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«A thousand policemen directing the traffic
Cannot tell you why you come or where you go.

[...]

When the Stranger says: “What is the meaning of this city?
Do you huddle close together because you love each other?”

What will you answer? “We all dwell together
To make money from each other”? or “This is a community”?»

(T.S. Eliot, “Choruses from The Rock")

«O brave new world, that hath such people in it!»

(A. Huxley, “Brave New World")
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Abstract

Despite the availability of robotic manipulators with high levels of productivity, precision
and dexterity, large sectors of the manufacturing industry still rely on manual assembly for
mass production of goods. Flexibility needed to keep up with rapidly changing products
and production rates is often provided by human workforce, which is employed according
to production demand, usually to perform repetitive and tiring operations. Human-robot
collaboration is a promising solution to the problem: in fact, on one hand, robot inde-
fatigability may relieve human workers from repetitive operations and, on the other hand,
human work could increase the flexibility and the adaptability of the automated solution.
Moreover, the increasing availability of dual arm, redundant, and human like, industrial
robots is offering important tools to develop the human-robot collaboration production
setup. However, such a scenario opens new challenges and requires novel methodologies
to preserve workers’ safety and robots productivity.

The goal of this thesis is to develop a system for safe human-robot interaction, which
avoids collisions between humans and robots, while guaranteeing completion of the task.
In order to preserve productivity, the constraints composing the production task have to
be identified and taken into account. For this, a classification of constraints defining a
preplanned robot task, based on their relevance for task execution, is proposed, and a task-
consistent sensor based collision avoidance strategy is presented. Moreover, this research
aims at integrating the safety system with an industrial controller, in order to extend its
functionalities with capabilities for adaptation to unstructured environments. By doing so,
functionalities currently offered by industrial controllers are preserved, and the application
of safety strategies to real world scenarios is simplified. All the results of this thesis are
validated on the ABB dual arm concept robot (FRIDA).
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Riassunto

Nonostante la disponibilità di robot dotati di elevata produttività, precisione e destrezza,
in settori significativi dell’industria manifatturiera la produzione di massa di beni è an-
cora affidata alla lavorazione manuale. La flessibilità necessaria per realizzare prodotti
che cambiano continuamente nei modelli e nei volumi di produzione, è ancora spesso ot-
tenuta facendo ricorso alla manodopera umana, che viene impiegata in dipendenza della
domanda, in lavori logoranti e ripetitivi. La collaborazione uomo-robot si offre come una
soluzione promettente a questa situazione: infatti, se da un lato i robot possono solle-
vare i lavoratori umani dagli impieghi più ripetitivi, dall’altro l’uomo può accrescere la
flessibilità e la capacità di adattamento dei robot grazie alla sua abilità. Inoltre, la cres-
cente disponibilità di manipolatori industriali a due braccia, cinematicamente ridondanti
e caratterizzati da un aspetto simile a quello umano, rappresenta un importante strumento
per lo sviluppo dell’interazione uomo-robot. Questa prospettiva apre però nuove sfide
tecniche e richiede nuovi metodi per garantire al contempo la produttività dei robot e la
sicurezza degli operatori.

Lo scopo di questa tesi è lo sviluppo di un sistema per l’interazione sicura uomo-robot,
che sia in grado di evitare le collisioni tra i due soggetti, garantendo però il comple-
tamento delle lavorazioni. Per preservare la produttività del robot, i vincoli che carat-
terizzano l’operazione compiuta devono essere identificati e adeguatamente considerati.
A tal scopo, in questa tesi, viene proposta una classificazione dei vincoli che compon-
gono un’operazione pre pianificata, in funzione della loro rilevanza per il completamento
dell’operazione stessa. Viene poi introdotta una strategia anti collisione basata su tale clas-
sificazione e sull’utilizzo di sensori per il rilevamento di ostacoli. Inoltre, questa ricerca si
pone l’obbiettivo di integrare il sistema di sicurezza con un controllore industriale, dotan-
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dolo così della capacità di adattamento ad ambienti non strutturati. In questo modo ven-
gono conservate le funzionalità originali del controllore e viene semplificata l’applicazione
a casi applicativi reali delle strategie di sicurezza. I risultati ottenuti in questa tesi sono
stati verificati sperimentalmente utilizzando un prototipo di robot a due braccia, l’ABB
FRIDA.
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Outline

INDUSTRIAL manipulators represent a significant element for the automation of some
industry sectors, such as cars manufacturing, or for machines tending and parts move-
ment. However, their diffusion in productive settings such as consumer electronics

industry is hampered by an insufficient flexibility, or by an excessive cost for their appli-
cation. Human robot interaction is a promising solution to such a problem, as cooperation
between robots and workers could greatly increase robots flexibility, and, at the same time,
the adoption of manipulators that are safe for human robot interaction would reduce the
costs related to environment structuring.

The deployment of industrial robots in human robot collaboration scenarios poses new
challenges for robot manufacturers: guaranteeing safety for human operators cooperating
with robots, while achieving productivity in unstructured environments. Robots should
appear friendly to workers, avoid collisions and reduce the risk of consequent injuries. At
the same time, the pursue of safety must not diminish robots productivity, nor should it
disrupt the possibility of task completion or generate a risk of damages for the manipulator
or the production setup.

Industrial robots specifically designed for human robot interaction are becoming available
in the market, and are characterised by human like dual arm configurations, lightweight
or soft padded structures and sensing systems for force and torque control specifically de-
signed for physical interaction. However, industrial robot controllers currently lack the
features needed to ensure safe and productive human robot interaction. Nonetheless, the
significant amount of control functionalities already offered by such devices make an ex-
tension of their functionalities more desirable than a complete redesign.
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This thesis aims at extending an industrial controller functionalities with a collision avoid-
ance system, in order to allow the robot operation in unstructured environments and in
close cooperation with humans. This research therefore contributes to the use of industrial
robots in new production scenarios and proposes a safety system which can be imple-
mented adopting existing technologies, shortening the gap between research and applica-
tion.

Thesis contributions and organization
In this thesis, the following main contributions are given:

1. a classification of constraints that form a preplanned task, based on their relevance
for task execution, is introduced;

2. a task-consistent collision avoidance strategy, which acts modifying a preplanned
trajectory at execution time, based on the above mentioned constraints classification,
is proposed;

3. a system for the extension of an industrial robot controller functionalities with the
proposed collision avoidance strategy is designed and implemented.

The thesis is organised as follows:

In Chapter 2 a classification of constraints forming a preplanned task, based on their
relevance for task completion, is presented. Such a classification can be used to identify
the feasible modifications of a preplanned trajectory, and thus to adapt it to unforeseen
events, while preserving the possibility of its completion.

In Chapter 3 a task consistent collision avoidance strategy, based on the previously intro-
duced constraints classification, is proposed. The purpose of the strategy is to select which
constraints to relax, in order to make some of the robot degrees of freedom available for
the evasion of the robot from obstacles. For this purpose, an assessment of danger gen-
erated by the robot towards surrounding obstacles is adopted. As danger level increases,
constraints of increasing relevance are relaxed, progressively dedicating more robot de-
grees of freedom to collision avoidance. Moreover, evasive motions are computed using
such an assessment.

In Chapter 4 a communication system for the integration of the proposed collision avoid-
ance strategy with an industrial controller is introduced. Such a system allows the exten-
sion of the industrial controller functionalities with the mentioned strategy for adaptation
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to unforeseen events. Moreover, it allows the robot programmer to control such function-
alities by means of the standard controller interface, hence allowing a true integration of
them.

In Chapters 5 and 6, two different implementations of the collision avoidance strategy are
proposed, which progressively take into account a more complete set of constraints. Only
task constraints are considered at first, and robot kinematic limitations are then added.
Experimental validation on a robot with two kinematically redundant arms is performed,
demonstrating the effectiveness of the proposed strategy on two different tasks. Moreover,
a distributed distance sensor prototype specifically designed for collision avoidance ap-
plications is proposed. Finally, limitations for the real time implementation of a further
version of the strategy, exploiting both robot arms for evasion, are discussed.
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CHAPTER1
Introduction and state of the art

Human-robot interaction is one of the most interesting and promising current areas of tech-
nology development. In fact, its goal is making automation reach not only new sectors of
industry, but also important parts of everyday life, where human labour is still the predom-
inant factor for the accomplishment of most of the tasks. Industry has obviously a strong
interest in the development of such a technology, since the demand for a higher level of
automation of the productive processes is growing. Even though emerging countries are
offering low cost workforce, the development of such countries has the positive effect
of improving working conditions and salaries [24], hence slowly decreasing the benefit of
cheap labour. At the same time, developed countries are seeking new automation solutions
to counterbalance the disadvantage of their high labour cost. Human-robot interaction can
play a central role in solving the mentioned problems. In fact, the collaboration between
the two players combines human adaptability and problem solving capability with robot
precision and indefatigability, and makes the deployment of robots feasible also in sec-
tors where manual work is still predominant. In a human-robot collaboration scenario,
the combination of the two types of workers reduces the need of auxiliary automation for
robot tending, relieves human workers from repetitive work, decreases the working envi-
ronment structuring [68] and increases the automated system flexibility.
However, such a scenario calls for new robotised systems capable of managing the chal-
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Chapter 1. Introduction and state of the art

lenges implied by this production setup, that can be mainly divided in safety and adapt-
ability. Safety issues arise from the idea itself of human-robot collaboration: industrial
robots normally operate in closed-ended environments (cages), where human-robot inter-
action takes place only when the robot is not operating, since a moving robot represents
a source of danger for a human. If the two are to collaborate in close proximity, systems
are therefore needed to ensure human safety. Such a problem has been tackled from many
different perspectives: robot design for safety, with focus on the robot structure, actuating
system and sensing capability, robot control, focusing on performing harmless motions,
avoiding collisions or ensuring safe ones, and, finally, sensing systems, which constitute
an important element for all safety strategies.
At the same time, operating in an unstructured environment requires the capability of
adapting a robot task to unexpected events and changing conditions. Various strategies
can contribute to cope with such a problem: modification of preplanned trajectories, reac-
tive motion planning, path planning, collision avoidance strategies and once again the use
of ad hoc sensor systems.
Various overviews of the issues and of the main research directions related to human-
robot interaction can be found in the literature. In [1], an analysis of metrics used to assess
robot suitability for physical human-robot interaction is given. Different approaches to
mechanical design, robot actuation and control are evaluated based on their safety and de-
pendability. Finally, standards regulating human-robot interaction are reviewed. In [78]
a state of the art of works contributing to development of physical human-robot interac-
tion is offered. Three main areas, interaction safety assessment, interaction safety through
robot design, and interaction safety through planning and control, are identified as the
main research directions, and current open issues are outlined. Finally, in [29] an evolu-
tion of [1] is proposed, focusing once again on the metrics for the assessment of robots
suitability for physical interaction with humans and suggesting possible new metrics for
the development of such application.
In the following, the main contributions to the design of a robotic system for human-robot
interaction are reviewed.

1.1 Intrinsically safe robots

One important approach to the problem of ensuring safety in human-robot interaction is the
design of intrinsically safe robot. The goal of such a methodology is to create manipulators
whose operation is harmless to humans, independently from the task being performed. As
a first step for the design of an intrinsically safe robot, safety requirements have to be
identified and methods for their verification have to be proposed. In [45] human-care
robots are considered as the case study and a method is proposed to evaluate their safety.
Impact force and stress are considered as metrics of danger, and are used to evaluate the
effectiveness of safety systems, and their compliance to safety requirements. Another
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1.1. Intrinsically safe robots

contribution to the evaluation of compliance of robots to safety requirements is given in
[40]. A systematic method for safety evaluation in physical human-robot interaction is
described, analysing the main injury mechanisms. Moreover, safety tests are carried out
on several industrial robots. In the following, some relevant contributions to two important
approaches to the design of safe robots are reviewed.

1.1.1 Safe actuators

A possible method to design a safe robot is to create a mechanical structure which is in-
trinsically harmless. In case of an unexpected impact between the robot and a human
operator, if the robot structure absorbs the kinetic energy inside elastic elements, the dan-
ger can be significantly reduced. Such an approach has the clear advantage of creating a
system which keeps its safety properties even when control is not present. For this reason,
the use of compliant actuating systems for safety has been deeply investigated.
In [8] an early contribution to the development of intrinsically safe actuators was proposed.
Actuators with programmable compliance were proposed, and the control problems gener-
ated by such a configuration were analysed. At the end, a robot prototype with controllable
compliance was demonstrated. In [9] a complete analysis of the problem of obtaining high
performances while employing safe actuation principles was proposed. The tradeoff be-
tween safety and performance was quantitatively analysed and some possible solutions
were proposed. Moreover, a method for performance evaluation was introduced. A novel
actuator concept, aiming at reducing the effective manipulator inertia, and thus the impact
forces and the risk related to a possible collision between a human operator and the ma-
nipulator, was proposed in [103] and [102]. In [103] a detailed analysis of the actuator
structure was given: such an actuator uses two different motors, one with high mass and
designed to generate low-frequency torques, which is located at the base of the robot, and
another one characterised by low mass and better high-frequency performances, which is
located inside the robot arm. In [102] such an actuator was compared with other actuating
principles for safe human-robot interaction.
Actuation concepts introduced in [9] were implemented and presented in [94]: a VSA
(variable stiffness actuator) was proposed, based on a belt transmission system and on
controllable mechanical loadings to variate its stiffness. The actuator and its ad-hoc con-
trol system were also experimentally validated. Another concept of a variable stiffness
mechanism can be found in [44], where variable stiffness is achieved by means of a spe-
cial mechanical cam profile. Among alternative actuating principles for safe human-robot
interaction, pneumatic actuators have a relevant role, thanks to their very low weight and
friction and high compliance. In [23] a review of most common pneumatic actuators can
be found. An interesting hybrid electric-pneumatic actuator was proposed in [87], aiming
at combining intrinsic safety of pneumatic actuators with performance of electric motors.

3



Chapter 1. Introduction and state of the art

1.1.2 Collision detection and reaction

Another relevant method for the design of manipulators that are safe for human-robot inter-
action is actively controlling the robot impact behaviour, so as to guarantee a safe collision
for the human operator, in case one occurs. This methodology focuses on robot control
instead of robot design, even though it often requires adequate robot sensing capabilities
for the detection of impacts.
First research works on robot collisions, such as [96], [71] and [95], mainly focused on
the manipulator alone, instead of on the collision between the robot and a human. In [96]
impact dynamics were analysed and classified in order to build a base for robot control
strategies capable to cope with such events. In [95], the risk for the robot involved in the
collision was considered, and metrics for the evaluation of danger were proposed, in order
to assess the robot safety. Moreover, risk dependence on robot configuration was analysed,
and most dangerous configurations were identified. In [98] a human-robot interaction sys-
tem was proposed, where physical contact between the two operators was controlled in
order to comply with the human pain tolerance limit. After having set such a limit, a robot
concept for safe-human robot interaction was proposed. The robot was covered with soft
contact sensing material, with the twofold purpose of reducing collision risk and assessing
the severity of the contact. Finally, a control strategy was proposed to keep contact forces
below the pain tolerance limit.
Two contributions on the topic of sensing collisions between robot and obstacles, with-
out resorting to dedicated sensors, can be found in [27] and [37]. In [27] a simulation
study was conducted on the evaluation of contact forces for a planar manipulator, with-
out a force sensing system. A fault diagnosis scheme was used to identify contact forces
through residual signals. The link of the robot where the collision occurred could be identi-
fied and force intensity and location could be estimated. Finally, a controller of the contact
forces, based on the interaction force estimate, was proposed. In [37] a control system for
physical human-robot interaction and collaboration, based on a standard industrial robot,
was proposed. No force or torque sensors were used, and contact between the robot and
the environment was identified from motor currents and joint positions. Finally, different
collaborative contact-based control schemes were proposed. In [25] the concept developed
in [27] was extended with strategies for collision reaction. Moreover, collision detection
was improved, enabling the evaluation of contact direction. Finally, the collision detection
and reaction strategy was experimentally validated on a lightweight robot endowed with
torque sensors, which enable the application of the proposed strategy using only propriore-
ceptive sensors. A complete overview of the manipulator adopted in the previously cited
work, the DLR LWR, can be found in [2]. Such a manipulator was designed for physical
human-robot interaction, favouring reduced robot mass instead of creating a high stiffness
structure allowing high absolute accuracy, and hence giving intrinsic safety characteristics
to the robot. Moreover, torque sensing was embedded in the joint design, providing the
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measurements needed for collision detection and reaction, compliant robot behaviour and
force/torque control. In [39] the same robot was used as the testbed of collision detection
and reaction strategies, the validity of which was experimentally assessed in collision tests
with humans. The possibility of guaranteeing safe collisions even for high operating ve-
locities was demonstrated, and intentional contacts could be distinguished from undesired
collisions, thus allowing a human operator to control the robot by touching it. Finally,
in [26] a collision reaction strategy for a variable stiffness actuator was proposed. First,
a controller for independent position and stiffness profiles tracking was designed. Then,
a sensorless collision detection strategy was proposed, and a reaction strategy based on
stiffness reduction and evasion from the obstacle was introduced.

1.2 Collision avoidance strategies

A major role in safety strategies is played by collision avoidance: avoiding contact with
humans is the most basic method to ensure their safety, as injury risk derives from impact
forces and/or dangerous contact configurations such as clamping. Moreover, the presence
of human operators in the robot workspace implies a continuous modification of the envi-
ronment, and consequently calls for strategies to adapt the robot trajectory to the changing
conditions, in order to successfully accomplish it. In the following, the main collision
avoidance strategies that have been progressively proposed in the literature are reviewed.
A fundamental contribution to the design of real time collision avoidance strategies was
proposed in [48], where the artificial potential field approach was applied to manipulators.
Virtual repulsive forces applied at the operational space level were adopted to guide a robot
between obstacles, and at the joint level to avoid kinematic limitations. Repulsive forces
were used at low control level in order to give a high level task plan the capability of adap-
tation to unforeseen obstacles. In [12] virtual forces were combined with certainty grids
for obstacles representation in mobile robots navigation. A mobile robot was equipped
with ultrasonic sensors for obstacle detection and certainty grids were used to build a real
time map of the environment. Attractive and repulsive forces were used to guide the robot,
and different strategies were evaluated to ensure successful reaching of the goal. The same
authors of [12] proposed in [13] a different real time obstacle avoidance method based on
a two dimensional histogram model of environment occupation. The robot sensing sys-
tem updated the environment model in real time, which was afterwards transformed into
a polar map around the current robot position, and finally used to find an obstacle free
motion direction. Aiming at combining real time reaction to obstacles with global path
achievement, in [81] the approach of elastic bands was proposed. In such an approach the
global path is treated as an elastic which can be deformed by obstacles. By doing so, the
global path is preserved, and adaptation to the presence of obstacles is possible.
Kinematically redundant robotic arms constitute particularly fit platforms for collision
avoidance, as the extra degrees of freedom can be used to combine task execution with
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evasion from obstacles. An example of a collision avoidance strategy for a kinematically
redundant 7 dof arm was proposed in [38]. Obstacle avoidance was formulated as a set
of inequality constraints, and manipulator redundancy was exploited to avoid obstacles
while performing the task. In [85] a collision avoidance strategy for standard and kine-
matically redundant position controlled robot arms was proposed. The strategy was based
on the definition of a protective area around obstacles, and on the computation of virtual
repulsive forces corresponding to the intrusion of the robot in such an area. The collision
avoidance system modifies the robot position in order to nullify such forces, acting on the
robot end effector, if a standard six degrees of freedom manipulator is controlled, or on the
closest point to the obstacle between the end effector and the robot elbow, if a redundant
manipulator is used. Also arm self motions can be exploited for evasion. In [22] a metric
for obstacle avoidance was introduced, which evaluates the risk of collision taking into
account both distance between the robot and the obstacles and the direction of motion of
robot links. Such a metric is then minimised using null space motions.
Considering also humanoids and mobile robots, in [14] a framework for the enforcement
of collision avoidance and posture constraints, consistently with task ones, was proposed.
Such a framework exploits the null space of the task to execute additional constraints, and
in case a conflict between them occurs, suspends task execution in order to fulfil the other
ones. The use of online trajectory generation algorithms for the design of reactive control
strategies such as collision avoidance has recently gained significant attention. In [36] an
obstacle avoidance strategy based on measurements of a depth sensor, which generates
repulsive forces from robot-obstacles distances, and computes evasive motions using the
online trajectory generation algorithms presented in [51] and [52], was proposed. The
same algorithms were exploited for collision avoidance in [84], where a capacitive dis-
tance sensor was mounted on a robot surface, and evasive motions were generated from
the sensor measurements.

1.2.1 Self collision avoidance

When facing the problem of avoiding unpredicted obstacles, and in general when the robot
motion is not planned and verified offline, but has to be planned online, possibly reacting
to unforeseen events, one of the issues that have to be taken into account is the possi-
bility of robot self collisions. Such a problem is obviously more pressing when multi
arm or complex robotic structures are considered, as the possibilities of self collisions in-
crease. Different approaches to the problem have been proposed in the literature. In [53]
an algorithm for online trajectory checking against self collisions, specially designed for
humanoids robots, was presented. The strategy adopts an efficient method for the com-
putation of distances between the robot limbs, and discards those trajectories which lead
to a collision. Another possible approach is to modify a task currently being executed, in
order to avoid the collision between different parts of the robot. In [28], an example of the
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application of such an approach to a dual arm robot was given. A skeleton model of the
robot structure composed of multiple segments was adopted, and an algorithm to identify
the pair of closest points of the structure segments was used. Repulsive forces to avoid
the collision between such points were computed, and forces were then transformed into
torques using the collision points Jacobians transpose. Finally, such torques were added to
the task ones, thus enforcing the self collision avoidance behaviour. In [89] a control strat-
egy for collision and self collision avoidance was proposed, which embeds such objectives
in a hierarchy of tasks approach. Collision and self collision avoidance were pursued by
means of a cost function to be optimised, maintaining compliance with task constraints.
In [30] an evolution of the strategy presented in [31] for the integration of self collision
avoidance in a task hierarchy was proposed. The strategy, which was applied to a complex
humanoid robot, uses the computation of distances between the robot limbs to derive re-
pulsive forces to avoid collisions. In order to adequately dissipate the energy introduced
by such forces, a damping factor which takes into account the robot configuration was
adopted. Finally, continuity in the control actions, when transition between self collision
avoidance activation and deactivation is performed, was guaranteed.

1.3 Danger, safety and comfort assessments

An important element in the control of human-robot interaction is the formulation of dan-
ger assessments to encompass all of the aspects of human safety, both physical and psy-
chological, and the design of figures of merit for the maximisation of robots acceptability
for human operators. Such assessments are needed to design effective safety control strate-
gies, and to make human-robot cooperation fully acceptable for human operators. In [55]
two different danger assessment criteria, which consider robot inertia and distance from
obstacles, were adopted for safe path planning. Using such assessments, a cost function
including three terms, related to danger, obstacle avoidance and goal reaching was for-
mulated, and the path optimising such function was chosen. In [56] the same authors
used one of the previously introduced danger indices to design a real time collision avoid-
ance strategy. As in many other collision avoidance approaches, such index was used to
compute repulsive forces to move the robot away from the obstacle. Finally, in [57], the
same authors introduced the element of psychological comfort in human-robot interaction.
Physiological signals were used to develop a model of human emotional state, which could
then be used to control a robot action, in order to ensure the psychological wellness of the
human operator engaged in the interaction. Contributions given in [55], [56] and [57] were
integrated in a single system for the control of human-robot interaction in [58].
A recent contribution in the field of danger assessment is the danger field metric, originally
proposed in [61] and further developed in [62] and [63]. Such an assessment, adopted in
this thesis, considers both robot velocity and distance from the obstacle in the computa-
tion of danger, and, moreover, is able to take into account the whole robot structure as a
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source of danger. Other metrics instead consider only some points of the robot in danger
assessment, and are hence less effective in capturing the robot motion. The availability of
kinematically redundant robot arms has provided further tools for the development of con-
trol strategies to increase robots acceptability. In [100], a study has been proposed on the
exploitation of the kinematic redundancy of a robot arm to achieve human-like motions.
Experiments have been carried out to identify a correlation between the human arm swivel
angle and the hand position and orientation. Then, in order to perform human-like motions
on robotic arms, a closed form function describing such a correlation has been formulated
and adopted as a redundancy resolution criterion. The acceptability of the robot motions
obtained with the proposed redundancy resolution criterion has been validated in [99],
where several physiological signals were used to asses the level of emotional stress in-
duced by a dual arm robot motion on a human operator working on its side. A lower
emotional arousal was obtained when a human-like redundancy resolution criterion was
adopted, compared to the one caused by a standard resolution.
Knowledge of injury dynamics can be exploited in robot design and embedded in robot
control in order to guarantee safe collaboration with humans. In [77] an injury criterion
specifically designed for service robots, and an impact model to analyse such event, were
proposed. Impact simulations were performed, and suggestions for the design of safe
robots were drawn. In [80] a study of the impact between a small industrial robot and a
human operator was conducted. A passive mechanical arm was adopted as the test bench
of collisions, as a replacement of real human arms. A comparison was then carried out
between collisions with human volunteers and the ones with the model arm, in order to
validate the model. Injury dynamics comprise many different aspects and injury types,
so specific studies are needed to find adequate safety strategies for every type of possible
injury. In [76] an analysis of the correlation between robot coverings features and skin
injuries was conducted. Using experiments of collision with real human bodies, a skin
injury criterion was proposed, and robot design principles to reduce the possibility of skin
injuries were defined. In [41], a motion supervisor for the generation of safe motion pro-
files was proposed. Such a system adopts a model of the correlation between robot inertia,
velocity and impact zone geometry and the injury type and severity to set a velocity limit
for robot motion, which guarantees an upper limit to the severity of possible injuries.

1.4 Sensor systems for human-robot interaction

The deployment of robots in unstructured scenarios and in close interaction with humans
calls for the adoption of sensing systems to provide the robot with information about the
environment state. Peculiar features are required, such as the capability to avoid self oc-
clusions, a complete coverage of the robot workspace and, to make the human-robot in-
teraction configuration feasible, a reduced cost. Many different sensing principles have
been investigated in the literature for this purpose. In [11], a mobile service robot was
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equipped with a set of ultrasonic range finders to be used for obstacle avoidance and navi-
gation. A thorough analysis of the sensors characteristics and limitations was performed,
highlighting in particular the problems due to the detected object surface orientation and
structure, and to the amplitude of the emission cone. In [49] infrared distance sensors were
considered for a mobile robot navigation. A comparative analysis of different sensing so-
lutions, based on their cost and performance, was done, and a sensor system was proposed.
In [72] a sensing system for collision avoidance, based on multiple cameras installed on
the manipulator surface was proposed. A real time collision avoidance algorithm was de-
signed based on such a sensor system, which is particularly fit for fast collision avoidance.
In [47] a fusion of measurements coming from different types of sensors was used to de-
sign a system for safe human-robot interaction. Ultrasound sensors, capacitive sensors and
light curtains were used to determine the position of a human with respect to an industrial
robot, and to limit its maximum speed accordingly in order to control the interaction risk
level. Another example of sensor fusion for the control of safety can be found in [65].
Passive infrared sensors, cameras and microwave sensors were used to identify the human
operator position in a work cell, which was used as the input for a safety system.
A sensor concept which is particularly fit for human-robot interaction, and can be im-
plemented adopting any sensing technology, as shown in [68], is the distributed distance
sensor. In such a concept, the sensor is installed on the robot surface, and virtually com-
pletely covers it. The main advantages of such a sensor are the complete prevention of
sensor occlusions and the possibility of its adoption without any environment structuring.
The first introduction and adoption of such a sensor on an industrial robot was presented
in [19]. The sensor was then developed in [20] and applied to motion planning, teleop-
eration and real time collision avoidance in [21], [66] and [67] respectively, by the same
authors. Infrared proximity sensors were adopted for the first implementation, but other
implementations based for example on capacitance sensors have been proposed, for exam-
ple in [75] and more recently in [84]. The distributed distance sensor concept is adopted
in this thesis to create a sensing system for a dual arm robot prototype. The author has
already contributed to the development of such a system in [18] and [15], tackling the
problem of sensor sizing and placement.

1.5 Constraints management

When dealing with multiple constraints of different nature, such as task completion, safe
operation and obstacle avoidance, an approach to transparently and systematically man-
age them is needed, in order to efficiently exploit all of the robot degrees of freedom.
Such a problem has been tackled in many aspects of robot control, from offline and on-
line path planning to real time kinematic control. Considering path planning, many efforts
have been done on formalising and efficiently dealing with the constraints characterising
the task to be planned. An interesting contribution to the problem of path planning in
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the joint space, under task space constraints, was proposed in [91]. The completion of a
task requires the satisfaction of operational space constraints, but at the same time robot
kinematic limitations have to be taken into account. Moreover, possible task redundancies
and robot self motions may be exploited to satisfy additional constraints, such as collision
avoidance. In [91] a joint space planner able to satisfy task space constraints was proposed,
and representations for common operational space constraints were introduced. The work
presented in [91] was extended in [90] with a theoretical analysis of the path planner prop-
erties. In [59] a path planner capable of managing constraints tolerances was proposed:
the concept of “soft constraints” was introduced to describe intervals of feasible values,
with a favoured exact one, for robot operational space coordinates. A planner capable of
choosing the coordinate value closest to the favoured one was proposed, and adequate con-
straints representations for the automatic execution of such a choice were introduced. In
this thesis, “soft constraints” are the ones applied to coordinates corresponding to task re-
dundancies. Such constraints can therefore be relaxed without influencing task execution.
The problem of constraints management in path planning is particularly relevant when re-
dundant robots are considered, since the extra degrees of freedom can be used to perform
additional tasks. In [101] an algorithm for path planning specifically designed for redun-
dant robots was proposed: such an algorithm explores the task space for feasible paths that
comply with the task constraints, and then searches the robot configuration space only for
paths tracking the task space ones. By doing so, infeasible regions of the configuration
space are avoided, decreasing the computational burden and improving the path quality.
A fundamental contribution to the problem of multiple constraints management is given
by the task priority framework. Such an approach has been widely adopted as a tool to
exploit the degrees of freedom left available by each constraint, in order to execute the
ones having lower priority. First proposed in [42], this framework was further developed
by the same authors in [74]. The core concept of the approach is to define different levels
of priority for the constraints to be enforced in robot control, and then to enforce each con-
straint in the null space of the one with higher priority. In [88] the original approach was
modified, solving the robot inverse kinematics for joint velocities instead of joint acceler-
ations, with the purpose of avoiding possible unstable behaviours caused by the original
formulation. The task priority framework is well suited for the control of kinematically re-
dundant robots, since it offers a systematic method to take advantage of their redundancy,
in order to enforce a stack of constraints, with different relevance levels. An example of
the application of the task priority framework to a kinematically redundant robot can be
found in [4]. An underwater vehicle equipped with a planar manipulator was considered,
and two case studies with different top priority tasks were simulated. Energy saving and
then path tracking were considered as primary tasks, while keeping robot position constant
was considered as the secondary goal. Another example of the application of task priori-
tisation to redundant robots can be found in [7], where such an approach was applied to
the control of a humanoid robot. An improvement in the computational efficiency of the
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method, which is of particular relevance when considering highly redundant structures,
was introduced, and the management of multiple constraints was validated in simulation
on a human like figure.
A relevant problem in the adoption of the task priority framework is guaranteeing the ab-
sence of conflicts between tasks with different priority levels, and, moreover, ensuring the
stability of the adopted algorithms. A discussion on the stability problem of some relevant
task priority algorithms was presented in [3]. Conditions for their asymptotic stability
were formulated, thus allowing to verify the possibility of simultaneously executing the
different tasks. The task priority framework was recently extended to consider unilateral
constraints in [46], and in [32] a more efficient numerical solution of the same problem,
which also overcomes some drawbacks of the previous methodology, was proposed. In
this thesis, a priority is defined for the constraints constituting a preplanned task, but no
conflict is present between them, so projection of lower priority constraints in the null
space of higher level ones is not necessary. A preplanned task is decomposed into sub-
tasks, which are enforced based on an assessment of danger generated by the robot. Such
a strategy has analogies to what proposed in [69], but in this research a general criterion
for the decomposition of a task into subtasks is proposed, and, moreover, a particular task
type is considered, that is a preplanned trajectory which can be only locally modified or
suspended.

1.6 Commercially available human like dual arm robots

A relevant element for the development of human-robot interaction applications is the
increasing availability of dual arm, human like, kinematically redundant industrial robots.
Fig. 1.1 shows some of the latest systems. Such robots are fostering the interest for
human-robot interaction solutions and are improving the economical feasibility of such
configurations.

11



Chapter 1. Introduction and state of the art

(a) ABB FRIDA dual arm robot prototype. (b) Nachi MZ07 dual arm robot.

(c) EPSON autonomous dual arm robot. (d) Kawada Nextage robot. (e) Rethink Robotics Baxter robot.

(f) Motoman SDA20 robot.

Figure 1.1: Some of the latest commercially available dual arm, human like and kinematically redundant
industrial robots.
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CHAPTER2
Instantaneous constraints classification based on

their relevance for task execution

2.1 Introduction

Industrial robot controllers available today adopt imperative languages for programming
robot tasks. Robot programmers can use libraries of motion primitives to compose the
desired task, by choosing those best fitting their application. Motion primitives usually
define the profile of the trajectory to be followed by the robot, e.g. linear or circular. By
setting the primitives parameters, some trajectory properties, such as velocity or acceler-
ation limits and final or intermediate poses and velocities, can be chosen. Once the task
has been specified, the motion planner generates a trajectory for the robot TCP and for
possible kinematic redundancy coordinates, or equivalently for the robot joints. Such a
procedure, conceptually represented in Fig. 2.1, always leads to constraining all the robot
degrees of freedom along the complete task trajectory.
However, the task to be executed by the robot may not require to constrain the whole set of
robot degrees of freedom during its complete duration: robot kinematic redundancy or task
intrinsic redundancy may allow an infinite number of possible solutions for task execution,
and this could be exploited to take into account other, unpredictable at programming stage,
constraints. For example, in a pure positioning task of the TCP, the orientation might be
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Set of
constraints

q=f(t)
moveL point1 v50;

moveL point2 v50;

moveJ point3 v100;

moveL point4 v50;

controller
Industrial

Robot program

or/and
TCP=g(t)

swivel
angle =h(t)

Figure 2.1: The steps leading from the robot program to the set of constraints are schematically represented.
On the left, an excerpt of an ABB RAPID robot programming code is shown. The industrial controller
processes the code and generates a set of constraints for the robot joints or equivalently for the robot
end effector and possible coordinates expressing degrees of kinematic redundancy.

exploited to satisfy other constraints.
Unnecessary constraints are therefore imposed by the current implementation of indus-
trial controllers when the task trajectory is generated. Since all degrees of freedom are
constrained, and industrial robot controllers normally do not allow replanning of the task
at execution time to take into account possible modifications of the environment, adap-
tation of the preplanned task to unforeseen events is completely prevented. If adaptation
capability is indispensable, e.g. when a robot operates in an unstructured environment,
industrial controllers fall short in achieving this goal. Nonetheless, the amount of func-
tionalities already offered by commercial industrial controllers make an extension of such
functionalities to cope with unforeseen events more convenient than a complete controller
redesign. Such an extension is thus an interesting option.
Tools are available for the modification of a preplanned trajectory at execution time, such
as [10] and [54]. Such tools can be used to adapt a preplanned task to an unforeseen event,
without the need for a complete replanning. The adaptation of the task can be based on the
relaxation of constraints constituting the preplanned trajectory, to take into account new
ones arising at execution time. As already mentioned, some of the constraints enforced
by the industrial controller may be unnecessary for task completion. Moreover, other con-
straints constituting the task may allow a temporary relaxation, without compromising the
final completion. In this chapter, a classification of the instantaneous velocity constraints
that form a task is proposed, to serve as the basis of a strategy for adaptation to unforeseen
events.

2.1.1 Main approaches to task constraints representation

Representation of constraints constituting a robot task has been investigated in various
fields of robotic research. A fundamental contribution to the modelling of restrictions im-
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posed by the environment, for the field of hybrid control, was given in [70], where the class
of natural constraints, that is restrictions to the force and positional degrees of freedom
of a robot, was introduced. The classification introduced in [70] supports the definition
of the appropriate control strategy for each direction in the operational space, that is the
definition of the set of artificial constraints.
In the field of path planning in unstructured environments, constraints modelling plays an
important role in reducing the computational burden of planning. The term artificial con-
straint was adopted in [91] to define the limitations to possible reallocations of obstacles
in a movable obstacles scenario, due to the movement of a robot in the workspace. Such
constraints were used to reduce the number of possible paths to be explored, in order to
speed up path planning. In [59], soft constraints in the task space, that is constraints with
intervals of feasible values around a desired one, were introduced in a path planning prob-
lem.
Another approach to modelling of constraints composing a task is the decomposition of
the task into elementary operations. Such an approach allows to specify the robot task by
means of elementary actions, instead of programming the robot explicitly. The elementary
actions, which represent the constraints to be enforced, are converted by a control system
into motions, increasing the robot capability for adaptation. In [73] a method for the de-
composition of assembly operations into skill primitives, that is elementary movements
and actions, was proposed. The proper primitive is then selected by the control system,
based on the state of the environment and of the assembly task, adapting the assembly
procedure to unpredicted events occurring during execution. In [35], a complete system
for robot control based on manipulation primitives, was proposed.
The classification proposed in the following aims at grouping the constraints composing
a preplanned task, based on their relevance for task execution. Such a classification cri-
terion defines for each constraint the implications of its relaxation, and consequently the
possibilities for its modification. The possible actions to adapt a preplanned trajectory to
unforeseen events are thus defined.

2.2 Classification of constraints imposed by the environment

Restrictions to the motion of bodies in the space have been extensively discussed in the
field of rational mechanics. When multiple rigid bodies are connected, such that each
one moves with respect to another one, a mechanism is obtained. Depending on the type
of connection between the rigid bodies, and thus the motion restriction applied, different
types of mechanisms are created. A complete analysis of mechanisms, and of the restric-
tions they impose to movement, can be found in [43]. There, the description of mecha-
nisms is based on the classification introduced in [83]. Such a classification establishes the
class of lower pairs, that is, elementary mechanisms which impose elementary restrictions
to the motion of bodies. As this classification is the basis of the following discussion, it is
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here briefly summarised. Six elementary pairs are introduced:

1. revolute pairs, which allow only a rotation between the two bodies;

2. prismatic pairs, which allow a single relative translation between the connected
bodies;

3. cylindric pairs, which merge the two previous pairs, allowing the rotation and the
translation with respect to an axis;

4. screw connections, where the translation along an axis and the rotation around the
same axis are related by a constant (the screw lead);

5. planar connections, where one of the two bodies is allowed to slide on a plane,
which is rigidly linked with the other body. Two translations and one rotation are
therefore allowed;

6. spherical pairs, which allow only rotations between the two connected bodies, thus
giving three degrees of freedom.

Simple forms of construction for such pairs are shown in Fig. 2.2.

2. Prismatic pair 3. Cylindric pair

5. Planar pair

1. Revolute pair

6. Spherical pair4. Screw connection

Figure 2.2: Examples of construction of the lower pairs. Red arrows correspond to restricted motions,
while green ones correspond to available degrees of freedom. Orange arrows are used for mutually
constrained degrees of freedom.

When interacting with the environment, a robotic manipulator or its tool are usually sub-
ject to motion restrictions. Such restrictions can be modelled using the introduced lower
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pairs, or a combination of them for more complex environment configurations. The kine-
matic pairs models are a useful tool for programming a robot task, as they support the
identification of motion restrictions imposed by the environment.
The natural constraints class introduced in [70] completes the modelling of constraints
imposed by the environment, identifying the restrictions on both positional and force de-
grees of freedom. Positional degrees of freedom correspond to the motions allowed by the
kinematic pair, while force degrees of freedom correspond to restricted motion directions,
thus obtaining two complementary sets.
When a position controlled task is programmed, restrictions to robot movements imposed
by the environment are normally taken into account avoiding motions which could lead
to the generation of reaction forces. Some of the constraints composing a robot program
thus directly correspond to motion restrictions imposed by the environment (e.g. the task
would not include motions along restricted directions). Other constraints instead depend
on the specific operation that has to be performed.
The classifications reviewed above identify constraints imposed by the environment and
derive the available degrees of freedom. A different classification can be made considering
constraints imposed by the current task execution and consequently identifying the types
of restrictions it enforces on the directions of motion.

2.3 Instantaneous constraints classification based on constraints relevance
for task execution

Constraints constituting a task can be classified based on their relevance for the completion
of the task itself. Relevance can be assessed considering the consequences of the relaxation
of a constraint, and can be used to define which constraint to relax in case new ones have
to be taken into account. The classification proposed in the following achieves three main
objectives:

1. it defines a scale of priority for the constraints constituting a task, that can be adopted
to determine which constraints to relax in case new constraints have to be enforced;

2. it defines how the different constraints can be relaxed;

3. it defines the actions to be performed to preserve task completion in case a constraint
is relaxed.

The classification introduces four types of constraints:

• Hard constraints

• Skill constraints

• Soft constraints

• Null constraints
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2.3.1 Hard constraints

Hard constraints are defined as the ones whose relaxation would cause an incorrect ex-
ecution of the task. Mason’s natural/artificial constraints classification [70] can support
the identification of such a set of constraints. A first part of the hard constraints set is
composed by the ones classified as natural velocity constraints in [70], i.e. restrictions of
the robot TCP movement imposed by the environment. The portion of the environment
applying a restriction to the robot TCP motion can be modelled as a kinematic pair, and
restricted directions can be easily identified as exemplified in Fig. 2.2. The second part of
the set consists in restrictions of the robot TCP motion imposed by the task. The specific
operation being executed by the robot may in fact require the restriction of some veloci-
ties to properly complete the operation or to avoid damages to the involved components,
even if the environment does not impose such restrictions. Let us consider for example
a manipulator holding a liquid container with its gripper, as shown in Fig. 2.3. To avoid
spilling the liquid, the container should be kept in the upright position. Rotations around
the coordinate axes perpendicular to the vertical one should therefore be restricted.

y

z

x

Figure 2.3: Example task: a robot holding a liquid container with its gripper.

In order to support a systematic classification, constraints can still be identified by mod-
elling the restrictions imposed by the task with a kinematic pair. The constraints imposed
e.g. by the task represented in Fig. 2.4 correspond to a planar pair, with a vertical transla-
tional degree of freedom added.
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x

Figure 2.4: The lower pair corresponding to the constraints imposed by the task. The vertical translational
degree of freedom is added to a planar pair.
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Finally, restrictions to TCP movements imposed by hard constraints include not only con-
straints imposing null velocity along a direction, but also trajectories imposed to the TCP
coordinates. Let us consider a robot performing a glueing task, as depicted in Fig. 2.5:
the TCP has to follow the glueing profile and keep the glue dispenser perpendicular to the
object tangent plane. A deviation from the glueing path or a modification of the correct
tool orientation would cause an erroneous glue deposition and thus the disruption of the
task. The three constraints corresponding to TCP position and the two constraints corre-
sponding to the orientation with respect to the object perpendicular axis are therefore of
hard type.
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x

Figure 2.5: Example task: a robot performing a glueing operation.
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Figure 2.6: Example task: a palletising operation.
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2.3.2 Skill constraints

The previously introduced set of hard constraints includes natural velocity constraints and
part of the natural force constraints [70]. Among the remaining directions of the opera-
tional space, two more classes of constraints can be identified. The first one, defined in
this section, is the class of skill constraints. The constraints belonging to this class are the
ones whose relaxation is possible, but implies suspension of the skill being performed.
Let us consider for example the palletising task depicted in Fig. 2.6, where an object has to
be displaced from one support to another. Constraints on robot TCP position determine the
displacement of the object. Relaxation of such constraints therefore causes the suspension
of task execution. However, if constraints are enforced once again after their relaxation,
the task can still be completed. Such constraints are therefore assigned the skill type. A
second example can be drawn from an assembly operation during which a robot has to
mount a screw, see Fig. 2.7.
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x

Figure 2.7: Example task: a robot performing a screwing operation with a dedicated tool.

The screw assembly can be suspended and resumed without any consequence on the final
task completion. Translation along, and rotation around the screw axis are therefore skill
constraints.

2.3.3 Soft constraints

Constraints applied to the remaining operational space coordinates are the ones whose
suspension has no effect on task execution, and thus correspond to task redundancies.
Constraints on such coordinates are defined as soft ones. Let us consider the peg in hole
task depicted in Fig. 2.8: orientation of the peg around the hole axis is irrelevant for the
completion of the task, and can be therefore classified as a soft constraint.
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Figure 2.8: Example task: the classical peg in hole insertion operation.
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Figure 2.9: On the left, a 7 degrees of freedom manipulator, and on the right the geometric model for the
definition of the swivel angle sw.

2.3.4 Null constraints

The last class of constraints includes the ones applied to coordinates representing possible
kinematic redundancies of the manipulator. Such coordinates lie in the null space of the
robot end effector pose, and their variation has by definition no effect on the TCP pose,
and thus on task execution. Considering for example a 7 degrees of freedom manipulator,
having therefore one degree of kinematic redundancy, a convenient coordinate for the rep-
resentation of such a redundancy is the swivel angle sw, introduced in [50]. Considering
Fig. 2.9, the swivel angle can be defined as follows. Let us define the vectors e = (E−O)
and w = (W−O)/‖W−O‖. We introduce the vector p = (I−wwT )e, and we define
the swivel angle as:
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sw = atan2(w(zT × p),−zTp) + π/2 (2.1)

Considering the arm depicted in Fig. 2.9, if the robot wrist lies on the y axis, and the
robot elbow lies on the x-y plane, a swivel angle of 0 is obtained if the elbow lies in
the negative x semi axis, while a swivel angle of π is obtained if the elbow lies in the
positive x semi axis. The variation of the swivel angle has no effect on the TCP pose and
thus on task execution. The constraints applied to such a coordinate is therefore a null one.

Table 2.1 summarises the classification of the constraints.

Class Relaxable Relaxation Consequences Coordinate space Constraint imposed by the
environment

Natural Velocity ConstraintsHard No -

Natural Force Constraints

Skill Yes Task suspension Operational Space

Soft Yes None

Null Yes None Null Space -

Table 2.1: A summary of the presented classification. For each type of constraint, relaxation possibilities
and consequences are defined. The space corresponding to the constrained coordinate is shown and the
corresponding type of constraint imposed by the environment is identified.

2.4 Decomposition of a task into skills

During the execution of a task, as different operations are performed, constraints applied
to the robot TCP coordinates are characterised by different relevance. In order to assess
the possibilities for task modification during each of its phases, it is convenient to divide it
according to the variation of constraints relevance: the task will therefore be decomposed
into sections, each characterised by constraints belonging to different classes.
In order to operate such decomposition, the following two steps have to be performed.

2.4.1 Identification of constraints type

In order to decompose a task into parts according to constraints relevance, the first step is
to identify which class they belong to. The identification can be performed according to
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the following steps:

1. Restrictions to robot motion directions imposed by the environment have to be iden-
tified. The introduced lower pairs support such an operation, offering a library of
elements to compare the environment configuration with. Each lower pair allows one
or more degrees of freedom: the remaining translations or rotations, that are restricted
by the pair, correspond to hard constraints.

2. In addition to restrictions imposed by the environment, the ones imposed by the task
have to be identified. Constraints that cannot be relaxed in order to successfully
complete the task must therefore be determined. Lower pairs can once again support
the identification of such restrictions, which belong to the hard constraints class too.
Identifying the lower pair that models the motion restriction imposed by the task,
hard constraints can be easily mapped.

3. Among the possible motion directions, some are applied constraints that can be tem-
porarily relaxed without compromising the completion of the task. Such constraints
belong to the skill class.

4. The remaining motion directions represent task redundancies, and the constraints
applied to them belong to the soft class.

In order to formalise constraints classification, the selection vectors shard, sskill, ssoft and
snull are introduced. Such vectors define which type of constraint is applied to the coor-
dinates describing the robot pose. Let v = [vx, vy, vz, ωx, ωy, ωz, ˙sw] be a possible vector
of robot velocities, composed by the TCP ones and the swivel angle time derivative, we
define

snull,i =

{
1, if vi is subject to a null constraint

0, otherwise

ssoft,i =

{
1, if vi is subject to a soft constraint

0, otherwise

sskill,i =

{
1, if vi is subject to a skill constraint

0, otherwise

shard,i =

{
1, if vi is subject to a hard constraint

0, otherwise

Each coordinate has to be assigned to a class, such that the selection vectors sum up to a
vector with all unitary elements.
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2.4.2 Decomposition of the task

Once the constraints have been classified, the task can be divided into parts, named skills.
Skills are the elementary operations composing the robot task. A new skill is defined at
every point where relevance of a constraint changes.

2.5 Application example

In the following, a complete example of the application of the constraints classification
and of the division of a task in skills is presented. Let us consider a palletising task, during
which a manipulator has to lift an object using a pair of lifting forks, and then move it to
another support. At first, the robot TCP moves from the initial pose to the forks insertion
pose, then, the forks are inserted under the load and such load is displaced from the initial
pose to the final configuration. Finally, the forks are de-inserted from the object and the
task final pose is reached. The task is depicted in Fig. 2.10.
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Figure 2.10: A palletising task. The robot approaches the table, lifts the object with the lifting forks and
then moves it to another table. Then, the object is left on the second table and the robot moves to the
home position.

2.5.1 Classification of constraints

The constraints composing the palletising task can now be classified according to the pro-
posed scheme. During the approach the environment does not apply any limitation on
robot velocities. Likewise, the task does not require any restriction to the TCP velocities
to guarantee its completion. Such operation, shown in Fig. 2.11, has therefore no hard
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constraints. Possible constraints whose relaxation implies the suspension of the task have
now to be identified. The relaxation of constraints on robot TCP position implies the sus-
pension of the approaching motion, which can be completed anyway after the suspension.
Such constraints therefore belong to the skill class. The remaining constraints on the TCP
pose, that is constraints on orientation, are soft, as their relaxation has no effect on the
successful completion of the task.

1

y

z

x

constraint
type

vx skill
vy skill
vz skill
ωx soft
ωy soft
ωz soft

Figure 2.11: The robot approaching motion.

During the forks insertion, shown in Fig. 2.12, the environment restrictions on robot ve-
locities correspond to those of a prismatic lower pair: when the forks are inserted under the
object, any rotation of the robot TCP and any translation perpendicular to the insertion axis
would cause reaction forces between the robot tool and the environment to rise. Such con-
straints therefore belong to the hard class. The remaining constraint on translation along
the insertion axis can be easily identified as a skill constraint: in fact, its relaxation implies
the suspension of the insertion operation, which could then be resumed and completed.
The displacement of the load between the two tables, depicted in Fig. 2.13, is a free space
movement. However, the task being performed imposes some restrictions to the robot TCP
velocities. In fact, while the absence of contact with the environment implies no related
limitations of the robot movements, the presence of the object on the lifting forks restricts
feasible end effector orientations. To prevent the object from falling, the plane of contact
with the tool must be kept parallel to the horizontal plane. Rotations around the x and y
axes are thus hard constraints, as their relaxation would cause the disruption of the skill.
Similarly to the approaching phase, constraints on TCP position belong to the skill class,
as their relaxation implies the suspension of the operation. The remaining constraint on
orientation around the vertical axis is a soft constraint, as its relaxation has no effect on
task completion.
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vx skill
vy hard
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Figure 2.12: The operation of insertion of the lifting forks.
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Figure 2.13: The displacement of the object between the two tables.
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Figure 2.14: The de-insertion of the lifting forks and the final movement to the home position.
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The de-insertion of the lifting forks and the movement to the final pose, represented in
Fig. 2.14 are characterised by the same constraints as the insertion and the initial motion,
respectively.

2.5.2 Decomposition of the task into skills

As previously mentioned, once constraints are classified, the task performed by the robot
can be decomposed into skills. A new skill is defined at each point of the task where
relevance of a constraint changes, so, referring to the considered example, five skills are
present. The task can therefore be defined as:

task = {skill1 , skill2 , skill3 , skill4 , skill5}

skill1 vx vy vz ωx ωy ωz
ssoft 0 0 0 1 1 1
sskill 1 1 1 0 0 0
shard 0 0 0 0 0 0

skill2 vx vy vz ωx ωy ωz
ssoft 0 0 0 0 0 0
sskill 1 0 0 0 0 0
shard 0 1 1 1 1 1

skill3 vx vy vz ωx ωy ωz
ssoft 0 0 0 0 0 1
sskill 1 1 1 0 0 0
shard 0 0 0 1 1 0

skill4 vx vy vz ωx ωy ωz
ssoft 0 0 0 0 0 0
sskill 1 0 0 0 0 0
shard 0 1 1 1 1 1

skill5 vx vy vz ωx ωy ωz
ssoft 0 0 0 1 1 1
sskill 1 1 1 0 0 0
shard 0 0 0 0 0 0

In case the considered manipulator is kinematically redundant, the selection vector snull is
added, to identify the self motion coordinate.

2.6 Summary

In this chapter, a classification of instantaneous constraints composing a preplanned task,
based on constraints relevance for task execution, has been presented. The classification
defines four classes of constraints, null, soft, skill and hard, which correspond to increasing
levels of relevance. For each class of constraints, the possibilities for relaxation have
been identified. Such a classification thus defines the possibilities for the modification
of a preplanned task. Then, based on the proposed classification, a procedure for the
decomposition of the task into elementary operations, named skills, has been introduced.
The classification can be employed as the basis of a strategy for adaptation to unforeseen
events for preplanned tasks.
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CHAPTER3
Task-consistent collision avoidance strategy

3.1 Introduction

Guaranteeing safety for human operators is one of the crucial requirements that industrial
robots, in order to be deployed in a human-robot interaction scenario, have to accomplish.
As already mentioned in Chapter 1, different approaches can contribute to the achieve-
ment of safety, ranging from safe robot design to the development of safety-oriented con-
trol strategies. In this chapter, the problem of safety in human-robot interaction is tackled
using the approach of collision avoidance, and in particular building on the potential field
framework. Originally introduced in [48], the potential field approach allows the compu-
tation of virtual repulsive forces, which can be used to ideally push a robot away from an
obstacle. Such a method is an important tool for the application of collision avoidance in
real time.
In the following, a collision avoidance strategy based on the constraints classification intro-
duced in Chapter 2 is proposed. The goal of the strategy is to allow a robotic manipulator,
which is performing a preplanned task, avoid unforeseen obstacles. As already introduced,
preplanned tasks constrain all robot degrees of freedom. The execution of evasive motions
thus requires the relaxation of at least one constraint. In this scenario, our constraints clas-
sification is used to identify possible constraints to be relaxed and a danger assessment,
named the danger field, is adopted in order to decide which constraints to relax. Such an
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assessment, originally proposed in [61] and further developed in [62] and [63], is char-
acterised by the consideration of the robot as the source of danger for the obstacle, and
captures the contribution of both robot velocity and distance from the obstacle. Moreover,
it considers the complete robot structure for danger evaluation, differently from previous
approaches which take into account only some points.
The goal of the strategy is thus to reduce danger by exploiting the degrees of freedom
made available by relaxation, in order to enforce evasive motions. The proposed collision
avoidance strategy is formalised using a finite state machine, which is parameterised on
constraints classification and serves as a general template for the strategy definition.

3.2 Danger assessment and evasive velocities computation

The goal of the collision avoidance strategy is to allow the robot to be safely operated in
an unstructured environment, enabling the close cooperation with human workers and the
adaptation to a dynamic working scenario. For this, the robot must be able to react to the
presence of obstacles while it is performing its task, in such a way that safety of the obsta-
cle, which could potentially be a human worker, is maximised. For this purpose, a danger
assessment, named the danger field, which measures the level of danger generated by the
robot with respect to the surrounding obstacles, is adopted. Such an assessment can also
be exploited to determine which direction of robot motion yields the maximum decrease
of danger, and thus to derive a motion which maximises safety for the surrounding obsta-
cles. Such a motion can then be used in a safety strategy, as a reaction to the presence of
obstacles.
In this section, the danger assessment is briefly reviewed and the computation of evasive
motions for a robot is discussed.

3.2.1 The danger field

The danger field assessment, proposed in [63], describes the level of danger associated
with the robot motion for a point in the surrounding space. Such an assessment is com-
posed by two parts, which describe two main sources of danger for the obstacles surround-
ing the robot. Let us start considering a pointlike robot located at rr, moving with velocity
vr and an obstacle located at ro. The first part of the assessment is the static danger field
SDF :

SDF =
1

‖ro − rr‖
(3.1)

which describes the part of danger associated with the distance between the robot and the
obstacle. As distance decreases, the static danger field increases, obviously indicating the
greater probability of collision between the robot and the obstacle. The second part of the
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assessment is the kinetic danger field KDF :

KDF =
‖vr‖(1 + cos∠(ro − rr,vr))

‖ro − rr‖2
. (3.2)

Such a term captures the influence on danger of the robot velocity vr and of the angle
between the velocity and the vector connecting the robot and the obstacle. The danger
assessment can therefore discriminate between conditions where the robot is approaching
the obstacle and where the robot is moving away from that.
The sum of the two elements is the kineto-static danger field (from now on simply danger
field), which is defined as:

DF (rr,vr, ro) =
k1

‖ro − rr‖
+
‖vr‖(1 + cos∠(ro − rr,vr))(1− k1)

‖ro − rr‖2
(3.3)

where k1 is a tuning parameter.
When moving from the toy example of a pointlike robot to a real robotic structure, it is
important to consider how the robot shape and the different velocities along its structure
influence the generated danger. For this purpose, the danger field DF can be integrated
along the robot, which can be modelled as a series of segments. The cumulative danger
for the robot i-th link CDFi is therefore introduced:

CDFi =

∫
link i

DFi =

1∫
0

DFi(ri,vi, ro) ds (3.4)

where ri and vi are the position and the velocity along the i-th link, and are expressed as
functions of the link coordinate s:

ri = ri,s + s(ri,e − ri,s)

vi = vi,s + s(vi,e − vi,s) with s ∈ [0, 1],

where ri,s, ri,e and vi,s, vi,e are the positions and the velocities of the i-th link tips re-
spectively. Fig. 3.1 shows some examples of the cumulative danger field induced by a
single link robot. On one hand, the danger field is integrated along the robot structure, in
order to capture the effect of the robot shape and movement on the induced danger. On
the other hand, danger is computed for a single point in the workspace, so obstacles are
consequently considered as point-like entities. Integration of the danger field on the ob-
stacle surface is a problematic task, due to the absence of a general closed form solution.
The obstacles shape is therefore considered resorting to multiple points extracted from
their surface, and making the assumption that a sufficient resolution is available, so as to
compute a cumulative danger field which captures the obstacle shape satisfactorily.
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Figure 3.1: The cumulative danger field generated by a single link robot, moving in different directions.
Taken from [60].

3.2.2 Virtual repulsive force field

The danger field is a scalar quantity which defines the level of danger for each point in
the robot workspace. If, for safety reasons, the level of danger induced by the robot on an
obstacle has to be reduced, a scalar assessment of danger is not sufficient. In fact, in order
to move the source of danger in the direction of maximum danger decrease, knowledge of
the variation of the danger level in the space is necessary.
The danger field gradient offers such an information, and can be used to define a vector
field which is directed as the maximum variation of danger. The vector field

−−−→
CDF i(r),

associated with the i-th link, is introduced:

−−−→
CDF i(r) = CDFi(r)

∇CDFi(r)

‖∇CDFi(r)‖
(3.5)

such a field is directed as the danger field gradient, and its amplitude is defined as the
danger field evaluated at r.
Following the widely adopted potential field approach [48],

−−−→
CDF i(r) can be used as a

virtual repulsive force field which pushes the robot in the direction of maximum danger
decrease. The vector

−−−→
CDF i(r) can therefore be interpreted as a repulsive force anchored

in r, whose amplitude is the danger generated by the robot in r. An evasive motion can
finally be derived from the computed repulsive force, in order to avoid the obstacle and to
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maximise its safety.
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Figure 3.2: The virtual repulsive forces computed for different obstacles surrounding the robot.

A cumulative version of the vector field
−−−→
CDF i(r), to capture the contribution of multiple

obstacle points, can be obtained. Given nobs point-like obstacles, as shown in Fig. 3.2, for
the i-th robot link a cumulative virtual repulsive force can be computed:

−−−→
CDF s, i =

nobs∑
j=1

CDFi(rj)
∇CDFi(rj)

‖∇CDFi(rj)‖
(3.6)

As
−−−→
CDF s, i(r) is the sum of all the repulsive forces for the nobs obstacles, possible high-

danger obstacles may have little influence on the overall virtual repulsive force. An insuf-
ficient repulsive force may therefore be obtained if many obstacles with low related danger
are detected. A modified version of the cumulative danger field is thus used, so as to take
into account more effectively possible high-danger obstacles. In order to ensure evasion
even when a single obstacle has high related danger, a new virtual repulsive force can be
defined as:

−−−→
CDF ∗s, i =

−−−→
CDF s, i

‖
−−−→
CDF s, i‖

·max
j
CDFi(rj) (3.7)

The direction of the force is therefore given by the vector sum of the virtual forces related
to the nobs obstacles, while the modulus of the force is the highest of all the moduli of the
nobs contributions. Choosing the most dangerous obstacle to set the force modulus, a safety
oriented assumption is made. Moreover, preserving the force direction as the weighted
average of all the forces directions, the computed force reflects obstacles disposition.
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3.2.3 Evasive velocities computation

The introduced virtual force field conceptually pushes the robot away from the obstacle,
causing the decrease of the level of danger induced on it. Such a force has to be trans-
formed into a controlled evasive motion to be performed by the manipulator, displacing
the robot along the force direction and proportionally to the force modulus. For this pur-
pose, the repulsive force, which is computed in the obstacle position, can be virtually
applied on the robot surface. As the robot is controlled at the joint level, it is convenient
to transform the virtual repulsive force into virtual repulsive torques at the robot joints.
Given a generic robot structure, the joint torques corresponding to a force applied on the
robot are defined as:

τ = Jp(q)T · F (3.8)

where τ is the joint torques vector, Jp(q) is the Jacobian matrix of the force application
point and F is the vector of force / torques applied to the robot in p.
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Figure 3.3: The application of the cumulative virtual repulsive forces to the robot link.

Since the danger field is induced by the whole robot link on the obstacles, a criterion
is needed to determine on which point of the link the associated virtual repulsive force
should be applied. Depending on the robot configuration, a force applied on the robot
structure yields different torques at the joints, including the case when external forces
are balanced by reaction forces, and zero torques are obtained. Since the virtual force
goal is to guarantee the evasion from the obstacle, such an occurrence has to be avoided.
In order to reduce the computations needed for the application of the forces, a reduced
number of application points should be chosen, hence limiting the number of Jacobian
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matrices to be computed. However, if a single point of application for each force is used,
configurations where a force yields zero torques at the joints can easily happen. The
virtual force associated with the i-th link can thus be applied at the two link endpoints in
order to reduce the occurrences of such configurations, and to limit the amount of related
computations. The torques obtained for the i-th link are therefore:

τ i = Ji−1,v(q)T(q) ·
−−−→
CDF ∗s, i + Ji,v(q)T(q) ·

−−−→
CDF ∗s, i (3.9)

where Ji,v(q) is the linear velocity Jacobian of the i-th Denavit Hartenberg frame. Fig.
3.3 shows an example of the effect of the application of the virtual force at the two link
endpoints. In such a configuration, the application of the force to a single point, e.g. the
first tip of the i-th link, would have led to zero evasive torques, preventing evasion. The
computed evasive torques depend on the obstacles positions, which can vary abruptly and
unpredictably. To avoid feeding the robot with such abrupt commands, evasive torques
can be filtered in order to attenuate high frequency harmonics. Moreover, for reasons that
concern the practical application of such evasive actions, transforming the torques into
joint velocities is more convenient. A mass-damper impedance filter is thus used to obtain
joint velocities from the evasive torques:

q̇ev = (Ms+ D)−1 · τ where τ =

nlink∑
i=1

τ i, (3.10)

M and D are mass and damping matrices respectively, imposing the dynamic behaviour
to the impedance filter. In order to decouple the joints response, the two matrices can be
selected as diagonal. The ratio between the damping and mass value chosen for each joint
define the joint filter pole frequency.

3.3 Constraints relaxation strategy

In Chapter 2 a classification has been presented to define relevance of constraints compos-
ing a preplanned task. Adopting such a classification, the possibilities for modification of
the preplanned task are identified and, more specifically, the implications of relaxation of
the different constraints are defined. Exploiting these possibilities of task modification, un-
foreseen events generating new constraints, arising during the execution of the preplanned
task, can be taken into account. For example, if a high level of danger is induced on an
obstacle and an evasive movement has to be performed, the relaxation of task constraints
can make some robot degrees of freedom available for the execution of the evasion.
A strategy for the relaxation of constraints composing a preplanned task is proposed in the
following. The strategy directly derives from the introduced constraints classification and
can be automatically designed once the classification has been performed.
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3.3.1 Finite state machine for constraints relaxation

The classification introduced in Chapter 2 defines four classes of constraints, with the
following associated possibilities for relaxation:

1) Null constraints: relaxation is possible without consequences on the robot TCP pose

2) Soft constraints: relaxation is possible without consequences on task execution

3) Skill constraints: relaxation is possible but implies suspension of task execution

4) Hard constraints: relaxation is not possible

In order to face unforeseen events and then to enforce new constraints, the constraints
composing the task can be relaxed, according to the possibilities defined by the classifi-
cation. More specifically, constraints of increasing relevance can be gradually relaxed as
unforeseen ones become more compelling. The latter are thus assigned a priority, based
on which the set of constraints to be relaxed is defined. Fig. 3.4 shows a pictorial repre-
sentation of the stack of constraints composing the task and of the other constraints arising
at execution time, whose priority changes according to the environment conditions.

Hard Constraints

Skill Constraints

Soft Constraints

Null Constraints
New Constraints

R
el

ev
an

ce

Figure 3.4: Pictorial representation of the stack of task constraints and of constraints arising at execution
time.

In order to determine the groups of constraints to be relaxed, the relative priority of the
unforeseen constraints with respect to task ones has to be set. Considering the case where
the further constraint to be enforced is the evasive motion, the current level of danger
induced by the robot towards an obstacle can be used as the constraint priority level. Three
danger thresholds, CDFlow, CDFmed and CDFhigh, corresponding to the relaxation of
null, soft and skill constraints, respectively, are thus used. Fig. 3.5 shows the set of applied
constraints as a function of danger level.
As danger exceeds one of the three thresholds, the corresponding constraints are relaxed,
freeing degrees of freedom to execute evasive motions.
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Figure 3.5: The set of enforced constraints is represented as a function of danger level. As danger grows,
an increasing set of constraints are relaxed.

A finite state machine, from now on constraints state machine or CSM, is adopted to select
the set of constraints to be performed. The CSM output is the vector cs which determines
the constraints status:

csi =

{
1, if the i-th constraint is enforced

0, if the i-th constraint is relaxed
(3.11)

The state machine structure reproduces the structure the task: for each skill, a state is
assigned, whose inner structure reflects the collision avoidance strategy. The cs vector is
determined using the snull, ssoft, sskill and shard vectors, introduced in Chapter 2, such that
the state machine is directly derived from the classification. Fig. 3.6 shows the structure
of one sample state.
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Figure 3.6: Structure of a sample state of the constraints state machine.
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Each state is divided into two main substates, corresponding to skill execution and skill
suspension. The latter is executed when skill constraints are relaxed: in fact, according
to the classification introduced in Chapter 2, skill constraints relaxation implies skill sus-
pension. As already mentioned, the strategy is designed to be applied to preplanned tasks.
During skill suspension, the preplanned trajectory is stopped, and is resumed as soon as
the danger level falls below CDFhigh, as shown in Fig. 3.7.

t t
skill

execution
skill

execution

skill
suspension

x
y
z

𝜌
𝜑
𝜗

Figure 3.7: Pictorial representation of skill suspension. As the skill is suspended, the preplanned trajectory
execution is stopped.

3.3.2 Transition between constraints

Given the set of enforced constraints, defined by the vector cs, evasive motions can be
performed exploiting the remaining degrees of freedom. Chapters 5 and 6 will introduce
two different control strategies for the execution of evasive velocities, taking into account
increasingly complex constraints. In this chapter, the general strategy adopted by the
introduced state machine, for management of evasive velocities, is detailed.
Generally speaking, evasive velocities computed according to (3.10) are performed taking
into account constraints related to the skill being executed. Such velocities make the robot
evade from a detected obstacle, and cause the robot pose to drift from the preplanned
trajectory. As danger induced by the robot on surrounding obstacles changes, the set of
relaxed constraints changes accordingly. If a constraint is relaxed and then enforced once
again, discontinuities in the commanded joints positions and velocities may occur, due
to the difference between the actual robot pose and that commanded by the preplanned
task. Fig. 3.8 shows an example of the drift induced by evasive velocities, with respect
to the preplanned trajectory: at first, only soft constraints are relaxed (represented by
the grey solid line), and the corresponding coordinates start to drift from the reference
(represented by the dashed line). Then, trajectory is suspended and skill constraints are
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relaxed (represented by the orange and blue lines). When the constraints are enforced once
again, an offset is present between the current coordinates values and the preplanned ones,
which would lead to a discontinuity in the commands.

t
soft constraints

relaxation
skill constraints

relaxation
constraints
are enforced

x
y
z

𝜌
𝜑
𝜗

and skill
suspension

Figure 3.8: Relaxation of constraints. Soft constraints are relaxed at first, and the corresponding coordi-
nates drift from the planned values. Skill execution is then suspended, and skill constraints are relaxed.
When skill execution is resumed, the drift from the planned trajectory has to be compensated. The pre-
planned trajectory is represented by solid lines, while modified trajectories are represented by dashed
lines.

In order to avoid discontinuities in the control law, a trajectory smoothly connecting the
current robot pose to the preplanned trajectory, from now on return trajectory, is adopted.
Therefore, when an element of cs changes from 0 to 1, a return trajectory is activated for
the corresponding coordinate. It has to be noted that, when considering a skill constraint,
resumption of skill execution can be done upon completion of the return trajectory. In
fact, by definition, skill constraints relaxation implies the suspension of skill execution,
which can be resumed only after such constraints have been enforced once again. Such
policy is described in Fig. 3.9, where the state machine presented in Fig. 3.6 is detailed
including the strategy for resumption of skill execution. When a null or soft constraint
is enforced, once again after relaxation, the corresponding coordinate simply follows the
return trajectory, until the preplanned task reference is reached. The algorithms adopted for
the planning of the return trajectories will be introduced in the following chapters. For the
purpose of describing the adopted finite state machine, pictorial examples, shown in Figs.
3.10-3.11, are sufficient. Fig. 3.10 shows the relaxation and the succeeding enforcement
of a soft constraint. It has to be noted that the preplanned trajectory is not suspended,
and the return one is able to connect the previously relaxed coordinate with the changing
reference. Fig. 3.11 depicts the relaxation and the enforcement of a skill constraint: the
preplanned trajectory is suspended until the return one has reached it.
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Figure 3.9: The part of the state machine in charge of trajectory suspension and resumption.
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Figure 3.10: Activation of a return trajectory, represented by the dash-dotted line, for a soft constraint.
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Figure 3.11: Activation of a return trajectory, represented by the dash-dotted line, for a skill constraint.

3.4 Summary

In this chapter, a strategy for the avoidance of unforeseen obstacles during the execution
of preplanned tasks has been presented. The strategy is based on the relaxation of con-
straints constituting a skill, in order to execute evasive motions. An assessment of danger
induced by the robot on surrounding obstacles, the danger field, has been used to compute
a virtual repulsive forces field, from which evasive velocities, causing the robot to move
away from the obstacle, have been derived. A finite state machine for the management of
constraints constituting a skill has been proposed. Based on the current level of danger,
the finite state machine determines which set of constraints, categorised according to the
classification proposed in Chapter 2, has to be relaxed. Finally, the state machine manages
transition between enforcement of different sets of constraints, guaranteeing the bumpless
commutation between them.
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CHAPTER4
Integration of the collision avoidance strategy with

an industrial controller

4.1 Introduction

Currently available commercial industrial robot controllers are not designed to allow adap-
tation of a robot task to unforeseen events. In fact, the robot programmer has usually to
create a fully specified task, which completely constrains the robot degrees of freedom
and does not give any possibility for modification at execution time. The only way to ob-
tain some adaptation capability is to predefine different execution paths, that are executed
based on external signals or environment measurements. Moreover, industrial controllers
usually only allow high-level robot programming and do not grant access to information
about the robot state, that is joints positions and velocities, impeding the design of complex
control strategies. Such devices thus lack the tools needed to enable adaptation capability.
Nonetheless, research tools for the real time modification of the set points computed by
industrial controllers are available: such tools can be adopted to design reactive control
strategies, to cope with unforeseen events. For example, the robot manufacturer KUKA
developed an interface, named FRI (Fast Research Interface), which provides access to
position, velocity and acceleration set points of an industrial robot and allows their modi-
fication at frequency of 1 kHz [54]. An interesting example of a collision avoidance control
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system, implemented with such an interface, can be found in [36]. The same manufacturer
introduced a lower performance interface, which provides access to and modification of
the robot state, at a frequency of approximately 80 Hz. A collision detection system, based
on such an interface, was presented in [37]. An interesting contribution on the real time
modification of a preplanned trajectory, generated by an industrial controller, was pre-
sented in [5].
In this chapter, the previously presented collision avoidance strategy is integrated with an
industrial controller, thus extending its functionalities with capability of adaptation to an
unstructured environment. For this purpose, a software architecture for the communica-
tion and modification of the controller set points is proposed. More specifically, such an
architecture allows an external controller to modify the industrial controller task trajec-
tory, in order to evade from a detected obstacle, leaving the user interface and the normal
programming procedure unchanged. Additional control functions are added to the robot
proprietary language, using which the user can specify the type of constraints which char-
acterise a task. Using ad-hoc communication functions, the external controller receives
information regarding the constraints composing the task, and modifies the industrial con-
troller trajectory accordingly, in real-time. The communication and interaction between
the industrial controller and the external controller is allowed by an open version of the in-
dustrial controller software, and by a special controller interface. The actual implementa-
tion of the communication system is here described, detailing the adopted communication
protocols, the principles followed in the design of the system and its performance limita-
tions. The purpose of the system analysis and description is to offer concrete guidelines
for the expansion of industrial controllers functionalities, and, moreover, demonstrating
the feasibility of such an extension within the current framework of industrial controllers.

4.2 Open controller architecture

The control architecture detailed in this chapter has been designed to be integrated with an
ABB IRC5 industrial robot controller, shown in Fig. 4.1.
In its normal configuration, the controller allows the programmer to specify the robot tra-
jectory by means of high-level trajectory planning functions. The user is not granted direct
access to the computed trajectory, nor can the planned trajectory be modified at execution
time. In order to enable such functionalities, a particular version of the robot controller
software and an interface for the communication with external computers, developed by
Lund University [10], is used. Such an interface was originally developed to perform
sensor based control on industrial controllers, and allows to control industrial robots with
externally executed control laws.
The default industrial controller architecture can be decomposed into two main elements:

• the main computer, which is in charge of planning the robot trajectory and comput-
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4.2. Open controller architecture

Figure 4.1: The ABB IRC5 industrial robot controller.

ing the joints references, and includes the user interface;

• the axes computer, which is not accessible to the user and executes the low level
control loops on the robot joints.

In the normal controller configuration, depicted in Fig. 4.2, the main computer provides
the set points to the axes computer. The communication channels between the two are not
accessible.
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Figure 4.2: A schematic representation of the closed controller architecture.

In the open controller architecture, the communication channels between the main com-
puter and the axes computer are made accessible, allowing the user to conceptually insert
an external computer between the two. Moreover, a bidirectional communication channel
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between the main computer and the external computer is created. Such a channel allows
an external control law to interact with the high level controller functionalities, and thus
to provide the user with a direct interface with the external control system. The open
controller architecture is depicted in Fig. 4.3.
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Figure 4.3: The open controller architecture, with the external computer connected to the controller.

The external computer opens a further channel for the interaction between the industrial
controller and external devices such as sensors. Such a channel is crucial to create sensor
based and reactive control strategies.
In the following, the features of the mentioned channels are detailed.

4.2.1 Available communication channels

The channels created by the open controller architecture are divided into two main groups:
mono directional, from the main computer to the axes computer, passing from the external
one, and bidirectional, between the main computer and the external one.
The mono directional channels include:

• robot joints position references, from now on qref,ic;

• robot joints velocity references, from now on q̇ref,ic.

The bidirectional channels include:

• a channel to specify the type of communication between the controller and the robot
(send/receive), from now on Instruction;

• a channel to communicate up to six integer values, from now on value;
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4.3. Communication protocol

• a channel for the communication of up to two strings, from now on string.

The use of the communication channels requires compliance to hard real time constraints
in order to guarantee the functionality of the control system. More specifically, the external
computer has to generate a reference for the axis computer every 4 ms.

4.3 Communication protocol

Two state machines on the two sides handle the communication between the industrial con-
troller and the external computer. Due to implementation constraints, the communication
system is configured according to a client-server architecture, with the industrial controller
working as a client and the external computer as a server. Communication therefore takes
place only as the industrial controller takes the initiative.

Industrial controller External computer

Task Communication
state machine

Communication
state machine

value,
string

Instruction,

Figure 4.4: The communication state machines on the two sides of the communication system.

The industrial controller and the external computer are characterised by two different ap-
proaches in the execution of their programs, which determine also the method for the com-
munication between them: on the external computer, the control algorithm is executed
cyclically, while, on the industrial controller, the task program is executed sequentially.
However, as will be explained in the following sections, the communication requires the
execution of cyclic operations: for this reason, a timed interrupt is used in the task program
in order to activate the communication state machine. This configuration determines the
operation of the industrial controller as the client, and determines some system limitations,
which will be detailed later on in this chapter. The task program is thus composed of the
sequential robot instructions and by a cyclic part, which is used for communication. Such
a configuration is depicted in Fig. 4.4.
The communication state machines perform various operations, however, a common pro-
tocol is adopted for the exchange of messages. Fig. 4.5 shows the general protocol adopted
for such a communication. The following steps are taken during the communication of a
message:
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1. upon the activation of an interrupt or a flag, the communication process is activated;

2. a message is sent to the external computer by calling the communication function
and by specifying the communication direction through the Instruction variable;

3. the communication process waits for a fixed amount of time;

4. a message is received from the external computer, calling the communication func-
tion once again in the receiving mode;

5. depending on the received message, an action is taken.

It is worth noticing that, while the sending/receiving operations on the external computer
side can be performed at every execution step, on the industrial controller side such op-
erations are performed only upon the call of a dedicated function. Such a call can take
place at most at the timed interrupt activation frequency, which, being notably lower than
the external code execution frequency, constitutes the bottleneck of the communication
system. Such a limitation will be discussed in more details in Section 4.5.

if interrupt or flag
   goto 20;
end

10 20 30 40 50
Instruction=
   sendInstruction;
value1=request;
comm(Instruction,value1);
goto 30;

wait;
goto 40;

Instruction=
   receiveInstruction;
comm(Instruction, value2);
goto 50;

if value2==responseA
   goto 60;
elseif value2==responseB
   goto 10;
end

if Instruction==sendInstruction
   goto 20;
end

10
20if internalState=stateA

   value2=responseA;
elseif  internalState=stateB
   value2=responseB;
end
goto 10;

60
do ...

External computer

Industrial controller

value
Instruction,

Figure 4.5: The state machine representing the general protocol for the communication of messages between
the industrial controller and the external computer.

4.4 Functionalities of the communication system

Using the introduced communication system, an industrial controller and an external com-
puter can exchange messages during the execution of a robot task. In the considered
scenario, the communication system is used to control the collision avoidance strategy
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presented in Chapter 3, which is executed on the external computer. Thanks to ad-hoc
communication functions, the robot program running on the industrial controller can en-
sure consistency of the strategy with the task being performed. The following control
actions are carried out through the communication channels:

• activation of the collision avoidance system;

• transition between skills;

• suspension and resumption of skill execution;

• deactivation of the collision avoidance system.

4.4.1 Example task

As already mentioned, the communication system allows the robot programmer to control
the collision avoidance system using the normal programming interface. The introduced
communication functionalities can be activated simply by calling specific functions or
through activation flags. The functions and the flags for management of the collision
avoidance strategy are the following ones:

• activateCollAvSystem: by calling this function, activation of the collision avoidance
system is performed;

• robTransReq: using this flag, transition to the next skill is initiated;

• robTransAll: using such a flag, the communication system enables transition to the
next skill;

• robTaskCompl: when the robot task is completed, such a flag is used to request the
deactivation of the collision avoidance system;

• constType: when the collision avoidance system is activated, or a skill transition is
performed, the constraints types for the new skill have to be communicated to the
collision avoidance system. This string variable is adopted to specify the constraints
types, using one string character for each coordinate. Characters “3”, “2” and “1” are
used to define hard, skill and soft constraints respectively.

In the following, a simple example of a complete robot program composed of two skills,
coded with the the ABB RAPID programming language, is sketched:
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constType := "222111";
activateCollAvSystem;
WaitUntil taskStart;
MoveL point1, v100, z15, tool0;

constType := "222331";
robTransReq := TRUE;
WaitUntil robTransAll;
robTransAll := FALSE;
MoveL point2, v100, z15, tool0;

robTaskCompl := TRUE;

The robot program is made of the above sequential part and by a cyclic routine, which is
executed upon activation of an interrupt. The flags adopted to control the collision avoid-
ance system are used in the cyclic routine, which is also in charge of skill suspension and
resumption.

In the next sections, the functions employed to perform the introduced control actions
on the collision avoidance system are detailed.

4.4.2 Activation of the collision avoidance system

The first action that can be performed on the collision avoidance system, by means of the
communication channels, is the activation of the system itself. The initial state of the CSM
presented in Chapter 3 is an idle one, during which no constraint is relaxed. No evasion
is thus performed, and the set points received from the main computer are sent to the axes
computer without any modification.
When the collision avoidance system is activated, the following operations are thus per-
formed:

• the constraints of the first skill are communicated to the system;

• the CSM advances to the first skill state;

• computation of obstacles positions and danger field starts;

• modification of robot set points starts.

Fig. 4.6 shows the protocol for the state machine activation. The string channel is used
to communicate the types of constraints characterising the first skill. As the constraints
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types are communicated by the industrial controller, no information about the task has to
be programmed in the collision avoidance system, thus increasing its flexibility.

External computerIndustrial controller
10Instruction=

   sendInstruction;
value1=activate;
string=skill1constraint;
comm(Instruction,value1,string);
goto 20;

20wait;
goto 30;

30Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   goto 40;
else
   goto 10;
end

10if Instruction==
   sendInstruction;
   if value1==activate;
      value2=acknowledge;
      goto 20;
   end
end

20skill++;
constraints=string;
goto 30;

30if Instruction==
   sendInstruction;
   if value1==completion;
      value2=acknowledge;
      exit;
   end
end

value,
Instruction,

string

40Instruction=
   sendInstruction;
value1=completion;
comm(Instruction,value1);
goto 50;

50

60Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   exit;
else
   goto 40;
end

wait;
goto 60;

Figure 4.6: The state machine representing the protocol for activation of the collision avoidance system.

The implementation in the industrial controller proprietary RAPID language is shown in
the next code excerpt.

PROC activateSafety()
mcgdata.value6 := activateCall;
mcgdata.string1 := constType;

WHILE TRUE DO
MocGenInstr mcgInstrCall, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO ACTIVATION;

ENDIF
ENDWHILE

51



Chapter 4. Integration of the collision avoidance strategy with an industrial controller

ACTIVATION:

mcgdata.value6 := waitCall;
WHILE TRUE DO

MocGenInstr mcgInstrWait, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO WAITDONE;

ENDIF
ENDWHILE

WAITDONE;
taskStart := TRUE;

ENDPROC

The MocGenInstr function is used to send and receive messages to and from the external
computer. The first function argument is used to define whether a message has to be sent
or received, while the second argument is the message to be sent or received. The first
argument is communicated over the Instruction channel, while the second argument is
sent or received over the value and string channels.

4.4.3 Transition between skills

Once the collision avoidance system has been activated, when a new skill has to be started,
an action is requested to such a system. As constraints relevance may change between
skills, constraints that have been relaxed may no longer be relaxable in the next skill. A
return trajectory has hence to be performed in order to bring robot coordinates back to
the industrial controller reference. The industrial controller has thus to communicate to
such a system the completion of skills and the need to start the following ones. During
skill transition, evasive velocities are deactivated, so as to allow the execution of the return
trajectory. In order to limit the possible consequences on safety, such an operation is
performed only if CDF<CDFhigh.
The following operations are hence performed during skill transition:

• new skill constraints types are sent to the collision avoidance system;

• return trajectories are activated, in order to prepare the robot for skill transition;
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• the task state machine proceeds to the following skill.

As already mentioned, the communication of the types of constraints characterising each
skill avoids the need to reprogram the collision avoidance system as the considered task
changes. Fig. 4.7 shows the protocol for skill transition. On the external computer side,
the communication state machine interacts with the task state machine, determining the
skill transition, and receives information from the return trajectory generation about the
state of the return trajectory.

10Instruction=sendInstruction;
value1=changeSkill;
string=skill1constraint;
comm(Instruction,value1, string);
goto 20;

Industrial controller

20wait;
goto 30;

30Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   goto 40;
else
   goto 10;
end

40Instruction=sendInstruction;
value1=completion;
comm(Instruction,value1);
goto 50;

50wait;
goto 60;

60Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   exit;
else
   goto 40;
end

value,
Instruction,

string

External computer

10if Instruction==
   sendInstruction;
   if value1==changeSkill;
      value2=acknowledge;
      goto 20;
   end
end

20cs=ones(nj);
goto 30;

30
if returnState==complete
   skill++;
   goto 40;
end

40if Instruction==
   sendInstruction;
   if value1==completion;
      value2=acknowledge;
      exit;
   end
end

Task state machine

cs,skill

Figure 4.7: The state machine representing the protocol for skill transition.

In the following, the RAPID implementation of the skill transition protocol is shown.
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IF robTransReq THEN
mcgdata.value6 := changeCall;
mcgdata.string1 := constType;

WHILE TRUE DO
MocGenInstr mcgInstrCall, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO TRANSITION;

ENDIF
ENDWHILE

TRANSITION:

mcgdata.value6 := waitCall;
WHILE TRUE DO

MocGenInstr mcgInstrWait, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrWaitReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO WAITDONE;

ENDIF
ENDWHILE

WAITDONE:

robTransAll := TRUE;
robTransReq := FALSE;

transArm := 0.0;
ENDIF
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Industrial controller

value
Instruction,

External computer

Instruction=
   sendInstruction;
value1=resumeSkill;
comm(Instruction,value1);
goto 90;

Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==yes
   goto 110;
else
   goto 80;
end

80

resume;

90

100

110

10Instruction=
   sendInstruction;
value1=suspendSkill;
comm(Instruction,value1);
goto 20; 

20wait;
goto 30;

30Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==yes
   goto 40;
else
   goto 10;
end

40suspend;
goto 50

Task state machine

cs,skill

10if Instruction==
   sendInstruction;
   if value1=suspendSkill
      if CDF>CDFhigh
         value2=yes;
         goto 20;
      else
         value2=no;
         exit;
      end
   end
end

30relax skillConstraints;
goto 40;

40if Instruction==
   sendInstruction;
   if value1==resumeSkill;
      if CDF<CDFhigh and
            returnState=complete;
         value2=yes;
         exit;
      else
         value2=no;
      end
   end
end

20if Instruction==
   sendInstruction;
   if value1==suspensionComplete;
      value2=acknowledge;
      goto 30;
   end
end

Instruction=
   sendInstruction;
value1=suspensionComplete;
comm(Instruction,value1);
goto 60;

wait;
goto 70;

Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   goto 80;
else
   goto 50;
end

50

60

70

wait;
goto 100;

Figure 4.8: The state machine representing the protocol for skill suspension and resumption
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4.4.4 Skill suspension and resumption

If the level of measured danger exceeds CDFhigh, skill constraints, if any, are relaxed, and
the skill execution has to be suspended. As the task trajectory is generated by the industrial
controller, skill suspension has to be performed on the industrial controller side. However,
danger is evaluated by the collision avoidance strategy on the external computer. In order
to determine whether the skill has to be suspended, the industrial controller thus executes
a cyclic polling of the collision avoidance system. If danger exceeds the highest threshold,
skill execution is suspended and skill constraints are relaxed.
The following operations are therefore performed for skill suspension:

• the industrial controller cyclically polls the collision avoidance strategy, asking whether
the skill has to be suspended;

• upon positive answer of the collision avoidance system, skill execution is suspended;

• after skill suspension, the collision avoidance system is allowed to relax skill con-
straints.

As danger level decreases below CDFhigh, resumption of skill execution can take place.
In order to perform such an operation, the industrial controller polls the external computer
and resumes skill execution depending on the safety system answer.
Skill resumption takes place according to the following steps:

• as danger falls below CDFhigh, the collision avoidance system activates the return
trajectories to enforce skill constraints;

• when return trajectories for the skill constraints have been completed, the external
computer communicates the possibility to resume execution to the industrial con-
troller;

• skill execution is resumed.

The implementation of the protocol in RAPID is shown in the following section:

mcgdata.value6 := pollingCall;
MocGenInstr mcgInstrCall, mcgdata; WaitTime 0.02;
MocGenInstr mcgInstrReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
SpeedRefresh 20;
StopMove;
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StorePath;
ClearPath;
StartMove;
WHILE TRUE DO

mcgdata.value6 := stopCall;
MocGenInstr mcgInstrCall, mcgdata; WaitTime 0.02;
MocGenInstr mcgInstrCallReceive, mcgdata;
IF mcgdata.value5 = 1.0 THEN

Wait;
GOTO RESUME;

ENDIF
ENDWHILE
RESUME:
RestoPath;
SpeedRefresh 100;
StartMove;
WHILE TRUE DO

mcgdata.value6 := 5.0;
MocGenInstr mcgInstrCall, mcgdata; WaitTime 0.02;
MocGenInstr mcgInstrCallReceive, mcgdata;
GOTO ENDSUSP;

ENDWHILE
ENDSUSP:

ENDIF

Fig. 4.8 shows the protocol for skill suspension and resumption.

4.4.5 Deactivation of the collision avoidance system

The last functionality included in the communication system is the deactivation of the
collision avoidance system. When a task has been completed, safety functionalities are
deactivated and the external control system stops the modification of industrial controller
set points.
The following operations are therefore performed:

• evasive velocities are deactivated and return trajectories are started;

• when return trajectories have been completed, the collision avoidance system is de-
activated and industrial controller set points are no longer modified.
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Once deactivation has been completed, the industrial controller starts operating in a con-
figuration which is equivalent to the closed controller architecture. Fig. 4.9 shows the
protocol for deactivation of the collision avoidance strategy. In the following, RAPID im-
plementation of the deactivation functionality is shown.

IF robTaskCompl THEN
mcgdata.value6 := deactivateCall;

WHILE TRUE DO
MocGenInstr mcgInstrCall, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO DEACTIVATION;

ENDIF
ENDWHILE

DEACTIVATION:

mcgdata.value6 := waitCall;
WHILE TRUE DO

MocGenInstr mcgInstrWait, mcgdata;
WaitTime 0.02;
MocGenInstr mcgInstrWaitReceive, mcgdata;

IF mcgdata.value5 = 1.0 THEN
GOTO WAITDONE;

ENDIF
ENDWHILE

WAITDONE:

taskStart := FALSE;
ENDIF
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10Instruction=
   sendInstruction;
value1=deactivate;
comm(Instruction,value1);
goto 20; External computer

Industrial controller

20wait;
goto 30;

30Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   goto 40;
else
   goto 10;
end

40Instruction=
   sendInstruction;
value1=completion;
comm(Instruction,value1);
goto 50;

50wait;
goto 60;

60Instruction=
   receiveInstruction;
comm(Instruction,value2);
if value2==acknowledge
   exit;
else
   goto 40;
end

10if Instruction==
   sendInstruction;
   if value1==deactivate;
      value2=acknowledge;
      goto 20;
   end
end

40if Instruction==
   sendInstruction;
   if value1==completion;
      value2=acknowledge;
      exit;
   end
end

value
Instruction,

20cs=ones(nj);
goto 30;

30
if returnState==complete
   goto 40;
end

Figure 4.9: The state machine representing the protocol for the collision avoidance system deactivation.

4.5 System performance and limitations

The open controller architecture establishes communication channels, between the indus-
trial controller and the external computer, whose update frequency is 250 Hz. Such a fre-
quency is sufficient to provide robot axes set points to the axes computer. Nonetheless, the
structure of the RAPID language introduces a significant limitation to the communication
frequency. In fact, the concurrent execution of a motion instruction and of the commu-
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nication with the external computer, can be performed only using an interrupt-activated
subroutine. While in the main routine the motion instruction is being executed, upon ac-
tivation of the interrupt, the subroutine and thus communication are performed. However,
as the RAPID language limits interrupt-activated subroutines execution frequency to 10
Hz, polling of the external computer is limited to such a frequency.

4.6 Summary

In this chapter, the architecture for the integration of the collision avoidance system pre-
sented in Chapter 3 with an industrial controller has been presented. The industrial con-
troller adopted for the system and the open controller architecture used for the integration
have been introduced. Then, the general communication protocol has been presented, and
the specific communication functions, adopted for the control of the collision avoidance
system, have been detailed. The actual implementation of such functions has been shown,
and exemplified by means of a simple task. Finally, system limitations have been anal-
ysed.
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CHAPTER5
Collision avoidance strategy based on projection in

the null space of the task

5.1 Introduction

In Chapter 3 a strategy for the execution of evasive velocities consistent with task con-
straints has been presented. Such a strategy defines a general method for the relaxation of
constraints forming a preplanned task and for management of the transition between dif-
ferent enforced constraints. No details have been given so far neither on the execution of
evasive velocities, exploiting relaxed constraints, nor on the planning of return trajectories.
In this chapter, the first approach adopted to manage such aspects is analysed, detailing the
following parts:

• execution of evasive velocities consistently with enforced constraints;

• computation of return trajectories;

• definition of the overall robot control strategy.

Moreover, such an approach is experimentally validated on a dual arm assembly task,
introducing a distributed distance sensor for obstacle detection.
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5.2 Collision avoidance system

5.2.1 Projection of evasive velocities in the null space of enforced constraints

The CSM defines the vector cs, whose elements correspond to the status of each coordi-
nate constraint. Given the set of coordinates which can be used to evade from detected
obstacles, the evasive velocities q̇ev can be projected in the null space of the remaining
enforced constraints. The cs vector is thus used to define the null space projector of the
velocities. Given

nc =

nj∑
i=1

csi (5.1)

the number of enforced constraints, we define the vector of the indexes of the enforced
constraints ci, with the following algorithm:

ci= {cii : i = 1, ..., nc};
k=1;

for j=1 to nj do
if csj==1 then
cik=j;
k=k+1;

end if
end for

The elements of ci are therefore the indexes of the elements of cs, corresponding to en-
forced constraints. The selection matrix Σcs can now be defined:

Σcs = {σi,j : i = 1, ..., nc, j = 1, ..., nj} ,where σi,j =

{
1, if j = ci(i)

0, otherwise
, (5.2)

which is used to extract the rows corresponding to constrained coordinates from the robot
Jacobian. We can now introduce the selected constraints Jacobian:

Jcs(q) = ΣcsJ(q), (5.3)

where J(q) is the robot TCP Jacobian. The projector in the null space of the constrained
coordinates Ncs(q) can finally be defined as:

Ncs(q) = I− Jcs(q)†Jcs(q) (5.4)
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where † denotes the Moore-Penrose pseudoinverse matrix. The projected evasive joint
velocities are obtained:

q̇ev,cs = Ncs(q)q̇ev. (5.5)

The computed velocities can be added to those used to perform the task, without influenc-
ing the execution of enforced constraints. The projected evasive velocities will be used to
compose the overall robot velocity set points, as will be detailed later on in the chapter.

5.2.2 Return trajectories computation

As introduced in the previous chapters, the relaxation of coordinates constraints, and the
execution of evasive velocities, causes the robot pose to drift from the industrial controller
reference. If a constraint is enforced after its relaxation, the respective coordinate value
may differ from the robot controller reference one. To avoid discontinuities in the robot
commands, in Chapter 3 the use of a return trajectory, to smoothly connect the current
coordinate value and the reference one, has been proposed.
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d< v0
2

2amax

v0
2

d<2amax
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no

no no
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v=v0
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s=d/|d|
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in absolute value

vmax=maximum velocity
amax=maximum acceleration

Figure 5.1: The decision tree, to be executed at every time step, for the computation of the return trajectory.
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As already explained, the return trajectory goal is a priori not constant. In fact, the return
trajectory tracks the industrial controller reference, which can evolve during trajectory
execution. The return trajectory has therefore to be continuously updated to cope with the
changing goal.
A simple solution for the generation of such a trajectory is to use a bang-bang profile for
the acceleration, as it is done in trapezoidal and triangular velocity profiles. However, in
this case, the changing trajectory reference will shape the trajectory profile. The trajectory
generation can be based on the decision tree depicted in Fig. 5.1, where, at every time
step, based on the current position and velocity and on the current goal, the maximum
or minimum or null acceleration is applied. Fig. 5.2 shows an example of trajectory
computation.

0 2 4 6 8 10 12 14 16

−0.2

−0.1

0

0.1

0.2

0.3

time [s]

x

 

 
current position
reference trajectory

Figure 5.2: An example of computation of a return trajectory with the presented algorithm. The solid blue
curve represents the reference position, and the black dashed one the current position. The first vertical
line from the left denotes the instant of the coordinate relaxation. The second vertical line denotes the
instant of the coordinate enforcement, and the last vertical line to the right the completion of the return
trajectory.

A return trajectory is generated for each coordinate, and the maximum velocity and accel-
eration can be assigned independently for each of them. As the trajectories reference is
a priori continuously changing, synchronisation of goal reaching for the different coordi-
nates is not pursued, favouring the fastest possible completion of the single trajectories.

5.2.3 Overall control law

As already mentioned in the previous chapters, the collision avoidance system modifies the
robot joints position and velocity set points, that are generated by the industrial controller

64



5.2. Collision avoidance system

main computer. The introduced projected evasive velocities and return trajectories are
used to compose the modified robot set points. Depending on the current state of the
collision avoidance system, three different laws for the computation of robot set points
can be identified.

No set points modification

When measured danger is below the CDFlow threshold, and in case no return trajectory is
being executed, robot set points computed by the industrial controller are sent to the axes
computer without modification. The following are thus assigned to the robot set points:

q̇ref (t) = q̇ref,ic(t), (5.6)
qref (t) = qref,ic(t), (5.7)

where qref and q̇ref are the robot joints position and velocity set points.

Execution of evasive velocities

The second possible case for the computation of robot joint set points is the execution of
evasive actions. As already mentioned, when a group of constraints is relaxed, evasive
velocities can be projected in the null space of remaining enforced constraints. Robot set
points could therefore be computed as follows:

q̇ref (t) = q̇ref,ic(t) + q̇ev,cs(t), (5.8)

qref (t) = qt0 +

t∫
t0

q̇ref (τ) dτ. (5.9)

However, the industrial controller joint velocity references are computed to enforce all of
the task constraints, even the relaxed ones. The obtained joint references thus enforce the
sum of the evasive velocities and of the task velocities on the relaxed constraints. In order
to properly execute the evasive velocities, the relaxed constraints contribution has to be
removed from the industrial controller reference.
As the industrial controller references are available only in the joint space, in order to ex-
tract the part corresponding to the enforced constraints, a transformation in the operational
space is necessary. We introduce:

ẋcs,ic(t) = Jcs(q)q̇ref,ic(t), (5.10)

the vector of the industrial controller reference for the constrained operational space coor-
dinates. New robot set points can be computed as follows:
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q̇ref (t) = Jcs(q)†ẋcs,ic(t) + q̇ev,cs(t), (5.11)

qref (t) = qt0 +

t∫
t0

q̇ref (τ) dτ. (5.12)

The so obtained robot joints position and velocity references are derived from the part of
the industrial controller references corresponding to enforced constraints, and from the
projection of evasive velocities in the null space of such constraints. It has therefore to be
noted that they differ from the ones computed by the external controller.
The robot set points have to be computed for discrete time steps and, moreover, the lin-
earisation introduced in the Jacobian computation introduces an error, which has to be
compensated by a closed loop algorithm. Considering a time step of size ∆t, the follow-
ing algorithm is thus adopted:

q̇ref,k+1 = Jcs(qk)
† (ẋcs,ic + Kecs,ic,k) + q̇ev,cs,k, (5.13)

qref,k+1 = qk + q̇ref,k+1 ·∆t, (5.14)

where ecs,ic,k is the kinematic error with respect to the industrial controller reference for
the constrained coordinates in the operational space, at time step k, and K is the error gain
matrix.

Execution of return trajectories

The last case to be considered for the computation of robot joints set points, is the exe-
cution of return trajectories. In such a condition, constrained coordinates can be assigned
the industrial controller reference or the return trajectory reference, based on the return
trajectory status. Let us introduce the vector rs, which determines the status of the return
trajectories:

rs = {rsi : i = 1, ..., nc} ,

where rsi =

{
1, if a return trajectory is active on the i-th constrained coordinate

0, otherwise
.

(5.15)

We also introduce the vector of return trajectories reference ẋret:

ẋret = {ẋret,i : i = 1, ..., nj} , (5.16)
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Whose elements are the return trajectories computed for the constrained coordinates. The
reference for the constrained coordinates can then be defined as:

ẋcs = {ẋcs,i : i = 1, ..., nc} ,where ẋcs,i =

{
ẋcs,ic,i, if rsi=0

ẋret,i, otherwise
,

and ẋcs,ic,i is the i-th element of ẋcs,ic. The robot set points can finally be defined as:

q̇ref (t) = Jcs(q)†ẋcs(t) + q̇ev,cs(t), (5.17)

qref (t) = qt0 +

t∫
t0

q̇ref (τ) dτ. (5.18)

Similarly to the two previous cases, a discrete time closed loop algorithm is adopted to
compute the robot commands:

q̇ref,k+1 = Jcs(qk)
† (ẋcs + Kecs,k) + q̇ev,cs,k, (5.19)

qref,k+1 = qk + q̇ref,k+1 ·∆t. (5.20)

where ecs,k is the new kinematic error.

5.3 Experimental validation

The collision avoidance strategy introduced in this chapter has been experimentally vali-
dated on a robotic assembly task. Such a task has been presented in [92], [93] and [64], and
comprises both position and force controlled operations. During the assembly operation,
an ABB FRIDA dual arm industrial robot prototype builds an emergency stop button, and
exploits both force measurement and force estimation to perform the operations requiring
force control. The assembly procedure is composed by four main phases:

• the button is inserted in the device main case;

• a nut is fastened on the button thread in order to secure it to the case;

• an electric switch is snapped on the button chassis;

• the button case is mounted on the chassis.

Snapshots of the assembly operation are shown in Fig. 5.3.
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(a) The task initial state. (b) Red button and yellow case picking. (c) Positioning of the yellow case on the as-
sembly fixture. A force sensor placed under-
neath the fixture is used for the operation.

(d) Insertion of the red button in the yellow
case, using the force sensor.

(e) Nut screwing on the button thread, using
force estimation.

(f) Yellow case alignment using the force
sensor.

(g) Positioning of the button chassis on the
assembly fixture, using force sensing.

(h) Snap fit of the button switch on the chas-
sis.

(i) Assembly finalisation.

Figure 5.3: Snapshots of the assembly task. Courtesy of Andreas Stolt, University of Lund.
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5.3.1 System architecture

The force controlled assembly task is performed using the already mentioned open con-
figuration of an ABB IRC5 industrial robot controller, which has been created using the
interface presented in [10]. Position controlled operations are performed using the indus-
trial controller, and are programmed with the proprietary language, while force controlled
operations are performed by an external computer. In the implementation of the assembly
task, the two systems therefore operate in a mutually exclusive manner.
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Figure 5.4: The system architecture of the integration between the collision avoidance system and the force
control system.

The dual arm assembly task is composed of force controlled and position controlled op-
erations, but the collision avoidance system presented in this chapter has been integrated
with the latter. In fact, our collision avoidance system is designed to be integrated with the
industrial controller, but force controlled skills are executed only by the external computer.
Moreover, due to a low accuracy robot calibration, performing evasions without influenc-
ing force sensing and estimation is problematic. In the overall architecture, depicted in
Fig. 5.4, the external computer is thus used to execute either the force control strategy or
the collision avoidance system, during position controlled operations. Remarkably, and
differently from previous implementation, the collision avoidance system works concur-
rently with the motion generation performed by the industrial controller. Finally, due to
limitations in the communication system imposed by the considered case study, the colli-
sion avoidance system has been applied to the robot right arm alone. Nonetheless, when
such specific limitations are removed, the system can be easily applied to the two arms.
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5.3.2 Sensor system

The collision avoidance strategy is based on detection of obstacles surrounding the robot.
However, up to now, such a strategy has been presented independently from the sensor
system adopted to accomplish such a task. As a matter of fact, the sensor choice is crucial,
as its characteristics determine the possibility to accomplish the collision avoidance system
goal, that is enabling robot deployment in unstructured environments. In addition to basic
performance requirements, such as sensor range and resolution, the sensor has therefore
to be easily deployable in a changing environment. Onboard sensors and in particular
distributed distance sensors are particularly fit for such a scenario. Such a sensor can be
composed of a multitude of sensing spots or by a continuous sensing device, and is applied
directly on the surface of the robot. As the sensor is applied on the robot, no structuring
of the working environment is needed for its application, and self occlusion problems are
prevented by the sensor placement. Moreover, the field of view is omnidirectional, and
offers a high coverage of the robot workspace.

Previous works related to distributed distance sensors

The distributed distance sensor concept was first introduced and applied to an industrial
robot in [19], where an implementation based on ad-hoc infrared distance sensors was
proposed. A deeper insight at the sensor implementation was given by the same authors
in [20], and the sensor concept was applied to motion planning and teleoperation in [21]
and [66]. The same authors finally tackled real time collision avoidance using their dis-
tributed distance sensor implementation in [67], and an interesting insight at the concept
of distributed sensing was given in [68]. A different implementation of the distributed
distance sensor, based on capacitance, for obstacle avoidance, was first presented in [75].
However, capacitance based distance sensors offer low spatial resolution when compared
to most optical ones, and their measurements highly depend on the detected object mate-
rial. Both sensor types have been used in many works, among which one of the most recent
is [84]. We contributed to the development of distributed distance sensors by tackling the
problem of sensor sizing and disposition in [18]. A reactive collision avoidance strategy,
based on a distributed distance sensor, was also introduced in [15].

Proposed sensor implementation

A distributed distance sensor prototype has been created to provide the collision avoidance
system with adequate obstacle sensing, adopting a multi-spot configuration. Such a device
has been designed to meet the following objectives:

• high sensor portability;

• reduced sensor bulk and no reduction of robot workspace;
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• low cost.

High sensor portability The proposed collision avoidance system has been conceived as an
expansion of the standard functionalities of an industrial controller. Likewise, the sensor
system for obstacle detection has been designed to be added to an existing robot. For this
reason, a sensor structure which can be applied directly on the robot surface, and fastened
to it without the need of modifications, has been built. The distributed sensor main body,
from now on shell, is composed by two halves, which embrace the robot arm and are
connected by standard fittings. The sensor can thus be easily mounted or removed from
the robot, as an additional component.

Reduced sensor bulk and no reduction of robot workspace The application of the sensor on the
robot surface increases the robot size, with the possible side effect of limiting its move-
ments. The sensor has therefore to be as small as possible, in order to avoid the self colli-
sion of parts of the arm during robot movements. Depending on the adopted measurement
principle, sensor size can vary significantly. Time of flight sensor are often used in human-
robot interaction applications, and as components of safety rated protective systems (see
for example [97] and [6]). However, deploying a multitude of time of flight sensors on a
robot surface is a problematic choice, due to their high cost and to the significant size of
the optical parts. Using a single light source and measurement unit, optically connected
with distributed sensing spots, is an interesting concept to achieve size reduction, which
nevertheless could not be transformed into a working device yet. An alternative solution
is offered by infrared distance sensors: such devices are commercially available in cheap
implementations, with measuring ranges of approximately 1 meter, that are particularly
suited for close cooperation with humans, sensing resolutions of few centimeters and with
sensor sizes of few or less than one centimeter (see [86]). Infrared distance sensors have
been chosen for the distributed sensor implementation. One downside is the current un-
availability of safety rated infrared distance sensors of the mentioned size. However, for
the time being, such devices are sufficient to develop the safety system functionalities, and
could be replaced in the future with safety rated ones, as soon as they become available.

Low cost As one of the goals of the collision avoidance system is to reduce the costs re-
lated to the structuring of the environment, the sensor system has to be low cost, in order
not to void the economic advantages offered by the human-robot collaboration configura-
tion. The selected measurement principle allows limiting the overall sensor system cost.

The distributed sensor mounted on one robot arm is shown in Fig. 5.5. The sensor is
composed of two shells, that host the distance measurement spots.
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Figure 5.5: The distributed distance sensor mounted on the ABB FRIDA dual arm robot prototype.

Sensor sizing

One of the most important performance indexes, for a multi spot distributed distance sen-
sor, is the minimum size of the detectable object. Since measurement is not performed by
a continuous sensing surface, the discrete sensing spots generate a discontinuous coverage
of the environment. Uncovered portions of the environment may obviously contain obsta-
cles, which the sensor would fail to detect. It is therefore necessary to design the sensor in
such a way that detection of obstacles of the desired minimum size is guaranteed.
In [18] we presented a method for sensor sizing, based on detection requirements, which
is summarised in the following. Let us consider the configuration depicted in Figs. 5.6(a)
and 5.6(b), where a cylindrical sensor shell detects an obstacle, whose surface we will
assume to be perpendicular to the shell radius. We introduce the following parameters:

δα angular spacing between sensor spots wobj = |AB| object width
δl longitudinal spacing between sensor spots lobj object length
npL points detected on the longitudinal direction ζ detection angle
npC points detected on the circular direction ls shell length
do object distance ds shell diameter

The objective of the sizing process is to define the number of measurement spots to be
put on a shell, in order to ensure the detection of the object of minimum size. Spots will
be arranged in rings, with equal angular spacing between them, and multiple rings will
be arranged on the shell length, once again with equal longitudinal spacing between them.
The unknown quantities to be determined are consequently nsc and nsl, the number of spots
to be put on a sensors ring, and the number of sensor rings respectively. The equations for
sensor sizing are derived from the system of equations (5.21): the first two equations of the
system define the relationship between the detected object size and position, the number
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of points to be detected on it and the sensor spots disposition. The second two equations
instead define the number of spots to be placed on the shell, in order to satisfy the detection
specifications. The sensor shell designed accordingly is depicted in Fig. 5.6(b).

wobj = 2
(
ds
2

+ do
)
tan

δαnpC
2

lobj = δlnpL

nsc = 2π
δα

nsl = ls
δl

+ 1

⇒

nsc =
π

tan−1
wobj

2
(
ds
2

+ do
)npC

nsl =
ls

lobj
npL + 1

(5.21)
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Figure 5.6: On the left, the geometric model for sensor sizing, with an angular sector of the sensor shell
and the detected object. On the right, the spots disposition obtained for the sensor shell.

Sensor design has also to take into account the availability of adequate locations for the
sensor mounting. Fig. 5.7 shows the identified possible areas for sensor placement on
the ABB FRIDA robot. The sizing process has led to the design of a sensor with the
specifications described in Table 5.1, whose shells are shown in Figs. 5.8(a) and 5.8(b).
The selected sensor spot is a Sharp GP2Y0A21YK commercial infrared distance sensors.
The specifications of the sensor spot are reported in Table 5.2.

area nsc nsl wobj [cm] lobj [cm] do [cm]
B 8 2 10 10 20

30 30 70
D 8 1 30 30 30

Table 5.1: Specifications for the distributed sensor sizing.

73



Chapter 5. Collision avoidance strategy based on projection in the null space of the task

Sharp GP2Y0A21YK
range [cm] 8 - 80
measurement frequency [Hz] 26
size L-W-H [mm] 29.5-18.9-15.5
detection area diameter at 80 cm [cm] 12

Table 5.2: Main features of the sensor spot.
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Figure 5.7: The identified possible areas for sensor placement.

(a) (b)

Figure 5.8: The two sensor shells composing the distributed distance sensor prototype. On the left the upper
arm shell, and on the right the lower arm one.
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Detected obstacles position reconstruction

The distributed sensor system is used to detect the obstacles surrounding the robot. Such
measurements are then used to compute the danger field, and finally to perform evasive
motions. In order to perform such operations, the detected obstacles position has to be
computed. The procedure for position computation, presented in [15], is summarised in
the following. Each sensor spot measures the distance between the detected obstacle and
the sensor origin. Let us define the homogeneous position vector pk of the k-th detected
obstacle, expressed in the k-th sensor frame:

pk = [0, 0, dk, 1]T (5.22)

where the assumption is made that the sensor measurement direction coincides with the z-
axis of the sensor frame. We then define the homogeneous transformation matrix from the
Denavit-Hartenberg frame of i-th link, to which the sensor is attached, to the k-th sensor
frame, TDH,i

k . The detected obstacle position can be defined as:

ro = Tw
RTR

DH,iT
DH,i
k pk (5.23)

where Tw
R and TR

DH,i are the homogeneous transformation matrices from the world to the
robot frame, and from the robot frame to the i-th Denavit-Hartenberg frame, respectively.

Known obstacles filtering

The distance sensor detects the objects inside its coverage, and provides the distance from
the robot surface to such objects. However, no information about the type of detected
object is provided. Depending on the considered scenario, moving obstacles, parts of the
work cell or even the robot itself may be detected. As obstacles detection generates evasive
motions, it is necessary to filter out those measurements which correspond to parts of the
robot and of the work cell, in order to avoid unnecessary deviations from the preplanned
trajectory. For this purpose, a measurements filtering algorithm has been proposed, whose
goal is to retain only those measurements which correspond to unknown objects.
The algorithm is based on a geometric model of the robot and the work cell, and on simula-
tion of sensor measurements using ray tracing techniques. During robot operation, sensor
measurements are filtered according to the following strategy:

1. given the robot position, sensor spots positions and orientations are computed;

2. possible intersections between the spots rays, and parts of the work cell and of the
robot are computed, using the environment geometric model;

3. simulated distance measurements are compared with real ones;
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4. in case a real measurement corresponds to a simulated one, such a measurement is
discarded, and is not considered in danger field computation.

While the geometric model of the robot adopted for measurement simulation can be de-
signed once and for all, the one of the environment has to be adapted as the robot work cell
changes. This circumstance decreases to some extent the capability of the safety system to
adapt to an unknown scenario. On the other hand, such a task can be automated if a work
cell simulation tool is adopted for robot programming.
Another important issue is the heavy computational load associated with computation of
intersections between all of the spots rays and the environment model, in particular if a
high number of spots are used. It is therefore essential to adopt an efficient representation
of the environment and of the robot, in order to keep the computational load as low as
possible. Fig. 5.9 shows the geometric model chosen for the robot arm, which is based on
capsules and spheres.

Figure 5.9: The robot arm and the sensor CAD model, covered by the geometric model exploited to filter
known obstacles.

Despite the adoption of an efficient geometric model, satisfying the real time constraints
is often impossible when the collision avoidance strategy and the known obstacles filter-
ing are executed sequentially. Parallelisation of the execution of such tasks is however
possible, and allows a more effective exploitation of the available hardware resources. In
the practical application, the collision avoidance strategy and the known obstacles filter-
ing have been split into two concurrent processes, allowing compliance with real time
execution constraints.
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5.3.3 Experimental results

In the following, the experimental results of the application of the collision avoidance sys-
tem to the introduced assembly task are presented. A video of the experiment is available
at [17]. As already mentioned, the collision avoidance system has been applied only to
the robot right arm. The constraints classification presented in Chapter 2 has been applied
to the task, identifying 11 different skills. The ABB FRIDA robot is composed of two 7
degrees of freedom arms: since each arm has a degree of kinematic redundancy, all types
of constraints introduced in the classification will be considered. Evasive motions during
the execution of two skills are analysed in the following.
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Figure 5.10: The evolution of the robot pose during an evasive action in the first skill. Blue lines show the
current robot pose, black dashed ones show the industrial controller reference pose and red dotted lines
correspond to return trajectories. The top right graph shows the level of danger.

Skill 1 - Free space movement

The first skill considered is the movement from the robot starting position to the initial
position for the button picking. The right arm performs a free space movement, so the
environment does not impose any constraint on its motion. Moreover, the skill being
performed does not impose any restriction for its successful completion. No constraint is
thus classified as hard. The completion of the skill implies reaching its final position, so
constraints on translational velocities are classified as skill, since they can be temporarily
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Chapter 5. Collision avoidance strategy based on projection in the null space of the task

relaxed, but need to be enforced in order to complete the operation. Finally, orientation of
the robot TCP can be relaxed without consequences on skill completion, and is classified
as soft, and the kinematically redundant arm presents a null constraint. If three Cartesian
axes are used to describe robot position, XYZ Euler angles to describe its orientation and
the swivel angle sw for the kinematic redundancy, using the robot velocities vector (5.24),
the selection vectors can be defined as follows:

v = [vx, vy, vz, ωx, ωy, ωz, sw] (5.24)

vx vy vz ωx ωy ωz sw
snull 0 0 0 0 0 0 1
ssoft 0 0 0 1 1 1 0
sskill 1 1 1 0 0 0 0
shard 0 0 0 0 0 0 0

Snapshots of the evasion from a human approaching the robot, during the described skill,
are shown in Fig. 5.12. As the human gets closer to the robot, the danger field level
increases, causing the progressive relaxation of null and then soft constraints (in the con-
sidered experiment skill constraints relaxation was not reached). Fig. 5.10 shows the
evolution of the robot pose during skill execution.

Skill 2 - Button picking

The second considered skill is the button picking from the parts dispenser. Constraints
imposed by the environment during such an operation correspond to the classical peg-in-
hole configuration. In fact, the red button is allowed to rotate around the button dispenser
hole axis, but can not rotate around the two axes perpendicular to the hole one, nor it
can translate along such axes. Such translations and rotations are thus classified as hard
constraints. Moreover, as the dispenser hole is blind, translation along the hole axis has to
be considered as a hard constraint too, since the relaxation of the corresponding constraint
may lead to the impact between the button and the hole bottom. Such a choice is due to a
limitation of the collision avoidance system, and will be discussed later on. The remaining
coordinate is the rotation around the hole axis, which corresponds to a soft constraint, since
its relaxation has no consequences on skill execution. Using the same reference system as
for the previous skill, and considering the Cartesian z axis oriented as the hole axis, the
following selection vectors can be defined:

vx vy vz ωx ωy ωz sw
snull 0 0 0 0 0 0 1
ssoft 0 0 0 0 0 1 0
sskill 0 0 0 0 0 0 0
shard 1 1 1 1 1 0 0
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5.4. System limitations
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Figure 5.11: The evolution of the robot pose during an evasive action in the second skill. Blue lines show
the current robot pose, black dashed ones show the industrial controller reference pose and red dotted
lines correspond to return trajectories. The top right graph shows the level of danger.

Fig. 5.13 shows the different phases of an evasive motion performed by the robot, as a
human enters the workspace. At first, swivel angle sw is relaxed. When danger exceeds
the CDFmed threshold, orientation around the hole axis is relaxed, as it is detailed in Fig.
5.11. The collision avoidance system hence exploits such skill redundancy to perform
evasion.

5.4 System limitations

The collision avoidance system introduced in this chapter, proved itself to be effective in
the experimental validation. Evasive actions were performed consistently with the mod-
elled constraints, and the task could be successfully completed even with a human operator
occupying the robot workspace. However, the presented system is not able to cope with
some relevant sets of constraints:

Robot kinematic constraints Kinematic constraints such as joints ranges, maximum veloc-
ities and accelerations are not taken into account, which introduces the risk of exceeding
such limits during evasive actions and hindering task completion.
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Chapter 5. Collision avoidance strategy based on projection in the null space of the task

Task space unilateral constraints As already mentioned in the analysis of the experiment sec-
ond skill, constraints such as a blind hole, which limit the robot motion unilaterally, can
not be exploited for robot evasion. The only solution allowed by the introduced system is
to prevent any modification of the preplanned task along such a direction, considering the
corresponding constraint of hard type. Unilateral constraints in the task space are hence
not managed by the introduced system.

In Chapter 6 a new version of the collision avoidance system will be introduced, in order
to overcome such limitations.

A third limitation of the proposed system, is the inability of the strategy introduced in
Section 5.2.2, for the computation of return trajectories, to take into account robot initial
and final velocities. Velocity discontinuities may therefore occur when the return trajec-
tory is executed. A different strategy for the computation of return trajectories, taking into
account initial and final velocity constraints, will be proposed in Chapter 6.

5.5 Summary

In this chapter, a first control strategy for the application of the task-consistent collision
avoidance strategy presented in Chapter 3 has been presented. A method for the execution
of evasive velocities consistently with task constraints, and a strategy for planning return
trajectories, have been detailed, deriving the overall control laws for the robot. Then, the
proposed strategy has been experimentally validated on a dual arm assembly task. The
distributed distance sensor prototype adopted for obstacle detection in the experimental
validation has been presented. The design criteria for its sizing and placement have been
detailed, and a system for filtering measurements of known obstacles has been introduced.
Finally, the experimental results have been discussed, and the system limitations have been
analysed.
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5.5. Summary

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Snapshots taken from execution of the first skill.
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Chapter 5. Collision avoidance strategy based on projection in the null space of the task

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.13: Snapshots taken from execution of the second skill.

82



CHAPTER6
Optimisation-based collision avoidance system

6.1 Introduction

As already mentioned in Chapter 5, projection of evasive velocities in the null space of the
constraints composing the task allows to effectively combine collision avoidance with the
execution of a programmed operation. Nonetheless, constraints such as robot kinematic
limitations and unilateral operational space constraints, can not be effectively dealt with
adopting such an approach. In this chapter, the inclusion of such constraints is sketched.

6.2 QP problem for the computation of evasive velocities

Null space projection allows to limit evasive velocities only to some selected directions.
When also unilateral constraints have to be taken into account in the execution of evasive
velocities, such an approach is no longer effective, and a method to deal with multiple
constraints of different nature is needed. Constraints should be expressed in a transparent
way, defining all the degrees of freedom available to search for the solution, and deriving
a problem solution which takes into account all the constraints.
Such a formulation can be achieved by expressing the execution of evasive velocities,
consistently with the considered constraints, in the form of an optimisation problem. Such
a problem can be for example formulated as:
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Chapter 6. Optimisation-based collision avoidance system

min
q̇
‖q̇− q̇ev‖2

2

s.t.

constraints, (6.1)

where the cost function to be minimised is the squared 2-norm of the difference between
the selected velocities of the robot joints, and the evasive ones (3.10). Limitations in the
operational space and in the joint space can be both taken into account, and the vector
of joint velocities is searched for, whose distance from the evasive one is minimal in the
2-norm.

Figure 6.1: The region of feasible robot joints states in the position-velocity plane.

6.2.1 Management of robot kinematic constraints

The first set of constraints which have to be taken into consideration are the robot kine-
matic limitations. Such constraints include joint limits, maximum and minimum joint
velocities and maximum and minimum joints accelerations. When solving for the robot
joints velocities, the velocity reference for time step k+1 which is the closest to evasive
velocities, according to the selected cost function, is the solution of the following problem:
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6.2. QP problem for the computation of evasive velocities

min
q̇k+1

‖q̇k+1 − q̇ev‖2
2

s.t.

qmin ≤ qk + q̇k+1 ·∆t ≤ qmax ,

q̇min ≤ q̇k+1 ≤ q̇max ,

q̈min ≤
(q̇k+1 − q̇k)

∆t
≤ q̈max (6.2)

Given a set of maximum and minimum joint positions, velocities and accelerations, the
region of feasible positions and velocities of the robot joints can be defined as depicted
in Fig. 6.1. In some areas of the position-velocity plane, the limit velocity depends on
the joint position: in fact, since the maximum available acceleration and deceleration are
finite, when a joint gets close to the joint limit, the maximum velocity has to be bounded,
taking into account the space needed to brake without hitting the limits. Moreover, in order
to keep the joints states in the feasible region, depending on the current robot state, accel-
erations have also to be bounded, so as to guarantee each joint to remain in the feasible
region not only for the current, but also for the next time step.

6.2.2 Management of operational space constraints

In Chapter 5 a case study has been presented where a unilateral constraint is imposed by
the environment to the robot: a peg has to be inserted into a blind hole, which limits the
peg movement unidirectionally along the hole axis. In case an evasive action has to be per-
formed, if the degree of freedom to which the unidirectional constraint is applied has to be
exploited, a strategy has to be adopted to deal with the unidirectional constraint. That is,
evasive motions have to be limited in order to avoid the collision of the robot with the con-
straint bound. Since a relaxed constraint is considered, any trajectory can be imposed to
the corresponding coordinate, as long as the unidirectional limitation is taken into account.

We introduce the following strategy:

1. a threshold before the bound of the unilateral constraint, along the direction to which
such constraint is applied, is defined;

2. if the preplanned trajectory for such a direction is relaxed to perform an evasive
motion, evasion is allowed as long as the robot does not exceed the above mentioned
threshold;

3. if the threshold is crossed, a trajectory is planned which smoothly brings the robot to
the bound of the unilateral constraint;
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Chapter 6. Optimisation-based collision avoidance system

4. the robot is kept at the bound of the unilateral constraint until the preplanned trajec-
tory is enforced once again, and a return trajectory brings the robot to the point of
trajectory suspension.

Figure 6.2 shows an example of the application of such a strategy to a peg in hole scenario.
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Figure 6.2: The application of the strategy for management of unilateral constraints to a peg in hole sce-
nario. In (a) the preplanned trajectory is being executed. In (b) the constraint applied to the z coordinate
is relaxed, and the threshold is reached. In (c), after the threshold is reached, a trajectory is activated
to smoothly bring the robot to the unilateral constraint bound and in (d), after the constraint is enforced
once again, the return trajectory brings the robot to the point of preplanned trajectory suspension.

Considering the optimisation problem introduced in (6.2), and extending it with the con-
straints applied to the unilaterally-constrained coordinate, the following problem can be
formulated:
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6.2. QP problem for the computation of evasive velocities

min
q̇k+1

‖q̇k+1 − q̇ev‖2
2

s.t.

Juni(qk)q̇k+1 = ẋlim, k+1 + Kelim, k if (csuni == 0 and x > xmax − δ ),

Juni(qk)q̇k+1 = ẋref, k+1 + Keref, k if csuni == 1,

qmin ≤ qk + q̇k+1 ·∆t ≤ qmax

q̇min ≤ q̇k+1 ≤ q̇max

q̈min ≤
(q̇k+1 − q̇k)

∆t
≤ q̈max, (6.3)

where Juni(q) is the Jacobian for the coordinate to which the unilateral constraint is ap-
plied, ẋlim is the velocity reference of the trajectory used to bring the robot to the constraint
bound and elim is the kinematic error with respect to such a trajectory. If the considered
coordinate is relaxed, that is if csuni is equal to zero, and if the threshold δ before the
unilateral constraint activation is exceeded, ẋlim is tracked. On the other hand, if csuni is
equal to one, the reference ẋref is tracked, and the kinematic error with respect to such
reference eref is controlled.

6.2.3 General optimisation problem

Once the management of robot kinematic limitations and of unilateral operational space
constraints has been discussed, the general optimisation problem for the execution of the
collision avoidance strategy can be formulated. As already introduced in Chapter 5 in
equation (5.19), the constraints introduced on the cartesian coordinates can be in general
formulated as:

Jcs(qk)q̇k+1 = (ẋcs + Kecs,k) ,

where

ẋcs = {ẋcs,i : i = 1, ..., nc} , ẋcs,i =

{
ẋcs,ic,i, if rsi=0

ẋret,i, otherwise.

The general optimisation problem for the computation of the robot joints velocity set
points is finally defined as:
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min
q̇k+1

‖q̇k+1 − q̇ev‖2
2

s.t.

Jcs(qk)q̇k+1 = (ẋcs + Kecs,k) ,

Juni(qk)q̇k+1 = ẋlim, k+1 + Kelim, k if (csuni == 0 and x > xmax − δ ),

qmin ≤ qk + q̇k+1 ·∆t ≤ qmax

q̇min ≤ q̇k+1 ≤ q̇max

q̈min ≤
(q̇k+1 − q̇k)

∆t
≤ q̈max, (6.4)

yes no

Δp = pf - pi Δpcrit = 
2amax

s⋅(vf
2-vi

2)

Δp == Δpcrit 

Δp > Δpcrit 

noyes

Critical
profile

Over-critical
profile

Under-critical
profile

Figure 6.3: The decision tree adopted to select the adequate return trajectory, based on the current robot
state.

6.3 Time optimal return trajectories with initial and final velocity constraints

In the previous chapter, an algorithm for the computation of return trajectories, from the
current robot pose to the reference one, has been proposed. Such an algorithm is able to
cope with a changing goal, that is the industrial controller reference, but only initial and
final position constraints are considered. Therefore continuity in the velocity profile is
not guaranteed when the trajectory is activated or the goal is reached. Such a limitation
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6.3. Time optimal return trajectories with initial and final velocity constraints

has been overcome adopting the algorithm proposed in [82], which is summarised in the
following, that guarantees time optimality of the generated return trajectory, and allows
enforcing constraints also on the initial and final velocities.
The current coordinate state is defined by the following parameters:

pi = current position pf = goal position
vi = current velocity vf = goal velocity

∆v = vf − vi ∆p = pf − pi
s = ∆v/|∆v| amax = maximum acceleration

∆pcrit =
s(v2f − v2i )

2amax
s̃ = sign(∆p−∆pcrit)

based on which the type of trajectory guaranteeing time optimality is is determined, ac-
cording to the decision tree depicted in Fig. 6.3.
Three different trajectory types are identified:

• Critical profile: if the distance to be covered is equal to the one needed to reach the
final velocity at the maximum acceleration, a trajectory of minimum duration, the
critical profile, is obtained;

• Over-critical profile: when the distance to be covered is greater than the critical one,
a higher duration than the critical trajectory is obtained;

• Under-critical profile: when the distance to be covered is lower than the critical
one, a motion in the opposite direction of the goal is needed to reach the desired final
state, implying once again a higher travel time than the critical one.

Once the trajectory type has been identified, its profile can be defined. For critical profiles,
the following laws are introduced for acceleration, velocity and position:

a(t) = samax

v(t) = samaxt+ vi

p(t) = 1
2
samaxt

2 + vit+ pi

, t ∈
[
0,

s∆v

amax

]

For over and under critical profiles, common time laws can be adopted. Two different
velocity profiles, triangular and trapezoidal, are used, based on the value of the following
parameter:

vp =

√
1

2

(
v2
f + v2

i

)
+ s̃∆pamax (6.5)

Given the maximum allowed velocity vM , we define the profiles:
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Chapter 6. Optimisation-based collision avoidance system

if vp ≤ vM



if t ∈ [0, T1]


a1(t) = s̃amax

v1(t) = s̃amaxt+ vi

p1(t) = 1
2
s̃amaxt

2 + vit+ pi

if t ∈ (T1, tf ]


a2(t) = −s̃amax
v2(t) = −s̃amax(t− T1) + s̃vp

p2(t) = −1
2
s̃amax(t− T1)2 + s̃vp(t− T1) + p1(T1)

where T1 =
s̃vp − vi
s̃amax

, tf = T1 +
vf − s̃vp
−s̃amax

and:

if vp > vM



if t ∈ [0, T1]


a1(t) = s̃amax

v1(t) = s̃amaxt+ vi

p1(t) = 1
2
s̃amaxt

2 + vit+ pi

if t ∈ (T1, T2]


a2(t) = 0

v2(t) = s̃vM

p2(t) = s̃vM(t− T1) + p1(T1)

if t ∈ (T2, tf ]


a3(t) = −s̃amax
v3(t) = −s̃amax(t− T2) + s̃vM

p3(t) = −1
2
s̃amax(t− T2)2 + s̃vM(t− T2) + p2(T2)

where T1 =
s̃vM − vi
s̃amax

, T2 =
1

vM

[
v2
f + v2

i − 2s̃vMvi

2amax
+ s̃∆p

]
,

tf = T2 +
vf + s̃vM

s̃amax

Based on the introduced decision tree, at every time step the correct profile for trajectory
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6.4. Experimental validation on a dual arm task

computation is identified. Since the profiles are defined piecewise, in order to select which
part of the profile has to be considered, the discrete time step ∆t is taken as the current
time t, and is compared with the switching times. Finally, the new set points for the return
trajectory are obtained by substituting the time step ∆t.

6.4 Experimental validation on a dual arm task

The introduced implementation of the collision avoidance strategy is able to cope with
kinematic and unilateral operational space limitations and, moreover, adopts an algorithm
for return trajectories generation, which guarantees continuity in both position and velocity
profiles. Such a strategy has been experimentally validated on a dual arm pick and place
task.
During such a task, a tray is jointly lifted by the two arms of a robot, and displaced to
the task final position. The task is thus composed of three skills: the approach to the tray
picking position, which is independently executed by the two robot arms, the lifting and
displacing of the tray, which is collaboratively performed by the two arms, and finally a
motion to return to the initial position. Single and dual arm skills are thus present, so task
constraints classification will have to be adapted accordingly. The task is sketched in Fig.
6.4.

Figure 6.4: A pictorial representation of the dual arm pick and place task adopted for experimental valida-
tion.

The three skills introduce the following constraints:
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Chapter 6. Optimisation-based collision avoidance system

Approach - return skills The first and the third skill are free space movements: the environ-
ment hence does not apply any constraint on the arms motion. Moreover, the skill being
performed does not imply any restriction, so no hard constraints are present. Constraints
on robot position are of skill type, as their relaxation implies the suspension of the op-
eration. Orientation is not relevant for skill completion, so the corresponding constraints
are of soft type. Finally, a null constraint characterises the swivel angle of the robot arms,
which present one degree of kinematic redundancy each. The robot end effectors poses
are described using three Cartesian axes for position and XYZ Euler angles for orienta-
tion, while the swivel angle sw is used to describe kinematic redundancy. Using the robot
velocities vector (5.24), the following selection vectors are defined for both robot arms:

vx vy vz ωx ωy ωz sw
snull 0 0 0 0 0 0 1
ssoft 0 0 0 1 1 1 0
sskill 1 1 1 0 0 0 0
shard 0 0 0 0 0 0 0

Dual arm skill During the second skill a tray with an object lying on top is moved by the
two arms. In order to prevent the object from falling, the tray has to be kept on the hori-
zontal plane: rotations around the two coordinate axes belonging to such a plane are thus
hard constraints. As for the above mentioned skills, constraints on translation are of skill
type, and the tray orientation around the vertical axis is a soft constraint. The mentioned
constraints are referred to the tray pose, and not to a specific robot arm, since a joint ma-
nipulation is being performed. In order to derive a set of constraints for the two robot
arms, the ones applied to the tray will be enforced on one of the two, and constraints on
their relative pose will be added.
Adopting the same position and orientation descriptions as in the previous case, and con-
sidering the z axis oriented as the vertical axis, the following selection vectors are thus
introduced for the left arm:

vx vy vz ωx ωy ωz sw
sL, null 0 0 0 0 0 0 1
sL, soft 0 0 0 0 0 1 0
sL, skill 1 1 1 0 0 0 0
sL, hard 0 0 0 1 1 0 0

The arms relative pose is fixed by the jointly lifted object, so relative position and orien-
tation are hard constraints. Expressing the right arm position in the left arm TCP frame,
and adopting Euler angles to describe its orientation with respect to the same frame, the
following selection vectors are introduced for the relative coordinates:
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6.4. Experimental validation on a dual arm task

vx vy vz ωx ωy ωz
srel, soft 0 0 0 0 0 0
srel, skill 0 0 0 0 0 0
srel, hard 1 1 1 1 1 1

The general optimisation problem introduced in (6.4) has to be adapted to each of the
skills: in the following, the different problem formulations adopted for the single and dual
arm skills are described. Evasive velocities have initially been applied to the left arm
alone: such a limitation will be discussed later on in the chapter.

Single arm skills

When the two arms operate independently, the right arm is controlled by the industrial
controller alone, while the collision avoidance system is applied to the left arm. The
following optimisation problem is thus adopted to control the latter:

min
q̇L, k+1

‖q̇L, k+1 − q̇L, ev‖2
2

s.t.

JL, cs(qL, k)q̇L, k+1 = (ẋL, cs + KeL, cs, k) ,

qL,min ≤ qL, k + q̇L, k+1 ·∆t ≤ qL,max

q̇L,min ≤ q̇L, k+1 ≤ q̇L,max

q̈L,min ≤
(q̇L, k+1 − q̇L, k)

∆t
≤ q̈L,max, (6.6)

where the subscript L denotes all the left arm variables and parameters. It has to be noted
that the Jacobian JL from which JL, cs is extracted, is augmented with the swivel angle
Jacobian. The last row of JL thus defines swivel angle velocity given the joints ones. The
same applies for JR, with subscript R denoting all the variables referred to the right arm.

Dual arm skill

When the dual arm skill is performed, two new sets of constraints are introduced.

Arms relative position and orientation

The joint manipulation of the same object by the two arms limits the feasible relative
positions and orientations of the arms end effectors. If the object is grasped by each of the
two robot end effectors, in such a way that a rigid connection is established, their relative
positions and orientations are fixed by the grasping pose. During the dual arm operation,
the end effectors relative pose has therefore to be kept constant.
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prel

RL

Figure 6.5: A dual arm operation which constrains the relative pose of the two robot end effectors.

Considering the scenario depicted in Fig. 6.5, the relative pose constraint can be expressed
by imposing a zero relative velocity between the two robot end effectors, using the relative
Jacobian Jrel(q):

Jrel(q)q̇ = Jrel(q)

[
q̇L

q̇R

]
= 0 , (6.7)

where

Jrel =

{[
RT
L 0 0

0 RT
L 0

] [
−JL JR

]
+

[
0 S(prel)R

T
L 0

0 0 0

] [
JL 0

]}
,

RL is the left arm TCP frame rotation matrix and S(prel) is the vector product operator
for the relative position vector prel, which is expressed in the left arm TCP frame. In order
to take into account the error introduced by the linearisations, a closed loop algorithm is
introduced to control the relative pose error:

Jrel(qk)q̇k+1 = Krelerel,k , (6.8)

where erel,k is the relative kinematic error at time instant k and Krel is the gain matrix. As
already mentioned, in this experimental validation, the collision avoidance strategy is ap-
plied to the left arm alone. Nonetheless, when the dual arm operation is being performed,
the two arms end effectors are rigidly linked by the grasped object. If an evasive motion
is performed by the left arm, and the preplanned trajectory of the arm end effector is mod-
ified, the right arm has to move accordingly, in order to comply with the relative pose
constraints. The two robot arms are thus controlled in a leader-follower configuration,
where the left arm is the leader. During the dual arm skill, the left arm is controlled con-
currently by the industrial controller and the collision avoidance strategy, while the right
arm is controlled by the collision avoidance strategy alone. The two configurations of the
control system during single and dual arm skills are depicted in Fig. 6.6.
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Figure 6.6: The two configurations of the control system during single (top) and dual (bottom) arm skills.
During single arm skills, no modification is performed on the right arm references computed by the
industrial controller, while during dual arm skills the right arm is controlled by the collision avoidance
system alone.

Swivel angle limitation

During the dual arm skill, the two arms operate close one to another, in a configuration
which implies a risk of collision between the two. On the one hand, the end effectors
relative pose is constrained by the jointly grasped object, thus preventing the collision be-
tween the end parts of the two arms. On the other hand, if an evasive motion is performed
relaxing the swivel angle, a collision between the intermediate parts of the arms may oc-
cur. Since in this first application of the collision avoidance strategy, evasive motions are
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applied to one of the two arms, and more specifically to the robot left arm, a limit value
smax is thus imposed to the swivel angle of the robot left arm, and is managed as described
above for unilateral constraints. The following constraint is hence added:

ΣsJL(qL, k)q̇L,k+1 = ṡlim,k+1 + Kelim,k if (csuni == 0 and s > smax − δ ), (6.9)

where Σs is the selection matrix extracting the row of the left arm Jacobian corresponding
to the swivel angle, ṡlim,k is the velocity at time instant k of the trajectory bringing the
swivel to the limit value and elim,k the error with respect to the imposed trajectory, at time
instant k.
The optimisation problem for the control of the two robot arms motions, applying evasive
velocities to the left arm, constraining the arms end effectors relative pose and limiting the
left arm swivel angle, can be defined as:

min
q̇L, k+1

‖q̇L, k+1 − q̇L, ev‖2
2

s.t.

ΣcsJL(qL, k)q̇L,k+1 = Σcs(ẋL,k+1 + KeL,k) ,

Jrel(qL, k,qR, k)

[
q̇L, k+1

q̇R, k+1

]
= Krelerel,k , (6.10)

ΣsJL(qL, k)q̇L,k+1 = ṡlim,k+1 + Kelim,k if (csuni == 0 and s > smax − δ ),

qmin,L

qmin,R
≤

qL,k + q̇L,k+1 ·∆t
qR,k + q̇R,k+1 ·∆t

≤
qmax,L

qmax,R ,

q̇min,L

q̇min,R
≤

q̇L,k+1

q̇R,k+1

≤
q̇max,L

q̇max,R ,

q̈min,L

q̈min,R
≤

(q̇L, k+1−q̇L, k)

∆t
(q̇R, k+1−q̇R, k)

∆t

≤
q̈max,L

q̈max,R ,

where the subscript R denotes all the variables referred to the right arm.

6.4.1 Efficient solution of the QP problem

The introduced optimisation problem has to be solved in real time in order to compute the
robot set-points. In order to satisfy the computation time constraint, an efficient formula-
tion of the problem is necessary. The optimisation problem can in general be expressed
as:
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6.4. Experimental validation on a dual arm task

min
x

1

2
xT Q x + fT x

s.t.

Ax = b,

lb ≤ x ≤ ub.

The number of rows of the A matrix corresponds to the number of constraints enforced on
the manipulator. When no constraint is relaxed, the number of constraints is equal to the
number of robot degrees of freedom, so the problem solution can be simply obtained by
means of the inverse of A:

x = A−1b,

and evasive velocities do not influence the solution. When a subset of the preplanned
trajectory constraints is relaxed, degrees of freedom become available for the minimisation
of the cost function, and the optimisation problem solution is no longer trivial. In order
to reduce the optimisation problem size, and thus to make its solution more efficient, the
problem can be reformulated in order to make the available degrees of freedom explicit.
A new problem solution x can be introduced:

x = A†b + Ny.

The A†b term satisfies the equality constraints, while the Ny term, where N is the base of
the null space of A, has no influence on the above mentioned constraints. The optimisation
problem can thus be solved for y, searching the solution that minimises the cost function.
The problem cost function can hence be reformulated as:

1

2
xT Q x + fT x =

1

2
(A†b + Ny)T Q (A†b + Ny) + fT (A†b + Ny) =

=
1

2
yT (NTQN)y + (NTQ(A†b) + NT f)Ty =

1

2
yT (Qnew)y + fTnewy.

The optimisation problem can be finally expressed as:

min
y

1

2
yT Qnew y + fTnew y

s.t.

Ny ≤ ub −A†b

−Ny ≤ A†b− ub
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Such a formulation limits the problem size to the number of relaxed degrees of freedom,
offering in general a size reduction, compared to the previous formulation.

Figure 6.7: The ABB FRIDA dual arm robot prototype lifting a tray with an object laying on it.

6.4.2 Experimental setup

The ABB FRIDA dual arm robot prototype has been used as the test bench for the pro-
posed collision avoidance system. The experimental setup is shown in Fig. 6.7. Compared
to what proposed in the previous chapter, a different sensor system has been used, in order
to evaluate possible alternative solutions for obstacle detection.
The Microsoft Kinect camera has been adopted, which is able to autonomously identify
humans in its detection field, and to generate a skeleton structure reproducing their pose.
Danger field computation can be performed by extracting points from the generated skele-
ton and considering such points as obstacles. The main advantage of the adoption of such
a device, compared to the distributed distance sensor, is avoiding the computations needed
to reconstruct the obstacle position from the spots measurements, which represent a sig-
nificant item in the computational burden. On the other hand, the sensor field of view can
be easily occluded by other obstacles or by the robot itself. Fig. 6.8 shows an example of
the acquisition of a human position, and the skeleton points adopted to compute the danger
field.
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Figure 6.8: An acquisition of the position of a human. The green points are used in the computation of the
danger field.

Two different tools have been tested to solve the optimisation problem in the real time
application, IBM CPLEX and qpOASES. The latter, based on the online active set strategy
(see [33], [34] and [79]) was able to guarantee feasibility of the real time solution of the
introduced optimisation problem.

6.4.3 Experimental results

The standard execution of the pick and place task is shown in Fig. 6.24. The Kinect
sensor covers the shown area and detects possible humans entering the workspace. Fig.
6.25 shows a human approaching the robot from its left side while the dual arm skill is
being performed. As can be noticed from the snapshots, the preplanned robot trajectory
is suspended and an evasive motion is performed to avoid the collision with the human.
Robot evasion is detailed in Figs. 6.9 and 6.10, which show the measured danger field
value during the experiment, and the evolution of robot coordinates, respectively.
As can be noticed in Fig. 6.10, as danger increases, the swivel angle, the tray orienta-
tion around the vertical axis and finally the position are progressively relaxed, in order to
enforce the evasive velocities. When, during evasion, the swivel angle exceeds the intro-
duced threshold, a trajectory is computed to smoothly bring the swivel to the limit value.
Once danger decreases, swivel angle constraint is enforced once again, and a return tra-
jectory is activated to reach the reference value of the industrial controller. Finally, Figs.
6.12, 6.13 and 6.14 show the compliance of the robot motion with kinematic limitations.
A video of the experiment is available at [16].
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Figure 6.9: The danger field measured during the experiment. All of the three thresholds are progressively
exceeded, reaching the skill suspension.
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Figure 6.10: The evolution of the robot coordinates during the experiment. As CDFlow is exceeded, swivel
angle is relaxed. Then, when danger reaches CDFmed, orientation around the vertical axis is relaxed.
Finally, position constraints are relaxed, causing the skill suspension, as can be noticed by the industrial
controller constant reference. It has to be noted that hard constraints, corresponding to phi and theta,
are never relaxed.
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Figure 6.11: The evolution of the swivel angle during an evasive motion. The red dashed line represents the
limit value for the swivel, and the orange one represents the threshold. When the threshold is exceeded, a
trajectory is activated which brings the swivel to the limit. Then, when danger decreases and the swivel
constraint is enforced once again, at the point shown by the black line, the return trajectory is activated.
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Figure 6.12: Joint accelerations during the experiment and their respective limits.
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Figure 6.13: Joint speeds during the experiment and their respective limits.
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Figure 6.14: Joint positions during the experiment and their respective limits.
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6.4.4 System limitations

The presented application of the collision avoidance system introduced in Chapter 3, is
able to overcome the limitations of the approach presented in Chapter 5, as it allows to take
into account unilateral constraints in the operational space and robot kinematic limitations.
Moreover, the new algorithm adopted to plan return trajectories guarantees continuity in
the trajectories velocity profile.
Nonetheless, the introduced system presents two main imitations: firstly, evasive actions
are applied only to one of the two arms, reducing the possibilities of the system to cope
with obstacles coming from any direction. Secondly, when considering constraints on
joints accelerations, the use of a first order CLIK algorithm, introduces an approximation
in the computation of robot accelerations.
In the next section, a system coping with such limitations is presented.

6.5 Application of evasive motions to the two arms

In order to allow the robot to effectively evade from obstacles coming from all directions,
it is necessary to compute the danger field, and consequently evasive velocities, for both
robot arms. Each arm will hence perform evasive motions depending on danger induced
on obstacles by itself. In the optimisation problem, the distance between robots joints
velocities and computed evasive velocities for the two arms will be considered as the cost
function to be minimised.
As already mentioned, a second order CLIK algorithm will be adopted, guaranteeing the
absence of approximations in the computation of accelerations. The optimisation problem
will be thus solved for joints acceleration, and the following formulation will be introduced
for the cost function:

min
q̈LR, k+1

‖q̇LR, k+1 − q̇LR, ev‖2
2 = min

q̈LR, k+1

‖q̇LR, k + ∆t q̈LR, k+1 − q̇LR,ev‖2
2

where

qLR, k =
[
qTL, k , qTR, k

]T
and q̇LR, ev =

[
q̇TL, ev , q̇TR, ev

]T
.

The optimisation problems for the single and dual arm robot skills can thus be reformu-
lated. For the single arm skills the following problem will be obtained:
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min
q̈LR, k+1

‖q̇LR, k + ∆t q̈LR, k+1 − q̇LR,ev‖2

s.t.

ΣcsJL(qL, k)q̈L, k+1 = Σcs(ẍL,k+1 + KDėL,k + KPeL,k − J̇L(qL, k)q̇L, k) ,

ΣcsJR(qR, k)q̈R, k+1 = Σcs(ẍR,k+1 + KDėR,k + KPeR,k − J̇R(qR, k)q̇R, k) ,

qmin,L

qmin,R
≤

qL,k + q̇L,k+1 ·∆t+ 0.5 q̈L, k+1∆t2

qR,k + q̇R,k+1 ·∆t+ 0.5 q̈R, k+1∆t2
≤

qmax,L

qmax,R ,

q̇min,L

q̇min,R
≤

q̇L,k + q̈L, k+1∆t

q̇R,k + q̈R, k+1∆t
≤

q̇max,L

q̇max,R ,

q̈min,L

q̈min,R
≤

q̈L, k+1

q̈R, k+1

≤
q̈max,L

q̈max,R ,
(6.11)

and for the dual arm skills, the following optimisation problem is defined:

min
q̈LR, k+1

‖q̇LR, k + ∆t q̈LR, k+1 − q̇LR,ev‖2

s.t.

ΣcsJL(qL, k)q̈L, k+1 = Σcs(ẍL,k+1 + KDėL,k + KPeL,k − J̇L(qL, k)q̇L, k) ,

Jrel(qL, k)q̈LR, k+1 = KDėrel,k + KPerel,k − J̇rel(qL, k)q̇rel, k ,

ΣsJL(qL, k)q̈L,k+1 = s̈lim,k+1 + KDėlim, k + KP elim, k −ΣsJ̇L(qL, k)q̇L,k if (csuni == 0 and
s > smax − δ ),

qmin,L

qmin,R
≤

qL,k + q̇L,k+1 ·∆t+ 0.5 q̈L, k+1∆t2

qR,k + q̇R,k+1 ·∆t+ 0.5 q̈R, k+1∆t2
≤

qmax,L

qmax,R ,

q̇min,L

q̇min,R
≤

q̇L,k + q̈L, k+1∆t

q̇R,k + q̈R, k+1∆t
≤

q̇max,L

q̇max,R ,

q̈min,L

q̈min,R
≤

q̈L, k+1

q̈R, k+1

≤
q̈max,L

q̈max,R ,
(6.12)
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6.5.1 Simulation validation

The presented optimisation problems could not be solved, for the time being, satisfying
the real time constraint, and experiments could not be performed. However, the approach
could be validated in simulation. The same pick and place task was considered, and two
human dummies were used as obstacles. The dummies approach the robot from the left
and the right side, causing the evasion of both arms, in order to evaluate the functionality
of the new system.
Fig. 6.26 shows snapshots taken from the simulation. A human dummy first approaches
the robot from the right side, causing the evasion of the right arm. Then, another dummy
enters the scene, causing the evasion of the left arm.
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Figure 6.15: The danger field evaluated for the two arms. The blue line shows danger for the right arm,
while the black line shows danger for the left one. The pink line shows the transition between the different
skills composing the task.

Fig. 6.15 shows the danger field profiles for the two arms. In the first part of the simulation,
danger is induced by the right arm, which evades from the obstacle exploiting the swivel
angle and then the TCP orientation. Then, danger induced by the left arm causes the
relaxation of null and then of soft constraints. Figs. 6.16 and 6.17 show the evasive
motions of the two arms. Finally, compliance with kinematics constraints is shown in
Figs. 6.18 - 6.19 - 6.20 - 6.21 - 6.22 - 6.23. In particular, saturations of joints accelerations
can be noticed in Figs. 6.18 - 6.19, which demonstrate the action of the optimiser to
guarantee respect of kinematic constraints.
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Figure 6.16: The evolution of the robot right arm coordinates, during the first evasive action.
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Figure 6.17: The robot left arm coordinates during the second evasion, with the progressive relaxation of
null and soft constraints.
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Figure 6.18: Right arm joints acceleration and acceleration limits.
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Figure 6.19: Left arm joints acceleration and acceleration limits.
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Figure 6.20: Right arm joints speed and speed limits.
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Figure 6.21: Left arm joints speed and speed limits.
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Figure 6.22: Right arm joints position and position limits.
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Figure 6.23: Left arm joints position and position limits.
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Chapter 6. Optimisation-based collision avoidance system

6.6 Summary

In this chapter, the collision avoidance strategy presented in Chapter 3 has been applied
by means of an optimisation problem. The difference between robot joints velocities and
evasive ones, computed according to the approach introduced in Chapter 3, has been con-
sidered as the cost function to be minimised. Using such an approach, robot kinematic
limitations and unilateral operational space constraints have been considered in the modi-
fication of industrial controller set points. This approach has been experimentally validated
on a dual arm pick and place task, during which evasive actions have been applied to one
of the two arms. A depth camera has been used to detect a human operator and to compute
the danger field generated by the robot. Finally, the application of evasive velocities to
both robot arms and the adoption of a second order CLIK algorithm has been investigated
in simulation, since the computational load implied by such a configuration is not suitable
for real time application.
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6.6. Summary

(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.24: Snapshots from the dual arm pick and place task, showing the normal execution.
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Chapter 6. Optimisation-based collision avoidance system

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.25: Snapshots of the interaction between a human operator and the robot, during the pick and
place task.
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6.6. Summary

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.26: Simulation snapshots of the application of the collision avoidance strategy to both arms. Two
human dummies approach the robot from the right and from the left side, causing its evasion.
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CHAPTER7
Conclusions

This thesis aims at overcoming current industrial robot controllers limitations in dealing
with unforeseen events and unstructured environments. For this purpose, a collision avoid-
ance system is proposed which can be integrated with an existing commercial controller.
Functionalities for the adaptation of preplanned tasks to a dynamic operating scenario are
added to the standard controller programming interface, and are made available to the
robot programmer. The goal of such a system is to contribute to making human-robot in-
teraction feasible in real world applications, exploiting already available robotic systems,
the functionalities of which are preserved and extended.

In Chapter 2 a classification for instantaneous velocity constraints composing a pre-
planned task, is proposed. Such a classification defines the relevance for task execution
of constraints, and consequently identifies the possibilities for their relaxation, in order to
adapt the task to a changing environment. The classification is based on the observation
that industrial robot controllers require the programmer to constrain all the degrees of free-
dom of the robot, even when less constraints are necessary in order to complete the task.
Once relevance of constraints has been identified, a preplanned trajectory can be modified
and adapted to the current conditions of the environment, still preserving the possibility of
its successful completion.
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Chapter 7. Conclusions

In Chapter 3 a strategy for task consistent collision avoidance is proposed. The strat-
egy, which is based on the previously presented classification, executes evasive motions
exploiting relaxed constraints. For this purpose, an assessment of danger generated by the
robot on obstacles is adopted: depending on the current level of danger, constraints for
which the classification has identified a possibility of modification are relaxed, acting on
constraints of higher relevance as the level of danger increases. Then, exploiting the above
mentioned danger assessment, evasive joint velocities are computed, that are used to avoid
the detected obstacles. Finally, a state machine for constraints management is proposed,
which controls the transition between constraints enforcement and relaxation, and allows
to automatically design the collision avoidance strategy from the constraints classification.

In Chapter 4 a system for the communication between the industrial controller and the
introduced state machine is proposed. Such a system is the backbone of the integration
of the collision avoidance system with the industrial controller, and allows the robot pro-
grammer to exploit the added collision avoidance functionalities using the standard robot
programming interface. The communication system demonstrates the possibility of ex-
tending a standard industrial controller with capabilities for the adaptation to unforeseen
events, and implements different functionalities: activation and deactivation of the colli-
sion avoidance strategy, communication of the types of constraints characterising a skill
and suspension of task execution based on the danger level.

In Chapter 5 a first implementation of the collision avoidance strategy is proposed. Null
space projection is used in order to execute evasive actions consistently with task con-
straints, and an algorithm for real time trajectory generation is proposed, for the transition
between relaxed and enforced constraints. Such an application of the collision avoidance
strategy is experimentally validated on a dual arm force controlled assembly task. For
this purpose, a distributed distance sensor prototype is designed and created, to endow a
dual arm ABB FRIDA robot with obstacle sensing. The collision avoidance strategy ef-
fectiveness is demonstrated by the capability of evading from a human entering the robot
workspace through the modification of the preplanned robot task.

In Chapter 6 a second implementation of the collision avoidance strategy is proposed,
with the purpose of overcoming the limitations of the previous approach. Collision avoid-
ance is formulated as an optimisation problem, where the 2-norm of the difference between
commanded velocities of the joints and evasive ones is minimised. Kinematic limitations
of the robot and unilateral operational space constraints can be effectively taken into ac-
count with such an approach, increasing the robustness and the effectiveness of the overall
system. Two versions of the system are proposed, with an increasingly accurate manage-
ment of kinematic limitations of the robot, and a deeper exploitation of the robot capabili-
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ties for evasion. The first version is experimentally validated on a dual arm pick and place
task, while the second one is validated only through simulation, as the related computa-
tional load is too heavy for real time application.

Future lines of research
In this thesis, the problem of human-robot interaction has been tackled with the approach
of collision avoidance. The collision avoidance system developed in this research has been
successfully integrated with an industrial robot controller, and a dual arm robot has been
equipped with a sensor system specifically designed for close cooperation with human
workers.
A further possible extension of the functionalities of industrial controllers, in order to
expand their human-robot interaction capabilities, may include control of physical inter-
action. New programming functions may be offered to the user to specify tasks during
which physical interaction is allowed, and the introduced constraints classification may be
used to define which robot coordinates could be modified by the human operator, touch-
ing the robot surface. A further tool to adapt a preplanned task to an unstructured and
changing environment could therefore be created.
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[56] D. Kulić and E.A. Croft. Real-time safety for human–robot interaction. Robotics and Autonomous Systems,
54(1):1–12, 2006.
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