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The justification for a university is that it preserves the
connection between knowledge and the zest of life, by unit-
ing the young and the old in the imaginative consideration
of learning. Youth is imaginative, and if the imagination be
strengthened by discipline this energy of imagination can in
great measure be preserved through life. The tragedy of the
world is that those who are imaginative have but slight expe-
rience, and those who are experienced have feeble imagina-
tions. Fools act on imagination without knowledge; pedants
act on knowledge without imagination. The task of a univer-
sity is to weld together imagination and experience.

A.N. Whitehead, 1967
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Abstract

Autonomous robots use sensors to acquire knowledge about the state
of the world, in particular to reduce their uncertainty about critical
variables related to the assigned tasks. When multiple sensors observe
different aspects of the reality, they report noisy, overlapping, possibly
contradictory measurements that have to be properly processed to up-
date the robot internal belief. In this work we introduce ROAMFREE,
a general, open-source, framework for multi-sensor fusion and parame-
ter self-calibration in mobile robotics. A comprehensive logical sensors
library allows to abstract from the actual hardware and processing while
preserving modeling accuracy thanks to a rich set of calibration parame-
ters (e.g., sensor geometric placement, biases, gains and distortion matri-
ces). A modular formulation of the information fusion problem has been
obtained based on state-of-the-art factor-graph inference techniques; it
allows to handle arbitrary number of multi-rate sensors and to adapt to
virtually any kind of mobile robot platforms, such as Ackerman steering
vehicles, quadrotor unmanned aerial vehicles, omni-directional mobile
robots. Different solvers are available to target both high-rate online
pose tracking tasks and offline accurate trajectory smoothing and pa-
rameter self-calibration. An extensive evaluation of the resulting frame-
work has been performed on different mobile robots. ROAMFREE has
already proved its flexibility and out-of-the-box deployment in several,
real-world, information fusion and sensor self-calibration problems.
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Chapter 1

Introduction

Robots are mechanical or virtual artificial agents able to perform given
tasks with a certain degree of autonomy. These tasks always involve
interaction with the environment, whatever it is our familiar physical
world or some virtual scenario.

In principle, most of these tasks could be performed relatively easily
if only the robot knew certain quantities such as its own position, the
position of its goal, the current distance from walls, if the planned path
towards the goal is free from obstacles, and where possible obstacles are
located. Unfortunately, in practice these variables are seldom directly
observable. Moreover, even in scenarios where the operating conditions,
such as the light conditions, or the site map, can be controlled or jointly
designed with the robotic system, there will always be inescapable de-
grees of uncertainty in the robot and environment state.

In order to bound the uncertainty in their knowledge, most of the mod-
ern robots employ sensors and maintain an internal model of the state
of the world; this model is updated according to observation evidence
and it is then employed to make decisions about how to accomplish the
assigned tasks. The set of sensors available for the robot is always cho-
sen depending on the operating environment and on the required degree
of autonomy. In general, as the assigned tasks grow in complexity, the
set of variables that have to be observed increases and multiple sensors
are required. As heterogeneous sensors observe different aspects of the
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1. Introduction

Figure 1.1.: A selfie of the Curiosity Rover.

reality, redundancy in perception results in an increased fault tolerance
and robustness with respect to unforeseen situations.

As an example, let us consider the case of robotic systems for space ex-
ploration, such as the Curiosity rover depicted in Figure 1.1, and part of
the Mars Science Laboratory mission. Because of the delay in communi-
cation between Earth and Mars, the robot can not be teleoperated, and
waiting for human instructions at each unforeseen situation is clearly im-
practical. Thus, the robot needs a high degree of autonomy, at least for
elementary tasks such as heading towards given positions and obstacle
avoidance. To this end, several sensors are employed; leaving apart the
scientific experiments and general purpose elements such as the mast-
cam, a multi-spectra, high definition camera, the rover has two pairs of
navcams, to acquire stereoscopic 3-D images, plus four pairs of hazcams,
which are used for autonomous hazard avoidance and safe positioning
of the robot arm, for a total of twelve cameras employed in navigation,
plus an inertial measurement unit.

As new, noisy, possibly contradictory, evidence comes from multiple,
heterogeneous, sensors, processing has to be applied in order to fuse the
available information and update the robot internal model of the world.
This is model is often called belief, and in modern robots it also includes
an explicit characterization of the uncertainty regarding critical vari-
ables. The problem of how these internal believes can be consistently
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updated as new observations become available has been subject of active
research in the last fifty years, and it is still ongoing. Many techniques
have been proposed and effectively employed in several applications. No-
table examples are the Extended Kalman Filters, or, in general, recursive
Bayes filters, and, more recently, graph-based optimization techniques.

However, hardware sensors, or pre-processing to be applied on raw
data, often involve calibration or tuning parameters that turn out to
be critical to build internal robot believes. For instance, on a mobile
robot with a single camera, it is impossible to estimate the robot veloc-
ity from successive frames unless we know the orientation of the camera
with respect to the robot base. Other examples are gains and biases
in inertial measurement units, ferromagnetic properties of the robot af-
fecting magnetometer readings, intrinsic matrices and depth distortion
pattern of a RGB-D cameras, to name a few. To ensure that sound
and consistent state estimation can be achieved, it is often required to
determine these parameters with a high degree of accuracy. However, it
is often difficult to to determine these by directly inspecting the robot
(think about the case of 3-DoF orientations), while others are simply not
directly observable, e.g., the matrices of intrinsic camera parameters.

A number of ad-hoc solutions has been proposed in the literature to
handle accurate calibration of very specific sensor configurations (and
they are still subject of active investigation). These techniques often
rely on artificial environment structures, such as checkerboards in cam-
era calibration, or on the availability of external information, not pro-
duced by the set of sensors being calibrated, such as position ground
truth. Unfortunately, relevant parameters might change over time, such
as biases in gyroscope sensors, which depend on environment tempera-
ture, motion, and on a number of other factors. In this cases, offline,
ad-hoc, calibration procedures, and environment structures, can not be
employed and typical solutions require the robot state space to be aug-
mented to include estimates for calibration parameters. Few work has
been done on the self-calibration of an arbitrary set of sensor, i.e., the
problem of determining sensor calibration parameters employing only
the information produced by the sensors themselves, possibly, during
normal robot operation.

As robotic systems face new and more advanced tasks, system devel-
opers and researchers are required to handle very complex sensor-fusion
and parameter calibration problems. Despite the wide variety of solu-
tions available in the literature, platform dependent specifications make
them not directly applicable, or require adaptations, enhancement, or
substantial extensions. The lack of off-the-shelf, flexible solutions which
are deployable with minor effort undermine the availability of base-
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1. Introduction

line solutions to compare new approaches against and often requires
researchers to develop from scratch even very simple sensor-fusion algo-
rithms, “reinventing the wheel” and scarifying reusability.

In this work we propose a general and flexible approach to the prob-
lem of multi-sensor fusion and parameters self-calibration, resulting in
a software framework which can be deployed on very different robotic
platforms and sensor configurations. In its development, we employ
and extend mathematical and software engineering techniques to ensure
that the resulting framework can be easily specialized to handle specific
cases, and some of its component replaced without any change to the
overall system architecture. We believe that our approach could signifi-
cantly reduce the effort needed for developing new robotic applications,
boosting research and easing the comparison of different approaches.

1.1. Main Contributions

In the following we summarize the main contributions of this work
and we provide references to international peer-reviewed publications
in which we discuss our specific contributions in details.

A modern sensor-fusion approach. A state of-the-art formulation
of the problem of simultaneous multiple sensor information fusion and
parameter self-calibration is presented, which is based on factor-graphs
and non-linear, manifold-aware, max-likelihood estimation. Decoupling
is achieved between state representation, sensor models, and solver al-
gorithms, so that each of these components can be extended or replaced
requiring no change in the rest of the architecture.

Davide Antonio Cucci and Matteo Matteucci. On the development of
a generic multi-sensor fusion framework for robust odometry estimation.
Journal of Software Engineering for Robotics, 5(1):48–62, 2014

A library of reusable sensor models. These models characterize
observations with respect to their measurement domain, e.g., position,
velocity, orientation, etc., rather than directly describing hardware sen-
sors. Moreover, each model comes with a set of calibration parameters
to accurately characterize a wide variety of information sources. A de-
coupling layer is also developed to make sensor models independent from
the specific representation of the robot state.

Davide Antonio Cucci and Matteo Matteucci. Position tracking and
sensors self-calibration in autonomous mobile robots by gauss-newton
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1.1. Main Contributions

optimization. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, pages 1269–1275. IEEE, 2014

Davide Antonio Cucci and Matteo Matteucci. A flexible framework
for mobile robot pose estimation and multi-sensor self-calibration. In
Informatics in Control, Automation and Robotics (ICINCO), 2013 In-
ternational Conference on, pages 361–368, 2013

An outlier rejection mechanism. It is based on a RANSAC
approach and allows to exclude spurious observations before they are
employed in estimation, increasing robustness beside accuracy. A low-
dimensional kinematic model is employed to approximate the robot tra-
jectory in a local time window. Multiple hypotheses are generated based
on random, minimal, set of observations and they are ranked according
to the other available readings.

An off-the-shelf software framework. It provides a simple yet
powerfull C++/Python API and seamless integration with the popular
Robot Operating System (ROS) framework and other open-source and
open-hardware tools such as the Rapid Robot Prototyping toolkit.

Davide Antonio Cucci, Martino Migliavacca, Andrea Bonarini, and
Matteo Matteucci. Development of mobile robots using off-the-shelf
open-source hardware and software components for motion and pose
tracking. In Intelligent Autonomous Systems (IAS), 2014 International
Conference on, page to appear, 2014

A set of physical testbeds for perfomance evaluation. The
proposed framework is currently employed as the pose-tracking and cal-
ibration component on two autonomous mobile robots: the Quadrivio
all-terrain ATV and the Lurch Autonomous Wheelchair. Moreover,
odometry and pose tracking benchmarks have been carried on other two
modile robots: the heavy duty differential drive Robocom and Triskar2,
an omnidirectional wheeled robot designed for aggressive maneuvers in
indoor environments.

Gianluca Bardaro, Davide Antonio Cucci, Luca Bascetta, and Mat-
teo Matteucci. A simulation based architecture for the development of
an autonomous all terrain vehicle. In Simulation, Modeling, and Pro-
gramming for Autonomous Robots (SIMPAR), pages 74–85. Springer
International Publishing, 2014
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1. Introduction

1.2. Thesis Outline

This work is divided in two parts and the aforesaid contributions are
presented according to the following structure.

Chapter 1 has briefly introduced the information fusion and pa-
rameters self-calibration problem in mobile robotics, the motiva-
tions and the main contributions of this work.

PART I - Framework Description

Chapter 2 provides a discussion about the state of the art in
state estimation in mobile robotics from an historical perspective,
highlighting the main ideas and current open issues.

Chapter 3 introduces the ROAMFREE framework architecture,
presenting its main components and the techniques employed to
achieve the decoupling between state representation, error models
and solvers from a system level perspective.

Chapter 4 details the mathematical formulation of the state vari-
ables operator interfaces, the decoupling layer between state rep-
resentation and sensor error models, and the sensor models them-
selves.

Chapter 5 presents the RANSAC inspired outlier rejection algo-
rithms employed to detect spurious sensor readings by means of
multiple trajectory hypotheses evaluation.

PART II - Experimental Evaluation

Chapter 6 begins the ROAMFREE experimental evaluation, con-
sidering the Quadrivio robot, an all-terrain autonomous vehicle.
Here we evaluate the sensor parameter parameter self-calibration
capabilities of the proposed framework and we discuss results re-
garding its usage within a trajectory control loop.

Chapter 7 explores sensors self-calibration considering the Lurch
Autonomous Wheelchair. A simplified formulation of the Simul-
taneous Localization and Mapping problem is addressed employ-
ing fiducial markers as landmarks. The geometric placement and
odometry calibration parameters of the robot are retrieved along
with landmark positions.
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1.2. Thesis Outline

Chapter 8 discusses use cases in which the proposed framework is
employed in online pose tracking for two different wheeled robots,
demonstrating an off-the-shelf deployment. Examples of the API
usage are discussed along with integration with ROS and R2P, a
framework for rapid robot prototyping.

Chapter 9 includes conclusions and a discussion of the issue still
open and proposals for future developments.
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Chapter 2

Background

From the nineties onwards, it was generally understood that maintain-
ing a single hypothesis on the world state is not enough in practice: a
characterization of the uncertainty in the robot knowledge is also needed.
This idea is well discussed from Thrun et Al., in their famous book Prob-
abilistic Robotics [78] and it is summarized by the following conjecture:

“A robot that carries a notion of its own uncertainty and that
acts accordingly is superior to one that does not.”

To see the rationale behind this statement, let us consider the follow-
ing example in which a mobile robot has to pass through a door, which
can be either open or closed. The robot senses the environment and
forms its own belief accumulating evidence regarding the status of the
door. Suppose that at a certain point, according to past observations,
the probability that the door is open is only slightly greater than closed.
For instance, people moving in its neighborhood might have tricked the
robot range sensors. In this situation a probabilistic robot would ap-
proach the door slowly, in the hope that future observation will support
the conjecture that the door is open. Conversely, a robot which does not
take into account uncertainty in its beliefs would just assume that the
door is open and proceed at cruise speed towards the door, eventually
resulting in a spectacular crash.

Following this idea, most of the modern autonomous robots maintain
believes over the state space, i.e., the domain of the critical variables

11



2. Background

for which an estimate has to be maintained, in terms of probability
distributions so that a probability value is associated to each state. Thus,
the robot never rely on a single “best guess” as to what might be the
case in the world, yet it exploits some representation of the uncertainty
in its knowledge, being able to distinguish between facts that are likely
and facts for which little or no knowledge is available.

The problem which arises is how to update this belief distribution as
new observations are available. Moreover, multiple sensors are often em-
ployed in a redundant fashion, or heterogeneous ones observe different
effects related to the same state variable, with the aim of reducing mea-
surement uncertainty and increase the robustness of the system. How
can raw sensor data spanning different measurement domains be inte-
grated, or fused, in a probabilistic fashion, contributing in the estimation
of the robot belief?

In this work we employ sensor-fusion techniques to update believes
regarding robot poses and calibration parameters, relying on multiple,
heterogeneous, asynchronous information sources. Before presenting our
approach, it seems appropriate to discuss other state estimation tech-
niques employed in robotics and similar works.

2.1. Bayesian State Estimation

In probabilistic robotics, a density is maintained over the state space:

bel(xt) = p(xt|z1:t, u1:t), (2.1)

which is a posterior distribution conditioned on all the measurements
zt, and controls ut up to time t. Here, with the term controls, we intend
the system inputs, or, in other words, the variables whose value is under
direct control of the robot, such as wheel speed setpoints, joint positions,
and so on. We are interested in how the posterior belief, bel(xt), is
computed as new controls and a sensor readings are available.

Belief update is often performed in a recursive fashion, integrating
each sensor reading as soon as it is available and producing a posterior
distribution that represents the probability of each state given its prior,
the sensor readings and the controls. The resulting distribution becomes
the prior for the integration of the next sensor reading. This approach
goes under the name of recursive state estimation and its most general
form is given by the Bayes filter, which we report here for convenience.

In the first step of the algorithm, we predict the next state given
ut, for each possible state xt−1. The second step is referred as the

12



2.1. Bayesian State Estimation

Algorithm 1 The general algorithm for Bayesian filtering.

function BayesFilter(bel(xt−1),ut,zt)
for all x do

bel(xt)←
∫
x p(xt|xt−1, ut)p(xt)dx

bel(xt)← ηp(zt|xt)bel(xt)
end for
return bel(xt)

end function

update, and performs the integration of the sensor reading zt, effec-
tively producing the posterior belief. This is an application of the Bayes
rule, expressing the desired probability density p(xt|zt) as a function
of p(zt|xt). Note that recursive filtering algorithms rely on: (i) the
Markov assumption, i.e., past and future data are independent if one
knows the current state xt, (ii) the state is complete, which implies that
p(zt|x0:t, z1:t, u1:t) = p(zt|xt), i.e., the current state summarizes all the
past inputs and measurements. For details see [78, Chapter 2.4].

Here it is important to remark that Bayesian filters offer a straightfor-
ward solution to perform probabilistic information fusion between multi-
ple sensors. Indeed, if we could formulate for each sensor a measurement
distribution, i.e., p(zt|xt), or in other words, if we could associate a prob-
ability for the current sensor reading as a function of the current state
xt, then we would just need to apply Algorithm 1 for each sensor.

The Bayes filter algorithm can seldom be applied directly due to diffi-
culties in analytically representing arbitrary multivariate posteriors and
solving the integrals involved in prediction. Practical implementations of
the Bayes filter rely on assumptions on the prior and posterior distribu-
tions, or employ Monte Carlo or other non-parametric representations.

The first practical implementation of the Bayesian filter for continuous
domains dates back to 1960 and it is due to Rudolph E. Kalman [50]. The
impact of that breakthrough is remarkable, the original paper accounts
for more than seventeen thousands citations, putting it among the most
referenced in the field. The original formulation of Kalman Filters as-
sumes that belief distributions and measurement noise are Gaussian and
that system and observation models are linear. Under this assumptions,
the Kalman update equation yield the optimal state estimator, in terms
of mean squared-error. If the latter assumption does not hold, system
and/or measurement models can be linearized, yielding the Extended
Kalman Filters (EKFs); these are still widely employed today and are
often the first choice in recursive state estimation. However, none of the
optimality proofs for KF hold in the non-linear case.

13



2. Background

Researchers have focused on improving the Kalman filter approach,
“gnawing” one, or both, of its fundamental assumptions. Indeed, while
it is often reasonable to assume that the belief distributions are Gaus-
sian, the propagation of Gaussian noise through highly non-lienar sys-
tem or observation models by means of linearization, as in EKFs, it
is often inaccurate. In 1997, the Unscented Kalman Filter (UKF) has
been proposed by Simon Julier and Jeffery Uhlmann [48]. It introduces
the so called unscented transform, that has been shown to model the
propagation of a Gaussian noise through an arbitrary non-linear system
model more accurately with respect to linearization, without dropping
the property that the posterior distribution is still Gaussian.

Various different approaches have been proposed in case a Gaussian
belief fails to model the state uncertainty. Indeed, normal distributions
are completely characterized by their mean and covariance, and are well
suited to represent one hypothesis regarding the state of the world.
There are situations in which, after the integration of sensor readings
into the belief, the posterior distribution becomes multi-modal. In this
case one might desire to maintain multiple hypothesis on the robot state.
A possible solution is given by Multi Hypothesis Extended Kalman Fil-
ters [51], where mixtures, or sums, of Gaussians are employed.

An alternative approach is given by nonparametric filters. Here the
belief probability distribution does not have an analytic, parametric,
representation, and it is not represented by means of its moments or
other statistics. A well known example are the particle filters, intro-
duced by Gordon et Al. in 1993 [35], even though hints of the approach
were already present in the literature of the fifties. These filters repre-
sent the belief distribution, in a Monte Carlo fashion, by means of a set
of samples, called particles. The more particles are present in a certain
region of the state space, the more likely these state will be. Such rep-
resentation is approximate, yet, if enough particles are employed, it is
able to represent multiple modes and, in the limit, any kind of proba-
bility distribution. Nevertheless, these Monte Carlo approaches suffer
the curse of dimensionality ; in other worlds, as the dimension of the
state space increases, the number of particles needed to effectively rep-
resent a multivariate probability distribution over that space increases
exponentially, undermining their applicability in high-dimensional state
estimation problems.

These algorithms, along with a countless number of variations have
been employed for state estimation in the past fifty years, and their
widespread employment has not been limited to robotics. But what are
the typical components of state spaces which we aim at estimating from
sensor data?

14



2.2. State Spaces

2.2. State Spaces

Depending on the nature of the variables which are subject to estimation,
different techniques have been employed and, as estimation problems
become more and more challenging, limitations have been discovered in
existing approaches, pushing the research towards different formulations
of the state estimation problem.

Let us start with the very first case of pose tracking, i.e., the (re-
cursive) estimate of the robot position and orientation with respect to
a fixed reference frame, which is a common problem in mobile robot
applications. In this case the state space is often composed by some pa-
rameterization of the transformation taking from the fixed to the moving
reference frame (or vice versa). For this problem, EKFs were used since
the sixties: a notable example is given by the application of the Kalman
filter as a practical method for real-time onboard trajectory estimation
and control in the Apollo program For an overview of other application
of the Kalman filter in the aerospace field, see [36].

Here a digression would be needed on the notorious problem of the
representation of rigid body transformations, even though the same dis-
cussion applies to many other situations. In these cases, state vari-
ables do not span over an Euclidean domain, instead they belong to
manifolds, i.e., topological spaces that resemble the Euclidean one in
a local neighborhood. Representing such variables often involves over-
parametrization or integrity constraints. In general, preserving the non-
Euclidean variables consistency after Bayesian updates has been an open
issue for quite some time, at least in the robotic community, and a num-
ber of representation dependent techniques were developed, such as the
use of normalization and Lagrange multipliers [82] with unit quaternions.
Modern successful approaches employ Lie groups [38] and manifold en-
capsulation [43] to ensure that the state space is closed with respect to
the Bayesian update operation.

Other types of state variables are often included in state estimation,
such as sensor calibration parameters. Indeed, the measurement distri-
bution is often conditioned on other quantities, i.e., p(zt|xt, ξ), which
might, or might not, in turn depend on time. This dependency, if
dropped, might result in severe loss in estimation accuracy. A remark-
able example consists in the biases of gyroscope and accelerometer sen-
sors, which are not constant, differ from sensor to sensor and depend
on motion, temperature, and a number of other factors. Indeed, if the
angular velocity reading is biased, and the bias is substantial, and might
change with time, we have to estimate is value online, in order to relate
gyroscope readings to the robot state. Multiple EFK and UKF formu-
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lation have been proposed in the literature which track for one or both
of these parameters, for instance see [82]. The Bayesian filtering ap-
proach has also been employed in many other online parameter tracking
problems, such as the systematic and non-systematic components of the
odometry error [61], or the GPS latency [13].

Finally, a further example of state spaces is given by the problem of
Simultaneous Localization and Mapping (SLAM), in which the map of
the world is encoded by the positions of a set of landmarks, and a belief
distribution is maintained and updated over the robot pose and the land-
marks. This idea is generally attributed to Randall C. Smith and Peter
Cheesemanin, in their work of 1987 [72], even though other pioneering
work was done by Hough F. Durrant-Whyte and John Leonard in the
early 1990s [56]. First approaches to the solution of the SLAM prob-
lem were based on EKFs and, in the monocular case, employed specific
parameterizations, such ash the unified inverse depth [65], to represent
landmark positions, so that a Gaussian distribution defined over that
parametrization would better model the actual, non-Gaussian, uncer-
tainty with respect to the landmark 3-D position [21].

A notable feature in SLAM is that the state dimension is not constant,
and in principle unbounded. Indeed, the set of landmarks is not known
a-priori: the goal in this problem is to map an unknown environment,
while simultaneously localizing with respect to the map we are building.
In general, as relevant features are detected, they augment the state
space for which the robot is maintaining a belief distribution. How-
ever, the computational cost of the basic EKF increases with quadratic
complexity in the number of landmarks, preventing real-time perfor-
mance as the dimension of the map becomes significantly large. More-
over, during the Kalman filter update, while computing the new belief
distribution the old state is marginalized. This in general introduces
cross-correlations between each component of the state, resulting in a
dense covariance matrix. Although the latter issue has been addressed
employing Information Filters, e.g., in [79], other limitations of the fil-
tering approach in SLAM pushed the research towards new formulations
of the state estimation problem, capable of both explicitly representing
problem sparsity and bounding the computational complexity.

2.3. Graph-based State Estimation

In 1997, a graph-based approach to the SLAM problem was proposed
in [60]. In Lu and Milios formulation, nodes in the graph represent poses
and landmark parameterizations (see Figure 2.1). If a landmark is visible
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Figure 2.1.: A example of a graph formulation for the SLAM problem,
where xli are the landmark nodes, xst are camera poses, zt−1,t

are odometry measurements and zlt,i are landmark observa-
tions, when landmark i is observed from pose t (The image
was taken from the g2o documentation).

from a certain pose, then an edge is added between the two. The state
estimation problem is then formulated as a max-likelihood optimization
over this graph in which the goal is to find the configuration of robot
poses and landmarks such that the joint likelihood of all the observations
is maximum. This ultimately requires to solve a large non-linear, least-
squares, optimization problem. This approach appeared long ago in
the photogrammetry and geodesy literatures and it is referred as bundle
adjustment. However, many of the available results are little known in
the vision and robotics communities, where they are gradually being
reinvented. Graph-based approaches are nowadays considered superior
to conventional EKF solutions [75], although major advancements in
sparse linear algebra (see for example [29]) were required to make them
competitive from the point of view of computational complexity. For a
modern synthesis of these methods please see [80].

The advent of graph techniques in SLAM slightly changed the per-
spective from the state estimation point of view: while filters typically
model state estimation as a recursive process performed measurement-
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per-measurement and the state consists of the latest robot pose and
all the landmarks, graph-based approaches attempt to estimate the full
robot trajectory, and thus a (long) sequence of robot poses together with
the landmark positions form the whole set of measurements. This no-
tion was already present in Kalman fixed-lag smoothers [66], where the
latest n poses are kept in the state.

Recently, the graph approach was generalized even further, now con-
sidering hypergraphs, called factor-graphs [52], where an edge, i.e., a
factor, is incident to an arbitrary number of nodes. This leaded to a
very powerful tool for multi-sensor fusion in general. Indeed, now sensor
readings can be related to an arbitrary number of poses, landmarks, and
other nodes, allowing to formulate complex observation models while
maintaining a explicit representation of the problem sparsity. This for-
malism is employed also in other fields, as for example in telecommuni-
cations as a tool to decode turbo codes.

As an example of such generalization, we cite the all source positioning
and navigation (ASPN) project [28], founded by DARPA, which aims
at weakening the dependency on the GPS system for global localization
by designing: (i) better inertial measurement units (IMUs) that require
fewer external position fixes, (ii) alternate sources to GPS for those
external position fixes and (iii) new algorithms and architectures for
rapidly reconfiguring a navigation system with new and non-traditional
sensors for a particular mission. Within this project, contemporary with
respect to this work, sensor fusion methods have been developed that,
while differing substantially from the implementation point of view, ad-
dress the pose tracking problem in a similar way with respect to this
work [49] [47]. In particular, different type of smart-factors [16] relate
a set of robot poses with measurements depending on the generating
sensor type, in a similar way with respect to our logical sensors. More-
over, as we do, many different information sources are considered, such
as IMUs, odometry, GPS, and vision measurements.

2.4. Sensor Self-Calibration

As we have mentioned before, measurement distributions might depend
on other sensor-specific quantities, which are often referred as sensor
(calibration) parameters. There are countless examples of such quan-
tities and the more measurement models become complex, the more
parameters these model will exhibit. We have already cited biases and
gains in accelerometers and gyroscope sensors. Here we add magne-
tometer distortions coefficients due to ferromagnetic properties of the
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sensor placement surroundings, intrinsic camera calibration parameters
and lens distortion coefficients, stereo camera rig baseline, relative align-
ment and placement of two sensors, kinematic parameters such as wheel
radii, cornering stiffness, communication latencies, and so on. These
parameters can be divided between those which change over time, and
thus have to be part of the robot state and be tracked online, and those
which do not change and can be determined once for all, such as geo-
metric placement parameters or intrinsic camera calibration matrices.

Sensor calibration, even in the offline case, is still an open problem.
Numeric and observability issues arise and it is often difficult to give
proofs of convergence, or specify which are the requirements in the gen-
eral case. Several ad-hoc methods have been proposed to handle very
specific situations. The topic is still subject of active investigation; with-
out any claim of completeness, we report [18], where kinematic parame-
ters for a differential drive robot and the relative placement of a 2-D laser
range-finder are estimated by means of a constrained linear least-squares
formulation, a magnetometer hard and soft iron distortion calibration
algorithm [83], and very recent works on Inertial Measurement Unit [77]
and multiple 2-D lidar systems [41].

While most the mentioned approaches are well established in the liter-
ature, such as for the hand-eye calibration problem [45], which typically
refers to determine the transformation between the robot end effector
and a camera mounted on it, interest is growing for methods which at-
tempt to remove specific assumptions, or environment structure, such
as checkerboards in intrinsic camera calibration algorithms [20]. Indeed,
research effort is pointing towards solutions in which a sensor, or a set of
sensors, is able to autonomously calibrate its critical parameters, with-
out the need for further information, such as the position ground truth
obtained by means of an external motion capture system.

In 2011, Rainer Kümmerle, Giorgio Grisetti and Wolfram Burgard
proposed a further extension to the SLAM problem, i.e., simultaneous
localization, mapping and calibration, again building on the powerful
factor-graph representation of the information fusion problem [55] [53].
In this inspiring work, the goal is not only to estimate the robot poses
and the map of the environment, but also determine the values for other
parameters appearing in the expressions of the measurement factors,
employing only the reading from the sensors that are simultaneously
undergoing calibration. In the cited work, the authors consider the
displacement and misalignment of a 2D laser range-finder and the kine-
matic parameters of a differential drive robot, i.e., the wheel radii and
the robot baseline. Even though they considered a specific case, already
addressed by many other ad-hoc techniques, a general approach for sen-
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sor self-calibration was proposed which ultimately forms the basis for
this work.

2.5. General Frameworks

While estimation techniques begin to consolidate, position tracking and
mapping capabilities remain critical for the success of most of the au-
tonomous, mobile robot applications. Furthermore, parameter calibra-
tion is still an open issue in the general case and becomes more and
more critical as robotic systems and perception architectures grow in
complexity. Not to mention the fact that each robot has its own speci-
fications, such as the available sensors, the required degree of accuracy
in pose tracking and mapping, indoor or outdoor operating condition,
2-D or 3-D world assumptions, and so on. Thus robotic system develop-
ers, or researchers, can seldom deploy available solutions and often they
have to enhance, adapt, tweak, or develop from scratch a pose tracking
and/or mapping algorithm that fits specifications.

The advent of general solvers for non-linear, least-squares, optimiza-
tion problems over factor graphs, such as g2o [54], on which this work
is based, GTSAM [30] and the ceres-solver [3] are enabling the develop-
ment of robot and sensor independent, flexible and modular pose track-
ing, mapping and parameter calibration framework. What we would like
is a set of mathematical techniques and software components sufficiently
general so that they can be configured, and not adapted, to be deployed
on very different robotic system, delivering out-of-the-box pose tracking,
mapping and sensor parameter self-calibration.

This work aims at making a step towards this direction, providing
a convenient environment to perform sensor fusion in mobile robotics,
focusing on pose tracking and parameter self-calibration. Few similar
solutions have been presented in the literature, such as the aforesaid
ASPN project by DARPA. However, the ASPN framework does not at-
tempt to estimate calibration parameters and also employs smart-factor
capabilities to exclude landmarks from the optimization. Moreover no
code has been released due to military restrictions. As for freely avail-
able software, we note the ETH ASL sensor fusion package [84], which
address the problem of visual-aided, inertial, pose estimation and pa-
rameter self-calibration in micro aerial vehicles (MAVs) and it is based
on a Kalman smoother, with very small lag window, as to allow delayed
or out-of-sequence readings.
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Chapter 3

Framework Overview

ROAMFREE is a software framework designed to provide off-the-shelf,
modular and flexible pose tracking and sensor parameter self-calibration
in mobile robotic applications. The main goals of the project include
ensuring that the resulting software framework can be employed on very
different robotic platforms and hardware sensor configurations and that
it can be easily tuned to specific user needs by replacing or extending
its main components.

To achieve these goals, critical choices have been made in terms of
software engineering and in the formulation of sensor models and the
information fusion problem. Indeed, ROAMFREE is divided into com-
ponents, such as the problem handler, the sensor models and the solver
algorithms, which hide their internal details under abstract interfaces.

In this chapter we discuss these choices in detail while giving an over-
all description of the software framework. We start from a high level
component and functional description and we move down to the sen-
sor models and state variables class hierarchy that ultimately allow to
achieve the modularity and the reusability goals. Unfortunately, due to
their intimate relations in the development of the framework, this over-
all description has to necessarily cover both software engineering con-
cepts such as abstract interfaces and class hierarchy and probabilistic
formulation of the information fusion problem. We will try to keep the
discussion as organic as possible, and, where its clarity is not affected,
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we will postpone mathematical details to Chapter 4.

3.1. Introduction

ROAMFREE is a flexible and modular framework designed to deliver to
mobile robots and unmanned vehicles developers (i) off-the-shelf position
and attitude tracking, (ii) intrinsic, extrinsic, and kinematic parameters
self-calibration capabilities.

The information fusion problem is formulated as a fixed-lag smoother
whose goal is to track not only the most recent pose, but all the positions
and attitudes of the mobile robot in a fixed time window: short lags al-
low for real time pose tracking, still enhancing robustness with respect
to measurement outliers; longer lags instead allow for offline calibration,
where the goal is to refine the available estimate of sensor parameters.
Hybrid scenarios are also considered in which a limited number of cali-
bration parameters, such as the time-varying bias of a gyroscope sensor,
can be tracked online, along with robot poses.

The core of ROAMFREE lies in a software module that keeps and
updates the probabilistic representation of the sensor fusion problem in
terms of a factor graph, composed of pose and sensor parameter nodes
and sensor error models connecting them. Other modules, such as the
outlier rejection module, which detects and exclude incoherent sensor
readings from the estimation, and inference algorithms performing state
estimation, operate upon this representation.

The framework ships a set of high level sensor models which can be
configured in terms of calibration parameters, and geometric displace-
ment on the mobile robot, allowing the end user to precisely describe
its robot perceiving architecture. The flexible and modular factor graph
formulation of the sensor fusion problem allows to deal with an arbitrary
number of multi-rate sensors, i.e., different sensors producing readings
at different rates, having non-constant frequencies of operation, and pos-
sibly producing out-of-sequence data.

In the development of the library, we aim at delivering a software tool
which is independent from the actual hardware machinery, or software
algorithms, which originate the odometric information. ROAMFREE
sensor models are logical descriptions of the actual sensors characterized
in terms of measurement domain and geometric placement. We choose
not to deal directly with hardware sensors, providing software interfaces
for widespread commercial devices, on the contrary, we follow a black box
approach focusing on the nature of the information sources. Indeed, we
provide error models that allow to handle all the measurement domains
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commonly employed in pose tracking.

As an example, consider a gyroscope being part of an inertial measure-
ment unit and a visual odometry algorithm processing images acquired
by a calibrated camera: both information sources can be seen as log-
ical angular velocity sensors. As long as the sensor abstract model is
expressive enough, from a pose tracking point of view there is no need
to distinguish between these two information sources. Indeed, what we
need is just a parametric error model which can be configured by the
user to handle the peculiarities of the actual sensor employed (e.g., bias
in case of a gyro and unknown scale in monocular visual odometry algo-
rithms). The idea of modeling sensors in an abstract way has been first
proposed by Tom Henderson in [42].

Another key feature of the framework lies in the modularity of the im-
plementation: mathematical and software engineering techniques have
been employed such that the main framework components, the logi-
cal sensors models, the state variable representations, the sensor fusion
problem handler and the solver algorithms hide their internal details
under abstract interfaces. This allow the end user to instantiate the
framework with one or another implementation of these components in
a transparent way, choosing the one that best fits its application needs.

Consider for instance the representation of 3-DoF rotations, for which
several choices exist; each choice exhibiting its own advantages and dis-
advantages (e.g., Euler angles, quaternions, 3×3 rotation matrices, etc.).
When formulating a magnetometer error model, i.e., an equation which
relates the current orientation of the sensor with its current reading of
the Earth magnetic field, we do not need to know the internals of the
sensor orientation representation; we just require it to expose three op-
erators: (i) the composition of two rotations, (ii) the inverse, (iii) the
application of the rotation to a real vector. At the same time, even the
sensor fusion algorithm can be designed to ignore these details and to
work with arbitrary state variable representations by relying on opera-
tors to update its value, ensuring that possible constraints induced by
over-parametrization are satisfied.

In the next sections we provide an overview of the main concepts and
techniques that form the basis of this work. We first discuss the infor-
mation fusion problem formulation and give a high level description of
the solution techniques, next we introduce the sensor model hierarchy,
from abstract sensors, which describe an arbitrary information source
placed on the mobile robot, to logical sensors, which add a sensor de-
pendent measurement model allowing to relate readings to robot poses
and calibration parameters. Finally we give a high level description of
the framework main components and modules.
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3.2. Core Fusion Engine

In ROAMFREE, we represent the joint probability of sensor readings
given the current estimate of the state variables, i.e., the robot poses
and the sensor calibration parameters by means of a factor graph [52].
This is a graphical model and expresses the factorization of a function
of several variables, e.g., a joint probability density function, into the
product of factors which involve only a, usually small, subset of the
variables, allowing to explicitly model the sparsity of the problem.

In our case, the nodes in the factor graph contain the state variables of
the problem, which are all the robot poses in a given time window, and
the sensor calibration parameters, such as gains, biases, displacements or
misalignments. Factors represent measurement constraints: each factor
is an hyperedge and connects multiple pose and calibration parameters
nodes, and encodes a non-linear error model which depend on the type
of the logical sensor:

ei(t) = ẑ(x)− z + η (3.1)

where ẑ(x) is a measurement predictor computed as a function of the
incident nodes, z is the actual sensor reading and it is directly asso-
ciated to the corresponding factor, finally η is a zero-mean, Gaussian,
noise encoding measurement uncertainty. Equation 3.1 yields the dif-
ference between the expected sensor reading given the robot state and
calibration parameters at time t, and the actual measurement produced
by the sensor. In Figure 3.1 it is possible to see a simplified instance of
the factor graphs considered.

The advantages of the factor graph formulation for the pose and pa-
rameter tracking problem are many:

• it allows for an arbitrary number of sensors to be handled in a
modular and independent way. Indeed, different sensor models
implement the abstract hyperedge interface and they are handled
uniformly as they are inserted into the graph.

• Sensors can be dynamically turned on and off online. Factors
are inserted into the graph asynchronously as new readings are
available for a certain information source.

• Out-of-order measurements, i.e., sensor readings which are re-
ceived in a wrong order with respect to their timestamps, can
be handled in a natural way simply picking the pose nodes with
appropriate timestamps when constructing the corresponding fac-
tor. In a similar way, it is possible to deal with arbitrary and
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Figure 3.1.: An instance of the pose tracking factor graph with four
pose vertices ΓWO (t) (circles), odometry edges eODO (trian-
gles), two shared calibration parameters vertices kv and kθ
(squares), two GPS edges eGPS and the GPS displacement

parameter S
(O)
GPS .

non-constant reading rates. Note that, even if new factors con-
straint past nodes, they still contribute to the refinement of the
most recent pose estimate through the other constraints already
present in the graph.

• From the estimation quality point of view, it has been argued that
these kind of systems are more accurate, and, in certain circum-
stances, even faster than traditional filters, such as EKFs [75].

• The high degree of sparsity of the considered information fusion
problem is explicitly represented and can be exploited by inference
algorithms. Indeed in our case a factor may involve up to three
robot poses (see Section 4.2); moreover, it is difficult to imagine a
robot employing much more than ten sensors, implying that each
pose is incident to a limited number of factors.

The information fusion problem is solved maximizing the likelihood
of the sensor readings with respect to the state variables. This is a non-
linear, weighted, least-squares optimization problem and a numerical
solution is found by means of the popular Gauss-Newton or Levenberg-
Marquardt [34] algorithms.

3.2.1. Factor Graph Construction

In ROAMFREE, a factor graph encodes the probability density of sen-
sor readings given the current estimates of the state variables. In this
hypergraph each node represents a robot pose at some time t or a sensor
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parameter, and each hyperedge corresponds to a measurement constraint
involving one or more pose nodes and calibration parameters.

Whenever a new sensor reading is available, the Graph Management
component is responsible for updating this representation and instanti-
ating a new factor, according to the type of the information source, and
inserting it into the graph as it is incident to the pose and sensor pa-
rameter nodes required to evaluate the measurement likelihood (i.e., the
sensor error function). In particular, the measurement domains, i.e.,
linear velocity, acceleration, and so on, specify how many pose nodes
have to be associated to the factor, and which are the sensor calibration
parameters involved in the error function.

For instance, consider an odometry measurement obtained at time t
from the wheel speed readings in a differential drive robot. This infor-
mation defines a hyperedge involving the robot poses at time t−1 and t,
the wheels radii and baseline distance parameters. This edge constraints
the difference of the two poses according to the forward kinematics of
the robot. In Figure 3.1 it is possible to see a more complex example
involving odometry edges, eODO, which, in turn, depend on two kine-
matics parameters, kθ and kv, and GPS edges, eGPS , constraining the

position of the robot frame up to a misplacement parameter, S
(O)
GPS .

In case the sensor reading is newer with respect to the latest pose
available in the graph, a new pose node has to be instantiated. Since
the sensor fusion problem is formulated as a non-linear optimization, an
initial guess is needed for the new state variable. If the sensor reading
provides enough information, a prediction for the new robot pose can
be obtained based on the latest available estimate and on the sensor
reading itself. Otherwise, the measurement handling is delayed until
such information becomes available. Moreover, as new pose nodes are
inserted into the graph, old ones have to be removed so that the length
of the fixed-lag window remains constant. This causes old factors to be
removed as well, implying information loss. To avoid this, old nodes are
marginalized and an new factor is inserted over their Markov blanket in
a way such that it is equivalent to the lost edges, in the neighborhood
of the current node estimates.

3.2.2. Least-Squares Optimization on Manifolds

In the RAOMFREE framework the joint probability of sensor readings
given robot poses and calibration parameters is encoded in a factor graph
by means of hyperedges that relate sensor readings to the current esti-
mates of the state variables. In the following we discuss in details how
the information fusion problem is formulated as a non-linear, weighted,
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least-squares optimization and solved by means of Gauss-Newton, or
Levenberg-Marquardt algorithms. Moreover, since the variables for this
optimization problem span over non-Euclidean manifolds, such as the
special Euclidean group SE(3), which encodes rigid body 6-DoF trans-
formations, these algorithms are formulated such that they operate con-
sistently and independently with respect to the variable domains.

Let ei(xi, η) be an error function as in Equation 3.1, associated to the
i-th edge in the hypergraph, where xi is a vector containing the variables
appearing in any of the nodes connected by the hyperedge and η is a
zero-mean Gaussian noise vector. Thus ei is a random vector and its
expected value is approximated as ei(xi) = ei(xi, η)|η=0. Since ei can
involve non-linear dependencies with respect to the noise, its covariance
Ση is computed by means of linearization, i.e.:

Σei = Ji,ηΣηJ
T
i,η

∣∣
xi=x̆i,η=0

(3.2)

where Ji,η is the Jacobian of ei with respect to η evaluated in η = 0
and in the current estimate x̆i. Here some technicalities arises in the
definition of Ji,· that we will discuss in detail in Section 4.5.

A negative log-likelihood function can be associated to each edge in
the graph, which stems from the assumption that zero-mean, Gaussian,
noise corrupts the sensor readings. Omitting the terms which does not
depend on xi, for the i-th edge this function reads as:

Li(xi) = ei(xi)Ωeiei(xi), (3.3)

where Ωei = Σ−1
ei is the information matrix of the i-th edge. The solution

for the information fusion problem is given by the assignment for the
state variables such that the likelihood of the observations is maximum:

P : arg min
x

N∑
i=1

Li(xi). (3.4)

It is possible to see that this is a non-linear least-squares problem
where the weights are the information matrices associated to each factor.
If a reasonable initial guess for x is known, a numerical solution for P can
be found by means of the popular Gauss-Newton (GN) or Levenberg-
Marquardt (LM) algorithms, see for example [34].

In GN, the error functions are approximated with their first order
Taylor expansion around the current estimate x̆:

ei(x̆+ ∆x) ' ei(x̆) + Ji,∆x∆x (3.5)

where Ji,∆x is the Jacobian of ei with respect to ∆x, evaluated at ∆x =
0. Substituting (3.5) in (3.4) yields a quadratic form which can be solved
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in ∆x. Then x̆ is replaced with x̆+∆x and Ωei is updated for each edge
as in (3.2). These steps are repeated till termination criteria are met.

However, the vector xi may contain variables which span over non-
Euclidean space. This is very relevant with respect to our case: indeed,
robot poses belong to the special Euclidean group SE(3). Here over-
parametrized representations are often employed, such as unit quater-
nions or 4× 4 matrices, and the usual formulations of the GN algorithm
could fail to preserve the constraints induced by over-parametrization.
We address this issue by means of manifold encapsulation [43].

In Equation 3.5 the operator + is replaced with the operator �, which
generalizes the sum operation for non-Euclidean domains, as we will
discuss in details in Section 4.1.2. The x manifold has been encapsulated
in the sense that the GN algorithm can access the internal representation
of x only by means of the � operator, which, depending on the variable
type, consistently maps a local variation ∆x in an Euclidean space to
a variation on the original manifold. Note that substituting � with
regular + in (3.5) would yield solutions for ∆x which could break the
constraints induced by over-parametrization.

From the discussion above, it is possible to see that solver algorithm
rely only on the following operations: (i) the evaluation of the error func-
tions, (ii) the computation of the Jacobians of the error functions with
respect to state variables increments ∆x, (iii) the � operator, that allow
to update the state variables estimate without having to deal with the
constraints induced by over-parametrization. As we will discuss in next
sections, these operations are made available through abstract interfaces,
achieving the decoupling between state variables representation, sensor
models and estimation algorithms.

As for the implementations of the least-squares solvers we rely on the
g2o [54] software library, a general framework for graph optimization,
fine tuned to exploit the sparsity of factor graph optimization prob-
lems such as the one considered in this work. At the present stage
of development, three solver algorithms are available: Gauss-Newton,
Levenberg-Marquardt and Peconditioned Conjugate Gradients. Nev-
ertheless, many sensor fusion algorithms, such as an Extended Kalman
Filter, or incremental smoothing, such as iSAM2 [49], can be formulated
such that they rely only on the available primitives and implemented as
new solvers without changes in the rest of the architecture.
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3.3. Sensor modeling

In the ROAMFREE project we aim at the development of a general
pose tracking and sensor calibration framework that is independent from
the actual robotic platform, sensors, and middleware used for robot
development. These goals required the design of generic models for
odometry sensors that abstract as much as possible from the nature of
the information sources and the fusion engine. To this extent, due to the
wide variety of sensors and algorithms available in motion tracking, we
decided not to base our models for pose tracking and sensor calibration
on physical sensors, i.e., sensors hardware and corresponding processing,
but on logical sensors described in terms of the type of measurements
they produce. This shift, from the physical process, and processing, to
the intrinsic type of information contained in the data allows us to work
at a higher level, providing more flexibility and modularity, without
missing any detail required to perform accurate odometry fusion tasks.
In the following we highlight the hierarchical structure of the sensor
models (see Figure 3.2 for reference).

As we have briefly mentioned in the previous section, sensor readings
compose measurement constraints as edges in the factor graph repre-
senting the probabilistic formulation of the information fusion problem.
At the graph level, we find the declaration of the operations needed by
solver algorithms. These refer to the evaluation of: (i) the edge likeli-
hood function given the current estimates of incident nodes (e.g., robot
poses and sensor calibration parameters), (ii) the first order derivative
of the edge error models as a function of the incident variables nodes,
or, in other words, their direction of steepest descent. Note that, while
the internal of these operations are clearly dependent on the error model
implemented in the considered edge, this outer interface allows to treat
all the different edges in an uniform way.

The next level in the hierarchy consists of abstract sensors. This
level describes the geometric properties of the actual sensor placement
on the mobile robot. Due to displacement and misalignment between
the robot and the sensor reference frames, kinematic properties such
as velocities and accelerations may differ between the two. Abstract
sensors evaluate such difference as a function of geometric calibration
parameters and compute an extended kinematic state for the sensor
frame by means of successive poses finite differences, as we will discuss
in detail in Section 4.2. Building upon this, logical sensors extend these
classes providing error models for the actual sensor measurements. More
precisely, a measurement predictor, which is function of the kinematic
properties of the sensor reference frame, is evaluated and compared with
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the actual sensor reading, providing a measure of the likelihood of the
robot state estimate with respect to the sensor reading considered. This
two-level class hierarchy achieves the decoupling between the equations
required to handle misaligned and misplaced hardware sensors with the
ones employed to actually model the information domains, easing the de-
velopment of new sensor models and allowing to test different kinematic
predictor formulations with the same error models.

Edge

+computeError()
+errorJacobians()

AbstractSensor
+S(O): Euclidean3D
+R_OS: Quaternion
+x[t], x[t-1], x[t-2]: SE(3)

+predictSensorState()

LinearVelocity
+Gain
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+Gain
+Bias

LogicalSensor
+measurement: EuclideanVect
+t: double

+computeError()
+errorJacobians()

AngularVelocity
+Bias

Position VectorField
+Gain
+Bias
+Distortion
+h

Predictor

+PredictNextState(x[t]): SE(3)
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+L

Ackermann
+L

FixedFeature
+Position

Figure 3.2.: Outline of the sensor model class hierarchy.

3.3.1. Abstract Sensors

The top level of the sensor hierarchy consists in abstract sensors, which
give a geometric characterization of information sources. Indeed, the
ideal sensor placement in which all sensors positions and orientations
match the ones of the odometric center of the mobile robot is usually
unachievable, or impractical (See Figure 3.3). To handle this, we charac-
terize each (abstract) sensor Si by means of two geometric parameters,

i.e., S
(O)
i , the origin of the i-th sensor reference frame with respect to the

odometric frame O, and RO
Si

, the rotation taking from O to Si. These

two parameters yield a transformation ΓOSi = [S
(O)
i ,RO

Si
] which expresses

the i-th sensor reference frame with respect to the robot odometric cen-
ter O. Note that our goal is to track the transformation taking from the
world fixed frame W to the mobile robot frame O.

The characterization of the sensor geometric placement on the robot
is crucial for accurate pose tracking, and anyhow at least a rough guess

for the S
(O)
i and RO

Si
calibration parameters is required to perform the

fusion of multiple sensor information properly. To see why, consider
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Figure 3.3.: Reference frames employed in the ROAMFREE sensor fu-
sion library. Abstract sensors S1 and S2 are misplaced and
misaligned with respect to the Odometric reference frame
O.

for instance a laser range-finder placed at the front-right corner of a
differential drive robot. If a scan-matching algorithm is employed to
process its point cloud output, it is possible to obtain an estimate of
the sensor linear and angular velocities, which may be inconsistent with
the one obtained by means of forward kinematic, e.g., when the robot
is rotating in-place along its z axis: in this case the range-finder would
report a non-zero linear velocity estimate, since, due to its displacement
with respect to the odometric center, the range-finder undergoes an
additional translation with respect to the fixed world.

Geometric placement parameters are often determined by means of
direct inspection on the robot. However, this can be rather difficult, as
for 3-DoF rotations, and, in any case, impractical, as the sensors may be
mounted in position which are difficult to reach, or even the kinematic
reference frame O might be difficult to identify. These situations are
handled by means of the ROAMFREE sensor self-calibration capabili-
ties, as we will demonstrate in Chapters 6 and 7.

Given the state of the robot, i.e., the position and orientation of the
odometric reference frame with respect to the world, by means of the
geometric parameters available at the abstract sensor level, we can esti-
mate the kinematic properties of the Si reference frame. More precisely,
given the current estimates of the robot pose, ΓWO (t), ΓWO (t − 1) and

ΓWO (t− 2), and the sensor placement parameters, S
(O)
i and RO

Si
, we can

derive an extended state for the sensor frame Si, namely, x̂Si(t), which is

composed by [Ŝ
(W )
i (t), R̂WSi (t)], the position and orientation of the sensor

with respect to the world frame, [v̂(Si)(t), ω̂(Si)(t)], its linear and angular
velocities expressed in the local frame, and [â(Si)(t), α̂(Si)(t)], the linear
and angular accelerations. These quantities characterize the motion of
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3. Framework Overview

the sensor reference frame with respect to the world. To derive x̂Si(t),
we rely on a discrete-time formulation of the 6-DoF rigid body motion
equations. These predictors are employed, in a hierarchical fashion, to
build the measurement domain models. The mathematical details in-
volved in the computation of x̂Si(t) are discussed in Section 4.2.

3.3.2. Logical Sensors

The aim of logical sensors is to provide a predictor, ẑ(t) for the expected
sensor readings as a function of the sensor kinematic state, which is a
property of the abstract sensors, so to allow the definition of an error
function of the form

e(t) = ẑ
(
t; x̂Si(t), ξ

)
− z(t) + η, (3.6)

where η is a zero-mean, Gaussian, noise vector and e(t) ∈ Rn and ξ is a
vector or sensor-specific calibration parameters.

The specific form of the measurement predictor ẑ depends on the type
of measurement we are considering, thus we have to specialize the con-
cept of logical sensor to handle the specific measurement domains: (i)
absolute position and/or orientation, (ii) linear and angular velocity in
sensor frame, (iii) acceleration in sensor frame, (iv) vector field in sensor
frame, (v) landmark pose with respect to sensor. In this sense, a logical
sensor is a black box source of information characterized by its mea-
surement domain and inherits from the abstract sensor the geometric
properties which specify its displacement with respect to the robot odo-
metric reference frame. Note that the measurement domains mentioned
above allow to handle all the hardware sensors and software algorithms
commonly employed in mobile robotics pose tracking, e.g. GPS, SLAM
and Visual Odometry algorithms, gyroscopes, accelerometers, magne-
tometers, etc. Nevertheless, different models can be easily introduced
defining further implementations of the logical sensor interface.

In Equation 3.6 we have enlighten the dependency of the measurement
predictor ẑ(t) on the kinematic state of the sensor frame and on further,
sensor specific, calibration parameters, ξ. Equation 3.6 indirectly relates
the robot states ΓWO (t), ΓWO (t−1) and ΓWO (t−2) with the sensor reading
z(t) through the sensor extended kinematic state x̂Si(t). It is possible
to see that zero-mean error e(t) is obtained when the prediction of the
sensor reading matches the actual one. Note that z(t) seldom gives full
information on the robot state and, even if this was the case, it is difficult
to invert the sensor model to give a closed form expressions for ΓWO (t)
as a function of z(t). Yet, as we have discussed in the previous section,
an estimate for the state variables can be obtained jointly minimizing
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all the error functions e(t) with respect to all the robot poses, provided
that at least a rough initial guess is available.

Each logical sensor implementation introduces a different set of pa-
rameters ξ to model domain specific sources of distortion, bias or other
quantities which have to be known to evaluate the predictor in Equa-
tion 3.6. These parameters can be enabled or disabled by the user to
accommodate for specific properties of the information source consid-
ered. For instance, gyroscope error models reported in the literature
take into account a time-varying bias, related to the nature of the un-
derlying physical process. In our case, an angular velocity logical sensor
would be employed, enabling its bias correction parameter. A more
complex example is the error model employed in the vector field logical
sensor when dealing, for instance, with a magnetometer:

e(t) =

ẑ(t)︷ ︸︸ ︷
A
(
R̂WS (t;RO

S )
)−1

~h(W ) + b− z(t) + η, (3.7)

where a bold font highlights sensor calibration parameters. Here we
have made explicit the sensor orientation predictor R̂WS (t) dependency
on the sensor misalignment parameter RO

S (see Section 3.3.1). In case
this logical sensor is employed to handle magnetometer readings, the
distortion matrix A and the bias vector b are enabled and account
for hard and soft iron distortion effects [83], while ~h(W ) has to be set
according to the local value of the Earth magnetic field, which in this
case is assumed to be constant in the robot operation area.

The ROAMFREE sensor library includes full parametrized implemen-
tations of a wide variety of error models which can be employed to model
most of the physical sensors and processing algorithms commonly em-
ployed in mobile robot pose tracking. Moreover, the hierarchical struc-
ture of the sensor models allows the end user to easily extend or refine
the provided suite. The mathematical details for each available logical
sensor are given in Section 4.3.

As a final remark, we briefly anticipate how the decoupling between
abstract and logical sensor is achieved in the evaluation of Jacobians of
the error functions with respect to the state variables. This operation
is required to provide the solver algorithms with a notion of the error
functions direction of steepest descent. For instance, it is employed by
Gauss-Newton solvers to compute the linearized system Hessian ma-
trix, and by Extended Kalman Filters to perform state and covariance
updates. Here we have to compute the Jacobian matrix of the error
function e(t) with respect to the state variables involved, which consist
in one or more robot poses, the sensor displacement and misalignment
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parameters, S
(O)
i and RO

Si
, and any other parameter introduced by the

logical sensor. Here we split this evaluation into two steps: first the log-
ical sensors compute the Jacobian of e(t) with respect to x̂Si(t). Next,
the abstract sensor evaluates the Jacobian of x̂Si(t) with respect to the

actual state variables ΓWO (t), ΓWO (t − 1), ΓWO (t − 2), S
(O)
i and RO

Si
. As

we remember from calculus, the required Jacobian matrix is given by
the matrix product of the two blocks above. Regarding the other pa-
rameters which are introduced by the logical sensors, if any, e.g., A and
b in Equation 3.7, the Jacobian matrix of the error function with re-
spect to these variables can be computed directly at the logical sensor
level. In this way, no notion of the actual error function is required at
the abstract sensor level. Furthermore, the error function can be formu-
lated, and its Jacobian matrix evaluated, without having to deal with
the internal form of the predictor x̂S . See Section 4.5 for details.

3.3.3. Forward Kinematics Logical Sensors

A special class of logical sensors consists in kinematic models, e.g., differ-
ential drive, Ackermann, omnidirectional, and so on. Readings coming
from this kind of logical sensors are more expressive then their more
general counterpart since they directly characterize the robot motion.
More precisely, both the linear and angular velocity of the odometric
reference frame can be computed as a function of these sensor readings.
Thus, a predictor of the next robot state Γ̂WO (t+ 1) can be constructed,
given the current state ΓWO (t) and z(t). These logical sensors usually in-
troduce kinematic parameters, such as wheel radius, baseline, number of
encoder ticks per revolution, and so on, which are required to compute
both the forward kinematic and the ẑ(t) predictor.

As an example, consider a differential drive robot in which two en-
coders read wheel speed, ωl and ωr. The well known forward kinematic
equations for such a robot read as:

v̂
(O)
x (t) = r

2

(
ωr(t) + ωl(t)

)
ω̂

(O)
z (t) = r

L

(
ωr(t)− ωl(t)

) (3.8)

where the r parameter is the wheel radius and L is the wheel base-
line distance. Note that if we attempt to compute the full 6-DoF v(O)

and w(O) from the encoder readings only, we have to implicitly assume
that planar motion and no slippage occur. These assumptions constrain
the remaining components of the linear and angular velocity in Equa-
tion 3.8. A simple Euler, or more complex Runge-Kutta, integration
scheme yields the required predictor Γ̂WO (t+ 1).
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Forward kinematics logical sensors allow the use of the full state pre-
dictor to compute reasonable initial guesses for the robot next state
before the sensor fusion algorithm is started. Moreover, they often read
quantities which are actively driven, i.e., the robot is controlled by means
of the quantities these sensors measure. Thus, it is possible to employ
the predictor above with the actuator setpoints u(t), which will affect
the observed quantities starting at time t+ 1, instead of sensor readings
z(t), which are related to control actions happened in the past. For in-
stance, the differential drive robot in the example above certainly has a
control loop which regulates the speed of the wheels to follow a known,
and available, setpoint u(t). When we have to compute an initial guess
for the state ΓWO at the time t+ 1 the encoder readings z(t+ 1) are not
available yet, so we do not know the actual wheel speed. However, the
last control setpoint u(t) is available and it affects the system starting
from time t+1. Thus, under reasonable assumptions, it can be employed
in place of z(t+ 1) to evaluate the Forward Kinematic predictor.

3.4. State Variables

As it has been already introduced, ROAMFREE provides modularity of
state and parameters representation too; in this section we discuss the
hierarchy of state variables, which fill factor graph nodes and include
both 6-DoF robot poses and sensor calibration or geometric parameters.

Each state variable has its own domain, eventually non-Euclidean; in
this work a technique called manifold encaplsulation [43] is employed: it
allows to handle variables whose domain is a manifold, i.e., a topological
space in which each point has a neighborhood that resembles the Eu-
clidean space, in a transparent way, meaning that that the sensor fusion
algorithm and the sensor models do not need to know the particular,
non-Euclidean, structure of the space they are operating upon, nor they
have to access variables internal representation, nor they have to take
any special care to ensure its consistency. Indeed, they rely only on
operators which define the state variable interface. Hiding the internal
representation of state variables achieves the decoupling of sensor fusion
algorithms and sensor model formulations from the actual state variable
representation. We will discuss the ROAMFREE implementation based
on Hamiltonian unit quaternions in Section 4.1.2.

Besides their domain, state variables can be fixed or not1. A fixed
variable is treated like a constant, i.e., its value is considered to be known

1We remark that the term fixed does not have to be confused with the time-invariant
term. The difference will become clear in the following of this section.

35



3. Framework Overview
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Figure 3.4.: The state variables class hierarchy.

and it is not subject to estimation during the filtering process. Vice
versa, if this property is set to false, the sensor fusion engine tries to
estimate its value. This property can also be changed online. Consider,
for instance, a state variable holding the differential drive kinematic
parameters, r and L; it is known that their observability depends on
the robot trajectory [19]: user developed heuristic could monitor this
condition and enable refinement of the kinematic parameters estimate
only when enough information is available.

State variables are also characterized by their dependency on time.
At the present stage of development, we consider constant variables, i.e.,
their value does not depend on time, or it is assumed to be constant along
the time window considered, or time-variant with limited bandwidth. In
the second case the user can specify the maximum frequency at which
the variable parameter is supposed to change as a function of time. To
compute the value of the parameter at time t we rely on a Lanczos
resampling scheme [81] (see Section 3.4.2 for details).

3.4.1. Variable Domains

As previously introduced, each state variable has its own domain. Well
known examples of variable domains which are not Euclidean are unit
quaternions, often employed to represent 3-DoF rotation, and elements
belonging to the space of 6-DoF rigid transformation, SE(3). The repre-
sentation of these variables is often overparametrized, i.e., it is composed
by more variables with respect to the domain degrees of freedom, and
involves constraints (e.g., the norm of unit quaternions must be 1, a
rotation matrix must be orthonormal, and so on). State variables be-
longing to such domains cannot be correctly handled simply assuming
they were Euclidean. A good lesson come from the use of unit quater-
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nion in EKFs: during updates, unless special care is taken by means of
ad-hoc methods, e.g., Lagrange multipliers [82], the norm of the quater-
nions eventually diverges from 1 and normalization has to be performed.
Furthermore, due to overparametrization, the covariance matrix associ-
ated to the quaternion variable is always ill-conditioned.

In our work we follow the idea in [43] and define a state variable
interface which requires a set of operators to be implemented. These
allow both the error functions to be evaluated and the solver algo-
rithms to perform state estimation without the need to know or to han-
dle the internals of state variable representations. These operators are:

1. � :M× Rn →M

2. � :M×M→ Rn

3. · :M× Rn → Rn, default action on Rn

4. −1 :M→M, inverse

5. ◦ :M×M→M, composition

The � operator applies a local, Euclidean, increment to the non-
Euclidean variable belonging to the manifoldM, and, as we introduced
in Section 3.2.2, it is employed by solver algorithms to update state vari-
ables ensuring the consistency of their internal representation. The �
operator can be thought as an inverse of the previous operator, namely,
y� x gives the element δ ∈ Rn such that x� δ = y. The · operator per-
forms the manifold default action on a real, Euclidean, vector, e.g., the
application of a 3D rotation to an Euclidean vector rotates the vector.
The other two operators return the variable inverse and combine two
variables in the natural sense with respect to the variable domain. Note
that there are a number of subtleties regarding the operators above.
Refer to Section 4.1.2 and [43] for mathematical details.

3.4.2. Time Dependencies

In this section we describe choices for state variables time dependen-
cies available in the ROAMFREE sensor fusion library. Let us start
discussing an example.

Suppose we are employing a gyroscope to track the angular velocity
of a mobile robot. It is known that these kind of sensors are biased. The
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Figure 3.5.: Example of Lanczos resampling. Five samples are interpo-
lated to produce a parameter signal whose maximum band-
width is 0.5 Hz.

simplest error model in this case would be:

e(t) =

ẑ(t)︷ ︸︸ ︷
ω(t) + b(t)− z(t) + η, (3.9)

in which we have assumed that the gyroscope observes the true angular
velocity, up to a bias, ignoring any other error sources such as axes non-
orthogonality. Since there is no way to directly observe b, if we lack for
redundant observations regarding ω(t), it is easy to see that the norm of
e(t) can be arbitrarily reduced by selecting proper values of b(t), thus
compromising the information carried by z(t). One way to address this
issue is to assume that b(t) does not change with time, yielding the
first type of time dependencies available in ROAMFREE, i.e., constant
state variables. In this case the sensor fusion engine tries to estimate
the unknown value of b(t) assuming that b(t1) = b(t2), for each t1 and
t2 in the active time window.

While the assumption above may hold if we consider only local time
windows, the gyroscope bias is known to be time-varying and thus a
constant state variable would fail to model its behavior once a long
enough time window is considered. A possible solution is to exploit the
fact that b(t) is known to change slowly. This introduces the second
type of time-dependencies currently available: limited bandwidth state
variables. In particular we let the user choose the maximum bandwidth
f at which variable is supposed to change over time, thus introducing a
constraint on the values of b(t).

From signal processing theory we know that if we convolve a discrete
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time signal with sampling frequency fc = 2f with the sinc function
we obtain a continuous time signal with bandwidth f . Thus, a lim-
ited bandwidth parameter can be fully described by the set of samples
bk = b(t), t = k/fc, k ∈ Z. To compute its value at an arbitrary time
t we employ Lanczos resampling, i.e., we convolve the samples with the
Lanczos kernel (see Figure 3.5):

L(t) =

{
a
sin(2πft)sin 2πf

a
)

(2πft)2
if − a < 2πft < a

0 otherwise
(3.10)

where the parameter a is an integer, typically 2 or 3. Unlike the sinc
function, the Lanczos kernel has compact support, thus only a limited
number of samples (i.e., 2a samples) contribute to determine the param-
eter value at time t, which in our example is given by:

b(t) =

b2ftb+a∑
k=b2ftc−a+1

bkL(2πft− k). (3.11)

Note that this does not solve the issue discussed above in the general
case. However, now it seems much more difficult to arbitrary reduce
||e(t)|| in Equation 3.9 choosing bk, other than samples of the true bias.

Limited bandwidth state variables are useful in situations in which
we have to track time-varying quantities such that their value cannot
be assumed constant over the time window considered in the fixed lag
smoother. A typical example is the calibration problem in which hun-
dreds of seconds of sensor readings are considered. Up to the present
stage of development, since a general interpolation scheme for variables
belonging to an arbitrary manifold it is not straightforward and it has
not been implemented yet, only Euclidean, n-dimensional, parameters
can have a limited bandwidth time dependency. Furthermore, such a
scheme would have to be implemented relying only on operators defined
in Section 3.4.1. However, although we could easily imagine an applica-
tion in which manifold limited bandwidth state variables were valuable,
we have never faced a case in which their lack was a serious issue.

3.5. Functional Description

What follows is a high level description of the functional blocks that
implement sensor fusion framework, from the point of view of its infor-
mation flow. Please refer to Figure 3.6; details for each of the blocks
will be given in later sections.
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Figure 3.6.: A simple schema of the ROAMFREE processing triggered
by the arrival of new measurements from logical sensors.

Data is introduced in the system in the form of timestamped sensor
readings; no component is included in ROAMFREE which actually reads
data from physical sensors. Indeed, the high number of different com-
mercial hardware available, not to mention custom devices developed to
handle ad-hoc specifications, would have doomed the sensor acquisition
components to cover only a very limited fraction of the use cases. Please
note that this task is already undertaken, for instance, by the Robot Op-
erating System (ROS) [69], which is open-source, has a considerable user
base and it is becoming a de-facto standard in robotics research.

The entry point for timestamped sensor readings consists in the Graph
Management component, which is in charge of updating the internal,
probabilistic, representation of the information fusion problem, for which
we adopted the factor graph formulation: a hypergraph is maintained
in which nodes represent robot poses and sensor calibration parame-
ters in a given time window while edges represent sensor measurement
constraints (see Section 3.2). As new sensor readings are available, the
Graph Management component selects the appropriate sensor model and
uses it to build a new factor and inserts it into the graph as it is incident
to the proper pose nodes. If needed, e.g., a measurement is newer than
the most recent pose in the graph, a new pose node is instantiated for
which an initial guess is obtained by means of a Forward Kinematic Log-
ical sensor, if available (see Section 3.3.3). Poses and constraints which
are old with respect to the considered time window are discarded and a
linearized, equivalent, prior constraint is inserted.

Again by means of the Graph Management component, the user in-
vokes, usually at a fixed rate, a solver to be run on the hypergraph,
which contains the full description of the sensor fusion problem. The
Graph Management thus freezes the graph representation, delaying the
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handling of further sensor readings till estimation is completed.

Before the solver is run on the graph, sensor models and other heuris-
tics are employed to perform an Outlier Rejection procedure, which is
crucial to handle situations in which there exist unmodeled error sources
compromising sensor readings. Consider for instance the case in which a
wheeled robot performs an intense acceleration: wheel slippage is likely
to occur. In this situation, the velocity estimate obtained applying for-
ward kinematics to the wheels encoder readings will probably be incon-
sistent with other, unaffected, information sources such as a visual odom-
etry system or an accelerometer. Robot motion models usually assume
that the forward kinematic yields the vehicle movement with respect to
the environment, which is not the case if the robot is slipping. Note
that the problem lies in the fact that the error source, i.e., the slippage,
is unmodeled. Indeed fusing information sources in a Bayesian way,
without eliminating outliers, would yield inaccurate results in which nor
the encoders, nor the other information sources are fully trusted. The
reconstructed trajectory would lie in the middle between the true one,
measured by the inertial sensors, and an inconsistent one based on the
wrong assumption of no slippage occurring. In Chapter 5 we will propose
a solution, still subject of active research, based on consensus heuristic
which aims at selecting a subset of coherent sensor readings in the raw
data stream and employ only the selected ones in pose estimation.

Once the solver has completed its tasks on the factor graph, its nodes
will contain an estimate of the robot poses in the time window consid-
ered, and sensor calibration parameters, based on all the sensor readings
available at the time the estimation process was started. Based on this
information, the ROAMFREE sensor fusion library accommodates for
the estimation latency, in case it is not negligible, predicting the robot
pose at the user specified timestamp by means of a Forward Kinemat-
ics logical sensor (if available) or extending the reconstructed trajectory
assuming constant acceleration. An example of this procedure will be
given in Chapter 6.

3.6. Conclusions

In this chapter we have discussed all the key components and techniques
employed in the development of the ROAMFREE sensor fusion library,
or we have provided references to later chapters for further insights. In
the next chapter we will move to the most relevant mathematical topic of
this work, which refers to the evaluation of the extended kinematic state
at the sensor reference frame as a function of robot poses and the devel-
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opment of the logical sensor error models for the multiple measurement
domains available in this framework.
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Chapter 4

Error Models

As we have discussed in the previous chapter, in ROAMFREE error
models are formulated in a hierarchical fashion. At the bottom level we
have factor-graph generic edges, which specify the operations required at
solver level. Next, abstract sensors characterize information sources in
terms of placement on the mobile robot and evaluate the kinematic prop-
erties of the sensor frame as a function of the robot poses and geometric
parameters. 1 Abstract sensors ultimately decouple the representation
of the sensor fusion problem, e.g., in terms of robot poses at certain time
instants, from the sensor model formulation. Finally, logical sensor im-
plement domain specific error models that relate current sensor reading
with the kinematic state of the sensor reference frame, evaluated at the
abstract sensor level.

In this chapter we discuss the mathematical details behind the core
component of the abstract sensor layer, i.e., the backward augmented
state estimator ; it computes all the relevant kinematic properties of the
i-th sensor frame, i.e., position, orientation, velocities and acceleration,
as a function of three poses of the odometric reference frame O and
the fixed transformation from O to the sensor frame S, describing the

1In fact, hardware sensors are seldom placed at the robot odometric reference frame.
Indeed it is quite common that for practical reasons they have to be misplaced
and/or misaligned with respect to the robot frame. This has to be taken into ac-
count when sensor readings are related to robot poses by means of error functions.
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Figure 4.1.: Reference frames employed in the ROAMFREE sensor fu-
sion library. Abstract sensors S1 and S2 are misplaced and
misaligned with respect to the Odometric reference frame
O.

geometric placement of the sensor.

Next, we present each logical sensor available in the framework and
how these are defined by an error model building upon the backward
augmented state estimator. These error models ultimately relate actual
sensor readings with the state representation.

Finally, we discuss how the direction of steepest descent for these error
models can be evaluated; this information is often required by most of
the non-linear optimization algorithms commonly employed to solve the
max-likelihood problem.

4.1. Preliminaries

Let us introduce some details on the notation and on the operators that
have been be employed in the development of the abstract and logical
sensor models.

4.1.1. Notation

In the following we will refer to three different reference frames, as it
has depicted in Figure 4.1. In particular, W is the world fixed reference
frame, O is the robot odometric reference frame, and Si is the i-th sensor
reference frame. The goal of the pose tracking problem is to estimate
over time the transformation that takes from W to O. In the following
we will always refer to one sensor at time and we will omit the i index.
It is very important to remark that we model the whole robot as a rigid
body. This means that the distance between any two given point on the
robot remains constant, thus the transformations from frame O to frame
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Si are given and do not change over time. This assumption allows us to
compute the kinematic properties for Si as a function of the ones for O.

We express rigid transformations ΓAB, which moves vectors from B
to A, with respect to frame A with its translation part B(A), i.e., the
origin of B expressed with respect to A, and its rotational part, RAB.
Regarding vectors, unless otherwise specified, they are expressed in the
reference frame they refer to, e.g., ω(O)(t1) is the angular velocity of
the O reference frame, with respect to the fixed frame W , at time t1,
expressed in the O reference frame.

Finally, since error functions are evaluated multiple times during GN
optimization, when we refer to state variables, e.g. ΓWO (t), we always

intend their current estimate Γ̆WO (t). Moreover, for the sake of brevity,
in cases where it can be deduced by the context, we will leave out the
time dependency for the state variables or sensor parameters. Instead,
we will employ the following shortcut for referring transformations or
other quantities to particular time instants previously mentioned in the
context, e.g., if t1 is a specific time instant, then ΓWO (t1) ≡ ΓWO1

, in which

the subscript is placed at O since W is fixed, or ω(O)(t1) ≡ ω(O1).

4.1.2. State Variable Operators

As we have anticipated in Section 3.4.1, in ROAMFREE, state variables
hide their internal representation under operators which allow both er-
ror functions and solvers to operate without having to deal with domain
specific issues or take special care to ensure over-parametrization con-
straints to be satisfied.

In this section discuss each operator in detail. Moreover, along with
an informal discussion of the properties of these operators, we develop a
reference implementation based on Hamiltonian unit quaternions, which
are the default choice for representing 3-DoF rotations in ROAMFREE.
In the following, M, represents a generic, non-Euclidean, manifold.

Increment: �

This operator applies an Euclidean increment w to a non-Euclidean
variable q, i.e., � : M× Rn → M. This operator ensures that after
the increment the variable still belongs to the original manifold, i.e.,M
is closed with respect to �. If M≡ Rn, then � ≡ +.

If M is a Lie Group, i.e., an algebraic group which is also a differen-
tiable manifold, this operator refers to applying the exponential map to
w and composing the result with q. Examples of Lie Groups commonly
employed in robotics are the space of the 3-DoF rotations SO(3), the spe-
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cial Euclidean group SE(3), which models rigid body transformations,
and Sim(3), the space of 3-D similarity transformations.

Commutative property does not hold in general for composition on
arbitrary manifolds, thus a left and a right variant of the � operator
can be formulated, depending the order of the aforesaid composition.
Indeed, the Euclidean increment w may belong to either the tangent
space on the left or on the right with respect to q. To get further
insights a discussion of the algebraic structure of the Lie Groups would
be required. For such a discussion, please refer to [38] and [73]. For an
application of Lie Groups in pose tracking instead see [74].

We propose here a example to clarify the rationale behind the two
variants of � based on the more familiar properties of the rotation ma-
trices. Consider two reference frames, W and O, and the rotation matrix
RWO encoding the transformation that movements vectors from O to W .
Suppose we want to perturb the rotation matrix RWO : since it encodes
the relative rotation between the two frames, if we look from a third ref-
erence frame, the same perturbation must be achievable either changing
O or W . In the first case we would obtain the RW

Õ
matrix and in the

second RW̃O . More precisely, it holds that:

RW
Õ

= RWO R
O
Õ

= RW̃WR
W
O = RW̃O . (4.1)

where it is possible to see that in the first case a perturbation rota-
tion RO

Õ
post-multiplies our original rotation, it is applied on the right,

and it is expressed in the local reference frame O: this fact is related
to the right form of the increment operator, �R. In the second case
pre-multiplication is employed, the rotation is composed on the left and
the perturbation RW̃W is expressed in the global reference frame W , giv-
ing �L. The two perturbations are different, while the resulting rotation
is the same. Moreover, there is a relation between the two perturbations:
if we post-multiply by

(
RWO

)−1
both members in (4.1) we obtain

RW̃W = RWO R
O
Õ

(
RWO

)−1
, (4.2)

which is related to the so called Adjoint Map and demonstrates the fact
that commutative property does not hold for composition in Lie Groups.

In the following, we give the � formulation employed in ROAMFREE
for unit quaternions. Consider q = [qw, qx, qy, qz] such that ||q|| = 1.
The expression of the perturbed quaternion q̃ = q � w, w ∈ R3, can be
obtained from the well known differential equation

q̇ =
1

2
Q(q)[0, ωx, ωy, ωz]

T +O(|ω|2) (4.3)
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where Q is the matrix representation of the quaternion product operator:

Q =


qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw

 . (4.4)

Here w can be thought as an angular displacement over the three axis
referred with respect to the local frame. Truncating (4.3) to the first
order and applying an Euler integration scheme we obtain:

q �R w : q̃ = q +
1

2
Q(q)[0, ωx, ωy, ωz]

T . (4.5)

This gives the right form of the increment operator, �R (we will often
omit the R subscript). The left form, �L, assumes that w lives in the
reference frame that is global with respect to q. In case of quaternions,
this simply accounts to employ the matrix Q+, instead of Q in (4.5):

Q+ =


qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw

 . (4.6)

q �L w : q̃ = q +
1

2
Q+(q)[0, ωx, ωy, ωz]

T , (4.7)

Decrement: �

This operator relates to the Euclidean − and, to some extent, it can be
thought as the inverse of the increment operator, i.e., � :M×M→ Rn
and, given two elements q1 and q2 belonging to the manifold M, �
returns the euclidean increment such that:

∀q2 ∈M : ∀q1 � (q2 � q1) = q2, (4.8)

∀w ∈ Rn : (q � w) � q = w. (4.9)

As for the increment operator, two variants can be formulated, de-
pending on whether the result belongs to the tangent space of q1 or q2.

Considering unit quaternions, to build the �R operator, we observe
that a closed form expression for ω can be obtained solving the linear
system Qx = 2(q̃−q) and discarding the first component of x. Similarly,
the left form �L is obtained replacing Q with Q+. Note that these
expressions hold only if ||ω|| is small, i.e., being it a local perturbation.
Otherwise, more complex expressions for ω can be employed, e.g., the
well known Rodrigues formula.
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Default Action on Rn: (·)

This operator allows to apply an element q belonging to the manifold
M to an Euclidean vector x, i.e., (·) :M×Rn → Rn. The semantics of
this operator clearly depends on the considered manifold. For instance,
in case of SO(3), applying an element to an Euclidean vector means
rotating the vector. In the writing, when there is no risk of confusion,
we will often omit this operator.

In case of unit quaternions, we employ well known formulas to con-
struct a rotation matrix from a quaternion q, which are:

R(q) =

 q2w+q2x−q2y−q2z 2(qxqy−qwqz) 2(qwqy+qxqz)

2(qxqy+qwqz) q2w−q2x+q2y−q2z 2(−qwqx+qyqz)

2(−qwqy+qxqz) 2(qwqx+qyqz) q2w−q2x−q2y+q2z

 (4.10)

and thus we can define q · x as x′ = R(q)x, where the usual matrix
product takes place.

Inverse: −1 and Composition: ◦

The inverse and the composition operators rely on the hypothesis that
the underlying manifold is also a group, and thus the usual properties
hold: (i) existence and uniqueness of the identity element for composi-
tion, (ii) existence of the inverse for each element of the manifold, (iii)
associativity of the composition operator, (iv) closure of the composition
operator with respect to the manifold.

The inverse operator is unary, i.e., −1 : M → M, and returns the
element of the manifold such that q ◦ q−1 = I, where I is the identity
element for the composition operator (q ◦ I = q).

In case of unit quaternions, the inverse operator it is defined as

q−1 = [qw,−qx,−qy,−qz]. (4.11)

Finally, the operator ◦ :M×M→M composes two elements of the
manifold, returning another element of the manifold itself, according to
the semantics of the variable domain. For unit quaternions, it corre-
sponds to the quaternion product, whose matrix form has been already
presented in Equation 4.4, and q1 ◦ q2 = Q(q1)q2.

Here we have shown how the non-Euclidean structure of the unit
quaternion space can be hidden by a set of operators which define the
general interface for state variables. Employing this paradigm in ROAM-
FREE, we are able to to decouple internal representations from their
manipulation.
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4.2. The Backward Augmented State Estimator

Let us consider three robot poses ΓWO (t1), ΓWO (t2) and ΓWO (t3) at different
time instants t1, t2 and t3 such that t1 < t2 < t3. These poses are a
subset of the variables of the estimation problem. Let us also take into
account possible displacement and misalignment between frame O and
S by means of two calibration parameters S(O) and RO

S .

The transformation ΓWO = [O(W ),RW
O ] does not explicitly encode in-

formation about velocities and accelerations, which can also differ with
respect to the ones at S; to account for this, for each sensor and for each
pose triplet, we define the augmented state as

x̂S(t3) =
[
S

(W )
3 ,RW

S3
, S

(S2)
3 ,RS2

S3
, v(S3), ω(S3), a(S3), α(S3)

]
, (4.12)

where x̂S is a function of ΓWO1
, ΓWO2

, ΓWO3
, S

(O)
i , RO

Si
and of ∆t12 = t2 − t1

and ∆t23 = t3 − t2. More precisely, the components of x̂S are:

• the position of the sensor at time t3 with respect to W : S
(W )
3

• the sensor orientation at time t3 with respect to W : RW
S3

• the sensor position at time t3 with respect to frame S at t2 in frame

S2, or equivalently, the displacement between S2 and S3: S
(S2)
3

• the relative rotation between frames S2 and S3: RS2
S3

• the sensor linear velocity at time t3: v(S3)

• the sensor angular velocity at time t3: ω(S3)

• the sensor linear acceleration at time t3: a(S3)

• the sensor angular acceleration at time t3: α(S3)

The augmented state encodes all the information needed to relate
generic readings in sensor frame S with the variables of the estimation
problem. Indeed, x̂S fully characterizes the kinematic state of the sen-
sor frame S and allows to develop sensor models in a decoupled and
hierarchical way. x̂S answers the following question: given the current
estimates for the robot pose at t1, t2 and t3, and possibly for the cal-
ibration parameters S(O) and RO

S , what is the value of the speed, the
acceleration, and of the other kinematic quantities, at the sensor frame
S at time t3? This question applies for each sensor and its answer has
nothing to do with the type of information produced by the sensor. This
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is why we choose to decouple the modeling of the kinematic state of the
sensor and introduce the backward augmented state estimator, where the
name refers to the fact that a finite difference scheme is employed to es-
timate quantities at time t3 based on backward time instants. In the
following, we discuss how each component of x̂S is computed.

Pose of S

The sensor position and orientation at time t3 are simply computed from
ΓWO3

, S(O) and RO
S :

S
(W )
3 = O

(W )
3 + RW

O3
S(O), (4.13)

RW
S3

= RW
O3

RO
S . (4.14)

Displacement between S2 and S3

The displacement between sensor frame at time t2 and t3, expressed with
respect to sensor frame S2, or equivalently, the position of the origin on
S3 with respect to S2, is evaluated as:

S
(S2)
3 =

(
RW
S2

)−1
(
S

(W )
3 − S(W )

2

)
=
(
RW
O2

RO
S

)−1
((
O

(W )
3 + RW

O3
S(O)

)
−
(
O

(W )
2 + RW

O2
S(O)

))
,

(4.15)

RS2
S3

=
(
RW
S2

)−1
RW
S3

=
(
RW
O2

RO
S

)−1 (
RW
O3

RO
S

)
. (4.16)

Velocity of S

Here we derive the estimators for the linear and angular velocities, as-
suming that for all t ∈ [t2, t3] they are constant with respect to the fixed
frame W . This assumption deserves to be discussed in detail, since in
many situations there exist a correlation between orientation and linear
velocity. In other words, if the vehicle orientation with respect to W
changes, then also the direction of the linear velocity changes by the
same amount. In these situations the linear velocity can be considered
constant with respect to the moving frame O, and not to W , at least in
a local neighborhood of t3.

Consider for instance the motion of a non-holonomic vehicle, such a
differential drive wheeled robot: if no slippage occurs, when the robot
turns, also the direction of its linear velocity changes due to the inter-
action of the wheels with the floor. More accurate estimators for the
linear velocity could be formulated if this fact was taken into account.
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Unfortunately, this is not true for holonomic vehicles, such as omnidi-
rectional or flying robots, thus, for the sake of generality, and to avoid
to introduce platform dependent assumptions, we stay with the more
general case in which no correlation is assumed between orientation and
linear velocity. Furthermore, note that this subtlety can be neglected
once the sampling rate is sufficiently high.

We model the pose of the robot between times t2 and t3 with the
following continuous time differential equations:{

Ȯ(W )(t) = v(W ) (4.17a)

ṘWO (t) = ω(W ), (4.17b)

where the velocities v(W ) and ω(W ) are constant in the time interval
considered, when referred to the W frame. The solution for the initial
value Cauchy problem is given byO(W )(t) = O(W )(t0) + v(W )(t− t0) (4.18a)

RW
O (t) = RW

O (t0) �L

(
ω(W )(t− t0)

)
, (4.18b)

in which, since the angular velocity is expressed with respect to the fixed
frame, the left form of the boxplus operator appear, see Section 4.1.2.

Given a couple of successive poses, ΓWO2
and ΓWO3

= [O
(W )
3 ,RW

O3
], we can

solve (4.17a) and (4.17b) in v(W ) and ω(W ):
v(W ) =

1

∆t23

(
O

(W )
3 −O(W )

2

)
(4.19a)

ω(W ) =
1

∆t23
RW
O3

�L RW
O2
. (4.19b)

The computed quantities v(W ) and ω(W ) refer to O but are expressed
with respect to W . The final step consists in computing v(S) and ω(S),
i.e., the linear and angular velocities of the sensor frame with respect to
W , expressed with respect to S. To this end, we employ the rigid body
assumption:

v(S3) =
(
RO
S

)−1
(

RW
O3

−1
v(W ) +

(
RW
O3

−1
ω(W )

)
× S(O)

)
, (4.20)

ω(S3) =
(
RW
O3

RO
S

)−1
ω(W ). (4.21)

Acceleration of S

In this section we derive estimators for a(S) and α(S). To this end, we
can not assume that the velocities are constant, as we did in the previous
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section, otherwise no acceleration would occur. Instead, we assume that
the accelerations are constant with respect to W for each t ∈ [t1, t3].

To derive the required estimators, we extend the differential equations
in (4.17a) and (4.17b) as:

v̇(W )(t) = a(W ) (4.22a)

ω̇(W )(t) = α(W ) (4.22b)

Ȯ(W )(t) = v(W )(t) (4.22c)

ṘWO (t) = ω(W )(t), (4.22d)

where this time both v(W ) and ω(W ) change over time, then we move
to discrete time by means of the Runge-Kutta R2 numerical integration
scheme: for differential equations of the form ẏ(t) = f(y, t), it holds that

k1 = ∆tf(tn, yn),

k2 = ∆tf(tn +
∆t

2
, yn +

1

2
k1),

yn+1 = yn + k2 +O(∆t3). (4.23)

In our case this gives:

v(Wn+1)(t) = v(W )
n + a(W )∆tnn+1 (4.24a)

ω(Wn+1)(t) = ω(W )
n + α(W )∆tnn+1 (4.24b)

O
(W )
n+1 = O(W )

n +

(
v(W )
n + a(W ) ∆tnn+1

2

)
∆tnn+1 (4.24c)

RW
On+1

= RW
On �L

[(
ω(W )
n + α(W ) ∆tnn+1

2

)
∆tnn+1

]
. (4.24d)

Writing Equation 4.24c for n = 2 and n = 3, together with Equa-
tion 4.24b for n = 2, and solving with respect to α(W ) we obtain an
estimator for the linear acceleration of frame O with respect to W :

a(W ) =

(
2

∆t12 + ∆t23

)(
O

(W )
3 −O(W )

2

∆t23
− O

(W )
2 −O(W )

1

∆t12

)
, (4.25)

and, similarly, we obtain also the estimator for the angular acceleration:

α(W ) =

(
2

∆t12 + ∆t23

)(
RW
O3

�L RW
O2

∆t23
−

RW
O2

�L RW
O1

∆t12

)
. (4.26)

As it happened for linear and angular velocities, from a(W ) and α(W )

we compute the accelerations for the sensor frame S employing the rigid
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body assumption:

a(S3) =
(
RO
S

)−1
(

RW
O3

−1
a(W ) + ω

(W )
3 × ω(W )

3 × S(O) +

+
(

RW
O3

−1
α(W )

)
× S(O)

)
, (4.27)

α(S3) =
(
RW
O3

RO
S

)−1
α(W ). (4.28)

where ω
(W )
3 is computed from ω

(W )
2 and α(W ) by means of (4.24b).

4.3. Logical Sensors

As we have anticipated in Section 3.3, raw sensor data is handled by
coupling each hardware sensor, or software algorithm, producing the
measurements with a logical sensor that models the corresponding do-
main and offers parameters to account for sources of bias, distortion or
other sensor specific properties.

For convenience, we recall Equation 3.6, which gives the general form
of the logical sensor error models:

e(t) = ẑ (t; x̂S(t), ξ) � (z(t) � η) , (4.29)

where ẑ(·) is a measurement predictor computed as a function of the
augmented state for sensor frame S, x̂S , and of further, measurement
domain dependent, calibration parameters ξ. In the same equation, z
is the current sensor reading at time t, and η is a zero-mean Gaussian
noise with covariance Ση. Here the � and � operators are employed
because the measurement domain might not be Euclidean: for instance,
for an inertial measurement unit that ships an on-board attitude tracking
algorithm, z ∈ SO(3).

In the following we develop the measurement predictors ẑ for all the
logical sensors currently available in ROAMFREE. As we have shown in
Equation 4.29, these predictors are functions, in certain cases immediate,
of the components of the backward augmented state estimator and they
compute a prediction for the sensor readings based on up to three robot
poses and a sensor dependent set of calibration parameters.

4.3.1. Absolute Position

This logical sensor allows the handling of absolute position information
sources with respect to a world fixed reference frame, such as a GPS
sensor or a SLAM system:

ẑ = S(W ). (4.30)
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Note that the readings coming from a GPS sensor, in the form of Lat-
itude, Longitude and Altitude, can not be directly employed in Equa-
tion 4.30. Typically, a plane tangent to the WGS84 reference ellipsoid at
a given reference point it is chosen and the GPS readings are projected
onto it, resulting in an East-North-Up coordinate system which can be
considered Euclidean in a neighborhood of the linearization point.

4.3.2. Absolute Orientation

Absolute orientation readings with respect to a fixed frame, such as the
ones coming from attitude tracking systems available on most of the
commercial Inertial Measurement Units, are handled by means of this
logical sensor. A predictor for the sensor readigs reads as:

ẑ = RW
S . (4.31)

Note that in this case ẑ ∈ SO(3).

4.3.3. Linear Velocity

This logical sensor handles sources of linear velocity readings, which
range from wheel encoders to scan-matching and visual odometry:

ẑ = kv(S), (4.32)

where k is a scalar. In case this logical sensors is employed to handle
linear velocity estimates coming from a monocular visual odometry sys-
tem, the k parameter is enabled for online tracking and it accounts for
the fact that estimates are not expressed in a metric scale. Note that in
this case this sensor constraints only the direction of the linear velocity,
while its magnitude has to be estimated from other sources.

4.3.4. Angular Velocity

This logical sensor handles sources of angular velocity readings such as
gyroscope sensors and visual odometry systems. Gyroscopes are known
to be affected by a time-varying bias and a scale factor, which are han-
dled by means of two calibration parameters.

ẑ = Aω(S) + b, (4.33)

where A is a diagonal matrix and b is a bias vector.

54



4.3. Logical Sensors

4.3.5. Linear Acceleration

As for the angular velocity, also the linear acceleration sensor model
takes into account gain and bias calibration parameters. Moreover, the
Earth gravitational acceleration vector ~g, which is assumed constant and
known in frame W , has to be considered.

ẑ = A
(
a(S) +

(
RW
S

)−1
~g (W )

)
+ b, (4.34)

where A is a diagonal matrix and b is a bias vector.

4.3.6. Vector Field

This logical sensor allows to handle sensors which measure a vector field
existing in the operation area. One remarkable example is the Earth
magnetic field ~h. As for ~g, we assume that the vector field is uniform
and constant over the whole operation area.

Here we employ an error model which targets magnetometer sensors,
being those the most common sources for this logical sensor. It is known
that the readings from this kind of sensors are substantially affected by
the ferromagnetic properties of the materials in their surroundings. Two
major effects apply here: (i) hard iron bias coming from the combined
result of the permanent magnets inherent to the robot structure, as
well as other elements installed in the robot which is constant in the S
reference frame; (ii) soft iron effects, resulting from the interaction of an
external magnetic field with the ferromagnetic materials in the vicinity
of the sensor. The resulting magnetic field in the latter case depends on
the magnitude and direction of the applied magnetic field with respect
to the soft iron material.

Here we employ an error model which keeps into account hard and
soft iron distortion, non-orthogonality of the sensor axes, scaling, bias
and misalignment with respect to O [83]. The predicted magnetometer
measurement reads as:

ẑ = A
(
RW
S

)−1~h (W ) + b. (4.35)

where A is an unconstrained 3× 3 matrix and b is a bias vector. These
parameters can be determined by the frameworks employing long time
lags and trajectories able to fully excite all the available degrees of free-
dom. We will discuss an example of such calibration in Section 6.2.

4.3.7. Landmark Position and/or Orientation

This sensor allows to handle the case in which a sensor estimates the rel-
ative position and/or orientation of a world fixed landmark with respect
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to the sensor itself. An example is given by fiducial marker tracking
algorithms, such as ARTag [31], which we will discuss in Chapter 7.

This kind of sensors measures the transformation between the sensor
frame and the landmark frame L, for which one or both component may
be considered:

ẑ =

[
L̂(S)

R̂SL

]
=

[ (
RW
S

)−1
L(W )(

RW
S

)−1
RW
L

]
. (4.36)

Note that the transformation between W and L, i.e., the absolute pose of
the landmarks with respect to the world frame, is a calibration parameter
for this logical sensor; it is seldom known a priori and it is often left to
be estimated from sensor readings, as it happens in SLAM algorithms.

4.4. Kinematic Models

In this section we discuss the kinematic models implemented in ROAM-
FREE. As discussed in Section 3.3.3 these sensors allow for predictors
Γ̂WO (t+ 1) to be formulated as a function of ΓWO (t) and z(t).

Since it is is common practice to put the O reference frame at the
point on the robot whose motion is modeled by kinematics equations, in
the following we will assume that O ≡ S. In other words, for kinematic
logical sensors, we will assume that S(O) = 0 and RO

S = I.

At the present stage of development, the kinematic models available
in the framework focus on wheeled robots. These models assume that
the motion of the robot is 3-DoF, thus predictions will be available only
for the x and y components of linear velocities and accelerations, and
for the z component of the angular velocity. Since ROAMFREE tracks
6-DoF motion, we augment each measurement vector with the following
dummy readings:

z =

 v
(S)
z

ω
(S)
x

ω
(S)
y

 =

 0
0
0

 . (4.37)

These readings state that the robot motion is 3-DoF in a local neigh-
borhood of its 6-DoF trajectory. The strength of this constraints can
be tuned by means of the noise vector covariance associated to these
components of the measurement vector, so that the kinematic models
can be employed also if the assumption that the motion is 3-DoF does
not hold on a global scale.
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4.4.1. Differential Drive

In differential drive kinematics, encoders read the left and the right
wheel speed, z = [ωl, ωr]

T . In order to write an error model in the form
of (4.29), we need to compute a prediction ẑ for the wheel speed based
on the robot linear and angular velocities. This prediction read as:

ẑ =

 v
(S)
y

ωr
ωl

 =


0

1
r

(
v

(S)
x + Bω

(S)
z

2

)
1
r

(
v

(S)
x − Bω

(S)
z

2

)
 . (4.38)

where r and B are two calibration parameters, respectively the wheel
radius and the robot baseline. Note that differential drive robots are
nonholonomic, i.e., they have fewer degrees of freedom with respect to
their environment. In fact, in absence of slippage, they cannot translate
along the y direction. This motivates the extra dummy component in
Equation 4.38, which is similar to the ones in (4.37).

4.4.2. Ackermann Steering Geometry

Four wheel vehicles usually employ Ackermann steering geometry to
solve the problem of wheels on the inside and outside of a turn needing
to trace circles of different radii. The S reference frame, which we assume
to coincide with O, is placed at the middle point of the rear wheels axis.

Here we employ a first order approximation of the dynamic equations
which govern the motion of these vehicles which assume infinite corner-
ing stiffness, i.e., no lateral slippage, and model the four wheel vehicles
as an equivalent bycicle with two wheels, for details see [1]. Moreover,
encoders are usually placed such that they read the handlebar or the
steering wheel angle, which often does not coincide with the actual turn-
ing angle of the vehicle, due to reductions and geometry of the steering
mechanisms. Here we assume that the non-linear function that maps
steering wheel angles to turning angles of the equivalent vehicle model
can be replaced with its first order expansion.

For this logical sensor, the z vector consists in the vehicle tangential
speed va, which is usually estimated from rear wheel encoders, and the

steering wheel position δ, plus a constraint on the ortogonal speed v
(S)
y

which encodes the fact that the vehicle is nonholonomic and that infinite
cornering stiffness is assumed:

ẑ =

 v
(S)
y

va
δ

 =

 0

kvv
(S)
x

1
as

[
arctan

(
Lω

(S)
z

kvv
(S)
x

)
− bs

]
 . (4.39)
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Figure 4.2.: The three-wheels omnidirectional kinematic.

Here as and bs are two parameters which characterize the linearization
of the steering angle map, i.e., the turning angle δ′ is related with the
handlebar angle δ by the linear relation δ′ = asδ+bs. Moreover, kv is a
gain factor that can be enabled, depending on how the tangential speed
is measured, and eventually set to be estimated, for instance in case
reductions are not known. Finally, L, is the distance between vehicle
front and rear wheel axes.

As we have seen at the beginning of the section, the dummy measure-

ment v
(S)
y = 0 holds locally: considering that every Ackermann kine-

matic reading is augmented with this component, its meaning should be
understood as: the vehicle, on average, does not move sideways. Since a
covariance matrix is associated to sensor readings, it is possible to tune
how strong this constraint should be.

4.4.3. Omnidirectional

Here we consider a three-wheeled omnidirectional kinematic model. In
these platforms, wheels are of omni type, with several rollers on their
perimeter, to give traction on the component orthogonal to their axis
while allowing free movements in the axis direction; this enabling move-
ments with three degrees of freedom (Please see Figure 4.2).

Encoders are usually employed to read the wheel angular velocity. We
employ the inverse kinematic to formulate a predictor of these quantities
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as a function of the robot linear and angular velocity:

ẑ =

 ω1

ω2

ω3

 =
1

R

 cos
(
π
3

)
− cos

(
π
6

)
−1

cos
(
π
3

)
+ cos

(
π
6

)
−1

−1 0 −1


 v

(S)
x

v
(S)
y

Lω
(S)
z

 , (4.40)

where R is the wheel radius and L is the distance between each wheel
and the odometric center of the robot, which is placed at the intersection
of the wheel axes.

4.5. Jacobians

As we have discussed in Section 3.3, the root of the sensor model hier-
archy consists in generic factor-graph edges that expose the two oper-
ations solvers need to perform state estimation: the first one evaluates
errors as a function of the backward augmented state estimator and the
current sensor reading, according to the logical sensor models in Sec-
tion 4.3. The second one instead provides the solver with a notion of
the error function direction of steepest descent, in terms of Jacobian ma-
trices, which are required by many non-linear optimization algorithms
such as Gauss-Newton and Levenberg-Marquardt, currently employed
in ROAMFREE. It remains to discuss how Jacobians are evaluated and
how we take advantage of the decoupling between state variables repre-
sentation, abstract sensors, and logical sensors. The characterization of
the uncertainty of error models, in terms of a noise covariance matrix,
has also to be provided in order to evaluate the likelihood functions asso-
ciated to each factor; this is done linearly propagating the measurement
noise onto the logical sensors error functions.

4.5.1. Error Jacobians with Respect to the Noise

Here we discuss how the edge information matrices are computed, which
are needed to associate a likelihood function to each edge, and ultimately
to take into account measurement uncertainty in estimation, as we have
discussed in Section 3.2.2.

Suppose for now that z ∈ Rn; Equation 4.29 reduces to:

e(t) = ẑ(t)− z(t) + η, (4.41)

where for simplicity we have omitted the dependencies on state variables.
It is possible to see that in this case the information matrix Ω = Σ−1

η

and that the expected value of the error function E[e] = e(t)|η=0.
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In the general case the measurement domain is a generic manifoldM,
so we come back to (4.41) by means of the � operator and propagating
Ση on e(t) through linearization. More precisely, we replace the general
form of the error functions (recall Equation 4.29) with:

e(t) = ẑ(t) � z(t) + η′, (4.42)

where an additive noise vector η′ replaces the original one such that:

E[e(t)] = E[η′] = 0, (4.43)

Σe(t) = Ση′ = Je(η)|η=0 Ση Je(η)|Tη=0 . (4.44)

Here Je(η) is the Jacobian matrix of the error function with respect
to the noise vector η. Note that the measurement predictor ẑ, which
depends on the backward augmented state estimator, and in turn on
the state variables, is treated as a constant when differentiating in η,
thus Je(η) can be computed at logical sensor level, and only the value
of ẑ and z are needed for its evaluation.

Equations 4.43 and 4.44 do not hold in general since the measurement
noise affects e(t) through the operators � and �, whose definition is
arbitrary and possibly non-linear. However, these expressions can be
justified assuming that ẑ is unbiased and observing that, in practice,
if η is zero-mean then E[x� η] = x, x ∈M.

4.5.2. Error Jacobians with Respect to State Variables

Now consider one instance of an error function e(·) as in Equation 4.42 at
a certain time t. As we have seen, error functions are formulated relying
on ẑ, which yields the expected sensor reading given the current estimate
of state variables such as robot poses and sensor calibration parameters.
This dependency is indirect: first robot poses and geometric placement
parameters are employed to compute the backward augmented state
estimator x̂S , then the measurement predictor is evaluated as a function
of its components. Once we have made explicit these dependencies we
obtain:

e = ẑ
(

ΓWO1
,ΓWO2

,ΓWO3
,S(O),RO

S , ξ
)
� z + η′, (4.45)

where we have omitted time dependency since the error function does
not depend on the absolute timestamps of the sensor readings. The
transformations ΓWOk , with k ∈ [1, 2, 3], are three robot poses picked
according to the sensor reading timestamp. This error function depends
on ∆t12 = t2− t1 and ∆t23 = t3− t2, as we have seen in Section 4.2, which
are known and constant given the selected robot poses.

60



4.5. Jacobians

From the definition of the � operator, it follows that e(·) is an Eu-
clidean vector, e ∈ RJ , and J depends on the specific sensor model.
Suppose for a moment that we could stack together all the singleton
state variables xi, with i ∈ [1, ..., N ] appearing in e(·). In that case, the
required direction of steepest descent, i.e., the Jacobian matrix of e(·)
with respect to xi, would be given by:

Je(x1, ..., xN ) =


∂e1
∂x1

... ∂e1
∂xN

...
. . .

...
∂eJ
∂x1

... ∂eJ
∂xN

 (4.46)

To evaluate ∂ej/∂xi one needs to known the full dependency of ej
with respect to the singleton component xi. However, in ROAMFREE,
error functions are formulated in a layered fashion and each ej depends
on the components of the backward state estimator x̂S , which in turn
are computed as a function of the actual state variables of the estima-
tion problem. Moreover, xi is the i-th component of the internal state
representation of some multidimensional variable belonging to an arbi-
trary manifold. As we have discussed in Section 3.2, solvers access to
state variables through the operators interface, thus the derivative of
the error function with respect to each singleton component of the state
variable internal representation is not what we are looking for. Instead
we need a notion of the direction of steepest descent that is compatible
with the increment operator �, which is the one employed to update
variable values during estimation.

We first decouple the logical sensor and the abstract sensor Jacobians
by the well known chain rule: being x the set of state variables appearing
in e(·), if we rearrange Equation 4.45, replacing the � operator and the
error model with a two argument function f(·, ·), and collapsing the
backward augmented state estimator in g(x), we obtain:

e = f(x̂S , z) + η′ = f(g(x), z) + η′, (4.47)

Then, the derivative of the j-th component of e with respect to xi is
given by

∂ej
∂xi

=
∑

k=1,...,K

∂fh
x̂S,k

∣∣∣∣
x̂S,k=gk(x)

·
∂x̂S,k
∂xi

, (4.48)

where x̂S,k is the k-th component of the augmented state.

In our case we have the logical sensor error function f , which depends
on the components x̂S,k of the backward augmented state estimator,

which are: S
(W )
3 , RW

S3
, S

(S2)
3 , RS2

S3
, v(S3), ω(S3), a(S3), α(S3). In turn,
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each of these component depend on the state variables xi: ΓWO1
, ΓWO2

,

ΓWO3
, S(O), RO

S . Note that x̂S,k and xi are in general multi-dimensional
and non-Euclidean, and that in general ẑ depends on few components of

x̂S , for instance the absolute position logical sensor relies only on S
(W )
3

and RW
S3

. Moreover, these components of the augmented state can be

computed relying only on ΓWO3
and S(O) (see Section 4.3.1). This means

that ∂f/∂x̂S,k is zero for multiple k, depending on the particular error
function, and the same holds for ∂x̂S,k/∂xi. However, these sparsity
patterns are known for each logical sensor and the framework is able to
evaluate only the non-zero component of the summation in (4.48).

In this way the derivatives of the logical sensor error function can
be evaluated once the current value of the backward augmented state
estimator is known, without having to known its actual expression or
how it is computed. However, still xi belongs to an arbitrary manifold
in the general case and thus ∂x̂S,k/∂xi has to be evaluated properly .

Here we follow the approach presented in [54] and in [43]:, given that
x̂S,k = gk(x1, ..., xi, ..., xN ), i.e, x̂S,k is a certain function of the state
variables xi, we can rephrase the usual derivative definition by means of
the difference quotient to rely on the � and � operators:

∂x̂S,k
∂xi

= lim
∆x→0

gk(x1, ..., xi � ∆x, ..., xN ) � gk(x1, ..., xN )

∆x
. (4.49)

which informally can be thought as the local variation in x̂S,k when the
non-Euclidean variable xi is perturbed according to the semantic of its
domain by an Euclidean increment of ∆x. However, this expression is
commonly replaced with:

∂x̂S,k
∂xi

=
∂gk(x1, ..., xi � ∆x, ..., xN )

∂∆x

∣∣∣∣
∆x=0

, (4.50)

A number of subtleties arise in the approximation in (4.50), in partic-
ular we have employed the fact that the limit of the difference quotient,
when ∆x approaches to zero, can be obtained evaluating the conven-
tional derivative in ∆x = 0. This is not true in general, however this
approximation has been employed in other works and implementations,
such as the ones referenced before, and it has been shown to yield rea-
sonable results in practice.

It remains to discuss how ∂f/∂ξh are evaluated, where ξh is one com-
ponent of the sensor specific parameter vector ξ. As it happened in
Section 4.5.1, when computing the partial derivative with respect to ξh,
the components of the augmented state yj are treated as a constant, so
we only need their value. Moreover, since ξh in general belongs to an
arbitrary manifold, we have to employ the scheme in (4.50).
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4.5. Jacobians

As it has been discussed in Chapter 3, the framework can be instan-
tiated with different state variable representations. This specifies, along
with the state variable operator interface, also the state variable traits
such as increment size and size of the internal variable representation.
The analytic expression of the error functions and of each component
of the Jacobian matrices are derived once the state variable representa-
tion and the implementation for their operators are known. To optimize
the evaluation of such expression, which are sometimes rather complex,
we manipulate analytic expressions to perform Common Subexpression
Elimination [23].
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Chapter 5

Outlier Rejection

To enhance pose tracking accuracy and robustness, multiple sensors are
often employed and redundant information is handled by means of sen-
sor fusion algorithms, such as Bayesian filters or, as we do in this work,
by means of fixed-lag smoothers based on factor graphs. Unfortunately,
sensor readings often include outliers, i.e., readings whose likelihood is
low given the true robot motion, the observation model and its uncer-
tainty characterization. Measurement outliers are ultimately related to
effects that are not taken into account in the sensor models but, being
employed to infer the state of the system, which is unknown, their effect
is, in general, to introduce biases in the state estimate.

Let us consider a magnetometer sensor: we known that its readings
are distorted because of ferromagnetic properties of surrounding objects.
If we characterize this distortion and introduce it into the model, the
correct sensor orientation can be estimated properly from distorted mag-
netic field readings. Conversely, if we employ a simpler model, distorted
readings will appear to be generated from a sensor in a different, incor-
rect, orientation.

From this example it becomes clear how outliers are the result of
unmodeled phenomena. Nevertheless, more complex models will not
solve the outlier issue in general case. Typically, reasonably simple ones
are employed so that they relate the sensor readings with the robot
state. The goal of outlier rejection is to detect when these relations do
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5. Outlier Rejection

not hold.

Let us indulge in another example to clarify this point. Consider a
forward kinematic model for a differential drive robot. If no slippage is
assumed, its formulation is straightforward and it relates wheel speeds,
read by encoders, to the robot velocity. However, when slippage oc-
curs the encoders will produce outlier readings that, according to the
model, lead the estimation algorithm to infer a robot movement, which
actually does not exist. A more complex model that takes into account
slippage might be able to produce consistent velocity estimates also in
case of slippage but requires the current value of the friction coefficient.
Concerns arise about how to estimate this parameter.

To handle the presence of outliers, where it is possible, it is com-
mon to have redundant sensors of the same type since the probability
that an unforeseen event affects all the readings reduces as the number
of redundant sensors increases. Indeed, when multiple, homogeneous,
information sources are available, statistic consensus heuristics can be
employed to detect outliers. One example of this technique is Receiver
Autonomous Integrity Monitoring (RAIM, see [44]), for GPS/Galielo
localization systems, where the redundancy is available as more than
four satellites are visible, allowing to detect multi-path effects and other
unmodeled phenomena.

However, the GPS case, in which a moderately high number of ho-
mogeneous information sources is available, is quite uncommon. In a
general sensor-fusion scenario, sensor readings belong to different do-
mains and are not comparable in a trivial way. Moreover, sensor are
misplaced and misaligned with respect to the odometric center of the
robot, thus, even homogeneous sensors produce different readings. Con-
sider, for instance, two accelerometers mounted at different places on the
mobile robot: the normal component of the acceleration with respect to
the robot trajectory depends on the sensor placement and has to be
taken into account to compare the readings of the two sensors. Another
issue lies in the fact that, although a certain degree of information re-
dundancy is always available, sensors work at different rates and they
are seldom synchronized, so, if a reading for a given sensor is available at
time t, it is very unlikely that an homogeneous, or comparable, reading
from another sensor is also available and sufficiently near to t.

Another technique commonly employed, e.g., in [67], or, in SLAM
data association [57, 68], is to check the consistency of the new sensor
readings with respect to the current state by means of statistical tests,
such as Malhanobis distance or Normalized Innovation Squared (NIS),
and employ measurements in the state estimation process only if these
test are passed. However, examples can be constructed in which, if an
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outlier fails to be detected by chance, it is ultimately able to bias the
estimation to such an extent that future inlier readings are considered
as outliers with respect to the resulting state belief.

Least-squares estimators as the ones employed in this work, are known
to be very sensitive to outliers [46]. Robustified alternatives have thus
been proposed, such as M-estimators and the penalized trimmed squares
estimator [85], which relies on a NP-hard, mixed-integer programming
problem, aiming at minimizing the squared-residuals plus a penalty for
discarding measurements. In the graph-SLAM community, where the
outlier problem substantially reduces to false loop closure constraints
inserted by the front end, two popular alternatives, among the others,
are switchable constraints [76], where latent variables are responsible of
enabling or disabling constraints, and dynamic covariance scaling [2],
were residuals are re-weighted so that a gradient always exists towards
their minimization and it gradually increases in the presence of more
mutually consistent constraints. More recently, the idea that the out-
lier rejection problem can be formulated as the search for a maximal
cardinality subset of the available measurements that are internally “co-
herent” appeared in the literature, as in the work by Carlone et Al. [15].

In our work we propose an outlier rejection mechanism, still subject
of active research, inspired by Random Sample Consensus (RANSAC,
[32]). Differently with respect to current literature, we do not check for
consistency with respect to the current state estimate, instead we fit a
low-dimensional kinematic model employing a randomly chosen minimal
set of measurements, selected among the ones in a local time window.
Next we test the consistency of all the available measurement against
the estimated model. This process is repeated for different minimal
sets, and the final decision is based on the model for which the greatest
number of measurement passed the consistency check.

In standard RANSAC approaches each model is given in a closed form
for each minimal set of measurements, for instance, in line fitting the
parameters of each line hypothesis are obtained analytically from the
coordinates of two points. In our case, complex non-linear models relate
sensor readings to hidden model parameters, and it is difficult to give
closed form estimators for these parameters for general measurement do-
mains, such as those handled by the ROAMFREE framework. We thus
employ the Levenberg/Marquardt optimization algorithm to determine
model parameters for each minimal set. The low dimensionality of the
employed model ensure fast and reliable convergence.

The proposed mechanism is able to exploit the redundancy available
in arbitrary, etherogeneous, asynchronous, sensor readings, effectively
overcoming the homogeneity limitations that arises in simple consensus
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schemes. Moreover, it does not rely on the current state estimate and it
is able to discover coherent set of measurements before they are employed
for state estimation.

In robotics, the RANSAC paradigm is widely employed in many appli-
cations. For instance, it is common to employ such schema to robustify
the feature association in visual odometry systems. This method has
also been proposed to remove outlier loop-closure constraints in SLAM
algorithms, even though there has been some criticism [58] related to the
fact that, being RANSAC a randomized algorithm, it might fail to de-
tect all the outliers, even though the authors acknowledge that it might
be employed as a fast way to remove the most of them. However, we ar-
gue that this features are pros in our context, since we aim at real-time
operation and, with respect to the measurement domain we consider, a
spurious outlier seldom has not the dramatic effect of a false loop closure
constraint in SLAM.

5.1. A RANSAC Approach for Outlier Detection

In this work we employ a low dimensional, kinematic model to approx-
imate the robot trajectory in a local time window. This model is char-
acterized by a limited number of parameters that are estimated from
a minimal subset of the available sensor readings. Multiple hypotheses
for the parameter values are formulated employing different, randomly
selected, training sets. Heuristics are employed, depending on the mea-
surement domain, to guide the sampling, ensuring that the minimal
sets contain enough information such that all the model parameters are
observable.

For each minimal set of measurements, Zfit, the values for the model
parameters are obtained by means of a non-linear least squares opti-
mization employing the Levenberg-Marquardt algorithm. The kinematic
model plays a role analogous to the backward augmented state estima-
tor. Indeed, given the values for the model parameters, Θ, the extended
state x̂S(t,Θ) can be computed, as we will discuss in Section 5.2 and the
error models introduced in Section 4.3 can be evaluated as a function of
the kinematic model parameters.

For each model hypothesis, the residuals for the remaining available
readings, Z \ Zfit, are evaluated and a χ2 test is performed, allowing
us to classify them as inliers or outliers, according to the current hy-
pothesis. The number of model hypotheses k that have to be generated
can be determined as a function of the desired probability of identify-
ing an outlier free measurement set, ρ, the inlier probability Pi and the
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cardinality of Zfit, N , by means of the well known formula:

k =
log(1− ρ)

log(1− PNi )
(5.1)

where the strength of the RANSAC approach appears. In typical cases
few hypothesis have to be generated; for instance, consider ρ = 0.99,
w = 0.7, and N = 3, we have to repeat the model fit process only eleven
times to be reasonably sure that we have sampled at least an outlier-free
measurement subset.

An estimate of the inlier probability is maintained counting the num-
ber of inliers in the final model hypothesis, and we iterate through the
model fit and measurement validation steps until the probability of hav-
ing sampled an outlier-free training set exceeded a given threshold. Fi-
nally, the model hypothesis for which the fewest sensor readings were
flagged as outliers is chosen.

The complete algorithm is reported below, where H is the set of the
generated hypotheses, Z is composed by all the input sensor readings,
Zfit is the minimal set employed for parameter estimation and O is the
set of the outliers with respect to the current trajectory model.

Algorithm 2 Outlier rejection

n← 0, H ← ∅
while n < log(1−ρ)

log(1−PNi )
do

Zfit ← ChoseReadings()
Θ← FitTrajectoryModel(Zfit)

O ← ∅ . test all the remaining readings
for all z ∈ Z \ Zfit do

e← ẑ(t, x̂S(Θ)) � z . evaluate the prediction error
if eΣ−1

z eT > λ then . χ2 test
O ← O ∪ z . z is an outlier

end if
end for
H ← H∪ {Zfit,Θ,O} . store current hypothesis
n← n+ 1

end while
h← argmin

h∈H
#(O) . Chose the hypothesis with fewer outliers
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5.2. Kinematic Model

In this section we discuss in detail the low-dimensional kinematic model
that we employ to approximate the robot trajectory in a local time
window and we show how this can be used to evaluate sensor error
models in place of the backward state estimator presented in Section 4.2.

In this work we restrict to a non-holonomic robot and a 2-D motion
where the linear velocity vector is always tangent to the robot trajec-
tory. These assumptions are in general satisfied by car-like and differen-
tial drive robots, as long as limited side slippage occurs, in which case a
non-zero normal component of the velocity might exist in the true robot
motion. Conversely, these assumptions do not hold for holonomic vehi-
cles, such as robot with omnidirectional kinematics or MAVs, for which
the proposed approach can still be employed once a more expressive
kinematic model has been formulated.

According to the proposed model, the absolute 2-D position of the
robot with respect to the world fixed frame W , for each t in a local time
window, i.e., t ∈ [t0, t1], varies according to the following law:

O(W )(t) =

[
O

(W )
0

y
(W )
0

]
+

∫ t

0
R
(
θ0 + ω0s+

1

2
αs2
) [ v0 + as

0

]
ds, (5.2)

where R(θ) yields a 2-D rotation matrix, taking vectors from frame
O to W , as a function of the 2-D robot bearing θ. Here the model
parameters Θ appear: the initial robot position with respect to W ,

O
(W )
0 , the robot orientation and angular velocity at time t0, θ0 and ω0,

the linear and angular accelerations, constant for t ∈ [t0, t1], a and α.

Thus Θ = [O
(W )
x,0 , O

(W )
y,0 , v0, ω0, a, α] and Θ ∈ R6. It is possible to see

that the robot velocity, changing linearly with t, is integrated, taking
into account the change in orientation of the velocity vector, which is
given by a quadratic form in t.

At this point we take advantage of the decoupling between the repre-
sentation of the robot state and sensor models introduced in Section 3.3.
Indeed, in the pose tracking problem the robot state is maintained over
a sliding time window and it is composed by a set of transformations
ΓWO (t). Based on this transformations, for each sensor and for each
reading we evaluate the backward augmented state estimator, which ab-
stracts from this representation and computes an extended state at the
measurement timestamp t, i.e.,

x̂S(t) =
[
S

(W )
t ,RW

St , v
(St), ω(St), a(St), α(St)

]
. (5.3)
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In outlier rejection, the usual representation of the robot state by means
of successive transformations is replaced by the parameters Θ of the low-
dimensional kinematic model introduced in Equation 5.2. Once new
expressions for x̂S(t) have been formulated, the very same error models
discussed in the previous chapter can be evaluated. Ultimately, we are
“plugging” logical sensors on different implementations of the abstract
sensors and graph layers.

The new formulation for x̂S(t), for each sensor S and for each sensor
reading timestamp t can be derived from (5.2), remembering that the
2-D assumption does not hold at logical sensor level:

S
(W )
t = O(W )(t) +Rz

(
θ0 + ω0t+

1

2
αt2
)
S(W ), (5.4)

RW
St = Rz

(
θ0 + ω0t+

1

2
αt2
)
RO
S , (5.5)

v(St) = (RO
S )−1

(
[v0 + at, 0, 0]T + [0, 0, ω0 + αt]T × S(O)

)
, (5.6)

ω(St) = (RO
S )−1 [0, 0, ω0 + αt]T , (5.7)

a(St) = (RO
S )−1

(
[a, 0, 0]T + [0, 0, ω0 + αt]T × [0, 0, ω0 + αt]T × S(O)+

+ [0, 0, α]T × S(O)
)
, (5.8)

α(St) = (RO
S )−1 [0, 0, α]T . (5.9)

In these equations, Rz(θ) gives the 3-D rotation matrix around the z axis
of the global frame. Note that the calibration parameters S(O) and RO

S

are still employed to represent the possible non-null transformation from
O to S. As a final remark, note that in (5.4) the absolute robot pose
O(W )(t) appears, even though we do not have an analytic, closed form,
solution for the definite integral in ( 5.2). However, if the integrand func-
tion is substituted with its Taylor expansion, an approximate solution
for it can be obtained in closed form, so that no iterative, numerical,
integration algorithm has to be employed.

Now it is possible to relate an arbitrary sensor reading to the un-
derlying estimation variables, which in this case are constituted by the
kinematic model parameters Θ, as opposed to the usual, pose-tracking,
case in which the robot state is represented by successive transforma-
tions between frame W and frame O. This is done by means of the
logical sensor error models defined in Section 3.3 and by the new ex-
pressions for x̂S(t) as in (5.4) to (5.9). Once a minimal set of sensor
observations Zfit is sampled such that each parameter is observable, a
Levenberg-Marquardt algorithm can be employed to retrieve the model
parameters. Here abstract and logical sensor calibration parameters are
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assumed to be known and time-invariant.

5.3. Sampling the Minimal Sets

In this section we discuss the heuristics needed to build the sets Zfit, en-
suring that the resulting optimization problem is not under-constrained.

To estimate the kinematic model parameters Θ we have to pick a min-
imal set of observations among multiple, heterogeneous, asynchronous
information streams. It is important to note that the cardinality of these
sets, N , is critical. In particular, N has to be kept as low as possible
since the number of model hypotheses that have to be evaluated, k, in-
creases exponentially with N , (see Equation 5.1). In our case N is not
fixed and depend on the type of the observations that falls in Zfit.

Let us start from the straightforward observation that the set Zfit

cannot be composed by an arbitrary assortment of sensor readings. For
instance, any number of linear velocity readings will never make the

O
(W )
x,0 and O

(W )
y,0 parameters observable. However, we might not need to

estimate these part of the state if all the error models for the elements

in Z do not involve the S
(W )
t component of x̂S(t). Indeed, if the set

of available readings contains only relative measurements, such as lin-
ear/angular velocity, or acceleration readings, the absolute position of
the robot at time t0 cannot be determined, but it is also not needed to
evaluate error models or to detect outliers.

The composition of Zfit has to be determined such that any of the
model parameters Θ appearing in the components of x̂S(t) that are
employed in sensor models for remaining readings Z \ Zfit, has to be
observable.

To fill the Zfit set we employ the following heuristic that has worked in
a preliminary evaluation, even though we have not undertaken a rigorous
observability analysis yet: first we pick at random a small number of
measurements, next we examine which components of the extended state
are required by all the sensor models in Z and add further edges to Zfit,
this time guiding the sampling towards certain measurement types. For

instance, if the O
(W )
x,0 , O

(W )
y,0 or θ0 parameter need to be estimated, we

sample among error models that depend on S
(W )
t and/or RW

St , until
two absolute position constraints or one position and one orientation
constraint are in Zfit.

It is possible to see that, because of the aforesaid heuristic, the number
of measurements in the minimal sets is not fixed and it depends on the
available sensors, on the relative rates of operation and on the random
sampling. We thus maintain an estimate of the average cardinality of
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Zfit so that Equation 5.1 can be evaluated and a stopping condition for
the algorithm can be formulated.

5.4. Experimental Evaluation

The proposed approach is still subject of active research and, even
though a preliminary evaluation on synthetic data has confirmed fea-
sibility of the approach, comprehensive benchmarks on real world data
are still ongoing and will appear on the final version of this manuscript.

5.5. Conclusions and Open Issues

In this chapter we have proposed an original formulation of an outlier
rejection heuristic to be applied along with the ROAMFREE framework
to the problem of pose-tracking by means of multi-sensor fusion.

However, a number of critical aspects with respect to the proposed
approach would require further analysis. First, we employ a kinematic
model to approximate the robot motion in a local time window. How-
ever, this model is based on tight assumptions such as non-holonomic
motion, which were introduced to reduce the dimension of the state
space. Because of these assumptions the model is not able to describe
every possible robot motion, even in the specific cases for which it has
been designed for. For instance, in RANSAC approaches to line fitting,
each model hypothesis exactly pass through the given example points.
In our case, the true robot motion will never be exaclty the one de-
scribed by the model. But how do we quantify this discrepancy in the
worst case? Isn’t it possible that for a certain robot motion the best
model that can be found still classifies good measurements as outliers?
In other words, there might be cases for which measurements are outlier
with respect to any model in the considered class, but are inlier with
respect to the true motion.

Another issue lies in the fact that we are employing an iterative opti-
mization algorithm to perform model fitting. Due to the non-linear na-
ture of the problem, the optimization might converge to a local minimum
of the error functions associated to the observations in Zfit. Moreover,
the final estimate, in cases of multiple attractors, might depend on the
initial guesses for the model parameters. Instead, going back to the line
fitting problem, give two example points, the line passing through them
is given in a closed form. How do we assess if the model fit procedure
has converged to the correct minima? However, this issue might not be
critical in the sense that such a model hypothesis will likely classify as
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outliers most of the observation in Z, and thus it will be most probably
discarded. But what if no model can be found that fits at least the
elements in the training set?

An in-depth analysis of these issues, along with a comprehensive ex-
perimental evaluation of the proposed approach, are currently ongoing.
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Chapter 6

The QUADRIVIO ATV

In this chapter we discuss parameter self-calibration and online pose
tracking experiments for the Quadrivio ATV [7], an all-terrain vehicle
designed for research in localization, planning, and trajectory control in
off-road, rough terrain, environments. In the first part of the chapter
we present the robot perceiving architecture and we employ the ROAM-
FREE framework to perform offline sensor parameter self-calibration.
In the remaining part of the chapter, we introduce ROAMROS, a ROS
node based on ROAMFREE that performs off-the-shelf pose tracking,
and we discuss experiments in which the pose estimates feed the trajec-
tory follower module during autonomous navigation.

6.1. Platform Description

The vehicle considered is a Yamaha Grizzly 700, a commercial fuel
powered All-Terrain Vehicle (ATV) equipped with an electric power
steering (EPS). It is a utility ATV and it is thus specifically designed
for agriculture work. As a result it has a total load capacity of 130 Kg,
and it is equipped with a rear tow hook. The main characteristics of the
vehicle are listed in Table 6.1.

For the purposes of the project, the original vehicle cover has been
removed and substituted with an aluminum one that allows to easily ac-
commodate for the control hardware and the sensors (Figure 6.1). Fur-
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6. The QUADRIVIO ATV

Figure 6.1.: The Quadrivio off-road autonomous vehicle.

Main characteristics of the vehicle

Engine type 686cc, 4-stroke, liquid-cooled, 4 valves
Drive train 2WD, 4WD, locked 4WD
Transmission V-belt with all-wheel engine braking
Brakes dual hydraulic disc (both f/r)
Suspensions independent double wishbone (both f/r)
Steering System Ackermann
Dimensions (LxWxH) 2.065 x 1.180 x 1.240 m
Weight 296 Kg (empty tank)

Table 6.1.: Vehicle characteristics

thermore, the vehicle has been equipped with three low-level servomech-
anisms, each one with its own control loop, to automatically regulate the
steer position, the throttle aperture and the braking force [6].

The Quadrivio ATV is equipped with the following sensors: a Trimble
5700 GPS receiver, an Xsens MTi inertial measurement unit (IMU),
composed by 3D MEMS accelerometer, magnetometer and gyroscope, a
four planes Sick LD-MRS laser range-finder mounted on the front top of
the chassis, plus a single plane LMS-291 mounted in the front lower part,
near the wheels, a stereo rig composed of two Prosilica GC650C cameras,
looking sideways, and handlebar and rear wheels encoders. However,
at the present stage of development, the laser range-finders and the
stereo rig are not employed for pose tracking purposes. Furthermore, the
custom aluminum cover has a different mass distribution with respect
the the original chassis so that the suspension system fails to soften the
vibrations induced by the terrain and the fuel engine. This causes the
accelerometer readings to bee too noisy to contribute in pose tracking.
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6.2. Parameter Calibration

In the following we discuss how the relevant calibration parameters for
the Quadrivio ATV have been retrieved by means of ROAMFREE.

6.2.1. Problem Description

We first review the logical sensors configured and their relevant calibra-
tion parameters. Please refer to Section 4.3 for a detailed description of
the error models.

An Ackermann kinematic sensor is the architecture master sensor,
i.e., the one which triggers new pose nodes to be inserted into the factor
graph as new odometry readings are available. Handlebar and rear wheel
encoders directly feed this sensor and are read at a frequency of 20 Hz.
The kinematic model is characterized by four calibration parameters:
as and bs, which allow to approximate the non-linear relation existing
between the handlebar and the actual steering angle in four wheel Ack-
ermann vehicles, kv, which is a gain parameter for the tangential speed,
measured by means of wheel encoders whose number of ticks per revolu-
tion might be unknown, and finally L, the distance betweeen front and
rear wheel axis.

The GPS readings, after being converted from Longitude-Latitude-
Altitude to the East-North-Up coordinate systems, feeds an absolute
position logical sensor at a maximum rate of 5 Hz. Here the GPS antenna
is mounted at the center of right side of the vehicle chassis, thus the

misalignment parameter S
(O)
GPS can not be neglected.

The xSens magnetometer drives a vector field logical sensors. Sub-
stantial soft and iron distortion effects are present because of the fer-
romagnetic properties of the vehicle body and the electrical activity in
the fuel engine, and are handled by means of the dedicated A and b
calibration parameters.

Finally, an angular velocity logical sensor is driven by the gyroscope,
which we assume to be unbiased and undistorted. The xSens MTI is
configured to run at 20 Hz so that it does not exceed the architecture
master sensor rate.

Because of the nonlinear nature of the optimization problem, at least
rough initial guesses are needed for all the calibration parameters. These
are obtained as follows: as is determined from a theoretical analysis
of the vehicle steering geometry, from which it results that it should
range from 0.49 to 0.56, where the uncertainty comes from the fact
that it is difficult to precisely know the dimensions of all the involved
steering gears and mechanisms. kv is set to 0.1 examining the encoder
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integrals after the vehicle has been moved for a known distance. L
is equal to 1.25 m and its value comes from the Yamaha Grizzly
700 documentation. This value is considered correct and it is not sub-
ject to estimation. The GPS displacement, S

(O)
GPS , has beed determined

by means of a direct inspection on the vehicle and it is initialized to
[0.70,−0.46, 0.88]T m. The Earth magnetic field ~h(W ) is supposed to
be known and constant in the robot operation area and its value is set
according to the USA National Geophysical Data Center (NGDC)1 to
[0.007719, 0.225097,−0.416133] G. The remaining parameters are im-
possible or very unpractical to determine directly and are set to default
values, i.e., A = I3×3, b = 03×1 and bs = 0. The error models devel-
oped in this work provide further calibration parameters, yet they are
not considered because either are not observable, as we will discuss later
on, or because their effect on the pose tracking accuracy is marginal.

We perform the parameter calibration by means of an offline opti-
mization over the whole set of sensor readings collected while manually
driving the robot along circles of different radii, so that the steering
geometry and the magnetometer distortion parameters, as well as the
GPS misplacement, are fully excited. To this end, we saturate the han-
dlebar angle setpoints to 15, 30 and 40 degrees, resulting respectively
in the g15, g30 and the g40 datasets. Unfortunately, only flat terrain
was available for field experiments. The resulting trajectories are de-
picted in Figure 6.2, 6.3 and 6.4. In the second one it is possible to see
that the GPS readings are affected by substantial multi-path effects, i.e.,
the circumstance in which environmental features cause a combination
of reflected and/or diffracted replica signals to arrive at the receiving
antenna, resulting in discontinuities in the GPS position estimates.

Notes on Parameter Observability

Before proceeding, we discuss certain limitations which arise when one
attempts to determine the full set of parameters considering only 2-D
motion. Even though a rigorous observability analysis could be carried
out with techniques based on the Lie derivatives [71, Section 6.2], simpler
considerations will suffice to show the point.

Before we start, it is important to remark that ROAMFREE is a 6-
DOF pose tracking framework, thus, even in case of 2-D motion, we
always deal with 6-DoF poses and the estimates will not, in general, lie
on a plane, because of magnetometer and GPS altitude noise. Please
note that in principle we could arbitrarily enforce planarity in estimates

1http://www.ngdc.noaa.gov
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Figure 6.2.: Dataset g15, handlebar setpoints saturation: 15◦, with GPS
readings and the robot poses obtained after calibration.

simply acting on the Ackermann kinematic sensor noise covariance ma-
trix. Indeed, as it was discussed in Section 4.4, extra constraints aug-

ment the kinematic model, i.e., v
(S)
z = 0, ω

(S)
x = 0 and ω

(S)
y = 0, with

S ≡ O, stating that the position of the robot cannot change over the z
axis of W , and that the robot orientation cannot change along the roll
and pitch axis of the sensor frame.

We start our analysis from the z component of the GPS misalignment
parameter: it is possible to see that

S
(W )
GPS(t) = ΓWO (t)S

(O)
GPS =

= RWO (t)
(
S

(O)
GPS + [0, 0, z]T

)
+

+O(W )(t)− [0, 0, z]T (6.1)

holds if RWO (t) is a 2-D rotation for each t, showing that an arbitrary
GPS displacement along the robot z axis can be compensated by an
opposite translation of all the robot poses.

Next we move to the vector field readings. First recall the error model
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Figure 6.3.: Dataset g30, handlebar setpoints saturation: 30◦. The
boxes highlight GPS multi-path effect.

as it has been presented in Section 4.3.6:

ẑ(t) = ~h(S)(t) =
[
A
(
RO
S

)−1
]
RWO (t)−1~h (W ) + b. (6.2)

where A is an unconstrained 3×3 matrix, and thus it can also encode a
3-D rotation. While other sensor provide further information on RWO (t),
in the considered case we have little information about RO

S , i.e., the
IMU misalignment parameter. In fact, even if the gyroscope sensor
it is housed within the xSens MTI and thus shares the misalignment
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Figure 6.4.: Dataset g40, handlebar setpoints saturation: 40◦.

parameter with the magnetometer, its x and y axis are too noisy and can
not be trusted enough so that the least-squares solver can disambiguate
between the A and the RO

S contribution in (6.2). This fact hold also
for 3-D trajectories and it has been already pointed out in [83]. In
Quadrivio, we carefully align the IMU with the robot chassis and we
consider RO

S = I.

Consider now the two vector field calibration parameters A and b.
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Again, if RWO (t) is a 2-D rotation for each t, it follows that:

~h(S)(t) = ARWO (t)−1~h (W ) + b =

=

[
A(1:2,1:2) A(1:2,3)

A(3,1:2) A(3,3)

] [
RWO (t)−1 0

0 1

][
~h

(W )
xy

~h
(W )
z

]
+ b =

=

[
A(1:2,1:2)R

W
O (t)−1~h

(W )
xy

A(3,1:2)R
W
O (t)−1~h

(W )
xy

]
+

[
A(3,1:2)

~h
(W )
z

A(3,3)
~h

(W )
z

]
+ b. (6.3)

where in the last equation a sum of two unknown quantities appears. If
we try to estimate both A and b at the same time from a 2-D motion,
we introduce a gauge freedom of three degrees. In fact, if we add an
arbitrary quantity δ to b, no change occurs in ~h(S)(t) if we subtract

δ/~h
(W )
z from A(1:3,3).

6.2.2. Pose Tangles and Calibration Heuristics

There are cases in which the optimization algorithm might fail to con-
verge to the desired attractor. Here we can not speak in terms of global
and local optima since this would require a rigorous characterization
of the fitness landscape. Moreover, in the considered experiments the
ground truth for the robot trajectory is not available. Nevertheless, it
is quite easy for humans to guess the true robot trajectory looking at
GPS tracks, even in presence of multi-path effect. Thus, we can visually
discern the quality of the solution obtained by least-squares estimation.

As it was discussed in previous sections, because of the non-linearity
of the optimization problems we are considering, we need a reasonable
initial guess for all the variables in the problem2. For the Quadrivio
ATV, this role is played by the Ackermann kinematics logical sensor.
However, this sensor sports calibration parameters for which we have
a rough prior knowledge, i.e., as and bs. Thus, it might happen that
the initial guesses generated for the robot poses are not accurate enough
and estimation fails to converge to the proper trajectory.

Here we discuss a synthetic example in which the effects of a bad
initialization for the as parameter are explored. We consider a simulated
vehicle identical to the Quadrivio ATV. We suppose it moves straight
for 5 s at 1 m/s, then it steers with an angle of 20 degrees for 10 s,
and finally it moves straight for 5 s more. We drive the ROAMFREE
sensor fusion engine with ground truth readings for the GPS and the

2Recall from Section 3.2.1 that the architecture master sensor is employed to obtain
initial guesses for the new pose nodes, employing the current sensor readings and
the forward kinematics equations.

84



6.2. Parameter Calibration

(a) as = 0.8, proper convergence. (b) as = 1.0, failure.

Figure 6.5.: Evolution of pose estimates during optimization for two dif-
ferent initial guesses for the as parameter, and consequently
for the robot poses, given the same set of sensor readings.

Ackermann kinematics, yet we incorrectly initialize as to 0.8 and 1.0,
while it true value is 0.5. Finally we run the estimation by means of the
Levenberg-Marquardt algorithm, attempting to estimate the steering
gain parameter.

In Figure 6.5a we have plotted the initial guess for the robot poses,
the final estimates (in green) and the intermediate pose estimates during
the optimization. It is possible to see that even though the initial guess
for the robot pose was substantially different with respect to the GPS
readings, the retrieved poses match the GPS estimates. Moreover, the
correct value for as was retrieved, i.e., âs = 0.4995. On the contrary, in
Figure 6.5b, the algorithm was not able to remove the loop existing in
the trajectory initial guess. Indeed, to achieve this, a temporary decrease
in the likelihood of the robot poses with respect to the sensor readings
is required, and this is not allowed by a greedy algorithm such as LM.
In this case the estimate for the steer gain was âs = 1.2532, which is not
correct.

To handle the issues previously described, we developed the following
calibration heuristic, which we have successfully applied to the presented
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g15 g30 g40 avg

kv
0.060 0.057 0.057 0.058
±0.002 ±0.003 ±0.003 ±0.001

as
−0.544 −0.573 −0.561 −0.562
±0.110 ±0.075 ±0.063 ±0.044

bs
−0.010 −0.006 0.001 −0.006
±0.026 ±0.034 ±0.034 ±0.018

A

 1.80 −0.11 0.02
0.14 1.76 0.00
0.09 −0.03 0.64

 1.93 −0.06 0.01
0.10 1.87 −0.00
0.11 −0.06 0.60

 1.81 0.04 0.00
−0.02 1.75 −0.02
0.12 −0.01 0.60

 1.85 −0.04 0.01
0.07 1.80 −0.01
0.11 −0.03 0.61



b

−0.13
0.03
−0.50

 −0.13
0.01
−0.52

 −0.13
0.03
−0.52

 −0.13
0.02
−0.51



S
(O)
GPS

x
0.205 0.385 0.343 0.316
±0.233 ±0.212 ±0.227 ±0.129

y
−0.331 −0.354 −0.496 −0.398
±0.285 ±0.235 ±0.246 ±0.146

Table 6.2.: Results for the calibration parameters.

(and more) datasets: at the beginning of the estimation the only param-
eters which are set to be estimated are the Ackermann kinematic ones,
as, bs and kv. We do this because these are employed to initialize new
pose nodes and thus reasonable estimates for these parameters have to
be available as soon as possible. We then insert 10 s of sensor readings
and run the estimation. We iterate through this process until the all
the available readings have been considered. In this way we can obtain
initial guesses for all the robot poses even if we only have rough guesses
for the kinematic parameters. Next we free the vector field parameter b
and run the estimation again, so that the average magnetic field value is
estimated. Note that a bias exist at least for the z component, since 2-D
motion is considered. Finally, b is fixed again so we can estimate the A
parameter. In this final run we also free the remaining parameters, i.e.,

the GPS misplacement S
(O)
GPS .

It is important to note that parameter calibration procedures are often
tricky and it is very difficult to provide general guidelines or heuristics
that can be directly applied to multiple, different, problems. This is
one of the reasons why ad-hoc solutions are being proposed for specific
calibration scenarios. However, thanks to the general and flexible design
of our framework, the calibration heuristic for the Quadrivio ATV could
be implemented relying only on the available public API and no change
in the internals of the engine was required.

6.2.3. Results

In Table 6.2 we have summarized the parameter estimates for each one
of the calibration datasets together with their uncertainty weighted av-
erages.

We can evaluate the accuracy of kv, as and bs by integrating odom-
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etry readings, first employing their initial guesses and then the values
obtained averaging the results obtained for the three training datasets.
To this end, we employ a fourth dataset not employed in the calibration
runs. The results are shown in Figure 6.6, where a trajectory of ≈ 127 m
is considered. It is possible to see that the odometry integral computed
with the initial guesses for the kinematic parameters soon diverges from
the GPS readings, whereas the calibrated parameters yield accurate dead
reckoning, with a final pose distance of around 10 m.

Figure 6.6.: Comparison of odometry integrals computed with initial
guesses and calibrated kinematic parameters with respect
to the GPS readings and the estimation performed with all
of the available sensors.
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(a) Dataset g40 (b) Dataset g30

Figure 6.7.: Two portions of the calibration dataset. The magenta ar-
rows show the direction of the Earth magnetic field as per-
ceived by the xSens MTI, while the black ones are corrected
for bias and distortion according to A and b.

We next discuss the results for the magnetometer calibration parame-
ters A and b. Once the robot orientations RWO (t) have been estimated,

it is possible to express the magnetic field reading z(t) = ~h(S)(t), which
is expressed in the sensor frame S, in the fixed frame W . In Figure 6.7
we have plotted two portions of the estimated trajectory after param-
eter calibration. Here, the arrows represent the direction of ~h(W )(t) as
computed from the magnetic field reading and the robot pose at time
t. In particular, magenta arrows are obtained assuming the magnetic
field reading is unbiased and undistorted, i.e., A = I3×3 and b = 0(3×1).
It is possible to see that in this case a different direction is obtained
for different poses, depending on the robot orientation. Conversely, the
black arrows are obtained employing the calibrated values for A and b,
showing that they are able to compensate for the bias and distortion af-
fecting magnetometer readings. Indeed, all the arrows consistently point
towards the North.

Regarding the remaining calibration parameter, S
(O)
GPS , the results are

less satisfactory. As discussed before, a prior estimate for this parameter
is obtained by direct inspection on the vehicle. Even though it is quite
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impractical to precisely measure distances between the GPS antenna and
the origin of O, placed at the middle point of the rear wheel axis, it is is
very unlikely that the initial guess differ from the true values by more
than few centimeters. Conversely, the confidence intervals reported by
the calibration algorithm are of the order of tens of centimeters (see Ta-
ble 6.2). Moreover, while the estimated mean value for the displacement
along the y axis it is consistent with the direct inspection, this does not
hold for the x component, which differs by about 39 cm with respect to
the measured value.

We can give a possible explanation of this fact based on GPS latency.
First consider that, on the Quadrivio ATV, a regular PC associates a
timestamp to each GPS reading as it receives the NMEA sentences from
the serial-to-USB channel. Before this, the raw GPS signal has to be pro-
cessed to obtain LLA estimates. So there is a certain, non-null, latency
between the moment in which the GPS signal is available at the receiver
and when the ENU coordinates are timestamped at the PC running
ROAMFREE and/or logging the data, during which the vehicle might
be moving. Thus we are ultimately estimating the GPS displacement
with respect to its position at the moment the ENU readings are times-
tamped. The Trimble 5700 specifications3 report a processing latency of
0.02 s. Plus, we have to consider the elapsed time during serial transfer
of the GGA and GST NMEA sentences, which can be considered to be
120 characters long on an average, resulting in additional ≈ 0.02 s. Fur-
thermore we have to add USB and operating system latencies which are
more difficult to quantify. In the considered datasets we were driving
the Quadrivio ATV at an average speed of 3 m/s: being 0.04 s a lower
bound for the GPS latency, we can expect that the observed value for

the x component of S
(O)
GPS by means of self-calibration will be lower with

respect of the true value by at least 12 cm.

However, the obtained confidence intervals for the GPS displacement
are not tighter than the ones for direct inspection, implying that few
information can be obtained from other sensors on this parameter, thus,
at least in this sensor configuration, we prefer to employ direct measure-
ments instead of the estimated obtained by self-calibration.

6.3. Online Pose Tracking

After having obtained an estimate for the calibration parameters which
are impractical or impossible to determine by means of a direct inspec-
tion, such as the A and b magnetometer distortion coefficients, we de-

3http://www.geoplane.com/trimble/pdfs/5700specs.pdf
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ploy a pose tracking application based on ROAMFREE whose estimates
will be employed in a control loop to follow a given trajectory.

In the previous section we described a calibration heuristic which was
implemented as a standalone application employing the ROAMFREE
public API. Indeed, a observability analysis showed that the set of pa-
rameters subject to simultaneous estimation can not be arbitrary and
thus forced us to write a custom application to target the distinctive
traits of the considered case. Conversely, once the logical sensor param-
eters are known, a solution for the online pose tracking problem can
be obtained employing ROAMROS, a general purpose ROS node built
on the top of the ROAMFREE public API to provide off-the-shelf pose
tracking capabilities. It is based on configuration files and allows the
end user to configure the needed logical sensors, the required calibration
parameters and the ROS topics on which sensor readings are available as
standard messages. Moreover, the user can specify the fixed-lag length
and the desired rate at which estimation has to be performed, along
with other properties of the solver.

In the following experiments, the control node receives the input tra-
jectory as a 2-D spline and it implements a control law, specifically
designed for Ackermann steering vehicles, that computes the handlebar
position and the throttle setpoints as a function of the current robot
pose, obtained by the ROAMROS node.

We generated eight-shaped trajectories that originate 1 m ahead with
respect to the current pose of the robot and we trigger autonomous tra-
jectory following. The two circles have a radius of respectively 18 and
12.5 m. In Figure 6.8 we have plotted the reference path, the ROAM-
FREE position output, and the GPS readings for six experiments where
in four of them the speed setpoint was 2 m/s, increasing to 3 and 4 m/s
in the last two. We considered 2.5 s of fixed-lag length and we run the
estimation at a rate of 20 Hz.

Here we do not aim at benchmarking the motion controller, not at
evaluating the adherence of the robot trajectory with the reference one,
also because no ground truth position is available. Conversely, we want
to show that the ROAMFREE pose tracking capabilities can be suc-
cessfully employed in motion control loops to increase robustness and
accuracy. Consider for instance the experiment depicted in Figure 6.8a:
it is possible to see that multi-path effect seriously compromised the
GPS position estimates while moving along the big circle part of the
trajectory. Nevertheless, this did not affect the pose estimates thanks to
the other sensors available and the robot path did not diverge from the
given reference. Indeed, after multi-path effect has disappeared in the
next part of the trajectory, it is possible to see that the GPS positions
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and the roamfree estimates are very adherent with respect to the desired
path.
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6. The QUADRIVIO ATV

(a) 2 m/s (b) 2 m/s

(c) 2 m/s (d) 2 m/s

(e) 3 m/s (f) 4 m/s

Figure 6.8.: Online trajectory following results. Reference path for the
trajectory follower (black dashed line), the ROAMFREE po-
sition output (blue line), and the GPS readings (red crosses).
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Chapter 7

The LURCH
Autonomous Wheelchair

In this chapter we discuss self-calibration benchmarks for the LURCH
Autonomous Wheelchair [8] and we compare the results, where possible,
with the ones obtained by the ad-hoc algorithm proposed in [19].

7.1. Experiment Description

LURCH (see Figure 7.1) is an robotic wheelchair designed to assist dis-
abled persons by autonomously navigating indoor environments or by
performing automatic hazard avoidance during manual drive.

The robot is equipped with multiple, heterogeneous sensors: two
URG-04LX laser range-finders, which have a 240 degrees field of view, a
5.6 m range and 10 Hz operating frequency, are mounted such that each
one covers one side of the robot plus a portion of the front. These are
employed to compute odometry and to detect dynamic and static obsta-
cles in autonomous navigation. The rear direction is instead covered by
multiple sonars. Moreover, a Prosilica GC1020 is mounted behind the
seatback and looks backward, capturing frames at 10 Hz. Finally, wheel
speed is estimated from low resolution encoders at 50 Hz.

While wheel encoder sensor readings can directly feed a differential
drive kinematic logical sensor (see Section 4.4.1), the laser range-finder

93



7. The LURCH Autonomous Wheelchair

Figure 7.1.: The LURCH autonomous wheelchair. The two Hokuyo
URG-04LX are visible near the footrests, while the Prosilica
is mounted behind the seatback.

point clouds and the camera frames are not directly handled by the
framework. However, we can apply pre-processing so that one of the
handled measurement domain is obtained. In particular, 2D displace-
ment estimates are obtained by matching successive laser scans with an
Iterative Closest/Corresponding Point (ICP) algorithm [17].

Note that we do not consider loop closures, i.e., we never align the
current scan with a past one in case prior pose knowledge suggests that
the robot has came back in the same place, as it happens in graph-SLAM
approaches such as [37]. Instead we employ the laser range-finders as
redundant odometers to be integrated with the estimates obtained by
applying forward kinematics to the wheel encoder outputs.

To fix the absolute position of the robot, we employ the camera to
track fiducial markers present in the environment. In this work the
we employ the ALVAR library [70] to process the Prosilica frames and
compute the position of the visible fiducial markers with respect to the
camera, which we then employ to feed multiple landmark position logical
sensors, one for each marker (see Section 4.3.7). New logical sensors are
added at run-time as additional fiducial markers are detected. In other
words, when a new fiducial marker is first seen in a camera frame, the
set of sensors is augmented and a new parameter, the absolute position

of that marker, L
(W )
i , is inserted into the problem-graph.
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Figure 7.2.: The LURCH sensor frames: SL and SR placed at the two
Hokuyo range-fiders, and SC at the Prosilica.

Note that the absolute positions of the landmarks are unknown, thus
we are actually solving a SLAM problem in which the goal is to de-
termine the pose of the robot and the position of a set of world-fixed
features, which form the map of the world. However, in our case the
problem is simpler since each fiducial marker encodes a unique identifier
that allows to distinguish it among the others, substantially eliminating
the data association problem. Moreover, thanks to the available a-priori
information on the marker dimensions, their position and orientation
with respect to the camera can be determined on a metric scale looking
to a single frame only.

The resulting set of logical sensor available for pose tracking is made
up by one differential drive sensor, which handles wheel speed read-
ings, two displacement sensors, one to handle the output of the ICP
algorithm for the left range-finder, and one for the right one, and mul-
tiple landmark position sensors, one for each detected fiducial marker.
In Figure 7.2 we have depicted the associated reference frames. These
sensors sport multiple calibration parameters and most of them are sub-
stantially misplaced and/or misaligned with respect to the odometric
reference frame O. To summarize, the relevant calibration parameters
are: the 2D transformation from O to the laser frames SR and SL,
the 3D camera misalignment RO

SC
, the z component of the camera dis-

placement, the wheel radius r and the baseline L. Additionally, every
landmark logical sensor sports a parameter specifying its own fiducial

marker position with respect to W , L
(W )
i , which has to be determined

at run-time, as it happens in SLAM algorithms. These parameters are
critical for the pose tracking accuracy. While direct inspection on the
robot might yields acceptable values for some of them, such as for the
laser displacements, the others remain difficult to determine in this way.
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7. The LURCH Autonomous Wheelchair

Figure 7.3.: A bird’s eye view of the calibration setup.

In the following we show how the ROAMFREE framework can be
employed to refine the rough estimates available for the above sensor
parameters. We first setup a benchmark environment in which an area
of approximately 25 m2 is considered and 14 fiducial markers of size
18 × 18 cm are placed on the floor such that they completely surround
the area, as it is depicted in Figure 7.3. The area is covered by an Op-
titrack motion capture system, which reaches sub-centimeter accuracy
and provides us with the ground truth reference for both the wheelchair
and the fiducial markers position. Note that the ground truth data is
never employed in the calibration process. We collect sensor readings
for the subsequent offline estimation runs by manually driving the robot
along two kind of paths, depicted in Figure 7.4. The resulting dataset
are finally divided in seven slices of 60 s each, with 20 s overlap.

The parameter calibration is done offline. The differential drive logical
sensor provide readings at 50 Hz and it is the architecture master sensor.
The other three logical sensors have to rely on the poses generated as new
odometry readings are available. Both the range finders and the camera
produce readings at 10 Hz. For each couple of scans a displacement
reading is inserted, while the number of landmark position constraints
for each frame clearly depend on the number of visible markers. Since
no absolute position information source is available, the robot and the
landmark poses can be determine up to a rigid transformation. In other
words, in the resulting optimization problem there is a gauge freedom of
six dimensions. Thus, we set the first pose estimate such that O ≡ W
and we fix the related graph vertex. Also note that it is not possible
to estimate the z component of the camera misplacement from a 2D
motion as long as prior information on the position of the marker is not
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7.1. Experiment Description

(a) Datasets k1-1, ..., k1-5 (b) Datasets k2-1, k1-5

Figure 7.4.: The ground truth for the trajectories employed.

provided in the optimization problem. To clarify this point, note that:

L(W ) + [0, 0, z]T = ΓWO (t)ΓOS

z(t)︷ ︸︸ ︷
L(S)(t)

= RWO (t)RO
SF

(S)(t)

+RWO (t)
(
S(O) + [0, 0, z]T

)
+O(W ). (7.1)

In case of 2D motion, the rotation RWO (t) does not affect an arbitrary
offset on the z component of the sensor misalignment parameter S(O),
which can thus be canceled offsetting the landmark position parameter

L
(W )
i by the same amount. Thus, if we tried to estimate also the z

component of the camera misalignment parameter, we would have in-
troduced another degree of freedom in the optimization problem. This
degree of freedom could have be removed introducing prior constraints
on the z component of the landmark position parameters, encoding, for
instance, the fact that we known that they are placed on the floor.

Since the optimization problem is ultimately a weighted least-squares,
the solution heavily depends on the weights, i.e., the covariance matrices
associated to each measurement edge. Thus, one of the prerequisite for
obtaining accurate and consistent estimates for the calibration param-
eters and for the robot poses is to have a reasonable estimate for the
sensor reading uncertainty.

For what concerns wheel odometry, we assume that the robot motion
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7. The LURCH Autonomous Wheelchair

is planar and that slippage in the normal direction with respect to the
trajectory is very unlikely to occur. These assumptions are reflected

by low variances for the noises on the v
(S)
y , v

(S)
z , ω

(S)
x and ω

(S)
y com-

ponents of the sensor linear velocity, see Section 4.4. The wheel speed
estimator, given the encoder ticks per period, is unbiased and uniformly
distributed. Thus, given that the LURCH encoders have 180 ticks per
wheel revolution and that the sampling frequency is 50 Hz, the vari-
ance of the wheel speed estimator needed in the differential drive logical
sensor is given by

σ2
ω =

1

12

(
fs · 2π
#ticks

)
' 0.25 rad2/s2. (7.2)

For the other logical sensors, the situation is more difficult: the scan-
matching algorithm associates a covariance matrix to each displacement
estimate based on the analysis of the error function being minimized
in the ICP algorithm. However, this estimate depends on the assumed
uncertainty for each distance reading, which in our case is unknown. Re-
garding the landmark position sensors, the ALVAR tracking library does
not provide any uncertainty measure for the estimated marker positions.
Furthermore, the set of readings for these sensors contain outliers that
can seriously affect the estimation. In this work we mitigate this fact
by robustifying the error functions, replacing the least-squares quadratic
cost function with the Huber one, which linearly weights the residuals
that are greater than a certain threshold h.

To summarize, in our setup we identified four parameter that charac-
terize the sensor uncertainty: a scale factor that multiplies the covari-
ance matrix returned by the ICP algorithm, kL, the Huber width for the
displacement logical sensors, hL, a diagonal 3D covariance matrix σMI,
where I is the 3 × 3 identity matrix, associated to the fiducial maker
position estimates, and the Huber width for the landmark position log-
ical sensor, hM . These parameters have to be tuned in order to achieve
accurate calibration results.

To chose these parameters we can rely only on the output of the cal-
ibration process. For instance, once the robot poses and the camera
misalignment have been estimated, it is possible to check whether the
observed marker position with respect to the camera are consistent with

the estimate of their absolute position L
(W )
i , given the camera poses. In

Figure 7.5 we have depicted an example of an healthy solution and one in
which robot poses and/or the camera misaligned parameter most proba-
bly differ from the true values. In Figure 7.5a it is possible to see that the
marker position measurements, which live in the camera frame S, once
they have been moved to frame W by means of the estimated robot
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7.2. Reference Algorithm

(a) Healthy solution (b) Bad solution

Figure 7.5.: Absolute position estimates for one fiducial marker, with
99% confidence region (blue ellipse) and sensor sensor read-
ings z(t) = L(S)(t), moved in frame W .

poses and camera misalignment, are consistent with the marker posi-
tion estimate. Conversely this does not happen in Figure 7.5b. Other
hints on the proper convergence of the solution might come from an
analysis of the estimated robot trajectory smoothness: first recall that
fiducial marker position measurements directly constraint robot poses,
while odometry and scan matching readings yield velocity constraints
that act on poses according to their integral over a moderately small
time step. If the landmark position logical sensors are highly trusted,
an outlier in their readings might result in large variations in subsequent
robot poses, which is less likely to happen because of velocity outliers.

The calibration process was repeated with various assignment for
the aforesaid tuning parameters, and the chosen ones were: kL = 2.5,
HL = 0.01, σM = 0.1, bHM = 1.

7.2. Reference Algorithm

To the best knowledge of the authors, no algorithm has been presented
in the literature that can solve the considered, quite particular, pose
tracking and parameter calibration problem. This does not mean that
here we are dealing with a previously unsolved problem, yet we are argu-
ing that there is no available algorithm or software framework that can
solve that problem out-of-the-box or without the need of major exten-
sions and/or adaptation, allowing us to discuss a full and fair comparison
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7. The LURCH Autonomous Wheelchair

of the results. Moreover, one of the key aspect of our solution is that it
is general and flexible: for instance, if two camera were considered, or if
the robot kinematic was omnidirectional insted of differential drive, we
would just had to configure new logical sensors and/or extra calibration
parameters in the problem setup. We argue that no other solution is
available in the literature which possesses these features.

If a subset of the calibration parameters is considered, i.e., the wheel
radius and the laser range-finders misplacement and misalignment, we
can compare our calibration results with the ones obtained with the al-
gorithm presented in [19], where a least-squares, closed form, solution is
given for the simultaneous calibration of the wheel radii, robot baseline
and single laser-range finder displacement and misalignment parameters.
The code for the algorithm is freely available, so we can run the exper-
iments on our data employing the original implementation, the default
algorithm parameters and heuristics suggested by the authors. However,
also for the reference algorithm, the laser range finder readings have to
be pre-processed with a scan-matching algorithm to obtain relative 2-D
transformations. In their algorithm, Censi et Al. employed their own
implementation, which we replaced with the one employed on LURCH.

Another minor difference lies in the fact that the differential drive
kinematic model considered in the reference algorithm is slightly differ-
ent with respect to the one presented in Section 4.4.1, in the sense that
a different left and right wheel radii are allowed. Moreover, since the
reference calibration procedure can deal with a single range-finder only,
we have to run it twice per each dataset, such that each run shares the
odometry readings. The results for the left and the right runs are then
averaged and compared with the ones obtained with ROAMFREE. Since
the two problems considered are quite different, we provide the results
as a reference only, without attempting to establish which of the two
solutions is better.

7.3. Results

For each one of the seven datasets available we feed the ROAMFREE
sensor fusion engine with the all collected readings and finally trigger
the estimation, which is done by means of the Levenberg-Marquardt
algorithm. In Table 7.1 we reported optimization problem statistics for
each dataset employed.

We first discuss LURCH and fiducial marker position tracking results.
In Figure 7.6 for each dataset we have plotted the LURCH absolute
position error with respect to the ground truth, while in Table 7.2 we
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7.3. Results

DS Nodes Edges LM iterations Elapsed time

k1-1 3631 5478 41 4.84 s
k1-2 3640 5512 36 4.16 s
k1-3 3642 5533 37 4.07 s
k1-4 3645 5543 49 5.91 s
k1-5 3639 5543 40 5.02 s
k2-1 3641 5486 41 4.83 s
k2-2 3643 5509 42 4.64 s

Table 7.1.: Optimization problem statistics for the calibration runs.

have listed, for each dataset, the error of the estimated marker position.
Moreover, we have marked with an exclamation mark the estimates that,
given their uncertainty, lie outside a 95% confidence interval.

It is possible to see that the LURCH position is estimated with cen-
timeter level accuracy in each dataset and that the estimation error is
almost always lower than 5 cm. However, the marker position estimates
are not always consistent with respect to the ground truth, while still
showing remarkable accuracy. It is interesting to note that there exist
markers, such as M12 and M13 for which the estimation error for each
dataset is moderately high, although it is always below 20 cm, yet the
average estimation error considering all the datasets is remarkably low,
i.e., about 1 cm. Here an important role is played by the assumed un-
certainty for the fiducial marker position readings, which we consider
constant and equal to σMI. This might be an oversimplification. In
fact recall that monocular camera images allow for angles only direct
measurements and that marker positions can be determined on a metric
scale because their dimension is known. This implies that the uncer-
tainty associated to each marker reading has, at least, to increase with
the marker distance. We argue that more consistent and, possibly, more
accurate result could be obtained with a more sophisticated uncertainty
model for the ALVAR tracking library results.

Next we evaluate the consistency of the LURCH pose estimates. In
Figure 7.7 we have plotted, for each pose estimate and for each dataset,
the Normalized Estimation Error Squared (NEES) [4], which let us com-
pare the position uncertanitny with the real estimation error with re-
spect to the ground truth. Here we assume that the estimation error at
time t is unbiased and normally distributed with covariance matrix Σt,
where Σt is the x-y pose uncertainty reported by ROAMFREE. Thus
the squared estimation error is distributed as a χ2

n distribution with n
degrees of freedom, where n = 2 is the dimension of the estimate, since
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7. The LURCH Autonomous Wheelchair

we are considering the 2D position error only. We can compute 95%
confidence interval for the NEES values according to [59]:(

1− 2

9nM
− 1.96

√
2

9nM

)3

< etΣ
−1
t eTt <

(
1− 2

9nM
+ 1.96

√
2

9nM

)3

,

(7.3)

where M is the number of estimates considered. In our case this the
bound evaluate as [0.013, 3.668]. It is possible to see that NEES values
for the great majority of the pose estimates, taken alone, lie within the
considered bound. If we average the NEES values considering all the
pose estimates, we can give a measure of the overall estimate consis-
tency and give a tighter bound, obtaining the Average-NEES measure.
Values above the higher bound suggest that the algorithm is optimist
in reporting the estimate uncertainty, meaning that, on average, the es-
timation error is greater with respect the associated pose uncertainty.
Conversely, conservative algorithms are characterized by ANEES values
below the lower bound, which means that the estimation error is, on av-
erage, smaller if compared with the associated pose uncertainty. In this
case we have M = 20261, the value for the Averaged NEES (ANEES)
becomes 0.69, and the bound is [0.986, 1.013], which gives a moderately
conservative algorithm.

Next we discuss the calibration results and compare the obtained es-
timates with the ones from the reference algorithm by Censi et Al. See
Table 7.3 and Table 7.4.

It is possible to see that the estimates for the wheel radius and the
baseline are very stable and consistent with respect to direct inspection
in each dataset. Indeed, the LURCH wheels are quite tick, so it is rea-
sonable to assume few centimeters uncertainty in the baseline direct in-
spection. The reference algorithms retrieves analogous values, although
it identifies a substantial difference between the left and the right wheel
radius (≈ 2.5 cm), which might be caused by different pressure in the
wheel tires. Unfortunately, this is not handled in our kinematic model.

Regarding the laser displacements, both algorithm report values which
are quite different with respect to the ones obtained by means of direct
inspection. Moreover, our algorithm consistently reports high uncertain-
ties for these parameters, as it happened in the previous Chapter with
the GPS displacement parameter, implying that limited information can
be obtained by other sensors regarding these quantities. Conversely, the
laser misalignments are correctly retrieved by both algorithms. Note
that while we provided symmetric initial guesses, the left laser true yaw
is higher than 90◦, and the right is lower than −90◦, as it is has been
obtained in calibration.
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7.3. Results

Figure 7.6.: LURCH 2D position error with respect to the ground truth
for the calibration datasets.
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7. The LURCH Autonomous Wheelchair

Figure 7.7.: LURCH NEES values for the calibration datasets.
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Table 7.2.: Fiducial marker position estimation errors (in cm). The bold
exclamation marks point out estimates which are not consis-
tent with the GT, according to their uncertainty.
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guess k1-1 k1-2 k1-3 k1-4 k1-5 k2-1 k2-2 avg

r [cm] 15.00
15.65 15.75 15.81 15.64 15.61 15.59 15.77 15.69
±0.57 ±0.63 ±0.60 ±0.56 ±0.57 ±0.38 ±0.38 ±0.19

L [cm] 50.00
53.28 54.04 54.33 53.37 53.51 53.37 53.86 53.64
±2.52 ±2.73 ±2.65 ±2.39 ±2.43 ±1.68 ±1.71 ±0.82

S
(O)
R

[cm]

x 75.00
64.42 69.54 63.56 72.57 72.98 73.45 73.29 72.21
±16.36 ±16.90 ±20.37 ±10.01 ±10.01 ±6.50 ±7.67 ±3.77

y −25.00
−17.72 −13.55 −14.06 −8.22 −13.02 −9.34 −0.99 −10.39
±13.70 ±15.35 ±14.14 ±11.97 ±13.19 ±11.77 ±12.19 ±4.92

RO
SR

[◦] θ −90.00
−93.33 −88.35 −90.55 −84.01 −86.77 −77.96 −73.63 −83.39
±6.36 ±6.49 ±6.78 ±5.29 ±5.58 ±4.84 ±5.06 ±2.13

S
(O)
L

[cm]

x 75.00
57.82 53.58 56.91 62.02 56.26 72.70 75.55 66.39
±8.24 ±8.45 ±8.20 ±7.40 ±8.55 ±5.16 ±4.63 ±2.50

y 25.00
16.60 15.90 16.72 19.44 13.71 24.27 25.16 20.80
±8.08 ±8.78 ±8.03 ±7.48 ±7.86 ±4.80 ±4.92 ±2.48

RO
SL

[◦] θ 90.00
70.39 69.78 69.71 72.00 70.07 73.56 73.84 72.34
±3.31 ±3.77 ±3.27 ±3.04 ±3.66 ±1.86 ±1.80 ±0.98

RO
C [◦]

w 0.00
0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37
±0.05 ±0.04 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 ±0.01

x −0.50
−0.57 −0.57 −0.58 −0.58 −0.58 −0.58 −0.58 −0.58
±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.02 ±0.02 ±0.01

x −0.50
−0.60 −0.60 −0.60 −0.59 −0.59 −0.59 −0.59 −0.59
±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.02 ±0.02 ±0.01

z 0.00
0.43 0.43 0.43 0.43 0.43 0.41 0.41 0.42
±0.04 ±0.04 ±0.04 ±0.04 ±0.04 ±0.02 ±0.02 ±0.01

Table 7.3.: Calibration parameter results obtained with ROAMFREE.

k1-1 k1-2 k1-3 k1-4 k1-5 k2-1 k2-2 avg

r [cm]
right 12.34 11.00 13.23 12.93 12.41 13.48 12.29 12.53
left 15.34 15.19 14.64 14.71 15.66 14.61 15.89 15.15
avg 13.84 13.10 13.94 13.82 14.04 14.05 14.09 13.84

L [cm] 57.32 54.15 49.52 56.86 59.21 49.82 61.57 55.49

S
(O)
R

[cm]
x 73.21 73.61 69.26 72.00 73.23 70.38 73.74 72.20
y −30.32 −33.34 −23.36 −26.59 −26.93 −21.02 −27.95 −27.07

RO
SR

[◦] θ −86.22 −85.92 −87.53 −85.85 −85.78 −86.18 −85.46 −86.14

S
(O)
L

[cm]
x 71.00 72.64 73.69 71.97 73.71 74.22 78.46 73.67
y 45.37 45.84 29.30 42.29 46.69 29.38 57.13 42.29

RO
SL

[◦] θ 72.12 71.45 71.49 72.63 72.38 71.53 72.62 72.03

Table 7.4.: Calibration parameter results obtained by means of the ref-
erence algorithm.

Finally, very similar value for the 3-D rotation from O to the camera
frame C are obtained for each dataset. Even though it is difficult to
intuitively visualize the transformation encoded by unit quaternions,
it is possible to see that the retrieved ones substantially encode that
the camera is pointed backwards and down, with an angle of ≈ 22◦.
Unfortunately, we can not provide ground truth or other validation for
these estimates. However, this parameter is critical for determining
the absolute marker and robot positions, and we have shown that these
quantities were determined very accurately in all the considered datasets.

In conclusion, we have shown how the calibration parameters of the
LURCH Autonomous Wheelchair and the fiducial marker positions can
be accurately retrieved by means of ROAMFREE, solving a simultane-
ous localization, mapping and calibration problem, similar, yet 6-DoF,
to the one discussed in [53].
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Chapter 8

An Integration Example

8.1. Introduction

In mobile robotic research, it is common to spend a considerable amount
of time in developing, configuring and tuning hardware and software
modules which are merely a precondition to develop higher level ap-
plications. These include, for instance, the electronics responsible of
hardware driving and sensor reading, the communication infrastructure,
the robot odometry and tracking software. Moreover, the ability of the
robot to perform the desired higher level task often heavily depends on
the quality of these modules [9]. While most of the cited problems could
be considered solved in specific applications, only few solutions exist
that are flexible enough to weakly depend on the platform they have
been originally developed for. Moreover, robotics applications are often
characterized by odd and/or stringent requirements over the proper-
ties or the performances of ground modules and the lack of off-the-shelf
solutions often forces researchers to waste time in developing ad-hoc
implementations as premises for their research.

While concepts such as reuse and abstraction are nowadays common
in software engineering, it is still subject of active research how these
can be transposed in the robotic field. Perhaps one of the most suc-
cessful attempts is Robot Operating System (ROS) [69], which aims
at supporting robot development and research by providing a modu-
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lar software framework, a communication infrastructure, and tools for
debugging and inspecting robotic applications. Robot software imple-
mented with ROS can benefit from a rich library of packages provided
by other users, thanks to the open source development approach, signif-
icantly reducing the development time of a novel application. ROS is
becoming a de-facto standard in robotics research software development;
its very good reception and its widespread adoption have shown that the
community needed a framework to join research efforts, boosting the de-
velopment of new robotic applications. But is your next robot going to
be supported in ROS? Although we believe that ROS did succeed in
its goal, the vertical development of mobile robots, i.e., from mechanics
to intelligence, still has many prerequisites that are often implemented
from scratch, as application-dependent, non reusable solutions.

In this chapter we show how the ROAMFREE framework integrates
with other open tools for the development of robotics applications. Use
cases are described based on two mobile robots, Robocom [22], a heavy
duty, differential drive robot and Triskar2, an omnidirectional robot
designed for aggressive maneuvering in indoor environments (see Fig-
ure 8.1). The Rapid Robot Prototyping (R2P) framework [10, 11] is
employed to implement the low level hardware and software layers, such
as motor driving, odometry and perception, while ROS guarantees global
communication and interfaces with other sensors such as cameras and
laser range-finders. The resulting architecture shows how the basic hard-
ware and software components needed by most of the robotic applica-
tions can be deployed in a modular and reusable way employing only
off-the-shelf components. The performances of the proposed solution are
evaluated by means of odometry benchmarks.

The next section reviews the R2P framework; in Section 8.3 we dis-
cuss the Robocom and Triskar2 architectures to show the advantages
of reusable and modular hardware and software components. In Sec-
tion 8.4 we validate the proposed approach by means of pose tracking
benchmarks while in Section 8.5 we draw some conclusion and suggest
future work.

8.2. Rapid Robot Prototyping (R2P)

A stepping stone for every mobile robot project concerns building and
controlling the robot platform. A component based approach where
robot platforms are assembled by connecting smart sensors and actua-
tors in a commercial off-the-shelf fashion is foreseeable, but todays mar-
ket supports very few devices focused on robotics applications. Robot
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(a) Robocom (b) Triskar2

Figure 8.1.: The two target robots platform developed as a cases study.

designers are restricted to pick components from the hobby market (e.g.,
Arduino1), which are cheap, but their performances are not suitable for
complex systems, or from the industrial automation field, however those
are expensive and their size, weight, and power requirements are of-
ten not suitable for long endurance battery powered operations. The
common alternative is to design custom devices, although this requires
specific skills and could significantly slow down the development pro-
cess. Another common issue lies in the need to connect these devices
together, eventually with real-time constrains, and interface them with
a computer for high-level tasks.

To simplify the development of new robotic platforms, the Rapid
Robot Prototyping (R2P) [10, 11] was proposed, an open-source hard-
ware and software framework aimed at speeding up the prototyping of
robotic systems. R2P relies on the principle that the requirements of
a generic robotic platform can be implemented by modules not only at
software level, as it is common in most robotics frameworks, but also
at hardware level. Modular platforms for robotics have been proposed
in recent years [39, 64], allowing to easily build robots for research in
specific areas (e.g., swarm robotics); with R2P, we extend the modular
development approach to a wide range of platforms, from small mobile
robots to autonomous outdoor veichles, which require performance and
generality not achievable with domain-specific architectures.

In R2P, basic functionalities such as motor control, trajectory follow-

1http://www.arduino.cc
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Figure 8.2.: A set of R2P modules connected together.

ing, inertial data acquisition, have been implemented by specific, stan-
dardized, hardware modules, with corresponding firmware, that can be
plugged on a common bus and interact in real-time to compose a robotic
application. Each R2P module is focused on a particular functional re-
quirement, providing the electronics needed to perform a specific task
(e.g., the power stage to drive a motor), and a microcontroller running
embedded software to control the hardware (e.g., a PID algorithm to
follow a speed setpoint). Modules are connected using a single cable
providing both power supply and a CAN bus for data exchange. A
daisy-chain connection schema is exploited, reducing wires and allowing
for easy addition of components to existing systems. Real-time commu-
nication is provided by RTCAN [62], a CAN bus protocol that supports
sporadic, event-triggered, and periodic, time-triggered, communication
according to hard and soft real-time constrains. Furthermore, it en-
sures global clock synchronization on the real-time R2P network within
a margin of few microseconds, so that data, e.g., sensor readings or event
signals, can be precisely timestamped.

To support users in writing the code running on the hardware modules,
R2P includes a lightweight middleware, following the publish/subscribe
model. Computation is performed by a network of nodes, which interact
by declaring topics and publishing and/or subscribing messages based on
those topics. This loosely-coupled communication paradigm allows the
writing of reusable software components at the firmware level, as in other
common robotics frameworks targeted at desktop-class computers (e.g.,
ROS, OROCOS, etc.): low-level functionalities can be implemented by
developing new nodes, which can then be shared by different projects.

At the moment of writing, R2P features a DC motor controller, a
brushless motor controller, a MEMS inertial measurement unit featuring
accelerometer, gyroscope, compass, pressure sensor, and a GPS input,
a range finder module supporting infrared and ultrasonic sensors, and a
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DC-DC power supply module. Additionally, a gateway module provides
USB and Ethernet connectivity, allowing R2P modules to communicate
with a computer. Integration with ROS is provided by µROSnode [63], a
lightweight, open source, ANSI C ROS client library. Data published on
the R2P network can be accessed from ROS nodes through the Ethernet
connection, and, in the same way, R2P modules can subscribe to topics
published by ROS nodes, without the need of specific drivers to interface
the hardware platform with software developed in ROS.

In addition to the hardware modules, several ready-to-use nodes come
with R2P, providing useful functionalities like filtering algorithms (e.g.,
to estimate pose and attitude from inertial sensor readings), control
algorithms (e.g., PID controller), forward and inverse kinematics mod-
els (e.g., differential, Ackermann, and omnidirectional kinematics), and
others, to drastically reduce the effort for the development of embedded
firmware in common mobile robot architectures.

Exploiting R2P modules, complex robotic platforms can be built in
a plug-and-play fashion by simply selecting off-the-shelf R2P modules
according to application functional requirements and by defining their
interactions with an easy to use programming environment. Integration
with ROS allows users to develop complex applications, while low-level
control is implemented by means of a modular distributed architecture,
with real-time performance, without the need for advanced domain-
specific knowledge. R2P is an open source project2; schematics and
layouts of the hardware modules are released under CC-BY-SA license,
while the firmware code, the RTCAN protocol, the middleware, and
µROSnode are distributed with a BSD 2-Clause license.

8.3. A Case Study in Mobile Robots Development

In this section we discuss a case study based on two mobile robots,
Robocom and Triskar2 (see Figure 8.1), and we show how R2P and
ROAMFREE have been employed to implement two of the most basic
capabilities of an autonomous mobile platform: being able to move and
perceive its own movement. The resulting hardware and software ar-
chitecture is highly general and, thanks to the modularity of the tools
employed, it can be easily deployed in other indoor and outdoor scenar-
ios (e.g., the development of an unmanned aerial vehicle).

The proposed architecture is built on two essential components: an
ecosystem of R2P modules, implementing the low-level, real-time, com-
munication infrastructure, running control loops, and providing times-

2http://github.com/openrobots-dev
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Figure 8.3.: The software architecture of Robocom. White ellipses repre-
sent embedded R2P nodes, while blue circles are ROS nodes.

tamped sensor readings, and a standard computer running ROS and
hosting the ROAMFREE pose tracking node. Here ROS provides the
glue between the hardware and software domain, as it allows to plug
into the architecture other off-the-shelf hardware and software modules
available in ROS. Figure 8.3 shows the Robocom software architecture.

The low-level control architecture of the two robots is based on R2P
DC Motor modules (two on Robocom, three on Triskar2), a R2P In-
ertial Measurement Unit module, a R2P Power Supply and the R2P
Gateway which is connected to an onboard computer through the Eth-
ernet connection. Figure 8.4 shows the architecture for the Triskar2
robot. R2P DC motor modules run closed loop controllers to drive the
wheels and publish encoder readings. The IMU provides acceleration,
angular velocity and Earth magnetic filed readings at 100 Hz. Robots
are teleoperated by means of a remote ROS node publishing setpoints
in terms of linear and angular velocity. The Gateway module converts
messages from standard TCPROS topics to the real-time R2P domain,
and the other way around. One of the R2P DC motor modules hosts a
R2P node which subscribes to the velocity setpoint topic, computes the
inverse kinematics and publishes the obtained wheel speed setpoints for
the motor controllers. The wheel speed control loops run on the motor
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Figure 8.4.: The hardware architecture of Triskar2, with the daisy-
chained R2P modules, the onboard computer running ROS
and the sensors employed. A wireless link is used to re-
motely operate the robot.

controllers, with an update frequency of 100 Hz.
ROAMFREE exists as a rospy node on the onboard computer which

is connected to the R2P network by means of the R2P Gateway mod-
ule. It subscribes to sensor readings (either from R2P modules or from
other ROS nodes on the local host), configures logical sensors, drives
the pose tracking loop and publishes estimates as a tf transformation.
In the Listing 8.1 we show how a differential drive kinematics logical
sensor can be configured by means of the ROAMFREE Python API to
handle the Robocom encoder readings. In the last two lines the kine-
matics constants, i.e., the wheel radius and distance, are configured as
constant parameters: note the use of the fixed argument: it controls
if the parameter has to be tracked during estimation, in which case the
value provided would be employed just as an initial guess.

After configuring logical sensors, the ROAMFREE node subscribes
to the topics providing sensor readings. Employing to the ROS pub-
lish/subscribe mechanism a callback function is set to be invoked when
new messages are available. In Listing 8.2 we show an example of such
a method which feeds gyroscope readings into the ROAMFREE sensor
fusion engine. Note that this code allows to treat any kind of angular
velocity measurement source, such as visual odometry or scan-matching
algorithms, although minor changes may be needed to extract the actual
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RF.addSensor(’Odo’, master=True ,

type=SensorTypes.DiffDriveKinematic)

RF.setSensorDisplacement(’Odo’, [0.0, 0.0, 0.0], fixed=True)

RF.setSensorMisalignment(’Odo’, [0.0, 0.0, 0.0], fixed=True)

RF.addParameter(ParameterTypes.Euclidean1D ,

’Odo_R’, [0.12] , fixed=True) # wheel radius

RF.addParameter(ParameterTypes.Euclidean1D ,

’Odo_L’, [0.45] , fixed=True) # ... and distance

Listing 8.1: Configuring the differential drive kinematics logical sensor
for the Robocom robot. Here Odo is the architecture mas-
ter sensor, i.e., the one which triggers pose estimates to be
instantiated when new sensor reading are available.

sensor reading from the ROS message.

From the user point of view, all the internals of the complex formula-
tion of the sensor-fusion problem are encapsulated in the addMeasure-
ment method. In this case its parameters tell the Graph Management
component (see Section 3.5) that a new reading is available for the gyro-
scope sensor, which has been previously configured in a similar way with
respect to Listing 8.1. Since the master sensor is the differential drive
kinematics one, this call does not trigger new pose nodes to be added to
the factor graph. Instead, an angular velocity constraints is inserted so
that it is incident to the nearest pose with respect to the measurement
timestamp, the previous one employed for the gyroscope sensor, and all
the involved logical sensor calibration parameters.

In our case study, beside the R2P IMU and wheel encoders, we ex-
tend the set of sensors available for odometry estimation with a Prosilica
GC750C camera, providing greyscale 752x480 timestamped images and
a Hokuyo URG-04LX laser range-finder sensor with a 240◦ field of view.
Images from the camera feed the ROS wrapper for the libviso2 monocu-
lar visual odometry software package [33]. This library provides velocity
estimates on a metric scale assuming known and fixed the height and
the pitch of the camera with respect to the ground plane. The out-
put is employed to construct a ROAMFREE linear and angular speed
logical sensor. Another logical sensor is obtained by the output of a 2-
D scan-matcher node implementing an Iterative Closest/Corresponding
Point (ICP) algorithm, with accurate covariance estimation [17], which
employs the Hokuyo scan data. All the software employed is already
available in ROS.

The importance of precise timestamping of sensor readings has been
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def gyro_callback(msg):

z = [ msg.angular_velocity.x,

msg.angular_velocity.y,

msg.angular_velocity.z]

T = timeFromROSheader(msg)

RF.addMeasurement(’Gyro’, T, z, z_cov)

rospy.Subscriber("/R2Pimu", sensor_msgs/Imu , gyro_callback)

Listing 8.2: Defining a callback function to handle gyroscope readings
pubblished as standard ROS messages.

often pointed out in the literature, see for instance [40]. In the pro-
posed architecture, the timestamps are read from the header of ROS
messages, which are not the ones set by roscore as messages enter the
publish/subscribe network. These values are filled by the publisher
nodes and they are set to be as close as possible to the time in which
the physical phenomena actually took place. In the proposed architec-
ture, this is guaranteed for most of the sensors: (i) R2P modules share
a precise distributed clock which is employed to timestamp messages
in the R2P network, (ii) as it is being done by other sensors, such as
Prosilica cameras, the Precision Time Protocol (PTP) is employed by
the R2P gateway to synchronize its clock with the onboard computer
one. Thanks to the ROAMFREE out-of-order, delayed measurements
handling and the precise sensor timestamping, it is possible to accom-
modate for network and processing latencies.

8.4. Experimental Results

In this section we discuss odometry benchmarks performed on Robocom
and Triskar2. In these experiments we stress the sensors, the commu-
nication infrastructure, and the pose tracking system to show that the
resulting hardware and software architecture is ready to be employed
in research in most of the common higher level application areas. It is
important to note that it is beyond the scope of the current discussion
to show that the presented frameworks perform better than any other
given solution. Conversely, we want to emphasize the fact that, thanks
to the flexibility and the modularity of R2P and ROAMFREE, it is easy
to deploy an effective and reusable robot architecture at a fraction of
the development cost usually required by an ad-hoc solution (e.g., a few
days including wiring).
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Figure 8.5.: Robocom odometry experiments showing ground truth, di-
rect kinematics and ROAMFREE estimates for the linear
and angular velocity, along with rotational RPE.

We first address the problem of calibrating sensor parameters and
kinematics constants, which is often addressed by means of direct mea-
surements on the robots. However, this approach can be impractical
or even impossible in some situations. Moreover, more accurate values
can often be obtained comparing direct kinematics estimates with an
external ground truth. In this work we exploit the multi-sensor self-
calibration capabilities of ROAMFREE to obtain estimates for the re-
quired parameters without the need of an external ground truth. In our
case, these consist in the kinematics constants r, the wheel radius, and
L, which is the axis length for the differential drive kinematics and the
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distance from each wheel to the center of mass in the omnidirectional
case. Moreover, on Triskar2, the Hokuyo laser rangefinder is rotated and
translated with respect to the robot reference frame to exploit the whole
sensor field of view. Accurate values for this 2D roto-translation, ∆x,
∆y, and θ, are required to correctly refer local linear velocity readings
to the robot frame. We use direct measurements of these parameters
as initial guesses for an offline parameter calibration step employing
ROAMFREE. We start from rosbag datasets containing visual odome-
try, scan-matching, encoders and inertial sensors readings collected dur-
ing random robot movements along smooth and slow trajectories, such
as to prevent wheel slippage. As in Listing 8.1 we configure ROAM-
FREE logical sensors and we unfix the unknown parameters. Then we
ask for the solution of the pose tracking and parameter calibration prob-
lem considering the whole, ∼ 60 s, datasets. The results were r = 124
mm, L = 461 mm for Robocom, while for Triskar2 we have r = 67 mm,
L = 337 mm, ∆x = 153 mm , ∆y = −288 mm and θ = −54.85◦. These
values are slightly different from the initial guesses, yet improving the
likelihood of the tracked poses given the whole set of sensor readings.
These calibration parameters are employed in the later pose tracking
experiments.

We next benchmark the accuracy of the pose tracking driving the
robots by means of high amplitude square waves in the tangential and
angular velocity setpoints, so that relevant wheel slippage occurs. In this
situation encoders and direct kinematics alone are unable to provide ac-
curate odometry estimate. Nevertheless, thanks to ROAMFREE the
available scan-matching, visual odometry and inertial sensor readings
can be employed to improve the odometry estimate. It is important
to note that the robot pose estimate will eventually diverge from the
ground truth since none of the available sensors is employed to estimate
the absolute robot position and/or orientation with respect to a map,
which could in principle be done for example employing the Prosilica
camera and a monocular SLAM algorithm or some global localization
algorithm based on laser readings (e.g., gmapping). We compare the
estimated linear and angular velocities with respect to the ground truth
and we evaluate the rotational Relative Pose Error [14]: for each couple
of poses we compare the relative rotation between them with the cor-
responding ground truth values. In Figure 8.5 we present the results
for the Robocom robot. This robot mounts two 150 W Maxon motors
which are able to suddenly reverse the wheel speed, incurring in major
slippage. Thus, if only the encoder readings were considered, substan-
tial error would be introduced in odometry estimate, as it is possible to
see in Figure 8.5, for instance, at t = 2.5 s, where the direct kinematics
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Figure 8.6.: Triskar2 odometry experiments showing ground truth, di-
rect kinematics and ROAMFREE estimates for the linear
and angular velocity, along with rotational RPE.

estimate (blue line) substantially differs from the ground truth (red line)
as the tangential speed setpoint is reversed. Conversely, ROAMFREE
is able to correct for most of the error on the linear velocity and to track
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the angular velocity very accurately, as it can be seen from the RPE.
Next we consider similar experiments for the Triskar2 robot. Again

we drive the robot in a way such that odometry estimation by means of
direct kinematics becomes unreliable because of slippage. In this experi-
ment, a further issue consists in the significant vibrations introduced by
the omnidirectional wheel rollers. The resulting noise affects gyroscope
and accelerometer measures and blurs the Prosilica images, introduc-
ing outliers in the inertial and visual odometry sensors. Although an
advanced outlier rejection mechanism is under development in ROAM-
FREE, at the present stage of development one has to rely only on error
function robustification. Still, it is possible to see in Figure 8.6 that
most of the slippage is compensated employing other sensor readings.

8.5. Conclusions

In this chapter we have reviewed ROAMFREE and R2P frameworks and
we have shown how the core architecture for a mobile robot, sporting
motion, control, multi-sensor fusion, and self-calibration capabilities can
be built using only off-the-shelf hardware and software components. The
resulting architecture features a high degree of generality and, thanks to
the flexibility and modularity of the employed frameworks, can be easily
deployed on very different mobile robot platforms. Moreover, odometry
benchmarks have been discussed in which motor control, communication
infrastructures and sensor-fusion software have been stressed. The result
shows that, thanks to the precise timestamping of sensor readings and
state-of-the-art factor graph based sensor fusion techniques, both Robo-
com and Triskar2 are able to accurately and robustly estimate their own
motion, a feature which is a prerequisite for most of high-level robotic
applications. The deployment of the presented hardware and software
frameworks, which are available as open hardware and open software
components, can be easily done at a fraction of the cost of the devel-
opment of an ad-hoc solution, eventually enabling to boost research in
advanced applications.
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Chapter 9

Discussion

In this thesis we have presented ROAMFREE, a generic and modular
framework for multiple sensors information fusion and parameter self-
calibration, with application in mobile robotics. In the following we
discuss some open issues and propose future improvements.

As in any generic framework, modularity and flexibility come at a
cost. The development of such a system required the design of a complex
software architecture achieving the decoupling between sensor hardware,
state variable representations, measurement error models and solver al-
gorithms, whose structure is presented in this work.

We do not see in the complexity of the resulting code any real cost for
the end user since we provided easy to use interfaces to handle it; the real
cost in ROAMFREE is related to the key assumption behind logical sen-
sors. On the one hand logical sensors provide a fundamental abstraction
which makes the system independent with respect to the actual platform
and hardware sensors employed. On the other hand, the black-box as-
sumption prevents solvers to deal with the internals of the actual sensor
or processing algorithm. To understand the impact of this, consider for
instance a visual odometry system that tracks simultaneously the cam-
era egomotion and a set of world-fixed features. In our approach, such a
system is handled as a black-box linear and angular velocity information
source, possibly characterized by calibration parameters such as a scale
factor in the monocular case. This approach ultimately hides the fact
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that camera and landmark poses have to be maintained internally by
the visual odometry algorithm, as they are decoupled from the ROAM-
FREE internal representation. The instantaneous linear and angular
velocity output of the visual odometry system is employed by ROAM-
FREE, possibly along with other information sources such as a GPS or
an IMU, to determine final pose estimates by means of sensor-fusion.
Since no feedback is provided from the framework to the visual odome-
try algorithm, the pose estimate internally maintained by the latter will
eventually diverge from the one computed by the framework, resulting
in a possible source of inconsistency

It is subject of ongoing research to determine how the ROAMFREE
pose estimate could be employed to provide general feedback loops to
logical sensors. Regarding the example above, the internal state of the
visual odometry algorithm, i.e., the position of the features and the
camera, could be corrected taking into account the estimate obtained
with the full set of sensors. This would further increase the overall
complexity of the framework; hiding this complexity to the end user,
which could also be the actual information source developer, is the next
challenge.

Another critical point regards parameters self-calibration. We have
provided a formulation for the sensor-fusion problem that, in principle,
should allow to solve the simultaneous localization and parameter self-
calibration problem. Even though the experimental evaluation carried
out so far shows that this formulation does work (in the considered
cases), there exist examples of calibration parameters, such as the sensor
displacements, that are not retrieved correctly or with higher confidence
intervals with respect to direct inspection. In other cases, we faced
limitations because of 2-D motion. Furthermore, the estimated values in
certain situations heavily depend on their initial guess, which can also
prevent proper convergence of the final pose estimates in calibration
runs. This happened with the steering gain coefficient in Ackermann
kinematics. In that case we were forced to develop a specific calibration
heuristic.

Because of these issues, while we argue that we succeeded in delivering
out-of-the-box online pose tracking, as we demonstrated in the experi-
mental part of this work, regarding parameter self calibration this result
is yet to come. At the present stage of development, we are not able
to give general results on which conditions have to hold for a given pa-
rameter to be determined. A rigorous observability analysis is needed,
allowing the framework to automatically detect which parameters can
be determined given the available information sources and the trajectory
of the robot.
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As a direction for future improvements, we also point out another is-
sue related to measurement timestamps. At the moment, ROAMFREE
assumes that all the information sources are synchronized and thus the
provided timestamps can be safely employed to determine the relative
order of sensor readings and to associate them to the correct robot poses.
However, this assumption is seldom satisfied in practice. We have seen
an example of this on the Quadrivio ATV, where, because of communi-
cation latencies, the GPS timestamps, associated to sensor readings at
the on-board computer, were delayed in a non-negligible way.

Although the synchronization of information sources could be ad-
dressed by carefully designing the communication infrastructure, e.g.,
by employing real time protocols and clock distribution algorithms as
we have done on the Robocom and Triskar2 robots, it would still be de-
sirable to be able to handle latencies and inaccurate timestamps in the
sensor-fusion framework itself. Also note that there are sensor-fusion
problems which are sensitive to millisecond-scale timing latencies, as
the one faced in Zebedee, a spring-mounted, laser range-finder coupled
with an IMU [12] for 3-D mapping applications. One way to handle these
issues would be to augment the optimization state with extra dimensions
to estimate latency corrections over the fixed-lag window.

As a final remark, we note that the developed sensor fusion library it
is already able to solve the full SLAM problem. Although an extensive
evaluation should be performed to support this claim, the calibration for
the LURCH autonomous wheelchair was performed by simultaneously
determining the pose of the robot and the map of the environment, in
that case consisting in the fiducial markers positions. More complex
cases could be considered in which the fiducial markers were replaced
with scale invariant features detected in camera images, as it happens
in visual SLAM algorithms, or with laser scans associated with robot
poses, which is currently an ongoing work.
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[53] R. Kümmerle, G. Grisetti, and W. Burgard. Simultaneous parameter
calibration, localization, and mapping. Advanced Robotics, 26(17):2021–
2041, 2012.
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