary runaway, ours when seletion

leads the phenotypes toward values at whih the population has

low density, thus inreasing the risk of aidental extintion.
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The other two mehanism are based on the fat that the region of the

trait spae that allows the oexistene of all the oevolving popula-

tions is typially losed by an extintion boundary, sine extreme val-

ues of the phenotypes are usually morphologially or physiologially

not ompatible with the (abioti and bioti) environmental ondi-

tions. In the ourse of evolution the abundane of the population an

gradually vanish approahing the extintion boundary or an persist

at high values also in the viinity of suh boundary, as often ours

in many systems for whih a ertain threshold is needed for survival.

Therefore,

• in the �rst ase the phenomenon is alled evolutionary murder,

sine the rate of phenotypi variation of the population (being

proportional to the number of mutants generated per unit time)

gradually vanishes together with the population abundane. For

this, the extintion boundary is reahed beause of the evolution

of the other oevolving populations, that at as murders;

• by ontrast, in the seond ase, alled evolutionary suiide, the

population atively evolve toward self-destrution, that is, mu-

tations loser to the extintion boundary give advantages to

the individuals with respet to the residents, even if the trait is

loser and loser to the boundary. What is good for the single

individual turns out to be atastrophi for the whole population.

The subtle di�erene between these three mehanisms is di�ult to

be observed empirially, but this approah remain the same valid

and very important sine it oneptually shows that evolution is also

apable of autonomously destroying some speies.

1.3 Modeling approahes

Evolutionary proess reveals to be so omplex that a detailed de-

sription remains pratially impossible. Eah mathematial model-

ing approah onsiders some relevant mehanisms and neglets the

others. The tradeo� between the desription of reality and the pos-

sibility of a mathematial analysis has produed a great variety of

approahes, eah one fousing on di�erent aspets of the evolution-

ary proess. Also a neat distintion between the di�erent approahes

is di�ult, sine often assumptions overlap. Following Derole and

Rinaldi [2008℄, seven di�erent modeling approahes are ited:

• population genetis [Fisher, 1930, Wright, 1931, Haldane, 1932℄;
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approah geno- pheno- short long evol. deter. stoh.

type type term term tree mod. mod.

population genetis

∗ X X X X

individual-based models X X X X X X

quantitative genetis X X X

evolutionary game theory X X

repliator dynamis X X X

�tness landsapes X X X

Adaptive Dynamis X X X X X

∗
lassi formulation: short-term genotypi distribution.

Table 1.1: Comparative analysis of the di�erent modeling approahes.

• individual-based evolutionary models [Bolker and Paala, 1997,

Diekmann and Law, 2000, Grimm and Railsbak, 2005℄;

• quantitative genetis [Bulmer, 1980, Faloner, 1989℄;

• evolutionary game theory [Nash, 1950, von Neumann and Mor-

genstern, 1953, Maynard Smith and Prie, 1973℄;

• repliator dynamis [Taylor and Jonker, 1978, Shuster and Sig-

mund, 1983℄;

• �tness landsapes [Levins, 1968, Leon, 1974, Metz et al., 1992℄;

• Adaptive Dynamis [Metz et al., 1996, Diekmann and Law,

1996, Geritz et al., 1998℄.

The hoie of one of the above approahes depends on the level

of desription one wants to obtain, on the partiular question one

wants to address, and on the tehnologial tools of analysis available

to reah one's goals. From a biologial point of view, the main distin-

tions regard the genotype or phenotype base, the timesale, and the

ability to produe the evolutionary tree of the studied ommunity.

By ontrast, from a tehnial point of view, the main disriminant

is between deterministi and stohasti models. See Table 1.1 for a

omparative analysis of the ited modeling approahes, both respet

the biologial and the tehnial onsiderations.



Chapter 2

Adaptive Dynamis

In this hapter we present the Adaptive Dynamis approah. It is

the modelling framework in whih the whole thesis is ast. We �rst

desribe the main assumptions on whih AD is based, to ontinue

with a more spei� and tehnial part in whih we show how to

ompute from the resident-mutant ompetition model the invasion

�tness, to be used in the derivation of the AD anonial equation, that

models the expeted evolutionary dynamis of the adaptive traits in

the ommunity. We lose showing how the anonial equation an be

used to produe evolutionary state portraits, desribing evolutionary

trajetories in the spae of the adaptive traits. More details an be

found in Derole and Rinaldi [2008℄, on whih this introdution to

AD is based.

2.1 Desription and assumptions

The most innovative among the dynamial approahes based on phe-

notypes is indeed Adaptive Dynamis (AD) [Metz et al., 1996, Diek-

mann and Law, 1996, Geritz et al., 1998, Derole and Rinaldi, 2008℄,

that formulates the �tness funtions expliitly onsidering the demo-

graphi interations between residents and mutants. This allows to

identify the onditions under whih a resident trait is replaed by

a mutant trait (invasion implies substitution theorem [Geritz, 2005,

Meszéna et al., 2005, Derole and Rinaldi, 2008℄). Moreover, the

phenomena of evolutionary branhing (see Paragraph 1.2.4) and evo-

lutionary extintions (see Paragraph 1.2.5) are formally explained.

This is very important for the aim of this thesis, espeially for what

onerns the evolutionary branhing onditions.

13
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With the AD approah, geneti details are negleted by means of

the timesales separation (see Paragraph 1.2.3). This allows for the

use of asexual population models [Derole and Rinaldi, 2008℄. In this

way, when a mutation ours, the demographi system an be onsid-

ered at its regime. Moreover, the ompetition between the resident

and the mutant populations is expliitly desribed by the resident-

mutant model, an Ordinary Di�erential Equation (ODE) model that

desribes the dynamis of the resident and mutant populations for

eah values of the onsidered traits. When no mutants are present,

the resident-mutant model degenerates into the resident model, that

de�nes the region of the trait spae in whih all the resident pop-

ulations oexist on the demographi timesale, alled the evolution

set of the ommunity. When the evolutionary dynamis pushes the

traits toward the boundary of suh region, at least one of the resident

populations go extint (see Paragraph 1.2.5).

The use of deterministi population models is justi�ed whenever

populations are present in high abundanes, i.e., in the absene of

risk of aidental extintion (for example, through the mehanism of

demographi stohastiity). However, this is not the ase of a mu-

tant population, whih is initially very sare (see Paragraph 1.2.1),

so that the resident-mutant model an only be used to study the dy-

namis of populations that esaped the risk of aidental extintion.

Mutations are desribed as a stohasti proess and eah time a muta-

tion ours, the probability of esaping aidental extintion is om-

puted as the probability that the mutant population reahes a ertain

threshold of abundane that guarantees its survival. In this way, the

evolutionary dynamis is the result of a sequene of mutations that

substitute the resident group and an be desribed in the trait spae

by a random-walk -type model. The birth of a new resident trait o-

urs when a mutant population esapes the mehanisms of aidental

extintion and oexists with the resident group, beoming a resident

population itself (evolutionary branhing, see Paragraph 1.2.4). By

ontrast, an evolutionary extintion ours whenever the evolution of

the traits leads to the extintion of one or more resident populations,

thus reduing the trait spae dimension. Very important, Champag-

nat et al. [2006℄ showed that suh a model (individual and stohasti

desription of the mutation proess plus the resident-mutant model)

onverges for very low values of the mutation probability. For this,

the anonial equation of AD [Diekmann and Law, 1996℄ desribes

the long term evolution of the phenotypi trait values haraterizing

a ertain ommunity in the limit of rare and in�nitesimal mutations.
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The AD anonial equation is an ODE system (one equation for eah

adaptive trait) that smoothly approximates the expeted evolutionary

dynamis of the phenotypes with respet to all possible realizations

of the stohasti mutation proess.

To derive the anonial equation is neessary to rely on the inva-

sion implies substitution theorem, that has been proved [Geritz, 2005,

Meszéna et al., 2005, Derole and Rinaldi, 2008℄ in the following teh-

nial setting:

1. the spatial and physiologial heterogeneity of the populations is

not desribed, so that the resident-mutant model is omposed

by one equation for eah population;

2. stationary oexistene of the resident populations;

3. the ommunity is omposed of

(a) a single resident population haraterized by independent

mutations on di�erent traits, or

(b) di�erent resident populations haraterized by indepen-

dent mutations in a single trait eah.

However, the onditions under whih the theorem holds are not met

lose to the equilibria of the anonial equation. For this, when suh

an evolutionary equilibrium is approahed, a further analysis of the

resident-mutant model is neessary. Spei� analyti onditions ex-

ist to assess if the resident-mutant oexistene is possible and, if so,

when the initially similar traits experiene disruptive seletion and,

thus, tend to diversify. In this ase, the evolutionary equilibrium is a

branhing point : the mutant population oexists with the resident on

the demographi timesale and their similar traits diverge on the evo-

lutionary timesale following a higher-dimensional anonial equation

(see Paragraph 1.2.4 and Geritz et al. [1997, 1998℄). In suh a way,

an initially monomorphi population turns into a dimorphi one, thus

inreasing the biodiversity of the ommunity.

In summary, evolutionary trajetories produed by the anonial

equation of AD an lead to stationary evolutionary regimes (that an

be either terminal or branhing points), non-stationary evolutionary

regimes (yli or haoti) or to evolutionary extintions.
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2.2 Evolving ommunity

To introdue the AD approah, referene is made to a ommunity

omposed of di�erent resident populations, whose individuals are har-

aterized by a single adaptive ontinuous phenotypi trait. This trait

an be desribed by a real variable mapped to the atual phenotypi

values through a suitable transformation (eventually nonlinear). In

this way it is possible to onsider the traits as adimensional variables.

Eah population is a homogeneous group of individuals of the

same speies and with the same trait value. Some of the resident

populations an be onspei�, but haraterized by di�erent forms

or morphs, i.e., di�erent trait values. Speies with a single morph are

alled monomorphi, while speies with di�erent morphs are alled

polymorphi (dimorphi in the ase of two forms). For this reason,

monomorphi speies are represented by a single population, while

polymorphi speies are omposed of di�erent populations, one for

eah morph.

The evolutionary dynamis is the result of a proess of innovations

(i.e., the mutations), that introdues new populations in the ommu-

nity, and by a proess of ompetition (i.e., seletion), that rules the

dynamis of the ommunity on the demographi timesale. Darwin

�rst argued that the better adapted populations to survive and re-

produe would have dominated the ommunity, and alled natural

seletion the demographi proess that lead to the dominane of the

better �tted population (see Chapter 1).

Natural seletion is desribed by deterministi population models,

with no spatial or physiologial details. In this way all the individuals

of a population are idential and uniformly distributed in a homoge-

neous habitat, so that eah population is ompletely desribed by its

abundane and by the value of the phenotypi trait of its individuals.

Mutations are assumed to a�et the value of a single trait. The

mutant population is then haraterized by the same trait of the res-

ident population, but with a slightly di�erent value. After eah mu-

tation, the mutant population has a very low density, but has the

potential to invade and replae the resident group. Sine mutations

are very rare on the demographi timesale, seletion takes its time to

at on the ommunity and lead it to its regime, thus de�ning the new

resident group. It is thus possible to fous on the e�ets of a single

mutation at a time (even if this assumption an be relaxed [Meszéna

et al., 2005℄).

The notation that is used in the present hapter to desribe the
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AD approah is now introdued. The fous is on the trait a�eted by

the mutation, whih is indiated with x for the residents and with x′

for the mutants. Residents and mutants abundane is indiated with

n and n′, respetively, while all other resident traits and abundanes

are paked in vetors X and N , respetively.

2.3 Resident-mutant model

The demography of the oevolving populations is ruled by the inter-

ations of the single individuals with the surrounding environment,

both the abioti and the abioti omponent. The bioti omponent is

the ommunity of interating populations, represented by the resident

and mutant abundanes n, N , and n′, and by a set of demographi

parameters that an in turn depend on the phenotypi traits of the

individuals.

The growth rates ṅ, ṅ′, and Ṅ are thus a funtion of all abun-

danes n, n′, and N , and all traits x, x′, and X, as well as of all

other onstant demographi and environmental parameters that will

not be expliitly indiated for brevity. Sine populations are om-

posed of idential individuals, the ommon pratie is to de�ne the

growth rate of the population when its abundane is the unit, i.e., the

per-apita growth rate.

Let's indiate the per-apita growth rate ṅ/n of the fous resident

population with f(n, n′, N, x, x′,X). This per-apita growth rate is

the di�erene between the per-apita birth rate and the per-apita

death rate, that is,

f(n, n′, N, x, x′,X) = b(n, n′, N, x, x′,X)− d(n, n′, N, x, x′,X),

where b(n, n′, N, x, x′,X) and d(n, n′, N, x, x′,X) are the per-apita

birth and death rates, respetively.

From funtions b, d and f for the resident population, we an

easily obtain the same funtions for the mutant population. Resi-

dents and mutants are indeed onspei� individuals that di�er only

in the value of a single trait, so they are involved in the same intra-

and inter-spei� demographi and environmental interations of the

residents. In other words, eah of the two populations an be on-

sidered as the mutant if the other is the resident and vieversa. It is

thus su�ient to exhange the arguments of the funtions, obtaining

b(n′, n,N, x′, x,X), d(n′, n,N, x′, x,X), and f(n′, n,N, x′, x,X).
As for the other resident populations, we an indiate their growth

rates with vetor F (n, n′, N, x, x′,X). In this way, the demographi
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dynamis of the ommunity are desribed by the following equations:

.
n = nf(n, n′, N, x, x′,X)
.
n
′
= n′f(n′, n,N, x′, x,X)

.

N = F (n, n′, N, x, x′,X),

(2.1)

in whih the abundanes n, n′, and N are the state variables while

the traits x, x′, and X are onstant parameters. Model (2.1) is the

resident-mutant model.

At this point it is important to highlight some properties of fun-

tions f and F whih are important for the study of the resident-

mutant model (2.1). Reall that funtions f and F give, by de�nition,

the per-apita growth rate of population n and the growth rates of

populations N , respetively.

P1 If the seond argument vanishes, f and F annot depend on the

�fth argument, sine the growth rate of a population annot be

in�uened by the trait of an absent population, so that

f(n, 0, N, x, x′,X) = f(n, 0, N, x, ·,X) = fR(n,N, x,X)

F (n, 0, N, x, x′,X) = F (n, 0, N, x, ·,X),
(2.2)

where the (·) notation stands for any trait value and the R-

supersript stands for resident. By ontrast, if n vanishes in

f , the growth rate is still in�uened by x, sine the potential

growth of a new population depends on its trait (analogously

for F ).

P2 A seond property of f and F refers to the ase of two idential

resident and mutant populations, i.e., haraterized by the same

trait value x = x′. Atually, only one population exists, hara-

terized by trait x and abundane n + n′, so that its per-apita

growth rate and the growth rates of the other populations in N
are

f(n+ n′, 0, N, x, ·,X)

F (n+ n′, 0, N, x, ·,X).

Indeed, if one would divide the population into two subpopula-

tions with abundanes n and n′ would obtain

(
.
n+

.
n
′
)

∣

∣

∣

∣

x′=x

= nf(n, n′, N, x, x,X) + n′f(n′, n,N, x, x,X)

= (n + n′)f(n+ n′, 0, N, x, ·,X),
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that implies that the two subpopulations have the same per-

apita growth rate, in partiular

f(n, n′, N, x, x,X) = f(n′, n,N, x, x,X)

for eah value of n and n′, or, equivalently,

f(n, n′, N, x, x,X) = f((1− α)(n + n′), α(n + n′), N, x, x,X)
(2.3)

for 0 ≤ α ≤ 1. And analogous results hold for funtion F .

P3 Moreover, for funtion F we have

F (n, n′, N, x, x′,X) = F (n′, n,N, x′, x,X), (2.4)

sine the growth rate of a resident population interating with

two other onspei� populations annot depend on their order.

When no mutants are present, the resident-mutant model (2.1)

beomes the resident model

.
n = nf(n, 0, N, x, ·,X) = nfR(n,N, x,X)
.

N = F (n, 0, N, x, ·,X),
(2.5)

that identi�es the demographi attrator of the resident populations

dynamis before the appearane of the mutant population. Assuming

that for suitable values of the traits x and X model (2.5) has a stable

positive equilibrium, the abundanes of the resident populations are

onstant and indiated with

n = n̄(x,X) and N = N̄(x,X), (2.6)

de�ned by

f(n̄(x,X), 0, N̄ (x,X), x, ·,X) = 0

F (n̄(x,X), 0, N̄ (x,X), x, ·,X) = 0.
(2.7)

This is sometimes referred to as the priniple of seletive neutrality

of the residents. It is also assumed that equilibrium (2.6) is the only

positive attrator of the resident model (2.5) on whih the resident

populations an oexist. This assumption, that is not neessary but

greatly simpli�es the explanation, an be relaxed [Diekmann and

Law, 1996℄. In this way, the evolutionary dynamis of the ommunity

an be de�ned only in the open set χ of the trait spae (x,X) in
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whih equilibrium (2.6) exists. The set χ is alled evolution set of the

ommunity (see Paragraph 2.1).

Equilibrium (2.6) is a �xed point in the demographi spae (n,N)
that is stable and positive for eah (x, y) ∈ χ, while rossing the

boundary of χ it loses at least one of its properties (existene, stability,

and/or positivity). More preisely, equilibrium (2.6) an disappear

olliding with a positive saddle, lose stability giving rise to a small

limit yle, or lose positivity (and stability) rossing one of the faes

of the demographi state spae (n,N). Sine suh faes are invariants

of the resident model (2.5), the only way for equilibrium (2.6) to ross

one of them is through the ollision with a saddle lying on the fae.

Tehnially, all the above mentioned ases are bifurations, and an

thus be revealed from the study of the eigenvalues of the Jaobian

matrix of model (2.5), evaluated at equilibrium (2.6), i.e.,

JR(x,X) =

[

n ∂
∂n
f n ∂

∂N
f

∂
∂n
F ∂

∂N
F

]
∣

∣

∣

∣

n=n̄(x,X),n′=0

N=N̄(x,X)

(2.8)

Sine equilibrium (2.6) is stable, the real part of the eigenvalues of

matrix (2.8) is negative for (x, y) ∈ χ. When a bifuration ours,

the real part of at least one of suh eigenvalues vanish.

2.4 Invasion (generially) implies substitution

In the present paragraph ompetition between resident and mutant

populations is studied. In partiular, we look for the onditions under

whih the mutant population spreads in the ommunity (invasion)

and substitutes the resident population (substitution), thus entailing

a small step (from x to x′) in the evolution of the trait a�eted by the

mutation. The obtained onditions (for a deterministi demographi

model suh as the resident-mutant model (2.1)) are valid only if the

mutant population, initially with a very low abundane, esapes the

mehanisms of aidental extintion. If otherwise, even when the

onditions are met, the mutant population would disappear leaving

the trait unhanged. However, the e�ets of aidental extintion will

be disussed in Paragraph 2.5.

Just before a mutation, the resident populations are, by assump-

tion, at equilibrium (2.6) of the resident model (2.5). Just after the

mutation, the resident and the mutant populations are, thus, lose to

the equilibrium

(n, n′, N) = (n̄(x,X), 0, N̄ (x,X)) (2.9)
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n′

n

N̄(x, X)
N

n̄(x, X)

n̄(x′, X)

N̄(x′, X)

Figure 2.1: The demographi resident-mutant state spae (n, n′, N) in three
dimensions. Just after the mutation, the state of the resident-

mutant model (2.1) is lose to equilibrium (2.9) (shaded region).

Equilibrium (2.11) is also shown (reprodued from Derole and

Rinaldi [2008℄).

of the resident-mutant model (2.1) (shaded region in Figure 2.1).

The faes n = 0 and n′ = 0 of the demographi state spae

(n, n′, N) are invariants of the resident-mutant model (2.1). In par-

tiular, on the fae n′ = 0 model (2.1) degenerates into the resident

model (2.5), while on the fae n = 0 it redues to

.
n
′
= n′f(n′, 0, N, x′, ·,X) = n′fR(n′, N, x′,X)

.

N = F (n′, 0, N, x′, ·,X),
(2.10)

that, using property P3 (equation (2.4)), is simply model (2.5) with n
and x replaed by n′ and x′. In this way, if (x′, y) ∈ χ, the equilibrium

(n′, N) = (n̄(x′,X), N̄ (x′,X))

is the only stable and positive equilibrium of model (2.10) and its

eigenvalues are those of the Jaobian matrix JR(x′,X) obtained from

(2.8) substituting x with x′. Moreover, point

(n, n′, N) = (0, n̄(x′,X), N̄ (x′,X)) (2.11)

shown in Figure 2.1, is another equilibrium of the resident-mutant

model (2.1).

Stability of equilibrium (2.9) an be studied through linearization.

It is easy to show [Derole and Rinaldi, 2008℄ that the Jaobian matrix
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of the resident-mutant model (2.1) evaluated at equilibrium (2.9) is

given by

J(x, x′,X) =

[

JR(x,X) . . .
0 f(0, n̄(x,X), N̄ (x,X), x′, x,X)

]

. (2.12)

Due to the triangular struture of matrix (2.12), the eigenvalues of

equilibrium (2.9) are those of the matrix JR(x,X) (whih has negative
real part by assumption) and the eigenvalue

λ(x, x′,X) = f(0, n̄(x,X), N̄ (x,X), x′, x,X), (2.13)

that is, the per-apita growth rate of a mutant population with very

low abundane. If this eigenvalue is positive, the abundane of this

mutant population will inrease, so that the mutants will invade the

ommunity. For this reason, λ(x, x′,X) is alled invasion eigenvalue.

The invasion eigenvalue gives the initial per-apita growth rate

of the sare mutant population appearing in the ommunity. This

quantity has been traditionally alled invasion �tness (or, simply,

�tness, see Paragraph 1.2.3) of the mutant population and funtion

(2.13) will often be alled �tness funtion. A positive �tness hara-

terize mutations that brings some advantages to the mutants, in terms

of survival, reprodutive suess, or in the ompetition with the res-

ident individuals, while negative values of the �tness are assoiated

to disadvantageous mutations. In the same way, the eigenvalues of

equilibrium (2.11) are those of the matrix JR(x′,X) and the invasion

eigenvalue is λ(x′, x,X). To onlude, sine matries JR(x,X) and

JR(x′,X) has negative real-part eigenvalues (see Paragraph 2.3), the

stability of equilibria (2.9) and (2.11) is only related to the sign of the

invasion eigenvalues.

It is important to notie that λ(x, x,X) = 0. In fat, if the res-

ident and the mutant populations are idential (x = x′), we an use

properties P2 (equation (2.3) with α = 0), P1 (equation (2.2)), and

the resident equilibrium ondition (2.7) to obtain

λ(x, x,X) = f(0, n̄(x,X), N̄ (x,X), x, x,X)

= f(n̄(x,X), 0, N̄ (x,X), x, ·,X) = 0.
(2.14)

Moreover, using properties P2 and P3, we obtain that

f((1− α)n̄(x,X), αn̄(x,X), N̄ (x,X), x, x,X) = 0

F ((1 − α)n̄(x,X), αn̄(x,X), N̄ (x,X), x, x,X) = 0
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for all 0 ≤ α ≤ 1, i.e., all points

(n, n′, N) = ((1− α)n̄(x,X), αn̄(x′,X), (1 − α)N̄ (x,X) + αN̄ (x′,X))
(2.15)

of the segment onneting the two equilibria (2.9) and (2.11) are equi-

libria of the resident-mutant model (2.1) when x′ = x. All these

equilibria are neutrally stable beause they have a zero eigenvalue

(λ(x, x,X)) while all the other eigenvalues are those of the Jaobin

matrix JR(x,X).
Moreover, the invasion eigenvalues λ(x, x′,X) and λ(x′, x,X) usu-

ally have opposite sign, so that, if equilibrium (2.9) is stable, equi-

librium (2.11) will be unstable, and vieversa. In fat, for eah value

of X, funtion λ(x, x′,X) vanishes for x′ = x. This implies that,

exluding non-generi ases,

∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

6= 0,

so that funtion λ(x, x′,X) has opposite sign for x′ > x and x′ < x
(with x′ lose to x).

Looking at the eigenvetors of the Jaobian matrix J(x, x′,X)
it is possible to exploit again its triangular struture (see (2.12)) and

onlude that all eigenvetors of JR(x,X), that lie in the spae (n,N),
beome eigenvetors of J(x, x′,X) simply adding the omponent n′ =
0. By ontrast, the eigenvetor assoiated to the invasion eigenvalue

λ(x, x′,X) (alled invasion eigenvetor) is almost aligned with the

segment (2.15) and tends to it for x′ tending to x (as in Figure 2.2).

Expanding λ(x, x′,X) in Taylor series around x′ = x up to �rst

order we obtain

λ(x, x′,X) ≈
∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

(x′ − x), (2.16)

that is positive if

∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

> 0 and x′ > x

or if

∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

< 0 and x′ < x.

In this ase equilibrium (2.9) is unstable while equilibrium (2.11) is

stable. Conversely, if λ(x, x′,X) is negative equilibrium (2.9) is sta-

ble while equilibrium (2.11) is unstable (see Figure 2.2). Moreover,
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(A)
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n̄(x, X)

n̄(x′, X)
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N̄(x, X)
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n̄(x′, X)

N̄(x′, X)

(B)

Figure 2.2: Stability of equilibria (2.9) and (2.11) of the resident-mutant

model (2.1). (A) Positive (2.16): equilibrium (2.9) is unstable

while equilibrium (2.11) is stable. (B) Negative (2.16): equilib-

rium (2.9) is stable while equilibrium (2.11) is unstable. Arrows

point in the diretion of the resident-mutant dynamis along the

invasion eigenvetor (dashed segment (2.15)) (reprodued from

Derole and Rinaldi [2008℄).

trajetories quikly approahes the invasion eigenvetor and follow it

approahing or leaving the equilibrium depending on its stability.

Up to now we showed, through linearization, that, if the �rst order

term (2.16) in the �tness Taylor expansion is positive, the mutant

population invades, while if (2.16) is negative the mutants go extint.

But proving that invasion implies substitution is not possible through

a loal analysis of the resident-mutant model (2.1), but, in priniple, a

global study is neessary. The fat that invasion implies substitution

has been assumed as true sine the �rst formulation of the anonial

equation of AD [Diekmann and Law, 1996℄ and even before (in the

�tness landsape approahes, see Paragraph 1.3). Suh assumption,

alled invasion implies substitution priniple, has been proved and

beame a theorem [Geritz, 2005, Meszéna et al., 2005, Derole and

Rinaldi, 2008, Derole and Geritz, 2014℄. The proof is given under

the same assumptions made so far, namely:

1. (x,X) ∈ χ;

2. x′ lose to x;

3. equation (2.16) positive;
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Figure 2.3: Invasion implies substitution (reprodued from Derole and Ri-

naldi [2008℄).

4. initial ondition of the invasion transient lose to equilibrium

(2.9) (see Figure 2.1).

The �rst two onditions guarantee that there exist an invariant tube

[Geritz et al., 2002℄ onneting equilibrium (2.9) and (2.11) (see Fig-

ure 2.3). If the third ondition is true, all trajetories starting from

the inside of the tube onverge to equilibrium (2.11), implying the

substitution. If, otherwise, the third ondition is not met (equation

(2.16) is negative), trajetories onverge to equilibrium (2.9), imply-

ing the extintion of the mutant population.

2.5 The anonial equation of AD

In this paragraph we disuss the derivation of the AD anonial equa-

tion, that desribes the evolution of eah trait x haraterizing the

ommunity with the Ordinary Di�erential Equation

.
x =

1

2
µ(x)σ2(x)n̄(x,X)

∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

,
(2.17)

where the time refers to the evolutionary timesale and µ(x) and

σ(x) are the probability that a newborn individual is a mutant and

the standard deviation of the mutational step x′ − x, respetively.
Moreover,

k(x) =
1

2
µ(x)σ2(x)
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is often alled mutation rate and desribe the statistis of the muta-

tional proess.

The evolution of eah trait is the result of a sequene of advan-

tageous mutations after whih the mutant population substitutes the

resident one, thus beoming itself the new resident population. The

Adaptive Dynamis transforms this step-by-step proess into a on-

tinuous proess desribed by the anonial equation under the as-

sumption of rare and small mutations.

In this way, x′ an be onsidered lose to x and the resident popu-

lations are at their demographi equilibrium (2.6) when the mutation

ours. The initial state of the resident-mutant model (2.1) just after

the mutation is, thus, inside the tube in Figure 2.3. From Paragraph

2.4 follows that if

∂

∂x′
λ(x, x′,X)

∣

∣

∣

∣

x′=x

(2.18)

is positive (resp., negative) the mutant population haraterized by

trait x′ > x (resp., x′ < x) will replae the resident population, while
mutations haraterized by x′ < x (resp., x′ > x) will go extint on

the demographi timesale, leaving the ommunity unhanged.

Equation (2.18) measures the seletive pressure ating on trait x,
seleting greater (resp., smaller) values if positive (resp., negative)

and, for this reason, it is alled seletion derivative or seletion gra-

dient. In other words, ẋ has the same sign of equation (2.18), so that

the dynamis of the traits are ruled by the sign of (2.18).

As already mentioned in Paragraph 2.1, evolution is a stohas-

ti proess mainly based on two forms of stohastiity: the mutation

proess and the demographi stohastiity, i.e., the fat that even ad-

vantageous mutations (with the same sign of (2.18)) might not be

able to invade, sine the mutant individuals are initially very sare

and, thus, fae the risk of aidental extintion. In this way, a de-

terministi desription of the evolution rate ẋ an be interpreted as

the average of all the possible realizations of the mutation and of the

demographi stohastiity proesses, that is,

.
x = lim

dt→0

E[x(t+ dt)− x(t)]

dt
, (2.19)

where E[·] is the standard expeted value operator and t refers to the
evolutionary timesale.

Denoting with

P (x, x′,X, dt)dx′ (2.20)
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the probability that a ommunity haraterized by traits (x,X) at

time t will be haraterized by traits in (x′,X) and (x′ + dx′,X) at
time t+ dt, we an writhe equation (2.19) as

.
x = lim

dt→0

1

dt

∫ +∞

−∞
(x′ − x)P (x, x′,X, dt)dx′. (2.21)

To expliitly ompute the integral in (2.21), it is neessary to as-

sess the probability (2.20), that is the produt of three probabilities,

namely:

• the probability that a mutation ours in the in�nitesimal time

step [t, t+ dt];

• the probability that the mutant trait is between x′ and x′+dx′;

• the probability that mutant individuals esape the risk of ai-

dental extintion and substitute the resident population.

It is possible to show [Derole and Rinaldi, 2008℄ that omputing

all these probabilities and substituting them into equation (2.21) leads

to equation (2.17).

2.6 A shemati summary

Figure 2.4 shematially summarizes the Adaptive Dynamis approah

and emphasizes the relationships between the three introdued mod-

els: the resident-mutant model (2.1), the resident model (2.5), and

the anonial equation (2.17). Notie that the resident-mutant model

and the mutation statistis are the main soure of information for the

anonial equation.

Given an anestral ondition (x(0),X(0)) ∈ χ, the anonial equa-
tion (2.17) desribes the evolutionary trajetory (x(t),X(t)), with

t > 0, followed by the traits haraterizing the ommunity. Along this

evolution, the demographi equilibrium (2.6) of the resident model

(2.5) is entrained on the evolutionary timesale by the variation of

the traits.

2.7 Evolutionary state portraits

The anonial equation (2.17) is a time-ontinuous dynamial system

whose trajetories are de�ned in the evolution set χ and in whih the

state variables are the phenotypi traits haraterizing the evolving



28 CHAPTER 2. ADAPTIVE DYNAMICS
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Figure 2.4: Shemati summary of the relationships between the resident-

mutant model (2.1), the resident model (2.5), the mutation

statistis, the anonial equation (2.17) of Adaptive Dynam-

is, and the respetive demographi and evolutionary dynamis

(reprodued from Derole and Rinaldi [2008℄).

ommunity. Moreover, the anonial equation is typially nonlinear,

so the evolutionary dynamis will be as omplex as the nonlinear dy-

namis typially are. The attrators of the anonial equation, alled

evolutionary attrators, an thus be evolutionary equilibria, as well as

evolutionary yles, tori, and strange attrators, provided the number

of adaptive traits are in su�ient number (in partiular, at least two

for yles and at least three for tori and strange attrators). Evo-

lutionary equilibria, yles, tori, and strange invariants an also be

unstable (saddles or repellers) and the evolutionary dynamis an be

haraterized by multiple invariants, e.g., multiple attrators, whose

basins of attration are separated by stable manifolds of evolutionary

saddles, in whih ase the regime evolutionary dynamis is dependent

from the anestral onditions. The set of all trajetories of the anon-

ial equation (2.17), one for eah anestral ondition in the evolution

set χ, gives the so-alled evolutionary state portrait. Obviously, they

are very useful graphial representations of the dynamis when the

trait spae is at most three-dimensional, and the maximum of their

e�ay is in the two-dimensional ase, when are typially shown the

boundary of the evolution set χ, the invariants and some signi�ant

trajetory from whih all others an be deduted.

Figure 2.5 shows an example of a two-dimensional evolutionary
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Figure 2.5: Example of evolutionary state portrait. Filled points: stable

evolutionary equilibria. Half-�lled points: evolutionary saddles.

Closed trajetories: stable evolutionary yles. Closed dotted

trajetories: unstable evolutionary yles. White regions: vi-

able set, i.e., long term persistene set. Grey regions: unviable

set, i.e., long term extintion set. Thik segments: extintion

segments (reprodued from Derole and Rinaldi [2008℄).

state portrait, relative to a prey-predator ommunity [Derole et al.,

2003℄. Notie that the evolution set χ is bounded, sine extreme

values of the traits typially are unfeasible with the oexistene of

the interating resident populations.

Evolutionary equilibria are points in the trait spae where all the

seletion derivatives (2.18) (one for eah trait) vanish for all resident

traits x and X haraterizing the ommunity. When suh points are

approahed, the anonial equation is no more justi�ed, sine the in-

vasion implies substitution theorem does not guarantee anymore that

the mutant population that invades esaping aidental extintion

will atually replae the resident population. For this reason, in the

neighborhood of an evolutionary equilibrium, a deeper analysis of the

resident-mutant model (2.1) is neessary (see Chapter 3).

From Figure 2.5 it is also possible to notie that evolutionary

trajetories an tend toward the boundary of the evolution set χ.
On suh boundary the (demographi) equilibrium abundane of at

least one population vanish (in this ase the predator abundane),

so the evolutionary trajetories approah the boundary horizontally,

sine ẋ2 is zero (n̄2(x1, x2) = 0, see equation (2.17)). In this way

the equilibrium abundane of the resident predator gradually vanish
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while the evolutionary trajetory is approahing suh boundary. In

other words, the evolution of the predator population slows down and

the boundary of the evolution set is reahed (in �nite time) due to

the evolution of the other resident population (the prey population).

When the boundary is reahed the predator goes extint, so that the

the prey ats as murder (see Paragraph 1.2.5, evolutionary murder).

By ontrast, without murders, evolutionary extintion would have

ourred asymptotially (see Paragraph 1.2.5, evolutionary runaway).

In any ase, reahing the boundary of the evolution set χ leads

to the evolutionary extintion of one or more resident populations.

After an evolutionary extintion, if the remaining resident populations

oexist at a demographi equilibrium, the evolutionary dynamis of

the ommunity follows a anonial equation with a redued dimension,

sine the traits of the extint populations have been lost.

To onlude, it is possible to partition the evolution set χ in a

subset of anestral onditions that gives rise to a trajetory that will

always remain in χ, alled viable set, and in another subset of anes-

tral onditions that lead to an evolutionary extintion, alled unviable

set (see Figure 2.5). The segments of the boundary in the unviable

set on whih extintion ours are alled extintion segments. In eah

point of an extintion segment the vetor (ẋ1, ẋ2) tangent to the evo-
lutionary trajetory points outside the boundary of χ, so that the

extremes of the extintion segments are points in whih the tangent

vetor (ẋ1, ẋ2) is either tangent to the boundary of χ (for this reason

alled tangent points) or vanish on an evolutionary equilibrium on the

boundary of χ (see Figure 2.5). Another interesting geometri prop-

erty is that the boundaries separating the viable from the unviable set

are either evolutionary trajetories passing through a tangent point

or stable manifolds of saddles on the boundary or inside χ (see Figure

2.5).



Chapter 3

Evolutionary branhing

In this hapter we fous on the phenomenon of evolutionary branh-

ing, that is, the phenomenon through whih diversity emerge in the

AD framework. We �rst introdue a new more ompat notation for

the residents and mutants per-apita growth rate and then we fous

on the branhing onditions. In partiular, we present the atalog of

all possible dynamis around evolutionary equilibria, with partiular

emphasis on the possibility of dimorphi oexistene and subsequent

evolutionary divergene. We then lassify evolutionary equilibria with

respet to their onvergene and evolutionary stability and, �nally,

divide them into two lasses, namely branhing and terminal points.

More details an be found in Derole and Rinaldi [2008℄, on whih

this introdution to evolutionary branhing is based.

3.1 The g-funtion

We start introduing a new and more ompat notation for the de-

sription of the resident-mutant interations. We initially onsider

two similar ompeting populations, with densities n and n′ and har-

aterized by one-dimensional traits (or strategies) x and x′ very lose

to eah other, oexisting with other resident populations, whose den-

sities and traits are paked in vetors N and X, respetively. We on-

sider x and x′ as the resident and mutant traits, respetively. Their

ompetition dynamis is desribed by the resident mutant model (see

also equation (2.1))

ṅ = ng(n, n′, N, x, x′,X, x)
ṅ′ = n′g(n, n′, N, x, x′,X, x′)

Ṅ = F (n, n′, N, x, x′,X),

(3.1)

31
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where g(n, n′, N, x, x′,X, y) is the so-alled generating �tness fun-

tion [Vinent and Brown, 2005℄, that gives the per-apita growth rate

of a vanishing population with a "virtual" strategy y in an environ-

ment where strategies x and x′ are present with densities n and n′,
respetively. Therefore, suitably evaluating g at densities (n, n′) and
traits (x, x′) we obtain the per-apita growth rate of the two similar

ompeting populations. E.g., we have that g(n, n′, N, x, x′,X, x) =
f(n, n′, N, x, x′,X) and g(n, n′, N, x, x′,X, x′) = f(n′, n,N, x′, x,X)
(see Paragraph 2.3). From now on, we make arguments N and X im-

pliit for notation onveniene (see Derole and Rinaldi [2008℄, Derole

[2014℄, Derole and Geritz [2014℄, Derole et al. [2014℄ and Paragraph

4.2.3.5 for analyses in the most general ase). Here and in the rest

of the thesis, we assume smoothness of the g-funtion and use lists

of integer supersripts to indiate the order of di�erentiation and the

position of the arguments w.r.t. whih we take derivatives, e.g.,

g(1,0,0,0,0)(n, n′, x, x′, y) := ∂
∂n
g(n, n′, x, x′, y),

g(1,1,0,0,0)(n, n′, x, x′, y) := ∂2

∂nn′ g(n, n
′, x, x′, y),

g(2,0,0,0,0)(n, n′, x, x′, y) := ∂2

∂n2 g(n, n
′, x, x′, y).

In the next hapter, onsisteny properties of the g-funtion, similar

to those introdued in Paragraph 2.3 for funtions f and F , plus a
new property reently introdued by Derole [2014℄, will be widely

exploited for the study of the branhing bifuration.

If we now assume rare mutations, we an evaluate the (monomor-

phi) invasion �tness of the mutation as

λ1(x, x
′) = g(n̄(x), 0, x, ·, x′),

whih is the per-apita growth rate of a very sare mutant popula-

tion haraterized by trait x′ ompeting with the resident population

haraterized by trait x and attained at its demographi equilibrium

n̄(x) (see also equation (2.13)). Away from evolutionary singularities,

the outome of the ompetition is always the dominane of one of the

two populations (the better �tted) and the extintion of the other. In

this way, the trait follows a slow evolution led by a series of subsequent

mutations and possible substitutions between residents and mutants,

in the diretion of a better performing (or �tted) trait. This evolu-

tionary dynamis an be approximated in the limit of in�nitesimal

mutational steps by the one-dimensional AD anonial equation

ẋ = k(x)n̄(x)λ
(0,1)
1 (x, x),
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where k(x) = 1
2µ(x)σ

2(x) is the mutation rate saling the speed of

evolution and λ
(0,1)
1 (x, x) = g(0,0,0,0,1)(n̄(x), 0, x, ·, x) is the seletion

gradient (see also equations (2.17) and (2.18)).

3.2 The branhing onditions

As already mentioned in Paragraphs 2.1 and 2.7, when the trait dy-

namis approahes an evolutionary equilibrium point x̄, that is, a

point in the evolution set χ at whih all seletion derivatives vanish,

ondition 3 of Paragraph 2.4 is no more valid, so that the invasion of

a mutant population does not imply the substitution of the resident

population. It is therefore neessary a deeper study of the resident-

mutant model 3.1 and of the �tness funtion λ1(x, x
′) up to seond

order (see equation (2.16)). Under a ertain ondition, in the viinity

of evolutionary equilibria, a mutant population an invade and oex-

ist with the resident populations, beoming a new resident population

itself with a trait value initially very similar to that of the popula-

tion in whih the mutation ourred. At this point, the evolutionary

dynamis of the ommunity will be desribed by a new anonial equa-

tion, with an extra ODE for the new resident trait. Under a seond

ondition, the traits of the two similar populations will experiene

disruptive seletion and, thus, diverge on the evolutionary timesale,

giving rise to the phenomenon of evolutionary branhing (see Para-

graph 1.2.4). It is now possible that the new enlarged system (with

an extra trait) will again approah a stationary regime and that a

new evolutionary branhing will be possible. This possible branhing

asade an lead to the inrease of the diversity of the ommunity,

starting from a minimal diversity ommunity (a single trait for eah

population, see Chapters 5 and 7). This is in line with the evolution-

ary idea that life developed from a ommon anestor to the impressive

biodiversity we observe today.

Tehnially speaking (see Geritz et al. [1998℄ and Derole and

Rinaldi [2008℄), resident and mutant oexistene is possible for x and

x′ lose to x̄ if

λ̄
(1,1)
1 < 0, (3.2)

where

λ̄
(i,j)
1 = λ

(i,j)
1 (x̄, x̄) =

∂(i+j)

∂xix′j
λ1(x, x

′)

∣

∣

∣

∣

∣

x=x′=x̄

.

Condition (3.2) implies the existene of a region of oexistene in

the strategy spae (x, x′) loally to (x̄, x̄), that is, a one with ver-
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tex entered in x̄, in whih the two strategies are mutually invadable

(λ1(x, x
′) > 0 and λ1(x

′, x) > 0) and oexist at a positive demo-

graphi equilibrium. The boundaries of suh region are the urves in

the strategies spae (x, x′) where this dimorphi demographi equilib-

rium ollides with one of the two boundary monomorphi equilibria,

(n̄(x), 0) or (0, n̄(x′)) (see also (2.9) and (2.11)). This is a transritial
bifuration [Kuznetsov, 2004, Meijer et al., 2009℄ desribed by

λ1(x, x
′) = 0 (3.3)

when the dimorphi equilibrium ollides with the boundary monomor-

phi equilibrium (n̄(x), 0), and by the same expression with x and x′

reversed when the dimorphi equilibrium ollides with the monomor-

phi equilibrium (0, n̄(x′)). Geritz et al. [1997, 1998℄ showed that mu-

tual invasibility ours in the one, whereas the existene of a unique

stable equilibrium of oexistene has been only reently shown [Geritz,

2005, Meszéna et al., 2005, Derole and Rinaldi, 2008, Derole and

Geritz, 2014℄.

Resident densities after oexistene are indiated with n1 and n2,
while resident traits are denoted with x1 and x2, initially lose to

x̄. Seletion an be disruptive (favoring outer rather than intermedi-

ate phenotypes) thus leading to trait divergene in the new enlarged

system if

λ̄
(0,2)
1 > 0. (3.4)

This leads the two traits to diverge following two di�erent series of

mutant-resident substitutions in the two di�erent branhes. This di-

verging dynamis is ruled by a two-dimensional anonial equation. If

we evaluate g(n1, n2, x1, x2, x
′) at the demographi oexistene equi-

librium (n̄1(x1, x2), n̄2(x1, x2)), with traits (x1, x2) initially lose to

the evolutionary equilibrium x̄, we obtain the dimorphi �tness fun-

tion

λ2(x1, x2, x
′) = g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′),

that is, the per-apita growth rate of a rare mutant population with

trait x′ appearing in an environment set by the two resident popula-

tions at their demographi equilibrium (n̄1(x1, x2), n̄2(x1, x2)). The

dimorphi trait dynamis is ruled by the two-dimensional anonial

equation

ẋi = ki(xi)n̄i(x1, x2)λ
(0,0,1)
2 (x1, x2, xi),

with i = 1, 2. Conditions (3.2) and (3.4) are alled branhing ondi-

tions.
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3.2.1 The oexistene ondition (3.2)

In this paragraph we onsider the resident-mutant model (3.1) for

trait values x and x′ lose to x̄. As already done in Paragraph 2.4,

we now study the sign of the �tness funtion.

Realling the priniple of seletive neutrality of the residents (that

is, the demographi equilibrium ondition g(n̄(x), 0, x, ·, x) = 0), we
an write

λ1(x, x) = 0

λ
(1,0)
1 (x, x) + λ

(0,1)
1 (x, x) = 0

λ
(2,0)
1 (x, x) + 2λ

(1,1)
1 (x, x) + λ

(0,2)
1 (x, x) = 0

(3.5)

(see also equation (2.14)), so that λ̄
(1,0)
1 is null sine the seletion

gradient λ̄
(0,1)
1 vanishes at evolutionary equilibrium.

Thus, the sign of λ1(x, x
′) in a small neighborhood of (x̄, x̄) is

determined by seond-order terms of the Taylor expansion

λ1(x, x
′) =

1

2
λ̄
(2,0)
1 (x−x̄)2+λ̄

(1,1)
1 (x−x̄)(x′−x̄)+

1

2
λ̄
(0,2)
1 (x′−x̄)2+O(‖(x−x̄, x′−x̄)‖3).

(3.6)

Realling (3.5), we an substitute λ̄
(2,0)
1 = −2λ̄

(1,1)
1 − λ̄

(0,2)
1 into

(3.6) to obtain

λ1(x, x
′) =

1

2

(

(

− 2λ̄
(1,1)
1 − λ̄

(0,2)
1

)

(x− x̄)− λ̄
(0,2)
1 (x′ − x̄)

)

(

x− x′
)

+O(‖(x− x̄, x′ − x̄)‖3). (3.7)

Thus, λ1(x, x
′) hanges sign when x′ = x and when x′−x̄ = tan θT2(x−

x̄), with

θT2 = arctan

(

− 2
λ̄
(1,1)
1

λ̄
(0,2)
1

− 1

)

,

where the subsript T stands for �Transritial� and the 2 tells that

population 2, i.e., the mutant, goes extint at the bifuration. The

reason for this hoie will be lear reading Chapter 4.

There are therefore two urves in the (x, x′) plane passing through
the equilibrium point (x̄, x̄), with slope π/4 and θT2, along whih

λ1(x, x
′) = 0. These two urves are obviously the diagonal x′ =
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Figure 3.1: Classi�ation of evolutionary equilibria x̄ ∈ χ. Panels A-H show

the sign of the �tness λ1(x, x
′) (white: positive; gray: negative)

in a small neighborhood of (x̄, x̄) in the (x, x′) plane and orre-

sponds to ases A-H in the last panel (reprodued from Derole

and Rinaldi [2008℄).

x and the transritial bifuration urve (desribed in the previous

paragraph and de�ned by (3.3)) approximated with a straight line,

and they partition the neighborhood of (x̄, x̄) into four regions: in

two of them λ1(x, x
′) is positive, while in the other two it is negative.

As shown in Figure 3.1 (see also Geritz et al. [1998℄), it is possible

to distinguish eight qualitatively di�erent ases, identi�ed by di�er-

ent inequalities among the seond derivatives of the �tness shown in

the last panel. For example, the anti-diagonal λ̄
(0,2)
1 = −λ̄

(1,1)
1 in the
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Figure 3.2: Classi�ation of evolutionary equilibria x̄ ∈ χ. Panels A-H show

the sign of the invasion eigenvalues λ1(x, x
′) (positive in regions

1© and

2©; negative in regions

3© and

4©) and λ1(x
′, x) (positive

in regions

1© and

3©; negative in regions

2© and

4©) in a small

neighborhood of (x̄, x̄) in the (x, x′) plane and orresponds to

ases A-H in the last panel of Figure 3.1. As shown in the last

panel, equilibria (n̄(x), 0) and (0, n̄(x′)) of the resident-mutant
model 3.1 are both unstable (resp., stable) in region

1© (resp.,

4©), while (n̄(x), 0) is unstable (resp., stable) and (0, n̄(x′)) sta-
ble (resp., unstable) in region

2© (resp.,

3©) (reprodued from

Derole and Rinaldi [2008℄).

last panel orresponds to θT2 = π/4, the line λ̄
(0,2)
1 = −2λ̄

(1,1)
1 orre-

sponds to θT2 = 0, while the vertial axis λ̄
(1,1)
1 = 0 orresponds to

θT2 = −π/4. Panels A-H show the sign of the �tness λ1(x, x
′) in a
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small neighborhood of (x̄, x̄) in the (x, x′) plane. White (resp., gray)

regions indiate positive (resp., negative) values of λ1(x, x
′). On the

boundaries of suh regions λ1(x, x
′) = 0.

In the AD jargon, diagrams A-H are alled pairwise invasibility

plots (PIPs) [Metz et al., 1996℄. A PIP gives information on the in-

vasion of the mutant population: if the point (x, x′) falls in a white

(resp., gray) region, then the invasion eigenvalue λ1(x, x
′) is posi-

tive (resp., negative) and the mutant population invades (resp., goes

extint), so that equilibrium (n̄(x), 0) of the resident-mutant model

(3.1) is unstable (resp., stable). PIPs are alled "pairwise" sine the

symmetri point (x′, x) w.r.t. the diagonal gives the same information

about equilibrium (0, n̄(x′)).

The superposition of the PIP with its mirror image w.r.t. the

diagonal x′ = x is alled mutual invasibility plot (MIP). It ontains

three types of regions, as shown in Figure 3.2: white-white regions

(white regions

1© in panels C-F), in whih both equilibria (n̄(x), 0)
and (0, n̄(x′)) are unstable; white-gray regions (light gray regions

2©
and

3© in all panels), in whih one of the two equilibria is stable and

the other unstable; and gray-gray regions (dark grey regions

4© in

panels A, B, G, and H), in whih both equilibria are stable. More-

over, in regions

2© and

3© the invasion implies substitution theorem

implies that one population replaes the other (see the orresponding

demographi state portraits in the last panel), while in regions

1© and

4© a oexistene equilibrium is present, stable in region

1© and unsta-

ble (a saddle) in region

4© (see the orresponding demographi state

portraits in the last panel). These four are all the possible resident-

mutant dynamis in the neighborhood of an evolutionary equilibrium.

To onlude, it has been shown that in the neighborhood of an

evolutionary equilibrium resident and mutant types an oexist. This

happens in ases C-F, where region

1© is present (see Figure 3.2).

Looking at the last panel of Figure 3.1, suh ases orresponds to

ondition (3.2).

3.2.2 The divergene ondition (3.4)

One residents and mutants oexist at a stritly positive equilibrium

in the demographi state spae (n, n′), the mutant population be-

omes by de�nition a new resident population. For this reason abun-

danes n, n′ and traits x, x′ are now indiated with n1, n2 and x1, x2,
respetively. We an denote with (n̄1(x1, x2), n̄2(x1, x2)) this dimor-

phi oexistene equilibrium and derive the two-dimensional anonial
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equation

ẋi = kin̄i(x1, x2)λ
(0,0,1)
2 (x1, x2, xi), (3.8)

with i = 1, 2, where λ2(x1, x2, x
′) = g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′)
is the dimorphi �tness funtion. In the next hapter we will show

that, with a proper Taylor expansion, the seond-order approxima-

tion of the dimorphi �tness λ2(x1, x2, x
′) in the neighborhood of the

singular strategy (x̄, x̄, x̄) is

λ2(x1, x2, x
′) =

1

2
λ̄
(0,2)
1 (x′ − x1)(x

′ − x2) +O(‖(. . .)‖3), (3.9)

where the term O(‖(. . .)‖3) will be arefully disussed. The two-

dimensional anonial equation (3.8) thus beomes

ẋi = kin̄i(x1, x2)
1

2
λ̄
(0,2)
1 (2xi − x1 − x2) +O(‖(. . .)‖2), (3.10)

with i = 1, 2. This means that ẋ1 and ẋ2 has opposite sign and trait

x1 and x2 diverge (resp., onverge) when λ̄
(0,2)
1 is positive (resp., nega-

tive), so the divergene ondition is nothing but (3.4) (see also Geritz

et al. [1998℄). The evolutionary trajetories desribed by the anonial

equation (3.10) in ases C-F where oexistene is possible are reported

in Figure 3.3. In partiular, if (3.4) is satis�ed (ases D-F), traits x1
and x2 initially diverge, and a nonloal analysis of the anonial equa-

tion (3.8) is required to determine the fate of the ommunity. Notie,

however, that in ase F the boundaries of the oexistene region are

attrative, meaning that the evolutionary trajetory of the two di-

verging traits likely tends toward suh boundaries, where one of the

two populations is driven to extintion by the evolution of the other

(evolutionary murder, see Paragraphs 1.2.5 and 2.7). By ontrast, if

(3.4) is not satis�ed (ase C), traits x1 and x2 onverge and also in this
ase the evolutionary trajetory likely tends to the boundary of the

oexistene region, driving one of the two populations to evolutionary

extintion. Notie that there is a partiular evolutionary trajetory

reahing the evolutionary monomorphi equilibrium, along whih the

two similar oexisting populations do not vanish and merge in trait

value (the opposite phenomenon of evolutionary branhing that has

been alled evolutionary merging [Derole and Rinaldi, 2008℄).

Geometrially, positive (resp., negative) values of λ̄
(0,2)
1 mean that

the evolutionary equilibrium x̄ is a loal minimum (resp., maximum)

of the �tness landsape λ1(x̄, x
′) experiened by the mutant with trait

x′ at the evolutionary equilibrium x̄. At �tness minima (resp., max-

ima), points (x1, x2) just above or below point (x̄, x̄) in Figure 3.1 lie
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Figure 3.3: Evolutionary branhing (ases D-F) and evolutionary merging

(ase C) (reprodued from Derole and Rinaldi [2008℄).

in white (resp., gray) regions of the PIP, i.e., ases D-G (resp., A-C,

H). Thus, small mutations x′ either larger or smaller than x̄ invade at

�tness maxima, while �tness minima are uninvadable. Sine stability

of evolutionary equilibrium x̄ is not related only with λ̄
(0,2)
1 , evolu-

tion on an adaptive landsape may drive ommunities toward �tness

maxima (as traditionally expeted) as well as toward �tness minima

[Abrams et al., 1993℄.

3.3 Classi�ation of evolutionary equilibria

It is then possible to lassify evolutionary equilibria w.r.t. their

onvergene stability [Christiansen, 1991℄ and evolutionary stability

[Maynard Smith and Prie, 1973℄. An evolutionary equilibrium x̄ is

onvergene stable if a population of a nearby phenotype an be in-

vaded by mutants that are even loser to x̄, i.e., if λ1(x, x
′) > 0 for

x < x′ < x̄ and x̄ < x′ < x. It is the lassial notion of asymptoti

stability of dynamial systems, for whih any perturbation from the
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singular state tends to zero. The onept of evolutionary stability

is related to the onept of ESS (Evolutionarily Stable Strategy) of

evolutionary game theory (see Paragraph 1.3). An evolutionary equi-

librium is ESS-stable if annot be invaded by nearby mutants, i.e., if

λ1(x̄, x
′) < 0 for both x′ < x̄ and x′ > x̄ lose to x̄.

Tehnially, onvergene stability an be assessed looking at the

eigenvalue of the linearized anonial equation at x̄, that, in the ase

of a single trait population, is

d

dx

(

1

2
µ(x)σ2(x)n̄(x)λ

(0,1)
1 (x, x)

)
∣

∣

∣

∣

x=x̄

=
1

2
µ(x̄)σ2(x̄)n̄(x̄)

(

λ̄
(1,1)
1 +λ̄

(0,2)
1

)

,

(3.11)

so that x̄ is onvergene stable (resp., unstable) if λ̄
(1,1)
1 + λ̄

(0,2)
1 is

negative (resp., positive). Therefore, the evolutionary equilibrium

(in a single trait population) is onvergene stable in ases A-D of

Figure 3.1 (see last panel), while it is onvergene unstable (or an

evolutionary repellor) in ases E-H of Figure 3.1. However, in multiple

trait ommunities, suh analysis is not so simple [Matessi and Di

Pasquale, 1996, Cohen et al., 1999℄.

An evolutionary equilibrium x̄ is evolutionarily stable if λ1(x̄, x
′) <

0 for all x′ 6= x̄ in a small neighborhood of x̄. This is veri�ed when

λ̄
(0,2)
1 < 0, i.e., x̄ is a �tness maximum. Therefore, x̄ is ESS-stable in

ases A-C and H of Figure 3.1 (see last panel). This ondition an

be easily generalized in the ase of multiple trait ommunities [Brown

and Vinent, 1987, 1992℄.

Realling (3.11), it is possible to notie that in a single trait pop-

ulation onvergene stability (λ̄
(1,1)
1 + λ̄

(0,2)
1 < 0) and evolutionary in-

stability (λ̄
(0,2)
1 > 0) imply resident-mutant oexistene (λ̄

(1,1)
1 < 0).

Thus, the branhing onditions are both satis�ed. By ontrast, in

multiple trait ommunities, onvergene stability and evolutionary

instability do not imply evolutionary branhing. For this to our,

λ̄
(1,1)
1 must be negative, that is, in ases C-F of Figure 3.1.

We are now ready to lassify all ases A-H w.r.t. onvergene

and evolutionary stability (in the ase of multiple trait ommunities

we always assume onverge stability of the evolutionary equilibrium,

sine onvergene unstable points are not reahed by the evolutionary

dynamis).

• Single trait population

� A-B: Continuously Stable Strategies (CSS) [Eshel and Motro,

1981, Eshel, 1983℄;
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� C: ESSs at whih resident-mutant oexistene is allowed

(but the dimorphi dynamis lead one of the two popula-

tions to extintion or the two traits to merge into one).

Therefore this ESSs an be haraterized by temporary

invasion (a new onept w.r.t. the traditional ESS formu-

lation of Game Theory [Derole and Rinaldi, 2008℄);

� D: Convergene stable equilibria at whih resident mutant

oexistene is allowed and the dimorphi dynamis is un-

stable, leading away from suh points;

� E-F: Resident-mutant oexistene is allowed, but the monomor-

phi dynamis go away from these points;

� G: The monomorphi dynamis go away from these points;

� H: Unstable ESSs or Gardens of Eden [Eshel and Motro,

1981, Eshel, 1983, Nowak, 1990℄.

• Multiple traits ommunities (with M resident traits)

� A-B and H: Evolutionary Stable Coalitions (o-ESS);

� C: o-ESS with temporary invasion;

� D-F: Convergene stable equilibria at whih resident mu-

tant oexistene is allowed and the (M + 1)-morphi dy-

namis is unstable, leading away from suh points;

� G: Evolutionary unstable equilibria at whih resident-mutant

oexistene is not possible. For this reason, eah mutation

leads to the substitution of the resident group, but the

onvergene stability guarantees that the traits will tend

again toward the equilibrium.

Transitions between these ases happen when the seond deriva-

tives λ̄
(1,1)
1 and λ̄

(0,2)
1 assume ritial values (see Figure 3.1, last panel).

Therefore, they an be seen as partiular bifurations. In the next

hapter we will study the branhing bifuration, that is, the hange of

evolutionary stability (λ̄
(0,2)
1 = 0) of the singular strategy, under the

generiity ondition of resident-mutant oexistene (λ̄
(1,1)
1 < 0), i.e.,

the transition between ases C and D.

3.4 Branhing and terminal points

To onlude, we an summarize by onsidering only two lasses:
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• branhing points (BP), i.e., onvergene stable equilibria at whih

resident mutant oexistene is allowed and the dimorphi dy-

namis is unstable, leading away from x̄ (both branhing on-

ditions are satis�ed for at least one population). They orre-

sponds to ase D for single trait populations and to ases D-F

for multiple traits ommunities;

• terminal points (TP), i.e., onvergene stable equilibria at whih

the dimorphi dynamis is not possible or it is stable (no branh-

ing an our for any trait, with the onsequent halt of the evo-

lutionary dynamis). They orrespond to ases A-C for single

trait populations and to ases A-C and G-H for multiple traits

ommunities (assuming onvergene stability of the evolution-

ary equilibrium).

Notie that branhing points, although tehnially equilibria of

the anonial equation, are not equilibria of the evolutionary proess.

Indeed, the evolution of the ommunity ontinues with an enlarged

system (with an extra trait) following a higher-dimensional anonial

equation. Moreover, notie that there exists terminal points whih

are however not ESSs (ase G in multiple traits ommunities).

If, in the viinity of an equilibrium, the branhing onditions are

satis�ed for more than one population, it means that all of them will

(initially) gain a new resident form. But (generially), as long as

diverge takes plae following the higher-dimensional anonial equa-

tion (with an extra ODE for eah of the populations satisfying the

branhing onditions), only one of the nasent branhing events will

survive (this is the phenomenon of missed branhing, see Kisdi [1999℄

and Paragraph 5.2.3.2).

At eah branhing, one of the resident populations gains one form,

inreasing its polymorphism. Branhing points are, thus, a soure of

diversity for the evolving ommunity and an be onsidered at the

base of a possible mehanism of sympatri speiation (see Paragraph

1.2.4).





Chapter 4

The branhing bifuration

In this hapter we unfold the bifuration involving the loss of evo-

lutionary stability of an equilibrium of the anonial equation of

Adaptive Dynamis. The equation deterministially desribes the ex-

peted long-term evolution of the inheritable traits�phenotypes or

strategies�of oevolving populations, in the limit of rare and small

mutations. In the viinity of a stable equilibrium of the AD anonial

equation, a mutant type an invade and oexist with the present�

resident�types, whereas the �ttest always win far from equilibrium.

After oexistene, residents and mutants e�etively diversify, aord-

ing to the enlarged anonial equation, only if natural seletion favors

outer rather than intermediate traits�the equilibrium being evolu-

tionarily unstable, rather than stable. Though the onditions for evo-

lutionary branhing�the joint e�et of resident-mutant oexistene

and evolutionary instability�have been known for long, the unfold-

ing of the bifuration remained a missing tile of AD, the reason being

related to the nonsmoothness of the mutant invasion �tness at the

branhing point. In this hapter, we develop a methodology that al-

lows the approximation of the invasion �tness after branhing in terms

of the expansion of the (smooth) �tness before branhing. We then

derive a anonial model for the branhing bifuration and perform

its unfolding around the loss of evolutionary stability. We ast our

analysis in the simplest (but lassial) setting of asexual, unstrutured

populations living in an isolated, homogeneous, and onstant abioti

environment; individual traits are one-dimensional; intra- as well as

inter-spei� eologial interations are desribed in the viinity of a

stationary regime. More details an be found in Derole et al. [2014℄.

45
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4.1 Introdution

Sine its funding publiations [Metz et al., 1996, Geritz et al., 1997,

1998℄, Adaptive Dynamis has been widely used for modeling the

long-term evolutionary dynamis of genetially transmitted pheno-

typi traits (see Derole and Rinaldi [2008℄ and the referenes therein),

with speial emphasis on the emergene of diversity through evolu-

tionary branhing. Evolutionary branhing takes plae when a resi-

dent and a similar mutant type oexist in the same environment and

natural seletion is disruptive, i.e., it favors outer rather than inter-

mediate phenotypes. Series of subsequent mutations hene lead to

the diversi�ation of the two traits. Analogous phenomena an be

observed in soio-eonomi ontexts (see Chapter 7 and Derole et al.

[2008℄, Landi and Derole [2014b℄), where behavioral strategies, inno-

vations, and ompetition play the role of phenotypi traits, mutations,

and natural seletion [Ziman, 2000℄.

In the limit of extremely rare mutations of in�nitesimal e�et,

evolution an be approximated by a ontinuous dynamis in terms of

an ODE model, alled the anonial equation of AD [Diekmann and

Law, 1996, Champagnat et al., 2006℄. The AD anonial equation

desribes the expeted long-term evolution as an asent of the traits

on an adaptive �tness landsape [Levins, 1968, Gavrilets, 2004℄. All

kind of evolutionary attrators an be displayed, from stationary�

alled singular strategies in the AD jargon�to periodi [Diekmann

et al., 1995℄ and haoti [Derole et al., 2010a, Derole and Rinaldi,

2010℄, and attrator multipliity questions the repliability of evo-

lutionary history [Derole et al., 2006℄. When mutational steps are

�nite and stohastially drawn, evolution proeeds as a random walk

in the trait spae of oevolving populations, again showing the full

plethora of nonlinear behaviors [Doebeli and Ruxton, 1997℄.

Evolutionary branhing an be formally desribed in terms of the

stability properties of the singular strategies, seen as the evolutionary

equilibria of the AD anonial equation. Spei�ally, resident-mutant

oexistene an only our in the viinity of an evolutionary equilib-

rium, so the equilibrium must be stable (onvergene stability) to be

reahed by the evolutionary dynamis, and unstable (evolutionary in-

stability [Maynard Smith and Prie, 1973℄) for the higher-dimensional

anonial equation to be used after resident-mutant oexistene to

produe phenotypi divergene. Whereas branhing annot our if

oexistene is not possible lose to the evolutionary equilibrium or if

the equilibrium is evolutionarily stable�the equilibrium then repre-
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sents a terminal point of the evolutionary dynamis.

The transition from terminal to branhing point (or vie-versa)

along with hanges in the relevant demographi, environmental, or

ontrol parameters, an therefore be interpreted as a bifuration of

the AD anonial equation. The unfolding of the bifuration is how-

ever a missing tile of AD theory. The reason why it has been left

behind is related to di�ulties in developing a suitable normal form

for the bifuration. In fat, the �tness landsape after branhing is

nonsmooth at the branhing point and this prevents the Taylor ex-

pansion approah typial of normal form analysis.

In this hapter we develop a methodology that allows the approx-

imation of the dimorphi �tness landsape�the invasion �tness of

a mutant in the presene of the two resident types at the inipient

branhing�in terms of the expansion of the monomorphi �tness�

the invasion �tness before the branhing�up to any order loally

to the branhing point. We ast our analysis in the simplest (but

lassial) setting of unstrutured populations (no distintion in age,

state, loation, et., of individuals) varying in ontinuous time in an

isolated, homogeneous, and onstant abioti environment; individual

traits are quanti�ed by one-dimensional strategies; intra- as well as

inter-spei� eologial interations are desribed in the viinity of a

stationary regime. We exploit an expansion in the radial diretion

in the plane of the two diverging strategies and show that the �tness

landsape is smooth on eah given ray, thus obtaining an approxima-

tion that is parametri in the ray angle.

By means of a third-order approximation, we unfold the branhing

bifuration involving the hange in evolutionary stability of the evo-

lutionary equilibrium. In partiular, it is the third derivative of the

monomorphi �tness with respet to the mutant strategy the main pa-

rameter ruling branhing in the degenerate ase we analyze. The tran-

sition involving the possibility of resident-mutant oexistene near

the evolutionary equilibrium is more involved and is left for future

researh. This, as well as bifurations of higher odimension (more

degeneraies ourring together), an be however dealt with the same

methodology.

Interestingly, our approximation oinides up to seond-order to

the one obtained by Geritz et al. [1997, 1998℄ by erroneously assuming

a smooth dimorphi �tness. Thus, the branhing onditions derived

by Geritz et al. [1997, 1998℄ in terms of the seond derivatives of

the monomorphi �tness at the singular strategy are on�rmed. The

third-order terms in the approximation however di�er from those one
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would obtain under the smoothness assumption. Worth to remark

is that they are given in terms of the monomorphi �tness deriva-

tives (in ontrast to what preliminarily found in Durinx [2008℄, in the

speial ase of Lotka-Volterra models), so the evolutionary dynamis

loally to a branhing point are determined by quantities that an be

evaluated without waiting for the mutation that triggers the branh-

ing. This is possible thanks to the new property (P4) of the eologial

model that we will introdue in the next paragraph. This property

derives from a generalized law of mass ation, i.e., the fat that eo-

logial models desribe pairwise interations between individuals that

are, in turn, involved in pairwise interations.

The hapter is organized as follows. In the next Paragraph we

introdue the basi notation and the methodology used for approxi-

mating the dimorphi invasion �tness. For simpliity of notation, we

onsider a single speies generi model (as done in Geritz et al. [1997,

1998℄) and we fous on the transition from the monomorphi to the

dimorphi situation. Only later, in Paragraph 4.2.3.5, we will on-

sider higher polymorphisms and/or other inter-spei� interations.

The results are fully analogous, but more involved to be derived. In

Paragraphs 4.3 and 4.4 we present the normal form and the unfolding

of the branhing bifuration. Paragraph 4.5 is dediated to an exam-

ple, where the developed theory is applied to an AD eo-evolutionary

model taken from the literature. Finally, in Paragraph 4.6, we disuss

possible extensions for future work. In partiular, similar results are

expeted to hold for the ase of strutured populations haraterized

by multi-dimensional strategies. All analytial omputations have

been handled symbolially and a detailed ommented Mathematia

sript an be found in Derole et al. [2014℄.

4.2 Methods

4.2.1 Notation, assumptions, and preliminaries

We onsider two similar ompeting populations, with abundanes

measured by densities n1(t) and n2(t) at time t and haraterized by a

one-dimensional strategy (or trait) x taking values x1 and x2 ≃ x1 in
populations 1 and 2 (the ase in whih other onspei� populations

and/or other speies are present is treated in Paragraph 4.2.3.5). In

the monomorphi situation, we refer to populations 1 and 2 as resi-

dent and mutant, respetively, whereas they are both residents after

branhing.
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Populations 1 and 2 being onspei�, their per-apita growth

rates ṅ1/n1 and ṅ2/n2 an be expressed through the same g-funtion
(see also Paragraph 3.1) g(n1, n2, x1, x2, x

′)�the per-apita growth

rates of a population with strategy x′ and in�nitesimally small den-

sity in the environment where strategies x1 and x2 are present with

densities n1 and n2. Then, ṅ1/n1 and ṅ2/n2 are given by the g-
funtion evaluated for x′ = x1 and x

′ = x2, respetively:

ṅ1 = n1 g(n1, n2, x1, x2, x1) (4.1a)

ṅ2 = n2 g(n1, n2, x1, x2, x2). (4.1b)

To de�ne reasonable population dynamis, funtion g enjoys the

four basi properties summarized below. The �rst three are rather

obvious and has already been introdued in Paragraph 2.3in terms of

f and F , but are here realled in terms of g-funtion; whereas the

last is more involved and has been reently introdued in [Derole,

2014℄. We reall that we assume g to be smooth and we use lists of

integer supersripts to indiate the arguments w.r.t. whih we take

derivatives and the order of di�erentiation, e.g.

g(1,0,0,0,0)(n1, n2, x1, x2, x
′) := ∂

∂n1
g(n1, n2, x1, x2, x

′),

g(1,1,0,0,0)(n1, n2, x1, x2, x
′) := ∂2

∂n1n2
g(n1, n2, x1, x2, x

′),

g(2,0,0,0,0)(n1, n2, x1, x2, x
′) := ∂2

∂n2
1
g(n1, n2, x1, x2, x

′).

P1 g(n1, 0, x1, x2, x
′) = g(n1, 0, x1, ·, x

′) = g1(n1, x1, x
′),

for a suitable funtion g1, i.e., the per-apita growth rate of

a strategy x′ is not a�eted by the strategy x2 of an absent

population.

P2 g(n1, n2, x, x, x
′) = g(α(n1+n2), (1 − α)(n1+n2), x, x, x

′),

for any 0 ≤ α ≤ 1, i.e., any partitioning of the total density

(n1+n2) into two populations with same strategy x must result

in the same per-apita growth rate for strategy x′.

P3 g(n1, n2, x1, x2, x
′) = g(n2, n1, x2, x1, x

′),

i.e., the order in whih populations 1 and 2 are onsidered does

not matter.
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P4

g(0,0,p,0,0)(n1, n2, x, x, x
′) =

p
∑

i=1

φp,i(n1+ n2, x, x
′)ni1

g(0,0,p1,p2,0)(n1, n2, x, x, x
′) =

p1
∑

i1=1

p2
∑

i2=1

φp1,p2,i1,i2(n1+n2, x, x
′)ni11 n

i2
2 ,

for suitable funtions φp,i and φp1,p2,i1,i2 and p, p1, p2 ≥ 1. This
property follows from a generalized priniple of mass-ation,

i.e., the assumption that g desribes pairwise interations be-

tween a target individual with strategy x′ and other individuals

whih are, in turn, involved in pairwise interations (see Derole

[2014℄). Thus, when onsidering idential resident and invader

strategies, x′ = x, the sensitivity (i.e., the derivative) of the

growth rate g w.r.t. the x at fourth or �fth argument is propor-

tional to the density of the orresponding individuals, n1 or n2,
whose strategy is being perturbed by the derivative, with a pro-

portionality oe�ient that an be density-dependent only as a

funtion of the total density n1+n2. Moreover, due to nonlin-

ear density dependenies in g, higher powers of n1 and n2 may

appear in further derivatives (up to the order of di�erentiation

p, p1, or p2), with oe�ients φp,i or φp1,p2,i1,i2 .

Examples of property P4 are

g(0,0,1,0,0) = φ1,1 n1
g(0,0,1,1,0) = φ1,1,1,1 n1n2
g(0,0,2,0,0) = φ2,1 n1 + φ2,2 n

2
1,

(where arguments have been omitted for notation simpliity) from

whih we write equations like

g(1,0,1,0,0) = φ
(1,0,0)
1,1 n1 + φ1,1,

g(0,1,1,0,0) = φ
(1,0,0)
1,1 n1,

g(1,0,1,1,0) = φ1,1,1,1 n2 + φ
(1,0,0)
1,1,1,1n1n2,

g(1,0,2,0,0) = φ2,1 + (φ
(1,0,0)
2,1 + 2φ2,2)n1 + φ

(1,0,0)
2,2 n21.

Properties P1�4 an be ombined to produe further relations

among g-derivatives that will be taken into aount in our expansions

in Paragraph 4.2.3. For example:
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P1-2a g(l1,l2,0,0,0)(n1, n2, x, x, x
′) = g

(l1+l2,0,0)
1 (n1+ n2, x, x

′),

i.e., n1- and n2-perturbations simply perturb the total density

(n1+ n2) if the two populations have the same strategy x;

P1-2b

p
∑

i=0

(

p
i

)

g(l1,l2,i,p−i,0)(n1, n2, x, x, x
′) = g

(l1+l2,p,0)
1 (n1+ n2, x, x

′),

p ≥ 1, obtained by x-di�erentiating P1-2a;

P1-3 g(0, n2, x1, x2, x
′) = g1(n2, x2, x

′);

P1-4 g
(0,p,0)
1 (n, x, x′) =

p
∑

i=1

φp,i(n, x, x
′)ni;

P1-2-4

p−i2
∑

i=i1

(

p
i

)

φi,p−i,i1,i2(n, x, x
′) =

(

i1+i2
i1

)

φp,i1+i2(n, x, x
′),

for eah i1, i2 ≥ 1 with i1+i2 ≤ p ≥ 2, obtained by substituting

P4 and P1-4 into P1-2b with l1= l2 = 0.

P3-4a

g(0,0,0,p,0)(n1, n2, x, x, x
′) =

p
∑

i=1

φp,i(n1+n2, x, x
′)ni2 ;

P3-4b φp1,p2,i1,i2 = φp2,p1,i2,i1 .

Moreover, further derivatives w.r.t. to the target strategy x′ an be

added to all properties.

As antiipated in Paragraph 4.1, we onsider the (simplest, but

most typial) ase of stationary oexistene. In partiular, we assume

that for all values of the strategy x1 that we onsider, the resident

population 1 an persist alone at a stritly positive and (hyperbol-

ially) stable equilibrium of equation (4.1a) with n2 = 0 (see also

Paragraph 2.3). We denote the equilibrium density with funtion

n̄(x1), impliitly de�ned by

g(n̄(x1), 0, x1, ·, x1) = g1(n̄(x1), x1, x1) = 0 (4.2)

(see property P1 above). Note that the hyperboliity of the resident

equilibrium (i.e., nonzero real part of all assoiated eigenvalue) and

the similarity between the resident and mutant populations (x1 ≃
x2), guarantee that the population 2 is also able to persist alone at

the stritly positive (and hyperbolially stable) equilibrium n̄(x2) of
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λ
(0,1)
1 (x, x)(x′

− x) > 0 λ
(0,1)
1 (x, x)(x′

− x) < 0

λ
(1,1)
1 (x̄, x̄) < 0 λ

(1,1)
1 (x̄, x̄) > 0

Figure 4.1: Resident-mutant ompetition senarios. Top row, far from sin-

gular strategies: exlusion of population 1 (A) (resp., 2 (B)).

Bottom row, lose to a singular strategy x̄: oexistene (C) or
mutual exlusion (D). Full points: stable equilibria. Half-�lled

points: saddles. Empty points: unstable equilibria.

equation (4.1b) with n1 = 0. In other words, the resident-mutant

model (4.1) admits the two monomorphi equilibria (n̄(x1), 0) and

(0, n̄(x2)) for all the pairs (x1, x2) that we onsider (see Figure 4.1,

top panels).

Themonomorphi invasion �tness is the initial (per-apita) growth

rate of the mutant population, i.e.,

λ1(x, x
′) := g(n̄(x), 0, x, ·, x′) = g1(n̄(x), x, x

′), (4.3)

the resident population settled at equilibrium mutations being rare.

Generially (i.e., if λ
(0,1)
1 (x, x) 6= 0 [Geritz, 2005, Meszéna et al., 2005,

Derole and Rinaldi, 2008℄) the best performing population wins the

ompetition, so x evolves by small steps in the diretion of the se-

letion gradient λ
(0,1)
1 (x, x). And in the limit of extremely rare and

small mutations, the expeted evolutionary dynamis is deterministi-
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ally desribed by the AD anonial equation

ẋ = 1
2 µ(x)σ(x)

2 n̄(x)λ
(0,1)
1 (x, x), (4.4)

where µ(x) and σ(x)2 sale with the frequeny and variane of muta-

tions in strategy x (half of whih are at disadvantage and go extint).

The strategies annihilating the seletion gradient are alled singular

and orrespond to the equilibria of the anonial equation.

In the viinity of a singular strategy x̄, i.e.,

λ
(0,1)
1 (x̄, x̄) = 0, (4.5)

the eologial and evolutionary dynamis are dominated by the seond

derivatives of the monomorphi �tness. In partiular, resident-mutant

oexistene is possible if

λ
(1,1)
1 (x̄, x̄) < 0. (G1)

Geritz et al. [1997, 1998℄ showed that under (G1) resident and mutant

mutually invade eah other (the instability of the two monomorphi

equilibria, see Figure 4.1C); and they mutually exlude if the inequal-

ity sign in (G1) is reversed (the stability of the two monomorphi

equilibria, see Figure 4.1D). More reently, Derole and Geritz [2014℄

showed the uniqueness and stability of the internal equilibrium of the

eologial model (4.1). When possible, oexistene ours for (x1, x2)
in a onial region loally to (x̄, x̄) (see Figure 4.2). The boundaries of
the region are transritial bifuration urves [Kuznetsov, 2004, Mei-

jer et al., 2009℄ on whih the internal equilibrium ollides with one of

the monomorphi equilibria (see Paragraph 4.2.2). For (x1, x2) in the

oexistene region, we denote the densities of the internal equilibrium

with funtions n̄1(x1, x2) and n̄2(x1, x2), impliitly de�ned by

g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x1) = 0 (4.6a)

g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x2) = 0 (4.6b)

(the equilibrium ondition for model (4.1)).

After oexistene evolution is driven by a two-dimensional anon-

ial equation

ẋi =
1
2 µ(xi)σ(xi)

2 n̄i(x1, x2)λ
(0,0,1)
2 (x1, x2, xi), i = 1, 2, (4.7)

where

λ2(x1, x2, x
′) := g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′), (4.8)
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0

0

– 0.1

0.1

0.1– 0.1

PSfrag replaements

∆x1

∆x2

Figure 4.2: Coexistene region loally to (x̄, x̄). The olored shaded area

represents trait pairs where oexistene is possible, and the olor

indiates the total abundane (blue: low, orange: high). In the

white areas one of the two populations outompetes the other.

It is a higher-order approximation w.r.t. Figure 3.3D.

is the dimorphi invasion �tness�the initial (per-apita) growth rate

of the mutant population of strategy x′ appeared in an environment

set by the two residents x1 and x2 at their equilibrium densities.

Note the symmetry of the resident-mutant oexistene region w.r.t.

the diagonal x1 = x2 (Figure 4.2), that is due to the same symmetry

in model (4.1). The dynamis of model (4.1) orresponding to point

(x1, x2) below the diagonal are obtained by those orresponding to

point (x2, x1) above the diagonal by exhanging n1 and n2�i.e., by

exhanging the roles of resident and mutant (see property P3). Con-

sequently, also model (4.7) has a diagonal symmetry�the vetor �eld

at (x1, x2) below the diagonal is obtained by that at (x2, x1) above
the diagonal by exhanging the two omponents (see the blue arrows

in Figure 4.2).

The singular strategy x̄ is a branhing point if the two similar

strategies x1 and x2 tend to diversify aording to the dimorphi

evolutionary dynamis (4.7). Tehnially, this is so if ẋ1(0) < 0 and

ẋ2(0) > 0 at a point (x1(0), x2(0)) of the oexistene region, with

x2(0) > x1(0), that is arbitrarily lose to (x̄, x̄) (see the blue arrows

above the diagonal in Figure 4.2). The singular strategy is a terminal

point of the evolutionary dynamis, otherwise.

Geritz et al. [1997, 1998℄ onluded that the ondition for evolu-

tionary divergene is

λ
(0,2)
1 (x̄, x̄) > 0, (4.9)
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i.e., the ondition for evolutionary instability�mutant invasion at

x1 = x̄. The onlusion is based on a seond-order Taylor expansion

of the dimorphi �tness at (x1, x2, x
′) = (x̄, x̄, x̄), that is however

nonsmooth there. In fat, by assuming smoothness and exploiting

the following onsisteny relations:

C1 λ2(x, x, x
′) = λ1(x, x

′),

the link between the dimorphi and monomorphi �tness fun-

tions (indued by properties P1 and P2),

C2 λ2(x1, x2, x
′) = λ2(x2, x1, x

′),

the order irrelevane of the two residents (property P3)

C3 λ2(x1, x2, x1) = λ2(x1, x2, x2) = 0,

the resident equilibrium onditions (4.6),

one gets to nongeneri onstraints on the monomorphi �tness, suh

as λ
(2,0)
1 (x̄, x̄) = λ

(0,2)
1 (x̄, x̄) at seond order, and similar nonsenses

at higher orders (see Paragraph 4.2.3.1). In Paragraph 4.2.3 we show

that the divergene ondition (4.9) is orret, as we rederive it through

a proper (radial) expansion of the dimorphi �tness.

As in the previous hapter, we use overbars to denote evalua-

tions at the singular strategy, e.g. λ̄
(1,1)
1 = λ

(1,1)
1 (x̄, x̄) and λ̄

(0,2)
1 =

λ
(0,2)
1 (x̄, x̄). Moreover, taking into aount that

λ1(x, x) = 0 (4.10)

for any x (this is nothing but the de�nition of n̄(x), see (4.2) and (4.3)),

we an avoid the pure derivatives λ̄
(k,0)
1 , k ≥ 1, sine by the x-

derivatives of (4.10) at (x̄, x̄) we have

λ̄
(1,0)
1 + λ̄

(0,1)
1 = 0, (4.11a)

λ̄
(2,0)
1 + 2λ̄

(1,1)
1 + λ̄

(0,2)
1 = 0, (4.11b)

λ̄
(3,0)
1 + 3λ̄

(2,1)
1 + 3λ̄

(1,2)
1 + λ̄

(0,3)
1 = 0, (4.11)

and so forth (see also (3.5)). We always try to express our results in

terms of the monomorphi �tness derivatives, that are known prior

to oexistene. For this, realling its de�nition (4.3), we take into
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aount that

λ̄
(1,0)
1 = ḡ(1,0,0,0,0)n̄(1)+ ḡ(0,0,1,0,0)

λ̄
(0,1)
1 = ḡ(0,0,0,0,1)

λ̄
(2,0)
1 = ḡ(2,0,0,0,0)

(

n̄(1)
)2
+ 2ḡ(1,0,1,0,0)n̄(1)+ ḡ(1,0,0,0,0)n̄(2)+ ḡ(0,0,2,0,0)

λ̄
(1,1)
1 = ḡ(1,0,0,0,1)n̄(1)+ ḡ(0,0,1,0,1)

λ̄
(0,2)
1 = ḡ(0,0,0,0,2),

(4.12)

and similar relations for higher-order derivatives.

4.2.2 Expansion of the resident-mutant oexistene re-

gion

The equilibrium (n̄1(x1, x2), n̄2(x1, x2)) of model (4.1), at whih the

two similar residents oexist along an inipient branhing, is de�ned

by equations (4.6). Under the generiity ondition (G1), Derole and

Geritz [2014℄ showed that the oexistene equilibrium an only un-

dergo transritial bifurations in the viinity of point (x1, x2) =
(x̄, x̄) in the strategy plane, x̄ being a singular strategy. Due to the

symmetry of model (4.1) w.r.t. the diagonal x1 = x2, the diagonal

itself is a (degenerate) transritial bifuration at whih the segment

n1+n2 = n̄(x1) is omposed of a ontinuum of (ritially) stable equi-

libria. Moreover, two (standard) transritial bifurations are rooted

at point (x̄, x̄) and onstitute the boundaries of the oexistene region

(see Figures 1 and 2).

The transritial bifuration at whih the oexistene equilibrium

ollides with the monomorphi one at (n̄(x1), 0) is de�ned by

λ1(x1, x2) = 0,

i.e., the mutant �oexists at zero density� with the resident (see the

de�nition (4.3)). To geometrially haraterize the bifuration urve,

it is onvenient to use the polar oordinates

x1 := x̄+ ε cos θ, x2 := x̄+ ε sin θ, (4.13)

and to ε-parameterize the urve as θ = θT2(ε) (as done in [Derole and
Geritz, 2014℄, with the notation introdued in the previous hapter).

Then

λ1(x̄+ ε cos θT2(ε), x̄ + ε sin θT2(ε)) = 0 (4.14)

is an identity for any (su�iently small) ε ≥ 0, and by evaluating

(4.14) and its ε-derivatives at ε = 0 we an solve the resulting expres-

sions for θT2(0) and the derivatives θ
(k)
T2 (0), k ≥ 1. The angle θT2(0)
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gives the tangent diretion to the bifuration urve at ε = 0, while the

�rst nonvanishing derivative θ
(k)
T2 (0) determines the urvature of the

urve (whether θ inreases or dereases by moving away from ε = 0
in the θT2(0)-diretion).

Spei�ally, taking into aount the singularity ondition (4.5)

(and the properties in (4.11)), the �rst ε-derivative of (4.14) at ε = 0
is an identity, whereas the seond and third derivatives give

(sin θT2(0) − cos θT2(0))
(

2λ̄(1,1) cos θT2(0) + λ̄(0,2)(sin θT2(0) + cos θT2(0))
)

= 0 (4.15)

and

6
(

λ̄(1,1)(sin2 θT2(0)− 2 sin θT2(0) cos θT2(0)+

− cos2 θT2(0)) − 2λ̄(0,2) sin θT2(0) cos θT2(0)
)

θ
(1)
T2 (0) =

(sin θT2(0) − cos θT2(0))
(

3λ̄(2,1) cos2 θT2(0) + 3λ̄(1,2) cos θT2(0)(sin θT2(0) + cos θT2(0))+

λ̄(0,3)(sin2 θT2(0) + sin θT2(0) cos θT2(0) + cos2 θT2(0))
)

. (4.16)

From the (sin θT2(0) − cos θT2(0)) fator in (4.15), we have the solu-

tions θT0(0) =
1
4 π and

5
4 π, whih orrespond to the diagonal x1 = x2,

whereas solving the seond fator we get

tan θT2(0) = −
2λ̄(1,1) + λ̄(0,2)

λ̄(0,2)
(4.11b)

=
λ̄(2,0)

λ̄(0,2)
(4.17)

(see also Chapter 3). We only onsider angles above the diagonal

and we an assume tan θT2(0) 6= 1. In fat, realling our aim of

studying the branhing bifuration at whih λ̄(0,2) = 0 under (G1) (the
transition from ase C to D of the previous hapter, see in partiular

the lat panel of Figure 3.1), we see from (4.17) that lose to the

bifuration (small |λ̄(0,2)|) we ertainly have

λ̄(1,1) + λ̄(0,2)
(4.11b)

= 1
2

(

λ̄(0,2) − λ̄(2,0)
)

< 0 (4.18)

(preventing the singular strategy x̄ to undergo a saddle-node bifur-

ation of the monomorphi AD anonial equation (4.4), see [Derole

and Geritz, 2014℄). We therefore restrit our attention to

1
4 π < θ < 5

4 π (4.19a)
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and

x2 − x1 = ε (sin θ − cos θ) > 0. (4.19b)

Substituting (4.17) into (4.16) and solving for θ
(1)
T0 (0), we get

θ
(1)
T2 (0)=

−
4
(

λ̄(1,1)
)2
λ̄(0,3)−2λ̄(1,1)λ̄(0,2)(3λ̄(1,2)−λ̄(0,3))+

(

λ̄(0,2)
)2

(3λ̄(2,1)+λ̄(0,3))

6
√
2

(

2
(

λ̄(1,1)
)2

+2λ̄(1,1)λ̄(0,2)+
(

λ̄(0,2)
)2

)3/2
.

(4.20)

Note that taking the solution for θT2(0) below the diagonal, one gets

same/opposite urvatures θ
(k)
T2 (0) for even/odd k, i.e., equivalently,

one an keep the solution above the diagonal and use the expansion

θT2(ε) = θT2(0)+θ
(1)
T2(0)ε+ · · ·+θ

(k)
T2 (0)ε

k+O(εk+1) also for negative
ε to desribe both branhes (above and below the diagonal) of the

bifuration urve. Also note that substituting θT2(0) =
1
4 π (or

5
4 π)

into (4.16) we get θ
(1)
T2 (0) = 0, whih on�rms the diagonal being a

bifuration (in this ase θ
(k)
T2 (0) = 0 for all k ≥ 1).

The bifuration urve θ = θT1(ε) orresponding to the standard

transritial at the monomorphi equilibrium (0, n̄(x2)) is symmetri

w.r.t. the diagonal to the one ourring at (n̄(x1), 0) (the index 1 tells
that population 1 goes extint at the bifuration). It is indeed de�ned

by λ1(x2, x1) = 0, i.e., the resident �oexists at zero density� with the

mutant. As a result, tan θT1(0) is the inverse of the expression in

(4.17), i.e.,

tan θT1(0) =
λ̄(0,2)

λ̄(2,0)
, (4.21)

the derivatives θ
(k)
T1 (0) oinide with θ

(k)
T2 (0) for odd k, whereas θ

(k)
T1 (0) =

−θ
(k)
T2 (0) for even k.

The two (standard) transritial bifuration urves de�ne the resident-

mutant oexistene region. In Figure 4.2 the two urve are �rst-order

approximated by θTi(ε) = θTi(0) + θ
(1)
Ti (0)ε, i = 1, 2, for small (pos-

itive and negative) ε. Loally to (x̄, x̄), the oexistene region is a

one spanned by the rays within the two angles θT2(0) and θT1(0).
Close to the branhing bifuration we ertainly have θT2(0) < θT1(0)
(see (4.17) and (4.18) with small |λ̄(0,2)|), so the one of oexistene

is de�ned by θT2(0) < θ < θT1(0). At the bifuration (λ̄(0,2) = 0),
the tangent diretions to the one boundaries are respetively vertial
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and horizontal, and their urvature is dominated by λ̄(0,3) (see (4.20)
with λ̄(0,2) = 0 under (G1)). Generially, we assume

λ̄(0,3) 6= 0. (G2)

4.2.3 Expansion of the dimorphi invasion �tness

As antiipated at the end of Paragraph 4.2.1, the dimorphi inva-

sion �tness λ2(x1, x2, x
′) annot be Taylor expanded at (x1, x2, x

′) =
(x̄, x̄, x̄). This is due to the nonsmoothness of the resident-mutant

oexistene equilibrium (n̄1(x1, x2), n̄2(x1, x2)), e.g. n̄1(x1, x2) ap-

proahes n̄(x̄) along one of the boundaries of the oexistene region,

being zero on the other boundary. The key observation, made in

[Durinx, 2008℄ and [Derole and Geritz, 2014℄, is that the equilibrium

densities n̄1(x1, x2) and n̄2(x1, x2) an be smoothly de�ned at (x̄, x̄)
along eah ray (x1, x2) = (x̄+ ε cos θ, x̄+ ε sin θ) with θ in the one of

oexistene (θ ∈ [θT2(0), θT1(0)]; atually any θ in the interval (4.19a)

ould be used, though either n̄1(x1, x2) or n̄2(x1, x2) is negative out-
side the one).

Spei�ally, Derole and Geritz [2014℄ made use of new variables

(following Meszéna et al. [2005℄ and Derole and Rinaldi [2008℄), the

sum of the resident densities s = n1+ n2 and the relative mutant

density r = n2/(n1 + n2) (the inverse transformation giving n1 =
(1− r)s and n2 = rs), and exploited their fast-slow nature for small

ε. At onstant r, s quikly onverges to the fast-equilibrium manifold

{sf (r, ε, θ), r ∈ [0, 1]} onneting the two monomorphi equilibria (see

Figure 4.1), so the dynamis of r an be studied by restriting n1 and
n2 to (1− r)sf (r, ε, θ) and rsf (r, ε, θ).

From the resident-mutant model (4.1), the fast-equilibrium man-

ifold is de�ned by

0 = ṅ1+ ṅ2

= (1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

+ rg((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ),(4.22)

whereas the slow dynamis of r restrited to the fast-equilibrium man-

ifold is ruled by

ṙ = r(1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

− r(1− r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ).

The equilibrium solutions for r are r = 0 and r = 1, orresponding to
the monomorphi equilibria of model (4.1), together with the solutions



60 CHAPTER 4. THE BRANCHING BIFURCATION

r̄(ε, θ) ∈ [0, 1] of

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)−

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ) = 0.
(4.23)

The equilibrium densities n̄1(x1, x2) and n̄2(x1, x2) an then be

expressed in terms of (ε, θ) as

n̄1(ε, θ) = (1−r̄(ε, θ))sf (r̄(ε, θ), ε, θ), n̄2(ε, θ) = r̄(ε, θ)sf (r̄(ε, θ), ε, θ),
(4.24)

and an be evaluated also at ε = 0 for any given θ in the one of

oexistene, the result being of ourse θ-dependent (see Tables 4.1

and 4.2, �rst row).

The dimorphi �tness an be rewritten in terms of ε, θ, and∆x′ :=
x′ − x̄ as

λ2(ε, θ,∆x
′) :=

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+∆x′),
(4.25)

and an be Taylor expanded around (ε,∆x′) = (0, 0) at given θ. We

proeed up to third order. This involves up to third ε-derivatives of
the fast-equilibrium manifold, whereas only the �rst ε-derivative of

the slow equilibrium r̄ is involved.
The required zero- and higher-order terms of the fast-equilibrium

manifold (w.r.t. ε and mixed (r, ε)) are reported in Table 4.1, whereas

those of the slow equilibrium r̄ are in Table 4.2. They are obtained by

di�erentiating equations (4.22) and (4.23) at ε = 0 and solving for the

unknown terms (see Paragraphs 4.2.3.3 and 4.2.3.4). E.g., equation

(4.23) and its �rst derivative give trivial identities at ε = 0, while the
seond derivative an be solved for the zero-order term r̄(0, θ). Note
in partiular the expression of r̄(0, θ), whih goes from zero to one

when θ moves from θT2(0) to θT1(0), i.e., from one extreme to the

other of the one of oexistene, passing through

1
2 when θ = 3

4 π (see

Table 4.2, �rst row, and Figure 4.2).

The derivatives s
(0,k,0)
f (r, 0, θ), k ≥ 1, haraterize the ε-perturbations

of the fast-equilibrium manifold from the zero-order solution sf (r, 0, θ) =
n̄(x̄). Note that they are polynomial expressions in r with degree

equal to the order of di�erentiation and oe�ients that are ultimately

funtions of the singular strategy x̄ and of the perturbation diretion

θ. This is due to property P4, where n1+ n2 beomes n̄(x̄) when
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ε → 0, while ni11 n
i2
2 beomes (1− r)i1ri2 n̄(x̄)i1+i2 . The mixed deriva-

tives of sf haraterize joint (ε, r)-perturbations, i.e., involving both

hanges in the shape of the manifold and movements along it. Note

that they an be simply obtained by r-di�erentiating s
(0,k,0)
f (r, 0, θ).

The derivatives r̄(k,0)(0, θ), k ≥ 1, desribe how the oexistene equi-

librium (4.24) moves from ((1− r̄(0, θ))n̄(x̄), r̄(0, θ)n̄(x̄)) along the

fast-equilibrium manifold when ε is perturbed in the diretion θ.
That the third derivative of the slow equilibrium is not needed

in the ubi ε-expansion of the dimorphi �tness is easy to note. In

fat, if the r̄ in front of sf is ε-di�erentiated three times, then no

di�erentiation is taken w.r.t. the ε in x1 and x2 (the third and fourth

arguments of the g-funtion), so at x1 = x2 = x̄ the densities n1
and n2 (at �rst and seond arguments) sum up due to property P2

and the r̄ in front of sf plays no role in (4.25). And also the third

derivative of the r̄ at �rst argument of sf does not appear, sine it

is multiplied by the r-derivative of sf that vanishes with ε, the fast-
equilibrium manifold beoming the straight segment n1+n2 = n̄(x̄)
as ε → 0 (see Table 4.1, �rst row). More involved to see is that

also the seond derivative of the slow equilibrium is not needed. The

derivative r̄(2,0)(0, θ) is, e.g., multiplied by

s
(1,1,0)
f (r, 0, θ) ḡ(1,0,0,0,0)+

−n̄
(

cos θ ḡ(1,0,1,0,0) + sin θ ḡ(1,0,0,1,0) − cos θ ḡ(0,1,1,0,0) − sin θ ḡ(0,1,0,1,0)
)

and all of the above terms are generially nonzero. However, their

sum vanishes thanks again to property P4.

Taking the results in Tables 4.1 and 4.2 into aount, exploit-

ing the properties P1�4 of Paragraph 4.2.1, and assuming generiity

(G1), the dimorphi �tness derivatives appearing in the third-order

expansion

λ2(ε, θ,∆x
′) =

λ̄2 + λ̄
(1,0,0)
2 ε+ λ̄

(0,0,1)
2 ∆x′ +

1
2 λ̄

(2,0,0)
2 ε2 + λ̄

(1,0,1)
2 ε∆x′ + 1

2 λ̄
(0,0,2)
2 (∆x′)2 +

1
6 λ̄

(3,0,0)
2 ε3 + 1

2 λ̄
(2,0,1)
2 ε2∆x′ + 1

2 λ̄
(1,0,2)
2 ε(∆x′)2 + 1

6 λ̄
(0,0,3)
2 (∆x′)3 +

O(‖(ε,∆x′)‖4) (4.26)

(overbars here denote evaluations at (ε,∆x′) = (0, 0)) result as in Ta-

ble 4.3. Rewriting the dimorphi �tness bak in terms of the resident

and mutant strategies (x̄ + ∆x1, x̄ + ∆x2, x̄ + ∆x′), ∆xi := xi − x̄,
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sf (r, 0, θ) = n̄(x̄)

s
(k,0,0)
f (r, 0, θ) = 0

s
(0,1,0)
f (r, 0, θ) =

(

(1− r) cos θ + r sin θ
)

n̄(1)(x̄)

s
(0,2,0)
f (r, 0, θ) =

(

(1− r) cos θ + r sin θ
)2
n̄(2)(x̄)− r(1−r)(cos θ−sin θ)2

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 + φ̄2,1n̄(x̄))

s
(1,1,0)
f (r, 0, θ) = (sin θ − cos θ)n̄(1)(x̄)

s
(0,3,0)
f (r, 0, θ) =

(

(1− r) cos θ + r sin θ
)3
n̄(3)(x̄)− r(1−r)(cos θ−sin θ)2

ḡ(1,0,0,0,0)

(

(

cos θ + sin θ
)

(λ̄
(0,3)
1 + φ̄3,1n̄(x̄))+

(

(1− r) cos θ + r sin θ
)

(

λ̄
(0,3)
1 + 3λ̄

(1,2)
1 + φ̄3,2n̄(x̄)

2 + φ̄3,1n̄(x̄) + 3φ̄
(0,0,1)
2,1 n̄(x̄) + 3φ̄2,1n̄

(1)(x̄) + 3φ̄
(1,0,0)
2,1 n̄(x̄)n̄(1)(x̄)+

−

3

ḡ(1,0,0,0,0)

(

(λ̄
(0,2)
1 + φ̄2,1n̄(x̄))(ḡ

(1,0,0,0,1) + ḡ(2,0,0,0,0)n̄(1)(x̄) + φ̄
(1,0,0)
1,1 n̄(x̄) + φ̄1,1)

)

)

)

s
(2,1,0)
f (r, 0, θ) = 0

s
(1,2,0)
f (r, 0, θ) = 2

(

(1− r) cos θ + r sin θ
)

(sin θ − cos θ)n̄(2)(x̄)− (1−2r)(cos θ−sin θ)2

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 + φ̄2,1n̄(x̄))

Table 4.1: ε-expansion of the fast-equilibrium manifold {sf (r, ε, θ), r ∈ [0, 1]} (see Paragraph 4.2.3.3 for omputation details).



4
.
2
.
M
E
T
H
O
D
S

6
3

r̄(0, θ) =
(cos θ+sin θ)λ̄

(0,2)
1 +2 cos θλ̄

(1,1)
1

2(cos θ−sin θ)λ̄
(1,1)
1

r̄(1,0)(0, θ) = 1

6(cos θ−sin θ)λ̄
(1,1)
1(

λ̄
(0,3)
1 + cos θ sin θλ̄

(0,3)
1 + 3 cos θ

(

(cos θ + sin θ)λ̄
(1,2)
1 + cos θλ̄

(2,1)
1

)

+ 3r̄(0, θ)2(cos θ − sin θ)2(λ̄
(2,1)
1 − φ̄

(0,0,1)
2,1 n̄(x̄))+

−3r̄(0, θ)
(

(cos θ − sin θ)
(

(cos θ + sin θ)λ̄
(1,2)
1 + 2 cos θλ̄

(2,1)
1

)

− (cos θ − sin θ)2φ̄
(0,0,1)
2,1 n̄(x̄)

)

+

−3r̄(0, θ)
(

1− r̄(0, θ)
)

(cos θ − sin θ)2 ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 + φ̄2,1n̄(x̄))

)

Table 4.2: ε-expansion of the slow equilibrium r̄(ε, θ) (see Paragraph 4.2.3.4 for omputation details).
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λ2(0, θ, 0) = 0

λ
(0,0,q)
2 (0, θ, 0) = λ̄

(0,q)
1

λ
(1,0,q)
2 (0, θ, 0) = ((1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ)λ̄

(1,q)
1

λ
(1,0,0)
2 (0, θ, 0) = 0

λ
(2,0,0)
2 (0, θ, 0) = cos θ sin θλ̄

(0,2)
1

λ
(1,0,1)
2 (0, θ, 0) = −

1
2
(cos θ + sin θ)λ̄

(0,2)
1

λ
(3,0,0)
2 (0, θ, 0) = cos θ sin θ(cos θ + sin θ)

(

λ̄
(0,3)
1 −

3
2

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

)

λ
(2,0,1)
2 (0, θ, 0) = 1

6

(

3(cos θ + sin θ)2
λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄1
(1,1) − 2(cos θ sin θ + 1)λ̄

(0,3)
1

)

λ
(1,0,2)
2 (0, θ, 0) = −

1
2
(cos θ + sin θ)

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

Table 4.3: (ε,∆x′)-expansion of the dimorphi �tness (see Paragraph 4.2.3.2

for omputation details).

i = 1, 2, i.e., realling the de�nition (4.13) of the polar oordinates

(ε, θ), we then ome to following third-order approximation:

λ̃2(∆x1,∆x2,∆x
′) :=

(

1
2 λ̄

(0,2)
1 + 1

6 λ̄
(0,3)
1 (∆x1+∆x2 +∆x′)− 1

4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2)

)

(∆x′−∆x1)(∆x
′−∆x2). (4.27)

Note that the right-hand side of equation (4.27) is an expansion taken

at given θ ∈ [θT2(0), θT1(0)] around (ε,∆x′) = (0, 0) (the higher-

order terms are indeed O(‖(ε,∆x′)‖4)), and not an expansion w.r.t.

(x1, x2, x
′) around (x̄, x̄, x̄). It an be nevertheless used as an ap-

proximation of the dimorphi �tness (4.8) for (x1, x2) in the resident-

mutant oexistene region loally to (x̄, x̄) and x′ lose to x̄.

Interestingly, the seond-order terms in (4.27) oinide with those

obtained by Geritz et al. [1997, 1998℄ assuming a smooth dimorphi

�tness (see equation A10 in [Geritz et al., 1998℄ Appendix 1; the zero-

and �rst-order terms vanish at the singular point (∆x1,∆x2,∆x
′) =

(0, 0, 0)). Thus, the (seond-order) branhing ondition (4.9) of Geritz
et al. [1997, 1998℄ is orret, though we reall that assuming smooth-

ness implies senseless onstraints on the monomorphi �tness deriva-

tives (starting with the seond-order, see Paragraph 4.2.3.1).
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To illustrate our approah at work, the reader an go to Para-

graph 4.2.3.2, where we ompute the terms involving up to seond

derivatives of λ2(ε, θ,∆x
′) step by step, that allow to reover the

lassial results of Geritz et al. [1997, 1998℄. All other omputations

an be heked in Derole et al. [2014℄.

4.2.3.1 The nonsmoothness of the dimorphi invasion �t-

ness λ2(∆x1,∆x2,∆x
′)

In this paragraph we show that assuming the dimorphi �tness λ2(x1, x2, x
′)

smooth at (x̄, x̄, x̄) brings to the nongeneri onstraint

λ̄
(2,0)
1 = λ̄

(0,2)
1 (4.28)

between the seond derivatives of the monomorphi �tness λ1(x, x
′)

at (x̄, x̄). And analogous onstraints of the form

∂k

∂xk
λ
(0,1)
1 (x, x) = 0, k ≥ 2, (4.29)

are obtained at any order, e.g.

λ̄
(2,1)
1 + 2 λ̄

(1,2)
1 + λ̄

(0,3)
1 = 0 for k = 2, (4.30a)

λ̄
(3,1)
1 + 3 λ̄

(2,2)
1 + 3 λ̄

(1,3)
1 + λ̄

(0,4)
1 = 0 for k = 3 (4.30b)

(see Derole et al. [2014℄; note that, taking equation (4.11b) into a-

ount, also (4.28) is of the form (4.29) for k = 1). The smoothness

of the dimorphi �tness would therefore imply that the seletion gra-

dient λ
(0,1)
1 (x, x) vanishes at x = x̄ together with all its derivatives,

whereas all suh derivatives are generially expeted to be nonzero

(though some of them might vanish in spei� models due to symme-

tries in the trait dependenies).

To show equation (4.28) we exploit the onsisteny properties C1�

3 of setion4.2.1 and, in partiular, their derivatives w.r.t. (x, x′) (C1)
(x1, x2, x

′) (C2) (x1, x2) (C3) at x = x1 = x2 = x′ = x̄, that an be

taken under smoothness. Spei�ally, C1 and its seond x-derivative
give

C1a: λ̄
(0,0,2)
2 = λ̄

(0,2)
1 ,

C1b: λ̄
(2,0,0)
2 + 2 λ̄

(1,1,0)
2 + λ̄

(0,2,0)
2 = λ̄

(2,0)
1 ,

the seond x1-derivative of C2 gives
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C2a: λ̄
(2,0,0)
2 = λ̄

(0,2,0)
2 ,

and, in C3, the mixed (x1, x2)- and the seond x2-derivatives of

λ2(x1, x2, x1) = 0 give

C3a: λ̄
(1,1,0)
2 + λ̄

(0,1,1)
2 = 0,

C3b: λ̄
(0,2,0)
2 = 0,

whereas the seond x2-derivative of λ2(x1, x2, x2) = 0 gives

C3: λ̄
(0,2,0)
2 + 2 λ̄

(0,1,1)
2 + λ̄

(0,0,2)
2 = 0.

From C1b-C2a-C3b, we therefore onlude

λ̄
(1,1,0)
2 = 1

2 λ̄
(2,0)
1 , (4.31)

whereas substituting λ̄
(0,1,1)
2 from C3 into C3a and then applying

C1a-C3b, we onlude

λ̄
(1,1,0)
2 = 1

2 λ̄
(0,2)
1 . (4.32)

Equation (4.28) evidently follows from (4.31) and (4.32).

4.2.3.2 Derivatives of the dimorphi invasion �tness λ2(ε, θ,∆x
′)

In this paragraph we make use of the onsisteny property C1, linking

the dimorphi to the monomorphi �tness, and of properties P1�P4

of setion4.2.1 to ompute step by step the expansion (4.26) up to

seond order.

We start by noting that the x′-derivatives of C1 imply

λ̄
(0,0,q)
2 = λ̄

(0,q)
1 , q ≥ 0, (4.33)

and by realling that over-bars evaluations are taken at (ε,∆x′) =
(0, 0) for λ2(ε, θ,∆x

′) and at (x̄, x̄) for λ1(x, x
′). The zero-order term

λ̄2 and the �rst-order term λ̄
(0,0,1)
2 are therefore null by the neutrality

and singularity onditions (4.10) and (4.5), respetively.

More involved is the omputation of the other �rst-order term,

i.e., showing λ̄
(1,0,0)
2 = 0 (see Table4.3). Computing λ̄

(1,0,q)
2 , q ≥ 0,

from the λ2 de�nition (4.25), we obtain

λ̄
(1,0,q)
2 =

[

g(1,0,0,0,q)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

g(0,1,0,0,q)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

g(0,0,1,0,q) cos θ + g(0,0,0,1,q) sin θ
]∣

∣

∣

ε=0,∆x′=0
, (4.34)
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(where funtions' arguments, here omitted, are as in (4.25)). The

right-hand side of (4.34) simpli�es by taking into aount that

g(1,0,0,0,q)
∣

∣

ε=0,∆x′=0
= g(0,1,0,0,q)

∣

∣

ε=0,∆x′=0
= ḡ(1,0,0,0,q) (4.35)

by P2 and that

g(0,0,1,0,q)
∣

∣

ε=0,∆x′=0
= φ̄

(0,0,q)
1,1 (1− r̄(0, θ))sf (r̄(0, θ), 0, θ), (4.36a)

g(0,0,0,1,q)
∣

∣

ε=0,∆x′=0
= φ̄

(0,0,q)
1,1 r̄(0, θ)sf (r̄(0, θ), 0, θ) (4.36b)

by P4 and P3,4a, respetively. The result is

λ̄
(1,0,q)
2 = ḡ(1,0,0,0,q)

(

s
(1,0,0)
f (r̄(0, θ), 0, θ) r̄(1,0)(0, θ)+s

(0,1,0)
f (r̄(0, θ), 0, θ)

)

+

φ̄
(0,0,q)
1,1 sf (r̄(0, θ), 0, θ)

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

. (4.37)

Substituting in (4.37) the expressions in Table4.1 for the fast-equilibrium

manifold sf (r̄(0, θ), 0, θ) and for the derivatives s
(1,0,0)
f (r̄(0, θ), 0, θ)

and s
(0,1,0)
f (r̄(0, θ), 0, θ) (omputed below in setion4.2.3.3), we ob-

tain

λ̄
(1,0,q)
2 =

(

ḡ(1,0,0,0,q)n̄(1) + φ̄
(0,0,q)
1,1 n̄

)(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

,

that further simpli�es to

λ̄
(1,0,q)
2 =

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

λ̄
(1,q)
1 (4.38)

by taking equation (4.12) into aount. With q = 0, neutrality (4.11a)

and singularity (4.5) yield λ̄
(1,0,0)
2 = 0, whereas substituting the ex-

pression for r̄(0, θ) from Table4.2 (omputed below in setion4.2.3.3)

into (4.38) with q =1, we obtain

λ̄
(1,0,1)
2 = −1

2 (cos θ + sin θ)λ̄
(0,2)
1 ,

as in Table4.3.

We �nally need to ompute λ̄
(2,0,0)
2 . Again from the λ2 de�nition
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(4.25), we have

λ̄
(2,0,0)
2 =

[(

g(2,0,0,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(1,1,0,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+g(1,0,1,0,0) cos θ+g(1,0,0,1,0) sin θ

)

×
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(1,0,0,0,0)
(

−r̄(2,0)sf−2r̄(1,0)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

)

+

(1−r̄)
((

s
(2,0,0)
f r̄(1,0)+2s

(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f r̄(2,0)+s

(0,2,0)
f

)

)

+
(

g(1,1,0,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,2,0,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+g(0,1,1,0,0) cos θ+g(0,1,0,1,0) sin θ

)

×
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,1,0,0,0)
(

r̄(2,0)sf+2r̄(1,0)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

)

+

r̄
((

s
(2,0,0)
f r̄(1,0)+2s

(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f r̄(2,0)+s

(0,2,0)
f

)

)

+

cos θ

(

g(1,0,1,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,1,1,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+g(0,0,2,0,0) cos θ+g(0,0,1,1,0) sin θ

)

+

sin θ

(

g(1,0,0,1,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,1,0,1,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,0,1,1,0) cos θ+g(0,0,0,2,0) sin θ

)]∣

∣

∣

ε=0,∆x′=0

. (4.39)

Applying P2, i.e., taking (4.35) and

g(2,0,0,0,0)
∣

∣

ε=0,∆x′=0
=g(1,1,0,0,0)

∣

∣

ε=0,∆x′=0
=g(0,2,0,0,0)

∣

∣

ε=0,∆x′=0
=ḡ(2,0,0,0,0)

into aount, the right-hand side of (4.39) simpli�es to

λ̄
(2,0,0)
2 =

[

ḡ(2,0,0,0,0)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

)2
+

ḡ(1,0,0,0,0)
((

s
(2,0,0)
f r̄(1,0)+2s

(1,1,0)
f

)

r̄(1,0)+s
(1,0,0)
f r̄(2,0)+s

(0,2,0)
f

)

+
(

g(1,0,1,0,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(0,1,1,0,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

)

2 cos θ+
(

g(0,1,0,1,0)
(

r̄(1,0)sf+r̄
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

+

g(1,0,0,1,0)
(

−r̄(1,0)sf+(1−r̄)
(

s
(1,0,0)
f r̄(1,0)+s

(0,1,0)
f

))

)

2 sin θ+

g(0,0,2,0,0) cos2θ+2g(0,0,1,1,0) sin θ cos θ+g(0,0,0,2,0) sin2θ

]
∣

∣

∣

ε=0,∆x′=0

. (4.40)
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Applying P4, P3,4a, and P1�4, i.e.,

g(1,0,1,0,0)
∣

∣

ε=0,∆x′=0
=φ̄1,1+φ̄

(1,0,0)
1,1 (1−r̄(0,θ))sf (r̄(0,θ),0,θ),

g(0,1,1,0,0)
∣

∣

ε=0,∆x′=0
=φ̄

(1,0,0)
1,1 (1−r̄(0,θ))sf (r̄(0,θ),0,θ),

g(0,1,0,1,0)
∣

∣

ε=0,∆x′=0
=φ̄1,1+φ̄

(1,0,0)
1,1 r̄(0,θ)sf (r̄(0,θ),0,θ),

g(1,0,0,1,0)
∣

∣

ε=0,∆x′=0
=φ̄

(1,0,0)
1,1 r̄(0,θ)sf (r̄(0,θ),0,θ),

g(0,0,2,0,0)
∣

∣

ε=0,∆x′=0
=φ̄2,1(1−r̄(0,θ))sf (r̄(0,θ),0,θ)+φ̄2,2(1−r̄(0,θ))2sf (r̄(0,θ),0,θ)2,

g(0,0,1,1,0)
∣

∣

ε=0,∆x′=0
=φ̄2,2(1−r̄(0,θ)) r̄(0,θ)sf (r̄(0,θ),0,θ)2,

g(0,0,0,2,0)
∣

∣

ε=0,∆x′=0
=φ̄2,1 r̄(0,θ)sf (r̄(0,θ),0,θ)+φ̄2,2 r̄(0,θ)

2sf (r̄(0,θ),0,θ)
2,

the right-hand side of (4.40) beomes

λ̄
(2,0,0)
2 =ḡ(2,0,0,0,0)

(

s
(1,0,0)
f (r̄(0,θ),0,θ) r̄(1,0)(0,θ)+s

(0,1,0)
f (r̄(0,θ),0,θ)

)2
+ ḡ(1,0,0,0,0)×

((

s
(2,0,0)
f (r̄(0,θ),0,θ) r̄(1,0)(0,θ)+2s

(1,1,0)
f (r̄(0,θ),0,θ)

)

r̄(1,0)(0,θ)+

s
(1,0,0)
f (r̄(0,θ),0,θ) r̄(2,0)(0,θ)+s

(0,2,0)
f (r̄(0,θ),0,θ)

)

+

2
(

φ̄1,1+φ̄
(1,0,0)
1,1 sf (r̄(0,θ),0,θ)

)(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)

×
(

s
(1,0,0)
f (r̄(0,θ),0,θ) r̄(1,0)(0,θ)+s

(0,1,0)
f (r̄(0,θ),0,θ)

)

+

2φ̄1,1sf (r̄(0,θ),0,θ)r̄
(1,0)(0,θ)(sin θ−cos θ)+

φ̄2,1sf (r̄(0,θ),0,θ)
(

(1−r̄(0,θ)) cos2θ+r̄(0,θ) sin2θ
)

+

φ̄2,2sf (r̄(0,θ),0,θ)
2
(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)2
. (4.41)

Substituting in (4.41) the fast-equilibrium manifold sf (r̄(0, θ), 0, θ)
and its derivatives from Table4.1, we obtain

λ̄
(2,0,0)
2 =
(

ḡ(2,0,0,0,0)(n̄(1))2+2
(

φ̄1,1+φ̄
(1,0,0)
1,1 n̄

)

n̄(1)+ḡ(1,0,0,0,0)n̄(2)+φ̄2,1n̄+φ̄2,2n̄2

)

×
(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)2

+2 r̄(1,0)(0,θ)(sin θ−cos θ)
(

ḡ(1,0,0,0,0)n̄(1)+φ̄1,1n̄
)

+

−λ̄(0,2)1 r̄(0,θ)(1−r̄(0,θ))(cos θ−sin θ)2, (4.42)

that further simpli�es taking (4.12) into aount and noting that, from

the de�nition (4.2) of the resident equilibrium and P1,4, it results

n̄(1) = −
φ̄1,1n̄+ ḡ(0,0,0,0,1)

ḡ(1,0,0,0,0)
(4.5,4.12)

= −
φ̄1,1n̄

ḡ(1,0,0,0,0)
. (4.43)
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Thanks to (4.43) we lose the r̄(1,0)(0, θ)-term in (4.42) and obtain

λ̄
(2,0,0)
2 =
(

ḡ(2,0,0,0,0)(n̄(1))2+2
(

φ̄1,1+φ̄
(1,0,0)
1,1 n̄

)

n̄(1)+ḡ(1,0,0,0,0)n̄(2)+φ̄2,1n̄+φ̄2,2n̄2

)

×
(

(1−r̄(0,θ)) cos θ+r̄(0,θ) sin θ
)2

−λ̄(0,2)1 r̄(0,θ)(1−r̄(0,θ))(cos θ−sin θ)2,

Substituting the expression for r̄(0, θ) from Table4.2, we �nally obtain

the expression in Table4.3, i.e.,

λ̄
(2,0,0)
2 = cos θ sin θ λ̄

(0,2)
1 .

4.2.3.3 Derivatives of the fast-equilibrium manifold

The derivatives w.r.t. (r, ε) of the fast-equilibrium manifold sf (r, ε, θ)
are obtained by di�erentiating the de�nition (4.22) and by applying

property P1�P4. For notation onveniene, we omit funtions' argu-

ments and denote by g(1) and g(2) the evaluations

g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

and

g((1− r)sf (r, ε, θ), rsf (r, ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

appearing in the de�nition (4.22) (and di�ering only in the last argu-

ment equal to x1 and x2, respetively).
First note that the evaluation at ε = 0 of equation (4.22) and P2

give

g(sf (r, 0, θ), 0, x̄, x̄, x̄) = 0, (4.44)

that ompared with the de�nition (4.2) of the resident equilibrium

gives the zero-order term sf (r, 0, θ) = n̄(x̄) in Table4.1.

The r-derivative of equation (4.22), i.e.,

[

(1−r)
(

g(1,0,0,0,0)(1)
(

−sf+(1−r)s(1,0,0)f

)

+g(0,1,0,0,0)(1)
(

sf+rs
(1,0,0)
f

)

)

−g(1)+

r

(

g(1,0,0,0,0)(2)
(

−sf+(1−r)s(1,0,0)f

)

+g(0,1,0,0,0)(2)
(

sf+rs
(1,0,0)
f

)

)

+g(2)

]
∣

∣

∣

ε=0

=0,

simpli�es to

ḡ(1,0,0,0,0)s
(1,0,0)
f (r, 0, θ) = 0

using P2 (i.e., taking (4.35) into aount) and noting that

g(1)|ε=0 = g(2)|ε=0 = g(sf (r, 0, θ), 0, x̄, x̄, x̄) = 0
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by equation (4.44). Being ḡ(1,0,0,0,0) < 0 by the hyperboli stability of

the resident equilibrium n̄(x̄), we onlude s
(1,0,0)
f (r, 0, θ) = 0 (as in

Table4.1).

The ε-derivative of equation (4.22), i.e.,

[

(1− r)
(

g(1,0,0,0,0)(1)(1 − r)s
(0,1,0)
f + g(0,1,0,0,0)(1)rs

(0,1,0)
f +

g(0,0,1,0,0)(1) cos θ + g(0,0,0,1,0)(1) sin θ + g(0,0,0,0,1)(1) cos θ
)

+

r
(

g(1,0,0,0,0)(2)(1 − r)s
(0,1,0)
f + g(0,1,0,0,0)(2)rs

(0,1,0)
f +

g(0,0,1,0,0)(2) cos θ + g(0,0,0,1,0) sin θ + g(0,0,0,0,1)(2) sin θ
)]
∣

∣

∣

ε=0
= 0,

simpli�es to

ḡ(1,0,0,0,0)s
(0,1,0)
f (r, 0, θ)+

(

φ̄1,1n̄+ ḡ
(0,0,0,0,1)

)(

(1−r) cos θ+r sin θ
)

= 0

using P2 (i.e., taking (4.35) into aount), P4, and P3,4. Then, using

equation (4.43), we obtain

s
(0,1,0)
f (r, 0, θ) =

(

(1− r) cos θ + r sin θ
)

n̄(1)

(as in Table4.1).

The omputation of the derivatives s
(1,1,0)
f (r, 0, θ) and s

(0,2,0)
f (r, 0, θ)

that appear in equation (4.41) an be found in Derole et al. [2014℄.

4.2.3.4 Derivatives of the slow equilibrium

The derivatives w.r.t. ε of the slow equilibrium r(ε, θ) are obtained

by ε-di�erentiating the de�nition (4.23) and by applying property

P1�P4. For notation onveniene, we omit funtions' arguments and

denote by g(1) and g(2) the evaluations

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

and

g((1− r̄(ε, θ))sf (r̄(ε, θ), ε, θ), r̄(ε, θ)sf (r̄(ε, θ), ε, θ), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ)

appearing in the de�nition (4.23) (and di�ering only in the last argu-

ment equal to x1 and x2, respetively).
The ε-derivative of (4.23) simply gives

g(0,0,0,0,1)(2)

∣

∣

∣

ε=0

sin θ−g(0,0,0,0,1)(1)
∣

∣

∣

ε=0

cos θ
P2
= ḡ(0,0,0,0,1)(sin θ−cos θ)=0, (4.45)
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as all derivatives not involving the last argument anel in the dif-

ferene g(2) − g(1). equation (4.45) is however an identity, being

ḡ(0,0,0,0,1) = λ̄
(0,1)
1 = 0 (see equation (4.12) and the singularity on-

dition (4.5)).

We therefore need to take the seond ε-derivative of (4.23), i.e.,

[

sin θ
(

2g(1,0,0,0,1)(2)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,1,0,0,1)(2)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,0,1,0,1)(2) cos θ + 2g(0,0,0,1,1)(2) sin θ + g(0,0,0,0,2)(2) sin θ
)

+

− cos θ
(

2g(1,0,0,0,1)(1)
(

− r̄(1,0)sf + (1− r̄)
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,1,0,0,1)(1)
(

r̄(1,0)sf + r̄
(

s
(1,0,0)
f r̄(1,0) + s

(0,1,0)
f

))

+

2g(0,0,1,0,1)(1) cos θ+2g(0,0,0,1,1)(1) sin θ+g(0,0,0,0,2)(1) cos θ
)]
∣

∣

∣

ε=0
= 0,

that simpli�es into

2 ḡ(1,0,0,0,1)
(

s
(1,0,0)
f (r̄(0, θ), 0, θ) r̄(1,0)(0, θ) + s

(0,1,0)
f (r̄(0, θ), 0, θ)

)

+

2 φ̄
(0,0,1)
1,1 sf (r̄(0, θ), 0, θ)

(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

+

ḡ(0,0,0,0,2)(sin θ + cos θ) = 0 (4.46)

using P2, P4, and P3,4 (i.e., taking (4.35) and (4.36) into aount)

and removing the fator (sin θ−cos θ) 6= 0 (see equation (4.19b)). Sub-
stituting in (4.46) the expressions in Table4.1 for the fast-equilibrium

manifold sf (r̄(0, θ), 0, θ) and for the derivatives s
(1,0,0)
f (r̄(0, θ), 0, θ)

and s
(0,1,0)
f (r̄(0, θ), 0, θ) (omputed in setion4.2.3.3), we obtain

2
(

ḡ(1,0,0,0,1)n̄(1) + φ̄
(0,0,1)
1,1 n̄

)(

(1− r̄(0, θ)) cos θ + r̄(0, θ) sin θ
)

+

ḡ(0,0,0,0,2)(sin θ + cos θ) = 0, (4.47)

from whih, taking equations (4.12) into aount, we onlude

r̄(0, θ) =
(cos θ + sin θ)λ̄

(0,2)
1 + 2cos θλ̄

(1,1)
1

2(cos θ − sin θ)λ̄(1,1)

(as in Table4.2).

The omputation of the �rst derivative r(1,0)(0, θ), needed for the

third-order in the expansion (4.26), an be found in Derole et al.

[2014℄.
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4.2.3.5 The ase of polymorphi and/or multispeies oevo-

lution

We allow in this appendix the resident and mutant populations 1 and
2 to interat and oevolve with P other populations of the same or

di�erent speies, with densities paked in vetor N(t) ∈ R
P
and or-

responding strategies (�nitely di�erent from x1 and x2 in the ase of

onspei�s) paked in vetor X (multiple, mutationally independent,

traits per population are also allowed Derole and Rinaldi [2008℄).

The resident-mutant model (4.1) then beomes

ṅ1 = n1 g(n1, n2, N, x1, x2,X, x1), (4.48a)

ṅ2 = n2 g(n1, n2, N, x1, x2,X, x2), (4.48b)

Ṅ = F (n1, n2, N, x1, x2,X), (4.48)

where the funtion vetor F ollets the population growth rates of

the P other populations (eah omponent given by the density Np

multiplied by the per-apita growth rate fp(n1, n2, N, x1, x2,X) of

population p, p = 1, . . . , P ) and g(n1, n2, N, x1, x2,X, x
′) is the new

g-funtion. Properties P1�P4 easily extend to the new g and also

apply to vetor F . E.g., property P1 de�nes the funtions

g1(n1, N, x1,X, x
′) := g(n1, 0, N, x1, x2,X, x

′),

F1(n1, N, x1,X) := F (n1, 0, N, x1, x2,X),

and P4 reads

g(0,0,0,d1,0,0,0)(n1,n2,N,x,x,X,x
′)=

∑d1
i1=1 φd1,i1 (n1+n2,N,x,X,x

′)n
i1
1 ,

g(0,0,0,d1,d2,0,0)(n1,n2,N,x,x,X,x
′)=

∑d1
i1=1

∑d2
i2=1 φd1,d2,i1,i2 (n1+n2,N,x,X,x

′)n
i1
1 n

i2
2 ,

F (0,0,0,d1,0,0)(n1,n2,N,x,x,X)=
∑d1

i1=1 ψd1,i1
(n1+n2,N,x,X)n

i1
1 ,

F (0,0,0,d1,d2,0)(n1,n2,N,x,x,X)=
∑d1

i1=1

∑d2
i2=1 ψd1,d2,i1,i2

(n1+n2,N,x,X)n
i1
1 n

i2
2 ,

for suitable new funtions φd1,i1 and φd1,d2,i1,i2 and suitable funtion

vetors ψd1,i1 and ψd1,d2,i1,i2 (with relations ψ1,1,1,1 = ψ2,2, ψ2,1,1,1 =
ψ1,2,1,1 =

1
3 ψ3,2, ψ2,1,2,1 = ψ1,2,1,2 = ψ3,3, analogous to P1�4), d1, d2 ≥

1 [Derole, 2014℄.

We assume that for all values of the strategies x1 and X that we

onsider, population 1 stationarily oexists with the other P inter-

ating populations at a stritly positive and (hyperbolially) stable

equilibrium of model (4.48a,) with n2 = 0. The resident equilib-

rium densities, denoted with funtions n̄(x1,X) and N̄(x1,X), are
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impliitly de�ned by

g1(n̄(x1,X), N̄ (x1,X), x1,X, x1) = 0,

F1(n̄(x1,X), N̄ (x1,X), x1,X) = 0.

The hyperboli stability of the resident equilibrium is given by the

negative real part of the eigenvalues of the Jaobian matrix

J(x1,X) =

[

ng
(1,0,0,0,0)
1 ng

(0,1,0,0,0)
1

F
(1,0,0,0)
1 F

(0,1,0,0)
1

]∣

∣

∣

∣

n=n̄(x1,X),

N=N̄(x1,X)

and guarantees that also population 2 is able to oexist with the

other P interating populations at a stritly positive (and hyper-

bolially stable) equilibrium (n̄(x2,X), N̄ (x2,X)) of model (4.48b,

) with n1 = 0 and x1 ≃ x2. Thus, the resident-mutant model (4.48)

admits the two monomorphi equilibria (n̄(x1,X), 0, N̄ (x1,X)) and

(0, n̄(x2,X), N̄ (x2,X)) for all x1, x2, and X that we onsider.

The invasion �tness for a mutant strategy x′ ≃ x is given by

λ1(x,X, x
′) := g1(n̄(x,X), N̄ (x,X), x,X, x′).

Analogously, to haraterize the joint evolution of strategies (x,X),
one has to write the invasion �tnesses for the mutants of eah of the

resident strategies in X, that are eah based on the orresponding

resident-mutant model Derole and Rinaldi [2008℄. The result is the

AD anonial equation

ẋ = 1
2 µ(x)σ(x)

2 n̄(x,X)λ
(0,0,1)
1 (x,X, x), (4.49a)

Ẋ = · · · (4.49b)

Here we do not expliitly onsider the evolution of the strategies in

X, but rather treat X as a vetor of onstant parameters. We assume

that (x̄, X̄) is a stable equilibrium of the anonial equation (4.49) (a

onvergene-stable singular oalition of strategies, in the AD jargon),

i.e., λ̄
(0,0,1)
1 = 0 holds together with similar relations for the seletion

gradients assoiated to the strategies in X (over-bars here denote

evaluations at the singular oalition). For any given X su�iently

lose to X̄ , we de�ne the funtion x̄(X) as the singular value for the
strategy x at the given X, i.e.,

λ
(0,0,1)
1 (x̄(X),X, x̄(X)) = 0, x̄(X̄) = x̄, (4.50)
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as if the strategies in X were not subjet to the mutation-seletion

proess. Note that x̄(X) is uniquely de�ned by (4.50) loally to X =
X̄ (by the impliit funtion theorem) under

λ̄
(1,0,1)
1 + λ̄

(0,0,2)
1 6= 0, (4.51)

whih is granted by the resident-mutant oexistene ondition (G1),

now rewritten as

λ̄
(1,0,1)
1 < 0, (C.G1)

and by the proximity to the branhing bifuration at whih λ̄
(0,0,2)
1 =

0. The quantity in (4.51) is hene negative and exludes that a saddle-
node bifuration between two solutions for x̄(X) ould our for X
lose to X̄ (see also the omment below equation (4.18)).

Then, our analysis in Sets. 4.2.2 and 4.2.3 goes through (with the

ompliay of the P extra oexisting populations, see Derole et al.

[2014℄ for the details). Spei�ally, under (C.G1), a loally onial

resident-mutant oexistene region is rooted at (x̄(X), x̄(X)) in the

strategy plane (x1, x2) and, for eah point of the region, the oexis-

tene equilibrium densities n̄1(x1, x2,X), n̄2(x1, x2,X), and N̄(x1, x2,X)
are positive and de�ned by

g(n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X, x1) = 0,

g(n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X, x2) = 0,

F (n̄1(x1, x2,X), n̄2(x1, x2,X), N̄ (x1, x2,X), x1, x2,X) = 0.

The oexistene region boundaries an be approximated as in setion

4.2.2, where now

x1 := x̄(X) + ε cos θ and x2 := x̄(X) + ε sin θ. (4.52)

The tangent diretion and the urvature of the boundaries at (x̄(X), x̄(X))
are given by formulas that are formally analogous to those in equa-

tions (4.17), (4.20), and (4.21), with the di�erene that the deriva-

tives of λ1(x,X, x
′) are now evaluated at (x̄(X),X, x̄(X)) and not at

(x̄, X̄, x̄). For this, we use over-hats (evaluation at the singular strat-

egy x̄(X)) instead of over-bars (evaluation at the singular oalition

(x̄, X̄)):

tan θT0(0) =
1

tan θT1(0)
= −

2λ̂(1,0,1) + λ̂(0,0,2)

λ̂(0,0,2)
(4.11b)

=
λ̂(2,0,0)

λ̂(0,0,2)



76 CHAPTER 4. THE BRANCHING BIFURCATION

and

θ
(1)
T0 (0)=θ

(1)
T1 (0):=

−
4
(

λ̂(1,0,1)
)2
λ̂(0,0,3)−2λ̂(1,0,1)λ̂(0,0,2)(3λ̂(1,0,2)−λ̂(0,0,3))+

(

λ̂(0,0,2)
)2

(3λ̂(2,0,1)+λ̂(0,0,3))

6
√
2

(

2
(

λ̂(1,0,1)
)2

+2λ̂(1,0,1)λ̂(0,0,2)+
(

λ̂(0,0,2)
)2

)3/2

(reall that θTi∗(ε) = θTi∗(0) + θ
(1)
Ti∗(0)ε, i

∗ := 2− i, i = 1, 2, approx-
imates for small |ε| the boundary i on whih ni(x1, x2,X) = 0).

For (x1, x2) in the resident-mutant oexistene region and X ≃ X̄ ,

the dimorphi �tness reads:

λ2(x1,x2,X,x′):=g(n̄1(x1,x2,X),n̄2(x1,x2,X),N̄(x1,x2,X),x1,x2,X,x′)

(we keep using �monomorphi� and �dimorphi� to denote the situa-

tions before and after resident-mutant oexistene, though evolution

ould be polymorphi due to the presene of other onspei�s). Anal-

ogously to what done in setion4.2.3, it an be rewritten in terms of

(ε, θ,∆X,∆x′), with ∆X := X − X̄ and ∆x′ := x′ − x̄(X), as

λ2(ε, θ,∆X,∆x
′) :=

g((1− r̄(ε, θ,X))sf (r̄(ε, θ,X), ε, θ,X), r̄(ε, θ,X)sf (r̄(ε, θ,X), ε, θ,X), Nf (r̄(ε, θ,X), ε, θ, X),

x̄(X)+ ε cos θ, x̄(X)+ ε sin θ,X, x̄(X)+ ∆x′), (4.53)

where {sf (r, ε, θ,X), Nf (r, ε, θ,X), r ∈ [0, 1]} is the fast-equilibrium

manifold of model (4.48) at whih s := n1 + n2 and N onverge at

onstant r, de�ned by

0=ṅ1+ṅ2

=(1−r)g((1− r)sf (r, ε, θ), rsf (r, ε, θ), Nf (r, ε, θ, X), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε cos θ)

+ rg((1− r)sf (r, ε, θ), rsf (r, ε, θ), Nf (r, ε, θ,X), x̄+ ε cos θ, x̄+ ε sin θ, x̄+ ε sin θ),

0=Ṅ=F ((1− r)sf (r, ε, θ), rsf (r, ε, θ), Nf (r, ε, θ, X), x̄+ ε cos θ, x̄+ ε sin θ),

and r̄(ε, θ,X) is the equilibrium of the slow variable r (see Derole

et al. [2014℄).

The right-hand side of equation (4.53) an be Taylor expanded

around (ε,∆X,∆x′) = (0, 0, 0) at given θ. However, we exploit again
the parametri de�nition of the singular strategy x̄(X) in (4.50) and

expand equation (4.53) w.r.t. (ε,∆x′) around (0, 0) at given (X, θ).
Then, the analysis of setion4.2.3 applies, so we an write (bak in the
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variables ∆x1 := x1− x̄(X) = ε cos θ and ∆x2 := x2− x̄(X) = ε sin θ,
see (4.52))

λ2(ε, θ,∆X,∆x
′) = λ̃2(∆x1,∆x2,∆X,∆x

′) +O(‖(ε,∆x′)‖4),

with

λ̃2(∆x1,∆x2,∆X,∆x
′) :=

(

1
2 λ̂

(0,0,2)
1 +1

6 λ̂
(0,0,3)
1 (∆x1+∆x2+∆x′)−1

4

λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)

)

(∆x′−∆x1)(∆x
′−∆x2), (4.54)

formally obtained from equation (4.27) replaing the over-bar evalua-

tions with over-hat ones (in Derole et al. [2014℄ we have heked that

the third-order ∆X-expansion of (4.54) at ∆X = 0 oinides with

the third-order expansion of equation (4.53) around (ε,∆X,∆x′) =
(0, 0, 0)). Note the new de�nitions of variables ∆x1 and ∆x2. They

respetively measure the horizontal and vertial deviations of x1 and
x2 from the singular point (x̄(X), x̄(X)) in the strategy plane (x1, x2).
A hange in ∆X at onstant (∆x1,∆x2) (to be seen in the right-hand

side of (4.54) as a hange in the over-hat evaluations of λ1) hene im-

plies a hange in (x1, x2).

Under

λ̄
(0,0,3)
1 6= 0, (C.G2)

the two anonial models presented in setion4.3, and their unfolding

as λ̄
(0,0,2)
1 moves aross zero, are also formally valid for any X su�-

iently lose to X̄ , provided over-bars are replaed with over-hats and

x̄ in Figs. 3�5 is interpreted as x̄(X). Note, in partiular, that the en-

tral panel in the �gures ours when λ̂
(0,0,2)
1 = 0 and the disriminant

between the top and bottom panels is λ̂
(0,0,3)
1 ≷ 0.

We are now ready to take into aount that the strategies in X
are oevolving with x aording to the anonial equation (4.49) in

the monomorphi phase, and with x1 and x2 aording to the normal
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form

ẋ1 =

(

λ̂
(1,0,1)
1 ∆x2 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

)

(

1
2 λ̂

(0,0,2)
1 + 1

6 λ̂
(0,0,3)
1 (2∆x1+∆x2)−

1
4
λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)

)

ẋ2 =

(

λ̂
(1,0,1)
1 ∆x1 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

)

(

1
2 λ̂

(0,0,2)
1 + 1

6 λ̂
(0,0,3)
1 (∆x1+2∆x2)−

1
4
λ̂
(0,0,2)
1 λ̂

(1,0,2)
1

λ̂
(1,0,1)
1

(∆x1+∆x2)

)

Ẋ = · · ·

(see equations (4.60), (4.61), (4.63)) in the dimorphi phase.

If λ̄
(0,0,2)
1 < 0 and X is initially su�iently lose to X̄ , the situa-

tion is that of the left panels in Figs. 3�5, so the singular oalition is a

terminal point w.r.t. strategy x (possible branhing in the strategies

in X an be similarly disussed, simply separately fousing on eah

omponent of X as �the small x�). Note that if X is not su�iently

lose to X̄ , it might be that λ̄
(0,0,2)
1 < 0 and λ̂

(0,0,2)
1 > 0, so the right

panels apply. An inipient branhing is therefore possible in strategy

x, but the evolution of X is muh faster (X being far from equilib-

rium) and turns the situation to the left panels before branhing ould

atually develop (thanks to the assumed onvergene stability of the

singular oalition).

A similar senario of missed branhing Kisdi [1999℄ (see also Para-

graph 5.2.3.2 and Landi et al. [2013℄) ours when point (x1(t), x2(t)),
moving in the strategy plane in aordane with the anonial equa-

tion (4.55) along an inipient branhing, hits the boundaries of the

resident-mutant oexistene region, whih are moving themselves along

with the strategies in X. This is however (generially) not possible

if λ̄
(0,0,2)
1 > 0 with X(0) su�iently lose to X̄. In fat, look at the

right panels in Figs. 3�5 and onsider an initial ondition for the in-

ipient branhing that is above the diagonal and on the anti-diagonal

∆x1+ ∆x2 = 0 (i.e., ∆x1(0) = −ε, ∆x2(0) = ε, ε > 0 small). From

equations (4.55a,b) we then see that ẋ1 < 0 and ẋ2 > 0 have opposite

leading terms (−ẋ1 = ẋ2 = −1
2 λ̂

(1,0,1)
1 λ̂

(0,0,2)
1 ε > 0), so the diversi�-

ation initially points in the diretion of the anti-diagonal. Moreover,

the branhing population remains initially split into two halves, as we
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see from the saled approximation

ñ1(∆x1,∆x2) :=
λ̂
(1,0,1)
1 ∆x2 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

∆x1 −∆x2
,(4.55a)

ñ2(∆x1,∆x2) :=
λ̂
(1,0,1)
1 ∆x1 +

1
2 λ̂

(0,0,2)
1 (∆x1+∆x2)

∆x2 −∆x1
,(4.55b)

that we have from (4.62), with ∆x1+∆x2 ≃ 0 during the initial phase
of branhing. As a onsequene, the strategies in X initially remain

under (nearly) neutral seletion, the orresponding populations faing

half of the x-resident with a trait inreased by ε and the other half

with the same trait dereased by the same ε. Sine the strategies in X
were lose to equilibrium ((x,X) ≃ (x̄, X̄)) before the splitting, the

same ondition is maintained during the initial phase of branhing

(i.e., X stays lose to the null-surfae Ẋ = 0). The result is that the
evolution of X aording to the anonial equation (4.55) is initially

slower than the divergene of x1 from x2, as it is typially observed

in the numerial simulations (see �gure4.7(A)), and slow is also the

orresponding movement of the oexistene region boundaries in the

plane (x1, x2). This prevents missing the branhing.

If the initial ondition for (x1, x2) is not taken on the anti-diagonal

(�gure4.7(B)) and/or that for X is not taken at X̄ (�gure4.7(C)), the

onvergene stability of the singular oalition (x̄, X̄) and the initial

evolution of (x1, x2) toward the anti-diagonal (see the right panels in

Figs. 3 and 4, where the diagonal and the anti-diagonal respetively

are the stable and unstable eigenvetors of the equilibrium (x̄, x̄))
make branhing in strategy x possible from many initial onditions

lose to (x̄, X̄).

4.3 Normal form of the bifuration

From (4.7) and from the analyses of Paragraphs 4.2.2 and 4.2.3, we

now derive two simpli�ed models that approximate the dimorphi evo-

lutionary dynamis loally to a branhing point. In the �rst model,

we take into aount the urvature of the boundaries of the resident-

mutant oexistene region, to preserve the geometri features relating

evolutionary trajetories with the boundaries themselves. The urva-

ture of the boundaries is however irrelevant for the branhing bifur-

ation (λ̄(0,2) = 0 under (G1)), so we ignore it in the seond model,

that we propose as the �normal form� for the anonial equation at

the inipient branhing.
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First we get rid of the saling

1
2 µ(xi)σ(xi)

2
, i = 1, 2. Loally to

(x̄, x̄) this an be done by (i) a near-identity oordinate transforma-

tion, z1,2 = z1,2(x1, x2) (∂zi/∂xj = 1 if i = j, 0 otherwise), whose

expansion an be set to eliminate all the derivatives of µ and σ in the

expansion of the saling terms around x1 = x2 = x̄; (ii) a time-saling

τ = 1
2 µ(x̄)σ(x̄)

2 t, τ being the new time. For simpliity, we keep on

using variables xi, atually ∆xi, i = 1, 2, and t for the new variables

and time.

Seond, we use our radial expansion to approximate the oexis-

tene equilibrium (4.24). The expansion up to �rst order (in ε), i.e.,

ñ1(ε, θ) := (1− r̄(0, θ))n̄(x̄)+

ε
(

(1− r̄(0, θ))
(

(1− r̄(0, θ) cos θ + r̄(0, θ) sin θ)n̄(1)(x̄)
)

− r̄(1)(0, θ)n̄(x̄)
)

=

ñ1(∆x1,∆x2) := −
λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)

(∆x1 −∆x2)λ̄
(1,1)
1

n̄(x̄)+

−
1

24(∆x1 −∆x2)
(

λ̄
(1,1)
1

)3

(

4λ̄
(0,3)
1

(

λ̄
(1,1)
1

)2
n̄(x̄)(∆x21+∆x1∆x2+∆x22)+

− 6λ̄(0,2)λ̄(1,1)n̄(1)(x̄)(∆x1 +∆x2)
(

2λ̄
(1,1)
1 ∆x2 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

+

3n̄(x̄)λ̄
(0,2)
1 (−2λ̄

(1,1)
1 λ̄

(1,2)
1 + λ̄

(0,2)
1 λ̄

(2,1)
1 )(∆x1 +∆x2)

2

+3n̄(x̄)
(

2λ̄
(1,1)
1 ∆x1+λ̄

(0,2)
1 (∆x1+∆x2)

)(

2λ̄
(1,1)
1 ∆x2+λ̄

(0,2)
1 (∆x1+∆x2)

)

(

φ̄
(1,0,0)
2,1 n̄(x̄) +

ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 − φ̄2,1n̄(x̄))

)

)

, (4.56a)
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ñ2(ε, θ) := r̄(0, θ)n̄(x̄)+

ε
(

r̄(0, θ)
(

(1− r̄(0, θ) cos θ + r̄(0, θ) sin θ)n̄(1)(x̄)
)

+ r̄(1)(0, θ)n̄(x̄)
)

=

ñ2(∆x1,∆x2) := −
λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)

(∆x2 −∆x1)λ̄
(1,1)
1

n̄(x̄)+

−
1

24(∆x2 −∆x1)
(

λ̄
(1,1)
1

)3

(

4λ̄
(0,3)
1

(

λ̄
(1,1)
1

)2
n̄(x̄)(∆x21+∆x1∆x2+∆x22)+

− 6λ̄(0,2)λ̄(1,1)n̄(1)(x̄)(∆x1 +∆x2)
(

2λ̄
(1,1)
1 ∆x1 + λ̄

(0,2)
1 (∆x1 +∆x2)

)

+

3n̄(x̄)λ̄
(0,2)
1 (−2λ̄

(1,1)
1 λ̄

(1,2)
1 + λ̄

(0,2)
1 λ̄

(2,1)
1 )(∆x1 +∆x2)

2

+3n̄(x̄)
(

2λ̄
(1,1)
1 ∆x1+λ̄

(0,2)
1 (∆x1+∆x2)

)(

2λ̄
(1,1)
1 ∆x2+λ̄

(0,2)
1 (∆x1+∆x2)

)

(

φ̄
(1,0,0)
2,1 n̄(x̄) +

ḡ(1,0,0,0,1)

ḡ(1,0,0,0,0)
(λ̄

(0,2)
1 − φ̄2,1n̄(x̄))

)

)

, (4.56b)

is onsistent with our approximation, loally to (x̄, x̄), of the resident-
mutant oexistene region (Paragraph 4.2.2), where, indeed, up to

third-order derivatives of the monomorphi �tness are involved. More-

over, by de�ning the one boundaries by ñ1(ε, θT1(ε)) = 0 and ñ2(ε, θT2(ε)) =

0, we heked that one obtains for θTi(0) and θ
(1)
Ti (0) the same results

derived in Paragraph 4.2.2 (see equations (4.17) and (4.20)). Note

that the symmetry ñ1(∆x2,∆x1) = ñ2(∆x1,∆x2) is respeted by the

approximation. Also note the term (∆xi − ∆xj), i 6= j, at denom-

inator of ñi(∆x1,∆x2), whih makes evident the nonsmoothness of

funtions n̄1(x1, x2) = 0 and n̄2(x1, x2) = 0 at (x̄, x̄).

Instead of using the ompliated expressions at numerator in (4.56),

we note that the following expressions share the same linear terms:

η1(∆x1,∆x2) := λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)+

1
2 λ̄

(1,2)
1 ∆x2(∆x1+∆x2)+

1
2 λ̄

(2,1)
1 ∆x22+

1
6 λ̄

(0,3)
1 (∆x21+∆x1∆x2+∆x22),

(4.57a)

η2(∆x1,∆x2) := λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2)+

1
2 λ̄

(1,2)
1 ∆x1(∆x1+∆x2)+

1
2 λ̄

(2,1)
1 ∆x21+

1
6 λ̄

(0,3)
1 (∆x21+∆x1∆x2+∆x22).

(4.57b)

The expressions in (4.57) ome from a ubi expansion w.r.t. (x1, x2)
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of λ1(x2, x1) and λ1(x1, x2), respetively. Spei�ally,

λ1(x̄+∆x2, x̄+∆x1) = η1(∆x1,∆x2)(∆x1 −∆x2) +O(‖(∆x1,∆x2)‖
4),

λ1(x̄+∆x1, x̄+∆x2) = η2(∆x1,∆x2)(∆x2 −∆x1) +O(‖(∆x1,∆x2)‖
4),

so ηi(∆x1,∆x2) = 0 is a quadrati approximation (in (∆x1,∆x2)) of
the boundary i of the oexistene region (the one on whih n̄i(x1, x2) =

0). It is a di�erent approximation w.r.t. θTi(ε) = θTi(0) + θ
(1)
Ti (0)ε,

derived in Paragraph 4.2.2, and ñi(ε, θTi(ε)) = 0, i = 1, 2, proposed
above. But again, de�ning funtion θTi(ε) by ηi(ε cos θTi(ε), ε sin θTi(ε)) =

0, we heked that one obtains for θTi(0) and θ
(1)
Ti (0) the results de-

rived in Paragraph 4.2.2.

By means of a near-identity oordinate transformation, we an

then use

ñi(∆x1,∆x2) :=
ηi(∆x1,∆x2)

∆xi −∆xj
, i = 1, 2, i 6= j, (4.58)

as an approximation of n̄i(x1, x2) in the anonial equation (4.7),

and ηi(∆x1,∆x2) = 0 as an approximation of the oexistene region

boundaries. Note that the new ñi(∆x1,∆x2), i = 1, 2, are positive,

by onstrution, inside the approximated oexistene region (easy to

hek, e.g., for 0 < ∆x2 = −∆x1).

Third step, we approximate λ
(0,0,1)
2 (x1, x2, xi) using our approxi-

mation (4.27), thus obtaining

λ̃
(0,0,1)
2 (∆x1,∆x2,∆xi) := si(∆x1,∆x2)(∆xi−∆xj), i = 1, 2, i 6= j,

(4.59)

with

s1(∆x1,∆x2) :=
(

1
2 λ̄

(0,2)
1 + 1

6 λ̄
(0,3)
1 (2∆x1+∆x2)−

1
4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2)

)

(4.60a)

s2(∆x1,∆x2) :=
(

1
2 λ̄

(0,2)
1 + 1

6 λ̄
(0,3)
1 (∆x1+ 2∆x2)−

1
4

λ̄
(0,2)
1 λ̄

(1,2)
1

λ̄
(1,1)
1

(∆x1+∆x2)

)

.

(4.60b)
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Our �rst simpli�ed model�the one taking the urvature θ
(1)
Ti (0)

into aount�then reads

ẋi = ñi(∆x1,∆x2)λ̃
(0,0,1)
2 (∆x1,∆x2,∆xi) = ηi(∆x1,∆x2)si(∆x1,∆x2),

(4.61)

with i = 1, 2. Note the simpli�ation of the di�erenes (∆xi−∆xj) at
denominator in equation (4.58) and at numerator in equation (4.59),

that makes the model equations polynomial (and therefore smooth!).

Our seond model is the most simple form showing the bifuration,

so we all it the �normal form� (though we do not provide a formal

proof of the topologial equivalene between the trunated normal

form and the dimorphi anonial equation (4.7)). It onsiders only

a onial oexistene region θ ∈ [θT2(0), θT1(0)] and, onsistently, a
zero-order approximation (in ε) of the oexistene equilibrium (4.24),

i.e.,

ñ1(ε, θ) := (1− r̄(0, θ))n̄(x̄) =

ñ1(∆x1,∆x2) :=
η1(∆x1,∆x2)

∆x1 −∆x2
, (4.62a)

ñ2(ε, θ) := r̄(0, θ)n̄(x̄) =

ñ2(∆x1,∆x2) :=
η2(∆x1,∆x2)

∆x2 −∆x1
, (4.62b)

with

η1(∆x1,∆x2) := λ̄
(1,1)
1 ∆x2 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2), (4.63a)

η2(∆x1,∆x2) := λ̄
(1,1)
1 ∆x1 +

1
2 λ̄

(0,2)
1 (∆x1 +∆x2). (4.63b)

The model equations are formally those in (4.61), but with the new

de�nitions of ñi(∆x1,∆x2) and ηi(∆x1,∆x2), i = 1, 2, in equations

(4.62) and (4.63).

The unfolding parameter�that we move aross zero�is λ̄(0,2).
Three other parameters are left in the normal form (4.60, 4.61, 4.63):

λ̄(1,1), λ̄(0,3), and λ̄(1,2). The �rst two are onstrained by the gener-

iity onditions (G1) and (G2), whereas λ̄(1,2) plays no role in the

bifuration, as it only appears multiplied by λ̄(0,2) in si(∆x1,∆x2)
(equation (4.60)). Only the produt λ̄(1,1)λ̄(0,3) is relevant at the bi-
furation (λ̄(0,2) = 0). Being λ̄(1,1) onstrained in sign, λ̄(0,3) is the
only relevant oe�ient of the normal form (as already antiipated by

Kisdi [1999℄, without, however, a formal derivation).

Finally, it is important to note that none of the two models (4.57, 4.60, 4.61)

and (4.60, 4.61, 4.63) orrespond to an ε-expansion of the dimor-
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phi anonial equation (4.7). E.g., the �rst model inludes ubi ε-

terms�omposed of the produt of a quadrati terms in λ̃
(0,0,1)
2 (ε, θ,∆xi)

and a linear term in ñ1(ε, θ)�but misses others. This is due to the

hoie of separately ε-expanding n̄i(x1, x2) and λ
(0,0,1)
2 (x1, x2, xi) in

equation (4.7), with the advantage of preserving some strutural fea-

tures of the anonial equation, e.g., the presene of boundary equi-

libria when n̄i(x1, x2) and λ
(0,0,1)
2 (x1, x2, xj) vanish with i 6= j.

4.4 Unfolding of the bifuration

Under the generiity onditions (G1) and (G2), we analyze in this

Paragraph the dynamis of model (4.60, 4.61, 4.63), restrited to the

resident-mutant oexistene region ñi(∆x1,∆x2) ≥ 0, i = 1, 2, de-
�ned in (4.62, 4.63) (i.e., θ ∈ [θT2(0), θT1(0)] see equations (4.17)

and (4.21)), by varying the parameter λ̄(0,2) aross zero.
By inspetion of equations (4.60, 4.61, 4.63), it is straightforward

to hek that there are four equilibria:

E0: (∆x̄1,∆x̄2) = (0, 0), at whih η1(∆x̄1,∆x̄2) = η2(∆x̄1,∆x̄2) =
0.

E1: (∆x̄1,∆x̄2) = − 1
λ̄(0,2)λ̄(0,3)−2λ̄(1,1)λ̄(0,3)+3λ̄(0,2)λ̄(1,2)

(

3(λ̄(0,2))
2
, 3λ̄(0,2)(2λ̄(1,1)+λ̄(0,2))

)

,

annihilating η1(∆x̄1,∆x̄2) and s2(∆x̄1,∆x̄2).

E2: (∆x̄1,∆x̄2) = − 1
λ̄(0,2)λ̄(0,3)−2λ̄(1,1)λ̄(0,3)+3λ̄(0,2)λ̄(1,2)

(

3λ̄(0,2)(2λ̄(1,1)+λ̄(0,2)), 3(λ̄(0,2))
2
)

,

annihilating η1(∆x̄1,∆x̄2) and s2(∆x̄1,∆x̄2).

E3: (∆x̄1,∆x̄2) =
(

− λ̄(1,1)λ̄(0,2)

λ̄(1,1)λ̄(0,3)−λ̄(0,2)λ̄(1,2) , ∆x̄1

)

, at whih s1(∆x̄1,∆x̄2) =

s2(∆x̄1,∆x̄2) = 0.

Note that E1 and E2 are symmetri boundary equilibria lying on the

oexistene one boundary on whih ñ1(∆x1,∆x2) and ñ2(∆x1,∆x2)
vanish, respetively. E3 lies on the diagonal ∆x1 = ∆x2 and is there-

fore not feasible for the dimorphi anonial equation (4.7).

The four equilibria are all involved in the bifuration ourring

at λ̄(0,2) = 0, as they ollide at (0, 0) at the bifuration. Under the

generiity onditions (G1) and (G2), equilibria E1�3 interset trans-

versely as λ̄(0,2) moves aross zero (transversality of the bifuration
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[Kuznetsov, 2004, Meijer et al., 2009℄). The bifuration lassi�es as

a non-simple branh point [Govaerts, 2000, Meijer et al., 2009℄ (not

to be onfused with the branhing point of AD!), i.e., the transver-

sal intersetion of more than two equilibrium branhes. This requires

the ontinuation problem [Allgower and Georg, 2003℄ de�ning eah

of the four λ̄(0,2)-parameterized equilibrium branhes in the spae

(∆x̄1,∆x̄2, λ̄
(0,2)), i.e.,

Ci(∆x, λ̄
(0,2)) := ηi(∆x1,∆x2, λ̄

(0,2))si(∆x1,∆x2, λ̄
(0,2)) = 0, i = 1, 2

(where ∆x := (∆x1,∆x2) and λ̄(0,2) is expliitly mentioned as an

argument of funtions ηi and si), to have a null-spae with dimen-

sion larger than two at the bifuration. The Jaobian of funtion

C(∆x, λ̄(0,2)) :=
(

C1(∆x, λ̄
(0,2)), C2(∆x, λ̄

(0,2))
)

is indeed a (2 × 3)
null matrix at the bifuration, i.e., the null-spae is three-dimensional.

Due to the symmetries of the dimorphi anonial equation, this bi-

furation an our as a odimension-one, i.e., as a single model pa-

rameter is moved (see Govaerts [2000℄, setion 8.2).

Two ases must be distinguished, namely λ̄
(0,3)
1 > 0 and λ̄

(0,3)
1 < 0,

whose unfoldings are pitured in Figure 4.3 (top and bottom panels,

respetively). The movements and stability of the four equilibria as

λ̄(0,2) goes from negative to positive are evident from the graphis. In

partiular, the �ow of model (4.60, 4.61, 4.63) is drawn also outside

the resident-mutant oexistene one to make stability easily readable.

Note that the stability for the unrestrited model (4.60, 4.61, 4.63) is

di�erent from the stability for the dimorphi anonial equation. E.g.,

equilibrium E0 is always unstable (saddle type) for model (4.60, 4.61, 4.63),

though is stable/unstable for the dimorphi anonial equation when

λ̄(0,2) ≶ 0 (evolutionary stability/branhing).

Also note that the two ases (λ̄
(0,3)
1 ≷ 0) are topologially equiv-

alent (at the bifuration there is a symmetry w.r.t. the anti-diagonal

x1 = −x2), so their distintion is not mathematially relevant. How-

ever, the distintion is biologially relevant and beomes evident if

one onsiders the urvature of the boundaries of the resident-mutant

oexistene region, as we do in model (4.57, 4.60, 4.61). The un-

folding of model (4.57, 4.60, 4.61) are show in Figure 4.4 together

with the oexistene region ñi(∆x1,∆x2) ≥ 0, i = 1, 2, de�ned in

(4.57, 4.58). Note the di�erent urvatures of the oexistene region

boundaries in the two ases (see equation (4.20) that gives the ur-

vature of the loally vertial boundary, ≶ 0 for λ̄
(0,3)
1 ≷ 0). Then

λ̄
(0,3)
1 ≷ 0 makes branhing possible at the bifuration only for mu-

tants with larger/smaller trait values (as already antiipated, without
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Figure 4.3: Unfolding of the branhing bifuration using

model (4.60, 4.61, 4.63). The unfolding parameter λ̄(0,2)

inreases from left to right, and vanishes in the entral panels,

in whih all equilibria E0�4 ollide. Top (resp., bottom) row:

λ̄(0,3) > 0 (resp., λ̄(0,3) < 0). Shaded olored (orange: high

total abundane, blue: low total abundane) area: region of

resident-mutant oexistene. Blue line: η1(∆x1,∆x2) = 0. Red
line: η2(∆x1,∆x2) = 0. Blue dashed line: s1(∆x1,∆x2) = 0.
Red dashed line: s1(∆x1,∆x2) = 0. Full points: stable

equilibria. Half-�lled points: saddles. Empty points: unstable

equilibria.
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Figure 4.4: Unfolding of the branhing bifuration using

model (4.57, 4.60, 4.61). The unfolding parameter λ̄(0,2)

inreases from left to right, and vanishes in the entral panels,

in whih all equilibria E0�4 ollide. Top (resp., bottom) row:

λ̄(0,3) > 0 (resp., λ̄(0,3) < 0). Shaded olored (orange: high

total abundane, blue: low total abundane) area: region of

resident-mutant oexistene. Blue line: η1(∆x1,∆x2) = 0. Red
line: η2(∆x1,∆x2) = 0. Blue dashed line: s1(∆x1,∆x2) = 0.
Red dashed line: s1(∆x1,∆x2) = 0. Full points: stable

equilibria. Half-�lled points: saddles. Empty points: unstable

equilibria.

a formal derivation, in Kisdi [1999℄). In any ase, under (G2), the sin-

gular strategy is a branhing point at the bifuration.

4.5 Examples

4.5.1 Branhing in a single speies model of asymmet-

ri ompetition

We �rst onsider the single speies AD model of asymmetri om-

petition desribed in Kisdi [1999℄. The resident-mutant model (4.1)
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reads:

ṅ1 = n1
(

ρ(x1)− α(0)n1 − α(x1−x2)n2
)

, (4.64a)

ṅ2 = n2
(

ρ(x2)− α(x2−x1)n1 − α(0)n2
)

, (4.64b)

with Gaussian ρ(x) = exp(−x2/2σ2) and sigmoidal α(x) = 1 −
1

1+ν exp(−x) , σ, ν > 0, that is built on the g-funtion

g(n1, n2, x1, x2, x
′) = ρ(x′)− α(x′−x1)n1 − α(x′−x2)n2.

Model (4.64) is simple enough (Lotka-Volterra ompetition) that

we an solve analytially for all the relevant quantities. That is, the

monomorphi and dimorphi resident equilibrium densities

n̄(x) = ρ(x)/α(0),

n̄1(x1, x2) =
ρ(x1)α(0) − ρ(x2)α(x1−x2)

α(0)2 − α(x1−x2)α(x2−x1)
, n̄2(x1, x2) = n1(x2, x1),

the monomorphi and dimorphi �tnesses

λ1(x, x
′) = g(n̄(x), 0, x, x, x′) = ρ(x′)− α(x′−x)n̄(x),

λ2(x1, x2, x
′) = g(n̄1(x1, x2), n̄2(x1, x2), x1, x2, x

′) =

ρ(x′)− α(x′−x1)n̄1(x1, x2)− α(x′−x2)n̄2(x1, x2),

the monomorphi and dimorphi seletion gradients

λ
(0,1)
1 (x, x) = ρ(1)(x)−

α(1)(0)

α(0)
ρ(x) =

σ2 − νx− x

σ2(1 + ν) exp(x2/2σ2)
,

λ
(0,0,1)
2 (x1,x2,xi)=ρ(1)(xi)−α(1)(xi−x1)n̄1(x1,x2)−α(1)(xi−x2)n̄2(x1,x2), i=1,2,

the singular strategy

x̄ = σ2/(1 + ν),

annihilating λ
(0,1)
1 (x, x), the �tness seond derivatives ruling branh-

ing at x̄

λ̄
(1,1)
1 =

α(2)(0)

α(0)
ρ(x̄)−

α(1)(0)

α(0)
ρ(1)(x̄) = −

ν

(1 + ν)2 exp(σ2/2(1 + ν)2)
,

λ̄
(0,2)
1 = ρ(2)(x̄)−

α(2)(0)

α(0)
ρ(x̄) = −

(1 + ν)2 − νσ2

σ2(1 + ν)2 exp(σ2/2(1 + ν)2)
,



4.5. EXAMPLES 89

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

2.5

PSfrag replaements

x1

x2

x̄

x̄

σ=2.25 λ̄
(0,2)
1 =−0.03

λ̄
(1,1)
1 =−0.14 λ̄

(0,3)
1 =0.10

σ=2.5 λ̄
(0,2)
1 =0

λ̄
(1,1)
1 =−0.14 λ̄

(0,3)
1 =0.08

σ=2.75 λ̄
(0,2)
1 =0.02

λ̄
(1,1)
1 =−0.13 λ̄

(0,3)
1 =0.06

Figure 4.5: Unfolding of the branhing bifuration in the AD model in Kisdi

[1999℄. The model parameter σ inreases from left to right turn-

ing the singular strategy x̄ from a terminal (λ̄
(0,2)
1 < 0) to a

branhing (λ̄
(0,2)
1 > 0) point (other parameter: ν = 4). The

approximations ηi(∆x1,∆x2) = 0 (4.57) and si(∆x1,∆x2) = 0
(4.60) of the oexistene region boundaries and of the inter-

nal xi-nullline, i = 1, 2, are shown around (x̄, x̄) using the

same graphial and olor odes of �gures 4.3�4.4. Lighter ol-

ors are used for the fully nonlinear versions: boundary 1,
λ1(x2, x1) = 0; boundary 2, λ1(x1, x2) = 0; and xi-nullline,

λ
(0,0,1)
2 (x1, x2, xi) = 0.

and the third derivatives entering our approximations

λ̄
(2,1)
1 = −

α(3)(0)

α(0)
ρ(x̄) + 2

α(2)(0)

α(0)
ρ(1)(x̄)−

α(1)(0)

α(0)
ρ(2)(x̄) =

ν2σ2 − ν2 − 2νσ2 − 2ν − 1

σ2(1 + ν)3 exp(σ2/2(1 + ν)2)
,

λ̄
(1,2)
1 =

α(3)(0)

α(0)
ρ(x̄)−

α(2)(0)

α(0)
ρ(1)(x̄) =

ν(3− ν)

(1 + ν)3 exp(σ2/2(1 + ν)2)
,

λ̄
(0,3)
1 = ρ(3)(x̄)−

α(3)(0)

α(0)
ρ(x̄) =

ν2σ2 + 3ν2 − 4νσ2 + 6ν + 3

σ2(1 + ν)3 exp(σ2/2(1 + ν)2)
.

It is easy to verify that the singular strategy x̄ is attrating the

monomorphi evolutionary dynamis for any positive (σ, ν) (eigen-

value λ̄
(1,1)
1 + λ̄

(0,2)
1 = −(σ2 exp(σ2/2(1 + ν)2))−1 < 0), that oexis-

tene in its viinity is always possible (λ̄
(1,1)
1 < 0 for ν > 0), and that

branhing (λ̄
(0,2)
1 > 0) ours for σ2 > (1+ ν)2/ν. At σ2 = (1+ ν)2/ν

the system undergoes the branhing bifuration. Inreasing the value

of σ, we pass from a terminal (�gure4.5 left) to a branhing point

(�gure4.5 right).
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Figure4.5 ompares our approximated model (4.57, 4.60, 4.61) and

oexistene region boundaries ηi(∆x1,∆x2) = 0, i = 1, 2 (4.57), with

the fully nonlinear versions. As in �gures4.3 and 4.4, the boundary 1
of the oexistene region and the internal x1-nullline of the dimorphi

evolutionary dynamis are plotted in blue (solid and dashed); red for

boundary 2 and the internal x2-nullline. Lighter olors are used for

the fully nonlinear versions. The values of the model parameters are

reported in the aption and those of the generiity onditions left-

hand sides, λ̄
(1,1)
1 (G1) and λ̄

(0,3)
1 (G2) an be heked below eah

�gure panel.

4.5.2 Prey branhing in a prey-predator ommunity

As a seond example, we onsider the multi-speies prey-predator AD

model desribed in Landi et al. [2013℄. Using the notation introdued

in Appendix 4.2.3.5, the resident-mutant model (4.1) after a mutation

in the prey population reads:

ṅ1 = n1

(

r − c(x1, x1)n1 − c(x1, x2)n2+

−
a(x1,X)

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
N

)

,

ṅ2 = n2

(

r − c(x2, x1)n1 − c(x2, x2)n2+

−
a(x2,X)

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
N

)

,

Ṅ = N

(

e
a(x1,X)n1 + a(x2,X)n2

1 + a(x1,X)h(x1,X)n1 + a(x2,X)h(x2,X)n2
− d

)

,

(4.65)

with valley-shaped prey intra-spei� ompetition

c(x1, x2) =
γ1 + γ2x

2
1

1 + γ0(γ1 + γ2x
2
1)

exp
(

−1
4 (x1−x2)

2
)

,

bell-shaped predator attak rate

a(x1,X) = α0 + exp
(

−(x1−X)2
)

,

and sigmoidal predator handling time

h(x1,X) = θ

(

3
2 −

1

1 + exp(θ3x1)

)(

3
2 −

1

1 + exp(−θ4X)

)

.
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It is built on the g-funtion

g(n1, n2, N, x1, x2,X, x
′) = r− c(x′, x1)n1− c(x′, x2)n2+

−
a(x′,X)

1+a(x1,X)h(x1,X)n1+a(x2,X)h(x2,X)n2
N.

Analytially, we an only ompute the monomorphi resident equi-

librium

n̄(x,X) =
d

a(x,X)(e−dh(x,X))
,

N̄(x,X) =

(

r− c(x, x)n̄(x,X)

a(x,X)

)

(

1+ a(x,X)h(x,X)n̄(x,X)
)

,

the prey monomorphi �tness

λ1(x,X, x
′) = g(n̄(x,X), 0, N̄ (x,X), x, x,X, x′) = r−c(x′, x)n̄(x,X)

−
a(x′,X)

1 + a(x,X)h(x1,X)n̄(x,X)
N̄(x,X),

the seletion gradient

λ
(0,0,1)
1 (x,X, x) = −c(1,0)(x, x)n̄(x,X)+

−
a(1,0)(x,X)

1 + a(x,X)h(x1,X)n̄(x,X)
N̄(x,X),

and the �tness seond and third derivatives, λ
(1,0,1)
1 and λ

(0,0,2)
1 ruling

prey branhing, and λ
(2,0,1)
1 , λ

(1,0,2)
1 , and λ

(0,0,3)
1 entering our approx-

imations.

All other relevant quantities must be omputed numerially. That

is,

� the singular oalition (x̄, X̄), by simulating the oevolution of

both prey and predator (see Landi et al. [2013℄ for the modeling

of predator mutations),

� the prey singular strategy x̄(X) at frozen predator trait, by

solving λ
(0,0,1)
1 (x,X, x) = 0 at given X,

� the �tness seond and third derivatives λ̄
(1,0,1)
1 , λ̄

(0,0,2)
1 , λ̄

(2,0,1)
1 ,

λ̄
(1,0,2)
1 , and λ̄

(0,0,3)
1 , simply evaluating the orresponding ana-

lytial expressions at (x̄, X̄),
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� the boundaries 1 and 2 of the resident-mutant oexistene re-

gion rooted at (x̄(X), x̄(X)) in the plane (x1, x2), by ontinuing

the ontour-lines λ1(x2,X, x1) = 0 and λ1(x1,X, x2) = 0, re-
spetively,

� the dimorphi resident equilibrium densities n̄1(x1, x2,X), n̄2(x1, x2,X),
and N̄(x1, x2,X), by ontinuing the nontrivial equilibrium solu-

tion of model (4.65) w.r.t. (x1, x2) treated as model parameters,

� the xi-nullline of the dimorphi oevolutionary dynamis, by

ontinuing the ontour-line

λ
(0,0,0,1)
2 (x1,x2,X,xi)=−c(1,0)(xi,x1)n̄1(x1,x2,X)−c(1,0)(xi,x2)n̄2(x1,x2,X)+

− a(1,0)(xi,X)

1+a(x1,X)h(x1,X)n̄1(x1,x2,X)+a(x2,X)h(x2,X)n̄2(x1,x2,X)
N̄(x1,x2,X)=0,

i = 1, 2, together with the equilibrium densities n̄1(x1, x2,X),
n̄2(x1, x2,X), and N̄(x1, x2,X).

From the analysis in Landi et al. [2013℄, we know that an at-

trating singular oalition (x̄, X̄) exists for broad ranges of the model

parameters and a prey-branhing bifuration ours by inreasing the

predator e�ieny e (see equation (4.65)). Fixing the model param-

eters to the values reported in the aption, �gure4.6 ompares our

approximated model (4.57, 4.60, 4.61) and oexistene region bound-

aries ηi(∆x1,∆x2) = 0, i = 1, 2 (4.57), with the fully nonlinear ver-

sions. As in �gures4.3 and 4.4, the boundary 1 of the oexistene

region and the internal x1-nullline of the dimorphi oevolutionary

dynamis are plotted in blue (solid and dashed); red for boundary

2 and the internal x2-nullline. Lighter olors are used for the fully

nonlinear versions. The generiity of the bifuration is granted by

the values of λ̄
(1,0,1)
1 (C.G1) and λ̄

(0,0,3)
1 (C.G2) reported below eah

�gure panel.

Figure4.7 shows three ases of dimorphi oevolutionary dynamis

at inipient branhing. In ase (A), the prey traits are initialized along

the anti-diagonal of the oexistene region, i.e.,

x1(0) = x̄(X) + ε cos θ and x2(0) = x̄(X) + ε sin θ, (4.66)

with θ = 3
4 π, and the predator trait X is initially set at its singu-

lar value X̄. As predited by our analysis in Appendix 4.2.3.5 (by

the leading terms of the dimorphi normal form (4.55) and by the

saled approximations (4.55a,b) of the oexistene equilibrium densi-

ties n̄1(x1, x2,X) and n̄2(x1, x2,X)), the prey traits x1 and x2 initially
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Figure 4.6: Unfolding of the branhing bifuration in the AD model in

Landi et al. [2013℄. The model parameter e inreases from left

to right turning the singular oalition (x̄, X̄) from a terminal

(λ̄
(0,0,2)
1 < 0) to a branhing (λ̄

(0,0,2)
1 > 0) point (other parame-

ters: r = 0.5, d = 0.05, γ0 = 0.01, γ1 = 0.5, γ2 = 2.3, α0 = 0.01,
θ = 0.5, θ3 = θ4 = 5). The approximations ηi(∆x1,∆x2) = 0
(4.57) and si(∆x1,∆x2) = 0 (4.60) of the oexistene region

boundaries and of the internal xi-nullline, i = 1, 2, are shown
around (x̄, x̄) in the (x1, x2) plane, using the same graphial and

olor odes of �gures 4.3�4.4. Lighter olors are used for the fully

nonlinear versions: boundary 1, λ1(x2, X̄, x1) = 0; boundary 2,

λ1(x1, X̄, x2) = 0; and xi-nullline, λ
(0,0,0,1)
2 (x1, x2, X̄, xi) = 0,

i = 1, 2. Numerial ontinuation performed with the software

pakage Matont Dhooge et al. [2002℄.

diverge symmetrially w.r.t. the singular value x̄ (dashed), while the

population remains split into two halves (same gray sale) and the

predator trait is under neutral seletion.

In ase (B), the prey traits are initialized lose to the boundary 2

of the oexistene region (as in (4.66) with θ = 1
2 π), and the predator

trait still at the singular value X̄. Close to boundary 2 the prey popu-

lation is almost monomorphi and mainly omposed of x1-individuals
(see the gray sale, initially darker in trait x1), so (x1,X) initially

are almost at equilibrium at the singular oalition (x̄, X̄). However,

in aordane with our analysis of setions4.3 and 4.4 and of Ap-

pendix 4.2.3.5, the branhing dynamis of (x1, x2) point toward the

anti-diagonal and this, at the same time, equilibrate the equilibrium

densities n̄1(x1, x2,X) and n̄2(x1, x2,X). Note that in the very ini-

tial phase of branhing, as soon as x1 moves away from x̄, evolution
is still basially monomorphi and (x1,X) tend to quikly onverge

to (x̄, X̄). Being the singular oalition a stable fous, this indues

fast dumped osillations in (x1,X) (only those in X are just barely
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Figure 4.7: Three examples of dimorphi oevolutionary dynamis at in-

ipient branhing in the AD model in Landi et al. [2013℄.

Case (A): x1(0) = x̄ −
√
2
2 ε, x2(0) = x̄ +

√
2
2 ε, X(0) = X̄ .

Case (B): x1(0) = x̄, x2(0) = x̄ + ε, X(0) = X̄ . Case (C):

x1(0) = x̄(X̄+ δ)−
√
2
2 ε, x2(0) = x̄(X̄+ δ)+

√
2
2 ε, X(0) = X̄+ δ.

Parameter values as in �gure 4.6 (right), ε = 0.003, δ = 0.0001.
The gray sale in the xi-time-series indiates the relative density

n̄i(x1, x2, X)/(n̄1(x1, x2, X) + n̄2(x1, x2, X)), i = 1, 2.

visible at the sale of the �gure). As the density of x2-individuals
grows in detriment of x1-individuals, the slower branhing dynamis

take over. As long as x1-individuals are still predominant, predator

trait is not under neutral seletion, but atually under a negative se-

letion pressure due to adaptation to the dereasing trait x1. This
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is sarely visible in the �gure, where the eventual inrease of X is

slightly delayed w.r.t. ase (A).

In ase (C), the prey traits are initialized along the anti-diagonal

(as in ase (A), aording to (4.66) with θ = 3
4 π), but the predator

trait is perturbed from singularity (X(0) = X̄+ δ). In this ase, the

predator trait X is initially out of equilibrium and quikly evolves

toward X̄ (the barely visible X-osillations are wider than in ase

(B), whereas the orresponding osillations in the prey traits are not

visible). The evolution of the predator trait indues a orresponding

movement of the prey oexistene region in the (x1, x2) plane, that
however avoids missing the branhing ((x1, x2) touhing the region

boundaries) if the initial perturbation δ of X from X̄ is su�iently

small. One X is lose to X̄, the prey oexistene region is rooted at

x ≃ x̄ > x̄(X̄+ δ), so that the initial point (x1, x2) is not anymore on

the anti-diagonal, but atually lose to boundary 1. Then, after the

�rst quik transient, the situation is symmetri w.r.t. ase (B), with

the prey population mainly omposed of x2-individuals.

4.6 Disussion and onlusions

The main theoretial ontribution of this hapter is a general method

of approximating the dimorphi �tness (4.8). It is based on a radial

expansion (w.r.t. ε) on a given ray (identi�ed by the angle θ) in the

plane (x1, x2) of the two similar oexisting strategies. It exploits the

fat (observed in Durinx [2008℄ and Derole and Geritz [2014℄) that

the equilibrium densities n̄1(x1, x2) and n̄2(x1, x2), at whih the two

strategies an oexist (under (G1)) for (x1, x2) lose to the singular

strategy x̄, are well de�ned and smooth along eah given ray in the

one of oexistene rooted at (x̄, x̄), though nonsmooth at (x̄, x̄). As
a onsequene, the ε-expansions of the densities n̄1(ε, θ) and n̄2(ε, θ)
and of the dimorphi �tness λ2(ε, θ,∆x

′) (rede�ned in polar oordi-

nates, ∆x′ := x′ − x̄) are θ-dependent but, interestingly, they an

be written bak in terms of rational (n̄1 and n̄2) and polynomial

(λ2) expressions of (x1, x2). The resulting expressions are not expan-

sions w.r.t. (x1, x2)�suh expansions annot be de�ned, ontrary to

what originally done in Geritz et al. [1997, 1998℄ (see Geritz et al.

[1998℄ Appendix 1 in partiular)�but an be nevertheless used as

approximations in the resident-mutant oexistene region loally to

the singular point (x̄, x̄).

Our approah is quite general. Other non-similar resident popu-

lations (of the same of di�erent speies) an be onsidered (see Para-



96 CHAPTER 4. THE BRANCHING BIFURCATION

graph 4.2.3.5) and the approximation an be taken up to any order

(in ε). Thanks to a strutural property assumed for the dimorphi �t-

ness (property P4 in Paragraph 4.2.1, reently introdued in Derole

[2014℄), the n̄1, n̄2, and λ2 ε-expansions an be written in terms of the

geometry of the monomorphi �tness (4.3) (in ontrast to what pre-

liminarily found in Durinx [2008℄, in the speial ase of Lotka-Volterra

models).

We have used the developed approah to unfold the branhing

bifuration, at whih a stable equilibrium of the monomorphi AD

anonial equation (4.4) loses evolutionary stability. Spei�ally, as-

suming (G1)�allowing resident-mutant oexistene�and (G2)�ensuring

the transversality and generiity of the bifuration�we have unfolded

the transition of λ̄(0,2) aross zero�the evolutionary equilibrium turn-

ing from a terminal (λ̄(0,2) < 0) to a branhing (λ̄(0,2) > 0) point of
AD.

At the bifuration, the evolutionary dynamis ruled by the dimor-

phi anonial equation (4.7) are dominated by the third-order terms

in the ε-expansion of the dimorphi �tness (4.8). Interestingly, the

seond-order terms oinide with those Geritz et al. [1997, 1998℄ ob-

tained by assuming smoothness, though nongeneri onstraints on the

monomorphi �tness ome along at seond- as well as at higher-orders

(see Paragraph 4.2.3.1). Thus the (seond-order) branhing ondition

(4.9) of Geritz et al. [1997, 1998℄ is orret and our approah beomes

essential only at third-order.

By means of a smooth oordinate hange and time-saling, and

assuming (G1) and (G2), we have identi�ed the most simple model,

loally equivalent to the dimorphi anonial equation (4.7), showing

the bifuration. We laim this is the normal form for the branhing

bifuration: model (4.60, 4.61, 4.63) restrited to the resident-mutant

oexistene region ñi(∆x1,∆x2) ≥ 0, i = 1, 2, de�ned in (4.62, 4.63),

loally to (∆x1,∆x2) = (0, 0). The model depends on four parame-

ters that are all monomorphi �tness derivatives: the unfolding pa-

rameter λ̄(0,2), the �tness ross-derivative λ̄(1,1) onstrained by (G1),

the normal form oe�ient λ̄(0,3), and λ̄(1,2) that plays no role and

ould be eliminated by a further oordinate hange (in that sense the

normal form ould be further simpli�ed, though losing the geometri

mathing with the dimorphi anonial equation). The only generi-

ity (and transversality) ondition required by the bifuration (other

than resident-mutant oexistene under (G1)), is then (G2).

Keeping into aount the urvature of the boundaries of the resident-

mutant oexistene region, we have proposed a seond (though in-
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Figure 4.8: Monomorphi and dimorphi evolutionary dynamis around the

branhing bifuration restrited to the area of oexistene. The

region of resident-mutant oexistene is the shaded olored re-

gion, where orange means a high total abundane and blue a

low total abundane. The singular strategy (the dot at the

enter of eah panel) is always onvergene stable (it attrats

the monomorphi dynamis along the diagonal), while it is evo-

lutionarily stable (terminal point, full dot) in panel (A), an

evolutionary saddle in panel (B) (branhing point, half-�lled

dot), and evolutionarily unstable in panel (C) (branhing point,

empty dot). Other lines and olors as in Figures 4.3 and 4.4.

trodued as �rst in Paragraph 4.3), neessarily less simple, model

loally equivalent to the dimorphi anonial equation at the inipi-

ent branhing: model (4.57, 4.60, 4.61) restrited to the oexistene

region ñi(∆x1,∆x2) ≥ 0, i = 1, 2, de�ned in (4.57, 4.58). The

quadrati approximation of the oexistene region boundaries also de-

pends on λ̄(2,1), whih is the last independent third-derivative of the

monomorphi �tness to be involved (λ̄(3,0) is dependent of the others,
reall equation (4.11)). The boundaries quadrati approximation

has the advantage of showing some geometri features relating the

trajetories of the dimorphi anonial equation with the boundaries

themselves. Spei�ally, the internal x1-isoline (s1((∆x1,∆x2)) = 0;
dashed blue in Figure 4.8) onnets to an horizontal fold of boundary

1 (ñ1(∆x1,∆x2) = 0, solid blue)�smaller/larger x1-mutants invade
at the right/left of the fold; and to boundary 2 (ñ2(∆x1,∆x2) = 0,
solid red) at a boundary saddle with x1 = x̄�strategy x1 is alone and
at equilibrium at the singular strategy; symmetrially for the internal

x2-isoline (see Geritz et al. [1999℄, the Paragraph in partiular, for

more details).

The analysis of our simpli�ed models as λ̄(0,2) moves aross zero

unravels the dynamial phenomena turning a terminal point of AD

into a branhing point. Restriting the model dynamis into the re-
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gion of oexistene for the strategies pair (x1, x2), we see (Figure

4.8) that the singular point (∆x1,∆x2) = (0, 0) is always a �orner�

equilibrium that is attrating nearby trajetories for λ̄(0,2) < 0 and

repelling for λ̄(0,2) > 0. The basin of attration for λ̄(0,2) < 0 is lim-

ited by the stable manifold of two boundary saddles (the trajetories

going into the boundary saddles), the onvergene being omposed

of a dimorphi phase up to the extintion of one of the two similar

strategies, followed by a monomorphi phase to the singular strategy.

As λ̄(0,2) moves aross zero, the two saddles move along the bound-

aries and ross the diagonal at (0, 0) at the bifuration. The three

equilibria ollide and exhange stability (both eigenvalues do hange

sign, see Paragraph 4.4). For λ̄(0,2) > 0 the trajetories originating

lose to (0, 0) go away from the singularity and reah an evolutionary

attrator that is not loal to the singularity [Geritz et al., 1999℄ (and

not involved in the bifuration). The same attrator is generially

viable even for λ̄(0,2) < 0, but it annot be reahed from a neighbor-

hood of the singularity, unless the mutational step is large enough to

esape the basin of attration. The branhing bifuration is therefore

atastrophi, in the sense that a small hange in λ̄(0,2) triggers a large
evolutionary transient leading to a new attrator.

Finally, by onsidering the urvature of the boundaries of the

resident-mutant oexistene region at the bifuration (λ̄(0,2) = 0),
we an extend (under (G2)) the branhing ondition (4.9) as

λ
(0,2)
1 (x̄, x̄) ≥ 0,

as already antiipated by Kisdi [1999℄, without, however, a formal

derivation.

The natural follow-up to this work is the analysis of the other

odimension-one branhing bifuration�the one at whih the �tness

ross-derivative λ̄(1,1) vanishes with positive λ̄(0,2). The resident-

mutant oexistene region is loally a usp rooted at the singular

point (x̄, x̄) (see Derole and Geritz [2014℄), and though there might

generially be up to two oexistene equilibria, only one is stable and

should be onsidered for developing a proper expansion of the dimor-

phi �tness. Further researh ould investigate the odimension-two

bifuration at whih both �tness seond-derivatives vanish (the type

of oexistene is already available in Derole and Geritz [2014℄), or

the ases at whih λ̄(0,3) = 0 together with one of the �tness seond-

derivatives; or, as well, higher odimensions that do our in appli-

ations (see, e.g., Doebeli and Ispolatov [2010℄). The mathematial
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approah developed in this hapter is readily appliable and onve-

nient to pursue the above projets.





Chapter 5

The evolution of biodiversity

We show in this hapter how simulations of ODEs and ontinuations of

systems of algebrai equations an be ombined to study the evolution

of biodiversity in multi-speies systems where phenotypi traits are

genetially transmitted. We follow the AD approah, that provides a

deterministi approximation of the evolutionary dynamis of station-

ary oexisting populations in terms of an ODE system, the so-alled

AD anonial equation. AD also provides expliit onditions to test

whether a stable evolutionary equilibrium of the anonial equation is

a branhing point�resident and mutant morphs oexist and further

di�erentiate thus inreasing biodiversity�or not. We analyze a stan-

dard parameterized family of prey-predator ommunities, desribed

by the most standard eologial model, and propose an iterative pro-

edure to obtain the branhing portrait, explaining the dependene of

branhing senarios on two (demographi, environmental or ontrol)

parameters. Among a number of interesting results, in line with �eld

studies and known eologial priniples, we �nd that prey branh-

ing is indued by the predation pressure, and is favored when prey

intraspei� ompetition is highly sensitive to the resident-mutant

phenotypi mismath; while predator branhing is not possible when

prey and predators are present in equal number of morphs. This

results in alternate prey-predator branhing sequenes with possible

phases of prey unilateral branhing. We also �nd that predator han-

dling time limits branhing sequenes, as harvesting saturation limits

the predation pressures thus restraining prey from branhing; and the

same ours if predator are too generalist, while speialists may gen-

erate long branhing sequenes, but also non-stationary evolutionary

regimes preventing further branhing. The guidelines for deriving a

general method for analyzing the evolution of biodiversity are also dis-

101
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ussed. The proposed approah ould be readily applied to di�erent

prey-predator and host-parasite ommunities, as well as to ommuni-

ties regulated by other eologial interations. The indiations that

an be obtained typially have qualitative nature, but an be of help

for the long-term onservation and management of biodiversity. More

details an be found in Landi et al. [2013℄.

5.1 Introdution

Explaining why there are so many similar populations in Nature is one

of the major questions in eology [Huthinson, 1959℄. Classial om-

petition theory an provide some answers; for example, it an explain

why self-organized patterns of groups of similar populations emerge

in rih ommunities [She�er and van Nes, 2006℄. Perhaps the most

di�ult problem in need of explanation is this: under the assumption

that life started from a ommon anestor, how is it that we obverse

so muh biodiversity today? For this, we an ombine two indepen-

dent mehanisms. One is geneti mutation that rarely and randomly

diversi�es the phenotypi trait (x) of some individual from that (x′)
of its o�spring, thus reating a mutant population similar to the res-

ident one, though initially with very low abundane. The seond is

natural seletion, i.e., the ompetition between resident and mutant

populations, that generially leads to the extintion of one of the two

populations [Geritz, 2005, Derole and Rinaldi, 2008℄. If mutants go

extint, nothing hanges beause x remains the resident trait, while

if residents go extint, the mutant population beomes the new resi-

dent, endowed, however, of a new trait x′. Only in exeptional ases,

alled evolutionary branhings [Geritz et al., 1997, 1998, Derole and

Rinaldi, 2008℄, an the mutant and resident populations oexist under

disruptive seletion, i.e., ompetition favors further di�erentiation be-

tween the two similar residents. Evolutionary branhing thus explains

why the number of distint morphs of a speies, that is, biodiversity,

an inrease. Biodiversity an also derease, not only aidentally,

but as the result of evolution toward the boundary of the viability

region in trait spae (evolutionary extintion, see Paragraphs 1.2.5,

2.7 and Gyllenberg and Parvinen [2001℄, Derole and Rinaldi [2008℄).

Evolutionary branhings and extintions an also alternate [Doebeli

and Diekmann, 2000, Kisdi et al., 2001, Derole, 2003, Derole and

Rinaldi, 2008℄, making the problem more omplex.

Among the many quantitative approahes to evolutionary dynam-

is introdued in Paragraph 1.3 only two of them, that is, Individual-
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Based Modeling (IBM) and Adaptive Dynamis (AD) are suitable for

prediting branhing senarios. IBM [De Angelis and Gross, 1992,

Diekmann and Doebeli, 1999℄ is a stohasti simulation approah

whih requires little in the way of mathematial analysis and skill, but

whih an be quite attrative beause it allows any sort of detail to

be inluded in the model (e.g. age, size, stage and spatial strutures,

sexual reprodution, and seasonalities). In ontrast, AD [Metz et al.,

1996, Geritz et al., 1997, 1998, Derole and Rinaldi, 2008, Geritz and

Derole, 2011℄ is population-based, foused on the long-term evolution

of the adaptive traits (it assumes rare mutations of small phenotypi

e�et), and provides a deterministi approximation of the evolution-

ary dynamis in terms of ODEs, one for eah trait, known as the AD

anonial equation [Diekmann and Law, 1996, Champagnat et al.,

2006, Derole and Rinaldi, 2008℄. Evolutionary branhing is possi-

ble only in the viinity of evolutionary equilibria (far from equilibria

the extintion of either the resident or the mutant population is the

generi outome of ompetition [Geritz, 2005, Derole and Rinaldi,

2008℄), and expliit branhing onditions are available [Geritz et al.,

1997, 1998, Derole and Rinaldi, 2008℄. Here we onsider the simplest

setting in whih the AD anonial equation an be derived, i.e., the

ase of unstrutured, asexual populations, haraterized by a single

trait eah, and stationary oexisting in an isolated homogeneous and

onstant abioti environment (see Diekmann and Law [1996℄, Durinx

et al. [2008℄, Kisdi and Geritz [1999℄ for extensions).

Most branhing senarios produed until now have been obtained

either analytially (for relatively simple models or limited to primary

branhings, see e.g. Metz et al. [1996℄, Geritz et al. [1998℄, Kisdi

[1999℄, Doebeli and Diekmann [2000℄, Ferriére et al. [2002℄, Derole

et al. [2008℄, Best et al. [2010℄) or by means of stohasti simulations

(with the IBM approah [Diekmann and Doebeli, 1999, Doebeli and

Diekmann, 2000, Ferriére et al., 2002℄ or stohastially simulating

the mutation proess of an AD model [Metz et al., 1996, Geritz et al.,

1998, Kisdi, 1999, Best et al., 2010℄), starting from an anestral om-

munity omposed of a single population or two populations of di�erent

speies. In some studies onerning prey-predator systems the senar-

ios are extremely simple, ranging from no branhing due to periodi

evolutionary attrators in Diekmann et al. [1995℄, to a primary prey

branhing followed by predator branhing in Doebeli and Diekmann

[2000℄ (a primary predator branhing has been identi�ed in Geritz

et al. [2007℄, but relying on ylially oexisting predators). By on-

trast, in studies on the oevolution of mutualism, riher senarios
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haraterized by alternate branhing and extintion (in faultative

or opportunisti mutualisms [Doebeli and Diekmann, 2000℄) and by

very long series of evolutionary branhings (in obligate mutualisms

[Ferriére et al., 2002℄) have been disovered. In Ferriére et al. [2002℄

branhing is unilateral in some regions of parameter spae, that is, it

onerns always populations of the same speies, while in other re-

gions it is bilateral and alternate between the two speies. Alternate

branhings have also been obtained in a study of a host-parasite model

[Best et al., 2010℄, while bilateral but not alternate branhings have

been disovered in a study of evolution of annibalisti populations

toward omplex food webs [Ito and Ikegami, 2006℄.

The above mentioned studies show that branhing senarios de-

pend not only on the anestral ommunity but also on the parameter

values haraterizing some demographi proesses (like e�ieny or

death rate) or their dependene on evolving traits. To �nd out the

full atalog of branhing senarios, say in a two-dimensional parame-

ter spae, one annot rely on simulation approahes, as this would be

omputationally impratiable. Instead, one ould use the AD anon-

ial equation and the branhing onditions to generate a point on eah

urve separating regions of parameter spae with di�erent branhing

senarios, and, then, produe the entire urve through numerial on-

tinuation tehniques [Allgower and Georg, 2003℄. Until now, this has

been done only a few times up to the �rst branhing (in a study of

seed size and ompetitive ability [Geritz et al., 1999℄, in a study of

prey-predator oevolution [Derole et al., 2003℄, in a model for the

evolution of annibalism [Derole and Rinaldi, 2002, Derole, 2003℄,

and in modeling the host-parasite range [Best et al., 2010℄).

The aim of this hapter is to show how the analysis of evolutionary

branhing an be organized through ontinuation in a ase of omplex

senarios. For this, we study the oevolution of a resoure-onsumer

system starting from an anestral prey-predator pair, the building

blok of omplex food webs [Martinez, 2006℄. The model we onsider

is based on the prey-predator model most frequently used in eology,

for whih all properties, exept branhing senarios, have already been

studied in detail (the primary prey branhing has been studied in Der-

ole et al. [2003℄, while the primary branhing of yling predators in

Geritz et al. [2007℄). This hoie allows this hapter to be onsid-

ered as the natural follow-up of the work in Derole et al. [2003℄. We

feel our results are of interest beause they both support eologial

properties that emerge from �eld studies and suggest new theoretial

insights on prey-predator oevolution that might be of help for the
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onservation and management of biodiversity. In Paragraph 5.5, we

also desribe how our approah an be made general and applied to

study the evolution of biodiversity in di�erent ommunities.

5.2 Coevolution of prey-predator systems

Evolving systems are in general omposed of M interating plant

and/or animal populations haraterizable by two features: the num-

ber ni of individuals of eah population or, equivalently, the density

of the population (a positive real number), and an adaptive pheno-

typi trait xi (e.g., body size, typially measured by a real number on

a suitable sale, see Paragraph 2.2 and Derole et al. [2003℄, Derole

and Rinaldi [2008℄). Both features vary in time, but densities an

vary at a muh faster rate than traits. This means that an evolving

system has two distint timesales alled eologial and evolutionary

(see Paragraph 1.2.3). The �rst is fast and onerns only the densities,

while traits remain pratially onstant if mutations are assumed to

be extremely rare events on the eologial timesale; the seond on-

erns the slow variation of the traits, due to sequenes of mutations

and resident substitutions, and entrains the slow variations of the

equilibrium densities attained after eah substitution.

From now on we restrit our attention to the oevolution of pop-

ulations belonging to two di�erent speies (prey and predator), so

that, in general, the ommunity is omposed of M1 prey popula-

tions and M2 predator populations, with M1 +M2 = M . In parti-

ular, n1, . . . , nM1 and x1 ≤ · · · ≤ xM1 are densities and traits of the

M1 prey populations, while nM1+1, . . . , nM1+M2 and xM1+1 ≤ · · · ≤
xM1+M2 are densities and traits of the M2 predator populations, re-

spetively. Assume that initially M1 =M2 = 1, so that n1 and x1 are
prey density and trait while n2 and x2 are predator density and trait.

At eologial timesale, the traits remain onstant while the densities

vary aording to two ODEs of the form:

ṅ1 = n1f
R

1 (n1, n2, x1, x2)
ṅ2 = n2f

R

2 (n1, n2, x1, x2),
(5.1)

where fi is the per apita growth rate of the i-th population. In the

following, model (5.1), alled resident model, is assumed to have one

stritly positive and globally stable equilibrium (n̄1(x1, x2), n̄2(x1, x2))
for eah (x1, x2) belonging to a set of the trait spae alled the evo-

lution set of model (5.1).
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At evolutionary timesale (slow dynamis), the traits vary aord-

ing to two ODEs alled evolutionary model of the form:

ẋ1 = k1H1(x1, x2)
ẋ2 = k2H2(x1, x2),

(5.2)

where k1 and k2 are suitable parameters (here assumed onstant)

saling the speed of evolution in the oevolving speies determined

by size and frequeny of mutations. As mentioned above, population

densities vary slowly with the traits, as model (5.1) is always at the

equilibrium (n̄1(x1, x2), n̄2(x1, x2)) at evolutionary timesale.

The most transparent approah for deriving the evolutionary model

(5.2) is the AD anonial equation [Diekmann and Law, 1996, Cham-

pagnat et al., 2006, Derole and Rinaldi, 2008℄. It is based on the

resident-mutant models, whih desribe the interations among three

populations, namely the two resident populations, and a mutant pop-

ulation with trait x′1 or x′2. When the mutation ours in the prey,

the prey population is split into two sub-populations (resident and

mutant) with densities n1 and n′1 and traits x1 and x′1, so the model

is:

ṅ1 = n1f1(n1, n
′
1, n2, x1, x

′
1, x2)

ṅ′1 = n′1f1(n
′
1, n1, n2, x

′
1, x1, x2)

ṅ2 = F2(n1, n
′
1, n2, x1, x

′
1, x2).

(5.3)

A similar three-dimensional model involving the mutant trait x′2 and
the density n′2 desribes the ase in whih the mutant is a predator,

namely

ṅ1 = F1(n2, n
′
2, n1, x2, x

′
2, x1)

ṅ2 = n2f2(n2, n
′
2, n1, x2, x

′
2, x1)

ṅ′2 = n′2f2(n
′
2, n2, n1, x

′
2, x2, x1),

(5.4)

where funtions fi and Fi, i = 1, 2, are onsistently related to fun-

tions fRi (n1, n2, x1, x2), i = 1, 2, in the resident model (5.1), i.e.,

f1(n1, 0, n2, x1, ·, x2) = fR1 (n1, n2, x1, x2)
F2(n1, 0, n2, x1, ·, x2) = n2f

R

2 (n1, n2, x1, x2)

and

F1(n2, 0, n1, x2, ·, x1) = n1f
R

1 (n1, n2, x1, x2)
f2(n2, 0, n1, x2, ·, x1) = fR2 (n1, n2, x1, x2)

(see Paragraphs 2.3 and 5.2.1). The values of n′1 and n′2 immedi-

ately after the mutation are very small beause a mutant population

is initially omposed of one or a few individuals. In words, eah mu-

tation brings a new trait into the system, but ompetition between
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resident and mutant populations selets the trait that remains in the

system in the long term. As long as mutants either disappear or sub-

stitute the orresponding residents, the evolutionary proess is alled

monomorphi�eah speies is present in a single morph�whereas di-

morphi and polymorphi evolution phases follow after sequenes of

evolutionary branhings.

5.2.1 A spei� eologial model

The eologial model we onsider is the Rosenzweig-MaArthur prey-

predator model [Rosenzweig and MaArthur, 1963℄:

ṅ1 = n1

(

r − cn1 −
a

1 + ahn1
n2

)

ṅ2 = n2

(

e
an1

1 + ahn1
− d

)

,

(5.5)

where r is prey per apita growth rate, c is prey intraspei� ompe-

tition, a is predator attak rate, h is predator handling time, namely

the time needed by eah predator to handle and digest one unit of

prey, e is predator e�ieny, namely a onversion fator transform-

ing eah unit of predated biomass into predator newborns, and d is

predator death rate. The six positive parameters of the model (r,
c, a, h, e, d) ould be redued to three through resaling. However,

we do not follow this option beause the biologial interpretation of

the dependene of the parameters on prey and predator traits would

beome less transparent.

In order to have a meaningful problem one must assume e >
dh, beause, otherwise, the predator population annot grow even

in the presene of an in�nitely abundant prey population. For any

meaningful parameter setting, model (5.5) has a global attrator in

R
2
+ [Hsu et al., 1978℄, namely

(a) the trivial equilibrium (r/c, 0) if d/a(e − dh) ≥ r/c,

(b) a stritly positive equilibrium if

rah− c

2ahc
≤

d

a(e− dh)
<
r

c
,

() a stritly positive limit yle if d/a(e− dh) < (rah− c)/(2ahc).

The transition from (a) to (b) is a transritial bifuration (whih is

generi in the lass of positive systems of the form (5.5) [Kuznetsov,

2004℄), while the transition from (b) to (c) is a superritial Hopf bi-

furation (see Kuznetsov [2004℄ for a proof). In the following, the
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funtional dependenies of the parameters on the traits and the pa-

rameter values will be hosen to satisfy ondition (b) for stationary

oexistene. In partiular, we limit the value of the handling time h.

If we now imagine that a mutant population is also present, we

an enlarge the resident model (5.5) by adding a third ODE and by

modifying the equations of the resident populations in order to take

the mutant population into aount. Of ourse we also need to spe-

ify how the parameters depend upon the traits x1, x2, x
′
1, x

′
2. The

number of possibilities is pratially unlimited, beause even for well

identi�ed prey and predator speies there are many meaningful op-

tions. Thus, at this level of abstration, it is reasonable to limit the

number of parameters sensitive to the traits and avoid trait depen-

denies that ould give rise to biologially unrealisti evolutionary

dynamis, like the unlimited growth of a trait. Our hoie has been

to assume that the parameters r, e, and d are independent on the

traits, beause this will allow us to ompare our results with those

obtained in Diekmann et al. [1995℄ and Derole et al. [2003℄. Thus,

in the ase of a mutation in the prey population, the resident-mutant

model is

ṅ1 = n1

(

r − c(x1, x1)n1 − c(x1, x
′
1)n

′
1+

−
a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x
′
1, x2)n

′
1

n2

)

ṅ′1 = n′1

(

r − c(x′1, x1)n1 − c(x′1, x
′
1)n

′
1+

−
a(x′1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x
′
1, x2)n

′
1

n2

)

ṅ2 = n2

(

e
a(x1, x2)n1 + a(x′1, x2)n

′
1

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x
′
1, x2)n

′
1

− d

)

.

(5.6)

Otherwise, if the mutation ours in the predator population, the
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resident-mutant model is

ṅ1 = n1

(

r − c(x1, x1)n1+

−
a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1
n2 −

a(x1, x
′
2)

1 + a(x1, x′2)h(x1, x
′
2)n1

n′2

)

ṅ2 = n2

(

e
a(x1, x2)n1

1 + a(x1, x2)h(x1, x2)n1
− d

)

ṅ′2 = n′2

(

e
a(x1, x

′
2)n1

1 + a(x1, x
′
2)h(x1, x

′
2)n1

− d

)

.

(5.7)

5.2.1.1 g-funtion

We here show that the resident-mutant models (5.3) and (5.3) an

also be expressed in terms of g-funtions (see Paragraph 3.1). Indeed,

f1(n1, n
′
1, n2, x1, x

′
1, x2) = g1(n1, n

′
1, n2, x1, x

′
1, x2, x1)

f1(n
′
1, n1, n2, x

′
1, x1, x2) = g1(n1, n

′
1, n2, x1, x

′
1, x2, x

′
1)

and

f2(n2, n
′
2, n1, x2, x

′
2, x1) = g2(n2, n

′
2, n1, x2, x

′
2, x1, x2)

f2(n
′
2, n2, n1, x

′
2, x2, x1) = g2(n2, n

′
2, n1, x2, x

′
2, x1, x

′
2)

with g1 and g2 as spei�ed below. Notie that here the numeri sub-

sript of g stands for population 1 (prey) and population 2 (predator),

thus having a di�erent meaning with respet to the previous hapters.

In partiular, the g-funtion for the prey is given by

g1(n1, n
′
1, n2, x1, x

′
1, x2, y) = r − c(y, x1)n1 − c(y, x′1)n

′
1+

−
a(y, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x
′
1, x2)n

′
1

n2,

where y is a "virtual" strategy with vanishing abundane in an envi-

ronment set by strategies x1, x
′
1, and x2 with abundanes n1, n

′
1, and

n2. Evaluating g1(n1, n
′
1, n2, x1, x

′
1, x2, y) at y = x1 (resp., y = x′1)

we obtain f1(n1, n
′
1, n2, x1, x

′
1, x2) (resp., f1(n

′
1, n1, n2, x

′
1, x1, x2)); see

equation (5.6).

The g-funtion for the predator is

g2(n2, n
′
2, n1, x2, x

′
2, x1, y) = e

a(x1, y)n1
1 + a(x1, y)h(x1, y)n1

− d,
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that suitably evaluated at y = x2 and y = x′2 allows to obtain the

predator per-apita growth rates in the resident-mutant model (5.7).

In general, forM -morphi ommunities (withM =M1+M2), the

g-funtion for the prey speies is

g1(n1:M1 , nM1+1:M1+M2 , x1:M1 , xM1+1:M1+M2 , y) =

r −

M1
∑

i=1

c(y, xi)ni −

M1+M2
∑

j=M1+1

a(y, xj)

1 +
∑M1

i=1 a(xi, xj)h(xi, xj)ni
nj,

where the notation n1:M1 stands for n1, . . . , nM1 , while the g-funtion
for the predator speies is

g2(nM1+1:M1+M2 , n1:M1 , xM1+1:M1+M2 , x1:M1 , y) =

e

∑M1
i=1 a(xi, y)ni

1 +
∑M1

i=1 a(xi, y)h(xi, y)ni
− d.

5.2.2 Trait-dependent parameters

We must now speify how the three remaining parameters, namely the

prey intraspei� ompetition c, the predator attak rate a, and the

predator handling time h, appearing in the resident-mutant models,

depend on the resident and mutant traits. Due to our de�nition of

the traits, whih are saled measures of the phenotypes, c, a, and
h are bounded funtions. Unless otherwise stated, the parameters

appearing in these funtions are positive.

Prey intraspei� ompetition c is given by

c(x1, x
′
1) =

γ1 + γ2 (x1 − γ)2

1 + γ0

(

γ1 + γ2 (x1 − γ)2
) exp

(

−

(

x1 − x′1
γ3

)2
)

. (5.8)

It is the produt of two terms. The �rst de�nes the extra-mortality

within groups of idential prey, that has a quadrati minimum at

x1 = γ and saturates at 1/γ0 as x1 diverges from γ (the minimum

ompetition and the loal urvature are ontrolled by parameters γ1
and γ2, respetively). Parameter γ (positive or negative) therefore

desribes a �xed harateristi of the environment, and is heneforth

alled optimum prey trait. The seond term in (5.8) desribes resident-

mutant ompetition. Both resident and mutant prey su�er the highest

(yet di�erent) ompetition when they fae idential individuals, as the

exponential fator is maximum for x1 = x′1. The width γ3 of this gaus-
sian bell is inversely proportional to the sensitivity of ompetition to
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the resident-mutant phenotypi mismath. High (resp. low) sensitiv-

ity yields signi�ant (resp. mild) drops in ompetition as resident and

mutant di�erentiate in phenotype. Intuitively, this suggests that prey

branhing might be favored by lowering γ3, beause the individuals of
the less abundant prey population, whether resident or mutant, are

more likely opposed to di�erent rather than idential individuals, so

they su�er a lower ompetition.

The predator attak rate a is the bell-shaped funtion

a(x1, x2) = α0 + α exp

(

−

∣

∣

∣

∣

x1 − x2
α1

∣

∣

∣

∣

2−α2
)

, (5.9)

where α1 and α2 are the width and the kurtosis of the funtion, re-

spetively. In partiular, if 0 < α2 < 2 the funtion is leptokurti, if

α2 < 0 the funtion is platykurti, while α2 = 0 orresponds to the

normokurti funtion, i.e., a gaussian bell. Predator with pronouned

α2 > 0 (resp. α2 < 0) are alled speialist (resp. generalist) beause

they exploit a narrow (resp. large) spetrum of prey. If prey and

predator traits are tuned, that is, if x1 = x2, the predator attak rate

is maximum (and equal to α0 + α). When prey and predator traits

are far from being tuned, the predator attak rate drops to α0. This

supports the idea that in a system with one predator and two prey

populations with diversi�ed traits, the predator might be prone to

branh into two di�erent predator sub-populations with traits tuned

with those of the two prey.

The predator handling time h is the produt of an inreasing sig-

moidal funtion of the prey trait x1 and of a dereasing sigmoidal

funtion of the predator trait x2

h(x1, x2) = θ

[

1 + θ1 −
2θ1

1 + exp (θ3x1)

] [

1 + θ2 −
2θ2

1 + exp (−θ4x2)

]

,

(5.10)

where θ is the handling time orresponding to the tuned situation

x1 = x2 = 0.
The graphs of funtions c(x1, x

′
1), a(x1 − x2), and h(x1, x2) are

shown in Figure 5.1 for the parameter values indiated in the ap-

tion. Only the third of these funtions, namely, the handling time h,
oinides with those used in Derole et al. [2003℄. The reason for this

hange is that the funtions proposed in this thesis are biologially

sound, while one of those used in Derole et al. [2003℄, though fully

appropriate for the purposes of that paper, was partiularly extreme.

In fat, in Derole et al. [2003℄, the prey intraspei� ompetition
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Figure 5.1: Prey intraspei� ompetition c, predator attak rate a, and
predator handling time h. The graphs orrespond to the fol-

lowing parameter values: γ = 0, γ0 = 1, γ1 = 0.5, γ2 = 5,
γ3 = 0.6, 0.8, 1, α = 1, α0 = 0, α1 = 1, α2 = −3, 0, 1, θ = 0.4,
θ1 = θ2 = 0.5, θ3 = θ4 = 5.

orresponds to equation (5.8) for γ3 → ∞, whih means that the

ompetition su�ered by an individual only depends on its own trait

and not on that of the opponent, a rather disputable biologial as-

sumption. Moreover, the shape of the attak rate in Derole et al.

[2003℄ assumes some environmental onstrain on the predator body

size, while the funtion used here does not.

5.2.3 Evolutionary dynamis

The mutation-ompetition proess an be further spei�ed by mak-

ing suitable assumptions on the frequeny and distribution of small

mutations [Diekmann and Law, 1996, Champagnat et al., 2006, Der-

ole and Rinaldi, 2008℄, and the onlusion is that the rate at whih

the trait xi varies at evolutionary timesale is given by the following

ODE, alled the AD anonial equation:

ẋi = kin̄i(x1, x2)
∂λi(x1, x2, x

′
i)

∂x′i

∣

∣

∣

∣ x′

i = xi

, (5.11)

i = 1, 2, where ki is proportional to the frequeny and size of mu-

tations, n̄i(x1, x2) is the equilibrium density of the resident model,

while

λ1(x1, x2, x
′
1) = f1(0, n̄1(x1, x2), n̄2(x1, x2), x

′
1, x1, x2)

λ2(x1, x2, x
′
2) = f2(0, n̄2(x1, x2), n̄1(x1, x2), x

′
2, x2, x1),

(5.12)
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or, equivalently,

λ1(x1, x2, x
′
1) = g1(n̄1(x1, x2), 0, n̄2(x1, x2), x1, ·, x2, x

′
1)

λ2(x1, x2, x
′
2) = g2(n̄2(x1, x2), 0, n̄1(x1, x2), x2, ·, x1, x

′
2),

are the invasion �tness funtions of the mutations (the initial expo-

nential rate of inrease of the mutant populations). Equation (5.11),

written for the prey and for the predator, gives the two ODEs that

form the evolutionary model (5.2) with

Hi(x1, x2) = n̄i(x1, x2)
∂λi(x1, x2, x

′
i)

∂x′i

∣

∣

∣

∣ x′

i = xi

. (5.13)

One the monomorphi dynamis has found a halt at a stable

evolutionary equilibrium x̄ = (x̄1, x̄2) of model (5.2), one an look

at the seond-order terms in the Taylor expansion of the mutant per

apita growth rate to establish if the equilibrium is a branhing point

(see Paragraph 3.3 and Geritz et al. [1997, 1998℄, Derole and Rinaldi

[2008℄) or not. More preisely, a stable equilibrium x̄ of (5.2) is a

branhing point for the i-th population if

B′
i =

∂2λi(x1, x2, x
′
i)

∂xi∂x′i

∣

∣

∣

∣

x1=x̄1, x2=x̄2
x′i=x̄i

< 0 (5.14)

and

B′′
i =

∂2λi(x1, x2, x
′
i)

∂x′2i

∣

∣

∣

∣

x1=x̄1, x2=x̄2
x′i=x̄i

> 0. (5.15)

Under ondition (5.14), there exist a region in the plane (xi, x
′
i) (with

the shape, loally to point (x̄, x̄), of a one symmetrially opened with

respet to the anti-diagonal, see Paragraph 3.2.1) for whih small mu-

tations in the i-th population invade and oexist, at a stable eologi-

al equilibrium, with the former residents. The eologial equilibrium

exists but is unstable if the ondition is reversed; it does not exist if

B′
i = 0.
Note that the omputation of B′

i requires the derivatives of the

eologial equilibrium n̄(x), for whih typially there is no analytial

expression. These derivatives an however be omputed by solving

suitable systems of algebrai linear equations, as explained in Para-

graph 5.2.3.1.

Under ondition (5.15), the two similar traits xi and x
′
i further dif-

ferentiate in aordane with the higher-dimensional anonial equa-

tion, where x′i plays the role of a new resident trait.
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Finally, if onditions (5.14) or (5.15) are not satis�ed neither for

i = 1 nor i = 2, no branhing is possible and the equilibrium x̄ is

a terminal point (see Paragraph 3.3) of the evolutionary dynamis,

among whih the evolutionarily stable oalitions of game theory when

B′′
i is negative for all populations.

After a �rst branhing has ourred, there are three resident pop-

ulations, and one an repeat the analysis by onsidering the three

orresponding resident-mutant models and by deriving from them the

orresponding anonial equation. If the evolutionary trajetory origi-

nating at the branhing point of the new anonial equation onverges

toward an equilibrium point, three di�erent branhings are possible

sine there are three resident populations in the system. But the

branhing onditions are still based on the signs of B′
i and B

′′
i (simi-

larly spei�ed as in (5.14) and (5.15)), where i is the index spanning

the resident populations (i = 1, 2, 3) and λi(x1, x2, x3, x
′
i) is the �tness

of the mutants of the i-th population.

And the story ontinues like so through a sequene of suessive

evolutionary branhings (and possible evolutionary extintions) until

a terminal point is reahed or the evolutionary trajetory tends toward

a non-stationary (yli or haoti) regime (alled Red Queen behav-

ior after Van Valen [1973℄, see also Marrow et al. [1992℄, Diekmann

et al. [1995℄, Marrow et al. [1996℄, Derole et al. [2006℄, Derole and

Rinaldi [2010℄, Derole et al. [2010a℄). In priniple in�nite branhing

sequenes are possible, but have been shown to be struturally un-

stable, meaning that the region in parameter spae assoiated to a

possible sequene should shrink with the length of the sequene and

vanish as the length diverges to in�nity [Gyllenberg and Meszéna,

2005, Meszéna et al., 2006℄.

5.2.3.1 Computation of B′
i

We show in this paragraph how the branhing ondition (5.15) an

be numerially omputed, with referene to the simplest ommunity

omposed of M = 2 populations. Generalization to the ase with

M > 2 is straightforward.

The invasion �tness λi is a funtion of the resident and mutant

traits (x1, x2, x
′
i), i = 1, 2, that is obtained by evaluating the mutant

per-apita growth rate (the initial exponential rate of inrease of the

mutant population) at the resident equilibrium of model (5.1), i.e.,

λ1(x1, x2, x
′
1) = f1(0, n̄1(x1, x2), n̄2(x1, x2), x

′
1, x1, x2)
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for the prey and similarly for the predator population. When taking

the �tness derivative with respet to xj , j = 1, 2, one obtains

∂

∂xj
λ1(x1, x2, x

′
1) =

[

∂

∂n1
f1(0, n1, n2, x

′
1, x1, x2)

∂

∂xj
n̄1(x1, x2) +

∂

∂n2
f1(0, n1, n2, x

′
1, x1, x2)

∂

∂xj
n̄2(x1, x2) +

∂

∂xj
f1(0, n1, n2, x

′
1, x1, x2)

]
∣

∣

∣

∣

n1,2=n̄1,2(x1,x2)

,

where the expliit expressions for the derivatives of the resident equi-

librium with respet to the traits are typially not available.

They an however be omputed realling the de�nition of n̄(x),
i.e.,

fR1 (n̄1(x1, x2), n̄2(x1, x2), x1, x2) = 0
fR2 (n̄1(x1, x2), n̄2(x1, x2), x1, x2) = 0

(5.16)

(see model (5.1)). In fat, taking the derivative of (5.16) with respet

to xj gives

∂fR1
∂n1

∂n̄1
∂xj

+
∂fR1
∂n2

∂n̄2
∂xj

+
∂fR1
∂xj

= 0

∂fR2
∂n1

∂n̄1
∂xj

+
∂fR2
∂n2

∂n̄2
∂xj

+
∂fR2
∂xj

= 0,

(5.17)

where the funtions' arguments have been omitted for simpliity, but

note that ∂fR1,2/∂xj = ∂fR1,2(n1, n2, x1, x2)/∂xj |n1,2=n̄1,2(x1,x2).

The equations in (5.17) form a linear system in the unknowns

∂n̄1/∂xj and ∂n̄2/∂xj . In matrix form, it is

J









∂n̄1
∂xj
∂n̄2
∂xj









= −









∂fR1
∂xj
∂fR2
∂xj









,

where J is the Jaobian matrix of the demographi model assoiated

with the resident equilibrium, that is hyperboli (and therefore invert-

ible) by assumption. Same approah also holds for the xj-derivatives
(j = 1, 2) of λ2(x1, x2, x

′
2) of the predator population.

5.2.3.2 Missed or simultaneous branhing?

If onditions (5.14) and (5.15) are satis�ed for both populations, i.e.,

for i equal to 1 and 2, eah one will initially beome dimorphi, but
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generially only one of the two nasent branhings survives. The rea-

son is that the speed of divergene |ẋ′i−ẋi| between the two branhing

morphs is given by ki n̄iB
′′
i |x

′
i − xi| + O(|x′i − xi|

2) and (generially)

di�ers among the two populations. Thus, as branhing takes o� (a-

ording to the four-dimensional anonial equation) in the population

i with largest exponential rate of divergene

Di = ki n̄iB
′′
i , (5.18)

the evolution of xi and x
′
i (generially) hange the equilibrium trait

x̄j , j 6= i, so that the pair (xj , x
′
j) falls outside the resident-mutant

oexistene region that is present loally to point (x̄j , x̄j) in the plane

(xj , x
′
j) for the urrent values of (xi, x

′
i). Either the xj- or the x′j-

population therefore goes extint on the eologial timesale, so the

population turns bak monomorphi and branhing does not develop

(this phenomenon has been alled missed branhing in Kisdi [1999℄,

see Paragraph 3.3).

In nongeneri ases, that is, for ritial parameter ombinations

(e.g. on urves in parameter planes) or in models haraterized by

partiular symmetries (see e.g. Metz et al. [1996℄, Diekmann and

Doebeli [1999℄, Doebeli and Diekmann [2000℄), branhing an de-

velop simultaneously in more than one population. For example, if

we set h(x1, x2) = 0 in our model, we are onsidering a Holling-type

I funtional response for the predator (instead of a Holling-type II).

In this ase the resident model (5.5) beomes

ṅ1 = n1 (r − cn1 − an2)
ṅ2 = n2 (ean1 − d) ,

while the �tness funtions are

λ1(x1, x2, x
′
1) = r − c(x′1, x1)n1 − a(x′1, x2)n2

λ2(x1, x2, x
′
2) = ea(x1, x

′
2)n1 − d

(see equations (5.12), (5.6), and (5.7) with h(x1, x2) = 0). It is

now possible to ompute the seletions gradients for the prey and

the predator traits. Realling the shapes of funtions c(x1, x
′
1) and

a(x1, x2) (see equations (5.8) and (5.9) and Figure 5.1), it is easy to

see that the evolution of the prey will try to minimize intra-spei�

ompetition evolving toward the valley of funtion c(x1, x
′
1), while the

predator will hase the prey limbing the peak of funtion a(x1, x2).
As a result, the evolutionary equilibrium is attained at the optimum

prey trait (γ, γ), where the prey is at the ompetition minimum and
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Figure 5.2: Simulation of suessive AD anonial equations in the model

without predator funtional response. Simultaneous branhings

are possible both for the prey and the predator speies. Thik

(resp. normal) line: prey (resp. predator) traits. Parameter

values are as in Figure 5.6. Branhing instants are hosen when

ẋi < 10−9
for eah i.

the predator is tuned to the prey and at its predation maximum. It

is easy to see that the eo-evolutionary model is perfetly symmetri

around this equilibrium point (as in Metz et al. [1996℄, Diekmann

and Doebeli [1999℄, Doebeli and Diekmann [2000℄), and the same

symmetry holds for enlarged models. So in this partiular models

branhing an develop simultaneously in more than one population.

Figure 5.2 shows a simulation of the eo-evolutionary model with-

out predator funtional response (h(x1, x2) = 0)�see Paragraphs

5.4.1 and 5.4.2 for the simulation tehnique and the hoie of the

initial onditions after eah branhing. The strutural symmetries in

this model allow simultaneous branhings, that does not happen in

the model with the funtional response (ompare with Figure 5.6).

Notie that suh symmetries also imply that onditions (5.14) are

struturally ritial (B′
i = 0 for all i), thus these branhings are non-

generi and would require a deeper study.

Sine no symmetry is present in the spei� eo-evolutionary model

introdued in the previous paragraphs, we restrain our attention to

the branhing senarios that our generially in parameter spae.
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5.3 Branhing senarios and sequenes

So far, we have seen that the AD anonial equation (5.11) and the

branhing onditions (5.14) and (5.15) allow one to fully predit the

evolution of biodiversity starting from a given anestral ommunity.

Sine the analysis presented in the next paragraphs shows that evo-

lutionary extintions play no role in the oevolutionary model intro-

dued in the previous paragraphs, we now fous our attention only

on evolutionary branhing.

Eah branhing senario identi�es a branhing sequene, that is a

sequene of symbols (1 and 2 in the ase of two speies), that speify in
whih speies the branhings our. It is important to notie that two

di�erent branhing senarios an be assoiated to the same branhing

sequene. For example, suppose that in a system initially omposed of

monomorphi prey and predator, a �rst branhing ours in the prey.

If, after that, branhing is again possible in both prey populations,

we have two possible branhing senarios depending upon whih one

of the two prey does branh. However, the two branhing senarios

identify the same branhing sequene, namely the sequene s = 11. In
other words, branhing sequenes do not ontain the full information

on branhing senarios, but summarize the relevant information to

study the evolution of biodiversity, namely the hange in the number

of oevolving prey and predator populations.

All branhing sequenes that an potentially our in all eo-

evolutionary models an be represented as paths from the root of

the in�nite binary tree T shown in Figure 5.3. The root node (1, 1)
represents the anestral ommunity omposed of two populations, one

for eah oevolving speies, and the nodes of eah layer k = 0, 1, 2, . . .
refer to ommunities with k + 2 populations. Notie that �nite se-

quenes an be represented by the last node of the orresponding path

in T , i.e., �nite branhing sequenes and nodes of T are interhange-

able.

The aim of our analysis is to identify the branhing sequenes

that develop from given anestral onditions for di�erent parameter

values. Fixing the anestral onditions means that we start from a

given ommunity (one prey, one predator in our ase), haraterized

by given phenotypi traits (x1, x2) and oexisting on a given eologial
equilibrium n̄(x). Spei�ally, we analyze a ompat domain P of a

parameter plane (p1, p2).

For a transparent desription of our approah we now give some

de�nitions. Let s be a �nite branhing sequene, whih ould be
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Figure 5.3: The tree T representing all potential branhing sequenes of a

two-speies ommunity. Eah node (M1,M2) represents a om-

munity omposed ofM1 prey populations andM2 predator pop-

ulations and belongs to the layer k =M1+M2−2, k = 0, 1, 2, . . ..
Edges 1 and 2 represent prey and predator branhing, respe-

tively.

the �rst part of a longer sequene (alled s-extension). A branhing

sequene s is alled observable i� there exists p = (p1, p2) ∈ P that

produes a branhing senario assoiated to s or to an s-extension.
The subset of P giving rise to an observable branhing sequene s is
indiated by O(s).

An observable sequene s is alled omplete i� there exists p ∈
O(s) that does not produe an s-extension; inomplete otherwise.

The subset of O(s) giving rise to a omplete branhing sequene s is
indiated with C(s).

By de�nition, given a branhing sequene s, we have

∅ ⊆ C(s) ⊆ O(s) ⊆ P. (5.19)

If O(s) = ∅ the branhing sequene s annot our and the orre-
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sponding node in T an be eliminated together with all its suessors.

If O(s) 6= ∅ and C(s) = ∅ the branhing sequene s is inom-

plete and the orresponding node in the tree an be identi�ed with a

partiular olor (grey). In this ase, s-extensions an be of any type

beause through extension one an obtain ompleteness or not, or

even lose observability.

If C(s) 6= ∅ the branhing sequene s is omplete and the or-

responding node in the tree an be identi�ed with a seond olor

(white). Again, the suessors of a white node in the tree an be of

any type.

When all nodes of T are eliminated or olored in the way just de-

sribed, a new tree BT , alled branhing tree, is obtained. Notie that
the tree BT an be in�nite (but reall that in�nite sequenes require

some ritiality in the hoie of the model funtions and parameters

[Gyllenberg and Meszéna, 2005, Meszéna et al., 2006℄). Moreover, a

non empty subset of P an be assoiated to eah node of the branh-

ing tree: the set O(s) to eah gray node identifying the inomplete

sequene s; the set C(s) to eah white node identifying the omplete

sequene s. The sets C(s) are all disjoint, whereas given two se-

quenes s′ and s′′, O(s′′) ⊆ O(s′) i� s′′ extends s′. The olletion C
of all sets C(s) obviously de�nes a partition of the parametri domain

P , though some of the sets C(s) may have zero measure in P (those

orresponding to non-generi sequenes, e.g. sequenes where several

branhing our simultaneously).

Finally, we all branhing portrait (BP ) the diagram of the olle-

tion C. This parametri portrait graphially summarizes the analysis

of branhing senarios and an be used as a ontrol hart in deriving

managerial poliies. It an be omposed of in�nite regions, though

shrinking with the length of the sequene, so that an iterative pro-

edure for its onstrution, that onsiders sequenes with inreasing

length, is proposed in the next paragraph.

5.4 Iterative proedure

In this paragraph we show how the branhing portrait BP an be pro-

gressively approximated by applying an iterative proedure involving

simulations and ontinuations. The proedure is illustrated by apply-

ing it to the prey-predator eo-evolutionary model desribed above.

The two parameters p1 and p2, belonging to two given intervals, are e
and γ3, i.e., predator e�ieny (see (5.5)) and the parameter speify-

ing the sensitivity of prey intraspei� ompetition to resident-mutant
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and inomplete branhing sequenes. The approximation BP4

of the branhing portrait, where a omplete branhing sequene

of length smaller or equal to 4 is assoiated to eah white region,
whereas a sequene of length equal to 5 is assoiated to eah

dotted region. All parameters, exept e and γ3, are at their

referene values: r = 0.5, d = 0.05, γ = 0, γ0 = 0.01, γ1 = 0.5,
γ2 = 2.3, α = 1, α0 = 0.01, α1 = 1, α2 = 0, θ = θ1 = θ2 = 0.5,
θ3 = θ4 = 1, k1 = k2 = 1. The onsidered anestral ondition is

x1(0) = 0, x2(0) = 0.

phenotypi mismath (see (5.8)).

The proedures generates at iteration k the tree BTk, omposed of

layers 0, . . . , k of the branhing tree BT , and an approximation BPk
of the branhing portrait BP . Spei�ally, BPk inludes the sets C(s)
assoiated to branhing sequenes s of length smaller or equal to k,
while the remaining area of the parameter domain P is divided into

the sets O(s) assoiated to sequenes of length equal to k + 1. All

this information an be obtained by analyzing the anonial equation

desribing the ommunities orresponding to the nodes at layer k of

BTk. In partiular, the branhing points in these ommunities identify

the observable sequenes of length k+1 and de�ne the nodes at layer

k + 1 of BTk+1, their olor to be determined at the next iteration.

For example, in the ase of our prey-predator model, for k = 4,
the tree BT4 and the portrait BP4 are as in Figure 5.4. The white

region C4 = C(-) ∪ C(1) ∪ C(12) ∪ C(121) ∪ C(1212) in BP4 is the
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olletion of the sets C(s) of the white nodes of BT4, i.e., the sets

C(s) of all omplete branhing sequenes of length smaller or equal

to k = 4. Hene, C4 ⊆ C. The dotted region is the union of the

sets O(s) of sequenes of length k + 1 = 5, so �ve branhings are

observable in this region. Obviously, the dotted region shrinks and

eventually disappears as k is inreased. In onlusion, smaller dotted

regions in BPk orrespond to better approximations of BP .

5.4.1 Iteration 0

We start with k = 0, i.e., with a degenerate tree omposed of the

root node (1, 1) orresponding to the empty sequene s = -, and the

target is to determine BT0 and BP0. As for BT0, we must establish
the nature (omplete or not) of the root node, whereas for BP0, we

must determine the set C0 = C(-), i.e., the parameter values for whih

no branhing is possible, and the sets O(1) and O(2) where sequenes
of length k + 1 = 1 are observable.

For this, we start our analysis from a given point in the parameter

domain P (we start from p = (e, γ3) = (0.1, 2)) and determine the sta-

ble equilibrium (x̄1,x̄2) of the orresponding AD anonial equation

(5.11) reahed from the onsidered anestral ondition. This an be

easily aomplished in a standard way, beause the non-trivial equi-

librium (n̄1(x1, x2), n̄2(x1, x2)) of the eologial model (5.5) is known

in losed form (see Derole et al. [2003℄). However, this is not true

for the nodes of all larger trees, beause the equilibrium n̄(x) of the
resident model annot be derived analytially when the populations

are three or more. Thus, we systematially determine the stable equi-

librium of any AD anonial equation through the simulation of an

eo-evolutionary model haraterized by two di�erent time sales. In

the ase k = 0 the slow-fast ODE system is

ṅ1 = n1f
R

1 (n1, n2, x1, x2, e, γ3)
ṅ2 = n2f

R

2 (n1, n2, x1, x2, e, γ3)
ẋ1 = ǫk1H1(x1, x2, e, γ3)
ẋ2 = ǫk2H2(x1, x2, e, γ3),

(5.20)

where ǫ is a small positive parameter used to tune the slow evolu-

tionary dynamis with respet to the fast eologial dynamis (in our

appliation the value ǫ = 10−3
has given satisfatory results).

For p = (e, γ3) = (0.1, 2) and the anestral ondition we on-

sider (x1(0) = 0, x2(0) = 0), system (5.20) tends toward the stable

equilibrium (n̄1, n̄2, x̄1, x̄2) = (0.6589, 0.2269,−0.0048, 0.0371), thus
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haraterized by

fR1 = fR2 = H1 = H2 = 0. (5.21)

One this equilibrium has been found, it is possible to ontinue it by

varying e [γ3℄. The aim is to ontinue it until a point where B′′
1 = 0

is obtained, that is, until a solution of the system with �ve equations

fR1 = fR2 = H1 = H2 = B′′
1 = 0 (5.22)

is found. Sine the unknowns in this system are six (n1, n2, x1, x2,
e, γ3), the solution of (5.22) an in turn be ontinued by varying

both e and γ3, thus �nding a urve e(γ3) (resp. γ3(e)) in parameter

spae. On this urve, shown in BP0 in Figure 5.5, the �rst branhing

funtion of the prey B′′
1 annihilates. Therefore, at one side of the

urve the �rst branhing ondition for the prey ((5.14) with i = 1) is
satis�ed.

In priniple, analogous operations should be done for the other

three branhing funtions B′
1, B

′
2 and B′′

2 to possibly obtain other

three urves in parameter spae. The region in whih population i
does branh would then be the one in whih B′

i < 0 and B′′
i > 0, pro-

vided population i has the largest resident-mutant trait divergene

(see (5.18)) where both prey and predator satisfy the branhing on-

ditions (5.14) and (5.15). However, it is possible to numerially verify

that B′
1 is always negative (see Paragraph 5.2.3.1). This property is

valid in general, that is, also in systems with many populations of prey

and predator, and is due to the exponential term in the ompetition

funtion (5.8) whih favors resident-mutant oexistene. Hene, the

branhing ondition of the i-th prey population is B′′
i > 0.

Instead, for the predator, the funtion B′
2 is identially null, so

that the predator branhing is not possible. Also this property is

valid in general, when the number of predator populations (M2) is

equal to the number of prey populations (M1). As already notied in

Derole et al. [2003℄, this is a diret onsequene of the well known

ompetitive exlusion priniple [Hardin, 1960, MaArthur and Levins,

1964, 1967, MaArthur, 1969℄ and its more reent generalizations

[Diekmann et al., 2003, Diekmann and Metz, 2006, Gyllenberg and

Meszéna, 2005, Meszéna et al., 2006℄. If, otherwise, M1 > M2, then

B′
i is negative for all predator populations (numerially heked), so

that, the branhing ondition for the i-th predator population re-

dues to B′′
i > 0. Using the terminology introdued in Diekmann

et al. [2003℄, the number of stationary oexisting morphs of a speies

is limited by the number of bioti environmental fators a�eting the
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eologial dynamis of the speies. For the predator, these fators are

simply the prey densities, i.e., M1 fators.

While monitoring funtions B′′
1 and B′′

2 during ontinuation, we

must also hek whether the equilibrium of system (5.20) undergoes

a bifuration [Kuznetsov, 2004, Meijer et al., 2009℄, e.g., it might dis-

appear through a saddle-node (or fold) bifuration or lose stability

through a Hopf bifuration. This is easy and automatially done by

standard ontinuation softwares. In the �rst ase, the evolutionary

trajetory originated from the onsidered anestral ondition will on-

verge to another evolutionary attrator, possibly an evolutionary equi-

librium that might generate a di�erent branhing sequene, whereas

evolutionary yling prevents further branhing in the seond ase.

Reall that our hoie of the model parameters guarantees the station-

ary oexistene of the demographi model (5.1), so that bifurations

an only involve the slow dynamis of system (5.20). Moreover, while

moving parameters in the presene of multiple evolutionary attrators,

di�erent branhing sequenes might also arise without bifurations,

simply beause the onsidered anestral ondition swithes from the

basin of attration of one attrator to that of another. Multi-stability

is related to the presene of saddle equilibria, whose stable manifolds

are the boundaries of the di�erent basins of attration. Sine attra-

tors themselves, saddles, and their manifolds move in the state spae

when hanging parameters, it ould happen that the onsidered anes-

tral ondition (whih is �xed and does not hange with parameters)

passes, at a ritial parameter value, from the basin of attration of

one attrator to that of another. Tehnially, this is not a bifuration,

but implies a qualitatively di�erent evolutionary dynamis.

None of the above possibilities ourred in system (5.20), whereas

saddle-node bifurations will be found in the further iterations of the

proedure, though with no e�et on the branhing portraits. For this

reason, they will no more be disussed in the next iterations. Oth-

erwise, Hopf bifurations will be found and will a�et the branhing

portraits with respet to other parameter pairs that will be presented

in the Disussion.

In onlusion, the iteration k = 0 of the proedure shows that

the empty branhing sequene s = - is omplete, beause region C(-)
(where no branhing is possible) is not empty, so that the olor of the

root of the tree BT0 (the �rst node of BT4 in Figure 5.4) is white.

The �rst approximation BP0 of the branhing portrait BP is shown in

Figure 5.5, where the dotted region is nothing but O(1), sine O(2) is
empty beause the predator annot branh (so that O(1) = P−C(-)).



5.4. ITERATIVE PROCEDURE 125

�������

�������

�������

�������

�������

�������

�������

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

2.5

3

0.1

PSfrag replaements

predator e�ieny, e

p

r

e

y



o

m

p

e

t

i

t

i

o

n

s

e

n

s

i

t

i

v

i

t

y

,

γ
3

B′′

1 = 0

C(-)

O(1)

A BP0

�������

�������

�������

�������

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

���

���

���

�����

�����

�����

�����

�����

�����

PSfrag replaements

predator e�ieny, e

p

r

e

y



o

m

p

e

t

i

t

i

o

n

s

e

n

s

i

t

i

v

i

t

y

,

γ
3

B′′

1,2 = 0

B′′

1 = 0

B′′

2 = 0

B′′

3 = 0

C(-)

C(1)

O(11)

O(12)

D1,2 = D3

B BP1

�������

�������

�������

�������

�������

�������

���������������

�

�

��������������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������������������

��

��

���������

�

�

���

��

��

�

�

�

�

�

��

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

PSfrag replaements

predator e�ieny, e

p

r

e

y



o

m

p

e

t

i

t

i

o

n

s

e

n

s

i

t

i

v

i

t

y

,

γ
3

B′′

1,2 = 0

D1 = D4

C(-)

C(1)
C(12)

O(111)

O(121)

O(112)

C BP2

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

�������

�������

�������

�������

�������

PSfrag replaements

predator e�ieny, e

p

r

e

y



o

m

p

e

t

i

t

i

o

n

s

e

n

s

i

t

i

v

i

t

y

,

γ
3

B′′

1,3 = 0

B′′

4,5 = 0

D1,3 = D4,5

C(-)

C(1)
C(12)

C(121)

O(1111)

O(1211)

O(1212)

O(1121)

D BP3

Figure 5.5: The approximated branhing portraits BP0�BP3 produed at

the iterations k = 0, 1, 2, 3 of our proedure. At eah iteration

the boundaries added to the diagram are urves of the type

B′′
i = 0 or Di = Dj and are aordingly labeled (reall that

at iteration k we analyze ommunities with M1 +M2 = k + 2
populations and that i = 1, . . . ,M1 and i =M1+1, . . . ,M1+M2

are prey and predator indexes, respetively). As shown in BP1

(see also enlarged box), the region boundaries (solid lines) might

onatenate segments of di�erent urves. Parameter values as

in Figure 5.4.

5.4.2 Iteration 1

At the iteration k = 1 the ommunity has two prey populations

(M1 = 2) and one predator population (M2 = 1) and the target

is to determine BT1 and BP1. BT1 has only node (2, 1) at level 1
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(beause predator branhing is not possible at the root node), so we

must establish its nature. As for BP1, we must determine the set

C(1), i.e., the parameter values for whih no branhing is possible at

node (2, 1), and the sets O(11) and O(12) where sequenes of length
k + 1 = 2 are observable. Of ourse, suh sets are ontained in O(1),
i.e., in the dotted region of BP0 (see Figure 5.5).

For this, �rst we write the AD anonial equation (omposed of

three ODEs, one for eah population), and then determine its stable

equilibrium (x̄1,x̄2,x̄3). Similarly to what was done in the previous

paragraphs, we simulate a slow-fast eo-evolutionary system with six

variables: n1, n2, n3 and x1, x2, x3, where n3 and x3 are predator

density and trait. This system is analogous to (5.20) and must be

simulated starting from initial onditions that represent the state of

the system just after a prey branhing has ourred in the system with

M1 = M2 = 1. This links this iteration with the previous one. For

produing the six required initial onditions we selet any point on

the urve B′′
1 = 0 in BP0, whih orresponds to a stable equilibrium of

system (5.20) and we ontinue it by inreasing e in order to enter into

the dotted region O(1) where prey branhing ours. Sine lose to the
branhing point the two similar traits oexist and evolve in opposite

diretions, we de�ne the initial ondition as follows: n1(0) = n2(0) =
n̄1/2, n3(0) = n̄2, x1(0) = x̄1 − δ, x2(0) = x̄1 + δ, x3(0) = x̄2, where
(n̄1, n̄2, x̄1, x̄2) is the obtained equilibrium of system (5.20) (we used

δ = 10−3
). One a stable equilibrium (n̄1, n̄2, n̄3, x̄1, x̄2, x̄3) has been

obtained by simulating the six-dimensional eo-evolutionary system,

the parameter e and/or γ3 are varied until three points in parameter

spae are obtained where B′′
1 = 0, B′′

2 = 0, B′′
3 = 0, respetively.

These three points belong to the boundaries of the regions where

populations 1, 2, 3 an branh, so that the three boundaries an be

produed through ontinuation of the solution of the algebrai systems

fR1 = fR2 = fR3 = H1 = H2 = H3 = B′′
i = 0 (5.23)

with i = 1, 2, 3.
The result allows one to determine, by simply looking at the signs

of all B′′
i in the viinity of the urves, the tree BT1 (the �rst two layers

in BT4 in Figure 5.4) and the approximation BP1 of the branhing

portrait (see Figure 5.5). Node (2, 1) is white beause region C(1)
(where one and only one prey branhing ours) is not empty. The

dotted region of BP1, to be further investigated, is the union of the

sets O(11) and O(12), where prey or predator branhing ours at

node (2, 1). Note that the urves B′′
1 = 0 and B′′

2 = 0 are very lose
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one to the other and not distinguishable at the sale of the �gure.

The enlargement in BP1 shows that O(11) is the region where at

least one of the two prey an branh. Where both prey an branh,

it does not matter whih one does it�the one with faster resident-

mutant divergene (see (5.18))�sine further branhings produe the

same sequenes. Where also the predator aquires a positive B′′
3 ,

the population that branhes is again the one with faster resident-

mutant divergene, and in this ase the lines along whih D1 = D3

and D2 = D3 (again not distinguishable at the sale of the �gure)

matter in the branhing portrait.

5.4.3 Suessive iterations

The suessive iterations proeed along the same lines we have de-

sribed in detail in the two previous paragraphs. We now brie�y

summarize seven sequential steps in whih eah iteration an be sub-

divided. We reall that the target of iteration k is the determination

of the tree BTk and of the approximation BPk of the branhing por-

trait BP .

1. Write the AD anonial equation assoiated to eah of the sets

O(s), with s of length k, omposing the dotted region of the

approximation BPk−1 of the branhing portrait determined at

the previous iteration. In eah of these regions, after the �rst

k branhings, the ommunity is omposed of M1 prey and M2

predator (with M1+M2 = k+2). For example, at the iteration

2, we onsider the sets O(11) with M1 = 3 and M2 = 1 and

O(12) with M1 = 2 and M2 = 2 (see BP1 in Figure 5.5).

2. For eah onsidered anonial equation, write the orresponding

2(k + 2)-dimensional slow-fast eo-evolutionary system.

3. Determine the stable equilibrium of the eo-evolutionary sys-

tem through simulation. The initial onditions of the simula-

tion must represent the density and the trait of the populations

just after the k-th branhing. Note that if the boundary of

the set O(s) is omposed of several segments orresponding to

branhing of di�erent populations, an initial ondition for eah

branhing must be onsidered.

4. Continue the stable equilibria of the eo-evolutionary systems

varying e or γ3 until a point on eah possible urve where B
′′
i = 0

is found. If no suh point is found, B′′
i never hanges sign. If B

′′
i
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is negative, no branhing is possible for population i, whereas if
it is positive branhing is possible in the whole region.

5. Produe the urves on whih B′′
i = 0 through ontinuation of

the points determined at step 4.

6. In the regions where B′′
i and B′′

j are positive for i 6= j, produe
through ontinuation the urves on whih Di = Dj .

7. Determine (through a simple inspetion of the signs of B′′
i near

the urves) the tree BTk and the approximation BPk of the

branhing portrait BP . In partiular, Ck is obtained by adding

to Ck−1 the parameter ombinations for whih no further branh-

ing has been deteted, whereas the new dotted region is the

union of the identi�ed sets O(s), with s of length k + 1. The

boundary of suh sets are obtained by suitable onatenating

segments of the obtained urves B′′
i = 0 and Di = Dj .

Figure 5.5 shows the approximations BPk of the branhing por-

trait obtained for k = 0, 1, 2, 3 while BP4 was already reported in

Figure 5.4. The omparison of these approximations learly points

out that our proedure is rather e�ient sine the dotted region (that

must be further analyzed at iteration k + 1) shrinks signi�antly at

eah iteration.

Figure 5.6 shows an example of simulation of suessive anonial

equations orresponding to a omplete sequene with four alternate

branhings.

5.5 Disussion

In the �rst part of this paragraph we disuss the main biologial

onsequenes of the analysis performed so far, while in the seond part

we show how, with a marginal extra omputational e�ort, the sope

of the analysis an be substantially enlarged. Finally, we desribe

the steps that are required to abstrat from our analysis and propose

a general method for investigating branhing senarios in oevolving

speies.

Before disussing the approximation of the branhing portrait in

Figure 5.4, let us notie that the parameter γ3 on the vertial axis

of that �gure is inreasing from top to bottom. Sine dereasing val-

ues of γ3 orrespond (see (5.8)) to inreasing sensitivities of prey in-

traspei� ompetition to the resident-mutant phenotypi mismath,
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Figure 5.6: Simulation of suessive AD anonial equations for the alter-

nate branhing sequene s = 1212. Thik (resp. normal) line:

prey (resp. predator) traits. Parameter values are as in Figure

5.4, e = 0.98 and γ3 = 2. Branhing instants are hosen when

ẋi < 10−9
for eah i.

in interpreting Figure 5.4 we must take into aount that its left lower

orner represents prey with low sensitivity of ompetition and preda-

tor with low e�ieny, whereas highly sensitive ompeting prey and

very e�ient predator are loated at the right upper orner.

The �rst property emerging from Figure 5.4 is that the region

C(-) where branhing is not possible is in the left lower orner. This

is quite intuitive from a biologial point of view, beause prey with low

sensitivity of ompetition has no relevant advantages in splitting when

the predation pressure is limited by a low predator e�ieny. For the

same reason, at the right upper orner, long branhing sequenes are

possible.

A seond interesting property pointed out by Figure 5.4 is that

both alternate (prey and predator) and unilateral (only prey) branh-

ing sequenes are possible. More preisely, long alternate branhing

sequenes are favored by high predator e�ieny, while long unilateral

prey branhing sequenes (see for example the set O(11111)) our

for low predator e�ieny and high prey sensitivity of ompetition.

Also this property an be intuitively understood beause when prey

ompetition is highly sensitive prey have an advantage in splitting in

order to redue the negative onsequenes of being too similar.

Notie that also long branhing sequenes omposed of a �rst

phase of alternate branhing onatenated with a long sequene of
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prey branhing are possible (see e.g. region O(12111) in Figure 5.4),

but require a few more iterations of our proedure in order to be

learly pointed out in better approximations of the branhing por-

trait (e.g. observable prey branhings are added to O(12121) in BPk
for k > 4).

Finally, a third property that is worth mentioning is that branh-

ing senarios an be highly sensitive to parameter perturbations. This

is learly visible lose to the points in parameter spae where two or

more region boundaries merge. Also the boundary separating set

C(−) from O(11111) in BP4 shows that as soon as prey branhing

beomes possible at node (1, 1), branhing is possible also at nodes

(M1, 1), with M1 ≥ 2, so that a small parameter perturbation an

disriminate between very poor and extremely rih prey biodiversity.

This latter property has also been observed in the Lotka-Volterra

ompetition model [Kisdi, 1999, Derole et al., 2008℄.

In onlusion, in oevolving prey-predator systems not only the

number of prey populations (i.e., biodiversity) is higher than the

number of predator populations (as implied by the priniple of om-

petitive exlusion) but often this di�erene is remarkable, in parti-

ular when prey intraspei� ompetition is highly sensitive to the

resident-mutant phenotypi mismath. This onlusion is in good

agreement with many studies based on �eld observations of aquati

and terrestrial food hains like phytoplankton-zooplankton in shallow

lakes [She�er, 1998℄, rodents and their predators in boreal and arti

regions [Turhin, 2003, King and Sha�er, 2001℄, and many others

[Briand and Cohen, 1984℄.

We now show how the analysis desribed so far, onerning the

in�uene of two parameters p1 and p2 on branhing senarios, an

be extended to study the in�uene of any other parameter p3. The

idea, suggested by the power and �exibility of ontinuation methods,

is very simple. Suppose an approximation of the branhing portrait

BP , like that shown in Figure 5.4, has already been produed. Exept

for p1 and p2, this approximated portrait has been omputed for �xed

referene values

pi = p∗i i = 3, 4, 5, . . .

of all other parameters (see the aption of Figure 5.4). We an there-

fore �x p2 at a partiular referene value p∗2 and read from BP4 in

Figure 5.4 the p1-oordinates of all points of the boundaries of the var-
ious regions with p2 = p∗2. Obviously, these p1-oordinates allow one

to determine in the spae (p1,p3) a series of points with p3 = p∗3 be-

longing to the boundaries of the various regions of the approximated
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branhing portrait obtainable for

pi = p∗i i = 2, 4, 5, . . .

Then, with a limited omputational e�ort, we an produe through

ontinuation of this series of points a new approximated branhing

portrait in the spae (p1,p3). This means that, with almost the same

omputational burden neessary for disussing the in�uene of a pair

of parameters, we an, in reality, disuss the in�uene of any other

parameter pair.

Six examples of new branhing portraits obtained from Figure

5.4 by �xing γ3 = 2 are shown in Figure 5.7. Sine the branhing

sequenes obtained for γ3 = 2 are all omplete in BP4, it was rea-

sonable to expet exat branhing portraits in the spae (p1, p3) (no
dotted regions) haraterized by omplete sequenes, at least for small

deviations of p3 from p∗3. All branhing portraits have predator e�-

ieny on their horizontal axis (as BP4 in Figure 5.4) while the new

parameter on the vertial axis is

A the ratio k1/k2 of the evolution speed of prey and predator (see

(5.2)),

B the predator handling time θ (see (5.10)),

C the optimum prey trait γ (see (5.8)),

D the urvature of prey ompetition γ2 around the optimum prey

trait (see (5.8)),

E the predator maximum attak rate α (see (5.9)),

F the kurtosis of predator attak rate α2 (see (5.9)).

The �rst �ve new parameters have been seleted in order to obtain

results omparable with those reported in Derole et al. [2003℄, while

the sixth hoie has been suggested by the interest in disussing the

role played by generalist vs. speialist predator on evolution (see

Sasaki [1997℄, Hernández-Garía et al. [2009℄, Pigolotti et al. [2010℄).

Figure 5.7A shows that the ratio of evolution speed has no in�u-

ene on branhing senarios. This might seem obvious a priori, sine

k1 and k2 do not modify the evolutionary equilibria and the branhing

onditions (5.14) and (5.15). However, the ratio k1/k2 a�ets the sta-
bility of the evolutionary equilibria (reall that branhing points have

been de�ned as stable equilibria of the anonial equation satisfying
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Figure 5.7: Six examples of branhing portraits obtained from Figure 5.4

through ontinuation. Parameter values as in Figure 5.4 and

γ3 = 2. Thik line: Hopf bifuration urve.

onditions (5.14) and (5.15)), though no hange in stability ours in
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Figure 5.7A.

Figure 5.7B shows that the predator handling time θ has a de-

tetable impat on branhing senarios. In partiular, for �xed preda-

tor e�ieny, the number of alternate branhings dereases if θ is in-
reased. As far as we know, this property has never been disussed in

the literature, though it is biologially sensible: predators with longer

handling times exert a limited predation pressure and therefore do

not turn seletion disruptive on prey with relatively low sensitivity of

ompetition.

Figure 5.7C shows that the optimum prey trait γ has almost no

in�uene on branhing senarios. This is perhaps intuitive beause a

variation of γ essentially introdues a shift in the body size of the prey

(and hene of the predator). In our model, however, the handling time

is sensitive to suh a shift, so that there is an in�uene (branhing

being slightly favored by nonzero values of γ), though not learly

visible at the sale of the �gure.

In ontrast, the in�uene of the prey ompetition urvature γ2
(Figure 5.7D) is signi�ant. This property seems also to have gone

unnotied in the literature and is less intuitive. A smaller urvature

implies a larger valley of the ompetition funtion around the opti-

mum prey trait γ, i.e. a larger trait interval that prey an exploit

through branhing for esaping the predation pressure; and predator

branhing is favored after eah prey diversi�ation. This mehanism

however does not work if ompetition is too mild, as the evolutionary

dynamis in the system with three prey and two predator popula-

tions get destabilized. The �ve oevolving traits start to osillate on

a Red Queen evolutionary yle, along whih the two predators al-

ternate between harvesting the prey with smaller (resp. larger) trait

and the intermediate prey. Tehnially, evolutionary yling is due to

a Hopf bifuration in the system at node (3,2) (the thik urve in the

�gure) through whih the evolutionary equilibrium beomes unstable

and surrounded by a stable limit yle. Reall that evolutionary y-

ling prevents further branhing, as branhing requires evolution to

settle down at an evolutionary equilibrium, so the sequene s = 121
is omplete below the Hopf urve (see the lower set C(121)).

Also the in�uene of the predator maximum attak rate is relevant

(Figure 5.7E). Inreasing the predation pressure favors prey branh-

ing, whih in turn makes seletion disruptive on the predator. Again

inreasing the attak rate destabilizes the evolutionary dynamis and

prevents further branhing (see the Hopf bifuration in the system at

node (3, 2)). Red Queen evolutionary yles of the kind just desribed
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for Figure 5.7D develop in the upper set C(121).

Finally, Figure 5.7F shows that a predator with given e�ieny

promotes alternate branhings only if the kurtosis of the attak rate

has intermediate values. If the kurtosis is dereased, i.e., if predator

beome more generalist, branhing sequenes beome shorter until no

branhing is possible anymore (lower set C(-)). In ontrast, if kurtosis
inreases, i.e., if predator beome more speialist, longer branhing

sequenes are �rst promoted but then made impossible by a Hopf

bifuration involving the monomorphi equilibrium of the anestral

ommunity at the root node (1, 1) (see the upper set C(-)). As far

as we know, this latter property was not disovered until now, while

the former is in agreement with the literature (see Hernández-Garía

et al. [2009℄, Pigolotti et al. [2010℄).

We lose this disussion by desribing how a general method for

investigating branhing senarios in two (or more) oevolving speies

ould be derived from our analysis. First of all, evolutionary extin-

tion should be onsidered by allowing sequenes of four (instead of

two) di�erent events, namely branhing and extintion of one or the

other speies, and extintions events would be represented by bak-

wards links in the graph of Figure 5.3, whih would no longer be a

tree. This would allow the study of interesting systems, e.g. the

evolution of annibalism [Derole and Rinaldi, 2002℄, where the ex-

istene of branhing-extintion yles has already been established

[Derole, 2003℄. Tehnially, evolutionary extintions an be deteted

during ontinuation and simulation of the slow-fast system (5.20) as

the ollision of evolutionary trajetories with bifuration boundaries

of the eologial system (the fast ompartment). Two types of bifur-

ations are responsible of evolutionary extintions: the saddle-node

bifuration at whih the eologial equilibrium (the node) ollides

with a saddle equilibrium and disappear; the transritial bifuration

at whih the density of a population vanishes. In the �rst ase, the

oevolution drives the ommunity toward the loss of the eologial

equilibrium of oexistene, after whih the eologial system swithes

(on the fast eologial timesale) to another attrator, typially to

another equilibrium at whih some (or even all) populations are no

longer present (evolutionary suiide [Gyllenberg and Parvinen, 2001,

Derole and Rinaldi, 2008℄). In the seond ase, the density of a pop-

ulation is driven to zero by the evolution of the others (evolutionary

murder [Derole and Rinaldi, 2008℄).

Another aspet not highlighted by our appliation is the possibility

that the �tness derivative B′
i hanges sign while moving the model
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parameters. The points in parameter spae where this ours an be

deteted during ontinuation (see Paragraph 5.2.3.1 for the details on

the omputation of B′
i) and the urves along whih B

′
i = 0 aordingly

traed.

Worth to be mentioned is the hoie of the anestral ondition of

interest. The anestral ommunity for a ase with two speies should

not neessarily be the (1, 1)-ommunity. Interesting ases where no

branhing is possible in the simplest ommunity, whereas long branh-

ing sequenes are observable starting from riher ommunities have

indeed been disussed [Kisdi, 1999℄.

Moreover, rih and interesting branhing senarios for the seleted

anestral ommunity an be observable starting from some initial on-

ditions and not starting from others. Multiple attrators in the fast

(eologial) and in the slow (evolutionary) ompartments an in fat

be present [Derole et al., 2002, 2003℄. Keeping trak of all possible

observable branhing sequenes is possible, but the desription of a

method greatly simpli�es if one fouses on a spei� initial ondition.

Of ourse the bifurations involving the seleted eologial and

evolutionary equilibria may fore the ommunity to swith (on the

eologial or evolutionary timesale) to other attrators. In our anal-

ysis we always had oexistene at stable eologial equilibria (numeri-

ally heked), even though the AD anonial equation an be (heuris-

tially) generalized to the ase of nonstationary eologial attrators

[Diekmann and Law, 1996, Derole et al., 2006℄.

But attrator swithings an also our without involving bifur-

ations. In fat, in ases with multiple evolutionary attrators, the

boundaries of the various basins of attration (whih are the stable

manifold of saddle equilibria) do hange along with the model param-

eters, so that the seleted anestral ondition, or the initial ondition

imposed by a branhing point on the next anonial equation, an

pass from one basin of attration to another at a ritial parameter

ombination. Tehnially, this is not a bifuration, but involves a

qualitative hange in the evolutionary dynamis, and therefore in the

branhing senario produed from the initial ondition under onsid-

eration. In some ases, the boundaries of the attration basins an

be ontinued, as suitable heterolini trajetories onneting saddle

equilibria [Kuznetsov, 2004, Meijer et al., 2009℄, but most often basins

of attration are estimated by means of systemati simulations.

Keeping trak of all the above possibilities in the formal desrip-

tion of a general method of analysis is quite involved and not among

the aims of this paper. In our analysis we have emphasized only the
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aspets that were relevant for the onsidered appliation. Of ourse, of

eah omputed urve (along whih a branhing ondition vanishes, a

bifuration of the slow-fast system ours, or the anestral ondition

hanges basin of attration), only the segments for whih the or-

responding evolutionary equilibrium is reahed from the onsidered

anestral ondition matter in the branhing portrait. Suh segments

are part of the branhing portrait only if the hange produed in the

evolutionary dynamis indues a hange in the branhing sequene.

This an be notied, e.g., in Figure 5.7(d,e), where the urve B′′
4,5 = 0

separating regions C(121) and C(1212) (on whih the two predators

aquire branhing) merges with the Hopf bifuration of the slow-fast

system orresponding to node (3, 2). Moving right-to-left, the urve

B′′
4,5 = 0 is part of the branhing portrait only up to the ontat with

the Hopf urve.

5.6 Conluding remarks

We have analyzed the evolution of biodiversity in a prey-predator

oevolutionary model based on the standard Rosenzweig-MaArthur

eologial model [Rosenzweig and MaArthur, 1963℄. Negleting the

introdution of alien speies and aidental or arti�ial extintions,

we onsider evolutionary branhing [Geritz et al., 1997, 1998, Der-

ole and Rinaldi, 2008℄�the oexistene and further di�erentiation

of resident-mutant phenotypes�and evolutionary extintion [Gyllen-

berg and Parvinen, 2001, Derole and Rinaldi, 2008℄�evolution to-

ward self- or other-distrution�as the major drivers of biodiversity.

Adaptive dynamis (AD [Metz et al., 1996, Geritz et al., 1997, 1998,

Derole and Rinaldi, 2008, Geritz and Derole, 2011℄) is the most

suited modeling approah to investigate evolutionary branhing and

extintion in oevolutionary models, and the AD anonial equation

makes it possible on a deterministi ground [Diekmann and Law,

1996, Derole and Rinaldi, 2008℄.

We opted for measuring biodiversity with the number of phenotyp-

ially di�erent prey and predator populations, thus losing information

on the atual phenotypi values, but aquiring simpliity and om-

patness of representation. In partiular, we have not found extintion

events in the analyzed model, so that biodiversity evolves aording to

branhing sequenes, namely sequenes of symbols 1 and 2 identifying
branhing in the prey and predator speies, respetively.

We have disovered that long alternate (prey and predator) as

well as unilateral (prey) branhing sequenes an our. But we have
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also disovered that long sequenes omposed of a �rst phase of alter-

nate branhing onatenated with a long unilateral sequene of prey

branhings are possible in some regions of parameter spae. This ex-

plains why prey populations an be muh more numerous than preda-

tor populations, a fat that is often mentioned in �eld studies and is

in agreement with traditional [Hardin, 1960, MaArthur and Levins,

1964, 1967, MaArthur, 1969℄ and modern [Diekmann et al., 2003,

Diekmann and Metz, 2006, Gyllenberg and Meszéna, 2005, Meszéna

et al., 2006℄ theories of ompetitive exlusion.

Another interesting result is that branhing sequenes beome

longer if predator beome more and more speialist, until a ritial

point is reahed at whih never ending Red Queen ups and downs

of the oevolving traits prevent a halt at evolutionary equilibria and

therefore evolutionary branhing. This disontinuity ours at the

birth of a stable evolutionary yle due to a Hopf bifuration of the

evolutionary system.

Finally, ritial parameter ombinations for whih branhing se-

narios are highly sensitive to parameter perturbations have been iden-

ti�ed. This knowledge is of strategi importane for the onservation

and management of biodiversity.

Our iterative proedure is based on simulations of ODEs (the AD

anonial equation and the underlying eologial models) and ontin-

uations of algebrai systems of equations [Allgower and Georg, 2003℄

and explores, at eah iteration, the nature of longer and longer branh-

ing sequenes. At eah iteration, a better approximation of a two-

dimensional branhing portrait (explaining the dependene of branh-

ing senarios on two parameters) beomes available. Our approah

is more interesting, both omputationally and oneptually, than the

stohasti individual- or population-based simulations mainly used

until now when analytial tratability is unfeasible. Eah simulation,

even the deterministi one shown in Figure 5.6, an only reveal an ob-

servable branhing sequene, whereas our systemati analysis extrats

information on all possible sequenes inluding their nature, whether

omplete, inomplete or not observable. A partiularly attrative fea-

ture is that, after a �rst branhing portrait has been produed, the

dependene of the branhing senarios on other parameters an be

disussed without signi�antly inrease the omputational burden.

In priniple, our approah an be made more general in view of

investigating branhing and extintion senarios in AD models with

two (or more) oevolving speies, e.g., di�erent prey-predator and

host-parasite ommunities (see, e.g., Best et al. [2010℄), as well as
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ommunities regulated by other eologial interations (e.g., mutu-

alisti [Ferriére et al., 2002℄ and ompetitive [Kisdi, 1999℄ ommuni-

ties). Although the rigorous formulation of an iterative algorithm is

basially impossible�exatly for the same reasons why bifuration

analysis annot be made fully automati [Kuznetsov, 2004, Meijer

et al., 2009℄�we have disussed, partly in light of the spei� model

we have analyzed, the guidelines of a general method. In partiular,

evolutionary extintions ould be taken into aount by onsidering

sequenes of di�erent events, identifying branhing and extintion in

eah of the oevolving speies.

The indiations that an be obtained by the proposed approah

typially have qualitative nature, as those we have drawn for prey-

predator oevolution, and should be heked not to be too spei� for

the onsidered model. However, dealing with rather omplex long-

term dynamis, we believe that this type of analysis an be of great

help and should be onsidered for the long-term onservation and

management of biodiversity.



Chapter 6

Fisheries-indued

diversi�ation

Commerial harvesting is reognized to indue adaptive responses of

life-history traits in �sh populations, in partiular by shifting the age

and size at maturation through diretional seletion. In addition to

suh evolution of a target stok, the orresponding �shery itself may

adapt, in terms of �shing poliy, tehnologial progress, �eet dynam-

is, and adaptive harvest. The aim of this hapter is to assess how

the interplay between natural and arti�ial seletion, in the simplest

setting in whih a �shery and a target stok oevolve, an lead to

disruptive seletion, whih in turn may ause trait diversi�ation. To

this end, we build an eo-evolutionary model for a size-strutured

population, in whih both the stok's maturation shedule and the

�shery's harvest rate are adaptive, while �shing may be subjet to a

seletive poliy based on �sh size and/or maturity stage. Using nu-

merial bifuration analysis, we study how the potential for disrup-

tive seletion hanges with �shing poliy, �shing mortality, harvest

speialization, life-history tradeo�s assoiated with early maturation,

and other demographi and environmental parameters. We report

the following �ndings. First, �sheries-indued disruptive seletion is

readily aused by ommonly used �shing poliies, and ours even for

poliies that are not spei� for �sh size or maturity, provided that

the harvest is su�iently adaptive and large individuals are targeted

intensively. Seond, disruptive seletion is more likely in stoks in

whih the seletive pressure for early maturation is naturally strong,

provided life-history tradeo�s are su�iently onsequential. Third,

when a �sh stok is overexploited, �sheries targeting only large in-

dividuals might slightly inrease sustainable yield by ausing trait

139
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diversi�ation (even though the resultant yield always remains lower

than the maximum sustainable yield that ould be obtained under low

�shing mortality, without ausing disruptive seletion). We disuss

the broader impliations of our results and highlight how these an

be taken into aount for designing evolutionarily informed �sheries-

management regimes. More details an be found in Landi et al. [2014℄.

This work has been developed in ollaboration with Professor

Cang Hui (Stellenbosh University and Afrian Institute for Mathe-

matial Sienes) and Dotor Ulf Diekmann (International Institute

for Applied Systems Analysis) during the Southern Afrian Young

Sientists Summer Program (SA-YSSP), for the organization and

funding of whih we thank the Department of Siene and Tehnol-

ogy (DST, South Afria), the National Researh Foundation (NRF,

South Afria), the University of the Free State (UFS, South Afria),

and the International Institute for Applied Systems Analysis (IIASA,

Austria).

6.1 Introdution

The exploitation of renewable resoures is a major soure of mortal-

ity, whih an trigger population ollapse [Stokes et al., 1993, Huth-

ings and Reynolds, 2004℄ and adaptive hanges in the life history

of harvested speies [Palumbi, 2001, Ashley et al., 2003℄. Indeed,

in ommerially exploited �sh stoks harvest has been reognized a

driver of evolutionary adaptations [Law, 2000, Heino and Godø, 2002,

Jørgensen et al., 2007, Diekmann et al., 2009℄. To date, most stud-

ies onsidering the geneti and phenotypi responses of �sh stok to

�shing have foused on �sheries-indued diretional seletion on life-

history traits suh as age and size at maturation [Barot et al., 2004,

Ernande et al., 2004, de Roos et al., 2006, Gårdmark and Diekmann,

2006, Dunlop et al., 2009, Poos et al., 2011℄.

In addition, a �shery itself an adapt, in terms of �shing poliy,

tehnologial progress, �eet dynamis, and adaptive harvest [Salthaug,

2001, Hannesson, 2002, Walters and Martell, 2004℄. Fishing poliies

an be seletive for both size and maturity stage of individuals in the

stok: size seletivity results from mesh-size and gear regulation or

from size-spei� inentives [Hart and Reynolds, 2002, Fromentin and

Powers, 2005℄, while maturity seletivity may arise when a stok's ju-

veniles and adults are spatially segregated during spawning [Sinlair,

1992, Swain and Wade, 1993, Engelhard and Heino, 2004, Opdal,

2010℄. Harvest is readily adaptive, beause �shers onstantly tune
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their e�ort and seletivity for maximum pro�t, targeting stok om-

ponents that are most pro�table to harvest. Suh adaptation is rel-

atively fast, leading to a ontinuously hanging seletive pressure on

the exploited stok. Aordingly, the e�et of tehnologial progress

on a �shery's sustainability is often assessed while negleting adaptive

responses of the targeted stok (e.g., Derole et al. [2010b℄).

The oupled dynamis of adaptations in a stok and its �shery an

be interpreted as a oevolutionary proess, in whih one omponent

of the system is biologial (the exploited stok) while the other om-

ponent is eonomi (the exploiting �shery). In his pioneering work,

Heino [1998℄ approahed the stok-�shery system from this oevolu-

tionary perspetive: individuals in the onsidered stok ould adapt

their age at maturation in response to the seletive pressure imposed

by harvesting, while �shers adapted their strategy to maximize the

sustainable yield on a slower timesale, ausing diretional seletion

on the age at maturation.

The interation between adaptive harvest imposed by a �shery

and biologial evolution ould possibly result in disruptive seletion,

as suggested by Carlson et al. [2007℄ and Edeline et al. [2007℄ and

supported by statistial analysis of �eld data by Edeline et al. [2009℄.

The objetive of this hapter is to provide a �rst model-based inves-

tigation of this phenomenon. For this, we approah the stok-�shery

system from the oevolutionary perspetive, allowing harvest to adapt

on the timesale of population dynamis, thus improving on Heino's

(1998) orresponding assumption, and studying both diretional and

disruptive seletive pressure. Disruptive seletion inrease the geneti

and/or phenotypi variane of adaptive traits [Gross, 1985, Edeline

et al., 2009, Keller et al., 2013℄, and under some irumstanes may

even lead to evolutionary branhing and dimorphi trait diversi�a-

tion [Maynard Smith, 1966, Geritz et al., 1998℄. Either impat may

inrease a stok's apaity to respond to diretional seletive pres-

sures [Ro�, 1997℄, and may raise the stok's abundane and yield. By

ontrast, suh impats ould also have negative e�ets on the eosys-

tem in whih the �sh stok is embedded [Jennings and Kaiser, 1998℄,

whih are notoriously di�ult to predit in general. We onlude our

investigation by disussing suh broad impliations of our �ndings,

whih might be taken into aount for the evolutionarily informed

management of �sheries and the design of sustainable �shery poliies.
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Figure 6.1: Shemati representation of the life-history model. The har-

vested population is divided into juveniles (with density n1),

small individuals (with densities n2̃ and n2), and large individ-

uals (with densities n3̃ and n3), where tilde-subsripts refer to

early-maturing individuals. Individuals an either mature early

(with probability x, top row) or late (with probability 1 − x,
bottom row). The probability of early maturation is the adap-

tive trait onsidered in this hapter. Table 6.1 and Paragraph

6.2 provide further details.

6.2 Model and methods

We use a disretely size-strutured life-history model, similar to that

employed in Poos et al. [2011℄ and Bodin et al. [2012℄, to desribe

an adaptively harvested �sh population divided into three size lasses

(Figure 6.1). Individuals an mature either in the seond or in the

third size lass, and aordingly di�er in their sizes at maturation.

We refer to the probability of maturing in the seond size lass as

the probability of early maturation, and onsider it an adaptive trait

onstrained by life-history tradeo�s [Ro�, 1983, Stearns, 1992℄. From

this stok-�shery model, we derive the stok's basi reprodution ratio

in dependene of the adaptive trait, and from this, the evolutionary

dynamis of maturation. Using bifuration analysis [Kuznetsov, 2004℄

and numerial ontinuation tehniques [Allgower and Georg, 2003℄, we
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Figure 6.2: Model-based illustration of maturation diversi�ation in re-

sponse to �sheries-indued disruptive seletion. The probabil-

ity of early maturation, initially set at 0, gradually onverges

to a monomorphi evolutionary equilibrium at whih seletion

turns disruptive and evolutionary branhing takes plae. The

resultant two oexisting morphs, whih initially are very similar,

then diversify, eventually onverging to a dimorphi evolution-

ary equilibrium. Parameters as in Figure 6.3, with F = 1.1
yr

−1
.

study the seletive pressures exerted on the stok by di�erent levels of

�shing mortality and by di�erent levels of seletivity for size and/or

maturity. In this way, we assess the potential for �sh stoks to expe-

riene disruptive seletion and thus potentially undergo maturation

diversi�ation (Figure 6.2).

6.2.1 Population dynamis

We onsider a stok in whih individuals are lassi�ed into three size

lasses�juveniles, small, and large. An individual an beome mature

at small size (early maturation) with probability x or at large size with
probability 1−x [Gross, 1985℄. The probability of early maturation is

analyzed as an adaptive life-history trait under seletion. Spei�ally,

we denote by n(t) = (ni(t)) the vetor of �sh abundanes at time t,
with i = 1, 2̃, 2, 3̃, or 3 ranging over all stok omponents (where tilde-

subsripts refer to early-maturing individuals). Figure 6.1 provides a

shemati representation of the onsidered stok struture.

Newborn juvenile individuals grow into the seond size lass at

rate r1. With probability x, they are early-maturing, thus grow-
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ing into stok omponent 2̃, whereas with probability 1 − x they

are late-maturing, thus growing into stok omponent 2. Small in-

dividuals grow into the third size lass at rates r2̃ or r2, depending
on whether they are early-maturing or late-maturing, respetively.

Early-maturing individuals give birth to juveniles in the seond and

third size lasses, at rates f2̃ and f3̃, respetively, while late-maturing

individuals produe o�spring only one they reah the third size lass,

at rate f3. The natural mortality of juveniles is onsidered to be

density-dependent, at rate m1n1, while small and large individuals

experiene density-independent mortality, at rates m2̃ and m2 in the

small size lass and at rates m3̃ and m3 in the large size lass, depend-

ing on whether they are early-maturing or late-maturing, respetively.

Following an energy-budget approah, we assume that early-maturing

individuals fae several life-history tradeo�s, sine energy alloation

to maturation redues the energy available for other life-history pro-

esses, inluding growth, survival, and reprodution [Poos et al., 2011,

Bodin et al., 2012℄. We make the simplest possible assumptions for

these three tradeo�s, by onsidering the mortality of small early-

maturing individuals to be inreased relative to small late-maturing

individuals aording to m2̃(x) = m2(1 + β
m

x), the growth rate of

small early-maturing individuals to be dereased relative to small late-

maturing individuals aording to r2̃(x) = r2(1 − β
r

x)+, and the fe-

undity of large early-maturing individuals to be dereased relative to

large late-maturing individuals aording to f3̃(x) = f3(1−β
f

x)+. In
eah ase, the onsidered osts of early maturation are thus propor-

tional to the probability x of early maturation, with proportionality

onstants β
m

, β
r

, and β
f

measuring the strengths of the respetive

tradeo�s. The subsript (. . . )+ means that negative values in the

parenthesis are mapped to 0, while positive values remain unhanged.

This means that for values of β
r

> 1 and β
f

> 1 the growth rate r2̃(x)
and the feundity rate f3̃(x), respetively, may beome zero as x in-

reases, but an never beome negative.

Based on these onsiderations, we obtain the following stok-

�shery model

ṅ1 = f2̃n2̃ + f3̃(x)n3̃ + f3n3 −m1n
2
1 − r1n1 − Fα1h1(n)n1,

ṅ2̃ = xr1n1 −m2̃(x)n2̃ − r2̃(x)n2̃ − Fα2̃h2̃(n)n2̃,
ṅ2 = (1− x)r1n1 −m2n2 − r2n2 − Fα2h2(n)n2,
ṅ3̃ = r2̃(x)n2̃ −m3̃n3̃ − Fα3̃h3̃(n)n3̃,
ṅ3 = r2n2 −m3n3 − Fα3h3(n)n3,

(6.1)

where ṅi is the time derivative of the abundane ni of eah omponent
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Notation Desription [Unit℄

Variables

x Early-maturation probability

n1 Density of juvenile individuals [km

−2
℄

n2̃ Density of early-maturing small individuals [km

−2
℄

n2 Density of late-maturing small individuals [km

−2
℄

n3̃ Density of early-maturing large individuals [km

−2
℄

n3 Density of late-maturing large individuals [km

−2
℄

r2̃(x) Growth rate of early-maturing small individuals [yr

−1
℄

f3̃(x) Feundity rate of early-maturing large individuals [yr

−1
℄

m2̃(x) Mortality rate of early-maturing small individuals [yr

−1
℄

hi(n) Relative adaptive harvest of omponent i

Parameters

r1 Growth rate of juvenile individuals [yr

−1
℄

r2 Growth rate of late-maturing small individuals [yr

−1
℄

f2̃ Feundity rate of early-maturing small individuals [yr

−1
℄

f3 Feundity rate of late-maturing large individuals [yr

−1
℄

m1 Mortality rate of juvenile individuals [yr

−1
℄

m2 Mortality rate of late-maturing small individuals [yr

−1
℄

m3̃ Mortality rate of early-maturing large individuals [yr

−1
℄

m3 Mortality rate of late-maturing large individuals [yr

−1
℄

β
r

Strength of growth tradeo�

β
f

Strength of feundity tradeo�

β
m

Strength of mortality tradeo�

si Size of individuals in omponent i [m℄

wi Weight of individuals in omponent i [tonnes℄
k Allometri oe�ient relating size to weight [tonnes m

−θ
℄

θ Allometri exponent relating size to weight

α = (αi) Fishing poliy

F Fishing-mortality rate [yr

−1
℄

γ Degree of harvest speialization

Table 6.1: Variables and parameters of the stok-�shery model in Equations

(6.1). The index i refers to the �ve stok omponents, i = 1, 2̃,
2, 3̃, or 3. First blok: trait and densities. Seond blok: trait-

dependent and density-dependent funtions. Third blok: stok

parameters. Fourth blok: �shery parameters.

of the �sh stok, while the last terms in eah equation desribes har-

vest, as explained in the next paragraph. All variables and parameters
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of our stok-�shery model are summarized in Table 6.1.

6.2.2 Fishery dynamis

Fishing ativities imply an extra mortality in eah stok omponent

of the form Fαihi(n)ni, where i ranges over all �ve stok omponents,

i = 1, 2̃, 2, 3̃, or 3, F denotes the �shing-mortality rate, the binary

vetor α = (αi) haraterizes the seletive �shing poliy aording to

�sh size and maturity, and hi(n) is the relative adaptive harvest of

stok omponent i.

We onsider ten di�erent �shing poliies, with di�erent seletivity

aording to size and maturity [Ajiad et al., 1999, Law, 2000, Poos

et al., 2011, Bodin et al., 2012℄. These are detailed in Table 6.2. For

example, �shing with no restritions on size and maturity translates

into the vetor α = (1, 1, 1, 1, 1), while a poliy that allows �shing only
of mature individuals is represented by the vetor α = (0, 1, 0, 1, 1).
The relative adaptive harvest hi(n) of stok omponent i is desribed
by a power law [Egas et al., 2005℄,

hi(n) =
[αiwini]

γ

∑

j[αjwjnj]
γ
, (6.2)

with the sum extending over all �ve stok omponents j = 1, 2, 2̃, 3,
or 3̃. In this equation, wi is the weight of a �sh in stok omponent

i, whih is given by the allometri saling relation wi = ksθi , where k
and θ are the allometri oe�ient and allometri exponent, respe-

tively, and si is the size of a �sh in stok omponent i. Notie that

the allometri oe�ient anels in Equation (6.2); its only e�et is

that of saling the yield, see Equations (6.3) and (6.9). The multipli-

ation with �sh weights translates the density of individuals into their

biomass density. Therefore, the produt wini is the ath obtained

from harvesting stok omponent i. The parameter γ measures the

degree of harvest speialization and ranges from 0 to ∞. When γ = 0,
the harvest is not adaptive and is randomly distributed over all �ve

stok omponents (in analogy to random foraging). When γ = 1, the
relative harvest for eah stok omponent equals the relative ath

from that ompartment (in analogy to foraging aording to the ideal

free distribution). When γ tends to ∞, the harvest is ompletely fo-

used on the stok omponent yielding maximum ath (in analogy

to optimal foraging).

The total sustainable yield of the �shery for a monomorphi stok
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Seletivity Juvenile maturing maturing maturing maturing

small small large large

No regulation None X X X X X

Only juvenile Size X X X X X

Only small Size X X X X X

Only large Size X X X X X

Juvenile or small Size X X X X X

Small or large Size X X X X X

Only immature Maturity X X X X X

Only mature Maturity X X X X X

Only immature and small Size and maturity X X X X X

Only mature and small Size and maturity X X X X X

Table 6.2: Overview of the ten �shing poliies examined in this hapter. Entries in the �ve rightmost olumns indiate whether

harvesting the orresponding stok omponent is allowed by the onsidered �shing poliy.
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with trait value x̄ is given by

Y
M

=
∑

i

Fαihi(n̄)n̄iwi

∣

∣

∣

x=x̄
[tonnes km−2

yr

−1], (6.3)

with the sum extending over all the �ve stok omponents i = 1, 2̃,
2, 3̃, or 3, and n̄ indiating the values of the demographi equilib-

rium. A very similar expression gives the total sustainable yield for a

dimorphi stok, see Equation (6.9).

6.2.3 Evolutionary dynamis

Following Poos et al. [2011℄ and Bodin et al. [2012℄, we derive the

basi reprodution ratio R0, measuring an individual's expeted re-

produtive suess in terms of o�spring produed during its lifetime.

This reprodutive suess depends both on the trait value of the foal

individual and on the other trait values represented in the population.

When an individual with trait value x′ experienes a resident popula-
tion with trait value x at its demographi equilibrium n̄(x), the foal
individual's basi reprodution ratio is given by

R0(x, x
′) = r1D1{(1− x′)r2D2D3f3 + x′[D2̃f2̃ + r2̃(x

′)D2̃D3̃f3̃(x
′)]},
(6.4)

where D1 = [m1n̄1 + r1 + Fα1h1(n̄)]
−1
, D2̃ = [m2̃(x

′) + r2̃(x
′) +

Fα2̃h2̃(n̄)]
−1
, D2 = [m2+r2+Fα2h2(n̄)]

−1
, D3̃ = [m3̃+Fα3̃h3̃(n̄)]

−1
,

and D3 = [m3 + Fα3h3(n̄)]
−1

are the average durations spent by in-

dividuals in eah of the �ve stok omponents. These are inversely

related to the exit rate from those stok omponents, see Figure 6.1

and Equations (6.1). Thus, the produt riDi is the probability that

an individual in omponent i reahes the next size lass, while the

produt Difi is the expeted number of o�springs produed by the

individual while being in omponent i. The foal individual's basi

reprodution ratio R0(x, x
′) is a �tness proxy and an be used for evo-

lutionary invasion analysis. Spei�ally, if R0(x, x
′) > 1, individuals

with trait values x′ an invade and, generially, substitute individuals

of a population with resident trait value x; otherwise, suh invasion

is not possible.

The so-alled seletion gradient

S(x) =
∂R0(x, x

′)

∂x′

∣

∣

∣

∣x′ = x
(6.5)

is the slope of the �tness landsape R0(x, x
′) around x, and measures

the strength of the diretional seletion on x. The rate of evolution-
ary hange is proportional to this seletion gradient, independent of
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whether one onsiders the gradual reshaping of a polymorphi resi-

dent trait distribution through seletion (as in quantitative genetis

theory) or hanges in a monomorphi trait distribution through muta-

tion and seletion (as in adaptive dynamis theory) [Diekmann et al.,

2006℄.

Using the seletion gradient, we an apply the anonial equation

of adaptive dynamis theory [Diekmann and Law, 1996, Champagnat

et al., 2006, Derole and Rinaldi, 2008℄, an ordinary di�erential equa-

tion that deterministially approximates the evolutionary dynamis

of the adaptive trait x. Spei�ally, the rate of hange ẋ in the trait

value x is proportional to S(x),

ẋ ∝ S(x), (6.6)

multiplied with half the produt of population density, mutation prob-

ability, and mutation variane; sine the latter three fators are pos-

itive, they play no role in monomorphi evolutionary dynamis in

adaptive dynamis theory. Trait values 0 < x̄ < 1 for whih S(x̄) = 0
are equilibria of the adaptive dynamis, and hene are alled evo-

lutionarily singular points. The boundaries x̄ = 0 and x̄ = 1 are

also evolutionary equilibria, even if, generially, the seletion gradient

S(x) do not vanish at suh points [Bodin et al., 2012℄. Internal equi-

libria (0 < x̄ < 1) and boundary equilibria (x̄ = 0 or x̄ = 1) represent
mixed strategies and pure strategies, respetively (see Gross [1996℄

for a review).

If the dynamis of the adaptive trait x desribed by the anon-

ial equation (6.6) onverges to an evolutionary equilibrium x̄, that
trait value is said to be onvergene stable. For internal equilibria,

the slope of the �tness landsape then vanishes, and the urvature of

the �tness landsape R0(x̄, x
′) in x′ determines whether x̄ is evolu-

tionarily stable or not. If the �tness landsape has a maximum at x̄
(negative urvature), no mutants an invade and x̄ is evolutionarily

stable: sine it is also onvergene stable, it is a so-alled ontinuously

stable strategy (CSS, see Eshel [1983℄, Geritz et al. [1998℄ and Para-

graph 3.3), haraterizing an endpoint of the evolutionary dynamis.

Otherwise, if the adaptive dynamis onverge to a �tness minimum,

it is evolutionarily unstable. Thus, the ondition for evolutionary

instability is given by

∂2R0(x̄, x
′)

∂x′2

∣

∣

∣

∣x′ = x̄
> 0. (6.7)

If Condition (6.7) is satis�ed, x̄ is a �tness minimum, so mutants

on both sides of x̄ an invade. Suh mutants and the former residents
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then oexist on the eologial timesale, forming a new dimorphi

resident population. Their traits will experiene further disruptive

seletion and, in the ase of asexual populations, are expeted to di-

versify on the evolutionary timesale (Figure 6.2). Suh diversi�ation

an our also in sexual populations, provided reprodutive isolation

between the inipient speies arises onomitantly (e.g., Keller et al.

[2013℄): here we do not dwell on suh ompliations, whih would

deserve and require a dediated separate study. Monomorphi on-

vergene stable singular points satisfying ondition (6.7) are alled

evolutionary branhing points (see Geritz et al. [1997, 1998℄, Derole

and Rinaldi [2008℄ and Paragraph 3.3). In our analysis below, we will

thus test Condition (6.7) at monomorphi evolutionary equilibria x̄
under di�erent �shing poliies, as well as for di�erent levels of �shing

mortality and di�erent degrees of harvest speialization.

6.2.4 Dimorphi dynamis

In this paragraph, we speify the population dynamis and the evo-

lutionary dynamis of a dimorphi stok, with population densities

nx = (nix) for individuals with an early-maturation probability x and

of ny = (niy) for individuals with an early-maturation probability y.
The dimorphi population dynamis are given by

ṅ1x = f2̃n2̃x + f3̃(x)n3̃x + f3n3x −m1n1x(n1x + n1y)− r1n1x+
− Fα1h1(nx, ny)n1x,

ṅ2̃x = xr1n1x −m2̃(x)n2̃x − r2̃(x)n2̃x − Fα2̃h2̃(nx, ny)n2̃x,
ṅ2x = (1− x)r1n1x −m2n2x − r2n2x − Fα2h2(nx, ny)n2x,
ṅ3̃x = r2̃(x)n2̃x −m3̃n3̃x − Fα3̃h3̃(nx, ny)n3̃x,
ṅ3x = r2n2x −m3n3x − Fα3h3(nx, ny)n3x,
ṅ1y = f2̃n2̃y + f3̃(y)n3̃y + f3n3y −m1n1y(n1x + n1y)− r1n1y+

− Fα1h1(nx, ny)n1y,
ṅ2̃y = yr1n1y −m2̃(y)n2̃y − r2̃(y)n2̃y − Fα2̃h2̃(nx, ny)n2̃y,

ṅ2y = (1− y)r1n1y −m2n2y − r2n2y − Fα2h2(nx, ny)n2y,
ṅ3̃y = r2̃(y)n2̃y −m3̃n3̃y − Fα3̃h3̃(nx, ny)n3̃y,

ṅ3y = r2n2y −m3n3y − Fα3h3(nx, ny)n3y,

where

hi(nx, ny) =
[αiwi(nix + niy)]

γ

∑

j [αjwj(njx + njy)]γ
,

with the sum extending over all �ve stok omponents j = 1, 2, 2̃, 3,
or 3̃.
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Indiating by x′ and y′ the trait values of mutants appearing in

a population with resident trait values x and y we obtain the basi

reprodution ratios of suh mutants as

R0(x, y, x
′) = r1D1{(1− x′)r2D2D3f3 + x′[D2̃xf2̃ + r2̃(x

′)D2̃xD3̃f3̃(x
′)]},

R0(x, y, y
′) = r1D1{(1− y′)r2D2D3f3 + y′[D2̃yf2̃ + r2̃(y

′)D2̃yD3̃f3̃(y
′)]},

where D1 = [m1(n̄1x+ n̄1y)+r1+Fα1h1(n̄x, n̄y)]
−1
, D2̃x = [m2̃(x

′)+
r2̃(x

′)+Fα2̃h2̃(n̄x, n̄y)]
−1
, D2̃y = [m2̃(y

′)+r2̃(y
′)+Fα2̃h2̃(n̄x, n̄y)]

−1
,

D2 = [m2 + r2 + Fα2h2(n̄x, n̄y)]
−1
, D3̃ = [m3̃ + Fα3̃h3̃(n̄x, n̄y)]

−1
,

D3 = [m3 + Fα3h3(n̄x, n̄y)]
−1
, and (n̄x, n̄y) are the values of the

dimorphi demographi equilibrium.

On the evolutionary timesale, the traits x and y evolve following
a two-dimensional anonial equation

ẋ = kx
∑

i

n∗ix
∂R0(x, y, x

′)

∂x′

∣

∣

∣

∣x′ = x
, ẏ = ky

∑

i

n∗iy
∂R0(x, y, y

′)

∂y′

∣

∣

∣

∣y′ = y
,

(6.8)

where kx and ky are half the produt of probability and variane of

mutations in x and y, respetively, and sale the speed of evolution-

ary dynamis in x and y, and the sum extending over all �ve stok

omponents i = 1, 2, 2̃, 3, or 3̃. These dimorphi dynamis onverges

to the evolutionary equilibrium (x∗
D

, y∗
D

).

Finally, the sustainable yield of the dimorphi stok with trait

values (x̄
D

, ȳ
D

) is given by

Y
D

=
∑

i

Fαihi(n̄x, n̄y)(n̄ix + n̄iy)wi

∣

∣

∣

x=x̄
D

,y=ȳ
D

, (6.9)

with the sum extending over all �ve stok omponents i = 1, 2, 2̃, 3,
or 3̃.

6.2.5 Outline of analysis

In our further analysis, we use numerial bifuration analysis and

ontinuation tehniques, in an approah similar to that in Landi et al.

[2013℄ and Chapter 5, to whih interested readers are invited to refer

for more detailed explanations and disussions.

As the �shing-mortality rate F is the driver of �sheries-indued

seletion on the stok, we use it as our primary bifuration parame-

ter. We then extend the analysis by adding a seondary bifuration

parameter, for whih we hoose γ, measuring the degree of harvest
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speialization. In this way, we an assess the e�ets of �shing, in

terms of �shing mortality and �shing speialization, on the our-

rene of disruptive seletion. To evaluate the generality of results,

we also onsider as alternative seondary bifuration parameters the

tradeo� strengths β
r

, β
f

, and β
m

. Eventually, we onsider all other

demographi and environmental parameters as seondary bifuration

parameters. This proedure will pinpoint the harateristis of stoks

that are more likely to experiene �sheries-indued disruptive sele-

tion, as well as the harateristis of �shing regimes there are more

likely to ause suh seletion. To onlude, we evaluate the e�et of

�sheries-indued diversi�ation on sustainable yield.

As the analyti form of the demographi equilibrium n̄(x) is un-
known for alulating R0(x, x

′) in Equation (6.4), we numerially in-

tegrate a fast-slow eo-evolutionary dynamis aording to Equations

(6.1) and (6.5), using a small parameter ǫ to regulate the relative speed
of the (slow) evolutionary dynamis ẋ = ǫS(x) relative to the speed of

the (fast) demographi dynamis [Abrams, 2000, Landi et al., 2013℄.

Extensive and systemati numerial analyses of Equations (6.1) re-

veal that there an only be one nontrivial stable equilibrium n̄(x) for
all 0 ≤ x ≤ 1. This simpli�es the analysis of the adaptive dynamis

by ruling out possible bifurations of the demographi dynamis that

ould ompliate the evolutionary dynamis [Derole et al., 2002℄.

We �rst onsider the ase without �shing mortality (F = 0), with
all other parameters set as in Figure 6.3; those parameter values are

hosen for onvenient illustration, and other values have been found

to produe qualitatively similar results. We start the fast-slow eo-

evolutionary dynamis from the demographi initial ondition n(0)
and the evolutionary initial ondition x(0) and integrate these dy-

namis until they onverge to the unique eo-evolutionary equilibrium

(n̄, x̄). This equilibrium turns out to be a CSS, suggesting that the

unharvested stok never experienes disruptive seletion and at evo-

lutionary equilibrium has a low probability of early maturation. We

then suessively onsider eah of the ten �shing poliies listed in Ta-

ble 6.2 and examine how the eo-evolutionary equilibrium responds to

inreasing �shing-mortality rate F (Figure 6.3). While doing so, we

ontinuously monitor Condition (6.7), whih is not satis�ed at F = 0.
Depending on the �shing poliy, the �shing mortality may reah a

threshold F = F
B

at whih a branhing bifuration ours, i.e., se-

letion turns disruptive. This means that the initial CSS turns into

an evolutionary branhing point. We ontinue to follow this branh-

ing bifuration point while hanging both the �shing-mortality rate
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F and the degree of speialization γ, obtaining the bifuration urve

in the bivariate (F, γ) spae that separates regions of disruptive and
stabilizing seletion (Figure 6.4).

6.3 Results

We �rst examine whih �shing poliies an ause disruptive sele-

tion, then investigate whih kinds of �sh stoks are suseptible to

�sheries-indued disruptive seletion, and �nally, analyze the e�ets

of �sheries-indued diversi�ation on sustainable yield.

6.3.1 Whih �shing poliies an ause �sheries-indued

disruptive seletion?

Figure 6.3 shows three qualitatively di�erent routes to �sheries-indued

disruptive seletion revealed by our model. As �shing mortality is in-

reased in eah senario, the globally onvergene stable evolutionarily

stable equilibrium at low early-maturation probability shifts to higher

early-maturation probabilities before losing its stability: in senario

(A), it loses its evolutionary stability, while in senarios (B) and (C),

it �rst loses its global onvergene stability and then its evolutionary

stability.

Senario (A). At all levels of �shing mortality, only a single in-

ternal equilibrium (0 < x̄ < 1) is present, whih is always globally

onvergene stable. Both boundary equilibria (x̄ = 0 and x̄ = 1)
are onvergene unstable. The early-maturation probability inreases

with �shing mortality. At high levels of �shing mortality (F > F
B

;

dark gray region), the equilibrium loses its evolutionary stability, so

seletion beomes disruptive. This senario ours for four of the ten

studied �shing poliies: it applies to the no-regulation, small-or-large,

and only-mature �shing poliies, as well as to the only-large �shing

poliy when β
r

< 1 (see below).

Senario (B). At intermediate levels of �shing mortality (F
S1

<
F < F

S2

), two alternative onvergene stable internal equilibria are

present. At either end of the interval, two di�erent saddle-node bifur-

ations our (F = F
S1

and F = F
S2

, with F
S2

< F
S1

), annihilating

one of the onvergene stable internal equilibria. The upper internal

onvergene stable equilibrium is always an evolutionary branhing

point, whereas the lower internal onvergene stable equilibrium is an

evolutionary branhing point only for F > F
B

. In this senario, sele-

tion is onditionally disruptive, depending on the anestral ondition
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Figure 6.3: Three qualitatively di�erent routes to �sheries-indued disrup-

tive seletion on the probability of early maturation as �shing

mortality is inreased. In panel (A) there is only a single internal

equilibrium for any value of the �shing mortality. In panel (B)

there is bistability between two internal equilibria for a range

of �shing mortalities. In panel (C), there is bistability between

an internal equilibrium and a boundary equilibrium. Panels (A)

and (B) show results for the no-regulation �shing poliy; results

are qualitatively equivalent for the small-or-large and the only-

mature �shing poliies, as well as for the only-large �shing poliy

when β
r

< 1. Panel (C) shows results for the only-large �shing
poliy when β

r

≥ 1. Throughout the panels, onvergene stable
and evolutionarily stable equilibria (ontinuously stable strate-

gies or CSSs) are represented by a thin line, onvergene stable

but evolutionarily unstable equilibria (evolutionary branhing

points) are represented by a thik line, and onvergene un-

stable equilibria (evolutionary repellors) are represented by a

dotted line. The �shing mortality at the bifuration point at

whih seletion turns disruptive, and thus an ause evolution-

ary branhing, is indiated by F
B

. Saddle-node bifurations, at

whih a onvergene stable internal equilibrium ollides with a

onvergene unstable internal equilibrium, are indiated by S1

and S2. A transritial bifuration, at whih a onvergene sta-

ble boundary equilibrium ollides with a onvergene unstable

internal equilibrium, is indiated by T. Light gray and dark gray

regions represent intervals of �shing mortality ausing ondi-

tional disruptive seletion and disruptive seletion, respetively.

In the former ase, two onvergene stable equilibria oexist,

but only one of them is evolutionarily unstable: it thus de-

pends on the anestral ondition whether or not disruptive se-

letion will our. Initial onditions: n(0) = (1, 1, 1, 1, 1) km−2
,

x(0) = 0.5. Parameters: ǫ = 10−3
yr

−1
, r1 = 1 yr

−1
, r2 = 0.8

yr

−1
, f2̃ = 0.8 yr

−1
, f3 = 1 yr

−1
, m1 = 0.4 yr

−1
, m2 = 0.3

yr

−1
, m3 = m3̃ = 0.2 yr

−1
, β

r

= β
f

= β
m

= 1, s1 = 0.3 m,

s2̃ = s2 = 0.6 m, s3̃ = s3 = 0.9 m, k = 0.01 tonnes m

−θ
, θ = 3,

and γ = 5 (A, C) or γ = 25 (B).
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x(0), when F
S2

< F < F
B

(light gray region), as the early-maturation

probability an either onverge to the upper internal onvergene sta-

ble equilibrium (whih is an evolutionary branhing point; thik line)

or to the lower internal onvergene stable equilibrium (whih is a

CSS; thin line). Seletion is always disruptive for F > F
B

(dark gray

region), no matter whih one of the two internal onvergene sta-

ble equilibria is reahed from the anestral ondition. This senario

ours for four of the ten studied �shing poliies: it applies to the no-

regulation, small-or-large, and only-mature �shing poliies, as well as

to the only-large �shing poliy when β
r

< 1 (see below). Notie that

this set of �shing poliies is the same as for senario (A), highlight-

ing that it depends on model parameters other than �shing mortality

whih of the two senarios applies. It is worth pointing out that the

evolutionary bistability was not deteted in earlier analyses of similar

models [Poos et al., 2011, Bodin et al., 2012℄, beause tradeo�s were

not trait-dependent in those studies. However, evolutionary bista-

bility has been found in other studies on �sheries-indued evolution

onsidering di�erent models and traits [Gårdmark and Diekmann,

2006, de Roos et al., 2006, Boukal et al., 2008℄. This study appears to

be the �rst in whih evolutionary bistability is found to o-our with

disruptive seletion, making evolutionary dynamis more omplex and

interesting.

Senario (C). At intermediate levels of �shing mortality (F
T

<
F < F

S1

), a onvergene stable internal equilibrium oexists with a

onvergene stable boundary equilibrium. At either end of the inter-

val, two di�erent bifurations our, annihilating one of the onver-

gene stable equilibria. First, a transritial bifuration happens at

F = F
T

, when the onvergene unstable internal equilibrium (dotted

line) ollides with the onvergene stable boundary equilibrium x̄ = 1
(thin line), exhanging their onvergene stability. Seond, a saddle-

node bifuration happens at F = F
S1

when the same onvergene un-

stable internal equilibrium (dotted line) ollides with the the internal

evolutionary branhing point (thik line). In this senario, seletion is

onditionally disruptive, depending on the anestral ondition, when

F
B

< F < F
S1

(light gray region): if the anestral ondition x(0) lies
below the onvergene unstable internal equilibrium (dotted line), the

early-maturation probability onverges to the onvergene stable in-

ternal equilibrium (whih is an evolutionary branhing point; thik

line), so seletion beomes disruptive. In ontrast, if the anestral

ondition lies above the onvergene unstable internal equilibrium,

the early-maturation probability onverges to the boundary equilib-
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Figure 6.4: Two qualitatively di�erent routes to �sheries-indued disruptive

seletion on the probability of early maturation as �shing mor-

tality and harvest speialization are varied together. White,

light gray, and dark gray regions indiate parameter ombina-

tions for whih seletion is not disruptive, onditionally disrup-

tive (depending on the anestral evolutionary ondition), and

disruptive, respetively. The bifuration urves along whih

evolutionary branhing starts to be possible are represented as

thik lines, while saddle-node bifuration urves are represented

as thin lines. The univariate senarios shown in Figure 6.3 are

slies of the bivariate senarios shown here, as indiated by la-

beled horizontal lines in both panels. Panel A shows results for

the no-regulation �shing poliy; results are qualitatively equiv-

alent for the small-or-large and only-mature �shing poliies, as

well as for the only-large �shing poliy when β
r

< 1. Panel

B shows results for the only-large �shing poliy when β
r

≥ 1.
Parameters as in Figure 6.3.

rium x̄ = 1, where seletion annot be disruptive, as trait values

x > 1 are unfeasible. This senario ours for only one �shing poliy:

it applies to the only-large �shing poliy when β
r

≥ 1 (see below).

These results imply that senarios (A) to (C) annot our for six

of the ten studied �shing poliies: this applies to the only-juvenile,

only-small, juvenile-or-small, only-immature, only-immature-and-small,

and only-mature-and-small �shing poliies. Consequently, these six

types of �sheries an ever ause �sheries-indued disruptive seletion.

We an now expand our analysis by onsidering the e�et of har-

vest speialization on disruptive seletion. For this, we need to on-

tinue the aforementioned bifurations in the bivariate (F, γ) spae,
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obtaining the bivariate disruptive-seletion senarios shown in Figure

6.4. These plots provide a full qualitative haraterization of the ef-

fets of �shing�in terms of poliy, �shing mortality, and the degree

of harvest speialization�on disruptive seletion. Notie that the

univariate senarios shown in Figure 6.3 an be understood as slies,

for �xed degree of harvest speialization γ, of the bivariate senarios
shown in Figure 6.4. In partiular, Figures 6.3A and 6.3B are slies of

Figure 6.4A for two di�erent degrees of harvest speialization, while

Figure 6.3C is a slie of Figure 6.4B. For this reason, we only have two

bivariate senarios, one applying to the no-regulation, small-or-large,

and only-mature �shing poliies, as well as to the only-large �shing

poliy when β
r

< 1 (Figure 6.4A) and the other one applying to the

only-large �shing poliy when β
r

≥ 1 (Figure 6.4B).

From these bivariate senarios we obtain the following results.

First, disruptive seletion ours only for high levels of �shing mor-

tality. Seond, harvest speialization promotes disruptive seletion:

at high values of γ, seletion turns disruptive already for lower �shing

mortalities (this e�et beomes saturated as harvest speialization is

inreased). Third, random, and thus non-adaptive, harvest (γ = 0)
prohibits disruptive seletion, demonstrating that adaptive harvest is

a neessary ondition for the ourrene of �sheries-indued disruptive

seletion. Fourth, all four �shing poliies ausing disruptive seletion

target large individuals, whih therefore is a seond neessary ondi-

tion for the ourrene of �sheries-indued disruptive seletion.

6.3.2 Whih kinds of �sh stoks are suseptible to �sheries-

indued disruptive seletion?

To �nd out whih kinds of stoks are suseptible to �sheries-indued

disruptive seletion, we arry out a sensitivity analysis for the two

�sheries-indued disruptive seletion senarios in Figure 6.4 with re-

spet to the tradeo� strengths β
m

, β
r

, and β
f

(Figures 6.5 and 6.6),

ontinuing all deteted bifurations in the (F, βj) spaes, with j span-
ning all three tradeo�s, j = m, r, or f.

We �nd that the univariate and bivariate senarios for disruptive

seletion under the only-large �shing poliy (Figures 6.3C and 6.4B,

respetively) our only when β
r

≥ 1 (Figure 6.5), that is, when the

growth tradeo� is very strong. Figure 6.3C shows that for β
r

= 1 and
large �shing mortality F only the boundary equilibrium x = 1 exists:

at that evolutionary equilibrium, r2̃ = 0, i.e., early-maturing individ-

uals stop growing. The stok will then be omposed of only juveniles
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Figure 6.5: Limited realism and generality of the �sheries-indued disrup-

tive seletion senario for the only-large �shing poliy with

β
r

≥ 1. As explained in the text, this senario unrealistially

allows the stok to esape all �shing by maturing early. Also,

it an never ause unonditional �sheries-indued disruptive se-

letion, and an ause onditional �sheries-indued disruptive

seletion only for the restritive onditions in the narrow light

gray band in the upper part of the �gure. Hene, the more re-

alisti and general senario is that in Figure 6.4A. Colors and

lines as in Figure 6.4. Parameters as in Figure 6.3, with γ = 5.

and early-maturing small individuals, so that, under the onsidered

only-large �shing poliy, it esapes all �shing. Suh a omplete es-

ape from �shing seems learly unrealisti: at the very least, it would

trigger a swith to a di�erent �shing poliy. Figure 6.5 shows that,

when β
r

≥ 1, this unrealisti situation ours for even smaller �sh-

ing mortalities F . We therefore disard the senarios in Figures 6.3C

and 6.4B as unrealisti for larger �shing mortalities F . In addition,

these senarios an never ause unonditional �sheries-indued dis-

ruptive seletion, while the onditions under whih they ause on-

ditional �sheries-indued disruptive seletion are very restritive, as

the narrowness of the light gray regions in Figures 6.3C, 6.4B, and

6.5 douments. For these reasons, we fous our further analyses on

the senarios in Figures 6.3A, 6.3B, and 6.4A, whih also over the

only-large �shing poliy for β
r

< 1. For the purpose of illustration,

we onsider the no-regulation �shing poliy, as all e�ets shown in
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Figure 6.6: E�ets of tradeo� strengths, demographi parameters, and envi-

ronmental parameters on �sheries-indued disruptive seletion.

(A, B) Tradeo�s in growth and feundity promote disruptive se-

letion: the presene of both tradeo�s is a neessary ondition

for disruptive seletion. C Tradeo�s in mortality restrain dis-

ruptive seletion. (D, E, F) parameters that promote disruptive

seletion. (G, H, I) other parameters that restrain disruptive

seletion. All shown e�ets are disussed in Paragraph 6.3.2.

Parameter ranges along the axes are hosen so as to exlude

parameter ombinations for whih the stok would go extint

on the evolutionary timesale. Colors and lines as in Figure 6.4.

Parameters as in Figure 6.3, with γ = 5.

Figure 6.6 are qualitatively equivalent for all four �shing poliies that

an ause disruptive seletion in the senarios in Figures 6.3A, 6.3B,

and 6.4A (no-regulation, small-or-large, only-mature �shing poliies,
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as well as only-large �shing poliy when β
r

< 1).

Relaxing the tradeo�s in growth and feundity restrains disruptive

seletion (Figures 6.6A and 6.6B). Disruptive seletion is impossible

when either one of these tradeo�s is absent (i.e., when β
r

= 0 or

β
f

= 0; Figures 6.6A and 6.6B): this means that the joint presene

of growth and feundity tradeo�s of early maturation is a neessary

ondition for the ourrene of disruptive seletion. In ontrast, re-

laxing the tradeo� in mortality promotes disruptive seletion (Figure

6.6C), and disruptive seletion is still possible even when this tradeo�

is absent (i.e., when β
m

= 0; Figure 6.6C).

To identify other harateristis of �sh stoks that are suseptible

to �sheries-indued disruptive seletion, we now analyze the e�ets

of all demographi and environmental parameters. In this way, we

obtain the following �ndings. First, the juvenile growth rate r1 and

the juvenile mortality rate m1 do not have any e�et on disruptive

seletion (not illustrated). This is beause all individuals have to pass

through the juvenile stage in a way that annot be a�eted by their

adaptive trait. Seond, disruptive seletion is promoted by inreasing

the mortality rate m3 of large individuals (Figure 6.6D), the allomet-

ri exponent θ relating size to weight (Figure 6.6E), and the feundity

rate f2̃ of early-maturing small individuals (Figure 6.6F). Inreasing

the �rst two parameters an redue the time individuals spend in

the large size lass, lowering that lass' ontribution to �tness a-

ording to Equation 6.4. Equivalently, inreasing the last parameter

inreases the ontribution of small individuals to �tness. Hene, all

three ases selet for earlier maturation: this, in turn, strengthens the

impats of the onsidered tradeo�s and thereby promotes disruptive

seletion. Third, by ontrast, disruptive seletion is restrained by in-

reasing the mortality rate m2 of late-maturing individuals (Figure

6.6G), the growth rate r2 of late-maturing small individuals (Figure

6.6H), and the feundity rate f3 of late-maturing large individuals

(Figure 6.6I). Hene, all three ases selet for later maturation; this,

in turn, weakens the impats of the onsidered tradeo�s and thereby

restrain disruptive seletion.

In general, therefore, seletion is more likely to be disruptive if

large individuals make a smaller ontribution to �tness aording to

Equation (6.4), that is, when seletion for early maturation is nat-

urally strong. Then the resultant high early-maturation probability

will strengthen the impat of life-history tradeo�s in growth and fe-

undity so as to promote �sheries-indued disruptive seletion.
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6.3.3 What are the e�ets of diversi�ation on sustain-

able yield?

We now analyze the situation in whih, after diversi�ation, two o-

existing resident populations exhibit alternative trait values x and y
lose to the evolutionary equilibrium x̄ of the monomorphi stok.

These two oexisting resident traits then diverge on the evolutionary

timesale, under the ontinuous in�uene of disruptive seletion, and

eventually settle onto a dimorphi evolutionary equilibrium (x̄
D

, ȳ
D

)
(Figure 6.2). The orresponding dimorphi evolutionary dynamis are

spei�ed in Paragraph 6.2.4. In priniple, a dimorphi evolutionary

equilibrium might be an evolutionary branhing point for one or both

of the diverged populations. However, in our ase, ȳ
D

always equals

1, i.e., individuals of one resident population are always maturing as

early as possible; as highlighted above, suh a boundary equilibrium

annot be an evolutionary branhing point. By ontrast, x̄
D

is evo-

lutionarily stable. Therefore, no further diversi�ation is possible at

the dimorphi evolutionary equilibrium.

One the dimorphi evolutionary equilibrium is attained, the stok's

density, and thus its sustainable yield, hange relative to the monomor-

phi evolutionary equilibrium. Using Equations (6.3) and (6.9), we

an evaluate the sustainable yield for di�erent �shing-mortality rates

F (Figure 6.7), again using numerial ontinuation. We thereby �nd

that, for 0 < F < F
B

(where F
B

again denotes the �shing mortality

rate at the branhing bifuration) the stok stays at its monomorphi

evolutionary equilibrium x̄, while for F > F
B

the monomorphi evo-

lutionary equilibrium beomes evolutionarily unstable, and the stok,

following a two-dimensional anonial equation, Equation (6.8), on-

verges to (x̄
D

, ȳ
D

). Note that disontinuities in yield at F = F
B

shown

in Figures 6.7A and 6.7B are not surprising, as the outome of the

evolutionary dynamis does not vary ontinuously with the �shing

mortality F aross the branhing bifuration.

After diversi�ation, the sustainable yield an slightly inrease,

but only for the only-large �shing poliy when β
r

< 1. Even then,

it remains far below the maximum sustainable yield (MSY), de�ned

by the peaks in Figures 6.7A and 6.7B. When the �shing-mortality

rate F is inreased beyond F
B

, the sustainable yield ontinuously

delines toward zero for the no-regulation, small-or-large and only-

mature �shing poliies, but remains pratially onstant (after slightly

inreasing) for the only-large �shing poliy when β
r

< 1. This is

beause the only-large �shing poliy, in ontrast to the other three
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Figure 6.7: E�ets of �sheries-indued diversi�ation on sustainable yield.

Panel A shows results for the no-regulation �shing poliy; re-

sults are qualitatively equivalent for the small-or-large and the

only-mature �shing poliies. Panel B shows results for the only-

large �shing poliy when β
r

< 1. Seletion is not disruptive for

low �shing mortality rates (F < F
B

), inluding those result-

ing in maximum sustainable yield (MSY). By ontrast, when

the stok is heavily exploited (F > F
B

), diversi�ation may o-

ur. The sustainable yield is represented by thin lines for the

monomorphi stok when seletion is not disruptive, by dashed

lines for the monomorphi stok when seletion is disruptive,

and by thik lines for the dimorphi stok. As shown in A and

B, diversi�ation an ause either a derease or an inrease in

yield, respetively, depending on the �shing poliy. Parameters

as in Figure 6.3, with γ = 5, exept for β
r

= 0.85 in B.

�shing poliies, does not allow �shing on the early-maturing small

individuals in stok omponent 2̃, whih are vital for sustaining the

stok under very high exploitation rates.

6.4 Disussion

Human exploitation of �sh stoks as renewable resoures often auses

massive exess mortality. This alters the �tness landsapes of the

exploited �sh stoks, whih in turn may ause adaptive responses

of the stoks' phenotypi and genotypi variability [Huthings and

Fraser, 2008℄. In general, oexisting life-history strategies and orre-

sponding polymorphism an be indued and maintained by negatively

frequeny-dependent seletion (as, for example, in the size at matu-
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ration of male oho salmon; Gross [1985℄). In this hapter, we have

onsidered a life-history trait given by a disrete probabilisti rea-

tion norm for the size at maturation [Diekmann and Heino, 2007℄,

representing the amount of energy alloated to early maturation. For

this reason, we introdued trait-dependent tradeo�s: the more en-

ergy is alloated to early maturation, the higher the resultant osts

in terms of redued growth, survival, and reprodution. Here we have

demonstrated that �sheries-indued seletion on suh a trait an be

disruptive: this means not only that dimorphism in �sh populations

an be maintained, but also that suh dimorphism may evolve de novo

[Keller et al., 2013℄, thereby giving rise to a oexistene of matura-

tion strategies [Gross, 1996℄. Several empirial studies have argued

the possibility of disruptive seletion in �sh populations through the

interplay of natural seletion and adaptive harvesting [Carlson et al.,

2007, Edeline et al., 2007, 2009℄: here we have systematially ana-

lyzed, for the �rst time, under whih spei� onditions suh disrup-

tive seletion may arise.

Fishing imposes a strong seletive pressure for early maturation,

even though this is aompanied by inreased physiologial osts via

life-history tradeo�s. In our model, suh seletion fores �rst give

rise to a onvergene stable mixed strategy, onsistent with the ar-

gument by Carlson et al. [2007℄ that natural seletion and �sheries-

indued seletion often at in opposite diretions and hene produe

strongly stabilizing seletion. We have found that, however, with suf-

�iently strong tradeo�s in growth and feundity, this onvergene

stable mixed strategy an beome evolutionarily unstable, implying

disruptive seletion and enabling the oexistene of two maturation

strategies, onsistent with the argument by Edeline et al. [2009℄ that

�sheries-indued disruptive seletion tends to inrease trait variane.

Spei�ally, a harvested stok may split into two life-history types:

one exploits the advantages of early maturation, while the other re-

dues the losses imposed by growth and feundity tradeo�s. By on-

trast, an analogous life-history tradeo� in mortality has the opposite

e�et: disruptive seletion is enhaned when this tradeo� is relaxed.

Moreover, we have shown that strong growth and feundity tradeo�s

both at as indispensable prerequisites for disruptive seletion (Fig-

ures 6.6A and 6.6B), while a weak mortality tradeo� merely serves as

a dispensable promotor of disruptive seletion (Figure 6.6C).

In addition to strong life-history tradeo�s in both growth and fe-

undity, we have identi�ed two other neessary onditions for a stok-

�shery system to experiene disruptive seletion: (i) �shing poliies
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that target large individuals, and (ii) adaptive harvesting that adjusts

the harvest distribution for optimal bene�t (Figure 6.4). Ultimately,

these two onditions emerge from the same mehanism desribed in

the previous paragraph. For seletion to turn disruptive, the impat

of growth and feundity tradeo�s must beome large, and this hap-

pens more readily when the probability of early maturation beomes

high. Harvesting a stok's large individuals, as happens through many

widely adopted �shing poliies (Table 6.2), inreases the diretional

seletion pressure toward early maturation, as reurrently highlighted

by earlier studies (e.g., Law [1979℄, Law and Grey [1989℄, Abrams and

Rowe [1996℄). Moreover, when harvesting is adaptive, a �shery be-

haves similar to an optimally foraging predator that maximizes its

intake rate (e.g., Egas et al. [2005℄): this tends to inrease the mor-

tality of large individuals, as these are more pro�table to harvest.

Therefore, adaptive harvesting under poliies that allow the target-

ing of large individuals alters natural adaptive landsapes in a way

that selets for inreased reprodutive investment early in life. This,

in turn, redues somati growth and feundity later in life through

life-history tradeo�s [Edeline et al., 2007℄, and thereby strengthens

the mehanism that leads to disruptive seletion. Poos et al. [2011℄

and Bodin et al. [2012℄ have onsidered a rather similar model, yet

without onsidering adaptive harvesting and trait-dependent trade-

o�s: this explains why disruptive seletion was not found in their

analyses.

In line with these �ndings and explanations, our results have also

shown that populations with demographi onditions that penalize

large individuals and/or favor small individuals are more sensitive to

disruptive seletion. This is beause suh populations are naturally

prone to early maturation, strengthening the impats of the trade-

o�s in growth and feundity that turn seletion disruptive. There-

fore, there are three di�erent ways to promote the mehanism that

turns seletion disruptive via growth and feundity tradeo�s: �rst,

the tradeo�s themselves may be strong due to physiologial reasons;

seond, �shing mortality may selet for early maturation, making

the impats of those tradeo�s strong; and third, a stok's other de-

mographi and environmental onditions may predispose it to early

maturation. Overall, this pattern of hasing the bene�ts of early

maturation while avoiding the osts in growth and feundity an be

onsidered as an important general mehanism for the origin of di-

morphism in exploited �sh populations and other oevolving systems

(e.g., Zhang et al. [2013℄).
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Naturally, our study an be extended in a number of interesting

diretions. For example, �shing �eets in many regions of the world

are omposed of high-tehnology large ommerial boats and low-

tehnology small private boats. This suggests that the �shery om-

ponent in a oevolving stok-�shery system an also experiene sele-

tive pressures promoting the oexistene of di�erent �eet segments. In

other words, the �eet an experiene an analogous disruptive seletion

and adaptive diversi�ation, as suggested by Derole et al. [2010b℄ and

illustrated by standard eo-evolutionary predator-prey models [Doe-

beli and Diekmann, 2000, Landi et al., 2013℄; this warrants future

researh and model extensions. Spei�ally, �shery dynamis ould

happen at many levels: at the level of the �eet (adaptive harvest-

ing on a short timesale, �eet size and struture on an intermediate

timesale, and tehnologial adaptation on a longer timesale; Egas

et al. [2005℄), at the level of �shing strategy (onstant e�ort, �xed

quota, or �xed stok size; Hilborn and Walters [1992℄), and/or at the

level of �shing regulations (limitations on the size and maturity of

target individuals; Cole and Ward [1994℄, Matsumura et al. [2011℄).

Here we have examined only the simplest setting, that is, adaptive

harvesting with a onstant-e�ort strategy. To detet disruptive se-

letion on the �shery, adjustments in �eet size, �eet struture, and

�eet tehnology must be expliitly modeled. As a starting point, the

degree of harvest speialization in our model, Equation (6.2), ould

be interpreted as haraterizing the tehnologial level of the �eet

(a�eting, e.g., the probability of loating aggregations of �sh, ath-

ability, and/or the e�ieny of handling and transporting the ath).

On this basis, this parameter ould be used as an adaptive trait of

the �shery using the framework of adaptive dynamis theory [Derole

et al., 2008, 2010b℄.

An ultimate target of �shery management is to inrease sustain-

able yield (e.g., Heino [1998℄). This raises the question of whether

�sheries-indued disruptive seletion ould, and should, be managed:

as suh seletion pressures result from the interplay between natural

seletion and �shing mortality [Carlson et al., 2007, Edeline et al.,

2007, 2009℄, they are human-indued and may arguably be ontrolled

by �shing poliies and �eet and harvest regulations. In pratie, this

an be ahieved through legal limitations and inentives. Our results

show that sustainable yield an slightly inrease after diversi�ation

when only large individuals are targeted (Figure 6.7B), even though

it still remains far below the maximum sustainable yield obtained

at low �shing mortality when the stok is monomorphi. As many
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�sh stoks are still overexploited, being managed onsiderably below

their maximum sustainable yield, our �ndings imply that diversi�-

ation triggered by �sheries-indued disruptive seletion under high

�shing mortality might slightly inrease the yield from its level be-

fore diversi�ation, if only large individuals are targeted. However,

our results also suggest that suh a population dimorphism an be

taken as a sign of extreme harvesting pressure, as trait diversi�ation

is a way for speies to esape from severe seletion pressures resulting

from human exploitation. Hene, when suh a pattern is observed,

our analysis suggests that sustainable yield an usually be improved

by reduing �shing mortality.

Fisheries-indued disruptive seletion ould also inrease pheno-

typi variability [Edeline et al., 2009℄, without promoting life-history

dimorphism: favoring extreme phenotypes may just widen an exist-

ing population polymorphism. This ould have positive onsequenes

beyond those analyzed in this hapter, sine higher variability makes

a population more reative to future adaptation needs. This means

that the population an reat more promptly to any rapid hanges

in its environmental onditions, both for natural and anthropogeni

auses. In other words, �sheries-indued disruptive seletion ould

lead to a better apaity of an exploited stok to ope with environ-

mental disturbanes and hanges [Ro�, 1997℄.

In summary, �sheries-indued disruptive seletion an indiate

overexploitation, an slightly inrease or derease the yield depend-

ing on the adopted �shing poliy, and an enhane a stok's resiliene

to abrupt hanges in its environmental onditions. Weighting these

three aspets, deision makers an manage a �shery in pursuit of their

eonomi, soial, and onservation objetives.



Chapter 7

Diversi�ation of fashion

traits

We propose a model to investigate the dynamis of fashion traits.

We onsider pure soial interations between people that adapt their

style to maximize soial suess. People play a repeated group game

in whih the payo� re�ets the soial norms ditated by fashion: on

one hand, the tendeny to imitate the trendy stereotypes opposed to

the tendeny to diverge from them to prolaim identity; on the other

hand, the tendeny to exploit sex appeal in dating suess opposed to

the moral judgment of the soiety. This opposing fores result in the

promotion of diversity in fashion traits, as predited by the Adaptive

Dynamis framework. More details an be found in Landi and Derole

[2014b℄ and Landi and Derole [2014a℄.

7.1 Introdution

The dynamis of fashion traits has attrated muh attention in the

last enturies [Veblen, 1894, Simmel, 1904, Blumer, 1969, Sproles,

1979, 1985℄. The several driving fores of fashion are best desribed

by Sproles [1985℄: �Psyhologists speak of fashion as the seeking of in-

dividuality; soiologists see lass ompetition and soial onformity to

norms of dress; eonomists see a pursuit of the sare; aesthetiians

view the artisti omponents and ideals of beauty; historians o�er evo-

lutionary explanations for hanges in design. Literally hundreds of

viewpoints unfold, from a literature more immense than for any phe-

nomenon of onsumer behavior.� Changes in fashion traits have been

doumented sine the XVIII entury [Young, 1937, Rihardson and

167
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Kroeber, 1940, Robinson, 1976, Weeden, 1977, Sproles, 1981, Lowe

and Lowe, 1990℄ and many studies tried to formally interpret and

model fashion dynamis [Lowe and Lowe, 1982, 1983, Lowe, 1993,

Miller et al., 1993, Pesendorfer, 1995, Caulkins et al., 2007℄. But

�The urrent state of fashion theory inludes a loosely organized ar-

ray of desriptive priniples and propositions but is not formalized in

that it does not speify a detailed struture of onepts, variables, and

relations� [Sproles, 1981℄.

We are interested in the evolution of fashion traits that emerges

from pure personal hoie driven by soial interations, the so-alled

horizontal dynamis in the trikle-aross theory [Simmel, 1904, Field,

1970, Robinson, 1976℄ and in the trikle-up theory��It now appears

that some fashions, as well as some analogous nonfashion phenomena,

limb the status pyramid from below, trikling up, as it were� [Field,

1970℄. We thus do not onsider the external drivers of marketing,

business, and other eonomi and prodution aspets in this study, as

well as the tendeny to emulate stereotypes from higher soial lasses,

the vertial dynamis often investigated in the trikle-down theory

[Veblen, 1894, Simmel, 1904℄. This is in line with the view of Blumer

[1969℄, who onsiders intra-lass soial interations (the horizontal

dynamis) dominant with respet to business and inter-lass (vertial)

drivers. �The fashion mehanism appears not in response to a need

of lass di�erentiation and lass emulation but in response to a wish

to be in fashion, to be abreast of what has good standing, to express

new tastes whih are emerging in a hanging world.� [Blumer, 1969℄.

Blumer again argues that the hange in fashion traits is the result

of �the gradual formation and re�nement of olletive tastes, whih

our through soial interation among people with similar interests

and soial experiene, with the result that many people develop tastes

in ommon�.

Spei�ally, we want to assess whether the soial interations be-

tween ommon-lass people an alone be responsible of the emergene

of diversity in fashion traits. We see Evolutionary Game Theory and

Adaptive Dynamis (mathematial approahes borrowed from evolu-

tionary biology, see Paragraph 1.3) as the promising frameworks to

model the evolution of soial traits, fashion traits in partiular. Al-

though the ontext is di�erent, innovation and ompetition play the

role that geneti mutations and natural seletion have in biologial

evolution [Ziman, 2000, Derole et al., 2008, Derole and Rinaldi,

2008℄: when a new style is introdued in the market, people an try

it and the style will be seleted it if it gives some better performane



7.2. METHODS 169

in terms of soial sore.

The aim of this hapter is to use the AD tools to assess if fash-

ion an diversify in soiety starting from a unique lothing style and

without any external in�uene, but only onsidering its inner soial

mehanisms. Moreover, the resident-innovative ompetition model

will be based on a Repliator Equation of Evolutionary Game Theory

derived from an underlying N -players game, in whih the strategy is

the lothing style hosen and the performane riteria is the soial

suess in everyday life.

7.2 Methods

We study a (tehnially in�nite and well-mixed) population in whih

eah individual has initially the same style, that we represent with

a one-dimensional ontinuous trait or strategy x assumed to be pos-

itively related with the sex appeal exerted by adopting that style.

This is supported by many authors [Veblen, 1894, Laver, 1937, Lurie,

1981, Steele, 1985℄. E.g., Steele [1985℄ argues: �Beause lothing is

so intimately onneted to the physial self, it automatially arries

an eroti harge�, while Lurie [1981℄ applies psyhoanalyti theory in

the desription of what is ommuniated by one's handbag, walking

stiks, umbrellas, men's hats, and men's tie. For example, x ould

measure the sizes of lothes (as in Lowe and Lowe [1990℄, where the

skirt length of women's evening dresses was reorded over two en-

turies). For simpliity, x is assumed unbounded and an be inter-

preted as a physial measure through a suitable transformation. If an

innovative style x′ similar to x is introdued by one or a few individ-

ual into the population, people an then either hoose x or x′. The

presene of only one innovation at a time is a simpli�ation of AD,

justi�ed if innovations are su�iently rare w.r.t. the timesale of the

soial interation. While assuming that innovations are small ensures

a gradual (mathematially ontinuous) evolution of the trait, as also

envisaged in the ontext of fashion. For example, Blumer [1969℄ sup-

ports the idea of the historial ontinuity of fashion hange, in whih

new fashions evolve from those previously established by the soiety.

And, again, in Lowe and Lowe [1983℄ the following assumptions on

fashion dynamis are made: inertia operates (e.g., if skirts have been

progressively rising for the last few years, they tend to ontinue to

rise until they reah an extreme) and resistane to that motion o-

urs (large year-to-year jumps in one diretion reate fore bak the

other way).
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The fration (or frequeny) of people adopting x (resp. x′) is

indiated with n (resp. n′ = 1−n). Individuals with di�erent strate-

gies will ompete in their everyday life for their soial suess [Lowe

and Lowe, 1983℄, here mainly related to their dating suess [Barber,

1999℄. We assume that people repeatedly meet at soial events involv-

ing N randomly seleted individuals and we indiate with nx (resp

nx′ = N − nx) the number of x- (resp. x
′
-) strategists among them.

We evaluate their dating suess as the expeted payo� of an under-

lying N -players game, indiating with Px and Px′ the expeted payo�

of the two ompeting strategies. The population dynamis is then

ruled by the Repliator Equation [Taylor and Jonker, 1978, Shuster

and Sigmund, 1983℄

ṅ(t) = n(Px − P̄ )
ṅ′(t) = n′(Px′ − P̄ ),

(7.1)

where P̄ = nPx + n′Px′ is the average payo� in the population. The

Repliator Equation express the ompetition between agents with dif-

ferent strategies, and an thus be used as the resident-mutant model

in the framework of AD.

The per-apita growth rate ṅ′/n′ of the innovative style evaluated
at the resident equilibrium (n̄ = 1) is the invasion �tness, that we

indiate with

λ(x, x′) = Px′ − P̄
∣

∣

n=n̄=1
= Px′ − Px|n=n̄=1 . (7.2)

The evolution of the strategy x proeeds by a sequene of suessful

innovations, haraterized by a positive �tness, that replae the ur-

rent resident strategy. In the limit of in�nitesimally small innovations,

x evolves in the diretion of the seletion gradient

S(x) =
∂λ(x, x′)

∂x′

∣

∣

∣

∣

x′=x

, (7.3)

namely, ẋ = S(x), where the time derivative is taken on a slower

evolutionary timesale. One the strategy has reahed an equilibrium

x̄ (i.e., S(x̄) = 0), the seond-order �tness derivative

B′′ =
∂2λ(x, x′)

∂x′2

∣

∣

∣

∣

x′=x=x̄

(7.4)

tells if diversi�ation is possible. If positive, the innovative style now

oexists with the resident one, thus forming a seond resident pop-

ulation, and the two oexisting strategies diversify under disruptive
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seletion by following distint evolutionary branhes [Geritz et al.,

1997, 1998℄. And again, when diversi�ation has reahed an equi-

librium, another branhing phenomenon an our, thus inreasing

diversity on and on (see also Chapter 5).

7.3 Model

We assume the soial payo� to be the sum of four terms. Eah of them

is expressed w.r.t. a strategy y, to be thought as x, x′, or a virtual

strategy with vanishing frequeny (in analogy with the g-funtion
notation, see Paragraph 3.1). In this way, their expression an be

also used (with some slight adjustment) for the two-style resident

ommunity (see Paragraph 7.3.1).

• The payo� for being trendy. It is the absolute advantage to

onform to one of the established styles. It is formulated as

Pε(y) = εn exp[−α(y − x)2] + εn′ exp[−α(y − x′)2]. (7.5)

It is proportional, through the trendy payo� ε, to the fration

of people adopting a style similar to y (the more people wear a

style the more trendy it is), where similarity is weighted by the

exponential terms. For example, if everyone is wearing x, then
n = 1 and n′ = 0, so that x-strategists reeive Pε(x) = ε, while
x′-strategists reeive Pε(x

′) = 0. Notie that, if y = x = x′ (that
means that individuals are idential), the payo� is onsistently

ε for all strategies.

• The payo� for being sexy. It is a relative advantage for sexy vs.

austere styles when ompeting for dating in a soial event. For

the virtual strategy y, it is expressed as

Pσ(y) = σ(y − x)
nx

N − 1
+ σ(y − x′)

nx′

N − 1
. (7.6)

It is proportional, through the sexy payo� σ, to the di�erene

in strategy w.r.t. possible ompetitors (reall that the strategy

is proportional to the sex appeal), weighted by the probability

of meeting suh a ompetitor at the soial event, while it is 0 if

strategies are all idential.

• The payo� for respeting morality. It is an absolute judgment

on style, given by the morality odes uniformly aepted by the
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soiety. It therefore solely depends on the strategy adopted by

an individual, and for the virtual strategy y it is expressed as

Pµ(y) = µ{1− exp[β(y − x0)]}, (7.7)

where µ is the morality payo� and x0 represents a morality

threshold somehow separating austere from immoral styles, that

re�ets the morality odes aepted by the whole soiety. It

is positive (resp., negative) for austere (resp., immoral) styles

y < x0 (resp., y > x0).

• The payo� for originality. It is the advantage to be minority at

the soial event. For the virtual strategy y, it is expressed as

Pϕ(y) =

ϕ exp[−γ(y−x0)]

(

1

2
−
nx
N

exp[−δ(y−x)2]−
nx′

N
exp[−δ(y−x′)2]

)

,

(7.8)

where the �rst exponential term modulates the originality payo�

ϕ that vanishes for highly immoral styles, whereas the seond

term goes from

1
2 to −1

2 as the strategy y goes from extreme

minority (y largely di�ers from the established styles with simi-

larity measured by the exponential terms) to absolute majority

(y = x with n = 1 or y = x′ with n′ = 1).

The expeted payo�s Px and Px′ are then given by (reall that

n′ = 1− n and nx′ = N − nx)

Px =

N
∑

nx=1

[Pε(x) + Pσ(x) + Pµ(x) + Pϕ(x)]

(

N − 1

nx − 1

)

nnx−1(1− n)N−nx

and

Px′ =

N−1
∑

nx=0

[Pε(x
′)+Pσ(x

′)+Pµ(x
′)+Pϕ(x

′)]

(

N − 1

nx

)

nnx(1−n)N−nx−1,
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that is,

Px =

N
∑

nx=1

[

εn+ ε(1− n) exp[−α(x− x′)2]+

σ(x− x′)
N − nx
N − 1

+ µ{1− exp[β(x− x0)]}+

ϕ exp[−γ(x− x0)]

(

1

2
−
nx
N

−
N − nx
N

exp[−δ(x − x′)2]

)

]

(

N − 1

nx − 1

)

nnx−1(1− n)N−nx

and

Px′ =

N−1
∑

nx=0

[

εn exp[−α(x′ − x)2] + ε(1 − n)+

σ(x′ − x)
nx

N − 1
+ µ{1− exp[β(x′ − x0)]}+

ϕ exp[−γ(x′ − x0)]

(

1

2
−
nx
N

exp[−δ(x′ − x)2 −
N − nx
N

]

)

]

(

N − 1

nx

)

nnx(1− n)N−nx−1.

Colleting nx and omputing the summations of the probabilities

(see Paragraph 7.3.2) we obtain

Px = εn + ε(1− n) exp[−α(x− x′)2] + σ(x− x′)
N

N − 1
+

µ{1− exp[β(x− x0)]}+ ϕ exp[−γ(x− x0)]

(

1

2
− exp[−δ(x− x′)2]

)

+

[

−σ(x−x′)
1

N − 1
+ϕ exp[−γ(x−x0)]

(

1

N
exp[−δ(x−x′)2]−

1

N

)

]

[

1 + n(N − 1)

]
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and

Px′ = εn exp[−α(x′ − x)2] + ε(1 − n)+

µ{1− exp[β(x′ − x0)]}+ ϕ exp[−γ(x′ − x0)]

(

1

2
− 1

)

+

[

σ(x′ − x)
1

N − 1
+ ϕ exp[−γ(x′ − x0)]

(

1

N
−

1

N
exp[−δ(x′ − x)2]

)

]

[

n(N − 1)

]

.

Realling its de�nition (7.2), it is now possible to ompute the

invasion �tness λ(x, x′), that is

λ(x, x′) = ε
(

exp[−α(x′ − x)2]− 1
)

+ σ(x′ − x)+

µ
(

exp[β(x− x0)]− exp[β(x′ − x0)]
)

+
1

2
ϕ exp[−γ(x− x0)]+

ϕ exp[−γ(x′ − x0)]

(

N − 1

N
−
N − 1

N
exp[−δ(x′ − x)2]−

1

2

)

.

The strategy evolves aording to (7.3), that is,

ẋ = σ − βµ exp[β(x− x0)] +
1

2
γϕ exp[−γ(x− x0)].

Notie that the advantage of the sex appeal σ and of the original-

ity ϕ lead the strategy to inrease and beome more and more sex

appealing, while the morality µ leads it to derease (notie that the

advantage of wearing the trendy style ǫ is not playing any role here).

These two opposed fores keep the strategy bounded and make it

onverge to the equilibrium x̄, de�ned by S(x̄) = 0 (but notie that

the analytial expression of the evolutionary equilibrium x̄ annot be

obtained expliitly).

Finally, it is possible to assess if x̄ is a branhing point, i.e., if the

innovative strategy oexists with the resident one and then diverge

under disruptive seletion, giving rise to two di�erent style, that is,

diversi�ation. Evaluating equation (7.4) we obtain the ondition for

diversi�ation, that is

B′′ = −2αε− β2µ exp[β(x̄− x0)] + 2
N − 1

N
δϕ exp[−γ(x̄− x0)] > 0.

As done in Landi et al. [2013℄ and Chapters 5 and 6, the evolutionary

equilibrium and the divergene ondition are ontinued w.r.t. param-

eter pairs, to obtain the branhing portraits reported in Figure 7.2.
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7.3.1 Two-style ommunity

After diversi�ation, it is possible to study the evolution of the two

resident strategies. For this, we must onsider a resident population

split into two di�erent sub-populations n1 and n2 with strategies x1
and x2, whose resident dynamis are given by

ṅ1(t) = n1(P
R
x1

− P̄R)

ṅ2(t) = n2(P
R
x2

− P̄R),

where P̄R = n1P
R
x1
+n2P

R
x2

is the average payo� in the resident popu-

lation. Notie that this two-style resident model is nothing but model

(7.1) with n = n1, n
′ = n2, x = x1, and x

′ = x2.
When innovative agents with abundane n′ and strategy x′ appear

in the population, the resident-innovative model now is

ṅ1(t) = n1(Px1 − P̄ )

ṅ2(t) = n2(Px2 − P̄ )

ṅ′(t) = n′(Px′ − P̄ )

with P̄ = n1Px1 +n2Px2 +n
′Px′ . The per-apita growth rate ṅ′/n′ of

the innovative agents evaluated at the resident equilibrium (n̄1(x1, x2), n̄2(x1, x2))
gives the two-style �tness funtion λ(x1, x2, x

′). Reall that at the res-
ident equilibrium the frequenies of the innovative agents are null, so

that n̄2 = 1− n̄1. The de�nition of the resident equilibrium is

0 = n1(P
R
x1

− P̄R)
∣

∣

n1=n̄1,n2=1−n̄1

0 = n2(P
R
x2

− P̄R)
∣

∣

n1=n̄1,n2=1−n̄1
,

from whih the ondition for the oexistene equilibrium is onsis-

tently PRx1
∣

∣

n1=n̄1,n2=1−n̄1
= PRx2

∣

∣

n1=n̄1,n2=1−n̄1
. This an be solved in

order to obtain n̄1 (and n̄2 = 1− n̄1). Thus, the �tness funtion is

λ(x1, x2, x
′) = (Px′ − P̄ )

∣

∣

n1=n̄1,n2=1−n̄1
. (7.9)

Strategies x1 and x2 evolve proportionally to the seletion gradient

Si(x1, x2) =
∂λ(x1, x2, x

′)

∂x′

∣

∣

∣

∣

x′=xi

, (7.10)

with i = 1, 2, multiplied by half the mutational rate and the demo-

graphi equilibrium density. If a two-style evolutionary equilibrium

(x̄1, x̄2) is reahed, the branhing onditions

B′
i =

∂2λ(x1, x2, x
′)

∂xi∂x′

∣

∣

∣

∣

x1=x̄1, x2=x̄2
x′=x̄i

< 0,
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and

B′′
i =

∂2λ(x1, x2, x
′)

∂x′2

∣

∣

∣

∣

x1=x̄1, x2=x̄2
x′=x̄i

> 0

with i = 1, 2, an be tested to assess if another diversi�ation in style

is possible or not.

Indiating with nx1 , nx2 , and nx′ = N − nx1 − nx2 the number of
x1-, x2-, and x

′
-strategists at the soial event, we an use equations

(7.5), (7.6), (7.7), and (7.8)�replaing n with n1, n
′
with n2, x with

x1, x
′
with x2 and y with x′�to ompute the expeted payo�s Px1 ,

Px2 , and Px′ . Thus, they are given by (reall that n1 + n2 + n′ = 1)

Px1 =

N
∑

nx1=1

N−nx1
∑

nx2=0

[Pε(x1) + Pσ(x1) + Pµ(x1) + Pϕ(x1)]

(

N − 1

nx1 − 1

)

n
nx1−1
1 (1− n1)

N−nx1

(

N − nx1
nx2

)(

n2
1− n1

)nx2
(

1− n1 − n2
1− n1

)N−nx1−nx2

,

Px2 =

N
∑

nx2=1

N−nx2
∑

nx1=0

[Pε(x2) + Pσ(x2) + Pµ(x2) + Pϕ(x2)]

(

N − 1

nx2 − 1

)

n
nx2−1
2 (1− n2)

N−nx2

(

N − nx2
nx1

)(

n1
1− n2

)nx1
(

1− n1 − n2
1− n2

)N−nx1−nx2

,

and

Px′ =
N−1
∑

nx1=0

N−nx1−1
∑

nx2=0

[Pε(x
′) + Pσ(x

′) + Pµ(x
′) + Pϕ(x

′)]

(

N − 1

nx1

)

n
nx1
1 (1− n1)

N−nx1−1

(

N − nx1 − 1

nx2

)(

n2
1− n1

)nx2
(

1− n1 − n2
1− n1

)N−nx1−nx2

.

Colleting nx1 and nx2 and omputing the probabilities (see Para-
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graph 7.3.2) we obtain

Px1 = εn1 + εn2 exp[−α(x1 − x2)
2] + σ(x1 − x′)

N

N − 1
+

µ{1−exp[β(x1−x0)]}+ϕ exp[−γ(x1−x0)]

(

1

2
−exp[−δ(x1−x

′)2]

)

+

[

−σ(x1−x
′)

1

N − 1
+ϕ exp[−γ(x1−x0)]

(

1

N
exp[−δ(x1−x

′)2]−
1

N

)

]

[

1 + n1(N − 1)

]

+

[

− σ(x1 − x′)
1

N − 1
+ σ(x1 − x2)

1

N − 1
+

ϕ exp[−γ(x1 − x0)]

(

1

N
exp[−δ(x1 − x′)2]−

1

N
exp[−δ(x1 − x2)

2]

)

]

[

n2(N − 1)

]

,

Px2 = εn1 exp[−α(x2 − x1)
2] + εn2 + σ(x2 − x′)

N

N − 1
+

µ{1−exp[β(x2−x0)]}+ϕ exp[−γ(x2−x0)]

(

1

2
−exp[−δ(x2−x

′)2]

)

+

[

−σ(x2−x
′)

1

N − 1
+ϕ exp[−γ(x2−x0)]

(

1

N
exp[−δ(x2−x

′)2]−
1

N

)

]

[

1 + n2(N − 1)

]

+

[

− σ(x2 − x′)
1

N − 1
+ σ(x2 − x1)

1

N − 1
+

ϕ exp[−γ(x2 − x0)]

(

1

N
exp[−δ(x2 − x′)2]−

1

N
exp[−δ(x2 − x1)

2]

)

]

[

n1(N − 1)

]

,
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and

Px′ = εn1 exp[−α(x
′ − x1)

2] + εn2 exp[−α(x
′ − x2)

2]+

µ{1− exp[β(x′ − x0)]}+ ϕ exp[−γ(x′ − x0)]

(

1

2
− 1

)

+

[

σ(x′−x1)
1

N − 1
+ϕ exp[−γ(x′−x0)]

(

1

N
−

1

N
exp[−δ(x′ −x1)

2]

)

]

[

n1(N − 1)

]

+

[

σ(x′−x2)
1

N − 1
+ϕ exp[−γ(x′−x0)]

(

1

N
−

1

N
exp[−δ(x′ −x2)

2]

)

]

[

n2(N − 1)

]

.

From these terms it is possible to ompute the two-style �tness

(7.9) to be used for the analysis of the evolutionary dynamis of the

two-style ommunity.

7.3.2 Probabilities omputation

We here show how to ompute the probability terms in the �tness

funtions expressions. As for the omputation of Px′ in the single-

style ommunity, it is easy to see that

N−1
∑

nx=0

(

N − 1

nx

)

nnx(1− n)N−nx−1 = 1

and

N−1
∑

nx=0

nx

(

N − 1

nx

)

nnx(1− n)N−nx−1 =

n(N − 1)

N−1
∑

nx=1

(

N − 2

nx − 1

)

nnx−1(1− n)N−nx−1 =

n(N − 1).

As for Px we have

N
∑

nx=1

(

N − 1

nx − 1

)

nnx−1(1− n)N−nx = 1,
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while

N
∑

nx=1

nx

(

N − 1

nx − 1

)

nnx−1(1− n)N−nx =

N
∑

nx=1

(1 + nx − 1)

(

N − 1

nx − 1

)

nnx−1(1− n)N−nx =

1 + n(N − 1)

N
∑

nx=2

(

N − 2

nx − 2

)

nnx−2(1− n)N−nx =

1 + n(N − 1).

As for Px1 in the two-style ommunity, we need

N−nx1
∑

nx2=0

nx2

(

N − nx1
nx2

)(

n2
1− n1

)nx2
(

1− n1 − n2
1− n1

)N−nx1−nx2

=

n2
1− n1

(N − nx1)

N−nx1
∑

nx2=1

(

N − nx1 − 1

nx2 − 1

)(

n2
1− n1

)nx2−1(1− n1 − n2
1− n1

)N−nx1−nx2

=

n2
1− n1

(N − nx1)

to be used in

N
∑

nx1=1

n2
1− n1

(N − nx1)

(

N − 1

nx1 − 1

)

n
nx1−1
1 (1− n1)

N−nx1 =

n2
1− n1

[

N −
N
∑

nx=1

nx1

(

N − 1

nx1 − 1

)

n
nx1−1
1 (1− n1)

N−nx1

]

=

n2
1− n1

[

(1− n1)(N − 1)

]

= n2(N − 1),

and similarly for Px2 .
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As for Px′ , we need

N−nx1−1
∑

nx2=0

nx2

(

N − nx1 − 1

nx2

)(

n2
1− n1

)nx2
(

1− n1 − n2
1− n1

)N−nx1−nx2−1

=

n2
1− n1

(N − nx1 − 1)

N−nx1−1
∑

nx2=1

(

N − nx1 − 2

nx2 − 1

)(

n2
1− n1

)nx2−1(1− n1 − n2
1− n1

)N−nx1−nx2−1

=

n2
1− n1

(N − nx1 − 1)

to be used in

N−1
∑

nx1=0

n2
1− n1

(N − nx1 − 1)

(

N − 1

nx1

)

n
nx1
1 (1− n1)

N−nx1−1 =

n2
1− n1

[

N − 1−
N−1
∑

nx1=0

nx1

(

N − 1

nx1

)

n
nx1
1 (1− n1)

N−nx1−1

]

=

n2
1− n1

[

(1− n1)(N − 1)

]

= n2(N − 1)

7.4 Results

We arry out the analysis of the model with the same spirit of Landi

et al. [2013℄ (see also Chapter 5). Figure 7.1 shows the evolution,

aording to our model for the parameter setting indiated in the

aption, of an initially uniform and neutrally moral style. After

reahing the equilibrium x̄ lose to x0 a �rst evolutionary branh-

ing ours: it is now possible to study the evolution of the two resi-

dent strategies x1 and x2 with frequenies n1 and n2 by onsidering

that innovative styles an originate as slight modi�ations of both of

them, i.e., x′ is lose to either x1 or x2 (see Paragraph 7.3.1). This

beause two populations with very similar strategies oexist on the

(fast) soial timesale, so that two di�erent seletion gradients (7.10)

S1(x1, x2) and S2(x1, x2) an be derived and from them the evolution

of the two traits. These seletion gradients have opposite sign, so

that strategies diverge on the (slow) fashion timesale, one beom-

ing austere while the other immoral. When divergene reahes the

two-style equilibrium (x̄1, x̄2), both strategy an branh in priniple,
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Figure 7.1: Simulation of the model showing the evolution and branhing

of the fashion trait. Parameters: ε = 0.01, α = δ = ϕ = 10,
β = σ = µ = 1, γ = 0.001, x0 = 0.

but generially only one of the two nasent branhings survives (see

Paragraph 5.2.3.2). In this ase, another diversi�ation phenomenon

ours in the austere population. These two new austere populations

diverge, one beoming more and more austere, the other inreasing

its sex appeal approahing the neutral strategy x0. Also the three-

style equilibrium (x̄1, x̄2, x̄3) shown at the righthand side of Figure

7.1 is a branhing point for all populations, thus diversi�ation on-

tinues to emerge in the system. Notie that strategies lose to x0
return in fashion during the three-style evolution after a long period

of two-style evolution in whih no one was wearing it anymore. Thus,

reurrent diversi�ation also explain the ylial reurrene of fashion

traits and the revival of old-fashioned and vintage styles.

Figure 7.2 shows the e�et of the di�erent soial mehanisms un-

derlying fashion dynamis on style diversi�ation. Figures 7.2A and

7.2B fous on the need of onforming to established styles (the trendy

payo� ε, see equation (7.5)) vs. the need to prolaim identity and in-

dividual a�rmation (the originality payo� ϕ and the originality expo-

nent γ, see equation (7.8)). In partiular, diversi�ation is promoted

when the originality payo� ϕ is su�iently larger than the trendy

payo� ε (Figure 7.2A) and when the originality payo� tends to be

uniformly distributed between austere and immoral styles (low values

of γ, Figure 7.2B).

Figures 7.2C and 7.2D show the e�et of the need for being sexy
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Figure 7.2: Regions of the parameter spaes allowing the oexistene of 1, 2,
3, ≥ 4 di�erent styles, starting from a single-style ommunity. In

the dotted region at least three suessive branhings take plae,

but the analysis an be furthered. Parameters as in Figure 7.1.
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(the sexy payo� σ, see equation (7.6)) vs. the morality ode of the so-

iety (the morality payo� µ and the morality exponent β, see equation
(7.7)). In partiular, the absolute value of morality µ does not play a

signi�ant role (Figure 7.2C, the same holds for the morality threshold

x0, results not shown), while diversi�ation is again promoted when

the relative moral judgement between austere and immoral styles tend

to be uniform (low values of β, Figure 7.2D). As for the sexy payo�

σ, it must be limited to promote style diversity (see also Figures 7.2E

and 7.2F).

Figure 7.2E ompares the need to be trendy (ε) and the need to

be sexy (σ). They must both be limited to promote diversi�ation,

even if the sexy payo� is less restritive.

Figure 7.2F fous on the e�et of sex appeal (σ) and originality

(ϕ). Fashion diversity is promoted whenever the need for individual

a�rmation and identity display ϕ is high and the need to be sex

appealing σ is low.

7.5 Disussion

We showed that soial interations alone are apable of generating

fashion diversi�ation in soiety. This is in agreement with the view

of Blumer [1969℄, who argues that the hange in fashion traits is the

result of �the gradual formation and re�nement of olletive tastes,

whih our through soial interation among people with similar in-

terests and soial experiene, with the result that many people develop

tastes in ommon�. The model is based on a Repliator Equation and

on Adaptive Dynamis, and its assumptions are in agreement with

the lassial hypothesis on fashion dynamis. For example, the idea

of Blumer [1969℄ on the historial ontinuity of fashion hange, for

whih new fashions evolve from those previously established by the

soiety, is in good agreement with the AD assumptions of rare and

small mutations and with the smooth approximation of the anonial

equation. Moreover, the idea that the lothing style is stritly related

to the sex appeal is supported by manu authors in the fashion lit-

erature [Veblen, 1894, Laver, 1937, Lurie, 1981, Steele, 1985℄. And,

again, mehanisms that drive fashion hange, i.e., the need for being

trendy (�. . . a wish to be in fashion . . . �) opposed to the need for

originality (�. . . [a wish℄ to express new tastes . . . � [Blumer, 1969℄),

and the need to be sexy opposed to the need for respeting moral-

ity (skirts ontinue to rise until they reah an extreme in Lowe and

Lowe [1983℄; �. . . [a wish℄to be abreast of what has good standing . . . �
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[Blumer, 1969℄), seems to be in line with the ideas of the theorists of

fashion.

Our analysis points out (see Figure 7.2) that the main mehanism

promoting fashion diversi�ation is the need to prolaim identity and

to be original ϕ, espeially when its advantage is uniformly distributed

between the austere and immoral styles (low values of γ), whereas the
need to onform to the trendy style ε and the need to be sexy σ redue

the emergene of style diversity. The e�et of morality is a bit more

subtle: diversity is promoted when the relative judgement between

austere and immoral styles tends to be uniform (low values of β),
while there is no e�et of the absolute moral judgement µ and the

morality threshold x0.

As already notied in Paragraph 5.5, there exist partiular pa-

rameter regions where diversi�ation senarios are very sensitive to

parameter perturbations. E.g., see the line segment in Figure 7.2B

where a small perturbation in the originality exponent γ an swith

from a low (region 1, where only a single style an oexist) to a high

diversity senario (region ≥ 4, where at least four di�erent styles an
oexist). And the same an our varying the morality exponent β in

Figure 7.2D.

The soial norms ditated by fashion in the horizontal dynam-

is approah an generate a rih variety of oexisting styles, starting

from an initial situation of onformity. This diversi�ation dynam-

is an also be responsible of the periodi reurrene of some lothing

style [Young, 1937, Lowe and Lowe, 1990, Pesendorfer, 1995, Caulkins

et al., 2007℄, as we an see from Figure 7.1 and brie�y disussed in

the previous paragraph. Moreover, the presene of more than one

style ould lead to a periodi, quasi-periodi, or even haoti fashion

regimes, where the styles osillates ontinuously without ever reah-

ing a stationary equilibrium [Marrow et al., 1992, Diekmann et al.,

1995, Derole et al., 2006, 2010a℄. The simplest of suh never-ending

dynamis would be a two-style limit yle: for this to happen, a

Hopf bifuration should be identi�ed in the two-style ommunity.

A more subtle and evolutionarily intriguing periodi dynamis are

the branhing-extintion yles [Doebeli and Diekmann, 2000, Kisdi

et al., 2001, Derole, 2003, Derole and Rinaldi, 2008℄. This hap-

pens when evolution �rst leads to an evolutionary branhing point,

and then drives one of the morphs to extintion. If the dynamis

goes bak again to the branhing point, this leads to a never-ending

evolutionary dynamis of inrease and suessive loss of diversity. In

this ase, the sexy style after diversi�ation ould beome so immoral
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to bring disadvantages to who adopts it, leading to its extintion.

The austere style would then onverge bak to the neutral style, thus

undergoing again diversi�ation, and so on. However, suh periodi

dynamis was not deteted in the present model. These extensions

are left for future researh.





Chapter 8

Conlusions

Innovation and ompetition proesses are ubiquitous in our world.

They drive evolutionary dynamis by innovative hanges in the har-

ateristis of individual agents and by ompetitive interations that

promote better performing ones. This evolution paradigm an be ap-

plied also outside biology, for example to soial, eonomi, information

sienes and engineering. Adaptive Dynamis represents a �exible

modelling framework, based on the hypothesis of rare and small mu-

tations, for the formal desription of evolution of the harateristis

of the system in terms of ordinary di�erential equations. Diversity

redue when evolution brings groups of agents to extintion, and in-

reases through evolutionary branhing: in appropriate onditions,

innovative agents an oexist with resident ones and their strategies,

initially very similar, an then diverge giving rise to the presene of

two resident forms with di�erent harateristis. The evolution of

this enlarged system an still bring to the situation in whih evolu-

tionary branhing is possible for one or both forms of agents present

in the system. Thus, this suession of evolutionary branhings brings

simple systems (with few resident forms) toward more omplex and

diversi�ed on�gurations. The study of the possible branhing senar-

ios is then very interesting in biology (where it gives an interpretation

of the diversi�ation of speies from a ommon anestor), but also in

soial sienes, eonomis, tehnology, engineering, etetera. More-

over, some theoretial aspets of branhing are still unstudied. For

example, mathematial onditions under whih branhing ours are

not yet available in ritial ases.

After introduing the theory of evolution, its history, its main

proesses (mutation and seletion), and the mathematial approahes

available for its study, we fous on the Adaptive Dynamis approah

187
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(the resident-mutant ompetition model, the omputation of the in-

vasion �tness, and the AD anonial equation), with partiular em-

phasis on evolutionary branhing. We reover the lassi�ation of the

evolutionary equilibria with respet to their onvergene and evolu-

tionary stability and the lassial branhing onditions in terms of

seond derivatives of the invasion �tness, under whih the system be-

omes dimorphi and experiene disruptive seletion thus inreasing

its diversity. We then fous on the branhing bifuration, namely,

the transition from evolutionary stability to evolutionary instability

along with the hange in a model parameter. This bifuration ours

when the sign of the branhing ondition ruling evolutionary stabil-

ity hanges from negative to positive. To study suh ritial ase,

a partiular third order approximation of the invasion �tness must

be omputed, and a novel property of the resident-mutant ompeti-

tion model must be exploited in order to obtain simple and general

results. The study of this ritial ase extends the theory of evolu-

tionary branhing, expands our knowledge on the phenomenon and

provides more general onditions under whih it ours. Moreover,

our approah is general and remains valid also in the ase in whih

the other branhing ondition is ritial, as well as for the study of

further degenerate ases (e.g., when both branhing onditions are

ritial). These extensions are left for future researh. As for the ap-

pliations, we develop a general methodology to study the evolution

of diversity, with an appliation to eo-evolutionary two-speies om-

munities. We then use suh methodology also in two �elds of siene

di�erent from biology. First, we study the evolutionary onsequenes

of �sheries on exploited �sh stoks, �nding out that the interplay

of arti�ial and natural seletion an lead to disruptive seletion on

the stok's maturation shedule. Finally, we study the evolution of

fashion traits purely driven by soial interations and disover that a

asade of style diversi�ation phenomena is possible starting from a

single style soiety.

In partiular, in hapter 4 we unfold the bifuration onerning the

loss of evolutionary stability of an equilibrium of the anonial equa-

tion of Adaptive Dynamis. In the viinity of a stable equilibrium

of the AD anonial equation, a mutant type an invade and oexist

with the present resident types, whereas resident-mutant oexistene

is generially impossible far from equilibrium�the �ttest always win.

After oexistene, residents and mutants e�etively diversify, aord-

ing to the enlarged anonial equation, only if natural seletion favors

outer rather than intermediate traits. Though the onditions for evo-
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lutionary branhing have been known for long, the unfolding of the

bifuration remained a missing tile of AD, the reason being related

to the nonsmoothness of the mutant invasion �tness at the branhing

point. We develop a methodology that allows the approximation of

the invasion �tness after branhing in terms of the expansion of the

(smooth) �tness before branhing. We then derive a anonial model

for the branhing bifuration and perform its unfolding around the

loss of evolutionary stability, �nding out more general onditions un-

der whih evolutionary branhing ours. Moreover, our theoretial

approah is general and remains valid also for the ase in whih the

other branhing ondition is ritial, as well as for the study of fur-

ther degenerate ases (e.g., when both the branhing onditions are

ritial, or when also third and higher order derivatives annihilate).

The main theoretial ontribution of this hapter is a general

method of approximating the dimorphi �tness. It is based on a

radial expansion on a given ray in the plane of the two similar oex-

isting strategies. It exploits the fat (observed in Durinx [2008℄ and

Derole and Geritz [2014℄) that the equilibrium densities at whih the

two strategies an oexist are nonsmooth at the monomorphi singu-

lar strategy, but are well de�ned and smooth along eah given ray in

the one of oexistene. As a onsequene, the radial expansions of

the dimorphi equilibrium densities and of the dimorphi �tness de-

pend on the hosen ray, but, interestingly, they an be written bak

in terms of rational and polynomial expressions of the two strategies.

The resulting expressions are not expansions w.r.t. the oexisting

strategies�suh expansions annot be de�ned, ontrary to what orig-

inally done in Geritz et al. [1997, 1998℄�but an be nevertheless used

as approximations in the resident-mutant oexistene region loally

to the singular point.

Our approah is quite general. Other non-similar resident popu-

lations (of the same of di�erent speies) an be onsidered and the

approximation an be taken up to any order. Thanks to a strutural

property assumed for the dimorphi �tness, reently introdued in

Derole [2014℄), the radial expansions an be written in terms of the

geometry of the monomorphi �tness (in ontrast to what prelimi-

narily found in Durinx [2008℄, in the speial ase of Lotka-Volterra

models).

We have used the developed approah to unfold the branhing

bifuration, at whih a stable equilibrium of the monomorphi AD

anonial equation loses evolutionary stability. Spei�ally, allow-

ing resident-mutant oexistene and ensuring the transversality and
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generiity of the bifuration, we have unfolded the transition of the

evolutionary equilibrium turning from a terminal to a branhing point

of AD.

At the bifuration, the evolutionary dynamis ruled by the di-

morphi anonial equation are dominated by the third-order terms

in the radial expansion of the dimorphi �tness. Interestingly, the

seond-order terms oinide with those Geritz et al. [1997, 1998℄ ob-

tained by assuming smoothness, though nongeneri onstraints on

the monomorphi �tness ome along at seond- as well as at higher-

orders. Thus the (seond-order) branhing ondition of Geritz et al.

[1997, 1998℄ is orret and our approah beomes essential only at

third-order.

By means of a smooth oordinate hange and time-saling, we

have identi�ed the most simple model, loally equivalent to the di-

morphi anonial equation, showing the bifuration. We laim this

is the normal form for the branhing bifuration. The model depends

on four parameters that are all monomorphi �tness derivatives: the

unfolding parameter, the �tness ross-derivative (onstrained by one

of the two generiity onditions), the normal form oe�ient, and

a third mixed-derivative that plays no role and ould be eliminated

by a further oordinate hange (in that sense the normal form ould

be further simpli�ed, though losing the geometri mathing with the

dimorphi anonial equation). The only generiity (and transversal-

ity) ondition required by the bifuration (other than resident-mutant

oexistene), is then that the normal form oe�ient is not vanishing.

Keeping into aount the urvature of the boundaries of the resident-

mutant oexistene region, we have proposed a seond, neessarily less

simple, model loally equivalent to the dimorphi anonial equation

at the inipient branhing. The boundaries quadrati approximation

has the advantage of showing some geometri features relating the

trajetories of the dimorphi anonial equation with the boundaries

themselves (see Geritz et al. [1999℄ for more details).

The analysis of our simpli�ed models as the unfolding parame-

ter moves aross zero unravels the dynamial phenomena turning a

terminal point of AD into a branhing point. Restriting the model

dynamis into the region of oexistene, we see that the singular point

is always a �orner� equilibrium that is attrating or repelling nearby

trajetories, depending on the sign of the unfolding parameter, that

is, its evolutionary stability/instability. The basin of attration in

the ase of evolutionary stability is limited by the stable manifold of

two boundary saddles, the onvergene being omposed of a dimor-
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phi phase up to the extintion of one of the two similar strategies,

followed by a monomorphi phase to the singular strategy. As the

evolutionary stability ondition moves aross zero, the two saddles

move along the boundaries and ross the diagonal at the singular

strategy at the bifuration. The three equilibria ollide and exhange

stability (both eigenvalues do hange sign). In the ase of evolution-

ary instability, the trajetories go away from the singularity and reah

an evolutionary attrator that is not loal to the singularity (and not

involved in the bifuration). The same attrator is generially viable

even in the ase of evolutionary stability, but it annot be reahed

from a neighborhood of the singularity, unless the mutational step is

large enough to esape the basin of attration. The branhing bifura-

tion is therefore atastrophi, in the sense that a small hange in the

unfolding parameter triggers a large evolutionary transient leading to

a new attrator.

Finally, by onsidering the urvature of the boundaries of the

resident-mutant oexistene region at the bifuration, we an extend

the branhing ondition as λ
(0,2)
1 (x̄, x̄) ≥ 0, as already antiipated by

Kisdi [1999℄, without, however, a formal derivation.

The natural follow-up to this work is the analysis of the other

odimension-one branhing bifuration�the one at whih the �tness

ross-derivative vanishes and the singular strategy is evolutionary un-

stable. The resident-mutant oexistene region is loally a usp rooted

at the singular point (see Derole and Geritz [2014℄), and though there

might generially be up to two oexistene equilibria, only one is sta-

ble and should be onsidered for developing a proper expansion of the

dimorphi �tness. Further researh ould investigate the odimension-

two bifuration at whih both �tness seond-derivatives vanish (the

type of oexistene is already available in Derole and Geritz [2014℄),

or the ases at whih the normal form oe�ient vanishes together

with one of the �tness seond-derivatives; or, as well, higher odimen-

sions that do our in appliations (see, e.g., Doebeli and Ispolatov

[2010℄). The mathematial approah developed in this hapter is read-

ily appliable and onvenient to pursue the above projets.

In hapter 5 we show how simulations of ODEs and ontinuations

of systems of algebrai equations an be ombined to study the evolu-

tion of biodiversity in multi-speies systems where phenotypi traits

are genetially transmitted. We analyze a standard parameterized

family of prey-predator ommunities and propose an iterative pro-

edure to obtain the branhing portrait, explaining the dependene

of branhing senarios on two parameters. We have disovered that
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prey branhing, that is indued by the predation pressure, is favored

when prey intraspei� ompetition is highly sensitive to the resident-

mutant phenotypi mismath; while predator branhing is not possi-

ble when prey and predators are present in equal number of morphs.

Therefore, long alternate (prey and predator) as well as unilateral

(prey) branhing sequenes an our. But we have also disovered

that long sequenes omposed of a �rst phase of alternate branhing

onatenated with a long unilateral sequene of prey branhings are

possible in some regions of parameter spae. This explains why prey

populations an be muh more numerous than predator populations,

a fat that is often mentioned in �eld studies and is in agreement

with traditional [Hardin, 1960, MaArthur and Levins, 1964, 1967,

MaArthur, 1969℄ and modern [Diekmann et al., 2003, Diekmann

and Metz, 2006, Gyllenberg and Meszéna, 2005, Meszéna et al., 2006℄

theories of ompetitive exlusion. We also �nd that predator han-

dling time limits branhing sequenes, as harvesting saturation limits

the predation pressures thus restraining prey from branhing; and

the same ours if predator are too generalist, while speialists may

generate long branhing sequenes, until a ritial point is reahed

at whih never ending Red Queen ups and downs of the oevolving

traits prevent a halt at evolutionary equilibria and therefore evolu-

tionary branhing. Finally, ritial parameter ombinations for whih

branhing senarios are highly sensitive to parameter perturbations

have been identi�ed. This knowledge is of strategi importane for

the onservation and management of biodiversity.

Our iterative proedure explores, at eah iteration, the nature

of longer and longer branhing sequenes. At eah iteration, a bet-

ter approximation of a two-dimensional branhing portrait beomes

available. Our approah is more interesting, both omputationally

and oneptually, than the stohasti individual- or population-based

simulations mainly used until now when analytial tratability is un-

feasible. Eah simulation an only reveal an observable branhing

sequene, whereas our systemati analysis extrats information on all

possible sequenes inluding their nature, whether omplete, inom-

plete or not observable. A partiularly attrative feature is that, after

a �rst branhing portrait has been produed, the dependene of the

branhing senarios on other parameters an be disussed without

signi�antly inrease the omputational burden.

In priniple, our approah an be made more general in view of in-

vestigating branhing and extintion senarios in AD models with two

(or more) oevolving speies, e.g., di�erent prey-predator and host-
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parasite ommunities (see, e.g., Best et al. [2010℄), as well as om-

munities regulated by other eologial interations (e.g., mutualisti

[Ferriére et al., 2002℄ and ompetitive [Kisdi, 1999℄ ommunities). Al-

though the rigorous formulation of an iterative algorithm is basially

impossible, we have disussed, partly in light of the spei� model

we have analyzed, the guidelines of a general method. In partiular,

evolutionary extintions ould be taken into aount by onsidering

sequenes of di�erent events, identifying branhing and extintion in

eah of the oevolving speies. This methodology has also been used

outside eology in the following hapters.

In hapter 6, we study �sheries-indued diversi�ation resulting

from the interplay of natural and arti�ial seletion, in the simplest

setting in whih a �shery and a target stok oevolve. Several empir-

ial studies have argued this possibility [Carlson et al., 2007, Edeline

et al., 2007, 2009℄: here we have systematially analyzed under whih

spei� onditions suh disruptive seletion may arise.

Fishing imposes a strong seletive pressure for early maturation,

even though this is aompanied by inreased physiologial osts via

life-history tradeo�s. Therefore, a harvested stok may split into two

life-history types: one exploits the advantages of early maturation,

while the other redues the losses imposed by early-maturation trade-

o�s. Indeed, we have shown that strong life-history tradeo�s of early-

maturation at as indispensable prerequisites for disruptive seletion.

In addition, we have identi�ed two other neessary onditions for

a stok-�shery system to experiene disruptive seletion: (i) �shing

poliies that target large individuals, and (ii) adaptive harvesting that

adjusts the harvest distribution for optimal bene�t. Ultimately, these

two onditions emerge from the same mehanism desribed above.

Harvesting a stok's large individuals inreases the diretional sele-

tion pressure toward early maturation, as reurrently highlighted by

earlier studies (e.g., Law [1979℄, Law and Grey [1989℄, Abrams and

Rowe [1996℄). Moreover, when harvesting is adaptive, a �shery be-

haves similar to an optimally foraging predator that maximizes its

intake rate: this tends to inrease the mortality of large individuals,

as these are more pro�table to harvest. Therefore, adaptive harvest-

ing of large individuals selets for inreased reprodutive investment

early in life. This, in turn, inreases life-history tradeo�s and thereby

strengthens the mehanism that leads to disruptive seletion.

In line with these �ndings and explanations, populations with

demographi onditions that penalize large individuals and/or favor

small individuals are more sensitive to disruptive seletion. This is
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beause suh populations are naturally prone to early maturation,

strengthening the impats of the tradeo�s that turn seletion disrup-

tive. Therefore, there are three di�erent ways to promote the meh-

anism that turns seletion disruptive: �rst, the tradeo�s themselves

may be strong due to physiologial reasons; seond, �shing mortality

may selet for early maturation, making the impats of those trade-

o�s strong; and third, a stok's other demographi and environmental

onditions may predispose it to early maturation. Overall, this pat-

tern of hasing the bene�ts of early maturation while avoiding its

osts an be onsidered as an important general mehanism for the

origin of dimorphism in exploited �sh populations and other oevolv-

ing systems (e.g., Zhang et al. [2013℄).

An ultimate target of �shery management is to inrease sustain-

able yield. This raises the question of whether �sheries-indued dis-

ruptive seletion should be managed. Our results show that sustain-

able yield an slightly inrease after diversi�ation when only large

individuals are targeted, even though it still remains far below the

maximum sustainable yield obtained at low �shing mortality when the

stok is monomorphi. As many �sh stoks are still overexploited, be-

ing managed onsiderably below their maximum sustainable yield, our

�ndings imply that diversi�ation triggered by �sheries-indued dis-

ruptive seletion under high �shing mortality might slightly inrease

the yield from its level before diversi�ation, if only large individuals

are targeted. However, our results also suggest that suh a population

dimorphism an be taken as a sign of extreme harvesting pressure, as

trait diversi�ation is a way for speies to esape from severe sele-

tion pressures resulting from human exploitation. Hene, when suh

a pattern is observed, our analysis suggests that sustainable yield an

usually be improved by reduing �shing mortality.

Fisheries-indued disruptive seletion ould also inrease pheno-

typi variability, without promoting life-history dimorphism: favoring

extreme phenotypes may just widen an existing population polymor-

phism. This ould have positive onsequenes beyond those analyzed

in this hapter, sine higher variability makes a population more rea-

tive to future adaptation needs. This means that the population an

reat more promptly to any rapid hanges in its environmental on-

ditions, both for natural and anthropogeni auses. In other words,

�sheries-indued disruptive seletion ould lead to a better apaity

of an exploited stok to ope with environmental disturbanes and

hanges.

In summary, �sheries-indued disruptive seletion an indiate
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overexploitation, an slightly inrease or derease the yield depend-

ing on the adopted �shing poliy, and an enhane a stok's resiliene

to abrupt hanges in its environmental onditions. Weighting these

three aspets, deision makers an manage a �shery in pursuit of their

eonomi, soial, and onservation objetives.

Naturally, this study an be extended in a number of interesting

diretions. For example, �shing �eets in many regions of the world

are omposed of high-tehnology large ommerial boats and low-

tehnology small private boats. This suggests that the �shery om-

ponent in a oevolving stok-�shery system an also experiene sele-

tive pressures promoting the oexistene of di�erent �eet segments. In

other words, the �eet an experiene an analogous disruptive seletion

and adaptive diversi�ation, as suggested by Derole et al. [2010b℄ and

illustrated by standard eo-evolutionary predator-prey models [Doe-

beli and Diekmann, 2000, Landi et al., 2013℄; this warrants future

researh and model extensions. Spei�ally, �shery dynamis ould

happen at many levels: at the level of the �eet (adaptive harvest-

ing on a short timesale, �eet size and struture on an intermediate

timesale, and tehnologial adaptation on a longer timesale), at the

level of �shing strategy (onstant e�ort, �xed quota, or �xed stok

size), and/or at the level of �shing regulations (limitations on the size

and maturity of target individuals). Here we have examined only the

simplest setting, that is, adaptive harvesting with a onstant-e�ort

strategy. To detet disruptive seletion on the �shery, adjustments in

�eet size, �eet struture, and �eet tehnology must be expliitly mod-

eled. As a starting point, the degree of harvest speialization in our

model ould be interpreted as haraterizing the tehnologial level

of the �eet (a�eting, e.g., the probability of loating aggregations of

�sh, athability, and/or the e�ieny of handling and transporting

the ath). On this basis, this parameter ould be used as an adap-

tive trait of the �shery using the framework of Adaptive Dynamis

[Derole et al., 2008, 2010b℄.

Finally, in hapter 7, we propose a model to investigate the dy-

namis of fashion traits. We onsider pure soial interations between

people that adapt their style to maximize soial suess. We thus do

not onsider the external drivers of marketing, business, and other

eonomi and prodution aspets in this study, as well as the ten-

deny to emulate stereotypes from higher soial lasses. This is in

line with the view of Blumer [1969℄, who onsiders intra-lass soial

interations (the horizontal dynamis) dominant with respet to busi-

ness and inter-lass (vertial) drivers, and argues that the hange in
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fashion traits is the result of �the gradual formation and re�nement of

olletive tastes, whih our through soial interation among people

with similar interests and soial experiene, with the result that many

people develop tastes in ommon�.

People play a repeated group game in whih the payo� re�ets the

soial norms ditated by fashion: on one hand, the tendeny to imitate

the trendy stereotypes (�. . . a wish to be in fashion . . . �) opposed to

the tendeny to diverge from them to prolaim identity (�. . . [a wish℄

to express new tastes . . . � [Blumer, 1969℄); on the other hand, the

tendeny to exploit sex appeal in dating suess [Veblen, 1894, Laver,

1937, Lurie, 1981, Steele, 1985℄ opposed to the moral judgment of the

soiety (skirts ontinue to rise until they reah an extreme in Lowe

and Lowe [1983℄; �. . . [a wish℄to be abreast of what has good standing

. . . � [Blumer, 1969℄). The model is based on a Repliator Equation

and on Adaptive Dynamis, and its assumptions are in agreement

with the lassial hypothesis on fashion dynamis: the idea of Blumer

[1969℄ on the historial ontinuity of fashion hange, for whih new

fashions evolve from those previously established by the soiety, is in

good agreement with the AD assumptions of rare and small mutations

and with the smooth approximation of the AD anonial equation.

Our study points out that the main mehanism promoting fashion

diversi�ation is the need to prolaim identity and to be original,

espeially when its advantage is uniformly distributed between the

austere and immoral styles, whereas the need to onform to the trendy

style and the need to be sexy redue the emergene of style diversity.

The e�et of morality is a bit more subtle: diversity is promoted

when the relative judgement between austere and immoral styles is

weak, while there is no e�et of the absolute moral judgement and

the morality threshold of soiety.

The soial norms ditated by fashion in the horizontal dynamis

approah an generate a rih variety of oexisting styles, starting from

an initial situation of onformity. This diversi�ation an also be re-

sponsible of the periodi reurrene of some lothing style [Young,

1937, Lowe and Lowe, 1990, Pesendorfer, 1995, Caulkins et al., 2007℄.

Moreover, the presene of more than one style ould lead to periodi,

quasi-periodi, or even haoti fashion regimes, where the styles os-

illates ontinuously without ever reahing a stationary equilibrium

(the so-alled Red Queen dynamis, see, e.g., Marrow et al. [1992℄,

Diekmann et al. [1995℄, Derole et al. [2006, 2010a℄). The simplest of

suh never-ending dynamis would be a two-style limit yle: for this

to happen, a Hopf bifuration should be identi�ed in the two-style
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ommunity. A more subtle and evolutionarily intriguing periodi dy-

namis are the branhing-extintion yles. This happens when evo-

lution �rst leads to an evolutionary branhing point, and then drives

one of the morphs to extintion [Doebeli and Diekmann, 2000, Kisdi

et al., 2001, Derole, 2003, Derole and Rinaldi, 2008℄. If the dynamis

goes bak again to the branhing point, this leads to a never-ending

evolutionary dynamis of inrease and suessive loss of diversity. In

this ase, the sexy style after diversi�ation ould beome so immoral

to bring disadvantages to who adopts it, leading to its extintion.

The austere style would then onverge bak to the neutral style, thus

undergoing again diversi�ation, and so on. However, suh periodi

dynamis was not deteted in the present model. These extensions

are left for future researh.





Bibliography

P. A. Abrams. The evolution of predator-prey interations: theory

and evidene. Annual Review of Eologial Systems, 31:79�105,

2000.

P. A. Abrams and L. Rowe. The e�ets of predation on the age and

size of maturity of prey. Evolution, 50:1052�1061, 1996.

P. A. Abrams, H. Matsuda, and Y. Harada. Evolutionary unstable

�tness maxima and stable �tness minima of ontinuous traits. Evo-

lutionary Eology, 7:465�487, 1993.

A. Ajiad, T. Jakobsen, and O. Nakken. Sexual di�erene in matura-

tion of Northeast Arti od. Journal of Northwest Atlanti Fishery

Siene, 25:1�15, 1999.

E. L. Allgower and K. Georg. Introdution to Numerial Continuation

Methods. SIAM Classis in Applied Mathematis, 2003.

M. V. Ashley, M. F. Willson, O. R. W. Pergams, D. J. O'Dowd, S. M.

Gende, and J. S. Brown. Evolutionarily enlightened management.

Biologial Conservation, 111:115�123, 2003.

N. Barber. Women's dress fashions as a funtion of reprodutive

strategy. Sex Roles, 40:459�471, 1999.

S. Barot, M. Heino, L. O'Brien, and U. Diekmann. Long-term trend

in the maturation reation norm of two od stoks. Eologial Ap-

pliations, 14:1257�1271, 2004.

A. Best, A. White, E. Kisdi, J. Antonovis, M. A. Brokhurst, and

M. Boots. The evolution of host-parasite range. The Amerian

Naturalist, 176:63�71, 2010.

H. Blumer. Fashion: from lass di�erentiation to olletive seletion.

The Soiologial Quarterly, 10:275�291, 1969.

199



200 BIBLIOGRAPHY

M. Bodin, Å. Brännström, and U. Diekmann. A systemati overview

of harvesting-indued maturation evolution in predator-prey sys-

tems with three di�erent life-history tradeo�s. Bulletin of Mathe-

matial Biology, 74:2842�2860, 2012.

B. Bolker and S. W. Paala. Using moment equations to understand

stohastially driven spatial pattern formation in eologial sys-

tems. Theoretial Population Biology, 52:179�197, 1997.

D. S. Boukal, E. S. Dunlop, M. Heino, and U. Diekmann. Fisheries-

indued evolution of body size and other life history traits: the

impat of gear seletivity. In ICES CM/F:07, 2008.

F. Briand and J. E. Cohen. Community food webs have sale-invariant

struture. Nature, 307:264�267, 1984.

J. S. Brown and T. L. Vinent. Coevolution as an evolutionary game.

Evolution, 41:66�79, 1987.

J. S. Brown and T. L. Vinent. Organization of predator-prey om-

munities as an evolutionary game. Evolution, 46:1269�1283, 1992.

M. G. Bulmer. The Mathematial Theory of Quantitative Genetis.

Oxford University Press, 1980.

S. M. Carlson, E. Edeline, L. A. Vøllestad, T. O. Haugen, I. J. Win-

�eld, J. M. Flether, J. B. James, and N. C. Stenseth. Four deades

of opposing natural and human-indued arti�ial seletion ating

on Windermere pike (Esox luius). Eology Letters, 10:512�521,

2007.

J. P. Caulkins, R. F. Hart, P. M. Kort, and G. Feihtinger. Explain-

ing fashion yles: imitators hasing innovators in produt spae.

Journal of Eonomi Dynamis and Control, 31:1535�1556, 2007.

N. Champagnat, R. Ferrière, and S. Méléard. Unifying evolution-

ary dynamis: From individual stohasti proesses to marosopi

models. Theoretial Population Biology, 69:297�321, 2006.

F. B. Christiansen. On onditions for evolutionary stability for a

ontinuously varying harater. The Amerian Naturalist, 138:37�

50, 1991.

Y. Cohen, T. L. Vinent, and J. S. Brown. A G-funtion approah

to �tness minima, �tness maxima, evolutionarily stable strategies



BIBLIOGRAPHY 201

and adaptive landsapes. Evolutionary Eology Researh, 1:923�

942, 1999.

R. A. Cole and F. A. Ward. Optimum �sheries management poliy:

angler opportunity versus angler bene�t. North Amerian Journal

of Fisheries Management, 14:22�33, 1994.

C. Darwin and R. Wallae. On the tendeny of speies to form vari-

eties; and on the perpetuation of varieties and speies by natural

means of seletion. Journal of the Proeedings of the Linnean So-

iety, 1858.

R. Dawkins. The Sel�sh Gene. Oxford University Press, 1976.

R. Dawkins. The Extended Phenotype: The Long Reah of the Gene.

Oxford University Press, 1982.

D. L. De Angelis and L. J. Gross, editors. Individual-Based Models and

Approahes in Eology: populations, Communities and Eosystems.

Chapman & Hall, New York, 1992.

A. M. de Roos, D. S. Boukal, and L. Person. Evolutionary regime

shifts in age and size at maturation of exploited �sh stoks. Pro-

eedings of the Royal Soiety of London B, 273:1873�1880, 2006.

F. Derole. Remarks on branhing-extintion evolutionary yles.

Journal of Mathematial Biology, 47:569�580, 2003.

F. Derole. The eology of asexual pairwise interations: A gener-

alized law of mass ation. Journal of Mathematial Biology, 2014.

(submitted).

F. Derole and S. Geritz. Unfolding the resident-invader dynamis

of similar strategies. Theoretial Population Biology, 2014. (to be

submitted).

F. Derole and S. Rinaldi. Evolution of annibalisti traits: senarios

derived from adaptive dynamis. Theoretial Population Biology,

62:365�374, 2002.

F. Derole and S. Rinaldi. Analysis of Evolutionary Proesses: The

Adaptive Dynamis Approah and Its Appliations. Prineton Uni-

versity Press, 2008.



202 BIBLIOGRAPHY

F. Derole and S. Rinaldi. Evolutionary dynamis an be haoti: a

�rst example. International Journal of Bifuration and Chaos, 11:

3473�3485, 2010.

F. Derole, R. Ferrière, and S. Rinaldi. Eologial bistability and

evolutionary reversals under asymmetrial ompetition. Evolution,

56:1081�1090, 2002.

F. Derole, J. O. Irisson, and S. Rinaldi. Bifuration analysis of a

prey-predator oevolution model. SIAM Journal on Applied Math-

ematis, 63(4):1378�1391, 2003.

F. Derole, A. Gragnani, R. Ferriére, and S. Rinaldi. Coevolution of

slow-fast populations: evolutionary sliding, evolutionary pseudo-

equilibria and omplex Red Queen dynamis. Proeedings of the

Royal Soiety of London B, 273:983�990, 2006.

F. Derole, U. Diekmann, M. Obersteiner, and S. Rinaldi. Adap-

tive dynamis and tehnologial hange. Tehnovation, 28:335�348,

2008.

F. Derole, R. Ferriére, and S. Rinaldi. Chaoti Red Queen oevolu-

tion in three-speies food hains. Proeedings of the Royal Soiety

of London B, 277:2321�2330, 2010a.

F. Derole, C. Prieu, and S. Rinaldi. Tehnologial hange and �sh-

eries sustanibility: the point of view of adaptive dynamis. Eolog-

ial Modelling, 221:379�387, 2010b.

F. Derole, P. Landi, and F. Della Rossa. The branhing bifuration

of Adaptive Dynamis. International Journal of Bifuration and

Chaos, 2014. (to be submitted).

A. Dhooge, W. Govaerts, and Yu. A. Kuznetsov. MATCONT: A

MATLAB pakage for numerial bifuration analysis of ODEs.

ACM Transations on Mathematial Software, 29:141�164, 2002.

U. Diekmann and M. Doebeli. On the origin of speies by sympatri

speiation. Nature, 400:354�357, 1999.

U. Diekmann and R. Ferriére. Adaptive dynamis and evolving bio-

diversity. Evolutionary Conservation Biology, pages 188�224, 2004.

Cambridge University Press.



BIBLIOGRAPHY 203

U. Diekmann and M. Heino. Probabilisti maturation reation

norms: their history, strengths, and limitations. Marine Eology

Progress Series, 335:253�269, 2007.

U. Diekmann and R. Law. The dynamial theory of oevolution: a

derivation from stohasti eologial proesses. Journal of Mathe-

matial Biology, 34:579�612, 1996.

U. Diekmann and R. Law. Relaxation projetions and method of

moments. The Geometry of Eologial Interations, pages 412�455,

2000. Cambridge University Press.

U. Diekmann, U. Marrow, and R. Law. Evolutionary yling

in predator-prey interations: population dynamis and the Red

Queen. Journal of Theoretial Biology, 176:91�102, 1995.

U. Diekmann, M. Doebeli, J. A. J. Metz, and D. Tautz. Adaptive

Speiation. Cambridge University Press, 2004.

U. Diekmann, M. Heino, and K. Parvinen. The adaptive dynamis of

funtion-valued traits. Journal of Theoretial Biology, 241:370�389,

2006.

U. Diekmann, M. Heino, and A. D. Rijnsdorp. The dawn of Dar-

winian �shery management. ICES Insight, 46:34�43, 2009.

O. Diekmann, M. Gyllenberg, and J. A. J. Metz. Steady state analysis

of strutured population models. Theoretial Population Biology,

63:309�338, 2003.

U. Diekmann and J. A. J. Metz. Surprising evolutionary preditions

from enhaned eologial realism. Theoretial Population Biology,

69:263�281, 2006.

M. Doebeli and U. Diekmann. Evolutionary branhing and sympatri

speiation aused by di�erent types of eologial interations. The

Amerian Naturalist, 156:77�101, 2000.

M. Doebeli and I. Ispolatov. Continuously stable strategies as evo-

lutionary branhing points. Journal of Theoretial Biology, 266:

529�535, 2010.

M. Doebeli and G. D. Ruxton. Evolution of dispersal rates in

metapopulation models: Branhing and yli dynamis in phe-

notype spae. Evolution, 51:1730�1741, 1997.



204 BIBLIOGRAPHY

E. S. Dunlop, M. Heino, and U. Diekmann. Eo-geneti modeling

of ontemporary life-history evolution. Eologial Appliations, 19:

1815�1834, 2009.

M. Durinx. Life amidst Singularities. Dotoral thesis, Institute of

Biology, Leiden University, The Netherlands, 2008.

M. Durinx, J. A. J. Metz, and G. Meszéna. Adaptive dynamis for

physiologially strutured population models. Journal of Mathe-

matial Biology, 56:673�742, 2008.

E. Edeline, S. M. Carlson, L. C. Stige, I. J. Win�eld, J. M. Flether,

J. B. James, T. O. Haugen, L. A. Vøllestad, and N. C. Stenseth.

Trait hanges in a harvested population are driven by a dynami

tug-of-war between natural and harvest seletion. Proeedings of

the National Aademy of Siene, 104:15799�15804, 2007.

E. Edeline, A. Le Rouzi, I. J. Win�eld, J. M. Flether, J. B. James,

N. C. Stenseth, and L. A. Vøllestad. Harvest-indued disruptive

seletion inreases variane in �tness-related traits. Proeeding of

the Royal Soiety of London B, 276:4163�4171, 2009.

M. Egas, M. W. Sabelis, and U. Diekmann. Evolution of speial-

ization and eologial harater displaement of herbivores along a

gradient of plant quality. Evolution, 3:507�520, 2005.

G. H. Engelhard and M. Heino. Maturity hanges in Norwegian

spring-spawning herring Clupea harengus: ompensatory or evo-

lutionary responses. Marine Eology Progress Series, 272:245�256,

2004.

B. Ernande, U. Diekmann, and M. Heino. Adaptive hanges in har-

vested populations: plastiity and evolution of age and size at mat-

uration. Proeedings of the Royal Soiety of London B, 271:415�423,

2004.

I. Eshel. Evolutionary and ontinuous stability. Journal of Theoretial

Biology, 103:99�111, 1983.

I. Eshel and U. Motro. Kin seletion and strong evolutionary stability

of mutual help. Theoretial Population Biology, 19:420�433, 1981.

D. S. Faloner. Introdution to Quantitative Genetis. Longman,

1989.



BIBLIOGRAPHY 205

J. Felsenstein. Skeptiism towards Santa Rosalia, or why are there so

few kinds of animals? Evolution, 135:124�138, 1981.

R. Ferriére, J. L. Bronstein, S. Rinaldi, R. Law, and M. Gauduhon.

Cheating and the evolutionary stability of mutualisms. Proeedings

of the Royal Soiety of London B, 269:773�780, 2002.

G. A. Field. The status �oat phenomenon. Business Horizons, 1:

45�52, 1970.

R. A. Fisher. The Genetial Theory of Natural Seletion. Clarendon

Press, 1930.

J. M. Fromentin and J. E. Powers. Atlanti blue�n tuna: population

dynamis, eology, �sheries, and management. Fish and Fisheries,

6:281�306, 2005.

J. D. Futuyma and M. Slatkin. Coevolution. Sinauer Assoiates, 1983.

S. Gavrilets. Fitness Landsapes and the Origin of Speies. Prineton

University Press, Prineton, NJ, 2004.

S. A. H. Geritz. Resident-invader dynamis and the oexistene of

similar strategies. Journal of Mathematial Biology, 50:67�82, 2005.

S. A. H. Geritz and F. Derole. Editorial. Journal of Biologial Dy-

namis, 5:103, 2011.

S. A. H. Geritz, J. A. J. Metz, E. Kisdi, and G. Meszéna. The dy-

namis of adaptation and evolutionary branhing. Physial Review

Letters, 78:2024�2027, 1997.

S. A. H. Geritz, E. Kisdi, G. Meszéna, and J. A. J. Metz. Evolution-

arily singular strategies and the adaptive growth and branhing of

the evolutionary tree. Evolutionary Eology, 12:35�57, 1998.

S. A. H. Geritz, E. van der Meijden, and J. A. J. Metz. Evolutionary

dynamis of seed size and seedling ompetitive ability. Theoretial

Population Biology, 55:324�343, 1999.

S. A. H. Geritz, M. Gyllenberg, F. J. A. Jaobs, and K. Parvinen.

Invasion dynamis and attrator inheritane. Journal of Mathe-

matial Biology, 44:548�560, 2002.

S. A. H. Geritz, E. Kisdi, and P. Yan. Evolutionary branhing and

long-term oexistene of yling predators: ritial funtion analy-

sis. Theoretial Population Biology, 71:424�435, 2007.



206 BIBLIOGRAPHY

W. Govaerts. Numerial Methods for Bifurations of Dynamial Equi-

libria. SIAM, Philadelphia, PA, 2000.

A. Gårdmark and U. Diekmann. Disparate maturation adaptations

to size-dependent mortality. Proeedings of the Royal Soiety of

London B, 273:2185�2192, 2006.

V. Grimm and S. F. Railsbak. Individual-based Modeling and Eol-

ogy. Prineton University Press, 2005.

M. R. Gross. Disruptive seletion for alternative life histories in

salmon. Nature, 313:47�48, 1985.

M. R. Gross. Alternative reprodutive strategies and tatis: diversity

within sexes. Trends in Eology and Evolution, 11:92�98, 1996.

M. Gyllenberg and G. Meszéna. On the impossibility of oexistene

of in�nitely many strategies. Journal of Mathematial Biology, 50:

133�160, 2005.

M. Gyllenberg and K. Parvinen. Neessary and su�ient onditions

for evolutionary suiide. Bulletin of Mathematial Biology, 63:981�

993, 2001.

J. B. S. Haldane. The Causes of Evolution. Longmans Green, 1932.

R. Hannesson. The Eonomis of Fisheries. Blakwell Siene, 2002.

G. Hardin. The ompetitive exlusion priniple. Siene, 131:1292�

1298, 1960.

P. J. B. Hart and J. Reynolds. Handbook of Fish Biology and Fisheries.

Blakwell Siene, 2002.

M. Heino. Management of evolving �sh stoks. Canadian Journal of

Fisheries and Aquati Sienes, 55:1971�1982, 1998.

M. Heino and O. R. Godø. Fisheries-indued seletion pressure in

the ontext of sustainable �sheries. Bulletin of Marine Siene, 70:

639�656, 2002.

E. Hernández-Garía, C. López, S. Pigolotti, and K. H. Andersen.

Speies ompetition: oexistee, exlusion and lustering. Philo-

sophial Transations of the Royal Soiety of London A, 367:3183�

3195, 2009.



BIBLIOGRAPHY 207

R. Hilborn and C. J. Walters. Quantitative Fisheries Stok Assess-

ment: Choie, Dynamis and Unertainty. Chapman & Hall, 1992.

S. B. Hsu, S. P. Hubbel, and P. Waltmann. Competing predators.

SIAM Journal on Applied Mathematis, 35:617�625, 1978.

J. A. Huthings and D. J. Fraser. The nature of �sheries- and farming-

indued evolution. Moleular Eology, 17:294�313, 2008.

J. A. Huthings and J. D. Reynolds. Marine �sh population ollapses:

onsequenes for reovery and extintion risk. Biosiene, 54:297�

309, 2004.

G. E. Huthinson. Homage to Santa Rosalia or why are there so many

kinds of animals? The Amerian Naturalist, 93:145�159, 1959.

I. C. Ito and T. Ikegami. Food-web formation with reursive evolu-

tionary branhing. Journal of Theoretial Biology, 238:1�10, 2006.

S. Jennings and M. J. Kaiser. The e�ets of �shing on marine eosys-

tems. Advanes in Marine Biology, 34:201�352, 1998.

C. Jørgensen, K. Enberg, E. S. Dunlop, R. Arlinghaus, D. Boukal,

K. Brander, B. Ernande, A. Gårdmark, F. Johnson, S. Mat-

sumura, H. Pardoe, K. Raab, A. Silva, A. Vainikka, U. Diekmann,

M. Heino, and A. D. Rijnsdorp. Managing evolving �sh stoks.

Siene, 318:1247�1248, 2007.

T. Kaweki. Sympatri speiation driven by bene�ial mutations.

Proeedings of the Royal Soiety of London B, 263:1515�1520, 1996.

I. Keller, C. E. Wagner, L. Greuter, S. Mwaiko, O. M. Selz, A. Siva-

sundar, S. Wittwer, and O. Seehausen. Population genomi sig-

natures of divergent adaptation, gene �ow and hybrid speiation

in the rapid radiation of Lake Vitoria ihlid �shes. Moleular

Eology, 22:2848�2863, 2013.

A. A. King and W. M. Sha�er. The geometry of a population yle:

a mehanisti model of snowshoe hare demography. Eology, 3:

814�830, 2001.

E. Kisdi. Evolutionary branhing under asymmetri ompetition.

Journal of Theoretial Biology, 197:149�162, 1999.



208 BIBLIOGRAPHY

E. Kisdi and S. A. H. Geritz. Adaptive dynamis in allele spae:

evolution of geneti polymorphism by small mutations in a hetero-

geneous environment. Evolution, 53:993�1008, 1999.

E. Kisdi, F. J. A. Jaobs, and S. A. H. Geritz. Red Queen evolution

by yles of evolutionary branhing and extintion. Seletion, 2:

161�178, 2001.

Yu. A. Kuznetsov. Elements of Applied Bifuration Theory. Springer

Verlag, 3rd edition, 2004.

P. Landi and F. Derole. The evolution of fashion traits: pure soial

interations promote diversity. In Proeedings of the 8th European

Nonlinear Dynamis Conferene ENOC 2014, Vienna, 2014a.

P. Landi and F. Derole. The evolution of fashion traits: Pure soial

interations promote diversity. Journal of Mathematial Soiology,

2014b. (to be submitted).

P. Landi, F. Derole, and S. Rinaldi. Branhing senarios in eo-

evolutionary prey-predator models. SIAM Journal on Applied

Mathematis, 73:1634�1658, 2013.

P. Landi, C. Hui, and U. Diekmann. Fisheries-indued disruptive

seletion. Journal of Theoretial Biology, 2014. submitted.

J. Laver. Taste and Fashion: From the Frenh Revolution to the

Present Day. Harrap, 1937.

R. Law. Optimal life-histories under age-spei� predation. The

Amerian Naturalist, 114:399�417, 1979.

R. Law. Fishing, seletion and phenotypi evolution. ICES Journal

of Marine Siene, 57:659�669, 2000.

R. Law and D. R. Grey. Evolution of yields from populations with

age-spei� ropping. Evolutionary Eology, 3:343�359, 1989.

J. A. Leon. Seletion in ontexts of interspei� ompetition. The

Amerian Naturalist, 108:739�757, 1974.

J. Levins. Evolution in Changing Environments. Prineton University

Press, 1968.

R. C. Lewontin. Gene, organism and environment. In D. S. Ben-

dall, editor, Evolution from Moleules to Men, pages 273�285. Cam-

bridge University Press, 1983.



BIBLIOGRAPHY 209

C. C. Li. Population Genetis. The University of Chiago Press, 1955.

E. D. Lowe. Quantitative analysis of fashion hange: a ritial review.

Home Eonomis Researh Journal, 21:280�306, 1993.

E. D. Lowe and J. W. G. Lowe. Veloity of the fashion proess in

women's formal evening dress, 1789-1980. Clothing & Textiles Re-

searh Journal, 9:50�58, 1990.

J. W. G. Lowe and E. D. Lowe. Cultural pattern and proess: a study

of stylisti hange in women's dress. Amerian Anthropologist, 54:

521�544, 1982.

J. W. G. Lowe and E. D. Lowe. Model of fashion hange. Advanes

in Consumer Researh, 11:731�734, 1983.

A. Lurie. The Language of Clothes. Random House, 1981.

R. H. MaArthur. Speies paking, and what interspeies ompetition

minimizes. Proeedings of the National Aademy of Siene, 64:

1369�1371, 1969.

R. H. MaArthur and R. Levins. Competition, habitat seletion and

harater displaement in a pathy environment. Proeedings of the

National Aademy of Siene, 51:1207�1210, 1964.

R. H. MaArthur and R. Levins. The limiting similarity, onvergene

and divergene of oexisting speies. The Amerian Naturalist, 101:

377�385, 1967.

T. R. Malthus. An Essay on the Priniple of Population. Printed for

J. Johnson in St. Paul's Churh-Yard, London, 1798.

P. Marrow, R. Law, and C. Cannings. The oevolution of predator-

prey interations: ESSs and Red Queen dynamis. Proeedings of

the Royal Soiety of London B, 250:133�141, 1992.

P. Marrow, U. Diekmann, and R. Law. Evolutionary dynamis of

predator-prey systems: nn eologial perspetive. Journal of Math-

ematial Biology, 34:556�578, 1996.

N. D. Martinez. Network evolution: exploring the hange and adap-

tation of omplex eologial systems over deep time. In Eologial

Networks: Linking Struture to Dynamis in Food Webs, pages 287�

301. Oxford University Press, 2006.



210 BIBLIOGRAPHY

C. Matessi and C. Di Pasquale. Long term evolution of multi-lous

traits. Journal of Mathematial Biology, 34:613�653, 1996.

H. Matsuda and P. A. Abrams. Runaway evolution to self-extintion

under asymmetrial ompetition. Evolution, 48:1764�1772, 1994.

S. Matsumura, R. Arlinghaus, and U. Diekmann. Assessing evolu-

tionary onsequenes of size-seletive rereational �shing on multi-

ple life-history traits, with an appliation to northern pike (Esox

luius). Evolutionary Eology, 25:711�735, 2011.

J. Maynard Smith. Sympatri speiation. The Amerian Naturalist,

100:637�650, 1966.

J. Maynard Smith and J. Prie. The logi of animal on�its. Nature,

246:15�18, 1973.

E. Mayr. Systematis and the Origin of Speies. Columbia University

Press, 1942.

H. G. E. Meijer, F. Derole, and B. E. Oldeman. Numerial bifura-

tion analysis. In R. A. Meyers, editor, Enylopedia of Complexity

and System Siene, pages 6329�6352. 2009.

G. J. Mendel. Experiments in plant hybridization. Abhandlungen, 4:

3�47, 1865.

G. Meszéna, M. Gyllenberg, F. J. A. Jaobs, and J. A. J. Metz. Link

between population dynamis and dynamis of Darwinian evolu-

tion. Physial Review Letters, 95:078195, 2005.

G. Meszéna, M. Gyllenberg, L. Pásztor, and J. A. J. Metz. Competi-

tive exlusion and limiting similarity: a uni�ed theory. Theoretial

Population Biology, 69:68�87, 2006.

J. A. J. Metz, R. M. Nisbet, and S. A. H. Geritz. How should we

de�ne �tness for general eologial senarios? Trends in Eology

and Evolution, 7:198�202, 1992.

J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jaobs, and J. S.

van Heerwaarden. Adaptive dynamis: a geometrial study of the

onsequenes of nearly faithful reprodution. In S. J. van Strien and

S. M. Verduyn Lunel, editors, Stohasti and Spatial Strutures of

Dynamial Systems, pages 183�231. Elsevier Siene, 1996.



BIBLIOGRAPHY 211

C. M. Miller, S. H. MIntyre, and M. K. Mantrala. Toward formalizing

fashion theory. Journal of Marketing Researh, 30:142�157, 1993.

J. F. Nash. Equilibrium points in n-person games. Proeedings of the

National Aademy of Siene, 36:48�49, 1950.

M. A. Nowak. An evolutionary stable strategy may be inassessible.

Journal of Theoretial Biology, 142:237�241, 1990.

A. F. Opdal. Fisheries hange spawning ground distribution of north-

east Arti od. Biology Letters, 6:261�264, 2010.

S. R. Palumbi. Humans as the world's greatest evolutionary fore.

Siene, 293:1786�1790, 2001.

K. Parvinen. Evolutionary suiide. Ata Biotheoretia, 53:241�264,

2005.

W. Pesendorfer. Design innovation and fashion yles. The Amerian

Eonomi Review, 85:771�792, 1995.

S. Pigolotti, C. López, E. Hernández-Garía, and K. H. Andersen.

How gaussian ompetition leads to lumpy or uniform speies dis-

tributions. Theoretial Eology, 3:89�96, 2010.

J. J. Poos, Å. Brännström, and U. Diekmann. Harvest-indued mat-

uration evolution under di�erent life-history trade-o�s and harvest-

ing regimes. Journal of Theoretial Biology, 279:102�112, 2011.

D. M. Raup and J. J. Sepkoski. Mass extintions in the marine fossil

reord. Siene, 215:1501�1503, 1982.

J. Rihardson and A. L. Kroeber. Three enturies of women's dress

fashions: a quantitative analysis. Anthropologial Reords, 5:111�

153, 1940.

D. E. Robinson. Fashions in shaving and trimming of the beard: the

men of the illustrated London News, 1842-1972. Amerian Journal

of Soiology, 81:1133�1141, 1976.

D. A. Ro�. An alloation model of growth and reprodution in �sh.

Canadian Journal of Fisheries and Aquati Sienes, 40:1395�1404,

1983.

D. A. Ro�. Evolutionary Quantitative Genetis. Chapman & Hall,

1997.



212 BIBLIOGRAPHY

M. L. Rosenzweig and R. H. MaArthur. Graphial representation and

stability onditions of predator-prey interations. The Amerian

Naturalist, 97:209�223, 1963.

J. Roughgarden. The theory of oevolution. Coevolution, pages 383�

403, 1983. Sinauer Assoiates.

A. Salthaug. Adjustment of ommerial trawling e�ort for Atlanti

od, Gadus morhua, due to inreasing athing e�ieny. Fishery

Bulletin, 99:338�342, 2001.

A. Sasaki. Clumped distribution by neighborhood ompetition. Jour-

nal of Theoretial Biology, 186:415�430, 1997.

M. She�er. Eology of Shallow Lakes. Kluwer Aademi, 1st edition,

1998.

M. She�er and E. H. van Nes. Self-organized similarity, the evolu-

tionary emergene of groups of similar speies. Proeedings of the

National Aademy of Siene, 16:6230�6235, 2006.

P. Shuster and K. Sigmund. Repliator dynamis. Journal of Theo-

retial Biology, 100:533�538, 1983.

G. Simmel. Fashion. International Quarterly, 10:130�155, 1904.

A. Sinlair. Fish distribution and partial reruitment: the ase of

eastern Sotian Shelf od. Journal of Northwest Atlanti Fishery

Siene, 13:15�24, 1992.

G. B. Sproles. Fashion: Consumer Behavior Toward Dress. Burgess,

1979.

G. B. Sproles. Analyzing fashion life yles: priniples and perspe-

tives. The Journal of Marketing, 45:116�124, 1981.

G. B. Sproles. Behavioral siene theories of fashion. In M. R.

Solomon, editor, The Psyhology of Fashion, pages 55�70. Lexing-

ton Books, 1985.

S. C. Stearns. The Evolution of Life Histories. Oxford University

Press, 1992.

V. Steele. Fashion and Erotiism. Oxford University Press, 1985.

T. K. Stokes, J. M. MGlade, and R. Law. The exploitation of evolving

resoures. Springer, Berlin, 1993.



BIBLIOGRAPHY 213

D. P. Swain and E. J. Wade. Density-dependent geographi distri-

bution of Atlanti od (Gadus morhua) in the southern Gulf of St.

Lawrene. Canadian Journal of Fisheries and Aquati Sienes, 50:

725�733, 1993.

P. J. Taylor and L. Jonker. Evolutionarily stable strategies and game

dynamis. Mathematial Biosienes, 40:145�156, 1978.

J. N. Thompson. The Coevolutionary Proess. Chiago University

Press, 1994.

P. Turhin. Complex Population Dynamis: A Theoretial/Empirial

Synthesis. Prineton University Press, 2003.

L. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1�30,

1973.

T. Veblen. The eonomi theory of woman's dress. The Popular

Siene Monthly, 46:198�205, 1894.

T. L. Vinent and J. S. Brown. Evolutionary Game Theory, Natural

Seletion, and Darwinian Dynamis. Cambridge University Press,

2005.

J. von Neumann and O. Morgenstern. Theory of Games and Eonomi

Behavior. Prineton University Press, 1953.

C. J. Walters and S. J. D. Martell. Fisheries Eology and Manage-

ment. Prineton University Press, 2004.

P. Weeden. Study patterned on Kroeber's investigation of style. Dress,

3:8�19, 1977.

E. O. Wilson. Biodiversity. The National Aademi Press, 1988.

S. Wright. Evolution in mendelian populations. Genetis, 16:97�159,

1931.

A. B. Young. Reurring Cyles of Fashion. Harper and brothers,

1937.

F. Zhang, C. Hui, and A. Pauw. Adaptive divergene in Darwin's

rae: how oevolution an generate trait diversity in a pollination

system. Evolution, 67:548�560, 2013.

J. Ziman, editor. Tehnologial Innovation as an Evolutionary Pro-

ess. Cambridge University Press, Cambridge, UK, 2000.





List of Figures

2.1 The demographi resident-mutant state spae (n, n′, N)
in three dimensions. Just after the mutation, the state

of the resident-mutant model (2.1) is lose to equilib-

rium (2.9) (shaded region). Equilibrium (2.11) is also

shown (reprodued from Derole and Rinaldi [2008℄). . 21

2.2 Stability of equilibria (2.9) and (2.11) of the resident-

mutant model (2.1). (A) Positive (2.16): equilibrium

(2.9) is unstable while equilibrium (2.11) is stable. (B)

Negative (2.16): equilibrium (2.9) is stable while equi-

librium (2.11) is unstable. Arrows point in the dire-

tion of the resident-mutant dynamis along the inva-

sion eigenvetor (dashed segment (2.15)) (reprodued

from Derole and Rinaldi [2008℄). . . . . . . . . . . . . 24

2.3 Invasion implies substitution (reprodued from Derole

and Rinaldi [2008℄). . . . . . . . . . . . . . . . . . . . . 25

2.4 Shemati summary of the relationships between the

resident-mutant model (2.1), the resident model (2.5),

the mutation statistis, the anonial equation (2.17)

of Adaptive Dynamis, and the respetive demographi

and evolutionary dynamis (reprodued from Derole

and Rinaldi [2008℄). . . . . . . . . . . . . . . . . . . . . 28

2.5 Example of evolutionary state portrait. Filled points:

stable evolutionary equilibria. Half-�lled points: evolu-

tionary saddles. Closed trajetories: stable evolution-

ary yles. Closed dotted trajetories: unstable evo-

lutionary yles. White regions: viable set, i.e., long

term persistene set. Grey regions: unviable set, i.e.,

long term extintion set. Thik segments: extintion

segments (reprodued from Derole and Rinaldi [2008℄). 29

215



216 LIST OF FIGURES

3.1 Classi�ation of evolutionary equilibria x̄ ∈ χ. Panels
A-H show the sign of the �tness λ1(x, x

′) (white: pos-
itive; gray: negative) in a small neighborhood of (x̄, x̄)
in the (x, x′) plane and orresponds to ases A-H in the

last panel (reprodued from Derole and Rinaldi [2008℄). 36

3.2 Classi�ation of evolutionary equilibria x̄ ∈ χ. Panels
A-H show the sign of the invasion eigenvalues λ1(x, x

′)
(positive in regions

1© and

2©; negative in regions

3©
and

4©) and λ1(x
′, x) (positive in regions

1© and

3©;

negative in regions

2© and

4©) in a small neighborhood

of (x̄, x̄) in the (x, x′) plane and orresponds to ases A-
H in the last panel of Figure 3.1. As shown in the last

panel, equilibria (n̄(x), 0) and (0, n̄(x′)) of the resident-
mutant model 3.1 are both unstable (resp., stable) in

region

1© (resp.,

4©), while (n̄(x), 0) is unstable (resp.,
stable) and (0, n̄(x′)) stable (resp., unstable) in region

2© (resp.,

3©) (reprodued from Derole and Rinaldi

[2008℄). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Evolutionary branhing (ases D-F) and evolutionary

merging (ase C) (reprodued from Derole and Rinaldi

[2008℄). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Resident-mutant ompetition senarios. Top row, far

from singular strategies: exlusion of population 1 (A)

(resp., 2 (B)). Bottom row, lose to a singular strategy

x̄: oexistene (C) or mutual exlusion (D). Full points:
stable equilibria. Half-�lled points: saddles. Empty

points: unstable equilibria. . . . . . . . . . . . . . . . . 52

4.2 Coexistene region loally to (x̄, x̄). The olored shaded
area represents trait pairs where oexistene is possi-

ble, and the olor indiates the total abundane (blue:

low, orange: high). In the white areas one of the two

populations outompetes the other. It is a higher-order

approximation w.r.t. Figure 3.3D. . . . . . . . . . . . . 54



LIST OF FIGURES 217
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Paragraph 6.2 provide further details. . . . . . . . . . 142

6.2 Model-based illustration of maturation diversi�ation

in response to �sheries-indued disruptive seletion. The

probability of early maturation, initially set at 0, grad-
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6.3 Three qualitatively di�erent routes to �sheries-indued

disruptive seletion on the probability of early matu-

ration as �shing mortality is inreased. In panel (A)

there is only a single internal equilibrium for any value

of the �shing mortality. In panel (B) there is bistabil-

ity between two internal equilibria for a range of �shing

mortalities. In panel (C), there is bistability between

an internal equilibrium and a boundary equilibrium.

Panels (A) and (B) show results for the no-regulation

�shing poliy; results are qualitatively equivalent for

the small-or-large and the only-mature �shing poliies,

as well as for the only-large �shing poliy when β
r

< 1.
Panel (C) shows results for the only-large �shing poliy

when β
r

≥ 1. Throughout the panels, onvergene sta-
ble and evolutionarily stable equilibria (ontinuously

stable strategies or CSSs) are represented by a thin line,

onvergene stable but evolutionarily unstable equilib-

ria (evolutionary branhing points) are represented by

a thik line, and onvergene unstable equilibria (evo-

lutionary repellors) are represented by a dotted line.

The �shing mortality at the bifuration point at whih

seletion turns disruptive, and thus an ause evolu-

tionary branhing, is indiated by F
B

. Saddle-node

bifurations, at whih a onvergene stable internal

equilibrium ollides with a onvergene unstable in-

ternal equilibrium, are indiated by S1 and S2. A

transritial bifuration, at whih a onvergene sta-

ble boundary equilibrium ollides with a onvergene

unstable internal equilibrium, is indiated by T. Light

gray and dark gray regions represent intervals of �shing

mortality ausing onditional disruptive seletion and

disruptive seletion, respetively. In the former ase,

two onvergene stable equilibria oexist, but only one

of them is evolutionarily unstable: it thus depends on

the anestral ondition whether or not disruptive sele-

tion will our. Initial onditions: n(0) = (1, 1, 1, 1, 1)
km

−2
, x(0) = 0.5. Parameters: ǫ = 10−3

yr

−1
, r1 = 1

yr

−1
, r2 = 0.8 yr

−1
, f2̃ = 0.8 yr

−1
, f3 = 1 yr

−1
,

m1 = 0.4 yr

−1
, m2 = 0.3 yr

−1
, m3 = m3̃ = 0.2 yr

−1
,

β
r

= β
f

= β
m

= 1, s1 = 0.3 m, s2̃ = s2 = 0.6 m,

s3̃ = s3 = 0.9 m, k = 0.01 tonnes m

−θ
, θ = 3, and

γ = 5 (A, C) or γ = 25 (B). . . . . . . . . . . . . . . . 154
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6.4 Two qualitatively di�erent routes to �sheries-indued

disruptive seletion on the probability of early matu-

ration as �shing mortality and harvest speialization

are varied together. White, light gray, and dark gray

regions indiate parameter ombinations for whih se-

letion is not disruptive, onditionally disruptive (de-

pending on the anestral evolutionary ondition), and

disruptive, respetively. The bifuration urves along

whih evolutionary branhing starts to be possible are

represented as thik lines, while saddle-node bifura-

tion urves are represented as thin lines. The univari-

ate senarios shown in Figure 6.3 are slies of the bi-

variate senarios shown here, as indiated by labeled

horizontal lines in both panels. Panel A shows results

for the no-regulation �shing poliy; results are qualita-

tively equivalent for the small-or-large and only-mature

�shing poliies, as well as for the only-large �shing pol-

iy when β
r

< 1. Panel B shows results for the only-

large �shing poliy when β
r

≥ 1. Parameters as in

Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . 156
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disruptive seletion senario for the only-large �shing
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onditional �sheries-indued disruptive seletion, and

an ause onditional �sheries-indued disruptive se-
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6.6 E�ets of tradeo� strengths, demographi parameters,

and environmental parameters on �sheries-indued dis-

ruptive seletion. (A, B) Tradeo�s in growth and fe-

undity promote disruptive seletion: the presene of

both tradeo�s is a neessary ondition for disruptive

seletion. C Tradeo�s in mortality restrain disruptive

seletion. (D, E, F) parameters that promote disrup-

tive seletion. (G, H, I) other parameters that restrain

disruptive seletion. All shown e�ets are disussed

in Paragraph 6.3.2. Parameter ranges along the axes
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whih the stok would go extint on the evolutionary
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dimorphi stok. As shown in A and B, diversi�ation

an ause either a derease or an inrease in yield, re-
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