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A common mistake that people make

when trying to design something completely foolproof

is to underestimate the ingenuity of complete fools.

Mostly Harmless

Douglas Adams, 1992
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Summary

High order methods for Space Situational Awareness

Alessandro Morselli

The era of space exploration started in 1957 with the launch of the first man-made

object, the soviet satellite Sputnik I. Since then a large number of man-made objects

has been launched into space, and many of them are still orbiting the Earth. The

large majority of objects currently orbiting the Earth is a result of fragmentations,

mostly caused by collisions and explosions. These events can have catastrophic effects

on the near-Earth environment: they increase the number of objects and, thus, the

probability of further collisions, potentially leading to a collisional cascade. This

scenario is named Kessler’s syndrome after the name of the scientist who first analyzed

the effects of the increasing density of resident space objects.

Mitigation guidelines have been published by various organisations such as the

Inter-Agency Space Debris Coordination Committee (IADC) and the United Nations

(UN). The general aim of space debris mitigation is to reduce the growth of space

debris by ensuring that space systems are designed, operated, and disposed of in a

manner that prevents them from generating debris throughout their orbital lifetime.

In parallel specific space programs were started to build the expertise required to

manage the challenges posed by the space traffic control problem.

This thesis deals with the development of new methods for the Space Surveillance

and Tracking of the near-Earth environment. All the relevant aspects of the prob-

lem are addressed in this thesis: orbit propagation, orbit determination, conjunction

identification, collision probability estimation, and collision avoidance manoeuvre de-

sign. The main goal is to implement innovative methods to propagate uncertainties

in an efficient and accurate way, which is a major problem when dealing with a large

amount of data.

In this framework, differential algebraic techniques are used to perform nonlinear

propagation of uncertainties on the orbital state and to speed-up computational de-

manding simulations, such as Monte Carlo methods. An introduction to Differential

Algebra (DA) and its tools, as well as a description of the high-order DA-based prop-

agators developed, is given in the first part of the work. In particular, the first ever
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high-accuracy DA-based numerical propagator is developed, using some of the most

recent models for Earth gravitational field and atmosphere density.

Then, the problem of orbit determination is addressed. A novel algorithm based

on batch least square fit that can process measurements from a bistatic radar with

a multibeaming receiver is analyzed. The algorithm is capable of estimating, with a

single measurement, the whole set of six orbital parameters, with a good accuracy on

the orbital position. By adding optical measurements the estimate gets closer to the

reference state and the ballistic coefficient can be estimated as well.

Two algorithms for the conjunction identification are proposed: the first is based

on the DA-version of the analytical propagator SGP4/SDP4 and the rigorous global

optimizer COSY-GO. The choice of the objective function is such that all stationary

points of the relative distance between the two objects can be computed in the time

window of interest with a computational time that ranges from a few to tens of

seconds. The second algorithm uses the procedure for the DA expansion of the time

and distance of closest approach. The advantage of this approach is that it provides

the polynomial approximation of the distance of closest approach with respect to

the uncertain initial states of both objects, that can be used to compute collision

probabilities efficiently.

The three methods for the collision probability computation exploit the availability

of the DA expansion of the distance of closest approach to perform fast Monte Carlo

simulations. The numerical simulations to compute the minimum relative distance

for each sample of the simulation are replaced by fast polynomial evaluations. A

DA-based standard Monte Carlo method and two advanced Monte Carlo techniques,

Line Sampling and Subset Simulation, are used. These advanced techniques limit the

number of samples required to compute sufficiently accurate estimates of the collision

probability, which is usually well below 10−3. Since they are based on polynomial

evaluations, the methods allow for large computational time savings. As an example

when 1000 samples are required the computation time can be reduced by two orders of

magnitude. Besides enabling the collision probability computation in a Monte Carlo

fashion, without any assumption on relative dynamics as in the classical algorithms,

the developed methods can be used with any statistics, such as uniform distribution

or Gaussian mixtures.

The design of collision avoidance manoeuvres is tackled as a multi-objective opti-

mization problem, using a particle swarm optimizer. Two approaches are analyzed,

the first is based on SGP4/SDP4 and the corresponding method for conjunction

identification, whereas the other one uses the DA-based numerical propagator and

the expansion of the distance of closest approach with respect to the execution time

and the manoeuvre velocity vector. The optimization returns a set of fuel-efficient

manoeuvres that can raise the miss-distance and decrease collision probability besides

being compliant with mission constraints.

Overall, the proposed algorithms can be combined in a comprehensive DA-based

Space Surveillance and Tracking tool. The tool would be able to manage the uncer-
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tainties by considering the nonlinearities arising from orbit determination and orbit

propagation and could produce accurate estimations of the collision probability to

rank close conjunctions. More in general, the tool would support the management

of space traffic, re-entry, and observation scheduling. In the scope of the mitigation

guidelines, any improvement in handling such operations will have beneficial effects

on space debris population control and the future exploitation of space.
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Introduction

The era of space exploration started in 1957 with the launch of the first man-made

object the soviet satellite Sputnik I. Since then the interest for space and its possible

commercial exploitation has continued to grow and the number of launches per year

has increased year after year. To keep track of all artificial satellites orbiting the

Earth and to determine their trajectory, both the United States and URSS devel-

oped a network of radar and optical sensors to perform observations of satellites. In

particular, a complete catalogue of all the detectable objects, continuously updated

with satellite tracking data, was created and is still maintained by the United States

Strategic Command (USSTRATCOM) [Hoo04].

In those years there was almost no concern for the continuous accumulation of

man-made objects in space. In 1978 Donald Kessler presented a paper in which he

analyzed the possible evolution of the population of Resident Space Object (RSO)

[Kes78]. Using a model initially developed for the study of the asteroid belt formation

he found that if the density of Earth orbiting objects becomes larger than a certain

threshold a collisional cascade could occur. A collision between two satellites will

indeed generate a huge amount of smaller fragments, due to the high relative velocity

during a close approach, that can be as high as 14 km/s. In those conditions even

a collision with a small object involves an high level of energy and could have catas-

trophic consequences. Furthermore, if the fuel tanks on board the satellite were hit,

an explosion could occur. The immediate effect of a collision or explosion would be

the increase of the object density. This, in turn, will increase the probability of fur-

ther collisions, resulting in the formation of a dense layer of debris around the Earth.

A debris is defined as “any man-made Earth-orbiting object which is non-functional

with no reasonable expectation of assuming or resuming its intended function or any

other function for which it is or can be expected to be authorized, including fragments

and parts thereof” [Flu01].

The consequence of such an event would be catastrophic: at that altitude the

lifetime of a satellite will be drastically reduced due to the high risk of collisions

and any object launched into higher orbits should cross that region and should be

protected by high-velocity impacts with smaller fragments by means of shields and

reinforced surfaces.
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Fortunately this scenario has not yet occurred, although in the past years two

events largely contributed in increasing the number of debris. In 2007 a Chinese

anti-satellite missile test was performed: the satellite Fengyun 1C was destroyed at

an altitude of approximately 700 km, generating thousands of fragments. Two years

later a collision between Iridium 33 and Cosmos 2251 occurred at an altitude of 789

km. At those altitudes the air drag, that is the only natural force capable of causing

the re-entry of orbiting objects, has very small effects. The decrease in the semi-major

axis of satellites and debris at those altitudes can be so small that hundreds of years

are required for the object to re-enter. As of July 2012 more than 3,400 fragments

larger than 5 cm originated by the Fengyun explosion and 2,200 collisional debris

from the Iridium-Cosmos collision were catalogued by the USSTRATCOM [Joh12].

It is estimated that more than 50% of those debris could still be in orbit 20 years

after the event due to the limited effect of drag.

In this framework it is clear how important the so called space surveillance ac-

tivity is. The European Space Agency (ESA) has thus started the Space Situational

Awareness (SSA) program to provide Europe with timely and precise information on

space environment. The activity is not only focused on space debris but also on space

weather and Near-Earth Objects (asteroids) detection. Inside the SSA program, the

Space Surveillance and Tracking (SST) segment is targeted at tracking and main-

taining the information on all orbiting objects. This activity must be performed by

collecting data with dedicated radar and optical sensors, then performing orbit de-

termination to estimate the orbital parameters of every object. These data are then

used to forecast, on a daily basis, all close conjunctions between active satellites and

debris. In case the relative distance is below a safety threshold and/or the collision

probability exceeds the maximum allowed value a warning is issued to satellite opera-

tors to determine whether or not a collision avoidance manoeuvre must be performed.

In some cases additional measurements to improve the accuracy of the debris orbit

must be performed prior to the conjunction. All these activities lie in the mitigation

strategies that the international community has introduced to ensure the exploitation

of Earth orbits in the future.

Besides the avoidance manoeuvre, other mitigation strategies have been intro-

duced to limit or reduce the number of man-made objects in Earth orbit. The Inter-

Agency Space Debris Coordination Committee (IADC), a committee that is formed

by the space agencies of Italy, France, China, Canada, Germany, India, Japan, USA,

Russia, Ukraine, and UK besides ESA, issued a set of mitigation guidelines. These

were then incorporated into the Space Debris Mitigation Guidelines of the United

Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), released in

2010. The identified guidelines are the following:

• Limit debris release during normal operations

• Minimise the potential for break-ups during operational phases

• Limit the probability of accidental collisions
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• Avoid intentional destruction and other harmful activities

• Minimise the potential for post-mission break-ups resulting from stored energy

(e.g. remaining on-board fuel)

• Limit the long-term presence of spacecraft and launch vehicle orbital stages in

the low-Earth orbit region after the end of their mission

• Limit the long-term interference of spacecraft and launch vehicle orbital stages

with the geosynchronous region after their end of mission

In addition, remediation strategies, such as Active Debris Removal (ADR) of non-

operative satellites, are currently studied to reduce the risk of further fragmentation

and proper end-of-life disposal strategies, aimed at de-orbiting the spacecraft within

25 years after the end of the mission or the injection in graveyard orbits (i.e. orbits on

which the effect of perturbations is such that the evolving trajectory will not intersect

orbits commonly used, such as the geostationary orbit).

The purpose of the research activity performed during the PhD was to develop

new methods for orbit determination, conjunction identification, collision probability

computation, and collision avoidance manoeuvre design in the framework of SST.

The activity can be also grouped inside the mitigation strategies aimed at limiting

the probability of accidental collisions, as described in the Space Debris Mitigation

Guidelines.

In this chapter the background of this research activity is briefly described. In

Section 1.1 some figures and facts concerning the population of RSO currently orbiting

the Earth are given. The SST operations and activities are described in Section 1.2.

The organization of the research activity and its innovative aspects are outlined in

Section 1.3.

1.1 Near-Earth environment

In this section the near-Earth environment is described, focusing mainly on the de-

tectable object population and catalogued objects. For this purpose, it is important

to identify first the different orbital regimes involved. Typically an altitude-based

classification is performed and four geocentric orbit types are defined:

• Low Earth Orbit (LEO), h < 2, 000 km;

• Medium Earth Orbit (MEO), 2, 000 < h < 33, 000;

• Geosynchronous Earth Orbit (GSO), h ≈ 35, 786 km, with period equal to a

sidereal day;

– Geostationary Earth Orbit (GEO), when the inclination is close to 0 deg

and eccentricity is close to 0;
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• High Earth orbit, h > 38, 600 km, comprising orbits with period above 24 h.

This orbit classification is usually employed for all objects orbiting the Earth and is

used throughout this work. An additional orbit class, that groups all objects whose

orbit has eccentricity above 0.1, is defined. This class is named Highly Elliptical

Orbit (HEO) and comprises orbits such as Molnyia and Geosynchronous Transfer

Orbit (GTO). These orbits have a perigee that is usually low enough to be inside the

LEO region but an apogee that could reach the GEO region.

The current population of catalogued man-made Earth-orbiting objects comprises

more than 17,000 individuals 1. Though, it is estimated that the number of objects

whose diameter is greater than 10 cm could thus exceed 29,000. The number of

objects larger than 1 cm could be around 670,000 whereas objects larger than 1 mm

are likely more than 170 millions. The smallest size of the objects that can be currently

detected by the (ground-based) space surveillance networks is equal to 10 cm in the

LEO region and around 1 m for objects orbiting in GEO [Flu01]. Smaller objects are

modelled statistically using population models, such as ESA’s MASTER-2009 and

National Aeronautics and Space Administration (NASA)’s ORDEM 3.0.

The total number of catalogued payloads (i.e. active satellites), rocket bodies,

and debris for the main countries and space agencies is listed in Table 1.1. The de-

bris category here comprises nonfunctional satellites, mission related debris (exhaust

products, objects released in spacecraft deployment and operations, and refuse from

manned mission), and fragmentation debris (explosion fragments, collision fragments,

and products of deterioration). The two nations that pioneered the space exploration

during the Cold War, United States of America (USA) and the Commonewalth of

Independent Sates (CSI), i.e. the former URSS, are responsible of more than 50%

of larger objects currently in orbit. Notwithstanding a small number of payloads,

the Public Republic of China (PRC) is accounted for nearly 3,500 debris due to the

anti-satellite missile test of 2007. All other countries are responsible for the remaining

11% of the total number of RSO larger than 10 cm.

The distribution of the RSO is not uniform: the large majority of these objects is

concentrated in two orbital regimes, LEO and GEO. The histogram of the number

of objects as function of the semi-major axis is plotted in Figure 1.1 for the LEO and

in Figure 1.2 for altitudes above LEO. Both plots are obtained using the informa-

tion publicly available from the Space-Track catalogue. For what concerns the LEO

regime, it can be observed that the most populated altitude is between 700 and 1000

km. As highlighted in the previous section here the effect of air drag is lower and the

two main catastrophic events, the explosion of Fengyun 1C and the Iridium-Cosmos

collision, occurred. For altitudes above LEO, it can be clearly observed the peak cor-

responding to the GEO ring at 42,164 km. In addition, the 12-hour revolution orbits

(26,562 km) have an higher concentration, due to the presence of objects on Molnyia

orbit or upper stages on GTO. Both Monlyia and GTO orbits can be also classified

1Source: Space-Track, www.space-track.org

https://www.space-track.org
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Country/Organization Payloads Rocket bodies Debris TOTAL

CIS 1491 1014 3913 6418
USA 1215 661 3189 5065
PRC 161 80 3485 3726
FR 60 135 316 511
JPN 141 44 37 222
IND 58 21 100 179
ESA 55 7 39 101
Others 785 37 85 907

TOTAL 3966 1999 11164 17129

Table 1.1. Number of orbiting objects divided by country. The objects are divided into
active satellites (payloads), upper stages of launchers and fairings (rocket bodies), and debris.
Epoch: 2014-08-19 16:00:0 GMT. Source: Space-Track.

as HEO, due to their high eccentricity. Because of their low pericentre, that in some

cases can be as low as 150 km, they also experience orbital decay.

The LEO region is used for a large variety of missions, e.g. Earth observation and

Earth science, meteorology, communication, remote sensing, reconnaissance, astro-

physics and space science. The GEO orbit is instead mainly used for communication

purposes, since the satellite ground track can be maintained on the same latitude and

longitude box. Other uses include Earth observation, surveillance, and meteorology.

It is thus clear that in the future the use of both LEO and GEO will increase or
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Figure 1.1. Histogram of the semi-major axis distribution of catalogued LEO objects as of
September 2014 (bin size ∆a = 25 km). Source: Space-Track.
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remain at the present level. In addition, there is an increasing interest for the MEO

region, with plans for the creation of satellite constellations for navigation purposes

such as the European Galileo program.
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Figure 1.2. Histogram of the semi-major axis distribution of catalogued super-LEO objects
as of September 2014 (bin size ∆a = 200 km). Source: Space-Track.

The histogram of the eccentricity distribution is plotted in Figure 1.3. The large

majority of objects is on a circular or nearly-circular orbit and only a few are found at

high eccentricity, between 0.5 and 0.7. Those objects are the ones orbiting in Monlyia

and GTOs identified before on the semi-major axis plots.

For what concerns the inclination of the currently catalogued population of de-

tectable objects, an histogram plot is given in Figure 1.4. It can be observed that

many objects are found at inclinations above 60 degrees. These are mainly objects

in LEO that are on Sun-Synchronous Orbit (SSO), so that illumination conditions

are the same for each orbit. This is particularly useful for Earth observation and

meteorological satellites that have instruments to take images of Earth’s surface. The

small peak at zero inclination is instead associated to the objects in the GEO region.

In addition, non-operative satellites and debris at that altitude are influenced by the

Moon’s attraction, resulting in a 53-year cyclic inclination variation that could reach

15 deg [Kli06].

A detailed and continuous monitoring of the near-Earth environment is thus re-

quired to forecast close conjunctions and plan, when possible, the appropriate coun-

teraction. The next section provides a description of the SST framework, which is

aimed at surveying and identifying risky situations for in-orbit satellites.
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Figure 1.3. Histogram of the eccentricity distribution of catalogued objects as of September
2014 (bin size ∆e = 0.01). Source: Space-Track.
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Figure 1.4. Histogram of the inclination distribution of catalogued objects as of September
2014 (bin size ∆I = 1 deg). Source: Space-Track.
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1.2 Space surveillance and tracking

The Space Surveillance and Tracking (SST) is the set of operations to be performed

in order to maintain the awareness of the population of man-made space objects.

Some of its main goals are to support safe and secure operations of space assets,

risk management and liability assessment, to characterize physical properties of space

objects. Besides the observations of RSO by means of optical and radar networks,

the information on launches (date, country, payload, etc.), re-entered objects, and

owner/operator of each objects must be considered in the SST activities. In addi-

tion, for cooperative objects, the station keeping and/or orbital manoeuvres that are

performed must be determined to correctly represent the trajectory. All gathered

information is used to build and maintain a comprehensive space catalogue, where all

detected objects orbital states and properties are listed. The surveillance data should

indeed support different applications

• launch and early operations, by confirming separation of satellite from launcher

and providing information on initial orbit for tracking operations;

• contingencies, by tracking malfunctioning or passive satellites;

• collision warnings, by detecting conjunctions between satellites and other ob-

jects;

• search for released or lost objects;

• controlled and uncontrolled re-entry, by estimating trajectory, re-entry time and

location, and risk to ground;

• identification of new objects, detection and characterization of in-orbit fragmen-

tations.

In this work the focus is mainly on the SST activities required to determine colli-

sion warnings, going from observations to the collision avoidance manoeuvre design.

A possible scheme of the related activities and their interconnections is represented

in Figure 1.5. The first block is the observation block, coloured in light blue. The

observation and measuring is a key activity for any SST: without observations it is

indeed not possible to characterize the population of man-made objects. The data

obtained from observations (mainly radar and optical) is then processed to determine

the orbital elements that are required to forecast the future trajectory of the object,

through the algorithms contained in the orbit determination block. Besides a set of six

orbital elements, the orbit determination usually estimates also ballistic coefficients

or the area-to-mass ratio required to correctly model solar radiation pressure and air

drag.

The obtained information is then stored in a catalogue, to be readily available for

any further activity or study. The catalogue is also useful to schedule new observations
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Figure 1.5. Space surveillance and tracking: scheme of activities involved.

and perform tracking of known objects. This activity is particularly important for

those objects whose trajectory is highly influenced by perturbations, such as objects

at lower altitudes that are about to re-enter in a few weeks or days. Also note that the

information contained in the catalogue could be used during the orbit determination

phase.

The schedule of new observations must guarantee sufficiently small uncertainties

on the estimated orbital state for the data to be useful during the collision risk

assessment. The risk determination is usually performed daily and can be divided

into two phases: first all conjunctions occurring in the following days or week are

identified. Those conjunctions whose minimum distance is below a warning threshold

are retained and the collision probability is computed for each one. Even in this case

a warning threshold is defined from engineering experience. A warning is issued to

satellite operators for all the conjunctions with a high collision probability (i.e. above

10−3) and a small minimum relative distance (i.e. a few hundreds metres). In case

the orbit uncertainties on one of the two objects are too high, further observation of

the object can be decided in order to obtain more accurate estimates of the minimum

relative distance and collision probability.

For those close conjunctions with an high risk of collision, an avoidance manoeuvre

must be designed. The aim of the manoeuvre is to reduce the collision probability

and increase the objects separation. Fuel-optimal strategy can be adopted or station-

keeping manoeuvre can be anticipated. This second approach has the advantage of

reducing collision risk without the need of a recover manoeuvre, aimed at restoring

the original trajectory after an avoidance manoeuvre has been carried out. It is also

important to perform a new collision risk assessment with the orbital state after the

manoeuvre to exclude the appearance of new close conjunctions. The new trajectory

can indeed increase the relative distance for the considered conjunction but it is not
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guaranteed that other conjunctions with different objects will remain unaltered.

1.3 Research activity organization

In this section a brief description of the activity and algorithms developed in the thesis

is provided. The goal of the research activity is to develop new, fast, accurate, and ef-

ficient methods to support the SST activity in the determination of close conjunctions,

the computation of the associated risk level, and the design of fuel-optimal strategy

for collision avoidance. This is performed by means of Differential Algebra (DA), de-

scribed in Chapter 2. Instead of working with real-numbers, DA operates directly on

functions. In a computer environment this is achieved by approximating these func-

tions with Taylor polynomials. All operations on standard floating points number

are theoretically replicable within a DA framework. As an example, the polynomial

approximation of the orbital state at any epoch as function of the initial state can

be obtained. Given the resulting polynomials, any variation of the initial condition

in the surroundings of the nominal state can be mapped at future epochs by simple

polynomial evaluations. When many propagations are required, the availability of

such an expansion reduces drastically the computational effort, since each numerical

propagation is substituted by the evaluation of polynomials. In addition, the order of

the Taylor approximation is arbitrary and can be selected according to the required

accuracy. This is particularly helpful when the dynamic of the problem is highly non-

linear or nonlinear effects arise from long-term propagations or large uncertainties.

This situation is quite common for orbit propagation in the near-Earth environment.

For instance, the period of a LEO orbit could be around 90 minutes. The identifi-

cation of conjunctions is usually performed over a time window of one week: more

than 100 revolutions are performed by a LEO object in this window. The common

assumption of Gaussian distribution for the uncertainties on the orbital state used

for the collision probability computation could be violated even if initial uncertainties

were small.

It is clear that any new algorithm that requires a DA polynomial expansions of

the orbital state requires an orbit propagator capable of providing it. A key role of

the whole activity was thus to develop orbit propagators that can operate in a DA

framework. Two DA-based propagators were developed: an high-fidelity numerical

propagator and an analytical propagator replicating SGP4/SDP4. A description of

the two propagators, the details of their implementation, and the way to perform a

high-order expansion of the flow of the differential equations is given in Chapter 3. It

is worth noting that both DA-based propagators are the first high-order propagators

tailored for accurate propagation of Earth-orbiting objects ever developed.

The following research topics are investigated in this work:

• orbit determination, tailored for bistatic radars and optical measures

• conjunction identification procedures
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• collision probability computation

• collision avoidance manoeuvre design.

The algorithms developed for each topic and their interactions are represented in

Figure 1.6, together with the two DA-based propagators. The gray lines that connects

the propagators to the blocks are used to indicate in which block the DA-version of

the propagator is used. The only source of information for the analysis presented

in this work are the Two-Line Element set (TLE) from the Space-Track catalogue.

These are directly used as inputs for the SGP4/SDP4 propagator, whereas a pseudo

orbit-determination on a set of states generated from a single TLE is performed to

obtain the initial state for the numerical propagator.

The TLE are also used as input for the simulator of optical and radar measure-

ments, that was developed to provide the inputs for the orbit determination block.

Both the simulators and the algorithms for orbit determination are described in Chap-

ter 4. Besides using a batch least square fit, the peculiarity of the orbit determination

algorithm is the kind of radar measurement that can be processed. Tailored algorithm

were indeed developed to manage data from a bistatic radar system with a multibeam-

ing receiver in collaboration with the Italian Institute for Radioastronomy (IRA). In

addition, tests were made to verify the capability of mixed orbit determinations with

both radar and optical measurements.

For what concerns the conjunction identification process, two algorithms were de-

veloped. The first uses the DA version of SGP4/SDP4 and tackles the problem as

a global optimization. The rigorous global optimizer COSY-GO, that exploits the

properties of DA, is used for this purpose. The second algorithm, instead, exploits

the Taylor expansion of the orbital state obtained with the DA-based numerical prop-

agator to compute the Taylor expansion of the time and distance of closest approach.

Given a first guess of these two quantities, e.g. from the other conjunction identifica-

tion algorithm, their analytical approximation can be computed. The true minimum

of the relative distance is then quickly obtained by means of a polynomial evaluation.

The algorithms and the performances of the new methods are described in Chapter

5.

The collision risk assessment phase (represented by the red blocks in Figure 1.6)

is the collision probability computation. Three DA-based Monte Carlo methods were

developed. Due to the availability of the Taylor expansion of the relative distance

at the closest approach, it is possible to perform fast Monte Carlo computations,

since the numerical propagation is replaced by polynomial evaluations. Besides a

standard Monte Carlo method, two advanced methods are proposed to deal with low

collision probability and reduce the number of samples required to obtain sufficiently

accurate estimates in that case. The methods exploit the polynomial expansion up

to high-order and are not influenced by the initial uncertainty distribution, that is

not restricted to be Gaussian. With respect to the classical methods for collision

probability computation, no assumptions on the relative motion are made, and the
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Figure 1.6. Research activity: workflow and interconnections between developed algorithms

complete dynamics is considered. Although the outputs of the orbit determination

block should be used for the numerical conjunction identification, it was not possible

to perform it in this work since the observation simulators and orbit determination

algorithms were the last to be developed. The details and performances of the methods

are described in Chapter 6.

The last block of Figure 1.6 is the collision avoidance algorithm. The manoeuvre

design is tackled as a multi-objective optimization, using a particle swarm optimizer.

Besides searching for a fuel-optimal manoeuvre, the optimization takes into account

the mission constraints. The optimization can be performed by propagating with

SGP4/SDP4 or the numerical propagator. In the latter case, the DA expansion of

the relative distance at the closest approach is obtained as function of the manoeuvre

time and ∆v. In this way it is possible to speed up the execution of the code, since

polynomial evaluations are used in place of numerical propagations. The algorithms

for conjunction identification are also used to compute the conjunctions during the

manoeuvre optimization. The details on the implementation of the collision avoidance

algorithms and some tests performed on LEO and GEO objects are given in Chapter

7.

Overall, the methods developed in the thesis exploit Differential Algebra to per-

form fast and accurate computation for collision risk assessment and collision avoid-

ance manoeuvre design. The proposed approaches tackle the classical limitations of

numerical simulations and Monte Carlo methods, since fast polynomial evaluations

are used instead of any numerical propagation, drastically reducing the computational

effort. In addition, algorithms for the orbit determination of space debris with op-

tical and radar sensors are developed, tailored for new and innovative bistatic radar

systems. The achieved results and conclusions are summarized in Chapter 8 together

with the possible developments and future works.
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1.3.1 Advancements with respect to the state of the art

The work presented in this thesis was developed in the framework of the research on

the use of DA for the solution of astrodynamics problems performed by the Space

Mission Engineering Lab of the Politecnico di Milano. The original contributions to

the background know-how of the research group are summarized in Table 1.2.

Research topic State of the art Original contributions

DA orbit propagation
DA expansion of the flow for DA expansion of the flow using
• two-body dynamics • SGP4/SDP4
• n-body dynamics • High-fidelity numerical propagator

Orbit determination
• preliminary orbit determination • Orbit determination algorithms for

of NEO based on DA RSO (suitable also for NEO)
• Investigation of radar-based

orbit determination
• Development of tailored algorithms

for multibeaming receiver antenna
• Mixed orbit determination with

radar and optical measurements using
batch least-square optimization

Conjunction identification
• Rigorous global optimization • Rigorous global optimization

with keplerian dynamics with SGP4/SDP4 for RSO
for NEO (MOID, solution of • Computation of all stationary points
geometrical problem) wrt. time (geometrical problem and

• Expansion of MOID wrt. phasing)
orbital parameters • TCA&DCA expansion wrt. time and

initial state

Collision probability
• DA-based Monte Carlo for NEO • Advanced DA Monte Carlo methods

Collision avoidance
• Multi-objective optimization • Problem formulation and tailoring

of space trajectories for collision avoidance design

Table 1.2. Original contributions of this thesis with respect to the background of the
research group.
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Differential Algebra and Taylor Models

The theory of differential algebra presented in this chapter has been developed by

Martin Berz in the late 80’s, and the short summary given in the followings takes

advantage of his book Modern Map Methods in Particle Beam Physics [Ber99c].

Differential Algebra (DA) techniques find their origin in the attempt to solve

analytical problem by an algebraic approach. Historically, treatment of functions in

numerics has been based on the treatment of numbers, and the classical numerical

algorithms are based on the mere evaluation of functions at specific points. DA

techniques are based on the observation that it is possible to extract more information

on a function rather than its mere values. The basic idea is to bring the treatment of

functions and the operations on them to the computer environment in a similar way

as the treatment of real numbers. Referring to Figure 2.1, consider two real numbers

a and b. In order to operate on them in a computer environment, they are usually

transformed in their floating point (FP) representation, a and b respectively. Then,

given any operation ∗ in the set of real numbers, an adjoint operation ⊛ is defined in

the set of FP numbers such that the diagram commutes. Consequently, transforming

the real numbers a and b in their FP representation and operating on them in the

set of FP numbers returns the same result as carrying out the operation in the set

of real numbers and then transforming the achieved result in its FP representation.

In a similar way, suppose two sufficiently regular functions f and g are given. In

the framework of differential algebra, the computer operates on them using their

Taylor series expansions, F and G respectively. Therefore, the transformation of real

numbers in their FP representation is now substituted by the extraction of the Taylor

expansions of f and g. For each operation in the function space, an adjoint operation

in the space of Taylor polynomials is defined such that the corresponding diagram

commutes: extracting the Taylor expansions of f and g and operating on them returns

the same result as operating on f and g in the original space and then extracting the

Taylor expansion of the resulting function. Differential algebra can be effectively

implemented in a computer environment. In this way, the Taylor coefficients of a

function can be obtained up to a specified order k, along with the function evaluation,

with a fixed amount of effort. The Taylor coefficients of order k for sums and product

of functions, as well as scalar products with reals, can be computed from those of
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Figure 2.1. Analogy between the floating point representation of real numbers in a com-
puter environment (left figure) and the introduction of the algebra of Taylor polynomials in
the differential algebraic framework (right figure).

summands and factors; therefore, the set of equivalence classes of functions can be

endowed with well-defined operations, leading to the so-called truncated power series

algebra (TPSA) [Ber86, Ber87].

Similarly to the algorithms for floating point arithmetic, the algorithm for func-

tions followed, including methods to perform composition of functions, to invert

them, to solve nonlinear systems explicitly, and to treat common elementary func-

tions [Ber91, Ber99b]. In addition to these algebraic operations, also the analytic

operations of differentiation and integration have been developed on these function

spaces, defining a differential algebraic structure.

As DA represents the core of the algorithms developed in the frame of this work,

some useful notes to get familiar with these techniques are given in the followings. In

particular, the minimal differential algebra for 1-dimensional functions and their first

order expansion is explained in details, and some hints on its extension to functions of

n variables and to k-th order are given. Two important applications of DA techniques

are then presented in section 2.3, pertaining the solution of parametric implicit equa-

tions. The validated extension of differential algebra into the Taylor model method

concludes the chapter in section 2.5.

2.1 The Minimal Differential Algebra

The simplest nontrivial differential algebra is here described. Consider all ordered

pairs (q0, q1), with q0 and q1 real numbers. The addition, scalar multiplication, and

vector multiplication are defined as follows:

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)

t · (q0, q1) = (t · q0, t · q1)
(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0),

(2.1)



2.1 The Minimal Differential Algebra 17

where t ∈ R. The ordered pairs with the above arithmetic are called 1D1. The first two

operations are the familiar vector space structure of R2, whereas the multiplication is

similar to that in the complex numbers; except here (0, 1)·(0, 1) does not equal (−1, 0),

but rather (0, 0). The multiplication of vectors is seen to have (1, 0) as the unity

element. The multiplication is commutative, associative, and distributive with respect

to addition. Together, the three operations defined in Eq. (2.1) form an algebra.

Furthermore, they do form an extension of real numbers, as (r, 0)+ (s, 0) = (r+ s, 0)

and (r, 0) · (s, 0) = (r · s, 0), so that the reals can be included.

However 1D1 is not a field, as (q0, q1) has a multiplicative inverse in 1D1 if and

only if q0 6= 0. If q0 6= 0 then

(q0, q1)
−1 =

(

1

q0
,− q1

q20

)

. (2.2)

If q0 is positive, then (q0, q1) ∈ 1D1 has a root

√

(q0, q1) =

(√
q0,

q1
2
√
q0

)

, (2.3)

as simple arithmetic shows.

One important property of this algebra is that it has an order compatible with its

algebraic operations. Given two elements (q0, q1) and (r0, r1) in 1D1, the following is

defined
(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1)

(q0, q1) > (r0, r1) if (r0, r1) < (q0, q1)

(q0, q1) = (r0, r1) if q0 = r0 and q1 = r1.

(2.4)

As for any two elements (q0, q1) and (r0, r1) only one of the three relation holds, 1D1 is

said totally ordered. The order is compatible with the addition and multiplication; for

all (q0, q1), (r0, r1), (s0, s1) ∈ 1D1, it follows (q0, q1) < (r0, r1) ⇒ (q0, q1) + (s0, s1) <

(r0, r1) + (s0, s1); and (s0, s1) > (0, 0) = 0 ⇒ (q0, q1) · (s0, s1) < (r0, r1) · (s0, s1).
The number d = (0, 1) has the interesting property of being positive but smaller

than any positive real number; indeed

(0, 0) < (0, 1) < (r, 0) = r. (2.5)

For this reason d is called an infinitesimal or a differential. In fact, d is so small that

its square vanishes in 1D1. Since for any (q0, q1) ∈ 1D1

(q0, q1) = (q0, 0) + (0, q1) = q0 + d · q1, (2.6)

the first component is called the real part and the second component the differential

part.

The algebra in 1D1 becomes a differential algebra by introducing a map ∂ from
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1D1 to itself, and proving that the map is a derivation. Define ∂ : 1D1 → 1D1 by

∂(q0, q1) = (0, q1). (2.7)

Note that

∂{(q0, q1) + (r0, r1)} = ∂(q0 + r0, q1 + r1) = (0, q1 + r1)

= (0, q1) + (0, r1) = ∂(q0, q1) + ∂(r0, r1)
(2.8)

∂{t · (q0, q1)} = ∂(t · q0, t · q1) = (0, t · q1)
= t · (0, q1) = t · ∂{(q0, q1)}

(2.9)

∂{(q0, q1) · (r0, r1)} = ∂(q0 · r0, q0 · r1 + r0 · q1) = (0, q0 · r1 + r0 · q1)

= (0, q1) · (r0, r1) + (0, r1) · (q0, q1)

= ∂{(q0, q1)} · (r0, r1) + (q0, q1) · ∂{(r0, r1)}.

(2.10)

This holds for all (q0, q1), (r0, r1) ∈ 1D1. Therefore ∂ is a derivation and (1D1, ∂) is a

differential algebra.

The most important aspect of 1D1 is that it allows the automatic computation

of derivatives. As an example, assume to have two functions f, g ∈ C1(D), with

D ⊆ R. Put their values and their derivatives at x ∈ D in the form (f(x), f ′(x)) and

(g(x), g′(x)) as two vectors in 1D1; and consider the product

(f(x), f ′(x)) · (g(x), g′(x)) = (f(x) · g(x), f(x) · g′(x) + f ′(x) · g(x)) . (2.11)

As it can be seen, if the derivative of the product f · g at x is of interest, one has just

to look at the second component of the resulting pair in Eq. (2.11); whereas the first

component gives the value of the product of the functions. Therefore, if two vectors

contain the values and the derivatives of two functions, their product contains the

values and the derivatives of the product function.

Defining the operation [ ] from the space of differential functions to 1D1 via

[f ] = (f(x), f ′(x)) , (2.12)

and using Eq. (2.2), it holds

[f + g] = [f ] + [g]

[t · f ] = t · [f ]
[f · g] = [f ] · [g],

(2.13)

where t ∈ R, and

[1/g] = [1]/[g] = 1/[g] (2.14)

for all g with g(x) 6= 0. This observation can be used to compute derivatives of
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many kinds of functions algebraically by merely applying arithmetic rules on 1D1,

starting from the value and the derivative of the identity function f(x) = x, i.e.,

[f ] = [x] = (x, 1). Consider the example

f(x) =
1

x+ 1/x
(2.15)

and its derivative

f ′(x) =
(1/x2)− 1

(x+ (1/x))2
. (2.16)

The function value and its derivative at the point x = 3 are

f(3) =
3

10
, f ′(3) = − 2

25
. (2.17)

The same result can be obtained by replacing x with [x] evaluated at x = 3, i.e.,

(3, 1). Performing all the operations of (2.15) in the algebraic framework defined in

(2.1) and (2.2) yields

f([x]) =
1

[x] + 1/[x]
=

1

(3, 1) + 1/(3, 1)
=

1

(3, 1) + (1/3,−1/9)

=
1

(10/3, 8/9)
=

(

3

10
, −8

9

/ 100

9

)

=

(

3

10
,− 2

25

)

.

(2.18)

Thus, the real part of the result is the value of the function at x = 3, whereas the

differential part is the value of the derivative of the function at x = 3. This is expected

as, by applying the relations (2.13) and (2.14) to compute the 1D1 representative of

f ,

[f ] =

[

1

x+ 1/x

]

=
1

[x+ 1/x]

=
1

[x] + [1/x]
=

1

[x] + 1/[x]

= f([x]).

(2.19)

It is worth highlighting that DA circumvents the analytical derivation of f ′(x) as

performed in Eq. (2.16) to compute the derivative of f at x = 3.

The method can be generalized to allow the treatment of common intrinsic func-

tions, like trigonometric or exponential functions, by setting

gi([f ]) = [gi(f)] or

gi ((q0, q1)) = (gi(q0), q1 g
′
i(q0)) .

(2.20)

By virtue of equations (2.1) and (2.20) any function f representable by finitely many



20 2 Differential Algebra and Taylor Models

additions, subtractions, multiplications, divisions, and intrinsic functions in 1D1 sat-

isfies the important relationship

[f(x)] = f([x]). (2.21)

Note that f(r + d) = f(r) + d · f ′(r) resembles f(x + ∆x) ≈ f(x) + ∆x · f ′(x), in

which the approximation becomes increasingly more refined for smaller ∆x.

2.2 The Differential Algebra kDn

This section extends the algebra 1D1 to the general kDn case, which enables the

computation of the derivatives of functions in n variables up to order k. Similarly

as before, it is based on taking the space Ck(D), i.e. the collection of k times contin-

uously differentiable functions on D ⊆ R
n. On this space an equivalence relation is

introduced. For f, g ∈ Ck(D), f =k g if and only if f(x) = g(x) with x ∈ D and all

the partial derivatives of f and g agree at x up to order k. The relation =k satisfies

f =k f for all f ∈ Ck(D),

f =k g ⇒ g =k f for all f, g ∈ Ck(D), and

f =k g and g =k h ⇒ f =k h for all f, g, h, ∈ Ck(D).

(2.22)

Thus, =k is an equivalence relation. All the elements that are related to f can be

grouped together in one set, the equivalence class [f ] of the function f . The resulting

equivalence classes are often referred to as DA vectors or DA numbers. Intuitively,

each of these classes is then specified by a particular collection of partial derivatives

in all n variables up to order k. This set of these classes is called kDn.

If the values and the derivatives of two functions f and g are known, the corre-

sponding values and derivatives of f + g and f · g can be inferred. Therefore, the

arithmetics on the classes in kDn can be introduced via

[f + g] = [f ] + [g]

[t · f ] = t · [f ]
[f · g] = [f ] · [g],

(2.23)

where t ∈ R. Under this operations, kDn becomes an algebra. Note that the algebra

1D1 is a particular case of kDn. This is justified by the fact that the equivalence

relation in (2.22) holds for the special case k = n = 1; moreover, the algebra in Eq.

(2.23) is identical to the 1D1 counterpart in Eq. (2.13). Thus, the definition of 1D1 in

Section 2.1 is compatible with its kDn extension; therefore, no difference in notation
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is made. For each v ∈ 1, . . . , n, define the map ∂v from kDn to kDn for f via

∂v[f ] =

[

pv ·
∂f

∂xv

]

, (2.24)

where

pv(x1, . . . , xn) = xv (2.25)

projects out the v-th component of the identity function. It’s easy to show that, for

all v = 1, . . . , n and for all [f ], [g] ∈ kDn,

∂v([f ] + [g]) = ∂v[f ] + ∂v[g]

∂v(t · [f ]) = t · ∂v[f ]
∂v([f ] · [g]) = [f ] · (∂v[g]) + (∂v[f ]) · [g],

(2.26)

where t ∈ R. Therefore, ∂v is a derivation for all v, and hence ( kDn, ∂1, . . . , ∂v) is a

differential algebra.

The dimension of kDn is now assessed. Define the special numbers dv as follows:

dv = [xv]. (2.27)

Observe that f lies in the same class as its Taylor polynomial Tf of order k around the

origin; they have the same function values and derivatives up to order k. Therefore,

[f ] = [Tf ]. (2.28)

Denoting the Taylor coefficients of the Taylor polynomial Tf of f as cj1,...,jn , it follows

Tf (x1, . . . , xn) =
∑

j1+···+jn≤k

cj1,...,jn · xj1
1 · · ·xjn

n (2.29)

with

cji , . . . , cjn =
1

j1! · · · jn!
· ∂j1+···+jnf

∂xj1
1 · · · ∂xjn

n

(2.30)

and thus

[f ] = [Tf ] =





∑

j1+···+jn≤k

cj1,...,jn · xj1
1 · · ·xjn

n





=
∑

j1+···+jn≤k

cj1,...,jn · dj11 · · · djnn ,

(2.31)

where, in the last step, the properties [a+ b] = [a] + [b] and [a · b] = [a] · [b] have been
used. Therefore, the set {1, dv : v = 1, 2, . . . , n} generates kDn, as any element of



22 2 Differential Algebra and Taylor Models

kDn can be obtained from 1 and the dv via addition and multiplication. Therefore,

as an algebra, kDn has (n+ 1) generators, and the terms dj11 · · · djnn form a basis for

the vector space kDn. It is shown in [Ber99c] that the number of basic elements is

(k + n)!/(k!n!), which is the dimension of kDn.

Similarly to the structure 1D1, kDn can be ordered, and the dv, being smaller than

any real number, are infinitely small or infinitesimal. Furthermore, a fixed point the-

orem for contracting operators in kDn exists, which enables the evaluation of square

roots, the quotient, and the inversion of Taylor polynomials through iterative pro-

cesses based on a finite number of steps [Ber99c]. Once the function composition and

the elementary functions, like trigonometric or exponential functions, are introduced

in kDn, the derivatives of any function f belonging to Ck(Rn) can be computed up

to order k in a fixed amount of effort by applying

[f(x1, . . . , xn)] = f([x1, . . . , xn]) = f(x1 + d1, . . . , xn + dn). (2.32)

The differential algebra sketched in this section was implemented by M. Berz and K.

Makino in the software COSY INFINITY [Ber06a]. 1

2.3 Solution of Parametric Implicit Equations

DA techniques can be effectively used to identify the solution of parametric implicit

equations. Well-established numerical techniques (e.g. Newton’s method) exist, which

can effectively identify the solution of a classical implicit equation

f(x) = 0. (2.33)

Without loss of generality, suppose an explicit dependence on a vector of parameter p

can be highlighted in the previous function f , which leads to the parametric implicit

equation

f(x,p) = 0. (2.34)

Suppose the previous equation is to be solved, whose solution is represented by the

function x(p) returning the value of x solving Eq. (2.34) for any value of p. Thus, the

dependence of the solution of the implicit equation on the vector of parameters p is

of interest. DA techniques can effectively handle the previous problem by identifying

the function x(p) in terms of its Taylor expansion with respect to p. The DA-based

algorithm is presented in the followings for the solution of the scalar parametric im-

plicit equation (2.34); the generalization to a system of parametric implicit equations

is straightforward.

The solution of (2.34) is sought, where sufficient regularity is assumed to charac-

1The software and all the related documentations are available free of charge for non-commercial
use online at http://bt.pa.msu.edu/index_cosy.htm.

http://bt.pa.msu.edu/index_cosy.htm
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terize the function f , i.e. f ∈ Ck+1. This means that x(p) satisfying

f(x(p),p) = 0 (2.35)

is to be identified. The first step is to consider a reference value p0 of the vector

of parameters p and to compute the value of the solution x0 of the corresponding

implicit equation by means of a classical numerical method, e.g. a Newton’s method.

The variable x and p are then initialized as k-th order DA variables, i.e.,

[x] = x0 + δx

[p] = p0 + δp.
(2.36)

A DA-based evaluation of the function f in (2.34) delivers the k-th order expansion

of f with respect to x and p:

δf = Mf (δx, δp). (2.37)

where Mf denotes the Taylor map for f . Note that the map has no constant part as

x0 is the solution of the implicit equation for the nominal value p0; thus, δf represents

the deviation of f from its reference value 0, resulting from deviations of x and p from

x0 and p0. The map (2.37) is then augmented by introducing the map corresponding

to the identity function on p, i.e. δp = Ip(δp), ending up with

[

δf

δp

]

=

[

Mf

Ip

] [

δx

δp

]

. (2.38)

The k-th order map (2.38) is inverted using COSY INFINITY built-in tools (based

on fixed point iterations), obtaining

[

δx

δp

]

=

[

Mf

Ip

]−1 [
δf

δp

]

(2.39)

As the goal is to compute the k-th order Taylor expansion of the solution manifold

x(p) of (2.34), the map (2.39) is evaluated for δf = 0:

[

δx

δp

]

=

[

Mf

Ip

]−1 [
0

δp

]

. (2.40)

The first row of map (2.40)

δx = M−1
f (δp), (2.41)

can be written as

δx = Mx,δf=0(δp), (2.42)

where M−1
f has been written as Mx,δf=0 to stress the imposed constraint. Equation



24 2 Differential Algebra and Taylor Models

(2.42) express how a variation of the vector of parameters δp affects the solution of

the implicit equation as a k-th order Taylor polynomial. In particular, by plugging

map (2.42) into the first of Eq. (2.36) we obtain

[x] = x0 +Mx,δf=0(δp), (2.43)

which is the k-th order Taylor expansion of the solution manifold. For every value of

p the approximate solution of f(x,p) = 0 can be easily computed by evaluating the

Taylor polynomial (2.43) at δp = p−p0. Apparently, the solution obtained by means

of (2.43) is a Taylor approximation of the exact solution of equation (2.34) and the

accuracy of the approximation depends on the order of the Taylor expansion and the

displacement δp from the reference value p0.

A classical example of parametric implicit equation in Astrodynamics is Kepler’s

equation

f(E) = E − e sinE −M = 0, (2.44)

where E is the eccentric anomaly, e the orbit eccentricity, and M is the mean anomaly.

The solution of Kepler’s equation (or its variants) is necessary to compute the orbital

position and velocity of an object along its orbit at a certain time in many analytical

solutions for satellite motion. As an example, SGP4/SDP4 requires the solution of a

slightly different formulation in the variable u = E + ω [Hoo04]:

f(u) = (M + ω)− ayN cosu+ axN sinu− u = 0, (2.45)

where ω is the argument of pericentre and the two coefficients ayN and axN are

related to orbit eccentricity and long-period periodic effects of Earth gravity. Within

this work the algorithm for the solution of parametric implicit equations is used for

expanding the solution of Kepler’s equation and its variants.

2.4 High Order Expansion of the Flow

Differential algebra allows the derivatives of any function f of n variables to be com-

puted up to an arbitrary order k, along with the function evaluation. This has an

important consequence when the numerical integration of an Ordinary Differential

Equation (ODE) is performed by means of an arbitrary integration scheme. Any

integration scheme is based on algebraic operations, involving the evaluation of the

ODE right hand side at several integration points. Therefore, carrying out all the

evaluations in the DA framework allows differential algebra to compute the arbitrary

order expansion of the flow of a general ODE with respect to the initial condition.

Without loss of generality, consider the scalar initial value problem

{

ẋ = f(x, t)

x(t0) = x0

(2.46)
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and the associated phase flow ϕ(t;x0). We now want to show that, starting from

the DA representation of the initial condition x0, differential algebra allows us to

propagate the Taylor expansion of the flow in x0 forward in time, up to the final time

tf .

To this aim, replace the point initial condition x0 by the DA representative of its

identity function up to order k, which is a (k + 1)-tuple of Taylor coefficients. (Note

that x0 is the flow evaluated at the initial time; i.e, x0 = ϕ(t0;x0).) As for the identity

function only the first two coefficients, corresponding to the constant part and the

first derivative respectively, are non zeros, we can write [x0] as x0 + δx0, where x0 is

the reference point for the expansion. If all the operations of the numerical integration

scheme are carried out in the DA framework, the phase flow ϕ(t;x0) is approximated,

at each fixed time step ti, as a Taylor expansion in x0.

For the sake of clarity, consider the forward Euler’s scheme

xi = xi−1 + f(xi−1)∆t (2.47)

and substitute the initial value with the DA identity [x0] = x0 + δx0. At the first

time step we have

[x1] = [x0] + f([x0]) ·∆t. (2.48)

If the function f is evaluated in the DA framework, the output of the first step, [x1], is

the k-th order Taylor expansion of the flow ϕ(t;x0) with respect to x0 at t = t1. Note

that, as a result of the DA evaluation of f([x0]), the (k + 1)-tuple [x1] may include

several non zero coefficients corresponding to high order terms in δx0. The previous

procedure can be inferred through the subsequent steps. The result of the final step is

the k-th order Taylor expansion of ϕ(t;x0) in x0 at the final time tf . Thus, the flow of

a dynamical system can be approximated, at each time step ti, as a k-th order Taylor

expansion in x0 in a fixed amount of effort. In addition, the high order expansion of

the flow with respect to the final time is obtained when the final time is initialized as

DA variable. Consider the last step of the forward Euler’s scheme where the initial

value [x0] is a DA variable and f is evaluated in a DA environment:

[xN ] = [xN−1] + f([xN−1])∆t. (2.49)

Since the final time is initialized as a DA variable, i.e.

[tf ] = tf + δtf , (2.50)

the last time step ∆t will be a DA variable as well, yielding

[xN ] = [xN−1] + f([xN−1])[∆t] = [xN−1] + f([xN−1]) ([tf ]− tn−1) . (2.51)

As a result, the high order expansion of the flow with respect to final time variation

is obtained.
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The conversion of any standard integration scheme to its DA counterparts is

straightforward both for explicit and implicit solvers. This is essentially based on

the substitution of the operations on real numbers with those on DA numbers. In

addition, whenever the integration scheme involves iterations (e.g. iterations required

in implicit and predictor-corrector methods), step size control, and order selection, a

measure of the accuracy of the Taylor expansion of the flow needs to be included.

Integration schemes based on DA pave the way to the algorithms presented in this

work. A first example is given hereafter about the propagation of uncertainties on ini-

tial conditions. The Taylor polynomials resulting from the use of DA-based numerical

integrators expand the solution of the initial value problem presented in Eq. (2.46)

with respect to the initial condition. Thus, the dependence of the solution x(t) on the

initial condition is available, at a time ti, in terms of a k-th order polynomial map

Mx0
(δx0), where δx0 is the displacement from the reference initial condition. The

evaluation of the map Mx0
(δx0) for a selected value of δx0 supplies the k-th order

Taylor approximation of the solution at ti corresponding to the perturbed initial con-

dition. The accuracy of the result depends on the function f , the expansion order k,

and the value of the displacement δx0.

The main advantage of the DA-based approach is that there is no need to write

and integrate variational equations in order to obtain high order expansions of the

flow. This result is basically obtained by the substitution of operations between real

numbers with those on DA numbers, and therefore the method is ODE independent.

Furthermore, the efficient implementation of the differential algebra in COSY INFIN-

ITY allows us to obtain high order expansions with limited computational time.

2.5 Taylor Models

This section is devoted to the introduction of the Taylor Model (TM) method, which

plays a key role in the conjunction identification algorithms described in chapter 5.

Some notes on Taylor Models are presented first based on the Ph.D. thesis of Kyoko

Makino [Mak98].

2.5.1 Differential Algebra and Interval Arithmetic

While DA methods can provide the derivatives of functional dependencies and the

expansion of the solution of ODEs up to high orders, in a rigorous sense they fail to

provide information about the range of the function. A simple example that dramat-

ically illustrates this phenomenon is the function shown in Figure 2.2

f(x) =

{

0 if x = 0

exp(−1/x2) else.
(2.52)
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Figure 2.2. Function f(x) = exp(−1/x2) if x 6= 0 ; 0 else, and its Taylor polynomial, which
vanishes identically.

The value of the function and all the derivatives at x = 0 are 0. Thus the Taylor

polynomial at the reference point x = 0 is just the constant 0. In particular, this also

implies that the Taylor expansion of f converges everywhere, but it fails to agree with

f(x) everywhere but at x = 0.

Rigorous bounds of the range of functions can be obtained instead using the

method of Interval Arithmetic (IA) [Moo66]. Both extended domains of numbers

as well as individual real numbers are represented via rigorous inclusions of floating

point intervals. Arithmetic operations are introduced on intervals such that, for any

two real numbers in two different intervals, a real arithmetic operation on the two real

numbers always leads to a result that is contained in the interval obtained from the

corresponding arithmetic operation on the two intervals. Table 2.1 lists some elemen-

tary properties of interval arithmetic. By evaluating a function in interval arithmetic,

it is thus possible to carry rigorous bounds information through the operations, and

in the end obtain rigorous bounds of the function.

I1 + I2 = [a1 + a2, b1 + b2]

−I1 = [−b1,−a1]

I1 · I2 = [min(a1a2, a1b2, b1a2, b1b2),max(a1a2, a1b2, b1a2, b1b2)]

If 0 /∈ I1, 1/I1 = [1/b1, 1/a1]

Table 2.1. Elementary properties of interval arithmetic; I1 = [a1, b1], I2 = [a2, b2].
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a b a b

IA TM

Figure 2.3. Comparison between Interval Arithmetic and Taylor Model

However, while reasonably fast in practice, interval methods have some severe

disadvantages, which limit their applicability for complicated functions. First, the

width of the resulting intervals scales with the width of the original intervals; and

second, artificial blow-up usually occurs in extended calculations. To illustrate the

blow-up phenomenon with a trivial example, consider the interval I = [a, b], which

has the width b − a. Compute the addition of I to itself and its subtraction from

itself:

I + I = [a, b] + [a, b] = [a+ a, b+ b] = [2a, 2b]

I − I = [a, b]− [a, b] = [a, b] + [−b,−a] = [a− b, b− a].

In both cases the resulting width is 2(b−a), which is twice the original width, although

we know that regardless of what unknown quantity x is characterized by I, certainly

x− x should equal zero.

The TM method is a method that combines the advantage of rigor of the interval

approach, while largely avoiding the blow-up problem through the use of DA tech-

niques. The key idea is to describe the bulk of the functional dependence through a

Taylor polynomial, and bound the deviation of the original function from the Tay-

lor polynomial by an interval. Therefore a TM represents a hybrid between for-

mula manipulation, interval methods, and methods of computational differentiation

[Gri91, Ber96]. As can be seen in Figure 2.3, TM supply a more accurate enclosure

of a function over an interval [a, b] with respect to IA.

In this endeavor, the Taylor theorem plays an important role.

Theorem 1 (Taylor’s Theorem). Suppose that a function f : [a, b] ⊂ R
n → R is

(k+1) times continuously partially differentiable on [a, b]. Assume x0 ∈ [a, b]. Then

for each x ∈ [a, b], there is θ ∈ R with 0 < θ < 1 such that

f(x) =
k

∑

ν=0

1

ν!
((x− x0) ·∇)ν f(x0) +

1

(k + 1)!
((x− x0) ·∇)k+1 f (x0 + (x− x0)θ) ,
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where the partial differential operator (h ·∇)
v
operates as

(h ·∇)
v
=

∑

0≤i1,··· ,in≤v
i1+···+in=v

v!

i1! · · · in!
hi1
1 · · ·hin

n

∂v

∂xi1
1 · · ·∂xin

n

.

Depending on the situation at hand, the remainder term also can be cast into a

variety of well-known other forms. Taylor’s theorem allows a quantitative estimate

of the error that is to be expected when approximating a function by its Taylor

polynomial. Furthermore, it even offers a way to obtain bounds for the error in

practice, based on bounding the (k + 1)st derivative, a method that has sometimes

been employed in interval calculations.

For notational convenience, we introduce a parameter α to describe the details

of a given Taylor expansion, namely, the order of the Taylor polynomial k, and the

reference point of expansion x0. For the purpose to derive bounds for the remainder,

it is also necessary to include the domain interval [a, b] on which the function is to

be considered; altogether

α = (k,x0, [a, b]). (2.53)

Consider now a (k+1) times continuously partially differentiable function f : [a, b] ⊂
R

n → R and write it as a sum of its Taylor polynomial Pα,f of k-th order and a

remainder εα,f as

f(x) = Pα,f (x− x0) + εα,f(x− x0),

where εα,f(x − x0) is continuous (even continuously differentiable) on the domain

interval and thus bounded. Let the interval Iα,f be such that

∀x ∈ [a, b], εα,f (x− x0) ∈ Iα,f .

Then

∀x ∈ [a, b], f(x) ∈ Pα,f (x− x0) + Iα,f . (2.54)

Because of the special form of the Taylor remainder term εα,f , in practice the re-

mainder usually decreases as |x − x0|k+1. Hence, if |x − x0| is chosen to be small,

the interval Iα,f , which, from now on, will be referred to as the interval remainder

bound, can become so small that even the effect of considerable blow-up is not detri-

mental. The set Pα,f (x − x0) + Iα,f containing f consists of the Taylor polynomial

Pα,f (x − x0) and the interval remainder bound Iα,f , and it rigorously bounds the

range of the function f over the interval [a, b]. The pair (Pα,f , Iα,f ) of a Taylor poly-

nomial Pα,f (x−x0) and an interval remainder bound Iα,f is said to be a Taylor model

of f if and only if Eq. (2.54) is satisfied. In this case, the Taylor model is denoted by

Tα,f = (Pα,f , Iα,f ).

Altogether, the Taylor Model approach has the following important properties:
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1. The ability to provide enclosures of any function given by a finite computer code

list by a Taylor polynomial and a remainder bound with a sharpness that scales

with order (k + 1) of the width of the domain.

2. The computational expense increases only moderately with order, allowing the

computation of sharp range enclosures even for complicated functional depen-

dencies with a significant dependency problem.

3. The computational expense of higher dimensions increases only very moderately,

significantly reducing the “curse of dimensionality”.

The implementation of the method in the code COSY Infinity [Mak98, Ber06a]

supports binary operations and standard intrinsic functions, as well as the antideriva-

tive operation which widens the applications of the method. In the following section

a few details concerning Taylor Models operations are given.

2.5.2 Operations on Taylor Models

In this section, tools that allow to efficiently calculate Taylor models for all functions

representable on a computer are briefly described. Similarly to differential algebra,

the key is to begin with the Taylor model for the identity function, which is trivial,

and then successively build up Taylor models for the total function from its pieces.

This requires methods to determine Taylor models for sums and products from those

of the summands or factors, as well as from intrinsics applied to functions with known

Taylor models.

For illustration purposes, details about how Taylor models can be rigorously

summed are reported hereafter. Let the functions f, g : [a, b] ⊂ R
n → R have Taylor

models

Tα,f = (Pα,f , Iα,f ) and Tα,g = (Pα,g, Iα,g),

which entails that

∀x ∈ [a, b], f(x) ∈ Pα,f (x− x0) + Iα,f and

g(x) ∈ Pα,g(x− x0) + Iα,g.

Then it is straightforward to obtain a Taylor model for f+g; in fact, for any x ∈ [a, b],

f(x) + g(x) ∈ (Pα,f (x− x0) + Iα,f ) + (Pα,g(x− x0) + Iα,g)

= (Pα,f (x− x0) + Pα,g(x− x0)) + (Iα,f + Iα,g) ,

so that a Taylor model Tα,f+g for f + g can be obtained via

Pα,f+g = Pα,f + Pα,g and Iα,f+g = Iα,f + Iα,g. (2.55)
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Thus we define

Tα,f + Tα,g = (Pα,f + Pα,g, Iα,f + Iα,g),

and we obtain that Tα,f + Tα,g = (Pα,f+g, Iα,f+g) is a Taylor model for f + g. Note

that the above addition of Taylor models is both commutative and associative. The

procedure to multiply two Taylor models is similarly introduced and it is detailed in

[Mak98].

Having introduced addition and multiplication, the computation of any polynomial

of Taylor models can be performed, which turns out to be crucial when intrinsic

functions are of interest. In particular, the key idea behind the computation of Taylor

models for intrinsic functions is to employ Taylor’s theorem of the function under

consideration. As an example, consider the exponential function. Assume the Taylor

model of the function f , Tα,f = (Pα,f , Iα,f ), is already available. Write the constant

part of the function f around x0 as cα,f , which agrees with the constant part of the

Taylor polynomial Pα,f , and write the remaining part as f̄ ; that is,

f(x) = cα,f + f̄(x).

A Taylor model of f̄ is then Tα,f̄ = (Pα,f̄ , Iα,f̄ ), where

Pα,f̄ (x− x0) = Pα,f (x− x0)− cα,f and Iα,f̄ = Iα,f .

Now we can write

exp (f(x)) = exp
(

cα,f + f̄(x)
)

= exp(cα,f ) · exp
(

f̄(x)
)

= exp(cα,f ) ·
{

1 + f̄(x) +
1

2!

(

f̄(x)
)2

+ · · ·+ 1

k!

(

f̄(x)
)k

+

+
1

(k + 1)!

(

f̄(x)
)k+1

exp
(

θ · f̄(x)
)

}

,

where 0 < θ < 1. Taking v ≥ k, where k is the order of the Taylor model, the part

exp(cα,f ) ·
{

1 + f̄(x) +
1

2!
(f̄(x))2 + · · ·+ 1

k!
(f̄(x))k

}

is a polynomial of f̄ , of which we can obtain the Taylor model using addition and

multiplication rules. The remainder part of exp(f(x)),

exp(cα,f ) ·
{

1

(k + 1)!
(f̄(x))k+1 + · · ·+ 1

(v + 1)!
(f̄(x))v+1 exp

(

θ · f̄(x)
)

}

, (2.56)

will be bounded by an interval. The reader is remanded to Makino’s Ph.D. thesis

[Mak98] for further details.

Similar procedures can be used to obtain Taylor models for other elementary

functions. Altogether, it is now possible to compute Taylor models for any function
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that can be represented in a computer environment along with the mere evaluation

of the function by simple operator overloading, in much the same way as the mere

computation of derivatives and Taylor polynomials in the DA framework, or interval

bounds in interval arithmetic.

2.6 COSY-GO

In this section a few hints concerning interval based Global Optimization (GO) are

given. After a brief description of Taylor-model-based bounders, the main character-

istic of COSY-GO are outlined.

Verified GO needs the determination of rigorous upper and lower bounds of the

objective function in order to implement a branch and bound method [Kea96]. The

commonly used interval approach has excelled in solving this problem elegantly from

both a formal and an implementational viewpoint. However, as outlined in section

2.5.1, there are situations where the method has limitations for extended or compli-

cated calculations because of the dependency problem, which is characterized by a

cancellation of various sub-parts of the function that cannot be detected by direct

use of interval methods. This effect often leads to pessimism and sometimes even

drastic overestimation of range enclosure. Furthermore, the sharpness of intervals

resulting from calculations typically scales linearly with the sharpness of the initial

discretization intervals. For complicated problems, and in particular higher dimen-

sions, this sometimes significantly limits the sharpness of the resulting answer that

can be obtained [Mak99].

The Taylor model approach enables the computation of fully mathematically rigor-

ous range enclosures while largely avoiding many of the limitations of the conventional

interval method [Mak98].

The structure of Taylor models naturally represents a rich resource of informa-

tion. In particular, the coefficients of the polynomial part P of a Taylor model are

closely related to derivatives. That means when representing a function f by a Taylor

model (P, I) on a computer, we also obtain the local slope, Hessian and higher order

derivatives almost free. When a task is focused on range bounding, those pieces of

information become particularly useful.

While range bounding of Taylor Model with interval arithmetic in the naive sense

[Mak03] already exhibits superiority over mere interval arithmetic and the more ad-

vanced centered form [Mak98], the active utilization of those additional pieces of infor-

mation in Taylor models has a lot of potential of developing efficient range bounders.

Based on this observation, various kinds of Taylor-model-based range bounders have

been developed [Ber06b], and among them the Linear Dominated Bounder (LDB)

and the Quadratic Fast Bounder (QFB) are the backbones of Taylor model based

verified global optimizer COSY-GO.

The linear dominated bounder is based on the fact that, for Taylor models with
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sufficiently small remainder bound, the linear part of the Taylor model dominates the

behavior; this is also the case for range bounding. The linear dominated bounder

utilizes the linear part as a guideline for iterative domain reduction to bound Taylor

models. Around an isolated interior minimizer, the Hessian of a function f is positive

definite, so the purely quadratic part of a Taylor model (P, I) which locally represents

f , has a positive definite Hessian matrix H . The quadratic fast bounder provides a

lower bound of a Taylor model cheaply when the purely quadratic part is positive

definite. More details on polynomial bounders are given in [Mak05].

COSY-GO [Ber06b, Arm10b] is a branch-and-bound optimization code employing

local domain reduction techniques exploiting the bounding performances assured by

TM methods. Should the global minimum of a sufficiently regular scalar function f

on a given domain A ⊆ R
m wished to be evaluated, the algorithm starts with an

initial value for the global optimum, the cutoff value, and then proceeds on analyzing

at each step a subdomain for possible elimination or reduction. At each step the

following tasks are performed

1. A rigorous lower bound l of the objective function is obtained on the subdo-

main of interest using various bounding schemes hierarchically with the hope of

showing that l lies above the already established cutoff value, which will allow to

eliminate of the subdomain. A first assessment is made whether the remainder

bound of the Taylor model at hand is sufficiently small; if it is not, then the

underlying function exhibits too much detail for modeling by local estimators,

and the subdomain is split in the direction of fastest change of the function.

2. If the remainder bound is sufficiently small, as a first test the polynomial part

of the objective function is evaluated in interval arithmetic. When it fails to

eliminate the box, the LDB bounder is applied. If it also fails to eliminate the

box, and if the quadratic part of the polynomial representation of the objective

function P is positive semi-definite, the QFB bounder is applied.

3. If the just studied subdomain of interest cannot be eliminated, but is seen

to have a lower bound close to the current cutoff values, domain reduction

techniques are brought to bear based on the LDB and QFB algorithms to reduce

the subdomain in size. Once these methods are applicable, they will allow to

cut the subdomain of interest and rapidly reduce the active volume.

4. The cutoff value is updated using various schemes. At first, the linear and

quadratic parts of the Taylor polynomial are utilized to obtain a potential cutoff

update. In particular, if the quadratic part of the polynomial is positive definite,

the minimizer of the quadratic polynomial is tested. If the quadratic part is not

positive definite, the minimizer of the quadratic part in the direction of the

negative gradient is tested. For objective functions of nontrivial cost, as in the

example at hand, also more sophisticated local searches within and near the

current subdomain may be carried out.



34 2 Differential Algebra and Taylor Models

The algorithm continues to reduce and examine the domain until the minimum di-

mension allowed is reached. The result of the optimization is the validated enclosure

of the minimum of the problem.

COSY-GO has been used in this work with the aim of computing Minimum Orbital

Intersection Distance (MOID) between a Keplerian orbit and a perturbed orbit. To

achieve this result, the square distance between two points belonging to the one of

the two orbits respectively was used as objective function. In the following chapter

this application is described and the most relevant results are reported.



3

High-order orbit propagation using Differ-

ential Algebra

The propagation of spacecraft trajectories and the associated uncertainties play an

important role in the field of Space Situational Awareness. The procedures and the

algorithms for orbit determination, conjunction identification, and risk assessment all

depend on orbit propagation. The more accurately the trajectory is described the

more reliable the performed analysis will be. To this aim the more important orbital

perturbations must be taken into account by the selected orbit propagator, according

to the current orbital regime. As an example, the Moon’s gravitational force plays

an important role for satellites in GEO, whereas its effects are nearly negligible for

a satellite at a really low altitude, where the atmospheric drag is by far the most

important perturbing force.

In addition, the time required to perform an orbit propagation must be taken into

account. Modeling more perturbations than the ones required will result in longer

simulations, producing only minor changes in the final position or trajectory. More-

over, the additional computational effort is magnified when a large set of objects has

to be propagated: this is the case of conjunction identification where, on a daily basis,

the close encounter between a satellite and all orbiting objects must be computed.

From the Engineer’s point of view it is thus important to select (or design) the orbit

propagator for a certain application by considering the requirements on accuracy and

computational effort.

Three different approaches exists for orbit propagation of satellites: analytical,

numerical, and semi-analytical. Analytical theories, also known as general perturba-

tions, use methods such as variation of parameters, averaging techniques, and canoni-

cal transformation to simplify the equation of motion when perturbations are present,

since no closed form solution of the motion can be obtained. With this approach the

orbital elements can be expressed as functions of time, hence reducing the computa-

tion of the orbital state to an evaluation of known functions, drastically reducing the

computational effort. However, simplification are necessary to obtain an analytical

solution and, therefore, some coupling effects are sometimes neglected or certain per-

turbations are not considered. As a consequence, the propagation error can rapidly
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increase with propagation time.

The numerical methods, also referred to as special perturbations, consist in inte-

grating numerically the equation of motion. The advantage of these approaches is that

all secular and periodic perturbations are retained and coupling effects are automat-

ically considered. Besides being, in general, more accurate than analytical methods

the numerical integration of the perturbed equations of motion requires longer time.

Semi-analytical methods have been developed to combine the speed of analytical

methods and the accuracy of special perturbations. The short periodic contributions

are separated from long-periodic and secular effects, obtaining a system where three

groups of equations are present: 1) equation of motion for mean elements; 2) equations

for short-period periodic coefficients; 3) Fourier series (which allows the construction

of short periodic motion in the elements given short-periodic coefficients). This en-

ables the use of larger time steps (e.g. days) to integrate the equations of motion of the

mean elements, thus reducing the time required for an integration. Semi-analytical

methods are often used to study the long-term evolution of the space debris environ-

ment, space debris clouds resulting from explosions or fragmentation, and stability of

graveyard orbits.

In general, given the initial set of orbital elements e0 at epoch t0, the state of a

body at time t can be expressed as

x = f(e0, t), (3.1)

where x = (r,v) and f is a nonlinear function that maps the initial orbital elements

in the final state. Thus, f includes both coordinate transformations and the forward

propagation of the state up to time t. In a DA environment it is thus possible to ob-

tain a polynomial approximation of this nonlinear function for any orbit propagation

method. As a consequence, the evolution of orbit state uncertainty can be studied

and high-order effects are captured using an expansion order k > 1 [Val13c]. The

availability of these polynomial maps is used as a starting point for the algorithms

developed in this work, in particular for conjunction identification and collision prob-

ability computation.

In this chapter the orbit propagators used throughout this work are described.

In Section 3.1 two analytical solution for satellite motion are introduced. Section

3.1.3 illustrates the procedure to compute the state transition matrix using the DA

automatic differentiation techniques. Then, in Section 3.2 a numerical propagator

tailored for Earth orbiting object, written in COSY INFINITY, is described.

3.1 Analytical orbit propagation

In this section two analytical solutions are briefly described. The Keplerian propa-

gator used in 6.3.1 to validate the DA-based collision probability algorithms is first

described, Then SGP4/SDP4, used in Chapter 5 to perform conjunction identification,
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is introduced. The section ends with the description of the procedure to compute the

state transition matrix and propagate the covariance matrix, tailored for SGP4/SDP4

with uncertainty in the Radial Transverse Normal (RTN) frame.

3.1.1 Universal variables formulation of Keplerian motion

The solution to two-body problem is formulated using universal variables, which may

be used for elliptical, parabolic, and hyperbolic orbits [Her65, Der96]. Given position

r0 and velocity v0 at reference epoch t0, the position and velocity evolve according

to the equation of motion
d2r

dt2
= − µ

r3
r. (3.2)

An analytic solution of the form

r = f(t, r0,v0)r0 + g(t, r0,v0)v0 (3.3)

v = ḟ(t, r0,v0)r0 + ġ(t, r0,v0)v0 (3.4)

is obtained by using the universal variableX , i.e. the universal anomaly or generalized

anomaly. Kepler’s equation becomes

r0X
(

1− αX2c3(αX
2)
)

+
r0 · v0√

µ
X2c2(αX

2) +X3c3(αX
2)−√

µ (t− t0) = 0, (3.5)

where α is computed using vis-viva equation

α =
2

r0
− v20

µ

and c2(αX
2) and c3(αX

2) are Stumpff’s functions, i.e. generalizations of sine and co-

sine. Once solved for X Kepler’s equation (e.g. using Newton’s method using a proper

initial guess X0 for the universal anomaly) the functions f , g, and their derivatives

are readily obtained as

f = 1− X2c2
r0

ḟ = X
(

αX2c3 − 1
)

√
µ

rr0

g = (t− t0)−
X3c3√

µ
ġ = 1− X2c2

r
.

By substituting f and g in Eq. (3.3) and, similarly, ḟ , and ġ in Eq. (3.4) the position

and velocity of the spacecraft at time t are obtained.

The DA implementation of the analytical solution of the two-body problem is

obtained by initializing as DA variables the initial position and velocity and, in case,

time. Kepler’s equation (3.5) can be solved by means of a standard Newton’s method

or using the procedure for the solution of parametric implicit equations described in
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Section 2.3.

The accuracy of the polynomial expansion of the final position rf (δr0, δv0) with

respect to a variation of the initial position components on the equatorial plane is

given in Figure 3.1. A regular grid is defined on the area of the equatorial plane IJ

bounded by the intervals ±3σ and centred at the reference initial position components

rI and rJ . Each node of the grid represents a set of initial conditions that can be

propagated to the final time t using the universal variables solution described above.

The resulting final position is then compared with the one obtained by evaluating

the polynomial approximation rf (δr0, δv0). Even after 100 revolutions the error of

the expansion of the final position remains below 10−4 km for the considered initial

uncertainties: this is the largest error that is indeed observed in Figure 3.1(b) and

is obtained only for displacement from the reference position close to 3σ in both

components.
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Figure 3.1. Fifth order expansion of the final position of satellite AGILE with respect to
uncertain initial position r0 and velocity v0. Considered standard deviations σ at reference
epoch on the equatorial plane are σI = 16m and σJ = 46m.

3.1.2 SGP4/SDP4

The Simplified General Perturbations #4 (SGP4) model is one of the orbit propa-

gators developed during the 1970s by NORAD and U.S. Air Force Space Command.

The source code of the model was made public at the end of the 1980s [Hoo80] and

nowadays it is one of the most used propagators for Earth orbit satellite. The code is

optimized to work with TLE released by the USSTRATCOM. The USSTRATCOM

also maintains a catalogue containing TLEs for all resident space objects together

with launch (and/or decay) date information which is available to public from the

Space-Track website1.

1www.space-track.org

www.space-track.org
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The SGP4 model is tailored for orbits whose period is less than 225 minutes and

accounts for secular effects of air drag, long- and short-period periodic effects of zonal

harmonics from J2 to J5. For “deep-space” satellites, i.e. those with orbital period

of more than 225 minutes, the Simplified Deep Space Perturbations #4 (SDP4) was

developed, adding the lunar and solar perturbations and some geopotential resonance

effects for orbits with periods of 12 and 24 hours with tesseral harmonics J2,2, J3,1,

and J3,3. The two models were later unified and the combined code is usually referred

to as SGP4/SDP4. A complete documentation of all equations, including the deep

space portion, is found in [Hoo04] and a comprehensive collection of bug fixes and

modifications to the code are in [Val06]. The SGP4/SDP4 code has been rewritten

in COSY INFINITY following the details presented in these two papers, replicating

the “official” version of the code (as those downloadable from CelesTrak website1).

The accuracy of the SGP4/SDP4 model greatly depends on the orbit type and can

vary from object to object. The epoch uncertainty for LEO and Navigation Satellite

Orbit (NSO) satellites is about 1 km, 1-2 km for MEO, between 2 and 4 km for GEO

and 6-8 km for GTO and HEO [Val13a]. The uncertainty can rapidly increase with

propagation time, reaching tens of kilometres after a few days. Thus, the confidence

on SGP4/SDP4 propagation is guaranteed only in a time interval of a few days in the

surrounding of the TLE epoch. In addition, no information on orbital uncertainty is

provided with TLEs and the presence of manoeuvre after the TLE epoch can result

in considerable error in the propagated orbital state [Val12].

For SGP4/SDP4 algorithm, e0 = (t0, n0, e0, I0, ω0,Ω0,M0, B
∗) is the vector of

mean elements included in the TLE, where t0 is the epoch time, n0 is the mean

motion, e0 the eccentricity, I0 the inclination, ω0 the argument of perigee, Ω0 the right

ascension of the ascending node, M0 the mean anomaly, and B∗ is the atmospheric

drag coefficient. The procedure to compute the state x = (r,v) is more complicated

with respect to Keplerian assumption and it can be summarized in

1. Recover Brouwer mean motion from the Kozai mean motion included in the

TLE.

2. Update orbital elements at time t adding secular effects of Earth’s zonal har-

monics and luni-solar perturbations.

3. Compute resonance effect of Earth’s gravity through numerical integration.

4. Add long-period periodic perturbation due to Moon’s, Sun’s, and Earth’s grav-

ity.

5. Solve Kepler’s equation for U = E + ω.

6. Update for short-periodic effects of Earth’s gravity.

7. Compute r and v from the updated Keplerian elements.

1http://celestrak.com/software/vallado-sw.asp

http://celestrak.com/software/vallado-sw.asp
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Note that although the evaluation of x is more complicated for the SGP4/SDP4

case, both analytical approximations require explicit algebraic computations (includ-

ing also the Euler-Maclaurin scheme for the resonance effects for SGP4/SDP4) with

the only exception of the solution of Kepler’s equation. For standard floating point

computation this is not an issue (with the exception of some cases as described in

[Val06]), as the solution can be found by few iterations of a Newton method. When

validated computations are necessary, the problem becomes much more complex and

it requires an ad-hoc algorithm presented in [Arm12].

The accuracy of the expansion of the final state obtained with the DA implemen-

tation of SGP4/SDP4 with respect to time is here analyzed for various expansion

order. In Figure 3.2 the expansion is performed after one revolution from the initial

epoch for orders n = 1, 3, 5. The polynomial approximation of the final position and

velocity is then evaluated on a time grid centred around the reference epoch t = T ,

where T is the orbital period of the satellite and compared with a SGP4/SDP4 prop-

agation up to the same final time. Around the reference point of DA expansion, i.e.

t = T , the error between standard and DA SGP4/SDP4 evaluations is really small,

namely comparable to machine precision. The error then increases when moving away

from the reference epoch. The error becomes smaller for both position and velocity

for increasing expansion order n. In particular, the error remains below 1km and

10−3km/s inside the interval [−0.1, 0.1]T for a fifth-order expansion.
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Figure 3.2. Expansion with respect to time of position and velocity at time t = T using
SGP4/SDP4 for different expansion orders n.

The analysis is repeated considering an expansion around t = 50T . The same

considerations of Figure 3.2 can be applied to Figure 3.3.

The Taylor approximation of the final state with respect to the initial position and

velocity can be used to quickly assess the high-order effects resulting from uncertainty

propagation. As an example, the orbit of the LEO satellite AGILE is considered. The

orbit, plotted in Figure 3.4 is almost circular and nearly equatorial. For illustration
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Figure 3.3. Expansion with respect to time of position and velocity at time t = 50T using
SGP4/SDP4 for different expansion orders n.

purposes, only uncertainties on the two position components lying on the equatorial

plane are considered. A set of samples is generated at the reference epoch from a

multivariate Gaussian distribution, by considering a diagonal covariance matrix with

standard deviations σ = 100km. Please note that such a high uncertainty is chosen

only to highlight non-linear effects resulting from propagation. The positions on

the equatorial plane of the virtual objects (i.e. the samples) at four different time
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Figure 3.4. Uncertainty propagation using different expansion orders n with SGP4/SDP4
for satellite AGILE
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instants are then computed evaluating the polynomial expansion of order n = 1, 3, 5

at those times and plotted. The black dots refer to expansion order n = 1, whereas

dark gray and gray dots are associated to n = 3 and n = 5 respectively. It can be

observed how the higher order expansion can capture the dispersion of the samples

around the trajectory, that results in a non-Gaussian distribution that resembles a

“boomerang”. Instead, when the first-order expansion is used the samples are still

normally distributed. It is worth noting that the fifth and third order clouds are

almost indistinguishable so no additional information is retrieved in this case by using

order n = 5.

3.1.3 State transition matrix computation

The covariance matrix can be easily computed at any propagation time by means

of the automatic differentiation techniques made available by COSY INFINITY. In

this section the procedure to compute the coefficients of the state transition matrix

is described. The method is general and can be applied to compute the partial

derivatives of any set of orbital parameters with respect to another set of initial

orbital elements.

The first step consists in choosing an orbital element set and perform a DA initial-

ization of these uncertain variables. As an example, consider an SGP4/SDP4 propa-

gation with uncertainty of TLE expressed in the RTN reference frame [Kli05, Flo09b].

According to Figure 3.5, the first unit vector of the reference frame r̂ is aligned with

the position vector r, the third unit vector n̂ is perpendicular to the orbital plane,

and the second unit vector , or transverse unit vector, t̂ completes the frame. Note

that this unit vector is aligned with satellite velocity only for circular orbits.

Since TLE and SGP4/SDP4 are written in classical mean orbital elements, the

relations between RTN state vector and mean Keplerian orbital elements is found

through the following steps:

1. Compute TEME state vector x = [r;v] at TLE epoch. This is achieved with

⊕

r̂

t̂

b
n̂

r

v

Figure 3.5. RTN reference frame, radial r̂, transverse t̂, and normal n̂ vectors.
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an evaluation of SGP4/SDP4 at time 0.0

[δx0] = [MTEME] [δκ0] , (3.6)

where κ0 is the classical orbital element vector κ = {a, e, I,Ω, ω,M}T

2. Convert TEME vectors into ECI J2000 vectors, retrieving

[δx0,ECI] = [MECI] [δκ0] (3.7)

3. Transform ECI J2000 state vector into RTN orbital frame, obtaining

[δx0,RTN] = [MRTN] [δκ0] (3.8)

This map provides the RTN initial state deviation as function of classical orbital

elements variation.

4. Invert the DA map with DA tools, retrieving

[δκ0] = [MRTN]
−1

[δx0,RTN] (3.9)

The obtained DA map describes the deviation of the mean orbital elements used in

SGP4/SDP4, as function of deviation from position and velocity in RTN frame. By

plugging this transformation in the SGP4/SDP4 initialization phase, it is possible to

compute the object position rf and velocity vf in TEME reference frame as a function

of initial uncertainties by simply evaluating the COSY INFINITY implementation

of SGP4/SDP4 at the desired time t. It is then straightforward to assembly the

state transition matrix by computing the first derivatives with respect to the initial

uncertain variables within the DA framework

Φ(t0, t) =









∂rf
∂rT0,RTN

∂rf

∂vT
0,RTN

∂vf

∂rT0,RTN

∂vf

∂vT
0,RTN









. (3.10)

The covariance matrix C0 at reference epoch t0 is then mapped at time t by means

of

C(t) = Φ(t0, t) C0(t0) Φ
T (t0, t). (3.11)

3.2 Numerical propagator AIDA

The numerical propagator AIDA (Accurate Integrator for Debris Analysis) is a nu-

merical propagator tailored for space debris analysis within a DA framework. The

perturbations included in AIDA are the geopotential acceleration, atmospheric drag,
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solar radiation pressure, and third body gravity. Details on the modeling of these

sources of perturbation are given in the following. For the numerical integrations

presented in this work, a DA version of the Dormand-Prince (8-th order solution for

propagation, 7-th order solution for step size control) implementation of the Runge-

Kutta scheme is used. A weighted norm of the resulting Taylor polynomials is com-

puted within the step size control procedure, where the weights are selected to scale

the polynomial variables by the size of their initial uncertainty. The propagator AIDA

is used in this work to perform high-order uncertainty propagations, the expansions

of time and distance of closest approach (see Sect. 5.3), and orbit determination.

In the following some details on the modeled perturbations are given.

3.2.1 Geopotential acceleration

The acceleration due to Earth’s gravity potential can be written as

aHarm = ∇
GME

r

∞
∑

n=0

n
∑

m=0

RE
n

rn
Pnm (sinφ)

(

Cnm cos (mλ) + Snm sin (mλ)
)

, (3.12)

where GME is Earth’s gravitational constant, RE is Earth’s radius, Cnm and Snm are

the normalized geopotential coefficients, Pnm are the normalized associated Legendre

functions, r is the object distance from the centre of the Earth, and φ and λ are the

geocentric latitude and longitude.

The default gravitational model selected for the numerical propagator is EGM2008

[Pav12]. The model combines gravitational information from GRACE with surface

data and is complete to spherical harmonic degree and order 2160. The field model

was downloaded from the International Centre for Global Earth Models (ICGEM)

website 1.

The default degree n and order m in Eq. (3.12) are set to 10 for the simulations

performed in this work using Accurate Integrator for Debris Analysis (AIDA).

3.2.2 Atmospheric drag

The perturbing acceleration due to atmospheric drag on a satellite is

aDrag = −1

2
CD

A

M
ρvrvr, (3.13)

where CD is the drag coefficient, A is the satellite’s cross-sectional area and M its

mass, vr is the satellite velocity relative to the atmosphere , and ρ is the atmospheric

density at satellite’s position.

The drag coefficient and area to mass ratio are often grouped in a parameter

1http://icgem.gfz-potsdam.de/ICGEM/

http://icgem.gfz-potsdam.de/ICGEM/
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known as ballistic coefficient, B, defined as

B = CD

A

M
. (3.14)

The atmospheric density is computed using the Naval Research Laboratory’s Mass

Spectrometer and Incoherent Scatter Radar of year 2000 (NRLMSISE-00) model

[Pic02]. This model includes the anomalous oxygen component together with He-

lium, atomic and molecular Oxygen, atomic and molecular Nitrogen, Argon, and

Hydrogen. The model requires as inputs the solar and geomagnetic activity, geodetic

altitude and latitude, longitude, year, day, and time of day in UT. Solar and geo-

magnetic data are read from up-to-date space weather files that are automatically

downloaded from CelesTrack 1.

3.2.3 Third body perturbations

The gravitational attraction of the Sun and the Moon is the main source of pertur-

bation among all third bodies. The perturbing acceleration acting on the orbiting

object is given by

a3rdB = GM3rdB

(

s

s3
− r3rdB

r3rdB3

)

, (3.15)

where the relative position of the satellite, s, is defined as

s = r3rdB − robj, (3.16)

where r3rdB and robj are the position vectors of the third body and the object, re-

spectively. The position of the third bodies, i.e. the Sun and the Moon, are computed

using NASA JPL’s DE405 ephemeris [Sta98].

3.2.4 Solar radiation pressure

The absorption or reflection of photons exerts a small force on the satellite. This

perturbing acceleration depends on the object area and on the mass as well as on the

intensity of the solar flux Φ, that is approximately 1367 W/m2 at 1 AU. The solar

radiation pressure, PS , is given, assuming full absorption, by

PS =
Φ

c
=

LS

4πr2c
, (3.17)

where the speed of light is indicated as c, the distance from the Sun as r, and LS is

the solar luminosity.

The information regarding shape and attitude of operative satellites are usually

available, at least for satellite owners and operators. Unfortunately, in general, this

1http://celestrak.com/SpaceData/SpaceWx-format.asp

http://celestrak.com/SpaceData/SpaceWx-format.asp
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is not the case for space debris. Therefore, the debris is modeled as a sphere in this

work, removing the need for attitude information. The resulting acceleration, which

is in the direction of the Sun-satellite vector, is equal to

aSRP =
LS

4π c

A

M
(1 + ε)

robj − rS

||robj − rS ||3
ν, (3.18)

where A is the debris area and M its mass, ε is body reflectivity, and ν is the shadow

function. The position of the Sun, rS , is in ECI J2000 reference frame and is obtained

from JPL’s DE405 ephemeris. The acceleration aSRP decreases as Sun’s distance

increases.

Area-to-mass ratio can be estimated from the object ballistic coefficient, assuming

a drag coefficient CD = 2.2. The reflectivity ε, if not otherwise specified, is set to

0.31. This value lies in the range typical of materials used for satellite construction,

i.e. [0.2; 0.9] [Mon00].

The shadow function ν is zero when the object is in shadow, one when it is in light,

and varies within these two values when the object is in penumbra. The value of this

function is computed by comparing the satellite position with the one of the occulting

body and the Sun [Mon00]. Three options to model the shadow of an occulting body

are implemented in AIDA: no shadow, cylindrical shadow, and dual-cone shadow.

Dual-cone shadow model is the default model.

3.3 High-Order Numerical Propagation

In this section the performances of the numerical propagator AIDA are assessed,

focusing on the computational cost and accuracy of the expansion of the flow, aimed

at the selection of the expansion order.

The six objects listed in Table 3.1 (either active spacecraft or debris) are considered

for these analyses. The first three objects are classified as LEO objects, since their

altitude is below 2,000 km. In particular the altitude of the first two objects is

comprised between 750 and 800 km, whereas for object 3 it is approximately 1400

km. Object 4 is on an HEO since it has an altitude of 1340 km at its perigee and at

its apogee is at 5700 km above the Earth’s surface. Objects 5 and 6 instead are on a

GEO since their orbit is almost circular, with a low inclination, and an orbital period

of nearly 24 hours.

The initial conditions for the numerical propagation are computed from TLEs,

using the procedure described in [Val12]. The method consists of performing an

Orbit Determination (OD) process on a set of pseudo-observations generated over a

certain time span. In our case we generated one measure, i.e. position and velocity

of the satellite, every hour over a time span of 24 h, centred at the reference epoch of

the selected TLE. The resulting state vectors were then transformed from TEME of

epoch to ECI J2000 [Val01], that is the reference frame of AIDA. A nonlinear least



3.3 High-Order Numerical Propagation 47

ID Sat. No. Sat. Name a [km] e [-] I [deg] Orbit

1 11510 COSMOS 1125 7161 1.15E-3 74.04 LEO
2 21574 ERS 1 7149 3.49E-3 98.25 LEO
3 20237 COSMOS 2043 7787 4.19E-4 82.57 LEO
4 23820 OPS 0856 DEB 9895 2.20E-1 87.62 HEO
5 36744 COMS 1 42165 7.88E-5 0.01 GEO
6 28194 RADUGA 1-7 42166 1.21E-4 5.28 GEO

Table 3.1. Selected objects

square fit of the pseudo-observations was then performed using AIDA, to compute

the initial position and velocity of the object, and its ballistic coefficient and area-

to-mass ratio for Solar Radiation Pressure (SRP). The (6 × 6) covariance matrix of

initial position and velocity was also obtained after this process.

The values of initial conditions, covariance matrices, and ballistic coefficients of

the objects used for the following analyses are reported in Appendix A.1. All com-

putations are performed on an Intel Core i5 2500 @3.30GHz, 8Gb RAM processor

running Sabayon Linux (kernel version 3.11.0).

3.3.1 Performances of the DA numerical propagation

The selection of the expansion order requires a trade-off between accuracy and com-

putational time. This analysis is performed by propagating the objects for a time

window of 7 days (which is the time window for conjunction identification) with un-

certainties on initial states compatible with the estimated covariance matrices.

The computational time required for each run of AIDA is reported in Table 3.2 for

zeroth (i.e., pointwise integration) to fourth order expansions. Only one test case for

each orbital regime is given, since similar results are obtained for objects in similar

orbits. The computational time required to propagate each object for one orbit is also

given in Table 3.2. It can be observed that the computational time per revolution is

Order
Computational time [s] Comp. time per rev. [s]

LEO HEO GEO LEO HEO GEO

0 63.53 37.65 6.45 0.63 0.61 0.91
1 98.81 55.87 9.38 0.98 0.90 1.33
2 176.31 98.19 15.85 1.75 1.59 2.26
3 443.77 234.87 41.38 4.41 3.80 5.90
4 1391.02 690.77 110.80 13.84 11.19 15.79

Table 3.2. Computational costs for 7 days propagation and for each revolution with AIDA
for different expansion orders
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nearly the same for each of the three orbits for a given order of truncation. The total

computational time for 7 days propagation clearly depends on the orbital period of

the orbits, i.e. on the number of orbital revolutions completed in the considered time

span.

It is worth highlighting that the computational time of pointwise integrations is

not the main focus of the following analysis, since it depends on the details of the

implementation of the dynamical model, programming language, compiler, and ma-

chine. The significant figure to be investigated is the time of a k-th order computation

compared to a pointwise one. For this reason, the computational times can be nor-

malized using the pointwise integration as reference value. The ratios are plotted, for

each orbital regime, in Figure 3.6. It is clear that the computational time increases

exponentially with the order, but it is remarkable that a fourth order expansion is

roughly only ten times slower than a pointwise integration.
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Figure 3.6. Normalized computational time for three classes of orbits

The accuracy of maps (5.9) with respect to uncertainties in the initial states (thus

neglecting variation in the final time) is reported in Figure 3.7. The final positions

are computed by evaluating the polynomial

[rf ] = rf +Mrf
(δr0, δv0) , (3.19)

which is obtained by the DA-based integration in AIDA for a given time window

up to 7 days. Then, they are compared with pointwise propagations of the same

perturbed initial states. For each of the three orbital regimes 109 samples were gen-

erated considering the normalized full state covariance matrix obtained with the OD

process described in Sect. 3.3. Since the accuracy of the map decreases with the

distance of the sample from the reference point, the 100 samples with the largest dis-

placement from the reference position and velocity were selected. This represents an
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Figure 3.7. Accuracy of the DA map of final position rf (r0,v0) obtained with AIDA
against DA expansion order and propagation time

accurate estimation of the worst cases that can be encountered if collision probability

is computed using Monte Carlo based on the polynomial approximation of the final

position. Realistically, at least one billion samples would be required to estimate a

collision probability of 10−6 with a reasonable confidence level [Dag00].

The maximum differences between Taylor polynomials evaluations and pointwise

integrations over a time window of 7 days are plotted in Figure 3.7(a) for different

expansion orders. The error on the final position is lower for the GEO orbit, due to

the lower number of revolutions, and higher for the HEO. For the latter, the reason is

mainly the higher values of the states covariances and the particular environment en-

countered by the objects during their motion. The influence of perturbations changes

along the orbit, with an increasing relative importance of atmospheric drag near the

pericenter and of third body gravity and solar radiation pressure at the apogee. In

addition, the area to mass ratio is the highest among the considered orbits. Note that

in all cases the maximum error on position after 7 days is approximately 1 meter for

the HEO, less than 0.1 m for the LEO, and 1 mm for the GEO.

To provide more insight on the expansion error, Figure 3.7(b) illustrates the maxi-

mum differences between the polynomial evaluations and pointwise integration of the

final position for different propagation time using an expansion order k = 3.

The results of the same analysis focused on the final velocity are plotted in Fig-

ure 3.8(a) and Figure 3.8(b). The figures confirm the behaviour found for the final

position. The maximum error is found again for HEO and is approximately 1 mm/s.

According to these results, a third order expansion is a good compromise between

computational time and expansion accuracy for the selected test cases.
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Figure 3.8. Accuracy of the DA map of final velocity vf (r0,v0) obtained with AIDA
against DA expansion order and propagation time

In the following analysis, the effects of orbital perturbations on the final position

are studied to assess

1. the effect of the perturbations in the considered cases;

2. how well these effects are captured by the Taylor expansion.

For point 1) the final position obtained by considering the gravitational model of de-

gree and order 10, atmospheric drag, solar radiation pressure with dual-cone shadow

model, and third body perturbation from Sun and Moon is used as reference. Start-

ing from a Keplerian orbital model (labeled as K in the figure), perturbations are

gradually added and the displacement between the resulting final position and the

reference value are computed. The results for a 7-day propagation are represented

by the black curves in Figures 3.9(a), 3.9(b), 3.9(c). As before, the error curves are

obtained considering the 100 samples with the largest displacement from the reference

initial state selected from a set of 109 samples.

For the LEO regime, the largest effect is due to the gravitational model. The

reason is that the orbital perigee is high enough to limit the effect of drag, whereas

the high inclination results in a large effect of Earth oblateness. For the HEO regime

no significant improvements are obtained by adding solar radiation pressure or atmo-

spheric drag to Keplerian model. Nevertheless, the combined effects of gravitational

harmonics, solar radiation pressure, and drag reduce considerably the displacement

with the reference position. Even in the GEO regime, the combined effect of third

body and gravitational harmonics is necessary to obtain a displacement on the final

position of less than 10 km.
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Figure 3.9. Analysis of model and DA expansion error with different perturbations for the
three orbital regimes for a 7-day propagation. K=Keplerian, G=Gravitational harm., D=air
Drag, S=Solar rad. pressure, T=Third body

The accuracy of the DA expansions for the different orbital regimes and dynami-

cal models is also analyzed in Figure 3.9 to highlight the contribution of the different

sources of perturbation in the expansion error budget. The analysis is again obtained

by comparing pointwise integrations with map evaluations for 100 virtual debris se-

lected with the procedure used throughout this section. The curves are obtained

considering 7-days propagations with an expansion order of the flow k = 3. For

the LEO and GEO regimes the error remains almost constant with the introduction

of the different sources of perturbation. In particular, the expansion error remains

below 0.1 m for the LEO and is approximately 1 mm for the GEO, confirming the

figures obtained previously in the position accuracy analysis with respect to order of

the expansion and propagation time. For the HEO test case the largest contribution

to final position error comes from atmospheric drag. The orbit is highly eccentric,
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with a perigee of 1340 km and an apogee of 5700 km. In addition, the area to mass

ratio estimated by the OD process is 2.94 m2/kg. After each revolution, the virtual

debris will distribute along the trajectory. Due to the eccentricity of the orbit, debris

can experience different air densities since they are found at different altitudes. This

behaviour has to be captured by the DA expansion of the density, which is a function

of altitude that in turn is a function of the current satellite position. As a result, the

accuracy of the air drag perturbation is lower due to the large range of altitude that

is captured by the Taylor expansion of the satellite position at each integration step

within the atmosphere bound of 2,000 km. Nevertheless, the expansion error of the

HEO remains always below 1 m after 7 days of propagation.



4

Orbit determination

In this chapter the Orbit Determination (OD) of space debris and satellites is stud-

ied. A regular survey and observation campaigns are performed to keep track of the

evolution of the satellite and debris population. This operation is fundamental to

provide up-to-date orbital elements for conjunction assessment. In addition, the un-

certainty on the orbital state, usually expressed in terms of covariance matrix, is also

determined with an OD process. The uncertainty information are the input required

by any method for the computation of the collision probability between two objects.

Nowadays radar and telescopes are the main instruments used for the observation

of space debris. The telescopes, usually equipped with a Charge-Coupled Device

(CCD), are mainly used to monitor objects in GEO and GTO whereas the radars

for objects in LEO [Sch07]. The USSTRATCOM operates a network of radar and

optical sensors, that provides all the information required to maintain the Space-Track

catalogue [Sri98].

The problem of estimating the orbital state of an Earth orbiting object is usually

divided into two phases: the initial (or preliminary) orbit determination and the

orbit estimation [Mon00]. In the first phase one has to deal with the linking of

observations: it is indeed fundamental to associate measures belonging to a large

database of uncorrelated observations taken in different days to the same object.

The classical algorithms for the initial orbit determination are based only on an-

gles observations. The reason is that in the past most of the observations of celestial

bodies were obtained with telescopes. The Laplace’s and Gauss’ methods, developed

respectively in 1780 and 1801, use three sets of angular observations. Both methods

return the position and velocity of the object. The Gibbs and Herrick-Gibbs meth-

ods extend the Gauss method to enable the computation of velocity besides object

position. The Double R-iteration method, instead, is particularly suitable for spread

observations, where the Gauss’ and Laplace’s methods fail to converge to a good

solution [Esc65].

An algorithm that allows for several possible solutions also starting from a set of

three angular observations was developed by Gooding. The method requires again

three observations but also two initial guesses of the range for the first and third

observation [Goo93].



54 4 Orbit determination

The admissible region theory, developed initially for asteroids and Near-Earth

Objects (NEO) preliminary orbit determination [Mil04] was extended to the case

of space debris [Tom07]. Another method that uses maps of the admissible region

in the Delaunay orbital element space was developed [Mar09]. Another technique

correlates multiple optical observations by means of probability distributions defined

by the admissible region expressed in Poincaré orbit element space [Fuj12]. Another

approach exploits the multiple hypothesis filtering approach to determine how well

the space debris orbits can be recovered for short-arc data in near real-time and

autonomously [DM12].

Typically when more observations are available another commonly used approach

for orbit determination is the least square solution. A set of correlated observations,

i.e. belonging to the same object, is considered and the trajectory that minimizes

the sum of the squares of the calculated observation residuals is computed [Tap04].

The advantage of the method is that any type of measurement can be processed. In

addition, it can be used in the orbit estimation process and it provides the uncertainty

of the estimated states.

In this chapter the least square method is used to perform the orbit determination

from optical and radar measurements. It is assumed that all observations are already

correlated and no initial orbit determination is required. A tailored algorithm is

developed for the orbit determination of RSO using one bistatic radar measurement

only. The innovative aspect of the algorithm is that it copes with a multibeaming

receiver. The number of beams inside the field of view could vary and it is also

insensitive from the distribution of beams in the Field Of View (FoV).

A common sensor reference frame is defined for both optical and radar instru-

ments. This frame is defined starting from a topocentric reference frame located

on the observer. This frame is the North-West-Zenith (NWZ) topocentric reference

frame, where the first axis points north, the second axis towards west, and the third

is the zenith direction. The azimuth Az and elevation El angles are used to define

the pointing direction ρ̂ of the instrument (telescope or antenna). The sensor frame is

defined as follows: the sensor axis is supposed to be aligned with ρ̂ and two directions

N̂

Ŵ

Ẑ

b

x̂

ŷ

ρ̂

Az

El

Figure 4.1. Sensor frame referred to a topocentric North-West-Zenith reference frame.
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perpendicular to it are defined. The first axis x̂ lies on a plane whose normal is the

zenith and the axis ŷ is perpendicular to both x̂ and ρ̂. The NWZ frame and the sen-

sor frame are represented in Figure 4.1. The relative orientation of the sensor frame

is described with Euler’s angle, using the set of rotation 3-2-3. The first rotation is

equal to −Az around the zenith axis, the second rotation to π/2 − El around the

second axis, and the last rotation is always equal to π/2 to align the x̂ axis as in

Figure 4.1.

4.1 Optical observations

Optical observations of satellites and space debris are used to estimate positional data

of satellites since the launch of Sputnik 1 in 1957. The optical techniques used are

the same of NEOs and asteroids. Similarly to those objects, spacecraft and debris are

not self-illuminated and, as a consequence, they can be only visible when illuminated

by the Sun. Due to the relatively small size of space debris and satellites and the

difficulty of obtaining intensive illumination, optical observation must be performed

against a dark-sky background. When the RSO is bright enough to be visible (at the

naked-eye or with the help of a telescope) information on the trajectory of the object,

such as its right ascension and declination, can be determined.

Because of their high relative velocity with respect to the stellar background, space

debris appear as fast moving objects. CCDs are usually connected to a telescope to

take pictures of the sky. When the telescope points toward a fixed right ascension and

declination the stars on the background will appear as points whereas the satellite

will trace a trail on the CCD elements. The longer is the exposure time the longer

is the resulting trail. Alternatively, for higher satellites such as GEO and GTO, the

telescope can track the object: in this case the stars will appear as trails and the

object as a fixed point. From each image it is possible to estimate not only right

ascension and declination but also their derivatives by looking at the relative motion

between the observed object and the stellar background. Optical observations can be

also used to determine other parameters like the area to mass ratio and attitude of

the spacecraft.

In this section the modelling of optical observation used to generate simulated data

is described. First the illumination conditions are introduced and the assumptions

required to perform the computation of the object magnitude are defined in Section

4.1.1 and 4.1.2 respectively. The simple telescope and CCD model are then introduced

in Section 4.1.3.

4.1.1 Illumination conditions for optical observability

The following conditions must be satisfied to perform an optical observation of a

debris or satellite [Vei63]:
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• the object must be above the horizon of the station

• the object must be illuminated by the Sun (or an artificial light source)

• its brightness must exceed that of the background sky by a certain margin.

The case of a cylindrical Earth shadow is considered to assess the illumination condi-

tion of the target object. The illumination condition can be determined by considering

the projection on a plane containing the Earth’s and Sun’s centres and the satellite,

as represented in Figure 4.2.

bbc

Sun

β

r⊙

r

r sinβ

R⊕

Figure 4.2. Entry-exit geometry for a cylindrical Earth shadow model.

To determine if the object is or not inside the shadow of the planet one has to

look at the angle β that lies between the Sun position vector, r⊙, and the satellite

position vector, r, defined as

β = arccos

(

r · r⊙

r r⊙

)

(4.1)

Given the Earth’s radius R⊕, the object is inside the Earth shadow when both con-

ditions in Eq. (4.2) are satisfied

β >
π

2

r sinβ < R⊕







⇒ in shadow. (4.2)

For what concerns the other two conditions for satellite observability it is sufficient

to look at the elevation of the target object and Sun. For bright objects the nautical

twilight (El⊙ < −12 deg) can be taken as a reference, whereas for fainter objects it

is preferable to consider the astronomical twilight (El⊙ < −18 deg). The elevation of

the target object instead should be above 15 deg, in order to limit the effect of light

pollution and occultation from surrounding, mountains, trees or buildings.

As a result, LEO satellites are visible only for a few hours in the proximity of

twilight periods. In addition, for faint low-altitude objects the observation period

is even shorter since a darker background is required to distinguish them. Higher
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satellites are visible for longer times, and observation windows could last almost all

night for GEO objects.

4.1.2 Object magnitude computation

The equation for the visual magnitude mv of an object of area A and albedo ς located

at a distance ρ from the observer is computed by means of

mv = −26.78− 2.5 log10

[

Aς F (ϕ)

ρ2

]

, (4.3)

where the reference magnitude is the one of the Sun and F (ϕ) is a function of the phase

angle ϕ. The phase angle is defined as the angle between the direction of the observer

and the direction of the Sun as seen from the spacecraft. Under the hypothesis of a

spherical object, the phase function can be computed as [Vei63, Tou57]

F (ϕ) =











1

4π
specular reflection

2

3π2
[(π − ϕ) cosϕ+ sinϕ] diffuse reflection.

(4.4)

The magnitude is then corrected for the air mass, since the light reflected by the

satellite crosses the atmosphere and is attenuated by absorption. A simplified model

can be defined given the zenith angle ζ, by computing the observed magnitude mo as

mo = mv + 0.04 sec ζ. (4.5)

This simplified relation for atmospheric correction is indeed singular for ζ = 90 deg,

but can be safely used since objects with elevation below 15 deg are excluded from

observations.

4.1.3 Telescope and sensor model

In this section the telescope and CCD sensor model are detailed. A telescope for

optical survey of space debris should have a large FoV, fast optics and tracking velocity

to follow objects rapidly moving in the sky, and a frame rate of several frames per

minute. The optical performances of a telescope can be determined by knowing its

aperture and focal ratio. According to the simplified telescope scheme of Figure 4.3

the objective collects the light coming from the faraway objects and projects its image

onto the sensor. The distance between the objective and the focal point C (i.e. the

point where all light rays from one object converge) is the focal length f . The aperture

of the telescope isD and the focal ratio is defined as F = f/D. The FoV of a telescope
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C
D

f

sθ

Figure 4.3. Simple telescope model. D is the telescope aperture, C indicates the focal
point, f is the focal length, and S is the size of the CCD or photographic plate

depends on the focal length f and the size of the sensor s:

θ = 2 arctan
s

2f
, (4.6)

where θ is the telescope field of view.

An important parameter to consider is the Visual Limiting Magnitude (VLM),

that is the faintest apparent magnitude that is detectable by the telescope. It is a

function of the aperture of the instrument:

V LM = 2.5 + 5 log10 D, (4.7)

where D is in millimetres. When the magnitude of the object is above the VLM the
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Figure 4.4. Apparent (visual) magnitude as function of range for spherical objects of
different radius. Diffuse reflection, albedo ς = 0.2, and phase angle ϕ = 30 deg. Non-
observable region for a telescope with D = 0.5 m (VLM>16) is the shaded area.
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object cannot be observed by the instrument. The visual magnitude for objects of

different radius R is plotted in Figure 4.4 as function of range ρ. The magnitude

increases with range (fainter object) and decreases when the radius increases. For

a 0.5 m aperture telescope the VLM is 16. As a consequence, those objects whose

size and illumination conditions result in larger magnitudes (upper part of the graph)

are not detectable. It is worth noting that objects smaller than 10 cm can only be

observed in LEO, whereas the smaller detectable objects in GEO measure tens of

centimetres.

The CCD camera model used in this work is sketched in Figure 4.5. The model is

that of a pinhole camera, although the focus f is the one of the telescope. The light

rays coming from source A crossing the focus are projected onto the sensor plane, and

photons impact pixels around point A′.

x

y

f

z = ρ̂

b

b
A

Pp
u

v
b
A′

Figure 4.5. Pinhole camera model for CCD sensor.

The coordinates (u, v) of the illuminated pixels are referred to the principal point

Pp (i.e. the intersection of the optical axis and the image plane) and are computed

from the coordinates of the object position in the sensor frame (x, y, z):























u = f
x

z

u = f
y

z

z = f

(4.8)

The illuminated pixel coordinates (u, v) are rounded toward the nearest integer and

the intensity of the signal is related to the visual magnitude of the object. An example

of the resulting image is given in Figure 4.6. The image is obtained by simulating

the transit of the object inside the field of view of the telescope, pointed at a fixed
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azimuth and elevation, and determining the illuminated pixel coordinates using Eq.

(4.8). The pixels are then coloured according to the object magnitude during the

transit.
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Figure 4.6. Example of simulated debris trail of a LEO object. The telescope field of view
is 1.5 deg and exposure time is 1 s.

4.2 Radar observations

Ground-based radars provide a powerful tool for the characterization of the orbital

debris environment [Meh97]. Radars can in fact irradiate at any time a satellite

or space debris in Earth orbit with a microwave beam. The scattered wave can be

detected by a receiver that may be the same transmitting antenna (monostatic radar)

or a different one located at a distance of up to several hundreds of kilometres away

(bistatic radar). When more than two antennas with common spatial coverage are

employed and data from each site is combined at a central location, the system is

called a multistatic radar.

Due to the high sensitivity and the capability to operate almost independently of

the weather, day-night conditions and illumination of the target by sunlight, radar

observations have been used to statistically sample the population of space debris in

Earth orbit down to a few centimetres in size [Meh04, Fos05]. The observation modes

that are usually employed are:

• Tracking mode: the object is followed for a certain amount of time during its

transit in the sky region that is visible from the radar station;

• Beam-park mode: the antenna points toward a fixed direction and collects the

echoes reflected by the objects transiting inside the FoV;

• Mixed mode (stare-and-chase): the antenna is initially in beam-park mode

and shifts to tracking mode when an object is detected.
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(a) A scheme of the Northern Cross antenna di-
vided by channels. In the foreground and in the
background, in gray, a detailed drown of one an-
tenna of the N-S arm and of the whole E-W arm,
respectively.

(b) A top view of the Medicina Radioastronomi-
cal Station. In the foreground the Northern Cross
T-shaped array.

Figure 4.7. The Northern Cross antenna

Range, velocity (Doppler), azimuth, and elevation and object size, expressed in terms

of Radar Cross-Section (RCS), are some of the information that can be derived from

radar measurements [Kno04].

A collaboration with the Medicina observatory of the Istituto di Radioastronomia

(IRA) (part of INAF, the Italian Istituto Nazionale di Astrofisica) was started in

order to develop algorithms for the orbit determination of space debris and satellites,

tailored for a bistatic radar system in which the Northern Cross (NC) plays the role

of the receiver. The Northern Cross radio telescope is a T-shaped array that was

designed and built during the 60’s. It operates at UHF-band (408 MHz) with a

bandwidth from approximately 2.5 MHz (old part) up to 16 MHz (upgraded part).

It is a transit instrument, steerable in declination only, and therefore able to point at

objects that transit over the local celestial meridian. The radio telescope is composed

of two perpendicular branches (see Fig. 4.7): the first arm is aligned in an East-West

direction and the second one in a North-South direction.

The East-West branch is a unique antenna with a 564 m long and 29.4 m wide

cylindrical-parabolic reflector surface (for a total geometrical collecting area of 16,600

m2). It is supplied with 1536 dipoles that lie out along the focal axes and transform

the incident radio waves to measurable voltages.

The North-South arm is composed of 64 parallel cylindrical-parabolic shaped an-

tennas. Each antenna is 22.6 m long and 7.5 m wide and it is set at a distance of 10

m from the next one (total geometrical collecting area of 10,800 m2). Currently, each

antenna is equipped with 64 dipoles for a total of 4096 receivers for the whole N-S

arm.

The cylindrical-parabolic shape of the Northern Cross reflectors allows the incom-
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ing radiation to converge on the antenna’s focus and to keep the phase unmodified

after its reflection. The reflector is composed of a number of steel wires aligned at a

distance of approximately 2 cm from each other. At the typical observing wavelengths

(73.5 cm), the mechanical precision of this structure results sufficient to guarantee un-

altered the instrument performances.

With its 27,400 square meters of total collecting area the Northern Cross repre-

sents the largest UHF-capable antenna in the Northern hemisphere, with an aperture

efficiency of 60%, and second only to Arecibo in the world wide scale. Such a wide

area potentially allows the constant monitoring of a large number of space debris.

A simulator of the bistatic radar configuration described above was developed to

support analysis and estimate the system performances, that has also the capability

of generating data resembling those that could be measured in reality. The simulator

is designed so that different kind of transmitter and multibeam geometry can be easily

defined by the user. In the following sections a description of radar measurements is

given, together with some details on bistatic radar geometry and range relations and

the multibeaming receiver for the Northern Cross developed with Oxford and Malta

universities.

4.2.1 Radar measurements

The detectability of an object by means of radar observation depends on the radar

power budget. It is thus important to determine the Signal-to-Noise Ratio (SNR) at

the receiver to determine whether or not an object can be observed. By considering

the more general case of a bistatic configuration, with transmitter and receiver located

in different places, the radio waves produced by the transmitter will follow the path

represented in Figure 4.8.

Tx Rx

ρt ρr

v

L

Figure 4.8. Scheme of bistatic radar mesurement

Given the power transmitted by the transmitter, Pt, the antenna gain Gt and

directivity function f(θ, φ) of the transmitter, the power density S at distance ρt
from the transmitter is

St =
Gt Pt

4πρ2t
f(θt, φt). (4.9)
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An object that is illuminated by the radio source is capable of collecting the radiated

power depending on its electrical characteristics. The RCS σ is a parameter that

defines the effective area of the scatterer, and, although having the dimensions of an

area, is not only related with the physical dimensions of the object. The intercepted

power can be thus computed using the RCS:

Pi = Stσ. (4.10)

Assuming that no absorption occurs and that the object is spherical (i.e. an isotropic

radiation source), the power density re-reflected by the object becomes

Si =
1

4πρ2r
Stσ. (4.11)

The power that is collected at the receiver will be equal to

Pr = SiAeg(θ, φ), (4.12)

where Ae is the effective area of the antenna and g(θ, φ) its directivity function. The

effective area can be related to the physical area by means of the aperture efficiency

ka, since Ae = kaA. The antenna gain and effective area can be related by means of

the wavelength λ
G

Ae

=
4π

λ2
. (4.13)

By replacing the receiver effective area in Eq. (4.12) and using Equations (4.9) and

(4.11), the power at the receiver becomes

Pr =
PtGtGrλ

2σ

(4π)3ρ2rρ
2
t

f(θt, φt)g(θr, φr) (4.14)

Assuming that the object is exactly at the intersection of the two beam axis, the

received power becomes

Pr =
PtGtGrλ

2σ

(4π)3ρ2rρ
2
t

, (4.15)

since f(θt, φt) = g(θr, φr) = 1. Equation (4.15) is known as bistatic radar equation.

System losses and propagation losses, such as free space losses and atmospheric losses,

contributes in the attenuation of the received power and should be accounted for in

precise modeling of such system.

In case of a monostatic radar the radar equation becomes

Pr =
PtG

2λ2σ

(4π)3ρ4r
, (4.16)

The object is detected when the received power is higher than the noise, that is
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computed by means of noise equation

N = kBBnT0, (4.17)

where kB is Boltzmann’s constant (J/K), Bn is the bandwidth of the instrument

(Hz), and T0 is the noise temperature of the receiver (K). The signal to noise ratio,

expressed in decibels, is defined as

SNRdB = 10 log10

(

Pr

kBBnT0

)

. (4.18)

When SNR is larger than 0 dB the reflected wave exceeds noise and it is thus possible

to measure other quantities such as range and range-rate.

The range can be measured using different techniques, depending on the type of

signal that is transmitted. When the signal is a continuous wave, frequency mod-

ulation can be used and ranging can be performed by analyzing the spectra of the

reflected signal. For pulsed radar instead, it is sufficient to measure the delay between

the transmission and reception of the signal. Since the waves travels at the speed of

light the length covered by the radio waves can be easily computed. For a monstatic

radar the range is equal to

ρ =
1

2
c∆t, (4.19)

where c is the speed of light and ∆t the delay.

For a bistatic radar there are two ways of determining the range [Wil05]. The

direct method consists in measuring the time between the reception of the carrier and

the scattered signal, yielding

ρt + ρr = L+ c∆t, (4.20)

where the baseline L is a known distance. In this case the carrier must be detected

by the receiver, otherwise no ranging can be performed. The indirect method instead

requires that both receiver and transmitter are equipped with synchronized clocks

and the bistatic slant range, i.e. the sum of receiver and transmitter range ρt and ρr
is similar to that of the monostatic radar:

ρt + ρr = c∆t. (4.21)

The range-rate is determined from the Doppler shift, i.e. the variation in the

frequency due to the motion of the target also known as Doppler effect. The frequency

shift can be computed as

∆f = fr − ft =
1

λ

[

d

dt
(ρt + ρr)

]

=
1

λ
[v · ρ̂t + v · ρ̂r] , (4.22)
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where v is the relative distance of the target with respect to transmitter and receiver,

that are supposed to be fixed (or moving at the same velocity) and ρ̂t and ρ̂r are the

unit vectors on transmitter to object and receiver to object direction. For monostatic

radars the frequency shift is instead related to the range direction, being transmitter

and the receiver the same antenna. In this case the Doppler shift becomes

∆f =
2

λ
ρ̇. (4.23)

The relations given in this section can be used to simulate radar measurements.

Given the trajectory of an object, e.g. computed using TLE and SGP4/SDP4, the

ranges ρt and ρr can be computed with respect to the location of transmitter and

receiver. An elliptic cone model can then be used to represent the antenna beams.

Given the beamwidths in two perpendicular directions, BWα and BWδ respectively,

and the nominal antenna gain in decibels, GdB0, the gain can be expressed as function

of the angular displacement from the cone axis, ∆α and ∆δ as

GdB = GdB0 − 12

[

(

∆α

BWα

)2

+

(

∆δ

BWδ

)2
]

. (4.24)

Note that this function is consistent with the definition of beamwidth, that is the

angle between the half power points of the main lobe. Indeed, when the angular

displacement is ∆α = BWα/2 or ∆δ = BWδ/2 the gain is 3 dB lower. Knowing

the antenna directions and the spacecraft position it is possible to compute the two

angular displacements and, in turn, the receiver and transmitter gains. At this, point,

once the SNR is positive, the time and Doppler shift can be estimated from Equations

(4.22) and (4.20) or (4.21).

4.2.2 Bistatic radar geometry

A sketch of the geometric configuration of the bistatic radar system is given in Figure

4.9. A plane that contains the two relative distance vectors from Tx and Rx, ρt and

ρr respectively, and the baseline L can be defined. This plane is usually indicated as

bistatic plane and it allows for easy computations of all range relationships. As an

example, the range between the target and the transmitter ρt can be written as

ρ2t = L2 + ρ2r − 2Lρr cos
(π

2
+ θr

)

, (4.25)

where ρr is the range between receiver and target, L the baseline of the bistatic radar,

and θr the look angle at the receiver. From Eq. 4.25 above it is possible to obtain the

range from the receiver, ρr, as function of the slant range as

ρr =
(ρt + ρr)

2 − L2

2 (ρt + ρr + L sin θr)
. (4.26)
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Figure 4.9. Geometry of the bi-static radar system on the bistatic plane. Point T is the
transmitter, point R is the receiver and the target is point S. The transmitter and receiver
look angles are θt and θr, L is the baseline, and β the bistatic angle. Ranges from receiver
and transmitter are ρr and ρt respectively.

The bistatic plane is identified in a three-dimensional space, that can be referred at

the receiver topocentric NWZ frame, as sketched in Figure 4.10. Since azimuth Azt
and elevation Elt of the transmitting antenna T, measured at the receiver R, are

usually known it is possible to estimate the look angle of the receiver from azimuth

Az and elevation El of the target [Wil05]:

θr = − arcsin [cosEl cosElt cos(Az −Azt) + sinEl sinElt] . (4.27)
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Ẑ

Az

El

Bistatic plane

b R
bT

bS

−θr

θt

Azt

Elt

Figure 4.10. General geometry of the bistatic plane with respect to a topocentric North-
West-Zenith frame centred at the receiver R. Azimuth and elevation of transmitter T are
Azt and Elt, whereas Az and El are azimuth and elevation of target object S.
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4.2.3 Multibeaming receiver

The use of multibeaming receiver allows the characterization of the transit direction of

the scattering object inside the FoV of the receiver. The beam illumination sequence

indeed allows to discern the trajectory of the object in terms of right ascension and

declination (or alternatively in terms of azimuth and elevation). Space debris obser-

vations were performed with the 7-horn receiver installed on the Effelsberg radar (100

mt dish antenna), using the TIRA L-Band radar (34 mt dish antenna) as transmitter

[Rui06]. Both radars are located in Germany and are operated by the Max-Planck

Institute for Radioastronomy and Fraunhofer Institute for High Frequency Physics

and Radar Techniques respectively. The baseline of the bistatic radar configuration is

approximately 20 km, resulting in a large shared observed volume, approximately 250

km in height. The bistatic radar is operated in beam-park mode. Tailored algorithms

had to be developed to allow for the determination of the orbital parameter of the

object transiting the FoV, using Least Square Estimation and Maximum Likelihood

Estimation [Rui05]. The 2006 observation campaign set the detection threshold at

object of 1.1 cm size at 1000 km range [Rui06].

Another multibeaming receiver has been developed for the BEST-2 array, a subset

of 8 cylinder of the North-South arm of the Northern Cross antenna, located at the

Medicina observatory, 30 km far from Bologna. A total of 32 receivers, 4 for each cylin-

der, have been installed as a test-bed for the Square Kilometer Array [Mon09]. The

signal from the receivers is fed to a digital back-end [Fos14] and processed by means of

an optimized Graphic Processing Unit (GPU) multibeam beamformer [Mag13] that
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(a) Multibeam geometry for BEST-2 receiver
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(b) Alternative multibeam geometry for BEST-2
receiver

Figure 4.11. Multibeam geometry for the BEST-2 receiver. The light gray ellipse in the
background represents the antenna beam, modelled as an elliptic cone. The darker ellipse
are the beams synthesized by the GPU beamformer. Measuring the time and received power
at each beam the trajectory inside the FoV can be estimated.
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generates 32 beams distributed across the array’s primary FoV, as portrayed in Figure

4.11(a). Another possible distribution of the synthesized beams geometry considered

in this work is given in Figure 4.11(b).

In the following section the orbit determination algorithms developed for the

BEST-2 multibeaming receiver are described.

4.3 OD algorithms for bistatic radar with multibeam-

ing receiver

In this section a novel algorithm for the orbit determination of RSO using a bistatic

radar with a multibeaming receiver is described. This is the most innovative algorithm

presented for orbit determination, due to the characteristics of the considered receiving

antenna, the large number of beams synthesized in the field of view, and the scalibility

of the proposed algorithm, that can used for different beams numbers, sizes, and

distributions.

The orbit determination process is divided into two phases

1. Estimation of topocentric right ascension α and declination δ from SNR mea-

surements

2. Estimation of object position and velocity via least square fit

In both cases it is assumed that the RCS is constant during the whole transit. In case

the object is known or the observation can be univocally associated to a catalogued

object, an estimation of its value is available from previous observations and can be

used in the OD process.

The first step is tackled as a weighted curve fit. In most cases the relative motion

of satellites and debris with respect to both receiver and target is fast enough to

approximate the motion within the FOV of both radars as a straight line. As a

consequence, the trail inside the FoV of the receiver can be expressed as a function

of time as






∆α(t) = a1 t+ a0

∆δ(t) = b1 t+ b0
(4.28)

The coefficients a1, a0, b1, and b0 of Eq. (4.28) are estimated in two steps. First, a

curve fit that minimizes the angular displacement from each beam centre at the time

of the maximum received power is performed. The right ascension and declination

of each beam are indeed known from the radar pointing (azimuth and elevation) and

the time at which the maximum SNR occurs can be determined from the simulated

measures. Note that the number of residuals in this case equals the number of beams

that are illuminated during the observation. The selected weights are the normalized

values of the SNR: the maximum recorded value of the SNR among all beams is used
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taken as a reference and all SNR maximum of each beams are divided by this value.

The higher the value of the normalized SNR, the more the object was closer to the

beam axis.

Given the coefficients a1, a0, b1, and b0 obtained with the approach described

above and the range and SNR measurements that are available at each sampled time

instant1 it is possible to obtain a more accurate fit of the trajectory. The algorithm

starts with a guess of the right ascension and declination as function of time and

the goal is to update this guess by minimizing the residuals between the measured

SNRs and the estimated SNRs obtained with the α(t) and δ(t) guesses. The following

operations are performed at each time step:

1. Compute azimuth and elevation of the target with respect to the receiver using

right ascension and elevation from Eq. (4.28) and the nominal pointing of each

beam.

2. Compute the look angle of the receiver, θr, by means of Eq. (4.27), using the

azimuth and elevation of the target computed in the previous step and the

azimuth and elevation of the transmitter.

3. Compute the receiver and transmitter range by means of Eq. (4.26) and (4.25),

using the measured slant range (ρr + ρt).

4. Compute the SNR for each beam correcting the gain in accordance to Eq. (4.24)

and the estimated angular displacements with respect to the each beam axis.

Once all SNR values are recomputed for each beam and for each time step, the

residuals with respect to the measured SNR are computed. The coefficients a1, a0,

b1, and b0 are then updated to obtain a better fit. The above steps are repeated till

when the changes in the coefficients is below the defined tolerance.

A comparison of the estimates of the right ascension and declination trajectories

obtained with the simple weighted fit and the SNR least square is given in Figure

4.12. The blue trajectory is the coarse fit obtained considering the maximum SNR

value for each beam, whereas the red trajectory is the refined one that considers also

range information. The second is nearly superimposed to the black line, that is the

true trajectory of the transiting object.

Pertaining the second step, it consists in a non-linear least square optimization to

match the orbital trajectory with the range measurements, the right ascension and

declination computed as above, and Doppler shift with the values recorder for the

whole transit inside the FoV of the receiver.

1Sampling rate of the system is supposed to be 0.05 s.



70 4 Orbit determination

−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4 5
∆α [deg]

∆
δ
[d
eg
]

Figure 4.12. Determination of right ascension and declination from measured data. Black
line is the true trajectory, blue line is the first guess obtained with the fit of the maximum
SNR, and red line is the refined trajectory in the α− δ plane.

4.4 Numerical simulations

In this section the results of a few orbit determination tests are given. The OD is

first performed by considering optical observations only in Subsection 4.4.1. The case

of radar only observations is instead tackled in Subsection 4.4.2, whereas the mixed

case is in Subsection 4.4.3 and concludes this section.

The selected objects are reported in Table 4.1 where, in addition to the semi-major

axis, inclination, and eccentricity of the orbit, the RCS value and the maximum visual

magnitude mmax of the object are also given for each object. The maximum visual

magnitude refers to a 100% illuminated object at the perigee1. The RCS values are

instead obtained from Space-Track2.

Sat. No. Sat. Name a [km] e [-] I [deg] RCS [m2] mmax [-]

19046 SL-3 R/B 6946 3.96E-2 97.6 6.55 +1.5
25723 SL-8 R/B 6847 1.75E-3 48.4 4.93 +0.8
37820 Tiangong 1 6743 7.41E-4 42.8 20.54 -1.2

Table 4.1. Selected objects for orbit determination numerical tests.

The initial guess for the orbit determination process is always the orbital state

of the object at the selected reference epoch, computed with SGP4 using the TLE

closest to the first observation.

1Values taken from: www.heavens-above.com
2www.space-track.org

http://www.heavens-above.com
http://www.space-track.org/
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4.4.1 Orbit determination with optical observations

The results of the orbit determination routines, based on a non-linear least square

fitting, for the case of optical observations only are here presented. For each OD a

set of three angular measurements of the same object is considered. The observa-

tory location used for the generation of the simulated observations is (44°51′57′′ N,

11°00′11′′ E) and the altitude is 14 m. The site is near Cavezzo (MO) and currently

hosts the astronomical observatory “Geminiano Montanari”. The characteristic of

the (hypothetical) telescope are given in Table 4.2.

Diameter 400 mm
F-ratio 1.2
Focal length 480 mm
Field of view 4.3◦ × 4.3◦

Resolution 5′′

CCD size 3072× 3072 pixels
Pixel size 11.7 µm
VLM 15.51

Table 4.2. Design parameters of telescope for space debris observation

The simulated optical observations are listed in Table 4.3, by considering the first

two objects of Table 4.1. Pertaining the first object, three observations are performed

during three consecutive days at dusk. The second object is instead observed three

times in two consecutive days at dawn. The observations are usually performed when

the object is at its maximum elevation, except for observation 2B that is performed

right after the object is outside the Earth’s shadow.

Obs. ID Sat. No. Observation epoch Observatory Az [deg] El [deg]

1A 19046 2014/07/01 19:52:17 Cavezzo 75.6 84.5
1B 19046 2014/07/02 19:53:37 Cavezzo 74.2 87.5
1C 19046 2014/07/03 19:54:57 Cavezzo 265.2 89.6

2A 25723 2014/09/24 04:40:39 Cavezzo 346.9 60.0
2B 25723 2014/09/25 02:32:08 Cavezzo 98.0 26.0
2C 25723 2014/09/25 04:08:44 Cavezzo 345.4 62.6

Table 4.3. List of simulated optical observations. Exposure time of CCD for each observa-
tion is 1 s.

A sequence of illuminated pixels is generated for each observation and stored in

a file that is then processed by the orbit determination algorithm. The generated

observations include small random pointing errors for the telescope and discretization

errors due to CCD imaging, since the resulting pixel sequence must be composed of

integer numbers only. The right ascension and declination associated to the objects
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trails thus differ from the true value. As a result, these errors will produce a small

deviation of the best fit line with respect to the true trajectory. Using the information

on the azimuth Az and elevation El of each observation the right ascension and

declination of the object can be reconstructed. The non-linear least square fit will then

determine the initial conditions for AIDA that will minimize the residuals between

the measurements and the numerically propagated trajectory. The observed trail

is divided into 20 points, equally spaced in time. Since the exposure time is 1 s

the time interval is 0.05 s. For each of these time steps the residuals between the

observed right ascension and declination and the estimated one are computed. The

perturbations considered during the OD process for AIDA are a 10×10 gravitational

model, air drag, solar radiation pressure with dual-cone Earth shadow, and Moon and

Sun gravitational attraction. The OD process is performed on orbital state only. The

values of the area-to-mass ratio for both SRP and air drag are obtained from TLEs

and are supposed to be known, thus becoming additional inputs for the propagator.

The reference epoch for the propagation with AIDA is always the time of the last

observation.

The estimated state for SL-3 R/B is listed in Table 4.4, together with the reference

state and the uncertainties in the Earth Centred Inertial (ECI) J2000 reference frame,

that is the default for AIDA. Note that the reference state is “true” in the sense that

it is the reference epoch that is used to generate the simulated observations. There

is a good accordance between the estimated and true state with errors of tens of

meters in position and a few m/s for the velocity components. The uncertainties on

position resulting from the OD process are of the order of a few hundreds meters for

the position components and around 1 m/s for the velocity components.

RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s]

Ref. state -3069.770 -3835.251 4872.005 2.189671 4.995551 5.297757
Est. state -3069.893 -3835.364 4872.074 2.192780 4.997866 5.294026
St. dev. σ ±0.431 ±0.529 ±0.678 ±0.916E-3 ±1.134E-3 ±1.361E-3

Table 4.4. Object 19046, estimated orbital states from three optical observations. Reference
epoch: 03/07/2014 19:54:58.06 UTC

It is important to compare also the evolution of the error between the estimated

and the reference trajectories to determine how effective the OD process is. In Figure

4.13 the position and velocity error is plotted for the 24 hours after the reference epoch

of the estimated trajectory. The orbit propagation is performed with AIDA, using the

same perturbations considered during the OD process. The position error is periodic

and no drift between the two trajectory occurs in the considered propagation window.

There is a bias of approximately 10 km in the error mean value and the maximum

error is approximately 17 km. A similar trend is found for the velocity error, that has

a mean value around 7 m/s.

The estimated state for SL-8 R/B is instead listed in Table 4.5, again provided
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Figure 4.13. Position and velocity error between the reference and estimated trajectory
of object 19046 for the 24 h following the last optical observation. The propagation of the
estimated state is performed with AIDA.

together with the reference state and the uncertainties in the ECI J2000 reference

frame. In this case the difference between the true trajectory and the estimated one

is smaller and so are the uncertainties on the estimated orbital state, that are of the

order of a few meters only for the position components and tens of mm/s for the

velocity. The higher accuracy of the estimated state is probably due to the shortest

time interval between the first and last observation for the second object and to the

fact that the observations of the first object are all performed with similar conditions

(pointing) and this could make the OD estimation ill-conditioned. The orbit of 19046

is nearly sun-synchronous, thus there is only a change of approximately 1 deg in right

ascension between the different trails. For object 25723 instead the second observation

is performed in different conditions and the change in right ascension and declination

for the associated trail is much larger.

RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s]

Ref. state 1128.017 4559.876 4977.197 -7.501311 0.405709 1.343148
Est. state 1128.034 4559.913 4977.415 -7.501000 0.405227 1.343851
St. dev. σ ±0.003 ±0.004 ±0.016 ±3.061E-5 ±4.565E-5 ±9.130E-5

Table 4.5. Object 25723, estimated orbital states from three optical observations. Reference
epoch: 25/09/2014 04:08:44.63 UTC

The plot of the error between the estimated and the reference trajectory for a 24-h

propagation is represented in Figure 4.14. In this case the maximum relative error

on position and velocity are smaller, with a maximum of 1.2 km for the position and

1.2 m/s for the velocity. As before, the area-to-mass ratios are assumed to be known

before the observation and are obtained from TLEs data.

According to the results reported in this section, three optical measurements of
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Figure 4.14. Position and velocity error between the reference and estimated trajectory of
object 25723 for the 24 h following the last observation. The propagation of the estimated
state is performed with AIDA.

an object are sufficient to compute an estimate of a RSO orbital parameters, which

is in agreement with the classical OD methods. It was observed that when optical

measurements of one object are performed from the same site and the azimuth and

elevation of the telescope are similar, the error on the estimated state is higher. A

good practice to reduce OD errors is thus to consider, if possible, measurements that

are taken in different conditions (e.g. one at dusk and one at dawn), as for the second

numerical simulation. Alternatively, the measurements of the same object could be

performed from a different site.

To increase the accuracy of the estimated orbital state it is also important that

observations do not spread over a period exceeding a few days. Due to perturbations,

in particular air drag for low orbits, the residuals tend to increase with propagation

time, resulting in larger state uncertainties.

4.4.2 Orbit determination with radar observations

In this section the results of the orbit determination for the case of a single bistatic

radar observation are considered. For each OD a single observation is taken into

account. Two different transmitters are considered, whereas the receiver is always

the Northern Cross of the Medicina Observatory. The first transmitter is located

approximately 20 km from the radioastronomical station of Medicina, whereas the

second one is close to the Sardina Radio Telescope (SRT), located near San Basilio,

Sardinia, Italy. Both transmitters are dish antennas with a diameter of 6 meters and

their maximum transmitting power is 5 kW. The main characteristics and location

of the antennas are given in Table 4.6. Pertaining the transmitters the aperture

efficiency is assumed to be ka = 0.675 and the resulting gain is G = 667.8 if the

transmitting frequency is 411 MHz.
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Antenna Latitude Longitude Altitude Diameter Comp. Max Power Azimuth Elevation

NC 44◦31′14′′N 11◦38′49′′E 25 m 52 m Rx - 0,180 deg >45deg
Bagnara 44◦23′31′′N 11◦49′57′′E 15 m 6 m Tx 5 kW 50-200 deg >20 deg
SRT 39◦29′34′′N 09◦14′42′′E 650 m 6 m Tx 5 kW 0-360 deg >20 deg

Table 4.6. Main features of the antennas composing the ground-based bistatic radar system.
The diameter for the Northern Cross is an equivalent circular diameter for BEST-2 array
only.

A representation of the two bistatic geometries is given in Figure 4.15. The North-

ern Cross beam is the red one, whereas the transmitter beams are the blue ones.

Note that the beams of transmitters and receiver are assumed to be elliptical cones,

where the beamwidths are the angles between the the half-power (-3dB) points of the

main lobe on two perpendicular axis. The location of the transmitter influences the

crossover region of the bistatic radar: when the transmitter is located close to the

receiver the two beams overlap on a wide altitude range, that extends over the whole

LEO regime. The bistatic configuration with the transmitter in Bagnara could be

thus classified as “quasi-monostatic”. On the converse, when the transmitter is far

from the receiver, as in the case of SRT, the crossover region has a limited extension

in altitude. Note that the altitude bounds of the crossover region for a pure bistatic

configuration is dependent on the target object location. When the antenna points

towards the horizon the altitude range is higher than in the case in which the target

object is at high elevation.

The simulated bistatic radar observations are listed in Table 4.7 with the azimuth

and elevation of the receiver and transmitter. Note that the Northern Cross is a

transit instrument and can be only pointed on the local meridian, with an azimuth of

0 deg or 180 deg. Two different layout are considered for the multibeaming receiver,

(a) Transmitter located in Bagnara (b) Transmitter located near SRT

Figure 4.15. Bistatic radar configuration. The red cone is the Northern Cross beam,
whereas the blue cone is the transmitter beam. The crossover region is bounded by the
black surface.
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Obs. Object ID Transit epoch RX Az [deg] El [deg] TX Az [deg] El [deg]

1R 19046 2014/07/01 19:52:15 NC (A) 0.0 86.2 Bagnara 343.4 84.3
2R 19046 2014/07/01 19:52:15 NC (B) 0.0 86.2 Bagnara 343.4 84.3
3R 25723 2014/09/23 08:29:50 NC (A) 180.0 64.7 Bagnara 184.4 66.3
4R 25723 2014/09/23 08:29:50 NC (B) 180.0 64.7 Bagnara 184.4 66.3
5R 37820 2014/04/15 13:22:30 NC (A) 180.0 61.6 Bagnara 184.9 63.5
6R 37820 2014/04/15 13:22:30 NC (A) 180.0 61.6 SRT 27.9 39.0

Table 4.7. List of simulated bistatic radar observations.

both with 32 beams inside the FoV, as represented in Figures 4.11(a) and 4.11(b).

The first layout, labelled NC (A), has slightly larger beams, equal to 1.6×0.5 deg in

right ascension and declination, whereas the second layout is labelled NC (B) and

its beams are 1.25×0.5 deg in right ascension and declination respectively. For each

object two different configurations are considered for the same transit: the goal is to

compare the performances of the system for the different possible configurations. The

first four observations are targeted at determining whether the use of different beams

geometry for the multibeaming have an impact on the orbit determination phase. Two

simulated measures are generated for each object, using the different beams layouts

for the receiver. The last observations instead are targeted at determining whether

the location of the transmitter can affect the orbit determination process.

The tracklets, i.e. the trajectory covered by the satellite or debris inside the FoV

of the antenna, for observations 1R and 2R are represented in Figure 4.16 as a black

arrow. The estimated object trajectories inside the (α-δ) plane, obtained with the

procedure described in Section 4.4.2, are also portrayed. Note that the estimates and
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(a) Receiver tracklet for observation 1R
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(b) Receiver tracklet for observation 2R

Figure 4.16. Receiver tracklets for bistatic radar observations of object 19046. In both
cases the transmitter is located in Bagnara. The black arrow is the reference trajectory, the
blue line the first estimate of the trajectory in the α-δ plane, and the red line the refined
trajectory. The receiver beams are coloured according to the measured SNR.
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RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s]

Observation 1R, reference epoch: 01/07/2014 19:52:12.20 UTC

Ref. state -3208.888 -3746.830 4851.438 2.345987 4.901547 5.318343
Est. state -3208.933 -3746.789 4851.440 2.347366 4.900858 5.318389
St. dev. σ ±0.014 ±0.016 ±0.021 ±1.578E-3 ±1.041E-3 ±0.537E-3

Observation 2R, reference epoch: 01/07/2014 19:52:12.30 UTC

Ref. state -3208.654 -3746.340 4851.970 2.346372 4.901996 5.317759
Est. state -3208.684 -3746.309 4851.974 2.348143 4.901026 5.317868
St. dev. σ ±0.013 ±0.015 ±0.020 ±1.543E-3 ±1.016E-3 ±0.524E-3

Table 4.8. Object 19046, estimated states for observations 1R and 2R

simulated data are all obtained considering a constant and known RCS for the object

as well as no noise on measures and no losses.

The reference and estimated orbital states for the radar observations 1R and 2R

are listed in Table 4.8. These values are obtained by considering a 10×10 Earth

gravitational model, air drag, SRP with dual-cone shadow model, and third body

perturbations of the Moon and the Sun. As for the optical orbit determination, it

was assumed that the area-to-mass values were known prior the OD. The reference

epoch for the OD is the time of reception of the last echo. The error on the position

components is equal to a few tens of meters, whereas the error on velocity components

reaches 1 m/s for both observations. The uncertainty on position are on the order of

a few tens of meters and the ones on velocity are again around 1 m/s.

The error between the estimated and the reference trajectory is plotted for the

24-h following the last observation in Figure 4.17. The black curve refers to the
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Figure 4.17. Position and velocity error between the the reference and the estimated
trajectory of object 19046 for the 24 h following the radar observation. The propagation of
the estimated states is performed with AIDA.
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propagation of the orbital state with the first multibeaming layout and the gray curve

with the second layout. In both cases the error on position and velocity is below 5

km and 5 m/s. When using the first multibeaming geometry the error increases with

time, whereas for the second layout the maximum error remains constant. A possible

explanation is the higher accuracy in terms of position (and velocity) for the second

test case,where the smaller beam size could have a beneficial effect for the considered

transit inside the FoV. It can be observed that the error has oscillations with a

period close to the orbital one: this behaviour is explained by the fact that the OD

is performed using only measurements from a small orbit segment. The error is thus

small when the object is transiting in that portion of the orbit and increases when

the object moves away from it.

The tracklets for the second object transit are represented in Figure 4.18. On the

left the tracklet for the observation 3R, which employs layout NC (A), is represented,

while on the right the tracklet referring to the observation 4R with the layout NC (B)

is portrayed. The object moves in the opposite direction with respect to the previous

one and has a lower inclination.
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(a) Receiver tracklet for observation 3R
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(b) Receiver tracklet for observation 4R

Figure 4.18. Receiver tracklets for bistatic radar observations of object 25723. In both
cases the transmitter is located in Bagnara. The black arrow is the reference trajectory, the
blue line the first estimate of the trajectory in the α-δ plane, and the red line the refined
trajectory. The receiver beams are coloured according to the measured SNR.

The orbital states obtained with the OD algorithm are listed in Table 4.9. The

reference epoch is again the time of the last echo detection. In this case the uncertain-

ties on position and velocity are comparable to those obtained for object 19046 but

the difference between the reference and estimated velocity is larger, being around 5

m/s for the last two components. The reason is probably the geometry of the bistatic

observation: the performances of a bistatic radar depend on the geometry, and are

influenced by parameters such as the bistatic angle [Wil05].

The consequence in this case is that the error in the estimation of the velocity
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RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s]

Observation 3R, reference epoch: 23/09/2014 08:29:52.80 UTC

Ref. state -3944.852 3166.151 4621.937 -6.052596 -3.927433 -2.460712
Est. state -3944.852 3166.125 4621.962 -6.053030 -3.931060 -2.455444
St. dev. σ ±0.024 ±0.019 ±0.013 ±0.467E-3 ±1.333E-3 ±2.105E-3

Observation 4R, reference epoch: 23/09/2014 08:29:53.15 UTC

Ref. state -3946.970 3164.776 4621.075 -6.050888 -3.928804 -2.462719
Est. state -3946.996 3164.768 4621.062 -6.050103 -3.924708 -2.469463
St. dev. σ ±0.028 ±0.023 ±0.015 ±0.501E-3 ±1.412E-3 ±2.222E-3

Table 4.9. Object 25723, estimated states for observations 3R and 4R

results in large position and velocity errors between the propagated and the reference

trajectory, as can be observed in Figure 4.19. For both orbital states the error rapidly

increases and reaches 140 km after 24 hours of propagation for the position and 0.15

km/s for the velocity.

In both comparison there is no evident advantage in choosing layout (A) and (B)

for the multibeaming receiver. For the first object there is a slight improvement in

the estimated state but the error for the second case becomes larger when layout (B)

is used. For the last observation set it was thus decided to use the first multibeaming

geometry. The resulting tracklets for simulated observations 5R and 6R are repre-

sented in Figure 4.20. On the left the tracklet is the one obtained with a transmitter

located in Bagnara, whereas on the right the transmitter is located close to the SRT

site. The tracklets are really similar, the only difference is the SNR measured by the

beams.
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Figure 4.19. Position and velocity error between the the reference and the estimated
trajectory of object 25723 for the 24 h following the radar observation. The propagation of
the estimated states is performed with AIDA.
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(a) Receiver tracklet for observation 5R (TX:
Bagnara)
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(b) Receiver tracklet for observation 6R (TX:
SRT)

Figure 4.20. Receiver tracklets for bistatic radar observations of object 37820. The black
arrow is the reference trajectory, the blue line the first estimate of the trajectory in the α-δ
plane, and the red line the refined trajectory. The receiver beams are coloured according to
the measured SNR.

The estimated orbital states for the two observations are listed in Table 4.10. The

uncertainties are similar to the ones obtained for the previously presented ODs. The

errors in position and velocity are larger than in the previous cases, in particular for

what concerns the state estimated from observation 6R, where position components

have errors of hundreds of meters.

As a result the displacement is even larger than for object 25723, as it can be

observed in Figure 4.21. Besides that, another source of error is the lack of an ap-

propriate estimation of the area-to-mass ratio for this observation. This increases the

position and velocity error because the object is at a really low altitude (350 km) and

has a large area, with an RCS of approximately 20 m2.

RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s]

Observation 5R, reference epoch: UTC

Ref. state 2828.978 4082.092 4562.402 -6.503424 4.077740 0.388543
Est. state 2828.943 4081.937 4562.536 -6.501331 4.084546 0.369195
St. dev. σ ±0.025 ±0.034 ±0.016 ±0.604E-3 ±0.685E-3 ±1.995E-3

Observation 6R, reference epoch: UTC

Ref. state 2828.003 4082.704 4562.460 -6.503975 4.076946 0.387652
Est. state 2827.834 4082.353 4562.477 -6.496159 4.088654 0.376651
St. dev. σ ±0.037 ±0.050 ±0.019 ±1.405E-3 ±1.599E-3 ±1.643E-3

Table 4.10. Object 37820, estimated states for observations 5R and 6R
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Figure 4.21. Position and velocity error between the the reference and the estimated
trajectory of object 37820 for the 24 h following the radar observation. The propagation of
the estimated states is performed with AIDA.

4.4.3 Orbit determination with radar and optical measurements

In this subsection the case of mixed optical and radar observation is tackled. The

first two objects of Table 4.1 are considered for this analysis. The first numerical test

considers object 19046, and takes into account the three optical observations of Table

4.3 and the radar observation of Table 4.7 for a total of four different observations.

Three different orbit determinations are performed:

A. Three optical observations and one radar observation are used, the area-to- mass

ratio is estimated in the orbit determination process.

B. Three optical observations and one radar observation are used, the area-to-mass

ratio is computed by fitting a set of orbital states generated from the same TLE

on a time window of 48 hours centred at the TLE epoch.

C. Three optical observations and one radar observation are used, the area-to-mass

ratio is computed from the ballistic coefficient of the TLE closest to the first

observation.

The resulting orbital states are listed in Table 4.11. First of all it can be noticed

that the area-to-mass ratio computed from the ballistic coefficient of the TLE is one

order of magnitude smaller than the reference value (obtained from a fit of the TLE

states). The area-to-mass ratio estimated with OD A is instead close to the reference

one, obtained by fitting the TLE states. Note that for the OD with both state and

area-to-mass ratios estimation the uncertainty on position and velocity are quite high.

The ill-conditioning caused by the similar optical observation is thus impacting the

estimate of the area to mass. The estimate of position and velocity are in good

accordance with the reference values apart from the last case. The reason is that the
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RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s] AoM [m2/kg] AoM SRP [m2/kg]

Ref. state -3069.770 -3835.251 4872.005 2.189671 4.995551 5.297757 8.888E-3 1.249E-3

OD A -3069.765 -3835.222 4871.913 2.189603 4.995776 5.297703 9.971E-3 1.394E-4
St. dev. σ ±0.180 ±0.226 ±0.289 ±0.319E-3 ±0.201E-3 ±0.319E-3 - -

OD B -3069.774 -3835.243 4871.884 2.189564 4.995735 5.297767 8.888E-3 1.249E-3
St. dev. σ ±0.015 ±0.018 ±0.022 ±0.076E-3 ±0.062E-3 ±0.043E-3 - -

OD C -3069.853 -3835.417 4871.675 2.189279 4.995330 5.298300 4.573E-4 4.573E-4
St. dev. σ ±0.041 ±0.049 ±0.060 ±0.211E-3 ±0.173E-3 ±0.121E-3 - -

Table 4.11. Object 37820, estimated states for mixed radar and optical observations. OD
A refers to the case of both state and area-to-mass estimation, OD B indicates the case in
which the reference value for the area-to-mass ratios are used, and OD C uses instead the
area-to-mass value computed directly from the ballistic coefficient of the TLE. Reference
epoch: 03/07/2014 19:54:58.062 UTC

state is changed to compensate the mismodelled effect of the air drag, caused by a

wrong choice of the associated area-to-mass ratio.

The error between the reference trajectory and the three estimated trajectories,

each one propagated with AIDA for 24 hours, are plotted in Figure 4.22. The black

curve refers to the orbit determination on both the orbital state and the area-to-

mass ratios, for a total of nine variables. The dark gray curve, instead, is obtained

propagating the state estimated by setting both area-to-mass ratio for SRP and air

drag with the value computed from the ballistic coefficient of the TLE and the gray

curve using the area-to-mass ratio estimated from the TLE states fit. The smallest

error is obtained for this last case, being the area-to-mass ratios the one used by the

reference trajectory. The largest error is obtained for the case where the area-to-mass
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Figure 4.22. Position and velocity error between the the reference and the estimated
trajectories of object 19046 for the 24 h following the last observation. The propagation of
the estimated states is performed with AIDA. The black curve is obtained with the estimate
of both orbital state and area-to-mass during the OD, the dark gray curve with the estimate
of the orbital state and the area-to-mass from a TLE fit, and the estimate of the orbital
state and the area-to-mass computed from the ballistic coefficient of the TLE.
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ratio computed directly from the TLE is used, where the wrong estimate that it is

used generates a drift between the two trajectories. The OD algorithm is capable of

obtaining a good estimate of the area-to-mass ratios for air drag and SRP using three

optical observations and one bistatic radar measurements.

The second numerical test takes into account the set of optical and radar obser-

vations of the object 25723 listed in Tables 4.3 and 4.7. Three orbit determinations

are performed:

A. Three optical observations and one radar observation are used, the area-to- mass

ratio is estimated in the orbit determination process.

B. Three optical observations and one radar observation are used, the area-to-mass

ratio is computed by fitting a set of orbital states generated from the same TLE

on a time window of 48 hours centred at the TLE epoch.

C. Only the first optical observation and one radar observation are used, the area-

to-mass ratio is computed by fitting a set of orbital states generated from the

same TLE on a time window of 48 hours centred at the TLE epoch.

The resulting orbital states for each observation are given in Table 4.12 for the first

two tests, while the result of the third OD are in Table 4.13 since the reference epoch is

different in this case. The estimated states are in good accordance with the reference

values, with a maximum difference of 25 m for position components and 0.3 m/s for

the full OD with both state and area-to-mass ratios. There is also a good accordance

between the estimated area-to-mass ratio and the reference value for the full OD.

Pertaining the third orbit determination, that considers only one optical and one

radar observation, it is worth observing that again there is a good correspondence

RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s] AoM [m2/kg] AoM SRP [m2/kg]

Ref. state 1128.017 4559.876 4977.197 -7.501311 0.405709 1.343148 6.617E-3 1.76E-3

OD A 1127.993 4559.851 4977.188 -7.501376 0.405403 1.343050 6.454E-3 2.219E-2
St. dev. σ ±0.008 ±0.011 ±0.020 ±0.019E-3 ±0.038E-3 ±0.030E-3 - -

OD B 1128.009 4559.865 4977.243 -7.501318 0.405470 1.343023 6.617E-3 1.76E-3
St. dev. σ ±0.009 ±0.010 ±0.021 ±0.016E-3 ±0.032E-3 ±0.035E-3 - -

Table 4.12. Object 25723, estimated states for mixed optical and radar measurements.
OD A refers to the case of both state and area-to-mass estimation, while OD B indicates
the case in which the reference value for the area-to-mass ratios are used. Reference epoch:
25/09/2014 04:08:44.63 UTC

RX [km] RY [km] RZ [km] VX [km/s] VY [km/s] VZ [km/s] AoM [m2/kg] AoM SRP [m2/kg]

Ref. state 561.846 4634.662 5005.796 -7.523969 -0.379063 1.209830 6.617E-3 1.76E-3

Est. state 561.898 4634.665 5005.839 -7.523931 -0.379061 1.209803 6.617E-3 1.76E-3
St. dev. σ ±0.012 ±0.019 ±0.070 ±0.054E-3 ±0.040E-3 ±0.098E-3 - -

Table 4.13. Object 25723, estimated states for one optical and one radar measurement.
Reference epoch: 24/09/2014 04:40:40.18 UTC
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between the estimated and the reference state. Note that in this case the area-to-

mass ratio is equal to the reference value during the OD.

The errors between the estimated trajectories and the reference one are plotted in

Figure 4.23. The black curve refers to the propagation of the state obtained with an

OD aimed at estimating both the state and area-to-mass ratio, the dark gray curve

to the state estimated using the area-to-mass ratios obtained from the TLE fit, and

the gray curve using the same area-to-mass ratios but two measurements only. In

the latter case the error increases with propagation time, reaching 5 km at the end

of the propagation window. This is a significant improvement with respect to the

case with a single radar observation, where the position error was nearly 150 km after

24 hours. As for object 19046, the difference between the state estimated using the

area-to-mass ratio from the TLE fit and the one obtained with an OD on both state

and area-to-mass is small, and the two curves are nearly undistinguishable.
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Figure 4.23. Position and velocity error between the the reference and the estimated
trajectories of object 25723 for the 24 h following the last observation. The propagation of
the estimated states is performed with AIDA. The black curve is obtained with the estimate
of both orbital state and area-to-mass during the OD, the dark gray curve with the estimate
of orbital state and the area-to-mass from a TLE fit, and the gray curve with an estimate
obtained from one optical and one radar measurements only.

4.5 Conclusions

The orbit determination problem of space debris and satellites is tackled as a non-

linear least square fit of the available observations. Two simulators to generate optical

and bistatic radar observations were developed. The optical simulator considers a

standard telescope, equipped with a CCD sensor. The produced observation consists

in a sequence of illuminated pixel: knowing the azimuth and elevation at which the

telescope was pointing it is possible to estimate the right ascension α, the declination

δ and their rates α̇, δ̇.
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The bistatic radar simulator is tailored for the Northern Cross, which is always

employed as a receiver. The multibeaming capability of the BEST-2 array, an up-

graded subset of 8 cylinders belonging to the N-S arm of the Northern Cross, are

modeled. Different multibeaming geometry and transmitter can be modelled, making

this simulator a powerful tool to study and compare the performances of different

configurations. An algorithm that processes the measurement data generated by the

bistatic radar was developed. The algorithm retrieves the trajectory of the observed

object inside the receiver FoV in terms of right ascension and declination, using the

information on beam illumination sequence, SNR, and range measurement. The set of

observables from a bistatic radar observation after the data processing thus comprises

time of observation, range, the sum of range-rates for transmitter and receiver, right

ascension, declination and their rates.

Numerical simulations were performed to validate the orbit determination algo-

rithms for RSO. Three sets of optical measurements were simulated for two LEO

objects. The orbit determination algorithm was capable of reconstructing the orbital

parameters of both object and the error between the reference and estimated trajec-

tory is limited to a few kilometres. For the first object, orbiting in LEO on a nearly

sun-synchronous orbit, it was observed that sets of observations taken at the same

time for three consecutive days could degrade the accuracy of the OD. In that case

the problem is nearly ill-conditioned since the right ascension and declination change

is small between the observations.

The orbit determination algorithm developed for a bistatic radar in which the

Northern Cross plays the role of a multibeaming receiver was tested on single radar

measurements for three different objects. Two multibeaming geometries were com-

pared, both with 32 beams inside the FoV of the antenna. In all cases the estimated

position was compatible with the reference one and the uncertainties on the orbital

state were a few tens of meters for the position and tens of mm/s for the velocity. The

estimate of the velocity is instead influenced by the bistatic radar geometry, i.e. the

satellite relative trajectory and transmitter location. For the third observation it was

shown that the error on position after 24 hours changes significantly depending on

the transmitter location. Further tests must be performed to assess the performances

of the bistatic radar and identify the best configuration in terms of multibeaming re-

ceiver, transmitter location and antenna characteristics. In addition, the algorithms

for the orbit determination should be tested in the presence of unknown RCS, which

could have an impact on the measured range and SNR.

Finally, mixed orbit determination tests were performed using both radar and

optical measurements. The estimates of the orbital state significantly improves in

this case, in particular the large shift in position and velocity for the second object

is drastically reduced even if just a single optical observation is processed together

with the radar measurement. For what concerns the accuracy of the method, it was

found that the uncertainties on the estimated position and velocity for the mixed

orbit determination are usually a few tens of meters for the position and a few tens
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of mm/s for the velocity. When three optical and one bistatic radar measurements

are available, an estimate of the area-to-mass ratio for air drag and SRP can also be

obtained during the OD.

The case of mixed observations allows a better accuracy in the estimation of the

orbital state of the observed object with respect to both radar-only and optical-only

measurements. To reduce the uncertainty on the object state it is important to have

observations available in a short time window, no longer than a few days. For what

concerns the optical observation, it was found that the orbit determinations can be

ill-conditioned when the observations are performed from the same observatory, at

similar times during consecutive days, as the object tends to have close values of right

ascension and declination in those observations.

As a consequence, the Northern Cross could represent a powerful instrument if

operated in the stare-and-chase mode, provided that the radar ranging is available1.

The large area of approximately 27,400 m2 could provide a high sensitivity and the

maximum FoV of 120 deg2 could be “plastered” with up to 46,000 beams 4′ × 4′

wide. Tests on this configuration will be performed to assess the improvements in the

accuracy of the orbit determination and possibly determining whether a near-real-

time OD process can be performed to allow a fast schedule of further observations for

uncatalogued objects.

1currently the system was tested for continuous-wave only and ranging is not possible
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Conjunction identification

The detection of orbital conjunctions between spacecraft and space debris is of funda-

mental importance in SSA programs. Once a potentially dangerous closest approach

is identified, for instance by looking at the minimum distance between the objects,

all information required to analyse the conjunction is provided to satellite operators

that will compute the collision probability and evaluate the collision risk.

The collision risk depends on the geometry of the encounter and is considerably

affected by the uncertainties of the orbital states at the Time of Closest Approach

(TCA). These uncertainties, in turn, depend on the uncertainties on initial state and

their evolution along the orbit. When the TCA is far away from the reference epoch

of the initial state, nonlinearities can play an important role in the computation of

collision probability, since the initial covariance ellipsoid stretches and deforms after

each revolution.

In the past, the conjunction assessment procedures relied on the catalog of unclas-

sified objects orbiting the Earth, maintained by the USSTRATCOM. The catalog is

still available nowadays and contains all up-to-date TLE, that are intended for the

use with the SGP4/SDP4 orbital model. The Center for Space Standards and Inno-

vation (CSSI) produces daily reports of closest conjunctions for the upcoming week

using the program Satellite Orbital Conjunction Reports Assessing Threatening En-

counters in Space (SOCRATES)1 [Kel05]. The conjunctions are identified using TLEs

and SGP4/SDP4 and the tool also computes the maximum conjunction probability

[Alf05b], which represents the upper bound of collision probability and is obtained

assuming the worst-case orientation and size of the covariance matrices.

When using TLEs and the SGP4/SGP4 analytical propagator, it has to be taken

into account that the TCA can vary up to tens of seconds and the Distance of Closest

Approach (DCA) up to a few kilometers if more recent TLEs are considered for con-

junction detection. Propagation accuracy of SGP4/SDP4 is indeed object dependent,

and after a few days of propagation the errors can easily exceed tens of kilometres.

In addition, potentially significant biases exist in TLE data [Kel07].

Nevertheless, when precise ephemeris of the chasers are not available, TLEs can

represent a significant source of information. It is possible to estimate covariance

1The information is publicly posted at www.celestrak.com/SOCRATES/

http://www.celestrak.com/SOCRATES/
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information for TLEs by comparing states derived directly from the TLE data with

states resulting from an orbit determination using pseudo-observations derived from

TLE data [Ala04]. Alternatively, it is possible to derive a covariance matrix differ-

encing a set of TLEs propagated up to a common time [Lap08, Val12].

Besides the publicly available TLE catalog, the Joint Space Operation Center

(JSpOC) maintains an High-Accuracy Special Perturbation Catalog [Cof98] and re-

leases Conjunction Summary Messages (CSM) to warn satellite operators of incoming

close conjunctions [Aid12]. The CSM also provides the chaser covariance matrices at

the TCA which can be used, together with satellite ephemeris, for accurate collision

risk assessment.

The operational service for the assessment of collision risks of ESA satellites is

based on the collision risk assessment software CRASS and the orbit determination

software ODIN [Flo09a]. A daily automated screening is performed to identify close

approached between covered missions and TLE from USSTRATCOM. When the

estimated collision probability for an encounter exceeds a given threshold further

data are acquired by the operator and processed by ODIN to improve orbit and

covariance information. Methods were developed to estimate uncertainties associated

with TLEs [Flo09b]. The process was adapted to take into account the CSM and

analysis were performed to verify CSM against conjunction event analysis based on

radar measurements [Flo13].

In this work, a method for the computation of the DCA and TCA for all the ob-

jects compatible with the initial orbital uncertainties (referred to as virtual debris or

objects in the remainder of this work) with a single numerical integration is presented.

The method is based on the high order Taylor expansion of the flow of the dynamics

enabled by DA techniques. In particular, a DA-based integrator and a polynomial

inversion algorithm are used to express the dependence of TCA and DCA on orbital

uncertainties in terms of high order Taylor polynomials [Arm10a]. As a result, the

multiple integrations required by a Monte Carlo based approach for the computation

of TCA and DCA for all the virtual debris are substituted by fast polynomial eval-

uations. The computation of these polynomials and the study of their accuracy is

the main focus of this Chapter. Their use for the fast and accurate computation of

collision probability will be addressed in Chapter 6.

This Chapter is organized as follows: first a few facts concerning all-vs-all con-

junction screening and the strategies to avoid unnecessary computation are briefly

described. In Section 5.2 the computation of the TCA and DCA is introduced as

global optimization problem. The algorithm for the expansion of the TCA and DCA

is then introduced in Section 5.3. Some numerical examples are then provided: the

strategy of Section 5.2 is first used to generate initial guesses for the TCA and DCA.

Then, the algorithm of Section 5.3 is used to obtain the DA expansion of time and

distance of closest approach using the polynomial maps generated with AIDA.
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5.1 All-vs-all screening: a few remarks

One of the more challenging issues of conjunction identification is the necessity to deal

with a huge number of possible threatening objects. The total number of RSO, ac-

cording to Table 1.1, is nrso = 17129. Thus, since the total number N of independent

combinations in an all-vs-all screening is equal to

N =
1

2

(

nrso
2 − nrso

)

, (5.1)

there are nearly N = 1.47× 108 combinations to be analyzed each time. The above

formula can be graphically explained by associating the RSO to rows and columns

of a square matrix: each element (i, j) will then corresponds to a combination. The

residual combinations, assuming that the order of elements is the same on the two

dimensions, are represented by the upper triangular, colored in gray in Figure 5.1.

ndeb

n
sa

t

nsat

nrso

Figure 5.1. Graphical scheme for all-vs-all independent combinations

When the debris-vs-debris conjunctions are not of interest, the number of independent

combinations reduces to

Ñ =
1

2

(

nsat
2 − nsat

)

+ nsat ndeb, (5.2)

where nsat is the number of active satellites and ndeb = (nrso − nsat) is the number

of debris. Even in this case the total number of combinations is still huge, with Ñ =

6× 107 since the number of satellites is nsat = 3966. It is thus evdent how important

is the computational efficiency of the algorithms used for conjunction identification.

For this purpose differents sets of geometrical and analytical filters were developed

to quickly exclude objects combinations that will not result in close conjunctions

[Hoo84, Ala02]. The sequential use of these filters can reduce the number of object

combinations down to 10% of the total with a limited computational effort. The

computation of TCA and DCA for each couple of objects is thus usually performed
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after an initial sieving to reduce computational time and enable the production of

conjunction alerts on a daily basis.

5.2 Close conjunction identification as a global opti-

mization problem

The computation of the TCA and DCA between two space bodies in a given time

window is formulated as an optimization problem in which the global minimum of the

square distance function between the two orbiting bodies is searched. The rigorous

global optimizer COSY-GO is used for this task: since the the branch-and-bound

algorithm works with TM, an analytical formulation for the objective functions is re-

quired. As a consequence, the DA implementation of SGP4/SDP4 is used to compute

the position and velocity of the spacecraft. The square of the distance function is the

objective function to be minimized

JGM (t) = d(t)2 = (r2 − r1) · (r2 − r1). (5.3)

For problems of practical interest the computation of all the minima of the square

distance function can be important, as a local minimum occurring before the TCA

can potentially represent a risky condition (this is particularly true when models

accuracy and uncertainties on orbit determination are taken into account). When

all the minima are searched for, firstly the time derivative of the square distance is

computed
dd(t)2

dt
= 2dḋ = 2(v2 − v1) · (r2 − r1), (5.4)

then the objective function is set to

JSP (t) = [(v2 − v1) · (r2 − r1)]
2. (5.5)

Note that Eq. (5.5) is positive semidefinite, and its zeros (i.e. its global minima) are

stationary points of the distance function. These stationary points are then classified

by exploiting the high order derivatives included in the polynomial part of the Taylor

model.

5.3 DCA and TCA expansion

Uncertainties in orbital measurements and orbital determination process result in

uncertainties in the initial orbital state of the space objects. Consequently, each pair

of virtual debris is characterized by a different value of TCA. In this section the

procedure to obtain the Taylor expansion of TCA and DCA is described, provided

that a first guess of TCA is available. The method described in Section 5.2 is here
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used to obtain an estimate of TCA and DCA, but any other method can be used

for this purpose. In the remainder of the Chapter, the first guess values of TCA and

DCA identified by this method are referred to as t∗FG and d∗FG, respectively.

5.3.1 TCA and DCA expansion algorithm

The aims of the algorithm presented in this section are:

1. Starting from t∗FG and d∗FG, compute the nominal value of TCA and DCA.

These values will be referred to as t∗ and d∗.

2. Compute the Taylor expansion of t∗ and d∗ with respect to the initial conditions

of the two objects:

[t∗] = t∗ +
(

δx1
0, δx

2
0

)

[d∗] = d∗ +
(

δx1
0, δx

2
0

)

(5.6)

where x1
0 and x2

0 are vectors of six elements (any set of orbital elements, e.g.

Keplerian elements, Delunay variables, position and velocity in any arbitrary

reference frame, can be used).

The algorithm starts with the initialization of the initial orbital states and the

final time as DA variables

[

x1
0

]

= x1
0 + δx1

0

[

x2
0

]

= x2
0 + δx2

0

, (5.7)

[tf ] = t∗FG + δt. (5.8)

Note that the nominal value of the final time is set to the first guess TCA delivered

by the global optimizer.

The resulting objects initial conditions are propagated forward with AIDA and,

according to Section 2.4, the Taylor polynomials of the final state are obtained as

function of time and initial uncertain states

[

x1
f

]

= x1
f +Mx1

f

(

δt, δx1
0

)

[

x2
f

]

= x2
f +Mx2

f

(

δt, δx2
0

)

.
(5.9)

Note that the polynomial map can also be obtained using any other DA implemen-

tation of an orbital propagation, e.g. SGP4/SDP4. The algorithm does not need any

modification to obtain the expansion of the TCA and DCA starting from polynomial

maps that are not produced with AIDA.

In Eq. (5.9), x1
f and x2

f are the nominal final positions of the two objects at time

t∗FG, whereas Mx1

f

(

δt, δx1
0

)

and Mx2

f

(

δt, δx2
0

)

are the higher order terms of the
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Taylor polynomials that describe how changes in both final time and initial conditions

affect the final states.

After the integration, the squared relative distance can be computed in the DA

framework, resulting in

[d2] = d2 +Md2

(

δt, δx1
0, δx

2
0

)

, (5.10)

which is a Taylor polynomial of 13 variables. By using the operator of differentiation

implemented in COSY-Infinity, the Taylor polynomial

[

∂d2

∂t

]

= c0 +M ∂d2

∂t

(

δt, δx1
0, δx

2
0

)

(5.11)

is computed. Note that the constant part c0 is not zero as the numerical integration

in AIDA is stopped at t∗FG, which is the nominal TCA when SGP4/SDP4 is used for

the propagation. By subtracting c0 to (5.11), and defining δ ∂d2

∂t
=

[

∂d2

∂t

]

− c0, the

following origin preserving augmented map can be built
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, (5.12)

where identities in the variation of the initial states are added. This polynomial

map can then be inverted using suitable polynomials inversion techniques [Ber99b]

obtaining
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. (5.13)

The goal is to compute δt such that
[

∂d2

∂t

]

= 0. This is obtained by evaluating (5.13)

in δ ∂d2

∂t
= −c0
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0
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Iδx1

0
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−1 







−c0

δx1
0

δx2
0









. (5.14)

Note that the first row of the map in Eq. (5.14) is a Taylor polynomial with 1)

a constant part that is the correction to t∗FG necessary to impose the stationarity of

d2 in the AIDA propagator 2) higher order terms that approximate how the TCA

changes depending on the uncertainties in the initial conditions. By plugging the first
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row of Eq. (5.14) into Eq. (5.8) the following result is achieved

[tf ] = [t∗] = t∗ +Mt∗(δx
1
0, δx

2
0), (5.15)

which is the high order Taylor expansion of the TCA evaluated with the numeri-

cal integrator AIDA. Similarly, the high order expansion of the squared distance is

obtained by inserting the first row of Eq. (5.14) into Eq. (5.10), yielding

[d∗2] = d∗2 +Md∗2

(

δx1
0, δx

2
0

)

. (5.16)

The main features of Maps (5.15) and (5.16) are

1. They are nonlinear and analytical.

2. Their accuracy can be suitably adjusted by tuning the expansion order.

3. They reduce the uncertainty analysis to the evaluation of Taylor polynomials.

4. They can be used to study the effect of uncertainties for arbitrary statistics.

5. They can be easily extended to include uncertainties on parameters other than

initial orbital elements (e.g., Bstar for SGP4/SDP4).

For any perturbed initial condition of the two objects (i.e., for any pair of virtual

debris) the evaluation of the Taylor polynomials in Eq. (5.15) and (5.16) delivers

the associated values of TCA and DCA. Of course, these values are not exact: their

accuracy depends on the selected expansion order, the propagation window, and the

range of the uncertainties on the initial conditions.

5.4 Numerical simulations

In this section the methods for conjunction identification described in this chapter

are tested. In Section 5.4.1 the method for the identification of all stationary points

of the relative distance is applied to three test cases. One close conjunction is then

selected for each of the three object combinations and is then used as an initial guess

for the TCA and DCA expansion in Section 5.4.2. The accuracy of the TCA and

DCA polynomial approximation is then assessed in Section 5.4.3.

5.4.1 Preliminary identification via global optimization

The method described in Section 5.2 for the computation of the stationary points of

the relative distance using SGP4/SDP4 and global optimizer COSY-GO are applied

to space objects combinations identified in Table 5.1. The objects are the same

considered in Chapter 3 and the TLEs used for propagation are listed in Appendix

A.1.
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Test Case Sat. No. Sat. Name a [km] e [-] I [deg] Orbit

A
11510 COSMOS 1125 7161 1.15E-3 74.04 LEO
21574 ERS 1 7149 3.49E-3 98.25 LEO

B
20237 COSMOS 2043 7787 4.19E-4 82.57 LEO
23820 OPS 0856 DEB 9895 2.20E-1 87.62 HEO

C
36744 COMS 1 42165 7.88E-5 0.01 GEO
28194 RADUGA 1-7 42166 1.21E-4 5.28 GEO

Table 5.1. Selected objects

LEO satellites

The first test case, labeled A, involves two LEO satellites, COSMOS 1125 and ERS

1. The orbits of the two satellites are plotted in Figure 5.2(a). The two objects orbits

have the same altitude and the angle between the orbital planes is approximately 90

deg. The two satellites approaches twice for each revolution when transiting over the

Earth’s poles.

The stationary points are computed for one week starting from 25 January 2013,

14:09 UTC. The total number of stationary points found is 401 of which 200 are local

minima. The computational time is 5.1 seconds using an expansion order n = 2. In

Figure 5.2(b) the relative distance is plotted around the global minima that occurs on

26 January, 17:45 UTC. The stationary points are marked in gray, with local minima

identified by a plus and local maxima by a diamond marker.

(a) Trajectories of COSMOS 1125 (in black)
and ERS 1 (in grey) spacecraft.
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(b) COSMOS–ERS 1 distance function. In
grey the stationary points identified by COSY-
GO.

Figure 5.2. COSMOMS 1125 and ERS 1 conjunction problem
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LEO and HEO satellites

The second test case, labeled B, involves COSMOS 2043, a LEO satellite, and a debris

from satellite OPS 0856 whose orbit is here classified as HEO. The trajectories of the

two space objects are plotted in Figure 5.3(a). Due to the higher eccentricity of OPS

debris the close conjunctions can occur only once in an orbit when both objects are

transiting over the North pole. In this case the angle between the two orbital planes

is lower than 90 deg, resulting in lower relative velocities at the conjunction.

The stationary points are computed for one week starting from 5 March 2013,

13:10 UTC. The stationary points found are 302, with 151 local minima. In this

case the computational time is 5.8 seconds using an expansion order n = 2. The rela-

tive distance according to SGP4/SDP4 propagation and the corresponding stationary

points, marked in gray, are plotted in Figure 5.3(b). The global minima is on 7 March

2013, 06:43 UTC. It is worth observing that the relative distance has a much more

complex shape with respect to the LEO and GEO cases, where the periodicity of the

function period can be immediately identified. Due to the different orbital periods

and perturbations effects, the position and value of maxima and minima is less pre-

dictable. In addition, the value of the relative distance value between a local maxima

and the subsequent local minima can be really small in some cases. This reflects in

the slightly larger computational time with respect to test case A.

(a) Trajectories of COSMOS 2043 (in black)
and OPS 0856 (in grey) spacecraft.
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(b) COSMOS–OPS distance function. In grey
the stationary points identified by COSY-GO.

Figure 5.3. COSMOMS 2043 and OPS 0856 conjunction problem

GEO satellites

The third test case considers the close approach between the satellites COMS and

RADUGA 1-7 whose trajectories are propagated with SGP4/SDP4.

Figure 5.4 shows the conjunction problem between COMS and RADUGA 1-7

spacecraft. Figure 5.4(a) shows the orbits of two satellites. The Korean COMS

satellite is in GEO at 128.2 deg East ±0.05 deg and the Russian RADUGA 1-7
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(a) Trajectories of COMS (in black) and
RADUGA 1-7 (in grey) spacecraft.
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(b) COMS–RADUGA 1-7 distance function.
In grey the stationary points identified by
COSY-GO.

Figure 5.4. COMS and RADUGA 1-7 conjunction problem

satellite is in inclined GEO at 128.0 deg East ±0.5 deg. When the RADUGA 1-7

satellite passes through the longitude of 128.2 deg East, close approaches of the two

satellites happen two times a day during a few days. This effect is shown in Figure

5.4(b) where the distance function is plotted for one week starting from 7 February

2011, 17:28 UTC. In the same figure the stationary points of the distance function

computed with COSY-GO are marked in grey.

In Table 5.2 the function evaluations and the computational time are reported for

different expansion orders and interval widths in which the search space is initially

subdivided. (Note that the number of initial intervals is the minimum value of function

evaluations required by the optimizer to solve the problem). A minimum dimension

of 10−4 hr is considered for the optimizer for all the simulations. It can be remarked

that

1. For fine grids only few additional function evaluations are required by the opti-

mizer to compute the global optimum

2. Increasing the expansion order reduces the number of function evaluations as

tighter enclosures of the objective functions are obtained (this effect is magnified

for large widths)

3. For moderately small widths the minimum value of function evaluations is al-

ready obtained with third order computations.

4. Small interval widths increase the number of function evaluations as unnecessary

evaluations are imposed.

5. Large interval widths increase the number of function evaluations as many in-

terval splittings are necessary.
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Interval width
0.5 1 2 4

(hr)

# of interval 336 168 84 42

order Function evaluations (computational time)

1 (JGM ) 386 (0.33 s) 288 (0.48 s) 322 (0.67 s) 372 (0.67 s)
1 (JSP ) 540 (1.29 s) 714 (1.60 s) 798 (1.73 s) 840 (1.73 s)
2 (JGM ) 341 (0.27 s) 200 (0.28 s) 159 (0.42 s) 201 (0.43 s)
2 (JSP ) 450 (1.43 s) 317 (1.05 s) 401 (1.26 s) 443 (1.26 s)
3 (JGM ) 339 (0.29 s) 185 (0.32 s) 114 (0.40 s) 156 (0.40 s)
3 (JSP ) 446 (1.91 s) 303 (1.47 s) 303 (1.57 s) 345 (1.57 s)
4 (JGM ) 339 (0.37 s) 185 (0.43 s) 112 (0.48 s) 154 (0.47 s)
4 (JSP ) 445 (2.67 s) 303 (2.07 s) 246 (1.78 s) 288 (1.78 s)
5 (JGM ) 339 (0.44 s) 185 (0.55 s) 111 (0.60 s) 153 (0.61 s)
5 (JSP ) 445 (3.50 s) 303 (2.72 s) 221 (2.06 s) 263 (2.06 s)

Table 5.2. Function evaluations as function of expansion order and interval width for
objective function JGM and JSP

6. The computational time (in general) increases with the function evaluations and

with the expansion order but, for a given expansion order, it is possible to have

lower computational times associated to higher number of function evaluations.

This is due to a different sequence of polynomial bounders used by the optimizer

for the reduction of the search space.

The stationary points identified by COSY-GO are listed in Table 5.3 for an initial

discretization of 2 hr and third order expansion. The values matches those reported

in [Lee11] and that can be computed running the Matlab version of SGP4 released

by David Vallado 1.

Figure 5.5 summarizes the results obtained with a Monte Carlo run of 50000

samples on the expansion maps (5.15) and (5.16) around the DCA. For both spacecraft

the statistical analysis considers the following values of standard deviations for the

mean orbital parameters: σa = 1000 m, σe = 1 × 10−5, σi = 1 × 10−2 deg, σΩ =

1 × 10−2deg, σω = 1 × 10−2 deg, σM = 1 × 10−2 deg. These values do not have

any practical justification (e.g., they are not derived by pseudo-observations derived

from TLE data), but are assumed to show the capability of the method of managing

large uncertainty sets. Figure 5.5(a) shows the distribution of the minimum distance

between the two spacecraft, characterized by a 0 percentile of 3.948 m. Note that for

the large uncertainties introduced on initial conditions, the set of TCA reported in

Figure 5.5(b) has a width of the order of a minute. The CPU time required to run

the algorithm of Section 5.3.1 at 5-th order is 0.19 s, and the Monte Carlo simulation

1downloadable from http://celestrak.com/software/vallado-sw.asp

http://celestrak.com/software/vallado-sw.asp
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Julian date Distance [km] Type

[ 2455607.199784, 2455607.199786 ] [ 3878.274475, 3878.274477 ] GMax
[ 2455606.950425, 2455606.950427 ] [ 66.692821, 66.692824 ] LMin
[ 2455606.701130, 2455606.701132 ] [ 3877.560944, 3877.560946 ] LMax
[ 2455606.451835, 2455606.451837 ] [ 65.351702, 65.351704 ] LMin
[ 2455606.202486, 2455606.202488 ] [ 3878.272781, 3878.272783 ] LMax
[ 2455605.953130, 2455605.953132 ] [ 55.213738, 55.213740 ] LMin
[ 2455605.703838, 2455605.703840 ] [ 3877.513184, 3877.513186 ] LMax
[ 2455605.454545, 2455605.454547 ] [ 53.932389, 53.932391 ] LMin
[ 2455605.205198, 2455605.205200 ] [ 3878.171056, 3878.171058 ] LMax
[ 2455604.955846, 2455604.955848 ] [ 43.870709, 43.870711 ] LMin
[ 2455604.706556, 2455604.706558 ] [ 3877.361346, 3877.361348 ] LMax
[ 2455604.457266, 2455604.457268 ] [ 42.662315, 42.662317 ] LMin
[ 2455604.207922, 2455604.207924 ] [ 3877.971065, 3877.971067 ] LMax
[ 2455603.958573, 2455603.958575 ] [ 32.681655, 32.681658 ] LMin
[ 2455603.709286, 2455603.709288 ] [ 3877.124761, 3877.124763 ] LMax
[ 2455603.459999, 2455603.460001 ] [ 31.542157, 31.542159 ] LMin
[ 2455603.210657, 2455603.210659 ] [ 3877.705390, 3877.705392 ] LMax
[ 2455602.961311, 2455602.961313 ] [ 21.635605, 21.635607 ] LMin
[ 2455602.712027, 2455602.712029 ] [ 3876.844429, 3876.844431 ] LMax
[ 2455602.462743, 2455602.462745 ] [ 20.546279, 20.546281 ] LMin
[ 2455602.213402, 2455602.213404 ] [ 3877.418900, 3877.418902 ] LMax
[ 2455601.964060, 2455601.964062 ] [ 10.714866, 10.714868 ] LMin
[ 2455601.714777, 2455601.714779 ] [ 3876.565917, 3876.565919 ] LMax
[ 2455601.465495, 2455601.465497 ] [ 9.642766, 9.642768 ] LMin
[ 2455601.216156, 2455601.216158 ] [ 3877.156134, 3877.156136 ] LMax
[ 2455600.966815, 2455600.966817 ] [ 1.357918, 1.357920 ] GMin
[ 2455600.717533, 2455600.717535 ] [ 3876.332666, 3876.332668 ] LMax
[ 2455600.468253, 2455600.468255 ] [ 1.676237, 1.676239 ] LMin

Table 5.3. Stationary points of the square distance function between COMS and RADUGA
1-7.

of 50000 samples takes 14.26 s (this is due to the evaluations of Taylor polynomials

of 12 variables; the computational time reduces to 3.85 and 0.86 s for 4-th and 3-rd

order computations, respectively).

5.4.2 Nominal TCA identification and time expansion accuracy

Three close approaches are selected among those identified in the previous section

using TLEs and SGP4/SDP4 propagations. The selected TCA and DCA are reported

in Table 5.4, together with the relative velocity ∆v at the close approach. It can be

observed that the relative velocity at the close encounter varies from more than 12

km/s for LEO to a few hundred m/s for the geosynchronous case. As a result, the

close approaches can last from few seconds up to tens of seconds or even minutes.
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Figure 5.5. Statistical analysis of COMS and RADUGA 1-7 conjunction

Test
Sat. No. Orbit

TCA
TCA

DCA ∆v
case [days] [km] [km/s]

A
11510 LEO 3.538

2013 Jan 26 17:45:19 1.149 12.472
21574 LEO 3.805

B
20237 LEO 4.125

2013 Mar 07 06:34:23 6.064 8.553
23820 HEO 2.403

C
36744 GEO 0.240

2011 Feb 07 23:14:17 1.676 0.283
28194 GEO 0.431

Table 5.4. Close approaches: first guesses with SGP4/SDP4

Figure 5.6 illustrates the relative distance as a function of time in the neighbour-

hood of TCA for the three close approaches. The dashed line refers to the relative

distance between the two objects computed using TLEs and SGP4/SDP4 propaga-

tions; the grey dot is the identified minimum. The relative distance obtained with

AIDA propagation is plotted on the same figure with a solid black curve. The TCA

of Table 5.4 are used as first guesses for the algorithm described in Section 5.3, which

uses the nominal positions and velocities listed in A.1 as inputs. The resulting minima

of the relative distances are reported as grey dots on the solid black curves in Figure

5.6. The threshold value used to sieve potentially dangerous approaches, here set to

7.5 km, is indicated by the dashed-dotted lines.

As can be seen, the algorithm correctly identifies the minima of the relative dis-

tances computed with AIDA propagations. The differences between the two curves

are due to the more accurate dynamical model implemented in AIDA and to the

procedure adopted to estimate the initial conditions from TLEs. In particular, the

error increases with the distance from the time windows on which the OD process

is performed. The largest difference in TCA and DCA is obtained for test case B,
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(c) Test case C

Figure 5.6. Comparison of the relative distances obtained with AIDA and SGP4/SDP4
propagations. Grey dots are identified local minima and the dashed-dotted line is the 7.5
km conjunction threshold.

probably due to slightly differences in the two orbital periods that caused a phase

shift at the TCA with respect to SGP4/SDP4 propagation. For what concerns the

GEO test cases, the TCA and DCA are the closest to the SGP4/SDP4 ones since the

close conjunction occurs within the time window used for the OD process, i.e. less

than 0.5 days from the reference epoch of both objects.

For the sake of completeness, the numerical values of TCA and DCA obtained

with AIDA are reported in Table 5.5.

The analysis of the accuracy of the time expansions is performed on the square

root of Map (5.10) evaluated in −c0 + δt, and considering nominal initial conditions,

i.e.

[d] = d+Md(δt). (5.17)

The accuracy of Map (5.17) in a time window of 8 minutes around t∗ is illustrated for

the three conjunctions in Figure 5.7, where the relative distances computed with the

DA approach are compared with pointwise propagations for samples equally spaced

in the time domain. A third order expansion is used, following the considerations
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Test
Sat. No. Orbit TCA

DCA ∆v
case [km] [km/s]

A
11510 LEO

2013 Jan 26 17:45:19 1.641 12.471
21574 LEO

B
20237 LEO

2013 Mar 07 06:34:27 5.248 8.553
23820 HEO

C
36744 GEO

2011 Feb 07 23:14:17 1.739 0.283
28194 GEO

Table 5.5. Close approaches: TCA, DCA, and relative velocities obtained with AIDA and
TCA expansion algorithm
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(a) Test case A
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(b) Test case B
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(c) Test case C

Figure 5.7. Comparison between pointwise numerical propagations and polynomial expan-
sions for the relative distance d in the proximity of TCA

carried out in Section 3.3.1 about computational time and expansion accuracy.

The error reaches its minimum at the TCA and increases with the displacement

from TCA. The maximum errors on the DCA are at the boundary of the considered
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time intervals, and are 108 m for test case A, 294 m for test case B, and 4−3× 10m

for test case C. The computational costs for each simulation are listed in Table 5.6.

Most time is needed in the propagation of the two orbits, whereas the time required

for the identification of the TCA is only a few milliseconds and is independent of

the propagation period covered for each orbit. Note that the computational time for

orbit propagation of the two GEO orbits is really low due to the short time interval

between TCA and reference epoch.

Test case 1st orbit prop. 2nd orbit prop. TCA expansion Total time

A 31.44 34.11 8.83E-3 65.56 s
B 33.05 12.85 8.51E-3 45.91 s
C 0.34 0.51 8.62E-3 0.85 s

Table 5.6. Computational time of TCA identification algorithm. In this case propagation
with AIDA is performed only with one DA variable, time tf .

5.4.3 TCA and DCA expansion accuracy

As already pointed out in Sect. 3.3.1, each virtual debris is characterized by a different

trajectory evolution. Thus, each pair of virtual debris has its own value of TCA and

DCA. If a pointwise method is used, the integration of two orbits and the use of

a root-finding method would be required for each pair of virtual debris. The DA-

based method introduced in this work allows replacing multiple propagation with

faster evaluations of Taylor polynomials, after a single DA propagation of the two

objects is carried out with AIDA. These maps can be used provided that they are

sufficiently accurate for the aimed task: i.e., the identification of conjunctions and

the computation of collision probabilities. As an example, when the computation

of collision probabilities is of interest, the error on DCA expansion should be at

least lower than the threshold adopted for the classification of a close conjunction

as potentially dangerous. The accuracy analysis of these maps is the focus of this

section.

As the expansion errors get bigger for larger uncertainties, the same method used

for the selection of virtual debris in Sect. 3.3.1 is here used. Thus, 109 samples are

generated and those with the largest displacement from the nominal initial position

and velocity of the two objects are selected. Given a couple of virtual debris, the

TCA and DCA computed with the evaluation of the Taylor polynomials (5.15) and

(5.16) are compared with those obtained with AIDA pointwise integrations (i.e., two

integrations and some root-finder iterations). The comparison of the times and as-

sociated distances of close approach for the three conjunctions are given in Figures

5.8(a), 5.8(c), and 5.8(e).

The black dots are the TCAs and DCAs obtained with the pointwise numerical
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(c) Test case B: TCA vs. DCA
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(d) Test case B: DCA error
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(e) Test case C: TCA vs. DCA
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(f) Test case C: DCA error

Figure 5.8. Comparison between pointwise numerical propagations and polynomial expan-
sions for TCA and DCA with uncertain initial states
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propagation of the set of virtual debris, whereas grey crosses are the values obtained

with DA maps evaluations. The dashed line locates the nominal TCA value. In all

cases the polynomial evaluation matches the numerical one. The difference between

the polynomial evaluation of the perturbed TCA, t∗DA, and the pointwise one, t∗PW ,

is always lower than 10−4 seconds making them indistinguishable in Figure 5.8.

The error on the DCAs is defined as

errd∗ = |d∗PW − d∗DA| , (5.18)

where d∗PW is the numerical DCA obtained with pointwise integrations, and d∗DA is the

one obtained with the evaluation of the Taylor expansions. This error is plotted versus

the numerical DCA in Figures 5.8(b), 5.8(d), and 5.8(f). The data are compared with

two thresholds, 100 m and 25 m. These two values represent estimates of the combined

hard body radius that can be used for collision probability computation. The nominal

DCA is indicated with a vertical dashed line.

In all cases the error on the DCA is well below the 25 m threshold, so the accuracy

of the methods is suitable for a collision probability computation using a Monte Carlo

method. The accuracy of the DA map can be related to the accuracy of the final

position map with respect to propagation time analyzed in Sect. 3.3.1 and summarized

in Figure 3.7(b). The maximum error for test case A is around 10−5 km and the TCA

is 3.5 days after the reference epoch of satellite 1 and 3.8 days after the reference epoch

of satellite 2. This is the same error of the final position map of the LEO orbit after

4 days of propagations. Similar considerations can be made for test case 2, where the

TCA is 4.1 days after the reference epoch of satellite 3 and 2.4 days after the reference

epoch of satellite 4, that is in HEO. The maximum error for these propagation times,

according to Figure 3.7(b), is obtained for the HEO orbit and is nearly 10−3 km,

which is compatible with the error obtained for the DCA expansion. The lower error

is found for the GEO, also due to the short propagation time.

The computational times required for computing Map (5.15) and (5.16) are listed

in Table 5.7. The higher number of variables results in higher computational cost

with respect to the single variable DA propagations of Table 5.6. Note that these

performances could be improved by running the propagation of the two orbits in

parallel, reducing in this way the computational time to the one required by the most

demanding orbit. In addition, in case of multiple conjunctions, the propagation of

the two objects can be performed only once, whereas the TCA and DCA expansion

algorithm is run on each conjunction.

Note that the evaluation of the d∗ map takes 1.73×10−5 s on average (this number

is obtained by evaluating the map for one million samples using the Horner scheme

implemented in COSY INFINITY). If one considers that the reliable computation of

collision probability requires a large set of virtual debris to be evaluated, it is appar-

ent that the proposed approach allows large time savings with respect to pointwise

propagations, with limited loss of accuracy.
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Test case 1st orbit prop. 2nd orbit prop. TCA&DCA expansion Total time

A 265.76 313.80 4.85E-2 579.60 s
B 262.44 101.53 3.99E-2 364.02 s
C 1.86 3.13 3.86E-2 5.03 s

Table 5.7. Computational time of TCA and DCA expansion algorithm. Each propagation
with AIDA involves in this case 7 DA variables, i.e. time and initial states, since the aim is
to obtain the polynomial approximation of d∗ = M(δx1

0, δx
2

0)

5.5 Conclusions

A method for the analysis of close conjunctions between objects in Earth orbit has

been presented. Differential algebraic (DA) techniques have been exploited to cal-

culate the Taylor expansion of the time and distance of closest approach (TCA and

DCA) with respect to initial orbital uncertainties. This reduces the problem of com-

puting the TCA and DCA for the entire set of virtual debris to 1) two DA-based

numerical propagations 2) polynomial manipulations to get maps of the time t∗ and

distance d∗ of closest approach as function of uncertain initial states 3) multiple fast

evaluations of these maps.

The numerical propagations are performed with AIDA (Accurate Integrator for

Debris Analysis), a high-fidelity propagator written in the language COSY INFIN-

ITY. This allows us to compute, along with the trajectory, the high order expansion

of the flow with respect to initial conditions in a limited amount of time. The re-

sulting expansions are then used to build the map of the squared distance function.

Partial inversion techniques and polynomial compositions are exploited to calculate

the nominal values of TCA and DCA as well as their Taylor expansion with respect

to uncertainties in the initial states. Thus, for each pair of virtual debris the com-

putation of TCA and DCA reduces to polynomial evaluations. As a result, a drastic

reduction in computational cost is achieved compared to classical pointwise methods:

this paves the way to the development of efficient algorithms for the computation of

collision probabilities.

The accuracy of the Taylor polynomials is suitable for the computation of a col-

lision probability. An analysis is performed considering the 100 samples with the

largest displacement from the nominal initial conditions among a set of 109 samples

generated considering the full covariance matrix. The error between the polynomial

evaluations of the DCA maps and a pointwise propagation are always less than 1 m

for the considered orbits. It was also shown that the accuracy of the map of d∗ is

related to the accuracy of the maps of the final position of the objects. With order

k = 3 and propagation window of 7 days, the error on the final position is less than

1 m for the orbits that are analyzed in this Chapter.





6

Collision probability computation

The risk of in-orbit collisions between operative satellites and space debris is a crucial

issue in satellite operation. When a close approach is identified, it is necessary to

define an indicator that can tell how risky the predicted conjunction is. It is com-

mon practice for space agencies and satellite operators to consider, together with

conjunction geometry and miss-distance, the collision probability for this purpose

[Kli05, Rig11].

The collision probability is computed by means of a multi-variate integral. The

uncertainties in position and velocity coming from orbit determination can be trans-

lated into a probability density function (p.d.f.). The probability density function is

then integrated over the volume swept out by the combined hard-body area of the

satellite and colliding object, normal to the velocity vector, to retrieve the collision

probability.

Different methods exist for the computation of this multi-dimensional integral.

Most of these approaches [Ake00, Bèr99a, Pat01, Kli06] have the following assump-

tions in common:

• Position uncertainties of the two objects are not correlated;

• Objects move along straight lines at constant velocity during the conjunction;

• The uncertainty in the velocities is neglected;

• Position uncertainty during the whole encounter is constant and equal to the

value during the conjunction;

• The uncertainties in the positions of the two objects are represented by three-

dimensional Gaussian distributions.

These assumptions produce accurate results when the relative motion between the

satellite and the object is rectilinear and the conjunction occurs close to the initial

epoch so that the p.d.f. of the relative position of the two objects remains Gaussian.

The probability density function in the proximity of the close approach, under the
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assumption that position error is Gaussian, is expressed as

p (∆r) =
1

√

(2π)3 detC
e−

1

2
∆rTC−1∆r, (6.1)

where ∆r is the objects relative position vector. Integrating over the volume V swept

out by the hard-body sphere with volume Vc, that is the combined volume of the

colliding objects, yields the collision probability

Pc =
1

√

(2π)3 detC

∫∫∫

V

e−
1

2
∆rTC−1∆r dV. (6.2)

Because of the assumption of rectilinear motion of both conjuncting objects, the

volume V is a cylinder extending along the relative velocity direction. By integrating

the p.d.f. along the cylinder axis from -∞ to +∞, the marginal two-dimensional p.d.f

is obtained and the volume integral is reduced to a two-dimensional integral on the

collision cross sectional area [Cha08]. Supposing that the combined covariance C is

centred on the primary object and that the combined hard-body is positioned on the

secondary object, the two-dimensional integral of the marginal p.d.f. on the collision

cross-sectional area in the (x,y) encounter plane can be written as [Ake00, Kli06,

Bèr99a]:

Pc =
1

2π
√
detC

∫ Rc

−Rc

∫

√
R2

c−x2

−
√

R2
c−x2

e−A dy dx. (6.3)

The exponent argument A is

A =
1

2
∆rT C−1∆r, (6.4)

where Rc is the combined radius of the two spherical objects and C now denotes the

covariance in the marginal two-dimensional pdf. The analytical methods available in

the literature differ in the way the two-dimensional integral is approximated. Chan

transforms the two-dimensional p.d.f. into a one-dimensional Rician p.d.f. and uses

equivalent areas to develop an analytical approximation of the double integral [Cha97].

A series expression to approximate Eq. (6.3) is derived by Alfano, using a combination

of error functions and exponential terms [Alf05a] of the form

Pc =
2Rc

σxn
√
8π

n
∑

i=0






erf
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√
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√
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where σx and σy are the standard deviation ofC in principal components and (xm,ym)

are the coordinates of the secondary object again transformed in principal axis.

Patera performs an exact reduction of the two-dimensional integral of Eq. (6.3) to

a one-dimensional contour integral over a general-shaped body [Pat01]. The method

was then extended to use numerical quadrature for a simple one-dimensional integral

[Pat05].

Methods that account for non-linearities, which are typical of GEO conjunctions,

were also developed [Cha04, Pat03, Pat06]. An approach that uses a set of small con-

secutive linear segments to compute collision probability for non-linear conjunctions

is presented in [Alf06, McK06].

The conflict probability, used for air-traffic control by the aviation community

[Pai97], was proposed as an alternative to collision probability as a metric to quantify

the collision risk even for space objects [Pat07a]. The conflict probability is computed

similarly to collision probability, using a conflict volume instead of the combined hard-

body region. It corresponds to the probability that a single conflict volume, centred on

one space object, will be penetrated by the other space object. The conflict volume is

large compared to space vehicle size and, as a result, conflict probability is higher than

collision probability. In addition, no information on hard-body size, which is usually

not available for space debris, is required. The conflict probability was extended

to the case of ellipsoidal conflict volumes and tested against other metrics for the

identification of risky conjunctions, showing good performances for the analyzed test

cases [Pat07b].

Besides the analytical methods, the collision probability integral can be computed

by means of Monte Carlo (MC) simulations [dV10, Sab11]. Despite being a general

and flexible way to compute collision probability, the MC approach has the main

drawback of requiring intensive computation, as each virtual satellite/debris trajec-

tory has to be propagated. For this reason Monte Carlo methods are not suitable

for daily collision probability computation, since results can be obtained in a timely

manner only with simple dynamics, such as two-body propagators or SGP4/SDP4.

In recent times, techniques such as importance sampling [Dol11] or adaptive split-

ting [Pas11] have been introduced to cope with the high computational effort. More-

over, a method that couples Monte Carlo with orbital dynamics approximation, ob-

tained by means of polynomial chaos expansion, was introduced to compute satellite

collision probability with reduced computational effort [Jon13]. Monte Carlo methods

were also used to study the impact of non-Gaussian probability density functions on

collision probability computation [Ghr12].

New methods to reduce the computational effort related to collision probability

computation are presented in this work. These methods are based on the Taylor

expansion of the TCA and the DCA of the two orbiting objects. The occurrence of

close approaches is first identified using the nominal initial orbital states. Then, DA

techniques are used to propagate sets of initial conditions by computing the Taylor

approximation of the final states at the nominal TCA. The polynomial expansion
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of the TCA with respect to uncertainties in the initial states is obtained by means

of polynomial inversion tools and plugged into the DCA and final state maps to

retrieve their dependence on initial uncertainties (see Section 5.3.1). The methods

for collision probability computation can now take advantage of the availability of

the resulting polynomial maps. More in detail, the initial positions and velocities are

sampled according to their estimated uncertainties. For each pair of virtual objects,

the associated DCA is computed through the fast evaluation of its Taylor expansion

rather than running computationally intensive numerical integrations. The DCA

is then compared with the collision threshold, i.e. the diameter of the sphere that

envelopes the two objects. Three methods for the computation of collision probability

are presented in this Chapter: a DA-based Monte Carlo simulation and the DA version

of two advanced techniques, namely Line Sampling (LS) and Subset Simulation (SS)

[Au01, Kou04]. A flowchart of the proposed procedure is represented in Figure 6.1,

where the operated satellite is here identified as target, whereas the conjuncting object

is the chaser. Note that the polynomial map obtained with the TCA and DCA

expansion can be used for all DA-based Monte Carlo methods.

Target
initial state &
uncertanties

AIDA
Propagation

DAMC

TCA
guess

TCA & DCA
DA expansion

DALS
Collision

Probability

Chaser
initial state &
uncertainties

AIDA
Propagation

DASS

Figure 6.1. Collision probability computation: flowchart of the proposed procedure.

The Chapter is organized as follows. First the description of MC, LS, and SS

methods in their standard version (i.e. not DA-based) is given in Sections 6.1.1, 6.1.2,

and 6.1.3. Then, their formulation taking advantage of DA techniques is introduced

in Section 6.2. Numerical examples and discussion of results are provided in Section

6.3, which is followed by conclusions.

6.1 Methods for collision probability computation

The two objects initial conditions are defined by the state vectors x1
0 and x2

0. Both

vectors are uncertain due to the orbit determination process, and their statistics can

be represented by a pdf. Typically, the initial statistics is assumed to be Gaussian,
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then the initial state is fully described by its mean and covariance matrix.

The methods for collision probability computation described in this section rely

on the Performance Function (PF)

g
(

x1
0,x

2
0

)

= D − d∗
(

x1
0,x

2
0

)

, (6.6)

in which D is the collision threshold, and d∗ is the function that maps each pair

of initial conditions x1
0,x

2
0 to the associated DCA. Note that, as D is a constant

and d∗ is the distance between the the objects centres of mass it follows that exact

collision probabilities are computed for spherical space objects only. Exact collision

probability could be computed for arbitrary shape objects by tailoring PF. However,

this would be limited to cases of known and constant relative attitude along the whole

encounter. According to the definition of the PF, the following conditions occur

g (x0)















< 0 ⇒ no collision

= 0 ⇒ at limit state

> 0 ⇒ collision,

(6.7)

where, for the sake of brevity, x0 = (x1
0,x

2
0).

The collision threshold D can be related to the dimensions of the two objects. Let

Li, for i = 1, 2, be the diameters of the spherical objects. Then, according to Figure

6.2, D is given by the sum of the radius of the two objects. In case of non-spherical

objects without large appendages the same performance function could be used, by

selecting the sphere that envelopes each object i. This is a conservative approach,

which guarantees that the resulting collision probability is larger than its correct value

since the collision condition will hold for a larger number of virtual objects. The shape

of operative satellites or defunct satellite that did not experience a break-up is usually

known or can be obtained from available data and information. In case the chaser is

a debris generated by fragmentation or explosion, an estimate of the object area or

diameter can be obtained from radar and/or optical measurements. Typical values of

the collision threshold D ranges between a few meters up to 100 m.

L1

L2

2D

Figure 6.2. Collision threshold D definition. The diameters of the two conjuncting bodies
are labeled L1 and L2.
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6.1.1 Monte Carlo method

To compute the collision probability by means of MC simulation, the initial position

and velocity of the two objects are sampled from their error covariance matrices (thus

generating what are called virtual objects or debris). The initial orbital states, x1
0

and x2
0, are then propagated till the time derivative ḋ of the relative distance d is zero,

which happens in the surrounding of the nominal TCA. In this way, the TCA and

DCA are identified for each pair of virtual objects. If the relative distance is below

the threshold D a hit is counted. The number of samples Nc for which the collision

condition is verified, i.e. gx (x0) > 0, is divided by the total number of samples NT

to compute the collision probability

P (d∗ < D) =
Nc

NT

. (6.8)

The standard deviation of the computed probability is given by

σ =

√

P (1− P )

NT

, (6.9)

and is proportional to 1/
√
NT . For standard Monte Carlo methods the coefficient of

variation (c.o.v.), i.e. the ratio between the standard deviation and the mean value,

is thus defined as

δ (P ) =
σ

P
=

√

1− P

NT P
. (6.10)

The collision probability between two spacecraft is usually very low since it exceeds

10−4 only for really close conjunctions. As a consequence, a large number of samples is

required to obtain a sufficiently accurate estimate of its value. According to [Dag00],

the number of samples NT to be used in a Monte Carlo simulation when σ2 > εPc

should be at least

NT >
4 (e− 2) (1− Pc)

Pc ε2
log

(

2

β

)

, (6.11)

where Pc is the collision probability, (1− β) is the desired confidence level, and ε is the

relative error of the collision probability. The number of samples required to compute

a given collision probability with a 95% confidence level is illustrated in Figure 6.3,

where the dashed and a solid lines are computed with a relative error of 1% and 5%,

respectively.

To compute a collision probability of 10−4 with a relative error of 5% at least

4.24 × 107 samples are required, whereas for Pc = 10−6 the minimum number of

samples increases to 4.24× 109.

These considerations point out the main drawback of MC simulations, that is the

high computational effort which is magnified when dealing with very low probabilities

or when a computationally intensive simulation is required for each sample, such as a
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Figure 6.3. Number of Monte Carlo samples required to compute a probability Pc with a
95% confidence level and relative error ε

numerical integration of the equation of motion. Line Sampling and Subset Simula-

tion algorithms, described in the next two subsections, were developed to reduce the

number of samples required to compute low collision probabilities.

6.1.2 Line Sampling

The main idea behind LS is transforming a high dimensional problem into a num-

ber of conditional one-dimensional problems solved along an “important direction”

α [Kou04]. The key issue of the method is identifying this direction, that should

point toward the region of failure, i.e. the hyper-volume of position and velocity de-

viations for which the collision criterion holds. The important direction tells which

combination of states variations is more efficient to reach the failure condition.

In the LS approach, the vector of uncertain parameters x0 ∈ R
n, where n is the

number of uncertain parameters, has first to be transformed into the adjoint vector

θ ∈ R
n. This vector belongs to the so-called “standard normal space”, where each

variable is represented by an independent central unit Gaussian distribution. This is

done using Rosenblatt’s transformation [Ros52]

θ = Tx,θ (x0)

x0 = Tθ,x (θ),
(6.12)

where the operator T.,. indicates the transformation, and applying it to the perfor-

mance function

g (x0) = gx (Tθ,x (θ)) = gθ (θ) . (6.13)
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A natural choice for the important direction is the normalized gradient of the PF at

the nominal point in the standard normal space

α =
∇θ gθ (θ)

‖∇θ gθ (θ)‖2
. (6.14)

If not available analytically, this gradient can be numerically estimated. The more

the estimate of the important direction is close to its true value, the lower will be the

variance of the failure probability [Pra05]. For high-dimensional problems where the

numerical computation of gradients can be time-demanding, it is possible to obtain an

estimate by computing the normalized “centre of mass” of the failure domain. This is

achieved by Monte Carlo Markov Chain (MCMC), using as seed a point belonging to

the failure region or close to it and computing the mean of the Nα samples generated

in the failure region [Zio09b].

gθ (θ) = 0

gθ (θ) > 0

α

θ1

θ2

bc θi

θi,⊥

(a) Projection of the sample vector θ
i on direc-

tions parallel and perpendicular to α to obtain
θ
i,⊥

gθ (θ) = 0

gθ (θ) > 0

α

θ1

θ2

bc θi

θi,⊥

c

θ̃
i

bc

(b) Graphical representation of the line with

parametric equation θ̃
i
(c) used to identify the

values of c for which gθ(c) = 0

Figure 6.4. Illustration of the Line Sampling procedure in a bi-dimensional space (θ1, θ2).
The origin of the reference frame is in the nominal initial states and α points in the direction
of the gradient (i.e. greatest rate of decrease) of the relative distance. Failure region is
surrounded by the grey line.

Once the important direction is identified, the LS method proceeds as follows

LS 1. Sample NT vectors θi from the normal multidimensional joint probability dis-

tribution.

LS 2. Estimate for each sample its conditional one-dimensional failure probability

P̂ 1D,i performing the following operations

(a) Project the vector θi onto the straight line passing through the origin and

perpendicular to α to obtain vector θi,⊥, as portrayed in Figure 6.4(a).

(b) Write the parametric equation of samples along the important direction,

θ̃
i
= θi,⊥ + cα, as sketched in Figure 6.4(b).
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(c) Compute the values of cij , j = 1, 2, for which the PF is equal to zero.

(Here and in the remainder of the Chapter a maximum number of two

zeros is considered.) This step requires evaluations of the PF, which

involve numerical propagations or complex system simulations when gθ is

not known analytically. Note that when the failure region is infinite only

one real solution is found whereas the other is +∞.

(d) If the two values coincide or no solution is found then the ith one-

dimensional probability P̂ 1D,i is equal to zero; else, given the two solutions

ci1 and ci2, with ci1 > ci2, the probability is

P̂ 1D,i (F ) = P
[

ci2 ≤ N(0, 1) ≤ ci1
]

=

= Φ
(

ci1
)

− Φ
(

ci2
) (6.15)

where Φ
(

cij
)

is the standard normal cumulative distribution function,

N(0, 1) is the standard normal distribution, with zero mean and unit

standard deviation, and F indicates the collision condition d ≤ D.

LS 3. Compute the unbiased estimator P̂NT (F ), which is the sample average of the

independent conditional one-dimensional probability estimate

P̂NT (F ) =
1

NT

NT
∑

i=1

P̂ 1D,i (F ) (6.16)

The variance of the collision probability in Eq. (6.16) is given by

σ2
(

P̂NT (F )
)

=
1

NT (NT − 1)

NT
∑

i=1

(

P̂ 1D,i (F )− P̂NT (F )
)2

(6.17)

The total number of system simulations is related to the number of PF evaluations

required to compute, for each sample θi, the values cij at step LS 2(c). When the PF

is smooth and does not present oscillations along the important direction, the number

of sample evaluations can be limited to the one necessary to obtain an approximation

of the function in the region of interest [Zio09b]. For a short-term encounter between

two space objects, the PF along the direction α resembles a parabola. With three

evaluations of the PF, it is indeed possible to obtain a second-order approximation and

compute an approximate value of the intersections ci1 and ci2 with the line gθ(c) =

0, if they exists. Although reducing the computational effort when dealing with

computationally demanding simulations, such an approach strongly depends on the

choice of the c grid required to compute the approximation of the PF. A wrong spacing

of the grid could result in erroneous estimations of the intersections with the failure

region boundary. Thus, when this approach is selected, it is important to verify that

the computed intersections are close to the true values for different close encounter



116 6 Collision probability computation

geometries and relative velocities.

6.1.3 Subset Simulation

Subset Simulation (SS) is an adaptive stochastic simulation method to compute ef-

ficiently small failure probabilities [Au01]. The idea at the basis of the method is

to compute the probability as a product of larger conditional probabilities. Thus,

given a sequence of intermediate failure regions F1 ⊃ F2 ⊃ · · · ⊃ Fm = F , the failure

probability becomes

P (F ) = P (Fm) = P (F1)
m−1
∏

l=1

P (Fl+1|Fl) , (6.18)

where P (Fl+1|Fl) indicates the probability of Fl+1 conditional to Fl. The method is

initialized using a standard Monte Carlo simulation to generate samples at conditional

level 0. Once the failure region F1 is determined and the probability P (F1) computed,

a MCMC algorithm [Met53] is used to generate samples conditional to the failure re-

gion F1. Another intermediate failure region F2 is then located and other samples

are generated with MCMC. The process can be repeated till the failure region corre-

sponding to objects collision is identified. The approach was originally developed to

address structural failure, but it was also used in different research areas in reliability,

e.g. to address the failure probability of thermal-hydraulic passive system [Zio09a].

The main issue of the algorithm is to identify the intermediate failure regions. This

can be achieved by choosing a constant probability value p0, and searching a threshold

value of the relative distance at every conditional level for which P (Fl|Fl−1) = p0.

The PF changes accordingly: being Dl the collision threshold at conditional level l,

it can be defined as

glx (x0) = Dl − d∗ (x0) . (6.19)

Similarly to Eq. (6.6), the following conditions occur

glx (x0)















< 0 ⇒ x0 is out of lth conditional level

= 0 ⇒ x0 is at limit state

> 0 ⇒ x0 is in lth conditional level.

(6.20)

Since the conditional probability is equal to p0 at each iteration, the collision proba-

bility in Eq. (6.18) can be computed as

P (F ) = P (Fm) = P (Fm|Fm−1) p0
m−1 (6.21)

The resulting SS algorithm goes through the following steps (refer to Figure 6.5 for

its schematic representation):

SS 1. Set l = 0 and generate N sample vectors x0,k
0 , k = 1, . . . , N , by standard MC
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simulation. The superscript 0 denotes that the samples are at “conditional

level 0”.

SS 2. Compute the values of the PF glx (x0) for the N samples xl,k
0 .

SS 3. Sort the N samples in ascending order, according to their associated value of

the performance function glx. The samples closer to the failure region will be

at the bottom of the list.

SS 4. Choose the intermediate threshold value Dl+1 from the (1 − p0)Nth value

of the sorted list. The (l + 1)th conditional level is then defined as Fl+1 =

{d∗ < Dl+1}. The associated conditional probability is, according to the defi-

nition, P (Fl+1|Fl) = P (d∗ < Dl+1 | d∗ < Dl) = p0.

SS 5. If Dl+1 ≤ D go to last step otherwise identify the p0N samples x
l,u
0 , u =

1, 2, . . . , p0N , whose relative distance lies in Fl+1. All these samples belong to

“conditional level l + 1”.

SS 6. Using MCMC, generate (1 − p0)N additional conditional samples distributed

as p (·|Fl+1), so that a total of N conditional samples x
l+1,k
0 ∈ Fl+1, where

k = 1, . . . , N . Eq. (6.20) can be used to establish whether each sample belongs

to conditional level l + 1 or not.

SS 7. Set l = l + 1 and return to step 2 above

SS 8. Stop the algorithm

The total number of samples generated is

NT = N + (m− 1)(1− p0)N, (6.22)

where m is the number of conditional levels required to reach the failure region.

According to Eq. (6.21) the collision probability becomes

P (d∗ < D) = p0
m−1P (Fm |Fm−1) = p0

m−1 NF

N
, (6.23)

where N is the total number of samples at each conditional level and NF is the

number of samples at conditional level m, whose relative distance is less than the

collision threshold D.

The efficiency of the SS algorithm relies on the proper selection of its parameters:

the conditional failure probability p0, the number of samples of each step N , and the

shape of the proposal probability density function for the generation of the Markov

chain. A detailed analysis on the selection of these parameters is given in [Zue12],

where it is shown that the optimal choice for p0 is 0.2 (although similar efficiency

is obtained for p0 ∈ [0.1; 0.3]). For what concerns the proposal p.d.f. of MCMC, a

univariate Gaussian distribution is used in this work. The variance σl of the proposal
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Figure 6.5. Illustration of the Subset Simulation algorithm for a bi-dimensional space
(x1, x2). The dots are the generated samples and the lines identify the conditional levels.
The grey dots are the samples belonging to the lth conditional levels and the arrows represent
the MCMC path.

p.d.f. is changed dynamically at each conditional level l so that the acceptance rate of

Markov Chain samples is kept between 30% and 50%. This solution is nearly optimal,

i.e. the chain converges to stationarity nearly as fast as possible.

[Zue12] also suggest a Bayesian post-processor for Subset Simulation, SS+, to

refine the computed failure probability and determine higher moments, allowing the

computation of the failure probability variance. Defining

nl =







p0N if l < m

NF if l = m
(6.24)

the first moment of the distribution of the failure probability becomes

ESS+ [P (F )] =
m
∏

l=1

nl + 1

N + 2
, (6.25)
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whereas the second moment is given by

ESS+

[

P (F )
2
]

=

m
∏

l=1

(nl + 1) (nl + 2)

(N + 2) (N + 3)
. (6.26)

The variance of the collision probability P (F ) can then be obtained using the defini-

tion

V ar(P ) = E[P 2]− (E[P ])
2
. (6.27)

The number of samples N to be used depends on the problem dimension and the

expected failure probability. Furthermore, if the failure region is disconnected, the

samples must be dense enough to lie in the proximity of each subregion at conditional

level zero and then reach them at the subsequent conditional levels. The tests showed

that a good choice is N = 2× 103 for collision probability computation.

To stress the advantages of the SS method over standard MC for low failure

probability computation, two experimental cumulative distribution functions (c.d.f.)

obtained with SS and MC for a close conjunction are compared in Figure 6.6. The

solid black line is the distribution obtained with SS using 14000 samples (p0 = 0.2,

N = 2000 samples and 7 conditional levels), the dashed line is the c.d.f. obtained with

MC using the same number of samples, and the solid grey line is the c.d.f. for a MC

with 106 samples.
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Figure 6.6. Cumulative probability comparison between SS and MC

The three curves seem to agree over the entire set of relative distances. However,

the detail reported in Fig. 6.6(b) shows the lack of accuracy of the MC simulation

with fewer samples in the proximity of the failure region. As the maximum cumulative

probability in Fig. 6.6(b) is about 0.001, only 14 samples out of 14000 lie, on average,

in the associated range of relative distances in the MC simulation. In particular,

only two samples have a relative distance below 10 m and no samples are located
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under 5 m. In contrast, SS generates nearly 5000 samples in the same region, which

is five times more than the ones generated by MC with 106 samples. The samples

generated by SS provide enough information to describe the c.d.f. accurately even at

lower conditional probability level, i.e. closer to the failure region.

6.2 DA-based methods for collision probability

The methods described in the previous section are here modified to take advantage of

the Taylor expansion of the DCA, described in Section 5.3. The Taylor expansions of

the state vectors x1
f and x2

f of the two objects at the nominal TCA are here obtained

by propagating their initial conditions with the DA-based numerical integrator AIDA

(see Sect. 3.2).

It is worth observing that the presented methods are applicable only for cases

with a single DCA and TCA. Nonlinear relative motion with multiple DCAs are not

analyzed in this work and will be addressed in future works. In the following, the

main modifications to the three proposed methods are summarized.

6.2.1 DAMC

For what concerns the Monte Carlo method, its DA-based counterpart is simply

obtained by substituting each pair of numerical or analytical propagations necessary

to compute the DCA with a single evaluation of the map in Eq. (5.16). In the

following, the acronym DAMC-k is used to label the resulting DA-based Monte Carlo

method, where k is the order used for the Taylor expansion of the TCA and DCA.

6.2.2 DALS

The availability of the DCA expansion is exploited for the computation of the impor-

tant direction α in the LS method. Once the polynomial map in Eq. (5.16) is available,

the Taylor expansion of gθ (θ) in Eq. (6.13) is obtained by evaluating Eq. (6.6) to-

gether with Eq. (6.12) in the DA framework. Then, the gradient of gθ is readily

obtained by extracting the twelve first order coefficients of its Taylor expansion and is

used to compute α using Eq. (6.14). In addition, similarly to DAMC, each numerical

propagation of the standard algorithm is substituted by a polynomial evaluation of

Eq. (5.16). Moreover, accurate methods for the computation of the parameters ci1 and

ci2 can be developed since the evaluation of the polynomial approximation of gθ is fast.

More in detail, to further speed up the execution of a DA-based LS simulation, the

algorithm described in Section 6.1.2 is slightly modified. The step LS 2(c) is divided

in two parts. First, the maximum of the PF and the associated value cimax for the

ith sample are identified. The two values ci1 and ci2 are then computed only if the

maximum of the PF is positive. This is done by applying a secant method using two

initial guesses that are close to cimax, one slightly larger and the other slightly smaller.
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If the maximum of the PF is negative there is no need to compute intersections and

P 1D,i = 0. Although this approach increases the complexity of the method, it avoids

unnecessary polynomials evaluations increasing the robustness and efficiency of the

DA-based LS. The acronym DALS-k is used in the following to indicate the DA-based

Line Sampling with expansion order k.

6.2.3 DASS

Similarly to DAMC, in the DA-based Subset Simulation, the numerical propagations

at step SS 2 are replaced by the fast evaluation of the polynomial map in Eq. (5.16).

All other steps involve sorting and generation of samples through MCMC and do not

require any modification. Hereafter this algorithm will be labelled as DASS-k, where

k is again the order of the expansion.

6.3 Numerical Examples

In this section, the performances of the proposed approaches are assessed on the

computation of collision probabilities for close encounters in LEO and GEO. All com-

putations are performed on a Intel Core i5 2500 @3.30GHz, 8Gb RAM processor

running Sabayon Linux (kernel version 3.11.0).

At first, the DA algorithms are compared against analytical methods and stan-

dard Monte Carlo simulations, using test cases in which the relative motion can be

considered linear, non-linear and almost-linear, respectively. The test cases are taken

from [Alf09], where simple Keplerian dynamics is used to compare a set of different

methods for collision probability computation. The aim of this analysis is to vali-

date the proposed methods and assess their performances in terms of accuracy and

efficiency.

Then, the methods are tested using the high fidelity numerical propagator AIDA.

The covariance matrices for each object are obtained after a pseudo orbit determi-

nation process, where observed states are obtained with TLEs propagation through

SGP4/SDP4. The orbit determination is performed as a batch least-square optimiza-

tion, yielding a full 6×6 covariance matrix. The goal of this analysis is to test the

methods in real scenarios and assess their reliability.

Since the considered methods employs different number of samples, two figures

of merit are used for comparisons [Zio09b]. The first figure of merit is the unitary

coefficient of variation, ∆, and is defined as

∆ =
σ

P̂c

√

NT , (6.28)

where σ is the standard deviation of the collision probability from its estimated value

P̂c, and NT is the total number of samples used. The unitary c.o.v. does not depend

on the number of samples, since for Monte Carlo methods σ ∝ 1/
√
NT . It is designed
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to enable the comparison of the different methods in terms of accuracy and number

of samples required to reach that accuracy level. The lower is the value of ∆, the

lower is the variability of the corresponding failure probability and, as a consequence,

the higher is the efficiency of the method.

The second figure of merit, Ω, involves both variance and computational time tc
and does not depend on the number of samples NT as well. It is defined as

Ω =
1

σ2 tc
. (6.29)

It is a measure of the computational efficiency and failure probability variability. The

higher the value the higher is the efficiency of the method.

6.3.1 Validation of DA-based methods

In this section the methods for collision probability computation DAMC, DALS, and

DASS are validated against an analytical method and standard Monte Carlo simula-

tion. Three test cases are considered, one with linear relative motion between the two

objects, one at the boundary of linear relative motion, and one with nonlinear relative

motion. These are respectively test case 5, 6, and 7 of [Alf09]. The same labelling is

used in this Section to ease comparison. The orbital state and covariance matrix are

propagated using Keplerian dynamics [Her65, Der96] for the standard Monte Carlo

method and Alfano’s method. In this example, the Taylor expansion of the DCA

given in Eq. (5.16) is then based on the propagation of Kepler’s dynamics in DA

environment.

The three conjunctions analyzed are detailed in Table 6.1, where the time, dis-

tance, and relative velocity at the closest approach, ∆vTCA, are listed. The reference

value for collision probability, computed using a standard Monte Carlo simulation is

given. For each trial, two sets of initial conditions are sampled from each initial co-

variance matrix and the associated DCA is searched in the proximity of the nominal

TCA. The number of samples NT for the computation of the reference Pc is selected

to achieve a confidence level of 95% and 1% relative error according to Eq. (6.11).

The collision probability obtained using Alfano’s formula and its associated percent-

age relative error with respect to the reference collision probability are given in the

last two columns.

The collision probability is then computed using the three DA-based methods

and a standard Monte Carlo method. For DAMC and the standard Monte Carlo

computations the number of samples is now selected to guarantee a relative error

of 5% and a confidence level of 95%. The results are listed in Table 6.2, where

for DAMC, DALS, and DASS the expansion order was set to k = 3. The relative

error with respect to the reference Pc, number of samples used, computational time,

coefficient of variation δ, and figures of merit ∆ and Ω are also given.

The collision probability values are always in good accordance with the reference
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Test TCA DCA ∆vTCA D Pc NT Pc % err
case [days] [m] [m/s] [m] (Monte Carlo) (Dagum) (Alfano) [-]

5 2.0 2.449 0.520 10 4.454E-02 2.30E+06 4.440E-02 -0.32%

6 2.0 2.449 0.173 10 4.340E-03 2.50E+07 4.324E-03 -0.36%

7 2.0 3.183 0.196 10 1.614E-04 6.71E+08 1.580E-04 -2.13%

Table 6.1. Time, distance, and velocity of closest approach for the Keplerian test cases and
reference value for collision probability, computed with a standard MC method using NT

samples. The collision probability computed with Alfano’s approach is given together with
the relative error with respect to the reference Pc.

Test
Method

Pc % err
NT

tc δ ∆ Ω
case [-] [-] [s] [-] [-] [-]

5

MC 4.452E-2 -0.05% 1.0E+5 4.75 1.465E-2 4.63 4.949E+05

DAMC-3 4.459E-2 +0.11% 1.0E+5 0.67 1.464E-2 4.63 3.503E+06

DALS-3 4.451E-2 -0.07% 5.0E+3 2.53 7.662E-4 0.05 3.399E+08

DASS-3 4.450E-2 -0.09% 2.0E+4 0.13 2.738E-2 3.87 5.183E+06

6

MC 4.339E-3 -0.01% 1.0E+6 43.21 1.515E-2 15.14 5.357E+06

DAMC-3 4.350E-3 +0.24% 1.0E+6 6.67 1.513E-2 15.13 3.462E+07

DALS-3 4.341E-3 +0.03% 5.0E+3 2.58 1.484E-3 0.11 9.340E+09

DASS-3 4.328E-3 -0.27% 4.0E+4 0.27 3.586E-2 7.17 1.539E+08

7

MC 1.615E-4 +0.04% 2.7E+7 1155.36 1.514E-2 78.68 1.447E+08

DAMC-3 1.612E-4 -0.15% 2.7E+7 179.34 1.516E-2 78.76 9.341E+08

DALS-3 1.621E-4 +0.41% 5.0E+3 1.43 1.936E-2 1.37 7.103E+10

DASS-3 1.626E-4 +0.72% 6.0E+4 0.43 4.580E-2 11.22 4.193E+10

Table 6.2. Computed collision probability for the Keplerian test cases. For each simula-
tion the relative error with respect to the reference Pc, the number of samples used, the
computational time tc, coefficient of variation δ, and figures of merit ∆ and Ω are listed.

value. In particular, the relative error for test case 7 is lower than the one obtained

with Alfano’s method, since nonlinear effects are captured by using a third-order

polynomial approximation. The computational time of the DA-based methods is

always lower than standard Monte Carlo. Among all methods DALS is the one that

has the lowest ∆ and the highest Ω, thus resulting to be the most efficient method. A

comparison of the different methods is given in Figure 6.7. The collision probabilities

are plotted as bars together with their 1-σ error. The reference probability value is

represented by a solid black line and the 5% relative error lines are reported as two

solid grey lines. For cases 5 and 6, DALS and DASS show the lowest and highest

standard deviations of the collision probability, respectively. Standard Monte Carlo

and DAMC provides similar results in terms of Pc and variance for all three test cases.

In Figure 6.7(c) it can be observed that Alfano’s method underestimates the collision

probability for test case 7, when nonlinearities are relevant. The other methods
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Figure 6.7. Comparison of the collision probability obtained with the tested methods for
the Keplerian test cases. The DA expansion order is k = 3 for DAMC, DALS, and DASS.
The solid black line is the reference value for collision probability and the gray lines are the
5% relative error bounds.

instead are much more closer to the reference probability.

The computational time for the three DA-based methods is plotted in Figure 6.8,

normalized by the tc obtained with the standard Monte Carlo method to highlight

the computational gain. For each of the three DA-based methods a different marker

is used: squares for DAMC, circles for DALS, and triangles for DASS. The compu-

tational time is plotted for expansion orders ranging from k = 1 to k = 4 and the

markers are coloured accordingly using a gray scale, where black is used for k = 1

and light gray for k = 4. The computational time is usually lower than the one of the
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standard Monte Carlo method and increases with the expansion order for all meth-

ods. Using DAMC, the computational time can be reduced by a factor of 10 with

an expansion order up to k = 3. Note that the computational gain is limited in this

case as a simple dynamical model is used, thus there is only a little advantage when

pointwise propagations are substituted by polynomial evaluations of Eq. (5.16).

For the higher probability value (test case 5) the computational time of the three

DA-based methods are comparable and the one of DALS is even a bit higher than the

one of DAMC and DASS, due to its higher complexity. In particular, it is worth noting

that for order k = 4 it also exceeds the computational time of pointwise MC, that

for test case 5 requires a lower number of samples. Nevertheless, the computational

effort of DALS and DASS decreases for lower collision probability, becoming nearly

103 times lower than the one of a standard Monte Carlo method for test case 7.
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Case 7
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Figure 6.8. Normalized computational time of DAMC, DALS, and DASS for the Keplerian
test cases vs. collision probability for different expansion orders. Markers are coloured using
a grayscale, where black is used for the expansion order k = 1 and lighter gray for k = 4.

The figure of merit ∆, normalized for each test case with the value of the standard

Monte Carlo method, is plotted against the collision probability Pc in Figure 6.9(a).

The same criteria used in Figure 6.8 for markers colouring and shape is used, i.e.

different markers are used for each method and they are coloured according to the

expansion order using a gray scale. The normalized unitary c.o.v. is equal to 1 for

the DAMC since the same number of samples of the standard Monte Carlo method

is used. The lower value is achieved with DALS, which is two order of magnitude

lower than DAMC. The efficiency of DASS increases for lower probabilities. The use

of different expansion orders does not affect the final value of the normalized ∆, since

points are overlapping and indistinguishable. The only exception is found for DALS

in cases 5 and 6, where the normalized ∆ is slightly higher when k = 1. This is
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probably due to a slightly lower accuracy of the first-order DCA expansion in those

cases.

The figure of merit Ω is plotted versus the collision probability in Figure 6.9(b),

again normalized with respect to the value obtained with the standard Monte Carlo

method. Since the computational time increases with the expansion order as shown

in Figure 6.8, the value of Ω decreases for higher order. The best performing among

the three methods for the considered test cases is DALS, since the normalized figure

of merit is at least 10 times larger than the one of DASS and 102 times larger than

DAMC. For test case 7, where collision probability is lower, the efficiency of DASS in

terms of Ω is higher than the other cases. Note that the value of Ω for an expansion

order k = 1 is lower than the one obtained with k = 2 for DALS for test case 5 and

6. As stated before, the reason is the slightly lower accuracy of the map in this case,

that is not mitigated by the lower computational time.
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Figure 6.9. Normalized figures of merit ∆ and Ω of DAMC, DALS, and DASS for the
Keplerian test cases vs. collision probability for different expansion orders. Markers are
coloured using a gray scale, where black is used for the expansion order k = 1 and lighter
gray for k = 4.

To conclude this analysis, the collision probability computed with Alfano’s formula

and the DA-based methods with an expansion order k = 1 are compared in Table 6.3.

It can be observed that using a first-order DA expansion the percentage relative error

is similar to that obtained using Alfano’s method for test case 7, where the relative

motion is no more linear. The DA-methods at first order are therefore equivalent to

Alfano’s analytical approximation.
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Test Pc % err Pc % err Pc % err Pc % err
case (Alfano) [-] (DAMC) [-] (DALS) [-] (DASS) [-]

5 4.440E-02 -0.32% 4.444E-02 -0.23% 4.448E-02 -0.14% 4.432E-02 -0.50%

6 4.324E-03 -0.36% 4.337E-03 -0.06% 4.332E-03 -0.18% 4.361E-03 +0.49%

7 1.580E-04 -2.13% 1.580E-04 -2.13% 1.568E-04 -2.87% 1.584E-04 -1.88%

Table 6.3. Comparison of the collision probability computed with Alfano’s method and the
DA-based methods for the Keplerian test cases with a DCA expansion of order k = 1

6.3.2 Comparison of the methods on real conjunctions

In this section four test cases are considered to test the algorithms for collision prob-

ability computation. The selected test cases include LEO and GEO close encounters

with different relative velocity at TCA. The selected test cases are listed in Table 6.4:

the satellites involved in each conjunction case and the associated orbital regimes are

listed in the second and third column; the other columns report the TCA, DCA, the

relative velocity at TCA, and the collision threshold D used for the computation of

Pc. On the last column the collision probability computed using Alfano’s formula is

listed. The initial orbital states used for orbit propagation with AIDA are listed in

A.2.

Test
Sat. No. Orbit

TCA
TCA

DCA ∆vTCA D Pc

case [days] [m] [km/s] [m] (Alfano)

A
39152 LEO 2.831

2014 Feb 13 15:08:42 51.0 12.757 10 2.850E-3
27580 LEO 2.950

B
27453 LEO 1.820

2013 Nov 22 09:07:47 136.6 11.103 16 3.664E-5
33692 LEO 1.837

C
37838 LEO 2.707

2013 Nov 24 06:02:00 75.7 0.327 12 5.218E-3
37840 LEO 3.909

D
16199 GEO 1.535

2013 Nov 21 13:55:18 937.1 0.784 15 5.804E-4
29648 GEO 2.007

Table 6.4. TCA and DCA computed for the real conjunctions used as test cases

The orbits of the couples of objects listed in Table 6.4 are plotted in Figure 6.10.

The orbital planes of the orbits involved in conjunctions A and B are almost per-

pendicular and consequently the relative velocity is higher than the other LEO close

conjunction. For test case C indeed the planes are almost coplanar and the two satel-

lites are orbiting in the same direction. For the GEO case the angle between the

two orbital planes is higher but the slower orbital dynamics results in a lower relative

velocity with respect to the LEO cases.

The collision probability is computed with DAMC, DALS, and DASS for each

test case, and the results are listed in Table 6.5. Uncertainties on both position
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(a) Case A (b) Case B

(c) Case C (d) Case D

Figure 6.10. Orbits of conjuncting objects selected as test cases. Black trajectory is
referred to the first object involved in the conjunction, the gray one to the second object.

and velocity are considered in these simulations. The variance of the initial posi-

tions and velocities are estimated from pseudo observations generated using TLE and

SGP4/SDP4 and are given in A.2. According to the results of Section 5.4.3, the error

of a third order Taylor expansion of the DCA is lower than the collision threshold for

a maximum propagation time of one week.

The number of samples of the DAMC are estimated using Eq. (6.11) considering a

relative error ε = 5%, whereas the number of samples for DALS is fixed to 5×103 and

the samples for each conditional level of DASS is 104. Although the number of samples

is much lower than in DAMC, both DALS and DASS can provide good estimates of

the collision probability. Taking the value obtained with DAMC as reference Pc, it

is possible to compare the three methods in terms of percentage relative difference.

In all cases, the computed collision probabilities differ at most 3% from the DAMC

value. The largest difference is obtained for test case B, where the collision probability

is lower.

The computational time tc required by DALS and DASS is lower than the one of

DAMC. The latter is in turn significantly lower than the one of a standard Monte



6.3 Numerical Examples 129

Test
Method

Pc % err
NT

tc δ ∆ Ω
case [-] [-] [s] [-] [-] [-]

A
DAMC-3 2.869E-3 0.0% 1.5E+6 11.19 1.522E-2 18.64 4.686E+07

DALS-3 2.891E-3 0.8% 5.0E+3 0.71 2.260E-2 1.60 3.300E+08

DASS-3 2.875E-3 0.1% 4.0E+4 0.28 3.712E-2 7.42 3.141E+08

B
DAMC-3 3.597E-5 0.0% 1.2E+8 875.88 1.548E-2 166.73 3.682E+09

DALS-3 3.511E-5 -2.3% 5.0E+3 0.42 3.858E-1 27.28 1.298E+10

DASS-3 3.674E-5 2.1% 7.0E+4 0.54 4.975E-2 13.16 5.543E+11

C
DAMC-3 5.214E-3 0.0% 8.1E+5 6.06 1.535E-2 13.81 2.577E+07

DALS-3 5.205E-3 -0.2% 5.0E+3 1.06 1.499E-2 1.06 1.549E+08

DASS-3 5.190E-3 -0.5% 4.0E+4 0.28 3.541E-2 7.08 1.057E+08

D
DAMC-3 5.751E-4 0.0% 7.3E+6 55.16 1.543E-2 41.67 2.303E+08

DALS-3 5.783E-4 0.6% 5.0E+3 0.63 3.452E-2 2.44 3.982E+09

DASS-3 5.799E-4 0.8% 5.0E+4 0.36 4.215E-2 9.43 4.650E+09

Table 6.5. Computed collision probability Pc, computational time tc, and figures of merit
∆ and Ω. Percentage relative error is obtained taking DAMC-3 collision probability as
reference.

Carlo method, in which the trajectory of each virtual object is numerically propagated

up to the close encounter.

Let us consider the test case A for illustrative purposes. With our implementation

of the dynamics, a standard MC simulation with 1.5 × 106 samples would require

1.05 × 108 seconds, as approximately 35 seconds are required to propagate each of

the two objects to the TCA. The computational time of the DA methods is given

by the time required to (1) perform the DA integrations (2) compute map (5.16) and

(3) run the algorithms based on polynomial evaluations (labelled as tc in Table 6.5).

Each of the two third order propagations requires approximately 10 times a pointwise

integration, and the DA manipulations to compute the DCA expansion requires only

fraction of second (see Section 5.4.2). Thus, the additional cost associated to DA

computations is equivalent to only 20 pointwise numerical propagations and this is ir-

relevant with respect to the gain obtained by substituting numerical integrations with

polynomial evaluations. For test case A, the total computational cost (i.e. including

DA orbit propagation, map inversion, and probability computation) of a DAMC-3

run is 492.38 s, which is 5 orders of magnitude less than the time that would be

required by a standard MC (note that this value can be further reduced by a more

efficient implementation of AIDA propagator). This gain in computational time can

be higher for cases with lower computational probability (e.g., test case B) and when

DALS and DASS algorithms are used.

Figure 6.11 summarizes the tc of the three DA methods. Keeping in mind that

the computational time of all the DA methods is orders of magnitude lower than that

of standard MC, it can be noted that the computational effort of DAMC increases
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exponentially for decreasing collision probability, whereas the other two methods have

drastically lower variations. The tc of DASS slightly decreases for increasing collision

probability, due to the lower number of conditional levels required to converge. On the

contrary, the computational time of DALS increases with collision probability. This

is a consequence of the control on the maximum value of the PF on the important

direction: for test case B, that has the lowest probability, the relative distance between

the two objects is higher and the intersection of the two ellipsoids is very small. As

a result, most samples produce a one-dimensional collision probability that is zero

since the maximum of the PF is negative and no computation of the intersections

cij is required, with a reduction of the computational time. To conclude, it is worth

observing that the computational time of the methods can be further reduced as all

methods can be classified as “embarrassingly parallel”.
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Figure 6.11. Computational time of DAMC, DALS, and DASS vs. collision probability.

The methods are compared in terms of accuracy and efficiency in Figure 6.12,

where the figures of merit ∆ and Ω are plotted against collision probability. For each

test case the values of ∆ and Ω listed in Table 6.5 are normalized with respect to the

value obtained for the DAMC simulation.

According to Figure 6.12(a), both advanced methods lead to significant improve-

ments in terms of unitary c.o.v. with respect to DAMC. DALS outperforms DASS

for higher probability and its ∆ is one order of magnitude lower than DAMC. The

performance of DASS increases for lower probability, where it performs better than

DALS. The variance of DASS is indeed lower than that of DALS. Nevertheless, DALS

shows the lowest computational time.

The figure of merit Ω is plotted against the collision probability in Figure 6.12(b).

For probability higher than 10−3, DALS performs better than DASS and DAMC.
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The value of Ω exponentially increases for decreasing probability and DASS reaches

the same performances of DALS for test case D and outperforms DALS for test case

B. The reason is mainly related to the lack of accuracy of DALS for case B, due

to the low number of samples for which the one-dimensional probability is non-zero.

An higher number of samples should be used with DALS to achieve a more reliable

estimate of the collision probability in this case.
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Figure 6.12. Performance comparison with normalized figures of merit

6.3.3 Covariance scaling analysis

The collision probability depends on the shape, size, and orientation of the covariance

matrix of the position and velocity at TCA. In this subsection a validation of DALS

and DASS for varying initial covariance size is performed, using as a reference the

values obtained with DAMC. This approach requires that the accuracy of the Tay-

lor expansion of the DCA and TCA is high, with error below 1 meter for all initial

covariance sizes. For each test case and covariance size, the accuracy of the Taylor

expansion was verified by selecting, from 109 samples generated from the full covari-

ance matrix, the 100 with largest displacement from the reference initial state. As the

error on the DCA was below the selected threshold in all cases, the value obtained

from the DAMC computation corresponds to the one of a pointwise Monte Carlo (for

single DCA and TCA conjunctions). Thus, DAMC can be used to validate DASS and

DALS.

The principal components of the initial covariance matrices of the two objects,

accounting for both position and velocity, are scaled by a factor l and the collision

probability is computed. Note that by using principal components it is guaranteed

that all components are scaled by the same factor and the correlations coming from
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the orbit determination process are not altered. The collision probability computation

is repeated for different values of the scaling factor l and the results are plotted in

Figure 6.13. A good accordance between the values obtained with DALS and DASS

(overlapping solid lines) and the reference DAMC (indicated with squares) is found

for all test cases and scale factor l.
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Figure 6.13. Covariance scaling analysis: collision probability versus scaling factor l.
Solid curves are obtained with DALS-3 and DASS-3, squares represent the reference values
computed with DAMC-3.

Note that all curves show the same behaviour: for smaller initial uncertainties

the collision probability is zero or very small, then it increases when the p.d.f. of the

two objects at TCA start to overlap. After reaching its maximum value the collision

probability decreases because the volume covered by the p.d.f. continues to grow while

the hard-body region (over which the DALS and DASS ideally integrate the combined

p.d.f.) remains constant.
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6.3.4 Non-Gaussian distributions

Besides reducing computational time and managing nonlinearities by setting the ex-

pansion order k > 1, the DA-based methods can be modified to deal with non-

Gaussian distributions. The DA-based propagation with AIDA does not depend on

the initial distribution and so are the Taylor expansions of the DCA and TCA. Sim-

ilarly, to evaluate the polynomials, only the displacement of the sample from the

reference point is required. Thus, the samples can derive from any statistical distri-

bution. The modification of the algorithms to work with non-Gaussian distributions

is then straightforward and only requires only changing the sampling procedure to

match the desired distribution of the initial position and velocity of the two objects.

Uniform Distribution

The case of a uniform distribution for the initial states is here analyzed and DAMC

is used to compute the collision probability. Sampling is performed in principal com-

ponents, since they are independent. After assembling the 12×12 global covariance

matrix, where no correlations between the two colliding objects are considered, the

eigenvalues and eigenvectors are computed. The range of each uniform distribution

is selected so that its standard deviation σi equals the one of the original Gaussian

distribution, i.e.










√
3

6 σi

for x ∈
[

−σi

√
3;+σi

√
3
]

0 elsewhere .

(6.30)

The sampled 12-dimensional vector u is then transformed from principal components

to J2000 reference frame by

z = V u (6.31)

where z =
{

x1
0;x

2
0

}

and V is a 12×12 matrix, whose columns are the eigenvectors of

the two covariance matrices. The obtained vector z is then used in DAMC algorithm

to evaluate the Taylor expansion of the DCA, whose value is then compared with the

collision threshold D.

The computed collision probabilities are listed in Table 6.6, where the order k = 3

is used for the DCA expansion. The collision probability decreases significantly for

test case B, whereas it increases by a factor of about 10 for test case C. Smaller

variations can be observed for the remaining test cases.

A detail of the resulting p.d.f. throughout the above process is portrayed in Figure

6.14. It can be observed how the principal component is uniformly distributed and

the p.d.f. of the first component of r1
0 in J2000 has a trapezoidal shape. After the

propagation, the p.d.f. resembles a triangular distribution.

This example shows the importance of considering the proper uncertainty distri-

bution for the initial positions and velocity of the two objects. DAMC, DALS, and

DASS have the maximum flexibility in these terms, as they can manage any com-
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Test case
DCA D Pc Pc NT

tc
[m] [m] (Gaussian) (Uniform) [s]

A 51.0 10 2.869E-3 2.591E-3 1.7E+6 12.86

B 136.6 16 3.597E-5 4.375E-6 1.2E+8 877.96

C 75.7 12 5.214E-4 4.783E-3 8.9E+5 6.74

D 937.1 15 5.751E-4 7.484E-4 7.5E+6 56.87

Table 6.6. Collision probability using DAMC-3 and uniform distribution for initial orbital
states
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Figure 6.14. Probability distribution function for non-Gaussian initial state uncertainties.
The p.d.f. are normalized by the current value of σ and a Gaussian distribution with the
same standard deviation is plotted for comparison.

bination of initial distributions, which can also differ between target and chaser. In

addition, the high-order polynomial approximation accounts for nonlinear effects on

the p.d.f. resulting from orbital propagation.
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Gaussian mixture

Non-Gaussian space objects uncertainties can be effectively represented by means of

Gaussian mixture parametrization, i.e. using a combination of multivariate Gaussian

distributions. The DA-methods are here used in presence of initial uncertainties

described by Gaussian mixtures.

Conjunction geometry of test case C (see Table 6.4) is here used. The projection of

the uncertainty distribution on the equatorial plane is represented in Figure 6.15. For

both objects involved in the close conjunction the uncertainty at the reference epoch

are obtained by considering two multivariate Gaussian distributions. For each of the

two objects, the covariance matrices of Appendix A.2 are duplicated and shifted with

respect to the nominal mean value.
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Figure 6.15. Gaussian mixture distribution of intial position on the equatorial plane IJ

The resulting collision probability is listed in Table 6.7. The probability is lower

than the Gaussian reference value, mainly because the position of the four Gaussians

is no more coincident with the reference mean values. As a consequence, a lower

probability density is found inside the failure region and a lower number of samples

for which collision condition occurs is generated.

Test case
DCA D Pc Pc NT

tc
[m] [m] (Gaussian) (GaussMixt) [s]

C 75.7 12 5.214E-4 6.386E-5 6.6E+7 482.93

Table 6.7. Collision probability using DAMC-3 and gaussian mixture parametrization for
initial orbital states
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6.4 Conclusions

Three algorithms, based on the high order Taylor expansion of the DCA with respect

to initial uncertainties, have been developed for the computation of collision prob-

ability. This approach enables significant savings in terms of computational effort,

since the numerical propagation of the orbital dynamics is replaced by polynomial

evaluations. The propagations account for the main sources of perturbation, using

up-to-date models for spherical harmonics and air density. The procedure described

for the expansion of the TCA and DCA can be adapted to any set of initial states

and using any arbitrary reference frame, which widens the applicability of the method

to data coming from any special perturbation catalogue. In addition, the probabil-

ity distribution of the uncertain initial position and velocity is not required to be

Gaussian. The algorithm for the identification of the TCA and DCA is insensitive

to the initial conditions probability density function. Thus, the only modification to

the method described here to work with non-Gaussian distributions is the sampling

procedure (as shown by the uniform distribution and Gaussian mixture examples).

Besides a DA version of a standard Monte Carlo algorithm, here labelled DAMC,

two advanced Monte Carlo methods for the computation of collision probability have

been presented and adapted to DA techniques: Line Sampling and Subset Simulation.

The resulting methods are named DALS and DASS respectively and both have better

performances in terms of computational time and accuracy with respect to DAMC.

For collision probability down to 10−4, the DALS outperforms the other two methods,

whereas for lower probabilities DASS turns out to be more accurate than the other

methods. According to these results DASS is preferable when collision probability is

below 10−4, whereas DALS should be used for higher probabilities. The selection of

the method to use could be translated in terms of DCA, selecting DALS when the

relative distance is below a few hundreds metres and DASS on the other case.

Tests performed on both long-term and short-term encounters have shown that

the collision probabilities computed with the three methods are in good accordance.

Being based on the Taylor expansion of the TCA and DCA, and since no assumptions

are made on the dynamics of the encounter, the presented methods are also suitable

for close encounters with low relative velocity. It has been shown that, using an

expansion order k > 1, the methods can capture the effects of nonlinear relative

motion on collision probability.
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Collision avoidance

In the case of a predicted high risk event, the possibility of a Collision Avoidance Ma-

neuver (CAM) is considered. The classification of high-risk conjunctions depends on

conjunction geometry, collision probability value, and satellite operator practice and

procedures. These factors should be defined with the aim of avoiding all unnecessary

CAM, to save fuel and in turn to guarantee satellite expected lifetime. When the driv-

ing parameters suggest that an event will exceed an admissible level of risk, a CAM is

designed [Lap08, Flo09a]. The aim of the manoeuvre is to increase the separation be-

tween the objects, in order to reduce the collision risk. The fuel consumption should

be as low as possible and the spacecraft must be kept in the operational window.

When the threatening conjunction occurs close to a designed station keeping ma-

noeuvre, it can be sufficient to anticipate it to reach an acceptable level of risk. The

advantage of this approach is that no extra fuel has to be used for an ad-hoc manoeu-

vre and mission constraints are not violated. In all other cases a CAM (and maybe a

subsequent restitution manoeuvre) has to be designed. Using along-track burns it is

possible to raise or decrease the altitude of the object at the time of the conjunction

or, with lower ∆v, to bring forward or delay the arrival at the conjunction location

[Kli05]. The first strategy has to be applied with head-on conjunction, whereas the

second is suitable for an oblique approach geometry.

CAM can be optimized by looking at the gradient of the collision probability with

respect to velocity increment component and then using numerical methods to find

the ∆v that lowers the collision probability up to the desired value [Pat03]. Analytical

expressions of the relative Keplerian dynamics of the two bodies on the B-plane can

be obtained and used to set-up an optimization of the ∆v to maximize the collision

miss distance [Bom13].

The design of CAM can be also tackled as an optimization problem. Genetic

Algorithm (GA) were used for the design of CAM for LEO and GEO objects, taking

into account mission constraints and combining them into a single objective function

to be minimized [Lee12]. More complex cases, such as the presence of multiple objects,

can be tackled by GA optimization of the manoeuvre. In that case the use of an along-

track manoeuvre can not be the optimal choice to reduce collision risk [Kim12].

In order to use classic optimization codes (i.e. gradient based methods) to solve
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a multi-objective optimization problem, a common practice is to merge the different

objective functions into a single scalar objective function by means of weighting fac-

tors. This technique requires an accurate selection of the weights, and it has, as major

drawback, the identification of a single optimal solution per run. It is clear that it

is difficult to define a single objective function that takes into account many crite-

ria, that for a CAM could range from fuel consumption minimization to separation

distance maximization.

The use of multi-objective optimizers enables a more flexible approach in terms of

optimal manoeuvre selection through the definition of the objective functions. This

allows the operator to enrich the optimization problem with additional considerations

and to obtain sets of optimal solutions rather then a single best solution. Thus, with

respect to traditional methods, it it adds flexibility and it can be easily adapted to any

satellite mission constraint and requirement. An innovative aspect of this approach

is indeed the inclusion of mission constraints as separate objective functions. In this

way it is possible, within the optimization, to understand whether or not a manoeuvre

is compliant with mission constraints.

In this Chapter the CAM design as a multi-objective optimization problem, using

a Multi-Objective Particle Swarm Optimizer (MOPSO) [Ken01]. In this way, it is

possible to define a set of objective functions, each one targeted for a particular

constraint (e.g. ground track repeatability), or optimization objective (e.g. minimum

fuel consumption and collision risk reduction) without the need of combining all of

them in a single one using scaling factors. Furthermore, the optimization will provide

a set of solutions that are Pareto optimal, i.e. each CAM belonging to this set is such

that any change in it will result in a worst performance in one or more objective

functions. The set of all Pareto optimal solutions is usually referred to as “Pareto

front”. The analyst can then select a CAM on the Pareto front, e.g. the one that

guarantees a reduction of collision risk up to an acceptable level. This is not possible

for a single-objective optimization that provides only one optimal solution that is

strongly dependent on the scaling factors that are, in case, used to assemble objective

functions.

This chapter is organized as follows: in Section 7.1 a few details on the population-

based optimizer MOPSO are given, whereas Section 7.2 illustrates the optimization

strategy and architecture for the evasive manoeuvre design. The CAM optimization

is then applied to two test cases in Section 7.3.

7.1 MOPSO

Population-based optimizers can be easily modified to deal with a vector of objec-

tive functions delivering the entire set of Pareto optimal solutions. Furthermore,

particle swarm optimization seems particularly suitable for multi-objective optimiza-

tion mainly because of the high speed of convergence that the algorithm presents for
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single-objective optimization [Ken01]. In a multi-objective optimization problem the

objective function is a M dimensional vector

f(x) = (f1(x), f2(x), . . . , fM (x)) . (7.1)

In this frame, a criterion to compare vectors is necessary to identify the optimal

solution set. The Pareto dominance is the appropriate criterion to serve this aim,

enabling the solutions ranking [Deb99].

The MOPSO implemented for the solution of the problem at hand is based on the

following algorithmic flow:

1. Randomly initialize a number of individuals or particles N within the design

space.

2. Evaluate the objective function

yi = f(xi) for i = 1, . . . , N. (7.2)

3. Update the personal best solution pbest. The solutions are compared using the

Pareto dominance criterion. Thus for each particle we have

pbest =















xi if xi dominates pbest

pbest if pbest dominates xi for i = 1, . . . , N

xi or pbest randomly in the other cases

.

(7.3)

4. Update global best list Gbest. In the multi-objective problem Gbest is the

analogous of the scalar global best gbest and it represents the entire set of

non-dominated solutions. This list is updated by processing the subset of non-

dominated solutions xj with j = 1, . . . , N∗ ≤ N

• If xj is dominated by one of the solutions belonging to the list, do not

updated the list

• If xj dominates one or more solutions belonging to the list, then add xj

to the Gbest list and delete the dominated solutions

• If xj neither dominates nor is dominated by any solution belonging to the

Gbest list, then simply add xj to the list

5. Update the global best solution gbest. Note that the gbest is univocally defined

for a scalar objective function, whereas it must be opportunely chosen within

the Gbest list in the multi-objective case. The selection of the gbest plays a key

role in obtaining a uniform set of Pareto optimal solutions. For this purpose

a uniform 30 cells grid in the objective space is defined at each iteration and

the number of solutions belonging to each grid cell is calculated. Based on this
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number, a roulette-wheel method is then applied to promote the selection of

gbest in a low populated grid-cell.

6. Compute the new particles position by

xk+1
i = xk

i + vk+1
i ∆t for i = 1, . . . , N, (7.4)

in which vk+1
i is the velocity of the i-th particle at the (k + 1) iteration, given

by

vk+1
i = wvk

i + c1r1
xk
i − pbest

∆t
+ c2r2

xk
i − gbest

∆t
. (7.5)

7. Repeat 2-6 until the convergence criterion is satisfied or the maximum number

of iterations is reached.

The parameters c1 and c2 of Eq. (7.5) are considered constant and equal to 2 during

the optimization, assuring a balance between local and global terms. A linear decrease

of w with the iteration number in the interval [0.4, 1.4] is adopted. In particular a

greater value of the inertia enables a better exploration of the search domain in the

first phase of the optimization, whereas a lower value allows a better analysis of

the most promising areas of research space in the subsequent phases. Note that if

the position of a particle goes outside the search space, the violated component of

the decision vector takes the value of the corresponding boundary and its velocity

component is multiplied by a random number between [−1, 0].

The maximum number of particles belonging to the Gbest is fixed to 100 units.

The same procedure adopted for selecting the gbest is used to delete those solutions

belonging to a highly populated grid-cell, if the maximum list size is exceeded.

The problem addressed with implemented MOPSO is characterized by the pres-

ence of inequality constraints necessary to control the time of execution of the CAM

and limit the ∆v in terms of module and direction. As the feasible domain inside the

search space is sufficiently large the feasible solution method (FSM) is adopted for the

constraints handling [Coa03]. More specifically the swarm initialization is performed

randomly, but only feasible solutions are retained. This implies that the first step of

the algorithm generally requires the evaluation of a number of solutions greater than

the population size. Furthermore, only feasible solutions are counted for the gbest

and pbest values during the optimization. The initial velocity of the particle is set to

be 0.

The convergence criterion adopted is based on the comparison of the average

position of the non dominated solutions in the objective space with the same average

position of the previous 20 iterations. If the component-wise difference of this two

vectors is lower than 1% the Pareto set of optimal solutions is assumed to have been

found. Furthermore, a maximum number of iterations of 20 and a 50 particle swarm

are considered. These values are chosen, on the basis of several experiments, to

assure an acceptable repeatability of the Pareto optimal solution set with a limited
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computational time.

7.2 CAM optimization

The evasive manoeuvre design is tackled in two steps: first an optimal manoeuvre is

searched using SGP4/SDP4 only, with the aim of retrieving quickly a CAM among

those on the Pareto front. Then, a local optimization is performed using the numerical

propagator AIDA and exploiting DA to obtain an expansion of the relative distance

as a function of the optimization variables to avoid numerical propagations.

In both cases the following criteria are considered as driving factors for the CAM

optimization

• Minimize fuel consumption

• Increase separation between the two objects

• Decrease collision risk below an accepted value

• Avoid that CAM increases the collision probability of other conjunctions in the

week following the manoeuvre

• No violation of mission constraints for the target within a given time window

The last criterion is strictly connected to the satellite mission and has to be changed

on each case accordingly. In the following subsections the optimization strategies for

SGP4/SDP4 and AIDA based collision avoidance manoeuvre design are described.

7.2.1 Optimization strategy and architecture with SGP4/SDP4

Four free parameters are considered: the manoeuvre time tm, the module of ∆v, and

its direction, expressed as a function of two angles λ and φ. The vector ∆v is defined

in the RTN reference frame as

∆v = ∆v







cos(φ) cos(λ)

cos(φ) sin(λ)

sin(φ)







(7.6)

A set of these variables, hereafter grouped in the vector x, univocally identifies a

possible manoeuvre. Under the hypothesis of an instantaneous burn the orbital state

after the manoeuvre is given by

{

r(t+m)

v(t+m)

}

=

{

r(t−m)

v(t−m)

}

+

{

0

∆v

}

(7.7)

where the vector ∆v is in TEME reference frame. The original TLE is updated so

that the orbital state is equal to the post-manoeuvre state at at time t+m. A new search
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for all minima of the relative distance in a time window of 7-days is then performed,

starting from tm. The search is performed as a global optimization problem with

COSY-GO and using the SGP4/SDP4 analytical propagator as described in Section

5.2. This allows for the computation of collision probability with Alfano’s formula in

Eq. (6.5) for each minima whose associated relative distance is below a conjunction

threshold. For this purpose the initial covariance matrix is propagated at conjunction

epoch using the state transition matrix computed as in Section 3.1.3.

At this point, it is possible to define a set of objective functions, f(x), that are used

by the optimizer to manage the plethora of design criteria. The objective function

associated to propellant minimization is

f1(x) =
∆v

∆vmax

(7.8)

where ∆vmax corresponds to the maximum amount of fuel that can be allocated for

the manoeuvre.

The second figure of merit is designed to increase both the closest approach dis-

tance and the distances of other conjunctions that may occur within the time window

of interest [tm, tm + 7]. The objective function is defined as follows

f2(x) =
1

2

R−min (d(t))

R
+

1

2

R− d

R
, (7.9)

where min (d) is the distance of closest approach after the manoeuvre, and d is the

mean distance of all local minima below the conjunction threshold R. When both the

minimum and the mean value are equal to R the objective function has value zero.

In case no minima below R are found the value of f2(x) can be set equal to zero.

This combination is chosen to correctly handle situations in which using only mean or

minimum is not sufficient. As an example, let us consider the case in which a very low

global minima is found together with many other local minima close to the threshold

R. If only the second part of the objective function is considered the resulting value

of f2 will be zero, thus missing the risk associated to the global minima. By adding

the first part the global minima the objective function will be close to 1/2, avoiding

a good ranking for the associated manoeuvre during the optimization process.

The third objective function involves the collision probability of the global mini-

mum, and is

f3(x) = log10 (Pc + 1) . (7.10)

This function is close to zero for little collision probabilities and reaches log10 2 when

the collision probability is maximum. The lower the probability, the lower the objec-

tive function, the more the probability is close to 1 the more the value gets close to

log10 2.

It could be observed that the two objective functions f2(x) and f3(x) could be

condensed in a single one, by computing the Pc for all minima and compute the



7.2 CAM optimization 143

sum of all collision probabilities. Anyway this would imply that a good knowledge

of the orbital elements uncertainties is available during the considered time span

for both the target and the chaser. This is usually not true when the chaser is a

debris. In addition, the uncertainties grow with time if no other orbit determination

is performed, resulting in possible underestimation of the actual collision probability.

For this reason, the two objective functions are separated.

To handle mission constraints, another objective function is introduced. The de-

sign of such a function is not straightforward, since each mission has different require-

ments and constraints. As an example, a GEO satellite should lie in a well-defined

latitude and longitude slot, whereas a LEO satellite can have requirements on ground-

track evolution. To avoid the definition of an ad-hoc objective function for each case

we used the following definition

fi(x) =
nv

N
(7.11)

where nv is the number of violations of the mission constraint and N is the total

number of time instants for which the violation of mission constraint is tested. In this

way, the user has to verify when the mission constraints are violated, e.g. performing

an orbit propagation and comparing the latitude and longitude with their limit values.

In case the maximum allowed fuel consumption or maximum allowed collision

probability are exceeded all objective function are set to the value of f1 or f3. This

workaround guarantees that all the points belonging to the Pareto front respect the

desired thresholds for maximum ∆v and maximum collision probability threshold.

To summarize, for each set of free parameters, the following steps are performed

1. Select the current particle xi

2. Update TLE of the target using the state after the implementation of the ma-

noeuvre;

3. Perform a conjunction identification on a 7-days windows, starting from the

manoeuvre epoch;

4. Find the global minimum and compute the mean of all minima below R;

5. Compute the collision probability using Alfano’s method for the global minimum

if below R;

6. Find the time for which mission constraints are violated, performing orbit prop-

agation. The set of inequalities will change according to the mission constraints,

which are different from mission to mission;

7. Compute the objective function vector y = f(xi). In case maximum allowed

fuel consumption or collision probability are exceeded all components of y are

set equal to f1 or f3 value respectively.
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7.2.2 Optimization strategy and architecture with AIDA

The CAM optimization with AIDA is targeted to a single close conjunction. As in

the previous subsection, four free parameters are considered: the manoeuvre time and

the three components of the vector ∆v, that in this case is translated into the ECI

J2000 reference frame. The search for all local minima of the relative distance is not

performed and the second objective function is now defined as

f2(x) =
R− d∗(tm,∆v)

R
, (7.12)

where d∗(tm,∆v) is the Taylor expansion of the DCA as a function of manoeuvre time

tm and manoeuvre velocity vector. In this way it is possible to substitute each or-

bit propagation with a polynomial evaluation of d∗, thus reducing the computational

effort. This polynomial map is free from singularities since in this case no angles

are used to define the direction of the manoeuvre. In addition, since the module of

the considered avoidance manoeuvre is small and the manoeuvre time is not allowed

to vary too much from the reference value, all possible CAM are comprised in the

convergence radius of the DA expansion. The behaviour of the DCA as a function

of the manoeuvre ∆v and manoeuvre time tm is represented in Figure 7.1 for a close

encounter in LEO. The availability of an analytical approximation of the manoeuvre

can also help in the assessment of the robustness of the manoeuvre. It is indeed

possible to determine whether a certain CAM lies in a region in which the relative

distance has a maximum or, due to uncertainties in the manoeuvre execution, it can

reach regions in which the relative distance decreases, thus limiting the CAM effec-

tiveness. The constraint verification process is again performed using SGP4/SDP4,

in order to avoid the numerical propagation for each sample at each optimizer step.
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The following steps are performed for the CAM optimization with AIDA:

1. Select the current particle xi

2. Evaluation of the polynomial map of the relative distance d∗ to obtain the new

DCA;

3. Compute the collision probability using Alfano’s method for the new minima;

4. Find the time for which mission constraints are violated, performing orbit prop-

agation with SGP4/SDP4. Again, the set of inequalities will change according

to the mission constraints, which are different from mission to mission;

5. Compute the objective function vector y = f(xi). In case maximum allowed

fuel consumption or collision probability are exceeded all components of y are

set equal to f1 or f3 value respectively.

In the following section the approach is applied to two test cases, one LEO and

one GEO orbit.

7.3 Numerical simulations

In this section the CAM optimization is applied to two orbital conjunctions, one in

the LEO and the other in the GEO regime. In both cases the conjunction threshold is

R = 10 km and the hard-body radius for collision probability computation is D = 100

m. The collision threshold D is not related to body size in this case but it guarantees

that the collision probability for the nominal conjunction is above 10−4. The upper

and lower boundaries, ub and lb, of the optimization variables are listed in Table

7.1. No constraints on the manoeuvre direction are considered for these simulations

and the time of the manoeuvre can occur up to one revolution before the targeted

conjunction.

Variable lb ub

tm (rev.) 0 1
∆v (m/s) 0 0.5
λ (deg) -180 180
φ (deg) -90 +90

Table 7.1. Upper and lower boundaries of optimization variables

All computations are performed on an Intel Core i5 2500 @3.30GHz, 8Gb RAM

processor running Sabayon Linux 13 (kernel version 3.11.0), each run of the MOPSO

lasts approximately 2 h for both LEO and GEO cases.
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7.3.1 LEO case

The LEO test case considers a close conjunction between satellite Metop-A and a

debris from Iridium-33 (NORAD ID 33874) occurring at 23:58:12 UTC on 2012/03/02

[Làz12]. Metop-A is on a sun-synchronous orbit, with an altitude of 820 km and an

inclination of 98.7 deg, and its repeat cycle is 29 days and 412 revolutions. Iridium-33

debris instead is found at an inclination of 86 deg, and has an apogee of 890 km and

a perigee of 750 km. According to last TLE data1 before the event, the DCA is 590

m, with a radial, along-track, and out-of-plane separation of 451, 222, and 308 m

respectively. The relative velocity at the TCA, again computed using SGP4/SDP4

and COSY-GO, is 12 km/s, mainly distributed on the along-track (9.7 km/s) and

out-of-plane (7.1 km/s) components. The nominal collision probability for the close

conjunction is Pc = 5.118× 10−4.

A CAM optimization is performed, considering the upper and lower bound for the

optimization variables of Table 7.1. Given that Metop-A is on a SSO, the following

constraints were considered:

• Local solar time of the ascending node must be maintained within 15 minutes

from the reference value;

• The cumulative error on the angular separation of tracks at the equator shall

be less than ∆l = 360/R deg, where R is the number of revolutions per cycle.

Since the resulting value is ∆l = 360/412 ≈ 0.87 deg, the threshold was lowered

to 0.1 deg. In addition, it is assumed that the error on angular separation is

zero before the manoeuvre.

For each of the two constraints an objective function of the form of Eq. (7.11) has

been defined. The constraint on local solar time has been labelled f4, whereas the

constraint on ∆l has been labelled f5.

MOPSO optimization with SGP4/SDP4

The results of the simulation are represented in Figure 7.2, where each cross corre-

sponds to a point on the Pareto front. The top left graph represents how the mean

and minimum distance increases (i.e. f2(x) decreases) as a function of the manoeuvre

∆v. The top right plot instead represents the Pareto front on the plane (∆v, Pc).

Note that in this case there is only one close conjunction in the considered time span.

The two graphs at the bottom represent the objective function f5(x) with respect to

the manoeuvre ∆v on the left and collision probability on the right. No violations

on the local time of the ascending node constraint are found for all manoeuvre on

the Pareto front. It can be observed that the two graphs on the top convey similar

results: the reason is that only one conjunction is found below the threshold R in this

case for any CAM manoeuvre on the Pareto front.

1available from www.space-track.org

http://www.space-track.org/
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Figure 7.2. Pareto front for LEO collision avoidance manoeuvre optimization with
MOPSO.

The solutions x on the Pareto front are represented in Figure 7.3. On the left

the manoeuvre ∆v is plotted against the manoeuvre execution time tm. It can be

observed that all manoeuvre capable of lowering the most collision probability have

to be performed between 0.8 and 0.2 revolutions prior to the close conjunction1. In

Figure 7.3(b) the direction and module of the associated ∆v are plotted. The darkest

vectors, which correspond to lower probabilities, are mostly directed towards the

negative along-track direction with non-zero components on the normal and radial

directions.

If a collision probability around 10−5 is deemed acceptable, then a suitable ma-

noeuvre among those on the Pareto front is the one with ∆v = [−7;−61; 24] mm/s to

be performed 0.521 revolutions before the TCA. This CAM raises the relative distance

up to 686 m, and lowers the collision probability down to 3.941× 10−5. The fuel con-

sumption is equal to ∆v = 0.066 m/s. This manoeuvre is the most performing also in

terms of mission constraints: all manoeuvres that do not violate them are not capable

of lowering the collision probability below 10−4. Those that lowers Pc below 10−5,

instead, are less efficient in terms of fuel or guarantee shorter period within mission

bounds. A representation of the behaviour of the ∆l for the 29-days cycle of Metop-A

is given in Figure 7.4 in case of CAM execution and for the nominal trajectory. Note

that the constraint is not violated for the 12 days following the CAM.

1Note that tm = 0 means executing the manoeuvre exactly at the TCA and tm = 1 one revolution
before
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Figure 7.3. Pareto optimal collision avoidance manoeuvres obtained with SGP4/SDP4 for
the LEO case. Colours of dots and vectors are associated with the corresponding collision
probability
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MOPSO optimization with AIDA

The solution obtained with SGP4/SDP4 can be further optimized using MOPSO and

AIDA. The optimization is performed by considering the solution selected above. The

Taylor expansion of the relative distance as a function of the free parameters ∆tm and

∆v is thus computed 0.521 revolutions before the close conjunction. The obtained

Pareto optimal CAM are graphed in Figure 7.5(a) and 7.5(b), where each dot and

arrow is colored according to the collision probability value after the manoeuvre.

In Figure 7.5(a) it can be observed that all manoeuvres with ∆v > 0.2m/s lower

the collision probability below 10−6. Thus, larger avoidance manoeuvres are required

to lower collision probability with respect to the SGP4/SDP4 optimization. Also note
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that the manoeuvre execution is limited to a time window of 5 minutes around the

reference manoeuvre epoch, i.e. 0.521 revolutions before the close conjunction. The

direction of the Pareto optimal CAMs is represented in Figure 7.5(b). The direction

of the manoeuvres is mainly between radial and along-track directions, whereas for

SGP4/SDP4 the evasive manoeuvres were mainly directed towards −t̂.
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Figure 7.5. Pareto optimal collision avoidance manoeuvres obtained with AIDA for the
LEO case. Colours of dots and vectors are associated with the corresponding collision prob-
ability

The selected manoeuvre has to be performed 0.558 revolutions before the close

conjunction and is equal to ∆v = [78;−190;−83]mm/s. The collision probability

is lowered to Pc = 7.665 × 10−6 and, according to SGP4/SDP4 propagation, the

constraint on ∆l is not violated for 12.45 days after the CAM execution. Anyway,

this last estimation is not confirmed by the propagation with AIDA. The 0.1 deg

maximum deviation from the nominal longitude separation of tracks is violated after

only 5 days. In Figure 7.6 the cumulative ∆l error, computed with AIDA, is plotted for

both the nominal trajectory and the one for which the evasive manoeuvre is executed.

The resulting error is larger not only for the trajectory with the CAM but also for

the nominal trajectory: the 0.1 deg constraint is indeed violated at the very end

of the propagation window, whereas when propagating with SGP4/SDP4 the error

was close to zero (see Figure 7.4). The gray line is instead the resulting cumulative

error using the CAM selected for the SGP4/SDP4 optimization and propagated with

AIDA: even in this case the error is higher. The difference between the SGP4/SDP4

and AIDA propagation is magnified by increasing values of ∆v, that result in larger

displacements among trajectories. Nevertheless the cumulative error for the selected

trajectory is below its nominal value that is ∆l = 360/412 ≈ 0.87deg.

7.3.2 GEO case

A conjunction between the GEO Korean satellite COMS and Russian GSO satellite

Raduga 1-7 is analyzed. COMS occupies the 128.2 ± 0.05 deg E slot, whereas the
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Figure 7.6. Cumulative error of the longitude separation of tracks at the equator, ∆l,
obtained with AIDA propagations. The solid black curve corresponds to the trajectory after
the manoeuvre designed with AIDA is performed, the dashed curve to nominal trajectory
(without manoeuvre), and the gray curve to the trajectory after the SGP4/SDP4 manoeuvre.

second is found inside the 128.0± 0.5 deg E region. Close conjunctions between the

satellites can thus occur twice a day for a few days when, due to orbit evolution,

the two are both around 128.2 deg E longitude. The close conjunction here analyzed

occurred on 2011/07/02 at 23:14:17 UTC, one day after TLE epoch [Lee11]. Using

TLE available from Space-Track the DCA is equal to 1.676 km, with a radial, along-

track, and out-of-plane separation of 1.006, 1.339, and 0.062 km respectively. The

relative velocity at the TCA is 282 m/s, in the out-of-plane direction with respect to

COMS. The nominal collision probability for the close conjunction is Pc = 6.228 ×
10−4.

The following constraints are considered for the CAM optimization

• Latitude of COMS should must within ±0.5 deg

• Longitude of COMS should must within ±0.5 deg

MOPSO optimization with SGP4/SDP4

The Pareto front obtained considering the objective function vector f(x) is repre-

sented in Figure 7.7. Due to the presence of multiple conjunctions the points are more

spread: without the CAM there is indeed another close encounter occurring 12 h after,

on 2011/08/02 at 11:12:13 with a relative distance of 1.358 km and Pc = 1.236×10−3.

Since Pc is computed for the global minimum only, the value of f3(x) changes accord-

ing to the global minimum, which can be either close to the first or second one based

on the manoeuvre. Note that all collision probabilities below 10−6 were automatically

set equal to that value during simulations.
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The two graphs on the bottom take into account the constraints similarly to Figure

7.2 for the LEO case. The constraint on latitude was labeled f4(x), whereas the

constraint on longitude f5(x). In this case the latitude constraint was not violated for

all points on the Pareto front, so only f5 is reported in Figure 7.7. It is interesting to

notice how the manoeuvre can be truly effective not only in increasing miss-distance

but also as a station keeping manoeuvre. According to the graph on the bottom

left, for increasing ∆v the number of violations of the longitude constraint decreases.

Without any CAM or station keeping manoeuvre the satellite is estimated to remain

into the GEO slot for 21.5 days only, whereas the manoeuvre can increase this time

up to 55 days.
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Figure 7.7. Pareto front for GEO collision avoidance manoeuvre optimization with
MOPSO.

The Pareto efficient CAMs are plotted in Figure 7.8. It can be observed in Figure

7.8(a) that the ∆v required to lower probability down to 10−5 increases as tm gets

closer to the close conjunction. Figure 7.8(b) shows that a burn in the −t̂ direction

is more efficient, even if the other components are not negligible.

In this case two CAMs strategies can be selected from the optimization results:

the first would be to perform a manoeuvre with the minimum consumption of fuel

that guarantees a collision probability around 10−5 as for the LEO case. The CAM

performed 0.736 revs. before the TCA with ∆v = [0.5;−23; 0.8] mm/s meets this

requirements since the collision probability becomes Pc = 3.092×10−5. Another pos-

sibility would be to perform a manoeuvre with a slightly larger ∆v that guarantees a

larger stay in the GEO slot. For example with a ∆v = [−0.8;−114; 9] mm/s executed
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Figure 7.8. Pareto optimal collision avoidance manoeuvres obtained with SGP4/SDP4 for
the GEO case. Colours of dots and vectors are associated with the corresponding collision
probability

0.221 orbits before the close conjunction lowers collision probability to 3.641× 10−6

and allows the spacecraft to remain into the latitude/longitude slot for 50.2 days

instead of the 26.7 day of the previous CAM. The evolution of the latitude and lon-

gitude after the two CAM are plotted in Figure 7.9. It can be observed how the first

CAM acts only marginally to the longitude shift behaviour, whereas the second one

has a larger impact, inverting the drift of the satellite from East to West after the

manoeuvre, thus increasing the time inside the GEO slot.
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Figure 7.9. Evolution of latitude and longitude of COMS using SGP4/SDP4 inside±0.5 deg
GEO slot (dashed lines). Each point is computed at a latitude stationary point, black dots
refer to the nominal trajectory whereas the grey crosses to trajectory after CAM execution.
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MOPSO optimization with AIDA

A further optimization with AIDA was performed around the first CAM execution

epoch. Again a set of Pareto optimal solutions was found and the resulting solutions

are plotted in Figure 7.10. In this case almost all the CAM are capable of lowering

the collision probability below 10−6. The direction of the resulting evasive manoeuvre

is again aligned with the along-track component, although in this case there are both

manoeuvres in the −t̂ and +t̂ directions as can be observed in Figure 7.10(b).
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Figure 7.10. Pareto optimal collision avoidance manoeuvres obtained with AIDA for the
GEO case. Color of dots and vectors are associated with the corresponding collision proba-
bility.

Two solutions are selected: the first one has ∆v = [−21;−66; 14] and has to be

executed 0.736 revolutions before the close encounter. Collision probability goes to

zero and the days inside the GEO slot are 34.9. The second solution instead has the

aim of increasing the number of days within the latitude/longitude box and has to be

performed 0.733 revolutions before the close approach with ∆v = [−51;−122;−21].

Again collision probability becomes zero but the days inside the GEO slot are now

52.4. The evolution of the stationary points of the latitude, computed using AIDA, are

plotted in Figure 7.11. The black dots refer to the trajectory without the execution

of a CAM, the dark gray plus to the trajectory that is obtained by applying the CAM

determined with the SGP4/SDP4 optimization, and the gray crosses to the evasive

manoeuvre obtained with AIDA optimization. For both manoeuvres there is an in-

crease of the required ∆v with respect to the SGP4/SDP4 manoeuvre that is anyway

balanced by a longer time without violations of the latitude and longitude bounds.

It is worth noting that the cost of the second manoeuvre is ∆v ≈ 134mm/s which

is anyway lower than the total cost of the CAM and subsequent recover manoeuvre

listed in [Lee11], that was equal to 180 mm/s.
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effect

Figure 7.11. Evolution of latitude and longitude of COMS using AIDA inside ±0.5 deg
GEO slot (dashed lines). Each point is computed at a latitude stationary point, black dots
refer to the nominal trajectory, the dark grey plus to trajectory after SGP4 CAM execution,
and the gray cross to trajectory after CAM obtained with AIDA optimization.

MOPSO optimization with SGP4/SDP4 using cumulative collision prob-

ability

An additional test is performed to understand whether another set of objective func-

tions can give better results when dealing with more than one close conjunction with

the same object. In this case the objective function f2(x) was not considered and

f3(x) is modified to take into account the cumulative collision probability of all con-

junctions below threshold R. The resulting Pareto front is represented in Figure 7.12.

As before it can be observed that the CAM are able to act as station keeping ma-

noeuvres and a more clear trend is present in the graph relating collision probability

and ∆v with respect to the one in Figure 7.7. In this case it is indeed evident that

increasing ∆v guarantees lower collision probability.
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Figure 7.12. Pareto front for GEO collision avoidance manoeuvre optimization with
MOPSO using cumulative collision proability.

The obtained solution xi are plotted in Figure 7.13. In this case all CAM that are
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more effective in reducing collision probability must be executed at least 0.5 orbits

before the close approach and all vectors have a prevalent along-track component.

As before, two possible CAM can be identified. The one lowering to zero collision

probability with the lowest fuel consumption has ∆v = [18;−44;−15] mm/s and is

executed 0.862 revolutions before the close conjunction. The second one, that requires

more fuel but allows a longer stay in the GEO box (49.5 days instead of the 30 days

achievable with the previous manoeuvre), has to be performed 0.557 orbits before

the TCA with ∆v = [−35;−116;−19] mm/s. It is worth noting that the two CAM,

and especially the second, are similar to the ones obtained with the previous strategy

with four objective functions. The two approaches seems equivalent, anyway it has to

be taken into account that often collision probability estimates are not reliable, since

no accurate estimation of debris uncertainties are available for TLE. For real satellite

operations more accurate propagators and data coming from optical or radar tracking

should be used for these estimations.
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Figure 7.13. Collision avoidance manoeuvre on the Pareto front for GEO. Colours of dots
and vectors are associated with the corresponding collision probability

7.4 Conclusions

Two methods for CAM design using a Multi-Objective Particle Swarm Optimizer

were developed. The first method relies on a conjunction identification algorithm,

based on rigorous global optimizer COSY-GO and SGP4/SDP4 that computes all

stationary points of the relative distance within a time window, and Alfano’s method

for collision probability computation. The second method, instead, relies on the

numerical propagator AIDA and the Taylor expansion of TCA and DCA as function

of the manoeuvre epoch and ∆v.

In both cases, three objective functions are defined to (1) minimize fuel consump-

tion, (2) increase mean object separation, and (3) reduce collision probability at the

same time. The mission constraints are handled by defining ad-hoc objective func-
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tions: the violations of the considered constraints is verified on a proper time grid

and the goal is to reduce the number of violations in the time window of interest. The

methods allow for the computation of optimal manoeuvre time and ∆v, which is not

limited to the along-track direction but is free to vary.

Two close conjunctions, one in LEO and one in GEO, for which a collision avoid-

ance manoeuvre was performed were tested. In both cases, it was possible to identify

a CAM capable of reducing collision risk below a given threshold and maintaining the

satellite inside the station keeping area when SGP4/SDP4 optimization is performed.

For the GEO case, in particular, it was possible not only to increase the miss-distance

but also to select a manoeuvre capable of performing some station keeping, increas-

ing from 26.7 days to 50.2 days the time within the latitude-longitude box. For the

AIDA optimization similar results were found, although in this case the different per-

turbation models showed that more intense manoeuvre must be performed to limit

constraint violations.

An additional test involving the GEO close conjunction was performed to show

how the algorithm can deal with multiple conjunctions. In this case, the cumulative

collision probability is taken into account instead of the collision probability for the

closest conjunction in the considered time window.



8

Conclusions and future developments

In this thesis new methods for orbit determination, uncertainty propagation, con-

junction identification, collision probability computation, and collision avoidance ma-

noeuvre design were introduced. The activities are framed into SST, with the aim of

developing a complete set of innovative algorithms to manage all the aspects involved.

The algorithms take advantage of Differential Algebra (DA) techniques with the ex-

ception of the ones for orbit determination, that use a simple batch least square. In

this latter case the innovative aspect is the set of considered sensors, that requires

tailored algorithms to process the measured data and estimate the orbital state.

In Chapter 3 the details on the implementation of the analytical and numerical

propagators in a DA environment are described. In particular, the SGP4/SDP4 an-

alytical propagator and the DA-based numerical propagator AIDA are introduced.

Both propagators are written in the language COSY INFINITY. The two propaga-

tors can compute the polynomial approximation, up to an arbitrary order k, of the

orbital state at any epoch with respect to the uncertain initial position and velocity.

The Taylor expansion can be also computed for any additional uncertain parameter,

such as the ballistic coefficient. The availability of the Taylor expansion allows us to

propagate the uncertainty sets in a Monte Carlo fashion by means of fast polynomial

evaluations. A set of samples is generated from the initial state statistics and, instead

of propagating each of the resulting samples to the time of interest, the final distri-

bution is obtained by evaluating the polynomials computed with AIDA or the DA

version of SGP4/SDP4. Since the polynomials evaluations require only a few seconds

and the cost of a DA propagation at order n = 3 with AIDA is more or less equal to

10 standard propagations, when 103 propagations are required the gain is of the order

of 102. This approach has two main advantages: the initial distribution is arbitrary

(Gaussian mixture or other distributions can indeed be used) and the propagation is

performed at an high-order, thus taking into account all nonlinearities that can arise

during the propagation. These effects are all neglected when the uncertainty prop-

agation is performed using the state transition matrix and assuming that the initial

uncertainty is normally distributed. Furthermore, the numerical propagator AIDA

is the first DA-based high-fidelity numerical propagator ever written. The models

for atmospheric drag and Earth’s gravitational field are among the most recent and
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accurate and the position of celestial bodies is computed with JPL’s ephemerides. A

set of validation tests was performed to determine the expansion accuracy required

to correctly represent the uncertainty distribution after a 7-days propagation.

In Chapter 4 the description of the optical and radar simulators is provided, to-

gether with the tailored algorithms for bistatic radars with a multibeaming receiver.

For the latter the set of available measures includes bistatic range, Doppler shift,

and SNR of each beam. These measurements are taken at regular intervals during

the whole transit of the object inside the field of view of the instrument. The orbit

determination algorithm first determines the right ascension and declination of the

object during the transit, using the information on the nominal pointing direction

of each beam and range measurements, and fitting the SNR history. Then, a batch

least square fit is performed on the bistatic range, Doppler shift, and the previously

estimated right ascension and declination for each available time instant. Numeri-

cal tests were performed to determine the performance of the proposed algorithm,

using the bistatic radar measurements only and mixed measurements from both op-

tical and bistatic radar sensors. The orbit determination with a single bistatic radar

measurement can determine with good precision the position of the object during the

transit. The uncertainty on position is very low, equal to a few tens of metres on

each component, whereas the uncertainty on the velocity is high, between 0.5 and 1

m/s. Another drawback is the inability to compute an estimate of the area-to-mass

ratio, which plays an important role for low-altitude objects. Nevertheless, it was

shown that it could be possible to perform a follow-up observation of the object in

the following 24 hours, since the error with respect to the reference trajectory could

remain around a few tens of kilometres. This depends anyway on the bistatic triangle

geometry and the type of transit. The case of mixed orbit determination, using both

optical and radar measurements, showed a significant improvement in the accuracy

of the estimated states. The uncertainty on position and velocity is of the order of

a few metres and tens of mm/s respectively. It was also shown that a good estimate

of the area-to-mass ratio can be obtained when three optical and one bistatic radar

measurements are available.

Two conjunction identification algorithms have been developed and described in

Chapter 5. The first is based on the DA-implementation of SGP4/SDP4 and the

rigorous global optimizer COSY-GO. The objective function is defined using relative

position and velocity of the object and it is such that all stationary points of the

relative distance can be computed. The computation requires from few seconds to tens

of seconds depending on the orbital regime. The second algorithm is instead based on

the computation of the TCA and DCA Taylor expansion. Given a first guess of the

TCA, the Taylor expansion of the relative distance as function of time is computed. By

imposing the stationarity of the relative distance squared and using partial inversion

techniques, the Taylor expansion of theTCA and DCA can be computed. Besides

time, it is possible to add the dependence on the variation of the reference initial

state and obtain the TCA and DCA polynomial approximation with respect to an
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initial position and velocity deviations. A set of numerical examples was performed to

determine the accuracy of the two expansions, using the DA-based propagator AIDA

to compute the polynomial approximations. Note that the proposed algorithm can be

used with any other orbital propagator, numerical or analytical. The accuracy of the

resulting DCA and TCA maps is comparable with the accuracy of the position map

obtained with AIDA, with errors of only a few metres in LEO and a few millimetres

in GEO. These results are obtained in a worst-case scenario were the largest 100

initial state deviations were selected among a set of 109 obtained from the uncertainty

distribution.

In Chapter 6 three DA-based methods to compute the collision probability between

two approaching objects are described. The three methods use a Monte Carlo ap-

proach and are all based on the DCA and TCA expansion obtained with the method

described in Chapter 5. The three methods are the DAMC, which is a DA-based

standard Monte Carlo, and two DA-based advanced Monte Carlo methods, DALS

and DASS. The advantage of the proposed methods is the low computational effort,

since polynomial evaluations are used to propagate each sample from the initial uncer-

tainty set in place of numerical propagations. The computational time of the DALS

is around 1 second, whereas it ranges from less than one second to about 10 seconds

for DASS. The computational time for DAMC could reach a few hundreds of seconds

depending on the number of samples required to meet the desired accuracy, which can

be around 109 when collision probability is around 10−6. The performed validation

tests and comparisons with other analytical methods showed that all three methods

• can compute the exact collision probability for the case of spherical objects,

• are suitable to characterize single close conjunctions,

• can be used for both long-term and short-term encounters.

For collision probabilities down to 10−4 DALS outperforms the two other methods,

both in terms of accuracy and computational efficiency. For lower values of the

collision probability the performance of DASS is comparable or even better than that

of DALS. An advantage of the proposed algorithms is their flexibility. Any uncertainty

distribution for the initial state can indeed be used: tests with uniform distributions

and Gaussian mixtures were presented in this thesis. In case other distributions are of

interest the only modification to the algorithm is the sampling procedure, which must

be modified to produce samples that are commensurate with the initial uncertainty

distribution.

The collision avoidance manoeuvre design is tackled in Chapter 7. The proposed

approach uses a Multi-Objective Particle Swarm Optimizer to determine a set of

Pareto optimal manoeuvres in terms of fuel efficiency, miss-distance increment, col-

lision probability, and mission constraints compliance. Two algorithms were devel-

oped: one considers SGP4/SDP4 and the conjunction identification algorithm based

on COSY-GO, whereas the other uses the numerical propagator AIDA. In the second
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case, to speed up the computation, a DCA expansion is performed with respect to the

manoeuvre parameters, i.e. execution time and ∆v, to replace the numerical propaga-

tions required for each particle with fast polynomial evaluations. The runtime of the

optimization is about 2 hours for both the SGP4/SDP4 and AIDA algorithms: the

computational times are, in general, compatible with the time interval between the

issue of a conjunction warning and the conjunction epoch. Tests were performed on a

LEO and a GEO conjunction: it was found that out-of-plane manoeuvres can be more

effective in reducing the collision risk besides avoiding mission constraints violations.

In certain cases, this approach could be preferred to the classical raise/decrease of

altitude or phase shift, that is usually executed half-orbit prior the conjunction. The

proposed optimization strategy can reduce fuel-consumption and increase the lifetime

of a satellite, as it could avoid a recover manoeuvre since the resulting trajectory

will guarantee that mission constraints are respected at least for the first few weeks

following the manoeuvre execution. In addition, the optimization returns a set of

manoeuvres. Thus the engineer can select the manoeuvre that best fits the mission

requirements, giving in turn more importance to the miss-distance, fuel-consumption,

or collision probability.

8.1 Future developments and final remarks

The proposed approaches are the first efforts to introduce DA in the framework of

SST. Besides all advantages of the methods in terms of computational time with

respect to classical Monte Carlo methods and demanding simulations in general (such

as manoeuvre optimization), the drawback of the approach lies in the higher effort

required for the single DA-based propagation that is necessary to compute the Taylor

expansions. The collision probability computation and TCA and DCA expansion

algorithm all require DA maps of the relative distance as function of 12 variables,

which is obtained downstream of two numerical propagations, one for each object

involved in the conjunction. It is worth highlighting that the additional effort is

largely paid-back when the polynomials are used to propagate many samples, as in the

case of spacecraft collision probability computation with a Monte Carlo simulation.

Currently, an AIDA propagation requires ten times a standard propagation when it

is performed at order k = 3 with n = 6 variables. Efforts should be thus devoted

to optimize the code in order to increase the computational efficiency and, in turn,

reduce the computational effort.

The applicability of DA methods for the orbit determination of RSO is another

possible development. The techniques developed in [Val13b] could be used in presence

of both optical and radar measures exploiting the already available DA-based prop-

agator AIDA. The advantage of this approach, based on Kalman Filters, is on the

update of the catalogue: when a new observation is available, the uncertainty distri-

bution can be updated, without the need of maintaining old observations to perform
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a batch least square fit. In addition, since the estimation is nonlinear, it would be

natural to use the DA-based methods for collision probability computation since, as

stated in the previous section, they can handle this kind of uncertainty distribution.

For what concerns the conjunction identification algorithms, it is worth noting that

the method based on SGP4/SDP4 and COSY-GO is not suitable for an all-vs-all daily

screening. Although the computational time of a single run of the algorithm takes a

few seconds, the total computational time in an all-vs-all conjunction identification

could exceed one day due the high number of combinations to be taken into account,

even after the use of geometry filters to exclude combinations that will surely not lead

to a collision in the considered time window. Thus, future work should be devoted to

study the applicability of the TCA and DCA expansion inside a Smart-sieve approach

[Ala02]. The advantage of the Smart-sieve is that it carries out a propagation of all

objects simultaneously (with a potential high level of parallelization) and could be

adapted to a special perturbation catalogue. A DA-based AIDA propagation could

be used and the TCA and DCA expansion could replace the root-finding algorithm

for the “fine conjunction detection” phase. In this way, the DA maps required as

inputs for the collision probability computation could be readily available to compute

immediately an estimate of Pc with DALS, DASS, or DAMC. This approach could

be particularly suitable for special perturbations catalogues, which are becoming of

standard use because of the higher accuracy of the orbital state and lower uncertainty

on the initial state.

The DAMC, DALS, and DASS could be improved to deal with objects of complex

shape. In this way a more accurate estimate of the collision probability could be

obtained when non-compact objects, e.g. satellites with long appendages or large solar

panels, are considered. The modification of the algorithms is not trivial, since the

DCA and TCA expansion cannot be used. The relative attitude of the objects must

be taken into account during the whole encounter, thus increasing the computational

effort because of the higher number of variables. Other efforts should be devoted to the

parallelization of the algorithms to further reduce the computational time. Another

interesting application of the developed method for collision probability could regard

NEOs close approaches with the Earth.

Regarding the design of collision avoidance manoeuvres, future works should be

focused on the case of multiple conjunctions with more than two objects. This situ-

ation could occur both in LEO and GEO, where an active satellite could experience

more than one close conjunction with different chasers in a certain time window. In

those cases it is important to schedule correctly the avoidance and orbit recover ma-

noeuvre to ensure that the cumulative collision probability remains low and/or the

miss-distance for each close conjunction is above a safety level.

Overall, if the proposed future developments are carried out a comprehensive

DA-based SST tool could be assembled. The tool would be able to manage the

uncertainties by considering the nonlinearities arising from orbit determination and

orbit propagation and could produce accurate estimations of the collision probability
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to rank close conjunctions. The availability of such a tool will help in the management

of space traffic, re-entry, and observation scheduling. In the scope of the mitigation

guidelines, any improvement in handling such operations will have beneficial effects

on space debris population control and the future exploitation of space.



Appendix A

Initial states

A.1 Conjunction identification

Object 1

# Satellite ID
11510
# Reference UT
23/01/2013 04:50:14.3891483545
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−3.7721713215E+ 03 +2.0902060722E− 01
+4.9994447579E+ 03 −4.1566598389E+ 00
+3.4596010085E+ 03 +6.2007675483E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+3.3085138968E− 03 +8.1569556907E− 04 +6.3216213375E− 04 +1.8594276250E− 07 −6.8263129256E− 07 +5.9476230591E− 07
+8.1569556907E− 04 +3.5565393379E− 03 −2.0265346793E− 03 −1.4711117793E− 06 +2.4696267856E− 06 +3.9897201273E− 07
+6.3216213375E− 04 −2.0265346793E− 03 +5.2194974395E− 03 +1.8751377639E− 06 −2.0999712757E− 06 −2.4422592051E− 06
+1.8594276250E− 07 −1.4711117793E− 06 +1.8751377639E− 06 +4.1301523076E− 09 +1.5475454258E− 10 +2.0530594462E− 10
−6.8263129256E− 07 +2.4696267856E− 06 −2.0999712757E− 06 +1.5475454258E− 10 +3.3307135024E− 09 +9.4333446860E− 10
+5.9476230591E− 07 +3.9897201273E− 07 −2.4422592051E− 06 +2.0530594462E− 10 +9.4333446860E− 10 +2.1401382330E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+7.9693388204E− 07
# SRP Area to mass ratio (m2/kg), eps = 0.31
+7.2433066671E− 02
# TLE used for nonlinear least square fit
1 11510U 79078A 13023.20155543 .00000103 00000-0 47518-4 0 1325
2 11510 074.0358 118.1525 0011496 088.5235 301.8268 14.32681184744812

Object 2

# Satellite ID
21574
# Reference UT
22/01/2013 22:26:54.0620023012
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+3.0799289553E+ 03 −6.7335462784E+ 00
−1.1774790818E+ 03 +9.0909039658E− 02
+6.3094366569E+ 03 +3.2876594254E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+6.5110022394E− 03 +1.1558082277E− 04 −2.6158096782E− 03 +2.7966467039E− 06 −9.1277337669E− 07 +4.6393449869E− 06
+1.1558082277E− 04 +3.4915733193E− 03 +3.9873127221E− 04 −2.0268510003E− 07 +9.4972338534E− 09 −4.9783742550E− 09
−2.6158096782E− 03 +3.9873127221E− 04 +2.3878201022E− 03 −2.8390289006E− 07 +4.3116429054E− 07 −2.7993620662E− 06
+2.7966467039E− 06 −2.0268510003E− 07 −2.8390289006E− 07 +1.9513723058E− 09 −7.2082566955E− 11 +1.6422454906E− 09
−9.1277337669E− 07 +9.4972338534E− 09 +4.3116429054E− 07 −7.2082566955E− 11 +3.9810526042E− 09 −2.2788964517E− 10
+4.6393449869E− 06 −4.9783742550E− 09 −2.7993620662E− 06 +1.6422454906E− 09 −2.2788964517E− 10 +4.5198732031E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+3.1525096930E− 02
# SRP Area to mass ratio (m2/kg), eps = 0.31
+8.6998667752E− 02
# TLE used for nonlinear least square fit
1 21574U 91500A 13022.93534794 .00000203 00000-0 83024-4 0 5448
2 21574 098.2460 355.3520 0034877 082.5971 341.2307 14.36304867126904

Object 3
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# Satellite ID
20237
# Reference UT
03/03/2013 03:34:55.0660854578
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−6.9608504967E+ 02 −7.1908922523E− 01
+3.9447413218E+ 03 −6.1667222531E+ 00
+6.6676677691E+ 03 +3.5653521805E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+2.6282128459E− 03 +4.9609574850E− 04 −1.2472570972E− 04 −4.6583233145E− 08 +1.7868359512E− 07 +4.6499234699E− 07
+4.9609574850E− 04 +5.1294297368E− 03 −2.8175167448E− 03 −2.6604126144E− 07 +2.0213010498E− 06 +3.1959036434E− 06
−1.2472570972E− 04 −2.8175167448E− 03 +2.5231867160E− 03 +2.3789204150E− 07 −6.2505918713E− 07 −2.4279044407E− 06
−4.6583233145E− 08 −2.6604126144E− 07 +2.3789204150E− 07 +2.1743122769E− 09 −1.5519486573E− 10 +3.4526380891E− 11
+1.7868359512E− 07 +2.0213010498E− 06 −6.2505918713E− 07 −1.5519486573E− 10 +1.1046525934E− 09 +1.0043646178E− 09
+4.6499234699E− 07 +3.1959036434E− 06 −2.4279044407E− 06 +3.4526380891E− 11 +1.0043646178E− 09 +2.6911031636E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.2645425516E− 03
# SRP Area to mass ratio (m2/kg), eps = 0.31
+1.2072974147E− 03
# TLE used for nonlinear least square fit
1 20237U 89074F 13062.14924845 .00000051 00000-0 22376-3 0 924
2 20237 082.5723 087.7657 0004186 082.5944 337.2822 12.63395421 82164

Object 4

# Satellite ID
23820
# Reference UT
04/03/2013 20:54:42.1015834808
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+8.7741400840E+ 03 −1.4355103802E+ 00
+2.5174129938E+ 03 −1.2478148630E− 01
−1.1037130913E+ 01 +6.7080731673E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+3.7365649111E− 03 −1.8774896159E− 03 −1.7756879090E− 03 +1.1737797328E− 06 +7.2965655117E− 07 −1.9125787150E− 06
−1.8774896159E− 03 +8.4701814389E− 03 +1.0368790267E− 03 −3.6471225605E− 07 −1.6589500283E− 06 −4.7980730691E− 07
−1.7756879090E− 03 +1.0368790267E− 03 +1.6075521088E− 02 −7.5785218204E− 06 −1.8780849958E− 06 −6.5081630239E− 07
+1.1737797328E− 06 −3.6471225605E− 07 −7.5785218204E− 06 +4.4433848385E− 09 −2.2730797064E− 10 +2.1850803760E− 10
+7.2965655117E− 07 −1.6589500283E− 06 −1.8780849958E− 06 −2.2730797064E− 10 +4.4757376092E− 09 −1.2691331517E− 10
−1.9125787150E− 06 −4.7980730691E− 07 −6.5081630239E− 07 +2.1850803760E− 10 −1.2691331517E− 10 +1.4485851866E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+2.9406164525E+ 00
# SRP Area to mass ratio (m2/kg), eps = 0.31
+3.0085686833E+ 00
# TLE used for nonlinear least square fit
1 23820U 66077D 13063.87132062 .00020734 00000-0 60931+0 0 3081
2 23820 087.6151 016.1776 2204224 081.8477 302.4728 08.81977559657175

Object 5 (COMS-1)

# Satellite ID
36744
# Reference UT
07/02/2011 17:28:54.3233361840
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−4.1218586022E+ 04 −6.4868868413E− 01
+8.8973993544E+ 03 −3.0052824298E+ 00
+6.5767406271E+ 01 +1.1524550572E− 03
# Covariance matrix (km2, km2/s, km2/s2)
+4.8684260805E− 03 +2.8144019728E− 03 +2.5855660862E− 04 −2.9284545423E− 07 −2.6416134160E− 07 +4.7498191816E− 10
+2.8144019728E− 03 +2.1151760568E− 02 −3.7731926146E− 04 −8.9572939141E− 07 +3.3550231926E− 07 +1.4314764844E− 09
+2.5855660862E− 04 −3.7731926146E− 04 +1.2383334290E− 02 −1.5150684923E− 08 −2.4339739820E− 08 +1.8043084888E− 11
−2.9284545423E− 07 −8.9572939141E− 07 −1.5150684923E− 08 +5.3865847597E− 11 −3.4214779531E− 12 +1.8558767562E− 14
−2.6416134160E− 07 +3.3550231926E− 07 −2.4339739820E− 08 −3.4214779531E− 12 +2.8061830734E− 11 +7.0815634448E− 15
+4.7498191816E− 10 +1.4314764844E− 09 +1.8043084888E− 11 +1.8558767562E− 14 +7.0815634448E− 15 +6.5166338686E− 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+4.6465256622E− 12
# TLE used for nonlinear least square fit
1 36744U 10032A 11038.72840652 -.00000340 00000-0 10000-3 0 956
2 36744 000.0086 088.0631 0000788 256.3015 183.5741 01.00269939 2416

Object 6 (RADUGA 1-7)
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# Satellite ID
28194
# Reference UT
07/02/2011 12:53:03.5177153349
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−6.2997743088E+ 03 −3.0273029590E+ 00
+4.1664952743E+ 04 −4.6758259629E− 01
+1.6017472390E+ 03 +2.6224219851E− 01
# Covariance matrix (km2, km2/s, km2/s2)
+2.4642428245E− 02 +2.2712137544E− 03 −6.4227590670E− 04 −2.7598724396E− 07 +1.0326836589E− 06 +5.0508709424E− 08
+2.2712137544E− 03 +4.7804014798E− 03 −5.3528868674E− 04 +2.9818134924E− 07 +2.3812269421E− 07 −2.1062388599E− 08
−6.4227590670E− 04 −5.3528868674E− 04 +1.3920101199E− 02 +2.1358765258E− 08 −9.7456008690E− 08 −4.2449078518E− 09
−2.7598724396E− 07 +2.9818134924E− 07 +2.1358765258E− 08 +2.8385263365E− 11 −3.0436486056E− 12 +4.0211735020E− 12
+1.0326836589E− 06 +2.3812269421E− 07 −9.7456008690E− 08 −3.0436486056E− 12 +6.1556025538E− 11 −2.2819832001E− 14
+5.0508709424E− 08 −2.1062388599E− 08 −4.2449078518E− 09 +4.0211735020E− 12 −2.2819832001E− 14 +7.3295880653E− 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+4.0165085827E− 02
# TLE used for nonlinear least square fit
1 28194U 04010A 11038.53684627 -.00000341 +00000-0 +10000-3 0 03215
2 28194 005.2813 074.4923 0001212 268.2646 116.0489 01.00265873025169

A.2 Collision probability

Test case A

# Satellite ID
39152
# Reference UT
10/02/2014 19:12:35.0844445825
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−3.6439539563E+ 03 +9.1878920823E− 01
+5.9878758060E+ 03 +5.3316032714E− 01
+4.9808066441E+ 00 +7.4730343033E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+9.8237058494E− 04 +3.8915942674E− 04 +1.9571722596E− 04 +1.6609615808E− 07 −2.2559491098E− 07 +1.9015667113E− 07
+3.8915942674E− 04 +5.7555444198E− 04 +1.0303424759E− 04 +4.0954623941E− 08 −1.5338795992E− 07 −3.0843253026E− 07
+1.9571722596E− 04 +1.0303424759E− 04 +2.7558675605E− 03 +1.1746412424E− 06 −1.9215069558E− 06 +1.1861317840E− 08
+1.6609615808E− 07 +4.0954623941E− 08 +1.1746412424E− 06 +1.5490440293E− 09 −3.1617343607E− 10 −1.0891636943E− 10
−2.2559491098E− 07 −1.5338795992E− 07 −1.9215069558E− 06 −3.1617343607E− 10 +1.8659786917E− 09 −8.3430324021E− 11
+1.9015667113E− 07 −3.0843253026E− 07 +1.1861317840E− 08 −1.0891636943E− 10 −8.3430324021E− 11 +4.1396922057E− 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.2218479923E− 02
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.0694123476E− 02
# TLE used for nonlinear least square fit
1 39152U 13018C 14041.80040607 .00002412 00000-0 34810-3 0 8423
2 39152 98.0284 121.5048 0018766 38.9612 321.2977 14.77065112 42877

# Satellite ID
27580
# Reference UT
10/02/2014 16:21:14.1030737758
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−3.8922004631E+ 03 −6.2512439849E+ 00
−1.0438435353E+ 03 +1.8465268478E− 01
+5.7962513479E+ 03 −4.1358463997E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.9547374453E− 03 −9.8049890402E− 05 +1.0580067225E− 03 −1.1794923458E− 06 −2.6119495220E− 07 +1.3789927232E− 06
−9.8049890402E− 05 +1.1188760540E− 03 +7.8137564847E− 05 −1.1565590860E− 08 +1.3391748522E− 08 −7.1596458005E− 08
+1.0580067225E− 03 +7.8137564847E− 05 +1.0336519655E− 03 −4.2647489665E− 07 −1.7889070361E− 07 +1.1193578612E− 06
−1.1794923458E− 06 −1.1565590860E− 08 −4.2647489665E− 07 +9.1252134319E− 10 +8.0369513444E− 11 −7.6890339138E− 10
−2.6119495220E− 07 +1.3391748522E− 08 −1.7889070361E− 07 +8.0369513444E− 11 +1.2941888854E− 09 −6.9242035260E− 11
+1.3789927232E− 06 −7.1596458005E− 08 +1.1193578612E− 06 −7.6890339138E− 10 −6.9242035260E− 11 +1.4620365188E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.7201681066E− 05
# SRP Area to mass ratio (m2/kg), eps = 0.31
+9.8460198665E− 02
# TLE used for nonlinear least square fit
1 27580U 01049MY 14041.68141323 .00001359 00000-0 22429-3 0 5945
2 27580 97.8555 3.7377 0047446 330.9850 152.8019 14.71277121622316
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Test case B

# Satellite ID
27453
# Reference UT
20/11/2013 13:26:25.8947440982
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.4979059959E+ 03 −5.9504749387E+ 00
+3.0653803366E+ 02 +3.8129647668E+ 00
+6.7181721934E+ 03 −2.3755680897E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.8615176132E− 03 −5.9371488217E− 04 +5.7527411082E− 04 −6.4855641668E− 07 +1.4422052340E− 07 +1.4063005261E− 06
−5.9371488217E− 04 +1.3880156120E− 03 −2.8152360401E− 04 +3.4638522095E− 07 −3.9996702959E− 08 −9.2455468978E− 07
+5.7527411082E− 04 −2.8152360401E− 04 +5.8855927117E− 04 +7.6250286311E− 08 −1.6871676008E− 07 +6.6170167678E− 07
−6.4855641668E− 07 +3.4638522095E− 07 +7.6250286311E− 08 +7.2731034077E− 10 +2.4744622174E− 10 −3.8539559873E− 10
+1.4422052340E− 07 −3.9996702959E− 08 −1.6871676008E− 07 +2.4744622174E− 10 +9.1680701357E− 10 +1.5038111950E− 10
+1.4063005261E− 06 −9.2455468978E− 07 +6.6170167678E− 07 −3.8539559873E− 10 +1.5038111950E− 10 +1.4968859391E− 09
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.0075588399E− 03
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.7067261334E− 02
# TLE used for nonlinear least square fit
1 27453U 02032A 13324.56002193 .00000354 00000-0 16975-3 0 3501
2 27453 98.3115 330.3370 0012692 70.4075 38.4024 14.24645909592980

# Satellite ID
33692
# Reference UT
20/11/2013 13:02:7.8791964054
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+2.7072504230E+ 03 +1.1053867194E+ 00
+6.6185027866E+ 03 −4.5872732420E− 01
+6.5408784620E+ 00 +7.3812411350E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+7.4456143946E− 04 −2.1033418661E− 04 +1.5630845774E− 04 −9.5245718864E− 08 −1.9436808166E− 07 −9.0622152364E− 08
−2.1033418661E− 04 +3.1772267900E− 04 −6.7843369616E− 05 +1.9817261436E− 09 +9.8865423604E− 08 −2.2049290292E− 07
+1.5630845774E− 04 −6.7843369616E− 05 +1.8524950529E− 03 −5.4832073914E− 07 −1.3392393107E− 06 −2.2891164616E− 09
−9.5245718864E− 08 +1.9817261436E− 09 −5.4832073914E− 07 +9.1837031296E− 10 +1.4156627714E− 10 −9.0630235032E− 11
−1.9436808166E− 07 +9.8865423604E− 08 −1.3392393107E− 06 +1.4156627714E− 10 +1.2051410084E− 09 +3.8737522574E− 11
−9.0622152364E− 08 −2.2049290292E− 07 −2.2891164616E− 09 −9.0630235032E− 11 +3.8737522574E− 11 +2.6817511423E− 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+6.1554384920E− 01
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.8921957815E− 05
# TLE used for nonlinear least square fit
1 33692U 99025DGD 13324.54314675 .00015012 00000-0 56966-2 0 3993
2 33692 99.1407 67.9439 0028402 336.9020 23.1694 14.30917181292566
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Test case C

# Satellite ID
37838
# Reference UT
21/11/2013 13:04:12.9898434877
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.7064133232E+ 02 −6.9641618091E+ 00
+7.2375327257E+ 03 −2.6533008678E− 01
+8.8144484510E− 01 +2.5459684582E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+1.4620065692E− 03 +1.5096126850E− 04 −3.4342152452E− 04 +3.2500902338E− 08 +1.1756166169E− 06 −1.8919723104E− 08
+1.5096126850E− 04 +2.1171590357E− 04 −5.6611199550E− 05 +1.8808430093E− 07 +1.5635248049E− 07 −6.8748866154E− 08
−3.4342152452E− 04 −5.6611199550E− 05 +7.3178022570E− 04 −1.8310062662E− 08 −4.5741482493E− 07 +8.8305361044E− 09
+3.2500902338E− 08 +1.8808430093E− 07 −1.8310062662E− 08 +2.4930955928E− 10 +5.3419271859E− 11 +1.3816886668E− 10
+1.1756166169E− 06 +1.5635248049E− 07 −4.5741482493E− 07 +5.3419271859E− 11 +1.0872884658E− 09 −1.6378238816E− 11
−1.8919723104E− 08 −6.8748866154E− 08 +8.8305361044E− 09 +1.3816886668E− 10 −1.6378238816E− 11 +5.7539188515E− 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.3696048019E− 03
# SRP Area to mass ratio (m2/kg), eps = 0.31
+1.1868850460E− 03
# TLE used for nonlinear least square fit
1 37838U 11058A 13325.54459479 .00000586 00000-0 18131-3 0 5302
2 37838 19.9787 92.3179 0009179 164.4307 195.6381 14.09686725108936

# Satellite ID
37840
# Reference UT
20/11/2013 08:13:18.4635964036
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−2.5924255453E+ 02 −6.9640911370E+ 00
+7.2375143678E+ 03 −2.5310140058E− 01
+8.2501627159E− 01 +2.5436846038E+ 00
# Covariance matrix (km2, km2/s, km2/s2)
+8.9908619704E− 04 +3.5482498530E− 05 −1.5690448148E− 04 −2.2950305574E− 08 +6.7406759066E− 07 −2.1839226852E− 09
+3.5482498530E− 05 +1.3622581555E− 04 −8.5489681255E− 06 +1.2828235413E− 07 +3.7833918148E− 08 −4.7743784534E− 08
−1.5690448148E− 04 −8.5489681255E− 06 +5.2397255801E− 04 +6.6104495832E− 09 −2.4509570267E− 07 +1.1577334597E− 09
−2.2950305574E− 08 +1.2828235413E− 07 +6.6104495832E− 09 +1.8248705329E− 10 −8.7155540637E− 12 +1.1263652901E− 10
+6.7406759066E− 07 +3.7833918148E− 08 −2.4509570267E− 07 −8.7155540637E− 12 +6.0575620993E− 10 −3.1320777230E− 13
−2.1839226852E− 09 −4.7743784534E− 08 +1.1577334597E− 09 +1.1263652901E− 10 −3.1320777230E− 13 +4.4991999269E− 10
# Drag Area to mass ratio (m2/kg), Cd = 2.2
+1.6733308516E− 02
# SRP Area to mass ratio (m2/kg), eps = 0.31
+2.6790857074E− 02
# TLE used for nonlinear least square fit
1 37840U 11058C 13324.34257481 .00000265 00000-0 00000+0 0 5857
2 37840 19.9633 92.2212 0012886 173.2946 186.7632 14.10655180108878
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Test case D

# Satellite ID
16199
# Reference UT
20/11/2013 01:04:17.9371109605
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
−4.0984596292E+ 04 −7.1565317033E− 01
+9.3894851315E+ 03 −2.8957835671E+ 00
+2.7224571229E+ 03 −7.5321799039E− 01
# Covariance matrix (km2, km2/s, km2/s2)
+2.0594892337E− 03 +1.8379005001E− 03 +4.7338792975E− 04 −1.1332545815E− 07 −9.2599726031E− 08 −2.3507445814E− 08
+1.8379005001E− 03 +8.7961151778E− 03 +8.4366722845E− 04 −3.5906104057E− 07 +9.8838124092E− 08 +2.8114925162E− 08
+4.7338792975E− 04 +8.4366722845E− 04 +5.4860265792E− 03 −9.5190527137E− 08 +2.7889672850E− 08 +8.1851469305E− 09
−1.1332545815E− 07 −3.5906104057E− 07 −9.5190527137E− 08 +2.2266514440E− 11 −3.2210326166E− 12 −8.0528400269E− 13
−9.2599726031E− 08 +9.8838124092E− 08 +2.7889672850E− 08 −3.2210326166E− 12 +1.1764972771E− 11 −4.2665830474E− 12
−2.3507445814E− 08 +2.8114925162E− 08 +8.1851469305E− 09 −8.0528400269E− 13 −4.2665830474E− 12 +2.7035786499E− 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+1.1223807797E− 06
# TLE used for nonlinear least square fit
1 16199U 85102A 13324.04465205 -.00000265 00000-0 10000-3 0 2554
2 16199 14.6620 1.3261 0008520 116.5622 48.8663 1.00297344105627

# Satellite ID
29648
# Reference UT
19/11/2013 13:45:33.4224164486
# ECI J2000 Position (km) ECI J2000 Velocity (km/s)
+4.2091373228E+ 04 +1.8931804031E− 01
−2.5929194691E+ 03 +3.0683059623E+ 00
−9.2251747965E+ 01 +6.6909152476E− 04
# Covariance matrix (km2, km2/s, km2/s2)
+1.4139689390E− 03 +5.7834535594E− 04 −5.2183084638E− 05 −2.1498800482E− 08 −1.0394009353E− 07 +1.3075451281E− 11
+5.7834535594E− 04 +7.9198371095E− 03 −1.5459818308E− 04 −3.3496996136E− 07 +1.2443268919E− 08 +7.3094127670E− 10
−5.2183084638E− 05 −1.5459818308E− 04 +4.5115226302E− 03 −4.8657365415E− 09 +4.6785900696E− 09 +4.9130205025E− 11
−2.1498800482E− 08 −3.3496996136E− 07 −4.8657365415E− 09 +1.9350129603E− 11 −1.1375786363E− 12 +9.1002280124E− 15
−1.0394009353E− 07 +1.2443268919E− 08 +4.6785900696E− 09 −1.1375786363E− 12 +8.6020208781E− 12 −3.4871343335E− 15
+1.3075451281E− 11 +7.3094127670E− 10 +4.9130205025E− 11 +9.1002280124E− 15 −3.4871343335E− 15 +2.3739652425E− 11
# SRP Area to mass ratio (m2/kg), eps = 0.31
+4.0010579635E− 06
# TLE used for nonlinear least square fit
1 29648U 06056A 13323.57330350 -.00000244 00000-0 10000-3 0 1373
2 29648 0.0702 90.3404 0001774 125.3902 140.9346 1.00270688 25513



Bibliography

[Aid12] S. Aida and M. Kirschner. Collision risk assessment and operational experi-

ences for LEO satellites at GSCOC . J. Aerospace Eng., 4(2):121 (2012).

[Ake00] M. R. Akella and K. T. Alfriend. Probability of collision between space objects .

J. Guid. Control Dyn., 23(5):769–772 (2000).
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