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Abstract

ELECTROMAGNETIC (EM) theory, serves as an important branch of physics,
and its applications are always interesting objects penetrating our daily
life, from telecommunication, biology to mobile devices. Recent develop-

ments of embedded electronic system in the last several decades have shown the
needs of designing and optimizing electromagnetic drives such as antennas, filters
and resonators...The solution to these problems always consists of two different
parts: optimization algorithms and building up representative cost function. Each
cost function describes one specific electromagnetic problem, it also indicates the
design constraints and how to model EM system from geometrical parameters.

In the first half of this thesis, the author concentrates on optimizing differ-
ent structures from microstrip antenna and meta-material inspired antennas to
frequency selective surfaces. However, when dealing with those sophisticated
problems, engineers always have too many degrees of freedom to adjust. In or-
der to tackle this issue, stochastic approach by evolutionary algorithms has been
implemented. Afterwards, with the aim of fastening up the process, a surrogate-
based technique by the use of Artificial Neural Network (ANN) with different
training schemes has been employed. Regarding this methodology, all the EM
structures have been modeled and EM fields have been calculated by full-wave
analysis software. When an ANN is used as a substitution model, prior knowl-
edge to train this adaptive system is still gained from already available full wave
EM simulator.

In the world of engineering, there are a number of canonical structures and
problems that can be properly described and studied with a close form analysis.
Such geometries are the analysis of scattering from bodies of revolution such as
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prolate and oblate spheroids. In the second half of this thesis, exact solutions for
the radiation of primary sources on confocal spheroids are introduced. This typi-
cal problem of physic is interpreted by a large number of mathematical formulas
and the solution seems to be very complicated. However, by using separations
of variables into infinite series, abstract equations turn out to be visible. In other
words, the author is trying to build the representative cost functions from the the-
oretical point of view. Once an exact solution is obtained, the optimization of
scattered field are becomes feasible and practical effectiveness.

In the scope of this research, many techniques have been implemented , such
as Particle Swarm Optimization (PSO), Genetic Swarm Optimization (GSO),
Meta-PSO Artificial Neural Network and a large set of spheroidal wave functions
have to be used. The properties and the use of those methods are much different
from each other however they serve on purpose. Once an EM prolem is properly
described, the best solution to one specific constraint should be obtained.
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Summary

IN recent years, wireless communication has been growing exponentially in
embedded electronic systems, from cell phone, satellite mobiles to medical
area. Thanks to the advantage of being small, lightweight and capable of

conforming to the shape of the body, microstrip structures have been adopted
successfully in the wide range of applications. In general, when designing a sys-
tem, engineers always have to deal with difficult EM problems such as obtaining
desired radiation pattern and usable bandwidth. Such problems require plenty
of degrees of freedom to adjust; from geometrical parameters to a proper ex-
citing source. The trade-off among those variables becomes quite complex and
standard analytics or direct synthesis are often not applicable. In this context, it
is reasonable to exploit the advantages of evolutionary algorithms which allow
to effectively and simultaneously manage several parameters due to one specific
constraint of a certain problem. Chapter 1 provides brief information about all the
stochastic methods; conventional Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), a hybrid technique of PSO and GA namely Genetic Swarm Op-
timization (GSO) as well as a class of variation of PSO called Meta-PSO. All the
algorithm in this discipline show a great capability of exploring solution domain
without being trapped in local minima.

Chapter 2 illustrates how the heuristic optimizations have been applied to EM
applications. Various types of EM structures from multilayer microstrip antenna
and metamaterial inspired antenna, to frequency selective surface are optimized.
In this section, all the objects have been modeled and evaluated by a commer-
cial full-wave analysis. All the optimal designs for these structures as well as the
comparison of effectiveness between algorithms have been provided rigorously.
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On the other hand, the approach by full-wave simulator is always computation-
ally expensive. In addition the dynamic memory required for each assessment
is relatively big. Therefore, with the aim of reducing computational efforts and
memory consumption, an equivalent surrogate model for antenna design by Ar-
tificial Neural Network (ANN) is intepreted in this thesis. All the architecture
and training algorithms for ANN are discussed in chapter 1. Afterwards, ANN
is used as a surrogate model to substitute completely full-wave characterization.
Two different optimization schemes: Regular Sampling and Irregular Sampling
are explained in detail in chapter 3, which also marks the end of the first half for
this thesis.

During the first part, all the simulations of conventional scheme in chapter 2
or extracting prior knowledge for ANN in chapter 3 are based on commercial
software. However, various structures in Electromagnetism, representing an in-
dispensable part of physics, cannot be always described by simulators. This issue
is more obvious in scattering problem when intepreting complex objects and ma-
terials, the use of mathematic tools is strongly needed. The research carried out
in this context is a boundary-value problem where the aim is to determine radia-
tion field of primary sources illuminating spheroidal structures. Primary sources
are Hertzian electric and magnetic dipoles; spheroidal structures are two confocal
prolate/oblate dielectric layers (either made of isorefractive or anti-isorefractive
material) coating a metallic prolate/oblate spheroid. In order to solve the problem
of dual layer coating, it is needed to impose boundary conditions on the surface
of each layer. Chapter 4 brings a brief introduction of spheroidal coordinates and
spheroidal wave functions such as radidal and angular functions. Chapter 5 and
chapter 6 provide all the exact solutions of two problem prolate and oblate respec-
tively. All the analytical formulations are retrieved by separations of variables,
whereby the field components are expressed as infinite series of products of radial
and angular spheroidal wave functions. Numerical results in these sections also
exhibit the profound influences of thickness and material properties of coating
layers on both far-field and near-field regions. Conclusions and discussions on
the outcomes of each problem can be found at the end of each chapter.
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CHAPTER1
Driving optimization tools

The general aim of optimization algorithms is to find a solution that represents a
global maximum or minimum in a suitably defined solution domain, that means
to find the best solution to a considered problem among all the possible ones [1].
Traditional optimization approaches, Newton-based methods or any algorithms
related to gradient descent are better known as local optimization class. Given an
objective function, they can generally compute many derivatives. When dealing
with a problem of many variables, those methods exhibit difficulties in finding
the best solution among the Pareto domain, as reported in [2] and [3]. The tech-
niques based on global search approaches such as evolutionary algorithms, show
a great capability of finding global optimum without being trapped in local mini-
mas and they can cope with non-linear and discontinous problems. Evolutionary
algorithms apply a direct synthesis, by randomly choosing parameters of inter-
est [4], [5]. Afterwards, the algorithm itself evolves the cost value towards the
optimal solution of a specific constraint [6]. It is worth noting that fitness func-
tion is the only link between the physical model and global optimizer.
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Chapter 1. Driving optimization tools

1.1 Evolutionary algorithms

Even though different evolutionary optimizations have been widely accepted for
solving a number of engineering applications, it is practically impossible to de-
fine which one is the best candidate approach overpowering all the rests on any
possible problem; in accordance with the No Free Lunch Theorem [7]. In fact, it
is possible to try to understand which approach is better on the considering prob-
lem, in which the effectiveness of evolutionary algorithms is defined by the ex-
ploitation and exploration relationship kept through the run. Exploration ability
is determined by the reliability of results and how the algorithm avoids premature
convergence to local minima. Exploitation is the key aspect to concentrate the
search effort and to reduce the number of requested fitness function evaluations.
From these two perspectives, it is difficult to formulate a universal optimization
algorithm that could solve effectively all problems. However, it is possible to try
to make the proper choice for the considering problem

Hybridization might be the solution to this issue in terms of improving the per-
formance and increasing the quality of solutions. In this context, an optimization
technique is presented as the combination of two well-known algorithms: Parti-
cle Swarm Optimization (PSO) and Genetic Algorithm (GA). Another solution
to speed up the search in solution space is by deriving a variation of conventional
PSO, namely Meta-PSO. All the details of this method are described in Section
1.1.3.

1.1.1 Particle Swarm Optimization

In recent years, Particle Swarm Optimization (PSO) has gained immediate pop-
ularity [8–10]; especially because of its simplicity in implementation, its robust-
ness and its optimization capability for both single objective and multi-objective
problems [11,12]. PSO was proved to be in all considered cases at least compara-
ble [15, 17], and often superior, to its most famous ancestor and now competitor,
the GA [13, 14]. Besides the easiness of the implementation [16, 18], the PSO
presents the advantage of being well suited for optimization problems with both
discrete and continuous parameters [19, 20], and for parallel computing imple-
mentation [21–23]

The standard PSO algorithm is an iterative procedure in which a set of i =
1, ..., Np particles, or agents, are characterized by their position Xi and velocity
Vi with which they move in the M -dimensional space domain D of a cost func-
tion F . A full treatment of the method can be found in [10] but for sake of clarity
and uniformity of notation it is briefly summarized in the following equations 1.1
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1.1. Evolutionary algorithms

and 1.2:

Vi
(k+1) = ω(k)Vi

(k) + c1η1(Pi −Xi
(k)) + c2η2(G−Xi

(k)) (1.1)

Xi
(k+1) = Xi

(k) + Vi
(k+1) (1.2)

with Pi being the best position ever attained by particle i itself (personal knowl-
edge) and X the best position ever attained by the particle swarm (social knowl-
edge); ω(k) = ω0e

−αk + ω1 is a friction factor slowing down particles, η1 and
η2 are positive parameters tuning the pulls towards the personal and global best
positions, as depicted in Figure 1.1. c1 and c2 are random numbers of uniform
distribution in the [0,1] range. The dependence of the friction factor on k was
proposed in [24] starting the optimization process with a high value for k and
reducing it as k increases encourages the particles to initially explore the whole
space domain in the beginning, in search of the global minimum, and then allow
them to better investigate the region in which this minimum is supposed to be
located.

Figure 1.1: Updating velocity rules for Conventional Particle Swarm Optimization

An important aspect connected with the efficiency of the PSO is the way in
which the particles moving towards the border of the solution space are han-
dled. In [15] three different solutions have been proposed: the first one consists
in setting to zero the velocity of the particles arriving at the domain boundary,
the second one models the boundaries as perfect reflecting surfaces, so that the
particles impinging on them are reflected back in the solution space; finally the
third one allows the particles to fly out from the solution space, without evalu-
ating the cost-function any more, until the particle eventually gets back in the
domain. Throughout this thesis, the second technique is adopted, since trials
seem to suggest that this is the one that guarantees the faster convergence, at least
on problems of our interest.

3



Chapter 1. Driving optimization tools

1.1.2 Genetic Algorithm

One of the most effective evolutionary algorithms developed until now certainly is
the GA, that is now quite popular among researchers in the electromagnetic com-
munity and widely used [25, 26]. GA simulates the natural evolution, in terms of
survival of the fittest, adopting pseudo-biological operators. The set of parame-
ters that characterizes a specific problem is called an individual, or chromosome,
and it is composed of a list of genes. Each gene contains a suitable encoding of
a parameter itself and each chromosome represents a point in the search space.
For each individual of the population a fitness function is therefore evaluated,
resulting in a score assigned to the individual [27, 28]. Based on these fitness
scores, a new population is generated iteratively with each successive population
referred to as a generation [29]. The GA uses basically three operators (selection,
crossover, and mutation), as illustrated in Figure 1.2 to manipulate the genetic
composition of the population.

Figure 1.2: The main operators of conventional Genetic Algorithm

1. Selection is the stage of a GA in which individual chromosomes are pseudo-
randomly chosen from a population for generating offsprings.

2. In one-point crossover, a single crossover point on both parents’ chromo-
some strings is selected. All data beyond that point are swapped between
the two parent chromosomes. In two-point crossover, two points are se-
lected on each parent string. Everything between the two points is swapped
between the parents. In the uniform crossover scheme individual bits in the
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1.1. Evolutionary algorithms

parents strings are compared and swapped with a fixed probability.

3. Mutation is analogous to biological mutation and it is used to maintain ge-
netic diversity from one generation of a population of chromosomes to the
next. The purpose of mutation is to allow the algorithm to avoid local min-
ima by preventing the population of chromosomes from becoming too sim-
ilar to each other, thus slowing or even stopping evolution being trapped in
local suboptimal solution.

1.1.3 Genetic Swarm Optimization

Some comparisons of the performances of GAs and PSO can be found in litera-
ture, underlining the reliability and the convergence speed of both methods, but
continuing to keep them separate [14, 16]. Both of them have shown a good per-
formance for some particular applications [30, 31]; however we cannot choose
which one outperforms the other. This is due to the different search methods
adopted by two algorithms, the typical selection-crossover-mutation approach
versus the velocity update one. Anyway, the population-based representation of
the parameters that characterizes a particular solution is the same for both the al-
gorithms; consequently, it is possible to implement an hybrid technique in order
to effectively exploit both the qualities and uniqueness of the two algorithms.

The new hybrid approach here proposed, called Genetic Swarm Optimization
(GSO), [33] consists in a stronger co-operation of GA and PSO, maintaining
the integration of them for the entire optimization run. In this algorithm in fact,
during each iteration the population is divided into two parts and it is evolved with
the two techniques respectively; the two parts are then recombined in the updated
population for the next iteration. After that it is again divided randomly into two
parts for the next run, in order to take advantage of both genetic and particle
swarm operators. Figure 1.3 show the ideas standing behind the algorithm and
the way to mix the two main techniques.

The population update concept can be easily understood thinking that a part
of the individuals has been substituted by newly generated ones by means of GA,
while the remaining are the same of the previous generation but have been moved
on the solution space by PSO. This kind of updating results in an evolutionary
process where individuals not only improve their score for natural selection of
the fitness or for good-knowledge sharing, but for both of them at the same time.
In Figure 1.4 it is possible to better understand the key steps of the GSO algo-
rithm through an intuitive diagram. The algorithm stops after a predefined num-
ber of iterations. In the proposed procedure, the driving parameter is introduced,
called the Hybridization Coefficient, expressing the percentage that in each iter-
ation evolved with GA. hc = 0 means the procedure is a pure PSO (the whole
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Chapter 1. Driving optimization tools

Figure 1.3: GSO paradigm in splitting the population into subgroups during the iteration

Figure 1.4: Typical flowchart illustrating the steps of the GSO and the interactions between GA
and PSO

population is processed according to the PSO operators), hc = 1 means pure
GA (the whole population is optimized according to the GA operators), while
0 < hc < 1 means that the corresponding percentage of the population is devel-
oped by GA, while the rest with PSO technique. In particular, it is worth noticing
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1.1. Evolutionary algorithms

that GSO is a self-adaptive strategy. There are situations where a fixed hc is the
right choice, and others where a variable hc(i) during the run is better. In this
thesis, the writer would like to consider two adaptive rules in order to select the
best value of hc(i).

The first one is the so-called Dynamical GSO, as referred in [32]; in this imple-
mentation the hc parameter is updated during iterations according to the following
rule:

hc(i′) =

 hc(i) + ν
e
−ξ i
′
N

K if ∆f̂(i′) < ∆f̂(i)

hc(i) if ∆f̂(i′) ≥ ∆f̂(i)
(1.3)

in Equation 1.3, N is the total number of iterations, K is the number of individuals
in the population, i′ = i+ ∆i, ν = ±1(versus), ξ = 2(damping) and ∆f̂(i′) =

f̂(i′) − f̂(i), here f̂(i′) is the best fitness value obtained after i′ iterations and
∆i = 5. The second implemented technique is the so-called Self-Adaptive GSO,
that derives the hc updating rule from the traditional PSO technique: in fact, if
we consider the value of hc(i′) in the i’-th iteration, then we can call Vhc(i′) the
variation between hc(i’) and hc(i) and so we can write:

hc(i′) = hc(i) + Vhc(i
′) (1.4)

Therefore, the problem is simply to find the right velocity update to properly
change hc(i) during the run; following the PSO similarity, we can define a per-
sonal best Phc value obtained during the run and therefore:

Vhc(i
′) = ω.Vhc(i) + φ.η. (Phc − hc(i)) (1.5)

In Equations 1.4 and 1.5, Phc is chosen by analyzing the slope of fitness score
during the iteration, i.e. if at the iteration ī the increment of fitness is higher than
in the previous history, then Phc = hc(̄i).

In [33]; preliminary results over different optimizers have been performed,
showing a high effectiveness of GSO in exploring problem hyperspace, especially
for the optimization of large objective functions. This feature makes GSO suitable
for a wide class of electromagnetic problems.

1.1.4 Variations on the PSO algorithm

Some PSO-based techniques have been presented in [34, 35] , however their im-
plementations are similar to Cooperative Particle Swarm Optimization [36]. In
this section, three variations over the standard PSO algorithm are described. All
of them use multiple swarms to enhance the capabilities of global search, but
adopt different simple rules for describing the interactions among them [37, 38].
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Chapter 1. Driving optimization tools

Meta-PSO

Meta-PSO (MPSO) is the most straightforward of the methods here presented
and simply consists in using more than a single swarm. Particles are now char-
acterized by two indices: an index j = 1, ..., Ns defining the swarm they belong
to and an index j = 1, ..., Npj , within the swarm. For sake of simplicity in the
following all swarms will be considered as having the same number of particles
Np = Npj∀j = 1, ..., Ns. The MPSO velocity update rule introduced in 1.6

Vj,i
(k+1) = ω(k)Vj,i

(k) + φη1(Pj,i −Xj,i
(k)) + φη2(G−Xj,i

(k)) (1.6)

where Pj,i is the particle personal best position, Sj is the global best position
of swarm j (swarm social knowledge) and G is the global best position of all
swarms (racial knowledge), while the other symbols have the same meaning as
in 1.1. Position update and boundary handling are the same as in standard PSO
with just one more index.

Modified Meta-PSO

As an enhancement to MPSO aimed at keeping swarms apart from each other,
and hence widening the global search, an inter-swarm repulsion is introduced
and a Modified MPSO (M2PSO) produced. The velocity update rule becomes:

Vj,i
(k+1) = ω(k)Vj,i

(k) + φη1(Pj,i −Xj,i
(k))+

+φη2(G−Xj,i
(k)) +

∑
s 6=j

φξ
Bs

(k) −Xj,i
(k)

|Bs
(k) −Xj,i

(k)|γ
(1.7)

In equation 1.7 the last term is a sum of the repulsions between each single parti-
cle and all the other swarms bacycentra Bj

(k) =
(

1
Np

)∑Np
i=1 Xj,i

(k) weighted by
a random value φ and a fixed weight ξ. The repulsive force introduced is a func-
tion of distance according to the power γ. If γ = 2, as used here, force decays as
the inverse of distance.

Stabilized Modified Meta PSO

As a further enhancement to the M2PSO it can be ruled that the swarm which
is performing best, i.e., the swarm j whose social knowledge coincides with the
racial knowledge Sj = G, is not repelled by other swarms, or, in other words, sta-
bilizes itself. This allows for the best swarm to keep exploring the surroundings
of the current best position, refining it, whereas other swarms extend the search
in other points of the space, hence greatly enhancing the possibility of escaping a
local minimum. Figure 1.5 shows graphically the basics of all these algorithms.
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1.2. Artificial Neural Network

Figure 1.5: Forces over a particle X1,j:(a) pull toward personal best P1,j; (b)pull toward swarm
best S1; (c) pull toward global best G (belonging to swarm 2); (d) repulsion from the other
swarm’s batrycentrum B2

Only two swarms are depicted, for sake of clarity. Swarm 1 is represented via
white symbols, swarm 2 via black symbols. Only forces on a single particle X1,j ,
with velocity V1,j belonging to swarm 1 are shown. Of course not all these forces
are present, depending on the algorithm.

1.2 Artificial Neural Network

An artificial neural network (ANN) is a well known computational model that
simulates the features and behaviors of human brain neurons [39, 40]. As de-
picted in Figure 1.6, a typical neuron collects signals from others through a host
of fine structures called dendrites. The neuron sends out spikes of electrical ac-
tivity through a long, thin stand known as an axon, which splits into thousands
of branches. At the end of each branch, a structure called a synapse converts the
activity from the axon into electrical effects that inhibit or excite activity from the
axon into electrical effects that inhibit or excite activity in the connected neurons.
When a neuron receives excitation input that is sufficiently large compared with
its inhibitory input, it sends a spike of electrical activity down its axon. Learning
occurs by changing the effectiveness of the synapses so that the influence of one
neuron on another changes. Instead of dealing with a large number of integral
equations like a commercial solver, after being successfully trained, ANN exe-
cutes only binary blocks. As a result, a huge amount of time and computational
effort are saved. Therefore, throughout this research, ANN is employed as an
equivalent model in order to substitute the full-wave analysis. In order to estimate
the electromagnetic field, ANN has been used rather than full-wave analysis, and

9



Chapter 1. Driving optimization tools

Figure 1.6: ANN as a biologically inspired model from the human brain

(a) Neuron model for ANN (b) Neuron as a basic component

Figure 1.7: Adopting the idea of human brain for ANN

good agreement was shown in [41] between the predictions and measurements.
Thanks to the immense potential of ANN, it has been intensively employed in
many applications such as control of non-linear system function of its parameters
using Multiple Layer Perceptron Neural Network (MLP) [42] Moreover, in [43] a
neural network-based solution is carried out to predict the phase characterization
of reflect waves by varying the size of radiating elements.

1.2.1 Neural Network architecture

As can be seen from Figure 1.7, similar to human brain, an ANN consists of a
pool of simple processing units (neurons or cells) which communicate by sending
signals to each other over a large number of weighted connections, as illustrated
in Figure 1.7(b). It is also known that ANN is a self-adaptive modeling tool that
changes its structure on the basis of external or internal information that flow
through the network during the learning phase. In many practical terms neural
networks are non-linear statistical data modeling tools that can be used to build
up the complex relationship between inputs and outputs.

10
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Figure 1.8: An example of multi-layer feed-forward ANN model

There are two types of ANN: Feed-forward network and Recurrent network.
Feedfoward model is where the data flows strictly from the inputs to outputs
whereas recurrent ones do contain feedback connections. The implemented ANN
in this thesis is a feed-forward multi-layer perceptron (MLP) topology, which
consists of an input layer, one or more hidden layer, and an output layer. The
resulting network structure is that depicted in Figure 1.8 , where the dependencies
between variables are represented by the connections among neurons. The input
composition in each neuron is made by a nonlinear weighted sum:

f(x) = F

(∑
j

wjkyj

)
(1.8)

Function F(x) in 1.8 and 1.9 is the nonlinear activation function which emulates
the activity of biological neurons in the brain. This function must be always
normalized and differentiable. The most common function for this purpose is the
sigmoid, which is:

F(x) =
1

1 + e−x
(1.9)

In Figure 1.8, the network comprises three inputs and one output; three hidden
layers of five and three neurons respectively. Bias is added to the input and hidden
layers.
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1.2.2 Training Algorithms

We can categorize the learning situations in two distinct sorts. These are:

1. Supervised learning or Associative learning in which the network is trained
by providing it with input and matching output patterns.These input-output
pairs can be provided by an external teacher, or by the system which contains
the network (self-supervised).

2. Unsupervised learning in which an (output) unit is trained to respond to
clusters of pattern within the input. In this paradigm, the system is supposed
to discover statistically salient features of the input population. Unlike the
supervised learning paradigm, there is no a priori set of categories into
which the patterns are to be classified, but the system has to develop its own
representation of the input stimuli.

Error backward propagation

Among different learning rules, Error Back-Propagation (EBP) is a well known
analytical algorithm used for neural networks training [44,45]. In literature, there
are several forms of back-propagation, all of them requiring different levels of
computational efforts. The conventional back-propagation method is, however,
the one based on the gradient descent algorithm [46]. EBP propagates error back-
wards through the network to allow the error derivatives for all network weights
to be efficiently computed. In other words, network weights are optimized in
order to reach a good and accurate output and this objective is reached typically
minimizing the mean-squared error between the output of the network, f(xi), and
the target value yi over all the N example pairs. Training is time- and memory-
consuming and it is the most critical phase in the ANN setup, since it must pro-
vide continuous feedback on the quality of solutions obtained thus far [48, 49].
To test the ANN generalization capability, a Validation Set (VS) is defined too,
containing known (xi, yi) pairs not used in the TS, in order to check the correct
association between unknown input and output data. In general, Backpropagation
algorithms update weights between layers based on the gradient of error function:

E =
1

2
‖f(x, i)− y(i)‖ (1.10)

Levenberg-Marquardt (LM) Method

EBP could be regarded as one the most significant breakthroughs for training
neural networks. However, EBP is also considered not efficient because of the
slow convergence when dealing with huge validation data set problems [50, 51].
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There are two main reasons for this drawback: the step size is always adequate to
the gradients, so when the gradient is gentle, the training process is very slow. The
second reason is that the curvature of the error surface may not be the same in all
directions, so the classic error valley problem may occur and may result in slow
convergence [50]. This disadvantage can be greatly solved by the use of second-
order derivative of total error function for weight updates. Levenberg-Marquardt
has been implemented in non-linear and multi-variable optimization in recent
years [51]. In this technique, the Hessian matrix gives the proper evaluation on
the change of gradient vector. In order to simplify the calculating process in 1.11,
the LM makes the approximation of Hessian matrix by means of Jacobian Matrix

H ≈ JTJ + µI (1.11)

where I is the identity matrix, J is the Jacobian Matrix, µ is always positive, called
combination coefficient. The update rule of LM method in 1.12 can be derived
as:

wk+1 = wk − (Jk
TJ + µI)

−1
Jkek (1.12)
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CHAPTER2
Applying evolutionary algorithms in EM

designs

In chapter 1, the brief information on theory of driving optimization tools were
presented and their very preliminary results are reported in [52–54]. Most of
those foregoing results are considered over the number of swarms and particles
within a swarm; or the speed and reliability of convergence as a function of vari-
ous parameters of the algorithms [55–57]. Most common analytical cost function
in the literature is:

F(x) = 1−
N∏
n=1

sin(π(xi − qi))
π(xi − qi)

(2.1)

In equation 2.1, X = [x1, x2, ..., xN ] is a point in the N-dimensional solution
space and Q = [q1, q2, ..., qN ] the minimum of the cost function. It is worth
noting that this cost function has several local minima making the problem quite
difficult to solve. The analyses carried out for Meta-PSO algorithm can be found
in [37, 38], which explain clearly how the parameters affect the convergence of
solutions.

Another validation of effectiveness of proposed methods is the optimization
of a linear array of 100 elements. This application has been already consid-
ered in literature in order to compare different algorithms. The complex phased
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array weights An must be determined to best meet a specified far-field side-
lobe requirement. The antenna is a linear phased array of one hundred half-
wavelength spaced radiators. The far-field radiation pattern to be optimized is
F .F .(θ) = E .P .(θ)× A.F .(θ), where

A.F .(θ) =
N∑
i=1

Ane
j2πn(d/λ)sin(θ) (2.2)

is the array factor in which the number of radiative elements and the complex
elements weights to be determined. The voltage element pattern, according to
[14] is assumed to be

E .P .(θ) =
√
cos1.2θ (2.3)

The cost measure in 2.3 to be minimized is the arithmetic mean of the squares
of the excess far-field magnitude above the specified sidelobe level. The sidelobe
mask is the same used in [14] which includes a 60 dB notch on one side. The
test of GSO performance on this specific cost function can be found in [33], with
good results. The literature demonstrates the ability of GSO and Meta-PSO in
offering different routes through the solution hyperspace. Therefore, they appear
to be promising candidates for large domain objective functions and a wide class
of EM applications.

Figure 2.1: The conventional optimization scheme with the participation of full-wave analysis

In this chapter, several particular EM structures are optimized by proposed
optimizers, all the procedures are depicted in Figure 2.1. The optimization mech-
anism follows exactly the same as [33, 37, 38], which is so-called Conventional
Scheme, however there are differences in corresponding cost functions. The test
cost functions are described in formulations 2.1, 2.2; in this chapter complex EM
structures are built up by full-wave analysis. Assuming that an antenna has N-
parameters to be optimized due to an objective and this antenna is represented by
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2.1. Microstrip structure

a particle in N-dimension solution domain. Particle X = [x1, x2, ..., xN ] serves
as an antenna configuration and the analysis of this structure is carried out by
full-wave analysis. The outputs could be usable bandwidth or radiated far-field.
As can be seen from the Figure 2.1, global optimizers can control both jobs: ran-
domly choose antenna parameters and link with full-wave analysis. Afterwards,
optimizer will evolve the whole population toward a particular constraint which
is defined by engineering requirements. After a certain number of iterations, the
global best configuration is obtained. The theory behind EM structures and de-
tails of numerical validation are introduced in the following.

2.1 Microstrip structure

Microstrip is one of the most planar structures, primarily because it can be fabri-
cated by photolithographic processes and it is easily integrated with other passive
devices [58]. In high-performance aircraft, spacecraft, satellite, and missile ap-
plications, where size, weight, cost, performance, ease of installation, and aero-
dynamic profile are constraints, low-profile antennas may be required. Presently
there are many other government and commercial applications, such as mobile ra-
dio and wireless communications, that have similar specifications. To meet these
requirements, microstrip antennas can be used [59]. These antennas are low pro-
file, conformable to planar and non-planar surfaces, simple and inexpensive to
manufacture using modern printed-circuit technology, mechanically robust when
mounted on rigid surfaces, compatible with MMIC designs, and when the par-
ticular patch shape and mode are selected, they are very versatile in terms of
resonant frequency, polarization, pattern, and impedance. In addition, by adding
loads between the patch and the ground plane, such as pins and varactor diodes,
adaptive elements with variable resonant frequency, impedance, polarization, and
pattern can be designed [60].

Figure 2.2: Microstrip line and its electric field lines, and effective dielectric constant geometry.
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The typical geometry of a microstrip line is shown in Figure 2.2; with a con-
ductor of the width W ; thickness of grounded dielectric substrate d and a relative
permittivity εr. The sketch of the field is also shown in Figure 2.2, the effective
dielectric constant is given approximately by:

εreff =
εr + 1

2
+
εr − 1

2
+

1√
1 + 12d/W

(2.4)

Equation 2.4 expresses the dependence of εreff on the geometrical parameters.
The details on characteristic impedance and attenuation can be found in [58].

There are various configurations that can be used to feed microstrip antennas.
The four most popular ones are microstrip line, coaxial cable, aperture coupling
and proximity coupling. The details on efficiency, usable bandwidth and feasi-
bility of fabrication of these methods can be found in [61, 62]. Of four feeding
types mentioned, proximity coupling, as a vialess multiple-layer structure, has
the largest bandwidth and low spurious radiation. As illustrated in Figure 2.3,
the length of feeding stub and the width-to-line ratio of the patch can be used to
control impedance matching. In this thesis, two antennas of this particular type
have been optimized and then they have been used as the test objects in validation
of numerical techniques.

Figure 2.3: One particular feeding structure of microstrip antennas, proximity coupling.

There are many methods to analyze microstrip antennas. Among them, the
most popular models are transmission lines and cavity, which are quite accurate
and give good physical insights [59, 63]. Generally, in order to apply properly to
engineering problems, full-wave analysis based on Finite Element Method (FEM)
is highly precise and versatile. FEM approach can treat single elements, finite and
infinite arrays, stacked elements and arbitrary shaped elements. In this chapter,
the optimization scheme as depicted in Figure 2.1 linked with full-wave model
for three complex EM structures will be discussed in detail.
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2.2 Dual-ring proximity coupled feed

In antenna design, engineers always have to deal with difficult electromagnetic
problems like obtaining desired radiation pattern and usable bandwidth, or ad-
hoc phase and amplitude profiles. In order to properly understand and solve such
problem, designers should every time adjust several degrees of freedom tuning
electrical parameters and appropriately choosing the structure exciting source.
The trade-off among all the degrees of freedom becomes quite complex and stan-
dard analysis or direct antenna synthesis are often not applicable. In this context,
it is possible to exploit advantages of computational intelligence which allows
to effectively and simultaneously manage several parameters to maximize an ob-
jective function which represents the desired configuration of a certain problem.
Moreover in this discipline, Meta-PSO shows a great capability of exploring the
solution domain without being trapped in local optima and the possibility of fac-
ing non-linear and discontinuous problems.

Figure 2.4: Dual square ring proximity coupled feed antenna

Thanks to its resonant behavior, the microstrip ring structure has been studied
and applied with research interests into a wide range of applications from bio-
medical to satellite mobiles [3 4]. In the literature, annular patch was used as the
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main radiator on the top layer and the analysis of this structure was conducted by
Method Of Moments (MoM) approach in [60]. In this work, in order to add more
degrees of freedom, we investigate the multi-layer structure with dual square ring
on the top layer proximity coupled to feeding microstrip line located in the middle
of the two layers has been investigated. The ground plane is situated on the bot-
tom layer with the aim of preventing noise from the radiating patch to the circuit
board behind in some specific electrical appliances. The antenna is designed to
resonate at ISM band (Industrial, Scientific and Medical) where frequency rang-
ing from 2.4 GHz to 2.48 GHz). The value of return loss is derived from the
full-wave analysis to be used as the merit parameter in the cost function. With
the purpose of improving resonant bandwidth over ISM band requirement, the
bandwidth extension is related to cost value according to the formula:

Cost V alue = 100 +BW/2 (2.5)

Initially, one rectangular ring patch is considered; afterwards, with the aim of
improving bandwidth, another ring is added in. At this point, eight geometrical
parameters need to be optimized. As shown in Figure 2.4, they are: dimensions
of the patch (a, b), width and length of external ring (a1, b1), width and length
of internal ring (a2, b2) and thickness of the rings (t1, t2). Microstrip feed line
is fixed with w = 4.1mm and l = 17mm in order to have 50Ω impedance
matching. The comparison of two best solutions for two antenna configurations
is shown in Figure 2.5, indicating the external ring contributes a considerable
additional bandwidth to the structure. Increasing the substrate thickness could be
the solution to enhance the bandwidth but it will boost up the fabrication cost as
well as the whole antenna dimension. The optimal values for dual-ring proximity

Table 2.1: Optimal solutions for 8 variables of dual rectangular proximity coupled feed antenna

a b a1 b1 a2 b2 t1 t2
35.12 46.42 8.33 11.63 3.29 5.02 2.83 2.92

coupled fed which are found by two different operators are presented in Table
2.1. Figure 2.6 shows the radiation pattern of the optimized antenna at the center
resonant frequency band, 2.45 GHz. The maximum value of gain recorded is 4
dB, satisfying the constraint for indoor electrical appliances.

Comparison on the efficiency of optimization tools

In order to investigate how the number of swarms and population for each one
of them can influence results, the authors increase the whole population in Meta-
Swarm. Each group now consists of 10 particles and the whole population is
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Figure 2.6: Radiation Pattern of the optimal antenna

made of 100 agents. However, the optimization lasts for 6 iterations. The behav-
ior of cost value is presented in the Figure 2.7 The result in Figure 2.8 shows the
comparison of the effectiveness of two global optimizers: Meta-PSO and GSO
on the same EM problem. The total numbers of particles for GSO and Meta-PSO
are the same so the number of evaluations are the same too. The whole popula-
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Figure 2.7: The influence of population in the search of Meta-PSO algorithm

tion for GSO is 100 particles with the hybridization coefficient hc = 0.5. On
the other hand, population for Meta-PSO is divided into 10 swarms, each swarm
has 10 agents.
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Figure 2.8: The effectiveness of Meta-PSO and GSO in optimizing antenna structure
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2.3 Frequency selective surface as a Spatial Filter

Theory of frequency selective surface (FSS) and Floquet’s theorem

Filters play an important role in electronic and radio frequency (RF) circuit, they
can control the frequency content of signal for mitigating noise and unwanted
interference. Once being exposed to electromagnetic radiation, a FSS behaves
like a spatial filter, some frequency bands are transmitted and some are reflected.
In a way, a FSS can be a cover for hiding communication facilities. This is
probably the first potential application of FSS structures, as they have actually
been used as covers named radomes. Radomes, in Figure 2.9, are bandpass FSS
filters that are used to reduce the radar cross-section (RCS) of an antenna system
outside its frequency band of operation.

Figure 2.9: Radomes at the Cryptologic Operations Center, Misawa, Japan

FSS, as depicted in Figure2.10, is usually a multilayer structure that comprises
periodic arrays of metal patches or apertures supported by dielectric substrates
[64]. As formed by planar, periodic metal-dielectric arrays in two-dimensional
space, frequency behavior of an FSS can be determined by the geometry of the
surface in one period (unit cell) provided that the surface size is infinite. For such
periodic arrangement of the cells, Floquet’s theorem then can be applied. Based
on Floquet’s theorem, any planar periodic function can be expanded as an infinite
superposition of Floquet harmonics. The simplest case is 1D periodic structure,
that is investigated herein by following formulas.

Considering a 1D periodic surface in x with the period d, in which u(x) stands
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Figure 2.10: Multi layer structure of Frequency Selective Surface

for a field reacting with this structure.

u(x+ d) = Cu(x)

u(x+ 2d) = Cu(x+ d)

...

...

u(x+ nd) = Cu(x+ (n− 1)d) (2.6)

The formulas in equation 2.6 can be expressed generally as:

u(x+ nd) = Cnu(x) (2.7)

For boundedness and EM fields: C = e+jkd. We can define a periodic function
P (x), where

P (x) = e−jkxu(x) (2.8)
Consequently from equation 2.8, we have:

P (x+ d) = e−jk(x+d)u(x+ d) = e−jk(x+d)Cu(x) = e−jkxe−jkd
(
ejkd
)
u(x)

= e−jkxu(x) = P (x) (2.9)

Similarly, P (x+ nd) = P (x)

1. P(x) is a periodic function in x, with the period d

2. Since P (x) is periodic in x, we can express it via Fourier Series

P (x) =
∞∑

n=−∞

pne
j 2πn
d
x (2.10)
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Substituting equation 2.8, then

u(x) =
∞∑

n=−∞

pne
jkxnx (2.11)

in which:
kxn = k +

2πn

d
(2.12)

Equation 2.12 represents harmonic expansion of the field u(x), each term in 2.11
stands for a spatial Floquet Harmonic, which propagates along the periodic axis.
Here it is presented for a 1D periodic structure. It can be easily generalized to
higher dimensions with more complex periodicities.

Optimizing spatial bandstop filter by means of Meta-PSO

In this context, Floquet Theorem is applied exclusively for planar periodic struc-
tures which are idealized as infinitely large. The analysis of these structures is
then accomplished by analyzing one unit cell. The relative positions of the pe-
riodic points are specified by lattice vectors, as illustrated in Figure 2.13. These
vectors describe the geometry of arrray but they are independent of the nature
of array elements themselves. Different distribution of unit cells means different
lattice vectors, therefore FSS structures will return diverse frequency responses.

Patch type in Figure 2.11(a) has capacitive response so it acts like low-pass
filter. Instead, slot type in Figure 2.11(b) has inductive response so it acts like a
high-pass filter. The idea is to combine both inductive and capacitive responses
to retrieve a specific prohibited band.

In the restricted scope of this research, all the unit cells are square and they
are placed uniformly as Figure 2.13(a). Regarding the angle of incidence, FSS
structure is illuminated by plane waves with propagation direction normal to the
planar surface and no phase delays are introduced between adjacent elements.

In [64], several loop types of FSS including one rectangular ring are studied to
construct different radio frequency applications. Over the years, a variety of FSS
elements were introduced for bandpass and bandstop applications. A complete
list of these elements includes an array of the following: circular shapes; metallic
plates such as rectangles and dipoles, cross-poles, tripoles, and Jerusalem cross;
three- or four-legged dipoles; rings; square loops; and grid square loops, as shown
in Figure 2.12.

In this study, a dual rectangular ring configuration is considered for WiFi band-
stop filter, from 2.4 to 2.5 GHz. With the aim of increasing bandstop region over
the requested one, one ring is added. As shown in Figure 2.14, the solution do-
main consists of 7 variables: a,a1, b1, t1, t2, a2 ,b2; which are properly modeled
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Figure 2.11: (a) Patch type has capacitive response whereas (b) Slot type has inductive response

Figure 2.12: A variety of FSS elements over the past decade

to satisfy the feasibility of fabrication. For instance, two rings cannot overlap
each other or the outer ring cannot exceed the dimension of the patch. The planar
periodic stucture is printed on FR4 substrate with εr = 4.4 and 0.8 mm in height.

FSS structures are modeled by full-wave analysis and the objective of op-
timization is compressed into a representative cost function. The optimization
scheme is the same as the scheme in Figure 2.1, but now FSS parameters need to
be optimized. In this case, the main objective is to enlarge as much as possible
the bandstop bandwidth over selected WiFi band (2.4-2.5 GHz). As illustrated in
Figure 2.15, firstly, each set of geometrical parameters stands for one specific FSS

26



2.3. Frequency selective surface as a Spatial Filter

(a) 90 degree (b) 60 degree

Figure 2.13: Organizing FSS as a planar periodic struture

Figure 2.14: Top view of dual rectangular ring unit cell

Figure 2.15: The block diagram of optimization scheme.

configuration. For each iteration of optimization loop, this set of data is varied by
global optimizer and what full-wave simulation returns will be used to evaluate
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the structure. After a certain number of loops, the optimal design is retrieved.

Numerical results
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Figure 2.16: The Max and Mean Value throughout 10 iterations
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Figure 2.17: Frequency response of best configuration ever found by optimizer

Since the width and length of two rectangular rings and substrate patch play an
important role on scattered field of FSS structure, they are modeled as variables in
optimization scheme. Each set of parameters constructs an antenna configuration,
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and then each antenna configuration stands for one agent in the swarm. In this
context, total population consists of 90 particles, 9 agents in each 10 swarm.

Table 2.2: Optimized geometrical parameters by Meta-PSO

Parameter a a1 b1 t1 t2 a2 b2
Values 36.694 27.456 27.659 0.756 1.929 8.699 10.071

Considering FSS as a filter, S21 serves as transmission coefficient and S11 as
reflection coefficient. When behaving bandstop characteristics, the requirements
of S21 < −10 dB and S11 > −1 dB should be fulfilled. They are also fundamen-
tal conditions to determine cost value, which then they are evaluated by global
optimizer. In order to enlarge the bandstop region, the extension of prohibited
bandwidth (BW) is related to cost value according to the formulation:

Cost Value = 100 +BW/2 (2.13)

In Figure 3.10, the change of max values and mean values of cost function shows
the fundamental characteristic of heuristic approach: the swarm improves itself
during optimization time. Frequency response of best configuration ever found
by Meta-PSO is shown in Figure 2.17 and details of parameters are presented in
Table 2.2.

911 simulations were evaluated by Meta-PSO optimizer in approximately 35
hours. Commercial full-wave analysis has been implemented on an Intel(R) core
I-7 2600 CPU, 3.4 GHz, 8 GB Ram system.

Extension of the case: Bandpass spatial filter

As mentioned in Figure 2.12, FSS structures have been considered as periodic
arrays of special elements. In general, FSS can be categorized into two major
groups: patch type and aperture type. Once hit by plane wave, patch-type FSS
behaves as a capacity surface which has the characteristics of a low-pass filter.
This architecture transmits low-frequency content of the wave and reflects the
higher pattern. Instead of that, aperture-type FSS, as a complementary structure,
has an inductive response, and acts like a high pass filter.

Therefore, in order to manipulate both inductive and capacitive responses of
patch-type and array-type, dual-rectangular ring configuration was utilized to pro-
duce bandstop filter. In this section, in order to create a reverse behavior of a
bandpass filter, the idea is to make a reverse structure. Instead of printing two
rectangular rings on a substrate, two rectangular slot rings are made on a printed
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Figure 2.18: Geometrical parameters of optimizing spatial bandpass filter

metal plane. The mechanism of optimization from integration of full-wave anal-
ysis and global optimizer to modeling geometrical parameters follows exactly
what explained in Figure 2.15. The details of seven geometrical parameters on a
square unit cell are depicted in Figure 2.18.

Similar to bandstop design, all the unit cells are square and they are placed
uniformly as Figure 2.13(a). Regarding the angle of incidence, FSS structure is
illuminated by plane waves with propagation direction normal to the planar sur-
face and no phase delays are introduced between adjacent elements. In this study,
a dual rectangular ring configuration is considered for WiFi bandstop filter, from
2.4 to 2.5 GHz. With the aim of increasing bandstop region over the requested
one, one ring is added. As shown in Figure 2.18, the solution domain consists of
seven variables: a,a1, b1, t1, t2, a2 ,b2; which are properly modeled to satisfy the
feasibility of fabrication.

FSS structures are modeled by full-wave analysis and the objective of op-
timization is compressed into a representative cost function. The optimization
scheme is the same as the scheme in Figure 2.1, but now FSS parameters need to
be optimized. In this case, the main objective is to enlarge as much as possible
the bandpass bandwidth over selected WiFi band (2.4-2.5 GHz). As illustrated
in Figure 2.18 , firstly, each set of geometrical parameters stands for one spe-
cific FSS configuration. For each iteration of optimization loop, this set of data
is varied by global optimizer and what full-wave simulation returns will be used
to evaluate the structure. After a certain number of loops, the optimal design is
retrieved.

The width and length of two rectangular rings and substrate patch have been
introduced again modeled as variables in the optimization scheme. Each set of
parameters constructs an antenna configuration, and then each antenna configu-
ration stands for one agent in the swarm. In this context, total population consists
of 90 particles, 9 agents in each 10 swarms.
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Figure 2.19: The Max and Mean Value throughout 10 iterations
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Figure 2.20: Frequency response of best configuration ever found by optimizer

Table 2.3: Optimized geometrical parameters by Meta-PSO

Parameter a a1 b1 t1 t2 a2 b2
Values 39.76 27.43 26.09 1.38 1.19 13.857 11.06

Considering FSS as a filter, S21 serves as transmission coefficient and S11

as reflection coefficient. When behaving bandpass filter, the requirements of
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S11 < −10 dB and S21 > −1 dB should be fulfilled. They are also fundamental
conditions to determine cost value, which then are evaluated by global optimizer.
In order to enlarge the bandstop region, the extension of permitted bandwidth
(PBW) is related to cost value according to the formulation:

Cost Value = 100 + PBW/2 (2.14)

In Figure 2.19, the change of max values and mean values of cost function shows
the fundamental characteristic of heuristic approach: the swarm improves itself
during optimization time. Frequency response of best configuration ever found
by Meta-PSO is shown in Figure 2.20 and details of parameters are presented in
Table 2.3.

2.4 Meta-material inspired antennas

Theory of pure left-handed material

In the last few years, there has been an increased interest in the scientific commu-
nity in the study of metamaterials. Metamaterials are a class of composite mate-
rials artificially constructed to exhibit exceptional properties not readily found in
nature. In particular, there has been high level interest in studying materials which
can be characterized by simultaneously negative permittivity (ε) and permeability
(µ) over a certain frequency band. Such material can be called left-handed mate-
rial or anti-isorefractive material. In this context, a brief but sufficient introduc-
tion on the EM properties of propagation, radiation and scattering of left-handed
material has been provided. Throughout this thesis, all the medias are assumed
to be homogeneous and isotropic. The characteristics of anti-isorefractive struc-
ture will be again discussed in Chapters 4, 5 and 6. It is useful to review the
simple concept of wave propagation in a source-free unbounded medium. For
such a medium, propagating waves obey the frequency domain Maxwell’s curl
equations, which are given by:

∇× Ē(r̄) = iωµ(ω)H̄(r̄) (2.15)

∇× H̄(r̄) = −iωε(ω)Ē(r̄) (2.16)

where ε(ω) and µ(ω) are frequency dependent. For plane wave solutions of the
form eik̄.r̄, Maxwell’s equations become,

k̄ × Ē(r̄) = ωµ(ω)H̄(r̄) (2.17)

k̄ × H̄(r̄) = ωε(ω)Ē(r̄) (2.18)
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2.4. Meta-material inspired antennas

Figure 2.21: Illustration with Transverse Electromagnetic Wave

where k̄ is the wave propagation vector and together with Ē, H̄ , they form left-
handed system. Considering an electric field that is polarized along the ρ̂, the
power flow can be calculated as follows, according to Poynting’s Theorem:

Ē = ρ̂eik̄.r̄ (2.19)

H̄ =
1

ωµ

(
k̄ × ρ̄

)
eik̄.r̄ (2.20)

=⇒
〈
S̄
〉

= <{Ē × H̄} =
1

ωµ
ρ̂×

(
k̄ × ρ̄

)
= (ρ̂.ρ̂)k̂ − (ρ̂.k̂)k̂

=
k̄

ωµ
(2.21)

where < is the real operator and ρ̂.k̄ = 0 is due to Gauss’s law. This result shows
that the time-averaged Poynting vector will be in the opposite direction of the
phase propagation vector where ε and µ are both negative, as illustrated in Figure
2.21.

Realization of Meta-Material inspired antennas

In recent years, as wireless communication technologies are growing exponen-
tially, multi-band antennas for WLAN (Wireless Local Area Network) and WIMAX
(World Wide Interoperability for Microwave Access) received a lot of interest
[65]. In order to reduce the size of EM devices, Meta-Material (MTM)-inspired
structures have been employed extensively by the relization of SRR or compos-
ite right-left handed (CRLH) transmission line [66–68]. However, these designs
intrinsically suffer the drawbacks of narrow bandwidth and difficult fabrication.
In this dissertation, two vialess microstrip antennas will be proposed by the com-
bination of many techniques namely: SRR or CSRR, truncated ground plane and
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Coplanar Waveguide (CPW)-fed. These configurations have been properly mod-
eled by full-wave analysis, and then they have been optimized by the a global
optimizer, Meta-PSO.

In the literature, Split ring resonator (SRR) and complementary split ring res-
onator (CSRR) have been widely used to reduce the antenna size. In order to
exibit the robustness of global optimizers and new designs of Meta-Material in-
spired antenna, in this thesis, complete solutions for two vialess coplanar-fed
antenna will be presented. Two multiple-band antennas are electrically small
(20mm x 20mm x 1.6mm) and operate at Wifi band (2.45 GHz/5.2 GHz) as well
as WIMAX at 3.5 GHz. Antenna structures are modeled by full-wave analy-
sis and then compressed into a representative cost function. The optimization
scheme used is fully described by Figure 2.1. In this context, the main objective
is to enlarge as much as possible the resonating bandwidth over three selected
bands: Wifi1 (2.4-2.5 GHz), Wifi2 (5.1-5.8 GHz) and WIMAX (3.4-3.7 GHz).

Meta-Material, as an artificial material, possesses many intriguing properties
that can be exploited in miniturizing antennas since the operating frequencies are
independent of electrical length. The idea is to create a multi-resonant structure
with improved bandwidth response by imposing SRR (or CSRR) and CPW-fed.
This multi-band design can be realized by the use of equivalent circuits, however
L-C lumped elements are usually obtained through via-hole components [69],
[70]. By adopting the ideas of vialess structure presented in [71], two striplines
connected to the edge of substrate are created. These configurations, by a proper
design, can perform equivalently with the via or multi-layer structures. Coplanar
waveguide has been employed as feeding instead of conventional microstrip line
thanks to the possibility of enhancing the bandwidth [72]. Since the antenna is the
combination of many specific designs, the influence and coupling effects of one
part on the others are remarkable. It is relevant to derive a solution by a stochastic
approach based on the hypothesis of MTM-inspired structures. All the top view,
side view and 3D layout of two proposed antennas are denoted in Figure 2.22 and
Figure 2.23.

Regarding the substrate, all the elements are printed on FR4 proxy with thick-
ness h = 1.6mm and dielectric constant of 4.4. All the geometrical parameters
from the dimensions of CPW feed structure, split ring resonators, width and
length of connected arms are varied. The truncated ground plane is placed on
the bottom layer, paralel with the structures on the top plane. This patch can
be placed symmetrically or asymmetrically to the center point of concentric split
rings. The purpose of this design is to create the equivalences of lumped inductors
and capacitors for multi-band structures. The second stage of feed line connect-
ing external split ring to internal split ring is decreased in size. Since the aim is
to minimize the size of antennas, the range or variation of all the parameters are
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2.4. Meta-material inspired antennas

(a) Protoype 1 (b) Prototype 2

Figure 2.22: Top view and side view of MTM-inspired antennas.

Figure 2.23: The three-dimensional layout of Prototype 1 (left) and 2 (right).

restricted into particular range of interest and fundamentally satisfy the feasibility
of fabrication.

Numerical results

Table 2.4: Comparison of optimal parameters between the two proposed antennas

Proposed Antenna W L R1 R2 L2 g1 L1

Prototype 1 21.32 20.76 5.1 1.26 3.89 0.58 2.55
Prototype 2 19.67 16.94 4.92 0.81 6.58 0.22 2.09

Regarding optimization parameters, the initial population consists in 9 par-
ticles for each one of 10 swarms, in total 90 particles. After 10 iterations of
Meta-PSO evaluation, the best results ever achieved are reported in Table 1. With
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the aim of enlarging the bandwidth over the requirement, the extended bandwidth
(BW) is related to cost value according to the formulation:

Cost Value = 100 +BW/2 (2.22)

The maximum and mean value of cost function ever attained by Meta-PSO after
each iteration are denoted in Figure 3.10. Considering two antenna configura-
tions, the electrical length of substrate patch for Protype 2 is smaller than that
of Prototype 1; 19.67mm x 16.94mm in comparison with 21.32mm x 20.76mm.
The bandwidth comparison is depicted in Figure 2.24, showing good resonant
behavior of two proposed antennas over the three requested bands.

Moreover, the gain and radiation pattern of two antennas are also observed in
Figure 2.25, Figure 2.26, Figure 2.28 at 3 center frequencies of 2.4 GHz, 3.5 GHz
and 5.4 GHz. Two antennas are both placed in x-y plane and the radiation charac-
teristics are investigated in two main cuts y-z (E plane) and x-z (H-plane). As can
be seen from the graph, the two antennas have dipole-like radiation pattern, show-
ing good omni-directional behavior. Gain increases in higher frequency band,
maximum value recorded is -0.3 dB. To sum up, the two proposed via-less an-
tennas are built up on simple planar structure, showing huge prospect in modern
wireless applications.
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Figure 2.24: The bandwidth comparison of two proposed antennas
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Figure 2.25: Radiation pattern of two proposed antennas at f = 2.4 GHz
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Figure 2.26: Radiation pattern of two proposed antenna at f = 3.5 GHz

Conclusion

Two Meta-Material inspired antennas have been first constructed by the combina-
tion of many structures and then they have been optimized successfully by the use
of a global optimizer. Altogether, two critical aspects of modern antenna design
have been considered, namely antenna miniaturization and radiation pattern.
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Figure 2.27: The cost function Max value and Mean value through 10 iterations
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Figure 2.28: Radiation pattern of two proposed antennas at f = 5.4 GHz
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CHAPTER3
Surrogate-driven optimization

The starting point of design procedure is the optimization of the antenna band-
width by adopting a full wave FEM approach and the heuristic technique in Chap-
ter 2. According to the scheme depicted in Figure 2.1, return loss is retrieved as a
function of geometrical parameters, whereas the evaluation is based on the inter-
action between optimizer and EM modeling. However, this approach is compu-
tationally expensive since it requires a full wave analysis for each time of assess-
ment. In addition, the storage of data produced by these simulations need a large
amount of dynamic memory. With the aim of reducing these computational ef-
forts and memory consumption, it is relevant to introduce a simplified equivalent
model of the antenna, in order to be directly managed by the optimization tool.

One way of reducing the computation burden is to construct a surrogate model
that can mimic the EM simulator as closely as possible. This approximation
model is built up by a data-driven approach, where the inner mechanism of sim-
ulation code is not assumed to be known, which the input-output relationship
is important. A model of this type is created from the "prior knowledge" from
simulator to a limited number of chosen data points. This method is also known
as behavioral modeling or black-box modeling, though the terminology is not
always consistent. Thanks to the advantage of saving computational effort, the
surrogate model can be used in many areas of science, where there are expensive
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Chapter 3. Surrogate-driven optimization

experiments or evaluations to be performed. The scientific challenge of surrogate
modeling is the generation of a surrogate that is as accurate as possible, using as
few simulation evaluations as possible. The process comprises three major steps
which may be interleaved iteratively:

1. Sample selection: It is how we choose to extract "prior knowledge" from
full-wave analysis. This is also the main topic of this chapter.

2. Construction of the surrogate model and optimizing the model parameters
(Learning algorithms are mentioned in Chapter 1)

3. Appraisal of the accuracy of the surrogate. In this chapter, the validation of
Regular training and Irregular training with full-wave model will be dis-
cussed.

The aim of surrogate-driven optimization is to develop a new class of op-
timization techniques where time consumption is reduced significantly. In this
section, the configuration of dual rectangular ring proximity coupled feed an-
tenna is used as a test object in order to compare efficiency with conventional
scheme in Figure 2.1. Afterwards, in the second part of this chapter, a complete
hybridization technique, Irregular training, is implemented to optimize a new
antenna, dual annular ring proximity coupled feed.

3.1 Regular training

3.1.1 Interpretation of Methodology

Regarding the antenna configuration in Figure 2.4, the relation between inputs
and output could be properly modeled by the Artificial Neural Network interpo-
lator. Once being sufficiently trained, the ANN can be considered as a black box
where the desired output can be forecasted for any arbitrary set of input data. In
order to make ANN model work, suppose a training set (x, y), where x is an input
vector and y is the desired output for x and d is the output of ANN for x. Both
EBP and LM update the weights between layers based on the gradient of the error
function:

E =
1

2
‖d(w, x)− y‖2 (3.1)

where d(w, x) is the output for an input vector.
As shown in Figure 3.1 in order to derive the optimal antenna configuration,

ANN is used as an effective interface between antenna designer and global opti-
mization. Initially the full-wave simulator creates the validation data just for the
training phase. The full procedure is guided by a global optimizer, by which the
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Figure 3.1: The block diagram of the new approach with ANN surrogate model.
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2

weights
2
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3

weights
3

Figure 3.2: The considered multilayered perceptron structure, with 5 inputs and 2 outputs to-
gether with 2 hidden layers of 9 and 7 neurons, respectively.

inputs are tuned before entering the ANN which is able to produce a correspond-
ing reflection coefficient with the full-wave simulator. Sampling target data and
using neural networks are two discrete steps. Regarding this “Regular Sampling
Method,” the desired outputs are obtained by full-wave analysis from formally
chosen geometrical inputs in the region of interest. Each parameter is selected by
5 values, and more variables to be optimized also means the needed training set
grows exponentially, as denoted in Table 3.1

Knowledge extracted from the physical model is used as target data for train-
ing Artificial Neural Network. After being trained successfully, the satisfied ANN
will be employed as an equivalent model to full-wave analysis. Since the ANN
architecture only deals with binary and simple activation function, this surrogate
model saves a critical amount of execution time. The best results ever found by
ANN will be validated by full-wave analysis in order to check the accuracy of the
simplified model. The proposed adaptive system consists of two hidden layers
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Chapter 3. Surrogate-driven optimization

Table 3.1: Computational cost for different problems

Assessments 3 inputs 4 inputs 5 inputs
Number of samples 25 125 625
Time consumption 40 mins 3.5 hour 18 hours

with 9 neurons in the first layer and 7 neurons in the second one. Bias is added
to the input and hidden layer; a sigmoid function is deployed as an activation
function, as sketched in Figure 3.2. For what concern the ANN architecture, the
input consists of 5 patterns of which the first is the frequency band of interest,
ranging from 1.5 GHz to 3.5 GHz. The remaining four inputs are the length and
the width of two rectangular rings, where the reason for these selections is their
obvious influence on the radiating behaviors of the top patch. The outputs are
the real and imaginary parts of the reflection coefficient. It is also worth noting
that antenna radiation is a lossy process and return loss is always a complex num-
ber. It is separated into two part: real and imaginary before being recombined to
produce amplitude which is the main interest in terms of bandwidth optimization
problem. Each different set of input geometrical parameters generates a diverse
antenna configuration; all of them will be evaluated by ANN when it experience
an adequate training. The capability of knowledge-based ANN in predicting the
reflection coefficient is presented in the following section.

3.1.2 Numerical results

For each of four geometrical parameters, we take 5 samples; in total, we have 625
independent cases of reflection coefficient to form the training set data. In rela-
tion to the ANN model’s numerical efficiency, we take into account the degree of
complexity with respect to each different set of inputs. Firstly, we have to rebuild
the reflection by full-wave analysis approach; then we make the comparisons with
ANN surrogate model. After obtaining the two outputs, real and imaginary parts
as the return loss, they are recombined to form the absolute value (Amplitude).
All the figures show the behaviors of amplitude according to the change of dif-
ferent geometrical parameters and frequency. Regarding the three-dimensional
plot, the axis of frequency remains unchanged since we need to investigate the
structure in fixed frequency range from 1.5 GHz to 3.5 GHz with a resolution of
400 steps. The other interval is one of the geometrical parameters that has been
discretized with 17 samples each. What results from the full-wave approach is
considered as target value for the training of Neural Network. The color bar of
top figures stands for the change of the amplitude from 0 to 1 while that of the
bottom figures ranging from 0 to 0.2, indicates the error introduced by ANN ap-
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Figure 3.3: Reflection coefficient amplitude versus b1 of the proposed antenna configuration,
computed with the full wave (top) and reconstructed with the ANN (bottom) in the certain
frequency range.

proximation. As can be seen in the plots of Figure 3.3, in certain cases, the largest
error introduced by ANN model is approximately 0.1; this difference can be ne-
glected since we exploit ANN as an effective tool to minimize the computation
effort. At the end of the optimization process, the best configuration interpreted
by ANN model will be validated again by full-wave approach. According to the
reported analyses, the following considerations can be drawn up:

1. The behavior of the proposed antenna changes remarkably by the perturba-
tion of dimensions of external radiators a1, b1. On the contrary, this value
appears not to be influenced substantially by variables a2 and b2, the electri-
cal length of internal ring radiators.

2. The errors gained from ANN surrogate model are relatively trivial. The
difference between ANN simulation and physical assessment by full-wave
approach can be neglected. Hence, the ANN approximation of reflection
coefficient can be entrusted and qualified enough to be integrated into the
global optimizer.

Figures 3.4, 3.5, 3.3, 3.6 illustrate the dependence of |S11| on geometrical param-
eters a1, b1, a2 and b2 respectively. As can be seen from the graphs, the perturba-
tions of a1 and b1 have bigger influence on the structure than a2 and b2. In figure
3.6, by changing b1 from 7 to 9mm in steps of 1 mm, the resonant frequencies
shift significantly.
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Figure 3.4: Reflection coefficient amplitude versus a1 of the proposed antenna configuration,
computed with the full wave (top) and reconstructed with the ANN (bottom) in the certain
frequency range.
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Figure 3.5: Reflection coefficient amplitude versus a2 of the proposed antenna configuration,
computed with the full wave (top) and reconstructed with the ANN (bottom) in the certain
frequency range.

Instead, in Figure 3.3, while varying a2 from 2.75mm to 4.75mm with the
same step size of 1 mm, the center frequency remain almost the same. All the
top plots of each figure represent target data for testing and training the ANN
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3.1. Regular training

model. All the comparisons are reported in the bottom parts showing a great
accordance between the reconstructed data by ANN estimation and target by full-
wave approach. Since training is the most crucial and expensive phase in the use
of ANN, computational effort ought to be taken into account. Regarding the
network size, the more complex the problem, the bigger the designed network
may be required. Figure 3.7 shows the radiation pattern of the optimized antenna
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Figure 3.6: Reflection coefficient amplitude versus b2 of the proposed antenna configuration,
computed with the full wave (top) and reconstructed with the ANN (bottom) in the certain
frequency range.

at the center resonant frequency band, 2.45 GHz. The maximum value of gain
recorded is 4 dB, satisfying the constraint for indoor electrical appliances. It is
worth noticing that the behaviors of ANN models are close to full-wave analysis,
and it again confirms that the differences between the approximation and physical
characterization are negligible. Figure 3.8 indicates the gain of the proposed
antenna with respect to the change of frequency. As can be observed, radiation
pattern peaks in the operating frequency range from 2.4 to 2.5 GHz. All the
simulations were done by the use commercial full-wave analysis, on an Intel(R)
Core I-7 2600 CPU, 3.4 GHz, 8 GB RAM system. The best configuration of
proposed antenna: a = 40mm; b = 40mm; a1 = 19.76; b1 = 21; a2 = 13.14; b2
= 5.5; h = 4.8mm. Regarding the network size, the more complex the problem,
the bigger the designed network may be required. In this context, a “split“ NN
architecture is proposed to prevent the NN from under-training risk. The original
NN is divided into two equal parts, each one is responsible for one output. The
dimension of NN structure is also reduced by half, leading to the decrease in time
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Figure 3.7: Radiation Pattern of the antenna when it is placed in xOy plane

1.5 2 2.4 2.5 3 3.5
−8

−6

−4

−2

0

2

4

Frequency (GHz)

M
a
x
 G

a
in

 (
d
B

)

Figure 3.8: Maximum total gain as a function of frequency in the region of interest

convergence.

3.1.3 Multi ANN approach

However, when dealing with large-scale problem with huge amount of datasets,
Error Backward Propagation (EBP) algorithm is not adequate to handle that kind
of sophisticated problem. In order to tackle this issue, a second-order algorithm
namely Levenberg-Marquandt (LM) is adopted. The optimal solution would be
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3.1. Regular training

using LM training for two separated Neural Networks and then unifying those
two distinguished outputs to reform the amplitude of reflection coefficient. Ta-
ble 3.2 reports the details of computational time for each kind of network. As
can observed from Table 3.1 and Table 3.2, the total optimization time is reduced
radically by the use of ANN. The driving reason is quite apparent: ANN only con-
sists of simple processing units and it treats mainly binary objects. On the other
hand, full-wave characterization always has to deal with a huge number of inte-
gral equations. Figure 3.9 illustrates the robustness of the proposed method: LM

Table 3.2: Comparisons of computational time and numerical efficiency between the training
algorithms.

Assessment Categories EBP full EBP seperrated LM full LM separated

Training Time 20 hours 10 hours 1 hour 30 min
Error Committed 0.01 0.001 0.0005 0.0004

Optimization Time 7 mins 5 mins 5 mins 4 mins
(when being integrated)
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Figure 3.9: Training error level as a function of number of iterations versus proposed methods.

training for two separated networks. As regards the EBP algorithm, the division
of original Neural Network into two separated ones declines significantly mean
the square error to the minimum value of below 0.001. However, as reported
in Figure 3.9, LM is proved to be more effective in minimizing the error grade.
Both full network approach and separated one demonstrate the great improve-
ment in solution accuracy. The best result is achieved by implementing LM-2
outputs. After the optimization run, the resulting geometrical configurations
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Figure 3.10: Comparison of ANN model with full-wave analysis model when being integrated
with global optimization tool.
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Figure 3.11: ANN optimization and full-wave analysis validation.

have been validated by full-wave analysis. Figure 3.11 shows the comparisons
between the different uses of ANN (by LM training). It demonstrates that all
proposed methods have a good match with target data. However, the two-output
approach exhibits a better performance since the output data is closer to the vali-
dation by full wave analysis. The absolute difference between the target data and
ANN outcome is just 0.0005. All the convergence curves of different approaches
with Different Meta PSO optimization scheme are presented in Figure 3.10. For
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3.2. Irregular training

the reported simulations, 8 swarms of 10 agents have been considered. In total,
the whole population of 80 particles are tested for 10 iterations. With the aim of
enlarging the bandwidth over the requirement, the extended bandwidth (BW) is
related to cost value according to the formulation:

Cost Value = 100 +BW/2 (3.2)

where BW is the measure of -10 dB bandwidth obtained from |S11| in Figure 3.11.
The presented results show the ability of Artificial Neural Network as an im-

portant vehicle in frequency EM-modeling. The achieved efficiency demonstrates
the robustness of the surrogate model in terms of sensible reduction in computing
resource. The accuracy of the solution makes Artificial Neural Network suit-
able to be implemented as a convenient interface between antenna designers and
global optimization tools.

3.2 Irregular training

In the Regular Training method, sampling target data and using neural networks
are two discrete steps. Regarding this "regular methodology," the desired outputs
are obtained by full-wave analysis from formally chosen geometrical inputs in the
region of interest. Each parameter is selected by five values, more variables to be
optimized also means the needed training set grows exponentially, as denoted in
Table 3.1

3.2.1 Interpretation of the method

When linking ANN with a global optimizer, it is obvious that there is informa-
tion exchange between them. The main idea of this technique is to utilize the
data from unsatisfying antenna configurations as prior knowledge for ANN train-
ing. ANN is a self-adaptive modeling tool that changes its structure on the basis
of external or internal information flowing through the network. Therefore, the
more information updated after each loop in Algorithm 3.1, the more accurate
outputs ANN surrogate model can provide. The crucial difference between this
hybridization technique and a conventional one, as presented above, is the way
training set data retrieved.

In a population-based optimizer such as PSO, a particle, representing an an-
tenna configuration, is characterized by a random vector X = [x1,x2,...,x6]. Re-
garding this particular case, where is X defined in six-dimensional space, where
exist six geometrical parameters to be optimized, with initial population of 50
agents. In order to enter the While loop, the primary error has been chosen as 10,
larger than 0.3 of the constraint. Firstly, at step (1), all Np particles are evaluated
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Data: Assigned error: aerr
Number of population Np ;
Prior knowledge: P ; G ;
while ANN model is not robust enough (err > aerr) do

Update the P and G;
Do optimization by full-wave analysis (1);
if global best agent satisfies the bandwidth threshold then

Finish, Generate the best antenna configuration (2);
else

Remember P , G (3);
Record unsatisfied antenna configurations for training data (4);
Set up and train ANN model with existed data set (5);
Check model accuracy by full-wave characterization by Xtest (6);
Update the value of err (7);
Update the P and G (8);

end
end
repeat

Using ANN model to find the best solution Xbest (9);
Validate with full-wave analysis (10)

until ANN best agent satisfies the bandwidth threshold;
Algorithm 3.1: Pseudo-code for hybridazation technique

by PSO optimizer for one iteration. If the global-best satisfies has the bandwidth
lager than WIFI band, then the loop is finished. Otherwise, all Np unsatisfying
configurations both inputs X and outputs to form training data for ANN, in steps
(4) and (5). The positions of P and G are recorded at iteration (k) of the loop
and they are updated at the iteration (k+1) so that the computational effort is not
lost. At the end of the While loop, surrogate model accuracy is validated with
physical model by particle Xtest. The representative parameter err is defined by
the absolute difference between the Amplitude of Return Loss of two models. If
ANN equivalent model can overcome this condition, it will be used to replace
full-wave analysis. If not the While loop continues to gain more knowledge for
machine learning ANN. After each time the loop cannot find proper ANN model,
Np antenna configurations are added into training data. It is also worth noting that
ANN is a fault-tolerance model, thus it satisfies the case of Xtest but for Xbest
the best antenna configuration ever found by ANN might have bandwidth con-
dition mismatch when being checked with full-wave analysis. In order to tackle
this issue, a Repeat loop is created. This loop ends when best particle by ANN
satisfies both constraints of bandwidth and accuracy. The details of the proposed
method is clearly explained in Diagram 3.12
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3.2. Irregular training

Figure 3.12: Irregular Training in details

3.2.2 Applying to the case of Dual Rectangular Ring Antennas

The bandwidth optimization for this antenna was first done in chapter 2, and by
Regular Training. In this case, it is reused as a test object for Irregular Train-
ing scheme. The geometrical parameters are arbitrarily selected by optimizer
to generate different antenna configurations. The creation of new particles must
obey the feasibility of antenna fabrication such that the rings cannot overlap each
other or exceed the substrate. The data from unsatisfied antenna structures will
be used as the training set for surrogate model.

By applying the new scheme, after 90 times of sampling from random set of
inputs, the ANN is robust enough to replace full-wave analysis. Considering the
four-variable problem in this article, the new approach save more than 25 per
cent of computational effort. Regarding the 3D plot in Figure 3.13, it denotes the
change of the antenna return loss and the faults committed by each model. The
axis of frequency remains unchanged since we need to investigate the structure
in fixed frequency range from 1.5 GHz to 3.5 GHz with a resolution of 400 steps.
The other interval is b1 that has been discretized with 9 samples each. Therefore,
amplitude of return loss is recognized as the function of b1 and frequency, while
a2 and a1 are fixed at the values of 2.5 mm and 7 mm respectively. The color bar
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Chapter 3. Surrogate-driven optimization

Table 3.3: Computational cost for different approaches

Methods Conventional Regular sampling Irregular sampling
Number of assessments 300 125 90

Time consumption 10 hours 4.7 hours 3 hours

ranging from 0 to 0.2 represents the error introduced by two ANN approxima-
tions.
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Figure 3.13: Numerical comparison between the two optimization schemes

As can be seen from the graph, a maximum value of error at some certain
values of the interval is recorded at less than 0.08 in the interval of [0,1]. This fact
again confirms that the differences between ANN approximations and physical
characterization are negligible . Although the error is slightly higher in this new
scheme with respect to the regular one, when data are processed by the optimizer
it still can find the antenna configurations satisfying the design constraints. The
best results ever found by ANN model again have been validated by full-wave
analysis. It also worth noting in Table 3.3 that new scheme saves a large amount
of computational time and, more importantly, ANN surrogate model and PSO
combines smoothly to form a new and hybrid class of optimization.

3.2.3 Optimization of Dual Annular Ring Antenna by New Scheme

In this research, in order to examine the robustness of hybridization technique,
a new proximity coupled feed type antenna has been chosen as a test object.
From the viewpoint of complexity, dual annular ring antenna configuration is as
sophisticated as a dual rectangular ring. These two antennas have the same type
of feeding line but they have different degrees of freedom when being optimized.
This multi-layer structure has two concentric annular rings situated on top plane,
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3.2. Irregular training

feeding microstrip line in the middle layer and ground plane on the bottom layer.
All these structures are printed on FR4 substrate with dielectric constant εr =

Figure 3.14: Top view and side view of the test object antenna

4.4 and 2.4 mm substrate height for each layer. The main object of optimization
scheme is to enlarge as much as possible the bandwidth over requested WIFI band
(2.4 GHz to 2.5 GHz). As illustrated in Figure 3.14, six geometrical parameters
namely a, b, R1, R2, t1, t2 are properly modeled in a specific range of interest.
Fabrication constraint and feasibility of this structure are satisfied, for example:
two concentric rings cannot overlap each other, the outer ring cannot exceed the
region of the patch. From the perspective of optimization, the complexity of Dual
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Figure 3.15: Artificial Neural Network Architecture

Annular Ring problem is similar to that of Dual Rectangular Ring. Therefore,
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Chapter 3. Surrogate-driven optimization

the proposed ANN structure comprises frequency, together with six geometrical
parameters a, b, R1, R2, t1, t2 as inputs and two hidden layers of 9 neurons and
7 neurons respectively. This architecture ends up with two outputs: real part and
imaginary part of return loss, as illustrated in Figure 3.15. At the end, the two
outputs are recombined to form the amplitude of the return loss, which is the
main concern of the global optimizer.

Numerical results

Comparisons of numerical efficiency are illustrated by a 3D plot in Figure 3.16.
One axis is Frequency since antenna structures are investigated in the band of
interest (from 1.5 GHz to 3.5 GHz) with the resolution of 400 steps. Another
interval is the geometrical parameter b that has been discretized by 7 samples.
The rest of antenna parameters are fixed as: a = 30 mm; R1 = 12 mm; R2 = 5
mm; t1 = 1.5 mm; t2 = 1.5 mm. The color bar, ranging from 0 to 0.2, indicates
the error introduced by ANN approximations in conventional scheme [73] and
proposed hybrid method. As can be seen from the graph, the error committed
by Irregular sampling method is slightly higher than Regular one. The maximum
error value recorded is 0.1 and this difference can be neglected. The primary
purpose is a better control by obtaining training data from arbitrary sets of inputs
rather than formally chosen space so that the total time consumption is saved
radically.
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Figure 3.16: Numerical efficiency comparison between conventional and hybridization technique
according to the change of frequency and b

As shown in Table 3.4, according to Regular scheme, in order to create train-
ing set data, 15625 samples are needed. As a result, the proper ANN architecture
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3.2. Irregular training

for this huge datasets might not be found. Provided that it exists, the amount of
time for training is tremendous and it would lead the surrogate-based optimiza-
tion by ANN to be impractical. By employing this hybridization technique, the
case of over-training data is eliminated by a set of constraints and loops. Regard-
ing this particular case, the total amount of time spent is 17 hours, much less than
estimated 25 days in the conventional scheme.

Table 3.4: Comparison of computational effort between conventional and hybridization technique

Assessments Regular sampling Irregular sampling
Number of samples 56 = 15625 450

Estimated time consumption 25 days 17 hours.

Table 3.5: Optmizied geometrical parameters by ANN model when being integrated with PSO
optimizer

Parameter a b R1 R2 t1 t2
Values 40.13 39.92 12.7525 6.6776 3.9319 3.7056

The best particle X found by ANN model is validated by full-wave approach
by Repeat loop in Algorithm 3.1. The details of final best antenna configuration
are presented in Table 3.5. Figure 3.17 shows the good accordance between the
outcomes of ANN model with full-wave model.
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Figure 3.17: The best configuration found by ANN model and validated by full-wave analysis

At the end of the While loop, after being checked as a robust model, cost func-
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tion F is now defined by ANN model. The convergence when integrating ANN
with PSO optimizer is demonstrated in Figure 3.18. 500 particles are considered
in 10 iterations. With the aim of enlarging the bandwidth over requested Wifi
band, extended bandwidth is related to cost value by the formulation:

Cost Value = 100 +BW/2 (3.3)
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Figure 3.18: The change of cost value throughtout 10 iterations with population of 500 particles
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CHAPTER4
Electromagnetic Modeling by the use of

Special Functions

4.1 Introduction

In previous chapters, computational intelligence from optimization algorithms to
Artificial Neural Network (ANN) were discussed. From the viewpoint of com-
puter engineering, once an arbitrary Electromagnetic (EM) problem is properly
projected, the best solution corresponding to a specific objective function can be
retrieved. Throughout chapter 1 and chapter 3, commercial full-wave analysis
has been used as a convenient interface between designer and global optimizer,
which is known as the tool to extract prior knowledge for ANN. However, when
dealing with electromagnetic problem, a vast and sophisticated branch of physics,
a simulator cannot appropriately model geometrical and electrical characteristics
of the environment under investigation. In order to tackle this issue and take a
deeper look into electromagnetic theory, some particular phenomenon should be
manually defined by the use of mathematical formulas. In the scope of this thesis,
a specific case of electromagnetic scattering is going to be considered.

The geometry of the problem can be described as a metallic prolate spheroid
that is coated with confocal layers of penetrable material that is either isorefrac-
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Chapter 4. Electromagnetic Modeling by the use of Special Functions

tive or anti-isorefractive to the surrounding space. There is a primary source
which is an electric or magnetic dipole located outside the coating layer on the
axis of symmetry of the structure and axially oriented. Such configuration is
amenable to an exact solution by separation of variables, wherby the field compo-
nents are expressed as infinite series of products of spheroidal special functions.
In this particular coordinate, there are no restrictions on material properties or
source types because the eigenfunctions must assume the same value on either
side of the interface and do not depend on the propagation constants of the two
media in contact. In this specific case, special wave functions, radial and angular
spheroidal functions are used to characterize the fields of the coating layer, either
Double PosSitive (DPS) or Double NeGative (DNG).

The development of novel electronic materials such as DNG metamaterial is
still in its infancy, insofar as bandwidth and low losses are considered, but is
proceeding rapidly, especially at optical and near-optical frequencies. The recent
introduction of non-Foster active elements holds promise for future microwave
applications, and especially for structures incorporating anti-isorefractive mate-
rials. In the literature, structures involving DNG materials with planar interfaces
have been studied by Velasgo [74], Shelby et al. [75] and Engheta [76] among
others, with circular cylindrical interfaces excited by a line source by Arslanagic
et al. [77], and with spherical interfaces excited by an electric Hertzian dipole by
Arslanagic et al. [78]

The model expansion coefficients in the infinite series can be determined an-
alytically by imposing boundary conditions in spheroidal coordinates. This re-
search on the boundary-value problem is conducted in the phasor domain with
the time-dependence factor exp(−iωt) ommitted throughout. Although prolate
and oblate structures as penetrable materials of acoustic waves have been studied
for many years, none of analytical results shown in this research is known before-
hand. The details of numerical analysis will be discussed rigorously in the next
sections.
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4.1.1 Introduction to Prolate and Oblate coordinates

It has been said in the introduction that electromagnetic problems are often solved
by applying boundary conditions. Such conditions are clearly strictly dependent
on the geometry of the object itself and this is the reason why it can be often useful
to adopt a special coordinate system describing the shape of the object in a simple
way and allowing for a convenient mathematical representation of the constraints
on the field. Theoretically, we could define an infinite number of general or
curvilinear coordinates systems and use the more suitable ones for our case. An
explanation about how to create a coordinate system can be found in Stratton
[81]. In the case under consideration it is immediate to recur to the spheroidal
coordinate system, which allows for the representation of the surface of the cavity
by simply fixing the value of one coordinate (ξ). In fact, in such a system every
point of the space is uniquely identified by the intersection of three orthogonal
surfaces that are an ellipsoid, a hyperboloid and a half-plane. Thus, keeping
constant the coordinate identifying the ellipsoid and letting vary the other two,
we get exactly a spheroidal surface. The ellipsoids and hyperboloids defining the
coordinates are generated by rotation of confocal ellipses and hyperbolas about
the major or minor axis. In the first case the coordinate system is said to be
prolate, while in the second one oblate. Typically, the z-axis is chosen to be the
axis of revolution and we indicate the interfocal distance with the letter d.

Prolate system

As it can be found in Flammer [79], the prolate spheroidal coordinates are related
to the rectangular coordinates by the transformation

x =
d

2

√
(ξ2 − 1) (1− η2) cosφ

y =
d

2

√
(ξ2 − 1) (1− η2) sinφ

z =
d

2
ξη

with −1 ≤ η ≤ 1, 1 ≤ ξ <∞, 0 ≤ ϕ ≤ 2π.

For this case it is found that the length of the major axis of the prolate ellip-
soid is related to ξ by the product dξ and the minor axis is given by d

√
ξ2 − 1.

The minimum value allowed for ξ is 1 and it corresponds to an an ellipsoid de-
generated in a straight line between the two foci along the z-axis. The surface
corresponding to |η| = constant is a two-sheet hyperboloid of revolution for
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Figure 4.1: Prolate spheroidal coordinate system section view.

which the generating line of the asymptotic cone passes through the origin with
inclination θ = arccos η. The degenerate surface obtained for |η| = 1 covers all
the z-axis but the segment joining the two foci (the one identified by ξ = 1). In
particular, the positive part of the z-axis is defined by η = 1 and the negative
part is represented by η = −1. In this system η = 0 corresponds to the whole
x,y-plane. The coordinate ϕ = constant identifies a half-plane originating from
the z-axis and forming the counterclockwise ϕ angle with the xz-plane.

Oblate system

For the oblate system the transformation to cartesian coordinates is given by
x =

√
d

2
[(1− η2)(ξ2 + 1)] cosϕ,

y =

√
d

2
[(1− η2)(ξ2 + 1)] sinϕ,

z =
d

2
ηξ

(4.1)

with −1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ ϕ ≤ 2π.
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Figure 4.2: Oblate spheroidal coordinate system section view.

In the spheroidal coordinate system the minor axis is given by the product
of the interfocal distance and the cavity surface coordinate dξ while the major
axis is found to be d

√
ξ2 + 1. The minimum value for ξ in this case is 0 and

it corresponds to a circular disk of radius a = d/2 laying in the xy-plane and
centered in the origin. Here |η| = constant represents a one-sheet hyperboloid
of revolution which asymptotic cone is the same as in the prolate case. For |η| = 1
we get a degenerate surface corresponding to the entire z-axis. As for the prolate
system, the positive and negative part of the axis are identified respectively by
η = 1 and η = −1. The surface η = 0 is the xy-plane except the disk ξ = 0. The
coordinate ϕ represents also in the oblate system a half-plane forming the angle
ϕ with the xz-plane.

Scalar Wave Equation and Spheroidal Functions

As it has been said in the previous section, the problem we are studying is charac-
terized by an object illuminated by an electromagnetic wave. The use of a special
coordinate system is necessary to easily represent mathematically the boundary
conditions. It must be said though, that once we identify the more appropriate co-
ordinate system, we have to solve the wave equation in the particular system we
have defined and this is not always possible. Spheroidal coordinates are among
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coordinate systems whereby the solution by using the separation of variables
method can be applied. The scalar wave equation

(∇2 + k2)ψ = 0. (4.2)

has a solution that is composed by three independent functions:
(i) the angular spheroidal function Smn(c, η),
(ii) the radial spheroidal function Rmn(c, ξ),
(iii) the sine or cosine function, and it is in the form

ψmn = Smn(c, η)Rmn(c, ξ)cos
sin mϕ. (4.3)

The aforementioned spheroidal functions are for the prolate coordinate sys-
tem. For the oblate case it is sufficient to replace c with −ic and ξ with iξ:

• Smn(−ic, η),

• Rmn(−ic, iξ),

which gives the solution of the wave equation in the form:

ψmn = Smn(−ic, η)Rmn(−ic, iξ)cos
sin mϕ.

Basically, the angular and radial spheroidal functions are a generalization of Leg-
endre and spherical Bessel functions respectively.

Angular Functions

Writing the scalar wave function

(∇2 + k2)ψ = 0 (4.4)

in prolate and oblate spheroidal coordinates[
∂

∂η
(1− η2)

∂

∂η
+

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

ξ2 − η2

(ξ2 − 1)(1− η2)

∂2

∂ϕ2

]
ψ + c2(ξ2 − η2)φ = 0

(4.5a)

[
∂

∂η
(1− η2)

∂

∂η
+

∂

∂ξ
(ξ2 + 1)

∂

∂ξ
+

ξ2 + η2

(ξ2 + 1)(1− η2)

∂2

∂ϕ2

]
ψ + c2(ξ2 + η2)φ = 0,

(4.5b)

where
c =

1

2
kd, (4.6)
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and solving using the procedure of separation of variables, which implies a solu-
tion in the form of Lamé products

ψmn = Smn(c, η)Rmn(c, ξ)cos
sin mϕ, (4.7a)

ψmn = Smn(−ic, η)Rmn(−ic, iξ)cos
sin mϕ, (4.7b)

we get that the angular spheroidal functions must satisfy the ordinary differential
equations

d

dη

[
(1− η2)

d

dη
Smn(c, η)

]
+

[
λmn − c2η2 − m2

1− η2

]
Smn(c, η) = 0,

(4.8a)
d

dη

[
(1− η2)

d

dη
Smn(−ic, η)

]
+

[
λmn − c2η2 − m2

1− η2

]
Smn(−ic, η) = 0,

(4.8b)

for the prolate and oblate case respectively. In the above equations λmn andm are
the separation constants. As explained in Flammer [79], we are interested only
in those results for which the wave function (4.7) is single valued. In order to get
physically significant solutions, this requires that m has to be an integer, which
can be assumed positive or zero without loss of generality. To get the solution
of the differential equation (4.5) it is required to find its eigenvalues and then
the associated eigenfunctions Smn(c, η) or Smn(−ic, η) that are, respectively, the
prolate and oblate spheroidal angular functions of the first kind, of order m and
degree n, where n ≥ m. The eigenvalues are found to be those values of λmn(c),
or λmn(−ic) in the oblate case, for which the solutions of the wave equation
are finite at η = ±1. From now on, only the prolate case is considered not to
make the explanation too cumbersome since, as said before, the oblate case is
easily obtained from the prolate by simply replacing c with −ic and, in the radial
functions, ξ with iξ.

When c approaches zero, the functions satisfying 4.5 become Legendre func-
tions of the first kind (as in the simpler spherical case). Since the spheroid can
be seen as a deformed sphere, we can think to decompose the angular spheroidal
functions, as the solution for such geometry, in an infinite sum of Legendre func-
tions appropriately weighted, which reduces exactly to a single Legendre function
ones we consider the spherical problem that imposes all the weight coefficients
but one to zero:

Smn(c, η) =

∞∑′

r=0,1

dmnr (c)Pm
m+r(η) (4.9)

The prime over the summation sign is used to indicate that the summation is only
over even values of r for n−m even and over odd values of r for n−m odd.
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Chapter 4. Electromagnetic Modeling by the use of Special Functions

At this point, the following step in determining the angular spheroidal function
is to find the coefficients dmnr (c). The procedure is not reported here but it can
be found in Flammer [79]. Particular attention must be paid in the normalization
criterion employed. In fact, several different criteria exist and it must be specified
the one we use in order not to be mistaken. In this work the coefficients are
normalized so that the angle function reduces to the associated Legendre function
when c becomes zero. To do this, it may be imposed that the behavior of Smn
near a particular value of η approaches that of Pm

n . Following Chu and Stratton
[80, 81], as reported on page 21 of Flammer [79], η = 0 is chosen to be the
normalization point. The angular normalization coefficient we get is given by the
relationship:

Nmn = 2

∞∑′

r=0,1

(r + 2m)!(dmnr )2

(2r + 2m+ 1)r!
. (4.10)

It should be noted the dependence of the angular function on the parameter c,
namely on the wave number k and the interfocal distance d. The dependence on
k is clear since the propagation constant contains information about the illumi-
nating wave and the properties of the medium in which the wave is propagating,
that are necessary in describing the total field. On the contrary, the dependence
on d could be not so immediate to understand. The explanation is found in the
fact that the spheroidal coordinate system is not unique. In fact, we can define
an infinite number of such systems just choosing a different interfocal distance.
So, the dependence on d is needed to take in account for the particular spheroidal
coordinate system we are using.

Radial Functions

The radial spheroidal functions,Rmn(c, ξ) andRmn(−ic, iξ) , as the angular ones,
are obtained by solving the wave equation expressed in spheroidal coordinates.
They are the eigenfunctions of the equations

d

dξ

[
(1− ξ2)

d

dξ
Rmn(c, ξ)

]
+

[
λmn − c2η2 − m2

1− ξ2

]
Rmn(c, ξ) = 0,

(4.11a)
d

dξ

[
(1− ξ2)

d

dξ
Rmn(−ic, ξ)

]
+

[
λmn − c2ξ2 − m2

1− ξ2

]
Rmn(−ic, ξ) = 0,

(4.11b)

for which the eigenvalues are the same as the ones found in computing the angle
functions. We identify four kinds of radial functions. The first and second kinds,
R

(1)
mn and R(2)

mn, are the basics and the third and forth kinds, R(3)
mn and R(4)

mn, can be
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obtained as sum and subtraction of the first two, respectively:

R(3)
mn = R(1)

mn + iR(2)
mn , (4.12)

R(4)
mn = R(1)

mn − iR(2)
mn . (4.13)

As the angular spheroidal functions are defined so that they coincide with the
associate Legendre functions for c vanishing, the first, second, third and fourth
kinds radial spheroidal functions reduce to the spherical Bessel, Neumann and
Hankel functions of the first and second kinds, respectively, as c goes to zero.
Therefore, also the radial spheroidal functions can be expressed as sum of simpler
and well-known functions, as we have seen for the angle functions. An important
feature is that the coefficients appearing in the radial functions are obtained from
the ones of the angle functions dmnr . This characteristic gives a big help in terms
of time when computing numerical results via computer.

Following are the relationships for the four kinds of radial spheroidal func-
tions normalized by the coefficient:

ρmn(c) = im−ncm/

[ ∞∑′

r=0,1

dmnr (c)
(2m+ r)!

r!

]
, (4.14)

for the prolate case and ρmn(−ic) for the oblate one. For detailed analysis of
this problem, please refer to Flammer [79] and Li et al. [82] and in the book of
Jin [83]

It is to be noticed that the convergence of the series is very slow for small
values of cξ. In fact, the expansion is an asymptotic series, being not absolutely
convergent for any finite value of cξ. For this reason other kinds of expansion
have been implemented for the case of small cξ. The details about these methods
can be found in [79], [82] and [83]

The behavior of oblate spheroidal functions will be analyzed in detail. A little
variation to the notation will be applied:

Smn → Sm,n

R(1)
mn → R(1)

m,n

R(3)
mn → R(3)

m,n

4.1.2 The case of one layer coating

This problem was previously considered by Dr. Askarpour and Prof. Uslenghi
in [97–99] and analytical solutions have been such that strongly used as a refer-
ence to the case of dual layer coating about to be presented in this thesis. Ba-
sically, the geometry consists of a metallic prolate/oblate spheroid coated with
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Chapter 4. Electromagnetic Modeling by the use of Special Functions

a confocal prolate/oblate spheroidal layer made of lossless penetrable material
characterized by a real electric permittivity ε1 amd a real magnetic permeability
µ1, or equivalently by a real propagation constant k1 =

√
ε1µ1 and a real intrin-

sic impedance Z1 =
√

ε1
µ1

. The structure is surrounded by an infinite medium

(e.g., free space) with real propagation k0 and real instrinsic impedance Z0. The
primary source is an electric or magnetic dipole located outside of coating layer
on the axis of symmetry of the structure (in this case it is z-axis). The details of
geometries of two problems are presented in Figure 4.3

(a) Prolate case (b) Oblate case

Figure 4.3: The two cases of one layer coating

In this short section, several properties of elementary dipoles on spheroidal
structures will be presented briefly and the details of fields have been fully demon-
strated in papers [98, 99]. In Figure 4.4, the confocal distance d of prolate
spheroids doubles the wavelength of incident wave, far-field radiation pattern is
calculated and normalized to its maximum value. The parameters used for the
case of Figure 4.4 are ξ0 = 2, ξ1 = 1.2, ξ2 = 1.5.

As can be seen in the graph, the anti-isorefractive coating layer with different
characteristic impedance to free space, characterized by parameter ζ , has strong
influences on behavior of electric dipole. The radiation pattern is symmetrical as
prolate structures are oriented symmetrically around the z − axis.

Regarding Figure 4.5, it shows the contour plot of electric field due to mag-
netic dipole. In this example, ξ0 = 2, ξ1 = 0.5, ξ2 = 0.75 and the confocal
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Figure 4.4: Far field radiation pattern of Magnetic Field Hφ of Electric dipole on Prolate
spheroids.
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Figure 4.5: Contour plot of near field Eφ of Magnetic dipole on Oblate spheroids.
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Chapter 4. Electromagnetic Modeling by the use of Special Functions

distance d of prolate spheroids triples the wavelength of incident wave d = 3λ.
The generalization of this problem by means of a dual-layer coating will be pre-
sented rigorously in the next sections.

4.2 Dual-Layer Coating on Spheroidal Coordinates

The problem of radiation by antennas in the presence of spheroidal structures is
amenable to an exact analytical solution only if the antenna is located on the sym-
metry axis of the structure and is axially oriented. Such solutions for electric and
magnetic dipole antennas on prolate and oblate metallic spheroids are available
in the published literature [100]. If the spheroid is coated with layers of materials
penetrable to electromagnetic radiation, an exact solution is still obtainable under
two additional conditions: the outer surface of each coating layer is a spheroidal
surface confocal to the core spheroid, and the linear, homogeneous and isotropic
material in each layer has a propagation constant that is either equal or of opposite
sign to the propagation constant of the infinite medium surrounding the structure
(the possibility of special anistropies in the coating layer is not considered in this
work). A detailed discussion of these conditions is found in [79]. The case of
single coating layer has been solved previously in [98] for a prolate spheroid and
in [99] for an oblate spheroid.

The two new geometries, oblate and prolate, analyzed in this thesis consist
of a metallic spheroid coated by two confocal spheroid layers made of lossless
penetrable materials. The first layer characterized by a real electric permittivity
ε1 and real magnetic permeability µ1 or equivalently by a real propagation con-
stant k1 =

√
ε1µ1 and real intrinsic impedance Z1 =

√
µ1
ε1

. Those parameters
of second layer are ε2, µ2, Z2,k2 respectively and either one of two layers can be
DPS or DNG material. The case k = k0 corresponds to an isorefractive coating
layer, whereas k = −k0 stands a double negative metamaterial layer. Therefore,
in this prolate spheroid coordinate, we are going to consider the radiation Electric
dipole and Magnetic dipole in two circumstances. The first case is when layer 1
is DPS, layer 2 is DNG. The second case is the reverse of the first when layer 1
is DNG and layer 2 is DPS. The analysis is conducted in phasor domain with the
time-dependence factor exp(−iwt) omitted throughout. As aforementioned, such
coordinates like prolate and oblate systems in which wave equation is separable,
the eigenfunctions on either side of each penetrable interface depend on propaga-
tion constants but not on the intrinsic impedances of the material on either side of
interface. Therefore, the analytical determination of modal coefficients is possi-
ble and exact solution is obtainable by separation of variables. This is the case for
a variety of bodies involving penetrable materials with the same refractive index
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4.2. Dual-Layer Coating on Spheroidal Coordinates

(isorefractive media) on both sides of each interface (see, e.g. [85–91]).When
DNG layer is considered, an exact solution by separation of variables is possi-
ble only if the functions that depend on variables that vary along each interface
remain unchanged when the refractive index changes sign. This is the case for
elliptic cylinders [92], elliptical cylindrical cavities [93], [94], paraboloids of rev-
olution under axial plane wave incidence [95], oblate spheroidal cavities excited
by axially located and oriented dipoles [96, 97], and the spheroidal structures
considered herein.

The goemetry of each case, prolate and oblate, is detailed in the next section,
in which the boundary-value problem is presented and solved exactly for electric
and magnetic sources.
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CHAPTER5
Dual-layer coating on Prolate Spheroids

The problem of radiation by antennas in the presence of spheroidal structures
is amenable to an exact analytical solution only if the antenna is located on the
symmetry axis of the structure and is axially oriented. Such solutions for elec-
tric and magnetic dipole antennas on prolate and oblate metallic spheroids are
available in the published literature (see e.g [84]). If the spheroid is coated with
layers of materials penetrable to electromagnetic radiation, an exact solution is
still obtainable under two additional conditions: the outer surface of each coating
layer is a spheroidal surface confocal to the core spheroid, and the linear, homoge-
neous and isotropic material in each layer has a propagation constant that is either
equal or of opposite sign to the propagation constant of the infinite medium sur-
rounding the structure (the possibility of special anistropies in the coating layer
is not considered in this work). A detailed discussion of these conditions is found
in [98, 99]. As detailed in the previous chapter, the case of single coating layer
has been solved previously in [98] for a prolate spheroid and in [99, 100] for an
oblate spheroid.

The purpose of this work is to analyze the effects that a double-layer coating,
with one layer being isorefractive and the other layer anti-isorefractive to the
surrounding space, has on the fields trapped inside the layers and on the far-field
pattern. The analysis is performed in section II for prolate spheroidal structures
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Chapter 5. Dual-layer coating on Prolate Spheroids

and in section III for oblate spheroidal structures, by expanding the field into
infinite series of spheroidal wave functions and determining the modal expansion
coefficients by imposing the boundary conditions at the various interfaces and
the radiation condition at infinity. The explicit analytical determination of the
expansion coefficients is possible because the angular spheroidal functions are
even functions of the propagation constant, thus allowing for one-on-one mode
matching even when anti-isorefractive layers are present. The notation for the
spheroidal functions is that of Flammer [79, 84] and the analysis is performed in
the phasor domain with a time-dependence factor exp(i−ωt) omitted throughout.

Numerical results based on the obtained exact analytical expressions for the
fields inside the layers and the radiated field are shown and discussed in section
IV, for several parameters involved: geometrical shape and dimensions of the
spheroids and coating layers in terms of wavelength; location of the layers (inner
layer isorefractive or anti-isorefractive); and intrinsic impedances of the two lay-
ers. Some conclusions are drawn on the influence of the parameters on the lobing
structure of the far-field pattern and on the resonances set up inside the layers.

5.1 Geometry of the problem

A cross-section of the prolate spheroidal structure in a plane containing the axis
z of symmetry is shown in Figure 5.1. The structure is centered at the origin of
coordinates, with the z = 0 plane as the equatorial symmetry plane. The prolate
spheroidal coordinates (η, ξ, φ) are related to the rectangular coordinate (x, y, z)
by

x =
d

2

√
(ξ2 − 1) (1− η2) cosφ

y =
d

2

√
(ξ2 − 1) (1− η2) sinφ

z =
d

2
ξη

where −1 ≤ η ≤ 1,−1 ≤ ξ ≤ ∞ and 0 ≤ φ ≤ 2π. The parameter d is the
interfocal distance.
The dashed area in Figure 5.1 is the cross-section of a metallic prolate spheroid
with surface ξ = ξ1, that becomes a thin wire of length d in the limit ξ1 = 1.
It is coated by two confocal layers of outer surface, at ξ = ξ2 inner layer made
of an isotropic and uniform material characterized by a real propagation constant
k1 and a real intrinsic impedance Z1 = Y1

−1. At ξ = ξ3 outer layer made of
an isotropic and uniform material characterized by a real propagation constant
k2 and a real intrinsic impedance Z2 = Y2

−1. The structure is surrounded by
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5.2. Electric dipole source

Figure 5.1: Geometry of the problem

a medium characterized by a real positive propagation constant k0 and a real
positive intrinsic impedance Z0 = Y0

−1.

The primary source is an electric or magnetic Hertzian dipole located on the
axis z of symmetry at (ξ = ξ0, η = 1) and axially oriented. Even though the
analysis can be performed for a dipole source inside the coating layer, i.e for
ξ1 < ξ0 < ξ2, for simplicity the following derivations are carried out only for the
case ξ0 > ξ2 of a source outside the scattering structure.

5.2 Electric dipole source

5.2.1 Interpretation of the fields

If the electric dipole at (ξ = ξ0, η = 1) is characterized by the Hertz vector

Πe
i = ẑ

ejkr

kr
(5.1)
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Chapter 5. Dual-layer coating on Prolate Spheroids

where R is the distance from the dipole to the observation point, then the electric
field E and the magnetic field H are everywhere of the type

E = Eξ (ξ, η) ξ̂ + Eη (ξ, η) η̂, Eφ = 0

H = Hφ (ξ, η) φ̂, Hξ = Hη = 0 (5.2)

In particular the incident field component Hφ
i corresponding to the source in

(5.1) may be written as infinite series of prolate spheroidal wave functions [84]

H i
φ =

2k2Y0√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(1)
1,n (c, ξ<)R

(3)
1,n (c, ξ>)S1,n (c, η) , ξ≶ =

min

max
(ξ, ξ0)

(5.3)

where the dimensionless parameter

c =
kod

2
(5.4)

and Flammer’s notation has been used [79]. The coordinates ξ< (ξ>) are the
smaller (larger) between ξ and ξ0. In order to impose the boundary condition
across the interface ξ = ξ2, it is necessary to consider also the component Eηi,
which is obtained from Hφ

i as

Ei
η =

iZ0

c

√
ξ2 − 1

ξ2 − η2

(
∂

∂ξ
+

ξ

ξ2 − 1

)
H i
φ

=
2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−1)n−1

ρ1,nN1,n

S1,n (c, η)×{
R

(3)
1,n (c, ξ0)C(1)

n (c, ξ) , ξ < ξ0

R
(1)
1,n (c, ξ0)C(3)

n (c, ξ) , ξ > ξ0

(5.5)

where

C
(h)
(±c,ξ) = R

(h)′
1,n (±c, ξ) +

ξ

ξ2 − 1
R

(h)
1,n (±c, ξ) , (h = 1, 3)

where the prime means derivative with respect to ξ.
If the expressions akin to (5.3) and (5.5) are written for the field components

inside two coating layers, they would contain the parameters:

c1,2 =
k1,2d

2
(5.6)
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5.2. Electric dipole source

instead of c, in both the radial functionsR(1)
1,n, R(3)

1,n and the angular functions S1,n.
The explicit, analytical determination is possible only if the angular function S1,n

is the same on both sides of the interface ξ = ξ2; since S1,n is an even function
of parameter c (this is not true for the radial function!). This occurs in two cases:
either c1,2 = c (i.e. k1 = k0), meaning that the coating layers and the surrounding
medium have the same index of refraction (isorefractive layer); or c1,2 = −c (i.e.
k1,2 = −k0), meaning that the coating layer is a DNG metamaterial whose index
of refraction is the negative of the index of refraction of the surrounding medium
(anti-isorefractive layer).

In all the following formulas, the upper sign applies to an isorefractive coating
layer, and the lower sign to an anti-isorefractive coating layer. Since the electric
dipole is located outside of two lossless dielectric layers, so ξ0 > ξ3 and l = 1
for inside layer (ξ1 ≤ ξ ≤ ξ2) and l = 2 for outside layer (ξ2 ≤ ξ ≤ ξ3):
Magnetic and Electric fields inside two coating layers are respectively expressed
by following formulas, respectively:

H
(±)
l,φ =

2k2Yl√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(3)
1,n (c, ξ0)S1,n (c, η)×

×
[
a±l,nR

(1)
1,n (±c, ξ) + b±l,n ×R

(3)
1,n (±c, ξ)

]
, (5.7)

And Electric field:

E
(±)
l,η =

±2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(3)
1,n (c, ξ0)S1,n (c, η)×

×
{
a±l,nC

(1)
n (±c, ξ) + b±l,nC

(3)
n (±c, ξ)

}
. (5.8)

The scattered fields outside the structure (ξ3 ≤ ξ) are expressed as:
m = 1 for the first case (outside layer is anti-isorefractive);
m = 2 for the second case (outside layer is isorefractive)

Scattered Magnetic Field:

Hs,m
φ =

2k2Y√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)R

(3)
1,n (c, ξ)S1,n (c, η) , (5.9)

Scattered Electric Field:

Es,m
φ =

2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)S1,n (c, η)C

(3)
1,n (c, ξ) .

(5.10)
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With the reference to spherical cooridnates (r, θ, φ) with the origin at the center
of the structure, the scatterd far field is:

Hs
φ |cξ→∞ ≈

ejkr

kr

2k2Y0√
ξ2

0 − 1

∞∑
n=1

(−i)(n−1)

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)S1,n (c, cosθ) . (5.11)

Properties of Angular Functions and Radial Functions

Angular function S1,n is an even function of c :
S1,n (c, ξ) = S1,n (−c, ξ) .
We assume the notations explicitly for the case Prolate:

C
(k)
(±c,ξ) = R

(k)′
1,n (±c, ξ) +

ξ

ξ2 − 1
R

(k)
1,n (±c, ξ) . (5.12)

According to Flammer’s notes [79], properties of radial functions can be written
as:

R(3,4)
m,n (c, ξ) = Rm,n

(1) (c, ξ)± iRm,n
(2) (c, ξ)

∆
〈
Rm,n

(1) (c, ξ)Rm,n
(2) (c, ξ)

〉
=

Rm,n
(1) (c, ξ)

d
(
Rm,n

(2) (c, ξ)
)

dξ
−Rm,n

(2) (c, ξ)
d
(
Rm,n

(1) (c, ξ)
)

dξ
=

1

c (ξ2 − 1)
.

(5.13)

Therefore:

C
(1)
(c,ξ)R

(3)
(c,ξ) − C

(3)
(c,ξ)R

(1)
(c,ξ) =

−i
c (ξ2 − 1)

C
(1)
(−c,ξ)R

(3)
(−c,ξ) − C

(3)
(−c,ξ)R

(1)
(−c,ξ) =

i

c (ξ2 − 1)
(5.14)

5.2.2 Applying Boundary Conditions

Case 1

Description: Outer layer is anti-isorefractive; inner layer is isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1, ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(+)
1η |ξ=ξ1 = 0
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E
(+)
1η |ξ=ξ2 = E

(−)
2η |ξ=ξ2 ; H(+)

1φ |ξ=ξ2 = H
(−)
2φ |ξ=ξ2;

E
(−)
2η |ξ=ξ3 =

(
Es,1
η + Ei

η

)
|
ξ=ξ3

;

H
(−)
2φ |ξ=ξ3 =

(
Hs,1
φ +H i

φ

)
|
ξ=ξ3

.

Expansion coefficients: c1
n; a(−)

2,n ; b(−)
2,n ; a(+)

1,n and b(+)
1,n will be determined by solving

this system of linear equations.

Case 2

Description: Outer layer is isorefractive; inner layer is Anti-isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1, ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(−)
1η |ξ=ξ1 = 0

E
(−)
1η |ξ=ξ2 = E

(+)
2η |ξ=ξ2; H(−)

1φ |ξ=ξ2 = H
(+)
2φ |ξ=ξ2;

E
(+)
2η |ξ=ξ3 =

(
Es,2
η + Ei

η

)
|
ξ=ξ3

;

H
(+)
2φ |ξ=ξ3 =

(
Hs,2
φ +H i

φ

)
|
ξ=ξ3

.

Expansion coefficients: c2
n; a(+)

2,n ; b(+)
2,n ; a(−)

1,n and b(−)
1,n will be determined by solving

this system of linear equations.

5.2.3 Exact solutions

Case 1

By applying Cramer’s rule, exact solutions for expansion coefficients a1; b1; a2;
b2; andc can be retrieved as follows:

a
(+)
1 =

−C(3)
(c,ξ1)ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
(5.15)

b
(+)
1 =

C
(1)
(c,ξ1)ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
(5.16)

a
(−)
2 =

i

c2 (ξ2
3 − 1) ∆

×
〈
ζ2R

(3)
(−c,ξ2)

[
C

(1)
(c,ξ1)C

(3)
(c,ξ2) − C

(1)
(c,ξ2)C

(3)
(c,ξ1)

]
+

ζ1C
(3)
(−c,ξ2)

[
C

(1)
(c,ξ1)R

(3)
(c,ξ2) − C

(3)
(c,ξ1)R

(1)
(c,ξ2)

]〉
, (5.17)
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b
(−)
2 =

−i
c2 (ξ2

3 − 1) ∆
×
〈
ζ2R

(1)
(−c,ξ2)

[
C

(1)
(c,ξ1)C

(3)
(c,ξ2) − C

(1)
(c,ξ2)C

(3)
(c,ξ1)

]
+

ζ1C
(1)
(−c,ξ2)

[
C

(1)
(c,ξ1)R

(3)
(c,ξ2) − C

(3)
(c,ξ1)R

(1)
(c,ξ2)

]〉
. (5.18)

We assume the notations:
∆1 = ζ2

(
C

(1)
(c,ξ1)C

(3)
(c,ξ2) − C

(1)
(c,ξ2)C

(3)
(c,ξ1)

)(
C

(1)
(−c,ξ3)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ3)R

(1)
(−c,ξ2)

)
− ζ1

(
C

(1)
(c,ξ1)R

(3)
(c,ξ2) − C

(3)
(c,ξ1)R

(1)
(c,ξ2)

)(
C

(1)
(−c,ξ2)C

(3)
(−c,ξ3) − C

(1)
(−c,ξ3)C

(3)
(−c,ξ2)

)
∆2 = ζ2

(
C

(1)
(c,ξ1)C

(3)
(c,ξ2) − C

(1)
(c,ξ2)C

(3)
(c,ξ1)

)(
R

(1)
(−c,ξ3)R

(3)
(−c,ξ2) −R

(1)
(−c,ξ2)R

(3)
(−c,ξ3)

)
− ζ1

(
C

(1)
(−c,ξ2)R

(3)
(−c,ξ3) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ3)

)(
C

(1)
(c,ξ1)R

(3)
(c,ξ2) − C

(3)
(c,ξ1)R

(1)
(c,ξ2)

)
in which ∆ = R

(3)
(c,ξ3)∆1 + C

(3)
(c,ξ3)ζ2∆2 and coefficient c is retrieved as:

c1 =
−
[
R

(1)
(c,ξ3)∆1 + C

(1)
(c,ξ3)ζ2∆2

]
∆

. (5.19)

Case 2

By applying Cramer’s rule, exact solutions for expansion coefficients a1; b1; a2;
b2; andc can be retrieved as follows:

a
(−)
1,n =

−C(3)
(−c,ξ1)ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
(5.20)

b
(−)
1,n =

C
(1)
(−c,ξ1)ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
(5.21)

a
(+)
2,n =

i

c2 (ξ2
3 − 1) ∆

×
〈
ζ2R

(3)
(c,ξ2)

[
C

(1)
(−c,ξ1)C

(3)
(−c,ξ2) − C

(1)
(−c,ξ2)C

(3)
(−c,ξ1)

]
+

ζ1C
(3)
(c,ξ2)

[
C

(1)
(−c,ξ1)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ1)R

(1)
(−c,ξ2)

]〉
(5.22)

b
(+)
2,n =

−i
c2 (ξ2

3 − 1) ∆
×
〈
ζ2R

(1)
(c,ξ2)

[
C

(1)
(c,ξ1)C

(3)
(−c,ξ2) − C

(1)
(−c,ξ2)C

(3)
(−c,ξ1)

]
+

ζ1C
(1)
(c,ξ2)

[
C

(1)
(−c,ξ1)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ1)R

(1)
(−c,ξ2)

]〉
. (5.23)

We assume the notations:
∆1 = ζ1

(
C

(1)
(c,ξ2)C

(3)
(c,ξ3) − C

(1)
(c,ξ3)C

(3)
(c,ξ2)

)(
C

(1)
(−c,ξ1)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ1)R

(1)
(−c,ξ2)

)
78



5.2. Electric dipole source

− ζ2

(
C

(1)
(c,ξ3)R

(3)
(c,ξ2) − C

(3)
(c,ξ3)R

(1)
(c,ξ2)

)(
C

(1)
(−c,ξ1)C

(3)
(−c,ξ2) − C

(1)
(−c,ξ2)C

(3)
(−c,ξ1)

)
∆2 = ζ2

(
C

(1)
(−c,ξ1)C

(3)
(−c,ξ2) − C

(1)
(−c,ξ2)C

(3)
(−c,ξ1)

)(
R

(1)
(c,ξ3)R

(3)
(c,ξ2) −R

(1)
(c,ξ2)R

(3)
(c,ξ3)

)
− ζ1

(
C

(1)
(c,ξ2)R

(3)
(c,ξ3) − C

(3)
(c,ξ2)R

(1)
(c,ξ3)

)(
C

(1)
(−c,ξ1)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ1)R

(1)
(−c,ξ2)

)
in which ∆ = R

(3)
(c,ξ3)∆1 + C

(3)
(c,ξ3)ζ2∆2. Coefficient c can be retrieved as:

c2 =
−
[
R

(1)
(c,ξ3)∆1 + C

(1)
(c,ξ3)ζ2∆2

]
∆

. (5.24)

5.2.4 Numerical results

Since all the field components can be computed using Eφ and Hφ, we only con-
sider these two quantities in this section. In order to lower the computational
cost of the problem and increase the accuracy of computations, incident fields
are evaluated using closed form expressions for dipole radiation. We considered
up to thirty terms in summations needed for computing the fields to achieve a
convergence error of less than one percent in our calculations.

All the simulations are done with the parameters of: d = 2; λ = 1; ξ0 = 4.1;
ξ1 = 2; ξ2 = 2.8 and ξ3 = 3.
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Figure 5.2: The Scattered Magnetic Far Field of an electric Dipole when Layer 1 is Isorefractive
and Layer 2 is Anti-Isorefractive with different ζ1, ζ2
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Figure 5.3: Contour Plot of Magnetic Field of an electric Dipole in the case layer 1 is Isorefrac-
tive and layer 2 is Anti-Isorefractive with ζ1 = 2, ζ2 = 2
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Figure 5.4: The Scattered Magnetic Far Field of an electric Dipole when layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with different ζ1, ζ2
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Figure 5.5: Contour Plot of Magnetic Field of an electric Dipole in the case layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with ζ1 = 2, ζ2 = 0.5
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5.3 Magnetic dipole source

5.3.1 Interpretation of the fields

If the magnetic dipole at (ξ = ξ0, η = 1) is characterized by the Hertz vector

Πm
i = ẑ

ejkr

kr
(5.25)

generates electric and magnetic fields that are everywhere of the type

E = Eφ (ξ, η) φ̂, Eξ = Eη = 0

H = Hξ (ξ, η) ξ̂ +Hη (ξ, η) η̂, Hφ = 0 (5.26)

It should be noted that the fields cannot be simply obtained by duality from elec-
tric dipole case, because duality would require that the core spheroid be a perfect
magnetic conductor. The incident field components Eφi and Hη

i may be written
as the infinite series

Ei
φ =

−2k2Z0√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(1)
1,n (c, ξ<)R

(3)
1,n (c, ξ>)S1,n (c, η) ,

ξ≶ =
min

max
(ξ, ξ0) , (5.27)

H i
η =

2ik2
0

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

S1,n (c, η)×{
R

(3)
1,n (c, ξ0)C(1)

n (c, ξ) , ξ < ξ0

R
(1)
1,n (c, ξ0)C(3)

n (c, ξ) , ξ > ξ0

(5.28)

In all the following formulas, the upper sign applies to an isorefractive coating
layer, and the lower sign to an anti-isorefractive coating layer. Since the electric
dipole is located outside of two lossless dielectric layers, so ξ0 > ξ3 and l = 1
for inside layer (ξ1 ≤ ξ ≤ ξ2) and l = 2 for outside layer (ξ2 ≤ ξ ≤ ξ3).
Magnetic and Electric fields inside two coating layers are respectively expressed
by following formulas Regarding Electric Field:

E
(±)
l,φ =

−2k2Zl√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(3)
1,n (c, ξ0)S1,n (c, η)×

×
[
a±l,nR

(1)
1,n (±c, ξ) + b±l,n ×R

(3)
1,n (±c, ξ)

]
, (5.29)
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5.3. Magnetic dipole source

And Magnetic field:

H
(±)
l,η =

±2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

R
(3)
1,n (c, ξ0)S1,n (c, η)×

×
{
a±l,nC

(1)
n (±c, ξ) + b±l,nC

(3)
n (±c, ξ)

}
.

(5.30)

The scattered fields outside the structure (ξ3 ≤ ξ) are expressed as:
m = 1 for the first case (outside layer is anti-isorefractive);
m = 2 for the second case (outside layer is isorefractive)
Scattered Magnetic Field:

Hs,m
η =

2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)S1,n (c, η)C(3)

n (c, ξ) ,

(5.31)

Scattered electric Field:

Es,m
φ =

2k2Y0√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)R

(3)
1,n (c, ξ)S1,n (c, η) , (5.32)

And Scattered magnetic field:

Hs,m
φ =

2ik2

c
√
ξ2

0 − 1

√
ξ2 − 1

ξ2 − η2

∞∑
n=1

(−i)n−1

ρ1,nN1,n

cn
mR

(3)
1,n (c, ξ0)S1,n (c, η)C

(3)
1,n (c, ξ) .

(5.33)

With reference to spherical cooridnates (r, θ, φ) with the origin at the center of
the structure, the scattered far field is:

Es
φ |cξ→∞ ≈

ejkr

kr

2k2Z0√
ξ2

0 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

γn
mR

(3)
1,n (c, ξ0)S1,n (c, cosθ) , (5.34)

5.3.2 Applying Boundary Conditions

Case 1

Description: Outer layer is anti-isorefractive; inner layer is isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1; ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows
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E
(+)
1φ |ξ=ξ1 = 0

E
(+)
1φ |ξ=ξ2 = E

(−)
2φ |ξ=ξ2; H(+)

1η |ξ=ξ2 = H
(−)
2η |ξ=ξ2;

E
(−)
2φ |ξ=ξ3 =

(
Es,1
φ + Ei

φ

)
|
ξ=ξ3

;

H
(−)
2η |ξ=ξ3 =

(
Hs,1
η +H i

η

)
|
ξ=ξ3

.

Expansion coefficients: c1
n; a(−)

2,n ; b(−)
2,n ; a(+)

1,n and b(+)
1,n will be determined by solving

this system of linear equations.

Case 2

Description: Outer layer is Isorefractive; inner layer is Anti-isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1; ξ = ξ2 and ξ = ξ3, we have 5 linear equations as follows
E

(−)
1φ |ξ=ξ1 = 0

E
(−)
1φ |ξ=ξ2 = E

(+)
2φ |ξ=ξ2; H(−)

1η |ξ=ξ2 = H
(+)
2η |ξ=ξ2;

E
(+)
2φ |ξ=ξ3 =

(
Es,2
φ + Ei

φ

)
|
ξ=ξ3

;

H
(+)
2η |ξ=ξ3 =

(
Hs,2
η +H i

η

)
|
ξ=ξ3

.

Expansion coefficients: c2
n; a(+)

2,n ; b(+)
2,n ; a(−)

1,n and b(−)
1,n will be determined by solving

this system of linear equations.

5.3.3 Exact solutions

Case 1

By applying Cramer’s rule, exact solutions for expansion coefficients c1
n; a(−)

2,n ;
b

(−)
2,n ; a(+)

1,n and b(+)
1,n can be retrieved as follows

a
(+)
1,n =

R
(3)
(c,ξ1)ζ1ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
, (5.35)

b
(+)
1,n =

−R(1)
(c,ξ1)ζ1ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
, (5.36)
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a
(−)
2,n =

iζ2

c (ξ2
3 − 1) ∆

×
〈
ζ1R

(3)
(−c,ξ2)

[
C

(1)
(c,ξ2)R

(3)
(ξ1) − C

(3)
(c,ξ2)R

(1)
(ξ1)

]
+ζ2C

(3)
(−c,ξ2)

[
R

(1)
(c,ξ2)R

(3)
(c,ξ1) −R

(3)
(c,ξ2)R

(1)
(c,ξ1)

]〉
, (5.37)

b
(−)
2,n =

−iζ2

c (ξ2
3 − 1) ∆

×
〈
ζ1R

(1)
(−c,ξ2)

[
C

(1)
(c,ξ2)R

(3)
(c,ξ1) − C

(3)
(c,ξ2)R

(1)
(c,ξ1)

]
+

+ζ2C
(1)
(−c,ξ2)

[
R

(1)
(c,ξ2)R

(3)
(c,ξ1) −R

(3)
(c,ξ2)R

(1)
(c,ξ1)

]〉
. (5.38)

We assume the notations:
∆1 = ζ1

(
C

(1)
(c,ξ2)R

(3)
(c,ξ1) − C

(3)
(c,ξ2)R

(1)
(c,ξ1)

)(
R

(1)
(−c,ξ3)R

(3)
(−c,ξ2) −R

(3)
(−c,ξ3)R

(1)
(−c,ξ2)

)
+ ζ2

(
C

(1)
(c,ξ2)R

(3)
(−c,ξ3) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ3)

)(
R

(1)
(c,ξ1)R

(3)
(c,ξ2) −R

(1)
(c,ξ2)R

(3)
(c,ξ1)

)
∆2 = ζ1

(
C

(1)
(c,ξ2)R

(3)
(c,ξ1) − C

(3)
(c,ξ2)R

(1)
(c,ξ1)

)(
C

(1)
(−c,ξ3)R

(3)
(−c,ξ2) − C

(3)
(−c,ξ3)R

(1)
(−c,ξ2)

)
+ ζ2

(
C

(1)
(−c,ξ2)C

(3)
(−c,ξ3) − C

(3)
(−c,ξ2)C

(1)
(−c,ξ3)

)(
R

(1)
(c,ξ1)R

(3)
(c,ξ2) −R

(1)
(c,ξ2)R

(3)
(c,ξ1)

)
In which ∆ = C

(3)
(c,ξ3)∆1 +R

(3)
(c,ξ3)ζ2∆2. The coefficient c1

n can be retrieved as:

c1
n =
−
[
C

(1)
(c,ξ3)∆1 +R

(1)
(c,ξ3)ζ2∆2

]
∆

. (5.39)

Case 2

By applying Cramer’s rule, exact solutions for expansion coefficients c2
n; a(+)

2,n ;
b

(+)
2,n ; a(−)

1,n and b(−)
1,n can be retrieved as follows

a
(−)
1,n =

−R(3)
(−c,ξ1)ζ1ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
, (5.40)

b
(−)
1,n =

R
(1)
(−c,ξ1)ζ1ζ2

c2 (ξ2
3 − 1) (ξ2

2 − 1) ∆
. (5.41)

a
(+)
2,n =

−iζ2

c (ξ2
3 − 1) ∆

×
〈
ζ2C

(3)
(c,ξ2)

[
R

(3)
(−c,ξ2)R

(1)
(−c,ξ1) −R

(1)
(−c,ξ2)R

(3)
(−c,ξ1)

]
−ζ1R

(3)
(c,ξ2)

[
C

(1)
(−c,ξ2)R

(3)
(−c,ξ1) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ1)

]〉
, (5.42)
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b
(+)
2,n =

iζ2

c (ξ2
3 − 1) ∆

×
〈
ζ2C

(1)
(c,ξ2)

[
R

(3)
(−c,ξ2)R

(1)
(−c,ξ1) −R

(1)
(−c,ξ2)R

(3)
(−c,ξ1)

]
−ζ1R

(1)
(c,ξ2)

[
C

(1)
(−c,ξ2)R

(3)
(−c,ξ1) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ1)

]〉
. (5.43)

We assume the notations:
∆1 = ζ2

(
C

(1)
(c,ξ2)R

(3)
(c,ξ3) −R

(1)
(c,ξ3)C

(3)
(c,ξ2)

)(
R

(1)
(−c,ξ1)R

(3)
(−c,ξ2) −R

(3)
(−c,ξ1)R

(1)
(−c,ξ2)

)
+ ζ1

(
C

(1)
(−c,ξ2)R

(3)
(−c,ξ1) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ1)

)(
R

(1)
(c,ξ3)R

(3)
(c,ξ2) −R

(3)
(c,ξ3)R

(1)
(c,ξ2)

)
∆2 = ζ2

(
C

(1)
(c,ξ2)C

(3)
(c,ξ3) − C

(1)
(c,ξ3)C

(3)
(c,ξ2)

)(
R

(1)
(−c,ξ1)R

(3)
(−c,ξ2) −R

(1)
(−c,ξ2)R

(3)
(−c,ξ1)

)
+ ζ1

(
C

(1)
(c,ξ3)R

(3)
(c,ξ2) − C

(3)
(c,ξ3)R

(1)
(c,ξ2)

)(
C

(1)
(−c,ξ2)R

(3)
(−c,ξ1) − C

(3)
(−c,ξ2)R

(1)
(−c,ξ1)

)
In which ∆ = C

(3)
(c,ξ3)∆1 −R(3)

(c,ξ3)ζ2∆2. Coefficient c2
n can be retrieved as:

c2
n =
−
[
C

(1)
(c,ξ3)∆1 +R

(1)
(c,ξ3)ζ2∆2

]
∆

. (5.44)

5.3.4 Numerical results

All the simulations are done with the parameters of: d = 2; λ = 1; ξ0 = 4.1;
ξ1 = 2; ξ2 = 2.8 and ξ3 = 3.
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Figure 5.6: The Scattered Electric Far Field of a magnetic Dipole when Layer 1 is Isorefractive
and Layer 2 is Anti-Isorefractive with different ζ1, ζ2
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Figure 5.7: Contour Plot of Electric Field of a magnetic Dipole in the case layer 1 is Isorefractive
and layer 2 is Anti-Isorefractive with ζ1 = 2, ζ2 = 0.5
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Figure 5.8: The Scattered Electric Far Field of a magnetic Dipole when layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with different ζ1, ζ2
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Figure 5.9: Contour Plot of Electric Field of a magnetic Dipole in the case layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with ζ1 = 0.5, ζ2 = 2
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5.4 Stochastic Optimization of the Far field

In this section, we come back to the conventional optimization scheme with all the
implementing algorithms were presented in chapter 1. In chapter 2, a number
of Electromagnetic drives are optimized by successfully establishing the link be-
tween global optimizer and full-wave analysis. Afterwards, chapter 3 discusses
how to save more optimizing time by introducing an equivalent model by the use
of Artificial Neural Network. However, the key limitation of these techniques is
the feasibility of model fully depends on full-wave analysis. The problems can
only be solved if they can be modeled in commercial solvers. There are a large
number of scattering problems that cannot be fully described by a simulator, like
the issues presented in this chapter.

In this chapter, the issues on scattering of a magnetic dipole on Prolate Spheroids
is totally covered, the exact solutions are already retrieved. It is obvious that we
can construct a cost function representing this scattering problem with a specific
constraint. The interesting point is radiated far field of a magnetic dipole with
Prolate spheroids is very different from the case without those structures. In this
context, in order to optimize the radiated far field of multiple dipoles, those inter-
esting reflection of behaviors are utilized. The optimization scheme, as depicted
in Figure 5.10, is the same as the scheme in Figure 2.1, however the represen-
tative cost function is built upon analytical model in this chapter.The details of
numerical results are shown in the following.

Figure 5.10: Stochastic optimization scheme for scattering problem

5.4.1 Problem description and analysis

A metallic prolate spheroid is coated by two confocal layers of penetrable me-
dias, in this case, layer 1 is isorefractive or DPS and layer 2 is anti-isorefractive
or DNG. An exact solution was already obtained by infinite series of prolate
spheroidal wave functions when the primary source is a magnetic dipole.
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Figure 5.11: The geometry of multi-dipole on Prolate spheroids when second located at ξ =
ξ4, η = 1

As depicted in Figure 5.11, assuming Dipole 2 is located at ξ = ξ4, η = 1,
similarly to the equation 5.34, the Electric Scattered Far field can be retrieved as:

Es
φ |cξ→∞ ≈

ejkor

k0r

2k2
0Z0√
ξ2

4 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

γnR
(3)
1,n (c, ξ0)S1,n (c, cosθ)) (5.45)

when S1,n(c, cosθ) is the approximation of Angular Spheroidal Wave Functions
for S1,n(c, η) in the far field region. In order to increase the degree of freedom in
the solution domain, dipole 2 not only locates in the +z plane but also in the −z
plane, as illustrated in Figure 5.12. As such, the term S(c, η) in each serie will
turn out to S(c,−η) and the scattered Electric far field can be written as:

Es
φ |cξ→∞ ≈

ejkor

k0r

2k2
0Z0√
ξ2

4 − 1

∞∑
n=1

(−i)n−1

ρ1,nN1,n

γnR
(3)
1,n (c, ξ0)S1,n (c,−cosθ) (5.46)

Calculation of the fields

According to Flammer [79] for Spheroidal Wave Functions , the Angular Spheroidal
Wave Function can be calculated as:

Smn(c, η) = (1− η2)
m
2

∞∑
k=0

cmn2k (1− η2)
k

(n−m) even (5.47)
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Figure 5.12: The geometry of multi-dipole on Prolate spheroids when second dipole located at
ξ = ξ4, η = −1

Smn(c, η) = η(1− η2)
m
2

∞∑
k=0

cmn2k (1− η2)
k

(n−m) odd (5.48)

where cmn2k is defined in the [79]. According to two equations 5.47 and 5.48,
Smn(c,−η) is only different from Smn(c, η) when (n −m) is an odd number. A
solution can be derived as:

S1,n(c,−η) = (−1)n
N∑
n=0

S1,n(c, η) (5.49)

where N is the number of terms in summations needed to compute the fields.
Similarly

S1,n(c,−cos(θ)) = (−1)n−1
N∑
n=1

S1,n(c, cos(θ) (5.50)

In order to exhibit the accuracy equation 5.49, Figure 5.13 denotes the Electric
field of two dipole with the same ξ but one with η = 1, the other with η = −1

5.4.2 Stochastic optimization and numerical results

Since a magnetic dipole produces only an Electric field Eφ so the total scattered
far field of multiple dipoles put axially on z − axis is the superposition of all the
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Figure 5.13: Comparison of two dipoles with same ξ but different η

components Eφ of each dipole, where M is the number of dipoles

Etotal,s =
M∑
i=1

Ei,sφ. (5.51)

Given an angle α that the engineer want the beam of scattered far field to con-
centrate on, the merit of a representative cost function is the absolute value of
scattered Electric field at given angle α.

cost value =
| Es,total,α |
| Emax,total,α |

. (5.52)

Nine parameters (ξ1, ξ2, ξ3, [ξ0, ξ4], dice, ζ1, ζ2, d) of geometry are represented
by a variable X = [X1, X2, X3, X4, X5, X6, X7, X8, X9, X10] and they are
compressed into a cost function with the aim of maximizing cost value. The
variable dice is a boolean, defining the position of dipole 2 either on +z plane or
−z plane.

The purpose of optimization in this scheme is to maximize the scattered far
field of two dipoles at the angle α = 60o. Global optimizer used in this research is
Genetic Swarm Optimization (GSO), a hybridization technique of PSO and GA
already presented in Chapter 1. With a population of 100 particles and after 5
iterations the best radiation pattern ever found is presented in Figure 5.14.

The details of geometry are shown in the Table 5.1, when both two dipoles
stay in +z plane (η = 1)
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Figure 5.14: Far field radiation pattern of best configuration in the half plane of θ

Table 5.1: Best configuration for the problem of 2 dipoles

ξ1 ξ2 ξ3 ξ0 ξ4 ζ1 ζ2 d
2.246 3.729 6.12234 7.253 8.463 0.906 0.99 1.04
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CHAPTER6
Dual-layer coating on Oblate Spheroids

In this chapter, the electromagnetic scattering problem of elementary source is
carried out on oblate spheroidal system. Similar to the case of prolate, two coating
layers are either DPS or DNG.

6.1 Geometry of the problem

A cross-section of the oblate spheroidal structure in a plane containing the axis
z of symmetry is shown in Figure 6.1. The structure is centered at the origin of
coordinates, with the z = 0 plane as the equatorial symmetry plane. The oblate
spheroidal coordinates (η, ξ, φ) are related to the rectangular coordinate (x, y, z)
by 

x = d
2

√
(ξ2 + 1) (1− η2) cosφ

y = d
2

√
(ξ2 + 1) (1− η2) sinφ

z = d
2
ξη

(6.1)

where −1 ≤ η ≤ 1, 1 ≤ ξ ≤ ∞ and 0 ≤ φ ≤ 2π. The parameter d is the
interfocal distance.
The dashed area in Figure 6.1 is the cross-section of a metallic oblate spheroid
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Figure 6.1: Geometry of the problems

with surface ξ = ξ1, that becomes a thin wire of length d in the limit ξ1 = 1.
It is coated by two confocal layers of outer surface, at ξ = ξ2 inner layer made
of an isotropic and uniform material characterized by a real propagation constant
k1 and a real intrinsic impedance Z1 = Y1

−1. At ξ = ξ3 outer layer made of
an isotropic and uniform material characterized by a real propagation constant
k2 and a real intrinsic impedance Z2 = Y2

−1. The structure is surrounded by
a medium characterized by a real positive propagation constant k0 and a real
positive intrinsic impedance Z0 = Y0

−1.
The primary source is an electric or magnetic Hertzian dipole located on the

axis z of symmetry at (ξ = ξ0, η = 1) and axially oriented. Even though the
analysis can be performed for a dipole source inside the coating layer, i.e for
ξ1 < ξ0 < ξ2, for simplicity the following derivations are carried out only for the
case ξ0 > ξ3 of a source outside the scattering structure.

6.2 Electric dipole source

6.2.1 Interpretation of the fields

If the electric dipole at (ξ = ξ0, η = 1) is characterized by the Hertz vector

Πe
i = ẑ

ejkr

kr
(6.2)
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6.2. Electric dipole source

where R is the distance from the dipole to the observation point, then the electric
field E and the magnetic field H are everywhere of the type

E = Eξ (ξ, η) ξ̂ + Eη (ξ, η) η̂, Eφ = 0

H = Hφ (ξ, η) φ̂, Hξ = Hη = 0 (6.3)

In particular the incident field component Hφ
i corresponding to the source in

(6.2) may be written as infinite series of oblate spheroidal wave functions [84]

H i
φ =

2k2Y0√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(1)
1,n (−ic, iξ<)R

(3)
1,n (−ic, iξ>)S1,n (−ic, η) ,

ξ≶ =
min

max
(ξ, ξ0) (6.4)

where the dimensionless parameter

c =
kd

2
(6.5)

and Flammer’s notation has been used [79]. The coordinates ξ< (ξ>) are the
smaller (larger) between ξ and ξ0; Notations ρ1,n and Ñ1,n are the normalization
constants for the radial and angular functions, respectively. In order to impose the
boundary condition across the interface ξ = ξ2, it is necessary to consider also
the component Eηi, which is obtained from Hφ

i as

Ei
η =

iZ0

c

√
ξ2 + 1

ξ2 + η2

(
∂

∂ξ
+

ξ

ξ2 + 1

)(
H i
φ

)
=

2ik2

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−1)n

ρ̃1,nÑ1,n

S1,n (−ic, η)×{
R

(3)
1,n (−ic, iξ0)A(1)

n (−ic, iξ) , ξ < ξ0

R
(1)
1,n (−ic, iξ0)A(3)

n (−ic, iξ) , ξ > ξ0

(6.6)

where

A(h)(∓ic, ξ) = R
(h)′
1,n (∓ic, iξ) +

ξ

ξ2 − 1
R

(h)
1,n (∓ic, iξ) , (h = 1, 3)

The prime means derivative with respect to ξ.
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If the expressions akin to (6.4) and (6.6) are written for the field components
inside two coating layers, they would contain the parameters:

c1,2 =
k1,2d

2
(6.7)

instead of c, in both the radial functionsR(1)
1,n, R(3)

1,n and the angular functions S1,n.
The explicit, analytical determination is possible only if the angular function S1,n

is the same on both sides of the interface ξ = ξ2; since S1,n is an even function
of parameter c (this is not true for the radial function!). This occurs in two cases:
either c1,2 = c (i.e. k1 = k0), meaning that the coating layers and the surrounding
medium have the same index of refraction (isorefractive layer); or c1,2 = −c (i.e.
k1,2 = −k0), meaning that the coating layer is a DNG metamaterial whose index
of refraction is the negative of the index of refraction of the surrounding medium
(anti-isorefractive layer).

In all the following formulas, the upper sign applies to an isorefractive coating
layer, and the lower sign to an anti-isorefractive coating layer. Since the electric
dipole is located outside of two lossless dielectric layers, so ξ0 > ξ3 and l = 1 for
inside layer (ξ1 ≤ ξ ≤ ξ2) and l = 2 for outside layer (ξ2 ≤ ξ ≤ ξ3): Magnetic
and Electric fields inside two coating layers are expressed by following formulas,
respectively:

H±l,φ =
2k2Yl√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(3)
1,n (−ic, iξ0)S1,n (−ic, η)×

×
[
a±l,nR

(1)
1,n (∓ic, iξ) + b±l,nR

(3)
1,n (∓ic, iξ)

]
(6.8)

And Electric field:

E±l,η =
±2ik2

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(3)
1,n (−ic, iξ0)S1,n (−ic, η)×

×
[
a±l,nA

(1)
n (∓ic, iξ) + b±l,nA

(3)
n (∓ic, iξ)

]
. (6.9)

The scattered fields outside the structure (ξ3 ≤ ξ) are expressed as:
m = 1 for the first case (outside layer is anti-isorefractive);
m = 2 for the second case (outside layer is isorefractive)

Scattered Magnetic Field:

Hs,m
φ =

2k2Y√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

cn
mR

(3)
1,n (−ic, iξ0)R

(3)
1,n (−ic, ξ)S1,n (c, η) ,

(6.10)
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And scattered Electric Field:

Es,m
φ =

2ik2

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

cn
mR

(3)
1,n (−ic, iξ0)×

× S1,n (−ic, η)× A(3)
n (−ic, iξ) . (6.11)

With the reference to spherical cooridnates (r, θ, φ) with the origin at the center
of the structure, the scatterd far field is:

Hs
φ |cξ→∞ ∼

ejkr

kr

2k2Y0√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

cn
mR

(3)
1,n (−ic, iξ0)S1,n (−ic, cosθ) .

(6.12)

Properties of Oblate Spheroidal functions

Angular function S1,n is an even function of c :
S1,n (−ic, η) = S1,n (+ic, η).
According to Flammer’s notes [79], properties of radial functions can be written
as:

R(3,4)
m,n (−ic, iξ) = Rm,n

(1) (−ic, iξ)± iRm,n
(2) (−ic, iξ)

R
(1)
1,n (−ic, iξ)R(3)′

1,n (−ic, iξ)−R(1)′
1,n (−ic, iξ)R(3)

1,n (−ic, iξ) =
1

c (ξ2 + 1)
.

Therefore:

A
(1)
(−ic,iξ)R

(3)
(−ic,iξ) − A

(3)
(−ic,iξ)R

(1)
(−ic,iξ) =

−i
c (ξ2 + 1)

A
(1)
(+ic,iξ)R

(3)
(+ic,iξ) − A

(3)
(+ic,iξ)R

(1)
(+ic,iξ) =

i

c (ξ2 + 1)
.

6.2.2 Applying Boundary Conditions

Case 1

Description: Outer layer is anti-isorefractive; inner layer is isorefractive.
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1, ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(+)
1η |ξ=ξ1 = 0
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E
(+)
1η |ξ=ξ2 = E

(−)
2η |ξ=ξ2; H(+)

1φ |ξ=ξ2 = H
(−)
2φ |ξ=ξ2;

E
(−)
2η |ξ=ξ3 =

(
Es,1
η + Ei

η

)
|
ξ=ξ3

;

H
(−)
2φ |ξ=ξ3 =

(
Hs,1
φ +H i

φ

)
|
ξ=ξ3

.

Expansion coefficients: γ1
n; α(−)

2,n ; β(−)
2,n ; α(+)

1,n and β(+)
1,n will be determined by solv-

ing this system of linear equations.

Case 2

Description: Outer layer is isorefractive; inner layer is anti-isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1, ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(−)
1η |ξ=ξ1 = 0

E
(−)
1η |ξ=ξ2 = E

(+)
2η |ξ=ξ2; H(−)

1φ |ξ=ξ2 = H
(+)
2φ |ξ=ξ2;

E
(+)
2η |ξ=ξ3 =

(
Es,2
η + Ei

η

)
|
ξ=ξ3

;

H
(+)
2φ |ξ=ξ3 =

(
Hs,2
φ +H i

φ

)
|
ξ=ξ3

.

Expansion coefficients: γ2
n; α(+)

2,n ; β(+)
2,n ; α(−)

1,n and β(−)
1,n will be determined by solv-

ing this system of linear equations.

6.2.3 Exact solutions

Case 1

By applying Cramer’s rule, exact solutions for expansion coefficients α1; β1; α2;
β2 and γ1

n can be retrieved as follows:

α
(+)
1 =

−A(3)
(−ic,iξ1)ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.13)

β
(+)
1 =

A
(1)
(−ic,iξ1)ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.14)

α
(−)
2 =

i

c (ξ2
3 + 1) ∆

×
〈
ζ2R

(3)
(+ic,iξ2)

[
A

(1)
(−ic,iξ1)A

(3)
(−ic,iξ2) − A

(1)
(−ic,iξ2)A

(3)
(−ic,iξ1)

]
+ζ1A

(3)
(+ic,iξ2)

[
A

(1)
(−ic,iξ1)R

(3)
(−ic,iξ2) − A

(3)
(−ic,iξ1)R

(1)
(−ic,iξ2)

]〉
, (6.15)
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β
(−)
2 =

−i
c (ξ2

3 + 1) ∆
×
〈
ζ2R

(1)
(+ic,iξ2)

[
A

(1)
(−ic,iξ1)A

(3)
(−ic,iξ2) − A

(1)
(−ic,iξ2)A

(3)
(−ic,iξ1)

]
+ζ1A

(1)
(+ic,iξ2)

[
A

(1)
(−ic,iξ1)R

(3)
(−ic,iξ2) − A

(3)
(−ic,iξ1)R

(1)
(−ic,iξ2)

]〉
. (6.16)

We assume the notations:
∆1 = ζ2

(
A

(1)

(−ic,iξ1)A
(3)

(−ic,iξ2) −A
(1)

(−ic,iξ2)A
(3)

(−ic,iξ1)

)(
A

(1)

(+ic,iξ3)
R

(3)

(+ic,iξ2)
−A

(3)

(+ic,iξ3)
R

(1)

(+ic,iξ2)

)
− ζ1

(
A

(1)

(−ic,iξ1)R
(3)

(−ic,iξ2) −A
(3)

(−ic,iξ1)R
(1)

(−ic,iξ2)

)(
A

(1)

(+ic,iξ2)
A

(3)

(+ic,iξ3)
−A

(1)

(+ic,iξ3)
A

(3)

(+ic,iξ2)

)
∆2 = ζ2

(
A

(1)

(−ic,iξ1)A
(3)

(−ic,iξ2) −A
(1)

(−ic,iξ2)A
(3)

(−ic,iξ1)

)(
R

(1)

(+ic,iξ3)
R

(3)

(+ic,iξ2)
−R

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ3)

)
− ζ1

(
A

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ3)
−A

(3)

(+ic,iξ2)
R

(1)

(+ic,iξ3)

)(
A

(1)

(−ic,iξ1)R
(3)

(−ic,iξ2) −A
(3)

(−ic,iξ1)R
(1)

(−ic,iξ2)

)
in which ∆ = R

(3)
(−ic,iξ3)∆1 + A

(3)
(−ic,iξ3)ζ2∆2. Coefficient γ1 can be retrieved as:

γ1 =
−
[
R

(1)
(−ic,iξ3)∆1 + A

(1)
(−ic,iξ3)ζ2∆2

]
∆

. (6.17)

Case 2

By applying Cramer’s rule, exact solutions for expansion coefficients α1; β1; α2;
β2, γ2 can be retrieved as follows:

α
(−)
1 =

−A(3)
(+ic,iξ1)ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.18)

β
(−)
1 =

A
(1)
(+ic,iξ1)ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.19)

α
(+)
2 =

i

c (ξ2
3 + 1) ∆

×
〈
ζ2R

(3)
(−ic,iξ2)

[
A

(1)
(+ic,iξ1)A

(3)
(+ic,iξ2) − A

(1)
(+ic,iξ2)A

(3)
(+ic,iξ1)

]
+ζ1A

(3)
(−ic,iξ2)

[
A

(1)
(+ic,iξ1)R

(3)
(+ic,iξ2) − A

(3)
(+ic,iξ1)R

(1)
(+ic,iξ2)

]〉
, (6.20)

β
(+)
2 =

i

c (ξ2
3 + 1) ∆

×
〈
ζ2R

(1)
(−ic,iξ2)

[
A

(1)
(+ic,iξ1)A

(3)
(+ic,iξ2) − A

(1)
(+ic,iξ2)A

(3)
(+ic,iξ1)

]
+ζ1A

(1)
(−ic,iξ2)

[
A

(1)
(+ic,iξ1)R

(3)
(+ic,iξ2) − A

(3)
(+ic,iξ1)R

(1)
(+ic,iξ2)

]〉
. (6.21)

We assume the notations:
∆1 = ζ1

(
A

(1)

(−ic,iξ2)A
(3)

(−ic,iξ3) −A
(1)

(−ic,iξ3)A
(3)

(−ic,iξ2)

)(
A

(1)

(+ic,iξ1)
R

(3)

(+ic,iξ2)
−A

(3)

(+ic,iξ1)
R

(1)

(+ic,iξ2)

)
− ζ2

(
A

(1)

(−ic,iξ3)R
(3)

(−ic,iξ2) −A
(3)

(−ic,iξ3)R
(1)

(−ic,iξ2)

)(
A

(1)

(+ic,iξ1)
A

(3)

(+ic,iξ2)
−A

(1)

(+ic,iξ2)
A

(3)

(+ic,iξ1)

)

101



Chapter 6. Dual-layer coating on Oblate Spheroids

∆2 = ζ2
(
A

(1)

(+ic,iξ1)
A

(3)

(+ic,iξ2)
−A

(1)

(+ic,iξ2)
A

(3)

(+ic,iξ1)

)(
R

(1)

(−ic,iξ3)R
(3)

(−ic,iξ2) −R
(1)

(−ic,iξ2)R
(3)

(−ic,iξ3)

)
− ζ1

(
A

(1)

(−ic,iξ2)R
(3)

(−ic,iξ3) −A
(3)

(−ic,iξ2)R
(1)

(−ic,iξ3)

)(
A

(1)

(+ic,iξ1)
R

(3)

(+ic,iξ2)
−A

(3)

(+ic,iξ1)
R

(1)

(+ic,iξ2)

)
in which ∆ = R

(3)
(−ic,iξ3)∆1 + A

(3)
(−ic,iξ3)ζ2∆2. Coefficient γ2 can be retrieved as:

γ2 =
−
[
R

(1)
(−ic,iξ3)∆1 + A

(1)
(−ic,iξ3)ζ2∆2

]
∆

(6.22)

6.2.4 Numerical results

All the simulations are done with the parameters of: d = 2; λ = 1; ξ0 = 1.5;
ξ1 = 0.25; ξ2 = 0.5 and ξ3 = 0.6.
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Figure 6.2: The Scattered Magnetic Far Field of an Electric Dipole when Layer 1 is Isorefractive
and Layer 2 is Anti-Isorefractive with different ζ1, ζ2
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Figure 6.3: Contour Plot of Magnetic Field of an Electric Dipole in the case layer 1 is Isorefrac-
tive and layer 2 is Anti-Isorefractive with ζ1 = 2, ζ2 = 0.5
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Figure 6.4: Contour Plot of Magnetic Field of an Electric Dipole in the case layer 1 is Isorefrac-
tive and layer 2 is Anti-Isorefractive with ζ1 = 2, ζ2 = 2
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Figure 6.5: The Scattered Magnetic Far Field of an Electric Dipole when layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with different ζ1, ζ2
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Figure 6.6: Contour Plot of Magnetic Field of an Electric Dipole in the case layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with ζ1 = 2, ζ2 = 0.5
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Figure 6.7: Contour Plot of Magnetic Field of an Electric Dipole in the case layer 1 is Anti-
Isorefractive and layer 2 is Isorefractive with ζ1 = 2, ζ2 = 2
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6.3 Magnetic dipole source

6.3.1 Interpretation of the fields

If the magnetic dipole at (ξ = ξ0, η = 1) is characterized by the Hertz vector

Πm
i = ẑ

ejkr

kr
(6.23)

generates electric and magnetic fields that are everywhere of the type

E = Eφ (ξ, η) φ̂, Eξ = Eη = 0

H = Hξ (ξ, η) ξ̂ +Hη (ξ, η) η̂, Hφ = 0 (6.24)

It should be noted that the fields cannot be simply obtained by duality from elec-
tric dipole case, because duality would require that the core spheroid be a perfect
magnetic conductor. The incident field components Eφi and Hη

i may be written
as the infinite series:

Ei
φ =

−2k2Z0√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(1)
1,n (−ic, iξ<)R

(3)
1,n (−ic, iξ>)S1,n (−ic, η)

ξ≶ =
min

max
(ξ, ξ0) (6.25)

H i
η =

2ik2

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

S1,n (−ic, η)×{
R

(3)
1,n (−ic, iξ0)A(1)

n (−ic, iξ) , ξ < ξ0

R
(1)
1,n (−ic, iξ0)A(3)

n (−ic, iξ) , ξ > ξ0

, (6.26)

In all the following formulas, the upper sign applies to an isorefractive coating
layer, and the lower sign to an anti-isorefractive coating layer. Since the electric
dipole is located outside of two lossless dielectric layers, so ξ0 > ξ3 and l = 1 for
inside layer (ξ1 ≤ ξ ≤ ξ2) and l = 2 for outside layer (ξ2 ≤ ξ ≤ ξ3): Magnetic
and Electric fields inside two coating layers are expressed by following formulas.
As for Electric Field:

E±l,φ =
−2k2Zl√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(3)
1,n (−ic, iξ0)S1,n (−ic, η)×

×
[
a±l,nR

(1)
1,n (∓ic, iξ) + b±l,nR

(3)
1,n (∓ic, iξ)

]
, (6.27)
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And Magnetic field:

H±l,η =
±2ik2

0

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

R
(3)
1,n (−ic, iξ0)S1,n (−ic, η)×[

a±l,nA
(1)
n (∓ic, iξ) + b±l,nA

(3)
n (∓ic, iξ)

]
. (6.28)

The scattered fields outside the structure (ξ3 ≤ ξ) are expressed as:
m = 1 for the first case (outside layer is anti-isorefractive);
m = 2 for the second case (outside layer is Isorefractive)
As for Scattered Electric Field:

Es,m
φ =

−2k2Z0√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

cn
mR

(3)
1,n (−ic, iξ0)R

(3)
1,n (−ic, iξ)S1,n (−ic, η) ,

(6.29)

And Scattered Magnetic field:

Hs,m
η =

2ik2

c
√
ξ2

0 + 1

√
ξ2 + 1

ξ2 + η2

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

cn
mR

(3)
1,n (−ic, iξ0)×

× S1,n (−ic, η)A(3)
n (−ic, iξ) . (6.30)

With the reference to spherical cooridnates (r, θ, φ) with the origin at the cen-
ter of the structure, the scatterd far field is:

Es
φ |cξ→∞ |

ejkr

kr

2k2Z0√
ξ2

0 + 1

∞∑
n=1

(−i)n

ρ̃1,nÑ1,n

γn
mR

(3)
1,n (−ic, iξ0)S1,n (−ic, cosθ) .

(6.31)

6.3.2 Applying Boundary Conditions

Case 1

Description: Outer layer is anti-isorefractive; inner layer is Isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1; ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(+)
1φ |ξ=ξ1 = 0

E
(+)
1φ |ξ=ξ2 = E

(−)
2φ |ξ=ξ2; H(+)

1η |ξ=ξ2 = H
(−)
2η |ξ=ξ2;

E
(−)
2φ |ξ=ξ3 =

(
Es,1
φ + Ei

φ

)
|
ξ=ξ3

;
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H
(−)
2η |ξ=ξ3 =

(
Hs,1
η +H i

η

)
|
ξ=ξ3

;

Expansion coefficients: γ1
n; α(−)

2,n ; β(−)
2,n ; α(+)

1,n and β(+)
1,n will be determined by solv-

ing this system of linear equations.

Case 2

Description: Outer layer is Isorefractive; inner layer is Anti-isorefractive
Applying boundary conditions for the tangential components of Electric field and
Magnetic field at ξ = ξ1; ξ = ξ2 and ξ = ξ3, we have five linear equations as
follows:
E

(−)
1φ |ξ=ξ1 = 0

E
(−)
1φ |ξ=ξ2 = E

(+)
2φ |ξ=ξ2; H(−)

1η |ξ=ξ2 = H
(+)
2η |ξ=ξ2;

E
(+)
2φ |ξ=ξ3 =

(
Es,2
φ + Ei

φ

)
|
ξ=ξ3

;

H
(+)
2η |ξ=ξ3 =

(
Hs,2
η +H i

η

)
|
ξ=ξ3

;

Expansion coefficients:γ2
n; α(+)

2,n ; β(+)
2,n ; α(−)

1,n and β(−)
1,n will be determined by solv-

ing this system of linear equations.

6.3.3 Exact solutions

Case 1

By Applying Crammer’s rule, exact solutions for expansion coefficients α(+)
1,n ;

β
(+)
1,n ; α(−)

2,n ; β(−)
2,n , γ1 can be retrieved as follows:

α
(+)
1,n =

R
(3)
(−ic,iξ1)ζ1ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.32)

β
(+)
1,n =

−R(1)
(−ic,iξ1)ζ1ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.33)

α
(−)
2,n =

iζ2

c (ξ2
3 + 1) ∆

×
[
ζ1R

(3)
(+ic,iξ2)

[
A

(1)
(−ic,iξ2)R

(3)
(−ic,iξ1) − A

(3)
(−ic,iξ2)R

(1)
(−ic,iξ1)

]
+ζ2A

(3)
(+ic,iξ2)

[
R

(1)
(−ic,iξ2)R

(3)
(−ic,iξ1) −R

(3)
(−ic,iξ2)R

(1)
(−ic,iξ1)

]]
, (6.34)
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β
(−)
2,n =

iζ2

c (ξ2
3 + 1) ∆

×
〈
ζ1R

(1)
(+ic,iξ2)

[
A

(1)
(−ic,iξ2)R

(3)
(−ic,iξ1) − A

(3)
(−ic,iξ2)R

(1)
(−ic,iξ1)

]
+ζ2A

(1)
(+ic,iξ2)

[
R

(1)
(−ic,iξ2)R

(3)
(−ic,iξ1) −R

(3)
(−ic,iξ2)R

(1)
(−ic,iξ1)

]〉
. (6.35)

We assume the notations:
∆1 = ζ1

(
A

(1)

(−ic,iξ2)R
(3)

(−ic,iξ1) −A
(3)

(−ic,iξ2)R
(1)

(−ic,iξ1)

)(
R

(1)

(+ic,iξ3)
R

(3)

(+ic,iξ2)
−R

(3)

(+ic,iξ3)
R

(1)

(+ic,iξ2)

)
+

ζ2
(
A

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ3)
−A

(3)

(+ic,iξ2)
R

(1)

(+ic,ξ3)

)(
R

(1)

(−ic,iξ1)R
(3)

(−ic,iξ2) −R
(1)

(−ic,iξ2)R
(3)

(−ic,iξ1)

)
∆2 = ζ1

(
A

(1)

(−ic,iξ2)R
(3)

(−ic,iξ1) −A
(3)

(−ic,iξ2)R
(1)

(−ic,iξ1)

)(
A

(1)

(+ic,iξ3)
R

(3)

(+ic,iξ2)
−A

(3)

(+ic,iξ3)
R

(1)

(+ic,iξ2)

)
+ ζ2

(
A

(1)

(+ic,iξ2)
A

(3)

(+ic,iξ3)
−A

(3)

(+ic,iξ2)
A

(1)

(+ic,iξ3)

)(
R

(1)

(−ic,iξ1)R
(3)

(−ic,iξ2) −R
(1)

(−ic,iξ2)R
(3)

(−ic,iξ1)

)
In which: ∆ = A

(3)
(−ic,iξ3)∆1 +R

(3)
(−ic,iξ3)ζ2∆2. Coefficient γ can be retrieved as:

γ1 =
−
[
A

(1)
(−ic,iξ3)∆1 +R

(1)
(−ic,iξ3)ζ2∆2

]
∆

(6.36)

Case 2

by applying Cramer’s rule, exact solutions for expansion coefficients α1; β1; α2;
β2, γ can be retrieved as follows:

α
(−)
1,n =

−R(3)
(+ic,iξ1)ζ1ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.37)

β
(−)
1,n =

R
(1)
(+ic,iξ1)ζ1ζ2

c2 (ξ2
3 + 1) (ξ2

2 + 1) ∆
, (6.38)

α
(+)
2,n =

−iζ2

c (ξ2
3 + 1) ∆

×
〈
ζ2A

(3)
(−ic,iξ2)

[
R

(3)
(+ic,iξ2)R

(1)
(+ic,iξ1) −R

(1)
(+ic,iξ2)R

(3)
(+ic,iξ1)

]
−ζ1R

(3)
(−ic,iξ2)

[
A

(1)
(+ic,iξ2)R

(3)
(+ic,iξ1) − A

(3)
(+ic,iξ2)R

(1)
(+ic,iξ1)

]〉
, (6.39)

β
(+)
2,n =

−iζ2

c (ξ2
3 + 1) ∆

×
〈
ζ2A

(1)
(−ic,iξ2)

[
R

(3)
(+ic,iξ2)R

(1)
(+ic,iξ1) −R

(1)
(+ic,iξ2)R

(3)
(+ic,iξ1)

]
−ζ1R

(1)
(−ic,iξ2)

[
A

(1)
(+ic,iξ2)R

(3)
(+ic,iξ1) − A

(3)
(+ic,iξ2)R

(1)
(+ic,iξ1)

]〉
, (6.40)

We assume the notations:
∆1 = ζ2

(
A

(1)

(−ic,iξ2)R
(3)

(−ic,iξ3) −R
(1)

(−ic,iξ3)A
(3)

(−ic,iξ2)

)(
R

(1)

(+ic,iξ1)
R

(3)

(+ic,iξ2)
−R

(3)

(+ic,iξ1)
R

(1)

(+ic,iξ2)

)
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+ ζ1
(
A

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ1)
−A

(3)

(+ic,iξ2)
R

(1)

(+ic,iξ1)

)(
R

(1)

(−ic,iξ3)R
(3)

(−ic,iξ2) −R
(3)

(−ic,iξ3)R
(1)

(−ic,iξ2)

)
∆2 = ζ2

(
A

(1)

(−ic,iξ2)A
(3)

(−ic,iξ3) −A
(1)

(−ic,iξ3)A
(3)

(−ic,iξ2)

)(
R

(1)

(+ic,iξ1)
R

(3)

(+ic,iξ2)
−R

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ1)

)
+ζ1

(
A

(1)

(−ic,iξ3)R
(3)

(−ic,iξ2) −A
(3)

(−ic,iξ3)R
(1)

(−ic,iξ2)

)(
A

(1)

(+ic,iξ2)
R

(3)

(+ic,iξ1)
−A

(3)

(+ic,iξ2)
R

(1)

(+ic,iξ1)

)
in which

∆ = A
(3)
(−ic,iξ3)∆1 −R(3)

(−ic,iξ3)ζ2∆2. Coefficient γ2 can be retrieved as:

γ2 =
−
[
A

(1)
(−ic,iξ3)∆1 +R

(1)
(−ic,iξ3)ζ2∆2

]
∆

(6.41)

6.3.4 Numerical results

All the simulations are done with the parameters of: d = 2; λ = 1; ξ0 = 1.5;
ξ1 = 0.25; ξ2 = 0.5 and ξ3 = 0.6.
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Figure 6.8: The Scattered Electric far field of Magnetic Dipole when Layer 1 is Isorefractive and
Layer 2 is Anti-Isorefractive with different ζ1, ζ2
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Figure 6.9: Contour Plot of Electric field of Magnetic Dipole in the case layer 1 is Isorefractive
and layer 2 is Anti-Isorefractive with ζ1 = 2, ζ2 = 2
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Figure 6.10: The Scattered Electric far field of Magnetic Dipole when layer 1 is Anti-Isorefractive
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Conclusion

The aim of this thesis is to derive a fast and optimized solution for Electromag-
netic drive by using Computational Intelligence techniques, which comprises
evolutionary algorithms and Artificial Neural Network. A number of Electro-
magnetic components such as microstrip antennas and spatial filters have been
optimized by successfully linking the global optimizer with commercial full-
wave simulator. In the first part of my thesis, Electromagnetic problems have
been seen in the viewpoint of Computer Science, which means every object is
treated as arbitrary input-output system. The Electromagnetic fields were cal-
culated by being properly modeled in available simulator. Afterwards, with the
aim of reducing computational efforts, a new optimization mechanism has been
implemented by the use of Artificial Neural Network (ANN). As an approxima-
tion model, a proper ANN can replace the full-wave analysis and this approach
shows a good potential for application in large-scale problems. The results of
this specific research activities have been published in some IEEE conferences
and Progress in Electromagnetic Research (PIER) journal.

In the second part, the problems of radiation by axially oriented antennas in
the presence of spheroidal structures were solved. Even though coated spheroids
have been studied for many years, the new solutions enrich the catalog of exact
analytical solutions for Electromagnetic boundary-value problems. The results
can also be used to test and validate numerical codes developed for the numerical
analysis of penetrable structures. At this point, Electromagnetic scattering prob-
lems can be constructed and Electromagnetic fields can be computed by series of
special functions. The physical characterization by separations of variables was
again employed to optimize scattered far field of multiple dipoles axially located
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on the symmetry axis of prolate spheroids. The results of this specific research
activities have been published in URSI general meeting and in preparation for
submitting in IEEE Transactions on Antenna and Propagation.
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