
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione

Master of Science
Engineering of Computer Systems

Model Driven Development

of iOS Apps with IFML

By: Félix Javier Acero Salazar
Student ID: 795545

Supervisor: Prof. Marco Brambilla

December 2014

To my mum, my cousin and my girlfriend.
For their unconditional support and honest advice

Abstract

Multi-platform mobile development has never been as relevant as it is today.
Every year, markets are flood with new and more powerful mobile devices,
that pack several sensors, allow for richer user interactions, and run one
of several operating systems. This scenario has put software developers in
a troublesome situation, in which several versions of the same application
— one for each major mobile platform – has to be developed, tested and
supported.

To partially address this problem, an entire ecosystem of multi-platform de-
velopment tools has appeared, promising to help developers reduce the over-
head caused by the implementation of a cross-platform application. Even
though these solutions operate under different assumptions and use different
levels of abstraction, they ultimately require developers to program using an
intermediate programming language, which is later transformed into its na-
tive equivalent, or run within a constraint environment, like a web browser.

Developers, however, have fewer options in the modeling world.

With the recent adoption by the Object Management Group (OMG) of a
new standard [21] an opportunity for a Model Driven solution has arisen.
The standard introduces the Interaction Flow Modeling Language or IFML,
which can be used in tandem with UML, to describe the fundamental aspects
of modern mobile, web and desktop applications. In this way, a set of code
generators — one for each major mobile platform – could be developed, to
transform the IFML and UML models of an application, into their native
equivalents. A solution like this will benefit from the advantages offered by
a Model Driven approach, allowing developers to focus in the design of the
differential aspects of their applications, instead of having to worry about
the implementation details.

To approach this Model Driven solution, our project focuses in the devel-
opment of iOS applications with IFML, through the development of a code
generation tool. Additionally, building on the experience and knowledge
gathered in the generation process, we propose a set of extensions for the
IFML metamodel, that aim to broaden the scope and modeling capabilities
of the language.

Sommario

Lo sviluppo delle applicazioni mobili multi-piattaforma non aveva avuto la
rilevanza che ha nella attualità. Oggi anno il mercato offre nuovi e più poten-
ti dispositivi mobili con un numero importante di sensori che arricchiscono
l’interazione con l’usuario e che si eseguono in un ampio numero di sistemi
operativi. Questo scenario a lasciato gli sviluppatori in una situazione un
poco problematica, richiedendo un esteso numero di versioni di una stessa
applicazione – una per oggi principale piattaforma mobile.

Per affrontare parzialmente questa problematica e aiutare gli sviluppatori, è
apparso un intero ecosistema di strumenti, che promettono ridurre il lavoro
addizionale nella implementazione di una applicazione per diverse piattafor-
me. Queste soluzioni vengono svolte sotto diverse assunzioni e usano diversi
livelli di astrazione. Nonostante, lo sviluppo richiede in definitiva l’utilizzo
di un linguaggio intermedio che successivamente sarà trasformato nel lin-
guaggio nativo equivalente o eseguito in un ambiente vincolato come un web
browser.

Gli sviluppatori, tuttavia, hanno altre opzioni dentro il mondo della model-
lazione.

Con la recente adozione di un nuovo standard [21], da parte del Object
Management Group (OMG), è sorta una opportunità per le soluzioni Model
Driven. Questo standard introduce il Interaction Flow Modeling Language
o IFML che può essere utilizzato di pari passo con UML per descrivere gli
aspetti fondamentali delle applicazioni mobili. In questo modo una serie di
generatori di codice – uno per oggi grande piattaforma mobile – potrebbe
essere sviluppato per trasformare i modelli IFML e UML di una applicazione,
nei loro codice nativo equivalente. Una soluzione come questa si beneficia dei
vantaggi offerti da un approccio Model Driven, permettendo agli sviluppatori
di concentrarsi nella progettazione degli aspetti delle loro applicazioni, invece
di doversi preoccupare dei dettagli d’implementazione.

Per affrontare la soluzione Model Driven, il nostro progetto si concentra nella
realizzazione d’applicazioni per iOS con IFML, attraverso lo sviluppo di uno
strumento per la generazione di codice. Inoltre, basandoci sull’esperienza e
le conoscenze riuniti nel processo di generazione, proponiamo una serie di
estensioni per il metamodello di IFML, che mirano ad ampliare gli scopi e
la capacità di modellazione del linguaggio.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Objectives . 3

1.4 Structure . 3

2 Background 5

2.1 IFML . 5

2.2 iOS . 17

3 Approach 26

3.1 Overview . 26

3.2 Extensions . 27

3.3 Code Generation . 28

3.4 Tools . 32

4 Extensions 33

4.1 General Extensions . 34

4.2 Mobile Extensions . 39

4.3 Private Extensions . 44

5 Code Generation 49

5.1 Prototype App . 50

vii

5.2 Target Architecture . 52

5.3 Mapping . 59

5.4 Static Library . 65

5.5 Code Generators . 69

5.6 Integration . 75

5.7 Packaging . 77

6 Conclusion 79

6.1 Results . 79

6.2 Critical Analysis . 80

6.3 Future Work . 80

Appendix A General Extensions Package 82

Appendix B Mobile Extensions Package 89

Appendix C Private Extensions Package 100

Note about References 120

Bibliography 121

Acknowledgments 124

viii

List of Figures

2.1 IFML Review - View Containers 7
2.2 IFML Review - Search . 8
2.3 IFML Review - Bookmarked and Recent Words 9
2.4 IFML Review - Details . 11
2.5 IFML Review - Navigation Flow 12
2.6 IFML Review - Events . 14
2.7 IFML Review - Actions . 15
2.8 IFML Review - Activation Expressions 16

3.1 Approach - Overview . 26
3.2 Approach - Code Generation 28

4.1 Extensions - Packages . 34
4.2 General Extensions - Overview 34
4.3 General Extensions - View Lifecycle Event 35
4.4 General Extensions - Application Lifecycle Event 36
4.5 Mobile Extensions - Overview 40
4.6 Mobile Extensions - Touch Event Hierarchy 41
4.7 Mobile Extensions - Mobile Sensor Hierarchy 41
4.8 Mobile Extensions - Mobile Resource Event 42
4.9 Private Extensions - Overview 44
4.10 Private Extensions - Mobile Device 45
4.11 Private Extensions - Mobile Context Variable 46
4.12 Private Extensions - Acceleration, Rotation and Attitude . . 46
4.13 Private Extensions - Orientation and Battery Status 47
4.14 Private Extensions - Proximity and Network 47
4.15 Private Extensions - Direction and Location 48

5.1 Transformation Overview . 49
5.2 Movie Manager - Main windows 50
5.3 Movie Manager - Movie Details 51
5.4 Movie Manager - Add Movie Form 52
5.5 Movie Manager - Generated App 53
5.6 Target Architecture - Oveview 54
5.7 Target Architecture - Movie Manager 55

ix

5.8 Target Architecture - Core Entities 56
5.9 Target Architecture - Presenter’s Hierarchy 57
5.10 Target Architecture - Method’s Hierarchy 57
5.11 Target Architecture - Core entities and methods 58
5.12 Target Architecture - Flow Controller 58
5.13 Target Architecture - Actions Facade 59
5.14 Mapping - IFML Model . 60
5.15 Mapping - Actions . 60
5.16 Mapping - Window . 61
5.17 Mapping - Details . 63
5.18 Mapping - Details . 63
5.19 Mapping - Interaction Flow 64
5.20 Static Library - Package Structure 66
5.21 Static Library - SMM Classes 66
5.22 Static Library - PresenterViewController 67
5.23 Static Library - Generated Code 68
5.24 Static Library - Application Package 69
5.25 Code Generation - Folder Structure 70
5.26 Code Generation - Main file 71
5.27 Code Generation - Template Structure 72
5.28 Code Generation - Actions Templates 73
5.29 Code Generation - Flow Controller Template 73
5.30 Code Generation - Generated Code 74
5.31 Code Generation - Inherintance from the Static Library . . . 74
5.32 Code Generation - Movie Details Presenter Header 75
5.33 Code Generation - Movie Details Presenter Implementation . 75
5.34 Integration - Automation Scripts 76
5.35 Packaging - Generation Wizard 77

x

Chapter 1

Introduction

1.1 Context

Developing multi-platform mobile applications has never been more relevant
than it is today. Every year brings a new wave of technologies and devices,
each more powerful that its predecessor, including more and smarter sen-
sors and allowing for richer user interactions. These innovation cycles, have
slowly flood the market with all kinds of devices, and has open the doors for
a fragmented user population that interacts with applications using a wide
variety of smart phones, tablets and other handheld devices. To complicate
the matter even more, each of these devices includes a different set of capa-
bilities, runs one of several operating systems, and comes in different form
factors.

On the other side of this picture lie the developers, who need to offer their
applications in the different market places, and carefully tweak them to
guarantee that users have the same experience across their devices. All of
this, without losing performance and preserving a premium visual design.
In consequence, where before there was one application that had to be de-
veloped, maintained, improved and supported, developers now have several
applications that frequently only share their name, their visual design and
the fact that they have been created by the same company.

As a result, an entire ecosystem of muti-platform development tools has
emerged. Project like PhoneGap 1 and Apache Cordova2 encourage devel-

1 http://phonegap.com/
2 http://cordova.apache.org/

1

http://phonegap.com/
http://cordova.apache.org/

opers to program cross-platform applications through the usage of already
familiar web technologies like HTML, Javascript and CSS. Other solutions
like Titanium3 and Xamarin 4, advocate the usage of a cross-platform tool,
that allows the creation of native applications.

Developers however, have fewer alternatives to address the same issue at a
modeling level.

1.2 Motivation

For years, software developers have used modeling tools to design their ap-
plications at a platform independent level. The Unified Modeling Language
or UML [24], is one of these tools. However, as powerful and expressive as
UML may be, there are still several aspects involved in the development of
modern mobile, web and desktop applications that are not covered by it.

An important omission in UML, corresponds to the specification of the front-
end of an application.

To bridge this gap, the Object Management Group has adopted a new stan-
dard, the Interaction Flow Modeling Language or IFML [21]. This modeling
language can be used to describe the principal dimensions of an application’s
front-end. Moreover, since the entities and classes in the modeling language
are based on a formal metamodel, code generators and modeling extensions
can be proposed.

As a consequence, a Model Driven Development (MDD) approach for devel-
oping cross-platform mobile applications based on IFML could be proposed.
In this approach, IFML could be used to describe and specify the front end
of an application. In turn, UML could be used to describe the nuances of
the business logic. And finally, a set of code generators could be used to
translate the elements in the IFML and the UML models, into the equivalent
native code of the major mobile platforms — Android, iOS and Windows
Phone.

In contrast with other cross platform development solutions, like PhoneGap,
Apache Cordova, Titanium and Xamarin, this MDD approach presents two
advantages. First it would operate at a higher level of abstraction, allowing
developers to focus in the differential aspects of their applications instead of

3 http://www.appcelerator.com/titanium/
4 http://xamarin.com/

2

http://www.appcelerator.com/titanium/
http://xamarin.com/

worry about the implementation details. Second, it would produce, through
the code generators, native code that could be later enhanced and optimized
to obtain the best performance.

1.3 Objectives

The Model Driven Development approach of our project was based on the
Interaction Flow Modeling Language (IFML) [21], and focused on iOS as
the main target platform.

On one hand, we chose IFML, because with it, software developers can
model the front end of their applications, at a platform independent level.
Furthermore, since it integrates very well with other modeling languages,
choosing IFML also meant that designers could use a language like UML to
describe the nuances of the business logic of their applications.

On the other hand, we chose to focus on iOS since it remains as one of the
more popular mobile operating systems in the market. In fact, according to
a recent study conducted by the International Data Corporation [23], iOS
is the second most popular mobile operating system with a share of 11.7%
of all mobile devices shipped in 2014 — surpassed only by Android, which
remains as the most popular operating system with a market share of 84.7%.

Particularly, in our project we focused in two objectives. First, to enhance
the portability of the modeling language by developing a code generator for
iOS. And second, to broaden the modeling capabilities of IFML by adding
a set of mobile specific extensions to its metamodel.

1.4 Structure

This document is organized in six different chapters.

In Chapter 1 we introduce some of the challenges posed by multi-platform
mobile development, and the different solutions that have been proposed in
the industry to face them. Then, we motivate the opportunity for a model
driven approach based on IFML and UML. Finally, we highlight the main
objectives of the project.

In Chapter 2 we cover all the background information needed to grasp the

3

basic concepts of IFML and iOS. In the case of IFML, we introduce the
core entities of the modeling language and provide several examples based
on a simple dictionary app. For iOS instead, we briefly cover the main
characteristics of the platform, the architecture of a typical iOS application
and other traits that distinguish iOS from other mobile operating systems.

In Chapter 3, we provide an overview of the process followed during the
project. We start by discussing the strategy we used to identify potential
extensions for IFML. Then, we introduce the the seven milestones that lead
to the creation of the code generators , namely: design and implementation
of the prototype app, definition of the target metamodel, creation of the
mapping rules, implementation of the static library, development of the
code generators, creation of the integration tools and packaging. Besides
the methodology we present, at the end of the chapter, the tools used to
develop the deliverables of the project.

In chapter 4, we discuss at length some of the extensions that we proposed to
broaden the modeling capabilities of IFML. However, a complete description
of each of these extensions can be found in the appendices of this document.

In Chapter 5, we give a deeper look to the intermediate results that we
achieved while working on the code generators. In this way, the ”Proto-
type App” section starts describing the application that we used to guide
the generation process. The ”Target Architecture” section, introduces the
architecture of the generated apps from a software driven perspective and a
model driven point of view. In the ”Mapping” section, we use some examples
to illustrate the rules that map an IFML model into our target metamodel.
Then we present the contents of the ”Static Library”, and discuss how they
contribute to the shape of our solution. The ”Code Generation” section in-
stead, reviews the generation templates and provides a glimpse of the final
project structure and the shape of generated Objective-C code. In the ”Inte-
gration” section, we discuss the motivations that lead to the development of
such tools and provide an overview of their functionality. The ”Packaging”
section describes the strategy we used to make the project outputs more
accessible to potential users.

In Chapter 6, we present the results of the project, highlighting the different
tools that were developed as well the proposed extensions. Then we discuss
the project shortcomings, and the opportunities that should be explored in
future research efforts.

4

Chapter 2

Background

2.1 IFML

2.1.1 Basic Concepts

IFML is a modeling language designed to tackle the main challenges of the
front end specification of an app, through a small set of extensible entities
based on a formal meta-model that provides them with rich semantics.

At its core, IFML is meant to be simple and flexible, but perhaps more
importantly IFML is meant to be abstract. This allows the possibility of
defining the main traits of an application’s front end making as few visual
commitments as possible. In contrast to other approaches like, wireframes or
lo-fi mockups, IFML has the advantage of focusing on the principal aspects
of the front end without dealing with their concrete visual implementation,
which may vary radically from platform to platform. Similarly, IFML ben-
efits from its formality by allowing the implementation of code generators
– which could reduce the development time by automatically producing a
great percentage of the code needed to implement an application.

Put in different words, IFML can be described as a language that formalizes
the front end of modern web, mobile and desktop applications, providing
an appropriate separation between the front end requirements and their
concrete visual implementation.

Another important trait of IFML is its extensibility, which allows the lan-
guage to remain small and general while permitting modelers and designers

5

to specialize certain components in order to enrich the semantics of their
models and make the diagrams more readable.

As for the main motivations of IFML, the scenario is clear. The past decade
has seen a huge change in the application development scene. While some
years ago, applications were mostly being developed for a specific platform
and run on devices that allowed for a small set of interactions, current
applications need to target several platforms and offer support for a wide
range of devices that allow users interact in many different ways. Moreover,
the new focus on general consumer markets, brought by the appearance
of centralized marketplaces, has made usability and user interface design
primary concerns and a central part of the development life-cycle of an
application.

More formally, IFML is a modeling language akin to UML, which has ac-
companied for years the community of software development. Like UML,
IFML aims to define and model certain aspects of an application at an ab-
stract level based on a formal meta-model that provides each of the entities
of the language with clear semantics. In contrast, while UML offers a family
of diagrams, each of which is meant to capture a particular aspect of an
application, IFML focuses on the front end and does so by using a single
type of diagram.

As stated previously, IFML’s main objective is to formalize and specify
the different dimensions that make up the front end of an application. In
consequence, a good way to get acquainted with the main entities of the
language is by dividing them according to the particular aspect of the front
end that they intent to model, namely: View Composition, Navigation,
Content, Interaction and Context.

With the aim of showing how each of the main entities of IFML may be used
in practice, throughout this section we will model a dictionary application.
The main requirements of the application are:

• The application must allow the user to enter a word to see its definition.

• The application must allow the user to see a list with the words the
he has previously searched for.

• The application must allow a user to bookmark a word for later refer-
ence.

• The application must allow a user to see a list with the words he has
bookmarked.

6

2.1.2 View Composition

A good place to start modeling this app is the view hierarchy. This hier-
archy, identifies the main sections and top level containers, providing some
hint regarding their visibility and rechability. According to the outlined
requirements, the dictionary app has three main sections: Search, Recent
and Bookmarks, as well as an independent section dedicated to show the
definition of a word. To model this basic structure in IFML, we will need
to use View Containers.

View Containers

View Containers are the most fundamental visual units of IFML. They are
the foundation of the application’s view hierarchy and can accommodate
both View Containers and View Components [21]. As shown in Figure
2.1, we can use 6 View Containers to model the View Composition of the
application. The first container (Dictionary App) acts as the root of the
view hierarchy and will accommodate and manage all the other containers
of the app. Under it, we find two View Containers, Main and Word.

Figure 2.1: IFML Review - View Containers

While the Word View Container is rather simple, the Main View Container
manages a set of mutually exclusive containers, namely Search, Recent and
Bookmarks. To model this behavior, each of them has several tagged values
that indicate their visibility and rechability. In this way, the Main View

7

Container is tagged as [XOR], to express the mutually exclusive behavior
of its direct children, while the Search, Recent and Bookmarks containers
are tagged with an [L] – landmark, to imply sibling navigation. Finally
the Search View Container is tagged with a [D] – default, indicating that it
should be the default section shown to the user.

2.1.3 Content

The next step will be to determine the information that needs to be shown
in each of the previously identified containers, as well as the data that needs
to be captured from the user.

Let’s start with Search. This section, should prompt a search bar in which a
user may enter a word in order to get its definition. To model this behavior
we will need to make use of two of IFML’s platform independent extensions:
Form and Simple Field.

Figure 2.2: IFML Review - Search

Forms

Forms in IFML are an extension of a much more generic entity called View
Component. As expected, they are used to model the capture of information
from the user through a set of fields [21]. In the Search section, we will need
a form entity with one single field in which the user may introduce the word
she wants the meaning of.

8

Fields

As stated previously, Fields are each of the elements that make up a Form.
They could be of two types Simple Field or Selection Field, depending on
whether the user needs to introduce the data herself or if instead she can
choose from a list of options [21]. The search bar of our application needs
to be modeled with a Simple Field, since the user must introduce the word
herself.

Now, lets analyze the Recent and Bookmarks sections (Figure 2.3). Both
of them need to show a list of words accompanied of a snippet of their
definition and an indication of whether they have been bookmarked. To
model this content, we will make use of two core entities of IFML, namely:
Data Binding and Visualization Attribute; and one entity that belongs to
the platform independent extension of the language: List.

Figure 2.3: IFML Review - Bookmarked and Recent Words

Data Bindings

DataBindings are used to express the relations between the view and model
layers of a MVC architecture. That is, a Data Binding should be used
to imply that a particular View Component publishes the data of a given
Domain Object [21]. In our case, the Recent Section shows words that belong
to the Recent Words collection, while the Bookmarks Section shows words
that belong to the Bookmarked Words collection. The previous distinction
regarding the domain objects, is obviously more clear under the light of the
application’s domain model, which is not included in the current document
for simplicity. However, in most of the examples available in the literature

9

a detailed Domain Model is provided and later referenced within the IFML
models.

Visualization Attributes

Visualization Attributes like Data Bindings, are a specialization of a fun-
damental entity of IFML called View Component Part, and are meant to
further specify the behavior of the View Components [21]. While a Data
Binding may specify which particular Domain Object needs to be presented
by a View Component, the Visualization Attributes instead, allow the soft-
ware designer to specify explicitly which attributes and values need to be dis-
closed. In case of the dictionary app, both Recent and Bookmarked Words
need to show the word along with a snippet of its definition. Similarly, an
indication of whether the word has been bookmarked is needed.

List

The last entity depicted in Figure 2.3 is List. Lists are entities that extend
the behavior of a View Component, and model a component able to display
a collection of objects retrieved through a Data Binding [21]. Both, Recent
and Bookmark View Containers include a List View Component to show
the recently searched words and the bookmarked words respectively.

Finally, we describe how to model the contents of the Word View Container.
This section of the app shows a word along with its definition, and appears
every time a user types in a word in the search bar or selects one from the
recent or bookmarked words list. To model this content, we use yet another
platform independent extension of IFML: Details

Details

Details are also a type of View Component, that are used to model the
publication of attributes from their bound Domain Object, as determined
by a Data Binding entity [21]. In the dictionary app, we use a Details entity
to model a component that shows a word along with its definition as shown
in the Figure 2.4.

To finish this section, we now define the two generic classes from which most

10

Figure 2.4: IFML Review - Details

of the previously defined entities extend from: View Components and View
Component Parts.

View Components

View Components represent a visual unit that: may publish the attributes
of a domain object; capture information from the user; or react to certain
user interactions. In general, View Components define what is displayed in
the view hierarchy defined by the View Containers [21]. To put it within the
context of the dictionary app, this entity is the one from which List, Form
and Details extend and get most of their semantics from.

View Component Parts

On the other hand, View Component Parts are each of the sub-elements that
make up a View Component [21]. In the previously discussed models we
presented the most frequently used View Component Parts: Data Binding,
Visualization Attributes and Simple Fields.

2.1.4 Navigation

So far we have modeled, the view hierarchy and the content of each of the
sections of the app. However, we still need to the describe the way a user
may move around these sections and what are the dependencies, if any,
between them.

11

To model these relationships IFML provides entities like Navigation Flows
and Parameter Bindings that allow a software designer to model navigation
and parametrized communications between the View Elements of an app.

Figure 2.5: IFML Review - Navigation Flow

Navigation Flows

Navigation Flows are a special type of a more generic class called Interaction
Flow, that model communications between a source and a target Interaction
Flow Elements. Despite their broad nature, Navigation Flows are frequently
used to model a visual transition from a source View Element to a target
View Element, making them the most suitable construct for expressing nav-
igation in IFML [21].

While the previously discussed Main View Container already describes the
navigation dynamics that should govern the Search, Recent and Bookmarks
View Containers, there is still one section that cannot be reached: Words.

According to our list of requirements, this section needs to be shown every
time a user enters a word in the search bar, or every time a user selects a
word from either the Recent Words or the Bookmarked Words list.

To make the Word Section reachable, we shall create three Navigation Flows
starting from the Search, Recent and Bookmarks sections respectively, and
targeting the Word View Container. For now, let’s assume that a user has
a way of triggering these transitions, and we will later dive deeper on the

12

specific entities that can be used to describe such behavior.

Finally, we need to formalize the previously defined navigation flows by
means of parameters that will tell the Word View Container which word
was typed in or selected, to show the appropriate definition. To achieve
this, we need to make use of Parameter Bindings, as shown in Figure 2.5

Parameter Bindings

Parameter Bindings express the input / output dependencies that exist be-
tween the source and target of an Interaction Flow. That is, they stipulate
how the outputs of the source entity, map into the inputs of the target one
[21]. As shown in the Figure 2.5, we will need to stipulate a parameter
binding for each of the navigation flows, providing the appropriate mapping
in every case.

Before finalizing this section, we introduce the concept of Interaction Flows,
since they are a generalization of the aforementioned Navigation Flows and
constitute a fundamental part of IFML.

Interaction Flows

Interaction Flows represent the communication between a couple of View
Elements or between a View Element and an Action [21]. Such communi-
cations are usually triggered by the occurrence of an event, and may imply
a change of state in the user interface. In any case, an Interaction Flow is
typically associated with a Parameter Binding to specify the dependencies
between the the source and target entities. Finally, an Interaction Flow
can be either a Navigation Flow, implying parameter passing and change of
focus, or a Data Flow, implying parameter passing only.

2.1.5 Interaction

It is now time to present the possibilities that IFML offers to model the
different interactions that a user may have with the front end of an applica-
tion.

In the case of the dictionary a user may interact with the application in
three different ways: introduce a string to perform a search; select a word

13

out of the Recent or Bookmarked word lists; and bookmark a particular
word. Even though all of these interactions imply actions performed by the
user, they also involve different reactions that are usually described by the
application logic.

Using IFML a software designer is able to: model the specific interactions
that must performed by a user; identify the Entity that is in charge of
monitor the occurrence of such interactions; and determine the task that
the application should perform in response to them. Specifically, IFML
defines two entities that model the user’s and the application’s side of an
interaction: Events and Actions.

Events

Events in IFML represent an occurrence that affect the state of the applica-
tion causing parameter passing between entities and, in some, cases change
of focus [21]. There are several kinds of events defined in IFML, like View
Element Events, System Events and Action Events. Particularly, View Ele-
ment Events are an abstraction for an action that is performed by the user
— e.g click, submit, select – and is monitored by the event’s target, which
in case of the View Element Events happens to be a View Element.

In Figure 2.6, there is a simplified version of some of the containers of the
dictionary app along with an indication of the events that the user can
trigger in each of them. In this way, in the Bookmarked and Recent sections
a user should be able to select one of the words to see its definition; in the
Search form, a user should be able to introduce a string and start a search
operation; and in the Word View Component the user should be able to
update the bookmarked status of a word.

Figure 2.6: IFML Review - Events

In Figure 2.6, all the events are represented using a white circle, but some
of them are further defined with a slightly different notation. Such is the
case of the Selection and the Submit events. Both of them are part of the

14

platform independent extensions of IFML, and aim to refine the semantics
of the language by providing a better description of the kind of interaction
that is expected from the user. In this way, the Select Event, associated
with the Bookmarked Words, implies that the user needs to select one of
the items of the list; and the Submit Event, indicates that the user must
introduce and submit some data.

As stated previously, there are always two sides in an interaction: one of
them is the action performed by the user — which in IFML is modeled
through Events —, and the other is the task that is performed by the system
in response to it. To model the latter, IFML uses Actions.

Actions

Actions in IFML represent pieces of business logic that are triggered by the
occurrence of an event [21]. In the case of the dictionary app, submitting
a word in the search bar causes the system to trigger a look up task, that
retrieves the definition of the word and navigates the user to the Word View
Container once completed. Similarly, in the Word Details View Compo-
nent, the bookmark event causes the execution of a piece business logic that
updates the bookmark status of the word.

Figure 2.7: IFML Review - Actions

2.1.6 Context

The Context defines the particular View Composition, Content, Navigation
and Interactions that are available to a user using a particular device. In
IFML, these four dimensions of the front end make up an entity called View

15

Point.

Following the previous definition, IFML allows a software designer to define
several Viewpoints for his application, identifying for each of them the par-
ticular context conditions needed to activate it. Such Context is modeled in
terms of Context Dimensions that evaluate variables related with the User,
the Position and the Device.

To show how the Context information may alter the actions available to
a user in an application, let’s suppose that in the dictionary app only the
premium users are able to bookmark words. This additional requirement,
will imply a runtime check in order to figure out whether the active user is
allowed to update the bookmark status of a word. To model this feature,
and express other traits of the Context, IFML has entities like the previously
defined Context and Context Dimension. On the other hand the run-time
evaluations are modeled through Activation Expressions.

Activation Expressions

Activation Expressions are used in IFML to determine whether a particular
element of the interface should be active or not. These entities come handy in
cases where run-time checks need to be applied to figure out if a particular
action or content section is available to the user. Such is the case of the
dictionary app, in which we can use an Activation Expression to determine
if the user is a premium user and if so, enable the bookmark interaction.

Figure 2.8: IFML Review - Activation Expressions

16

2.2 iOS

2.2.1 Technologies

One of the reasons why programming for iOS is regarded as a daunting task,
is because there are several concepts and abstractions that a programmer
needs to understand, before starting to program applications. A good start-
ing point for this journey, is the study of the very technologies that power
the platform, as well as the services that they provide to the developers.

The architecture of the platform can be seen as a four layered system, or-
ganized in ascending level of abstraction. At the lowermost level we find
Core-OS [8] that provides several APIs to: communicate with external de-
vices, manage bluetooth communications, manage security, provide managed
file-system access, support concurrency and threads, memory allocation and
management, among others.

Following the stack, we encounter the Core Services [8] layer that encom-
passes APIs for networking operations, model management and arguably the
most important framework of the platform: Foundation. This framework,
contains Objective-C wrappers for basic classes like: NSObject, NSDate,
NSData, NSString, NSInteger, NSNumber as well as collections like NSAr-
ray, NSDictionary and NSSet.

At the third level we find the Media Layer [8], that basically contains frame-
works for image, video and audio management. Finally at the top of the
stack, we find Cocoa Touch [8]. This framework promotes the Model-View-
Controller (MVC) architecture, and provides the foundation for most iOS
apps. In consequence, Cocoa Touch contains the family of classes that every
iOS programmer needs to be familiar with.

2.2.2 Objective-C

Another defining characteristic of the platform is the programming language
that powers it: Objective-C. The language is currently supported and con-
tinuously enhanced by Apple and is used for natively developing apps for the
OSX and iOS operating systems. At a general level, Objective-C is an object
oriented superset of C [9] and inherits many of its traits, like the support of
two files types (� .m � or implementation files and � .h � or header files),
or the required tasks expected from the programmer to manage memory
allocation and deallocation of objects and data structures –although recent

17

enhancements on the compiler, have moved some of this burden away from
the developer shoulders.

A defining trait of Objective-C is certainly its syntax, which mixes the use
of the dot notation for property access (akin to Java attributes) and square
brackets for message passing (similar to method invocation in Java). More-
over, public, and private modifiers are managed through the distribution of
methods and properties between the ”.m” and ”.h” files (in the case of the
public and private modifiers) while instance and class methods are indicated
through the use of ” - ” and ” + ” respectively.

Other than the syntax, there are several constructs that differentiate Objective-
C from other object oriented languages like Java, and even from the ANSI C
programming language. Some examples of such constructs are: categories,
blocks and protocols.

• Categories: Categories provide a way for extending the capabilities
of a class without the need of inheritance or composition. They allow
the programmer to modify and enhance the behavior of any custom
or system provided class (e.g NSString) and add methods that will be
available at runtime for all the classes within the app [9].

• Blocks: Blocks are similar to the closures or lambda expressions
present in other languages like Javascript and Haskell. They allow
a function to be executed outside of its scope while still accessing the
variables available in it. Blocks are used very frequently when devel-
oping applications for iOS, because they provide a very handy way to
implement object communication as well as completion handlers for
asynchronous and concurrent operations [9] .

• Protocols: Protocols are similar to Java Interfaces, and they are
widely used across all the frameworks that power the platform. They
are the main building block of two important communication patterns:
Delegates and Data Sources. Protocols, provide a way to loosely re-
late objects by defining a contract that specifies a set of functions that
should be supported by the implementing class. Given that Objective-
C doesn’t allow multiple inheritance, but allows classes to implement
as many protocols as needed, the possibilities offered by protocols
in terms of decoupling, reuse and collaboration are widely used. In
contrast to Java interfaces, protocols in Objective-C can distinguish
between required and optional methods, which removes the need for
providing empty implementations for uninteresting optional methods
[9].

18

Finally, additional enhancements to the compiler as well higher level APIs
have been added to make easier cumbersome tasks like memory management
and multithreaded programming. Such is the case of ARC and GCD. ARC
or Automatic Reference Counting, is a compiler level enhancement that re-
leases some of the burden caused by the memory management operations
and specially for the need of deallocating unused objects [11]. Similarly,
Grand Central Dispatch (GCD), provides a managed approach to multi-
threaded programming based on dispatch queues, in which asynchronous,
synchronous, sequential and concurrent tasks can be scheduled and are seam-
lessly managed by the framework. This approach abstracts away the com-
plexity implied by thread management, while giving the developer enough
control to finely tune the execution of his code [3].

2.2.3 Apps’ Architecture

Most of iOS applications are built using a Model-View-Controller (MVC)
architecture [2]. In this architecture, classes are to be divided into three
different groups according to their role and responsibility. This architecture
favors separation of concerns and reusability by decoupling the models –
that represent the domain entities and contain a good part of the business
logic – from the GUI used to present them. Such decoupling is achieved
by means of a third group of objects called controllers that are in charge of
translating the user inputs into the corresponding updates in the models,
as well as updating the user interface every time something changes in the
underlying models.

From the software engineering point of view the MVC architecture is the
combination of three design patterns, namely: Observer, Strategy and Com-
posite. Whereby, the Observer pattern is used by the models to keep inter-
ested objects updated on any changes of its values. The Strategy pattern is
used by the views to let its associated controller respond to certain events –
like user interactions. Finally the Composite pattern is evident in the view
hierarchies whereby a view can have subviews, that are views themselves
and can have more subviews.

• Model objects: Represent the domain entities, and encapsulate the
business logic [2].

• View objects: Represent the visual components that make up the
graphic user interface (GUI) of an application. Typically a view object
knows how to draw itself and is able to effectively capture the user
interactions. Moreover, a view should provide a way to communicate

19

certain events to a controller as well as provide clear APIs that can be
used to update the information it shows [2].

• Controller objects: Controller are the less reusable objects of an
application. They act as the glue between the views and the models,
keeping the information stored in the models aligned with the infor-
mation displayed by the views and performing actions after a user
interaction is captured [2].

Even though MVC is a very common software architecture, the implemen-
tation used in iOS is somehow particular. Particulary, the communication
mechanisms that allow objects collaborate with each other, deserve a brief
description.

• Delegate [View / Controller]: Delegates are an implementation of
the Strategy pattern that is frequently used by views to communicate
with their controllers. The interesting thing about delegates, is that
they imply a decoupled communication between objects. Using delega-
tion, an object A can transmit the responsibility of performing some
operation to object B, as long as object B implements the required
methods of some protocol that is known by both A and B [2].

• Data Source [View / Controller]: Similar to delegates, data sources
are typically used by views to let other objects provide the information
that they should show. It is very usual to find a View Controller that
becomes both a delegate and a data source of a particular View and
does so by implementing both the specified delegate and datasource
protocols [2].

• Target-Action [View / Controller]: This type of communication
allows control views (buttons, sliders, checkboxes, etc) to communi-
cate to a target object. The communication happens via a defined ac-
tion that is triggered when a particular control event has taken place.
Typically, a View Controller registers himself as the target object of
several actions that occur within the view – touch, drag, value change,
etc. Moreover, it specifies for each action a method that should be
triggered every time the action is captured [2].

• Outlets [Controller / View]: Every View Controller has a reference
to the view it controls. However a view is usually composed of several
subviews that need to be updated in response to user interactions or
changes in the underlying model. To provide easy access to such view
components, a controller could declare several properties, marked as
IBOutelts. In this way, every time a view controller needs to update a

20

subview, it could do it directly instead of having to examine first the
subviews of its view. Similarly, if there are subviews that do not need
to be updated, the view controller could ignore them by not providing
any outlets for them. From the software engineering point of view, an
outlet relation is equivalent to a �has-object� relation; however, the
reason IBOutlets are treated specially, is because the actual relation
is archived on the view’s nib file and is established only when needed
[2].

• Key-Value Observer [Model / Controller]: According to the
MVC architecture, a controller may hold a reference to both its model
and its view, allowing it to directly communicate with them. Since
the opposite is not true for a model, there is a need for a decoupled
mechanism that will allow a model to inform its controller every time
there has been and update on its values, so that the controller can
refresh the view accordingly. Such mechanism is known as Key-Value
Observer or KVO. Through KVO, a controller could observe a partic-
ular property of the model and get notified every time such property
has changed [2]. Segues [Controller / Controller]: A typical sto-
ryboard based iOS app has have several scenes. Each of these scenes,
has a View Controller, which in turn has a reference to its view and
possibly to a model object. To transition between the scenes of a sto-
ryboard, segue objects can be used. There are several kinds of segues
offered by the UIKit framework, and should the programmer need it,
custom segues can also be defined through inheritance [13].

Core Objects

Typically, iOS applications use the Cocoa Touch Framework. Like any other
framework, Cocoa needs several objects to establish bidirectional communi-
cations with the application’s custom code. Some of this objects are usually
provided by the programmer, while others are already supplied by the frame-
work.

• Main: Just like in regular C programs, the main file contains the
entry point of the application. When developing applications using
Cocoa Touch this file is rarely modified [7].

• UIApplication: This object controls the execution of the application
and is the one in charge of managing the app’s run loop [7].

• AppDelegate: Implements the UIAppDelegate protocol in order to

21

act as the UIApplication delegate. Through this link, an app delegate
is notified after every change in the state of the application [7].

• UIWindow: Is the top of the view hierarchy and as such is in charge
of managing the views that are displayed to the user [7].

2.2.4 Persistence

There are several ways to provide persistence for an iOS app, and the deci-
sion of which of them is the right one depends on the kind of the application
being developed. It is not rare, however, to come across applications that
need to make use of more than one persistence strategy due to a particular
business requirement, or simply due to the constraints imposed by a mobile
environment – having to deal, for instance, with unreliable network access.
The following list presents some persistence alternatives that are offered in
iOS.

• Property Lists: Property lists provide a good alternative to store
simple data as XML or in a binary representation. Only a few Foun-
dation classes are property-list compliant and therefore can be serial-
ized and deserialized as property-list’s data items, namely: NSArray,
NSDictionary, NSString, NSDate, NSData and NSNumber. This per-
sistence strategy is advised for use cases in which small quantities of
simple data needs to be persisted locally. Additionally, since prop-
erty lists are often used to store user configurations, the Foundation
Framework offers an API that covers common management tasks of
these files [10].

• File System: Through this method, an application is able to store
data in files that live within the application’s sandbox. This persis-
tence method is frequently used directly to provide caching for exter-
nally acquired objects, store additional application objects and assets
(e.g in-app purchases) or save basic user configuration files [5].

• Archives: In contrast with property lists, the object archival strategy
offers the possibility of storing complete and complex object graphs to
secondary storage. Almost any object can be archived as long as it
implements the required methods of the NSCoding protocol. Through
archives arbitrary objects can be encoded as byte streams and stored,
as well as decoded and turned back into the objects they were originally
encoded from. Object archival offers a viable persistence strategy for
the model layer of an application [1].

22

• Core Data: Core data is, in essence, a model layer technology. It pro-
vides a managed approach to deal with persistent object graphs, and
offers operations like lazy object loading, relationship management,
undo changes support, as well as a powerful query system. Core Data
is traditionally used on top of a SQLite database that uses a private
format, and that is only accessible through the APIs offered by the
framework [6].

• SQLite: This alternative allows a developer to create the persistent
layer of an application relying on a familiar technology like SQLite
[4]. In contrast with Core Data, working directly with SQLite allows
a developer to finely tune every aspect of the data access logic. How-
ever, the level of abstraction of this approach is much lower, and as
result most of the management services need to be implemented by
the developer.

2.2.5 Application Sandbox

Every iOS application runs within its own sandbox, that isolates it from
the other applications installed in the running device. This feature aims
to enhance the security of the system by allowing an application to access,
manage and manipulate only the files that concern it, as opposed to allow
it manipulate arbitrary files across the file system [5]. The sandbox of an
application has a predefined structure that classifies the files managed by
the application according to their purpose and provenance. The sandbox of
a typical application contains the following folders and files:

• AppName.app::The application’s executable file.

• Documents: iTunes backed up folder. User produced objects as well
as user configurations should be stored here.

• Documents / Inbox: This folder stores external documents. Exam-
ples of files that can be found in it are the attachments of an email
that need to be viewed using a different application.

• Library / App Resources In this folder user created documents
and additional application assets are stored. This folder is backed up
by iTunes.

• Library / Caches: An application may use this folder to cache ex-
pensive and externally obtained objects. This folder is not backed up
by iTunes.

23

• Library / Preferences User configuration files and other settings
related documents should be archived under this folder.

• tmp: A folder where non essential files and documents can be cached.
The reason why only non-essential objects are supposed to be archived
under this folder is because the OS may decide to purge it in case
of needing additional disk space. In consequence, this folders is not
backed up by iTunes.

2.2.6 Networking

Very frequently, mobile applications need to communicate with external
entities using protocols like http or https to access, download or store data
and files. Likewise, to provide multi-platform deployments and enhance the
user experience, application developers usually rely on a centralized server
architecture that offers a unified service interface (e.g. a REST API).

To address the previous networking scenarios, Apple offers several low and
high level implementations that can be used to suit very specific use cases.
In particular, for communications over HTTP and HTTPS there is a group
of classes known as the URL Loading System that together offer a complete
set of APIs to transfer data as well as upload and download files from an
external HTTP server [12].

2.2.7 Views Management

iOS offers several alternatives when it comes to creating and managing the
views that make up the user interface of an application. Some of them are
very intuitive and allow developers to layout and connect the main screens
that make up an application, while some others require a deeper understand-
ing of the available APIs. In the following list we provide a brieff overview
of the existing alternatives for Views Management offferd by iOS.

• Storyboards: Storyboards provide a way for graphically laying-out
the scenes that make up the graphic user interface of an application.
The negative aspect of storyboards is that their underlying textual
representation is hard to read making the merge operations, needed
when working in teams using a code repository, quite difficult to carry
out. Moreover, laying out very complex applications using storyboards
can quickly get very hard to manage [13].

24

• Nib files: Just like with storyboards, NIB files allow developers to
compose the a view of the application through a graphic editor. In
this scenario, a view can be a specific component or a complete screen
of the app. In contrast with storyboards, NIB files do not describe the
transitions between the views of an app, requiring the programmer to
manage this aspects through code [14].

• Programatically: Views can also be created entirely from code; and
sometimes to achieve certain behaviors there is no way around it. The
caveats of programmatically creating all the views of an application
regard the complexity implied by coding aspects of the view that are
simpler to achieve using a graphical tool, e.g layouts and constraints
management [14].

25

Chapter 3

Approach

3.1 Overview

The development of our project was divided in three moments (Figure 3.1).
First, we identified a set of candidate extensions that could be added to
IFML, using the knowledge we had gained about the iOS platform during
the background review. Then, we focused on creating the code generator
for iOS, which would produce the Objective-C implementation of an app
modeled with IFML. Finally, using the insights gained during the generation
process, we revised some of the extensions we had proposed, and drafted our
final proposal.

Figure 3.1: Approach - Overview

In this chapter, we will give an in depth look to the particular methodologies
that we used to achieve the two objectives of our project. We also present, at
the end of the chapter, a brief overview of the main tools and programming
languages that enabled our final solution.

26

3.2 Extensions

To tackle the first objective of the project, we strated by analyzing the
type of apps that could be built in iOS, and more specifically observing
the type of features and functionalities they offered. We began looking at
the gestures that were available, the types of sensors that could be used,
and the strategies that enabled inter-app collaborations. We then looked at
IFML to see if there was a way in which a software designer could express
these traits in his models — whether a form could be submitted by shaking
the phone, or if a particular action could be triggered by an update on the
device orientation. Every time we couldn’t find a way to represent one of
these features, we proposed an extension.

The other place that proved to be a good source of inspiration, was the
actual code generation effort that we had undergone to achieve the second
goal of our project. The approach we followed in this case, was simple. We
reviewed all the assumptions that we had made about the implementation
of a particular IFML entity in iOS, and then analyzed whether an extension
could have helped to disambiguate the matter. For instance, while devel-
oping the code generators, we assumed that all the user triggered events –
Select Event, Submit Event, and plain View Element Events — were cap-
tured after a user touch. This was an over simplification of what can be
achieved in a mobile environment — where a user may touch, tap, slide and
even shake his device to trigger an event. In all these cases we added entities
with more specific semantics, that would allow designers express their intent
more precisely – in our previous example, we added a set of extensions to the
event hierarchy of IFML. We repeated the same exercise with other entities,
and produced the final extensions proposal.

To organize our extensions, we grouped them into three different packages
according to their scope, and the core entities they extended from. In this
way, the General Extensions Package contained classes that were valid be-
yond a mobile environment, like an Application Lifecycle Event, a Multi-
line Field or an Image Attribute. The Mobile Extensions Package instead,
clustered entities that were more tightly coupled to the constraints and pos-
sibilities offered by mobile technologies, like the tactile and sensor events.
Finally, in the Private Extensions Package, we grouped classes that extended
the Context entity of IFML, which as of this writing, is not allowed outside
a private scope by the IFML standard [21].

27

3.3 Code Generation

The diagram shown in Figure 3.2 provides a clear view of the methodology
that guided our work during this part of the project.

Figure 3.2: Approach - Code Generation

3.3.1 Prototype App

Our first step was to choose a suitable prototype that could guide the gen-
eration process. We looked for an application that used a meaningful subset
of the IFML entities, and whose model had already been designed with the
model editor. After some analysis, we chose one of the sample applica-
tions that shipped with the IFML Model Editor. We applied some minor
modifications to its model, and then moved forward to provide an iOS im-
plementation for it.

Choosing this prototype was very important. It defined which entities were
supported and which were not. But the next step, was the one that truly
defined the shape of our solution.

3.3.2 Target Architecture

We defined the architecture of the generated apps in two ways. First, we used
a software driven approach to described the main application components
and their relations. Then, we used model driven approach, to formalize the
structure of this architecture in a metamodel.

28

The software driven approach was concerned with creating a taxonomy for
the objects that composed the application, assigning responsibilities for each
of them, and describing the way different types of objects collaborate with
each other. In contrast, the model driven approach focused on representing
the application components at a level of abstraction that was farther away
from the implementation details.

This approach allowed us to think about the transition that takes the IFML
model of an application to its iOS implementation, as a two step process.
First the IFML entities had to be mapped into the metamodel that defined
the target architecture — a Model to Model transformation. Then, the
mapped entities had to be translated into the code of the target platform
— a Model to Text transformation.

In this way, our next step was to understand the equivalences between IFML
and the entities in the newly defined target metamodel.

3.3.3 Mappings

There were two ways in which we could perform the mapping between IFML
and the entities of the target metamodel. The first one, was to write a set
of rules using a model transformation language like ATL. The second one,
was a more flexible approach based on diagrams.

The first strategy had the advantage of being formal, allowing the model
transformation to be done automatically through the tools provided by the
Eclipse Modeling Framework (EMF). On the other hand, it increased the
technical demands of the project, reducing the time that we could devote to
other aspects of the research.

The other strategy, instead, had the benefit of being lightweight and faster
to perform. On the flip side, however, it moved most of the transformation
burden into the code generators, which instead of having to generate code
out of the entities of the target metamodel, had to do so from the entities
of the IFML model.

At the end, we opted for a hybrid approach. We preserved the formality of
the two step transformation process provided by the model driven approach,
as a theoretical tool that described the shape of our solution. While the
actual implementation was achieved by describing the mappings using a set
of diagrams and placing all the transformation logic into the code generators.

29

Once the equivalences between IFML and the target architecture were well
understood, we focused on the code related tasks. Particularly, we set out
to discover how much code had to be generated.

3.3.4 Static Library

To understand how much code had to be generated during the M2T trans-
formation step, we started by analyzing the code of the prototype app. We
separated the pieces of code that were model independent — those that
would remain the same across the generated applications—, from those that
depended on the input model. The model independent pieces were wrapped
into a static library; the other sections of code instead, were singled out as
the ones that would be dynamically generated by the code generators.

We wrapped the model independent pieces into a static library because in
this way we could reduce and simplify the code that had to be generated.
The library contained a set of basic classes, a collection of default views
and other utilities. The basic classes would be extended by the generated
code, allowing us to factor out into parent classes all the complicated logic
and control flow. The default views and the utilities instead, allowed us
to provide the generated apps with a basic user interface, that will further
reduce the time between modeling and the first compilation of the apps.
Additionally, since the dependencies between the generated code and the
classes in the library were resolved at compilation time, we were able to test
and debug the library independently, which gave us a lot of flexibility.

At the end of this stage, we had a good grasp of what needed to be generated,
and could start working on two parallel fronts. One that was be focused in
writing and testing the code contained in the static library, and other that
focused on the development of the actual generators.

3.3.5 Code Generator

There are several patterns that can be used to implement a code generation
tool — Markus Voelter [25] has several good advices on this topic. In our
case, we decided to use the “Template and Filtering” [25] approach. In
consequence, all the generators we developed had a very similar logic. They
would first query the IFML model, to find the subset of entities that would
be transformed, and then, through the usage of templates and simple logic,
they would generate the target source code.

30

An important advantage we had, was given by the IFML metamodel, which
had been developed using ECORE. This implied, that instead of having to
deal with cumbersome and time consuming tasks like parsing the model file,
and providing an object oriented representation of the elements in it, we
could use the APIs provided by the Eclipse Modeling Framework (EMF)1,
which made trivial these operations.

Our technical stack was completed by Xtend2 — a dialect of Java, that
compiles to regular Java code —. We chose this tool, to develop the actual
generators because of its powerful template capabilities and very concrete
syntax.

In combination, the EMF infrastructure, Xtend, and the “Template and
Filtering” [25] strategy made the implementation of the transformation tool
much easier, and kept the focus on the real objective: producing Objective-C
code out of an IFML model.

The only caveat we found while using these tools, was the management
of static files. In our project this meant, copying into the final output
the classes of the static library and a set of boilerplate files that remained
unchanged across the generated applications — e.g the Main file.

We addressed this issue through a combination of strategies. First, since the
number of boilerplate files was not too high in our case, we added generators
whose only purpose was to create the same files every time. As for the
files in the static library, since they also had to be linked to the classes in
the generated code, we opted for a more robust strategy that involved the
usage of cocoapods3 — a popular dependency manager for iOS and OSX
development.

3.3.6 Integration Tools

The goal of this final step was to integrate the generated files into the tools
used by iOS developers. This implied the generation of the Xcode project
file and the development of a script that retrieved the static library and
linked it to the generated project.

This additional effort allowed us iterate much faster in the development of

1 http://eclipse.org/modeling/emf/
2 http://eclipse.org/xtend/
3 http://cocoapods.org/

31

http://eclipse.org/modeling/emf/
http://eclipse.org/xtend/
http://cocoapods.org/

the generators. Instead of having to manually create a new Xcode4 project
and add the generated files along with the static library to it, we could only
execute the scripts and have it done for us in a couple of seconds.

Moreover, we could tighten up even more the final output project, so that
the folder structure of the generated app will be indistinguishable from the
structure of an app that had been manually created.

3.3.7 Packaging

Up to this point, we had created three different tools that were tightly
related. First, the Code Generators, which had been distributed as a stan-
dalone jar. The project builder script, which had been developed using ruby
. And Finally, the Library Linker that would download the Static Library
from a centralized repository and add it to the compilation path of the
generated Xcode project, leveraging the capabilities offered by cocoapods.

The biggest issue caused by having these separate applications was usability.
An IFML designer interested in generating the iOS version for one of his
models, would have to launch each of these tools, execute them in the right
order and remember to provide the appropriate parameters for each of them.
To solve this issue, and ultimately, make the leap from IFML into iOS, as
frictionless as possible, we developed a desktop app with a graphic wizard
to guide users through the generation process.

3.4 Tools

The following table summarizes the IDE’s and programming languages used
for developing the project deliverables.

Tool Programming Language IDE

Code Generators Xtend / Java Eclipse

Static Library Objective-C Xcode

Project Builder Ruby Xcode

Library Linker Bash Xcode

Generation Wizard Objective-C Xcode

4 https://developer.apple.com/xcode/ide/

32

https://developer.apple.com/xcode/ide/

Chapter 4

Extensions

Currently, IFML provides software designers with a set of entities that can
be used to model desktop, web and even the fundamental aspects of mobile
applications. There are, however, several features of the mobile environ-
ment that are not covered yet by the language. For instance, a software
designer doesn’t have a way to query the hardware capabilities of the de-
vice in which his application is running on, to understand which sensors
are available or what communication networks are currently active. Simi-
larly, the existing Event architecture of IFML doesn’t consider interactions
beyond simple mouse and keyboard events, leaving uncovered tactile and
sensor driven events. Finally, there are few, and very general, entities that
can be used to model apps that can cope with the changing nature of the
mobile context or blend nicely with the resource optimization strategies used
by modern mobile operating systems.

For this reason, our goal during this part of the project was to provide a
suitable set of extensions for IFML, that would allow software designers
model modern mobile applications, considering the particular requirements
that arise in this platform. Similarly, these extensions also had the benefit
of potentially increase the effectivety of future code generators, since having
more specific entities mean that better assumptions can be made regarding
the functionalities expressed by software designers in their models.

As a result, we proposed 90 extensions that we divided into three packages:
the General Extensions Package, the Mobile Extensions Package, and the
Private Extensions Package. Figure 4.1, shows these packages, the number
of entities they contained and the IFML entity they extended from. As
for the specific extensions they included, in the next sections we provide a

33

brief overview describing some of them. A more complete description can
be found in the appendices of this document.

Figure 4.1: Extensions - Packages

4.1 General Extensions

The General Extensions Package, contains extensions that go beyond the
mobile scope. Hence, the extensions discussed in this section could also
be used for modeling desktop and web applications. Figure 4.2 shows an
overview of the main entities contained in this package.

Figure 4.2: General Extensions - Overview

4.1.1 View Lifecycle Event

Traditionally, one of the main roles of the controller layer within a MVC
architecture, is to keep the alignment between the information shown in the
user interface and the data stored in the underlying models. Consequently,

34

this synchronicity needs to be enforced by the controller throughout the
lifespan of the view it manages, including the following milestones:

• The creation and allocation of a view in memory.

• After a user interacts with the view aiming to change the state of the
models.

• Every time a view is displayed, after the user has visited other sections
of the app.

While the second case is somewhat covered by IFML (through View Element
Events), the other two remain unsupported. To address the missing cases,
we propose an extension to the System Event entity called View Lifecycle
Event. This entity will allow software designers to specify the actions that
should be triggered after the occurrence of an important milestone of the
lifecycle of a particular view. As shown in Figure 4.3, the extension defines
five milestones: View Did Load, View Will Appear, View Did Appear, View
Will Disappear and View Did Disappear.

Figure 4.3: General Extensions - View Lifecycle Event

Using this extension:

• A social media app, could start a network request to obtain the posts
of a user’s news feed as soon as the view that displays this information
has been loaded into memory.

35

• A task manager app, could update the main task list to reflect the
changes applied by the user in a different section of the app.

4.1.2 Application Lifecycle Event

In order to optimize resource usage and provide the possibility of executing
several applications concurrently, operating systems use several strategies.
One of this strategies consist in assigning different states to the running
applications depending on whether they are running in the foreground or in
the background [7]. In consequence, to guarantee the best user experience,
applications must supply mechanisms to take appropriated actions after
being notified about a change in their state.

Even though, the current specification of IFML includes a general System
Event that could be used in this scenario, it is not specific enough to allow
software designers model applications that blend nicely with the resource op-
timization strategies of modern operating systems. For this reason, we pro-
pose an extension called Application Lifecycle Event, whose main purpose is
to group together all the events that are related the with state transitions of
an application, which in turn, will allow for the definition of more resilient
apps. Figure 4.4 shows the 10 application states that can be modeled with
this extension.

Figure 4.4: General Extensions - Application Lifecycle Event

Using this extension:

36

• A note taking application can save locally the user’s work, once it is
notified about being swapped into a background state, foreseeing a
possible future termination.

• A productivity app, that allows several users to collaborate in the
creation of a document, may notify the server before a user terminates
the application, so push notifications are suspended for this user.

• A casual gaming app, may choose to pause the game timers when the
application is moving into the background.

4.1.3 Multiline Field

Currently a software designer doesn’t have a way for indicating if a Simple
Field may allow single or multiple-line inputs, yet this distinction may lead
to very different implementations. To disambiguate these cases, an extension
called Multiline Field is proposed.

Using this extension

• A social network may model the user registration form using a Simple
Field for capturing the user’s name, and a Multiline Field for capturing
the user’s bio.

• An ecommerce app may use a Multiline Field to allow users write
reviews about the products offered in the platform.

4.1.4 Range Selection Field

Range Selection Fields are meant to allow users select a particular value
within a range of discrete or continuous values. To fully model this type of
fields, this entity contains the following attributes

• minValue: the lower boundary of the range

• maxValue: the upper boundary of the range

• stepValue: the increment by which a user may update the field value.

Using this extension:

37

• An application for order processing may use a Range Selection Field
with its minValue set to 0, a maxValue equals to 100 to model a
discount percentage field.

• A hotel booking application, may use a Range Selection Field with its
stepValue set to 1, to model the number of guests that will be staying
in a room.

4.1.5 Image Attribute

Currently designers don’t have a way to differentiate between a Visualization
Attribute that needs to be rendered as text from a piece of data that needs
to be shown as an image. To disambiguate these cases, an extension of the
Visualization Attribute, called Image Attribute was be introduced.

Using this extension,

• An email application, may model the user profile section using a Visu-
alization Attribute for the user’s name field, and an Image Attribute
for the user’s picture.

• An ecommerce application, may model a catalog of products using
a List View Component that shows for each product a Visualization
Attribute for the product’s name, and an Image Attribute for the
product’s picture.

38

4.2 Mobile Extensions

One of the strongest appeals of mobile applications comes from their ability
to exploit the interaction capabilities of the devices they are executed on.
For this reason, allowing users to interact with an application using tactile
gestures or by physically moving their devices has become an important
concern of the front end development of mobile apps. In contrast, one of the
biggest challenges faced by developers comes from the inherently tougher
environment in which mobile applications are executed on.

While IFML allows software designers to model certain user interactions, and
respond to some system triggered events, there are still several uncovered
aspects that are needed to enable the definition of resilient applications that
can take full advantage of the interaction capabilities offered by the mobile
platforms.

On the other hand, mobile operating systems have an active role and interact
frequently with applications. Hence, mobile operating systems are not only
in charge of managing access to shared resources like memory and storage,
but also of tasks like delivering sensor readings to the applications that
require them. Additionally, due to the relatively short amount of available
resources in mobile platforms and the optimization strategies put in place
by the operating systems to cope with such scarcity, mobile apps need to
be able to receive system notifications and react appropriately to them in
order to provide a consistent and reliable user experience.

System Events in IFML are meant to model occurrences that are not directly
initiated by the user, but that are instead triggered directly by the operating
system. Even though these general events can be used to model some of
the previously described cases, a more subtle taxonomy will allow software
designers to specify how their mobile applications should react to specific
occurrences. In particular, we propose a taxonomy shaped by two entities:
Mobile Sensor Event, and Mobile Resource Events.

Mobile Sensor Events model all occurrences generated by the device sensors.
Mobile Resource Events instead describe the notifications triggered by the
operating system regarding the shortage and changes on the availability of
certain shared resource. Furthermore, we have proposed an extension for
the View Container class of IFML, called Screen, that represents each of the
scenes that makeup the user interface of a mobile application. Figure 4.5,
illustrates the main extensions of this package, while the following sections
describe briefly their purpose and utility.

39

Figure 4.5: Mobile Extensions - Overview

4.2.1 Touch Event

Mobile applications need to allow a richer set of user interactions that involve
tactile interfaces. While in a desktop environment, a user can interact with
an application by means of a mouse and a keyboard, in a mobile context a
user can interact using a tactile surface that could leverage several standard
gestures like Tap, Pan, Swipe, Flick, Pinch, Rotate, Drag and Long Press.

To support this interactions, we propose an extension to the View Element
Event called Touch Event. This entity will group together the set of standard
gestures that are supported by the major mobile platforms. Figure 4.6 shows
the six interactions that are modeled through this extension.

Using this extension a software designer may specify the specific tactile
events that can be captured by a View Element and the action that may be
triggered in response. For instance:

• An application that shows a gallery of pictures may allow users to
swipe horizontally in order to navigate through the pictures.

• The same gallery application may allow users to zoom in and out
within a picture using a pinch gesture.

40

Figure 4.6: Mobile Extensions - Touch Event Hierarchy

4.2.2 Mobile Sensor Event

Mobile applications need to allow interactions with the outside world beyond
user inputs, that is considering as sources of events other agents like the
device sensors. The events produced by these sensors are usually captured by
the operating system and delivered to the application upon user permission.
For this reason, we propose an extension to the System Event called Sensor
Event that identifies three general categories of events, namely: Proximity
Event, Location Events and Motion Events.

Figure 4.7: Mobile Extensions - Mobile Sensor Hierarchy

• Proximity Events are produced by the proximity sensor of the device,
is frequently used by applications that require the user to place the
device near to his ear such as telephone apps.

• Location Events refer to changes in the geographical position of the
user. They are captured by the device GPS and are frequently used
in applications that involve maps and navigation.

41

• Motion Events group events triggered by the Accelerometer, Gyro-
scope and Magnetometer of the device, which identify if the device
has been rotated, if there has been a change in its orientation or if
variations on its linear velocity have been detected.

Using this extension,

• An application that wants to show the linear acceleration of the de-
vice in the user interface, may have a Mobile Sensor Event of type
Accelerometer, that will be fired every time there is a change on the
linear velocity of the device.

• A productivity application may update the configuration of the user
interface, every time the user rotates his device.

4.2.3 Mobile Resource Event

The OS in mobile devices like in desktop platforms, is in charge of managing
shared resources like memory, secondary storage and network connections.
While desktop applications usually run on devices with very large and sta-
ble resources, mobile applications need to cope with resource scarcity and
instability.

The Mobile Resource Event is meant to encompass all these occurrences.
Figure 4.8 shows the types of events that could be captured using this ex-
tension.

Figure 4.8: Mobile Extensions - Mobile Resource Event

Using this extension

• An application may decide to relase unused resources after receiving
a memory warning from the operating system

• A podcast application may choose to reschedule an expensive network
operation, in case the device battery is running low.

42

4.2.4 Screen

Akin to the Window extension of IFML, the Screen entity is aimed to rep-
resent the basic container unit of a mobile application. Furthermore, to
cover the most frequent usage scenarios of this entity, we have given it two
attributes:

• isModal: To explicitly model wether a screen should be shown modally
or modeless, software designers may update the Boolean value of this
attribute.

• hasNavBar: While some platforms like Android use default navigation
stacks to keep track of the screens that have been visisted by the
user, other platforms like iOS, require an explicit declaration. For this
reason, the Screen Entity contains a hasNavigationBar attribute that
allows designers to declare whether a particular screen should be part
of a navigation stack.

Using this extension,

• A newsreader app, may model the share section of the application as
a modal Screen to streamline the social features of the app.

• The Window containers of the dictionary app that we introduced in
Chapter 2, will be replaced by Screens, which will allow us to specify
aspects like back-navigation through simple attribute values.

43

4.3 Private Extensions

To address the wide variety of devices in which a mobile application may be
executed, IFML needs a better model of the mobile context. Particularly, a
model that takes into account variables that affect the user experience, like
the screen size, the available sensors, and the communication networks that
are active while an application is running.

Currently, IFML offers entities like the Context Dimension and the Con-
text Variable, which are meant to capture information about the running
environment. These entities, however, are too general and therefore more
specific extensons may be needed.

Figure 4.9, shows in blue a subset of the entities we have proposed to address
the previously described scenarios. These entities are grouped under the
Private Package, since as of this writing, the IFML standard [21] doesn’t
allow extending the Context entity outside a private scope.

Figure 4.9: Private Extensions - Overview

4.3.1 Mobile Device

The Device entity in IFML focuses on the characteristics of the hardware in
which an application is running on. This entity, however, is too general to
describe the nuances of modern mobile devices – leaving uncovered aspects
like sensor availability and the main screen features. To bridge this gap, we
propose the introduction of a new entity, the Mobile Device.

As shown in Figure 4.10 a Mobile Device entity could be associated with
Sensors like: Magnetometer, Accelerometer, Proximity, Gyroscope, GPS,
Camera, Video and Microphone, which are the hardware appliances sup-
ported by most of the current mobile devices. Similarly, a Mobile Device
could be described using a Screen entity, to report the width, height and the
pixel density of the device screen needed by a particular Viewpoint.

44

Figure 4.10: Private Extensions - Mobile Device

Using this extension a software designer may define different Viewpoints for
his application based on the sensors available in the running device, and the
characteristics of the device screen.

4.3.2 Mobile Context Variable

The Mobile Context Variable entity models a set of run-time variables that
provide developers access to the readings of each of the sensors packed in
modern mobile devices. Figure 4.11, shows the entities that can that can be
used to query information about the running environment, as provided by
the sensors of the device.

Since, by definition, the Context Variables can only hold a single value,
more specific extensions had to be added to capture multivalued informa-
tion. As shown in Figure 4.12, the Acceleration Entity was further specified
into Acceleration-X, Acceleration-Y, and Acceleration-Z. Similarly, the Ro-
tation entity is divided into three subclasses: Rotation-X, Rotation-Y and
Rotation-Z. And the Attitude entity is extended by the Yaw, Pitch and Roll
classes, which store the device rotation across the main spacial axes.

Other Context Variables (Figure 4.13), like the Battery Status and the Ori-
entation take their values from enumerations. In this way, the Orientation
of a mobile device could be described as Unknown, Portrait, Landscape,
Portrait Upside Down, Landscape Right, Landscape Left, Face Up and Face

45

Figure 4.11: Private Extensions - Mobile Context Variable

Figure 4.12: Private Extensions - Acceleration, Rotation and Attitude

46

Down. And the Battery Status as Unknown, Unplugged, Charging or Full.

Figure 4.13: Private Extensions - Orientation and Battery Status

In contrast, the Network and the Proximity variables shown in Figure 4.14,
hold boolean values. In the first case, a boolean value indicates whether a
particular communication network is active and ready to be used. The value
of the Proximity variable instead, determines whether the device is close to
the user’s face.

Figure 4.14: Private Extensions - Proximity and Network

Finally the Direction and Location variables, which take their values from

47

the GPS and magnetometer sensors, are divided into the entities showed in
Figure 4.15.

Figure 4.15: Private Extensions - Direction and Location

Using these extensions in combination with Activation Expressions, IFML
designers will be able to model applications that react to their environment,
and make a better usage of the available resources.

Hence, using these extensions:

• The download button of a podcast application may be enabled only
when the user is connected to a Wifi Network.

• A recommendation app could show certain information only if the
location readings of the device conform to certain constraints.

• An application may show a notification to the user about the battery
status, before starting a long and delicate operation.

48

Chapter 5

Code Generation

To transform the IFML model of an application into Objective-C Code, we
followed the Model Driven Engineering (MDE) approach described in Figure
5.1. First, the IFML model of the app was mapped into a target model,
which described the concepts of IFML in an MVC fashion. Then, the model
of the app was transformed into equivalent Objective-C code through a set
of Xtend templates. Finally, the generated code was packed as an Xcode
project linked to a Static Library – from which the generated code inherited
most of its functionality and behavior.

Figure 5.1: Transformation Overview

The figure, however, fails to illustrate the different steps that we took in or-
der to achieve the transformations. For this reason, in the following sections

49

we describe in depth the results produced after completing each of the seven
steps of the methodology we introduced in Chapter 3.

5.1 Prototype App

Using the tools developed during the project we were able to produce the
iOS version of the “Movie Manager” app – a simple application that ships
with the IFML Model Editor to showcase its capabilities.

Despite its apparent simplicity, the ”Movie Manager” app contains a rep-
resentative subset of the IFML entities — Lists, Details, Forms, Windows,
Fields, Data Bindings, Visualization Attributes, Actions, Parameters, Nav-
igation Flows and others are all included in it. Moreover, the model of the
application had already been implemented using the IFML Model Editor –
which was an important requirement for us, because the tools developed dur-
ing the project were highly dependent on the EMF platform, and therefore
having well formed models that followed closely the metamodel of IFML,
was very important.

As we can see in Figure 5.2, the “Movie Manger” app has three windows.
The “Favorite Movies” window, which has a List that shows the title and
year of each movie. A “Movie Details” window, which displays detailed
information about a particular movie. And the “New Movie” window, that
contains a simple form to allow users introduce new movies into the list.

Figure 5.2: Movie Manager - Main windows

The “Favorite Movies” window is the application’s default screen, which
indicates that it is the first window that is presented to the users. Fur-
thermore, it contains an event called “Fetch Movies” that is fired after the
window has been loaded. This event, triggers the execution of an action

50

with the same name, that in turn refers to a UML sequence diagram that
describes its implementation.

Figure 5.3: Movie Manager - Movie Details

In Figure 5.3, we can see that within the ”Favorite Movies” window, lays
a List component that publishes the information of a set of movies. This
List includes an event of its own, called “Select Event”, that is fired every
time the user taps on one of the items in the list. As a result of this event,
the “Movie Details” window becomes the active screen of the application,
where users can see detailed information about the selected movie.

As for the “Add Movie” window, the initial screen of the application –
“Favorite Movies”, also contains an event called “Add Movie” that navigates
users to it (Figure 5.4). Once there, users can use a simple form to introduce
the year and title of a new movie, and then submit this information to add
it to the list. This last step is achieved through a submit event, that takes
the values captured in the form and transfers them to an action that takes
care of the rest.

This concludes our brief review of the IFML model that describes the pro-
totype application. However, a good way to conclude our discussion would
be to show the result we obtained after applying our code generation tool
to the model. Figure 5.5, contains the main screens of the application after
being generated by our transformation tool. We have , however, replaced
the default views generated by the tool, to give the app a more polished
visual design.

51

Figure 5.4: Movie Manager - Add Movie Form

5.2 Target Architecture

Defining a suitable architecture for the generated apps was an important
milestone in the project. It described the shape of the the output code.
And it defined a target model, against which the IFML entities should be
mapped into.

When designing the architecture, we used two different approaches. One
focused on assigning responsibilities and providing a classification for the
classes that will power the application – a software engineering approach.
And other, focused on describing the target architecture as a metamodel –
a model centered approach.

The software engineering perspective helped us shape and organize the code
produced at the end of the transformations. Instead, the model centered
approach gave us the theoretical tools needed to map the IFML entities into
our architecture.

52

Figure 5.5: Movie Manager - Generated App

53

5.2.1 Software Driven Perspective

The shape of the code in the generated apps was guided by the architectural
design shown in Figure 5.6

Figure 5.6: Target Architecture - Oveview

An object in this architecture can belong to one of four different categories:
Views, Presenters, Actions and Models. Each of which has the following
responsibilities:

• Views: Refer to the visual aspects of the application. In this category
we can find the GUI widgets that define the user interface, as well as
the logic that captures user interactions.

• Presenters: Gather the data that should be published, and prepare it
for display. Presenters, also contain the logic that is triggered after
a user interaction is captured by the view. Such logic often implies
invoking an action, triggering navigation, or updating the presenter’s
view.

• Actions: Contain the application logic as described by the applica-
tion’s use cases.

• Models: Represent the business entities.

The second ingredient of the architecture is given by a couple of singleton
objects. The Flow Controller and the Actions Facade.

• The Flow Controller manages the navigation between the different
views of the application, taking care of the dependencies between them.

54

• The Actions Facade reduces the application dependencies on specific
actions. It exposes a set of methods whose implementation consist of
creating and configuring an Action object.

Using an architecture like this, our ”Movie Manager” app would have: One
Presenter for each Window; two Actions; and a single Movie model. Each
presenter would be associated with a suitable View, while the the Actions
will be shadowed behind the Actions Facade. Figure 5.7 shows a diagram
that illustrates the described architecture.

Figure 5.7: Target Architecture - Movie Manager

5.2.2 Model Driven Perspective

The model driven perspective allowed us to think of the architecture as being
the target model of a model to model transformation.

Our ultimate goal was to transform the model of an application that con-
forms to the IFML metamodel into an implementation that conforms to the
Objective-C metamodel. A good way to achieve this purpose was by first

55

transforming the IFML model of the application into an intermediate repre-
sentation that was closer to the target implementation, and then transform
the entities in this intermediate representation into the code of the target
platform.

Looking at the architecture from this new perspective we discovered, an
application could be described through the core entities shown in Figure 5.8

Figure 5.8: Target Architecture - Core Entities

Using this metamodel, an application is composed of an ActionsFacade, a
Flow Controller, a set of Presenters, a set of Actions, several Models and
several Views. This structure is very similar to the one we have presented
in the software perspective. However this model introduces three new en-
tities, the Presenter Component, the Presenter Component Event and the
Presenter Component Parts.

As we discussed before, Presenters are in charge of two tasks: preparing the
data for display and deciding how to react after a user interaction. In our
metamodel, the presenters also have several Presenter Components each of
which may have several Presenter Component Parts, and several Component
Events as shown in Figure 5.9. This design is intentionally similar to the view
hierarchy used by IFML, with the only difference that the concrete entities
are lighter versions of their IFML counterparts, and only the attributes that
are relevant for the M2T transformation were preserved during the mapping.

Up until now, we have covered entities that are either included in the ar-
chitecture of the generated apps, or that are mock versions of the IFML
classes. However, to completely describe the target metamodel, we need
to introduce an additional family of entities: the method hierarchy (Figure
5.10).

56

Figure 5.9: Target Architecture - Presenter’s Hierarchy

Figure 5.10: Target Architecture - Method’s Hierarchy

The classes in this hierarchy can be of four different types:

• Navigate Methods, which implement the transition between views.

• Handle Methods, which pack the logic that is triggered after a user
interaction.

• Perform Methods, which execute a piece of the application’s logic.

• Show Methods, which are in charge of publishing data to the user
through the GUI.

Figure 5.11 shows how these methods relate to the core entities. Together
they provide a better picture of our design solution.

An Action Facade can have several Perform Methods, each of which has
reference to an Action that implements a piece of the business logic. A Flow
Controller may have several Navigate Methods that take the user interface to

57

Figure 5.11: Target Architecture - Core entities and methods

a target Presenter. A Presenter has several Handle Methods each of which
defines how the application should react to a user interaction. And each
View has several Show Methods that publish the information contained by
a particular Presenter Component.

To provide a better idea of how this architectural elements are translated
into code, Figure 5.12 shows the code produced by the code generators for
the Flow Controller, and Figure 5.13 shows the corresponding code for the
Actions Facade.

Figure 5.12: Target Architecture - Flow Controller

This model driven perspective is meaningful because it provides us with a
formal definition of our target. It allows us to describe through a set of en-
tities and relationships between them, our final solution. This was also the
case of IFML —describing the application through a set of entities and rela-
tionships— however, this intermediate representation makes the subsequent
transformation process easier to grasp, and implement.

58

Figure 5.13: Target Architecture - Actions Facade

In the following sections we will illustrate how exactly the entities of IFML
are mapped into the entities of these simpler metamodel. We will then cover
the code generation process and will finally show some of the generated
code.

5.3 Mapping

Perhaps the best reason for looking at the architecture of the generated
apps as a metamodel, was how clear it made the mappings between the
IFML entities and the proposed architecture. The effort introduced by the
creation of the target metamodel produces its benefit at this mapping step,
because it allowed us to describe in a simple way our design solution for the
generated applications.

To illustrate how the mappings were achieved during the project, let us
introduce some examples drawn from the ”Movie Manager” App.

Once we are finished discussing the mappings, the code generation process
would be easier to grasp. Because the application has already been described
in terms that are closer to the final implementation.

5.3.1 IFML Model

The applications described with our target metamodel, have a root object
of type App, that among other entities, references a single Actions Facade
and a single Flow Controller. In contrast, an application described with the
IFML metamodel has an IFML Model object as root object. The mapping
we used in these case is shown in Figure 5.14.

59

Figure 5.14: Mapping - IFML Model

5.3.2 Actions

Now lets look at the case of Actions. Actions in IFML have several attributes
– Name, In Interaction Flows, several Parameters as well as Navigation
Flows. Actions in our target metamodel are simpler. They only preserve the
name attribute and the parameter list. However, in our target metamodel
each action is referenced by one of the Perform Methods of the Actions
Facade.

Figure 5.15: Mapping - Actions

In Figure 5.15, we present an example of how the “Fetch Movies” action of
the ”Movie Manager” app, was mapped into our target meta model. An ac-
tion object and a Perform Method were created while the parameters of the
IFML Action were mapped into equivalent parameter objects. Additionally,
the Perform Method was associated to the Actions Facade.

This example starts to give us a better idea of the final outcome. That is,

60

at the end of the mapping effort, we would expect the Actions Facade to
have several Perform Methods — one for each of the actions in our sample
model. And our model will have one Action object for each IFML Action,
preserving the parameters of the source object.

5.3.3 View Containers

At the front of any mobile application we have its screens. They describe the
flow of information, and the different user interactions that can be captured
in them. IFML uses a Window object to represent them. Windows act as
containers of other components, and include the events that can be triggered
in them.

The abstraction level of IFML, however, blurs out some implementation
details. Specifically how responsibilities should be distributed among the
application objects. Who should capture user interactions? who should
display the data in the user interface?. In contrast, our target metamodel
makes these details more explicit. A View entity is in charge of publishing
data and capturing user interactions. A Presenter contains the logic to react
to the captured interactions, and communicates the application data back
and forth from the user interface.

To put this in context, lets look at Figure 5.16 that shows the mapping of
an IFML window into our target metamodel.

Figure 5.16: Mapping - Window

A window in IFML is turned into a triad of objects in the target metamodel:
A View, a Presenter and a Window. The view represents the graphic di-
mension of the initial Window Object. While the Presenter connects the
View with the rest of the application structure. Finally the Window object
is preserved as one of the Presenter’s Components.

61

While the presence of the View and Presenter can be sustained on the basis
of the single responsibility principle that we discussed previously, the pres-
ence of the Window object requires an additional explanation. Though this
explanation takes us back to the initial goals of our project.

One of the goals of our project was to reduce the time to compilation of
the generated apps. That is, to create apps that had to be slightly modified
before they could be compiled and executed for the first time. To achieve
this level of simplicity we had to preserve some of the IFML infrastructure.
And then use the introspection capabilities of Objective-C, to provide ap-
propriated views. In other words, the Window entity , and similar classes
preserved from the IFML metamodel, exist in the target metamodel so that
we could provide default views and other default behaviors for the generated
applications.

This also means that if we decided to compel IFML designers to provide the
view layer of the generated apps, then many of the IFML classes that are
preserved in the transformation would be no longer needed. This, however,
was not the case of our project, and therefore we decided to keep the required
entities.

5.3.4 View Components

If windows are relevant because they sit at front of mobile applications, then
the content they display is just as important. IFML View Components de-
scribe the content that is displayed in each of the screens of the application.
In the ”Movie Manager” app, there is a View Component that shows a list of
favorite movies; an other in charge of displaying detailed information about
the movies in the list.

Like in the case of the View Containers, IFML abstracts away several im-
plementation details, that become important when trying to implement the
application in Objective-C. For this reason the IFML View Components are
mapped into several entities in the target metamodel.

In Figure 5.18, a Details View Component adds a Show Method to the
Presenter’s View. This method holds a reference to the Details object and
implies that the view should provide a mechanism to display the information
gathered by it. The other elements and their respective mappings should
look familiar since they follow our discussion about IFML Windows.

We don’t provide examples for the List and Form elements since the rational

62

Figure 5.17: Mapping - Details

Figure 5.18: Mapping - Details

used to map them into the target architecture follows closely the strategy
applied in the case of the Details object.

5.3.5 Interaction Flows

A second axis of any application is given by the navigation patterns it im-
plements. That is, how each screen relates to the next one, and what are the
dependencies between them. IFML uses Interaction Flows as the abstraction
for these aspect of the mobile applications.

In our metamodel, Interaction Flows are mapped into Navigate Methods
that are grouped in the Flow Controller. Like their IFML counter part,

63

each of these methods imply a change of screen towards the target, or an
update in the data published by the current View. The Flow Controller is
an entity that groups all the navigation paths of the application. It manages
the dependencies between the different screens of the application. And more
importantly, it provides a unified interface that evens out the communication
patterns of the application.

Figure 5.19: Mapping - Interaction Flow

In Figure 5.19 we can see how the Interaction Flow, that is triggered from
the Select Method of the List Component, is transformed into a Navigate
Method with the Movie Details Presenter as a target. Additionally we can
see that the View Element Event of the List Component was mapped into
a Handle Method included in the Presenter.

Up until now, we have discussed some of the the mappings of the main IFML
entities in the context of the ”Movie Manager” App. And we can see much
better now the relations between IFML and the intermediate metamodel
that we designed. In some cases the relations are simple, like in the case of
Actions. Other entities, instead, require additional effort — as we saw in
the case of the of Details and Windows.

In total 22 IFML entities were included in our mapping — not all of which
were discussed in the document. As reference, we include a list of the IFML
entities that were mapped.

• Action

• Data Binding

• Data Flow

• Navigation Flow

64

• Parameter

• Parameter Binding

• Parameter Binding Group

• UML Structural Feature

• UML Behavioral Feature

• UML Domain Concept

• Visualization Attribute

• Details

• Form

• List

• Menu

• OnLoadEvent

• OnSelectEvent

• OnSubmitEvent

• Selection Field

• Simple Field

• Slot

• Window

5.4 Static Library

Before developing the code generators we analyzed the code of the prototype
app in order to understand how much code had to be dynamically generated.
We started by filtering out the pieces of code that were model dependent
— those that were deduced from the elements in the IFML model –, from
the sections that would remain the same across the generated applications
– or model independent. We then took the model independent sections, and
packed them into a static library. As for the model dependent pieces, we
singled them out as the ones that would have to be dynamically generated.

We called the Static Library, the IFML Kit. And we distributed it as a
”private” cocoapod1.

The classes in the library helped us reduce the code that had to be dynam-
ically generated, and provided the proper vessel for the default views of the
applications. As shown in Figure 5.20, the library was divided into three
main packages, each of which is discussed in the following sections.

5.4.1 Simplified Meta-model Package

One of our goals during this part of the project was to provide a set of default
views for the generated code. In this way, software designers could compile

1 available at https://github.com/acerosalazar/ifml-ifmlkit.git

65

https://github.com/acerosalazar/ifml-ifmlkit.git

Figure 5.20: Static Library - Package Structure

and execute their applications soon after transforming their IFML models.
To achieve this, we decided to preserve in the target metamodel a subset of
the IFML entities, for which we provided an Objective-C implementation.

Following this analysis, the Simplified Meta-model Package or SMM, con-
tained the Objective-C representation for a subset of IFML entities, like
IFMLList, IFMLForm, IFMLDetails, IFMLWindow, IFMLDataBinding, IFML
FormField and others, which not only represented their IFML equivalents,
but also preserved some of their semantics and implemented a subset of their
behaviours.

Figure 5.21: Static Library - SMM Classes

As shown in Figure 5.21, the Presenter Components, that we discussed in
the ”Target Architecture” section, extend the functionality of the classes in
the SMM package. In consequence, the code that had to be produced by the
code generators in this case was very simple – because having a set of base

66

classes with predefined behaviours, meant that part of the dynamic code
would only be concerned with configuring these objects through inheritance
or simple method calls.

Preserving these entities from the IFML metamodel was also very valuable
for the classes in the GUI package, which could use them to deduce the
widgets that needed to be shown in each of the screens of the application.

5.4.2 Graphic User Interface Package

The Graphic User Interface Package contained a set of default Views and
View Controllers for the classes in the SMM Package. Classes like the IFM-
LListController, IFMLDetailsController and IFMLFormController, packed
the logic needed to present the information hold by Lists, Details and Form
components respectively. Moreover, while some of the Presenter Compo-
nents like an IFMLList, could be presented using generic user interface wid-
gets like a UITableView, others required the implementation of custom views
that were also grouped into this package – for instance the IFMLSwitchCell,
IFMLPickerCell, IFMLDateCell and others, were developed to provide de-
fault views for all the types FormFields supported by IFML.

Figure 5.22: Static Library - PresenterViewController

To keep the logic of the code generators lean and simple, we created an addi-
tional class called the PresenterViewController. As shown in Figure 5.22, the
View classes created by the code generators inherit from the PresenterView-
Controller, who in turn holds a reference to the Presenter object associated

67

with the View. Using this relation, and the powerful run-time capabilities of
Objective-C, the PresenterViewController can dynamically instantiate the
Views and Controller needed to show the Components of the Presenter ob-
ject. In the example shown in Figure 5.22, the PresenterViewController
will introspect the properties of the associated Presenter object, and will
instantiate an IFMLListController, who in turn will create and manage a
UITableView to publish the data gathered by the List component.

What is interesting about this solution, is that all of this logic is wrapped
by PresenterViewContoller and doesn’t have to be handled by the code
generators. In consequence, the code that needs to be generated for the
Views of the application is minimal. Figure 5.23 shows an excerpt of the
code generated for the View Controller of the example we discussed before.

Figure 5.23: Static Library - Generated Code

The combination of classes in the SMM and the GUI packages, allowed us
to achieve our goal of providing default views for the generated applications,
while keeping the logic of the code generators lean and simple. The cost we
had to pay for this simplicity was seen in the increased complexity of the
classes in the GUI package, which had to resource to the run-time capabil-
ities of Objective-C to provide appropriate views for the Components of a
Presenter. This price was, however, mitigated by the fact that these classes
could be implemented and tested independently using the development tools
offered by Xcode.

68

5.4.3 Application Package

Up until now, all the classes and packages we have discussed, contribute to
the creation of a set of default Views for the generated applications. The
Static Library, however, contained other classes whose objective was very
different. Such is the case of the classes in the Application Package.

Following the premise of reducing as much as possible the amount of code
that had to be dynamically generated, the Application Package grouped the
base classes for the main architectural components of the generated appli-
cations, thus classes like the IFMLAppFlowController, IFMLAppPresenter
and the IFMLAppActionsFacade are included in it. In consequence, some
of the classes created by the code generators inherit from them. Figure 5.24
shows a subset of the generated classes and their relation with the classes
in the Application Package.

Figure 5.24: Static Library - Application Package

5.5 Code Generators

Before going into the details of the generation let’s review how the code is
organized in a typical iOS application.

The first thing to know is that Objective-C preserves several traits of its an-
cestor C. One of the more noticeable similarities is that it requires every class
to declare a header and an implementation file. The header, contains the
declaration of public methods and attributes — also known as properties in
Objective-C. The implementation files instead, contain the implementation
of the methods declared in the header.

69

As for the boilerplate code, every iOS application contains a Main file, an
App Delegate, a Prefix header and a Property List file. The main file is
seldom modified. It creates a unique UIApplication object and registers a
delegate for it. The App Delegate instead, is the entry point for the custom
code of the application. This is where the first screen of the user inter-
face should be instantiated and where the code that triggers in response to
changes in the application state and other notifications should be placed.
The Prefix header provides compile time optimizations that need to be sel-
dom modified. Finally, the Property List file contains meta-data about the
application: supported orientations, required device capabilities and local-
ization information among others, are the kind of aspects that are described
in this file.

The rest of the files of a project are application dependent. As shown in
Figure 5.25 the files of the generated applications were organized into five
groups, following very closely the structure of our target architecture. Hence:
Application, Views, Presenters, Actions, Models and Supporting Files were
the names of folders used to group the generated files.

Figure 5.25: Code Generation - Folder Structure

While the groups represented by the Views, Presenters, Actions and Mod-
els contained classes with similar responsibilities, the Application group in-
cluded classes like the Flow Controller and the Actions Facade, that many
other classes in the architecture were dependent on. The Supporting Files
group instead, was home to the Main, Prefix and the Property List file of
the application.

5.5.1 Generators

The M2T transformation was done using Xtend. A dialect of java that
provides, among other features, very powerful templates. The generation
effort was divided into 2 types of files: boilerplate and dynamic.

70

The boilerplate files corresponded to classes like the Application’s Main,
shown in Figure 5.26, and the App Delegate whose contents remained un-
changed across the applications.

Figure 5.26: Code Generation - Main file

The dynamic package instead, dealt with the model dependent elements of
the application. In this case, we used one generator file for each core entity
in the target metamodel.

• ActionsFacadeGenerator

• FlowControllerGenerator

• ActionsGenerator

• PresentersGenerator

• PresentersComponentGenerator

• ModelGenerator

• ViewGenerator

Additionally there were three generators that handled the creation of files
whose importance is better appreciated from the implementation perspec-
tive. The ViewFactoryGenerator, the PresenterUIGenerator and the Ap-
pDependenciesGenerator. The first two, produced components that make
the view layer of the generated apps decoupled and therefore easy to replace.
In contrast, the AppDependenciesGenerator was in charge of creating the
AppDependencies class whose role consisted in instantiating and configur-
ing the objects that assemble the app. The contents of these files can be
considered implementation details, and therefore, we do not discuss them
any further in the document.

71

5.5.2 Templates

Each of the generators used one template for the header, and one template
for the implementation file of the classes they had to generate. Moreover,
each template was populated through a simple sequence: first add the im-
ports, then the properties and finally the methods.

Figure 5.27: Code Generation - Template Structure

Since the header file contained the method signatures, and the implemen-
tation file their corresponding implementation, the generation of methods
deserved a special management. Specifically, we used a key-value pair data
structure in which the method signatures were used as keys, while the imple-
mentations were stored as their corresponding values. This strategy allowed
us to keep the contents of both files synchronized while removing the hazards
caused by duplicated method declarations or omitted implementations. In
contrast, the generation of the imports and properties was achieved through
simple arrays.

To have a better idea of the templates used during the project, lets have
a look a the template used to create actions. Figure 5.28 shows a snippet
with two methods two methods: ”generateHeader” and ”generateImplemen-
tation”. The first one, declares the public imports of the class, and then pro-
ceeds to generate its properties based on the parameters associated with the
IFML Action. The second one is arguably simpler; it imports the generated
header file and then invokes the extension method ”implementations” on
the methods map to print successively the signatures and implementations
of the action’s methods.

This basic structure was preserved among all the generators. Although, in
some cases —like the FlowControllerGenerator Figure 5.29 — the logic used
to populate the templates was more complicated.

72

Figure 5.28: Code Generation - Actions Templates

Figure 5.29: Code Generation - Flow Controller Template

5.5.3 Generated Code

To have a better understanding of how the application’s code is generated,
lets look at Figure 5.30 that shows the classes that are generated from the
Movie Details screen of the ”Movie Manager” app.

73

Figure 5.30: Code Generation - Generated Code

On the top left we have the IFML diagram used to describe the selected
screen of the application. On top right, we have the same app excerpt but de-
scribed using our target metamodel. Finally, the figure shows that the M2T
transformation for this case would generate four classes, namely: MovieDe-
tailsPresenter, MovieDetailsView, MovieDetailsWindow and MovieDetails.

Figure 5.31: Code Generation - Inherintance from the Static Library

Notice, how in Figure 5.31 becomes clear that all the generated classes in-
herit from the classes contained in the Static Library . Using this mecha-

74

nism, the generated code was greatly reduced and simplified, as we can see
in Figures 5.32 and 5.33, which contain the generated header and implemen-
tation files for the Movie Details Presenter class.

Figure 5.32: Code Generation - Movie Details Presenter Header

Figure 5.33: Code Generation - Movie Details Presenter Implementation

5.6 Integration

Our project went beyond the mere generation of source code files. It also
provided support for integrating the produced files into Xcode — Apple’s
flagship IDE. We achieved this integration through a set of scripts that
allowed us create the project file, and to subsequently download and link
the static library to the project.

The Project Generation script was based on a ruby gem called Xcodeproj2.
The script received as input the location of the source files produced by the

2 http://www.rubydoc.info/gems/xcodeproj

75

http://www.rubydoc.info/gems/xcodeproj

code generators and it produced as output an Xcode project file. The gen-
erated project had a unique compilation target and organized the code into
the six groups that we discussed previously — Views, Presenters, Models,
Actions, Application and Supporting Files. Additionally, using the capabil-
ities offered by the Xcodeproj gem, we added a collection of common build
options for the project.

In contrast, the second script we developed was used to download and link
the static library to the generated project. To do this, we distributed the
static library using cocoapods — a popular dependency manager for iOS
and OSX development.

Figure 5.34: Integration - Automation Scripts

After executing the previous scripts, we obtained an Xcode project that
could be used not only to visualize and modify generated code but also to
compile and execute it.

These tools had a positive effect on the productivity of the project. They al-
lowed us to quickly test and modify the generated code using Xcode without
having to perform this process manually. The tools also provided a robust
solution for the management of static files. Similar projects like MD2 [22],
had solved this issue by creating additional modules into the transformation
tools whose responsibility was the management of static files. This solu-
tion implied, however, that the transformation tool had to be distributed in
tandem with the static library, which made the update cycles of the static
library more cumbersome.

Finally, these tools managed to reduce the friction caused by the change of
technical spaces, improving in this way the experience of the users of the
transformation tools. With the generation tools in place, IFML designers
could use the transformation tool as an eclipse plug-in right next to the
model editor, while native iOS developers could use Xcode to update, com-

76

pile and execute the generated code. This way every actor gets to work
using their everyday tools, instead of having to learn how to use something
new.

5.7 Packaging

The tools discussed previously were organized into several software packages.
A good way to visualize them is in a pipeline whereby, the input — an IFML
model — is transformed several times until reaching the desired output —
a compilable Xcode project.

Figure 5.35: Packaging - Generation Wizard

As shown in Figure 5.35, several tools are involved in the generation process.
First, the transformation tool takes an IFML model and produces from
it a set of equivalent Objective-C files. Then, the Project Builder script
creates an Xcode project file. Finally, the Library Linker communicates
with cocoapods and, leveraging the command line tools of the dependency
manager, adds the Static Library to the compilation path of the project.

While on its own, the proposed pipeline was very powerful, it suffered from
usability issues. For instance the intermediate steps between the generation
steps had to be done manually, and the parameters for the scripts needed to
be provided in the right order. To solve this issue, we developed a generation
wizard. This application sat on top of the generation tools and provided a
GUI to insert the inputs and control the generation process. Although the
application was developed as an OSX app, the automation script used to
connect the generation tools is a simple bash that can be executed in other
operating systems.

77

In summary, the output of the project was packaged into six different tools,
from which the the Code Generator, the Static Library and the Project
Builder work as standalone apps. In contrast, the Library Linker and the
Generation Wizard are dependent on the previous three and were added as
a way of making the generation process more convenient. The links to the
repositories that contain the source code of all these tools can be found in
this site: http://acerosalazar.github.io/ifml-gtk/.

78

http://acerosalazar.github.io/ifml-gtk/

Chapter 6

Conclusion

6.1 Results

At the end of the project we managed to reach our objectives. Specifically,
to enhance the portability of IFML by developing a code generator for iOS,
and to broaden the modeling capabilities of the language, by adding a set
of extensions to its metamodel.

In the first case, we developed a toolset composed of a Model to Text trans-
formation tool, a Project Builder and a Library Linker scripts. Using these
tools, we could produce a compilable Xcode project, starting with the IFML
and UML models of an application. To make things even simpler, we pro-
vided a graphic wizard that made the transformation process a matter of a
couple of clicks.

As for the language extensions, we proposed 90 new entities grouped into
three different packages. The General Extensions Package, which is com-
posed of entities whose scope goes beyond mobile environments — like in
the case of the Image Attribute and the Map View. The Mobile Extensions
Package, whose classes are meant to broaden the types of user interactions
that can be modeled with IFML – Pan, Pinch, Swipe, Tap, Touch and
others —, as well as the type of events that can be captured using the
sensors included in modern mobile devices – Location Events, Orientation
Events, Accelerometer Events, Gyroscope Events, among others. Finally
the Private Extensions Package, was home to the entities that extended the
Context classes, which, as of this writing, is not allowed outside a private
scope by the current version of the IFML standard [21].

79

In addition to these results, we believe that the methodology used to conduct
the research was an important byproduct of the project. This is specially
relevant in the case of IFML, since there are several research teams working
in projects with similar goals, for whom this insight could be of great value.

There is, however, room for improvement.

6.2 Critical Analysis

The current version of the code generators supports a subset of 22 entities
from the total amount of classes defined by the IFML standard [21]. Leaving
uncovered important entities like the UML Behaviours, and a great portion
of the Expressions hierarchy. Moreover, data persistence, which is an im-
portant aspect in modern mobile applications, was narrowly addressed in
our project and therefore deserves a deeper look.

As for the language extensions, the proposed entities need to be further
discussed and evaluated, to understand their practical value. Then, a suit-
able graphic syntax should be proposed, so that they could be added into
the IFML Model Editor. Allowing code generators to provide mappings
for them, and software engineers to start using them in the models of their
applications.

6.3 Future Work

Finally, to keep our project within the scope and time constraints, we had
to steer clear from some opportunities that should be, however, explored in
future efforts.

The first opportunity is provided by Swift – Apple’s new programming lan-
guage. Its simpler syntax, and stronger type system may lead to several
improvements in the code generators, and specially to simpler templates
and a more straightforward generation logic.

The second opportunity lies in the possibilities offered by the Model Driven
world. In particular, we consider that an intermediate metamodel that
brings the concepts of IFML closer to a traditional MVC architecture, should
be designed. This metamodel would formalize the architecture of the gener-
ated applications, and since it would be defined at a platform independent

80

level, existing code generators for IFML could use it as the starting point
for the model to text transformation process. This strategy would have pos-
itive implications in several fronts. On one hand, cross-platform developers
will have to be familiar with a unique architecture, that will be preserved
across the code generated for the different platforms. On the other hand,
the developers in charge of the code generators would be able to collaborate
in the creation of more robust generation strategies. And finally, external
observers and other interested people, would be able to understand at a
higher level of abstraction, the way code generation is achieved in IFML.

Our final words, are dedicated to the IFML Model Editor.

During the first stages of our project we had access to an early version of
the editor, which we used to visualize and modify the IFML model of our
prototype application. While this early version had some rough edges, the
tool was very important in achieving our final results, and helped us in the
creation of well formed models that could be used by our code generators.
We believe that, once finished, this tool will be of great value for software
designers, and that the development team behind it should continue im-
proving its features and broadening in its capabilities. A good place to start
this improvements, would be adding support for the introduction of private
extensions into the editor, which will allow for a more dynamic evolution of
the modeling language.

81

Appendix A

General Extensions Package

Application Lifecycle Event

Abstract: No
Generalization: Mobile System Event

Application Lifecycle Events model each of the notifications triggered by
operating system to inform applications about changes in their life-cycles.
For instance, operating systems can inform an application when it has been
launched, or when it is about to be terminated. Similarly, an application
can receive updates on whether it is executing in the foreground or in the
background.

Expanded Selection Field

Abstract: No
Generalization: Selection Field

Expanded Selection Fields can be used to indicate that all the options offered
by a Selection Field should be displayed to the user at once rather than
one at the time. In contrast with regular Selection Fields, code generators
could map Expanded Selection Fields into more suitable and specific GUI
components like button groups instead of using more generic components
like a combo-box.

Enumeration View Lifecycle Event Type

82

The values of this enumeration describe the notifications that are typically
raised by the system after there has been an update on the state of a par-
ticular view.

Literals

• View Did Appear: This type of event is triggered after a view has been
allocated memory and has been successfully rendered to the user [13].

• View Did Disappear: This event is triggered after a view has been
removed from the screen, but not necessarily so from main memory
[13].

• View Did Load: This event is triggered after a view has been allocated
memory. This is the earliest point at which a view or its corresponding
controller may execute additional initialization routines [13].

• View Will Appear: This event is triggered when a view is ready to be
rendered to the user. While the View Did Load event may be triggered
only once (after a view and its corresponding controller have been
allocated memory), the View Will Appear event should be triggered
every time the view is ready to be shown [13].

• View Will Disappear: This is event is triggered just before a view is
removed from the screen [13].

Enumeration Application Lifecycle Event Type

The values of this enumeration describe the notifications that are raised by
the system after there has been an update on the application state.

Literals

• App Did Launch: This event is raised right after the user launches the
application [17].

• App Will Become Active: This event is triggered just before an ap-
plication is switched to foreground mode and will become the active
application. In contrast with the background mode, applications in
the foreground can receive user interactions [17].

83

• App Did Become Active: This event is triggered right after an ap-
plication has changed its state from inactive to active, and its being
executed in the foreground [17].

• App Will Hide: This event is triggered just before an application is
minimized. Since mobile nor web applications are susceptible to this
kind of transitions, the usage of this event is restricted to Desktop
applications.

• App Did Hide: This event is triggered right after an application has
been minimized. Since mobile nor web applications are susceptible to
this kind of transitions, the usage of this event is restricted to Desktop
applications.

• App Will Unhide: This event is triggered right before an application
is maximized. Since mobile nor web applications are susceptible to
this kind of transitions, the usage of this event is restricted to Desktop
applications.

• App Did Unhide: This event is triggered right after an application has
been maximized. Since mobile nor web applications are susceptible to
this kind of transitions, the usage of this event is restricted to Desktop
applications.

• App Will Resign Active: This event is raised just before an application
transitions form an active state to an inactive state. Such transition
happens every time a user switches to another application [17].

• App Did Resign Active: This event is triggered right after a user has
just switched focus to a different application[17].

• App Will Terminate: This events is triggered before an application is
terminated and removed from main memory [17].

Image Attribute

Abstract: No
Generalization: Visualization Attribute

Image Attributes allow IFML designers to explicitly indicate that a par-
ticular attribute should be rendered as an image. In contrast with Image
Attributes, generic Visual Attributes would rely on the capabilities of the
code generators to infer the type of data that needs to be shown in the
UI based on the associated Data Bindings, which in turn may not be so
accurate.

84

Map Annotation

Abstract: No
Generalization: View Component

Map annotations describe points of interest in a map, and can naturally be
included only within a Map View.

Constraints

• Map Annotations must have a Data Binding that provides them with
a geographic coordinate that indicates the exact location of the map
where they need to be rendered. Optionally, the Data Binding could
also include the additional information that should be shown to the
user in these points.

• They can only be added into Map Views.

Map Overlay

Abstract: No
Generalization: View Component

Map Overlays represent poly lines, shapes and other graphical elements that
can be shown on top of a map. IFML designers could use map overlays to
model maps that convey information in a more convenient way – e.g using
poly lines to describe routes or shapes to identify areas of interest for the
user.

Constraints

• Map Overlays require a Data Binding to provide them with the geo-
graphical information and the description of the shape, if any, used to
represent them.

• They can only be added into Map Views.

Map View

Abstract: No
Generalization: View Container

85

Map Views are off-the shelf interactive map visualizations that are frequently
used in mobile, web and desktop applications. They can only contain Map
Annotations and Map Overlays which, in turn, are used to display points of
interest and map related information in a meaningful way.

Constraints

• Map views can contain Map Annotation and Map Overlay components
only.

Modal Menu

Abstract: No
Generalization: Menu

A Modal Menu represents a set of commands that can be dismissed. Similar
to Menus, the commands available within a Modal Menu can be modeled
by means of View Element Events, each of which may trigger a different
business logic action.

Constraints

This type of View Containers cannot contain any View Elements.

Multi Line Field

Abstract: No
Generalization: Simple Field

Multiline Fields allow IFML designers to indicate explicitly that a particular
field would be used for multiple line inputs. Such refinement will allow code
generators to make better decisions and apply more meaningful mappings.
In this way, Multiline Fields could be translated into more suitable GUI
components like text areas rather than into, the more general, text fields.

GL View

Abstract: No
Generalization: View Component

GL Views model interface components that are rendered using advanced
graphics libraries like OpenGL or WebGL.

86

Range Selection Field

Abstract: No
Generalization: Selection Field

Range Selection Fields are selection fields whose possible values lay within
are a range. Users can pick any continuous or discrete value as defined by a
step. An IFML designer may use this view components to represent frequent
GUI widgets like sliders and value steppers.

Attributes

• minValue [float] : the lower bound of the value range.

• maxValue [float] : the upper bound of the value range.

• stepValue [int]: the difference between two adjacent values. If the
value of this attribute is NULL, the user will be allowed to select from
a set of continuous values, thus without a defined step.

Constraints

• The minValue must be greater than the maxValue.

• The stepValue must be an integer greater than zero.

View Lifecycle Event

Abstract: No
Generalization: Mobile System Event

View Lifecycle Events are triggered after a change in the state of a view’s
lifecycle. Such events can be used by IFML designers in order to model
responsive and usable applications that react appropriately to such changes,
and blend nicely with the resource management strategies put in place by
the operating systems.

Attributes

• Event Type [View Lifecycle Event Type]: The specific type of lifecycle
event triggered.

87

Relevant iOS Resources

General Extensions Package Entity iOS Resources

Application Lifecycle Event UIApplicationDelegate

Expanded Selection Field
UISegmentedControl,
UITableViewContoller

Enumeration View Lifecycle Event Type UIViewController

Enumeration Application Lifecycle Event Type UIAppDelegate

Image Attribute UIImageView

Map Annotation MKAnnotation

Map Overlay MKOverlay

Map View MKMapView

Modal Menu UIAlertController

Multiline Field UITextView

GL View GLKView

Range Selection Field UISlider, UIStepper

View Lifecycle Event UIViewController

88

Appendix B

Mobile Extensions Package

Accelerometer Event

Abstract: No
Generalization: Sensor Event

This event will be fired every time there is a change on the device acceleration
along any of the spatial axis. This event may be used, for instance, in
order to allow users to interact with the application by physically moving
their device. Since acceleration events can be considered as global events (
meaning that they are perceived and affect equally all the elements of the
application), they are categorized under the Catching Events entity. Because
of it, they can be associated with Activation Expressions, Interaction Flow
Expressions and Navigation Expression.

Ad Banner View

Abstract: No
Generalization: Mobile View Component

The Ad Banner View Component is used to display banner advertisements
as supported in the SDKs of several mobile platforms [16] [20]. In general
IFML designers will simply include these components in their models in
order to allow Code Generators to produce the appropriate source code.
Thus, without adding any events or navigation flows that affect them.

Battery Event

89

Abstract: No
Generalization: Resource Event

Battery events will be raised when any changes related with the device
battery level or battery status occur. Examples of such changes could be an
update on the remaining battery power or a notification informing that the
device has been plugged to the electrical outlet.

Bluetooth Event

Abstract: Yes
Generalization: Resource Event

This kind of events will be raised upon device discovery and updates on
connection status as well as after receiving / completing requests related
with service publishing and consumption. Since mobile devices can behave
as bluetooth peripherals as well as a bluetooth centrals, further extensions
to provide a greater level of granularity are encouraged.

Enumeration Swipe Direction

Each of the directions in which a swipe gestures can be identified.

Literals

• Right: The user taps the screen and dragging his finger from left to
right.

• Left: The user taps the screen dragging his finger from right to left.

• Up: The user taps the screen dragging his finger in direction down -
up.

• Down: The user taps the screen dragging his finger in direction up -
down.

Gyroscope Event

Abstract: No
Generalization: Sensor Event

Gyroscope Events are raised every time there is a change on the device’s
rotation rate along any of the three spatial axis. IFML designers may use this

90

kind of events to allow users interact with their applications by physically
moving and rotating their device.

Location Event

Abstract: No
Generalization: Sensor Event

Location Events are triggered every time there is a change on the geographic
position of the user. IFML designers may use Location Events to model
applications that offer navigation services, maps or that simply rely on user
positioning to deliver certain functionalities.

Long Press Event

Abstract: No
Generalization: Touch Event

Long Press Events are raised when the user touches a particular view leaving
its finger on the screen for certain amount of time. This type of events are
frequently used to display contextual menus, or activate alternative actions
– e.g item sorting.

Attributes

• pressDuration [Float]: a value in seconds that specifies the period of
time that a user should press a view before a Long Press Event is fired.

• fingersCount [Int]: the number of simultaneous touches that the user
is expected to perform so the event can be effectively captured.

Magnetometer Event

Abstract: No
Generalization: Sensor Event

This type of events are triggered by changes on the orientation of the device
measured against the magnetic or the true north. This type of events are
typically used in apps that offer navigation services to identify the user’s
heading direction.

Memory Event

91

Abstract: No
Generalization: Resource Event

Memory events are usually warning notifications triggered by the system to
inform mobile apps about the scarcity of memory resources and allow them
to reduce their memory footprint if possible [17].

Motion Event

Abstract: No
Generalization: Sensor Event

Motion events model changes on the rotation, orientation or linear velocity
of the device. Motion events are a general classification for Magnetometer
Events, Accelerometer Events and Gyroscope Events.

Mobile Resource Event

Abstract: No
Generalization: Mobile System Event

Mobile Resource Events are occurrences related with resources managed by
the system. This entity provides a general category for Memory Events,
Bluetooth Events and Battery Events.

Mobile Sensor Event

Abstract: No
Generalization: Mobile System Event

Mobile Sensor Events model notifications triggered by the sensors included
in modern mobile devices. This entity provides a general classification for
Location Events, Proximity Events, Motion Events, Magnetometer Events,
Accelerometer Events, Gyroscope Events and Shake Events.

Mobile System Event

Abstract: Yes
Generalization: System Event

A Mobile System Event is an Event produced by mobile operating systems,
which is related with tasks and resources that they manage. This class pro-

92

vides a general classification for Mobile Sensor Events and Mobile Resource
Events.

Mobile View Component

Abstract: Yes
Generalization: View Component

Mobile View Components are View Components that are somewhat unique
to mobile platforms. This abstract class provides a generalization for other
classes like Web Views, Search Views and Ad Banner Views.

Mobile View Container

Abstract: Yes
Generalization: View Container

A Mobile View Container is an abstract entity provides a generalization
for container classes that are unique to mobile platforms like the Screen
container.

Mobile View Element Event

Abstract: Yes
Generalization: View Element Event

Mobile View Element Events are Events that are somewhat unique to views
in mobile platforms. This abstract class provides a generalization for classes
like Touch Events.

Orientation Event

Abstract: No
Generalization: Motion Event

Orientation Events are triggered by changes in the orientation of a mobile
device. A typical scenario in which this event will be fired is given by a user
that rotates his device to use it in landscape mode. IFML designers could
consider this kind of events in their models to appropriately adapt the UI
layout according to the current device orientation.

Pan Event

93

Abstract: No
Generalization: Touch Event

A Pan Event occurs when a user touches the device screen and swipes in
any direction. In contrast with Swipe Events, Pan events are triggered
regardless of the direction of the swipe, while Swipe Events are only raised
if the performed gesture happened in the registered direction. In this way,
every Swipe Event could be also considered a Pan Event, while the opposite
is not always true.

Attributes

• fingersCount [Int]: the number of simultaneous touches that the user
is expected to perform so the event can be effectively captured.

Pinch Event

Abstract: No
Generalization: Touch Event

A Pinch Event denotes a gesture that requires at least two simultaneous
touches, following either of the following descriptions: the fingers start sep-
arated and move towards each other; or, they start together and move away
from each other. This type of events are typically used in mobile applications
to allow zooming in and out from a particular view.

Proximity Event

Abstract: No
Generalization: Sensor Event

Proximity Events are triggered every time the user is close to the proximity
sensor of the device. This type of events is frequently used in applications
that allow users make and receive phone calls which, to avoid unintended
interactions, disable the touch events of the screen when the user’s ear is
perceived to be close to the device.

Rotate Event

Abstract: No
Generalization: Touch Event

94

Rotate Events are triggered in response to a tactile gesture in which the user
touches the screen with two fingers dragging them in opposite directions
describing a circular path.

Search View

Abstract: No
Generalization: Mobile View Component

A Search View is a special kind of view component that allows users to in-
troduce a query term and perform a search with it. While a regular Form
component with a Simple Field could achieve a similar result, very often
mobile platforms offer ready to use search components that provide addi-
tional functionalities – e.g. submitting the query to search provider, or a
carefully crafted interface that improves usability.

Screen

Abstract: No
Generalization: Mobile View Container

The Screen entity is aimed to represent the basic container unit of a mobile
application. Typically a mobile app will have several screens, that can be
shown modally or modeless as well as belong to a navigation stack.

Attributes

• isModal: If true, this attribute indicates that the screen should be
shown modally. By default this attribute should be false, declaring
that the screen should be shown modeless.

• hasNavBar: If true, this attribute will indicate that the screen is part
of a navigation stack and therefore should provide a mechanism to
navigate back (i.e. removing the current screen out of the stack)

Shake Event

Abstract: No
Generalization: Motion Event

A Shake Event is triggered when a user physically move his device from side
to side a couple of times. This event is captured using the accelerometer of

95

the device, which implies that alternative interaction strategies will need to
be provided in case the device in use does not have an accelerometer.

Swipe Event

Abstract: No
Generalization: Touch Event

A Swipe Event is triggered by a gesture in which the user touches the screen
with one or more fingers and slides them together towards a single direction.

Attributes

• swipeDirection[Swipe Direction]: the direction in which the user should
swipe the device screen.

Tap Event

Abstract: No
Generalization: Touch Event

A Tap Event is triggered every time a user touches the screen of the device
using one or more fingers. This is arguably the simplest and most common
Touch Event used in mobile applications.

Attributes

• fingersCount [Int]: the number of simultaneous touches that the user
is expected to perform so the event can be effectively captured.

Touch Event

Abstract: No
Generalization: Mobile View Element Event

A Touch Event encompasses a family of gestured based interactions that
are enabled by the tactile capabilities of the screen of most modern mobile
devices. This class provides a generalization for other classes like Tap Event,
Swipe Event, Pan Event, Long Press Event, Pinch Event and Rotate Event.

96

Web View

Abstract: No
Generalization: Mobile View Container

Web Views represent a special kind of containers that are able to render and
navigate through web content – based on HTML, CSS and JavaScript.

97

Relevant iOS Resources

Mobile Extensions Package iOS Resources

Accelerometer Event
CMMotionManager
(startAccelerometerUpdatesToQueue:
withHandler:)

Ad Banner View ADBannerView

Battery Event

UIDevice
(UIDeviceBatteryLevelDidChangeNotificati
on,
UIDeviceBatteryStateDidChangeNotificatio
n)

Bluetooth Event
CBCentralManagerDelegate,
CBPeripheralDelegate

Enumeration Swipe Direction UISwipeGestureRecognizerDirection

Gyroscope Event
CMMotionManager
(startGyroUpdatesToQueue:withHandler:)

Location Event

CLLocationManager
(startMonitoringSignificantLocationChanges
, locationManager:didUpdateLocations:),
CLLocationManagerDelegate
(stopMonitoringSignificantLocationChanges
)

Long Press Event
UILongPressGestureRecognizer
(initWithTarget:action:)

Magnetometer Event
CMMotionManager
(startMagnetometerUpdatesToQueue:
withHandler:)

Memory Event
UIViewController
(didReceiveMemoryWarning)

Motion Event
CMMotionManager
(startDeviceMotionUpdatesToQueue:
withHandler:)

Mobile Resource Event N/A

Mobile Sensor Event N/A
98

Mobile System Event N/A

Mobile View Component N/A

Mobile View Container N/A

Mobile View Element Event N/A

Orientation Event

UIDevice
(beginGeneratingDeviceOrientationNotifica
tions,
endGeneratingDeviceOrientationNotificatio
ns),
UIDeviceOrientationDidChangeNotificatio
n

Pan Event
UIPanGestureRecognizer
(initWithTarget:action:)

Pinch Event
UIPinchGestureRecognizer
(initWithTarget:action:)

Proximity Event
UIDevice,
UIDeviceProximityStateDidChangeNotifica
tion

Rotate Event
UIRotationGestureRecognizer
(initWithTarget:action:)

Search View UISearchBar, UISearchDisplayController

Screen UIViewController, UINavigationController

Shake Event

 UIResponder (canBecomeFirstResponder,
becomeFirstResponder,
motionBeganWithEvent:,
motionEndedWithEvent:),
UIEventSubtypeMotionShake

Swipe Event
UISwipeGestureRecognizer
(initWithTarget:action:)

Tap Event
UITapGestureRecognizer
(initWithTarget:action:)

Touch Event
UIGestureRecognizer,
UIGestureRecognizerDelegate

Web View UIWebView

99

Appendix C

Private Extensions Package

Accelerometer

Abstract: No
Generalization: Sensor

This entity models the accelerometer sensor that comes with most modern
mobile devices. It measures the linear velocity of the device and can be
used to allow users to interact with applications by physically moving their
devices. As part of the Mobile Device dimension, the Accelerometer could be
used to decide whether a particular ViewPoint should be activated. Finally,
because this entity only models the availability of the sensor on the device,
it should not be used to query the actual acceleration values.

Acceleration

Abstract: Yes
Generalization : Mobile Context Variable

This abstract entity groups together the linear acceleration values produced
by the accelerometer of the mobile device.

Attributes

• isAvailable [Bool]: this attribute is inherited by all the specialization
classes, and indicate the acceleration of the mobile device on the x,
y or z dimensions. If the sensor is not available all the acceleration

100

values will be NULL.

Acceleration-X

Abstract: No
Generalization: Acceleration

Acceleration of the device along the x axis. If the accelerometer is not
available the value of this variable will be NULL.

Attributes

• value [Float]: A measure in m/s2 that represent the acceleration along
the x-axis. If the sensor is not available this attribute’s value will be
NULL.

Acceleration-Y

Abstract: No
Generalization: Acceleration

Acceleration of the device along the y axis. If the accelerometer is not
available the value of this variable will be NULL.

Attributes

• value [Float]: A measure in m/s2 that represent the acceleration along
the y-axis. If the sensor is not available this attribute’s value will be
NULL.

Acceleration-Z

Abstract: No
Generalization: Accelerometer

Acceleration of the device along the z axis. If the accelerometer is not
available the value of this variable will be NULL.

Attributes

101

• value [Float] : A measure in m/s2 that represent the acceleration along
the z-axis. If the sensor is not available this attribute’s value will be
NULL.

Altitude

Abstract: No
Generalization: Location

This variable indicates the altitude of the device with reference to the sea
level. Consequently, positive values indicate above sea level measures, while
negative values will indicate below sea level measures.

Attitude

Abstract: Yes
Generalization: Mobile Context Variable

Attitude values combine the measures of several sensors to determine the
orientation of the device within a reference framework. The measures of this
variable are characterized by the device Yaw, Pitch and Roll.

Attributes

• value [Float] : A floating point number representing the Yaw, Pitch
or Roll of the device.

Battery

Abstract: Yes
Generalization: Mobile Context Variable

The device battery as described by its current level and status. In contrast
with desktop applications, mobile apps are expected to deal with the chal-
lenges posed by a finite power supply as well as to contribute to its optimal
usage. Because of this, applications may be in interested in learning the
current Battery Level and decide, for instance, to execute a power intensive
operation (e.g. involving network access) when the battery levels are higher
or the device is plugged.

Battery Level

102

Abstract: No
Generalization: Battery

The remaining percentage of battery power.

Attributes

• value [Float]: A number between 0.0 and 1.0 that represents the re-
maining percentage of battery power. This value will be NULL in case
the device is unable to report the current battery level.

Battery Status

Abstract: No
Generalization: Battery

A Mobile Context Variable that captures the state of the device battery as
described by the following values: Unknown, in case the device is unable to
report the battery level; Unplugged, indicating that the device is running
on its battery; Charging, when the device is plugged to an electrical outlet;
and Full, equivalent to a 1.0 Battery Level value.

Attributes

• value [Battery Status Description]: Can only take any of the following
values: Unknown, Unplugged, Charging or Full.

Bluetooth

Abstract: No
Generalization : Network

The Bluetooth Mobile Context Variable, represents whether bluetooth con-
nections can be established based on the availability and activation status
of the hardware component.

Attributes

• value [Bool] : This value will be true if Bluetooth networks are avail-
able and the device is able to use them for data transfers. In any other
case, this variable will be false.

103

Cellular

Abstract: No
Generalization: Network

The Cellular Mobile Context Variable represents whether cellular networks
are activated and can be used for data transfer.

Attributes:

• value [Bool] : This value will be true if Cellular networks are available
and the device is able to use them for data transfers. In any other
case, this variable will be false.

Device Screen

Abstract: No
Generalization: Named Element

This entity encompasses the screen features of a mobile device that are
required to activate a particular Viewpoint.

Attributes

• height[Float]: the height of the screen measured in pixels

• width[Float]: the width of the screen measured in pixels.

• density[Float] : the resolution of the screen measured in pixels per
inch.

Device Sensor

Abstract: Yes
Generalization: Named Element

This entity encompasses the family of sensors that is included in modern
mobile devices, namely: Proximity Sensor, Magnetometer, Gyroscope, Ac-
celerometer, GPS, Video Camera, Microphone and Still Camera.

Direction

104

Abstract: Yes
Generalization: Mobile Context Variable

The Direction variable, describes the readings of the magnetometer sensor
which can report the orientation of the device in relation with the magnetic
north as well as the accuracy of such measures.

Enumeration Orientation Description

This enumeration describes the possible orientation modes that can be re-
ported by mobile Operating Systems.

Literals

• Unknown: If the device is not able to report the current orientation.

• Portrait: If the device is held vertically with the front camera at the
top and the menu button and the bottom. This is the natural position
of the device.

• Landscape: If the device is held horizontally regardless of the position
of the front camera and menu button.

• Portrait Upside Down: If the device is held vertically with the front
camera at the bottom and the menu button at the top.

• Landscape Right: If the device is held horizontally with the front
camera in the right and the menu button in the left.

• Landscape Left: If the device is held horizontally with the front camera
in the left and the menu button on the right.

• Face Up: If the device screen is facing the user.

• Face Down: If the device screen is not facing the user.

Enumeration Battery Status Description

This enumeration describes the possible battery status values

Literals

• Unknown: If the device is not able to report the battery status.

105

• Unplugged: If the device is currently running on battery.

• Charging: If the device is plugged to an electrical outlet and its battery
is currently charging.

• Full: If the device battery is fully charged.

GPS

Abstract: No
Generalization: Sensor

This Entity models the GPS sensor of mobile devices.

Attributes

• isAvailable [Bool]: A true value indicates that the device in use has
GPS capabilities.

• isEnabled [Bool]: Since mobile users can decide whether they want
applications to access their current location, this variable indicates if
the users have allowed GPS tracking.

Gyroscope

Abstract: No
Generalization: Sensor

The Gyroscope entity models the availability of a sensor that is able to
measure and report changes in the angular momentum of the device.

Attributes

• isAvailable [Bool]: A true value indicates that the device in use has a
sensor that is able to report changes in the angular momentum of the
device.

Magnetic Heading Direction

Abstract: No
Generalization: Direction

106

The Heading Direction describes the orientation of the Mobile device in
relation with the magnetic north.

Attributes

• value [Float] : Device orientation measured in degrees. A value of 0o

degrees will indicate north, 90o east, 180o south and 270o west. This
value will be NULL in case the device is unable to report the heading
direction.

Magnetic Heading Accuracy

Abstract: No
Generalization: Direction

The Magnetic Heading Accuracy variable, models the perceived error in the
measurements captured by the magnetometer present in the device.

Attributes

• value [Float] : The perceived error in the magnetic heading direction
measurement. The lower this value, the more accurate the reported
direction.

Horizontal Accuracy

Abstract: No
Generalization: Location

The location services in Mobile Applications are achieved by means of a
combination of sensors that include GPS, cellular and wifi networks. Like
in any other positioning systems, depending on reference points available,
the reported data may contain some errors. This Context Variable contains
the horizontal accuracy of the reported location data.

Attributes:

• value [Float]: A value measured in meters, that describes the radius
of the error ellipse of the reported location data. Negative values

107

indicate that the device is unable to report the horizontal accuracy of
the location measurements.

Latitude

Abstract: No
Generalization: Location

This Context Variable describes the north-south component of a geograph-
ical coordinate.

Attributes:

• value [Float]: A value measured in degrees, that describes the north-
south coordinate of the user’s geographic position.

Location

Abstract: Yes
Generalization: Mobile Context Variable

This abstract entity encompasses all the sensor readings that describe the
user location in terms of geographic position, speed and altitude along with
the respective measurement errors.

Longitude

Abstract: No
Generalization: Location

This Context Variable describes the east-west component of a geographical
coordinate.

Attributes

• value [Float]: A value measured in degrees, that describes the east-
west coordinate of the user’s geographical position.

Magnetometer

108

Abstract: No
Generalization: Sensor

The Magnetometer entity models the availability of a sensor that is able to
measure the orientation of a mobile device with respect to the magnetic and
true norths.

Attributes

• isAvailable [Bool]: A true value indicates that the device in use has a
sensor that is able to report its orientation with respect to the magnetic
and true norths.

Microphone

Abstract: No
Generalization: Sensor

This entity models the availability of an input device capable of capturing
audio.

Attributes

• isAvailable [Bool]: A true value indicates that the device in use has a
microphone.

Mobile Context Variable

Abstract: Yes
Generalization: Simple Context Variable

This entity provides a generalization for all the information produced by the
sensors of a mobile device. Each of its specializations is concerned with the
data produced by a particular sensor and because such readings are valid
throughout the different sections of the app, all the specializations have
Application Scope.

Mobile Device

Abstract: No
Generalization: Device

109

This entity models a modern mobile device considering the available sensors
and the main features of its screen.

Association Ends

• screens [Device Screen] (0..*): Each of the device screens supported
by a particular Viewpoint as described by their dimensions and pixel
density.

• sensors [Device Sensor] (0..*): Each of the device sensors that are
required on a particular Viewpoint.

Network

Abstract: Yes
Generalization: Mobile Context Variable

The Network Context Variable comprises all modern network connections
that can be established from a mobile device. Its specializations, namely
Wi-Fi, Cellular, NFC and Bluetooth networks, can be queried throughout
the application and used by IFML designers to specify, for instance, the
preferred network that should be used to perform certain task.

Attributes

• isAvailable [Bool]: this attribute is inherited by all the specializa-
tion classes, and indicate whether certain network is available for data
transfer.

NFC

Abstract: Yes
Generalization: Mobile Context Variable

A key-value that describes the availability of NFC networks for data transfer.

Attributes

• value [Bool]: This value will be true if NFC networks are available and
the device is able to use them for data transfers. In any other case,
this variable will be false.

110

Orientation

Abstract: No
Generalization: Mobile Context Variable

A key-value pair that describes the current orientation of the mobile device
through a set of fixed values.

Association Ends

• value [Orientation Description] (0..1) : The current device orientation
as described by the values of the Orientation Description enumera-
tor, namely: Portrait, Landscape, Portrait Upside Down, Landscape
Right, Landscape Left, Faced Up and Face Down.

Pitch

Abstract: No
Generalization: Attitude

A key-value pair that describes the rotation around the lateral axis of the
device –i.e. an axis that goes from side to side [15].

Attributes:

• value[Float] : Measure in radians of the rotation of the device along
its lateral axis.

Proximity Sensor

Abstract: No
Generalization: Sensor

This entity represents a type of sensors that is able to recognize if the user is
close to the device. Such sensor is typically used in applications that allow
users to make and receive calls because it can perceive when the device is
close to the user’s ear and trigger an event that deactivates all the touch
events avoiding in this way unintended interactions.

Attributes

111

• isAvailable [Bool]: This value will be true if the device in use has a
proximity sensor. In any other case, the attribute’s value will be false.

Proximity

Abstract: No
Generalization: Mobile Context Variable

A key-value pair that can be queried to verify whether the user is close to
the proximity sensor of the device.

Attributes

• value [Bool] : This value will be true if the user is close to the proximity
sensor, and false when the user is far from it. In case the device in use
doesn’t have a proximity sensor or its unable to report the proximity
status, the attribute’s value will be NULL.

Roll

Abstract: No
Generalization: Attitude

A key-value pair that describes the rotation along the longitudinal axis of
the device – i.e. an axis that goes from top to bottom [15].

Attributes

• value[Float] : Measure in radians of the rotation of the device along
its longitudinal axis.

Rotation

Abstract: Yes
Generalization: Mobile Context Variable

The rotation of the device along the three spatial axis as measured by the
gyroscope.

Attributes

112

• isAvailable [Bool]: this attribute is inherited by all the specialization
classes, and indicate the rotation measured along each spatial axis.

Rotation-X

Abstract: No
Generalization: Rotation

The rotation of the device along the x-axis.

Attributes

• value[Float] : Measure in radians of the rotation of the device along
the x-axis. If the gyroscope is not available the value of this variable
will be NULL.

Rotation-Y

Abstract: No
Generalization: Rotation

The rotation of the device along the y-axis.

Attributes

• value[Float]: Measure in radians of the rotation of the device along
the y-axis. If the gyroscope is not available the attribute’s value will
be NULL.

Rotation-Z

Abstract: No
Generalization: Rotation

The rotation of the device along the y-axis.

Attributes

113

• value[Float]: Measure in radians of the rotation of the device along
the y-axis. If the gyroscope is not available the attribute’s value will
be NULL.

Speed

Abstract: No
Generalization: Location

The ground speed of the device as measured by the location change rate
over a period of time.

Attributes

• value[Float]: Measure in meters per second of the device ground speed.
If the location services are not available this attribute’s value will be
NULL.

Still Camera

Abstract: No
Generalization: Sensor

This entity models the availability of rear and back facing, still cameras.

Attributes

• front [Bool]: A true value indicates the availability of a front facing
camera that is able to snap pictures. In case the device doesn’t have
a front facing camera or it is not capable of snapping pictures this
variable will be false

• rear [Bool]: A true value indicates the availability of a back facing
camera that is able to snap pictures. In case the device doesn’t have
a rear facing camera or it is not capable of snapping pictures this
variable will be false.

True Heading Direction

114

Abstract: No
Generalization: Direction

The Heading Direction describes the orientation of the Mobile device in
relation with the true north.

Attributes

• value [Float] : Device orientation measured in degrees. A value of 0o

degrees will indicate north, 90o east, 180o south and 270o west. This
value will be NULL in case the device is unable to report the true
heading direction.

Video Camera

Abstract: No
Generalization: Sensor

This entity models the availability of rear and back facing video cameras.

Attributes

• front [Bool]: A true value indicates the availability of a front facing
camera that is able to shoot video. In case the device doesn’t have a
front facing camera or it is not capable of shooting video this variable
will be false.

• rear [Bool]: A true value indicates the availability of a back facing
camera that is able to shoot video. In case the device doesn’t have a
rear facing camera or it is not capable of shooting video this variable
will be false.

Vertical Accuracy

Abstract: No
Generalization: Location

The accuracy of the reported altitude measure.

Attributes

115

• value [Float]: A value measured in meters, that describes measurement
error of the reported device altitude with respect to the level of the
sea.

Wi-Fi

Abstract: No
Generalization: Network

This key-value pair describes the availability of Wi-Fi networks for data
transfers.

Attributes

• value [Bool]: This value will be true if Wi-Fi networks are available
and the device is able to use them for data transfers. In any other
case, the attribute’s value will be false.

Yaw

Abstract: No
Generalization: Attitude

A key-value pair that describes the rotation of the device along an axis that
is perpendicular to its surface [15].

Attributes

• value[Float]: Measure in radians of the rotation of the device along an
axis that is perpendicular to its screen.

116

Relevant iOS Resources

Private Extensions Package Entity iOS Resource

Accelerometer

UIRequiredDeviceCapabilities,
CMMotionManager
(accelerometerAvailable,
accelerometerActive)

Acceleration CMAccelerometerData, CoreMotion

Acceleration-X
 CMAccelerometerData,
CMMotionManager (accelerometerData)

Acceleration-Y
CMAccelerometerData,
CMMotionManager (accelerometerData)

Acceleration-Z
CMAccelerometerData,
CMMotionManager (accelerometerData)

Altitude CLLocation, CLLocationManager

Attitude CoreMotion, CMAttitude

Battery UIDevice

Battery Level UIDevice (batteryLevel)

Battery Status UIDevice (batteryLevel)

Bluetooth CoreBluetooth, CBCentralManager

Cellular Rechability

Device Screen
UIDevice (model, orientation),
UIUserInterfaceIdiom,
UIDeviceOrientation

Device Sensor UIRequiredDeviceCapabilities

Direction
CoreLocation, CLLocationManager,
CLHeading

Enumeration Orientation Description UIDeviceOrientation

Enumeration Battery Status Description UIDeviceBatteryState
117

GPS
UIRequiredDeviceCapabilities,
CLLocationManager
(locationServicesAvailable)

Gyroscope
 UIRequiredDeviceCapabilities,
CMMotionManager (gyroAvailable,
gyroActive)

Magnetic Heading Direction CLHeading (magneticHeading)

Magnetic Heading Accuracy CLHeading (headingAccuracy)

Horizontal Accuracy Horizontal Accuracy

Latitude Latitude

Location CoreLocation, CLLocationManager

Longitude CLLocation (coordinate)

Magnetometer

CMMotionManage
(magnetometerActive,
magnetometerAvailable),
UIRequiredDeviceCapabilities

Microphone UIRequiredDeviceCapabilities

Mobile Context Variable
 CoreLocation, CoreMotion,
CoreBluetooth

Mobile Device UIRequiredDeviceCapabilities, UIDevice

Network Rechability

NFC N/A

Orientation UIDevice, UIDeviceOrientation

Pitch CoreMotion, CMAttitude(pitch)

Proximity Sensor UIDevice (proximityMonitoringEnabled)

Proximity UIDevice (proximityState)

Roll CMAttitude (roll)

Rotation CoreMotion, CMGyroData 118

Rotation-X CMGyroData (rotationRate)

Rotation-Y CMGyroData (rotationRate)

Rotation-Z CMGyroData (rotationRate)

Speed CLLocation (speed)

Still Camera

UIRequiredDeviceCapabilities,
UIImagePickerController
(isSourceTypeAvailable),
UIImagePickerControllerSourceType,
UIImagePickerControllerCameraCapture
Mode

True Heading Direction CLHeading (trueHeading)

Video Camera

UIRequiredDeviceCapabilities,
UIImagePickerController
(isSourceTypeAvailable),
UIImagePickerControllerSourceType,
UIImagePickerControllerCameraCapture
Mode

Vertical Accuracy CLLocation (verticalAccuracy)

Wi-Fi Rechability

Yaw CMAttitude (yaw)

119

Note about References

Although in the Bibliography section we enumerate all the references used
during the project, in this section we list the more valuable resources and
the role the played in shaping the final result of our project.

For the theoretical review we used the technical guides developed by Apple
Inc [17] [8] [7] [9] [2], and the OMG standard of IFML [21]. These resources
provided us with enough information and examples to grasp the main con-
cepts of the target platforms.

The books authored by Martin Fowler[19], Markus Voelter [26] [25] and
Marco Brambilla [18] provided the theoretical foundations that guided the
code generation process. These books were a great source of good practices
and advices for conducting a Model Driven Development effort.

Finally, the MD2 [22] project, developed at the Department of Information
Systems in the University of Münsterin, provided some inspiration for the
prototype driven approach used during the project.

120

Bibliography

[1] Apple Inc. Archives and Serializations Programming Guide.
https://developer.apple.com/library/ios/documentation/cocoa/
conceptual/Archiving/Articles/archives.html.

[2] Apple Inc. Concepts in Objective-C Programming.
https://developer.apple.com/library/ios/documentation/General/
Conceptual/CocoaEncyclopedia/Introduction/Introduction.html.

[3] Apple Inc. Concurrency Programming Guide. https://developer.
apple.com/library/ios/documentation/General/Conceptual/
ConcurrencyProgrammingGuide/Introduction/Introduction.html.

[4] Apple Inc. Data Management - SQLite.
https://developer.apple.com/technologies/ios/data-management.html.

[5] Apple Inc. File System Programming Guide. https://developer.apple.
com/library/ios/documentation/FileManagement/Conceptual/
FileSystemProgrammingGuide/Introduction/Introduction.html.

[6] Apple Inc. Introduction to Core Data Programming Guide.
https://developer.apple.com/library/mac/documentation/Cocoa/
Conceptual/CoreData/cdProgrammingGuide.html.

[7] Apple Inc. iOS Programming Guide. https://developer.apple.com/
library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/Introduction/Introduction.html.

[8] Apple Inc. iOS Technology Review. https:
//developer.apple.com/library/ios/documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html.

[9] Apple Inc. Programming with Objective-C. https://developer.apple.
com/library/ios/documentation/Cocoa/Conceptual/
ProgrammingWithObjectiveC/Introduction/Introduction.html.

121

https://developer.apple.com/library/ios/documentation/cocoa/conceptual/Archiving/Articles/archives.html
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/Archiving/Articles/archives.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/technologies/ios/data-management.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/cdProgrammingGuide.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

[10] Apple Inc. Property lists Programming Guide.
https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/PropertyLists/Introduction/Introduction.html.

[11] Apple Inc. Transitioning to ARC Release Notes.
https://developer.apple.com/library/ios/releasenotes/objectivec/rn-
transitioningtoarc/introduction/introduction.html.

[12] Apple Inc. URL Loading System Programming Guide.
https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/URLLoadingSystem/URLLoadingSystem.html.

[13] Apple Inc. View Controller Programming Guide.
https://developer.apple.com/library/ios/featuredarticles/
ViewControllerPGforiPhoneOS/AboutViewControllers/
AboutViewControllers.html.

[14] Apple Inc. Views Programming Guide.
https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/PropertyLists/Introduction/Introduction.html.

[15] Apple Inc. CMAttitude Class Reference.
https://developer.apple.com/library/IOs/documentation/
CoreMotion/Reference/CMAttitude Class/index.html, 2011.

[16] Apple Inc. ADBannerView Class Reference.
https://developer.apple.com/LIBRARY/ios/documentation/
UserExperience/Reference/ADBannerView Ref/index.html, 2013.

[17] Apple Inc. App Programming Guide for iOS. https://developer.apple.
com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf,
2014.

[18] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan and Claypool Publishers,
2012.

[19] Martin Fowler. Domain-Specific Languages. Addison-Wesley
Professional, October 2010.

[20] Google. Google Mobile Ads.
https://developer.android.com/google/play-services/ads.html, 2013.

[21] Object Management Group. Interaction flow modeling language
(ifml). http://www.omg.org/spec/IFML/1.0, February 2014.

122

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/ios/releasenotes/objectivec/rn-transitioningtoarc/introduction/introduction.html
https://developer.apple.com/library/ios/releasenotes/objectivec/rn-transitioningtoarc/introduction/introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/AboutViewControllers/AboutViewControllers.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/PropertyLists/Introduction/Introduction.html
https://developer.apple.com/library/IOs/documentation/CoreMotion/Reference/CMAttitude_Class/index.html
https://developer.apple.com/library/IOs/documentation/CoreMotion/Reference/CMAttitude_Class/index.html
https://developer.apple.com/LIBRARY/ios/documentation/UserExperience/Reference/ADBannerView_Ref/index.html
https://developer.apple.com/LIBRARY/ios/documentation/UserExperience/Reference/ADBannerView_Ref/index.html
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.android.com/google/play-services/ads.html
http://www.omg.org/spec/IFML/1.0

[22] Herbert Kuchen Henning Heitkotter, Tim A. Majchrzak.
Cross-platform model-driven development of mobile applications with
md2, 2013.

[23] International Data Corporation (IDC). Smartphone OS Market Share,
Q2 2014.
http://www.idc.com/prodserv/smartphone-os-market-share.jsp, 2014.

[24] Object Management Group (OMG). Unified Modeling Language.
http://www.omg.org/spec/UML/2.4.1/, 2011.

[25] Markus Voelter. A catalog of patterns for program generation, 2003.

[26] Markus Voelter. DSL Engineering: Designing, Implementing and
Using Domain-Specific Languages. Create Space Independent
Publishing Platform, 2013.

123

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.omg.org/spec/UML/2.4.1/

Acknowledgments

This project represents the climax of a journey that started two years ago.
A journey that I couldn’t have completed without the help and support of
many people that kept me sane through the toughest moments of this path.

First, and foremost I would like to thank my mum. For her unconditional
support, guidance and wise advices. For being there, for not giving up on
me, and for all the sacrifices that my life abroad has implied for her.

To my girlfriend and her parents. For teaching me that, like building a
house, seeing the end of a project is an endeavour that needs to be faced
brick by brick.

To all my cousins but specially to Sebastián, from whom I learned how to
live with courage and to never give up in spite of the challenges that life
puts in our paths.

I would also like to thank my university back home, Pontificia Universidad
Javeriana, and my sponsor, Colfuturo, for making possible this marvelous
experience, and for supporting me in every step of the journey.

Finally I want to express my gratitude to my supervisor, Marco Brambilla,
for being always available for discussion and for helping me drive this
project to a good end.

124

	Introduction
	Context
	Motivation
	Objectives
	Structure

	Background
	IFML
	iOS

	Approach
	Overview
	Extensions
	Code Generation
	Tools

	Extensions
	General Extensions
	Mobile Extensions
	Private Extensions

	Code Generation
	Prototype App
	Target Architecture
	Mapping
	Static Library
	Code Generators
	Integration
	Packaging

	Conclusion
	Results
	Critical Analysis
	Future Work

	Appendix General Extensions Package
	Appendix Mobile Extensions Package
	Appendix Private Extensions Package
	Note about References
	Bibliography
	Acknowledgments

