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1__Sommario 

Introduzione 

Il Polidimetilsilossano (PDMS) è un materiale ampiamente impiegato in molti campi 

industriali. Il termine “silicone” si riferisce ad un polimero sintetico che presenta una 

catena principale di Si-O-Si con ai suoi lati diversi gruppi organici. Questi composti si 

dividono in varie tipologie e mostrano proprietà diverse a seconda soprattutto del grado di 

crosslinking e della lunghezza delle catene. Il PDMS, la cui struttura con due gruppi 

metilici ai lati di ciascun Si è riassunta come CH3 [Si(CH3)2O]n Si(CH3)3, rappresenta 

l’esempio più noto di questa categoria di materiali. Esso viene sintetizzato partendo dalla 

silice (SiO2) dalla quale si ottengono oligomeri ciclici e lineari che vanno poi polimerizzati 

per ottenere lunghe catene di prodotto finale.  

Il successo del PDMS in campo industriale è dovuto alle sue numerose proprietà 

vantaggiose: il materiale è infatti non tossico, chimicamente inerte, idrofobico e altamente 

insolubile in acqua, oltre che estremamente flessibile. Sebbene rigonfi in maniera minima 

in acqua e solventi polari, è invece particolarmente permeabile ai gas. La trasparenza, 

l’adesività a certi substrati, la stabilità termica e le proprietà di isolante elettrico lo rendono 

un materiale indicato per vari scopi tra cui quello di incapsulamento e di isolante sia 

termico che elettrico. Per incapsulare dei prodotti, gli elastomeri in silicone sono spesso 

usati per via della loro bassa Tg (≈ −125° C) che garantisce grande flessibilità e recupero 

delle deformazioni. Il materiale viene creato attraverso un processo di curing che induce la 

formazione di legami (hard segments) tra le singole catene (soft segments). Tra i processi 

disponibili per questa finalità quello catalizzato attraverso l’azione del platino (Pt-curing) è 

ritenuto uno dei migliori nelle applicazioni biomediche. La polimerizzazione del PDMS 

avviene attraverso i gruppi vinilici alla fine delle catene di silossano ed i gruppi Si-H degli 

agenti crosslinkanti con la formazione di ponti Si-CH2-CH2-Si (nessun sottoprodotto viene 

generato).  

Come già detto il PDMS e i siliconi possono essere usati in un’ampia gamma di settori, 

tuttavia è in campo biomedico che questo materiale riveste un ruolo cruciale vista la sua 

flessibilità e compatibilità con sangue e tessuti biologici. Cateteri, drenaggi, protesi 

estetiche e ricostruttive, membrane di scambio sono solo alcuni tra gli esempi più noti. 

L’impianto nel corpo umano di dispositivi contenti elementi elettronici (neurostimolatori, 
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impianti cocleari e pacemaker per esempio) richiede un sistema di incapsulamento per 

proteggere da correnti e corrosione. Uno strato sottile e ben adeso di PDMS generalmente 

garantisce una protezione efficace per 12 anni almeno.  

Prima di essere impiantato qualsiasi dispositivo deve essere sterilizzato, in particolare per 

il PDMS una delle procedure più impiegate è l’Ossido di Etilene (Etox). Per i polimeri le 

sterilizzazioni legate a trattamenti termici o radiazioni sono infatti generalmente da 

evitarsi. Questa procedura permette di inserire direttamente il prodotto confezionato nella 

camera di processo dove l’Etox viene rilasciato in forma pura o diluita. L’umidità, la 

temperatura, il tempo di esposizione e la quantità di Etox impiegata sono i principali 

parametri di processo. Dopo questo trattamento il prodotto deve essere aerato in maniera 

sufficiente ad evitare che nessun residuo di Etox rimanga al suo interno.  

L’Ossido di Etilene è gassoso a pressione atmosferica e dispone di un notevole potere 

mutageno e cariogeno. La sua struttura chimica C2H4O consiste in una struttura instabile ad 

anello che in presenza di gruppi solfidrilici, idrossilici, amminici e carbossilici si apre 

avviando una reazione di alchilazione. Batteri e virus dispongono di questi gruppi 

all’interno dei loro componenti cellulari e vengono dunque impossibilitati a riprodursi e 

condurre il normale metabolismo. Generalmente i prodotti medicali non presentano i 

gruppi citati, perciò teoricamente il materiale non dovrebbe essere alterato da questo 

agente sterilizzante. Nonostante i dibattiti riguardo la sicurezza nell’impianto di materiali 

trattati con questo gas siano ancora attuali, l’Etox è considerato sicuro se il processo che lo 

impiega rispetta precise normative di sicurezza. Tuttavia il timore verso questa tecnologia 

non è solo riferito al rischio d’intrappolamento di Ossido di Etilene all’interno del 

materiale, ma anche ad alcuni dei suoi derivati.  

 

 

Scopo della Tesi 

La presente tesi riguarda la sterilizzazione di PDMS mediante Etox. L’industria Cochlear 

presso Mechelen (Belgio) si serve di questa combinazione per il materiale di 

incapsulamento dei propri impianti cocleari. Tuttavia nonostante questa combinazione sia 

estremamente diffusa in campo biomedicale, la letteratura al riguardo è piuttosto limitata, 

con numerosi casi di discordanze nei risultati e carenza di dettagli nei materiali impiegati. 

Oltre a ciò quasi tutte le fonti si focalizzano su cicli di sterilizzazione singoli, non 
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prendendo in considerazione la possibilità di sterilizzare dispositivi impiantabili più di una 

volta. In questo modo le industrie sono obbligate a disfarsi di materiale che richiederebbe 

una seconda sterilizzazione (ad esempio per processi di controllo o aggiunta/modifica post-

sterilizzazione). 

Questa tesi vuole quindi indagare le proprietà di questo materiale per esposizione a cicli 

multipli di Etox. Una vasta gamma di esperimenti è proposta al fine di analizzare varie 

proprietà del materiale sotto esame. L’analisi statistica indica se i campioni esposti ad un 

numero diverso di sterilizzazioni possano essere considerati simili. Qualora alcuni 

cambiamenti vengano rilevati nel materiale, si dovrebbe ricercare una possibile 

interpretazione dell’effetto dell’Ossido di Etilene.  

 

 

Materiali e Metodi 

I test sono eseguiti su campioni in MED-4860P, un silicone Pt-cured le cui caratteristiche 

sono sotto riportate (Tab.I).  

 

Tabella I:Datasheet del materiale su cui sono eseguiti gli esperimenti (MED-4860P). 

 Esso viene ottenuto mediante il mescolamento di due parti: PMDS lineari con estremità 

funzionalizzate da gruppi vinilici, silice amorfa (come riempitivo) e copolimeri di 

Dimetil,MetilIdrogeno Silossano (come agente crosslinkante) vengono quindi combinati 

nella struttura finale.  

I campioni e i test sono selezionati in base alla letteratura e agli standard sperimentali. I 

campioni commissionati ad un’industria di stampaggio non sono stati prodotti e ricevuti in 

tempo, per questo motivo sono impiegati dei campioni già disponibili. Ciò risulta 
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inevitabilmente in esperimenti meno precisi e nell’ignorare talvolta i requisiti specificati 

dagli standard, con risultati potenzialmente diversi da quelli indicati in letteratura o nei 

datasheet. Ad ogni ciclo i campioni sono sterilizzati per 16 ore con una temperatura media 

di 52° C, umidità che varia dal 40% al 90% con 50 Pa di pressione e 10,6 g di gas 

rilasciati. L’aerazione dura almeno 50 ore con temperatura variabile da 23° C a 53° C.  

In base a quanto riportato in letteratura, gli esperimenti sono condotti confrontando 

campioni sterilizzati una, quattro e dieci volte (C1, C4 and C10). Campioni non sterilizzati 

(C0) non vengono generalmente impiegati dal momento che solo campioni sterilizzati 

possono essere impiantati, tuttavia la compatibilità tra C0 e C1 viene controllata nel corso 

dell’esperimento di trazione uniassiale.  

 

L’esperimento di trazione uniassiale viene eseguito con un Instron 5985 seguendo 

l’ASTM D412 e impiegando due velocità (500 e 100 mm/min). Campioni a clessidra sono 

utilizzati anche se la lunghezza del tratto centrale è più lunga di quella richiesta per questo 

tipo di materiale.  

Mediamente 8 campioni per caso sono utilizzati e per ciascuno viene creato un file Excel i 

cui dati sono usati per calcolare l’UTS, Ultimate Elongation, E_lin and E_200. E_lin indica 

il coefficiente angolare nel grafico sforzo-deformazione fino ad una deformazione del 

30%, E_200 invece rappresenta il modulo secante per una deformazione del 200%. I valori 

medi, le deviazioni standard e le mediane per le due velocità di deformazione sono 

riportate separatamente. Al fine di ottenere valori di Ultimate Elongation, E_lin ed E_200 

più precisi possibili, viene calcolato un fattore di conversione da estensione a 

deformazione pari a 0,02. Tale calcolo viene eseguito attraverso il software Sketchup e 

numerose fotografie del campione in estensione (ogni 10 mm). Una stima dello slittamento 

delle estremità del campione dalle ganasce viene riportata, impiegando allo stesso modo 

Sketchup e le foto di alcune prove a trazione. 

 

Alcuni test di DMA mediante un DMA Q800 con shear sandwich clamp sono impiegati 

per misurare lo Storage Modulus (E’) e il Loss Modulus (E’’) anche se i campioni sono 

fissati nelle morse mediante un serraggio manuale. Oscillazioni di 50 µm con frequenze di 

1, 50 e 100 Hz sono ripetute mentre la temperatura all’interno della camera di test sale da -
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50° C a 100° C. Parallelepipedi tagliati da barre sterilizzate (15 campioni per tipologia) 

vengono impiegati come campioni.  

 

Un durometro di tipo Shore A viene impiegato per la misura della durezza superficiale 

seguendo l’ASTM D2240. La procedura è effettuata manualmente, registrando il valore 

riportato dallo strumento dopo 1 secondo dalla pressione sulla superficie. I campioni a 

disposizione non sono larghi e spessi a sufficienza per potervi adagiare completamente la 

base dello strumento, per questo motivo 6 parallelepipedi vengono sequenzialmente 

combinati in modo da creare un parallelepipedo più grande da campionare fino a 18 volte.  

 

Diverse prove di DSC sono eseguite mediante un DSC Q2000 con un campione di zaffiro 

impiegato come materiale di confronto, in ogni prova vengono utilizzati 23 mg di 

campione. Due tipi di test vengono eseguiti: un primo test impiega un raffreddamento lento 

(equilibration) registrando solo la curva di riscaldamento mentre il secondo ne impiega 

uno veloce (30°C/min) registrando le curve sia di raffreddamento che di riscaldamento. La 

Tg (temperatura di transizione vetrosa), le temperature e le entalpie associate ai picchi di 

fusione e cristallizzazione sono calcolate attraverso il software Analysis 2000. 

 

L’analisi mediante ATR-FTIR viene condotta mediante un Agilent Cary 620 FTIR 

microscope con un ATR slide-on, Ge-crystal (128 scans) al fine di determinare variazioni 

nella superficie (più precisamente nelle vibrazioni dei suoi legami chimici). L’esperimento 

prevede l’analisi di un campione per tipologia, acquisendo il segnale di background e poi 

sottraendolo dagli spettri successivamente registrati (in modo da limitare il disturbo 

relativo alla CO2 e H2O). Gli spettri sono acquisiti tra 4000 e 400 cm
-1

.  

 

Variazioni nell’idrofobicità superficiale tipica del PDMS vengono ricercate mediante test 

di bagnabilità. 5 fotografie acquisite a distanza di 30 secondi tra loro permettono di 

calcolare l’evoluzione temporale degli angoli di contatto di una goccia. Essa viene creata 

sulla punta di una siringa, fatta poi delicatamente appoggiare al substrato di PDMS e 

liberata quando la siringa viene velocemente rimossa. Numerose prove vengono eseguite 

su dei campioni di forma discoidale.  
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Nonostante il PDMS assorba quantità estremamente ridotte di acqua, si esegue un test di 

swelling in acqua parzialmente demineralizzata (6,25 < pH < 7) mediante almeno 5 

campioni per tipologia. I campioni sono pesati prima e dopo determinati tempi 

d’immersione (1, 2 e 9 settimane) e questi pesi sono usati per calcolare le swelling ratio 

(rapporti di rigonfiamento). I campioni impiegati tuttavia possono differire tra loro dal 

momento che alcune facce sono state esposte direttamente all’Ossido di Etilene, mentre 

altre sono state create dal taglio di campioni più grandi (e quindi non esposte direttamente 

all’agente sterilizzante).  

 

Infine la ricerca è arricchita da dei test in vitro di citotossicità indiretta al fine di valutare 

il rilascio di sostanze tossiche per le cellule (di tipo L929 murine fibroblasts cell line) in 

base allo standard ISO-10993. L’esperimento richiede l’analisi di un peso pari a due dischi 

di PDMS (0,2 g in totale) per tipo di campione e tempo d’incubazione. I campioni sono 

immersi in DMEM con un 10% di FBS e 1% di penicillina/streptomicina, mantenendo un 

rapporto tra materiale e medium di 0.2 g/ml. Dopo 3 ore, 1 e 3 giorni di incubazione, una 

parte del medium è estratto e messo in coltura con le cellule indicate per 24 ore. La loro 

morfologia è quindi studiata attraverso il microscopio ottico. Campioni di controllo per 

confrontare i risultati consistono in DMEM completo incubato con le stesse tempistiche 

senza il PDMS sterilizzato e poi coltivato per 24 ore.  

 

I risultati ottenuti sono integrati con analisi statistiche in modo da poter valutare se 

campioni che hanno ricevuto esposizioni diverse all’Ossido di Etilene possono essere 

considerati simili. A seconda del numero di campioni e del numero di gruppi da 

confrontare contemporaneamente, la scelta ricade su 3 tipi di test statistici. Per ciascuno di 

essi il p value risultante e la statistical power associata sono calcolati mediante il software 

Minitab. Per i test si sceglie un intervallo di confidenza del 95% (p value < 0,05 comporta 

il rifiuto dell’ipotesi nulla) con una statistical power di almeno 0,8. 

Il t-test a 2 code viene scelto quando dataset con almeno 10 campioni vengono confrontati 

a coppie (ipotesi nulla: µ1 = µ2), il test di Mann-Whitney (metodo non parametrico) viene 

impiegato invece quando meno di 10 campioni sono disponibili. Per poter applicare 

efficacemente il primo test le distribuzioni dovrebbero essere Gaussiane (test di Anderson-

Darling per dataset numerosi, di Shapiro-Wilk altrimenti), mentre sia l’indipendenza che 
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l’equivalenza tra le varianze dei due gruppi (mediante F-test) dovrebbero essere 

soddisfatte. Qualora ciò non avvenga, i metodi non parametrici sono da preferirsi. La terza 

tipologia di test statistico permette di confrontare C1, C4 e C10 tra loro. L’ANOVA test 

risulta abbastanza affidabile anche per ridotta normalità e omogeneità di varianza nelle 

distribuzioni, tuttavia alcune condizioni nei residui devono essere rispettate affinché il 

risultato sia considerato attendibile. Infatti i dataset dei residui nei tre gruppi devono avere 

varianza costante, media nulla, essere normali e indipendenti. 

 

Risultati 

I valori dell’UTS sia per 500 mm/min che per 100 mm/min non consentono il rifiuto 

dell’ipotesi nulla a causa del ridotto numero di campioni (≤ 10) e della notevole variabilità 

dei risultati che comportano grandi deviazioni standard. Per sopperire a ciò, viene accertata 

la compatibilità tra i dati per velocità di deformazione diverse e quindi i dataset per lo 

stesso materiale (ma con velocità diverse) vengono uniti. In questo caso, confrontando C4 

e C10, l’ipotesi nulla viene rifiutata. A questi valori vengono aggiunti anche quelli di C0 

come riportato nella tabella sotto. Anche se l’analisi statistica complessiva manca di 

rilevanza statistica, l’UTS potrebbe essere sospettato di diminuire leggermente dopo 

l’esposizione all’Ossido di Etilene (Fig.I).  

 

 

 Figura I: Risultati per UTS dopo che i gruppi relativi alle due velocità sono stati uniti. 
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Quanto descritto per il precedente parametro vale anche per l’Ultimate Elongation con 

l’ipotesi nulla accettata per entrambe le velocità di deformazione e C10 leggermente 

inferiore agli altri due gruppi. In questo caso però i dataset non possono essere uniti come 

nel precedente caso poiché i valori sono diversi a seconda della velocità scelta. Anche i 

moduli elastici (E_lin e E_200) appaiono simili tra i tre gruppi. 

Lo slittamento del campione viene stimato rappresentare fino al 5,5% della deformazione 

totale. La compatibilità tra C0 e C1 (assunta poi anche per gli altri test) potrebbe essere 

assunta per il parametro di Ultimate Elongation anche se non in maniera netta, mentre per 

quanto riguarda i moduli elastici i valori di C0 e C1 sono praticamente identici. 

 

E’ e E’’ sono valutati solo per le temperature di 0° C e 37° C. Tutte le 12 possibili 

combinazioni (tra i 2 parametri, le 2 temperature e le 3 frequenze) mostrano simili 

andamenti con C1 leggermente inferiore a C4 e C10 che invece sono abbastanza simili. 

L’ipotesi nulla negli ANOVA test non viene mai rifiutata come suggerisce il grafico sotto 

(Fig.II) che mostra il confronto con il p value più basso (0,193), simile è il risultato 

statistico impiegando dei test non parametrici anziché l’ANOVA test. 

 

 

Figura II: Loss Modulus a 0° C con frequenza di 1 Hz nel test di DMA in base al numero di sterilizzazioni. 
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Al contrario la Durezza aumenta sensibilmente dopo l’esposizione all’Ossido di Etilene 

(meno di 1 unità Shore A dopo 10 cicli) come suggerito in Fig.III.  

 

 

Figura III: All’aumentare dell’esposizione del materiale all’Etox, la durezza aumenta leggermente. 

 

Nonostante le differenze nei valori medi siano ridotte, il gran numero di dati (18) 

garantisce il rifiuto dell’ipotesi nulla: per l’ANOVA test il p value è 0 con una statistical 

power di 0,97, per il t-test il gruppo C1 differisce dagli altri, mentre C4 e C10 hanno un p 

value vicino al treshold, ma insufficiente a rifiutare l’ipotesi nulla.  

 

Nella DSC con raffreddamento lento solo il picco di fusione (Tm) è riconoscibile. Sia la 

Tm (-44° C circa) che l’entalpia associata a questo picco non permettono il rifiuto 

dell’ipotesi nulla (tramite ANOVA test). La Tg, che di solito si presenta come un gradino 

tra due tratti orizzontali della curva, non è qui visibile mentre lo è nei termogrammi relativi 

al raffreddamento veloce (intorno a -134° C). Questa differenza è dovuta appunto alla 

velocità di raffreddamento che, se elevata, non permette alla struttura vetrosa che si va 

formando di organizzarsi in maniera ordinata, risultando in una notevole componente 

amorfa anziché cristallina (raggiunta invece con un raffreddamento lento). Anche per Tg 

tuttavia nessuna differenza risulta esistere tra i tre dataset. Per quanto riguarda i due picchi 

rimanenti per il secondo tipo di test, essi spesso presentano diversi outlier (o almeno 

potenziali outlier). Riguardo al picco di fusione a -44° C, l’entalpia associata ad esso non è 

dimostrabile essere diversa nei tre casi anche se i p value sono abbastanza piccoli e 2 
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outlier sono sospettati. Per quanto riguarda invece la temperatura Tm anche in questo caso 

un potenziale outlier è presente. L’analisi è condotta prima escludendo questo valore e poi 

considerandolo. Sia l’ANOVA test che il test di Mann-Whitney non restituiscono un p 

value < 0,05 anche se in certi casi i p value sono molto vicini a questo valore. Per quanto 

riguarda il picco di cristallizzazione nella curva di raffreddamento (intorno a -82° C), i 

risultati sia per la Tc che per l’entalpia del picco differiscono. Se per il primo parametro il 

risultato non è chiaro (C4 è maggiore degli altri due gruppi), per l’entalpia invece sembra 

che questo parametro incrementi (anche se la differenza nelle varianze suggerisce di usare 

cautela nell’interpretare questo risultato) come suggerito in Fig.IV. Sia il p value 

dell’ANOVA test (0,044) che quello del t-test tra C4 e C10 (0,019) comportano il rifiuto 

dell’ipotesi nulla.  

 

 

Figura IV: L’entalpia per il picco di cristallizzazione per un DSC con raffreddamento veloce mostra un 

incremento statisticamente rilevante.  

 

Gli spettri registrati mediante ATR-FTIR sono riportati in Fig.V e mostrano come essi si 

sovrappongano molto bene lungo tutto l’intervallo investigato, in particolare per i tre 

picchi principali. Lo spettro combacia con la struttura chimica riportata per il materiale in 

esame. Infatti le seguenti interpretazioni dello spettro sono proposte: stretching 

asimmetrico in CH3 (2962 cm
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), stretching in Si-O-Si (1010 cm
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), stretching in Si-O-C 
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(1259 cm
-1

 e 790 cm
-1

), di Si(CH3)2O (864 cm
-1

) e di R-Si-O-Si-R (1080-1040 cm
-1

). Le 

zone di tremolio nello spettro sono associate alla CO2 e H2O che la procedura di 

acquisizione del background non è riuscita comunque ad eliminare completamente. 

L’unico dubbio riguardo i picchi rimane per quello a 701 cm
-1

,
 
per il quale l’ipotesi più 

plausibile rimane la flessione fuori dal piano del CH nel legame C=C tipico degli alcheni. 

Questo sarebbe spiegato assumendo che alcune estremità funzionalizzate delle catene di 

silossano rimangano tali anche dopo il processo di curing (le catene rimangono con 

un’estremità libera o completamente scollegate dal reticolo che si è formato). 

  

 

Figura V: Gli spettri ATR-FTIR per i 3 materiali non dimostrano differenze evidenti in corrispondenza dei 

picchi principali.  

 

A parte l’assenza di differenze macroscopiche nello spettro, queste vengono ricercate 

anche su scala più ridotta. Vista la costante differenza rilevata tra le baseline dei 3 

campioni, un metodo di shift tra gli spettri a livello locale (come se le baseline venissero 

fatte sovrapporre) rivela che le differenze tra i 3 spettri in corrispondenza dei picchi non 

supererebbe l’1%. 

 

Gli angoli di contatto nel test di bagnabilità rivelano un decremento nell’idrofobicità 

superficiale come mostrato in Fig.VI, anche se questa differenza diventa rilevante dal 

punto di vista statistico solo per C10. I p value infatti sono sempre inferiori a 0,05 e le 
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statistical power > 0,95 se il t-test include C10. Invece C1 e C4 appaiono leggermente 

diversi, ma nei test statistici le ipotesi nulle non sono rifiutate. 

 

 

Figura VI: Gli angoli di contatto nel test di bagnabilità appaiono inferiori (il materiale è quindi meno 

idrofobico) per il PDMS sterilizzato per più volte (C10). 

 

Com’è possibile osservare in Fig.VII, nel test di swelling le swelling ratio aumentano 

all’aumentare del numero di cicli di sterilizzazione in base ai valori osservati per 1 e 2 

settimane. Nel primo caso tuttavia le differenze non sono statisticamente rilevanti, mentre 

nel secondo caso C1 risulta diverso da C4 e C10. I valori diminuiscono dalla prima 

settimana in poi, mostrando che il campione lascia che gli elementi a basso peso 

molecolare rimasti intrappolati nel reticolo senza però legarvisi possano diffondere 

all’esterno dello stesso. Tuttavia per la nona settimana il valore di C10 è inferiore a C4 e 

comparabile a C1, da ciò i test statistici suggeriscono il rifiuto dell’ipotesi nulla anche per 

questo tempo d’immersione. Visto il tipo di solvente, le ridotte swelling ratio e la 

preparazione dei campioni, i risultati di questo test non dovrebbero essere considerati 

comunque totalmente attendibili.  
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Figura VII:Il PDMS assorbe una quantità estremamente limitata di acqua, suggerendo tuttavia l’esistenza di 

alcune differenze tra le tre classi di materiali.  

 

Le immagini acquisite durante il test di citotossicità indiretta dimostrano che il PDMS 

sterilizzato più volte con Ossido di Etilene non è citotossico. Nessuna differenza tra i 

campioni sembra esistere e le cellule mostrano inoltre una buona adesione cellulare con 

l’assenza di cellule morte (anche se quest’analisi è puramente qualitativa mentre una di 

tipo quantitativo sarebbe preferibile).  

 

Discussione 

La prima indicazione ottenuta dai test riguarda la grande variabilità nei risultati ottenuti (in 

particolare per il test di trazione uniassiale) che risulta in larghe deviazioni standard e in 

risultati statistici spesso con ridotta statistical power. Da ciò si evince che un numero di 

campioni molto più elevato sarebbe raccomandabile e che i risultati talvolta contrastanti in 

letteratura non devono quindi stupire.  

Per quanto riguarda i test meccanici, l’UTS e l’Ultimate Elongation sono sospettati di 

diminuire leggermente ma non vi è sufficiente rilevanza statistica, mentre i moduli elastici 

dovrebbero rimanere costanti. La durezza invece cresce sensibilmente, all’incirca di 0,06 

Shore A/ciclo. Gli esperimenti andrebbero comunque ripetuti con i campioni corretti per 

risultati più attendibili. 
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L’analisi termica mediante DMA suggerisce che E’ ed E’’ potrebbero leggermente 

aumentare (anche se l’analisi soffre di un numero limitato di campioni), mentre la DSC 

rivela che il picco di fusione e la Tg non dovrebbero cambiare (perciò non dovrebbe 

verificarsi ulteriore crosslinkining post-curing). Se i Tc calcolati mostrano un andamento 

non chiaro, l’entalpia di questo picco suggerisce un aumento quando il numero dei cicli di 

Ossido di Etilene aumenta. Tuttavia la diffusa presenza di potenziali outlier non permette 

di concludere generalmente nulla di particolarmente preciso per i vari parametri. Per tutti i 

dati finora elencati i trend sospettati sono generalmente in accordo con la maggior parte 

delle fonti.  

L’interazione con solventi (acqua in questo caso) rivela una diminuzione dell’idrofobicità 

superficiale che probabilmente si riflette sull’aumento di liquido assorbito da parte del 

campione immerso. Meno chiaro è il valore di swelling ratio di C10 dopo 9 settimane. 

L’utilizzo di altri solventi in grado di garantire maggior assorbimento potrebbe restituire 

risultati più affidabili ed evidenti. L’analisi spettrografica infine non rivela alcun 

cambiamento nelle vibrazioni molecolari dei legami di superficie e anche l’analisi 

citotossica indiretta, seppur solo qualitativa, non evidenzia differenze tra i vari campioni. 

Certamente un’analisi quantitativa anziché puramente qualitativa sarebbe migliore, ma 

andrebbe eseguito anche un test che studi l’adesione, il movimento e la differenziazione 

delle cellule in contatto diretto con il substrato (visti i potenziali cambiamenti della 

superficie). 

 

Poiché i test di bagnabilità e di durezza dimostrano dei cambiamenti nel materiale 

nonostante l’analisi ATR-FTIR non faccia altrettanto, si potrebbe sospettare come 

responsabile una variazione della rugosità superficiale. Tale parametro infatti è risaputo 

accrescere l’idrofobicità/idrofilicità di un materiale idrofobico/idrofilico quando essa 

aumenta, mentre esso influenza il calcolo della durezza poiché il calcolo della stessa si 

basa su una superficie assunta perfettamente piatta.  

Assumendo che la sterilizzazione tramite Ossido di Etilene diminuisca la rugosità mediante 

l’abbassamento dei picchi la superficie diventerebbe meno idrofobica e il durometro 

misurerebbe una durezza maggiore perché la penetrazione registrata diminuirebbe. 

L’indentatore raggiungerebbe la linea rossa in Fig.VIII qua sotto partendo da due altezze 
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diverse, sicché la differenza C viene convertita in differenza di durezza registrata. Analisi 

mediante SEM o AFM potrebbero confermare questa ipotesi. 

 

Figura VIII: Ipotesi che spiegherebbe l’influenza di una variazione nella rugosità superficiale sulla  

registrazione di una diversa durezza. Assumendo stessa profondità di penetrazione nel secondo strato (linea 

rossa), l’indentatore comincia a registrare la penetrazione ad altezze diverse (differenza pari a C): questa 

differenza di penetrazione spiegherebbe quella di durezza.   

 

Il valore medio di swelling ratio alla nona settimana appare sospetto e la semplice ipotesi 

che esso sia frutto di qualche errore casuale, magari legato alle differenze nei campioni, 

rimane discutibile. Un’altra interpretazione potrebbe riguardare un diverso rilascio di 

oligomeri a basso peso molecolare nei tre casi, il cui posto viene preso dalle molecole di 

acqua (con densità inferiore). Oltre al fenomeno di assorbimento e diffusione anche il 

fenomeno di depredazione/idrolisi potrebbe influire sull’esperimento. Alcuni studi 

riferiscono che le perdite di peso in questi esperimenti sono legati alla quantità di filler 

interni alla struttura che sono maggiori per materiali con durezza maggiore. Ciò potrebbe 

far pensare ad una liberazione di filler addizionali originatisi da processi non ben 

identificati legati presumibilmente all’idrolisi o, meno probabile, all’Etox.  

Scissioni di piccola entità potrebbero verificarsi alle estremità libere delle catene legate al 

reticolo solo per una estremità (le estremità reattive si piegherebbero su se stesse 

accorciando la catena risultante e generando degli elementi ciclici). Un’altra 

interpretazione potrebbe riguardare l’erosione meccanica effettuata involontariamente 

nell’asciugare i campioni prima di pesarli (legati potenzialmente ad una superficie diversa 

e quindi con resistenza differente all’erosione). 

Infine il fatto che la Tg non dimostri un cambiamento evidente non dovrebbe di fatto 

escludere piccoli cambiamenti interni al materiale. Questo parametro infatti cambia in base 
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al grado di crosslinking, tuttavia similmente è influenzato da tanti altri fattori, tra cui 

cristallinità, peso molecolare, velocità di test, presenza di elasticizzanti ecc. Con ciò si 

vuole indicare che piccoli cambiamenti risultanti in contributi opposti alla Tg (shift del 

parametro in direzioni opposte) potrebbero comunque far risultare il parametro alterato a 

livello complessivo. 

 

 

Conclusioni 

Il materiale MED-4860P esposto a sterilizzazione mediante Ossido di Etilene mostra 

cambiamenti statisticamente rilevanti a livello superficiale come dimostrato dai test di 

bagnabilità e durezza (e parzialmente da quello di swelling). Per le altre proprietà si 

possono formulare alcune ipotesi ma niente di sicuro può essere dimostrato. Ciò permette 

di concludere che questo agente sterilizzante sembra alterare maggiormente le surface 

properties e scarsamente le bulk properties. 

La seconda conclusione della presente tesi è che i campioni sterilizzati più di quattro volte 

non andrebbero impiegati dal momento che i campioni C10 sono quelli che generalmente, 

al di là della rilevanza statistica, mostrano valori diversi dagli altri gruppi. Invece i 

campioni sterilizzati poche volte dovrebbero essere comunque ancora compatibili con 

quelli sterilizzati una singola volta anche se la rilevanza statistica spesso limitata 

richiederebbe ulteriori indagini per poter asserire ciò. L’aggiunta di test cellulari 

quantitativi e di contatto diretto permetterebbe inoltre di interpretare meglio la 

compatibilità all’impianto di questi materiali sterilizzati più volte. 
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Abstract 

 
Sterilization by Ethylene Oxide (Etox) represents the most employed sterilization 

procedure for medical and health care devices. Despite its ubiquitous use in the medical 

device industry, little data have been published on the effect of this sterilization on the 

mechanical properties of polydimethylsiloxane (PDMS) silicone rubber. The alkylating 

reaction guarantees the high sterilizing efficiency of this procedure even though certain 

functional groups in some polymers are known to react as well. Polydimethilsiloxane 

sterilized by this technique is known to be safe, however the present work aims at 

determining whether no alterations occur in material properties when this material is 

exposed to several sterilization cycles instead of a single one. In fact biomedical industries 

get rid of those materials which a second sterilization cycle is required for. 

For this purpose samples sterilized one, four and ten times are investigated by different 

tests in order to detect eventual changes. Experiments deal with both surface and bulk 

property investigation, in addition indirect cytotoxicity tests are performed as well since 

the material is intended to implantation in the human body. Statistical analysis is 

performed aiming at checking whether samples which undergo different Etox exposures 

can be considered similar (t-test, Mann-Whitney and ANOVA tests are employed). 

Test outcomes suggest bulk properties are slightly affected by Etox exposure even for 

massively repeated cycles. Differences in mean values can be seen for UTS, Ultimate 

Elongation, Storage and Loss Moduli, however these results lack statistical relevance. On 

the contrary surface properties appear altered since hardness, wettability and swelling tests 

return statistically significant changes. In fact as Etox exposure increases, surface 

hydrophobicity decreases (6° difference after 2 minutes) and hardness slightly increases 

(approximately 1 Shore A difference). Surface inspection by ATR-FTIR fails in 

recognizing any difference among spectra, so that changes in surface properties cannot be 

ascribed to alterations in molecular vibrations in material surface. An alternative 

hypothesis explaining both hardness and hydrophobicity changes is proposed: surface 

roughness is hypothesized to decrease when the material undergoes sterilization, 

explaining both hardness and wettability outcomes. Interpretations of swelling results are 

proposed as well, hypothesizing little hydrolysis or surface erosion while drying the 

samples. As Tg results not to change when Etox exposure increases, a short reflection 

about the variation of this parameter is presented. 

This work demonstrates samples sterilized more than four times should not be employed, 

whereas for fewer cycles further analyses should be carried out as obtained results often 

lack complete trustworthiness (because of small sample groups and the questionable 

method accuracy in certain cases). However the employment of samples sterilized for few 

times after the first cycle seems reasonable as there is no proof of significant induced 

changes. Further analyses of surface properties and leaching behavior would enrich the 

present work and may support the proposed hypotheses.  
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Abstract (Italiano) 

La sterilizzazione mediante Ossido di Etilene rappresenta la procedura di sterilizzazione 

più usata per strumenti medici. Nonostante il diffusissimo utilizzo nel campo dell’industria 

biomedicale, è relativamente scarsa la quantità di informazioni pubblicate riguardo gli 

effetti di questa sterilizzazione sulle proprietà meccanica degli elastomeri in 

Polidimetilsilossano (PDMS). La reazione di alchilazione garantisce l’alta efficienza del 

processo anche se certi gruppi funzionali in alcuni polimeri sono noti reagire similmente. Il 

Polidimetilsilossano sterilizzato mediante questa procedura è considerato sicuro, tuttavia 

l’attuale tesi vuole determinare se allo stesso modo non avviene alcuna alterazione il 

materiale è sottoposto a diversi cicli anziché ad un unico. Infatti le industrie biomedicali si 

disfano dei materiali e prodotti per cui sarebbe richiesta una seconda sterilizzazione. 

A tal proposito alcuni campioni sterilizzati una, quattro e dieci volte sono studiati 

attraverso differenti esperimenti in modo da riconoscere eventuali cambiamenti. Le prove 

riguardano sia lo studio delle surface properties che delle bulk properties, inoltre dei test di 

citotossicità indiretta sono eseguiti poiché il materiale è destinato all’impianto nel corpo 

umano. L’analisi statistica riportata verifica se campioni esposti a quantità diverse di Etox 

possano essere considerate simili (sono impiegati t-test, Mann-Whitney e ANOVA).  

I risultati dei test suggeriscono che le bulk properties siano leggermente alterate dopo una 

notevole esposizione all’Etox. Differenze nei valori medi possono essere viste per UTS, 

Ultimate Elongation, Storage e Loss Modulus, tuttavia questi risultati mancano di rilevanza 

statistica. Al contrario le surface properties appaino alterate dal momento che i test di 

durezza, di bagnabilità e di swelling mostrano risultati statisticamente rilevanti. Infatti 

all’aumentare dell’esposizione all’Etox, l’idrofobicità superficiale cala (6° di differenza 

dopo 2 minuti) mentre la durezza aumenta sensibilmente (approssimativamente 1 Shore A 

di differenza). L’ispezione superficiale mediante ATR-FTIR non riconosce alcuna 

differenza tra gli spettri, perciò i cambiamenti superficiali negli altri esperimenti non 

possono essere imputati ad alterazioni nelle vibrazioni molecolari del materiale in 

superficie. Un’ipotesi alternativa che spiega sia i cambiamenti nella durezza e 

nell’idrofobicità è quindi proposta: la rugosità superficiale è ipotizzata diminuire quando il 

materiale viene sterilizzata, spiegando i risultati sia del test di durezza che di bagnabilità. 

Interpretazioni dei risultati della prova di swelling sono proposte similmente, ipotizzando 

una leggera idrolisi o l’erosione della superficie mentre il campione viene asciugato. Una 

maggiore esposizione all’Etox non altera la Tg, tuttavia una breve riflessione riguardo la 

Tg è presentata. 

Questa tesi dimostra che i campioni sterilizzati più di quattro volte non dovrebbero essere 

impiegati, mentre per meno cicli ulteriori analisi dovrebbero essere condotte poiché i 

risultati ottenuti spesso difettano di completa attendibilità (a causa del limitato numero di 

campioni e della discutibile accuratezza della procedura usata in alcuni casi). Tuttavia 

l’impiego di campioni sterilizzati poche volte dopo la prima pare ragionevole poiché non 

c’è prova di cambiamenti indotti significativi. Ulteriore analisi delle proprietà superficiali e 

lisciviazione arricchirebbero il lavoro presente a potrebbero confermare le ipotesi proposte.  
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List of Abbreviations and Symbols 

 

 
 

C1                  sample group which undergoes 1 Etox sterilization cycle 

C4                  sample group which undergoes 4 Etox sterilization cycles 

C10                sample group which undergoes 10 Etox sterilization cycles 

C0                  unsterilized samples  

N                    number of samples 

C1-C4            comparison between C1 and C4  

MW               Mann-Whitney test 

t-t                   t-test 

Mean (µ)       mean value 

StDev            standard deviation 

PV                 p value 

SP                 statistical power 

UTS              Ultimate Tensile Strength 

UE                Ultimate Elongation 

E_lin             tangent modulus 

E_200           secant modulus (stress at 200% strain)  

Tg                 Glass Transition temperature 

Tc                 Cold Crystallization temperature 

Tm1               First Melting Transition temperature 

Tm2               Second Melting Transition temperature 

Tm                Melting Transition temperature  

E’                  Storage Modulus 

E’’                 Loss Modulus 

tanδ               ratio between E’’ and E’ (ratio of viscous to elastic response in   

                      viscoelastic material) 

SR                 swelling ratio 
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1  Introduction 
 

 

 

1.1  PDMS 

 

1.1.1  PDMS structure and Properties  

 

Polydimethylsiloxane, commonly referred to as PDMS or silicone rubber, is a largely used 

material in several industrial fields.  

Silicones are entirely synthetic polymers presenting a Si-O-Si backbone with organic 

groups attached to Si. Friedel and Crafts firstly synthesized Si-O bond in 1863 [1] whereas 

the term “silicones” was assigned by Kipping in 1904 based on their similarity with 

ketones. In fact Kipping described the new compound with the brutal formula R2SiO which 

recalls the one ketones are referred to [2]. In the following years more specific 

nomenclature was developed while these materials and their applications were flourishing.  

Combination of the organic groups linked to an inorganic backbone, chain length and 

degree of crosslinking are the most influent factors in silicone classification. Depending on 

them they can be divided into fluids, compounds, lubricants, resins and rubbers, showing 

combination of distinctive properties and application fields. Some examples of these 

groups are phenyl, vinyl and trifluoro-propyl groups. Nevertheless PDMS represents the 

main example of this kind of material, with 2 methyl groups as organic groups for each Si 

molecule along the backbone [1,2]. Chemical composition of PDMS and its chemical 

formula are reported below (Fig.1). 

 

CH3 [Si(CH3)2O]n Si(CH3)3 

 

 

 

 

 

 

 

 

 

 
Figure 1. Two different ways to represent PDMS: its chemical formula (up) and its structural formula 

(down). The higher n, the greater chain length and molecular weight are. 
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This chemical product can be synthesized mainly by the following process: silica (SiO2) is 

reduced to silicon, which is used in combination with 2 chloromethane molecules (CH3Cl) 

to obtain dimethyldichlorosilane (Me2SiCl2). This product undergoes hydrolysis which 

leads to a mixture of linear and cyclic oligomers (Fig.2A). Then, if even longer chains are 

requested (as most cases do), the cyclic oligomers can be polymerized with the help of a 

strong acid or base (Fig.2B) whereas the linear ones can condense to extend the chain by 

connecting their extremities [2,3].  

 

Figure 2. Dimethyldichlorosilane reacts with water releasing hydrogen chloride and producing linear and 

cyclic polymer (A). Cyclic oligomers can open and undergo polymerization in order to get longer chains (B).  

 

However during the first passage hydrogen chloride (HCl) is produced, making this 

reaction not recommended for medical purposes. A different reaction is suitable for 

biomedical applications: the chlorine atoms in the silane precursor can be switched 

with acetate groups, producing acetic acid instead of hydrogen chloride. Even if the curing 

process requires more time, this choice has the advantage of a lower chemical 

aggressiveness by C2H4O2 with respect to HCl [4]. 

In addition to the contribution to different properties, the presence of functional groups 

allows also other specific treatments, including crosslinking processes (necessary to create 

an elastomer) which will be discussed in the next pages. 

 

Knowledge about PDMS properties and technologies has reached a fairly high level 

nowadays. PDMS benefits of an essentially non-toxic nature, viscoelasticity, chemical 
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inertness, hydrophobicity and a unique flexibility (shear modulus G may vary between 100 

KPa and 3 MPa) given by  the flexibility of Si-O-Si backbone and the very low cohesive 

energy existing among methyl groups. In fact these pendant groups show the weakest 

intermolecular interactions known: the London dispersion forces (sometimes called 

“instantaneous dipole–induced dipole forces”). The low surface tension, which is a direct 

manifestation of low intermolecular forces, confirms that the interactions between two 

PDMS chains occur only through their methyl groups [2]. 

This material is also highly insoluble in water, in fact hydrophobicity results in the beading 

of polar solvents on the surface with difficulties to soak the material. On the other hand it 

can absorb water vapor and hydrophobic contaminants contained in the water, releasing 

not crosslinked components into the liquid [5]. PDMS is also greatly permeable to gas 

because of its flexibility in the Si-O chains: in fact they provide “openings” which form 

and disappear with chain movement permitting gas diffusion. 

Other properties are transparency at optical frequencies, low autofluorescence, surface 

tension, chemical reactivity (except of at extreme pH) and damping, high compressibility 

and dielectric strength (∼ 14 V/µm), making this material suitable as electric insulator. Its 

low chemical reactivity turns into a good resistance to oxygen, ozone and UV light. 

Nevertheless plasma treatment can oxide the surface of PDMS producing silanol 

terminations (SiOH) and making PDMS hydrophilic and resistant to hydrophobic and 

negatively-charged molecules adsorption for some minutes [5]. Treatment by plasma is 

commonly used to seal microfluidic PDMS structures to glass. Silicone rubber can stick 

efficiently to glass and other substrates (e.g. ceramic, alumina, titanium, tin and 

chromium), however its adhesive properties depend on the substrate nature so that it gets 

quickly detached with certain surfaces (e.g. gold and platinum) [6,7]. 

Furthermore it is characterized by a low glass transition temperature (Tg ≈ −125°C), 

low thermal conductivity, applicability over a broad range of temperatures (at least from 

−100 °C up to +100 °C) and small temperature variations of the physical constants (except 

for the thermal expansion) [2,8]. The last 3 properties explain PDMS success in all the 

fields requiring large heat resistance and heat stability in a reasonable temperature range. 

On the other hand polydimethylsiloxane has some drawbacks with respect to other 

polymers used in biomedical applications, such as polyurethanes. As PDMS, these 

materials show a certain variability in their properties according to the way they are 
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prepared. Nevertheless PDMS generally exhibits lower UTS, hardness and elastic modulus 

with respect to polyurethanes, even if it is characterized by higher deformations and 

degradation resistance [9]. According to that, polyurethanes should be chosen instead of 

silicone rubbers in certain applications (such as those requiring great mechanical and load-

bearing properties). 

A good compromise between the two cases is represented by the incorporation of PDMS 

into the soft segments of polyurethanes, obtaining materials with mechanical properties 

similar to polyurethanes but with higher resistance to oxidation and ESC (environmental 

stress cracking) [10]. 

 

As reported at the beginning of this paragraph, PMDS can be divided into fluids, 

compounds, lubricants, resins and rubbers (or elastomers).  

For encapsulation purposes, the last type is used. Just to mention some other elastomers as 

examples in addition to the silicon rubber described in the present work, also Polyacrylic 

rubber, Styrene-butadiene rubber, Polybutadiene and Butyl rubber belong to this material 

category. Elastomers according to IUPAC definition are polymers displaying rubber-like 

elasticity. They are characterized by weak inter-molecular forces, low elastic modulus and 

huge strain-resistance before fracture. Their good flexibility is due to their Tg, which is 

much lower than common temperature ranges. The final material is created by curing 

which makes the long polymer chains crosslink. Fig.3 shows their typical stress-strain 

relation, whereas the chain structure in elastomers is displayed in Fig.4. When a stress is 

applied, the long polymeric chains (soft segments) sharing common parts (cross-linkages, 

hard segments or entanglements) are allowed to get extended up to a certain limit by chain 

reconfiguration. Stress removal results in the recovery of the original shape thanks to 

crosslinking sites/hard segments [11,12]. The lower the temperature and the higher the 

crosslink density (or ratio between hard and soft segments), the brittler the material 

behaves. 

Crosslink density indicates how highly crosslinked a silicone is. Swelling tests of the 

material in appropriate solvents allow the estimation of this parameter. Obviously hard 

polymers show greater difficulty in swelling with respect to the softer ones. In fact a lower 

crosslinking density, resulting in a lower hardness, permits a better solvent absorption [13]. 
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Figure 3. Typical stress-strain relation in elastomeric materials. The curve is monotone and characterized by 

low stress and high strain values. 
 

Figure 4. Representation of the elastomeric components with and without applied stress (black dots represent 

the hard segments).  

 

Silicone can be crosslinked and cured into solids by using different cure systems. 

Platinum-catalyzed cure system, condensation cure system, peroxide cure system 

and oxime cure system are the most known typologies dealing with this process. The 

curing process makes PDMS a thermosetting material, explaining its resistance to high 

temperature [3].  

In health care applications addition (platinum is generally employed) and free radical 

(peroxide) curing systems are the most famous ones, in particular the first one can be 

accelerated by adding heat or pressure. An addition cure system consists in an 

organometallic crosslinking reaction, where platinum or another metal complex catalyst is 

exploited in order to launch the polymerization among vinyl and Si-H groups. Siloxane 

base oligomers contain vinyl groups as terminal parts, whereas the crosslinking oligomers 

(a common example is represented by Polymethylhydrosiloxane) contain at least 3 silicon 

hydride bonds each. The two groups form Si-CH2-CH2-Si linkages through an addition 

reaction and multiple reaction sites on each component generate a 3D crosslinking. 

Furthermore more crosslinked and harder elastomers can be created simply increasing the 

ratio between curing agent and base (oligomers). No by-products (even no water) are 

generated by this reaction (addition) whereas 5-15 ppm of Pt can be considered an 

effective value for catalysis action [14,15]. Since platinum is used as a catalyst it does not 
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join the reaction but only promotes it; if necessary the reaction can be accelerated by 

heating the reaction environment [15].  

Fig.5 shows the polymerization process occurring between the 2 parts when a catalyst is 

present. However the main drawback of this technique resides in catalyst costs that are 

reflected on the price of finished products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The addition cure system takes advantage of platinum in order to launch the crosslinking between 

the two displayed components. The vinyl and Si-H groups form Si-CH2-CH2-Si linkages through addition 

reaction. This reaction is repeated along different sites of different chains. 

 

 

With respect to addition curing, free radical curing has the advantage of a relatively cheap 

process even if high temperatures are required. In fact it uses free radicals generated by 

organic peroxides (1% relative composition) which decompose at elevated temperatures, 

launching a crosslinking reaction. The main flaw is represented by those peroxides and 

radicals that are not consumed during the reaction: that means by-products are generated 
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with this curing process representing a product contamination. Volatile organic acids 

generally remain entrapped inside the final product, even if a post-cure treatment (high 

temperature exposure for a long period) can overcome this problem by removing them 

[14]. Techniques as leaching analysis (e.g. GC-MS) can extract these by-products from the 

silicone matrix. According to J. Heiner [16] cumyl alcohol and acetophenone can be 

extracted from the peroxide-cured elastomer using GC-MS due to dicumyl peroxide which 

breaks down into acetophenone and cumyl alcohol. The formation of cumyl alcohol is 

most likely to occur in an acid environment, whereas in an alkaline environment the 

formation of acetophenone through a cumyloxy radical is more likely. These substances 

(both harmful and irritant) can induce a crosslinking reaction in the material during a 

sterilization procedure. In addition to these drawbacks, E. Gautriaud [17] reports how Pt-

curing guarantees smaller variation and higher stability in mechanical parameters 

(hardness, tensile modulus and tensile strength in particular) than peroxide-curing when γ 

or e-beam radiations are employed. However this difference between the two curing 

techniques is not that evident if Etox sterilization is applied: in fact in this case some 

parameters of Pt-cured material show smaller alteration whereas peroxide-cured ones are 

higher and vice versa.  

 

 

 

 

1.1.2 PDMS applications, Medical devices in PDMS and Cochlear Implants 

 

As already mentioned the term “silicone” does not refer to a unique type of material, since 

the presence of different side groups results in materials with different properties, 

nevertheless this term generally refers to PDMS in industrial field.  

Applications of PDMS spread onto a very wide range of fields. It can be used as surfactant 

[18] and antifoaming agent [19] due to its hydrophobicity and antifoaming properties, for 

the same reason it can be employed in water-repellent coatings. Other industrial 

applications are in plastic industry, textile field (fiber production, softening action on 

tissues, water resistant coatings etc.), heat resistant and antifouling paintings and cleaning 

products [2]. In automotive industry fluid silicone is used in automotive viscous limited 

slip differentials and couplings, whereas silicone external gaskets and external trim owe 

their success to the resistance to ozone, oxygen and UV light [2]. The same properties 
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allow this material to be largely used in construction industry (e.g. coating and glazing 

seals). Soft lithography is another field where PDMS finds massive applications: elastic 

stamps are created enabling the transfer of a certain pattern (with few nm resolution) onto 

silicon, glass and polymer substrates. Photolithography and plasma lithography are 

generally employed to prepare the pattern fashion on the stamp [20]. Soft lithography 

enables also the creation of microfluidic structures, optic telecommunication systems and 

Bio-MEMS [5,20]. These last elements are a particular application of soft lithography 

where a silicon substrate is used as negative pattern which PDMS is shed over. Once 

PDMS is cured, it is removed and treated to get the desired surface behavior, finally it is 

sealed (generally with a glass layer) to create a close channel. PDMS coatings with 

controlled thickness can also be created (during the crosslinking) over a substrate by 

spincoating and multilayers PDMS devices can be prepared by plasma treatment and metal 

deposition [5]. Research in flexible electronics found PDMS to be particularly useful 

because of its flexibility and optical transparency, in addition to its ease in fabrication and 

cheapness. In fact burning due to moisture condensation on engines represents a problem 

which a simple PDMS sealing encapsulation can overcome (this technique will be resumed 

later dealing with medical implants) [2]. In food and beverage industry PDMS is extremely 

diffused according to its water insolubility, thermal stability and chemical inertness, 

furthermore it can be sprayed onto plant leaves. FDA (Food and Drug Administration) 

accepted its use because PDMS of sufficient molecular weight does not penetrate through 

biological membranes, not being metabolized but excreted unchanged. In domestic use 

PDMS is well known as rubbery caulks, adhesives, heat resistant tiles, shower or aquarium 

sealants (it can form watertight seals), grease agent, damping and heat 

transfer fluids, cosmetics (as dimethicone) and hair conditioners [2]. 

As described in this paragraph PDMS has many applications, nevertheless a crucial 

employment of this material resides in the biomedical field. Also in this case its application 

is very spread depending on the material properties. Aside from medical devices 

polydimethylsiloxanes can be mixed with silicon dioxide to get activated dimethicone, 

often used in over-the-counter drugs as an antifoaming agent and carminative. 

Simethicone for example is used to reduce bloating, discomfort or pain due to 

excessive gas amount in stomach or intestines [21]. Products with PDMS are employed in 
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the treatment of head lice and skin-moisturizing lotions [22] whereas silicone rubber is 

commonly used also in baby bottle nipples.  

In general silicone rubber can be considered ideal for those application requiring 

flexibility, long term stability and hemo/bio-compatibility once they are inserted into the 

body and get in contact with blood. PDMS can be used both in a solid state both in 

fluid/gel form. Examples of the second type are bandages, implant fillers and silicone oil 

during vitrectomy surgery [3]. 

Medical devices in PDMS can be divided into those which will be implanted and those 

whose application is temporary (sometimes they are not necessarily introduced inside the 

body). In the first category can be listed soft contact lenses, scar treatment sheets, catheters 

(Fig.6A), shunts (Fig.6B), drains (the device can be either entirely in silicone or silicone-

coated on the surface to lower host reaction to foreign material contact) and extra corporal 

machine components [3,12]. Blood oxygenator, kidney dialysis system and CPB 

(cardiopulmonary bypass) machine use external networks for blood circulation consisting 

in silicone tubes connected each other or to other hemocompatible components. 

Hemocompatibility of PDMS is not the unique reason of its success in such applications, 

high gas permeability plays a fundamental role as well in oxygenation membranes and 

devices requiring high aeration [3]. 

About implanted PDMS some examples are represented by filler fluid in breast implants 

[12], flexible tubes used as voice prostheses (placed in the throat after laryngectomy), bile 

duct repair and urethra replacement [3] and encapsulation systems [6]. Ophthalmological 

field largely uses this material for many purposes: silicone vitreous fluid replacement and 

elastomer IOL after retinal reattachment or cataract surgery are just a couple of examples. 

Also aesthetic and reconstructive plastic surgery takes advantage of this material for the 

replacement of breast, testicles (Fig.6D), chin, nose and buttocks [12]. Finally in 

orthopedic applications hand and foot joint implants (Fig.6C) and cement restrictors (used 

in joint replacement surgery involving cement) are generally made of silicone rubber [13].  
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Figure 6. Examples of PDMS use in biomedical devices: tubes and catheters (A), shunts (B), hand joint 

implants (C) and testicle prostheses (D). 

 

 

 

Encapsulation systems have been mentioned above as common biomedical application for 

this material. The importance of these protections grew exponentially with a more and 

more common use of the “active implantable medical devices” (AIMD). This term refers to 

any medical device relying for its functioning on a source of electrical energy (or any 

source of power other than that directly generated by the human body or gravity) and 

which is intended to be totally or partially introduced into the human body [23]. 

Encapsulation aims at protecting and insulating electrical components, circuits and all 

those parts which are particularly sensitive to moisture and fluid contact. They supply a 

double protection: the prevention of leakage currents due to device voltages and the 

protection against corrosion [24]. Neurostimulators, pacemakers and cochlear implants 

require such a protection in order to be implanted in a safe way. Due to its excellent 

dielectric properties, a protective PDMS layer allows their encapsulation. The combination 



11 
 

of all the properties listed in the previous paragraphs, hydrophobicity and high dielectric 

breakdown (avoiding signal loss) in particular, allow these devices to resist in harsh and 

aggressive environments [2]. Nevertheless in order to get an effective insulation, the 

encapsulant polymer must be bonded to the substrate to prevent ionic currents from 

flowing and water from filling the gap (between polymer and device). If there are no gaps 

at the interface, water vapor permeating the silicon rubber cannot condense on the 

substrate, so that no ionic conduction occurs [24]. These types of implants have been 

shown to be resistant at 37° C for 12 years at least if the encapsulation process is 

performed correctly and the interface bond is perfectly developed [6,7].  

Fig.7 shows the failure process in a substrate with conductive metal components. At the 

beginning no voids are exhibited (Fig.7A), however the interface bond can deaden with 

time till a gap is created (Fig.7B). Water vapor can now condense on the substrate and the 

resulting water can launch a corrosion process (Fig.7C). Generally the implant function 

continues but the risk can also be associated to the corrosion products which can permeate 

the insulating membrane and diffuse in the surrounding tissues. An even more dangerous 

case is represented by the encapsulation bursting because of the inflation of gases created 

by electrolysis if a highly conductive electrolyte forms [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Stages of implant failure: manufacture and then implantation of the encapsulated device (A), 

adhesion failure and following condensation of water vapor (B), corrosion of metallic components due to 

water in the void. 
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Cochlear implants represent an example of devices requiring this protection. Cochlear Ltd, 

the world leading manufacturer of implantable hearing solutions, encapsulates their 

cochlear implants in polydimethylsiloxane (Fig.8). PDMS is used to provide an ionic 

moisture barrier and infer biocompatibility to the hermetic electronic package of the 

implant. 

 

A cochlear implant is a surgically implanted electronic device, composed of two 

components (only one is implanted), which helps speech and environmental sound 

recognition by patients with severe and profound sensorineural hearing loss. This device 

replaces the pathological cochlea in its function of transmitting the collected sounds to the 

acoustic nerve. In addition to signal transmission, it conducts filtering and elaboration 

processes. An external microphone transforms the received sounds into electrical signals 

and through a speech processor the information are transmitted to the internal component. 

This second part consists of a ceramic or titanium housing (containing a microchip), a coil 

antenna for transcutaneous transmission of power and data and an intracochlear electrode 

array. The microchip decodes the signals coming from the external component, 

transmitting the analyzed information to the intracochlear electrodes.  

In December 2012 approximately 324,000 people worldwide have received cochlear 

implants; in the U.S. children with CI represent 39,5 % of implant recipients [25].   

In addition to the already mentioned main aims of PDMS encapsulation, some extra 

features are important for this type of implant and explain the choice of PDMS. Firstly this 

material sticks efficiently to both titanium and ceramic (materials the housing is made of) 

[7]. Cochlear implants are implanted and anchored to the squama temporalis so that a 

certain stability within a reasonable temperature range is needed due to skin proximity. It 

asks also for a certain flexibility and shape-recovery because the implant may be exposed 

to sudden deformation (impacts) or long-lasting deformation (sleeping with that side of the 

head leaning on the pillow). Obviously biocompatibility, inertness, stability and resistance 

are other properties which the PDMS has been chosen for as encapsulation system for 

cochlear implants. Finally this material is generally sterilized with ethylene oxide which is 

the preferred technology for these polymers (PDMS is stable to high temperature as well, 

whereas several polymers are hugely heat sensitive and strictly require Etox treatment). 
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Figure 8. Implanted component in a cochlear implant device. The transparency of the material allows to see 

the encapsulated elements. 

 

 

 

 

 

 

1.2  ETOX 

 

 

1.2.1  The role of sterilization in medical field  

 

Sterilization is a crucial step in biomedical implants because eventual pathogens 

introduced inside the body can induce infection: it results in the removal of the device 

(new surgery), drug therapy to kill the pathogens, huge institutional costs related to 

nosocomial infections and mortality/morbidity concerns. The reported issues justify why a 

proper sterilization of biomaterials used in implants is a critical prerequisite for their 

successful clinical application [3,26]. Many sterilization technologies are available 

nowadays: the most widely used are gamma or electron beam irradiation, steam and 

ethylene oxide (generally shorted as EO, EtO or Etox). 

Gamma or electron beam irradiation are quite common in medical applications but their 

limit consists in the induced scissions and crosslinking due to free radical propagation in 

polymers [27]. Steam sterilization has definitely the advantage of being extremely cheap 

and it is really common to quickly sterilize metal objects and instrumentation in 

laboratories. On the other hand polymers and those materials suffering for high 

temperature and high moisture exposure cannot be sterilized with this technology.  

All these sterilization methods could therefore prevent the expected behavior and 

performance of the material by causing degradation and changes in properties [26]. 
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Table 1. The impact of the most common sterilization techniques on some materials generally used in 

medical application. Higher numbers represent lower impact of a specific sterilant on a certain material. 

Thus the value “4” suggests the combination of silicone and Etox to represent a good choice. 
 

 

 

 

1.2.2  Ethylene Oxide properties and sterilization process 

 

In order to avoid these drawbacks, Etox often replaced the previous techniques, getting 

more and more relevance and spread application in medical field. Its importance grew 

together with the disposable MD (medical device) market with the purpose of cost saving 

in health management. Today, Etox sterilization is described as the most cost-effective, 

low-temperature sterilization process available, leading the industrial terminal sterilization 

market for approximately 50% [3]. Sterilization by Etox consists in inserting packaged and 

sealed devices into an ethylene oxide chamber, exposing them to a sterilization cycle 

through pure or diluted Etox. Humidity, temperature and time can influence this process as 

well. Employed packaging must let Etox and water vapor enter and exit. Post-sterilization 

aeration process follows the gas exposure, letting the residues leave the device. Strict 

monitoring of the process, including often biologic indicator test, is required [3]. 

 

Etox appears as a colorless gas at atmosphere pressure and room-temperature with high 

mutagenic and carcinogenic potential, miscible with water and extremely flammable and 

explosive. Its main properties are listed in the Tab.2.  
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This substance is industrially produced by direct oxidation of ethylene in the presence 

of silver catalyst; commonly it is handled and shipped as a refrigerated liquid due to the 

hazards related to its flammability and explosivity [3,26]. 

 

 

Name Ethylene Oxide 

Abbreviations EO, EtO, Etox 

CAS number 75-21-8 

Molecular formula C2H4O 

Appearance Colorless Gas 

Molar Mass 44.05 g/mol 

Density 0.882 g/mL 

Melting Point -111.3 °C 

Boiling Point 10.7 ° C 

 

 
Table 2. Main properties of Ethylene Oxide 

 

 

Ethylene oxide has emerged as the sterilization method of choice for medical devices 

because of its undeniable advantages compared with other technologies. In fact for 

sensitive materials Etox is the only acceptable sterilization method. It can be applied for a 

wide range of materials including those sensitive to heat and moisture, it represents a 

strongly effective bactericidal, sporicidal and virucidal activity agent. Two atoms of 

Carbon and one of Oxygen are kept together inside an unstable ring structure (Fig.9) that 

can open up launching the alkylation reaction [12]. 

 

 

 

Figure 9. Three different representations of ethylene oxide 
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The efficacy in inactivating microorganisms resides in Etox high reactivity in combination 

with its high diffusivity allowing high penetration depth. Furthermore process flexibility 

given by the large number of control variables results in a great range of material treatable 

with this sterilization by just tuning process parameters (e.g. pressure, average temperature 

and humidity). 

Etox action consists in a strong alkylation reaction with cellular components of organisms 

(such as nucleic acid and functional proteins) leading to their denaturation. This 

denaturation in DNA, RNA and proteins inside microorganisms occurs since alkyl groups 

bind easily to sulfhydryl, hydroxyl, amino and carboxyl groups. The result is the 

prevention of cellular metabolism and ability to reproduce, making the affected microbes 

nonviable [12,26]. Main MDs do not present the previously reported groups, therefore they 

do not undergo similar structural changes when they are exposed to Etox. Nevertheless this 

chemical agent presents several hazards to patients and everybody handling it, requiring 

high care when employed. 

Even if MDs’ structure does not generally include groups as those reported upwards, living 

beings can be affected by this alkylating agent, facing mutating and carcinogenic risks. 

However Etox can be considered a safe substance if used properly following certain safety 

procedures (indicated in Occupational Safety and Health Administration EO regulations). 

When these requirements are satisfied Etox can be considered a minimally hazardous 

agent.  

In fact sterilization procedure must be followed by a certain time (aeration time) where the 

level of residual ethylene oxide can decrease. In their work Gunnigle MC et al. [27] relate 

the residual Etox and the L-cell toxic zone (where cells within this radius are dead) around 

the sterilized specimen. It is shown that Etox residuals lower than 900 ppm correspond to a 

0 mm toxic zone. Silicone shows a quicker dynamic in the removal of toxic residues with 

respect to other plastic material (PVC and Polyether-polyurethane), in fact only 2 hours are 

enough in the described work. Even if 2 hours would be enough to avoid immediate toxic 

response by the surrounding cells/tissues (toxic zone with null radius), much longer 

aeration time is required in order to avoid any hazard in the long-time implantation. Indeed 

at least 48 hours of degassing process with 50-60° C into constrained ventilation systems 

are generally used [12].  
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In fact the risk is not directly associated only with entrapped Etox, but also to some of its 

derivatives. Examples of toxic derivatives are ethylene chlorohydrin, appearing when 

chloride ions are present, and ethylene glycol, generated through Etox reaction with water 

[26]. All these considerations about direct and indirect risks for patient health associated 

with MDs sterilization by Etox make residue controls compulsory.   

In the last years the equipment related to Etox deeply improved and became more efficient, 

collecting lots of investments in order to achieve these improvements. Nevertheless 

discussions and debates about the actual safety of Etox have continued even if its 

application got more and more frequent.  
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2  Aim of the work  
 

The present thesis deals with the sterilization of PDMS by Etox. Cochlear industry in 

Mechelen uses this material for the encapsulation of the housing containing a microchip in 

cochlear implants. The implantation of the material requires its sterilization before surgery 

to avoid infection risks. This industry employs Etox for such purpose. Despite its 

widespread use in the medical device industry, only few sources deal with Etox treatment 

on PDMS and little data have been published about its effect on mechanical properties of 

this material. Literature sources often do not supply details about the employed PDMS and 

its curing process, reporting terms as “silicone rubber” or “silicone” without any specific 

definition of the used material. Moreover some studies sometimes present contrasting 

results for the same properties or parameters, suggesting further investigation to clarify 

these mismatches. Most sources focus on single Etox sterilization, whereas few ones 

concern the effect of repeated sterilization cycles on PDMS. Thus little significance has 

been granted to the possibility of sterilizing PDMS implantable devices by Etox more than 

once. The unknown effects of multiple treatments compel medical industries to get rid of 

devices which may actually be still used. This way objects displaying contamination 

suspect after sterilization, unknown sterility status and sterilized products requiring extra-

manufacturing or label addition (package opening requires a new sterilization) could be 

saved and still employed. 

Thus, the present thesis aims at selecting test and the required samples to document the 

effects of Etox sterilization on PDMS properties. Bulk and surface properties after this 

treatment require investigation, in addition cytotoxicity test enriches this research. 8 

experiments in total are carried out resulting in a wide range of information about this 

process. Result analysis wants to detect eventual material changes, trying to hypothesize 

potential reasons for registered behaviors. Statistical analysis assesses whether test 

outcomes are reliable and trustworthy. However as this material is quite variable in its 

behavior during test performances some results are expected to be statistically not 

significant according to an insufficient number of samples. However a greater sample 

number would result extremely expensive because of the test amount (both for molding 

and sterilization procedures).  
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3  Material and Methods 

 
3.1  Description of the employed material 

The material under inspection is MED-4860P (Fig.10), a Pt-cured silicone produced by 

NuSil (United Kingdom).  

 

 

 

 

 

 

 

Figure 10. MED-4860P is a highly flexible and transparent material for thin thickness, these features 

decrease for higher thicknesses.  

 

The advantages of Pt-curing with respect to peroxide-curing have already been listed in the 

previous chapter, nevertheless the absence of by-products after Etox sterilization for the 

first PDMS type is here quickly remarked. MED-4860P main properties are reported below 

in Tab.3. 

 

Table 3. Datasheet of the material investigated in this thesis (MED-4860P). For each row the 

parameters/properties with the respective average values and standards are reported. 
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This silicone rubber is designed for use with injection molding equipment and is suitable 

for overmolding, making it indicated for encapsulation purposes. It is obtained by mixing 

two parts (part A and part B) with a 1:1 ratio for 72 hours under vacuum deaeration 

procedure, curing with heat via addition-cure chemistry for 5 minutes at 165°C. In addition 

to pure vinyl-functionalised PDMS, parts A and B contain both amorphous silica (30%), 

whereas a 5% of Dimethyl, Methylhydrogen Siloxane Copolymer (CAS # 68037-59-2) is 

contained exclusively in part B. This second component (Fig.11) is used as crosslinker for 

vinyl-functional silicone polymers for the manufacture of addition curing (the key in its 

action resides in high-active Si-H) [28,29]. 

 

 

 
 
 

Figure 11. Chemical formula of Dimethyl,Methylhydrogen Siloxane Copolymer. It is composed of a long 

chain presenting Si-H bonds which are high-active, allowing the crosslinking between the 2 parts (see 

paragraph 1.1.1).   

 

 

 

Silica is used as filler material in PDMS suspensions: before curing occurs, Tg (glass 

transition temperature) is not affected by the amount of silica, whereas Tc (cold 

crystallization temperature) may shift slightly leftwards with increasing amount of silica 

[30]. Once the cured elastomer is obtained no effect on Tm2 (second melting transition 

temperature) can be recognized, whereas Tc peak and Tg step get less visible 

proportionally to the amount of silica [30]. All these parameters here quickly mentioned 

will be resumed in the paragraphs dealing with DSC analysis. 

 

Sample types and shapes are initially chosen according to the selected experiments they are 

going to be employed in. However the sample preparation committed to a molding industry 

failed in being supplied on time. Thus this delay turned into the necessity to employ 

already available samples instead. This unavoidable choice obviously results in ignoring 

sometimes ASTM’s sample requirements (anyway a certain compatibility with what 
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described in standards must be respected). Due to this hitch some experiments may 

produce results a bit different from those reported in procedures following ASTM 

standards. As specified in the upcoming paragraphs, the following experiments employ 

samples different from those specified by test standards: uniaxial tensile test, DMA and 

hardness test.  

Test samples are sterilized by Andersen Products® (United Kingdom) one month before 

experiments are performed, keeping them in protective packaging away from heat, light 

and moisture. The samples are inspected after the reception and prepared at 23 °C and 35% 

humidity minimum. After that they undergo sterilization. Each cycle lasts 16 hours with an 

average temperature of 52° C and humidity varying from 40% to 90% during the different 

cycles and 50 Pa pressure. 10.6 g of gas are released on average in each cycle, whereas 

aeration time lasts from 50 to 100 hours with temperature ranging from 23° C to 53° C. 

Microbiological tests are carried out during the process with a minimum of 10
6
 Bacillus 

atrophaeus after a minimum incubation time of 48 hours each. These steps do not show any 

growth, meaning the check tests are passed. 

In this thesis the experiments are performed on samples which are sterilized once, four and 

ten times. These samples will be referred to as respectively C1, C4 and C10 hereafter. The 

choice of these values depends on the following items:  

- The literature presents several examples of PDMS undergoing a unique Etox sterilization 

cycle and a large part of the sources agrees about the effects induced in the material. 

Nevertheless some sources are in contrast about some parameter changes (Young Modulus 

and Ultimate Elongation for instance) meaning that a new check of material behavior 

should be performed to clarify these mismatches and confirm the other results.  

- Some sources deal with a maximum of 3 cycles instead of only one. Thus 4 cycles may 

be considered as a border which no confident behaviors and results are available beyond so 

far. Furthermore this value can be considered a reasonable number of sterilization 

repetitions in clinical/practical applications for implantable devices assuming post-

sterilization operations. 

- One source analyzes 100 cycle samples focusing only on few parameters [16]. This value 

is certainly extreme and no product would undergo such a high number of sterilizations as 

10 cycles is thought to be already an unlikely number of repetitions to reach in practice. 
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As the present work focuses on comparing different exposures to the same sterilant, 

unsterilized samples are not generally employed. Indeed silicone cannot be employed for 

medical purposes without previously being sterilized. However one cannot ignore 

completely the unsterilized material as term of comparison in analyses dealing with 

material research. Therefore a basic comparison between unsterilized samples and 

sterilized ones is carried out during the uniaxial tensile test (see paragraph 4.1.5). This 

comparison reveals a certain compatibility between these two classes of materials. 

 

 

 

3.2  Test modalities  

The following paragraphs describe all the tests performed during the inspection of MED-

4860P 

 

3.2.1 Uniaxial  tensile test 

This mechanical test is performed following ASTM D412 on an Instron 5985 testing 

machine with a maximum cell load of 1KN and 2 different strain velocities. This machine 

is chosen depending on the attended high strain and small load in the samples during the 

experiments. Dogbone samples are employed: they show a central narrow part where the 

strain concentrates mainly, whereas the two large sides for clamping are assumed to 

contribute marginally to the strain of the whole sample. Sample shape and dimensions are 

shown in Fig.12. According to ASTM D412 the shape of the specimen for uniaxial tensile 

test on elastomeric material should present the narrow central part shorter than that used in 

dogbones for non elastomeric material [31]. Nevertheless this shape could not be produced 

by the molding industry on time: already available specimens with the shown design were 

employed instead. ASTM D412 reports 500 mm/min strain rate for elastomeric materials, 

however PDMS is a viscoelastic material, meaning its behavior is strain rate dependent. 

Thus the behavior for 100 mm/min strain rate is investigated as well in addition to the 

traditional 500 mm/min. 
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Figure 12. Shape and dimensions of the dogbone employed in the uniaxial test. Its shape is a bit different 

from what ASTM D412 indicates, in particular the central narrow part should be shorter as the material like 

silicon rubber can stand a huge deformation before breaking down. 

 

 

8 samples on average per case are used and few ones are used to take some preliminary 

tests instead. In fact the correspondence with literature and datasheet values is checked and 

the suspected slippage during the test is investigated as well. According to the small 

changes attended after 1 cycle, some 1 cycle samples were sacrificed for these purposes.  

During each test sample width and thickness are measured by a caliber (average thickness 

= 1,26 mm; average width = 3,01 mm). Dogbones are clamped (by pneumatic vises) with 

61,5 mm distance between the 2 clamps (Fig.13), paying attention in setting the specimen 

symmetrically to distribute uniformly the tension over the cross-section [31]. The 

experiment is performed at 24° C. Clamps move in opposite direction according to the 

selected strain rate up to sample fracture. Data about extension and load with respect to 

time are collected in an Excel worksheet. 

For each case the points registered after fracture (those with null load in the final part) are 

deleted whereas sections of the central part, stresses and strains are then calculated. 

Secondly UTS, Ultimate Elongation, E_lin and E_200 are identified in each experiment’s 

Excel datasheet. UTS and Ultimate Elongation represent respectively the greatest stress 

and strain in the stress-strain curve. 
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Figure 13. Dogbone clamped in vises 61,5 mm far from each other. The specimen should be blocked as 

symmetric as possible in order to have uniform distribution of tension and to obtain comparable results. 

 

 

Dealing with the elastic modulus, as demonstrated in Fig.14, elastomeric stress-strain 

relation is characterized by a first part approximately linear, followed by a less steep 

monotone curve. Due to this particular shape the secant modulus of elasticity can be 

employed instead of the classic tangent modulus (slope of the first linear part in the 

Fig.14). Secant modulus represents the slope of a line connecting the origin to any chosen 

point on a stress-strain curve. Common strains used for this modulus are 100, 200 etc. [12]. 

In the present work E_200 (secant modulus for 200 % strain) is chosen. Furthermore the 

tangent modulus (E_lin) is used as well to have another term of comparison. E_lin 

calculation is performed by considering the slope of graphs up to 30% strain, where the 

curve exhibits a linear behavior: for each case a graph from 0 to 30% strain is created and 

the dots are interpolated linearly, reporting the interpolate’s slope as E_lin (Fig.15). 
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Figure 14. Stress-strain curve of the PDMS under investigation. The typical monotone pattern of elastomers 

(green curve) exhibits two different parts. The first one is steeper and shorter, the second one less steep but 

longer. The black lines represent respectively the tangent modulus (E_lin) and the secant modulus (E_200) 

used in the present work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Dots up to 30% strain in the stress-strain graph are used in linear interpolation, the slope of the 

obtained line is reported as E_lin. This calculation is quite common but is actually used for materials 

withstanding only limited strains in general.  
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For the calculation of the strain, ASTM D412 suggests to draw two bench-marks on the 

dogbone in the narrow part and to track the distance between them during the test. The 

strain is calculated as the ratio of the distance between the two marks (with respect to the 

time) and the distance before the experiment is run. However this operation would result 

time-consuming considering the number of tests, furthermore laboratory instrumentation 

cannot satisfy this procedure. Instead of that, another approach is thought. Instron5985 and 

its dedicated software report the total extension of the two clamps (0 mm at the beginning) 

which contains also the extension due not only to the narrow part but also to the side parts 

with bigger width. Thus a calibration procedure is created in order to directly relate the 

registered extension to the real strain (which would be reported by the bench-marks 

method). Bench-marks are used for this purpose but only on two unsterilized dogbones, 

which are marked in the narrow part with two bench-marks 30 mm distant from each other, 

then the experiment is normally run at 100 mm/min. Thanks to the slow strain photos are 

taken every 10 mm extension until the rupture of the sample. Then photos are elaborated 

by a freeware software able to calculate distances on pictures (SketchUp, Trimble 

Navigation Ltd, USA). These measurements are therefore used to determine ratios between 

the digital distances and then real distances are estimated.  

 

 

 
 

 

 

 

 

Figure 16. Picture of the dogbone between the two clamps (on the sides) when the extension equals 90 mm. 

The two bench-marks (dark rectangles connected by the upper red line) are marked by pen on the dogbone 

with a 30 mm distance. The image refers to a 90 mm extension and is here illustrated horizontally even if the 

experiment is performed vertically with one clamp (the left one) kept fixed whereas the other one (on the 

right) moves upwards. 
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For instance considering the relative distances between the 2 bench-marks (25945 units) 

and between the two clamps (44272 units) in a photo related to a 90 mm extension 

(Fig.16), their ratio equals 25945/44272 = 58,6 %. As the total distance between the 

clamps is known to be 61,5 + 90 = 151,5 mm, one can calculate the distance between the 

two bench-marks (in this case 151,5*0,586= 88,8 mm) in a certain photo.     

This procedure is repeated for each photo so that the knowledge of the total distance 

between the clamps is used to calculate the distance between the two bench-marks every 

10 mm of clamp extension. Once bench-marks distances are known, they are employed for 

the calculation of strain according to its definition. Thus two conversion tables relating the 

extension and the strain (referred to the bench-marks) are created. A final conversion table 

is created by averaging the strains associated with the same extension and then a linear 

interpolation is performed (Fig.17). The conversion factor results 0,020 mm
-1

, therefore all 

the extensions stored in the Excel worksheets can be converted into strain values (for 

example a 25 mm extension corresponds to a 50% strain).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 17. The strains in the two tests associated with a common extension are averaged, then the obtained 

mean values are plotted obtaining approximately a linear trend. A linear interpolation is therefore employed, 

drawing the conversion factor of 0,02 mm
-1

between clamp extension and strain. 
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This procedure seems to return quite accurate strains. One may wonder whether direct 

comparison among extensions would not result already sufficient to evaluate changes in 

materials, however this additional step allows reliable results and comparisons with the 

values reported on the datasheets. 

 

The mean value and standard deviation are calculated for each parameter and test type (for 

instance C4 samples with 500 mm/min strain rate). For each strain rate the 4 parameters 

are compared among the 3 sample types. An additional term of comparison is represented 

by uniaxial tensile tests performed later on unsterilized dogbones (C0). Their employment 

adds a fourth class to suggest and better recognize possible trends. Material datasheet often 

reports values which are slightly different from those recorded for C0, probably depending 

on mismatches in dogbone shape. Thus one may assume the values of unsterilized samples 

as corresponding to those indicated on the datasheet and rescale C1, C4 and C10 values. 

However mean values do not obviously represent straightforward terms of comparison 

according to the small sample availability and different conditions in lab environment 

(temperature and humidity may be a bit different from those in the first sterilized test 

group). 

In addition to the mismatch between the available samples and those specified in ASTM 

D412, another source of error is given by sample slippage along the clamps when the 

extension reaches high values. Uniaxial tensile test is ideally considered with no slippage 

conditions, meaning that the strain should refer only to the part originally free from 

clamps. Nevertheless clamp action may not be completely effective so that a certain 

percentage of the sample which is initially blocked in the clamp may partially slide. This 

part of sample can bear now the strain as the central part (intended to be the only one doing 

that) does. This behavior would turn into an inaccurate calculation about the ultimate 

elongation which will result higher with respect to the real value.  Two dogbones sterilized 

once are tested: a line is drawn on the sample along the clamp edges, then the normal 

experiment is run and clamps are briefly blocked at 180 mm extension (which is really 

unlikely in breaking the dogbone). A photo is quickly taken at this moment, than the two 

clamps are brought back to default distance and a new photo is taken. Photos are 

elaborated with SketchUp similarly to the procedure used to evaluate strain with 

unsterilized dogbones.   
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3.2.2 DMA 
 

Dynamic Mechanical Analysis is a non-destructive technique which can measure several 

parameters in the samples, in particular Storage and Loss Moduli (E’ and E’’) can be 

investigated. The combination of these two parameters allows tanδ calculation (tan δ = 

E’’/E’) where δ (Fig.18) represents the phase angle (indicating the delay occurring between 

the applied force and the deformation). 

 

 
 
Figure  18. Sinusoidal stress and strain curves with respect to time. A perfectly elastic material would 

present a null delay among the peaks (δ = 0), whereas a viscoelastic material has δ ≠ 0. 

 

 

Due to Etox treatment Storage and Loss moduli might change according to potential chain 

degradation or crosslinking, even though polydimethilsiloxane is known to have low 

chemical reactivity and to be particularly resistant to degradation in many cases.  

The measurements are carried out on DMA Q800 instrument (TA Instruments, USA) with 

shear sandwich clamp (Fig.19). This type of clamp is generally used for the analysis of 

elastomers above the glass transition point. Clamping procedure is performed without a 

torque wrench which allows to check the employed torque in clamping. Instead the 

clamping is carried out by hand trying as much as possible to achieve the same clamping 

with the screws along the claws. The impressed force should be carefully balanced since 

two wrong cases may occur instead: insufficient tension results in sample fall from the 

housing (due to shrinking during cooling phase), whereas an exceeded action may break 
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the holding apparatus or overestimate material properties.  Unfortunately results are known 

to be dependent on clamping conditions: the stronger the samples are clamped, the higher 

the calculated storage modulus in general.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19. On the left the principle of shear mode is displayed (two surfaces in contact with the same sample 

move in opposite directions keeping themselves parallel to sample surface). On the right the shear sandwich 

apparatus (the same employed during the present test) can be observed: it consists of two fixed cantilevers on 

the sides and a vertically floating beam whose surfaces stay between the two cantilevers. Two samples at a 

time are inserted in the gaps between the metal surfaces. 

 

  

 

Sample similarity and perpendicular faces are essential to achieve well distributed stresses 

and to maximize the compatibility among test outcomes, thus molded samples are 

preferable. Instead samples are cut from silicone bars (15 samples per case, 5 from each 

bar). Each sample is approximately a 10x10x3,75 mm parallelepipedon. The 15 cm long 

bars have 3,75 mm thickness, so that no cut is required to obtain the reported thickness. In 

order to increase the variability in analyzed samples, 5 samples are cut away from different 

positions along each bar:  3 samples belong to the central part and 2 are directly cut from 

the extremities. Cutting is performed inside MTM’s Workshop at KU Leuven by using a 

sharp Gillette razor. Obviously this procedure results in samples less similar to each other, 

pre-tensioned areas, residual strains and surface damage. On the other hand this cutting 

technique avoids the exposure to modifying elements employed by other cutting 

technologies (e.g. laser-cut, waterjet). For each category samples are compared in order to 
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divide them into 6 couples trying to maximize the similarity among all the couples. 

However few samples perfectly match each other, indeed they often have at least one side 

slightly higher than 10 mm (the dimension of the vise face) and some cut faces are not 

perfectly perpendicular but slightly slanted. These flaws certainly result in lower precision 

in the measurements. For each experiment the two coupled samples are measured by a 

caliber, their face dimensions are averaged (the lower one in one sample with the lower of 

the other one) and their thicknesses are summed. 

The furnace of DMA Q800 covers the cantilever structure, then the chamber is equilibrated 

to -50°C and 3 minutes of isothermal phase are allowed. After that a heating ramp with 

3°C/min is run up to 100°C.  During the heating ramp properties are investigated: 50 µm 

oscillations of the floating beam are continuously performed by switching sequentially the 

employed frequency (1 Hz, 50 Hz and 100 Hz). E’ and E’’ are the investigated parameters 

in this test. Tg is initially planned to be analyzed as well in order to obtain information by 

two different analyses (the other one employed is DSC) allowing a comparison between 

their outcomes. However the investigation of Tg (expected approximately around -125° C) 

compels an extreme liquid nitrogen depletion by DMA Q800 for such low temperatures. 

Probably this problem is due to the large space inside the furnace, which is definitely 

smaller in DSC chamber (showing reasonable liquid nitrogen consumption).  

 

 

3.2.3 Hardness test  

Surface mechanical answer to an indenter can be estimated by following ASTM D2240. 

According to that, hardness of materials with rubber property should be investigated by a 

Shore A indenter (Fig.20). This pocket-portable instrument has a flat base with a 

protruding tip in the middle which partially returns inside when the instrument is pushed 

against a flat surface. In order to achieve good measurements the samples must lean on a 

hard surface. The penetration of the pin into the investigated material is balanced by 

material resistance, so that an estimation of surface’s answer can be carried when spring 

stiffness in the durometer is known. Thus the amount of penetration is converted into 

hardness (which ranges from 0 to 100 Shore A units) [32]. 
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Figure 20. Shore A indenter presents a flat surface with a pin protruding outside.  When the instrument is 

pressed on a surface the pin returns inside the device according to the balance between the instrument spring 

and surface deformation (material elasticity). The hardness can be calculated if the spring stiffness is known. 

Different Shore indenters are available and rubber-like materials are tested with Shore A indenter whose pin 

has the dimensions specified in the right picture. 

 

ASTM D2240 specifies that samples should be at least 6 mm thick and measurements 

should be taken at least 12 mm from any edge. Nevertheless ASTM standard details that 

the samples can be arranged as a pile in order to reach the minimum thickness of 6 mm if 

the single sample is thinner than this value [33]. According to the lack of the 

commissioned samples, a parallelepipedon with dimensions 36x33x7,5 mm is composed 

by joining 6 large parts of the bars cut away during the preparation of DMA samples as 

illustrated in Fig.21 (3 parts in width and 2 parts in height).  

Although ASTM standard allows to superimpose samples, it does not mention anything 

about putting samples next to each other along their sides. However this alternative 

approach is the only procedure compatible with the available samples, allowing perfect 

contact between the whole parallelepipedon surface and the indenter base (which the pin 

protrudes from). Indeed the face of a single sample would not allow complete contact with 

the instrument. Measurements are performed at 28°C by a Zwick&Co Pruefmaschinen 

Shore A. The instrument is smoothly pressed on the substrate till its base surface adheres 

firmly to the PDMS parallelepidon and measurement is taken after 1 second in order to 

stabilize the penetration of the needle. The tip is not pressed against the connections among 

the samples composing the parallelepipedon.  
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Fig.22 summarizes the strategy to obtain several measurements without sampling 

continuously from the same piece in the parallelepipedon. 3 measurements are acquired on 

the central sample in the upper parallelepipedon face, in points approximately 5-7 mm far 

from each other. Then the sample cluster is flipped and the measurements are repeated on 

the new upper face. To investigate a new part the parallelepipedon is decomposed and a 

new one is built so that every vertical block is shifted on the right (passage from the second 

to the third case in Fig.22). The measurements are now repeated until all the 6 pieces are 

sampled. In total 18 measurements are performed for each type of samples. 

 

 

 

Figure 21. Picture of the Zwick&Co Pruefmaschinen Shore A used in the hardness test and the PDMS 

parallelepipedon assembled as specified in the sequence in Fig.22. The surface which the sample leans on 

must be rigid (hard wood in this case). 
 
Figure 22. Schematic representation of the method employed to create a sample suitable for hardness test. 6 

parallelelpidons are not singularly thick and wide enough to get a good contact with surface indenter, thus 

they are put together to create a bigger parallelepipedon. Following the sequence in building and switching 

the components, all the 6 parts are sequentially sampled (yellow part).  
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3.2.4 DSC  

 

Differential Scanning Calorimetry (DSC) is a thermal analysis technique which allows to 

determine heat flow and temperatures associated with thermal transitions in materials as a 

function of temperature, time and frequency. Tg is an important parameter in polymers 

since at this temperature amorphous (noncrystalline) material turns from brittle and 

glasslike to flexible and rubberlike. Actually Tg does not identify a true phase transition 

but one that involves a change in the local degrees of freedom [34,35]. The measurement 

consists in comparing the heat flow of the specimen with a reference material so that both 

materials are at the same temperature. Increments or decrements in heat flow are associated 

to transition processes so that these changes are used to estimate the amount of heat 

absorbed or released during the undergoing transitions. For this experiment a DSC Q2000 

(TA instruments, USA) is used with sapphire employed as reference material (Fig.23). 

PDMS Parallelepipedons with approximately 2x1x1 mm dimensions and 23 mg average 

weight (obtained from material scraps after DMA sample preparation) are taken as 

specimens. A first group of tests is run from -150° C to 0° C as the Tg is expected to be 

around -125°C. Chamber is therefore equilibrated (slow cooling rate) at -150 °C by liquid 

nitrogen and hold at this temperature for 5 minutes, then heated with a 3° C/min ramp up 

to 0° C. In addition to the detection of Tg, the enthalpy associated with the fusion peak 

(transition related to the Tm) is investigated. Universal Analysis 2000 software is used for 

transition detection purposes. A second group is later analyzed since first group’s 

outcomes result unsuitable for determining the Tg. As many peaks of PDMS’ characteristic 

thermogram are not visible as well, also the cooling curve is acquired. In this second case 

samples are first equilibrated at 20°C and kept at this temperature for 5 minutes. Then the 

chamber is brought to -160° C with a 30°C/min cooling rate, followed by a 5 minutes 

isothermal phase and a heating ramp (10° C/min) up to 20° C. Also in this case the analysis 

of the Tg is carried out on the PC by Universal Analysis 2000 software. 
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Figure 23. In DSC Q2000 already analyzed samples are removed and replaced automatically. Close to that a 

sapphire sample is housed. According to temperature transitions, heat flow variations with respect to the 

reference material occur to keep both materials at the same temperature.  

 

 

3.2.5 ATR-FTIR  

 

This technique allows the investigation of eventual changes in surface chemical structure. 

Chemical bonds on PDMS surface can be investigated therefore. 

1 disk with 10 mm diameter and 1 mm thickness per case is used. Analysis is carried out 

by using an Agilent Cary 620 FTIR microscope (Agilent, USA) with ATR slide-on, Ge-

crystal (128 scans). Background is acquired as preliminary step in order to exclude as 

much as possible CO2 and H2O contributions on the resulting Absorbance graph. The 

experiment is performed by the Centre for Surface Chemistry and Catalysis (Department of 

Microbial and Molecular Systems at KU Leuven). Spectra are recorded between 4000 and 

400 cm
-1

 and are later analyzed in collaboration with the Centre for Surface Chemistry and 

Catalysis.  

 

 

 

 

 

 

 

 

Figure 24. The Agilent Cary 620 FTIR microscope. 
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3.2.6 Wettability  

Silicone has been described as an hydrophobic material but changes may be suspected after 

sterilization. Wettability test helps recognize this eventual variation by the size of the 

contact angle of a droplet on the surface: as illustrated in Fig.25 high contact angles are 

related to hydrophobic surfaces. 

 

 

 

 

 

 

 

 

 

Figure 25. Difference in the behavior of a drop leaning on two different surfaces. Hydrophobic surfaces do 

not allow the drops to spread and flatten on the material, therefore the angles between the surface and the 

tangent to the drop in the contact points are higher than 90°. In contrast hydrophilic surface exhibits an 

angle lower than 90° so that drops flatten on the surface. 

 

5 samples in total (10 mm diameter disks with 1 mm of thickness, 0.1 g each) per case are 

tested at 27° C. Each disk receives 3 drops on average, taking care of making them lean not 

next to the edge where surface is generally slightly bent upwards. Water is chosen as liquid 

for this experiment with drops of 1,1 µl average volume, air is used as gas phase. The test 

apparatus consists of a syringe with a high precision gear on the plunger able to create 

hanging droplets with highly controlled volume. Water drop is then brought closer to the 

substrate as much as possible (by lowering the syringe) without touching the PDMS. A 

camera with a light source positioned in front of it takes a first photo where the dark 

reflection on the substrate can be used to determine the baseline for the software 

calculation (Fig.26A). Then the drop is gently leaned on the surface and the syringe is 

immediately pulled upwards so that the drop detaches without altering its spreading on the 

PDMS. 5 photos are acquired every 30 seconds starting from the moment after syringe 

removal (Fig.26B).  
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Figure 26. Phases in the wettability experiment. Firstly a hanging drop is created on the needle tip and is 

slowly brought close to the surface (A). When the drop gets in contact with the surface the needle is gently 

pulled upwards (B) so that the drop can start to flatten. However due to material hydrophobicity it cannot 

exactly flatten, resulting in a slight spreading while gradually reducing its contact angles (C).   

 

The average contact angle (between right and left side) and volume with respect of the 

time are saved in an Excel worksheet. All the cases where water drops exhibit high 

asymmetry after touching the surface, where they accidentally fall or too much time 

elapses between contact and recording start (drops quickly modify contact angles during 

the first seconds) are discarded. Due to the large number of measurements in this test, the 

highest and the lowest values are not considered in order to further discard eventual bad 

cases. In addition to these sources of error also evaporation of water and electrostatic 

attraction forces (between pending drop and PDMS before touching while lowering the 

syringe) contribute to alter the measurements. Quality camera, calibration procedure and 

recording conditions are fundamental settings to acquire precise angle measurements.  

 

 

3.2.7 Swelling test  
 

According to the literature PDMS severely struggles to absorb water even if completely 

immersed [36,37]. Parallelepipedon samples are prepared from bar scraps, paying attention 

to obtain similar dimensions (15x12x3,8 mm) so that they have similar weights (0,8 g on 

average). 5 samples for C1 and C10 and 6 samples for C4 are prepared and each of them is 

scaled before swelling. The selected samples are immersed separately in 300 ml of 

partially demineralized water (6,25 < pH < 7 measured by color-fixed indicator sticks, 

conductivity below 2 µS/cm, room temperature) and allowed to swell to equilibrium over a 
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1, 2 and 9 weeks period at room temperature. The samples lean on the bottom of large 

beakers so that they do not stick to each other (in order to maximize the potential 

exchange). Sample weight in the swollen state is determined by removing the sample from 

the water, gently drying the surface with a paper towel to remove any liquid remaining on 

the surface and recording the weight. A Mettler AE240 (Mettler Toledo, Switzerland) with 

a 10
-5

 g resolution is used in sample scaling. Each sample is then immersed again. Swelling 

Ratio is calculated as the ratio between the weight in the swollen and the sample in 

unswollen condition.  

One may hypothesize sample swelling might result different for samples presenting 

different faces. In fact some faces were directly exposed to Etox when sterilized, whereas 

other surfaces are created by blade cutting and they may show surface properties different 

from the previous ones. Thus the outcomes provided by this test cannot be considered 

completely straightforward and some outliers might be expected. 

 

 

3.2.8 In vitro cytotoxicity testing  
 

In vitro indirect cytotoxicity tests are performed at the Laboratory of Biocompatibility and 

Cell Culture “BioCell”, Department of Chemistry, Materials and Chemical Engineering 

“G. Natta”, Politecnico di Milano. This study aims at determining the possible release of 

cytotoxic products by PDMS samples exposed to Etox sterilization. In vitro cytotoxicity of 

the extracts of PDMS samples is assessed by using the L929 murine fibroblasts cell line 

(ECACC No. 85011425). The extracts were obtained according to standard ISO-10993. 

This standard asks for 0,2 g of specimen per case, therefore two samples (10 mm diameter, 

1 mm thickness, approximately 0,1 g each) for each combination of sample type and 

incubation time are required. PDMS samples are immersed in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin, maintaining a material/medium ratio of 0.2 g/ml. After 3 hours, 1 

and 3 days of incubation, medium extracts are collected and put in contact with L929 (cell 

density = 5×10
4 

cells/ml) in a 96-well tissue culture plate (TCPS).  Cells are cultured for 24 

hours and cell morphology is investigated by optical microscopy (Leica). As controls, 

complete DMEM incubated for 3 hours, 1 and 3 days and fresh complete DMEM, seeded 

with the same cell density for 24 hours, are considered. Tests were performed in triplicate. 
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3.3  Statistical Analysis  

 

The analysis of the collected data is integrated by statistical analysis: depending mainly on 

the number of samples, test results are analyzed with different statistical methods. They 

return the probability that two or more classes of materials (after different exposure to 

Etox) can be considered equal (further details about these concepts and comparisons are 

provided below in following subparagraphs). 

The statistical analysis is performed with Minitab, a software dedicated to data analysis 

and statistical methods. During each experiment data are initially stored in Excel 

worksheets and then copied into Minitab worksheets after their refinement. 

Each experiment generally deals with a different number of samples (due to problems in 

receiving specimens from the molding house). Thus a first distinction can be established 

between statistical analysis performed on several and few samples respectively. In the first 

case a t-test is generally suitable if distribution normality is assessed, whereas non 

parametric methods are more suitable for groups with few values.   

Distribution normality should not be evaluated exclusively according to the single group 

under inspection: in fact groups with few samples are more likely not to exhibit normality. 

Previous data and all available ones should be taken into account as well (or even included 

in certain cases) while judging dataset normality. In fact what matters is the distribution of 

the overall population, not the distribution of a specific sample group [38].  

In some tests certain values referring to different test parameters (e.g. different strain rates 

in uniaxial tensile test) may be put together in a unique bigger dataset. In order to use such 

a technique the comparison of mean values and standard deviations among the different 

groups should show similar values (at least mean values, better if also standard deviations 

are compatible).  

 

 

3.3.1 Analysis by t-test 

 

A 2-sample t-test can be employed in order to check whether the means of two 

independent groups are different (meaning they belong to different materials) or not. In the 

present work datasets are generally classified as independent, however certain experiments 

rely on measuring the same samples before and after certain treatments (e.g. sample weight 

before and after immersion in swelling test). In these cases groups are classified as 
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dependent, so that a paired test should be preferred instead. Nevertheless if comparison is 

established among groups exclusively after the same treatment (immersion), the groups 

result now independent (these example will be resumed later).   

When independence is assessed, normality of data groups has to be proved before applying 

t-test. Firstly one should remember there is no absolute minimum sample size for a t-test as 

this method was initially designed for small sample size and then extended to bigger ones. 

However as datasets get smaller, the test increases its sensitivity to the assumption that 

both samples belong to Gaussian populations. For large group of data (for the present work 

10 samples at least are decided, even if many statistical forums suggest 30 as effective 

minimum size) normality can be evaluated by Anderson-Darling Normality test, by 

Shapiro-Wilk elsewhere. If a data distribution cannot be assumed Gaussian (generally due 

to very far outliers or many values concentrating in extremities of the value range) a non 

parametric test is chosen (Mann-Whitney) as for small datasets. Instead if normality 

condition is satisfied a comparison among C1, C4 and C10 samples can be established by 

t-test.  

Two cases can be considered: the one-tailed and the two-tailed tests. The first one is used 

when the mean value of a data collection (µ1) is suspected to be higher/lower than the 

mean value of another collection (µ2). In this case only one side in the probability profile is 

taken into account (Fig.27A). On the other hand a two-tailed test focuses on understanding 

whether the mean value of a data collection equals the mean value of another collection. In 

this second case both sides of the probability profile are considered and the p value is split 

between both sides. (Fig.27B). 

 
Figure 27. In both cases, shaded regions indicate the area represented by the null hypothesis (µ1 = µ2), 

whereas unshaded regions represent the rejection of the null hypothesis: µ1 > µ2 for 1-tailed test (A), µ1 ≠ µ2 

for the 2-tailed test (B). In both cases a 95% confidence level is represented. To increase the stringency in 

rejection, an even higher confidence can be chosen even though 95% is generally the most used one.   
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The present study focuses on significative changes in material properties independently 

from the type of change, so the second case is chosen. The null hypothesis “µ1 = µ2” and 

the alternative hypothesis “µ1 ≠ µ2” are set, where µ1  represents the mean value of a data 

group (e.g.  1 sterilization with 500 mm/min strain rate) and µ2 the mean value of a second 

one (e.g. 10 sterilizations with 500 mm/min strain rate). Thus an F-test is performed to 

check whether the variances (the squares of the standard deviations) of the two groups can 

be considered equal (null hypothesis s1
2 

= s2
2
). If this condition is satisfied the d.o.f. 

(degrees of freedom) in the calculation result higher with respect of unequal variances.   

If F-test does not reject the null hypothesis  the formulas to employ for t value and d.o.f. 

calculations are: 

 

 

Instead, if equal variances cannot be assumed the following formulas are used (resulting in 

fewer d.o.f.): 

 

 

 

 

 

 

where µ is the mean value, s the standard deviation, s
2 

the variance and n the number of 

samples. Then the p value related to the calculated t (according to the d.o.f. rounded to the 

closer integer) is calculated. If this value (doubled due to the two-tailed t-test) is lower than 

the p value chosen for the analysis (0.05) the null hypothesis is rejected, otherwise it 

results that no difference between the two datasets can be inferred. In fact according to 

that, the discrepancy is due to random error only, because p = 0,05 represents a 95% 

probability that the samples are not different. Minitab directly checks dataset normality by 

“Normality Test”, performs the F-test by “Two Variances” and the t-test by “2-sample t”, 

reporting the corresponding p values (Fig.29). These analyses have to be enriched by 

statistical power calculation, which describes the probability that a statistical method 
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correctly rejects the null hypothesis when the null hypothesis is false. Generally an 80% 

power is required in order to have a significant statistical result. In Minitab this analysis is 

performed by the “Power” function submitting average sample size and standard deviation 

plus the difference between means. Although only high statistical powers can prove the 

reliability of statistical methods’ outcomes, powers are expected to result quite low in all 

the cases dealing with few sample datasets whose mean values differ slightly with respect 

to standard deviations’ size. In these cases for instance 5 or 10 samples are definitely not 

enough to reach the 0.8 threshold. Unfortunately many cases reports 50 samples at least (or 

even 100 sometimes) to reach the mentioned threshold (Minitab includes the estimation of 

sample size given a desired statistical power). This huge amount of specimens definitely 

exceeds the aims of the present thesis which wants to focus on a broad range of material 

investigations instead of focusing on few of them only. Indeed works whose purposes 

reside in getting stronger statistical reliability have to include more samples. 

 

3.3.2 Analysis by non parametric methods 

When few values are collected during a certain experiment, the assumption of normality 

results quite labile. Indeed common normality tests have little power to discriminate 

between Gaussian and non-Gaussian distribution in these cases. Some of them however are 

more effective for few data (e.g. Shapiro-Wilk test) than the common one (Anderson-

Darling test). Even though normality is inferred, using a parametric test (related to normal 

distributions) with a distribution which is actually not Gaussian generally results in an 

inaccurate P-value. For this reason in general non parametric methods are preferred for few 

values. Comparison between two independent distributions with few data can be performed 

by Mann-Whitney test (Fig.29), which returns a p value associated with distributions’ 

medians (instead of their mean values) [38]. In the previous paragraph parametric methods 

were said to be commonly integrated with statistical power, however in non parametric 

methods this analysis is less known and used even if some methods (e.g. Monte Carlo 

simulation) are mentioned in the literature [39]. As these methods are quite complex and 

Minitab does not include them an alternative procedure is preferred: the power associated 

with the t-test (even if the current method is a non parametric one) is reported beside the 

non parametric method’s p value.    
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3.3.3  ANOVA analysis  

 

This thesis deals with the comparison of 3 groups, however statistical methods listed so far  

allow the comparison of 2 datasets at a time only. ANOVA (Analysis of Variance) can  

compare multiple datasets (its theoretical explanation is beyond the interest of this 

paragraph). Although normality and homogeneity of variances have to be checked, 

ANOVA generally works quite well even when the assumption of normality is not valid 

[40]. ANOVA behaves as an exact test of the null hypothesis (no difference in level 

means) if the distributions of the errors satisfy 4 assumptions (constant variance, normality, 

null mean and independence) [40]. These 4 conditions can be checked by the residuals 

returned by Minitab (an example of this passage is illustrated in Fig.28). Finally ANOVA 

can be integrated with its statistical power (number of datasets, average sample number, 

standard deviation and maximum difference among means are requested). Actually 

statistical tests related to more than 2 datasets are suggested to employ a lower p value 

threshold (Bonferroni correction). However in the present thesis 0,05 will be used as 

threshold anyway. 

 
Figure 28. Analysis of the residuals returned after an ANOVA test performed on DMA data (Storage 

Modulus analysis for 1 Hz frequency). Normality and null mean are respected according to the left graphs, 

whereas the right graph suggests likelihood in variance equality. In order to assess this condition clearly the 

residual datasets are compared by F-tests which return p values higher than 0,25 in all the cases. Thus 

ANOVA method is expected to return a reliable outcome here as the assumptions result satisfied.   
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Figure 29. Minitab front panel presenting the mentioned functions and methods. Minitab can check 

distribution normality (A), perform an F-test between two datasets (B) and calculate the p value resulting 

from a t-test (C). This program implements the possibility to calculate the statistical power according to the 

chosen statistical method (D) and to employ non parametric methods (E). Finally ANOVA test is suitable for 

comparing more than two datasets together (F). 
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4  Results 

 

4.1    Uniaxial tensile test 

According to the great number of combinations between parameters and strain rates, each 

parameter is analyzed separately. Before listing all the considered parameters, one should 

remember that this material shows a very variable behavior which would require an 

amount of samples greater than that used in the present studies. However statistical power 

analysis evidences how in many cases the amount of specimens required to reach a 0,8 

statistical power would abundantly exceed 50 units according to the standard deviations 

induced by the variability in test outcomes. Thus results are not expected to appear 

completely straightforward if no great alteration is achieved. 

 

4.1.1    Ultimate Tensile Strength (UTS) 

Tab.4 summarizes the resulting UTS values for 500 mm/min strain rate which does not 

show a clear trend (Fig.30). The highest mean value belongs to C4, however standard 

deviations are too high to establish an effective comparison among the mean values. 

Statistical analysis is performed by both t-test and Mann-Whitney test, even if non 

parametric methods should be preferred because of the labile assessment of dataset 

normality (due to few samples as explained in paragraph 3.3.2). Both tests do not reject 

null hypotheses (Tab.5), returning high p values except for the comparison between C4 and 

C10 (which is higher than 0,05 anyway).  

  

 

  N 

Mean  StDev Median    

  

MW  t-t t-t  

(MPa)  (Mpa) (MPa)   p value p value power 

 C1 (UTS) 5 9,88 1,06 10,09   C1-C4 0,505 0,931 0,15 

C4 (UTS) 9 10,39 0,86 10,38   C1-C10 0,854 0,99 0,05 

C10 (UTS) 10 9,77 0,96 9,71   C4-C10 0,131 0,913 0,27 

 

 

Table 4 and Table 5. UTS means, StDevs and medians related to uniaxial tensile test with 500 mm/min 

together with p values and statistical powers. 
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Recorded UTS values for 100 mm/min strain rate (Tab.6) undergo the same statistical 

analyses described for 500 mm/min. C1 and C4 show similar mean UTS whereas C10 

presents a lower mean value. On the other hand standard deviations for C1 and C4 are 

quite big, thus nothing can be inferred with precision (Fig.30). As C10 presents a lower 

standard deviation equal to the difference between C1 (or C4) and C10 mean values, UTS 

in C10 might actually be different from the other two classes. Statistical analysis (Tab.7) 

agrees with this idea: both non-parametric test and t-test report high p value between C1 

and C4, whereas p value dramatically drops when comparing C10. However p values 

always result greater than 0,05.  

 

 

N 

Mean  

(MPa) 

StDev  

(Mpa) 

Median 

(MPa) 

 

  

MW  

p value  

t-t  

p value  

t-t 

power 

C1 (UTS) 8 10,21 1,09 10,01  C1-C4 0,958 0,946 0,05 

C4 (UTS) 8 10,17 0,90 10,36  C1-C10 0,175 0,168 0,33 

C10 (UTS) 6 9,46 0,68 9,23  C4-C10 0,081 0,132 0,34 

 

Table 6 and Table 7. UTS means, StDevs and medians related to uniaxial tensile test with 100 mm/min 

together with p values and statistical powers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  30. Comparison of UTS among C1, C4 and C10 groups according to the employed strain rate. 
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Thus the analysis of UTS depending on the strain rate shows different interpretations: in 

500 mm/min case differences in mean values are small with respect to standard deviations, 

in 100 mm/min case one material class (C10) is suspected to differ but statistical tests 

cannot reject the null hypothesis all the same.  

As both tests lack a high number of samples, comparisons and statistical methods result 

therefore quite labile. Then values associated with 100 mm/min and 500 mm/min are 

compared (e.g. UTS for C4 with 100 mm/min and 500 mm/min) in order to increase the 

number of dataset samples. Comparison between the mentioned datasets involves similar 

mean values and equal variances (F-test), plus distribution normality. Actually only C4 for 

100 mm/min strain rate is not Gaussian according to Shapiro-Wilk test, whereas it is 

Gaussian according to Anderson-Darling test. Nevertheless because of the already 

mentioned property of considering not only the dataset under inspection but the whole 

population, one can assume normal distribution for this case as well.  

Thanks to the proven compatibility between the data at the two strain rates, UTS datasets 

can be assumed to show similar behavior, therefore they can be merged. This method 

obviously just represents an approximation, however it helps results become statistically 

more reliable. Similarly, it is dutiful to mention how this approach cannot be repeated for 

the other 3 parameters which show different mean values for the two strain rates. After 

merging the three dataset couples (Tab.8), the sizes of datasets allow to employ only the t-

test. The 3 data groups obviously present normality (by Anderson-Darling test) and equal 

variances. Results of this third analysis (Tab.9) confirm no appreciable difference can be 

inferred between C1 and C4, whereas equality between C4 and C10 is rejected with a 55% 

power. This statistical power is quite distant from the required 80% but it suggests C10 

dataset may truly refer to a different material. The present method partially strengthens 

what was suspected from the analysis of 100 mm/min strain rate.  

 

 

N 

Mean  

(MPa) 

StDev 

 (MPa)  
 t-t 

p value 

t-t  

power 

C1 (UTS) 13 10,08 1,05  t-t C1-C4 0,561 0,09 

C4 (UTS) 17 10,29 0,86  t-t C1-C10 0,236 0,22 

C10 (UTS) 16 9,65 0,85  t-t C4-C10 0,042 0,55 
 

Table 8 and Table 9. UTS means and StDevs related to uniaxial tensile test after 100 mm/min and 500 

mm/min datasets are unified, with p values and statistical powers. 
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ANOVA tests are finally employed, returning 0,355 (SP = 0,17), 0,282 (SP = 0,24) and 

0,143 (SP = 0,37) for 500 mm/min, 100 mm/min and the two cases together respectively. 

The first two values confirm the weakness in demonstrating a change with few samples, 

whereas the third case confirms p value decrease and statistical power increase when more 

samples are employed in statistical analysis.   

Finally a comparison with the UTS reported on the datasheet has to be mentioned. All the 

listed mean UTS deal with values higher than 9,3 MPa so that a direct comparison of 

datasheet UTS with the recorded ones cannot be established. This disagreement is probably 

due to sample shape which is not exactly the one reported in the ASTM D412. In order to 

overcome this hitch, unsterilized dogbones with the same shape are employed (Tab.10). 

Their values can be immediately recognized to be much higher than all the other ones even 

if they are performed in the same laboratory environment (which however can present a 

slightly different temperature and humidity). Also in this case standard deviations are quite 

big, therefore direct comparisons are quite misleading to apply. However if we consider 

the two strain rates together for all the data (Tab.8 for C1, C4 and C10 and Tab.10 for the 

unsterilized samples), one may guess a decreasing curve as possible trend in UTS behavior 

depending on Etox cycles (Fig.31). Only for indicative purposes, ANOVA test applied to 

the four means and standard deviations returns a p value of  0,064 (SP = 0,58). This value 

is very close to the limit, however the differences in the values registered between 

sterilized and non-sterilized samples (in particular for C1 which should be reasonably quite 

similar to unsterilized specimens) have to be taken into account.  

 

 

 
N Mean (MPa) StDev(MPa) 

UTS (500mm/min) 6 10,56 0,74 

UTS (100mm/min) 4 10,60 0,81 

UTS (all) 10 10,58 0,73 

 

Table 10. UTS means and StDevs related to uniaxial tensile test for 100 mm/min and 500 mm/min strain 

rates on unsterilized dogbones.    
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Figure 31. The 4 columns (100 mm/min and 500 mm/min together) do not allow to infer any straightforward 

conclusion due to the high standard deviations. However a possible interpretation of the whole behavior 

might be a progressive drop in UTS when Etox exposure increases. 

 

4.1.2    Ultimate Elongation (UE) 

 

500 mm/min strain rate case (Tab.11) reports C4 mean values as the highest one and C10 

as the lowest one. C1 and C4 values are different but their high standard deviations 

(Fig.32) do not allow to infer any sure conclusion. Indeed statistical analysis never rejects 

null hypotheses as Tab.12 displays. Normality and equal variances are demonstrated for 

both 500 and 100 mm/min.  

 

  N 

Mean  StDev Median  

   

MW  t-t  t-t  

(%)  (%) (%) 

 
P value  p value power 

  C1 (UE) 5 5,10 0,59 5,21 

 
C1-C4 0,594 0,440 0,12 

C4 (UE) 9 5,34 0,49 5,33 

 
C1-C10 0,894 0,843 0,07 

C10 (UE) 10 4,98 0,54 5,05 

 
C4-C10 0,251 0,236 0,28 

 

Table 11 and Table 12. Ultimate Elongation means, StDevs and medians related to uniaxial tensile test with 

500 mm/min together with p values and statistical powers. 
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Figure 32. Comparison of Ultimate Elongation for 500 mm/min strain rate. 

  

Considering 100 mm/min strain rate (Tab.13), similar values are reported for C1 and C4 

whereas C10 exhibits a lower value (Fig.33). Even though standard deviation for C10 is 

smaller than the difference in mean values between C10 and C4, statistical approach 

(Tab.14) does not reject any null hypothesis. ANOVA tests in this case report p values of 

0,478 and 0,209 for 500 mm/min and 100 mm/min respectively (SP < 0,35). Actually 

ANOVA outcome for the second case is not even suitable as residuals do not satisfy the 

requirements. 

  

 

  N 

Mean  StDev Median  

 
  

MW  t-t  t-t  

(%)  (%) (%) 

 
P value  

p value power 

  C1 (UE) 8 5,67 0,58 5,43 
 

C1-C4 0,793 0,926 0,55 

C4 (UE) 8 5,69 0,49 5,77 
 

C1-C10 0,175 0,149 0,32 

C10 (UE) 6 5,23 0,44 5,06 
 

C4-C10 0,138 0,091 0,39 

 

Table 13 and Table 14. Ultimate Elongation means, StDevs and medians related to uniaxial tensile test with 

100 mm/min together with p values and statistical powers. 
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Figure 33. Comparison of Ultimate Elongation for 100 mm/min strain rate.  

 

As explained in paragraph  4.1.1 the method of merging values belonging to 500 mm/min 

and 100 mm/min datasets can be applied only if compatibility among datasets is assessed. 

In this case this procedure is not possible due to the difference in the average values 

between the two cases. 

 

4.1.3    Elastic Moduli 

E_lin values (Tab.15) do not involve the rejection of null hypothesis (Mann-Whitney test) 

according to the small differences for both 500 mm/min and 100 mm/min strain rates 

(Tab.16). Also ANOVA test reports values higher than 0,3 for both cases (SP < 0,25). An 

outlier is removed from the C10 group with 100 mm/min strain (see paragraph 4.7 for 

details about this technique). According to the proven distribution normality and equal 

variances, t-test is also employed reporting similar results. Thus test outcomes suggest a 

negligible effect by Etox on this parameter (Fig.34). 
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E_lin case N 

Mean StDev Median  

E_lin case 

MW t-test  

power 

(MPa) (MPa) (MPa) 

p 

value 

C1  

(500 mm/min) 5 4,05 0,09 4,02 

 C1-C4  

(500 mm/min) 0,182 0,30 

C4  

(500 mm/min) 9 3,97 0,10 3,95 

 C1-C10  

(500 mm/min) 0,462 0,12 

C10  

(500 mm/min) 10 4,01 0,10 4,01 

 C4-C10  

(500 mm/min) 0,391 0,57 

C1  

(100 mm/min) 8 3,84 0,10 3,85 

 C1-C4  

(100 mm/min) 0,270 0,19 

C4  

(100 mm/min) 8 3,79 0,08 3,81 

 C1-C10  

(100 mm/min) 0,510 0,15 

C10  

(100 mm/min) 5 3,80 0,05 3,79 

 C4-C10  

(100 mm/min) 0,826 0,32 

 

Table 15 and Table 16. E_lin means, StDevs and medians related to uniaxial tensile test for both strain rates 

with p values and statistical powers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Comparison among C1, C4 and C10 E_lin according to the employed strain rate. The graphs 

confirm the quicker the strain is, the stronger the elastic answer of the material results (registered elastic 

modulus increases). The lack of time to rearrange its structure results in the material showing a tougher 

answer in the first case. 
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Secant modulus (E_200) presents a similar situation (Fig.35) with small differences 

between mean values with respect to standard deviations (Tab.17).  Furthermore statistical 

analysis shows high p values in general for the Mann-Whitney test (Tab.18), whereas 

ANOVA test returns 0,681 for 500 mm/min strain rate and 0,468  for 100 mm/min strain 

rate (even if F test often rejects the hypothesis of equal variances among residuals) with SP 

< 0,20.  

 

E_200 case N 

Mean StDev Median  

E_200 case 

MW t-test 

power 
(MPa) (MPa) (MPa) p value 

C1 

 (500 mm/min) 5 4,69 0,15 4,70 

 C1-C4  

(500 mm/min) 0,790 0,06 

C4  

(500 mm/min) 9 4,70 0,09 4,71 

 C1-C10  

(500 mm/min) 0,327 0,12 

C10  

(500 mm/min) 10 4,73 0,07 4,74 

 C4-C10  

(500 mm/min) 0,488 0,11 

C1  

(100 mm/min) 8 4,33 0,12 4,36 

 C1-C4  

(100 mm/min) 0,345 0,14 

C4  

(100 mm/min) 8 4,30 0,06 4,31 

 C1-C10  

(100 mm/min) 0,847 0,07 

C10  

(100 mm/min) 5 4,35 0,07 3,39 

 C4-C10  

(100 mm/min) 0,107 0,36 

 

Table 17 and Table 18. E_200 means, StDevs and medians related to uniaxial tensile test for both strain 

rates with p values and statistical powers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Comparison among C1, C4 and C10 E_200 according to the employed strain rate. The graph is in 

accordance with Fig.34 with the grater strain rate inducing a higher elastic modulus.   
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4.1.4    Slippage estimation 

 

As explained in paragraph 3.2.1 slippage of dogbones extremities in the vises is a 

phenomenon which inevitably alters final results. Materials with high Ultimate Elongation 

are unfortunately more prone to this problem. Fig.36 and Tab.19 clearly illustrate the 

impact of slippage on the test: yellow lines (Fig.36A) indicate the edge of the clamps 

separating the blocked part from the unclamped one before the test is run. After the 180 

mm elongation the clamps are brought back to the starting position so that the dogbone is 

not anymore in tension. In contrast, a bending in the narrow part can be seen (Fig.36B). 

The drawn lines (yellow lines in Fig.36A) appear now shifted away from the claws as the 

red arrows indicate. Calculation by SketchUp (the software already mentioned in the 

calculation of strain at paragraph 3.2.1) shows that from each side a 2,7 mm portion of 

clamped extremity slips out of the clamp (when clamps come back to the original 

position). When the extension is reported to be 180 mm, the photo acquired at this moment 

shows a 10 mm extension related to the shift of sample extremities (the 2 parts of sample 

outside the portion delimited by the red arrows).  

 

  

Before extension 

 

180 mm extension 

 

After extension 

 

Slippage portion (per side) 

 

≈0 mm 

 

5 mm 

 

2,7 mm 

 

Table 19. Before the test is run the black straight line is approximately on the vise edge (Fig.36A), whereas it 

is not anymore along that in both moments when following photos are taken (Fig.36B).   

 

However one cannot consider these 10 mm as a whole contribution of slippage: indeed a 

certain percentage is actually related to the strain of the portion between the lines drawn by 

pen and the exact clamp edges. However assuming this contribution to be negligible so that 

all these 10 mm are ideally due to slippage, this phenomenon influences the 5,5 % of the 

whole strain (at 180 mm). With respect to the strain at rupture reported on the datasheet of 

MED-4860P  (525%) and assuming the 5,5% contribution to be constant after a minimum 

strain, this phenomenon might turn up to a 30% contribution (0,055*525%) overestimating 
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the real strain. According to that, one may consider this value (actually something less due 

to the neglected contribution explained above) as an error to take into account when 

looking at the calculated Ultimate Elongation. This calculation is merely indicative, 

therefore one may only take that into account as a partially affecting factor during result 

analysis. As the two elastic moduli deal with relatively small strains, slippage should not 

affect them significantly.  

 

 

Figure 36. Photos taken before and after the uniaxial tensile test, the same lines (along the vise edges) drawn 

by pen are indicated by yellow line (A) and by the 2 red arrows (B). One may notice the curved lines between 

the red arrows and the asterisks. The central sample portion between these two curved lines represents the 

part which exhibits approximately the same width when a huge extension (180 mm indeed) is reached. 

 

 

4.1.5   Compatibility with unsterilized samples 

In addition to the comparison performed for UTS , the same experiment employed to 

collect C0 UTS data is used to compare C0 and the sterilized samples.  The remaining 3 

parameters in uniaxial tensile test are therefore analyzed by adding the C0 terms to the 
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tables reported in the previous paragraphs. As already mentioned only 6 samples are 

employed for 500 mm/min strain rate, whereas 100 mm/min case deals with 4 unsterilized 

specimens.  

Ultimate Elongation for 500 mm/min (Tab.20) displays a situation similar to UTS at the 

same strain rate, whereas the same parameter for the second strain rate (Tab.21) results 

quite higher than both C1 and C4 (even though standard deviations are big).  Dealing with 

the elastic moduli great compatibility can be observed for E_lin at high strain rate and 

E_200 at both strain rates (Tab.22 and Tab.23).  Tangent modulus for slow deformation is 

definitely not compatible with C4 and C10 values according to their small standard 

deviations, instead C1 presents a higher standard deviation which would not return a p 

value < 0,05 in a statistical comparison.   

 

UE (500 

mm/min) 

Mean  StDev 
 

UE (100 

mm/min) 

Mean  StDev 

(%)  (%) 
 

(%)  (%) 

C0 (UE) 5,48 0,43 
 

C0 (UE) 5,95 0,43 

  C1 (UE) 5,10 0,59 
 

  C1 (UE) 5,67 0,58 

C4 (UE) 5,34 0,49 
 

C4 (UE) 5,69 0,49 

C10 (UE) 4,98 0,54 
 

C10 (UE) 5,23 0,44 

 

Table 20 and Table 21. Comparison among C0 and sterilized specimens in uniaxial tensile test for Ultimate 

Elongation. Left and right values refer to 500 mm/min and 100 mm/min strain rates respectively.  

 

E_lin case 
Mean StDev 

 E_200 case 
Mean StDev 

(MPa) (MPa) 
 

(MPa) (MPa) 

C0 (500 mm/min) 4,04 0,13 
 

C0 (500 mm/min) 4,64 0,10 

C1 (500 mm/min) 4,05 0,09 
 

C1 (500 mm/min) 4,69 0,15 

C4 (500 mm/min) 3,97 0,10 
 

C4 (500 mm/min) 4,70 0,09 

C10 (500 mm/min) 4,01 0,10 
 

C10 (500 mm/min) 4,73 0,07 

C0 (100 mm/min) 3,94 0,15 
 

C0 (100 mm/min) 4,32 0,08 

C1 (100 mm/min) 3,84 0,10 
 

C1 (100 mm/min) 4,33 0,12 

C4 (100 mm/min) 3,79 0,08 
 

C4 (100 mm/min) 4,30 0,06 

C10 (100 mm/min) 3,80 0,05 
 

C10 (100 mm/min) 4,35 0,07 

 

Table 22 and Table 23. Comparison among C0 and sterilized specimens in uniaxial tensile test for elastic 

moduli for both strain rates.  Left and right values refer to tangent modulus (E_lin) and secant modulus 

(E_200) respectively.  



57 
 

Apart from the small number of samples employed for C0 datasets, another fact affecting 

data outcomes for these groups may reside in the different sample stories. Unsterilized and 

sterilized groups are received in different moments so that materials are likely to be 

exposed to different conditions even if proper shelf life and shipping conditions are assured 

for them. 

According to the displayed comparison and taking into account the limitations reported 

above, one may assume the similarity between C0 and C1 also for all the other 

experiments. Indeed Ethylene Oxide sterilization is known not to alter appreciably the 

samples made of silicone which however is a generic way to refer to a wide class of 

materials.   

 

 

4.2    DMA 

Data are collected for a wide range of temperatures, therefore only two of them are 

employed (freezing point for water and human body temperature). The analysis of obtained 

thermograms reveals that 2 C1 samples out of 6 (2 couples of samples actually) generate 

graphs including intervals with zig-zag shape instead of a smooth curve (Fig.37). Even 

though the number of samples is already quite limited (only 6 samples per group), these 

two cases have to be discarded (even though one of them may be interpolated in the zig-

zag area, the resulting moduli would appear lower with respect to the other curves).  

Thus Tab.24 and Tab.25 display test outcomes for 0° C and 37° C temperatures 

respectively. These data generally reveal small differences in mean values with respect to 

standard deviations, or similar at the latest. Graphic comparisons among C1, C4 and C10 

show similar patterns with mean values slightly increasing with the number of cycles (but 

standard deviations have to be remembered to be big). Therefore instead of reporting the 

graphic comparisons for all the possible combinations (12 in total), only those returning the 

greatest and the lowest p values for ANOVA test (Tab.26) are graphically reported (Fig.38 

and Fig.39).  
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Figure 37. DMA thermograms related to three different frequencies. The curves generally appear smooth 

like the displayed shape, however for certain C1 samples, irregular parts can be seen.   

 

 

 

The choice of ANOVA test instead of a 2 dataset-comparison (Mann-Whitney in this case) 

is taken due to the experiment procedure which is known not to be extremely precise (due 

to the lack of control in clamping). Indeed instead of comparing 2 datasets at a time, an 

overall comparison may be more effective since the experiments gather many sources of 

errors and differences with respect to standard and instrument requirements. According to 

that a comparison between two datasets may enhance the sensitivity to errors when 

statistical comparisons are performed. 
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0° C 37°C 

 
N 

Mean 

(MPa) 

StDev 

(MPa) 

Mean 

(MPa) 

StDev 

(MPa) 

C1_1Hz 4 2,84 0,21 2,61 0,14 

C4_1Hz 6 2,86 0,19 2,66 0,11 

C10_1Hz 6 2,89 0,16 2,73 0,14 

C1_50Hz 4 3,40 0,25 2,94 0,16 

C4_50Hz 6 3,45 0,23 2,99 0,11 

C10_50Hz 6 3,47 0,18 3,08 0,15 

C1_100Hz 4 3,53 0,27 3,01 0,16 

C4_100Hz 6 3,58 0,24 3,07 0,12 

C10_100Hz 6 3,59 0,18 3,15 0,16 

 

Table 24. Mean values and standard deviations for E’ (storage modulus) depending on sample type, 

frequency and temperature.      

 

 

  
0° C 37°C 

 
N 

Mean 

(MPa) 

StDev 

(MPa) 

Mean 

(MPa) 

StDev 

(MPa) 

C1_1Hz 4 0,409 0,028 0,218 0,017 

C4_1Hz 6 0,437 0,030 0,227 0,014 

C10_1Hz 6 0,439 0,022 0,232 0,013 

C1_50Hz 4 0,628 0,044 0,362 0,024 

C4_50Hz 6 0,654 0,035 0,376 0,018 

C10_50Hz 6 0,667 0,029 0,384 0,021 

C1_100Hz 4 0,669 0,050 0,392 0,025 

C4_100Hz 6 0,694 0,037 0,407 0,024 

C10_100Hz 6 0,707 0,028 0,413 0,020 

 

Table 25. Mean values and standard deviations for E’’ (loss modulus) depending on sample type, frequency 

and temperature.  
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Figure 38. Comparison among E’ values at 0° C for 1 Hz frequency. The ANOVA p value associated with 

this case is the greatest one (0,919) among the 12 cases.  

 

 

 

Figure 39. Comparison among E’’ values at 0° C for 1 Hz frequency. The ANOVA p value associated with 

this case is the lowest one (0,193) among the 12 cases.  
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ANOVA test is run assuming equal variances and obtained p values never allow null 

hypothesis rejection as one may already infer from Tab.24 and Tab.25. Mann-Whitney test 

(Tab.27) is performed briefly also for those cases reporting a p value < 0,3 for ANOVA 

test. As the trend is similar for all the combinations and the relation C1 < C4 < C10 is 

always respected, only C1 and C10 datasets are compared. Resulting p values are still 

insufficient to reject null hypothesis also in this case.  

 

 
1 Hz 50 Hz  100Hz  

 
p value SP p value SP p value SP 

E' (0°C) 0,919 0,06 0,903 0,07 0,915 0,06 

E' (37°C) 0,338 0,19 0,319 0,22 0,316 0,20 

E'' (0°C) 0,193 0,26 0,273 0,25 0,318 0,22 

E''(37°C) 0,353 0,20 0,298 0,24 0,370 0,19 

 

Table 26. Results (p values and standard deviations) of ANOVA tests (assuming equal variances) for E’ and 

E’’ with respect to temperature and frequency.  

 

Parameter Frequency 

ANOVA   

p value 

ANOVA 

SP 

MW 

p value 

MW  

SP 

E'' (0°C) 

 

1 Hz 0,193 0,26 0,134 0,39 

50 Hz 0,273 0,25 0,199 0,34 

E''(37°C) 50 Hz 0,298 0,24 0,336 0,27 

 

Table 27. All the cases exhibiting a p value lower than 0,3 for ANOVA test are repeated (only C1 and C10 

are compared) with Mann-Whitney test. 

 

  

4.3   Hardness 

Collected data are used to calculate the mean values and standard deviations summarized 

in Tab.28 and illustrated in Fig.40. According to the graph, hardness increases with the 

exposure to Etox even though less than 1 Shore A difference is suggested. All the three 

values are higher than 60 Shore A, which is the value indicated on the material datasheet.  
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N Mean (Shore A) StDev (Shore A) 

C1 18 61,389 0,431 

C4 18 61,736 0,397 

C10 18 62,014 0,481 

 

Table 28. Hardness data (mean values and standard deviations) for the three material classes.  

 

 

Figure 40. Hardness for C1, C4 and C10 groups. Even though standard deviations are quite big, the trend 

suggests that Etox exposure entails hardness increase. 

 

Statistical analysis shows that all the distributions can be considered normal and F-tests do 

not reject null hypotheses. Thus 2-sample t-test is employed, its outcomes for the three 

sample comparison are reported in Tab.29. As its first column shows, C1 has certainly a 

different mean value with respect to the other two groups. Statistical powers in 

comparisons dealing with C1 give reliability to this consideration. On the other hand the 

comparison between C4 and C10 reports a p value slightly higher than 0,05 and the 

statistical power does not reach 50%. This behavior is unsurprising according to the large 

standard deviations of C4 and C10 with respect to the difference between their mean 

values. According to that the null hypothesis is not rejected but this result lacks reliability 

and even more samples should be employed (Minitab estimates 40 samples for 80% 
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power). Thus ANOVA test is performed as well in order to obtain a whole analysis: 

returned p value is approximately 0 with a statistical power of 97%.  

 

 
P value Power 

t-test C1-C4 0,017 0,69 

t-test C1-C10 0 0,98 

t-test C4-C10 0,067 0,45 

 

Table 29. Statistical analysis by t-test for C1, C4 and C10 hardness values. 

 

4.4   DSC  
 

Test results given from the first test group show a common pattern (Fig.43) with a big 

negative (endothermic) peak around -44° C whereas the typical step used for Tg 

recognition is not visible. The second test group exhibits a different shape where also the 

Tg step in the baseline is present in addition to the endothermic peak (Fig.47). The 

differences between the two cases reside in the different cooling rate according to 

literature. Past studies dealing with PDMS analysis by DSC [30,41,42] report pure PDMS 

has thermograms (in the heating curve) quite easy to analyze due to sharp changes in the 

line (Fig.41), whereas crosslinked PDMS is more prone to show only the endothermic peak 

related to Tm2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 41. Typical heating curve thermogram for pure PDMS. One can notice the presence of 5 baseline 

changes. The step in the baseline (Tg) due to glass transition and an exothermic peak (Tc) because of the 

cold crystallization are the first ones from left to right. In particular the second transition is due to chain 

reaccomodation when they reach enough mobility. Consecutively there are two melting (endothermic) peaks, 

Tm1 and Tm2 (whereof only the latter is quite big) and finally a second small exothermic peak (Tc*). 
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Cooling rate is known to strongly affect the degree of crystallinity of semicrystalline 

materials [30,41]. In fact a temperature rate smaller than 10°C/min is generally not 

sufficient to make these transitions clear in the thermogram. Due to crosslinkages, slow 

cooling results in amorphous regions having the time to arrange themselves into crystalline 

structures during cooling procedure, with crosslinkages acting as guides to crystallization. 

Thus slow cooling process enhances the crystallinity, on the contrary quick cooling (rate 

higher than 10°C/mm, a very good value is 50°C/min) leads to the formation of an 

amorphous glass. That happens because amorphous areas have not the time to rearrange 

themselves before getting brittle. Thus the structures fastest in assembling and growing 

(rather than those with the lowest free energy) lead the process influencing the final 

crystallinity. As described a quick cooling (quenching) generally allows the detection of 

the step in the baseline whereas the exothermic peak for cured PDMS is reported to be 

negligible (Fig.42) [30]. These temperature transitions are now visible due to the 

amorphous parts which turn into rubber-like state (low energy status) from a brittle 

disorganized structure. In fact, as soon as temperature gets close to Tc, chains can arrange 

to form crystallites as they recover enough mobility due to viscosity decrease [30]. 

 

 

 

 

 

 

 

 

 

 

 Figure 42. Influence of cooling rate on the resulting thermogram (heating curve) with the same heating rate 

in all the three cases. The first graph does not show neither any step in the baseline nor the Tc peak. 

Quenching (often 50°C/min cooling rate is used) allows the detection of the two elements thanks to the 

impossibility of rearranging chains in a well-organized manner. The presence of the Tc peak suggests this 

PDMS has low content of silica. 
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4.4.1 First DSC group (slow cooling) 

 

The first test group is used to calculate the enthalpy associated with the endothermic peak 

(melting) and the Tm (temperature in correspondence of the peak tip). In fact all the 

thermograms (Fig.43) obtained during the first DSC show a single endothermic peak in 

correspondence of the Tm (for pure PDMS two peaks Tm1 and Tm2 appear instead). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Thermogram (heating curve) of MED-4860P after equilibration (slow cooling) to -150° C. The 

only element which can be easily recognized is the endothermic peak (melting transition, Tm) around -44°C. 

Tg step in the baseline cannot be seen clearly (even though baseline shows some tremblings in that area). 

 

 

Tab.30 displays compatibility for Tm among the three groups (Fig.44) with an average 

value of approximately -43,75° C, in fact ANOVA p value results 0,586 (SP = 0,18).   

 

 

 
N 

Mean Tm 

(°C) 

StDev 

(°C) 

C1 6 -43,62 0,47 

C4 7 -43,87 0,38 

C10 7 -43,83 0,21 

 

Table 30. Tm for C1, C4 and C10 calculated as the temperature in correspondence of the tip of the 

endothermic peak. 
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Figure 44. Comparison of Tm among C1, C4 and C10 (with slow cooling).  

 

 

 

Figure 45.  Universal Analysis 2000 can calculate the area (enthalpy) and two temperatures associated with 

the peak once the user sets the extremities of integration. As the two parts of the baseline before -70° C and 

after -30° C always appear aligned, the area is calculated with a linear segment (as element closing the 

area) connecting these two extremities.  
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On the other hand as Fig.45 displays, the integral of the peak with respect to the baseline 

(once two reasonable extremities are set) returns the value of the enthalpy. Indeed since 

DSC test is run at constant pressure, enthalpy changes equal the heat flow [43]. In order to 

enhance the compatibility among all the measurements, two extremities are set for all the 

integrations. For this purpose -70° C and -30° C temperatures are chosen since the two 

parts of the curve outside this integration interval always appear well aligned (Fig.45).  

Tab.31 lists the obtained results for enthalpy in correspondence of the melting transition. 

Only ANOVA test is applied, returning a p value of 0,967 (SP = 0,05). Also Fig.46 shows 

how no specific differences among the different Etox exposures are seen.  

 

 

 
N 

Mean 

(W/g) 

StDev 

(W/g) 

C1 6 14,78 0,28 

C4 7 14,76 0,18 

C10 7 14,75 0,19 

 

 Table 31. Enthalpy data for the Tm peak in the first DSC group (slow cooling).  

 

 

 

 
 
Figure 46. Comparison of C1, C4 and C10 enthalpies (for melting peak) in the first DSC group (slow 

cooling). 
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4.4.2 Second DSC group (fast cooling) 

The tests associated with quenching show a different thermogram shape (Fig.47) for the 

heating curve, cooling curve is reported in this case as well. Melting transition is similar to 

the previous case but Tg step in the baseline can now be recognized whereas the cold 

crystallization (exothermic) peak on the right of the Tg step does not appear. However the 

crystallization transition can be seen in the cooling curve (exothermic peak) which 

furthermore reveals the Tg step as well (however the Tg calculation is run on the heating 

curve’s step only since it results easier).  

 

Figure 47. Thermogram of MED-4860P after fast cooling (30° C/min) up to -160° C. The cooling curve (the 

upper one) reveals the crystallization peak and the Tg step, whereas the heating curve (the lower one) shows 

both the Tm peak (around -44°C) and the Tg step in the baseline (approximately -134° C).The latter change 

in the baseline is better shown in Fig.48.  

 

Similarly to the description of enthalpy calculation, Universal Analysis 2000 allows the 

identification of the glass transition temperature (Fig.48) once two interval extremities are 

set (so that they include a visible step). 3 temperatures are indicated along the step shape 

but only the central one (halfway point) is analyzed.  
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Figure 48. Particular of the heating curve in a thermogram related to quenching. The baseline exhibits a 

drop with the two parts separated by the step which are horizontal. This element could not be found in the 

thermogram with slow cooling rate instead. 

 

 

Thus Tab.32 and Tab.33 report the analyzed data and their statistical analysis. ANOVA 

test is performed as well returning a 0,924 p value (SP = 0,06). As both Fig.49 and 

statistical analysis suggest the Tg parameter is not likely to change.  

 

 
N 

Mean 

Tg (°C) 

StDev 

(°C) 

  
t-test Power 

C1 (Tg) 10 -133,81 0,22 

 
C1-C4 0,919 0,05 

C4 (Tg) 10 -133,82 0,41 

 
C1-C10 0,655 0,06 

C10 (Tg) 10 -133,86 0,32 

 
C4-C10 0,806 0,05 

  

Table 32 and Table 33. Mean values and standard deviations for Tg related to fast cooling process, together 

with p values and statistical powers. 
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Figure 49. Comparison among C1, C4 and C10 based on their Tg. 

 

 

Focusing on melting transition, the calculations of the enthalpy (with the same procedure 

described for the first DSC group) associated with the melting peak and the Tm are 

repeated in this case as well. Enthalpy reveals C4 and C10 with comparable variances, 

whereas C1 has a much higher one. Outlier test (Dixon’s r11) is performed but it does not 

allow the removal of potential outliers (p value= 0,15). Indeed this p value cannot be 

extremely low as 2 values spread on the lower interval extremity so that the lack of 

rejection makes sense. However if also C4 and C10 values are included in this outlier test 

(since they display values concentrating in the 13,75-14 W/g interval as C1 mainly does) a 

Dixon’s r22 test can be performed as well (similar approach is carried out for swelling 

data). In this case the lowest value is recognized as outlier (Fig.50). Fusion between C1, 

C4 and C10 datasets for such purpose is certainly not straightforward since these datasets 

are inspected to evaluate the potential difference among them. 
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Figure 50. Dixon’s r22 outlier test (suitable for datasets with more than 14 samples) for all the values 

together (dealing with the enthalpy of the melting peak). The lowest dot is recognized as outlier with respect 

to the selected dataset (30 values). Also the second dot on the left is quite far from the other ones and may 

therefore be suspected as outlier too. However taking two outlier tests sequentially has already been 

mentioned not to be recommended.    

 

Depending on what mentioned above, Fig.51 reports the three canonical cases plus two 

datasets (C1* and C1**) where suspected outliers are removed. Without the two lowest 

values (C1**) the variances among the three groups results compatible.   

 

 
 

Figure 51. Boxplot comparison among the three canonical cases (C1, C4 and C10) with the addition of C1* 

(the lowest value is removed) and C1** (the lowest two values are removed) datasets for the enthalpy 

associated with the melting peak. 
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Tab.34 shows the values for the five mentioned datasets. According to the high number of 

groups, ANOVA test is performed on the three possible combinations: C1-C4-C10, C1*-

C4-C10 and C1**-C4-C10 (Tab.35). Actually for the first comparison the residuals 

struggle to satisfy ANOVA requirements. Finally t-test is performed among C1**, C4 and 

C10 datasets (Tab.36). Both these methods fail in rejecting the null hypothesis even though 

p values are generally close to 0,05.  

 

 
N 

Mean Enthalpy 

(W/g) 

StDev 

(W/g) 

C1 10 13,68 0,49 

C1* 9 13,80 0,33 

C1** 8 13,88 0,22 

C4 10 14,00 0,15 

C10 10 13,85 0,21 

 

Table 34. Mean values and standard deviations of the enthalpy associated with the melting peak in the 

second DSC group (fast cooling). For the C1 case the three datasets listed previously are reported. 

 

 

 

ANOVA 

p value SP 

  

t-test     

p value SP 

C1-C4-C10 0,067 0,57 

 
C1**-C4 0,181 0,25 

C1*-C4-C10 0,103 0,36 

 
C1**-C10 0,726 0,06 

C1**-C4-C10 0,157 0,19 

 
C4-C10 0,068 0,42 

 

Table 35 and Table 36. Statistical analysis on melting peak enthalpy by ANOVA test employing different C1 

datasets and by t-test (C1** is used for samples sterilized once).  

 

 

The second parameter dealing with the melting transition is the peak temperature Tm 

(Fig.52). C10 dataset presents a value which is estimated to be an outlier (Dixon’s r11 test 

with p value of 0,006), however C1 shows a similar behavior even if outlier test p value is 

not lower than 0,05. Merging all the datasets as described for the previous parameter 

returns C10’s suspected value not to be recognized anymore as outlier. Indeed the test 

returns a PV =  0,148 which however is still quite low and labile considering the employed 

procedure. ANOVA test is therefore applied twice: in case the outlier is removed it returns 
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PV = 0,361 (SP = 0,42) or PV = 0,226 (SP = 0,23) otherwise, even though in the second 

case (Tab.37) the requirements for residuals are not well satisfied. Because of the lack of 

normality in C10 dataset (with the potential outlier), Mann-Whitney test is applied as well 

(Tab.38): p values never allow null hypothesis rejection (even if for C4-C10 comparison p 

value is really close to the threshold).  

  

    
 
 

Figure 52. Boxplot comparison among Tm in the three groups. In correspondence of C10 one can notice the 

asterisk above which suggests the presence of an outlier. 

 

 

 

 
N 

Mean Tm 

(°C) 

StDev  

(°C) 

  

MW  

p value SP 

C1 10 -43,92 0,41 

 
C1 vsC4 0,212 0,16 

C4 10 -44,12 0,50 

 
C1 vs C10 0,623 0,15 

C10 10 -43,74 0,42 

 
C4 vs C10 0,054 0,42 

 

 

Table 37 and Table 38. Mean values and standard deviations of Tm (C10’s outlier not removed) and 

statistical analysis (by Mann-Whitney test as C10 dataset with the potential outlier is not normal). In case 

one employs C10 without the outlier test outcomes are similar to the displayed data, with p values always 

higher that 0,05. 
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Finally the analysis of the positive peak in the cooling curve is performed, focusing on 

transition enthalpy and peak temperature. A preliminary smoothing (0,75° C resolution) is 

applied for enthalpy calculation as many thermograms report some trembling or small 

peaks on their left side (Fig.53). Quick attempts demonstrate smoothing with such a 

resolution does not influence significantly enthalpy calculation for already smooth peak. 

 

 

Figure 53. The peak presents some irregularities on its left side (left graph), thus a 0,75° C resolution 

smoothing is applied in order to obtain a more regular shape (right graph) in correspondence of these 

elements. Transition enthalpy is calculated as the area of the peak delimited by a horizontal line (aligned 

with the quite straight line on the right of the peak). As the left extremity of integration is often in 

correspondence of trembling regions in the cooling curve, the smoothing should help regularize the obtained 

area.  

 

 

Firstly peak enthalpy is investigated (Tab.39 and Fig.54) showing variances which are 

definitely not suitable to be considered equal. ANOVA test is initially applied, returning a 

p value of 0,044 (SP = 0,59). According to the graph, Etox exposure increases the enthalpy 

associated with this transition.  
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N Mean (W/g) StDev (W/g) 

C1 10 11,08 0,65 

C4 10 11,23 0,15 

C10 10 11,50 0,28 

 

Table 39. Mean values and standard deviations for enthalpy associated with the crystallization peak in the 

cooling ramp.  

 

 

 

Figure 54. Comparison between C1, C4 and C10 enthalpies associated with the crystallization peak in the 

cooling curve. 

 

 

 

However the strong discrepancies among variances in the residuals of ANOVA suggest to 

include t-test (Tab.40) in the analysis (datasets are normal). C1 (whose standard deviation 

is large) and C4 reveal a high t-test p value, meaning the difference in the three datasets 

may be ascribed also to C10 dataset. In fact t-tests including C10 dataset return p values 

lower or really close to the threshold, making the strong difference in variances not the 

only possible reason for low p values. Indeed t-test returning low p values show really 
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similar p values even when equal variances are assumed and the comparison between C4 

and C10 presents a low p value with a considerable SP. Therefore statistical methods 

confirm what Fig.54 visually suggests: even though C1 and C4 show different variances, 

they are the only datasets between whom compatibility can be assumed.  

 

 

 

p 

value SP 

C1 vs C4 0,497 0,12 

C1 vs C10 0,087 0,47 

C4 vs C10 0,019 0,76 

 

Table 40. Statistical analysis results by t-test on enthalpies associated with the crystallization peak in the 

cooling curve. 

 

Finally the temperature in correspondence of this peak is investigated. As Tab.41 and 

Fig.55 reveal, this parameter displays strange outcomes: C4 dataset is not compatible with 

C1 and C10 and furthermore Minitab suggests the presence of two outliers for it. These 

outcomes do not allow to infer any particular interpretation for the parameter evolution. 

Obviously ANOVA returns a PV = 0 (SP = 0,95) even though equality among variances 

and null mean error are barely satisfied.  

 

 
N 

Mean 

(°C) 

StDev 

(°C) 

C1 10 -81,74 0,91 

C4 10 -83,72 0,76 

C10 10 -81,46 1,50 

 

Table 41. Mean values and standard deviations for Tc (cooling curve). 
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Figure 55. Boxplot comparison of Tc (cooling curve) for C1, C4 and C10 datasets. C4 appears with two 

outliers and a variance smaller than the other two datasets. 

 

 

4.5 ATR-FTIR  

Spectra acquired by this technique are shown in Fig.56. The graph shows good 

overlapping, in particular for the three big peaks on the left (790, 1012 and 1259 cm
-1

 

respectively) whereas the 2962 cm
-1

 peak appears too weak to infer directly good 

overlapping. As the differences among the 3 samples for these wavenumbers appear very 

small in the graph, no alteration may be supposed because eventual changes would be 

expected to be already visible in this graph. However some parts clearly show trembling 

and furthermore some discrepancies may be hidden by the employed scale resolution). In 

order to quantify these potential differences and check spectra overlapping in 

correspondence of peaks Fig.57 is created. This graph displays the ΔAbsorbance among 

spectra with respect to wavenumber, with C1 spectrum chosen as reference so that 

differences between the reference and C4/C10 spectrum can be calculated (their absolute 

values are reported). 
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Figure 56. ATR-FTIR spectra for the three samples. The three spectra overlap very well in correspondence 

of the three strong peaks in the first part of the graph, whereas trembling can be clearly seen in two intervals 

(2000-1325 cm
-1

 and 3950-3450 cm
-1

). These parts of the spectra have not to be ascribed to PDMS 

properties, instead C02 and H2O are responsible for them. Background acquisition tries to limit as much as 

possible these undesired contributions which are better contrasted by in vacuum procedure. 

 

 
 

Figure 57. C4 and C10 Absorbances are subtracted from C1 spectrum (taken as reference) and the resulting 

differences are expressed as absolute values. In addition to the trembling regions at 2000- 1325 cm
-1

 and 

3950-3450 cm
-1

, one may notice the distance (approximately 0,004) between the 2 baselines of this graph.  
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In this graph 2000-1325 cm
-1

 and 3950-3450 cm
-1

 intervals exhibit the biggest 

discrepancies and variability. However Fig.56 indicates these parts correspond to almost 

null Absorbance where no peak is present. In fact this small irregular signal is ascribed to 

water. Background acquisition prior to sample investigation (which is then subtracted) 

allows the reduction of such effect, nevertheless a better method is represented by 

measurements in vacuum. Unfortunately the ATR-FTIR setup available in the department 

where the analysis is carried out does not incorporate this possibility. Finally also in 

proximity of 2300-2400 cm
-1

 interval one can see the presence of two-headed peaks. This 

phenomenon is related to CO2 which results tricky to avoid completely. In both cases the 

respective influencing substances are not constant with respect of time (they will be listed 

in the next lines). Firstly the nature of the peaks and the analysis of the spectrum will be 

presented, then the comparisons among some peaks will be listed.  

Beside of the already mentioned peaks, weaker peaks can be detected: on the sides of the 

790 cm
-1

 peak 3 small peaks are visible at 663, 701 and 864 cm
-1

, whereas the 1075-1055 

cm
-1 

interval contain a big peak (approximately 0,34 absorbance) which partially merges 

with the 1010 cm
-1

 peak (Fig.58 and Fig.59). 

 

Figure 58 and Figure 59. Particulars of ATR-FTIR spectrum for the C1 sample inside the 1300-900 cm
-1

 and 

900-650 cm
-1

 intervals. The greater scale resolution in wavenumber allows to visualize weak peaks around 

the stronger ones.  Peaks which are close each other tend to partially merge or slightly lose their sharpness. 
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In order to ease the comprehension of the bonds and molecular vibrations mentioned 

hereafter, Fig.60 (a particular of Fig.5) and Fig.61 are reported.  

 

 

 

 

 

 

 

 

 

 

Figure 60. Chemical structure of a generic crosslinked PDMS (obtained by vinyl-functionalized chains) 

displays the bonds which can contribute to peaks into the FTIR spectrum: Si-CH3 , Si-O-Si , Si-CH2-Ch2-Si , 

CH3 , Si(CH3)2O and their eventual sub-grouping.  

 

 

 

 

 

Figure 61. Main molecular vibrations described in the present paragraph. Rocking and scissoring are  

particular types of bending, in fact many sources generally refer to bond “bending” without specifying 

exactly which movement is performed (in addition to the already mentioned ones also twisting and  wagging 

exist). 
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The isolated peak on the right (2962 cm
-1

) represents the asymmetrical stretching mode in 

methyl groups (two C-H bonds of the methyl group are extending while the third one is 

contracting) [44]. Si-CH3 can be recognized by the sharp peak at 1259 cm
-1

 which 

generally appears together with another one or more strong peaks included within the 865-

750cm
-1 

interval [45]. In this case this description matches the high 790 cm
-1

 peak. A weak 

860 cm
-1 

peak is indicated as effect of Si(CH3)2O [45], indeed a small peak can be seen 

(then slightly shifted) at 864 cm
-1

. 

Siloxanes can be recognized in general by the 1300-1000 cm
-1

 interval in their spectrum. In 

fact Si-O-Si (mainly due to its stretching) entails one or more very strong peaks (1010 cm
-1 

peak) inside this range. However the longer and more branched the chains are, the more 

superimpositions appear and the more complex this part of the spectrum gets. Disiloxanes 

structure (R-Si-O-Si-R) are pointed to generate a signal in 1080-1040 cm
-1

 whereas 1110-

1050 cm
-1

 can be related to Si-O-C stretching [45,46]. On the right side of the highest peak 

one may indeed notice the presence of another peak (or even more) around 1055-1075cm
-1

. 

This spectrum shape is in accordance with what previously found in FTIR analysis 

literature. One may suspect the presence of something else between the 1075-1000 cm
-1

 

band and the 1259 cm
-1

 peak as the spectrum does not reach the null value immediately 

showing a bend instead (approximately at 1125 cm
-1

). Indeed the 1350-1150 cm
-1 

interval 

is reported to express out-of-plane bending of CH2 (wagging and twisting). Thus probably 

some weak bands (absorbance < 0,1) superimpose to the spectrum in the 1250-1100 cm
-1

 

interval [44].  

The wavenumbers listed so far do not include the 2 weak and unsharp peaks on the left 

side of the spectrum and the previously mentioned trembling already ascribed to H2O and 

CO2. Indeed trembling in 3950-3450 cm
-1

 can be explained by the symmetrical (3652 cm
-1

) 

and asymmetrical (3756 cm
-1

) stretching by H2O, whereas trembling in 2000- 1325 cm
-1

 is 

generated by H2O scissoring (1596 cm-
1
) and CO2 symmetrical stretching (1340 cm

-1
). The 

small peak at 661 cm
-1

 and the small two-headed group (2341 and 2360 cm
-1

) can be 

explained by CO2 scissoring (665 cm
-1

) and CO2 asymmetrical stretching (2350 cm
-1

) [44].   

Then the only peak still lacking of explanation is at 701 cm
-1

. Literature lists methyl 

rocking (730 cm
-1

) and CH2 rocking (720 cm
-1

) peaks occurring close to the recorded peak. 

However these values do not correspond exactly to the reported wavenumber in the 

spectrum, even if the proximity with other peaks (with partial merging as possibility) may 
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induce a 20 cm
-1

 shift. Another possible interpretation resides in the Cis-CH out-of-plane 

bending for alkenes presented as a wide peak at 700 cm
-1

. The description of the peak 

perfectly matches the recorded spectrum even if Fig.60 does not display any C=C bond. 

However the reaction reported in Fig.5 shows how the siloxane oligomers present carbon-

carbon double bond extremities which are used to connect to the crosslinking agent. Then 

if some oligomers remain unchained at one extremity (or they remain completely 

unchained exhibiting two free extremities instead of only one) they keep the C=C bond (it 

does not turn into a single bond) which allows the CH vibration previously described.    

 

 

Wavenumber (cm-1) Appearance Bond 

661 weak peak CO2 

701 weak peak CH in C=C 

790 strong peak Si-CH3   

864 weak peak Si(CH3)2O  

1010 strong peak Si-O-Si 

1080-1040 hidden peak R-Si-O-Si-R ; Si-O-C 

1125 hidden peak CH2 

1259 strong peak Si-CH3   

2000-1325 trembling H2O, CO2 

2360-2341 two-headed weak peak CO2 

2962 weak peak CH3 

3950-3450  trembling H2O 

 

Table 42. Summary of the listed recognized bonds with the description of their appearance and related 

wavenumber. 

 

 

 

Fig.57 does not give any idea about the relative magnitude of the spectrum differences (the 

ratio between difference and spectrum value for a certain wavenumber). As the elements 

this analysis focuses mainly on are spectrum peaks, the differences in correspondence of 

the main ones are divided by the respective C1 peak’s value (Tab.43). This way the 

dissimilarities among peaks can be better estimated instead of dividing all the 

discrepancies by a unique value. 
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wavenumber  

(cm
-1

) 

C1 

Absorbance 

ratio C1-C4 

(%) 

ratio C1-C10 

(%) 

790 0,419 1,260 0,372 

1010 0,493 1,232 0,462 

1259 0,194 2,621 0,833 

2962 0,043 10,081 1,702 

 
 

Table 43. The 4 strongest peaks in the spectra are investigated. C1, C4 and C10 values are measured in 

correspondence of each peak and the difference between C4 or 10 and C1 (reference) are divided by C1.   

 

 

The three strong peaks (the first three ones) report a variation percentage lower than 3 % 

(and often even 1%) so that this step confirms what already inferred from Fig.56 where the 

three spectra seem to overlap. However the fourth and small peak at 2962 cm
-1

 displays a 

10% change with respect of C1. This value may be considered relevant or still insufficient 

to assess a change depending on some interpretations.  Indeed 10% generally represents a 

value which should not be neglected, however part of this difference may be ascribed to 

the distance between C1 (similar to C10) and C4 baselines. A certain gap lasts for the 

whole wavenumber axis (approximately 0,006 in the left part of the graph and 0,04 in the 

right one), in particular on the two sides of the fourth peak (3100-3000 and 2900-2800   

cm
-1

) its mean value equals 0,0044 (calculated by the differences between C1 and C4 

spectra in these ranges). The gap between C1 and C10 at 2062 cm
-1 

results 0,0043 which 

equals the average gap between the two baselines on the sides. Then this difference should 

be ascribed mainly to this reason.  

One may claim the same procedure should be repeated for the other peaks as the same 

factor may influence the estimation of the overlapping. However before doing that the 

relevance of peak intensity has to be underlined: the reported change variation is weighted 

more for weaker peaks with respect to stronger peaks when the gap between C1 and C4 

curves for instance is the same (ratio with lower denominator). 

For each peak the intervals on their sides are analyzed: absorbance values belonging to 

quite horizontal portions (approximately 20-50 cm
-1

 long) are averaged and the mean value 

between the two sides is taken as local baseline gap. This value is compared with curve 

difference in correspondence of the respective peak (peaks related to CO2 or H2O are not 

included here), with a 0,005 absorbance difference between them proposed as threshold 
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value. Results of this method are presented in Tab.44. This approach (which consists in a 

“local baseline shift”) aims to separate potential contribution by the baseline gap from 

actual induced changes, however it fails in demonstrating a possible change as all the 

differences between local gaps and spectrum distances results to be between 0,1 % and 1 % 

which are values definitely too low to take into account a reliable and influencing change.  

 

Wavenumber 

(cm-1) 

Peak 

intensity 

C1-C4 

diff. 

C1-C10 

diff. 

local gap 

C1-C4 

local gap 

C1-C10 chemical group 

potential 

change 

702 0,088 0,0059 0,0018 0,0066 0,0022 CH in C=C no 

791 0,421 0,0054 0,0016 0,0061 0,0020 Si-CH3 no 

864 0,096 0,0062 0,0017 0,0062 0,0018 Si(CH3)2O no 

1011 0,495 0,0061 0,0023 0,0064 0,0016 Si-O-SI no 

1055-1063 0,342 0,0074* 0,0022* 0,0064 0,0016 

R-Si-O-Si-R ;  

Si-O-C no 

1065-1074 0,341 0,0073* 0,0018* 0,0064 0,0016 

R-Si-O-Si-R ;  

Si-O-C no 

1259 0,198 0,0051 0,0017 0,0062 0,0014 Si-CH3 no 

2962 0,047 0,0043 0,0007 0,0044 0,0007 CH3 no 

 

Table 44. As already mentioned each wavenumber (or wavenumber interval) refers to a specific molecular 

vibration in a chemical group (seventh column). For each wavenumber the differences among the three 

spectra (C1 in the second column is taken as reference) are listed in the third and fourth columns, whereas 

the fifth and sixth ones report the baseline gap obtained by the procedure described in this paragraph ( * = 

mean value in the indicated wavenumber interval). Changes might be suspected (last column) when the 

differences between spectra differences and local gaps exceed 0,005 (10% of the absorbance in weakest peak 

reported in the table).  

 

 

4.6 Wettability test  

Tab.45 shows the variation of mean contact angles depending on the time and type of 

samples. C1 and C4 samples present slightly different values, with standard deviations 

often lower than 2,5°. In contrast, values in the third column are very different from the 

previous ones, even though the standard deviation is sometimes beyond 4°. This difference 

suggests a lower surface hydrophobicity independently of time instant, as evidenced by 

Fig.62.  In particular this graph indicates the difference in mean contact angles should 
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increase with time (Δθmax_0s = 3,42 ; Δθmax_120s = 5,95). Other two graphs (Fig.63 and 

Fig.64) displays mean values and standard deviations for 0 s and 120 s only.  

Statistical analysis focuses only on initial contact angles (t = 0 s) and final ones (t = 120 s). 

According to the large number of values the Anderson-Darling Normality test is 

performed, confirming the normality in the distributions. Null hypothesis in the F-test is 

rejected only when comparing C4 and C10. For this comparison t-test with unequal 

variances is performed, whereas t-test with equal variances is chosen otherwise (Tab.46).   

 

 
1 Cycle (N=17) 4 Cycles (N=21) 10 Cycles (N=13) 

Time 

(s) 

Mean 

Angle (°) 

StDev 

(°) 

Mean 

Angle (°) 

StDev 

(°) 

Mean 

Angle (°) 

StDev 

(°) 

0 116,29 1,78 115,67 1,63 112,87 2,81 

30 99,38 1,69 98,44 2,28 94,83 4,38 

60 97,46 1,73 96,32 2,42 92,45 4,15 

90 96,01 1,90 94,61 2,6 90,59 3,96 

120 94,59 2,26 92,94 2,73 88,63 3,73 

 

Table 45. Contact angles (mean values and standard deviations) according to the time elapsed before 

recording the parameter and the number of cycles the material was exposed to.  

 

 

Figure 62. Mean contact angle evolutions with respect to contact time for the 3 classes of material. The 3 

curves exhibit similar trends even though the gap between them is displayed to increase with time.  
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Figure 63 and Figure 64. C1, C4 and C10 contact angles immediately after contact with the material surface 

(0s) and after 120 s. Standard deviations are here included as their presence would make Fig.62 difficult to 

read. 

 

As summarized in Tab.46, samples sterilized 10 times by Etox are different from the other 

two categories: the p value is lower than 0,05 and statistical power is 0,95 at least. In 

contrast, 4 cycles samples do not differ appreciably from those sterilized once even if after 

120 s the p value results close to 0,05. However in this case statistical power results lower 

than the previous cases, in particular for the comparison at 0 s. 

These results confirm how a good number of samples (approximately 20) is not totally 

effective when differences between mean values are lower than standard deviations. For 

instance Minitab estimates 119 samples to have a 0,8 power with a 0,62° difference and 

average standard deviation of 1,7°. Finally ANOVA tests confirm the difference among the 

three groups returning a null p value for both 0s and 120s. Following analyses demonstrate 

the 4 assumptions on residuals to be satisfied, meaning that the outcomes of ANOVA tests 

are reliable (SP > 0,95). 

 Test P-value Power 

t-test C1-C4_0s 0,278 0,21 

t-test C1-C4_120s 0,057 0,51 

t-test C1-C10_0s 0 0,97 

t-test C1-C10_120s 0 1 

t-test C4-C10_0s 0,004 0,95 

t-test C4-C10_120s 0,002 0,95 

 

Table 46. P values and statistical powers for t-test employed with 0 s and 120 s contact angles.  
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4.7 Swelling test   

A preliminary analysis of the data evidences how C4 distribution does not spread as a 

Gaussian (according to Shapiro-Wilk test), suggesting the presence of a possible outlier. 

Graphical summary of C4 distribution for 1 week immersion well evidences how one value 

is quite different from the others (Fig.65A). Since mean value in C4 distribution without 

this potential outlier results similar to C1, graphical summary is repeated by adding C1 

values to C4 group (Fig.65B) and also C10 (Fig.65C). In fact even if C10 has higher 

swelling ratios than C1 and C4 (once the potential outlier is removed), these values are 

much lower than C4’s outlier.  

 

Figure 65. Graphical summaries of 1 week data related to C4 dataset (A), C1 and C4 together (B) and all the 

datasets together (C). This Minitab’s feature displays the occurrence (height of the column) of a specific 

value (horizontal axis) for the analyzed parameter (Swelling Ratio in the present case). In the first case (A) 

the small number of samples does not allow the assessment of the outlier on the right side, whereas the other 

2 graphs (B, C) better reveal the potentiality of this value as outlier (displayed as an asterisk). 
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Furthermore the function “Outlier Test” in Minitab (Fig.66) can confirm this interpretation 

by reporting a p value associated with the null hypothesis “the largest data is not an 

outlier”. Many outlier tests are available: Grubb’s test is not useful as normality is 

required, whereas Dixon’s test (Q-test) is indicated for sample size lower than 7. The 

calculated p value results 0,007. Then the same approach is used by merging C4 with C1 

(Dixon’s r21 ratio test) and also C10 (Dixon’s r22 ratio test). These new outlier tests are 

reported to be more effective according to the sample size of the new investigated groups. 

They return 0,003 and 0,000 respectively as p values (Fig.66). Thus the outlier in C4 can 

be ignored according to test outcomes. 

 

 

Figure 66. Comparison among the three outlier tests which analyze an increasing number of samples (as 

done in Fig.65). P value progressively decrements in accordance with what graphical summaries suggested 

before. 

 

 

 

Swelling ratios for the different categories according to the immersion time are listed in 

Tab.47 whereas Fig.68, Fig.69 and Fig.70 display the comparisons for a set swelling time. 

Finally Fig.67 reports the average values for the 3 material with respect to the number of 

weeks (standard deviations are not reported, instead they are shown in Fig.68, Fig.69 and 

Fig.70).  
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N 

Mean Ratio 

(-) 

StDev  

(-) 

C1_1w 5 1,00037 0,00005 

C4_1w 5 1,00039 0,00004 

C10_1w 5 1,00043 0,00003 

C1_2w 5 1,00026 0,00005 

C4_2w 5 1,00033 0,00003 

C10_2w 5 1,00035 0,00004 

C1_9w 5 1,00010 0,00005 

C4_9w 5 1,00018 0,00004 

C10_9w 5 1,00011 0,00003 

 

 

Table 47. Mean values and standard deviations for the Swelling Ratios after the outlier has been removed. 

1w, 2w and 9w refer respectively to 1, 2 and 9 weeks of immersion of the sample into water. 

 

 

As mentioned in the chapter dealing with statistical analysis (paragraph 3.3) comparisons 

related to a certain sample with respect to its time evolution rely on dependent datasets. 

However in this test comparisons are established for different samples at the same 

immersion time, then Paired Test is not required.  

Mean values suggest 1 week Swelling Ratio to be proportional to Etox exposure as C10 

samples absorb more water than C4 and C1 ones. This behavior may be expected as it 

recalls the results in wettability test, where increasing Etox exposure appears to lower 

surface hydrophobicity. Fig.67 reveals also how all the Swelling Ratios at the end of the 

second week are lower than those after 1 week. This behavior in such an experiment does 

not surprise as PDMS curing is a process unable to achieve 100% crosslinking and at least 

5% of PDMS bulk remains uncrosslinked. These oligomers are generally low molecular 

weight species free to diffuse out of PDMS. During leaching tests or simply submerging 

the material, they diffuse from the bulk to surface [47], resulting in a decrement of the 

scaled weight (with respect to the 1 week swollen state). Also in this case C10 mean value 

is the highest, however C1 value exhibits a steeper decrease with respect to the other two 

material groups. Finally after 9 weeks one can notice how C4 results the group with the 

highest mean value, whereas C1 and C10 have comparable results. Similarly to what is 
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seen after 2 weeks, all the groups display a decrease in Swelling Ratios with respect to the 

previous weeks.  

 

 
 

Figure 67. Swelling Ratios of the materials with respect to the weeks elapsed after first immersion. The 

values referring to 1 and 2 weeks reflect wettability test outcomes, where samples exposed to more 

sterilization cycles exhibit lower hydrophobicity. On the ninth week however C10’s mean Swelling Ratio is 

displayed within C1 and C4’s values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68. Comparison among the Swelling Ratios for the 3 materials after 1 week immersion. 
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Figure 69. Comparison among the Swelling Ratios for the 3 materials after 2 week immersion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70.  Comparison among the Swelling Ratios for the 3 materials after 9 week immersion. 
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Dealing with statistical analysis (non parametric methods), null hypothesis in Mann-

Whitney test (Tab.48) is always accepted for samples which undergo 1 week immersion 

(even if p value is next to 0,05 for C1-C10). However the other cases often display the 

rejection of the null hypothesis together with high statistical power. ANOVA test is 

performed as well (Tab.49) since the requirements for its application are satisfied. Also in 

this case the values related to 1 week immersion result insufficient to reject the null 

hypothesis. On the other hand ANOVA tests for 2 and 9 week immersions return the 

rejection of null hypothesis with high statistical powers.   

 

 
pvalue_1w power_1w pvalue_2w power_2w pvalue_9w power_9w 

C1-C4 0,403 0,13 0,022 0,72 0,095 0,72 

C1-C10 0,095 0,58 0,022 0,81 1,000 0,07 

C4-C10 0,296 0,28 0,676 0,12 0,037 0,63 

 

Table 48. Statistical analysis for 1, 2 and 9 week samples (by Mann-Whitney non parametric test). 

 

 
p value power 

ANOVA_1w 0,119 0,48 

ANOVA_2w 0,013 0,81 

ANOVA_9w 0,019 0,70 

 

Table 49. ANOVA test for 1, 2 and 9 week immersions. SP results high for the second and third cases. 

 

Beside of these statistical results normality cannot be assessed for C4_9w dataset as four 

values result to spread around 1,00016 value and the fifth one equals 1,00025. Outlier test 

in these cases is worthless and generally misleading because another outlier test has 

already been applied previously, then the same procedure is not performed. This fifth value 

may not be considered anyway responsible of C4 Swelling Ratio being greater than C10. 

In fact even without this value the mean Swelling Ratio would result to be higher than 

1,00015.   
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4.8 In vitro cytotoxicity testing 

Optical microscope observations are illustrated in the following pages (Fig.71, 72, 73, 74). 

Fig.71 reports the optical image of the L929 cells seeded in fresh DMEM (no incubation 

phase with PDMS samples but direct culture with cells) for 24 hours which represents a 

first term of comparison. 

 

 

Figure 71. Optical image of 24-hours cultured cells with fresh DMEM (no contact with PDMS substrates).  

 

Fig.72, 73 and 74 illustrate L929 cells seeded in DMEM incubated for 3 hours, 1 and 3 

days respectively. As mentioned in the test description, in each case cells are cultured for 

24 hours with the same cell density. In the right columns cells seeded in DMEM incubated 

with PDMS are displayed, whereas the left column shows the L929 fibroblasts cultured in 

DMEM which did not get in contact with PDMS. The reported images are only those of 

cells adherent onto the bottom wells in which L929 cells were cultured with the eluates 

obtained by the contact with the three types of sterilized PDMS samples for 3 hours, 1 and 

3 days. According to these images acquired by optical microscope, the laboratory report 

that they qualitatively demonstrate all the PDMS samples considered in the in vitro indirect 

cytotoxicity test to be not cytotoxic. Thus no difference among samples seems to exist. 

Furthermore it is said that acquired images show a good cell adhesion, with the absence of 

dead cells in any culture well. Nevertheless this result is merely qualitative, lacking the 

quantitative detection of differences (a colorimetric assay would allow that instead).  
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Figure 72. Optical 

microscope images of 

L929 cells seeded in 

the C1 eluate (C1-3h, 

C1-1d, C1-3dd) for 

24 hours.  
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Figure 73 Optical 

microscope images 

of L929 cells seeded 

in the C4 eluate 

(C4-3h, C4-1d, C4-

3dd) for 24 hours.  
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Figure 74. Optical 

microscope images of 

L929 cells seeded in in 

the C10 eluate (C10-

3h, C10-1d, C10-3dd) 

for 24 hours.  
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5 Discussion 

 

The first indication the present work reveals is the great variability in test outcomes when 

this material is employed. Indeed that turns in sources mentioning contrasting changes in 

material properties and showing large standard deviations. Elastomers are known to be 

materials not easy to investigate mechanically, therefore a huge sample amount is warmly 

suggested in order to neglect bad cases and lower standard deviations (for instance Minitab 

suggests 60 samples on average in uniaxial tensile test to reach SP = 0,8).  

Test outcomes are compared with literature sources to see whether there is agreement 

between them and eventually justify the suspected parameter trends. One source has to be 

employed carefully when its results are used as comparison terms: Gautriad et al. [17] 

report many mechanical parameters after one 100% Etox sterilization cycle. This source 

presents certain values often not compatible with the other sources or at least quite 

surprising (with big changes after a single cycle, e.g. hardness test). Only 5 samples are 

used for parameter calculation, making that not suitable for complete reliability when 

comparing test outcomes. Apart from that as unsterilized samples are generally not 

employed, the generally accepted lack of difference between unsterilized silicone and that 

sterilized once by Etox is proven. In uniaxial tensile test not all the parameters perfectly 

match between C0 and C1 datasets, however many parallelisms may allow to infer 

equivalence between them also for the other experiments. 

Finally possible interpretations for the observed phenomena are hypothesized.  

   

 

5.1 Mechanical Testing 

  

Acquired UTS data generally cannot demonstrate any statistically relevant change: null 

hypotheses are never rejected apart from one case (C4-C10 comparison considering the 

two strain rates together) although the related SP = 0,55 only.  ANOVA test carried out on 

four datasets (C0 included) still returns a PV > 0,05. This case represents the one with most 

sample types, however the mentioned difference between C0 and C1 mean values makes it 

not the most suitable to come to a conclusion about the overall Etox effect. Despite the 

lack of statistical support, one may suspect a faint drop of UTS as the exposure to Etox 
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increases (Fig.31). This effect might become evident only after several Etox cycles and is 

less likely to reveal itself after few exposures.  

This hypothesized behavior is compared with literature studies (related to a single Etox 

cycle) which however deal with contrasting outcomes. Terheyden et al. [48] report a 90%-

100% value with respect to unsterilized silicone rubber, on the opposite Gautriaud et al. 

[17] register a 1 MPa increment in UTS. Finally Simmons et al. [10] compare P80A and 

E2A, two polyurethane materials with the second one enriched by small PDMS segments. 

E2A’s UTS is observed to remain similar to the unsterilized value (even if standard 

deviations are not small), whereas P80A suffers a clear UTS drop. E2A is not pure silicone 

but confirms the stability potential PDMS can bestow to other materials by small amount 

addition. Thus the three sources suggest different UTS answers to limited Etox exposure. 

The second source has been mentioned to be not completely trustworthy whereas the other 

two ones may be compatible with the hypothesized weak drop as the number of cycles gets 

bigger.    

 

Ultimate Elongation cannot be statistically demonstrated to be altered by Etox treatment, 

however trends and obtained p values in Ultimate Elongation and UTS (without merging 

datasets) suggest a certain parallelism between these two parameters. Therefore even if 

Ultimate Elongation datasets with different strain rates cannot be directly merged, one may 

suppose a faint decrease due to Etox exposure as hypothesized for the previous parameter. 

This interpretation is not supported by Gautriaud et al. [17] who observe a faint increment 

for this parameter, whereas Heiner et al. [16] report a slow decrease (approximately 0,6% 

strain per cycle). Similarly Simmons et al. [10] notice a drop for E2A, whereas P80A (no 

PDMS fragments) is not described to show a significant change in its Ultimate Elongation. 

Thus PDMS may be responsible of the weakening in this mechanical parameter.  

 

Dealing with Elastic Moduli,  E_lin and E_200 do not reveal any substantial change. Both 

cases confirm the greater the strain rate, the higher the elastic modulus is. Terheyden et al. 

[48] report a wide range of results (ranging from 85% to 105% of the original E_200) 

which anyway suggests a decrease should be more likely than an increment. Gautriad et al. 

[17] in their study do not notice any change in secant modulus at 100% strain, Heiner et al. 
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[16] report an extremely slow decrease for the elastic modulus of Pt-cured silicone (lower 

than 0,2 % for each cycle). 

 

Results from hardness tests reveal a small increment in Hardness after Etox treatment: 

assuming a linear increase between C1 and C10 mean values, the increment would result 

approximately 0,06 Shore A/cycle. P values and their statistical powers supply complete 

trustworthiness to the analysis. Even though this investigation returns statistically relevant 

outcomes, one should remember the procedure employed to sample the material. ASTM 

D2240 specifies one should prove the absence of outcome differences between specified 

procedure and the employed one. This change is compatible with what Heiner et al. [16] 

find out in their experiment, where an increment of only 2 Shore A units is registered after 

100 sterilization cycles (0,02 Shore A/cycle approximately). Gautriaud et al. [17] report a 

decrease of 0,5 shore A after only one sterilization cycle instead, contrasting strongly the 

previous source both in the quickness of change (single cycle to induce a measurable 

difference) both in the nature of the change (decrease).  

 

5.2 Thermal Analysis 

 

Independently from inspected temperature and frequency, E’ and E’’ calculated by DMA 

are never demonstrated to differ due to diverse Etox exposure. All 12 C1-C4-C10 

comparisons show a common trend with C1 mean values slightly smaller than C4 and C10 

ones which appear similar instead. Both ANOVA and Mann-Whitney tests never reject 

null hypothesis, resulting unable to give this trend any statistical relevance. Apart from the 

labile reliability because of the ways samples are produced and clamped, experiment 

outcomes and hypothesized trends are affected by the small sample number (only 4 

samples for C1 due to the discarded 2 outcomes out of 6). Thus this experiment ought to 

get enriched by more specimens in order to return more trustworthy statistical outcomes. In 

fact doubling dataset dimensions by using twice each datagroup (by simply copying and 

pasting them into the same columns), ANOVA p value equals 0,038 for E’’_0°C at 1Hz 

(0,193 in the original case). Certainly this consideration is not valuable enough to assess 

the reliability of an E’ or E’’ increase as Etox exposure grows, however the similarity 

among the trends in all cases may induce the reader not to discard this hypothesis.  
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According to the cooling rate, DSC experiments display two types of graph and slow 

cooling has been reported to enhance crystallinity in the frozen structure.   

Endothermic peaks related to melting transition (approximately between -44,5 and -43,5 

°C in both graphs) do not reveal any change for Tm and its enthalpy. Actually this result is 

reliable for the slow cooling case only (PV > 0,5 ; SP < 0,2), whereas the fast cooling one 

not only reveals many potential outliers but it also presents 3 ANOVA tests out of 6 

returning p values extremely close to the 0,05 threshold. Therefore one may conclude Etox 

sterilization cannot influence the melting transition guided by the crystalline component 

(slow cooling procedure). On the contrary nothing precise can be assessed for fast cooling 

procedure also due to the potential outliers (Fig.51 and Fig.52). In this case for both 

parameters a good compatibility can be graphically observed between C1 and C10, 

whereas C4 distributions justify the low p values in the other comparisons.  

Crystallization transition (Tc between -84° C and -80° C) is observed only in the cooling 

curves. ANOVA test rejects compatibility among the enthalpies for the three different 

datasets as the variance appears smaller for C4 than C1 and C10. In fact if C4 variance is 

assumed to be actually larger (similar to C1 or C10 cases), ANOVA would fail in rejecting 

instead (assuming equal variances PV = 0,095). T-test reveals compatibility between C1 

and C4, whereas the low ANOVA p value can be ascribed also to C10 dataset which may 

effectively differ from the other two ones. Rejections of these null hypotheses suggest Etox 

increases the enthalpy associated with crystallization transition (as Fig.54 displays), with 

this effect becoming relevant only after several cycles (e.g. C10). Though the absence of 

variation in Tg, a change in this parameter would suggest an alteration of the components 

contributing to material crystallinity.  

The comparison related to Tc instead reveals a great incompatibility among data.  C1 and 

C10 present a certain similarity but the C4 dataset displays much lower mean value and 

standard deviation, reporting also two potential outliers. Apart from the obvious rejection 

of null hypothesis, the described situation casts doubts about the reliability of these 

obtained data. Therefore for this parameter the inclusion of new data or the repetition of 

this test may be suggested.  

 

Finally the Tg is taken into account. This parameter is greatly valuable as it is strongly 

affected by the level of crosslinking in the material. In addition to Tm, also the damping 
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(linked to E’’) and the slope of the glass transition are dependent on material crosslinking 

[49,50].   

Statistical comparison among C1, C4 and C10 does not register any alteration and this 

outcome is statistically reliable (for all methods PV > 0,6 and SP < 0,06). Tg value 

obtained for MED-4860P results approximately -134° C, which is compatible with the 

value literature generally reports for PDMS (-125°C). The compatibility between the two 

values resides in the variability which the Tg can be calculated with. According to the 

chosen investigation technique a difference up to 25° C can be reached, for instance Tg by 

DMA is often reported to be 10° C higher than Tg obtained by DSC [51]. These 

mismatches result from the different ways the Tg is obtained. In fact glass transition 

actually represents a range of behaviors whose nature cannot be easily concentrated around 

a unique specific temperature. Different industries have used different points from the 

same data set. DSC, TMA, and DMA measure different processes and therefore return 

different values [52].   

Crosslinking profoundly influences the Tg: indeed as crosslink density among polymer 

chains increases, Tg shifts to higher temperatures (rightwards along the temperature axis) 

[49,50]. Therefore the undetected change in Tg may suggest no substantial change in 

crosslink density when the material is sterilized by Etox. The lack of change in Tg is in 

accordance with the study of Zhang YZ et al. [53]. The Tg of the silicone rubber they 

analyze by DSC reports no changes after single Etox sterilization, indicating neither 

crosslinking nor chain degradation occur for such a limited exposure.  

 

Apart from Tg, Tc is reported to be included in the -90/-80° C interval in the cooling curve, 

approximately 10° C lower in the heating curve [41]. Actually the crystallization peak is 

stated to be really sensitive to both silica concentration (see paragraph 3.1) and chain 

architecture so that it can appear different (with respect to its position and height) 

according to these factors. In particular the quicker the cooling, the more the peak slides 

leftwards (its enthalpy increases as well). Also the melting peak presents a Tm compatible 

with values reported in literature which however generally reports two peaks (Tm1 and 

Tm2): values vary from -50° C to -30° C [30,42].  

DSC is an analysis technique which requires small amount of material and furthermore the 

process is fully automated. However there is always a certain concern that few milligrams 
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of the inspected material may not be representative of the overall component. Indeed the 

small parallelepipedons may have received different exposure to Etox according to their 

position in the original bigger sample. Step transition analysis is furthermore reported to be 

more difficult in cured materials [54]. 

 

5.3 Wettability and Swelling Investigations  

Results in wettability experiment reveal clear changes in surface hydrophobicity after 

Etox exposure. The treatment makes PDMS surface less hydrophobic (up to 6° difference 

between C1 and C10 mean values after 2 minutes) and rejection cases report SP ≥ 0,95. 

Only for C1 and C4 null hypothesis is not rejected: immediately after contact their surfaces 

answer similarly (PV = 0,278 ; SP = 0,21), whereas p value gets really close to the 

threshold (PV = 0,057 ; SP = 0,51) after 2 minutes.     

Indeed Fig.62 shows the three material classes have common shape in contact angle 

variation and Etox exposure results in shifting them downwards (with C1 and C4 curves 

displaying small gaps in between). This outcome results compatible with the not 

appreciable difference in contact angles (after one cycle) registered by Zhang et al. [53]. 

 

PDMS swelling in water is extremely limited, indeed some studies [36,37] report a 

swelling ratio of 1,00 ÷ 1,02 for PDMS after immersion in water (thus unsterilized silicone 

rubber barely absorbs this solvent). This tiny swelling ratio is in accordance with 

experiment results (swelling ratio < 1,0005). 

C1, C4 and C10 after one week do not result statistically different, even though mean 

values suggest swelling ratio may increase as the Etox exposure is enhanced. After two 

weeks ANOVA and Mann-Whitney tests including C1 dataset reject the null hypothesis, so 

that C1 is recognized to differ. However values related to the second week are lower than 

those reported for the first week, indicating unchained components are diffusing outside 

from the crosslinked structure in the meanwhile. Therefore the analysis of a single 

parameter influenced by two phenomena at the same time may be not completely 

straightforward. Finally 9 weeks values reveal an overlap in lines connecting these 2 values 

to 2 weeks ones. The obtained curves may appear strange and may therefore be ascribed to 

random errors (which could be reasonable considering the small values employed in the 

comparison). Thus from the reported results one could infer Ethylene Oxide treatment 
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makes the silicone samples absorb more water. However the extremely small SRs and the 

potential differences among sample faces do not allow a straightforward interpretation of 

the phenomena. Instead of using water other solvents are reported to work better (meaning 

they allow greater swelling ratios) with PDMS: toluene (SR=1,31) for instance is often 

employed. However the highest SR are listed for diisopropylamine (SR = 2,13) and 

triethylamine (SR = 1,58) [13,37]. These higher swelling ratios would allow to better 

detect and estimate eventual differences among the three groups. Furthermore the 

experiment should be carried out by employing samples whose faces are equally affected 

by Etox treatment.  

 

5.4 Surface Spectrography and Cytotoxicity Investigations 

    

Spectra obtained by ATR-FTIR result perfectly compatible with what was attended from 

the investigated material (with its chemical structure), with only CO2 and H2O small peaks 

or trembling parts as unexpected elements in the spectra. Apart from a certain gap among 

spectrum baselines, recognized peaks appear overlap well and the method explained 

previously (see paragraph 4.5) suggests the eventual changes (in surface molecular 

vibrations) to be lower than 1% among the different Etox exposures. Thus no particular 

alteration is assessed, since a relevant change generally appears already visible in the 

spectrum at full scale. ATR-FTIR inspection of E2A (polyurethane with only 20% of 

PDMS) and P80A by Simmons et al. [10] reveals only the latter results altered after 3 Etox 

cycles, suggesting a certain percentage of PDMS can supply resistance to surface attack. 

Therefore one may expect pure PDMS, even for 10 cycles instead of 3, to show great 

surface resistance.   

  

In vitro Cytotoxicity qualitative tests reveals cells are compatible with serum cultured up 

to 72 hours with material sterilized by Etox. Similarly to the time of culture, the exposure 

level to this sterilant appears not to influence test outcomes. Cell density results compatible 

in all cases, the absence of dead cells is observed as well. However compatibility with cells 

should be further investigated by using a quantitative analysis (colorimetric assay for the 

quantification of cell viability) and directly investigating the answer to direct contact 

between the material and cells. As surface hydrophobicity and hardness vary due to Etox 

sterilization, cell interaction with altered substrates should be inspected as well. In fact cell 
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attachment, spreading and differentiation are phenomena strictly connected to substrate 

properties and may change therefore [55,56]. Also in vivo tests would enrich this work as 

certain sources reveal some differences (e.g. number of inflammatory cells, capsule 

thickness) are visible only after in vivo implantation [53]. Indeed silicone and other 

hydrophobic materials get quickly coated by proteins after implantation, with the formation 

of a scar-like capsule around them [3]. 

      

5.5 Summary of parameter changes 

Tab.50 aims at summarizing all the investigated parameters and representing the effects of 

Etox on material properties all together.  

 

Parameter (or Analysis) Rejection Outcast Cases Effect 

UTS (500 e 100 separated) No 

 
=/- 

UTS (500 e 100 together) No C4-C10 - 

UTS (500 e 100 separated + C0) No* (only ANOVA) 

 
- 

Ult. El. (500 e 100 separated) No* 

 
- 

E_lin No 

 
= 

E_200 No 

 
= 

E’_0°C e 37°C (all frequencies) No 

 
+ 

E’’_0°C e 37°C (all frequencies) No 

 
+ 

Hardness Yes C4-C10* ++ 

Tm_group1 No 

 
=/- 

Enthalpy_Tm_group1 No 

 
= 

Tg (group2) No 

 
= 

Enthalpy_Tm_group2 No*° 

 
X 

Tm_group2 No° 

 
X 

Enthalpy_Tc (group2) Yes C1-C10*, C4-C10 ++ (+) 

Tc_group2 (group2) Yes 

 
XX 

ATR-FTIR No 

 
= 

Hydrophobicity Yes C1-C4_0s, C1-C4_120s* -- 

Swelling Ratio_1week No°* 

 
+ 

Swelling Ratio_2weeks Yes° C4-C10 ++ 

Swelling Ratio_9weeks Yes° C1-C4*, C1-C10 XX 

Cytotoxicity No 

 
  

Table 50. The second column indicates whether the null hypotheses are rejected in the statistical methods, 

the third one lists those cases whose results differ from what stated in the second column,  the fourth one the 

type of change and its statistical relevance (meanings are described underneath in Tab.51). 
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Symbol Meaning 

- decrease (lacking of statistical relevance) 

-- decrease (statistically relevant) 

+ increase (lacking of statistical relevance) 

++ increase (statistically relevant) 

= no change 

=/- no change (eventual little decrease at the latest) 

=/+ no change (eventual little increment at the latest) 

X not linear answer to Etox (change not detected) 

XX not linear answer to Etox (change detected) 

* some p values next to threshold 

° presence of potential or detected outliers 

 

Table 51. The meanings of the symbols listed in Tab.50 are provided. These symbols want to report the type 

of change and suggest the statistical relevance related to that. 

 

Such a purpose is difficult to achieve as parameter trends and their statistical relevance 

cannot be condensed easily together in a unique symbol. A comprehensive explanation is 

the only way to make the reader understand how the parameters are affected by Etox 

treatment but this table is beyond this purpose. For better comprehension the past pages 

should be taken into account. 

 

5.6 Hypotheses about changes 

As the only tests exhibiting a trustworthy change are wettability and hardness tests, a 

connection between them is expected. ATR-FTIR spectra suggest no alteration in surface 

molecular vibrations so that a possible explanation has to be researched elsewhere. 

Another property related to material surface consists in the roughness exhibited by the 

surface profile. This term is commonly used with a generic meaning as this feature is 

actually composed by two elements: waviness and roughness. Waviness consists in macro-

type wavelength patterns whereas roughness mainly refers to shorter wavelength 

variations. The latter is generally ascribed to machining processes and their tool quality. 

When micro or nano indentations are performed, the waviness component is generally 

neglected since the indenter dimension is small with respect to that [57]. As the indenter 

employed in the present work has a tip of approximately 0,8 mm, the same assumption 
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would result quite labile. However this thesis lacks a microscopy surface inspection (e.g. 

SEM), therefore the relation between these two profile components (on the employed 

samples) cannot be assessed. Thus no distinctions between them will be made and 

hereafter the generic term “roughness” will be employed instead.   

This parameter is known to affect both hardness and hydrophobicity measurements. Since 

the calculation of the hardness is based on the assumption that sample surface is flat, the 

rougher the surface the more distant from ideal results the outcomes will be. The 

penetration depth has been explained to be employed in hardness calculation, however 

surface roughness can have a significant impact on the measurement of this parameter. In 

fact hardness is reported to have a lower value if the indenter comes into contact with 

peaks. Indeed the registered penetration results larger than assuming a flat surface (a valley 

would result in the opposite behavior) [58]. These considerations are particularly 

significant for micro indenters but alterations for higher scale indenter are likely as well. 

Similarly roughness affects wettability properties of a surface. Several phenomena operate 

synergically returning an overall wettability phenomenon (fluid answer to the substrate it 

gets in contact with). Young’s law represents a simple equation describing the behavior of 

a droplet on rough surfaces. However one has to take into account that many cases can 

occur and many factors cooperate to determine drop behavior, therefore an interpretation 

of the observed reaction cannot be addressed to a single reason. 

Young’s equation referring to a specific liquid-solid system is described as: 

 

 

 

 

 

relating three thermodynamic parameters: liquid-vapor (γlv), solid-vapor (γsv) and solid-

liquid (γsl) interfacial tensions. The combination of these three parameters should result in 

a well specific θY (Young’s contact angle). In practice this is not true since many 

metastable states of a droplet on a solid surface can occur: contact angle value this way 

exhibits a range between advancing and receding angles, instead of the calculated θY (ideal 

case) [59,60]. Wenzel stated that increasing surface roughness results in an enhancement of 

the wettability condition determined by surface chemistry (the same treatment enhances or 

lowers contact angles depending on their values before roughness enhancement). In fact 

Wenzel’s theory is expressed by the following equations:  
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With θm describing the measured contact angle and r the roughness ratio (r = 1 for perfect 

smoothness, r > 1 otherwise). The employment of this formula requires the assumption 

liquid penetrates into surface grooves, which actually is considered true when the droplet 

dimension is at least twice bigger than roughness scale [60]. According to this formula the 

sign of cosθm depends on that of cosθY (with r as amplification factor), so that the effect on 

contact angles depends on this second term. PDMS is an hydrophobic material (θY > 90°) 

therefore when surface gets rougher, it gets more hydrophobic as well. On the contrary an 

hydrophilic material results even more hydrophilic when it gets rougher (Fig.75).  

After these details about the role surface roughness plays on both hardness and wettability 

measurements, the following hypothesis is suggested to explain test outcomes. Samples 

employed in both tests have faces whose profile is determined by the injection molding 

procedure. In fact injection molded-samples show a roughness dependent on the condition 

of cavity surfaces in the mold and on the parameters of the injection process [61]. These 

faces are then directly exposed to sterilant action during Etox cycles so that one may 

suspect Etox sterilization affects surface roughness lowering it (altering surface properties 

as well). The mechanisms and  reactions responsible for this suspected phenomenon would 

require however further investigation.  

Fig.76 explains the hypothesized phenomena in the two cases (unsterilized and sterilized 

samples) by representing material surface as two connected layers. A first layer is sketched 

as a row of contiguous triangles (focusing on a 2D profile) representing surface roughness 

(assuming consistent roughness pattern). A second layer (thicker than the first layer but 

here shown as thick as the previous one) represents the “real” surface (that with a flat 

profile) which mainly contributes to the surface resistance to indenter penetration. The red 

line in these second elements ideally represents the depth reached by the indenter when the 

durometer is pressed against the surface. 

Assuming Etox sterilization to result into a roughness decrease, the structure on the left 

may represent C1 surface (r1) and that on the left C10 surface (r2). In this case the decrease 

in roughness is sketched as a first layer with the same pattern but with lower peaks. Thus r1 

> r2, resulting in higher hydrophobicity for C1 surface as the surface before treatment is 
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already hydrophobic. According to that, the decrease in roughness may explain the smaller 

contact angles (and therefore the obtained lower hydrophobicity). 

 

 

Figure 75. Difference in droplet contact angles between perfectly smooth surface A (r = 1) and rough one B 

(r > 1) of an hydrophilic material (θY < 90°). Due to the locally slanted profile, the observed contact angle 

results lower for B. Thus when this hydrophilic material gets rougher by a certain surface treatment, its 

hydrophilicity is enhanced.   

 

 

 

 

Figure 76. Indenter tip (I) is pulled against material surface which shows a different topography in the two 

cases (C1 on the left and C10 on the right); the lower peaks in the first layer of the second case want to 

suggest a lower roughness. The durometer starts registering the penetration depth at different heights but the 

depths in the second layer are assumed equal (as the first layer contributes secondly to surface answer 

against the indenter). Considering A and B the registered penetrations, C = A - B would justify the difference 

in hardness values returned by the instrument. Furthermore as surface is hydrophobic before Etox treatment 

a decrease in roughness would bring to an hydrophobicity drop.   
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Dealing with hardness test, the indenter is assumed to reach equal depth in the two cases as 

the first layer is composed by small elements which deform quite easily with respect to the 

stratum beneath. However in C1 case the height which the durometer starts to register the 

depth is higher than for the C10 case (since the surface peaks are higher). According to 

that, the durometer would register a greater penetration (A > B) and thus a lower hardness 

in C1 case. The difference in penetration depth (C) would be responsible for the difference 

in the hardness calculated by the durometer. 

Roughness decrease is reported above as a simple lowering of peak tips in the first layer. 

Continuing to refer to roughness as peak height, another possible phenomenon may be that 

the peaks in the first layer locally merge each other at the level of the triangle bases, 

keeping the tips unaltered. This event is reported in case “b” of Fig.77. Both “a” and “b” 

evolutions display peaks lower than for the C1 case (structure on the left). These two 

possible interpretations might be confirmed by surface inspections, for instance AFM and 

SEM (more difficult) and may be employed for this purpose.  

 

 

Figure 77. 2 possible schematizations and interpretations of the hypothesized drop in surface roughness. 

Case “a” represents the already discussed decrease in peak tips, case “b” hypothesizes the fusion between 

peak bases so that a new layer is created (the blue one). Now this new layer would participate in bearing the 

indenter load as the layer beneath does, thus the red line would shift upwards (at the level of the green one). 

If one assumes the second layer and the blue one to have similar properties, X and Y would result similar.  

 

 

Test outcomes for swelling test have been reported not to be completely straightforward 

according to several factors in the experiment. Assuming now that these outcomes are 

trustworthy anyway, outcomes for the 9th week appear not clear: C10 mean SR is really 

close to C1 and smaller than C4. One may hypothesize this to be a wrong or imprecise 
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result, which actually could be reasonable considering the small values exhibited in the 

results. However apart from this interpretation, other reasons could be taken into account 

since swelling test deals with several phenomena. As already mentioned swelling and 

oligomer diffusion are processes happening at the same time. The gaps progressively left 

from oligomer species migration are gradually occupied by water molecules which have 

lower density (as reported by the Specific Gravity of 1,15 in Tab.3). In addition to that, 

PDMS degradation in water could be taken into account as well. Such a complex 

combination of factors has been widely investigated: the answers of diverse polymers to 

immersion in different types of solvents have been widely debated. Nevertheless definitive 

and accurate conclusions cannot be drawn quite easily so that authors often suggest their 

works to be the starting points for future analyses. Therefore an explanation for C10 values 

and the exact processes leading to them are beyond the purpose of the present work which 

marginally deals with this type of investigations. Nevertheless some considerations and 

hypotheses are reported in order to suggest some phenomena which may take place 

between PDMS and water.  

Feng J et al. [62] report silicone rubber with higher hardness (samples differ up to 20 Shore 

A) show greater weight loss independently from the various aqueous solutions they are 

immersed in. Sample hardness however is affected also by the amount of fillers 

impregnated among the crosslinked structure. Thus they explain the higher weight loss for 

the materials with higher hardness as the leaching of more fillers with respect to low 

hardness samples (in case of aggressive solvents a contribution is given also by 

degradation products obviously). The idea behind this explanation might justify the value 

associated with C10 by hypothesizing a variation in the content of fillers for MED-4860P 

as well. A possible way they eventually could be generated and diffuse outside should be 

proposed however. Eventual chain scissions might represent a possible reason, even 

though Tg is demonstrated not to differ. However Tg is later explained to be affected by 

several parameters (so that small variations in chain structure may be balanced by other 

ones, promoting opposite Tg shifts complementary to each other). For instance chain 

scission has been reported commonly as a problem for plastic materials when they are 

exposed and sterilized by gamma radiations or electron-beam [10,17,63]. As described 

previously Etox sterilization mechanism resides in the alkylation reaction affecting 

sulfhydryl, hydroxyl, amino and carboxyl groups which Etox easily reacts with. However 
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the structure of the material under inspection (see paragraph 3.1) does not include any of 

these groups as the ATR-FTIR spectra reveal. Indeed examples of PDMS resistance to 

alkylation are reported for applications requiring media for alkylating agent diffusion [64]. 

Exposure to alkylating process is repeated for C4 and C10 so that one may wonder whether 

a massive exposure may affect partially the material instead. In this case if the creation of 

these extra fillers is assumed to take place already in the sterilization process, then they 

may contribute to hardness enhancement independently from the idea relating wettability 

and hardness tests (hypothesizing a roughness decrease). Nevertheless water, both in 

combination with Etox and separately, may be responsible for this proposed alteration. 

Indeed this second element either in liquid state or moisture may induces hydrolysis in the 

material.  

In his experiments Hamilton R [65] reports silicone materials (mainly linear 

polydimethylsiloxanes are inspected) undergo hydrolysis degradation reacting with bases 

(NaOH), acids (HCl) and blood (pH = 7,4). Instead no changes are appreciated for water or 

neutral aqueous sorbitol up to 11 weeks. In the present thesis the water employed in 

swelling tests is demonstrated to have a pH between 6,25 and 7 so that the hydrolysis 

catalyzed by acids cannot happen. Hamilton R reports chain cyclization and its following 

scission can be caused by reactive chain ends folding back over their own chains. These 

reactive end groups allowing silicone hydrolysis are however stated to be less likely (with 

respect to other materials) for PDMS chains as they present methyl groups at the end 

which are not particularly reactive [65]. In the present case however, as the ATR-FTIR 

results reveal, also CH2 terminations are present (in uncrosslinked C=C end chain groups). 

An eventual activation of some terminal groups may result in the reaction described in 

Fig.78 with the release of cyclic species. Considering such a process occurring at the 

pendant chains whose extremities are not linked to the rest of the reticulum, one may 

assume scarce impact on mechanical properties and increased release of filling elements.  

Kennan JJ et al. [66] present a research on hydrolysis in peroxide and hydrosilylation cured 

silicone elastomers after filler purification leaching. Both materials are inspected after 45 

hours immersion (up to 100° C) in saline solution, returning no significant evidence of 

hydrolysis (even if some changes are detected they cannot be univocally ascribed to 

hydrolysis process). Pt-cured silicone is generally considered even more resistant than 

peroxide-cured one, so that a similar or even better resistance could be attended. Indeed 
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differences in Swelling Ratios in the present thesis appear extremely small so that even if 

some changes had occurred in their experiment, it would have made sense that they 

catalogue them as not statistically relevant. The opposite classification would be 

impossible for them as they measure the potential hydrolysis not directly by leaching 

analysis but by contact angle (for the surface) and mechanically (for bulk properties). 

These methods in case of extremely low hydrolysis could not be considered sensitive 

enough.  

 

 
Figure 78.  When the extremity group of a chain gets reactive, the extremity fold back and the illustrated 

reaction occurs. The original chain gets shorter and low molecular weight species are generated.  

 

 

Finally a more simple explanation for the weight loss may consist in the removal of 

superficial layers when they are dried by absorbent paper so that small fragments of 

surface can be peeled off. The differences in surfaces of the three material types, together 

with the alternation between air and water (in order to scale the samples) may result in 

different surface erosion during these phases.  

One should remember the presented considerations and comparisons aim at just supplying 

some possible interpretations of the registered values. Similarly to the previous 
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interpretation for hardness variation, only new specific tests (e.g. surface inspection, 

leaching analysis) may clarify whether the present hypotheses are reasonable or not. 

 

Finally a reflection about the Tg values obtained by thermal analysis is proposed. 

According to DSC outcomes Tg does not report any alteration. Generally this fact suggests 

no chain scission or crosslinking occurred. However other mechanical parameters (e.g. E’, 

E’’, UTS and Ultimate Elongation) suggest variations whose reliability results 

questionable according to the obtained p values and statistical powers. 

This final paragraph does not aim at demonstrating anything about the mentioned 

parameters, instead it wants to suggest how the lack of variation in Tg could not imply 

necessarily the absence of chain structure variations (in particular if those ones would be 

particularly small). Indeed in the previous paragraph the eventual chain scission in 

correspondence of free chain ends has been mentioned. Tg has already been described as a 

complex parameter which can be studied by different techniques according to different 

processes. Additionally crosslinking is not the only feature affecting Tg: its value actually 

has been experimentally observed to be influenced by many other variables (e.g. 

crystallinity, molecular weight, test rates, plasticizer content, aromaticity and tacticity) 

[67,68]. For instance higher crystallinity and heating/cooling rates induce greater Tg 

values, on the contrary a higher number of chain ends lowers this parameter. This suggests 

that the absence of substantial change in Tg might actually hide small alterations whose 

effects, when combined, result in a null impact on this parameter (increment factors and 

decrease ones balance each other).  

A demonstration of how Tg is affected by variation in chain structure is here briefly 

reported by the Fox-Flory law. This formula can be found in the literature reported in 

different ways [67,68,69,70]. An interesting summary by Harrison IR (Pennsylvania State 

University) [68] reports an alternative version of the common formula [67,69,70], modified 

in order to reveal how the crosslinker agent contribute to Tg:  

 
 

where Tg∞ is the glass transition temperature for an ideal chain of infinite length, K a 

characteristic parameter of the dependence between Tg and M, M the molecular weight 

and Kx an amplification factor related to crosslink density [68,70]. According to this 
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source, Tg grows linearly with crosslink density only when the crosslinker agent is similar 

to the polymer chains it is connecting to, otherwise the increment is less steep and not 

linear. (Fig.80). The second and the third terms are generally reported differently 

(aggregated as K/Mw) remarking aside the importance of crosslinker’s nature [67]. 

 

 

 
 
Figure 79 and Figure 80. Tg decreases for smaller Molecular Weight according to Fox-Flory’s law. An 

increment in the crosslink density results in higher Tg, however the observed increase is comparable to the 

predicted one only when crosslinker agent does not differ too much from the polymer chains it connects to.    

 

 

Similarly Wu L [67] reports this formula can be enriched with new terms including other 

factor contributions (e.g plasticizers and attended percentage of cured polymer). Therefore 

the last paragraph aims at showing that some tiny changes, faintly affecting other test 

outcomes, may not be recognized necessarily by Tg value in DSC. The analysis of other 

parameters related to glass transitions (e.g. transition length) in the same thermograms may 

add new elements of comparison for this purpose.   
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6  Conclusions  

 

The reported tests have been chosen to investigate a great number of parameters in PDMS 

(MED-4860P) silicone rubber, aiming at determining whether they change after several 

sterilization cycles by Etox. Results have been shown to lack often statistical relevance, 

however the present work draws two important conclusions.   

Firstly the properties which appear to be altered the most by Etox treatment are those 

related to surface. Hardness and wettability tests allow to distinguish samples treated by 

different Etox amounts since a slight increase in hardness and a surface hydrophobicity 

drop are observed as the number of sterilization cycles increases. Similarly swelling tests 

suggest differences among C1, C4 and C10 datasets, showing that after 1 and 2 weeks the 

more sterilizations a sample undergoes, the more water it can absorb. This outcome could 

be ascribed to the decrease in surface hydrophobicity, indeed the solvent faces lower 

resistance by material surface so that slightly higher absorption in the first layers may be 

reasonable. The decrease in Swelling Ratio should be linked to the diffusion of 

uncrosslinked low molecular weight species out from the crosslinked structure. Some 

considerations about C10 swelling ratios after 9 weeks (exhibiting a suspected weight loss) 

are proposed trying to justify them. A possible interpretation may consist in chain scission 

occurring at the pendant chains of the reticulum or the removal of first layers while drying 

the samples before scaling them.      

On the other hand bulk properties seem to get less influenced by this sterilization 

procedure: elastic moduli E_lin and E_200 do not reveal any change at all, whereas UTS 

and Ultimate Elongation might slightly decrease (a higher sample number may confirm 

this hypothesis). Storage and Loss moduli may be suspected to increase even though this 

interpretation strongly lacks statistical significance in spite of 10 employed samples. The 

Tg results unaffected suggesting no chain scissions or variation in crosslink density, 

however certain reflections about the certainty of no changes at all due to that have been 

proposed. Other precise considerations about DSC outcomes cannot be inferred even if the 

enthalpy associated with the crystallization transition results enhanced by a higher number 

of sterilizations.   

As surface behavior is observed to differ according to Etox treatment, a potential reason is 

expected to be found by surface investigation. The chosen method (ATR-FTIR) however 



116 
 

registers spectra which do not differ appreciably. Thus a possible explanation is submitted 

taking into consideration the impact of surface roughness on the outcomes of both 

experiments, hypothesizing Etox sterilization gradually lowers the roughness. New surface 

analyses (SEM or AFM) may confirm this hypothesis.    

The second conclusion one can draw from test results deals with the reason why Cochlear 

industry is interested into the present investigation. Tests are performed aiming at 

demonstrating whether PDMS samples sterilized more than once by Etox can be assumed 

similar to those sterilized only once. Indeed C10 datasets are often demonstrated to differ 

(or at least can be suspected of that) so that employment of samples sterilized for several 

times (more than four cycles) should be dissuaded. In particular silicone encapsulation may 

result less effective similarly to its resistance to water drops. The risk would not be directly 

related to the amount of absorbed water but to an alteration in the overall shielding action 

against water (or moisture). Furthermore, even though C10 samples do not exhibit 

problems with cells in cytotoxicity tests, the changes in hardness, hydrophobicity and 

swelling can alter cell behavior on these substrates. Therefore direct instead of indirect 

contact of cells with the material should be investigated, checking cell attachment, 

spreading and differentiation phenomena. On the other hand C1 and C4 appear more 

compatible even though some differences are exhibited anyway. Hydrophobicity is slightly 

lower and hardness increases weakly for C4 with respect to C1. Similarly swelling test 

results are not statistically different apart from the 9
th

 week. For the comparisons among 

mechanical parameters the reader is exhorted to refer to previous pages. The only problem 

in employing C4 PDMS instead of C1 one may be therefore the same mentioned for C10 

about a lower efficiency in encapsulation against water (even if water absorption is still 

extremely poor). These considerations suggest the material may be considered still safe up 

to four Etox cycles and actually further sterilizations appear quite unlikely to be required in 

practice. Indeed a device (before its use) may be estimated to require one or two extra 

sterilizations at maximum after the original one (in case some small changes or check 

inspections are carried out).  

Apart from the already mentioned improvements in the performed experiments, some other 

tests may enrich the present work. Tear test analyzes Tear Strength whose variation would 

not have a negligible impact on the material considering its implantation next to the 
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connection between jawbone and mandible (surrounding tissues have to bear significant 

tear stresses). Other reasons for surface alteration may be sought by XPS, whereas the 

impact of shelf life on C1, C4 and C10 could be recommended considering that the 

material is not immediately implanted. Finally two parameters are commonly investigated 

in polymers and would broaden the knowledge in this process: abrasion resistance and 

fatigue crack growth resistance. 
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