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Abstract	
Conservative functions or generalized powers in the electric network are those that satisfy the 

balance Tellegen’s theorem, and they are powerful tools in different contests. The attention for 
these functions is still, at the present time, very animated. The main reason behind that is the wide 
diffusion and usefulness of the reactive power for practical and theoretical point of view for linear 
networks under sinusoidal steady state. It is significant to recognize two formal properties of 
reactive power under sinusoidal steady state conditions: the balance property and its invariance on 
resistors. The balance property states that the algebraic sum of reactive power on the single one-port 
elements in a network is equal to the corresponding term on the whole network. The invariance 
means that the reactive power is always nil on resistors. 

However, important changes have occurred in the last 50 years. In the electric networks, the 
presence of power electronics equipment, arc and induction furnaces, in addition to clusters of 
personal computers, represent major nonlinear and parametric loads proliferating among industrial 
and commercial customers. The main problems emerge from the flow of nonactive power caused by 
harmonic currents and voltages. The efforts to extend the concept of reactive power also under 
distorted conditions provided significant results for the analysis and theoretical comprehension of 
the distorted steady state. The literature on this subject is very large; in the past many authors have 
proposed different definitions of nonactive power in distorted steady state.  

In particular, when power converters are present in networks, as sources of distortion or as active 
filters to eliminate this distortion, these networks are considered as time-variant networks and called 
switched networks. They pose several challenges in the construction of efficient time domain 
simulators. Due to the wide range of applications, operating conditions, and phenomena to be 
studied, many different tools for computer analysis and simulation of switched networks have been 
developed.  

The switch model plays an important role within the analysis and simulation of switched 
networks. The ideal switch model is the simplest possible one and has several advantages with 
respect to others. In the presence of switching, classical issues that rise up are related to network 
solution and inconsistent initial conditions. Network solution is fulfilled by several methods. The 
main one is the complementary approach, where commutations are basically the external constraints 
to a time-invariant multi-port. Meanwhile, inconsistent initial conditions, caused by switching, 
imply discontinuities on state variables and impulsive behavior on some voltages and/or currents. In 
fact, Dirac’s delta impulses of voltage and/or current may occur at the switching transitions. 
Impulses redistribute charge and flux at the switching instants when capacitor voltages and inductor 
currents, respectively, are discontinuous. Nevertheless, as a whole it appears to lack general 
principles as well as applications of generalized powers in the field of switched networks. 

In this work, according to the concept of “area” on the v-i plane, a new approach called Swept 
Area Theory, under both nonlinear continuous and discontinuous conditions, is developed. Novel 
conservative functions, as Area Velocity and Closed Area over Time, involved in this theory, are 
proposed. An analysis is carried out, by means of these functions, over nonlinear R, L, C elements 
and over the ideal switch and ideal diode. In addition, jump discontinuities are discussed in detail. 
The Closed Area over Time is related to the harmonic reactive powers and under sinusoidal steady 
state becomes proportional to the classical reactive power. A balance rule concerning harmonic 
reactive powers over nonlinear resistor under continuous conditions is obtained and discussed as a 
novel interesting result. This aspect impacts on a possible extended definition of reactive power 
under distorted conditions. Thanks to the Switching Power, a novel quantitative relation between 
hard switching commutations and Closed Area over Time is obtained, with both theoretical and 
applicative relevance. More explanation is presented through a demonstration that shows how ideal 
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switch and power converters can become sources of reactive power. Issues of principle regarding 
the ideal switch model with respect to the real one is another important result of this work.  

Moreover, concepts of Ideal Switch Multi Port and multilevel voltage/current elements are 
proposed as a unified theory of power converters, whereby most of the power converters existing 
can be recognized in a general and modular way. Furthermore, the Swept Area Theory is extended 
to the Ideal Switch Multi Port in order to find relations between Switching Power and 
commutations of power converters. In this way, the possibility of a power converter to generate or 
absorb reactive power is proved. Hence, a contribution will be available to develop new control 
strategies of power converters based on the Swept Area Theory. 

Another conservative function, called Jump Power, is proposed in order to address some 
properties and issues of principle regarding one-port elements, in particular ideal diodes and ideal 
switches, in the presence of jump discontinuities. Some theorems based on the Jump Power are 
stated. In particular, possible conditions in networks are addressed whereby soft switching, passive 
or active hard switching commutations occur. 

Other conservative functions, called Inductive Impulsive Power and Capacitive Impulsive 
Power, are defined in order to analyze the switched networks in the presence of Dirac’s delta 
impulses in the electric quantities. These impulses are due to inconsistent initial conditions caused 
by switching. Also in this case, some properties and issues of principle regarding one-port elements, 
in particular ideal switches and ideal diodes, are addressed. Moreover, some theorems based on 
Inductive Impulsive Power and Capacitive Impulsive Power are stated. These conservative 
functions, despite having similar properties to the Connection Energy that was presented in the past 
literature as a function regarding the whole network, are still more powerful and meaningful. In 
fact, through Inductive Impulsive Power and Capacitive Impulsive Power functions, it is possible to 
separate the effect of capacitors from inductors. 

Furthermore, an interesting result is found: the ideal switch can absorb or generate electric 
energy when an impulse of current or voltage occurs meanwhile the ideal diode can only generate. 
These facts are important mathematical aspects regarding the ideal model of switches and diodes. In 
some cases these facts cannot have a physical meaning as it is shown in analytical examples. 
However, the total energy absorbed by switching has a clear physical significance, as it is related to 
the variation of energy stored in the set of reactive elements or generated by electric sources. On the 
other hand, in the presence of more than one element, the partition of this energy among the 
different switching elements still has no physical correspondence with the loss of energy into the 
single element. 
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Introduction	
Conservative functions play an important role in different fields. In electric network conservative 

functions are those that satisfy balance Tellegen’s theorem [1], often called generalized powers [2], 
and they are powerful tools in different contests. The search for these functions is still, at the 
present time, very animated. The basic reason is the wide diffusion and usefulness of the reactive 
power under sinusoidal steady state. In fact, it is well known that two functions, namely active 
power P and reactive power Q, are very effective for linear networks under sinusoidal steady state 
in terms of practical and theoretical point of view. 

It is worth to recognize two formal properties of P and Q under sinusoidal steady state conditions 
that are essential for their handling: namely the balance (or conservative) property and their 
invariance on some elements. The balance property states that the algebraic sum of P or Q on the 
single one-port elements in a network is equal to the corresponding term on the whole network. The 
invariance relative to one-port element means that P or Q is always nil on this element. The active 
power is invariant on inductors and capacitors. The reactive power is invariant on resistors. As a 
result, the reactive power has a great success under sinusoidal steady state also for these reasons: for 
sinusoidal single-phase power systems and sinusoidal balanced three-phase systems, it has proved 
to be very useful and efficient for characterizing the quality of power transmission, for designing 
the equipment, for billing purposes, and for compensation. Indeed, the reactive power absorbed by 
inductors and generated by capacitors is easy to compensate using properly capacitors or inductors. 
If the reactive power is completely compensated the RMS value of the current is minimized. This 
definition serves the industry well as long as the current and voltage waveforms remain nearly 
sinusoidal and balanced on the three phases. In the high and medium voltage systems, it is used in 
order to regulate the voltage.  

However, important changes have occurred in the last 50 years. The new environment is 
conditioned by the following evolution: power electronics equipment, such as adjustable speed 
drives, controlled rectifiers, cycloconverters, electronically ballasted lamps, arc and induction 
furnaces, and clusters of personal computers, represent major nonlinear and parametric loads 
proliferating among industrial and commercial customers. Such loads have the potential to create a 
host of disturbances for the utility and the end user. The main problems stem from the flow of 
nonactive power caused by harmonic currents and voltages. Therefore, the concept of reactive 
power and the related concept of power factor have to be adapted to the new environment such that 
measurement algorithms and instrumentation can be designed which give guidance with respect to 
the quantities, that should be measured or monitored for revenue purposes and engineering 
economic decisions. For these reasons, power theories under nonsinusoidal conditions are mainly 
aimed to approach different class of problems, relating to metering, tariffs, and distorting load 
identification issues, harmonic and reactive power compensation issues. Several approaches have 
been developed, both in time and frequency domain, which are suitable to solve classes of problems 
under nonsinusoidal conditions, like design and optimization of passive compensation networks 
[3]−[8], design and control of active compensators [9]−[11], identification of distorting loads [12] 
and measuring techniques [13]. In addition, comprehensive theories have been developed [14], 
which offer the basis for a general analysis of networks behavior under nonsinusoidal conditions, 
some of them relate to the frequency domain [15]−[17] and some to the time domain [9]−[11], [18]. 
These latter give special emphasis to instantaneous quantities or average quantities, depending on 
the aim of the work. The efforts to extend the concept of reactive power under distorted conditions 
gave significant results for the analysis and theoretical comprehension of the distorted steady state. 
The literature on this subject is very large; in the past many authors have proposed different 
definitions of nonactive power in distorted steady state. Limited to single-phase systems, some 
general discussions and surveys have been presented some time ago [19]−[21]. The debate is still 
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alive [22]−[24]. Among others, systematic analysis on this subject is presented in [2], [25]. New 
approaches and tools have given substantial improvements, as the geometric algebra [24], [26], [27] 
and [28].  

Another application field of generalized powers is regarding the network stability analysis and 
network dynamics. General integrals in v-i coordinates have been considered many decades ago in 
milestone papers [29]−[31], in order to study the stability of nonlinear networks. On this track, 
fundamental results have been achieved on dynamic modeling of nonlinear RLC networks 
[32]−[35].  

In particular, when power converters are present in networks, as sources of distortion or as active 
filters to eliminate this distortion, these networks are considered as time-variant networks and called 
switched networks. This kind of networks poses several challenges in the construction of efficient 
time domain simulators. Due to the wide range of applications, operating conditions, and 
phenomena to be studied, many different tools for computer analysis and simulation of switched 
networks have been developed so far [36].  

The switch model plays an important role within the analysis and simulation of switched 
networks. The ideal switch model is the simplest possible one and has several advantages with 
respect to others. Firstly, the parameters of a real switch must be chosen according to the kind of 
semiconductor device used. For the two values resistor model, arbitrary choices of very small and 
very large values for the ON and OFF resistances, respectively, may increase the computational 
time and decrease the accuracy of the simulation. Secondly, for long term simulations, the response 
of the circuit usually does not change significantly if ideal or real switches are used, however the 
simulation time can be considerably affected. The general problem and solution methods of 
switched networks are presented in [37]. In the presence of switching, classical issues that rise up 
are related to network solution and inconsistent initial conditions. Network solution (related to 
problems of uniqueness of solution and stability) is fulfilled by several methods. The main one is 
the complementary approach, where commutations are basically the external constraints to a time-
invariant multi-port [38], [39]. Meanwhile, inconsistent initial conditions, caused by switching, 
imply discontinuities on state variables and impulsive behavior on some voltages and/or currents, as 
deeply dealt in [40]−[42]. In fact, Dirac’s delta impulses of voltage and/or current may occur at the 
switching transitions. Impulses redistribute charge and flux at the switching instants when capacitor 
voltages and inductor currents, respectively, are discontinuous. Nevertheless, as a whole it appears 
to lack general principles as well as applications of generalized powers in the field of switched 
networks; notable exception is the "Connection Energy" [43].  

Another important aspect, already appeared in the past literature, is the “area” on the v-i plane. 
Through this idea, in [44] a conservative function was proposed, called “Mean Generalized 
Content” (MGC) which is balanced over the whole network. In addition, under periodical 
continuous conditions is invariant on nonlinear resistors. Therefore, the MCG could be seen as a 
generalization of the reactive power in distorted conditions [45]. In [46] the MGC was extended to 
circuits with ideal switches where the definition of Switching Power (SP) was introduced and a 
relation between switching and reactive power had been outlined.  

In this thesis, the main goal is the definition of some other new conservative functions in order to 
obtain some properties, theorems and issues of principle regarding nonlinear and time-variant 
elements and give a new approach in nonlinear and switched network analysis. In particular, the 
ideal switch is given more attention and treated as a one-port element with its own constitutive 
relations. Moreover, this works aims to give a possible extension of the reactive power concept 
under nonsinusoidal conditions, and state some theorems regarding the networks under both 
nonlinear continuous and discontinuous conditions. Another goal of this work is to propose an 
unified theory of power converters that is still missing in previous surveys.  



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 9 / 149
 

The content of this thesis is presented as the following: chapter 1 shows the demonstration of 
Tellegen’s theorem, and a brief of the most important reactive and nonactive power definitions in 
distorted conditions of the past literature. 

Starting from the previously mentioned area approach, chapter 2 develops the Swept Area 
Theory (SAT), which widely uses the concepts of trajectory and area on the v-i plane under both  
nonlinear continuous and discontinuous conditions. Initially, a conservative function of time, called 
Area Velocity (AV), is proposed. By this function, it is possible to demonstrate, in a general way, 
the quantities already proposed in [44], [45]. Specifically, the mean value of AV under periodical 
steady state, here called Closed Area over Time (CAT), expands the concept of MCG [44]. In the 
presence of ideal switching, the AV leads to the SP [46]. The integral function CAT basically turns 
out to be a restriction to periodical condition of the content and co-content introduced by [29], [31] 
and the voltage/current potential by [30]. Further expressions similar to CAT have appeared many 
times in the literature, mainly in the contest confined to powers in distorted conditions. However, 
general properties and balance principle are not highlighted properly. Furthermore, the ideal switch 
is, as abovementioned, treated as a one-port element, without any formal difference with other 
network components. This position makes it possible to apply the generalized powers to the ideal 
switch and, the so-called, switched networks can be dealt with topographically unchanged when the 
switches change their state. The relation between swept area and commutations of ideal switches 
yields a remarkable result. A quantitative relation between reactive power and periodical 
commutations of ideal switches is found. Besides, the results can be extended to power converters 
in order to demonstrate their ability to generate or absorb reactive power. 

Chapter 3 defines concepts of Ideal Switch Multi Port (ISMP) and multilevel voltage/current 
elements so that most of the power converters existing can be recognized in a general and modular 
way, this results in a new unified theory in power converters. Furthermore, the SAT theory is 
extended to the ISMP. 

Chapter 4 validates the SAT theory through performing some simulations on some power 
converters. 

Chapter 5 defines another conservative function, called Jump Power (JP), in order to address 
some properties and issues of principle regarding one-port elements, in particular ideal switches and 
ideal diode. 

In Chapters 2−5, jump discontinuities are only considered. Impulses and other kinds of 
discontinuities in the electric quantities are excluded.    

Finally, chapter 6 defines other conservative functions, called Inductive Impulsive Power (IIP), 
Capacitive Impulsive Power (CIP) and Connection Energy (CE) in order to analyze electric 
networks in the presence of first order Dirac’s delta impulses in voltage and/or current quantities. 
By means of these functions, it is possible to address some other properties of ideal switches and 
ideal diodes in the presence of these impulses. The Connection Energy is a function already 
appeared in the past literature regarding the whole switched network [43]. Instead, in this work the 
Connection Energy is redefined as a generalized conservative function related to any electric 
element. Moreover, cases in which initial conditions are not congruent and present in networks 
containing ideal switches, are analyzed. This last chapter is so far separated from the others and 
aims to be an introduction of future works that will be carried out. It will includes the initial steps 
and preliminary results to be performed and continued. 
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1. Generalized	Powers	
 Tellegen’s	Theorem	1.1

 
In this chapter a brief on Tellegen’s theorem and on the past several definitions of reactive and 

nonactive powers are reported. 
Tellegen’s theorem states that if iA1, iA2, iAl are the branch currents of a l-branch network A, and 

vB1, vB2, vBl are the branch voltages of another l-branch network B, where A and B have a common 
graph but may otherwise be different, then  

 

1

0
l

Ak Bk
k

i v


  (1.1) 

 
where the summation is over all branches k of the network. The sign convention adopted for branch 
voltages and currents is such that, if A and B were identical, the product iA1vB1 would be the 
instantaneous power supplied to the branch. Tellegen’s theorem is unusual in that only Kirchhoff’s 
laws are invoked in its proof. The theorem therefore applies to all electrical networks that obey 
these laws, whether they be linear or nonlinear, time-invariant or time-variant, reciprocal or 
nonreciprocal, passive or active, hysteretic or nonhysteretic. The excitation is arbitrary, indeed it 
may be sinusoidal, exponential, periodic, transient, or random. The initial conditions are also 
arbitrary.  

1.1.1 Proof	
 
Consider two different networks A and B having the same topology with l branches, n nodes, 

and s separate parts. Kirchhoff’s current law places n − s constraints upon the currents, so that only 
m = l − n + s currents may be specified independently. Thus all the branch currents of the network 
A may then be found by means of the linear relations 
 

1

m

Ak kh Ah
h

i B j


   (1.2) 

 
where iAk, denotes the branch currents of network A, jAh denotes the m independent currents and Bkh 
is the kh-th element of the m x l loop matrix B of the both networks.  
Kirchhoff’s voltage law may also be expressed in terms of Bkh. For each arbitrary current there is 
one closed path within the remainder of the network that does not include any other branch whose 
current is independently specified. Thus there are m such loops, for each of which Kirchhoff’s 
voltage law for the network B may be written as 
 

1

0
l

hk Bk
k

B v


  (1.3) 

 
where the summation is over all branches in the loop. From Kirchhoff’s laws, as expressed by (1.2) 
and (1.3) a simple power theorem can be proved. Multiplication of (1.2) by vAk, yields 
 

1

0.
m

Ak Bk Ah kh Bk
h

i v j B v


   (1.4) 
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If this is summed over all k (that is, over all branches of the network), then, because of (1.3), the 
right-hand side of (1.4) vanishes so that 
 

1

0.
l

Ak Bk
k

i v


   (1.5) 

 
Equation (1.5) is the theorem originally presented by Tellegen [47], [48], and has since been 
known, deservedly, as Tellegen’s theorem.  
If A and B are identical the (1.5) becomes 
 

1

0.
l

k k
k

i v


  (1.6) 

  
The physical interpretation of (1.6) is, of course, the conservation of energy within a network. 

1.1.2 Generalized	Tellegen’s	Theorem	
 

As reported in [49] the generalized form of Tellegen’s theorem can be expressed in terms of 
“Kirchhoff operators.” The purpose of these operators is to derive, from one set of currents (or 
voltages) that obeys Kirchhoff’s current (or voltage) law, another set of quantities that obeys the 
law. For example, if the set of currents i obeys Kirchhoff’s current law, then so do their time 
derivatives di/dt. Thus, one example of a Kirchhoff current operator is differentiation with respect 
to time. Another is the Fourier or Laplace transform. Similarly, an operator is called a Kirchhoff 
voltage operator if, when operating upon a set of voltages that obeys Kirchhoff’s voltage law, it 
generates a set of branch “voltages” that also obeys this law.  It is sufficient that the operator applies 
a linear transformation on the electric quantities.  

Let ∆1 be a Kirchhoff current operator whose effects upon the set of branch current ik, of a l-
branch network is the generation of a new set of l-branch “currents” ∆1ik, that obeys Kirchhoff’s 
current law. Similarly, let ∆2, a Kirchhoff voltage operator, operates upon the set of branch voltages 
vk, to generate a new set of branch “voltages” ∆2vk, that obeys Kirchhoff’s voltage law. For a 
network it then follows immediately from (1.6) that  
 

1 2
1

0.
l

Ak Bk
k

i v


    (1.7) 

 
This generalized form of Tellegen’s theorem holds for any Kirchhoff operators ∆1 and ∆2 and, 
because it is derived solely from Kirchhoff’s laws, is valid for any constitutive laws of the elements, 
for any form of excitation, and for any initial conditions. Either or both of the Kirchhoff operators 
may, in fact, consist of a sequence of Kirchhoff operators applied in any order that makes sense. 

In many applications of the generalized form of Tellegen’s theorem it is simpler to apply what is 
called the difference form of the theorem [1]. Its derivation is simple: if the roles of ∆1 and ∆2 in 
(1.7) are interchanged and the result is subtracted from (1.7), it becomes 
 

1 2 2 1
1

( ) 0.
l

Ak Bk Ak Bk
k

i v i v


       (1.8) 

 
Clearly, the operators appearing in (1.8) must be both Kirchhoff current operators and Kirchhoff 
voltage operators. 
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1.1.3 Corollary		
 

If some branches are, in fact, ports of the network, the products associated with the ports can 
conveniently be placed on the opposite side of the equality sign to yield  
 

1 1

pl

Ak Bk Bg Ag
k g

i v i v
 

   (1.9) 

 
where k and g now denote internal branches and ports, respectively. In this way the (1.7) can be 
rewritten as 
 

1 2 1 2
1 1

pl

Ak Bk Bg Ag
k g

i v i v
 

       (1.10) 

 
and the (1.8) becomes 
 

1 2 2 1 1 2 2 1
1 1

( ) ( ).
pl

Ak Bk Ak Bk Ag Bg Ag Bg
k g

i v i v i v i v
 

             (1.11) 

 Some	Active,	Reactive	and	Nonactive	Power	Definitions	1.2
 

For the general case the instantaneous electric power related to any port of the network is  
 

p vi  (1.12) 
 
that is conservative according to Tellegen’s theorem, and the active (mean) electrical power under 
periodical conditions is 
 

1

T

P pdt
T

   (1.13) 

 
also conservative, where T is the period time. 
 

Sinusoidal Conditions 
 

Under sinusoidal conditions the voltage and current quantities can be written as follows  
 

( ) 2 cos( )

( ) 2 cos( )

v t V t

i t I t

 

  

 

  
 (1.14) 

 
where ω = 2/T and V and I are the RMS values of the electric quantities. In this chapter, lower case 
letter are used for instantaneous functions while upper case letter are used for the RMS and mean 
values.  
In this case the instantaneous electric power is 
 

( ) cos cos(2 2 ).p t VI VI t         (1.15) 
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If the cosine of the second term is expanded becomes 
 

 
 

( ) cos 1 cos(2 2 ) sin sin(2 2 )

1 cos(2 2 ) sin(2 2 )

p t VI t VI t

P t Q t

     

   

     

    
 (1.16) 

 
where  
 

cosP VI   (1.17) 
 
is the active power equal to (1.13) and 
 

sinQ VI   (1.18) 
 
is the classic reactive power under sinusoidal conditions. Q is conservative according to the well-
known Boucherot’s theorem.  
The apparent power is defined as 
 
S VI  (1.19) 
 
and under sinusoidal conditions the well-known power triangle is satisfied 
 

2 2 .S P Q   (1.20)  

 
Nonsinusoidal conditions 

 
If the voltage and current both are nonsinusoidal but periodic functions of time with the same 

period T, the voltage and current can be expressed as Fourier series  
 

1

1

( ) 2 cos( )

( ) 2 cos( )

n n
n

n n
n

v t V n t

i t I n t

 

 









 

 




 (1.21) 

 
and the active power can be defined as 
 

1 1

cosn n n n
n n

P P V I 
 

 

    (1.22) 

 
where n = n − βn is the phase shift angle between Vn and In.  

Definitions (1.12), (1.13), (1.15), (1.18) and (1.22) are based on the physical phenomena of 
electrical power and energy; this electric power, for instance, can be transferred and turned into 
thermal, mechanical or other kinds of power. Therefore, there are no controversies about equations 
neither in the general case nor in the special cases of sinusoidal signals and nonsinusoidal periodic 
signals. Apparent and reactive powers, on the other hand, are not based on a single, well defined, 
physical phenomenon as the active power is. They are conventionally defined quantities that are 
useful in sinusoidal situations. Under nonsinusoidal conditions the reactive power (1.18) is still 
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valid only for harmonic by harmonic and the apparent power definitions (1.19) is usually used 
where V and I are the RMS values of the distorted waveforms.  

There are quite a few proposals on how to extend the definition of reactive power to cover 
nonsinusoidal situations. The definition that is most widely spread, and is also approved of by 
ANSI/IEEE as standard [50], has been given by Budeanu [50]. However, the definition according to 
Budeanu is not considered useful for any practical applications [19], [20]. Furthermore, as stated 
earlier, reactive power is not a quantity defined by any single physical phenomenon but a 
mathematically defined quantity that has some very useful characteristics and physical 
interpretations at sinusoidal conditions.  

1.2.1 Budeanu’s	Definition	
 

Budeanu [50] proposed to define the reactive power in the nonsinusoidal case by 
 

sinB n n n n
n n

Q Q V I     (1.23)  

 
in analogy with the expression for the active power (1.22). The active and reactive power do not 
satisfy the triangle equality with the apparent power as in the sinusoidal case, indeed 
 

2 2 2
BS P Q   (1.24) 

 
and therefore, Budeanu had to introduce an additional power quantity called deformation power DB,  
 

2 2 2 2 .B BD S P Q    (1.25) 

 
The distortion power mainly consists of cross-products of voltage and current harmonics of 
different orders and will be reduced to zero if the harmonics are reduced to zero, i.e. at sinusoidal 
conditions.  

Note that the Budeanu reactive power is a conservative quantity. Indeed, the currents and 
voltages at each harmonic frequency separately satisfy Kirchhoff’s laws, and hence, the reactive 
powers at each frequency satisfy Tellegen’s theorem. Thus, the sum of the reactive powers also 
satisfies the conservation property. The main disadvantages are that it is not sure that the power 
factor will be unity if the reactive power by this definition is reduced to zero and that the reactive 
power can be totally compensated by inserting inductive or capacitive components. Further, 
designing an analogue meter that measures QB is virtually impossible since it requires a filter that 
utilizes a phase angle displacement of 90 degrees for all frequencies and at the same time has an 
amplification factor of unity for all frequencies. 

1.2.2 Fryze’s	Definition	
 

The reactive power definition proposed by [52] is based on a time domain analysis. The current 
is divided into two parts. The first part, ia, is a current of the same wave-shape and phase angle as 
the voltage, and has an amplitude such that IaV is equal to the active power. The second part of the 
current is just a residual term called ir. The two currents will then be determined by the equations 
 

2a

P
i v

V
  (1.26) 

 
and  
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.r ai i i   (1.27)	
 
The reason for this division is that the current ia is the current of a purely resistive load that, for the 
same voltage, would develop the same power as the load measured on. That is, if ir can be 
compensated, the source will see a purely resistive load and the power factor will be equal to unity. 
It can easily be shown that ia and ir are orthogonal and then the RMS values can be determined by 
 

2 2 2 .a rI I I   (1.28) 

 
In fact, (1.26) gives the only possible amplitude of ia if it should be orthogonal to the residual term 
ir and have the same wave-shape as v. The apparent power can then be obtained as the product of 
the RMS current and the RMS voltage 
 

2 2 2 2 2( ) .a r FS V I I P Q     (1.29) 

 
An unquestionable advantage of Fryze’s theory is elimination, form initial Budeanu theory, of 
fourier series and third power component (deformation power). 

1.2.3 Kusters	and	Moore’s	Definition	
 

This definition of reactive power [4], is again a time domain definition. It expands the definition 
according to Fryze by a further split of the residual current into two orthogonal components. How 
this split is made depends on whether the load is predominantly a capacitive or an inductive load. 
The three currents achieved by this split are then called active current, inductive or capacitive 
reactive current and the residual reactive current, which results in an apparent power sum: 
 

2 2 2 2 2 2 2 .c cr l lrS P Q Q P Q Q       (1.30) 

 
The active current is, as by Fryze, defined by 
 

2p

P
i v

V
  (1.31) 

 
the capacitive reactive current is similarly defined as 
 

2

1

( )
der

T
qc der

der

v idt
T

i t v
V




 (1.32) 

 
and the inductive reactive current as 
 

int

int 2
int

1

( ) T
ql

v idt
T

i t v
V




 (1.33) 

 
where vder and vint are the periodic part of the derivative and integral of the instantaneous voltage, 
respectively, and Vder and Vint the corresponding RMS values. Both these currents can then be 
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shown orthogonal to the residual current in the same way as ip. Because of the orthogonality P, Qc 

and Ql can now be determined by the equations: 
 

p

c qc

l ql

P VI

Q VI

Q VI







 (1.34) 

 
where Iqc and Iql are the RMS value of the iqc and iql. The reactive powers Qc and Ql will then be 
signed quantities that can be compensated by capacitors or inductors if they are negative. That is, Qc 
follows the sign convention of the reactive power in sinusoidal situations while Ql will have an 
opposite sign. The rest terms will be determined by 
 

qcr p qc

qlr p ql

i i i i

i i i i

  

  
 (1.35) 

 
and 
 

2 2 2

2 2 2 .

cr c

lr l

Q S P Q

Q S P Q

  

  
 (1.36) 

 
Ql and Qc are not equal to the reactive power according to Budeanu, but for sinusoidal signals they 
will be equal to Q (apart from the sign of Ql). The rest term will be zero for sinusoidal signals.  

Compared with the Fryze decomposition, the definition by Kusters and Moore has the advantage 
that it identifies the part of the current that can be compensated with a shunt capacitor or inductor. 
The value of the reactive compensating component can easily be calculated. This is, however, only 
valid if the source impedance is negligible, i.e. the voltage change when the compensation is 
applied must be negligible. 

1.2.4 W.	Shepherd	and	P.	Zakikhani’s	Definition	
 

This definition of reactive power [3] is based on a frequency domain analysis. A nonlinear load 
connected to an ideal source will result in current harmonics that do not have any corresponding 
voltage harmonics. In order to handle such nonlinear loads, the current and voltage harmonics are 
divided into "common" and "noncommon" harmonics. For the common harmonic of n order both Vn 
and In are nonzero, while for the noncommon harmonic of order n only one of Vn and In is nonzero. 
Then the apparent power can be expressed as 
 

2 2 2 2 2
n m n f

n N m M n N f F

S V V I I
   

      
  
     (1.37) 

 
where N is the set of all common harmonic orders and M and F contain all noncommon, nonzero, 
harmonic orders of the voltage and the current respectively (that is, M is the set of orders for which 
the voltage harmonics are nonzero while the corresponding current harmonics, due to nonlinearity, 
are zero). The active power is still of course defined by 
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cos .n n n n
n

P P V I    (1.38) 

 
Shepherd then suggested a spilt of apparent power according to 
 

2 2 2 2

2 2 2 2

cos

sin

R n n n
n N n N

X n n n
n N n N

S V I

S V I




 

 





 

 
 (1.39) 

 
and the remaining terms 
 

2 2 2 2 2 2
D n f m n f

n N f F m M n N f F

S V I V I I
    

 
   

 
      (1.40) 

 
which yields 
 

2 2 2 2 .R X DS S S S    (1.41) 

 
As all apparent power components are defined by RMS values, none of them has a sign. 

Shepherd et al consider their definition to be closer to the physical reality, especially for 
compensation of reactive power for a maximum power factor (with passive components). This is 
only achieved if SX is minimized, according to Shepherd et al, since SD only contains noncommon 
harmonics that cannot be compensated by passive components.  

One major disadvantage of this scheme is that SR is not equal to P, even if it contain P, which 
follows directly if the Cauchy-Schwarz inequality is applied on SR and P. If the voltage (or the 
current) is purely sinusoidal then  
 

1 1

1 1

cos

sin

.

R

X B

D

S VI P

S VI Q

S D




 

 


 (1.42) 

 
For linear systems SD = 0 since there are no noncommon harmonics.  

1.2.5 Sharon’s	Definition	
 

This definition of reactive power [53] is also based on a frequency domain analysis. It starts with 
the same division into common and noncommon harmonic components like Shepherd and 
Zakikhani. Sharon suggested an apparent power component according to 
 

2 2 2 2sinQ n n
n N

S V I 


   (1.43) 

 
and the rest term 
 

 2 2 2 2 2 2 1
cos cos cos

2C m n n f
m M n N f F N N

S V I V I V I V I     
 

  
    

         (1.44) 
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which yields 
 

2 2 2 2 .Q CS P S S    (1.45) 

 
There are two important differences between this definition and the definition according to 

Shepherd and Zakikhani. The first is that in the definition by Sharon, P is one of the power 
components and not separately defined. The second is less obvious and is that SQ is derived by a 
multiplication by the total RMS voltage and not only the RMS voltage of the common harmonic 
orders. This may seem a minor change but it removes some of the ambiguities due to the difficulty 
of sorting the noncommon orders from the common in a measurement situation. The active power is 
of course not affected by such a sorting. SQ is not affected by any voltage harmonic sorting problem 
because all voltage harmonics is already used for the calculation of it. 

1.2.6 L.	S.	Czarnecki’s	Definition		
 

This is a frequency domain definition [19]. According to Czarnecki, since the idea of reactive 
power QF introduced by Fryze is defined without the use of Fourier series, it can be easily measured 
and can be similarly defined in nonlinear networks with variable parameters. Unfortunately, it is not 
related directly to the load properties and parameters, therefore, it does not provide any information 
about the reasons for which this power is greater than zero. Thus the QF power does not possess 
these properties for which the reactive power Q in sinusoidal systems is such an important quantity. 
It remains only a measure of the power system utilization and nothing else; but this property does 
not seem to be sufficient for the claim that QF power has physical interpretation. In particular, the 
QF power does not provide any information relevant to the possibility of the power factor 
improvement by means of a passive circuit. The reactive power SX defined in the frequency domain 
by Shepherd and Zakikhani is able to solve the problem of the source power factor maximization by 
means of a single-shunt capacitor. Nonetheless, the nature of the remaining quantity SR is vague and 
does not provide any information about the possibilities of its minimization. The results obtained by 
particular authors using frequency domain and time domain approaches, when compared from the 
viewpoint of power properties of nonsinusoidal systems interpretation and power factor 
improvement show that Shepherd's equation is more promising for the power factor improvement 
problems, whereas Fryze's equation is more useful for the power transmission efficiency 
description. Unfortunately, the nature of powers QF, SR and the corresponding currents are vague 
and they do not elucidate the power properties of the systems. Therefore, according to Czarnecki it 
is advisable to combine these two approaches in a way which preserves their advantages, but 
removes their vague points like made by Sharon. Unfortunately, Sharon did not manage to explain 
the physical meaning of introduced quantities. They can be joined together, providing basic answers 
relevant to both power transmission interpretation and methods of power factor improvement, on 
the ground of the source current orthogonal decomposition in the frequency domain. For linear 
nonsinusoidal systems this idea can be explained as follows. The instantaneous value of a periodic 
voltage can be expressed as a complex Fourier series 
 

1( ) 2 Re jn t
n

n N

v t V e 



    (1.46) 

 
where ω1 is the fundamental angular frequency, and n is a harmonic order for which Vn is nonzero. 
In a power system this voltage may be connected to a linear load with the admittance 
 

n n nY G jB   (1.47) 
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that is, both Gn and Bn can be dependent on the frequency. The current will then be    
 

1( ) 2 Re ( ) .jn t
n n n

n N

i t V G jB e 



   (1.48) 

 
Assuming that all power is absorbed by a (frequency invariant) conductance Ge, as in the power 
definition according to Fryze, this conductance can be determined by 
 

2
.e

P
G

V
  (1.49) 

 
When exposed to the voltage V, the current through this conductance will be equal to the active 
current ia according to [52] and (1.26). The residual current can then be calculated by 
 

1( ) ( ) 2 Re ( ) .jn t
a n n e n

n N

i t i t V G G jB e 



     (1.50) 

 
This current can further be divided into 
 

1( ) 2 Re ( ) jn t
s n n e

n N

i t V G G e 



   (1.51) 

 
which is called scatter current and  
 

1( ) 2 Re jn t
r n n

n N

i t jB V e 



   

 
which is denoted reactive current. All these currents are orthogonal and therefore the RMS values of 
the currents can be expressed by 
 

2 2 2 2.a s rI I I I    (1.52) 

 
If this expression is multiplied by V2 the apparent power is obtained  
 

2 2 2 2 .a s rS P D Q    (1.53) 

 
The meaning of the current component ia, is rather clear. It is the current of a resistive load 

which at voltage v is equivalent to the considered load with respect to its active power P. It has to 
be present in the source current if the source is loaded with the power P. Therefore, it seems to be 
quite justified to call it an "active current." Since is appears if (Gn − Ge) and it is a measure at the 
voltage v of the source current increase due to a scattering of conductance Gn around the equivalent 
conductance Ge, so, it might be called a "scattered current." From the viewpoint of power factor 
improvement it is important that the value of terms (Gn − Ge) may be positive as well as negative, 
hence, there does not exist any passive one-port which, connected at the load terminals, could 
compensate the is current. The ir current appears if there is a phase-shift between voltage and 
current harmonics, i.e., if the source is loaded uselessly by the harmonic reactive powers Qn. 
However, it is not the algebraic sum of Qn powers, as was suggested by Budeanu, that is the 
measure of the apparent power increase caused by powers Qn, but the product |v||ir|, where |ir| is 
related to harmonic reactive powers Qn by the formula 
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2

2 2 .n
r n n

n n n

Q
i B V

V

 
   

 
   (1.54) 

 
From the viewpoint of the power factor improvement it is important that Qr power and ir current 

can be wholly compensated by a shunt reactance one-port. Due to the properties of the ir current, it 
seems to be justified to call it a "reactive current." According to Czarnecki currents ia, is, ir are 
directly related to three different phenomena, namely, to the active power transmission, to the load 
conductance scattering, and to the source loading with harmonics reactive power Qn. Therefore, it 
seems that these three parts of the source current have quite clear physical meaning. But the nature 
of Ds and Qr powers is quite the same as the nature of the source apparent power S. They are only 
the formal products of voltage and currents RMS value. However, the Qr represents this part of the 
source apparent power which can be wholly compensated by a shunt reactance one-port, whereas 
the Ds represents this part of apparent power which cannot be compensated by any passive one-port. 

1.2.7 Tenti’s	Definition	
 

Tenti et al [54] introduced a new approach to reactive power and current in distorted, also three-
phase, situations. Their approach starts from a quantity, which they call reactive energy, which is 
the scalar product of the current and the integral of the voltage, the reactive energy is given by 
 

1
sin .T n n n

n

W V I
n




  (1.55) 

 
The corresponding reactive current is defined as the minimal current needed to convey this reactive 
energy to the load. Explicitly, this current is 
 

2

1
sin

1
( ) 2 sin( ).

1

n n n
n

T n n
n

n
n

V I
n

i t V n t
n

V
n


  

 
 
 





 (1.56) 

 
If a parallel element delivers this current to the load, then the losses in the supply are reduced 

and the supply conveys zero reactive energy WT. All reactive energy of the load is conveyed by the 
parallel compensator. 

1.2.8 M.	Iliovici’s	Definition	
 

M. Iliovici has presented a reactive power interpretation as loop area which is made by current 
and voltage coordinates [55] 
 

1
.

2IQ idv


    (1.57) 

 
Iliovici’s reactive power is associated with electric and magnetic energy accumulated in circuits. 
Characteristics in v-i coordinates of nonlinear objects are usually complex and create multiple loops 
and furthermore their shape changes strongly under the influence of voltage change. Areas inside 
loops are circulated clockwise or counterclockwise. Therefore, the energy of electric or magnetic 
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field is sometimes drawn and sometimes returned. If energy is not mentioned, the object 
characteristic in v-i coordinates is reduced to a line segment.  

1.2.9 Emanuel’s	Definitions	
 

The idea of Emanuel’s proposal is based on separation of fundamental active and reactive 
powers from the remaining apparent power components [56], [57]. In [56] Emanuel explained why 
he proposes this: “The power frequency apparent, active and reactive powers are the essential 
components among all the components of the apparent power. The electric energy is generated with 
nearly pure sinusoidal voltage and currents and the end-users, who buy the electric energy, expect a 
high quality product, i.e. the provider of electric energy is expected to deliver reasonable sinusoidal 
voltage waveforms that support the useful energy P1t. The harmonic powers Ph are often considered 
electromagnetic pollution − a by− product of the energy conversion process that takes place within 
the nonlinear loads. Thus, it makes good sense to separate P1 and Q1 from the rest of the powers.” 
Emanuel’s proposal is based on the Fourier series as follows: the current is separated into 
fundamental and total harmonic current  
 

2 2 2
1

2

1

H

H h
h

I I I

I I


 

  (1.58) 

 
and in the same way the voltage 
 

2 2 2
1

2

1

.

H

H h
h

V V V

V V


 

  (1.59) 

 
The  apparent power has four terms 
 

          2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1H H H H H H I V HS V I V V I I V I V I V I V I S D D S             (1.60) 

 
where S1 is the fundamental apparent power, DI is the current distortion power, DU is the voltage 
distortion power, SH is the harmonic apparent power.  

 Electric	Quantities	in	Generalized	Functions	Domain	1.3
 

Since in this work networks working under both nonlinear continuous and discontinuous 
conditions are taking into account, the instantaneous electric quantities voltage and current can be 
decomposed in the generalized functions domain as follows 
 

( ) ( )

( ) ( )

k k
k

qk k
k

v t v t t

i t i t t

 

 

  

  







  (1.61) 

 
where ~ denotes the bounded part including jump discontinuities of the electric quantity, δ denotes 
the first order Dirac’s delta impulse which can be present in the electric quantities. k and qk are, 
respectively, the amplitudes of the voltage and current impulses. In this work impulses of higher 
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order and other kinds of discontinuities are excluded. However, in case of jump discontinuity the 
electric quantities are defined as 
 

1
( ) ( ( ) ( ))

2
1

( ) ( ( ) ( )).
2

v t v t v t

i t i t i t

 

 

 

 




       (1.62) 

 
It is possible to address the jump discontinuities as follows 
 

( ) ( )

( ) ( )

cont k k
k

cont k k
k

v t v V t t

i t i I t t









  

  







  (1.63) 

 
where Vk = Vk+ − Vk- and Ik = Ik+ − Ik-are the amplitudes of the jump discontinuities. 

Now, let us define other functions which obey to the Kirchhoff laws: 
 
1) Jump functions 
 

( ( )) ( ) ( )

( ( )) ( ) ( ).

J v t v t v t

J i t i t i t
 

 

 
 

     (1.64)        

 
This functions are nil everywhere except in discrete points in which the left and right limits of the 
function are different. In these discontinuity instants the jump functions are equal to the step (with 
sign). 
 

( ( ))

( ( ))
k k k

k k k

J v t V V

J i t I I
 

 

 
 

            (1.65)    

 
2) Impulsive functions 
 

( ( ))

( ( ))

t

t

t

t

Y v t vdt

Y i t idt
















 (1.66) 

 
This functions are nil everywhere except in discrete points in which a first order Dirac’s delta 
impulse is present. In these discontinuity instants the impulsive functions are equal to the amplitude 
of the impulse (with sign).  
 

( ( ))

( ( ))
k k

k qk

Y v t

Y i t







 (1.67) 
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3) Derivatives in the generalized functions domain  
 

( )

( )

dv t

dt
di t

dt

  (1.68) 

 
4) Integrals 
 

0

0

( )

( )

t

t

t

t

v t dt

q i t dt

 

 




    (1.69) 

 
This finite integrals are to be referred to a common initial time t0. In this way Kirchhoff laws are 
met.  

By means of this functions it is possible to define several generalized functions which are 
developed in next chapters.  

 
Systems with finite energy 

 
In order to avoid infinite energy in the system, impulses of voltage and current at the same time 

and on the same electric port are excluded. Indeed  
 

( ) ( ) ( )k k qk k k qk kE t t t t dt t       




     (1.70) 

 
is infinite.  
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2. Swept	Area	Theory	
 Introduction	2.1

 
In this chapter novel conservative functions are proposed. In particular, starting from the area 

approach mentioned in the introduction and similarly to the Iliovici approach, the Swept Area 
Theory (SAT), which widely uses the concepts of trajectory and area on the v-i plane under both 
nonlinear continuous and discontinuous conditions, is developed. Impulses on voltages and/or 
currents are not covered in this chapter and in the followings 3−5.  

 Area	Velocity	2.2
 

Let us consider a lumped-parameter circuit formed by connection of electrical ports. Voltages 
and currents are continuous functions with possible jump discontinuities. In order to handle 
discontinuities, all subsequent differential relations must be considered in the domain of generalized 
functions, as stated in chapter 1. 

 

 
Fig. 2.1 Reference directions for voltage and current 

on a one-port element 
 

 For a two-terminals component, with the reference directions for voltage and current reported in 
Fig. 2.1, let us define the Area Velocity (AV), here indicated with h, as 

 
1

( ) .
2

di dv
h t v i

dt dt
   
 

 (2.1)  

 
The AV (2.1) is a generalized power in the sense of [2]. The sign of AV depends on the product 

of the signs of v and i like the usual power. Therefore, it is possible to assume for AV the same 
terminology, absorbed or generated, with the same sign rules as power. Expression (2.1) is not the 
differential of a function. In order to evidence a derivative of a function, namely the instantaneous 
power vi, (2.1) can be rewritten in the equivalent forms 
 

1 1
( ) ( ) ( ) .

2 2

di d d dv
h t v vi vi i

dt dt dt dt
     (2.2) 
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2.2.1 Continuous	Conditions	
 

The AV has a significant graphic correspondence on the v-i plane, which makes reason of its 
name. Under the condition that v(t) and i(t) are continuous functions, it is possible to get a graphical 
interpretation as follows: let dv and di be the increments of voltage and current on the v-i plane. Let 
us evidence the incremental area dA swept on the v-i plane respect to the origin of the axes, as 
depicted in Fig. 2.2. From graphical analysis it is possible to write the following expression 
 

1
( ).

2
dA vdi idv   (2.3) 

 
The ratio of the incremental swept area dA and the incremental time dt gives rise to (2.1).  

 

 
Fig. 2.2. Infinitesimal swept area 

2.2.2 Discontinuous	Conditions	
 

In case the voltage and/or current present a jump discontinuity, let us introduce the unitary step 
u(t) and its generalized derivative, the unitary impulse (t). Let us suppose a discontinuity both on 
v(t) and i(t) at time t*. Around a small neighborhood of the discontinuity, v(t) and i(t) can be 
assumed as constant, as shown in Fig. 2.3, and it is possible to write 
 

*

*

( ) ( ) ( )

( ) ( ) ( ).

A B A

A B A

v t v v v u t t

i t i i i u t t

   

   
 (2.4) 

 
Taking into account (2.4) in (2.1) and the generalized derivative, the following expression involving 
an impulse is obtained. 
 

*1
( ) ( ) ( )

2 A B B Ah t v i v i t t     (2.5) 

 



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 26 / 149
 

 
Fig. 2.3. Voltage and current jump discontinuities 

 
Also in this case a simple graphical interpretation can be given to (2.5). Indeed, the amplitude of 

the impulse of AV is the triangle of finite swept area of Fig. 2.4. Hence, in case of discontinuity, the 
two points A and B have to be joint by a straight line yielding a finite area. As a particular case, 
(2.5) is valid for a discontinuity present only in the current (vA = vB) or in the voltage (iA = iB).  
 

 
Fig. 2.4. Jump discontinuity on the v-i plane 

 
From the given hypotheses on functions v(t) and i(t), and the graphical interpretations sketched 

in Fig. 2.2 and Fig. 2.4, it is possible to recognize that the trajectory on the v-i plane is a continuous 
piecewise regular curve.  

2.2.3 Switching	Power	
 

As reported in [46] it is possible to define the Switching Power (SP) as the area on the v-i plane 
generated in case of discontinuity. The name “Switching” refers to the fact that, usually, a 
discontinuity is generated by an ideal switch but, in principle, it can be due to a generator with 
discontinuity, as a square wave voltage source. Mathematically, taking into account (2.5) and Fig. 
2.4, the Switching Power can be define as 
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*

*

* 1
( ) ( ).

2

t

A B B A

t

A t hdt v i v i





    (2.6) 

 
In this way the (2.6) is always valid but gives a result different from zero only when in the Area 
Velocity is present an impulse due to a discontinuity on the v-i plane. 

2.2.4 Balance	Theorem	over	Area	Velocity	
 

In electrical network satisfying the voltage and current Kirchhoff laws, Tellegen’s theorem [1] 
states that the product vi is balanced, i.e. the sum over the whole network is nil. Hence, also the 
generalized derivatives of those quantities satisfy the Kirchhoff laws. In other words, according to 
the generalized form of Tellegen’s theorem (1.8), it is possible to recognize the Kirchhoff’s 
operators as 

 

1 2

1 1

2 2

di dv

dt dt
     

 
and the following theorem can be stated.  
 
Theorem 2.I. Given a network constituted by a connection of “p” electric ports and chosen the 
same reference directions for all ports, the sum of Area Velocity extended to the whole network is 
nil, namely the sum of Area Velocity generated is equal to the sum of Area Velocity absorbed.    
 

1

1
( ) 0

2

p

k

di dv
h t v i

dt dt

    
 

  

 Closed	Area	over	Time	2.3
 

Let us consider an electric port under periodical steady state of period T. Hence, it is possible to 
define the Closed Area over Time (CAT) as the mean value of AV over the period, as follows 
 

1
( ) .

T

H h t dt
T

   (2.7) 

 
For the periodicity T on the v-i plane the trajectory forms a closed curve. Graphically, (2.7) is the 
swept area enclosed on the v-i plane averaged over the period T, as shown in Fig. 2.5. According to 
the positive direction in Fig. 2.2, the CAT is positive when its contour is oriented in 
counterclockwise direction.  

In case of jump discontinuities, (2.7) is still valid in domain of generalized functions. 
Specifically, the impulse (2.5) gives a finite contribution equal of the impulse amplitude in the 
integral (2.7) and the graphical result of Fig. 2.4 is extended: the trajectory on the v-i plane is to be 
closed by a straight line between the points of discontinuity (for example the A-B segment in Fig. 
2.5). In this case the (2.7) can be written as follow 

 

1
k

j kC

H hdt A
T 

 
  

 
    (2.8) 

 
where C are the intervals in which h(t) is a continuous function. 
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In general the trajectory is a closed piecewise regular curve. It may not contain the axis origin 
and may be a nonsimple curve (some points of the trajectory may be covered more than once). 
Therefore, the graphical approach is a general and very useful support for the evaluation of the CAT 
in every circumstance. 
 

 
Fig. 2.5. Closed swept area under periodical steady state  

 
From (2.2) and taking into account the periodicity, two equivalent explicit forms of (2.7) are 

obtained:  
 

1 1
.

T T

di dv
H v dt i dt

T dt T dt
     (2.9) 

2.3.1 Balance	Theorem	over	Closed	Area	over	Time		
 

It is worth noting that, according to the definition (2.7), the swept area is divided by the local 
period T. Hence, this definition is independent of the common period of the network, if exists, 
whereas only the periodicity of the quantities of the considered port is required. If all network ports 
are periodic and such periods are in rational ratio each other, then a common period (least common 
multiple) exists. Referring the CAT to this common period, since AV is balanced also its mean 
value is balanced too, hence: 

 
Theorem 2.II. Given a network under periodical steady state constituted by a connection of electric 
ports and chosen the same reference directions for all ports, the sum of Close Area over Time 
(referred to common period) extended to the whole network is nil, namely the sum of Closed Area 
over Time generated is equal to the sum of Closed Area over Time absorbed.   

2.3.2 Relation	between	CAT	and	Harmonic	Reactive	Powers	
 

Let us consider the two terminal component of Fig. 2.1under periodical steady state of period T. 
The Fourier series expansions of the voltage and current are (ω = 2π/T) 
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1

1 1 1

1

2

2 2 2

2

*

*

( ) ,

( ) ,

jk t
k k k

k

jk t
k k k

k

v t e

i t e















 

 





V V V

I I I

 (2.10) 

 
in which Vk1 and Ik2 are complex number and * marks conjugate components. Furthermore 

 

1

1

1

2

2

2

1

2

( )

( )
.

jk t
k

k

jk t
k

k

dv t
jk e

dt

di t
jk e

dt

























V

I

 (2.11) 

 
Taking into account (2.10) and (2.11) in (2.1), the Fourier expansion of AV is obtained: 
 

1 2

1 2

1 1

( )
2 1

1
( ) ( ) .

2
j k k t

k k
k k

h t j k k e 
 



 

   V I  (2.12) 

 
Averaging over a period T only terms with k1 + k2 = 0 contribute to the CAT quantity (2.7): 
 

* * *

1

( ).k k k k k k
k k

H jk jk 
 

 

    V I V I V I  (2.13) 

 
Since the reactive power associated to the k-th sinusoidal component of voltage and current is by 
definition 
 

* * *2 Im( ) ( )k k k k k k kQ j  V Ι V I V I  (2.14)  

 
it follows 
 

1

.k
k

H k Q




   (2.15) 

 
Equation (2.15) gives the CAT versus the Fourier components of the reactive power, in which 

each contribution is weighted on its own angular frequency. Relation (2.15) is valid provided the 
series is convergent. It is possible that (2.15) converges even if one or both terms of series (2.11) 
are not convergent. A significant case is given by the square waveform of both current and voltage. 
Series (2.10) exist, the derivatives are series of impulses and (2.11) do not converge. However 
(2.15) converges to the expected value.  

2.3.3 Elementary	Cases	
 

As a particular case, under dc steady state both h = 0 and H = 0. Whether only v or i is constant, 
then h is not zero but H = 0.  

Instead, under sinusoidal steady state conditions, by elementary passages, it can be proved that 
AV is constant and equal to h(t) = Q and consequently the CAT is  
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.H Q   (2.16)  
  
Whether only v(t) or i(t) is sinusoidal, (2.16) still holds. 

 AV	and	CAT	on	Electric	Components	2.4

2.4.1 Resistive	one‐port	
 

Let us consider a time-invariant nonlinear resistive one-port, with a continuous characteristic on 
the v-i plane, as shown in Fig. 2.6. Let us define the resistor in parametric form as 
 

( ); ( )v v x i i x   (2.17) 
 
with x(t) the curvilinear abscissa. The parametric form makes it possible to include resistors not 
voltage-controllable, not current-controllable or neither.  
 

Area Velocity 
 

Taking into account (2.17) in (2.1), the AV on the resistor is obtained: 
 

1
( ) .

2R

di dv dx
h t v i

dx dx dt
   
 

 (2.18) 

 
Across a jump discontinuity at time t* taking into account (2.5), the (2.18) becomes 
 

* * * * *1
( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ).

2Rh t v x t i x t v x t i x t t t           (2.19) 

 
If the current-voltage characteristic is linear, i.e. v = Ri or i = Gv, it is straightforward to recognize 
that in (2.18) and (2.19) 
 

( ) 0.Rh t   

 (2.20) 
Closed Area over Time 

 
Under periodical steady state, from (2.7) and (2.18) the CAT on the resistor is 

 
0

0

1
.

2

t T

R

t

di dv dx
H v i dt

T dx dx dt


   
   (2.21) 

 
Under the condition that x(t) is a continuous function of time, changing of integration variable is 
allowed in (2.21), becoming the line integral 
 

0

0

( )

( )

1
.

2

x t T

R

x t

di dv
H v i dx

T dx dx


   
   (2.22) 

 
Because of periodicity, x(t0) = x(t0+T) and hence 
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0.RH   (2.23) 

 
The graphical interpretation is straightforward: v(x) and i(x) are constrained over the 

characteristic and the periodic trajectory on the v-i plane has always a null swept area.  
Different result applies in case of jump discontinuity. In this case some jumps may appear 

among couples of points on the characteristic, x(t) is not yet continuous, so (2.22) is not yet valid on 
the whole trajectory. Let be n jumps in the period at times tj (j=1,…,n). Each jump j identifies a 
couple of points x(tj(-)) = xj(-), x(tj(+)) = xj(+). The time integral (2.21) is now decomposed in a number 
of continuous intervals ]tj−tj+1[ between the discontinuities. Since in the continuous curve portions 
]x(tj)−x(tj+1)[, x(t) is continuous, the variable substitution (2.22) applies on each continuous interval. 
Moreover, the contributions of the discontinuities must be added according to (2.19). Hence, (2.21) 
turns into 
 

1( )

( )
0 1

1
( ) ( ) ( ) ( )

2

j

j

xn n

R j j j j
j jx

di dv
H v i dx v x i x v x i x

T dx dx

 



   
 

              
   (2.24) 

 
with x0(+) = x(t0) and xn+1(-) = x(t0+T).  

In the integral (2.24) the portions of the characteristic tracked twice have nil sum, but because of 
the presence of some portions involved in a jump, (2.24) may be not nil. A graphical interpretation 
of (2.24) is exemplified in Fig. 2.6 for a single jump. The line is tracked periodically from A to D. 
The first term in (2.24) has two factors, the first ABCDC over the characteristic (after reaching the 
point D, the abscissa comes back to point C), the second BA over the characteristic. The second 
term in (2.24) is a straight line CB representing the jump. According to swept areas in Fig. 2.2 
(continuous) and Fig. 2.4 (jump), the remaining net area is the shadowed area between the lines. 
Therefore, the value of the CAT can be evaluated by the sketch on the v-i plane. 
 

 
Fig. 2.6. Nonlinear resistor characteristic on the v-i plane with jump discontinuity  

 
On a linear resistor, according to (2.20) all terms in (2.24) are nil. Therefore, the outstanding 

result applies that only on a nonlinear resistor under jump discontinuities, the CAT may be not nil, 
otherwise CAT is nil on resistors. 
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2.4.2 Inductive	one‐port	
 

Let us consider a time-invariant nonlinear inductive one-port. Assuming a flux-controlled 
continuous characteristic, as shown in Fig. 2.7, at its terminal it holds: 
 

( )
d

v t
dt


   (2.25) 

 
( ).i i   (2.26) 

 
 

 
Fig. 2.7. Nonlinear inductor characteristic on the ψ-i plane 

 
Area Velocity 

 
Taking into account (2.25) and by deriving the characteristic (2.26) in the first of (2.2), the AV 

hL is obtained 
 

2 1
( ) ( ).

2L

di d
h t v vi

d dt
   (2.27) 

 
Closed Area over Time 

 
Under periodical steady state according to (2.27), HL is 

 
21

.L

T

di
H v dt

T d
   (2.28) 

 
If the current-flux characteristic is monotone and nondecreasing 
  

0
di

d



   

 
then the integrand in (2.28) is nonnegative and consequently 
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0LH   (2.29) 

 
showing a close trajectory enclosing a positive area on the v-i plane (Fig. 2.8).  

If the current-flux characteristic is linear time-invariant, it is possible to write 
 

i
L


  (2.30) 

 
and taking into account (2.30) in (2.28), HL becomes 
 

2 21
L

T

v V
H dt

T L L
   (2.31) 

 
where V is RMS value. 
 

 
Fig. 2.8. CAT on the v-i plane of the inductor  

 
Equations (2.27), (2.28), and (2.31) are valid also under jump discontinuities on the voltage. 

Discontinuity on the current is not allowed, otherwise according to (2.25), (2.26), an impulse on the 
voltage could arise.  

2.4.3 Capacitive	one‐port	
 

Let us consider a time-invariant nonlinear capacitive one-port. Assuming a charge-controlled 
continuous characteristic, as shown in Fig. 2.9, at its terminal it holds: 
 

( )
dq

i t
dt

  (2.32) 

 
( ).v v q  (2.33) 
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Fig. 2.9. Nonlinear inductor characteristic on the v-q plane 

 
Area Velocity 

 
Taking into account (2.32) and by deriving the characteristic (2.33) in the second of (2.2), the AV 
hC is obtained 
 

21
( ) ( ) .

2C

d dv
h t vi i

dt dq
   (2.34) 

 
Closed Area over Time 

 
Under periodical steady state according to (2.34), HC is 

 
21

.C

T

dv
H i dt

T dq
    (2.35) 

 
If the voltage-charge characteristic is monotone and nondecreasing 
 

0
dv

q
dq

   

 
then the integrand in (2.35) is nonnegative and consequently  
 

0CH   (2.36) 

 
showing a close trajectory enclosing a negative area on the v-i plane (Fig. 2.10).  

If the voltage-charge characteristic is linear time-invariant, it is possible to write  
 

q
v

C
  (2.37) 

 
and taking into account (2.37) in (2.35), HC becomes 
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2 21
C

T

i I
H dt

T C C
     (2.38)  

 
where I is RMS value. 
 

 
Fig. 2.10. CAT on the v-i plane of the capacitor 

 
Regarding jump discontinuities, a discontinuity on the voltage is not allowed, otherwise, 

according to (2.32) and (2.33) an impulse on the current could arise. A discontinuity on the current 
is allowed without any change in results. 

2.4.4 Ideal	Switch	one‐port	
 

Let us consider an ideal switch as depicted in Fig. 2.11. The ideal switch is a time-variant two-
state element represented by the switch variable s with the convention  

 
( ) 0, 0

( ) 0, 1

i t s v open

v t s i close

  
  

 (2.39) 

 
with instantaneous transition between states. The s variable is also called Switching Function (SF). 
 

 
Fig. 2.11. Ideal switch one-port 

 
Area Velocity 

 
When the ideal switch opens at time t*, the current ISW = i(t*

-) that was flowing is interrupted and 
the voltage that was nil becomes VSW = v(t*

+). Hence, a discontinuity in both quantities appears as 
shown in Fig. 2.12 and according to (2.5) it is possible to write  
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*1
( ) ( ).

2SWopen SW SWh t I V t t    (2.40)
 

 

 

 
Fig. 2.12. Switching Power in the opening transition 

  
On the v-i plane the trajectory is a linear segment moving from ISW to VSW, and hence, a triangle area 
is created as shown in Fig. 2.12 (negative area if VSWISW  > 0).   

When the ideal switch closes at time t*, the voltage VSW = v(t*
-) that was applied on the switch 

becomes nil and the current that was nil becomes ISW = i(t*
+). Hence, a discontinuity in both 

quantities appears as shown in Fig. 2.13 and according to (2.5) it is possible to write  
 

*1
( ) ( ).

2SWclosed SW SWh t I V t t   (2.41) 

 

 
Fig. 2.13. Switching Power in the closing transition 

 
On the v-i plane the trajectory is a linear segment moving from VSW to ISW, and hence, a triangle 

area is created as shown in Fig. 2.13 (positive area if VSWISW > 0).  
 

Switching Power 
 

It was shown that a switching produces an impulse in the AV corresponding to a finite area on 
the v-i plane. According to (2.6) in the opening transition the SP is  
  

1

2SWopen SW SWA I V   (2.42) 

 
while, in the closing transition the SP is 
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1
.

2SWclosed SW SWA I V  (2.43) 

 
According to the definitions of hard switching when VSWISW   ≠ 0 and soft switching when VSWISW 

= 0, it is possible to state that only when an hard switching commutation occurs the SP is not nil. It 
is important to note that the SP has the same dimension of a power [VA] and it can be useful in 
order to identify the switching.  
 

Closed Area over Time 
 

Let us calculate the average value (2.7) of the ideal switch. Commutations (2.40), (2.41) are the 
only contributions to the CAT and then (2.7) becomes the sum of the SP (2.42) and (2.43) extended 
to all k commutations over the period T. 
 

1
.SW SWk

k

H A
T

   (2.44) 

 
It is worth to note that under periodical steady state the number of both closing and opening 

commutations of the switch must be the same.  
Note that, in case of ideal switching, the calculation of the CAT is very simple because the 

integral (2.7) becomes a discrete summation (2.44) of finite terms in the period T. 

2.4.5 Ideal	Diode	one‐port	
 

Let us consider an ideal diode, with its characteristic on the v-i plane, as reported in Fig. 2.14. It 
is a particular nonlinear resistor.  
 

 
Fig. 2.14. Ideal diode and its characteristic on the v-i plane 

 
When the ideal diode, due to the remaining part of the network, jumps at time t* from the point B 

to the point A (Fig. 2.15) on its characteristic (opening transition), the current ID = i(t*
-)  0 that was 

flowing is interrupted and the voltage that was nil becomes VD = v(t*
+) ≤ 0. Hence, a discontinuity in 

both quantities appears as shown in Fig. 2.15 and according to (2.5) the AV absorbed by the ideal 
diode is 
 

*1
( ) ( ) 0 ( 0)

2Dopen D D D Dh t I V t t V I      (2.45) 

 
and, according to (2.6) the SP absorbed is 
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1
0 ( 0).

2Dopen D D D DA V I V I     (2.46) 

 

 
Fig. 2.15. Switching Power in the transition from the point B to the point A (opening transition) 

 
When the ideal diode, due to the remaining part of the network, jumps at time t* from the point A 

to the point B on its characteristic (closing transition), the voltage VD = v(t*
-) ≤ 0 that was applied on 

the diode becomes nil and the current that was nil becomes ID = i(t*
+)  0. Hence, a discontinuity in 

both quantities appears as shown in Fig. 2.16 and according to (2.5) the AV absorbed by the ideal 
diode is 
 

*1
( ) ( ) 0 ( 0)

2Dclosed D D D Dh t I V t t V I     (2.47) 

 
and, according to (2.6) the SP absorbed is 
 

1
0 ( 0).

2Dclosed D D D DA V I V I    (2.48) 

 
By (2.46) and (2.48) it is possible to recognize that the ideal diode always absorbs SP in opening 

commutations and always generates SP in closing commutations.  
 

 
Fig. 2.16. Switching Power in the transition from the point A to the point B (closing transition) 
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 Active	and	Passive	Hard	Switching	2.5
 
In order to get more stringent results, let us define active hard switching the ideal switch 

commutations (2.40), (2.41) so that the following strict inequality is valid 
 

0.SW SWV I   (2.49) 

 
Let us define passive hard switching the opposite case   
 

0.SW SWV I   (2.50) 

 
Let us consider a network constituted by continuous generators, which impose voltages or 

currents as continuous functions of time, resistors, inductors, capacitors, ideal switches and ideal 
diodes under the hypothesis that there are no impulses. Let us suppose that only one ideal switch 
commutes at time. In this way, it is possible to make the Thèvenin’s equivalent circuit of the 
network respect to the ideal switch that commutes, where inductors and capacitors are substituted 
by equivalent current and voltage generators in the switching instant, as reported in Fig. 2.17.  
 

 
Fig. 2.17. Thèvenin’s equivalent circuit 

 
When the ideal switch closes, the voltage that was applied on the switch before the commutation is  
 

SW THV V  (2.51) 

 
while the current flowing through the ideal switch after the commutation is  
 

.TH
SW

eq

V
I

R
  (2.52) 

 
When the ideal switch opens the current flowing through the ideal switch before the commutation is  
 

TH
SW

eq

V
I

R
  (2.53) 

 
while the voltage that was applied on the switch after the commutation is 
 

.SW THV V  (2.54)  
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In both cases, with Req > 0, if the voltage VTH and the equivalent resistance Req do not change 
during the commutation, the product VSWISW > 0, and hence, an active hard switching applies. This 
is the expected case when a controlled valve device is fired as alone. Instead, a passive hard 
switching could apply if  the voltage VTH or the equivalent resistance Req change during the 
commutation, in order to have the product VSWISW  < 0. This situation can apply when two, or more, 
devices switch at the same time, such way the Thevenin equivalent, as seen by a device, before and 
after the switching is not the same. 

In addition, it will be demonstrated that a passive hard switching always matches with a 
contemporary active hard switching. 

According to the definitions of active and passive hard switching, and based on (2.46), (2.48), it 
is possible for the ideal diode to state the following: 
 
the ideal diode is a nonlinear resistor which can be seen as an ideal switch that can commute in soft 
switching and only in passive hard switching. It works only in the II quadrant of the v-i plane. 

 CAT	under	Continuous	and	Discontinuous	Conditions	2.6
 

Provided that impulses or and other kinds of discontinuities are out of the scope of this chapter, a 
deeper discussion and insight of CAT features requires distinction between continuous and 
discontinuous conditions.  

2.6.1 Continuous	Conditions	
 

Sinusoidal conditions 
 

Under sinusoidal conditions the only harmonic component presents in the electric quantities is 
the fundamental one. Indeed, according to (2.16) the relation between H and Q is proportional by 
means the angular frequency ω. In this case H and Q give the same information on the R, L and C 
components. Table 2.1 shows the P, Q and H conditions on passive elements. 
 

Table 2.1. P, Q, H relations under sinusoidal conditions 
 R L C 

Active Power 0P  0P  0P   
Reactive Power 0Q  0Q  0Q   

CAT 0H  0H  0H   
 

Nonsinusoidal conditions 
 
Under periodical nonsinusoidal conditions, by Fourier series on each port variable, network 

under distorted steady state can be decomposed in (possibly infinite) sinusoidal harmonic networks. 
For each k harmonic, it is well-known that active power Pk and reactive power Qk are balance inside 
its own harmonic network. In general, the nonsinusoidal conditions can be due to the present of 
distorted sources and/or nonlinear elements. Nonlinear elements give rise of power exchange 
between harmonic frequencies. Typically, in nonlinear network supplied by sinusoidal source, 
nonlinear components absorb active power at fundamental source frequency and become sources at 
harmonic frequencies.  

Let’s define CAT at harmonic k as Hk = kQk. Under assumption of continuous voltages and 
currents, Table 2.2 and Table 2.3 show the P and H conditions on passive elements. 
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Table 2.2. P, H relations under nonsinusoidal conditions with nonlinear elements with monotone nondecreasing 
characteristics 

 R L C 

Active Power 0k
k

P P  0k
k

P P  0k
k

P P 
 

CAT 0k
k

H H  0k
k

H H  0k
k

H H 
 

 
Table 2.3. P, H relations under nonsinusoidal conditions with linear elements 

 R L C 
Active Power 0kP k  0kP k  0kP k   

CAT 0kH k  0kH k  0kH k   
 

The linear condition involving Pk and Qk are well-known, from which linear condition involving 
Hk are straightforward. The general relations concerning P are imposed by conservation of energy. 
The general relations concerning H are novelty of this work; they are obtained by (2.15), (2.23), 
(2.29). In Table 2.2 and Table 2.3 the CAT shows a conservation property complementary in 
respect to active power, as P and Q do in linear sinusoidal environment. CAT states the balance rule 
of reactive powers across nonlinear elements with monotone nondecreasing characteristics, in this 
aspect fulfilling a lack in network theory. As main result, the CAT represents the constraint of 
exchange of reactive powers between different harmonics trough a nonlinear resistor under 
continuous conditions. In explicit form, from (2.15), (2.23) 
 

1

0.k
k

kQ




           (2.55)                   

 
At this purpose, the result (2.55) on nonlinear resistor is peculiar of the SAT approach. Other linear 
combinations of reactive powers give of course different results. In particular, Budeanu’s popular 
definition of reactive power (1.23) [20], [23] is not zero on nonlinear resistor. 

2.6.2 Discontinuous	Conditions	
 

Under discontinuous conditions, i.e. jump discontinuities occur on voltages or currents, the CAT 
is not exclusive of reactive elements. It is involved also by time-variant components and nonlinear 
resistors under discontinuities. Therefore, the above discussions about nonlinear resistors not yet 
apply. 

A conceptual distinction must be done between time-variant elements and nonlinear elements. 
Nevertheless, the ideal diode, typical nonlinear resistor, can be conveniently considered an 
internally controlled switch [37] and as stated in section 2.5. The fact remains that the working 
point of the diode follows, time to time, from the circuit environment. In detail, hard switching 
diode transition is by rule imposed by an externally controlled switch or a discontinuous voltage or 
current sources. An example will be discussed in case study 6 and 7. From theoretical point of view, 
the SAT explains the equivalence, in this aspect, between a nonlinear resistor and a time-variant 
device. 

The results in section 2.4.4 have a significant impact on operation principles and design of power 
converters, the core of which is based on connection of static switches. Under periodical steady 
state the CAT involved by a power converter is equal to the sum of all SPs involved by the switches 
of the converter in the whole period T, as stated by (2.44). Furthermore, under sinusoidal condition 
(at least) of v(t) or i(t), CAT reduces to (2.16). Therefore, (2.16) and (2.44) state a quantitative link 
between hard switching and classical reactive power in a  period  
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1
.

2 SWk
k

Q A


   (2.56) 

 
Equation (2.56) takes relevance in case a port, in which at least v(t) or i(t) can be regarded as 
sinusoidal, is connected with a switching converter, and clarifies what is experimentally known for 
a long time, namely that power converters are able to generate or absorb reactive power without 
reactive elements. 

In practical applications usually passive linear reactive components are also present for filtering 
purpose. In such cases the CAT balance is completed by expressions (2.31). Usually, the power 
factor correction requests to generate a reactive power, and hence, in an active filter the total net SP 
should be negative (generated). 

 CAT		as	Generalized	Reactive	Power	2.7
 
Some of the features of the CAT lead to the issue of reactive powers under distorted conditions, 

namely  
 

- it shows balance property; 
- it reduces to reactive power in sinusoidal conditions; 
- under continuous and nonlinear conditions, it is nil on resistors, nonnegative on inductors 

and nonpositive on capacitors; 
- beside conventional compensation by reactive components, a criterion exists to compensate 

it by means of switching devices. 
 

The third feature is the most stringent. This allows us to state that the CAT reproduces and 
extends to nonsinusoidal conditions the fundamental property of reactive power of being nil on 
resistors, adsorbed by inductors, and generated by capacitors. More specifically, bonds are 
established between harmonic reactive powers, as detailed in Table 2.2. Discussion and examples 
presented in the pioneering paper [45] may be translated to CAT. 

Another salient result of the theory is the compensation criterion of CAT by switching devices. 
Nevertheless, it must be noticed that full zeroing of CAT o even the instantaneous AV, is not 
sufficient to achieve unity power factor.  

Even if it must be recognized that no generalized power function seems to combine in itself all 
the properties that could useful and meaningful, as long as it is involved in reactive elements, it is a 
reasonable assumption to consider the CAT as a generalization of the reactive power in this sense.  

As more general discussion, a recurrent features of reactive power concepts and definitions are 
associated with time-shift of (distorted) current waveform in respect to (distorted) voltage 
waveform. This phenomenon is well represented by the area on the v-i plane. Therefore, in author’s 
opinion should be fruitful to associate to the reactive power, both in sinusoidal and distorted 
conditions, the idea of area on the v-i plane. Such way the CAT could become meaningful in 
distorted conditions with the above feature. 

 Matching	with	Some	Results	Presented	in	the	Literature		2.8
 

The function “preact,2” proposed in [58] as one of possible definitions of instantaneous reactive 
power, is the same as AV (2.1), except 1/2 coefficient. Such definition is recalled in [2], [33]. Some 
results presented in [58] shortly and without demonstration, are retrieved in this work, namely 
statements (2.16), (2.20), (2.23), and (2.29). This work demonstrates in detail and extends such 
results to the discontinuous case. 
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The AV looks also similar to the differential reactive power proposed in [59] with the aim of 
instantaneous compensation of the nonactive current.  

The integral function CAT in either form of (2.9) is related to [29]−[31] and followings, as 
previously mentioned in the introduction.  

The CAT matches an old and recurrent definition of reactive power. Firstly, [55] introduced  a 
function similar to the second of (2.9) for the sinusoidal steady state, saying that this quantity has 
not a physical meaning but it is balance and easy to measure. By [60] it has been recognized as 
applicable to distorted conditions.  

The capacitive reactive power proposed in [4] looks like CAT too. 
Recently, the idea in [55] has been discussed and proposed again by [61], [62]. In particular, the 

form proposed in [61], appears as (2.21). In addition, both [60], [61] recognize the 
representativeness on the v-i plane. 

The above authors were mainly interested in particular aspects and applications, as quantify the 
distortion and compensate the distorting loads. Conversely, general properties of such functions 
have been poorly discussed, are also remained questionable interpretations and misunderstandings 
in respect to nonlinear resistive elements and time-variant elements. 

It is worth noting that (2.55) matches with a classical result in [63] over nonlinear resistor. 

 Discontinuity	and	Model	2.9
 

According to the SAT, the presence or absence of jump discontinuities leads to qualitatively 
different results, as different swept areas are generated. On the other hand, the discontinuities are a 
convenient modeling of continuous and fast patterns; though some difficulties, from a practical 
point of view and for measuring, can arise. However, the SAT is consistent with the discontinuities 
and the assumptions made in this work. The answer to this contradiction is that the SAT is 
applicable to the model, not to the real system. In the model the ambiguity between ideal, or not 
ideal discontinuity, disappears. Indeed any circuital theory is applied to a model and not to the real 
system. Different models can represent a given real system, on each model results may be 
qualitatively different, but always congruent with SAT. Provided that the modeling is correct, the 
overall properties are preserved.  

In order to clarify this aspect, let us consider a switch. The ideal switching is a schematization of 
the detailed behavior in which the ubiquitous parasitic reactive elements deny the ideal jump 
transition. Let us compare the behavior of the ideal switch with the real one. First, let us consider 
the circuit shown in Fig. 2.18.  
 

 
Fig. 2.18. Circuit with ideal switch and constant voltage source 

 
Each commutation of the ideal switch produces a SP, both in opening (2.42) and closing 

transient (2.43), as follows 
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21

2SWopen

E
A

R
   (2.57) 

 
21

.
2SWclosed

E
A

R
  (2.58) 

 
The real switch would require a distributed parameter circuit, but for simplicity let us use two 
separate simple circuits, one for the opening commutation and the other for the closing 
commutation, with the only dominant stray element.  
 

 
Fig. 2.19. Circuit with switch opening and stray capacitance 

 
In Fig. 2.19 the circuit regarding the opening of the switch is shown. The transients caused by 

the switching are:  
 

( ) (1 )

( ) .

t

RC
C

t

RC

v t E e

E
i t e

R





 


 (2.59) 

 
Taking into account (2.59) in (2.1), the hC of the capacitance is obtained 
 

2

2

1
( ) .

2

t

RC
C

E
h t e

R C


   

 
Now in order to obtain the swept area, the integration of the whole opening transient is needed.  
 

2

0

1
( )

2C C

E
A h t dt

R



    (2.60) 

 
Eq. (2.60) is equal to (2.57). Hence, it is possible to claim that the SP is in this case nil, as a soft 
switching is performed, but an area equivalent to the missing SP is generated by the capacitor. 
Moreover, (2.60) does not depend by the value of the capacitance, congruent with the fact that the 
parasitic element may be very small and unknown. 
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Fig. 2.20. Circuit with switch closing and stray inductance 

 
In Fig. 2.20 the circuit regarding the closing of the switch is shown. The transients caused by the 

switching are: 
 

( ) (1 )

( ) .

R
t

L

R
t

L
L

E
i t e

R

v t Ee





 



 (2.61) 

 
Taking into account (2.61) in (2.1), the hL of the inductance is obtained 
 

21
( ) .

2

R
t

L
L

E
h t e

L


  (2.62) 

 
Now in order to obtain the swept area, the integration of the closing transient is needed.  
 

2

0

1
( )

2L L

E
A h t dt

R



   (2.63) 

 
Eq. (2.63) is equal to (2.58). Hence, also in this case the SP is nil, as a soft switching is performed, 
but an equivalent area is absorbed by the inductor, irrespective of the value of the inductance.  

These cases show the equivalence between the ideal circuit and the real one with parasitic 
elements regarding the swept area at the external terminals of the switch. It is possible to state that 
the area involved by the ideal switch under hard switching is a simple schematization of the area 
involved by parasitic elements or by snubber circuits. The equivalence of the swept areas at external 
terminals also assures the equivalence of CAT in periodic conditions. 

 Analytical	Examples		2.10
 

In order to validate the proposed theory and, in particular to test the balance principle and the 
series (2.15), some case studies will be discussed by analytical way. Meanwhile some simple 
applications of the theory are exposed. 

2.10.1 Case	1	
 

Let be considered the network in Fig. 2.21, composed of a sinusoidal voltage source, a nonlinear 
resistor and a linear inductor.  
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Fig. 2.21. Case1. Electric Circuit 

 
The nonlinear resistor distorts the current, and the reactive powers at the harmonic frequencies are 
generated by the nonlinear resistor and absorbed by the inductor. Indeed, at the harmonic 
frequencies (k > 1), the linear inductor always absorbs reactive power, while the sinusoidal voltage 
generator does not give any contribution, hence the nonlinear resistor, for the balance theorem for 
each harmonic component, must generate harmonic reactive powers. Since the CAT absorbed by 
the nonlinear resistor, without discontinuity, is nil (HR = 0) and according to (2.55) the following 
equations applies 
 

1

0.Rk
k

kQ




  (2.64) 

 
This way, it is possible to state that the nonlinear resistor absorbs reactive power QR1 at the 
fundamental frequency and generates harmonic reactive powers at the harmonic frequencies (k > 1).  
 

1
2

.R Rk
k

Q kQ




   (2.65) 

 
The balance theorem over CAT states: 

 

e LH H  (2.66) 
 
and from (2.31) it result 
 

2
L

e

V
H

L
  (2.67) 

 
where VL is the RMS value of the inductor voltage. The voltage source is sinusoidal, and hence, the 
only reactive power generated is the fundamental one and according to (2.16) it is possible to write 
 

2

.L
e

V
Q

L
  (2.68) 

 
This way, the reactive power involved by the forcing sinusoidal source is linked to the RMS value 
of the distorted voltage on the inductor. Then, if the balance theorem over reactive powers at the 
first harmonic is considered, it must be taken into account the reactive power absorbed by the 
nonlinear resistor, so that 
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2
1

1
L

e R

V
Q Q

L
   (2.69) 

 
where VL1 is the RMS value of the first harmonic of the inductor voltage. At this frequency the 
forcing voltage source supplies reactive power to the inductor and to the resistor. The comparison 
between (2.68) and (2.69) makes evident that the increasing of the generated reactive power is 
linked to the distortion of voltage at the terminal of the inductor by 
 

2 2
1

1 .L L
R

V V
Q

L


  (2.70) 

2.10.2 Case	2	
 

Let be considered the network in Fig. 2.22, composed of a sinusoidal voltage source, a nonlinear 
resistor and a linear capacitor.  
 

 
Fig. 2.22. Case 2. Electric Circuit 

 
The nonlinear resistor distorts the current, and the reactive powers at the harmonic frequencies are 
absorbed by the nonlinear resistor and generated by the capacitor. Indeed, at the harmonic 
frequencies (k > 1), the linear capacitor always generates reactive power, while the sinusoidal 
voltage generator does not give any contribution, hence the nonlinear resistor, for the balance 
theorem on each harmonic component, must absorb harmonic reactive powers. Since the CAT 
absorbed by the nonlinear resistor, without discontinuity, is nil (HR = 0), according to (2.64) it is 
possible to state that the nonlinear resistor generates reactive power QR1 at the fundamental 
frequency and absorbs harmonic reactive powers at the harmonic frequencies (k > 1). The balance 
theorem over CAT states: 

 

e CH H  (2.71) 
 
and from (2.31) it result 
 

2
C

e

I
H

C
   (2.72) 

 
where IC is the RMS value of the capacitor current. The voltage source is sinusoidal, and hence, the 
only reactive power generated is the fundamental one and according to (2.16) it is possible to write 
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2

.C
e

I
Q

C
   (2.73) 

 
This way, the reactive power involved by the forcing sinusoidal source is linked to the RMS value 
of the distorted current in the capacitor. Then, if the balance theorem over reactive powers at the 
first harmonic is considered, it must be taken into account the reactive power absorbed by the 
nonlinear resistor, so that 
 

2
1

1
C

e R

I
Q Q

C
    (2.74) 

 
where IC1 is the RMS value of the first harmonic of the capacitor current. At this frequency the 
forcing voltage source absorbs reactive power from the capacitor and supplies to the resistor. The 
comparison between (2.73) and (2.74) makes evident that the increasing of the generated reactive 
power is linked to the distortion of current in the capacitor by 
 

2 2
1

1 .C C
R

I I
Q

C


   (2.75) 

2.10.3 Case	3	
 

This case shows how the ideal switch can absorb/generate reactive power. The circuit depicted in 
Fig. 2.23 is fed by a sinusoidal voltage source  e(t) = Esin(t), (= 2/T). 
  

 
Fig. 2.23. Case 3. Switched resistor 

 
The ideal switch s commutates periodically in each semi period as depicted in Fig. 2.24, where  
and  are, respectively, the closing and opening switching angles. According to (2.42), (2.43) the 
CAT absorbed by the switch is 
 

2 2 2 21 sin ( ) sin ( )
.SW

E E
H

T R R

  
  

 
 (2.76) 
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Fig. 2.24. Case 3. Sinusoidal voltage source 

 
Since the CAT of the linear resistor is nil, the CAT He generated by e is equal to the CAT absorbed 
by the ideal switch. Moreover, as e is sinusoidal, only the first component of reactive power is 
generated by e, yielding  
 

 
2

2 2sin ( ) sin ( ) .
2

e SW
e

H H E
Q

R
 

  
     (2.77) 

 
By equation (2.77) it is possible to obtain in a simple analytical way the relation between 
commutation instants ,  and the reactive power. Note that the result is not limited to  < .  
Furthermore, the (2.77) could also be deduced in a standard way by a Fourier analysis of the current 
waveform. Indeed, according to (2.10) the fundamental harmonic component of voltage source e is 
 

1 2

E
j E  (2.78) 

 
and the fundamental harmonic component of current i is  
 

2 2
1 sin ( ) sin ( ) (sin(2 ) sin(2 ) ) .

2

E
j

R
     


       I  (2.79) 

 
Taking into account (2.78) and (2.79) in (2.14), the reactive power is as follows 
 

 
2

* 2 2
1 12 Im( ) sin ( ) sin ( ) .

2e

E
Q

R
 


  E I  (2.80) 

 
Equation (2.80) gives the same result of (2.77). Meanwhile SAT gets the (2.77) in a straightforward 
and concise mode.  

Relation (2.77) reveals a meaningful result. As particular case in which  or  are zero, when 
only forced closing commutation takes place, the sign of reactive power is necessary positive and 
vice versa. It means that in order to generate reactive power, a switching device with hard opening 
capability is mandatory. 
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2.10.4 Case	4	
 

The purpose of this example is to verify the relationship between switching and series (2.15) in 
very simplified conditions. The theory also leads to predict a surprising piecewise constant behavior 
of the series (2.15) in function of switching timing. Let us consider the circuit depicted in Fig. 2.25 
under periodical steady state of period T.  
 

 
Fig. 2.25. Case 4. Circuit with ideal switch and square waveform voltage source  

 
Let e(t) be a two level square waveform with a generic duty-cycle as shown in Fig. 2.26. For the 
sake of simplicity the transitions occur at the time −tA and +tA. Let us assume that the ideal switch 
periodically commutes twice inside the period T, one switch-on at time tON and one switch-off at 
time tOFF (tON < tOFF). Since R is a linear resistor, just the ideal switch can be exchange CAT with 
the voltage source.  
 

 
Fig. 2.26. Case 4. Square waveform of voltage and current sources 

 
Let us analyze these cases: 
 

1) if tON < −tA and tOFF > −tA the current presents a jump at the time −tA simultaneously to the 
voltage. The linear segment 1 of Fig. 2.27 is tracked. There is a soft switching commutation of 
the switch ASWclosed = 0. 
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2) if −tA < tON < +tA the current presents a jump at the time tON. The linear segment 2 of Fig. 2.27 
is tracked. There is an hard switching commutation of the switch and according to (2.43) it has 
ASWclosed = E2/(2R); 
 
3) if −tA < tOFF < +tA the current presents a jump at the time tOFF. The linear segment 3 of  Fig. 
2.27 is tracked. There is an hard switching commutation of the switch and according to (2.42) it 
has ASWopen = E2/(2R); 
 
4) if tOFF > tA and tON < tA the current presents a jump at the time tA simultaneously to the voltage. 
The linear segment 4 of Fig. 2.27 is tracked. There is a soft switching commutation of the switch 
ASWopen = 0. 
 

 
Fig. 2.27. Case 4. Voltage source swept areas 

 
On the period T four meaningful combinations are possible, as in Table 2.4, first column. The 

further cases tON < tOFF < −tA and tA < tON < tOFF imply a nil current waveform and are trivial. The 
current is a square waveform as depicted in Fig. 2.26 with the constrains: tC ≥ −tA and tD ≤ tA. The 
resulting CAT of voltage source is  
 

.SWclosed SWopen
e

A A
H

T


   

 
The four cases are reported in Table 2.4, columns two and three. The same results should be found 
from the Fourier series expansions of the voltage and current sources (Fig. 2.26): 
 

1

22 sin( ) cos( )
( ) , A

k

tk k t
v t E

k T

    
 





 
   

 
  (2.81) 

 

1

2 sin( )cos( )
( ) ,

, .

k

D C D C

E k k t k
i t

R k

t t t t

T T

   
 

   





    
 

 


 (2.82) 

 
According to (2.14) and taking into account (2.15)  
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2

1

4 sin( ) sin( ) sin( )
.e

k

E k k k
H

R T k

  






   (2.83) 

 
Substituting into (2.83) the value of β and φ (2.82) and according to trigonometric formulas, the 
(2.83) becomes (2.84). 
 

 2

1

sin( ) cos( ) cos( )2 C D
e

k

k k t k tE
H

R T k

  







   (2.84) 

 
In order to demonstrate analytically the convergence, it is possible to rewrite (2.84) in this way 
 

2

( )e

E
H a b

RT
   (2.85) 

 
where  
 

1

1

2 1
sin( ) cos( )

2 1
sin( ) cos( ).

C
k

D
k

a k k t
k

b k k t
k

  
 
  
 









 

 




 (2.86) 

 
Now it is possible to recognize that the two series (2.86) are the Fourier expansions of the square 

waveform of Fig. 2.26 of unitary amplitude and evaluated at times tC and tD. The values of a and b 
related to the four combination depicted in Table 2.4, second column, are provided by Fig. 2.26 and 
reported in the fourth column. Taking into account (2.85) it is straightforward to recognize that the 
values of column three are retrieved. Such way the equivalence between the series (2.83) and the 
CAT evaluated form Fig. 2.27 is confirmed. 

 
Table 2.4. Case 4. Switching Combinations 

 

 
Note the unusual result. The series (2.83) is obtained by the Fourier series of square waves of 

Fig. 2.26. Due to the particular relationship between the square waves, the limit of the series is 
constituted by constant values separated by jump discontinuities; inside the constant intervals the 
limit is independent from the v(t) and i(t) wave shapes. 

 
 
 
 

Switching 
tON < tOFF 

Current CAT a, b 

−tA < tON < +tA 
−tA < tOFF < +tA 

−tA < tC < +tA

−tA < tD < +tA 
H = 0 

a = 1
b =1 

−tA < tON < +tA 
tOFF ≥ +tA 

−tA < tC < +tA 

tD = +tA 
H=E2/(2RT) 

a = 1
b = 1/2 

tON ≤ −tA 
−tA < tOFF < +tA 

tC = −tA

−tA < tD < +tA 
H=-E2/(2RT) 

a = 1/2
b = 1 

tON ≤ −tA 
tOFF ≥ +tA 

tC = −tA

tD = +tA 
H = 0 

a = 1/2
b = 1/2 
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2.10.5 Case	5	
 

This case considers standard single-phase Thyristor-Controlled Reactor for reactive power 
regulation. The circuit depicted in Fig. 2.28 is composed of a sinusoidal voltage source e(t) = 
Ecos(t), (= 2/T), a linear inductor L and an ideal switch s, which in industrial application 
models two antiparallel thyristors.  
 

 
Fig. 2.28. Case 5. Tyristor-controlled reactor 


is the control angle as depicted in Fig. 2.29.  
 

 
Fig. 2.29. Case 5. Voltage and current sources 

 
As the switch opens and closes when the current is nil, only soft switching commutations occur. In 
this way the CAT absorbed by the switch is nil and the CAT absorbed by the inductor is equal to 
the CAT generated by e. According to (2.31) and Fig. 2.29, the CAT on reactor is: 

 
2

21 2 1
( cos( )) ( ) (1 sin(2 ))

2L

E
H E t d t

L L

 



   
  

 
    

 
  (2.87) 

 
and according to (2.16) Qe is 
 

2 2 1
(1 sin(2 )).

2
e L

e

H H E
Q

L
 

    
      (2.88) 
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Also in this case, (2.88) could be obtained from standard Fourier analysis of the current [64]. 
Indeed, according to [64] the amplitude of the fundamental current i can be expressed as a function 
of angle  
 

1

2 1
(1 sin(2 )).

E
I

L
 

  
    (2.89) 

 
The fundamental current lags the voltage source by 90 degree. Consequently, the reactive power at 
the fundamental harmonic component generated by e can be calculated as  
 

21 2 1
(1 sin(2 ))

2 2e

E
Q EI

L
 

  
     (2.90) 

 
giving the same result of (2.88). Hence, the SAT yields (2.88) in a simpler way without the need of 
explicit current waveform.  

2.10.6 Case	6	
 

This is an another example analyzed in order to verify the relationship between switching and 
series (2.15) in conditions similar to the Case 4 but with a general sawtooth waveform. The circuit 
is depicted in Fig. 2.30 and shows a sawtooth voltage source in series to an ideal diode and a linear 
resistor.  

 

 
Fig. 2.30. Case 6. Circuit with a series of ideal diode, linear resistor, and a sawtooth voltage source 

 
There are two cases: 1) no discontinuity in the waveform; 2) presence of discontinuities in the 
waveform when one of the two ramps becomes of infinite slope. In both cases the CAT absorbed by 
the linear resistor is nil according to (2.23).   
 
1) No discontinuity  
 

Let us start to suppose the waveform depicted in Fig. 2.31 where there is no discontinuity. 
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Fig. 2.31. Case 6. Sawtooth waveform without discontinuity 

 
Being defined  = T1/T the following complex Fourier expansion hold: 
 

2 2

( )
( ) ( 1)

(1 )
jk t k

k k
k

jE sin k
e t e

k
 

  





  
 E E  (2.91) 

 

 
 2 2

( 1) ( 1) 1
( )

2 1

k jk k
jk t

R Rk Rk
k

eE
v t e

k


  

  





    
 

 V V  (2.92) 

 

 
 2 2

( 1) 1 ( 1)
( )

2 1

k k jk
jk t

D Dk Dk
k

eE
v t e

k


  

  





    
 

V V  (2.93) 

 

 
 2 2

( 1) 1 ( 1)( )
( ) .

2 1

k k jk
jk tR

k k
k

ev t E
i t e

R R k


  

  





    
  

 I I  (2.94) 

 
According to (2.14) the reactive power for each harmonic frequency of the voltage source is 
 

  
2

2*
4 2 2 4

2 Im( ) Im ( 1) 1 ( 1) .
2 (1 )

k k jk
ek k k

E
Q e

R k
 

  
        

E Ι   (2.95) 

 
According to (2.15) the CAT generated by the source is 
 

 

 

2

4 2 2 3
1 1

2

14 2 2 3 3
1

1
(2 ) 2 1 (1 ( 1) ) ( )

2 (1 )

1 ( )
(2 ) 2 ( ) 4 .

2 (1 )

k
e k

k k

k
ODDk

E
H k Q sin k sin k

R k

E sin k
sin k sin k

R k k

   
  

   
  

 

 







        

 
     

 

 
 (2.96) 

 
For the linear resistor the CAT is nil  HR = 0, indeed 
 

*
*2 Im( ) 2 Im( ) 0.Rk

Rk Rk k RkQ
R

  
V

V Ι V   (2.97)  
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Hence, the reactive power absorbed by the ideal diode is equal to the one generated by the voltage 
source 
 

*2 Im( ) .Dk Dk k ekQ Q V Ι  (2.98) 
 
Therefore, also the CAT absorbed by the ideal diode is equal to the one generated by the source 
 

.D eH H  (2.99) 
 
Now, it is possible to rewritten the (2.96) as 
 

2

4 2 2 3 3 3
1 1 1

(2 ) ( ) ( )
2 4 .

2 (1 )e
k k k

odd

E sin k sin k sin k
H

R k k k

   
  

  

  

 
    
  
    (2.100) 

 
According to [65] 
 

3
1

( )
( )( 2 )

12k

sin kx x
x x

k
 





    

 
the first two terms of (2.100) converge to 
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3
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3
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( )( 2 ) ( 1)( 2)

12 12
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


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 (2.101) 

 
According to [66] 
 

3
1

( )
( )

8k
odd

sin kx
x x

k

 




   

 
the last term of (2.100) converges to 
 

3

3
1

( )
( ) ( 1).

8 8k
odd

sin k

k

      




      (2.102) 

  
Finally, taking into account (2.101) and (2.102), the (2.100) converges to zero, indeed 
 

 
2 3

4 2 2
( 1) ( 2) 2(2 1) 3 0.

2 (1 ) 6e

E
H

R

      
  

      


 

 
This example shows that if there are no discontinuity in the waveform ( ≠ 0) the CAT involved in 
the circuit is nil. 
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2) Presence of discontinuities 
 
Let us tend  to zero. In this way a discontinuity appears in the waveform, as depicted in Fig. 2.32.  
 

 
Fig. 2.32. Case 6. Sawtooth waveform with discontinuity 

 
Equations (2.91)−(2.94) become 
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k
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j
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From the above expressions the reactive power generated by the source is 
 

2
*

3 3

1 ( 1)
2 Im( )

k

ek k k

E
Q

R k
 
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and the CAT of the voltage source is 
 

2

3 2
1

1 ( 1)
.

k

e
k

E
H

R k








 
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The CAT absorbed by the resistor is nil and then the following expression can be written 
 

*2 Im( )Dk Dk k ekQ Q V Ι  (2.109) 
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.D eH H  (2.110) 

 
The following series converges to 
 

2

2
1

1 ( 1)

4

k

k k





 
  

 
from which a not zero value of CAT generated by the voltage source and adsorbed by the ideal 
diode appears 
 

2 21
.

4 2D e

E E
H H

R RT




    (2.111) 

 
From (2.111) it is possible to recognize  
 

21

2D e

E
A A

R
   (2.112) 

 
where AD and Ae are the SPs depicted in Fig. 2.33. Therefore, the (2.111) is equal to the ratio of the 
swept area Ae (2.112) on the period T. This example shows that if a discontinuity appears in the 
waveform ( = 0) the CAT involved in the circuit is no longer zero. Moreover, the balance property 
of the CAT in a nonlinear resistor under discontinuous conditions and the equivalence between the  
area on the v-i plane and the series (2.15) are shown. 

 

 
Fig. 2.33. Case 6. (a) Ideal diode; (b) Voltage source 

2.10.7 Case	7	
 

The buck converter in Fig. 2.34 is composed of an on-off controlled valve (GTO or IGBT) and a 
diode. This case is discussed in detail in order to examine the behavior of the diode and to recognize 
the balance property of CAT. Moreover, the series (2.15) is evaluated. 

In order to achieve results in simpler analytical form, all parasitic resistances are neglected and 
both the voltage source E and the output voltage Vo are assumed as constant.  
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Fig. 2.34. Case 7. Buck converter 

 
Continuous conduction mode 

 
Provided that E > Vo, in steady state continuous conduction mode the current and the voltage are 

depicted in Fig. 2.35. At time tA the controlled valve is switched off. According to (2.42) and Fig. 
2.12, a SP appears on controlled valve 
 

1
.

2SWopen AA EI   (2.113) 

 

 
Fig. 2.35. Case 7. Continuous conduction mode 

 
Because of continuity of inductance current, the diode turns from off to on condition. Such 
transition involves discontinuities both in the voltage and in the current. Therefore, the diode gives 
rise to a SP of the same sign (counterclockwise) and equal to (2.113), ADclose = ASWopen.  

Similarly, on transition at time tB, the controlled valve is fired and the diode is forced off. The 
(2.43) and Fig. 2.13 apply on controlled valve, whereas on the diode an equal SP takes place 
 

1
.

2SWclose Dopen BA A EI     (2.114) 
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Fig. 2.36. Case 7. Swept areas (a) on diode and (b) controlled valve 

 
Transitions in one switching period and the swept areas generated by the diode and the 

controlled valve are depicted in Fig. 2.36. Note that in either transition, the diode presents a jump 
across its nonlinear characteristic, therefore, as previously stated in section 2.5, it looks like a 
switch in hard switching giving a contribution on SP. Nevertheless, the diode hard switching is 
caused by an external device, in this case the controlled valve. 

From (2.44), the total CAT in one period T caused by switching is 
 

 
.SWDclose SWIopen SWIclose SWDopen B A

SWtot

A A A A E I I
H

T T

   
   (2.115) 

 
The (2.115) is negative, therefore generated.  

It is possible now to verify the balance property of CAT. The CAT is nil on the dc generator and 
load terminal, because of constant voltages. The only significant CAT are on the switch, diode and 
on inductance. The swept area at FF terminals in a period T, depicted in Fig. 2.37, can be deduced 
graphically from Fig. 2.35. As first balance result, the area in Fig. 2.37 is the sum of areas in Fig. 
2.36 (taking into account reference directions). It represents the swept area generated by the buck 
converter and corresponds to CAT (2.115). According to (2.31) the CAT on the inductance depends 
on voltage RMS VL. By condition that the voltage across the inductance is of zero average on steady 
state, it results  
 

 
.o ON

L

E E V T
H

L T


   (2.116) 

 
Finally, the current ripple is imposed by the voltage levels 
 

 .ON
A B o

T
I I E V

L
    (2.117) 

 
From (2.115), (2.116), (2.117), the overall balance property of CAT is verify 
 

0.SWtot LH H   (2.118) 

 
The equivalence (2.15) is now addressed.  

Let us calculate the CAT at buck terminals FF. The Fourier series of voltage and current at these 
terminals are 
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where /ONT T   is the duty-cycle. From (2.15) and (2.119), (2.120) the CAT at FF terminals is 

obtained.  
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
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   (2.121) 

 

 
Fig. 2.37. Case 7. Swept area at FF terminals 

 
In order to evaluate the series (2.121), the known Fourier expansion of the function f(x) = x(- x)   
0 ≤ x ≤ is considered 
 

2

2
1

cos(2 )
( ) .

6 k

kx
f x

k

 



   (2.122) 

 
Taking into account (2.122), from (2.121) it follows 
 

 
2 2

2 2
1 1

sin ( ) 1 1 cos(2 ) 1
(0) ( ) (1 )

2 2 2k k

k k
f f

k k

    
 

 


        (2.123) 

 
Finally, replacing (2.123) in (2.121), the opposite of (2.115) is obtained. Therefore, the equivalence 
(2.15) is verified. 
 

Discontinuous conduction mode 
 

The current and the voltage are depicted in Fig. 2.38. As long as the switching is concerned, only 
switching at time tA is an hard switching. Consequently the CAT is given by (2.115) with IB = 0. 
Also (2.116), (2.117) are still valid under IB = 0 and TON referred to Fig. 2.38. Therefore, the balance 
relation (2.118) is confirmed. 

The graphical approach is of great aid to recognize the relation between continuous and 
discontinuous mode. From Fig. 2.38 plots similar to Fig. 2.36 and Fig. 2.37 are deduced, with the 
only difference IB = 0. The time interval in which the current iL stay at zero in discontinuous mode, 
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gives rise to a point of stop on the abscissas in Fig. 2.36 and Fig. 2.37, with no impact on swept 
areas and values of CATs. 
 

 
Fig. 2.38. Case 7. Discontinuous conduction mode 

 

As concluding discussion, the buck converter has shown the balance property of the CAT and 
the equivalence between the CAT and the series (2.15). Moreover, this example shows that the 
contribution of SP by the diode is necessary for the correct CAT balance. More generally, it 
confirms the assumption that a jump discontinuity over a nonlinear resistor gives rise to an 
impulsive area on AV and the related contribution on CAT, as in Fig. 2.6. 

2.10.8 Case	8	
 

The goal of this case is to verify the relation between the reactive power at the ac terminals and 
the hard switching commutations in a typical industrial application. Let us consider a well-known 
basic topology, called Power Electronic Building Block (PEBB) [67], [68] as shown in Fig. 2.39. 
This scheme generalizes the valve layout of the buck converter to fully bidirectional switches. 
PEBBs are constituent, e.g., of bridge single-phase converter or three-phase voltage source 
converter. 
 

 
Fig. 2.39. Case 8. Electric circuit of PEBB 
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The two switching functions are forced in complementary state. Therefore, the state of the switches 
can be identified by a single switch variable s(t) = 0,1. The constitutive relations are the following  
 

( )

(1 ) .

o b a b

a o

b o

v v s v v

i si

i s i

  


 

 (2.124) 

 
However, it is possible to find the expression of the total SP absorbed by PEBB in two ways: 1) 
applying the balance principle and summing the contributions of each ideal switch; 2) considering 
the whole system as a three-port component. The latter will be deeply dealt with in chapter 3. Let us 
follow both paths and verify the balance principle. 
 
1) Considering each contribution of the switches   
 

On transition s = 0 → 1 (switch a closes, switch b opens) at generic time t*, it is convenient to 
define a collective Switching Power as ASW1 = ASWclosed(a) + ASWopen(b). Similarly, on transition s = 1 
→ 0 (switch a opens, switch b closes) the collective Switching Power is ASW0 = ASWopen(a) + 
ASWclosed(b). From (2.42), (2.43) and taking into account the scheme in Fig. 2.39, it results 

 
* * *

1

* * *
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( )[ ( ) ( )] 0 1

( )[ ( ) ( )] 1 0.

SW o a b

SW o b a

A i t v t v t transition

A i t v t v t transition

  

  
 (2.125)  

 
2) Considering the whole system as a three-port element 
 

The (2.1) can be extended to n port component as the sum of h(t) relatives to each port. In this 
case, according to (2.1) the hSW(t) absorbed by the PEBB is 
 

1
( ) .

2
o o a a b b

SW o o a a b b

di dv di dv di dv
h t v i v i v i

dt dt dt dt dt dt
        
 

 (2.126)  

 
Taking into account (2.124) into (2.126), it yields 
  

( ) ( ) ( ).SW a b oh t v v i t   (2.127) 

  
According to the kind of transition (0 → 1, 1 → 0), the (2.127) yields the same result of (2.125), 

and hence, the balance theorem over AV is verified. Furthermore, being the PEBB a three-port 
element, for each port it is possible to draw the trajectories followed by the voltage and current. In 
Fig. 2.40 on the v-i planes are depicted the trajectories and the swept areas when s switches from 0 
to 1. Note that the trajectory of the port o of Fig. 2.40 has the reference directions opposed to the 
other ports.  In this case the sum of the three swept areas is equal to the ASW1. In the opposite case, 
when s switches from 1 to 0, the trajectories are reversed and the sum of the areas is equal to ASW0.  
In either switching the balance property is recognized. 

 



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 64 / 149
 

 
Fig. 2.40. Case 8. Swept areas: (a) port a; (b) port b; (c) port o 

 
Now, let us consider the PEBB depicted in Fig. 2.41 under periodical steady state of period T, 

with a constant dc voltage VD and controlled by a PWM strategy. 
 

 
Fig. 2.41. Case 8. Electric circuit of PEBB 

 
Let the output current be sinusoidal as follows. 
 

( ) cos( )o Ii t I t   												 2 / T   (2.128) 

 
The Fig. 2.42 shows a detail of the PWM output voltage vo(t) and the sinusoidal output current io(t). 
The periodic PWM can be analyzed by superposition of elementary pulses. Such way, the PWM 
voltage is decomposed in n waves periodic in T, each of them composed of one positive pulse in the 
period, as in bold highlighted in Fig. 2.42, with its own width and displacement. In each pulse wave 
n, two commutations occur in the period T, at the time tAn and tBn. In view of Fourier expansion, 
each of these pulse waves has been arbitrary translated to have nil mean value. This fact is allowed 
as the mean value does not affect the CAT. The Fourier series of the n-th pulse wave is 
consequently 
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where 
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; .Bn An An Bn
n Vn

t t t t

T T
    

    (2.130) 

 

 
Fig. 2.42. Case 8. PWM output voltage and sinusoidal current 

 
Since the output current is sinusoidal, only the first component Q1n of reactive power at the ac 
terminal is present. From the current (2.128) and the term k = 1 in (2.129), it results 
 

1

1
sin sin( ).n D n Vn IQ V I   


   (2.131) 

 
From (2.42), (2.43), (2.128) and taken into account (2.125) and the scheme in Fig. 2.41, the 
collective SPs are respectively 
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Taking into account (2.130), (2.132) and trigonometric formulas, the total SP in the period for a 
single pulse is 
 

1 0 2 sin sin( ).SWn SW n SW n D n I VnA A A V I        (2.133) 

 
According to (2.44) and comparing (2.133) with (2.131), the relation between commutations, CAT 
and reactive power are verified for the n-th impulse. Indeed: 
 

1 .SWn
n n

A
H Q

T
    (2.134) 

 
The minus sign originates because the reference direction of the CAT is absorbed, whereas the 
reactive power is referred as outgoing at port o. For the whole PWM the total CAT is the sum of 
each finite voltage impulse: 
 

.n
n

H H   (2.135) 
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The first component of the total output voltage is the sum of the first components in (2.129). So 
even the total reactive power at output terminals is the sum and by (2.131), it results 
 

1 1

1
sin sin( ).D n Vnn I

n n

Q Q V I   


     (2.136) 

 
Therefore, by superposition, (2.134) is valid also for the whole PWM. It is possible to find (2.56) 
applied to the SPs (2.133). Additional insights in the result and taking into account the intermediate 
terms in (2.132), it leads to 
 

 1

1
( ) ( ) .

2 D Bn An
n

Q V i t i t


   (2.137) 

 
The reactive power (2.137) appears to depend on the current sampled at the instants of switching. 

In detail, it can be noted that the reactive power is proportional to the difference between the values 
of current at commutations times tAn and tBn. If i(tBn) > i(tAn) the contribution of the n-th pulse to the 
reactive power is positive (outgoing), otherwise is negative.  

This example had shown in detail the quantitative relation between PEBB switching and the 
reactive power at output terminals. 
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3. Electronic	Power	Converters	
 Introduction	3.1

 
For several years, many kinds of electronic power converters, are emerging in various 

topologies. They are based on the use of semiconductor controlled/not controlled devices in opening 
and/or in closing commutations.  

Based on the kind of converter, a certain type of switching device can be used. Among which, it 
is possible to mention: diode, thyristor, GTO, IGBT or a composition of these ones. In any case, 
these switching devices can be theoretically considered clones of controlled switch, and the 
corresponding ideal circuit element is the ideal switch as reported in section 2.4.4.  

In the following, regardless the kind of real switching device used into a certain kind of power 
converter, the ideal switch will be taken into account. In addition, power converters can be divided 
into different categories according to the type of electric transformation involved, the number of 
phases, the kind of electric quantities imposed, the number of level supported: dc-dc, dc-ac, ac-dc, 
ac-ac, three-phase or single-phase, voltage source converter (VSC) or current source converter 
(CSC), two, three or n level supported. Often, all these different subdivisions may suggest that these 
converters are very different both in topology and their control. Actually, principles are the same so 
theory and control strategies can be unified.    

In the first instance, it is possible to state that the division due to the type of electric 
transformation is often formal only; for example, the so-called bridge chopper and the single-phase 
inverter have the same H-bridge topology with the same kind of real switches, but what changes is 
just the kind of tracking of the output quantities to control.  

Regarding the division based on the electric quantities imposed, it is interesting to highlight that 
the so-called current source converter is not, as one might expect, the dual of the voltage source 
converter. In fact, while the VSC can, independently, impose different voltage levels to each output 
phase, the CSC cannot dually impose different current levels to each output phase. Anyway, both 
kinds of converter can be seen as the composition of more elementary structures. The VSC is 
composed of elementary structures with two voltage levels and one current level meanwhile the 
CSC includes three voltage levels and one current level. In the literature, this kind of elementary 
structure is called Power Electronic Building Block (PEBB), as reported in section 2.10.8. It 
represents the elementary structure of converters with two voltage levels and one current level, 
while nothing is stated about its dual structure with two current levels and one voltage level.  

Actually, current or voltage source terms mean what electric quantity is imposed by an electric 
source that feeds the converter itself. In general, both electric quantities can be imposed at the same 
time.  

Furthermore, many apparent different converters have the same topology and can be seen as a 
variation of more general structures. Also the control strategies, in some cases, are very similar and 
what changes is only the kind of waveform to tracking.  

Therefore, the goal of this chapter is a trial to shed light on these subdivisions and search for 
other more general elementary structures which are common to the most of these converters. Also, 
they can allow, in some cases, a modular control of very complex converters. For this reason, 
concepts of Ideal Switch Multi Port (ISMP) and multilevel elements are introduced in order to deal 
with converters as multi-port elements with their constitutive relations. Moreover, the SAT theory is 
extend to the ISMP in order to find relations between commutations and reactive power involved by 
converters.  
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 Ideal	Switch		3.2
 

The ideal switch is treated as a one-port element with its own constitutive relations. AV and 
CAT functions of the ideal switch were calculated and the SP defined as the area on the v-i plane 
associated to the switching was reported in the previous chapter. The ideal switch is a linear time-
variant resistive one-port element with two possible states, open and closed.  
 

 
Fig. 3.1. Ideal switch closed and open  

                                        
When it is closed the voltage v is nil while the current i depends on the remaining network, instead, 
when it is open the current i is nil while the voltage v depends on the remaining network. As 
previously stated in chapter 2, it is possible to represent the state of the ideal switch by means of a 
function of time s(t) called switching function. In general, this function can have different discrete 
values, but in the particular case of ideal switch, it has only two values. This values are 0 and 1. 
Conventionally, 0 corresponds to open state while 1 corresponds to closed state. Under normal 
conditions, in which impulses in the electric quantities are not present, the instantaneous electric 
power absorbed by the ideal switch is always nil. In fact, one of the two electric quantities is always 
nil.  

The ideal switch is an element which is not always uniquely voltage or current controllable, and 
this fact depends on its state, open or closed. The ideal switch, however, can control an element that 
is complementary to it, i.e. an element that is both voltage and current controllable. For example, it 
can control the voltage or the current in a resistor or in a real voltage or current source. 
 

Chopped conductance 
 

The series of ideal switch and a conductance leads to a one-port element always voltage 
controllable.  
 

 
Fig. 3.2. Chopped conductance 
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Indeed, when the ideal switch is closed i = Gv instead when the ideal switch is open i = 0. Hence, it 
is possible to write the following relation  
 

.i sGv      (3.1)        
 
Note that the relation is not invertible, i.e. the one-port element is not current controllable, in fact   
 

i
v

hG
   (3.2) 

 
that is not possible for s = 0. 

 
Chopped Resistance 

 
Dually, the parallel constituted by an ideal switch and a resistor leads to a one-port element 

always current controllable. 
 

 
Fig. 3.3. Chopped resistance 

 
Indeed, when the ideal switch is open v = Ri instead when the ideal switch is closed v = 0. Hence, it 
is possible to write the following relation  
 

(1 ) .v s Ri   (3.3) 
 
Note that the relation is not invertible, i.e. the one-port element is not voltage controllable, in fact   
 

(1 )

v
i

s R



  (3.4) 

 
that is not possible for s = 1. 

 Ideal	Switch	Multi	Port	3.3
 

Now, let us introduce the concept of Ideal Switch Multi Port namely a generic switching system 
composed of several ideal switch one-ports, by means of a matrix structure, in order to obtain a 
unified theory on power converters and extend the calculation of the AV and CAT to the ISMP.  

In particular, let us consider structures of ISMP which always present invariant voltage and/or 
current controls. According to this hypothesis, it is interesting to note that the ideal switch alone 
does not correspond to the particular case of ISMP one-port element for the abovementioned 
reason. 
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 Under this hypothesis, any generic ISMP must be a switching system consisting of n voltage 
controlled ports and m current controlled ports, as reported in Fig. 3.4. In this way, it is constituted 
by at least two ports.  
 

 
Fig. 3.4. Ideal Switch Multi Port 

 
Let us assume, for convenience, the reference directions reported in Fig. 3.4 and according to 

which the instantaneous electric power flows from the n voltage controlled ports, of which va and ia 
are the vectors of the associated electric quantities, to the m current controlled ports, of which vb 
and ib are the vectors of the associated electric quantities.  

The controlled quantities vb and ia are in general discontinuous because of the switching, instead 
the control variables va and ib can be continuous or discontinuous. In most of the system 
conversions, in order to allow to the system itself to work, it is essential that the control quantities 
are continuous. For this reason the voltage controlled ports are typically connected to capacitors or 
ideal voltage sources while current controlled ports are connected to inductors or ideal current 
sources. The constitutive relations of ISMP are the following 
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S is the time-variant matrix characterized by a finite number of switching functions or switching 
states and transitions between instantaneous states (switching transitions). Each sij is a variable with 
different discrete states. In particular, the sij can be defined as elementary variable, if it corresponds 
to the single ideal switch with only two different state, 0 and 1; it can be defined as derivative 
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variable, if it is a combination of elementary variables. Moreover, there are often constraints on row 
or column. In any case, equations (3.5) can be rewritten in a matrix form as follows 
 

0
.

0
a a

t
b b

    
    
    

i vS

v iS
 (3.6) 

 
The (3.6) shows that ISMP is a time-variant reciprocal resistive multi-port. 
 

Instantaneous electric power 
 

According to the reference direction reported in Fig. 3.4, the total instantaneous electric power 
absorbed by the n voltage controlled ports is equal to the total instantaneous electric power 
generated by the m current controlled ports. From (3.5) the following expression applies 
 

.t t
a b a a b bp p p   v i v i   (3.7) 

 
Taking into account (3.5) in (3.7), it is possible to write 
 

1 .t t
a a a bp p  v i v Si   (3.8) 

3.3.1 Area	Velocity	
 

The AV absorbed by the ISMP is equal to the sum of all AVs of each port as 
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 (3.9)
  
 

 
The W is a matrix of pulses. The hw function is constituted by a sequence of pulses corresponding 
to the switching, and nil else. Out of the commutations, the (3.9) is a linear time-invariant reciprocal 
resistive multi-port. At the pulse corresponding to the transition from the state j to the state k at time 
tjk the matrix W is 
 

  ( ) ( )k j jk jk jkt t t t      W S S S  (3.10) 

 
where Sjk is defined as Switching Transition Matrix.  

3.3.2 Switching	Power	
 

The SP absorbed by the ISMP associated to the transition from the state j to the state k in the 
switching instant tjk according to (2.6) is  
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  .
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The (3.11) can be seen as generalization of (2.42), (2.43). In (3.11) va and ib, under the hypothesis 
that they are continuous quantities, can be brought out of the integral. Moreover, from (3.8) and 
(3.9) it is possible to obtain  
 

 ( ) ( ) ( ) ( ) ( ).w k j jk jk jk jkh t p p t t p t p t t t           (3.12) 

 
By integration of (3.12), the (3.11) becomes 
 

( ) ( ).kj k j jk jkA p p p t p t      (3.13) 

 
Equation (3.13) is a remarkable achievement. The SP (absorbed) by the ISMP is equal to the 

difference between the instantaneous electric power before and after the switching. In other words, 
it is the variation of the instantaneous electric power flowing through the ISMP caused by the 
switching. From (3.13), under the hypothesis of power flowing from voltage controlled ports to 
current controlled ports, it is possible to state the following: 

 
Theorem 3.I. Given an Ideal Switch Multi Port, switching gives a positive contribution of Switching 
Power, if and only if, the instantaneous electric power flowing from the voltage controlled ports to 
the current controlled ports increases, while switching gives a negative contribution of Switching 
Power, if and only if, the instantaneous electric power flowing from the voltage controlled ports to 
the current controlled ports decreases. Vice versa for the opposite flow of power.  
 

Since any ISMP can be seen as constituted by several ideal switches, the AV can be calculated 
even as the sum of the all AVs of each ideal switch. This fact is proved by the balance theorem over 
AV. 

3.3.3 Closed	Area	over	Time	
 

The total CAT absorbed by the ISMP is 
 

1
.t

w a b a bT
H H H dt

T     v W i  (3.14) 

 
The derivative of W over the period T is not nil and it is impulsive for a certain number of 
switching instants. For this reason the CAT is 
 

( )

1
.w jk r

r

H A
T

   (3.15) 

 
Equation (3.15) is the generalization of (2.44). An important result about converters: the CAT is the 
sum of a finite number of terms determined by switching and evaluated in the instants of 
commutation, rather than integral of continuous functions, much easier. Furthermore, the (3.15) also 
shows a sampling phenomenon: by means of the SP, which depends only on the values at the 
switching instants, it is possible to calculate the value of the CAT. 

Taking into account (3.13) and (3.15), the relation between CAT and the sum of the variations of 
instantaneous electric power is 
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( ) ( )

1
( ).w k k r j r

k r

H kQ p p
T

     (3.16) 

 
Equation (3.16) shows a link between the CAT and the instantaneous electric power. It is 

possible to state that an ISMP converts an instantaneous electric power jump into a generalized 
reactive power. In this way, the ISMP generates or absorbs CAT by the commutations in which 
only the values of the electric quantities in the switching instants are taking into account.   

Let us state that each commutation produces SP and let us call inductive contribution of SP when 
this is positive absorbed and capacitive contribution when the SP is negative absorbed (i.e. 
generated).  

Under sinusoidal control variables the (3.16) becomes 
 

( ) ( )

( ) ( )

1
( )

1
( ).

2

k r j r
r

k r j r
r

H Q p p
T

Q p p





  

 




 (3.17) 

 
Finally, it is also possible to calculate the total CAT involved by the ISMP as sum of each CAT 

absorbed by the ideal switches constituting the ISMP. This fact is proved by the balance theorem 
over CAT. 

 Multilevel	Elements	3.4
 

It has been seen that a generic switching system, i.e. a power converter, can be treated as an ideal 
switch multi-port with n voltage controlled ports and m current controlled ports. Moreover, it is 
possible to reduce most of the ISMPs, which are used, as a composition of more general and 
modular elements that can be called multilevel elements. Nevertheless, these multilevel elements 
are particular sub-cases of ISMPs by means of which, it is possible to construct other many kinds of 
more complex ISMPs in a modular manner. Hence, it is possible to reduce most of the existing 
converters as a composition of these elementary structures. These elementary structures, that will be  
analyzed below, are composed of a certain number of ideal switches and dynamic elements such as 
inductors and capacitors. In general, it is possible to have ports as many as dynamic elements. 
Theoretically, these dynamic elements may be replaced by voltage and current ideal sources, 
otherwise they will be fed by real sources or even by other elementary structures. In any case, it is 
possible to define some electric quantities as imposed quantities at the ports when they are fed by 
ideal or real sources. Any converter to be able to work must have at least one port fed. Let us divide 
these multilevel elements into two main sub-categories:  
 
1) multilevel voltage element is constituted by n voltage controlled ports (input) and one current 
controlled port  (output). In this case the n voltage controlled ports correspond to n possible voltage 
levels (Fig. 3.5). 
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Fig. 3.5. Multilevel voltage element 

 
2) multilevel current element is constituted by n current controlled ports (input) and one voltage 
controlled port (output). In this case the n current controlled ports correspond to n possible current 
levels (Fig. 3.6). 
 

 
Fig. 3.6. Multilevel current element 

 
Taking the term PEBB used in the literature, let us call as N-level Voltage PEBB (VPEEB) the 

multilevel voltage element with n voltage levels and, the dual, as N-level Current PEBB (CPEEB) 
with n current levels. 

 Multilevel	Voltage	Element	3.5
 

The multilevel voltage element is composed of n voltage controlled ports and one current 
controlled port. A scheme of principle is reported in Fig. 3.7. A particular structure of multilevel 
voltage element can be constructed by using n ideal switches, as reported in Fig. 3.7, where only 
one switch is closed in turn. In this way, the output voltage vb can be chosen among n different 
voltage levels. Conversely, the output current ib can be injected in one of the input ports. This levels 
of voltage and current can be constant or variable in function of time. In this way, it is possible to 
reproduce different kinds of ac-dc, dc-dc, dc-ac, and ac-ac converters. In fact, many power 
converters have the same topological structure but what changes are the kind of electrical quantities 
applied and the control strategy used.  
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Fig. 3.7. Multilevel voltage element with ideal switches. Only one switch closed 

 
The constitutive relations of this element in matrix form are as the following  
 

0

0
a a

t
b bv i

    
    
    

i vS

S
 (3.18) 

 
where  
 

1 1 1

2 2 2; ; .

a a

a a
a a

an an n

v i s

v i s

v i s

     
     
       
     
     
     

v i S
  

 (3.19) 

 
sj can assume only two values (0 = open, 1 = closed) with the constrains  
 

1.is   (3.20) 

 
The (3.20) means that only one ideal switch at time must be closed. This kind of structure is 
equivalent to a switch with n states (selector switch) as reported in Fig. 3.8   
 

 
Fig. 3.8. Selector switch 

 
The AV absorbed by the multilevel voltage element is 
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1

1
( )

2

n
t t t ta a b b

W aj b a a b b a b a b
j

d d di dv d
h t h h v i i i

dt dt dt dt dt 


         
 

 i v S
v i v v W  (3.21) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is  
 

  .t t
jk a k j b a jk bA i i  v S S v S  (3.22) 

 
Taking into account (3.18), (3.19) and the constrains (3.20), the (3.22) becomes  
 

( )kj k j bA v v i   (3.23) 

 
where vj and vk are the voltage levels related to the states. The SP is proportional to the voltage 
jump due to the switching transition. 

It is possible to recognize that when a generic ISMP has the S matrix composed of columns in 
which one and only one 1 is present at time, it is possible to reconstruct that ISMP by different 
VPEEBs. 

3.5.1 Single	2−levels	VPEBB	
 

By means of this elementary structure with two voltage levels it is possible to derive power 
converters. The electric circuit is shown in Fig. 3.9. This structure is constituted by two voltage 
controlled ports and one current controlled port.  
 

 
Fig. 3.9. Single 2 − levels VPEBB 

 
The constitutive relations are the following 
 

1 1 2 2

1 1

2 2 .

b a a

a b

a b

v s v s v

i s i

i s i

 




 (3.24) 

 
In matrix form (3.24) becomes 
 

1 11

2 2 2

1 2

0 0

0 0 .

0

a a

a a

b b

i vs

i s v

s sv i

   
       
      

 (3.25)  
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In this case, since s1 + s2 = 1, it is possible to express the two SFs as complementary of each other  
as follows 
 

1

2 1 .

s s

s s



 
 (3.26) 

 
Taking into account (3.26) the (3.24) can be rewrite as 
 

2 1 2

1

2

( )

(1 ) .

b a a a

a b

a b

v v s v v

i si

i s i

  


 

 (3.27) 

 
In matrix form (3.27) becomes 
 

1 1

2 2

0 0

0 0 1 .

1 0

a a

a a

b b

i vs

i s v

s sv i

   
       
       

 (3.28) 

 
The AV absorbed is  
 

1 1 2 2
1 2 1 1 2 2

1 2 1 2 1 2 1 2

1
( )

2

(1 )
( ) ( )

a a a a b b
W a a b a a a a b b

a b a b a b a b a a b a a b

di dv di dv di dv
h t h h h v i v i v i

dt dt dt dt dt dt

ds d s ds ds ds
v i v i v i v i v v i v v w i

dt dt dt dt dt 

           
 


       

 (3.29) 

 
while according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 2 1 2( ) ( )( ) .jk a a jk b a a k j bA v v s i v v s s i      (3.30) 

 
It is possible to graphically represent the only allowable states of the converter as depicted in 

Fig. 3.10.  
 

 
Fig. 3.10. Switching Functions and Switching Transitions  
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Related Converters 
 
Chopper  
 

If the voltages applied to the voltage controlled ports (capacitors), va1 and va2, and the current 
flowing in the current controlled port (inductor), ib, are constant is the bidirectional chopper. In fact, 
chopper has a single capacitor as one of the two voltage levels is nil and classic chopper shown in 
Fig. 3.11 is obtained. In this way, one voltage controlled port is eliminated. Usually, the voltage 
controlled port va is fed by a network and the output voltage vb or current ib are piloted.  

 

 
Fig. 3.11. Bidirectional chopper 

 
The relations (3.27) becomes 
 

.
b a

a b

v sv

i si




 (3.31) 

 
In matrix form it has 
 

0
.

0
a a

b b

i vs

v s i

    
    
    

 (3.32) 

 
The AV absorbed by the chopper is 
 

1
( )

2
a a b b

W a b a a b b a b a b

di dv di dv ds
h t h h v i v i v i v w i

dt dt dt dt dt 
         
 

 (3.33) 

 
and the SP associated to the transition from state the j to the state k in the switching instant tjk is 
 

( ) .jk a jk b a k j bA v s i v s s i    (3.34) 

 
When a transition from 0 to 1 occurs the SP is 
 

01 a bA v i  (3.35) 

 
and conversely, when a transition from 1 to 0 occurs the SP is 
 

10 .a bA v i   (3.36) 
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In this case, it is possible to take into account the switching period in order to calculate the CAT as 
follows 
 

01 10 1 2( ) ( )
.W W a b a b

w

s s

A A v i t v i t
H

T T

 
    (3.37) 

 
If the electric quantities va and ib applied to the electric ports were constant, Hw = 0. Otherwise 

Hw can be not nil and depending on the ripples. Note that vaib is the instantaneous electric power 
flowing from port a to port b when s = 1. Indeed, let us suppose va = VD = constant. The output 
voltage vb and current ib, are depicted in Fig. 3.12.  
 

 
Fig. 3.12. Output voltage and current 

 
Since va is constant the CAT absorbed by the voltage controlled port is nil. Instead, the CAT 

generated by the current controlled port, depicted in Fig. 3.13, is 
 

w

s

V I
H

T

 
   (3.38) 

 
which is equal and opposed to (3.37). 
 

 
Fig. 3.13. Swept area at the port b 
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According to Fig. 3.12 the current ripple is  
 

(1 )sT V
I

L

  
   (3.39) 

 
where the duty cycle is defined as 
 

.ON

s

T

T
   (3.40) 

 
Taking into account (3.39), (3.40) the (3.38) can be expressed as 
 

2(1 )
w

V
H

L

  
  (3.41) 

 
or 
 

2

2
.

(1 )w
s

L I
H

T 





 (3.42) 

 
The relations between ripple current, duty cycle, inductance, switching period and CAT is obtained. 
 
 Single-phase inverter 
 

By means of the same topology, if the voltages applied to the voltage controlled ports 
(capacitors), va1 and va2, are constant while the voltage vb and/or the current ib related to the current 
controlled port (inductor) are imposed as sinusoidal, the single-phase inverter with a single leg is 
obtained. What changes is just the control strategy and the kind of the electric quantities applied to 
the electric ports. Fig. 3.14 shows the classic scheme of the single-phase inverter with a single leg 
of which topology is the same of Fig. 3.9 unless a different arrangement of the elements. Usually, 
the two voltage controlled ports are fed by only one voltage source. 
 

 
Fig. 3.14. Single-phase inverter 
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Buck-Boost  
 

If one of the two voltage controlled ports is fed while the voltage in the other voltage controlled 
port is piloted with the controlled current port grounded the buck-boost converter, as shown in Fig. 
3.15, is obtained.  
 

 
Fig. 3.15. Buck-Boost 

3.5.2 Dual	2−levels	VPEBB	
 

This topology consists, in its most general form, in two 2-levels VPEEB of which the voltage 
controlled ports are shared, as shown in Fig. 3.16. This kind of converter has two voltage controlled 
ports and two current controlled ports. 
  

 
Fig. 3.16. Dual 2 − levels VPEBB 

 
The constitutive relations in matrix form are as the following 
 

1 111 12

2 221 22

11 211 1

12 222 2

0 0

0 0
.

0 0

0 0

a a

a a

b b

b b

i vs s

i vs s

s sv i

s sv i

   
   
   
   
   
   

 (3.43) 

 
In this case, since s11 + s21 = 1 and s12 + s22 = 1, it is possible to express for each VPEBB the two 
SFs as complementary of each other as follows 
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11 1

21 1

12 2

22 2

1

1 .

s s

s s

s s

s s


 

 

 (3.44) 

 
Taking into account the constrains (3.44), the (3.43) becomes 
 

1 11 2

2 21 2

1 21 1

1 22 2

0 0

0 0 1 1
.

0 0

1 1 0 0

a a

a a

b b

b b

i vs s

i vs s

s sv i

s sv i

   
         
   
         

 (3.45) 

 
The common current ic is 
 

1 2.c b bi i i   (3.46) 

 
The AV absorbed is 
 

1 1 2 2
1 2 1 2 1 1 2 1 2 2 2 2

1 2
1 2 1 2 1 2 1 1 2 2

(1 ) (1 )
( )

( )( ) ( )( )

W a a b b a b a b a b a b

a a b b a a b b

ds d s ds d s
h t h h h h v i v i v i v i

dt dt dt dt
ds ds

v v i i v v w i w i
dt dt  

 
       

     
 (3.47) 

 
while according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 2 1 1 2 2 1 2 1 1 1 2 2 2( )( ) ( ) ( ) ( ) .jk a a jk b jk b a a k j b k j bA v v s i s i v v s s i s s i           (3.48) 

 
It is possible to graphically represent the only allowable states and commutations obtained by 

switching only one switch at a time of the converter, as depicted in Fig. 3.17. 
 

 
Fig. 3.17. Switching Functions and Switching Transitions 
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Related Converters 
 

If the current controlled ports are independent each other, i.e. the third wire is used, topologies 
viewed as extensions of those obtained by Single 2 − levels VPEEB with two levels of voltage can 
be obtained. In particular, once voltages va1 and va2 are imposed as constants, the two current ib1 and 
ib2 can be separately controlled. If these currents are also imposed as constants the two-phase 
chopper is obtained. Instead, if the two currents are imposed as sinusoidal the two-phase inverter is 
obtained.  

If the two current controlled ports are dependent each other, considering as only one current 
controlled port that one constituted by the difference between the two current controlled ports 
referred to ground, the H-bridge structure depicted in Fig. 3.18 is obtained and the current in the 
common wire ic is constrained to be zero. This leads to 
 

1 2

1 2

1 2.

b b b

a a a

b b b

i i i

i i i

v v v

  
  
 

 (3.49) 

 
H-Bridge Converter 
 

As shown in Fig. 3.18 there is no longer the connection between the common point of the 
voltage controlled ports and one of the current controlled ports. In this way only one voltage 
controlled port can be considered with voltage va. This variation of topology allows to obtain three 
levels of voltages in the current controlled port and three levels of current in the voltage controlled 
port. This is possible because closing both the switches, which are connected at the same point, the 
output voltage vb is nil.  
 

 
Fig. 3.18. H-bridge converter 

 
According to Fig. 3.18 the constitutive relations (3.49) becomes 
 

1 2

1 2

( )

( ) .
b a

a b

v s s v

i s s i

 
 

 (3.50) 

 
In matrix form, the (3.50) becomes 
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1 2

1 2

0
.

0
a a

b b

i vs s

s sv i

    
        

 (3.51) 

 
According to (3.11) the SP associated to the transition from the state j to the state k in the switching 
instant tjk is 
 

1 2 1 1 2 2( ) ( )jk a jk jk b a k j k j bA v s s i v s s s s i       (3.52) 

 
In the particular case in which the voltage imposed at the voltage controlled port is constant, the  

H-bridge chopper and the H-bridge single-phase voltage source inverter are obtained according to 
the electric quantities vb and ib are, respectively, constant or variable.  

Instead, in the case the voltage imposed at the voltage controlled port is variable in function of 
the time, in particular sinusoidal, the single-phase controlled rectifiers, the 4Q converter and the 
single-phase cycloconverter can be obtained.  

In the case the electric quantity to be controlled was the voltage or the current of the voltage 
controlled port, the chopper with imposed current and the single-phase current source inverter can 
be obtained. 

3.5.3 Triple	2−levels	VPEBB	
 

This topology consists, in its most general form, in three 2-levels VPEEB of which the voltage 
controlled ports are shared, as shown in Fig. 3.19. 
 

 
Fig. 3.19. Triple 2 − levels VPEBB 

 
The constitutive relations in matrix form are as the following 
 

1 111 12 13

2 221 22 23

1 11 21 1

12 222 2

13 233 3

0 0

0 0

0 0 0 .

0 0 0

0 0 0

a a

a a

b b

b b

b b

i vs s s

i vs s s

v s s i

s sv i

s sv i

   
   
   
   
   
   
      

 (3.53) 
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In this case, since s11+s21=1 e s12+s22=1 s13+s23=1, it is possible to express for each VPEBB the two 
SFs as complementary of each other as follows 
 

11 1

21 1

12 2

22 2

13 3

23 3

1

1

1 .

s s

s s

s s

s s

s s

s s


 

 

 

 (3.54) 

 
Taking into account the constrains (3.54), the (3.53) becomes 
 

1 11 2 3

2 21 2 3

1 1 1 1

2 22 2

3 33 3

0 0

0 0 1 1 1

1 0 0 0 .

1 0 0 0

1 0 0 0

a a

a a

b b

b b

b b

i vs s s

i vs s s

v s s i

s sv i

s sv i

   
          
    
        
       

 (3.55) 

 
The common current ic is 
 

1 2 3.c b b bi i i i    (3.56) 

 
The AV absorbed is 
 

1 2 1 2 3

3 31 1 2 2
1 1 2 1 1 2 2 2 1 3 2 3

31 2
1 2 1 2 3 1 2 1 1 2 2 3 3

( )

(1 )(1 ) (1 )

( )( ) ( )( )

W a a b b b

a b a b a b a b a b a b

a a b b b a a b b b

h t h h h h h

ds d sds d s ds d s
v i v i v i v i v i v i

dt dt dt dt dt dt
dsds ds

v v i i i v v w i w i w i
dt dt dt   

     

 
      

       

 (3.57) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 2 1 1 2 2 3 3 1 2 1 1 1 2 2 2 3 3 3( )( ) ( ) ( ) ( ) ( ) .jk a a jk b jk b jk b a a k j b k j b k j bA v v s i s i s i v v s s i s s i s s i              (3.58) 

 
It is possible to graphically represent the only allowable states and commutations obtained by 

switching only one switch at a time of the converter as depicted in Fig. 3.20. 
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Fig. 3.20. Switching Functions and Switching Transitions 

 
Related Converters 

 
Four wires three-phase inverter 
 

As reported in Fig. 3.19, if the current controlled ports are independent each other, i.e. the fourth 
wire is used, topologies viewed as extensions of those obtained by Single VPEEB with two levels 
of voltage can be obtained. In particular, once voltages va1 and va2 are imposed as constants, the 
three current, ib1, ib2 and ib3, can be separately controlled. If these currents are also imposed as 
constants the three-phase chopper is obtained. If instead, the three currents are imposed as 
sinusoidal the three-phase inverter with four wires is obtained. 
 
Three-phase inverter 
 

By elimination of the fourth wire, the topology shown in Fig. 3.21 is obtained, i.e. the classic 
three-wire three-phase inverter, where the sum of the three currents of the current controlled ports 
are constrained to be zero. This leads to 
 

3 1 2

1 2

13 1 3

23 2 3.

b b b b

a a a

b b b

b b b

i i i i

i i i

v v v

v v v

   
  

 
 

 (3.59) 

 
In this way, it is possible to consider only one voltage controlled port and two current controlled 
ports. Taking into account (3.59) the (3.55) becomes 
 

1 3 2 3

13 1 3 1

2 323 2

0

0 0 .

0 0

a a

b b

b b

i vs s s s

v s s i

s sv i

     
        
       

 (3.60) 
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The AV absorbed is 
 

 1 3 2 3
13 23 1 2 1 3 1 2 3 2

( ) ( )
( ) ( ) ( )W a b b a b b a b b

d s s d s s
h t h h h v i i v w w i w w i

dt dt    
            

 (3.61) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 3 1 2 3 2 1 1 3 3 1 2 2 3 3 2( ) ( ) ( ) ( ) .jk a jk jk b jk jk b a k j k j b k j k j bA v s s i s s i v s s s s i s s s s i                   (3.62) 

 

 
Fig. 3.21. Three-phase inverter 

3.5.4 Dual	3−levels	VPEBB	
 

This topology consists, in its most general form, in two 3-levels VPEEB of which the voltage 
controlled ports are shared, as shown in Fig. 3.22. 
 

 
Fig. 3.22. Dual 3 − levels VPEBB 

 
The constitutive relations are as the following  
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1 111 12

2 221 22

3 31 32 3

11 21 311 1

12 22 322 2

0 0 0

0 0 0

0 0 0

0 0

0 0

a a

a a

a a

b b

b b

i vs s

i vs s

i s s v

s s sv i

s s sv i

   
   
   
   
   
   
      

 (3.63) 

 
with the constrains 
 

11 21 31

12 22 32

1

1.

s s s

s s s

  

  
 (3.64) 

 
The common current ic is 
 

1 2.c b bi i i   (3.65) 

 
The AV absorbed is 
 

1 2 3 1 2

31 3211 21 12 22
1 1 2 1 3 1 1 2 2 2 3 2

11 12 21 22
1 3 1 2 2 3 1 2

1 3 11 1 12 2 2

( )

( )( ) ( )( )

( )( ) (

W a a a b b

a b a b a b a b a b a b

a a b b a a b b

a a b b a

h t h h h h h

ds dsds ds ds ds
v i v i v i v i v i v i

dt dt dt dt dt dt
ds ds ds ds

v v i i v v i i
dt dt dt dt

v v w i w i v 

     

      

      

    3 21 1 22 2)( )a b bv w i w i  

 (3.66) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 3 11 1 12 2 2 3 21 1 22 2

1 3 11 11 1 12 12 2 2 3 21 21 1 22 22 2

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) .

jk a a jk b jk b a a jk b jk b

a a k j b k j b a a k j b k j b

A v v s i s i v v s i s i

v v s s i s s i v v s s i s s i

      

               
 (3.67) 

 
Usually, the topology with the current controlled ports dependent, without the third wire, is used. In 
this way, the common current ic is forced to be zero and only one current controlled port and two 
voltage controlled port can be considered as reported in Fig. 3.23. According to Fig. 3.23 the 
constitutive relations (3.63) become 
 

1 1311 12

2 21 22 23

11 12 21 22

0 0

0 0 .

0

a a

a a

b b

i vs s

i s s v

s s s sv i

    
         
         

 (3.68) 
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Fig. 3.23. Single 2 − levels VPEBB without the third wire 

 
The AV absorbed is 
 

 

13 23

11 12 21 22
1 3 2 3

1 3 11 12 2 3 21 22

1 3 11 12 2 3 21 22

( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

W a a b

a a b a a b

a a b a a b

a a a a b

h t h h h

ds ds ds ds
v v i v v i

dt dt dt dt
v v w w i v v w w i

v v w w v v w w i
   

   

   

      

     

     

 (3.69) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 3 11 12 2 3 21 22

1 3 11 11 12 12 2 3 21 21 22 22

( )( ) ( )( )

( )( ) ( )( ) .

jk a a jk jk b a a jk jk b

a a k j k j a a k j k j b

A v v s s i v v s s i

v v s s s s v v s s s s i

      

           
 (3.70) 

 
Related Converters 

 
Many kinds of converters can be obtained by the topology of Fig. 3.23. If the voltage controlled 

ports are fed by sinusoidal voltages and the current ib is piloted to be constant, it is the three-phase 
controlled rectifier; if the current controlled port is fed by a constant current and the voltage va1, va2 
and va3 are piloted to be sinusoidal, it is the three-phase current source inverter; if the voltage 
controlled ports are fed by constant voltages and the voltage vb or current ib are piloted to be 
sinusoidal, it is the single-phase voltage source inverter with 3 levels of voltages; if the voltage 
controlled ports are fed by sinusoidal voltages and the voltage vb or current ib are piloted to be 
sinusoidal, it is the three-phase to single-phase matrix converter. 
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3.5.5 Triple	3−levels	VPEBB	
 

This topology consists, in its most general form, in three three-levels VPEEB of which the 
voltage controlled ports are shared, as shown in Fig. 3.24. 
 

 
Fig. 3.24. Triple 3 − levels VPEBB 

 
The constitutive relations are as the following  
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    

        

 (3.71) 

 
with the constrains 
 

11 21 31

12 22 32

13 23 33

1

1

1.

s s s

s s s

s s s

  

  
  

 (3.72) 

 
The common current ic is 
 

1 2 3.c b b bi i i i    (3.73) 

 
The AV absorbed is  
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1 2 3 1 2 3
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1 1 2 1 3 1 1 2 2 2
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  

       

 (3.74) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

1 3 11 1 12 2 13 3 2 3 21 1 22 2 23 3

1 3 11 11 1 12 12 2 13 13 3

2 3 21 21 1 22 22 2 23 23 3

( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

jk a a jk b jk b jk b a a jk b jk b jk b

a a k j b k j b k j b

a a k j b k j b k j b

A v v s i s i s i v v s i s i s i

v v s s i s s i s s i

v v s s i s s i s s i

        

         
        

 (3.75) 

 
Usually, the fourth wire is not used. In this way the common current ic is forced to be zero.  
 

Related Converters 
 

If the voltage controlled ports are fed by constant voltages and the currents ib1, ib2 and ib3 or the 
voltages vb1, vb2 and vb3 are piloted to be sinusoidal, it is the three-phase voltage source three-level 
inverter; if the voltage controlled ports are fed by sinusoidal voltages and the currents ib1, ib2 and ib3 
or the voltages vb1, vb2 and vb3 are piloted to be also sinusoidal but with different amplitude and 
frequency, it is three-phase matrix converter. In particular, for the so called nine-switch three-level 
inverter [69], which has a nil voltage level, the topology reported in Fig. 3.25 is obtained.  
 

 
Fig. 3.25. Nine-switch three-level inverter 
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 Multilevel	Current	Element	3.6
 

The multilevel current element is composed of n current controlled ports and one voltage 
controlled port. A scheme of principle is reported in Fig. 3.6. In this way, the output current ib can 
be chosen among n different current levels. Conversely, the output voltage vb can be imposed in one 
of the input ports.   
The constitutive relations in matrix form are as the following  
 

0

0
a a

t
b b

i v    
    
    

S

v S i
 (3.76) 

 
where  
 

 

1 1

2 2
1 2; ; .

b b

b b
b b n

bn bn

v i

v i
s s s

v i

   
   
     
   
   
   

v i S 
 

 (3.77) 

 
sj can assume only two values (0, 1) with the constrains  
 

1.is   (3.78) 

 
The AV absorbed by the multilevel current element is  
 

1

1
( )

2

n
ta a b b

W a bj a a b b a b a b
j

di dv d d d
h t h h v i v v

dt dt dt dt dt 


         
 

 i v S
v i i W i  (3.79) 

 
and according to (3.11) the SP associated to the transition from the state j to the state k in the 
switching instant tjk is 
 

  .jk a k j b a jk bA v v  S S i S i  (3.80) 

 
Taking into account (3.76), (3.77) and the constrains (3.78), the (3.80) becomes  
 

( )jk k j aA i i v   (3.81)  

 
where ik and ij are the current levels related to the states. The SP is proportional to the current jump 
due to the switching transition.  

It is possible to recognize that when a generic ISMP has the S matrix composed of rows in which 
one and only one 1 is present at time, it is possible to reconstruct that ISMP by different CPEEBs.  

Anyway, the multilevel current element, in order to be the dual of the multilevel voltage element 
reported in Fig. 3.7, can be made, from a theoretical point of view, as reported in Fig. 3.26. Only 
one of the switches is open in turn, the others are closed. If a system is constituted by only one of 
these multilevel current elements, it is possible to not use the ideal transformers. Instead, if a system 
is constituted by more than one of these multilevel current elements, in order to avoid short circuits 
among more capacitors, the ideal transformers are needed. 
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Fig. 3.26. Multilevel current element. Only one switch open 

 
Another possible topology is that reported in Fig. 3.27. 
 

 
Fig. 3.27. Another possible topology of multilevel current element. Only one switch open 
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4. Simulation	Results	
 Introduction	4.1

 
In order to test the theory developed in this work, some power converters were simulated by 

using Matlab/Simulink. In particular, three cases are threated: 
 
1) chopper; 
2) three-phase voltage source inverter; 
3) three-phase matrix converter. 
 
The aims of these simulation test are the followings: to verify the balance property of the CAT; the 
(2.44) applied to the converters (ISMP); the (2.15) applied at the input and output sides of the 
ISMP; the (2.31), (2.38) applied, respectively, to the inductors and capacitors.  

 Chopper	4.2
 

The electric circuit is depicted in Fig. 4.1 and it is composed of one capacitor fed by a constant 
voltage source Ea in the input side and another constant voltage source Eb in the output side which 
can represent an electric motor or a dc grid. The output voltage vb is generated by using the standard 
PWM modulation with triangular carrier.  

 

 
Fig. 4.1. Electric circuit with chopper 

 
The parameters are reported in the Table 4.1. 
 

Table 4.1. Electric circuit parameters 
Ea 1000 V 

Modulation index 0.7
Eb  600 V 
Rd 0.5  
Cd 0.1 mF 
Ro 0.5  
Lo 1 mH 

switching frequency fs 5 kHz 
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The input voltage va and the output current ib absorbed by the load are depicted in Fig. 4.2. and Fig. 
4.4.  
 
 

 
Fig. 4.2. Input voltage va 

 
 
 
 
 
 

 
Fig. 4.3. Input voltage va (Zoom) 
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Fig. 4.4. Output current ib 

 
Fig. 4.5. Output current ib (Zoom) 

 
In order to meet the requests mentioned in the introduction the following electric quantities were 
measured: va, ia, ica, vb, ib, vLb with a resolution of 218 samples. All CAT values of the simulation are 
reported in Table 4.2.  

 
Table 4.2. Values of the CAT 

CAT [MVA/s] 
HCH 160.39
HCha -29.558 
HCHb 189.88 
HLb 189.97 
HCa -29.575 
HEa 0 
HEb 0 

 
As it can be seen from Table 4.2, the CAT generated by the chopper HCH calculated by using the 
(2.44) and (3.34) is about equal to the CAT obtained by summing the two contributions HCHa and 
HCHb calculated by (2.15) doing FFT of voltage and current ia, va, ib, vb. The same value HCH is also 
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obtained by summing the CAT absorbed by the inductor HLb according to (2.31), capacitor HCa 
according to (2.38) and the voltage generators HEa, HEb which, in this case, are nil because they are 
constant dc voltage sources.  

It is worth to note that the CAT obtained by the (2.44) and (3.34) is not an approximated value 
whereas the CATs obtained by (2.15), (2.31) and (2.38) are approximated values according to the 
resolution of the FFT of the voltage and current related to the input and output sides. In fact, in 
order to obtain the same values, the resolution of the FFT would be, theoretically, infinite for the 
exactly convergence of the series. 

The following are figures of the closed areas on the v-i plane related to CATs generated by the 
chopper and absorbed by the capacitor and inductor. The observation period is, in this case, equal to 
the switching period.  

Fig. 4.6 shows the closed area on the v-i plane related to HCha which is generated in the input 
side. From point A to point B the SF s = 0, and hence, ia = 0 and va increases because the capacitor 
is charging by means of the voltage generator Ea. From point B to point C a commutation from s = 
0 to s = 1 applies and the current ia jumps from zero to ib. From point C to point D the current ia 
increases together with ib which charges the inductor in the output side meanwhile the voltage va 
decreases because the capacitor is discharging.       

 
Fig. 4.6. Closed area on the v-i plane generated by the chopper in the input side. Single arrow stays for continuous part; 

double arrow stays for jump discontinuity 
 

Fig. 4.7shows the closed area on the v-i plane related to HChb which is generated in the output 
side. From point A to point B the SF s = 0, and hence, vb = 0 and ib decreases because the inductor 
is discharging over the resistor Rb and over the voltage generator Eb. From point B to point C a 
commutation from s = 0 to s = 1 applies and the voltage vb jumps from zero to va. From point C to 
point D the current ib increases together with ia which discharges the capacitor in the input side, 
indeed the voltage va decreases because the capacitor is discharging.       
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Fig. 4.7. Closed area on the v-i plane generated by the chopper in the output side. Single arrow stays for continuous 

part; double arrow stays for jump discontinuity 
 

Fig. 4.8 shows the closed area on the v-i plane related to HCa which is absorbed by the capacitor 
in the input side. From point A to point B the SF s = 0, the capacitor is charging by the voltage 
generator Ea, and hence, va increases and ica decreases. From point B to point C a commutation 
from s = 0 to s = 1 applies and the current of the capacitor ica jumps from a positive value to a 
negative one. From point C to point D the current ica increases meanwhile the voltage va decreases 
because the capacitor is discharging. As it is possible to see by the Table 4.2, the CAT absorbed by 
the capacitor is equal to the CAT generated by the chopper in the input side. The two related closed 
areas of Fig. 4.6 and Fig. 4.8 are, indeed, the same. 

 
Fig. 4.8. Closed area on the v-i plane of the capacitor. Single arrow stays for continuous part; double arrow stays for 

jump discontinuity 
 
Fig. 4.9 shows the closed area on the v-i plane related to HLb which is absorbed by the inductor in 

the output side. From point A to point B the SF s = 0, the inductor is discharging over the resistor Rb 
and over the voltage generator Eb, and hence, ib decreases and vLb increases. From point B to point 
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C a commutation from s = 0 to s = 1 applies and the voltage on the inductor vLb jumps from a 
negative value to a positive one. From point C to point D the voltage vLb decreases meanwhile the 
current ib increases because the inductor is charging. As it is possible to see by the Table 4.2, the 
CAT absorbed by the inductor is equal to the CAT generated by the chopper in the output side. The 
two related closed areas of Fig. 4.6, Fig. 4.8 and Fig. 4.7, Fig. 4.9 are, indeed, the same. 

 
Fig. 4.9. Closed area on the v-i plane of the inductor. Single arrow stays for continuous part; double arrow stays for 

jump discontinuity 
 

Under ideal conditions if the voltage on the capacitor va and the output current ib were constant 
without ripple, the total area generated by the chopper would be nil because in the input side only 
vertical jumps between zero and ib value of current would take place, and in the output side only 
horizontal jumps between zero and va value of voltage would take place. 

Fig. 4.10 shows the SP generated by the chopper in a bar diagram. As it can be seen, the SP after 
two commutations is repeated at the same way. Indeed, into the switching period only two different 
commutations occur.  

 
Fig. 4.10. Switching Power generated by the chopper 
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 Three‐Phase	Voltage	Source	Inverter	4.3
 

The electric circuit is depicted in Fig. 4.11 and it is composed of two capacitors fed by a constant 
voltage source Ea in the dc side and a balanced active three-phase load in the ac side. In the ac side 
a sinusoidal balanced voltage tern vb1,b2,b3 is generated by using the standard PWM modulation with 
a triangular carrier.  

 

 
Fig. 4.11. Electric circuit with three-phase voltage source inverter 

 
The parameters are reported in the Table 4.3. 

 
Table 4.3. Electric circuit parameters 
Ea 1000 V 

AC voltage  - mod. index  230 V (RMS) − 0.68 
eb1,b2,b3  173 V (RMS) − 5° lag. 

Ra 0.5  
Ca 0.1 mF 
Rb 0.5  
Lb 1 mH 

output frequency fo  50 Hz 
switching frequency fs 5 kHz 

 
The input voltage va and the output currents ib1,b2,b3 absorbed by the load are depicted in Fig. 4.12 
and Fig. 4.13.  
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Fig. 4.12. Input voltage va 

 
Fig. 4.13. Output currents ib1,b2,b3 

 
In order to meet the requests mentioned in the introduction the following electric quantities were 
measured: va, ia, ica, vb1,b2,b3, ib1,b2,b3, vLb1,Lb2,Lb3, eb1,b2,b3 with a resolution of 218 samples. All CAT 
values of the simulation are reported in Table 4.4.  
 

Table 4.4. Values of the CAT 
CAT [MVA/s] 
HVSI 155.19
Hac 193.35 
Hdc -38.310 
HLb 189.86 
HCa -38.341 
HEa 0 
He 3.6867 
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As it can be seen from Table 4.4, the CAT generated by the converter HVSI calculated by using the 
(2.44) and (3.58) is about equal to the CAT obtained by summing the two contributions Hac and Hdc 
calculated by (2.15) doing FFT of voltage and current ia, va, vb1,b2,b3, ib1,b2,b3,. The same value HVSI is 
also obtained by summing the CATs absorbed by inductors HLb according to (2.31), capacitor HCa 
according to (2.38), and voltage generators He, HEa.  

The following are figures of the closed areas on the v-i plane related to CATs generated by the 
chopper and absorbed by the capacitor and inductor. The observation period is, in this case, equal to 
the fundamental period of the sinusoidal output, i.e. 20 ms.  

Fig. 4.14 shows the closed area on the v-i plane related to Hdc which is generated by the inverter 

in the dc side. In this case the area is more complex respect to the previous case because the area 
involved depends by the three output currents. Considering the state diagram of the inverter 
reported in Fig. 3.20, the transition from one of the points A to one of the points B applies when all 
SFs are 1 or 0 and they are called nil configurations. Indeed, in this case the current ia is nil because 
the sum of the three output currents is constrained to be zero. Hence, the voltage va on the capacitor 
increases because is charging by means of the voltage source Ea. The transition from one of the 
points C to one of the points D applies when the SFs are in a not nil configuration, i.e. SFs are not 
all 1 or 0 and they are called active configurations. The jump discontinuity from one of the points B 
to one of the points C occurs when a commutation between one nil configuration and one active 
configuration takes place. Vice versa the jump discontinuity from one of the points D to one of the 
points A occurs when a commutation between one active configuration and one nil configuration 
takes place. In the other cases, when a commutation between two different active configurations 
takes place, a jump discontinuity between one of the points C or D and one of the points E occurs. 

 
Fig. 4.14. Closed area on the v-i plane generated by the inverter in the dc side. Single arrow stays for continuous part; 

double arrow stays for jump discontinuity 
 

Fig. 4.15, Fig. 4.16 and Fig. 4.17 show the closed areas on the v-i plane related to Hac which is 
generated in the ac side. As it is possible to note the three figures are very similar each other 
because the three output voltages and the three output currents are balance. These areas are 
composed of several little rectangular subareas due to the switching. These rectangular subareas are 
distorted because of the ripple at the switching frequency. Indeed, under ideal conditions if the 
voltage on the capacitors va were constant and the three output currents were sinusoidal without 
ripple, then the area generated by the inverter in the dc side would be nil because only vertical 
jumps between different values of currents would take place. Instead, in the output side, the voltage 
vb1, vb2 and vb3 would jump between −va/2 and va/2 and the sinusoidal currents ib1, ib2 and ib3 would 
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track perfect rectangular areas. The total resulting area in the ac side would be related only to the 
fundamental reactive power.    

 
 

 
Fig. 4.15. Closed area on the v-i plane generated by the inverter in the ac side − phase 1.  

 
 
 
 
 
 

 
Fig. 4.16. Closed area on the v-i plane generated by the inverter in the ac side − phase 2. 
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Fig. 4.17. Closed area on the v-i plane generated by the inverter in the ac side − phase 3. 

 
Fig. 4.18, Fig. 4.19 and Fig. 4.20 show the SP generated by the inverter related to each phase. As 

it can be seen, into the fundamental period of the sinusoidal output, 200 different SPs are generated 
because 200 different commutations occur. 

 
Fig. 4.18. Switching Power generated by the inverter − phase 1 
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Fig. 4.19. Switching Power generated by the inverter − phase 2 

 
 
 
 
 
 

 
Fig. 4.20. Switching Power generated by the inverter − phase 3 
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 Three‐Phase	Matrix	Converter		4.4
 

The electric circuit is depicted in Fig. 4.21 and it is composed of three capacitors fed by a three-
phase balanced voltage source vs1,s2,s3 in the input side and a balanced active three-phase load 
(current load) in the ac side. Capacitors Cb are used in order to support a three-phase voltage 
supplying the load. Indeed, in this case the input voltage sources have a certain amplitude and 
frequency while the output voltages vCb1,Cb2,Cb3 have a different amplitude and frequency. The 
control strategy used in this converter is a current control modulation which tracks a rate voltage on 
the capacitors Cb and gives a unitary input power factor in the input side of the matrix converter.    
 

 
Fig. 4.21. Electric circuit with matrix converter 

 
The parameters are reported in the Table 4.5.  
 

Table 4.5. Electric circuit parameters 
vs1,s2,s3 306 V (RMS) 

vL1,L2,L3  220 V (RMS)  
iL1,L2,L3  49.5 A (RMS) − 20° lag. 

Ra 0.02  
La 5.6 F 
Ca 0.5 mF 
Rb 0.001  
Lb 0.3 mH 
Cb 0.5 mF 

input frequency fi  50 Hz 
output frequency fo 100 Hz 

average switching frequency  20 kHz 

 
The input voltage va1,a2,a3, the output currents ib1,b2,b3 and the voltage on the load are depicted in Fig. 
4.22, Fig. 4.23 and Fig. 4.24. 
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Fig. 4.22. Input voltages va1,a2,a3 

 
 
 
 
 
 

 
Fig. 4.23. Output currents ib1,b2,b3 
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Fig. 4.24. Output capacitor voltages vCo1,Co2,Co3 

 
In order to meet the requests mentioned in the introduction the following electric quantities were 
measured: va1,a2,a3, ia1,a2,a3, vLa1,La2,La3, ica1,ca2,ca3, vb1,b2,b3, ib1,b2,b3, vLb1,Lb2,Lb3, icb1,cb2,cb3, vs1,s2,s3, is1,s2,s3  
with a resolution of 217 samples. All CAT values of the simulation are reported in Table 4.6.  

 
Table 4.6. Values of the CAT  

CAT [MVA/s] 
HMATRIX 350.86 

Ha -8.8992 
Hb 357.94 
HLa 0.37835 
HCa -23.376 
HLb 382.63 
HCb -29.026 

Hvs1,vs2,vs3 13.802 
HiL1,iL2,iL3 3.5138 

 
As it can be seen from Table 4.6, the CAT generated by the matrix converter HMATRIX calculated by 
using the (2.44) and (3.75) is about equal to the CAT obtained by summing the two contributions 
Ha and Hb calculated by (2.15) doing FFT of voltage and current va1,a2,a3, ia1,a2,a3, vb1,b2,b3, ib1,b2,b3,. 
The same value HMATRIX is also obtained by summing the CATs absorbed by inductors HLa, HLb, 
capacitors HCa, HCo, voltage generators Hvs1,vs2,vs3 and current load HiL1,iL2,iL3.  

Fig. 4.25, Fig. 4.26 and Fig. 4.27 show the closed areas on the v-i plane related to Ha which is 
generated by the matrix converter in the input side. Since the control strategy gives a unitary input 
power factor the area generated in the input is only due to the ripple.   
 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
-400

-300

-200

-100

0

100

200

300

400
 v

Co1Co2Co3
 [V]

 t [s]



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 109 / 149
 

 
 
 
 

 
Fig. 4.25. Closed area on the v-i plane generated by the matrix converter in the input side − phase 1. 

 
 
 
 
 
 

 
Fig. 4.26. Closed area on the v-i plane generated by the matrix converter in the input side − phase 2. 
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Fig. 4.27. Closed area on the v-i plane generated by the matrix converter in the input side − phase 3. 

 
Fig. 4.28, Fig. 4.29 and Fig. 4.30 show the closed areas on the v-i plane related to Hb which is 

generated by the matrix converter in the output side. Since, in this case, both the output currents and 
the input voltages are sinusoidal with ripple, the total area is constituted by several distorted elliptic 
subareas.   

 
Fig. 4.28. Closed area on the v-i plane generated by the matrix converter in the output side − phase 1.  
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Fig. 4.29. Closed area on the v-i plane generated by the matrix converter in the output side − phase 2. 

 
 
 
 
 
 

 
Fig. 4.30. Closed area on the v-i plane generated by the matrix converter in the output side − phase 3. 
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5. Jump	Power	
 Introduction	5.1

 
In this chapter another conservative function, here called Jump Power (JP), is developed in order 

to address some properties and issues of principle regarding one-port elements, in particular ideal 
diodes and ideal switches. Also in this chapter impulses are explicitly excluded. 

 Jump	Power	5.2
 

For a two-terminals component, with the reference directions for voltage and current reported in 
Fig. 2.1 and according to the jump functions (1.64), let us define the Jump Power as the following 
 

1
( ) ( ) ( ).

2
JP t J v J i  (5.1) 

 
According to the definition (5.1), the Jump Power is different from zero only when a jump 

discontinuity both in the voltage and in the current at the same time occurs.  

5.2.1 Balance	theorem	over	Jump	Power	
 

Since the JP is defined as the product of jump functions of voltage and current which satisfy the 
Kirchhoff laws, it is possible to state the following: 
 
Theorem 5.I. Given a network constituted by a connection of “p” electric ports and chosen the 
same reference directions for all ports, the sum of Jump Power extended to the whole network is nil, 
namely the sum of Jump Power generated is equal to the sum of Jump Power absorbed. 

5.2.2 Continuous	Generators	
 

For both continuous voltage and continuous current sources, the voltage or the current are 
imposed to be continuous functions of time, and therefore, the JP absorbed by this kind of 
generators is always nil. 
 

( ) 0sJP t   (5.2) 

5.2.3 Resistive	one‐port	
 

Let us consider a time-invariant nonlinear resistive one-port, with a continuous characteristic on 
the v-i plane, as reported in Fig. 5.1. When a jump discontinuity at the time t* occurs, the 
incremental resistance R (incremental conductance Gover the interval is considered, as depicted 
in Fig. 5.1, and according to (1.63), it is possible to write 
 

 * * * *( ) ( ) ( ) ( ) .V t t R I t t I t t G V t t              (5.3) 

 



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 113 / 149
 

 
Fig. 5.1. Nonlinear resistor characteristic on the v-i plane 

 
By the jump functions (1.64), the (5.3) becomes 
 

 .V R I I G V            (5.4)  

                  
If the current-voltage characteristic is monotone and nondecreasing, with the constrains R∆  0 (G∆ 

 0), the JP absorbed by the nonlinear resistor is 
 

2 21 1
0 0 .

2 2R RJP R I JP G V  
     
 

 (5.5) 

 
If the current-voltage characteristic is linear, i.e. v = Ri (i = Gv) with the constrains R ≥ 0 (G ≥ 0), 
the (5.5) becomes 
 

2 21 1
0 ( ( ) 0).

2 2R RJP RI JP t GV      (5.6) 

 
By (5.5) and (5.6), it is possible to state that both a linear and a nonlinear resistor, with a monotone 
nondecreasing characteristic, always absorbs a nonnegative JP. 

5.2.4 Inductive	one‐port	
 

Let us consider a time-invariant nonlinear inductive one-port. Assuming a flux-controlled 
continuous characteristic i = i(ψ), as shown in Fig. 5.2, at its terminal it holds: 
 

( )
d

v t
dt


   (5.7) 

 

i
L





  (5.8) 

 
where L∆ is the incremental inductance over the considered interval, as depicted in Fig. 5.2. 
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Fig. 5.2. Nonlinear inductor characteristic on the ψ-i plane 

 
From (5.7) and (5.8) the voltage controlled form of the inductor is 
 

1
( ) .i t vdt

L

    (5.9) 

 
If the current-flux characteristic is linear, i.e. i = ψ/L, the (5.9) becomes 
 

1
( ) .i t vdt

L
    (5.10)  

 
Since the voltage, for hypothesis, does not have impulses, the inductor current is always continuous. 
Hence, the JP absorbed by both a linear and a nonlinear inductor is always nil. 
 

0LJP   (5.11) 

5.2.5 Capacitive	one‐port	
 

Let us consider a time-invariant nonlinear capacitive one-port. Assuming a charge-controlled 
continuous characteristic v = v(q), as shown in Fig. 5.3, at its terminal it holds: 
 

( )
dq

i t
dt

   (5.12) 

 
q

v
C

  (5.13) 

 
where C∆ is the incremental capacitance over the considered interval, as depicted in Fig. 5.3.  
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Fig. 5.3. Nonlinear capacitor characteristic on the v-q plane 

 
From (5.12) and (5.13) the current controlled of the capacitor is 
 

1
( ) .v t idt

C

    (5.14) 

 
If the voltage-charge characteristic is linear, i.e. v = q/C, the (5.14) becomes 
 

1
( ) .v t idt

C
    (5.15) 

 
Since the current, for hypothesis, does not have impulses, the capacitor voltage is always 
continuous. Hence, the JP absorbed by both a linear and a nonlinear capacitor is always nil. 
 

0CJP   (5.16) 

5.2.6 Ideal	Switch	one‐port	
 

Let us consider the ideal switch depicted in Fig. 2.11. 
 
Closing commutation 
 

When the ideal switch closes at time t*, the voltage VSW = v(t*
-) that was applied on the switch 

becomes nil and the current that was nil becomes ISW = i(t*
+). Hence, it is possible to write 

 
*

*

( ) (1 ( ))

( ) ( ).

SW

SW

v t V t t

i t I t t





  

 
 (5.17) 

 
According to (5.1) the JP absorbed by the ideal switch is 
 

1
.

2SWclosed SW SWJP V I   (5.18) 
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Opening commutation 
 

When the ideal switch opens at time t*, the current ISW = i(t*
-) that was flowing is interrupted and 

the voltage that was nil becomes VSW = v(t*
+). Hence, it is possible to write 

 
*

*

( ) ( )

( ) (1 ( )).

SW

SW

v t V t t

i t I t t





 

  
 (5.19) 

 
According to (5.1) the JP absorbed by the ideal switch is 
 

1
.

2SWopen SW SWJP V I   (5.20) 

 
Equations (5.18) and (5.20) yield the same result. Hence, the ideal switch involves the same JP both 
in opening and closing commutations. 

If  VSW ISW > 0 (active hard switching) the ideal switch absorbs, both in opening and closing 
commutations, a negative JP. In other hands, the ideal switch generates JP.  

If VSW ISW < 0 (passive hard switching) the ideal switch absorbs a positive JP. By this fact, it is 
possible to state that the JP absorbed by the ideal switch depends only on the condition of active or 
passive hard switching. 

According to (2.42) and (2.43) the JP is related to the Switching Power as follows 
 

1

2
1

.
2

SWclosed SW SW SWclosed

SWopen SW SW SWopen

JP V I A

JP V I A

   

  
  (5.21) 

5.2.7 Ideal	Diode	one‐port	
 

Let us consider an ideal diode with its characteristic on the v-i plane as reported in Fig. 5.4. It is a 
particular nonlinear resistor. 
 

 
Fig. 5.4. Ideal diode characteristic on the v-i plane 
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Closing commutation 
 

When the ideal diode, due to the remaining part of the network, jumps at time t* from the point A 
to the point B on its characteristic, the voltage VD = v(t*

-) ≤ 0 that was applied on the diode becomes 
nil and the current that was nil becomes ID = i(t*

+)  0. Hence, it is possible to write 
 

*

*

( ) (1 ( ))

( ) ( ).

D

D

v t V t t

i t I t t





  

 
 (5.22) 

 
According to (5.1) the JP absorbed by the ideal diode is 
 

1
0 ( 0).

2Dclosed D D D DJP V I V I     (5.23) 

 
Opening commutation 
 

When the ideal diode, due to the remaining part of the network, jumps at time t* from the point B 
to the point A on its characteristic, the current ID = i(t*

-)  0 that was flowing is interrupted and the 
voltage that was nil becomes VD = v(t*

+) ≤ 0. Hence, it is possible to write 
 

*

*

( ) ( )

( ) (1 ( )).

D

D

v t V t t

i t I t t





 

  
 (5.24) 

 
According to (5.1) the JP absorbed by the ideal switch is 
 

1
0 ( 0).

2Dopen D D D DJP V I V I     (5.25) 

 
By (5.23) and (5.25) it is possible to state that the ideal diode can only absorb a nonnegative JP. 
Indeed, because of its characteristic, only passive hard switching is allowed.  

 Some	Theorems	Based	on	Jump	Power	5.3
 

Table 5.1 shows the Jump Power absorbed by resistors, inductors, capacitors, continuous 
generators, ideal switches and ideal diodes.   
 

Table 5.1. Jump Power absorbed by one-port elements 
Electric Elements Jump Power 

Continuous generators 0 
Linear and nonlinear resistor with a monotone nondecreasing characteristic ≥ 0 

Linear and nonlinear inductor 0 
Linear and nonlinear capacitor 0 

Ideal switch 
≥ 0 (passive hard switching)
≤ 0 (active hard switching) 

Ideal diode ≥ 0 (passive hard switching)
 

It is shown from Table 5.1 that all dynamic elements, as inductors and capacitors, in addition to  
continuous generators do not absorb JP. The ideal switch can absorb or generate JP meanwhile the 
ideal diode can only absorb JP. For this reason it is possible to state the following: 
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Statement 5.I. Since the JP absorbed by the ideal diode is always nonnegative, it can involve only 
passive hard switching commutations. This confirms that, as already stated in chapter 2, the ideal 
diode is a nonlinear resistor which can be seen as an ideal switch, that commutes in soft switching 
and only in passive hard switching. 
 
Theorem 5.II. Given an electric network composed of continuous generators, resistors, inductors, 
capacitors, ideal diodes and ideal switches in which Jump Power is involved, then at least one ideal 
switch that commutes in active hard switching (the only one element able to generate Jump Power) 
is needed.  
 
Theorem 5.III. If an ideal switch applies an active hard switching commutation generating Jump 
Power, then in order to obey to the balance theorem over Jump Power, at least another element 
able to absorb Jump Power, as a resistor, an ideal diode or another ideal switch that commutes in 
passive hard switching is needed.  
 
Corollary 5.I. Given an electric network composed only of continuous generators, one ideal switch 
that commutes, and at least one resistor, it is possible to have hard switching commutations. 
 
Corollary 5.II. Given an electric network composed only of continuous generators, inductors, 
capacitors and only one ideal switch that commutes, only soft switching commutations are possible. 
 
Corollary 5.III. Given an electric network composed only of continuous generators, inductors, 
capacitors and ideal diodes, only soft switching commutations are possible. 
 
Corollary 5.IV. Given an Ideal Switch Multi Port constituted by different ideal switches and/or 
ideal diodes where currents or voltages at the external ports are continuous, the total Jump Power 
absorbed by the Ideal Switch Multi Port is always nil. Hence, the sum of Jump Power into the Ideal 
Switch Multi Port must be nil, consequently, 
 

- if only one ideal switch commutes at time, only soft switching commutations are possible; 
- hard switching commutations can occur only if more than one ideal switch, among which 

there can be ideal diodes, commutes at the same time; 
- if the Ideal Switch Multi Port is constituted only by ideal diodes, only soft switching 

commutations are possible. 
 
Corollary 5.IV can be extended to any generic network without resistors.  

 Some	Theorems	Based	on	Jump	Power	and	Switching	Power		5.4
 

Table 5.2 shows a comparison between the Jump Power and the Switching Power analyzed in 
chapter 2 involved by ideal switches and ideal diodes.  
 

Table 5.2. Comparison between SP and JP 

 
Ideal switch

opening 
Ideal switch

 closing 
Ideal diode 

opening 
Ideal diode  

closing 

active hard switching 
SP < 0
JP < 0 

SP > 0
JP < 0 

--
-- 

-- 
-- 

passive hard switching 
SP > 0
JP > 0 

SP < 0
JP > 0 

SP > 0
JP > 0 

SP < 0 
JP > 0 

 
By Table 5.2 it is possible to state the following: 
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Theorem 5.IV. By considering only commutations of ideal switches and ideal diodes, the Jump 
Power is involved if, and only if, the Switching Power is involved. 
 
Theorem 5.V. If an Ideal Switch Multi Port generates Switching Power then, at least two ideal 
switches or one ideal switch and one ideal diode commute at the same time; one of the two element 
opening in active hard switching (only ideal switch) and the other of the two closing in passive hard 
switching. 
 
Corollary 5.V. If only two elements of an Ideal Switch Multi Port commute at the same time, each of 
them generates Switching Power equal to 1/2VSWISW (2.42), (2.43) and the total Switching Power 
generated by the Ideal Switch Multi Port is VSWISW. 
 
Theorem 5.VI. If an Ideal Switch Multi Port absorbs Switching Power then, at least two ideal 
switches or one ideal switch and one ideal diode commute at the same time; one of the two element 
closing in active hard switching (only ideal switch) and the other of the two opening in passive hard 
switching. 
 
Corollary 5.VI. If only two elements of an Ideal Switch Multi Port commute at the same time, each 
of them absorbs Switching Power equal to 1/2VSWISW (2.42), (2.43) and the total Switching Power 
absorbed by the Ideal Switch Multi Port is VSWISW. 

 

Because of the relationship between the SP and the reactive power, the abovementioned 
theorems and corollaries state some significant conditions regarding the reactive power that 
electronic converters can generate or compensate in a power plant. 

 Analytical	Examples	5.5

5.5.1 Ideal	Switch	
 

Let us consider the electric circuit depicted in Fig. 5.5. Let us suppose that at the time t = 0 the 
ideal switch closes.  
 

 
Fig. 5.5. Electric circuit 

 
Before the commutation the electric quantities are as follows 
 



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 120 / 149
 

(0 ) 0

(0 ) 0
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 (5.26) 

 
After the commutation the electric quantities are as follows 
 

(0 )

(0 )

(0 ) 0.
R

SW

E
i

R
v E

v












 (5.27) 

 
In this way, according to (5.1) the JPs absorbed by the voltage generator, resistor and ideal switch 
are the following 
 

2

2

0

1

2
1

.
2

E

R

SW

JP

E
JP

R
E

JP
R





 

 (5.28) 

 
Indeed, the ideal switch applies an active hard switching commutation generating JP meanwhile the 
resistor absorbs the same amount of JP. 

5.5.2 Voltage	Power	Electronic	Building	Block	
 
Let us consider the VPEBB depicted in Fig. 5.6 constituted by GTOs and diodes.  
 

 
Fig. 5.6. VPEBB  

 
Let us suppose that at the time t = 0 the GTO 1 closes while the other opens. Supposed that VD > 

0 and i > 0, before the commutation the electric quantities are as follows 
 



Simone Barcellona ─ Conservative Functions: An Approach in Nonlinear and Switched Network Analysis  

 
 Pag. 121 / 149
 

1

1

1 1

2

2

2 2

(0 ) 0

(0 ) 0

(0 ) (0 )

(0 ) 0

(0 )

(0 ) (0 ) 0.

G

D

G D D

G

D

G D

i

i

v v V

i

i i

v v





 





 




  




  

 (5.29) 

 
After the commutation the electric quantities are as follows 
 

1

1

1 1

2
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 (5.30) 

 
In this way, according to (5.1) the JPs absorbed by the elements are the following 
 

1

1

2

2
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2
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1
.

2

G D

D
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JP V i
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 (5.31) 

 
Indeed, the GTO 1 applies an active hard switching commutation generating JP meanwhile the 
Diode 2 applies a passive hard switching commutation absorbing the same JP. 
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5.5.3 Rectifier	Bridge	
 
Let us consider the rectifier bridge depicted in Fig. 5.7. 
 

 
Fig. 5.7. Rectifier bridge 

 
Since diodes can only absorb JP and the total JP must be nil, then the rectifier bridge can only apply 
soft switching commutations. Indeed, commutations apply only when the voltage over the diodes is 
zero. 

5.5.4 Total	Controlled	Rectifier	Bridge	
 
Let us consider the total controlled rectifier bridge of Fig. 5.8. 
 

 
Fig. 5.8. Total controlled rectifier bridge 

 
Since thyristor, like an ideal switch, can also generate JP, then the total controlled rectifier bridge 
can apply hard switching commutations. Indeed, by means of the firing angle, the thyristor can 
close when its voltage is different from zero; at the same time the current in the element has a jump 
discontinuity. The active hard switching at firing causes a passive hard switching commutation in 
the other thyristor that switches off. 
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6. Connection	 Energy	 and	 Impulsive	
Powers		

 Introduction		6.1
 

Switched networks are the core of this work. In the past literature, these networks are treated as 
networks with variant topology following commutations of ideal switches. An interesting aspect, 
that was much discussed in the past literature, considers the problem regarding the switched 
networks with inconsistent initial conditions. Generally, this is due to the presence of ideal switches 
which can yield impulses on the electric qualities. Indeed, they can involve a change in the network 
topology as for instance, when two capacitors with different initial voltages are connected in 
parallel to form a new network. The instant when a network forms a new topology will be t = t*. 
Initial conditions at t*

- will be called initial conditions simply, while the values immediately after 
switching are the initial conditions at t*+. Voltage and current values at t*

+ and t*
- are related by 

charge conservation in capacitive cutsets and flux conservation in inductive loops. Nevertheless, the 
application of these laws does not always suffice for obtaining the initial values at t*

+ from initial 
values at t*

-. Indeed in [69], state reinitialization problem has been addressed by utilizing the 
charge/flux conservation principle. A general formalization of this conservation principle has not 
been given; it has been explained only through examples. In [70], the principle of charge/flux 
conservation has been applied to periodically operated switched networks for state reinitialization 
problem. In [71], the authors proposed a reinitialization method that is based on numerical inversion 
of Laplace transform. Their method obtains consistent initial states in two steps: one step forward in 
time to overcome the impulse and one step backward to the switching instant. Reference [72] uses 
also the Laplace transform method for reinitialization. This line of work has been extended in [73] 
to periodically switched nonlinear circuits. Other papers that took numerical approaches include 
[74]−[76]. The distributional framework has been used in [77] where current sources were 
excluded, in [43] an approach to calculate the energy loss after the discontinuity was developed. 
Other related work consists of generalizations to nonlinear setting (e.g., [40], [41], [78], [79]) and 
calculation and interpretation of energy loss in switching instants (e.g., [80]−[82]). For internally 
controlled switching elements, state reinitialization was considered in [38], [83]−[85]. Also state 
discontinuities were discussed in the context of switched capacitor circuits in [86], [87], in the 
context of robust stabilization of complex switched networks in [88], and in the context of steady-
state analysis of nonlinear circuits containing ideal switches in [89]. In the literature, switched 
networks have been almost always treated by fixing a switch configuration and deriving the 
differential algebraic equations that govern the network. In order to analyze the same circuit for 
another switch configuration, a typical approach consists of deriving the corresponding circuit 
equations for the new configuration as in [75].  

In this work, the ideal switch is treated as a one-port element with its own constitutive relations 
and associated conservative functions, and systems constituted by different ideal switches are 
treated as ISMPs. As a result, it is possible to extend the Kirchhoff laws also to these elements. 
Consequently, the switched networks can be treated as normal networks with an invariant topology 
even in the presence of impulses in the electric quantities. 

In this chapter, first order Dirac’s delta impulses on voltages or currents are allowed, but as 
previously stated, simultaneous voltage and current impulses on the same port are excluded. 
Moreover, for simplicity, only linear R, L, C elements are considered in addition to continuous 
generators, ideal switches and ideal diodes. Other conservative functions, here called Inductive 
Impulsive Power (IIP), Capacitive Impulsive Power (CIP) and Connection Energy (CE), are 
developed in order to give a contribution to possible future developments about properties and 
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issues of principle regarding one-port elements, in particular ideal diodes and ideal switches, in the 
presence of impulses in the electric quantities.  

 Connection	 Energy,	 Inductive	 Impulsive	 Power	 and	 Capacitive	6.2
Impulsive	Power		

 
According to [43] the Connection Energy is the electric energy absorbed by the whole network 

in a certain time instant as a consequence of the topology change. This change is due to, for 
example, some ideal switches present in the network, which can yield impulses in the electric 
quantities. As already stated, ideal switches can be seen as linear time-variant one-port elements 
that do not involve any change of the network topology. However, they can give rise to impulses in 
the electric quantities whenever they do switching as suddenly zeroing an inductor current or 
suddenly zeroing a capacitor voltage. More in general, when two or more capacitors with different 
initial voltages are connected in parallel or to form a closed loop, dually, when two or more 
inductors with different initial currents are connected in series or to form a cutset. In [43] the 
Connection Energy is seen as a function related to the whole network. Instead, in this work the 
Connection Energy is reformulated as a generalized conservative function related to any electric 
element. 

For a two-terminals component, with the reference directions for voltage and current reported in 
Fig. 2.1, according to the impulsive functions (1.66), let us define the Connection Energy as 

   

 1
( ) ( ) ( )

2
cW t V Y i I Y v    (6.1) 

 
where V- and I- are the values of the electric quantities before the discontinuity in a certain time 
instant; Moreover, according to the jump functions (1.64) and impulsive functions (1.66), let us 
define the Inductive Impulsive Power as 
 

1
( ) ( ) ( )

2
LQ t J i Y v    (6.2) 

 
and the Capacitive Impulsive Power as 
  

1
( ) ( ) ( ).

2
CQ t J v Y i    (6.3) 

 
Furthermore, the Energy absorbed through the discontinuity is 
 

( ) .
t

t

E t vidt




    (6.4) 

6.2.1 Balance	Theorem	over	Connection	Energy	
 

Since the Connection Energy is defined as the sum of products of impulses and values before the 
discontinuity of voltage and current which satisfy, separately, the Kirchhoff laws, it is possible to 
state the following: 
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Theorem 6.I. Given a network constituted by a connection of “p” electric ports and chosen the 
same reference directions for all ports, the sum of Connection Energy extended to the whole 
network is nil, namely the sum of Connection Energy generated is equal to the sum of Connection 
Energy absorbed. 

6.2.2 Balance	Theorem	over	Impulsive	Powers	
 

Since Impulsive Powers are defined as the products of jump functions and impulses of voltage 
and current which satisfy, separately, the Kirchhoff laws, it is possible to state the following: 
 
Theorem 6.II. Given a network constituted by a connection of “p” electric ports and chosen the 
same reference directions for all ports, the sum of Inductive Impulsive Power (Capacitive Impulsive 
Power) extended to the whole network is nil, namely the sum of Inductive Impulsive Power 
(Capacitive Impulsive Power) generated is equal to the sum of Inductive Impulsive Power 
(Capacitive Impulsive Power) absorbed. 

6.2.3 Continuous	Generators	
 

For continuous voltage generators and continuous current generators, the voltage or the current, 
respectively, are imposed to be continuous functions of time, and therefore, the jump functions are 
as follows 
 

( ( )) 0 ( )

( ( )) 0 ( ).

g

g

J v t Voltage generators

J i t Current generators




 (6.5) 

 
Taking into account (6.5) in (6.2) and (6.3), the IIP and CIP absorbed by continuous generators are 
always nil. 
 

0

0

L
g

C
g

Q

Q








 (6.6) 

 
Instead, the CE and the Energy absorbed by continuous generators may be not nil. Indeed, they 

depend on both the values of voltage or current of generators before the discontinuity and voltage or 
current impulses that can be present in the network. 

6.2.4 Linear	Resistor	
 

Since the characteristic of a linear resistor involves the presence of impulses at the same time in 
the voltage and current, which are excluded from this work because they would apply infinite 
energy in the system, then IIP, CIP, CE and the Energy absorbed through the discontinuity are 
always nil. 
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 (6.7) 
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6.2.5 Linear	Inductor		
 

Let us consider a linear inductor of inductance L and suppose a jump discontinuity in the 
inductor current at the instant t*. According to (1.63) it is possible to write 
 

*( ) ( )cont

d
v t L i I t t

dt        (6.8) 

 
where Iµ = I+ − I- is the amplitude of the jump discontinuity. Since the term  
 

* *( ) ( )
d

L I t t LI t t
dt         (6.9) 

 
and according to (1.61) 
 

I
L





  (6.10) 

 
then 
 

*( ) ( ).contdi
v t L t t

dt      (6.11) 

 
An impulse in the inductor voltage arise. In order to avoid impulses of higher order on the voltage, 
an impulse on the current is not allowed. In this case  
 

0.q   (6.12) 

 
Taking into account (6.10) and (6.12) in (6.1), the CE absorbed by the inductor is 
 

1 1
( ) .

2 2
c

LW LI I L I I I         (6.13) 

 
The increment of the Energy stored in the inductor through the discontinuity is 
 

2 21
( ).

2L L LE E E L I I         (6.14) 

 
Taking into account (6.10) and (6.11) in (6.2), the IIP absorbed by the inductor is  
 

2
21 1

( ) 0
2 2

L
LQ L I I

L
 

        (6.15) 

 
while taking into account (6.12) in (6.3), the CIP is 
 

0.C
LQ   (6.16) 
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When I+
 = 0, CE and IIP are equal to the increment of the Energy stored in the inductor. In 

particular, this increment is negative. Indeed 
 

21
0.

2
L c

L L LE Q W LI
       (6.17) 

6.2.6 Linear	Capacitor	
 

Let us consider a linear capacitor of capacitor C and suppose a jump discontinuity in the 
capacitor voltage at the instant t*. According to  (1.63) it is possible to write 
 

*( ) ( ) .cont

d
i t C v V t t

dt        (6.18) 

 
where Vµ = V+ − V- is the amplitude of the jump discontinuity. Since the term 
 

* *( ) ( )
d

C V t t CV t t
dt         (6.19) 

 
and according to (1.61) 
 

qV
C


  (6.20) 

 
then 
 

*( ) ( ).cont
q

dv
i t C t t

dt
     (6.21) 

 
An impulse in the capacitor current arise. In order to avoid impulses of higher order on the current, 
an impulse on the voltage is not allowed. In this case  
 

0.   (6.22) 

 
Taking into account (6.20) and (6.22) in (6.1), the CE absorbed by the capacitor is 
 

1 1
( ) .

2 2
c

CW CV V C V V V         (6.23) 

 
The increment of the Energy stored in the capacitor through the discontinuity is 
 

2 21
( ).

2C C CE E E C V V         (6.24) 

 
Taking into account (6.22) in (6.2), the IIP absorbed by the capacitor is  
 

0L
CQ        (6.25) 
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while taking into account (6.20) and (6.21) in (6.3), the CIP is 
 

2
21 1

( ) 0.
2 2

qC
CQ C V V

C
 

        (6.26) 

 
When V+

 = 0, CE and CIP are equal to the increment of the Energy stored in the capacitor. In 
particular, this increment is negative. Indeed 
 

21
0.

2
C c

C C CE Q W CV
       (6.27) 

6.2.7 Ideal	Switch	
 

Let us consider the ideal switch and only one impulse in one of the two electric quantities.  
 
Closing commutation 
 

When the ideal switch closes at time t*, the voltage VSW = v(t*
-) that was applied on the ideal 

switch becomes nil and the current that was nil becomes ISW = i(t*
+). Since the closing process 

forces the voltage to zero, no voltage impulse is possible. Therefore, let us suppose an impulse in 
the current at the switching instant t*. Hence, it is possible to write 
 

*

* *

( ) (1 ( ))

( ) ( ) ( ).

SW

SW q

v t V t t

i t I t t t t



  

  

   
 (6.28) 

 
Taking into account (6.28) in (6.1), the CE absorbed by the ideal switch is 
 

1
.

2
c

SWclosed SW qW V    (6.29) 

 
According to (6.2) the IIP absorbed by the ideal switch is 
 

0L
SWclosedQ   (6.30) 

 
while according to (6.3) the CIP absorbed by the ideal switch is 
 

1
.

2
C

SWclosed SW qQ V   (6.31) 

 
The CIP is equal to the CE. The Energy absorbed by the ideal switch is normally zero. In fact, 
without impulses, one of the two electric quantities is always nil. Instead, when an impulse occurs, 
according to Colombeau [90], if a < 0 < b and if f(t) is a continuous function in ]−, 0[ and ]0, [ 
and the limits f(0-) and f(0+) exist, then 
 

(0 ) (0 )
( ) ( ) .

2

b

a

f f
f t t dt  

  (6.32) 
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Taking into account (6.28) in (6.32), the Energy absorbed by the ideal switch through the 
discontinuity is 
 

*

*

1
.

2

t

SWclosed SW q

t

E vidt V 




    (6.33) 

 
Also the Energy absorbed by the ideal switch, in the closing commutation, is equal to the CE and 
CIP.  
 
Opening commutation 
 

Dually, when the ideal switch opens at time t*, the current ISW = i(t*
-) that was flowing is 

interrupted and the voltage that was nil becomes VSW = v(t*
+). Since the opening process forces the 

current to zero, no current impulse is possible. Therefore, let us suppose an impulse in the voltage at 
the switching instant t*. Hence, it is possible to write 
 

* *

*

( ) ( ) ( )

( ) (1 ( )).

SW

SW

v t V t t t t

i t I t t

  



   

  
 (6.34) 

 
Taking into account (6.34) in (6.1), the CE absorbed by the ideal switch is 
 

1
.

2
c

SWopen SWW I    (6.35) 

 
According to (6.2) the IIP absorbed by the ideal switch is 
 

1

2
L

SWopen SWQ I
  (6.36) 

 
while according to (6.3) the CIP absorbed by the ideal switch is 
 

0.C
SWopenQ   (6.37) 

 
The IIP is equal to the CE. According to (6.32) and (6.34) the Energy absorbed by the ideal switch 
through the discontinuity is 
 

*

*

1
.

2

t

SWopen SW

t

E vidt I 




    (6.38) 

 
Also the Energy absorbed by the ideal switch, in the opening commutation, is equal to the CE and 
IIP. 

6.2.8 Ideal	Diode	
 

Let us consider an ideal diode, with its characteristic on the v-i plane as reported in Fig. 5.4, and 
only one impulse in one of the two electric quantities. 
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Closing commutation 
 

When the ideal diode, due to the remaining part of the network, jumps at the time t* from the 
point A to the point B on its characteristic, the voltage VD = v(t*

-) ≤ 0 that was applied on the ideal 
diode becomes nil and the current that was nil becomes ID = i(t*

+)  0. Moreover, let us suppose an 
impulse in the current at the switching instant t*. Hence, it is possible to write 
 

*

* *

( ) (1 ( ))

( ) ( ) ( ).

D

D q

v t V t t

i t I t t t t



  

  

   
 (6.39) 

 
Taking into account (6.39) in (6.1), the CE absorbed by the ideal diode is 
 

1
.

2
c

Dclosed D qW V    (6.40) 

 
According to (6.2) the IIP absorbed by the ideal diode is 
 

0L
DclosedQ   (6.41) 

 
while according to (6.3) the CIP absorbed by the ideal diode is 
 

1
.

2
C

Dclosed D qQ V   (6.42) 

 
Taking into account (6.39) in (6.32), the Energy absorbed by the ideal diode through the 
discontinuity is 
 

*

*

1
.

2

t

Dclosed D q

t

E vidt V 




    (6.43) 

 
The Energy absorbed by the ideal diode, in the closing commutation, is equal to the CE and CIP. By 
the characteristic reported in Fig. 5.4 
 

0D qV    (6.44) 

 
and hence, the Energy, CE and CIP absorbed by the ideal diode are nonpositive, i.e. generated.  
 
Opening commutation 
 

Dually, in the opening commutation, when the ideal diode, due to the remaining part of the 
network, jumps at the time t* from the point B to the point A on its characteristic, the current ID = 
i(t*

-)  0 that was flowing through the ideal diode becomes nil and the voltage that was nil becomes 
VD = v(t*

+) ≤ 0. Moreover, let us suppose an impulse in the voltage at the switching instant t*. 
Hence, it is possible to write 
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* *

*

( ) (1 ( )) ( )

( ) ( ).

D

D

v t V t t t t

i t I t t

  



    

 
 (6.45) 

 
Taking into account (6.45) in (6.1), the CE absorbed by the ideal diode is 
 

1
.

2
c

Dopen DW I    (6.46) 

 
According to (6.2) the IIP absorbed by the ideal diode is 
 

1

2
L

Dopen DQ I
  (6.47) 

 
while according to (6.3) the CIP absorbed by the ideal diode is 
 

0.C
DopenQ   (6.48) 

 
Taking into account (6.39) in (6.32), the Energy absorbed by the ideal diode through the 
discontinuity is 
 

*

*

1
.

2

t

Dopen D

t

E vidt I 




    (6.49) 

 
Also in this case, the Energy absorbed by the ideal diode, in the opening commutation, is equal to 
the CE and CIP. By the characteristic reported in Fig. 5.4 
 

0DI    (6.50) 

 
and hence, the Energy, CE and IIP absorbed by the ideal diode are nonpositive, i.e. generated.  

 Active	and	Passive	Impulsive	Hard	Switching	6.3
 

In order to get more stringent results, similarly to section 2.5, let us define active impulsive hard 
switching the ideal switch commutations so that one of the followings strict inequalities is valid 
 

0

0.

SW q

SW

V

I 








  

 
Let us define passive impulsive hard switching the opposite case   
 

0

0.

SW q

SW

V

I 








 

 
According to (6.44) and (6.50) it is possible to state that the ideal diode can only apply passive 

impulsive hard switching commutations.  
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Moreover, by (6.33), (6.38), (6.43) and (6.49), it is possible to recognize a strange result: the 
ideal switch can absorb or generate energy meanwhile the ideal diode can only generate when an 
impulsive hard switching commutation occurs. In particular, the fact regarding the generation of 
energy by these elements is an interesting mathematical aspect that will be discussed later. 

 Some	Theorems	6.4
 

Table 6.1 shows a summary of the generalized conservative functions, as Connection Energy, 
Impulsive Powers and Energy, absorbed by continuous generators, linear resistors, linear inductors, 
linear capacitors, ideal switches and ideal diodes.  

 
Table 6.1. Summary of Connection Energy, Impulsive Powers and Energy absorbed by one-port elements 

Electric Elements 
Inductive 

Imp. Power 
Capacitive
Imp. Power 

Connection  
Energy 

Energy through 
the discontinuity 

Continuous generators 0 0 
≤ 0  
≥ 0 

≤ 0 
≥ 0 

Linear resistor 0 0 0 0

Linear inductor ≤ 0 0 ≤ 0  
≥ 0 

≤ 0 
≥ 0 

Linear capacitor 0 ≤ 0 
≤ 0  
≥ 0 

≤ 0 
≥ 0 

Ideal switch (closing passive impulsive h. s.)
Ideal switch (closing active impulsive h. s.) 

0 
≤ 0
≥ 0 

≤ 0  
≥ 0 

≤ 0 
≥ 0 

Ideal switch (opening passive impulsive h. s.)
Ideal switch (opening active impulsive h. s.) 

≤ 0
≥ 0 

0 
≤ 0  
≥ 0 

≤ 0 
≥ 0 

Ideal diode (closing passive impulsive h. s.) 0 ≤ 0 ≤ 0 ≤ 0
Ideal diode (opening passive impulsive h. s.) ≤ 0 0 ≤ 0 ≤ 0

 
According to Table 6.1 it is possible to recognize that the Inductive Impulsive Power is always 

nil on linear resistors, continuous generators, linear capacitors and ideal diodes and ideal switches in 
closing commutations; the Capacitive Impulsive Power is always nil on linear resistors, continuous 
generators, linear inductors and ideal diodes and ideal switches in opening commutations; only ideal 
switches can, also, absorb Inductive Impulsive Power in opening commutations and Capacitive 
Impulsive Power in closing commutations. 

 
Assumption 6.I. Given an electric network composed only of elements which are reported in 

Table 6.1, impulses in the electric quantities can arise only if a jump discontinuity occurs in a 
inductor current and/or in a capacitor voltage. In fact, the constitutive relations of inductors and 
capacitors have derivative terms, and therefore, impulses can only rise as derivatives of the jump 
discontinuities in these constitutive relations.  

6.4.1 Theorems	based	on	Inductive	Impulsive	Power	
 
Since IIP are nil on continuous generators and linear resistors, for the balance theorem over IIP, 

it is possible to write the following 
 

( ) ( ) ( )
L L L

SWopen j L r Dopen p
j r p

Q Q Q        (6.51) 

 
where ( )

L
SWopen jQ  is the IIP absorbed by the j-th ideal switch, ( )

L
Dopen pQ is the IIP absorbed by the p-th 

ideal diode and ( )
L

L rQ  is the IIP absorbed by the r-th inductor. By equations (6.51) it is possible to 

state the following: 
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Theorem 6.III. The sum of Inductive Impulsive Powers absorbed by ideal switches opening in active 
impulsive hard switching is equal to the sum of Inductive Impulsive Powers generated by linear 
inductors and ideal diodes and ideal switches opening in passive impulsive hard switching.  
 
Theorem 6.IV. Given an electric network composed of continuous generators, linear resistors, 
linear inductors, linear capacitors, ideal diodes and ideal switches in which Inductive Impulsive 
Power is involved, then at least one ideal switch that opens with a voltage impulse is needed.  
 
Theorem 6.V. When an ideal switch opens, with a voltage impulse, in order to obey to the balance 
theorem over Impulsive Powers and according to the Assumption 6.I, at least one linear inductor 
must be present. 
 
Theorem 6.VI. According to Theorems 6.III and 6.V, the sum of Inductive Impulsive Powers 
absorbed by ideal switches opening in active impulsive hard switching is always major of the sum 
of Inductive Impulsive Powers absorbed by ideal switches and ideal diodes opening in passive 
impulsive hard switching because of the presence of at least one linear inductor. Since for ideal 
switches and ideal diodes the Inductive Impulsive Power is always equal to the energy involved by 
them, then the total energy absorbed by the whole set of ideal switches and ideal diodes is always 
positive. 

6.4.2 Theorems	based	on	Capacitive	Impulsive	Power	
 

Since CIP are nil on continuous generators and linear resistors, for the balance theorem over CIP, 
it is possible to write the following 

 

( ) ( ) ( )
C C C

SWclosed j C k Dclosed p
j k p

Q Q Q        (6.52) 

 
where ( )

C
SWclosed jQ  is the CIP absorbed by the j-th ideal switch, ( )

C
Dclosed pQ  is the CIP absorbed by the 

p-th ideal diode and ( )
C

C kQ  is the CIP absorbed by the k-th capacitor. By equations (6.52) it is 

possible to state the following: 
 
Theorem 6.VII. The sum of Capacitive Impulsive Powers absorbed by ideal switches closing in 
active impulsive hard switching is equal to the sum of Capacitive Impulsive Powers generated by 
linear capacitors and ideal diodes and ideal switches closing in passive impulsive hard switching. 
 
Theorem 6.VIII. Given an electric network composed of continuous generators, linear resistors, 
linear inductors, linear capacitors, ideal diodes and ideal switches in which Capacitive Impulsive 
Power is involved, then at least one ideal switch that closes with a current impulse is needed.  
 
Theorem 6.IX. When an ideal switch closes, with a current impulse, in order to obey to the balance 
theorem over Impulsive Powers and according to the Assumption 6.I, at least one linear capacitor 
must be present. 
 
Theorem 6.X. According to Theorem 6.VII and 6.IX, the sum of Capacitive Impulsive Powers 
absorbed by ideal switches closing in active impulsive hard switching is always major of the sum of 
Capacitive Impulsive Powers absorbed by ideal switches and ideal diodes closing in passive 
impulsive hard switching because of the presence of at least one linear capacitor. Since for ideal 
switches and ideal diodes the Capacitive Impulsive Power is always equal to the energy involved by 
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them, then the total energy absorbed by the whole set of ideal switches and ideal diodes is always 
positive. 

6.4.3 Theorems	based	on	Connection	Energy	
 

Since the CE is nil on linear resistors, for the balance theorem over CE, it is possible to write 
 

( ) ( ) ( ) ( ) ( )
c c c c c

SW j D p C k L r g l
j p k r l

W W W W W          (6.53) 

 
where ( )

c
SW jW  is the CE absorbed by the j-th ideal switch, ( )

c
D pW  is the CE absorbed by the p-th ideal 

diode, ( )
c

C kW is the CE absorbed by the k-th capacitor, ( )
c

L rW  is the CE absorbed by the r-th inductor 

and ( )
c

g lW is the CE absorbed by the l-th continuous generator. By equation (6.53), it is possible to 

state the following: 
 
Theorem 6.XI. The sum of Connection Energy generated by the whole set of linear inductors, linear 
capacitors and continuous generators is equal to the sum of Connection Energy absorbed by the 
whole set of ideal switches and ideal diodes. 
 

Since the Energy through the discontinuity due to impulses is always nil on resistors, it is 
possible to write the following 
 

( ) ( ) ( ) ( ) ( )SW j D p C k L r g l
j p k r l

E E E E E               (6.54) 

 
where ( )SW jE  is the Energy absorbed by the j-th ideal switch, ( )D pE  is the Energy absorbed by 

the p-th ideal diode, ( )C kE  is the Energy absorbed by the k-th capacitor, ( )L rE  is the Energy 

absorbed by the r-th inductor and ( )g lE  is the Energy absorbed by the l-th continuous generator. 

By equation (6.54), it is possible to state the following:  
 
Theorem 6.XII. The sum of decrement of Energy stored into the whole set of linear inductors, linear 
capacitors and generated by continuous generators is equal to the sum of Energy absorbed by the 
whole set of ideal switches and ideal diodes. 
 

Since, according to (6.29), (6.33), (6.35), (6.38), (6.40), (6.43), (6.46) and (6.49) the CE is equal 
to the Energy absorbed by the ideal switch and ideal diode, it is possible to write 
 

( ) ( ) ( ) ( ) .
c c

SW j D p SW j D p
j p j p

W W E E         (6.55) 

 
Taking into account (6.55) in (6.53), it is possible to write 
 

( ) ( ) ( ) ( ) ( )
c c c

SW j D p C k L r g l
j p k r l

E E W W W             (6.56) 

 
which means that:  
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Theorem 6.XIII. The sum of Connection Energy generated by the whole set of linear inductors, 
linear capacitors and continuous generators is equal to the Energy absorbed by the whole set of 
ideal switches and ideal diodes. According to theorems 6.VI and 6.X this energy is always positive. 
 

Moreover, taking into account (6.54) in (6.56), it is possible to write 
 

( ) ( ) ( ) ( ) ( ) ( )
c c c

C k L r g l C k L r g l
k r l k r l

W W W E E E              (6.57) 

 
which means that:  
 
Theorem 6.XIV. The sum of Connection Energy generated by the whole set of linear inductors, 
linear capacitors and continuous generators is equal to the decrement of Energy stored into the 
whole set of linear inductors, linear capacitors and absorbed by continuous generators.  
 
This last theorem confirms what is stated in [43].  

 Analytical	Examples	6.5
 

The following are analytical examples regarding how to deal with the ideal switch in electric 
network as invariant topology and how the ideal switch and ideal diode can involve electric energy. 

6.5.1 Voltage	Impulse	
 

Let us consider the electric circuit reported in Fig. 6.1 constituted by a constant voltage generator 
E, a linear resistor R, a linear inductor L and an ideal switch s.  

 
Fig. 6.1. Electric circuit. Voltage impulse 

 
Supposing that the ideal switch is closed since a long time, as the electric circuit is in steady state, at 
the time t = 0 the ideal switch opens, an impulse of voltage arise. The current iSW that flows in the 
ideal switch is 
 

 ( ) 1 ( ) .SW

E
i t t

R
   (6.58) 

 
According to the Current Kirchhoff Law, the current flowing in the inductor is 
 

( )L SWi t i  (6.59) 
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while according to the Voltage Kirchhoff Law, the voltage over the ideal switch is 
 

( ) .SW
SW SW

di
v t E Ri L

dt
    (6.60) 

 
Taking into account (6.58) the (6.60) becomes 
 

( ) ( ) ( ).SW

EL
v t E t t

R
    (6.61) 

 
From (6.61) it is possible to see that the voltage over the ideal switch is composed of a jump 
discontinuity and an impulse. In particular, from (6.58) and (6.61) it is possible to recognize 
 

.

SW L

E
I I

R
EL

R

 


 (6.62) 

 
Taking into account (6.62) in (6.13), (6.14) and (6.15) the CE, IIP and the increment of the Energy 
stored in the inductor are the following 
 

2
2

2

1 1
0.

2 2
c L

L L L L

E
E W Q LI L

R


         (6.63) 

 
Taking into account (6.35), (6.36) and (6.38) the CE, IIP and the Energy absorbed by the ideal 
switch through the discontinuity are the following 
 

2

2

1 1
0.

2 2
c L

SWopen SWopen SWopen SW

E
E W Q I L

R


       (6.64) 

 
From (6.63) and (6.64) it is possible to state that the energy stored into the inductor before the 
commutation is instantaneously dissipated by the ideal switch when it opens. This fact can have a 
physical meaning because the energy dissipate by the ideal switch is the same energy physically 
stored into the inductor. 

6.5.2 Current	Impulse		
 

Let us consider the electric circuit reported in Fig. 6.2 constituted by a constant voltage generator 
E, a linear resistor R, a linear capacitor C and an ideal switch s. Supposing that the ideal switch is 
opened since a long time, as the electric circuit is in steady state, at the time t = 0 the ideal switch 
closes, an impulse of current arise. The voltage over ideal switch is 
 

 ( ) 1 ( ) .SWv t E t   (6.65) 

 
According to the Voltage Kirchhoff Law, the voltage over the capacitor is 
 

( )C SWv t v  (6.66) 
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while according to the Current Kirchhoff Law, the current flowing in the ideal switch is 
 

( ) .C C
SW

E v dv
i t C

R dt


   (6.67) 

 

 
Fig. 6.2. Electric circuit. Current impulse 

 
Taking into account (6.65) the (6.67) becomes 
 

 ( ) 1 ( ) ( ).SW

E E
i t t CE t

R R
      (6.68) 

 
From (6.68) it is possible to see that the current flowing in the ideal switch is composed of a 
constant term, a jump discontinuity and an impulse. In particular, from (6.65) and (6.68) it is 
possible to recognize 
 

.
SW C

q

V V E

CE
 


 (6.69) 

 
Taking into account (6.69) in (6.23), (6.24) and (6.26), the CE, CIP and the increment of the Energy 
stored in the capacitor are the following 
 

2 21 1
0.

2 2
c C

C C C CE W Q CV CE
         (6.70) 

 
Taking into account (6.29), (6.31) and (6.33) the CE, CIP and the Energy absorbed by the ideal 
switch through the discontinuity are the following 
 

21 1
0.

2 2
c C

SWclosed SWclosed SWclosed SW qE W Q V CE        (6.71) 

 
From (6.70) and (6.71) it is possible to state that the energy stored into the capacitor before the 
commutation is instantaneously dissipated by the ideal switch when it closes. This fact can have a 
physical meaning because the energy dissipate by the ideal switch is the same energy physically 
stored into the capacitor. 
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6.5.3 Two	Parallel	Capacitors	
 

Let us consider the electric circuit reported in Fig. 6.3 constituted by two linear capacitors C and 
an ideal switch s.  
 

 
Fig. 6.3. Electric circuit. Two parallel capacitors 

 
Supposing that the two capacitors have two different initial conditions and the ideal switch is open, 
at the time t = 0 the ideal switch closes, an impulse of current arise. The initial conditions are the 
following 
 

1 1

2 2

(0 )

(0 ) .

v V

v V
 

 




 (6.72) 

 
The differential equation of the electric circuit are 
 

1
1

2
2

( )

( )

dv
i t C

dt
dv

i t C
dt




 (6.73) 

 
and the Kirchhoff laws are 
 

1 2

1 2

( )

( ) .
SW

SW

v t v v

i t i i

 

  
 (6.74) 

 
The voltage over the ideal switch is 
 

1 2( ) ( )(1 ( )).SWv t V V t     (6.75) 

 
Taking into account (6.74) and (6.75) in (6.73), the currents are 
 

1 1 2

2 1 2

1
( ) ( ) ( )

2
1

( ) ( ) ( ).
2SW

i t C V V t

i t i C V V t





 

 

  

  
 (6.76) 

 
Integrating the (6.73) and taking into account (6.76), the capacitor voltages are 
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1 1 2 1

2 2 1 2

1
( ) ( ) ( )

2
1

( ) ( ) ( ) .
2

v t V V t V

v t V V t V





  

  

  

  
 (6.77) 

 
From (6.75) and (6.76) it is possible to recognize 
 

1 2

1 2

( )

1
( ).

2

SW

q

V V V

C V V

 

 

 

 
 (6.78) 

 
According to (6.77) the capacitor voltages after the switching are 
 

1 2 2 1

1
( ).

2
V V V V       (6.79) 

 
Taking into account (6.79) in (6.23), (6.24) and (6.26), the CE, CIP and the increment of the Energy 
stored in the capacitors are the following 
 

2 2
1 2 1 1

2 2
2 2 1 2

1 2 1 1

2 1 2 2

2
1 2 1

2
2 1 2

1
( ) 4

8
1

( ) 4
8

1
( )

4
1

( )
4

1
( )

8
1

( ) .
8

C

C

c
C

c
C

C
C

C
C

E C V V V

E C V V V

W C V V V

W C V V V

Q C V V

Q C V V





  

  

  

  

 

 

     

     

 

 

  

  

 (6.80) 

 
Taking into account (6.78) in (6.29), (6.31) and (6.33), the CE, CIP and the Energy absorbed by the 
ideal switch through the discontinuity are the following 
 

1 2

1
( ).

4
c C

SWclosed SWclosed SWclosedE W Q C V V
       (6.81) 

 
From (6.80) and (6.81) it is possible to state that the Energy stored into the capacitors before the 
commutation is dissipated by the ideal switch when it closes. Indeed 
 

1 2 1 2 1 2 .c c C C
C C C C C C SWclosedE E W W Q Q E          (6.82) 

 
Also in this case the dissipation of energy by means of the ideal switch can have a physical meaning 
because the energy dissipated corresponds to the decrement of energy stored into the two capacitors 
after the commutation. 
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6.5.4 Ideal	Switch:	Energy	Generation		
 

Let us consider the circuit depicted in Fig. 6.4, composed of two capacitors C, with two different 
initial conditions, and one ideal switches and one ideal diode, initially, open. The initial conditions 
are the following 
 

1 1 0

2 2 0

(0 ) 2

(0 ) .

v V V

v V V







 

  
 (6.83) 

 
At the time t = 0 the ideal switch closes. Two possible hypothesis can be made for the state of the 
diode after the switching. If the ideal diode remained open the circuit becomes like the previous 
case in which the two capacitors would be in parallel and the voltage over the capacitors after the 
commutation, according to (6.79), would be 1,5V0. This is impossible because the ideal diode 
cannot have a positive voltage. Hence, the correct hypothesis is one that the ideal diode closes at the 
same time in which also the ideal switch closes. In this way, the two capacitors are in parallel with 
the constrains that the ideal diode imposes a nil voltage after the commutation.  
 

  

 
Fig. 6.4. Electric circuit. Ideal switch with energy generation 

 
Let us resolve the circuit in the time domain where the two ideal switches impose the following 

voltages 
 

 
 

0

0

( ) 3 1 ( )

( ) 1 ( ) .

SW

D

v t V t

v t V t





 

  
   (6.84) 

 
By Voltage Kirchhoff Laws, it is possible to write 
 

1

2

( )

( ) .
SW D

D

v t v v

v t v

 


 (6.85) 

 
The two current i1, i2 flowing in the capacitors are  
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1
1

2
2

( )

( ) .

dv
i t C

dt
dv

i t C
dt




 (6.86) 

 
Taking into account (6.84) and (6.85) the (6.86) becomes 
 

1 0 0 0

2 0
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By Current Kirchhoff Laws, currents flowing through the ideal switches iSW and the ideal diode iD 
are  
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From (6.83), (6.84), (6.85) and (6.87), it is possible to recognize the values of the electric quantities 
before the discontinuity and the impulses of current as follows 
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 (6.89) 

 
Taking into account (6.89) in (6.33), Energies absorbed by the ideal switch and diode through the 
discontinuity are the following 
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Taking into account (6.89) in (6.24), the increment of Energy stored in the two capacitors are 
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Finally, the balance property over the Energy applies, indeed 
 

1 2 .C C SWclosed DE E E E        (6.92) 

 
In this case the ideal diode generates energy which is absorbed by the ideal switch. In fact, the 

total decrement of energy stored into the two capacitors is equal to 2,5CV0
2 while the ideal switch 

dissipates 3CV0
2. The remaining energy, in order to obey the balance principle, is generated by the 
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ideal diode. This amount of energy has not a physical meaning because it does not correspond to 
any physical energy stored in some elements. Only the part of this energy stored into the two 
capacitors has a physical meaning. 

 Discussion	6.6
 

Based on (6.33), (6.38), (6.49) confirmed by the previous analytical examples, the ideal switch 
can absorb electric energy when an impulse is involved both in opening and closing commutations 
meanwhile the ideal diode can only generate energy in these switching processes. In case this 
energy is absorbed, it is instantaneously dissipated by means of impulse. However, this dissipation 
in the real switch occurs in the finite resistance of the switch itself. On the contrary, if this energy is 
generated, its occurrence is not a physical phenomenon but an interesting mathematical aspect of 
the ideal model. As a result, the formulas of the ideal model allow also to generate energy by 
switching when an impulse is involved. 

Results presented in this chapter confirmed by case studies give rise to an outstanding, and in a 
sense unexpected, result. The connection energy [43] is the quantitative evaluation of the variation 
of the total energy in reactive elements of the network caused by a change of topology. The 
connection energy theory demonstrates that such energy gap is always in decrement in an 
autonomous network. In a model featured by lumped parameters and instantaneous variations, such 
energy is conveyed by Dirac impulses. From the physical point of view, such gap of energy is 
expected to be dissipated into the elements that perform the change in topology. 

The presented approach considers the switching elements as a part of the network. Therefore, the 
network is not yet under variant topology but time-variant, due to the presence of time-variant 
elements (ideal switching). According to the presented approach, the Connection Energy is 
demonstrated to be totally dissipated in the ideal switches at the moment of switching. This obvious 
result is a consequence of Tellegen’s theorem. 

The total energy absorbed by switching has a clear physical significance, as it is related to the 
variation of stored energy in the set of reactive elements or generated energy by electric sources. In 
case of more the one element, the partition of this energy among the different switching elements 
has no physical correspondence with the loss of energy into the single element. This fact is evident 
by the formulas that allow a negative energy (i.e. generated) in some elements, a fact confirmed in 
case study section 6.5.4. 

Therefore, the present discussion confirms the theory of Connection Energy [43]. Moreover, it 
confirms that the Connection Energy has to be considered a quantity associated to the whole circuit, 
in a complete agreement with the approach in [43]. On the contrary, it is not meaningful to associate 
the Connection Energy to a single element, this aspect is remarkable and worthy of further future 
investigation. 

Despite the Inductive Impulsive Power and Capacitive Impulsive Power functions have similar 
properties to the Connection Energy, they are more powerful and meaningful. In fact, by these 
functions it is possible to separate the effect of capacitors from inductors, reaching to the Theorems 
6.V and 6.IX. Moreover, equations (6.15) and (6.26) show that IIP and CIP are always negative 
(generated) in response to any nonnil change in inductor or capacitor energy, irrespective of the sign 
of the change, contrary to (6.13), (6.23). In such a way, the outstanding result is achieved, i.e. 
whatever step change in inductor or capacitor energy implies dissipation in switching.  
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Conclusion	
In this work a new theory based on the v-i plane, called Swept Area Theory, in addition to 

definitions of two conservative functions, Area Velocity and Closed Area over Time, are proposed 
and analyzed. This work gives a contribution to improve the theory of nonlinear and time-variant 
circuits under both continuous and discontinuous conditions. Some results presented in the literature 
are found and extended; in particular some past proposals are fully validated.  

A balance rule concerning harmonic reactive powers over nonlinear resistor under continuous 
conditions is obtained and discussed as a novel interesting result. This aspect impacts on possible 
extended definition of reactive power under distorted conditions. Indeed, the CAT is always nil over 
nonlinear resistors, nonnegative over nonlinear inductors and nonpositive over nonlinear capacitors. 

Another interesting result is that nonlinear resistor can absorb or generate harmonic reactive 
power under discontinuous conditions.  

A significant contribution is achieved to enhance understanding of the periodic switching. 
Thanks to the Switching Power, a novel quantitative relation between hard switching commutations 
and CAT is obtained, with both theoretical and applicative relevance. More in detail, a 
demonstration is given in order to show how ideal switch and power converters can become sources 
of reactive power. 

From a theoretical point of view, the SAT explains the equivalence, on some aspects, between a 
nonlinear element and a time-variant element, as the ideal diode. In fact, the ideal diode, which is a 
particular nonlinear resistor, can be treated as an ideal switch that commutes only in soft switching 
and passive hard switching. 

Issues of principle regarding the ideal switch model with respect to the real one is another 
important result of this work. 

Such results are embedded into an overall theory with straightforward graphical support. This 
propose can also be viewed as a tool for specific results, some of them are shown in case studies, 
others are still to be explored.  

Moreover, a unified theory regarding the power converters are proposed. Definitions of Ideal 
Switch Multi Port in a matrix form, multilevel voltage element (VPEEB) and multilevel current 
element (CPEBB) are given. In this way, it is possible to give a general structure to most of the 
power converters existing and recognize some constrains on the possible switching combinations 
based on the type of converter itself. Furthermore, the SAT is extended to the ISMP in order to find 
relations between SP and commutations of power converters. Through these relations, the 
possibility of a power converter to generate or absorb reactive power is proved. This work gives a 
contribution to develop new control strategies of power converters based on SAT theory. 

Another conservative function, Jump Power, is proposed. By this function, it is possible to state 
some theorems regarding nonlinear elements, in particular ideal switches and ideal diodes, in the 
presence of jump discontinuities. Possible conditions in networks are addressed whereby soft 
switching, passive or active hard switching commutations occur. 

Furthermore, networks in the presence of impulses in electric quantities are analyzed. In this case 
the Connection Energy, a function already appeared in the past literature regarding the whole 
network, is here reformulated as a conservative function on each electric component. Another two 
novel conservative functions, Inductive Impulsive Power and Capacitive Impulsive Power are 
defined, by means of which it is possible to state other theorems regarding nonlinear elements, in 
particular ideal switches and ideal diodes in the presence of impulses. These latter conservative 
functions IIP and CIP, despite having similar properties to the CE, are still more powerful and 
meaningful. In fact through IIP and CIP, it is possible to separate the effect of capacitors from 
inductors. 
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Additionally, an interesting result is found: the ideal switch can absorb or generate electric 
energy when an impulse of current or voltage occurs meanwhile the ideal diode can only generate. 
These facts are important mathematical aspects regarding the ideal model of switches and diodes. In 
some cases, these facts cannot have a physical meaning, as it is shown in the analytical examples. In 
any case, the total energy absorbed by switching has a clear physical significance, as it is related to 
the variation of energy stored in the set of reactive elements or generated by electric sources. On the 
other hand, in the presence of more the one element, the partition of this energy among the different 
switching elements still has no physical correspondence with the loss of energy into the single 
element. 

Finally, an important consideration of principle is worth to be expressed. In the present work, 
jump discontinuities and impulses are widely considered as basis of analysis of ideal switches and 
ideal diodes. Moreover, they are used in the definitions of Jump Power and Impulsive Powers. On 
the other hand, discontinuities are only useful schematizations of the actual behavior of voltages 
and currents. Indeed, voltages and currents are continuous functions in real systems. Nevertheless, 
the results of this thesis have to be considered in models constituted by lumped elements, that are 
considered as usual models used in the analysis, design and control of systems, for instance 
electronic power converters. Moreover, the definition of different conservative functions does not 
always need to have a corresponding physical meaning. Instead, what is important for these 
functions is to have properties whereby it is possible to understand the real essence of a phenomena.    

 In the deep human minds, souls create models to be a conceptual schematization of what 
humans have to achieve and what are independent values necessary to reach their targets and 
achieve their goals. However, the utilization of these models varies. Scientists use models to 
represent real physical systems or specific phenomena but engineers, on the contrary, use them to 
create or modify these current physical systems or phenomena. In other words, the model for 
scientists is an approximation of the real system, meanwhile the real system for engineers is an 
approximation of the model. 

This aspect makes the value of this work meaningful and fruitful. It is useful for the analysis and 
design of switching systems. Moreover, it gives a contribution to the deep understanding of the 
behavior of such systems. 
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